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Preface

For several decades the semimartingale processes were the best model in or-
der to implement many ideas. The stochastic calculus for semimartingales
and the general theory of stochastic processes, which are closely connected
to the theory of stochastic integration and stochastic differential equations,
were originated by N. Wiener (Wie23), P. Lévy (Le48), K. Itô (Itô42), (Itô44),
(Itô51), A.N. Kolmogorov (Kol31), W. Feller (Fel36), J.L. Doob, M. Loéve,
I. Gikhman and A. Skorohod (the list of related papers and books is very long
and we do not mention it here in full). Those ideas were developed further by
several authors, among them there are K. Bichteler (Bi81), C.S. Chou, P.A.
Meyer and C. Stricker (CMS80), K.L. Chung and R.J. Williams (ChW83),
C. Dellacherie (Del72), C. Dellacherie and P.A. Meyer (DM82), C. Doléans-
Dade and P.A. Meyer (DDM70), H. Föllmer (Fol81a), P.A. Meyer (Me76) and
M. Yor (Yor76). These theoretical data were fruitfully discussed and summa-
rized in the monographs of J. Jacod (Jac79), R. Elliott (Ell82), P.E. Kopp
(Kop84), M. Métivier and J. Pellaumail (MP80), B. Øksendal (Oks03), P.
Protter (Pro90). Limit theorems in the most general semimartingale frame-
work were proved by J. Jacod and A.N. Shiryaev (JS87). A very convenient
way to consider financial markets is to insert them into semimartingale mod-
els, as perfectly demonstrated by I. Karatzas and S. Shreve (KS98), A.N.
Shiryaev (Shi99), F. Delbaen and W. Schachermayer (DS06). The Malliavin
calculus for the Wiener process was presented in the books of P. Malliavin
(Mal97) and D. Nualart (Nua95). However, in recent years the well-studied
theory of semimartingales turns out to be insufficient in order to describe
many phenomena. On one hand, telecommunication connections, asset prices
and other objects have “long memory”. This effect cannot be described with
the help of such processes as the Wiener process, which has independent in-
crements and has no memory. On the other hand, the concept of turbulence in
hydrodynamics can be described by self-similar fields with stationary (depen-
dent) increments (A.M. Yaglom (Yag57), A. Monin and A.M. Yaglom (MY67)
and A.M. Yaglom (Yag87)).
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A.N. Kolmogorov (Kol40) was the first to consider continuous Gaussian
processes with stationary increments and with the self-similarity property; it
means that for any a > 0 there exists b > 0 such that

Law(X(at); t ≥ 0) = Law(bX(t); t ≥ 0).

It turns out that such processes with zero mean have a special correlation
function:

EX(t)X(s) =
1
2
(|s|2H + |t|2H − |t− s|2H

)
,

where 0 < H < 1. A.N. Kolmogorov called such Gaussian processes “Wiener
Spirals” (“Wiener screw-lines”). Later, when the papers of H.E. Hurst (Hur51)
and H.E. Hurst, R.P. Black and Y.M. Simaika (HBS65), devoted to long-term
storage capacity in reservoirs, were published, the parameter H got the name
“Hurst parameter”. The stochastic calculus of the processes mentioned above
originated with the pioneering work of B.B. Mandelbrot and J.W. van Ness
(MvN68) who considered the integral moving average representation of X via
the Wiener process on an infinite interval and called this process fractional
Brownian motion (fBm). Note that B.B. Mandelbrot worked with fractional
processes during a long period and his later results concerned the fractals and
scaling were summarized in the book (Man97). Note also that it was proved
in the paper (GK05) that the moving average representation of fBm is unique
in the class of the right-continuous, nondecreasing concave functions on R+.
The first result where fBm appeared as the limit in the Skorohod topology
of stationary sums of random variables was obtained by M. Taqqu (Taq75);
another scheme of convergence to fBm in the uniform topology was considered
in (Gor77). Spectral properties of fBm were studied by G. Molchan (Mol69),
G. Molchan and J. Golosov (MG69), G. Molchan (Mol03), and later by K.
Dzhaparidze and H. van Zanten (DvZ05), (RLT95), (SL95).

The next intensive wave of interest in fBm arose in the 1990s. It can be
explained by various applications of fBm and other long-memory processes in
teletraffic, finances, climate and weather derivatives. The paper (DU95) was
one of the first paper devoted to stochastic analysis for fBm. Note that fBm
is neither a semimartingale (except the case H = 1/2 when it is a Brownian
motion) nor a Markov process. However, it is closely connected with fractional
calculus and can be represented as a “fractional integral” (with the help of a
comparatively complicated hypergeometric kernel) via the Wiener process not
only on infinite, but also on finite intervals. This was stated by I. Norros, E.
Valkeila and J. Virtamo (NVV99) and C. Bender (Ben03a). Such a representa-
tion, together with the Gaussian property of fBm and the Hölder property of
its trajectories (fBm with Hurst index H is Hölder up to order H) permits us to
create an interesting and specific stochastic calculus for fBm. The development
of the theory of long-memory processes moved in several directions: stochastic
integration, stochastic differential equations, optimal filtering, financial appli-
cations, statistical inference, from one side (these topics create the main points
of this book) and a lot of other theoretical problems and applications, from
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the other side. In our Preface we mention for the most part the papers that
are not mentioned and used in the text of the book but play a very im-
portant role in the development of the theory of long-memory processes.
For example, series, spectral and wavelet analysis for fBm was considered in
(AS96), (ALP02a), (Mas93), (Mas96), (RZ91), (DvZ05), (DF02), (DvZ04),
(SL95), (Mac81b); local times, the Tanaka formula, the law of the iter-
ated logarithm, maximal properties and the Kallianpur–Robbins law for fBm
and related processes were studied in (Ber69), (CNT01), (HO02), (HP04b),
(Sin97), (HOS05), (GRV03), (KK97), (KM96), (KO99), (Ros87), (KM96),
(Kono96), (Sh96), (ElN93), (Tal96) and (Taq77). Furthermore, stochastic
evolution equations driven by fBm were investigated in the papers (AG03),
(CD01), (MN03), (TTV03) and some methods of construction of fBm were
proposed in (Yor88) and (Sai92).

R.J. Adler and G. Samorodnitsky (AS95) considered super processes con-
nected to fBm. The Clark–Ocone theorem for fBm was established in (BE03)
and (AOPU00); forward and symmetric integrals for fBm were constructed in
(BO04), (CN02), (Zah02b) (note that the general theory of forward, backward
and symmetric integrals was created by F. Russo and P. Vallois in (RV93),
(RV95a), (RV95b), (RV98) and (RV00)).

Detection and prediction problems were discussed in the papers (BP88),
(GN96), (Dun06); the stochastic maximum principle for a controlled process
governed by an SDE involving fBm was proved in (BHOS02); stochastic Fu-
bini theorem for fBm was studied in (KM00); time rescaling for fBm was in-
vestigated in (Mac81a); Hausdorff measure and packing dimension connected
to fBm were considered in (Tal95), (TX96), (Xiao91), (Xiao96), (Xiao97a),
(Xiao97b); estimation of the parameters of long-memory processes, in particu-
lar, the estimates of the Hurst parameter are presented in (Ber94), (BGK06),
(BG96), (BG98), (GR03a). Markov properties of some functionals connected
with an fBm were considered in (CC98).

Rough path analysis for fBm was studied in (CQ02) and some of its ap-
plications were considered in the manuscript (HN06); the properties of the
Gaussian spaces generated by an fBm were established in (PT01); distribution
of functionals connected with fBm was obtained in (CM96), (LN03), (ElN99)
(Sin97), (Zha96), (Zha97); the Skorohod–Stratonovich integral for fBm was
studied in (Dec01), (ALN01), (AMN01), (AN02); the properties of spectral ex-
ponent of fBm were established in (LP95); multi-parameter fractional Brown-
ian fields were studied in (ENO02), (Kam96), (ALP02b), (Lind93), (Gol84),
(KK99), (OZ01), (PT02a), (Tal95), (TV03), (TT03), (Tud03), (MisIl03),
(MisIl04), (MisIl06), (Mur92); set-parametrized fractional Brownian fields
have been studied in the papers (HM06a), (HM06b); asymptotic properties
of two-dimensional fractional Brownian fields were considered in (BaNu06).
The Malliavin calculus for fBm was developed in (Hu05), (Pri98), (Nua03),
(Nua06); fBm in Hilbert space was constructed and investigated in (DPM02).
The papers (HN04), (KLeB02), (AHL01), (ALN01), (CKM03) are devoted
to stochastic fractional Ornstein–Uhlenbeck, Riesz–Bessel and Lévy type
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processes. An interesting formula of transformation of fBm with Hurst in-
dex H into fBm with index 1−H was obtained in (Jost06). Mention also the
papers (DU98), (Daye03) and forthcoming book (BHOZ07).

Note that fBm has a long-memory property only for H ∈ (1/2, 1). In
the case H ∈ (0, 1/2) it is a process with short memory. The theory of such
processes is quite different. FBm with H ∈ (0, 1/2) was studied in (ALN01),
(AMN00), (AI04) and (CN05); simulation of fBm and various applications
of fBm were considered in (CM95), (CM96), (Nor95), (Yin96), (Dun00),
(Dun01), (DF02), (Seb95) and (Sin94).

Fractional Brownian motion as a model of financial markets was proposed
in a large number of papers. (See, for example, (AM06), (BE04), (BSV06),
(BO02), (BH05), (Che01b), (Dun04), (EvH01), (EvH03), (Gap04), (HO03),
(HOS03), (HOS05), (Rog97), (Sch99), (Shi01), (Sot01), (SV03), (WRL03),
(WTT99), (Wyss00) and (Zah02a).) Financial markets with memory were
considered in (AI05a), (AI05b), (INA07) and (IN07). Moreover, filtering
and prediction problems were considered in (CD99), (INA06), (KKA98b),
(LeB98), (KLeBR99), (KLeB99), (KLeBR00), (Dun06) and (GN96). In addi-
tion, some related applied problems were studied, e.g., in (MS99), (Nar98),
(Nor95), (Nor97), (Nor99). An estimate of ruin probabilities for the models
with the long-range dependence was studied in (Mis05), (HP04b). Statistical
inferences for the processes related to fBm are a very extended area. The
major contributions to this theory were made, among other authors, by M.
Taqqu and P.M. Robinson. We mention here also the papers of P. Doukhan,
A. Khezour and G. Lang (DKL03), L. Giraitis and P.M. Robinson (GR03b),
and the papers (DH03), (HH03), (KS03), (MS03), (BLOPST03), (WTT99).
Of course, our list of the papers devoted to the theory of fBm is not exhaus-
tive. The book of P. Doukhan, G. Oppenheim, M. Taqqu (editors): Theory
and Applications of Long-range Dependence (Birkhäuser, Boston 2003) con-
tains papers devoted to different aspects of stochastic calculus for fractional
Brownian motion and related processes. We mention, in particular, the papers
of D. Surgailis (Sur03a), (Sur03b) and M. Maejima (Mae03), devoted to cen-
tral and non-central limit theorems, where the asymptotic distribution is not
the classical standard normal and the limit process is not the Wiener process.
The processes of moving average type are obtained as the limiting ones for
increasing sums of some stationary sequences that do not have finite vari-
ance. See also the papers (Ho96), (Dec03), (Do03), (Mol03), (PT03), (Taq03),
(SW03) from this edition describing stochastic analysis and other aspects of
the processes with long memory; papers concerning statistical problems were
mentioned above. It is clear from the aforesaid descriptions and citations that
there exists the urgent need to systematize the existing results devoted to frac-
tional Brownian motion, to select the best of them (in the author’s opinion)
and to present them in appropriate form. Also, some well-known results admit
generalizations, and it can be done without great technical difficulties. The
present book is devoted to the solution of these two problems. Of course, we
cannot claim the complete presentation of all the results concerning fractional
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Brownian motion; it is impossible as the reader can see from aforesaid list.
So, we choose only the following topics: Wiener and stochastic integration,
Itô formula, Fubini and Girsanov theorems, stochastic differential equations,
filtering in the mixed Brownian–fractional-Brownian models, financial appli-
cations, some statistical inferences for fractional Brownian motion and the
stochastic calculus of multi-parameter fractional Brownian processes. These
fields coincide with the main directions of our own interest in the long-memory
effect.

The book consists of six chapters divided into 41 sections. Chapter 1 is
devoted to the Wiener integration (when the integrand is nonrandom) with
respect to fractional Brownian motion. Section 1.1 is devoted to the principal
definitions from fractional calculus. We recall the notions of fractional integrals
and derivatives both for finite and infinite intervals, formulate the Hardy–
Littlewood theorem, give the Fourier transformation for fractional integrals
and derivatives and calculate the values of some important fractional deriva-
tives. Section 1.2 contains some elementary properties of fractional Brownian
motion including the simplest spectral representations. Section 1.3 contains
the Mandelbrot–van Ness representation of fractional Brownian motion via the
Wiener process and some fractional kernels on real axes. These kernels are the
prototypes for the future definition of the Wiener integration w.r.t. fBm. Sec-
tions 1.4 and 1.5 describe the construction of fractional Brownian motion and
fractional noise on white noise space. Such space is convenient for applications
since it is possible to consider mixed Brownian–fractional-Brownian processes
and linear combinations of fractional Brownian motions with different Hurst
indices on such space and to apply Wick calculus to them. It is proved that
any fractional noise with H ∈ [1/2, 1] belongs to the Hida distribution space
S∗ (we establish the corresponding estimates for the negative norms). The re-
lations between motion and noise are established as in the usual Wick calculus
for the Wiener noise. In Section 1.6 we return to fBm on arbitrary space. The
section contains the definition of the Wiener integral with respect to fBm and
various relations between different “integrable spaces” related to fBm. Section
1.7 is devoted to (non) completeness of the Gaussian spaces generated by fBm,
in connection with their norms. Section 1.8 contains the representation of fBm
via the Wiener process on any finite interval [0, T ] and some representations
for auxiliary processes. Sections 1.9 and 1.10 present moment estimates for
Wiener integrals w.r.t. fractional Brownian motion. Using the conditions of
continuity of the trajectories of Wiener integrals w.r.t. fBm (Section 1.11) we
extend in Section 1.12 the upper moment estimates to solutions of very simple
stochastic differential equations containing Wiener integrals. Section 1.13 con-
tains the proof of the stochastic Fubini theorem for the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.14 deals with such Gaussian processes
that can be transformed into martingales with the help of some kernels
(fBm can be transformed into the Wiener process with the help of hyper-
geometric kernels). Section 1.15 is devoted to different convergence schemes,
in which fBm is approximated by the sequence of semimartingales, and even
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by the continuous processes with bounded variation. In the last case Wiener
integrals w.r.t. fractional Brownian motion also can be approximated. Sec-
tion 1.16 demonstrates the Hölder properties of the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.17 contains some auxiliary estimates
for fractional derivatives of fBm and for the Wiener integrals w.r.t. Wiener
process via the Garsia–Rodemich–Rumsey inequality. Section 1.18 contains
one- and two-sided bounds for power variations for fBm and Wiener integrals
w.r.t. fBm. Section 1.19 contains the result stating that some conditions of
quadratic variation of a stochastic process supply that this process is an fBm;
it is kind of generalization of the Lévy theorem for the Wiener process. Section
1.20 concludes; it describes Wiener fields on the plane and related fractional
integrals and derivatives.

Chapter 2 is devoted to stochastic integration w.r.t. fractional Brownian
motion and other aspects of stochastic calculus of fBm. There exist several ap-
proaches to stochastic integration w.r.t. fractional Brownian motion: pathwise
integration, Wick integration, Skorohod integration, isometric integration and
some others that are not mentioned here. Pathwise stochastic integration in
fractional Sobolev-type spaces and in fractional Besov-type spaces is described
in Section 2.1 and is generalized to fBm fields in Section 2.2. Wick integra-
tion is considered in Section 2.3 and is reduced to the integration w.r.t. white
noise. Two approaches to the Skorohod integration and their connections with
forward, backward and symmetric integration are discussed in Section 2.4.
Isometric integration is the subject of section 2.5. The stochastic Fubini the-
orem and various versions of the Itô formula and the Girsanov theorem are
contained in Sections 2.6–2.8 which conclude Chapter 2.

Chapter 3 is devoted to different properties of stochastic differential equa-
tions involving fBm. Section 3.1 contains the conditions of existence and
uniqueness of solution of a “pure” stochastic differential equation containing
a pathwise integral w.r.t. fBm and the estimates of its solution. Most of the
theorems are stated in the spirit of the paper (NR00) but the results of Zähle
(Zah99) on existence of local solutions are also presented since they are used
later for construction of global solutions in the cases when other results cannot
help. Some properties of SDEs with stationary coefficients including differen-
tiability and local differentiability of the solutions are presented in Subsection
3.1.4. Existence and uniqueness of solutions of SDEs with two-parameter frac-
tional Brownian fields is contained in Subsection 3.1.6. Semilinear “pure” and
“mixed” SDEs are considered in detail in Subsections 3.1.5 and 3.2.1. The rate
of convergence of Euler approximations of solutions of SDEs involving fBm is
the subject to Section 3.4. SDEs with fractional white noise are considered in
Section 3.3, and a detailed discussion of SDEs with additive Wiener integrals
w.r.t. fBm is presented in Section 3.5.

Chapter 4 is devoted to filtering problems in the mixed fractional models.
Section 4.1 considers the case when the signal process is modeled by mixed sto-
chastic differential equations involving both fractional Brownian motion and
the Wiener process and the observation process is the sum of the fractional
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Brownian integral and the term of bounded variation. Optimal filtering in con-
ditionally Gaussian linear systems with mixed signals and fractional Brownian
observation is studied in Section 4.2. In these sections we consider only non-
random integrands in all the stochastic integrals. In Section 4.3 we make an
attempt to generalize the model and consider polynomial integrands depend-
ing on fBm.

Chapter 5 is devoted to financial models involving fBm. In general, fi-
nancial markets fairly often have a long memory and it is a natural idea to
model them with the help of fBm or with the help of some of its modifica-
tions. Nevertheless, it is not so easy to do this because the market model
is “good” when it does not admit arbitrage and the models involving frac-
tional Brownian motion are not arbitrage-free. So, this chapter is devoted to
some methods of construction of the long-memory arbitrage-free models and
to the discussion of different approaches to this problem. In Section 5.1 we
introduce the mixed Brownian–fractional-Brownian model and establish con-
ditions that ensure the absence of arbitrage in such a model. In Section 5.2
we consider a fractional version of the Black–Scholes equation for the mixed
Brownian-fractional Brownian model which contains pathwise integrals w.r.t.
fBm, discuss possible applications of Wick products in fractional financial
models and produce Black–Scholes equation for the fractional model involv-
ing Wick product w.r.t. fBm.

Chapter 6 is devoted to the solution of some statistical problems involving
fBm. The choice of the first problem which is solved in Sections 6.1 and
6.2 was evoked by some financial reasonings considered in Chapter 5. More
exactly, we try to determine which of the two geometric Brownian motions
from (5.2.6) serves as the better model for the real financial market, i.e. we test
the complex hypothesis concerning the shifts in the geometric fBm; one of the
shifts corresponds to the pathwise integral, and another to the Wick integral.
In Section 6.3 we consider the existence and the properties of estimates of the
shift parameter in different “pure” and “mixed” models involving fBm and,
possibly, the Wiener process, which can be independent of or, conversely,
“linearly dependent” on fractional Brownian motion.

I am grateful to Esko Valkeila who invited me several times to Helsinki Uni-
versity during the period of 1997-2005 and presented a possibility for fruitful
work and discussion of the problems connected to fractional Brownian mo-
tion and related topics. Also, I am grateful to David Nualart for inviting me
to Barcelona University during 2001–2003 when we discussed the problems
connected to stochastic differential equations involving fBm. My thanks to all
my other coauthors, with whom we have written the series of papers devoted
to the stochastic calculus for fractional Brownian motion, especially to Jean
Memin, Alexander Kukush, Georgij Shevchenko and Taras Androshchuk. My
special thanks to Murad Taqqu and Christian Bender for their useful sug-
gestions concerning contents of the minicourse of the lectures devoted to the
stochastic calculus for fBm that I delivered in Helsinki Technology University
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in May 2005. I wish to thank also Celine Jost who has carefully read a part
of the text of this book and made a lot of improvements.

Kiev, Yuliya Mishura
April 24 2007
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1

Wiener Integration with Respect to Fractional
Brownian Motion

1.1 The Elements of Fractional Calculus

Let α > 0 (and in most cases below α < 1 though this is not obligatory).
Define the Riemann–Liouville left- and right-sided fractional integrals on (a, b)
of order α by

(Iα
a+f)(x) :=

1
Γ (α)

∫ x

a

f(t)(x− t)α−1dt,

and

(Iα
b−f)(x) :=

1
Γ (α)

∫ b

x

f(t)(t− x)α−1dt,

respectively.
We say that the function f ∈ D(Iα

a+(b−)) (the symbol D(·) denotes the
domain of the corresponding operator), if the respective integrals converge for
almost all (a.a.) x ∈ (a, b) (with respect to (w.r.t.) Lebesgue measure).

The Riemann–Liouville fractional integrals on R are defined as

(Iα
+f)(x) :=

1
Γ (α)

∫ x

−∞
f(t)(x− t)α−1dt,

and
(Iα

−f)(x) :=
1

Γ (α)

∫ ∞

x

f(t)(t− x)α−1dt,

respectively.
The function f ∈ D(Iα

±) if the corresponding integrals converge for a.a.
x ∈ R. According to (SKM93), we have inclusion Lp(R) ⊂ D(Iα

±), 1 ≤ p < 1
α .

Moreover, the following Hardy–Littlewood theorem holds.

Theorem 1.1.1 ((SKM93)). Let 1 ≤ p, q < ∞, 0 < α < 1. Then the
operators Iα

± are bounded from Lp(R) to Lq(R) if and only if 1 < p < 1
α

and q = p(1− αp)−1. This means, in particular, that for any 1 < p < 1
α and

q = p
1−αp , there exists a constant Cp,q,α such that
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R

(∫
R

|f(u)||x− u|α−1du
)q

dx

) 1
q

≤ Cp,q,α‖f‖Lp(R). (1.1.1)

Fractional integration admits the following composition formulas for frac-
tional integrals:

Iα
a+Iβ

a+f = Iα+β
a+ f, Iα

b−Iβ
b−f = Iα+β

b− f

for f ∈ L1[a, b]. If α+β ≥ 1 then these equalities hold at any point x ∈ (a, b),
otherwise they hold for a.a. x. Also,

Iα
±Iβ

± = Iα+β
± f

for f ∈ Lp(R), α, β > 0 and α + β < 1
p . Let f ∈ Lp[a, b], g ∈ Lq[a, b], p, q ≥ 1

and 1
p + 1

q ≤ 1 + α, or let p > 1, q > 1 and 1
p + 1

q = 1 + α. Then we have
the following integration-by-parts formula for fractional integralsintegration-
by-parts formula!for fractional integrals:∫ b

a

g(x)(Iα
a+f)(x)dx =

∫ b

a

f(x)(Iα
b−g)(x)dx.

Let f ∈ Lp(R), g ∈ Lq(R), p > 1, q > 1 and 1
p + 1

q = 1 + α. Then∫
R

g(x)(Iα
+f)(x)dx =

∫
R

f(x)(Iα
−g)(x)dx. (1.1.2)

Let Cλ(T) be the set of Hölder continuous functions f : T→ R of order λ, i.e.

Cλ(T) =
{

f : T→ R
∣∣∣ ‖f‖λ := sup

t∈T

|f(t)|

+ sup
s,t∈T

|f(s)− f(t)|(t− s)−λ <∞
}
.

If α > 0 and αp > 1, then Iα
±(Lp(R)) ⊂ Cλ[a, b] for any −∞ < a < b < ∞

and 0 < λ ≤ α− 1
p .

The next result is evident.

Lemma 1.1.2. Let 0 < α < 1, f ∈ Lp(R), 1 ≤ p < 1
α and Iα

±f = 0. Then
f(x) = 0 for a.a. x ∈ R.

For p ≥ 1, denote by Iα
±(Lp(R)) the class of functions f , that can be

presented as Riemann–Liouville integrals, more exactly, f = Iα
±ϕ for some

ϕ ∈ Lp(R), p ≥ 1. Lemma 1.1.2 ensures the uniqueness of such function ϕ.
For 0 < α < 1 it coincides for a.a. x ∈ R with the left- (right-) sided Riemann–
Liouville fractional derivative of f of order α. These derivatives are denoted
by
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(I−α
+ f)(x) = (Dα

+f)(x) :=
1

Γ (1− α)
d

dx

∫ x

−∞
f(t)(x− t)−αdt,

and
(I−α

− f)(x) = (Dα
−f)(x) :=

−1
Γ (1− α)

d

dx

∫ ∞

x

f(t)(t− x)−αdt,

respectively.
For p > 1, the class Iα

±(Lp(R)) coincides with the class of those functions
f ∈ Lr(R), r = p

1−αp , for which the integrals∫ x−ε

−∞
(f(x)− f(t))(x− t)−α−1dt

and ∫ ∞

x+ε

(f(x)− f(t))(t− x)−α−1dt,

respectively, converge in Lp(R) as ε → 0. Thus, for f ∈ Iα
±(Lp(R)) with p >

1 the Riemann–Liouville derivatives coincide with the Marchaud fractional
derivatives

(D̃α
+f)(x) :=

1
Γ (1− α)

∫
R+

(f(x)− f(x− y))y−α−1dy,

and
(D̃α

−f)(x) :=
1

Γ (1− α)

∫
R+

(f(x)− f(x + y))y−α−1dy,

respectively. If α > 0 and αp < 1, then Iα
±(Lp(R)) ⊂ Lq(R) for 1

q = 1
p − α.

The Riemann–Liouville fractional derivatives can be considered on any
interval [a, b] ⊂ R in the following way: we introduce the class Iα

±(Lp[a, b]) of
functions f that can be presented as f = Iα

a+ϕ (f = Iα
b−ϕ) for ϕ ∈ Lp[a, b],

p ≥ 1, where we denote

(I−α
a+ f)(x) = (Dα

a+f)(x) =
1

Γ (1− α)
d

dx

∫ x

a

f(t)(x− t)−αdt,

and

(I−α
b− f)(x) = (Dα

b−f)(x) = − 1
Γ (1− α)

d

dx

∫ b

x

f(t)(t− x)−αdt,

respectively. In this case the Riemann–Liouville fractional derivatives Dα
a+f

and Dα
b−f admit the Weyl representation of fractional derivatives (we suppose

that f = 0 outside (a, b)):

(Dα
a+f)(x) =

1
Γ (1− α)

(
f(x)(x− a)−α

+α

∫ x

a

(f(x)− f(t))(x− t)−α−1dt
)
· 1(a,b)(x),
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and

(Dα
b−f)(x) =

1
Γ (1− α)

(
f(x)(b− x)−α

+ α

∫ b

x

(f(x)− f(t))(t− x)−α−1dt
)
· 1(a,b)(x),

respectively, where the convergence of the integrals holds pointwise for a.a.
x ∈ (a, b) for p = 1 and in Lp[a, b] for p > 1.

According to (SKM93, Theorem 13.4), we have that f = Iα
a+ϕ for some

ϕ ∈ Lp[a, b], where 1 < p <∞, if and only if f(x)(x− a)−α ∈ Lp[a, b] and

sup
ε>0

∫ b

a+ε

|ψε(x)|pdx <∞,

where ψε(x) =
∫ x−ε

a
f(x)−f(t)
(x−t)1+α dt, a+ ε ≤ x ≤ b. Let f ∈ Iα

±(Lp(R)), 0 < α < 1
and p ≥ 1. Then

Iα
±I−α

± f = f ; (1.1.3)

moreover, for f ∈ L1(R) we have that

I−α
± Iα

±f = f. (1.1.4)

We set I0
±f := f .

The composition formula for fractional derivatives has the form

Dα
a+Dβ

a+f = Dα+β
a+ f, (1.1.5)

where α ≥ 0, β ≥ 0 and f ∈ Iα+β
a+ (L1(R)).

Also, under the assumptions 0 < α < 1, f ∈ Iα
a+(Lp[a, b]) and g ∈

Iα
b−(Lq[a, b]), 1/p + 1/q ≤ 1 + α we have the integration-by-parts formula

for fractional derivatives∫ b

a

(Dα
a+f)(x)g(x)dx =

∫ b

a

f(x)(Dα
b−g)(x)dx. (1.1.6)

For 0 < α < 1 and f ∈ C1[a, b], the derivatives Dα
a+f and Dα

b−f exist, belong
to Lr[a, b] for 1 ≤ r < 1/α, and have the form

Dα
a+f =

1
Γ (1− α)

(
f(a)(x− a)−α +

∫ x

a

f ′(t)(x− t)−αdt

)
,

and

Dα
b−f =

1
Γ (1− α)

(
f(b)(b− x)−α −

∫ b

x

f ′(t)(t− x)−αdt

)
,

respectively.
Let the general indicator function be given by
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1(a,b)(t) =

⎧⎪⎨⎪⎩
1, a ≤ t < b,

−1, b ≤ t < a,

0, otherwise.

Lemma 1.1.3. Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1) and α = H − 1
2 . Then, for all t ∈ R,

we have the equality

(Iα
−1(0,t))(x) =

1
Γ (1 + α)

((t− x)α
+ − (−x)α

+).

Proof. Let H ∈ (1
2 , 1) and, for example, x < 0< t (the other cases can be

considered similarly). Then,

(Iα
−1(0,t))(x) =

1
Γ (α)

∫ ∞

x

1(0,t)(u)(u− x)α−1du

=
1

Γ (α)

∫ t

0

(u− x)α−1du =
1

Γ (α + 1)
((t− x)α − (−x)α) . (1.1.7)

Let H ∈ (0, 1
2 ). According to the definition of the fractional derivative and

(1.1.3), we must prove that∫ ∞

x

((t− u)α
+ − (−u)α

+)(u− x)−α−1du = Γ (−α)Γ (α + 1)1(0,t)(x). (1.1.8)

Let, for example, 0 < x < t. Then the left-hand side of (1.1.8) equals∫ t

x

(t− u)α(u− x)−α−1du1(0,t)(x)

= B(α + 1,−α)1(0,t)(x) = Γ (−α)Γ (α + 1)1(0,t)(x).

The other cases can be considered similarly. 	

Remark 1.1.4. Obviously, (Iα

+1(a,b)(x)) = 1
Γ (1+α) ((b− x)α

+ − (a− x)α
+),

−∞ < a < b <∞.
Let f ∈ L1(R). The Fourier transform of f is defined as

(Ff)(x) = f̂(x) =
∫

R

eixtf(t)dt.

Denote by S(R) the class of smooth, i.e. infinitely differentiable, and
rapidly decreasing functions.

Theorem 1.1.5 ((SKM93)). (i) For any 0 < α < 1 and f ∈ L1(R) it holds
that

F(Iα
±f) = f̂(x) · (∓ix)−α,

where (∓ix)α = |x|α exp
{
∓απi

2
sign x

}
.
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(ii) For any 0 < α < 1 and f ∈ S(R) it holds that

F(I−α
± f) = f̂(x) · (∓ix)α.

For H ∈ (0, 1) we introduce the set

FH :=
{

f ∈ L2(R), f : R→ R
∣∣∣ ∫

R

|f̂(x)|2|x|−2αdx <∞
}

with the norm
||f ||2FH

=
∫

R

|f̂(x)|2 · |x|−2αdx.

Here and throughout the whole text α := H − 1/2 . The set FH will be
considered in detail in Sections 1.6 and 1.7.

We say that f is step function, or elementary function, if there exist a
finite number of points tk ∈ R, 0 ≤ k ≤ n− 1, and ak ∈ R,
1 ≤ k ≤ n, such that

f(t) =
n∑

k=1

ak1[tk−1,tk)(t).

Lemma 1.1.6. Let f ∈ FH . Then there exists a sequence of step functions
fn, such that

‖f − fn‖FH
→ 0, n→∞.

Theorem 1.1.7 ((PT00b)). For H ∈ (0, 1), the set FH is a linear space with
inner product

(f, g)FH
=
∫

R

f̂(x)ĝ(x)|x|−2αdx, α = H − 1/2.

Moreover, the set of elementary functions belongs to FH , and it is dense in
FH .

Proof. The first statement is evident. Furthermore, for any −∞ < a <
b < ∞, it holds that 1(a,b) ∈ FH , because

∫
R
|1̂(a,b)(x)|2|x|−2αdx =∫

R
|eixb − eixa|2|x|−2−2αdx, and the latter integral is equivalent to the con-

vergent integral
∫ |x|−2−2αdx, in the neighborhood of ±∞, and equivalent

to the convergent integral
∫ |x|−2αdx in the neighborhood of 0. Therefore,

any step function belongs to FH . The second statement then follows from
Lemma 1.1.6.

Lemma 1.1.8 ((PT00b)). Let f ∈ L2(R). Then, for any H ∈ (0, 1), there
exists a sequence of step functions fn such that∫

R

|f̂(x)− f̂n(x)|x|−2α|2dx→ 0, n→∞. (1.1.9)
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Proof. Indeed, for ε > 0, put f̂ε(x) := f̂(x)1{|x|>ε}. Then
∫

R
|f̂(x)− f̂ε(x)|2dx

→ 0, ε → 0. Let H ∈ (0, 1
2 ). Then f̂ε(x) = (f̂(x)|x|α1{|x|>ε})|x|−α =

ĝε(x)|x|−α, where gε ∈ L2(R), α = H − 1/2. Now (1.1.9) follows from Lemma
1.1.6. In the case H ∈ [12 , 1) the proof is similar. 	


1.2 Fractional Brownian Motion: Definition
and Elementary Properties

Let (Ω,F , P ) be a complete probability space.

Definition 1.2.1. The (two-sided, normalized) fractional Brownian motion
(fBm) with Hurst index H ∈ (0, 1) is a Gaussian process BH = {BH

t , t ∈ R}
on (Ω,F , P ), having the properties

(i) BH
0 = 0,

(ii) EBH
t = 0, t ∈ R,

(iii) EBH
t BH

s = 1
2 (|t|2H + |s|2H − |t− s|2H), s, t ∈ R.

Remark 1.2.2. Since E(BH
t −BH

s )2 = |t−s|2H and BH is a Gaussian process, it
has a continuous modification, according to the Kolmogorov theorem. Indeed,

for all n ≥ 1 it holds that E|BH
t −BH

s |n =
2

n
2

π
1
2

Γ (n+1
2 )|t− s|nH .

Remark 1.2.3. For H = 1, we set BH
t = B1

t = tξ, where ξ is a standard
normal random variable.
Remark 1.2.4. It is possible to consider the fBm only on R+ (one-sided fBm)
with evident changes in Definition 1.2.1.

The characteristic function has the form

ϕλ(t) := E exp

{
i

n∑
k=1

λkBH
tk

}
= exp

{
−1

2
(Ctλ, λ)

}
,

where Ct = (EBH
tk

BH
ti

)1≤i,k≤n and (·, ·) is the inner product on Rn.
Therefore, it follows from item (iii) of Definition 1.2.1, that for any β > 0

ϕλ(βt) = exp
{
−1

2
β2H(Ctλ, λ)

}
. (1.2.1)

Definition 1.2.5. A stochastic process X = {Xt, t ∈ R} is called b-self-
similar if

{Xat, t ∈ R} d= {abXt, t ∈ R}
in the sense of finite-dimensional distributions.
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From Definition 1.2.5 and (1.2.1) it follows that BH is H-self-similar.
Note that

E(BH
t −BH

s )(BH
u −BH

v ) =
1
2
(|s−u|2H+|t−v|2H−|t−u|2H−|s−v|2H). (1.2.2)

It follows from (1.2.2) that the process BH has stationary increments (ev-
idently, it is not stationary itself). Let H = 1

2 . Then the increments of
BH are non-correlated, and consequently independent. So BH is a Wiener
process which we denote further by B or W . For H ∈ (0, 1

2 ) ∪ ( 1
2 , 1) and

t1 < t2 < t3 < t4, it follows from (1.2.2) for α = H − 1/2 that

E(BH
t4 −BH

t3 )(BH
t2 −BH

t1 ) = 2αH

∫ t2

t1

∫ t4

t3

(u− v)2α−1du dv.

Therefore, the increments are positively correlated for H ∈ (1
2 , 1) and neg-

atively correlated for H ∈ (0, 1
2 ). Furthermore, for any n ∈ Z \ {0}, the

autocovariance function is given by

r(n) := EBH
1 (BH

n+1 −BH
n ) = 2αH

∫ 1

0

∫ n+1

n

(u− v)2α−1 du dv

∼ 2αH|n|2α−1, |n| → ∞.

If H ∈ (0, 1
2 ), then

∑
n∈Z
|r(n)| ∼∑n∈Z\{0} |n|2α−1 <∞.

If H ∈ ( 1
2 , 1), then

∑∞
n=1 |r(n)| ∼∑n∈Z\{0} |n|2α−1 = ∞. In this case we

say that fBm BH has the property of long-range dependence. For the spectral
density function of

{
XH

n := BH
n+1 −BH

n , n ∈ Z
}
, which is denoted by fH(λ),

it holds that (BG96; DvZ05),

fH(λ) = C
(0)
H |eiλ − 1|2

∑
k∈Z

|λ + 2πk|−2−2α, λ ∈ [−π, π] ,

where C
(0)
H is some constant depending on H. It is easy to see that

fH(λ) ∼ C
(0)
H |λ|2|λ|−2−2α = CH |λ|−2α

as λ→ 0. Therefore, for H ∈ ( 1
2 , 1) it holds that fH(λ)→∞ as λ→ 0, and,

for H ∈ (0, 1
2 ), it holds that f(λ)→ 0 as λ→ 0.

According to (PT00b) and (ST94), BH admits the spectral representation
{BH

t , t ∈ R} d= {C(1)
H

∫
R
(eitx − 1) (ix)−1|x|−αdB̃(x), t ∈ R}, where B̃ =

B1 + iB2 is a complex Gaussian measure with B1(A) = B1(−A), B2(A) =
−B2(−A) and E(B1(A))2 = E(B2(A))2 = mesh(A)

2 for any Borel set A of

finite Lebesgue measure mesh(A) and C
(1)
H =

(
Γ (2H+1) sin(1/2·π(H+1/2))

2π

) 1
2
.
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1.3 Mandelbrot–van Ness Representation of fBm

Let W = {Wt, t ∈ R} be the two-sided Wiener process, i.e. the Gaussian
process with independent increments satisfying EWt = 0 and EWtWs = s∧ t,
s, t ∈ R. Evidently, W = B

1
2 . Denote kH(t, u) := (t − u)α

+ − (−u)α
+, where

α = H − 1
2 . The following representation is due to Mandelbrot and van Ness

(MvN68).

Theorem 1.3.1. The process B
H

= {BH

t , t ∈ R} defined by

B
H

t := C
(2)
H

∫
R

kH(t, u)dWu, H ∈
(

0,
1
2

)
∪
(

1
2
, 1
)

,

whereC
(2)
H =

(∫
R+

(
(1 + s)α − sα

)2
ds +

1
2H

)− 1
2

=

(
2H sin πHΓ (2H)

)1/2

Γ (H + 1/2)
,

has a continuous modification which is a normalized two-sided fBm.

Remark 1.3.2. The constant C
(2)
H is calculated in Appendix A.

Proof. Evidently, B
H

is a Gaussian process with B
H

0 = 0 and EB
H

t = 0.
Furthermore, it holds that for t > 0,

E(B
H

t )2 =
(
C

(2)
H

)2(∫ 0

−∞
k2

H(t, u)du +
∫ t

0

(t− u)2αdu
)

= t2H .

For t < 0 we have that

E(B
H

t )2 =
(
C

(2)
H

)2(∫ t

−∞
k2

H(t, u)du +
∫ 0

t

(−u)2αdu
)

= (−t)2H .

Furthermore, for h > 0, it holds that

B
H

s+h −B
H

s = C
(2)
H

∫ s

−∞

(
kH(s + h, u)− kH(s, u)

)
dWu

+
∫ s+h

s

kH(s + h, u) dWu =: I1 + I2. (1.3.1)

Note that the terms I1 and I2 on the right-hand side of (1.3.1) are indepen-
dent, and the Wiener process W has stationary increments. Therefore,

I1
d=
∫ 0

−∞

(
kH(s, u)− kH(0, u)

)
dWu, I2

d=
∫ h

0

kH(h, u)dWu,

and E(B
H

s+h−B
H

s )2 = E(B
H

h )2 = h2H . By combining these results, we obtain
that
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EB
H

s B
H

t =
1
2

(
E
(
B

H

s

)2 + E
(
B

H

t

)2 − E
(
B

H

t −B
H

s

)2)
=

1
2
(|t|2H + |s|2H − |t− s|2H

)
. (1.3.2)

The proof follows immediately from Definition 1.2.1 and Remark 1.2.2. 	

Define the operator

MH
± f :=

{
C

(3)
H Iα

±f, H ∈ (0, 1
2 ) ∪ ( 1

2 , 1),
f, H = 1

2 ,
(1.3.3)

where C
(3)
H = C

(2)
H Γ (H + 1

2 ).

Corollary 1.3.3. It follows from Lemma 1.1.3 and Theorem 1.3.1, that for
any H ∈ (0, 1) the process

BH
t =

∫
R

(MH
− 1(0,t))(s)dWs (1.3.4)

is a normalized fractional Brownian motion.

A little later we shall establish (see Corollary 1.6.11) that any fBm BH

can be presented in the form (1.3.4) with a suitable Brownian motion W .
Remark 1.3.4. It is easy to see that the domain D(MH

− ) of the operator MH
−

has a form

D(MH
− ) =

⎧⎨⎩
∪1≤p< 1

α
Lp(R), H ∈ ( 1

2 , 1), α = H − 1
2 ,⋃

p≥1 I−α
± (Lp(R)), H ∈ (0, 1

2 ),
all measurable functions, H = 1

2 .

1.4 Fractional Brownian Motion with H ∈ (1
2
, 1)

on the White Noise Space

Consider the probability space of the white noise. Namely, recall that S(R)
denotes the Schwartz space of rapidly decreasing infinitely differentiable real-
valued functions, and let S′(R) be the dual space of S(R), i.e., the space of
tempered distributions with weak∗ topology. We consider S′(R) as a proba-
bility space Ω with the σ-algebra F of Borel sets. According to the Bochner–
Minlos theorem, there exists the probability measure P on (Ω,F), such that
for any function f ∈ S(R) with the norm ‖f‖L2(R), it holds that

E exp(i〈f, ω〉) = exp
{
−1

2
‖f‖2L2(R)

}
, (1.4.1)

where 〈·, ·〉 denotes the dual operation.
Note that from (1.4.1), we obtain that
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E〈f, ω〉 = 0, E〈f, ω〉2 = ‖f‖2L2(R), (1.4.2)

where f ∈ S(R), and the duality 〈f, ω〉 can be extended by isometry
to f ∈ L2(R). Note that from (1.4.1)–(1.4.2), it follows that the process
Wt := 〈1[0,t], ω〉 is a standard Brownian motion.

Now, let H ∈ [ 12 , 1), f1 ∈ L2(R) and f2 ∈ L 1
H

(R). Then MH
+ f1 ∈ L 1

1−H
(R),

MH
− f2 ∈ L2(R), therefore, we can consider on L2(R) the inner product of the

form
(f1,M

H
− f2)L2(R) =

∫
R

f1(x)(MH
− f2)(x)dx.

By (1.1.1) and (1.3.3), it holds that

(f,MH
− f2)L2(R) = (MH

+ f1, f2)L2(R).

According to (SKM93), denote the spaces

Φ(R) = {φ |φ ∈ S(R), φ̂k(0) = 0, k ≥ 0}
= {φ |φ ∈ S(R), (φ, tk)L2(R) = 0, k ≥ 0}.

It was proved in (SKM93) that MH
± (Φ(R)) ⊂ Φ(R) and that the space Φ(R)

is closed in S(R).
Now, define two stochastic processes

BH
± (t)(ω) := 〈MH

± 1(0,t), ω〉, t ∈ R.

Then the processes BH
± (t) are Gaussian, EBH

+ (t) = EBH
− (t) = 0. For the

covariance function, it holds that

EBH
± (t)BH

± (s) =
∫

R

(MH
± 1(0,t))(x)(MH

± 1(0,s))(x)dx. (1.4.3)

By considering the sign “−”, we obtain from (1.3.4) that the right-hand
side of (1.4.3) coincides with

EBH
t BH

s =
∫

R

(MH
− 1(0,t))(x)(MH

− 1(0,s))(x)dx

=
1
2
(|t|2H + |s|2H − |t− s|2H).

One obtains the same result if one considers the sign “+”. Therefore, each of
the processes BH

± (t) has a modification that is a normalized fBm. The process
BH

− (t) is called a “backward” fBm. It coincides with usual Mandelbrot–van
Ness representation and depends only on the past, i.e. on {Ws, s ∈ (−∞, t)}.
Indeed, BH

− (t) =
∫

R
(MH

− 1(0,t))(s)dWs, where Wt(ω) = 〈1(0,t), ω〉. The process
BH

+ (t) is called a “forward” fBm; it admits the representation

BH
+ (t) = C

(3)
H

∫ ∞

t

(uα
+ − (u− t)α

+)dWu =
∫

R

(MH
+ 1(0,t))(s)dWs,
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and depends on future values of W , i.e. on {Ws, s ∈ (t,+∞)}.
The case H ∈(0,1/2) can be considered similarly. Also, it is possible to con-

sider the linear combinations of the operators MHk± and of fractional Brownian
motions with different Hurst indices (in what follows we consider only the case
Hk ∈ [1/2, 1)):

M±f(x) :=
m∑

k=1

σkMHk± f(x), σk > 0

and

BM
± (t) =

m∑
k=1

σkBHk± (t) = 〈M±1(0,t), ω〉. (1.4.4)

Clearly, the operators M± are mutually adjoint in the same way as MH
± .

Indeed,
(f1,M−f2)L2(R) = (M+f1, f2)L2(R)

for appropriate functions f1, f2.

1.5 Fractional Noise on White Noise Space

Let N0 = N ∪ {0} and I be the set of all finite multiindices α = (α1, . . . , αn)
with αi ∈ N0. Denote |α| = α1 + · · ·+αn, α! := α1! · · ·αn!. (Of course, in this
and similar situations α as a multiindex differs from our α = H − 1/2 but it
will not lead to misunderstanding.) Define the Hermite polynomials by

hn(x) := (−1)nex2 dn

dxn
(e−x2

)

and Hermite functions

h̃n(x) := π−1/4(n!)−1/22−n/2hn(x)e−x2/2, n ≥ 0.

It is well-known that the functions {h̃n, n ≥ 1} form an orthonormal basis in
L2(R) with Fourier transform∫

R

eiλxh̃n(x)dx = (2π)1/2inh̃n(x), n ≥ 1.

Define

Hα(ω) :=
n∏

i=1

hαi
(〈h̃i, ω〉),

the product of Hermite polynomials and consider a random variable

F = F (ω) ∈ L2(Ω) := L2(S′(R),F , P ).

Then, according to (HOUZ96, Theorem 2.2.4), F (ω) admits the representation
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F (ω) =
∑
α∈I

cαHα(ω), (1.5.1)

and
‖F‖2L2(Ω) =

∑
α∈I

α! c2
α <∞.

Next, we introduce the following dual spaces.
(i) F ∈ S if the coefficients from expansion (1.5.1) satisfy

‖F‖2k =
∑
α∈I

α!c2
α(2N)kα <∞

for any k ≥ 1, where (2N)γ =
∏m

j=1(2j)γj , γ = (γ1, . . . , γm ∈ I).
(ii) F ∈ S∗ if F admits the formal expansion (1.5.1) with finite negative norm

‖F‖2−q =
∑
α∈I

α! c2
α(2N)−qα <∞

for at least one q ∈ N (in this case we say that F ∈ S−q).
For F =

∑
α cαHα ∈ S, G =

∑
α dαHα ∈ S∗, we define

〈〈F,G〉〉 :=
∑
α∈I

α! cαdα.

Taking into account the Parceval identity, we can also define

L2
M±(R) = {f : M±f ∈ L2(R)} = {f : M̂±f ∈ L2(R)},

where, according to our notations, ĝ(λ) =
∫

R
eiλyg(y)dy is the Fourier trans-

form of the function g.
The inner product in L2

M±(R) is defined by

(f, g)M± :=
∫

R

M±f(x)M±g(x)dx = (M±f,M±g)L2(R).

Also, define an inverse operator M−1
± in terms of the Fourier transform.

For g(x) = M−1
± f(x) ∈ L2(R), it holds that f(x) = M±g(x), and, according

to Theorem 1.1.5, we have the equalities

f̂(λ) = ĝ(λ)
∞∑

k=1

σkC
(λ)
Hk
|λ|−αk ,

where C
(λ)
Hk

= exp
{

αkπi
2 sign λ

}
C

(3)
Hk

and αk = Hk − 1/2. Hence,

̂(M−1
± f)(λ) =

( m∑
k=1

σkC
(λ)
Hk
|λ|−αk

)−1

f̂(λ).
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Lemma 1.5.1. The functions e±k := M−1
± h̃k, k ≥ 1, exist and form an ortho-

normal basis in L2
M±(R).

Proof. Let, for simplicity, m = 1, so that M± = MH
± and σ1 = σ. Consider,

for example, the sign “– ”. Then it holds that

ê−k (λ) = (σCH(λ))−1|λ|α̂̃hk(λ) = (σCH(λ))−1ik
√

2π|λ|αh̃k(λ), α = H − 1/2.

Therefore, e−k exists and belongs to S(R). The second assertion is evident. 	

Now we want to present the linear combination BM

± (t) of fBms in terms
of h̃k, k ≥ 1.

Lemma 1.5.2. It holds that

BM
± (t) =

∞∑
k=1

∫ t

0

M∓h̃k(x)dx〈h̃k, ω〉, t ∈ R, ω ∈ S′(R), (1.5.2)

and the series converges in L2(Ω).

Proof. Let ω ∈ S(R). Then, from equality (1.4.4) it follows that

BM
± (t) = 〈M±1(0,t), ω〉 = 〈1(0,t),M∓ω〉,

and M∓ω ∈ S(R). Since 1(0,t) ∈ L2
M±(R), it admits the expansion

1(0,t) =
∞∑

k=1

〈1(0,t), e
±
k 〉M±e±k ,

where the series converges in L2
M±(R). Then,

〈1(0,t),M∓ω〉 =
∞∑

k=1

〈1(0,t), e
±
k 〉M±〈e±k ,M∓ω〉,

and the series converges in L2(Ω). Furthermore,

∞∑
k=1

〈1(0,t), e
±
k 〉M±〈e±k ,M∓ω〉 =

∞∑
k=1

∫
R

M±1(0,t)(x)M±e±k (x)dx〈M±e±k , ω〉

=
∞∑

k=1

∫
R

1(0,t)(x)M∓h̃k(x)dx〈h̃k, ω〉 =
∞∑

k=1

∫ t

0

M∓h̃k(x)dx〈h̃k, ω〉,

i.e. we obtain (1.5.2) for ω ∈ S(R). Moreover, we can extend (1.5.2) on S′(R)
since S(R) is dense in S′(R) in weak* topology, and this topology generates
the weak convergence. Since

〈h̃k, ω〉 = Hεk
(ω),
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where εk = (0, . . . , 1, . . . , 0), where 1 is in kth place, we have that∑∞
k=1

∣∣∣∫ t

0
M∓h̃k(x)dx

∣∣∣2 (εk!)2 =
∑∞

k=1

∣∣∣∫ t

0
M∓h̃k(x)dx

∣∣∣2 =
∥∥1(0,t)

∥∥
L2

M∓
≤ 2m−1

∑m
k=1 σ2

kt2Hk <∞.

	

Now, we introduce the fractional noise ḂH as the formal expansion

ḂH
x (ω) =

∞∑
k=1

MH
+ h̃k(x)〈h̃k, ω〉,

and the linear combination of fractional noises as

ḂM
x (ω) =

∞∑
k=1

M+h̃k(x)〈h̃k, ω〉.

Recall, that here we consider only H ∈ [1/2, 1) and that Ḃx(ω) =∑∞
k=1 h̃k(x)(h̃k, ω) is white noise.

Lemma 1.5.3. The fractional noise ḂH
x and the linear combination ḂM

x of
such noises belong to S∗ for any x ∈ R.

Proof. It is sufficient to consider ḂH . By using the Fourier transform and
Theorem 1.1.5, we obtain that∣∣∣MH

+ h̃k(x)
∣∣∣ = CH,k

∣∣∣∣∫
R

e−ixt ̂̃
hk(t)(it)−αdt

∣∣∣∣ ≤ CH,k

∣∣∣∣∣
∫
|t|≤1

∣∣∣∣∣+ CH,k

∣∣∣∣∣
∫
|t|>1

∣∣∣∣∣ ,
where CH,k denotes suitable constants. We have that ̂̃hk(λ) = Ckh̃k(λ), Ck =
ik
√

2π, and

|h̃k(λ)| ≤
{

Ck−1/12 for |λ| ≤ 2
√

k

Ce−γλ2
for |λ| > 2

√
k

where C > 0 and γ > 0 do not depend on λ and k. Therefore,∣∣∣MH
+ h̃k(x)

∣∣∣ ≤ C

(∫
|t|≤1

k−1/12|t|−αdt

+
∫

1<|t|≤2
√

k

k−1/12|t|−αdt +
∫
|t|>2

√
k

|t|−αe−γt2dt

)
≤ C
(
k−1/12 + k−1/12k3/4−H/2 + e−2γ

√
k
) ≤ Ck2/3−H/2.

(1.5.3)

From (1.5.3) it follows that

||ḂH
x ||2−q =

∞∑
k=1

|MH
+ h̃k(x)|2(2k)−q ≤ C

∞∑
k=1

k4/3−H−q <∞

for any q > 7/3 − H. So, for q > 7/3, it holds that ||ḂH
x ||2−q < ∞ for any

x ∈ R. This completes the proof. 	




16 1 Wiener Integration with Respect to Fractional Brownian Motion

1.6 Wiener Integration with Respect to fBm

Now we return to an arbitrary complete probability space (Ω,F , P ), and
continue the considerations of Sections 1.1–1.3.

Consider the space LH
2 (R) := {f : MH

− f ∈ L2(R)} equipped with the
norm ||f ||LH

2 (R) = ||MH
− f ||L2(R).

Definition 1.6.1. Let f ∈ LH
2 (R). Then the Wiener integral w.r.t. fBm is

defined as
IH(f) :=

∫
R

f(s)dBH
s :=

∫
R

(MH
− f)(s)dWs. (1.6.1)

Here, BH
s and Ws are connected as in (1.3.4). As a particular case, consider

the step function f : R→ R given by

f(t) =
n∑

k=1

ak1[tk−1,tk)(t),

where t0 < t1 < · · · < tn ∈ R and ak ∈ R, 1 ≤ k ≤ n. Then, from the linearity
of the operator MH

− , we have that

IH(f) =
n∑

k=1

ak

∫
R

MH
− 1[tk−1,tk)(s)dWs =

n∑
k=1

ak(BH
tk
−BH

tk−1
), (1.6.2)

and the latter sum coincides with the usual Riemann–Stieltjes sum. A question
arises: in which sense can we consider formula (1.6.1) as the extension of the
sum (1.6.2)? Note, that for a step function, it holds that

‖IH(f)‖2L2(Ω) =
n∑

i,k=1

aiak

∫
R

MH
− 1[tk−1,tk)(x)MH

− 1[ti−1,ti)(x)dx

=
∥∥MH

− f
∥∥2

L2(R)
= 2αH

∫
R2

f(u)f(v) |u− v|2α−1
du dv,

(1.6.3)

where the last equality holds for H ∈ (1/2, 1) but not for H ∈ (0, 1/2).
Nevertheless, for any 0 < H < 1 we have the following:

Lemma 1.6.2 ((Ben03a)). For 0 < H < 1, it holds that the linear span of
the set {MH

− 1(u,v), u, v ∈ R} is dense in L2(R).

Proof. (i) Let H ∈ (1/2, 1) (for H = 1/2 the assertion is evident). Since
(b + x)−α − x−α ∼ Cx−1/2−H as x → ∞, we have that the function (b −
x)−α

+ − (−x)−α
+ ∈ L1/H(R). Therefore, for any a < b it holds that g(x) :=

M1−H
− 1(a,b)(x) ∈ L1/H(R). Therefore, 1(a,b) = Mα

−g ∈ Iα
−(L1/H(R)), and this

is true also for step functions. Since the class of step functions is dense in
L2(R), it follows that Iα

−(L1/H(R)) is dense in L2(R). Let h ∈ Iα
−(L1/H(R)),

h = MH
− g, g ∈ L1/H(R). Then there exists the sequence of step functions
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gn → g in L1/H(R). From the Hardy–Littlewood theorem (Theorem 1.1.1) it
follows that

||MH
− gn − h||L2(R) ≤ C||gn − g||L1/H(R) → 0, n→∞.

So, the linear span of {MH
− 1(u,v), u, v ∈ R} is dense in Iα

−(L1/H(R)), and
therefore it is dense in L2(R).

(ii) Let H ∈ (0, 1/2). Due to the Parceval identity, it is sufficient to prove

that the linear span of the functions ̂MH− 1(a,b) is dense in L2(R). According
to Theorem 1.1.5, we have that

̂MH− 1(a,b)(x) = C
(3)
H CH(x)1̂(a,b)(x)|x|−α,

where CH(x) = exp{iπ sign xα/2}. According to Lemma 1.1.8, for any ϕ ∈
L2(R) there exists a sequence of step functions ϕn such that∫

R

(C(3)
H )−1|CH(−x)ϕ̂(x)− ϕ̂n(x)|x|−α|2dx→ 0, n→∞,

because (C(3)
H )−1CH(−x)ϕ̂(x) = ĝ(x) for some g ∈ L2(R). Then, we obtain

that∫
R

|ϕ̂(x)− C
(3)
H CH(x)ϕ̂n(x)|x|−α|2dx

=
∫

R

|(C(3)
H )−1CH(−x)ϕ̂(x)− ϕ̂n(x)|x|−α|2dx→ 0, n→∞.

	

Remark 1.6.3. Let H ∈ (0, 1/2). Then the operator MH

− defines an isometric
isomorphism from LH

2 (R) to L2(R). Indeed, the operator I−α
− is bounded from

L2(R) to L2
1/H(R), according to Theorem 1.1.1. Let fn be a Cauchy sequence

in LH
2 (R) and ϕn = MH

− fn. Then

‖fn − fm‖LH
2 (R) = ‖ϕn − ϕm‖L2(R) → 0,m, n→∞,

whence ϕn → ϕ ∈ L2(R), and fn = (MH
− )−1ϕn → (MH

− )−1ϕ =: f in
L1/H(R). We have that

‖f‖LH
2 (R) = ‖ϕ‖L2(R) <∞,

and
‖fn − f‖LH

2 (R) = ‖ϕn − ϕ‖L2(R) → 0.

It means that LH
2 (R) is complete, i.e., it is a Hilbert space, and equals the

closure of the step functions under LH
2 -norm. By (1.6.3), there exists a unique

continuous extension of fractional Wiener integrals for the step functions to
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the space LH
2 (R). For any f ∈ LH

2 (R) and the approximating sequence of step
functions fn ∫

R

f(s)dBH
s = lim

n→∞

∫
R

fn(s)dBH
s in L2(R). (1.6.4)

Remark 1.6.4. Now, let H ∈ (1/2, 1). Then, the domain of the operator MH
−

coincides with
D(I−α

− ) = D(Dα
−) = ∪p≥1I

α
−(Lp(R)),

and, according to Theorem 1.1.1 we can take here only 1 ≤ p < α−1 since

LH
2 (R) = {f ∈ D(I−α

− ) : MH
− f ∈ L2(R)}.

Note, that
L2(R) �= ∪1≤p<α−1Iα

−(Lp(R)). (1.6.5)

Indeed, it was proved in (SKM93) that all spaces Iα
−(Lp(R)) coincide for 1 <

p < α−1 and Iα
−(Lp(R)) does not coincide with any space Lr(R), 1 ≤ r ≤ ∞.

The description of Iα
−(Lp(R)) for 1 < p < 1/α and for p = 1 is contained in

(SKM93, Theorems 6.2 and 6.3) and (1.6.5) follows from these theorems.

Theorem 1.6.5. The space LH
2 is incomplete for H ∈ (1/2, 1).

Proof. The operator MH
− : LH

2 (R) → L2(R) is isometric. So, LH
2 (R) can be

identified with its image in L2(R). According to Lemma 1.6.2, LH
2 (R) is dense

in L2(R), but Remark 1.6.4 demonstrates that LH
2 (R) �= L2(R). Therefore,

the image MH
− (LH

2 (R)), and hence LH
2 (R) itself, is incomplete. 	


In spite of the incompleteness of LH
2 (R) for H ∈ (1/2, 1), due to Lemma

1.6.2, we can approximate any f ∈ LH
2 (R) by step functions fn in LH

2 (R).
Then MH

− fn →MH
− f in L2(R), and we have that

IH(f) :=
∫

R

f(x)dBH
s =

∫
R

(MH
− f)(s)dWs

= lim
n→∞

∫
R

(MH
− fn)(s)dWs = lim

n→∞

∫
R

fn(s)dBH
s ,

where the convergence is in L2(Ω). Furthermore, for H ∈ (1/2, 1), we have
that

E |I(f)|2 =
∫

R

∣∣(MH
− f)(x)

∣∣2 dx

for f ∈ LH
2 (R); however, in general, it does not hold (compare with (1.6.3))

that
E |IH(f)|2 = 2αH

∫
R2

f(u)f(v) |u− v|2α−1
du dv,
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even if the last integral is finite. This equality can be obtained only
if we can apply the Fubini theorem or if we can prove that the inte-
gral

∫
R2 fn(u)fn(v) |u− v|2α−1

du dv with step functions fn converges to∫
R2 f(u)f(v) |u− v|2α−1

du dv. Both things need some additional assumptions.
For H ∈ ( 1

2 , 1), define the space of measurable functions by

|RH | :=
{

f : R→ R
∣∣∣ ∫

R
2
+

|f(u)||f(v)||u− v|2α−1du dv <∞
}

,

with the norms

‖f‖2|RH |,1 = 2αH

∫
R

2
+

f(u)f(v)|u− v|2α−1du dv (1.6.6)

and
‖f‖2|RH |,2 = 2αH

∫
R

2
+

|f(u)||f(v)||u− v|2α−1du dv. (1.6.7)

For H ∈ (0, 1), we introduce one more space,

FH :=
{

f : R→ R
∣∣∣f ∈ L2(R),

∫
R

|f̂(x)|2|x|−2αdx <∞
}

,

with the norm
‖f‖2FH

=
∫

R

|f̂(x)|2|x|−2αdx. (1.6.8)

Moreover, consider LH
2 (R) with the norm

‖f‖2LH
2 (R) =

∫
R

|(MH
− f)(x)|2dx. (1.6.9)

Below we study the most important features of these spaces. (The space
FH was partially considered in Theorem 1.1.7.) Note, at first, that the norms
defined in (1.6.6)–(1.6.9) are all generated by corresponding inner products.
Namely,

(f, g)|RH |,1 = 2αH

∫
R

2
+

f(u)g(v)|u− v|2α−1du dv, (1.6.10)

(f, g)|RH |,2 = 2αH

∫
R

2
+

|f(u)||g(v)||u− v|2α−1du dv, (1.6.11)

(f, g)FH
=
∫

R

f̂(x)ĝ(x)|x|1−2Hdx (1.6.12)

and
(f, g)LH

2 (R) =
∫

R

(MH
− f)(x)(MH

− g)(x)dx. (1.6.13)
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Thus, all these spaces are spaces with inner products. Furthermore, (1.6.6)
is indeed a norm on |RH |. Indeed, we can apply the Fubini theorem, use the
following relation from (GN96):∫ s∧t

−∞
(s− u)α−1(t− u)α−1du = C

(4)
H |t− s|2α−1,

where C
(4)
H = Γ (H− 1

2 )Γ (1−2α)

Γ (1−α) , and rewrite (1.6.6) as

2αH

∫
R

f(u)f(v)|u− v|2α−1du dv

= (C(4)
H )−12αH

∫
R

2
+

f(u)f(v)
∫ u∧v

−∞
(u− z)α−1(v − z)α−1dz du dv

= (C(4)
H )−12αH

∫
R

∫ ∞

z

f(u)(u− z)α−1du

∫ ∞

z

f(v)(v − z)α−1dv dz

= (C(4)
H )−12Hα(C(3)

H )−2‖MH
− f‖2L2(R) = 2αH(C(4)

H )−1(C(3)
H )−2‖f‖2LH

2 (R).

(1.6.14)
Note that the relation f ∈ LH

2 (R) means, in particular, that the interior
integral

∫∞
x
|f(u)|(u− x)α−1du is finite for a.a. x ∈ R.

Lemma 1.6.6. We have that the space L1(R) ∩ L2(R) ⊂ L 1
H

(R) ⊂ |RH | for
any H ∈ (1

2 , 1).

Proof. It is enough to prove that for any f ∈ L1(R) ∩ L2(R) the iterated
integral is finite,

I :=
∫

R

|f(u)|
(∫

R

|f(v)||u− v|2α−1dv

)
du <∞.

From Theorem 1.1.1 with α = 2H − 1, p = 1
H and q = p

1−2αp = 1
1−H we

obtain that

I ≤
(∫

R

|f(u)| 1H du

)H(∫
R

(∫
R

|f(v)||u− v|2H−1dv
) 1

1−H

du

)1−H

≤ ‖f‖L 1
H

(R)C1/H,1/1−H,2H−1‖f‖L 1
H

(R) = CH‖f‖2L 1
H

(R).

Obviously, L1(R)∩L2(R) ⊂ L 1
H

(R) for H ∈ ( 1
2 , 1), whence the claim follows.

	

Lemma 1.6.7. The inclusion L1(R) ∩ L2(R) ⊂ FH is valid if and only if
H ∈ (1

2 , 1).

Proof. Assume that H ∈ ( 1
2 , 1). Since |f̂(x)| ≤ ‖f‖L1(R) for any x ∈ R, we

have that
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R

|f̂(x)|2|x|−2αdx =
∫
|x|≥1

|f̂(x)|2|x|−2αdx +
∫
|x|<1

|f̂(x)|2|x|−2αdx

≤
∫

R

|f̂(x)|2dx + ‖f‖2L1(R)

∫
|x|<1

|x|−2αdx ≤ ‖f‖2L2(R) + (1−H)−1‖f‖2L1(R).

Let H ∈ (0, 1
2 ). According to (PT00b), take the function f(u) = signu ε−|u|

|u|p
with p ∈ (H, 1

2 ). Evidently, f ∈ L1(R) ∩ L2(R). Nevertheless, due to (GR80,
p. 491),

f̂(λ) = 2Γ (1− p)(λ2 + 1)
p−1
2 sin

(
(1− p) arctan λ

) ∼ |λ|p−1

as |λ| → ∞, and 2p− 2 > 2α− 1 > −1, which means that ‖f‖FH
= +∞. 	


Lemma 1.6.8. For any H ∈ (0, 1), we have that FH ⊂ LH
2 (R).

Proof. For H = 1
2 , the statement is evident and F 1

2
= L2

1
2
(R) = L2(R).

Let H ∈ (1
2 , 1) and f ∈ FH . Then, in particular, f ∈ L2(R), and, there-

fore, according to Theorem 1.1.1, the operator Iα
−f is well-defined and

bounded from L2(R) to L 1
1−H

(R). Moreover, according to Theorem 1.1.5

and since
∫

R
|f̂(x)|2|x|−2αdx < ∞, it follows that Iα

−f ∈ L2(R). Therefore,
f ∈ LH

2 (R). Let H ∈ (0, 1
2 ). We must prove, that for any f ∈ L2(R) with∫

R
|f̂(x)|2|x|−2αdx <∞, there exists ϕ̃ ∈ L2(R), such that

ϕ̃ = MH
− f = C

(3)
H D−α

− f. (1.6.15)

Consider the function ψ(x) = f̂(x)|x|−αCH(x). Since |CH(x)| = 1, ψ ∈ L2(R)
and ψ(x) = ψ(−x), we conclude that ψ(x) = ϕ̂(x) for some function ϕ ∈
L2(R). Now we prove that C

(3)
H ϕ satisfies (1.6.15). Indeed,

f̂(x) = ϕ̂(x)|x|αCH(−x), (1.6.16)

whence |f̂(x)|2 = |ϕ̂(x)|2|x|2α. Since f̂ ∈ L2(R), we have that ϕ ∈ F1−H , and
from Theorem 1.1.5 and (1.6.16), it follows that

f = I−α
− ϕ.

Therefore, ϕ̃(x) = C
(3)
H ϕ(x) satisfies (1.6.15), whence the claim follows. 	


Next, by using Lemma 1.6.8 and an example from (PT00b) with a slightly
modified proof, we establish that |RH | ⊂ LH

2 (R).

Lemma 1.6.9. Let H ∈ (1
2 , 1). Then (|RH |, ‖ · ‖|RH |,1) ⊂ LH

2 (R) and this
inclusion is proper.
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Proof. The inclusion itself follows from (1.6.14). We prove that the inclusion is
strict if we find a function f ∈ FH\|RH |. Let f(u) = sign u · |u|−p · sin u, 1

2 <

p < 1. Then f ∈ L2(R), f̂ ∈ L2(R). For calculation of f̂ we consider the
approximations fn(u) = f(u)1{|u|<n} → f in L2(R). The function f̂n satisfies
the relations

f̂n(λ) = 2
∫ n

0

cos λu|u|−p sin u du

=
∫ n

0

u−p sin((λ + 1)u)du−
∫ n

0

u−p sin((λ− 1)u) du

= sign(λ + 1)|λ + 1|p−1

∫ n|λ+1|

0

v−p sin v dv

− sign(λ− 1)|λ− 1|p−1

∫ n|λ−1|

0

v−p sin v dv

→
(

sign(λ + 1)|λ + 1|p−1 − sign(λ− 1)|λ− 1|p−1
)∫ ∞

0

v−p sin v dv

= f̂(λ).

Since 1
2 < p < 1, we have that∫

R

|f̂(λ)|2|λ|1−2Hdλ

≤ C

(∫
R

|λ|1−2H |λ + 1|2p−2dλ +
∫

R

|λ|1−2H |λ− 1|2p−2dλ

)
<∞

and it means that f ∈ FH . Now, let 1
2 < p < H. We shall use the inequalities

| sin u| > 1
2 for u ∈ (πk + π

4 , πk + 3π
4 ), (u + π

2 )−p > (2u)−p for u > 3π
4 ,

(u+ π
2 −x)α−1

+ > (2u−x)α−1
+ for x > π, u > 3π

4 and (u−x)α−1
+ > (2u−x)α−1

+

for x > 0. Consider∫
R

(∫ ∞

x

|f(u)|(u− x)α−1du
)2

dx =
∫

R

(∫ ∞

x

|u|−p| sin u|(u− x)α−1du
)2

dx

≥
∫

R

(∫ ∞

x∨π
4

|u|−p| sin u|(u− x)α−1du
)2

dx

≥ 1
2

∫
R

( ∞∑
k=0

∫ πk+ 3π
4

πk+ π
4

u−p(u− x)α−1
+ du

)2

dx

≥ 1
4

∫ ∞

0

( ∞∑
k=0

∫ πk+ 3π
4

πk+ π
4

u−p(u− x)α−1
+ du

)2

dx

+
1
4

∫ ∞

0

( ∞∑
k=1

∫ πk+ π
4

πk−π
4

(
u +

π

2

)−p

(u +
π

2
− x)α−1

+ du
)2

dx



1.6 Wiener Integration with Respect to fBm 23

≥ 1
4

∫ ∞

π

( ∞∑
k=0

∫ πk+ 3π
4

πk+ π
4

u−p(2u− x)α−1
+ du

)2

dx

+
2−2p

4

∫ ∞

π

( ∞∑
k=1

∫ πk+ π
4

πk−π
4

u−p(2u− x)α−1
+ du

)2

dx

≥ 2−2p

8

∫ ∞

π

( ∞∑
k=0

∫ πk+ 3π
4

πk+ π
4

u−p(2u− x)α−1
+ du

+
∞∑

k=1

∫ πk+ π
4

πk−π
4

u−p(2u− x)α−1
+ du

)2

dx

=
2−2p

8

∫ ∞

π

(∫ ∞

π
4

u−p(2u− x)α−1
+ du

)2

dx

=
2−2p

8

∫ ∞

π

(∫ ∞

π
4x

v−p(2v − 1)α−1
+ du

)2

x2α−2pdx

≥ 2−2p

8

∫ ∞

π

x2α−2pdx
(∫ ∞

1
2

v−p(2v − 1)α−1du
)2

=∞

for H > p. 	

Now we consider the representation of the Wiener process via fBm, i.e.,

the relation which is inverse to the relation (1.6.1).

Lemma 1.6.10. Let 0 < H < 1. Then M1−H
− 1(0,t) ∈ LH

2 (R) for all t ∈ R,
and the underlying Wiener process W admits the representation

Wt = C̃H

∫
R

M1−H1(0,t)(s)dBH
s ,

where C̃H = (C(3)
H C

(3)
1−H)−1.

Proof. We must check that M1−H
− 1(0,t) ∈ LH

2 (R). Indeed,

MH
− ·M1−H

− 1(0,t) = C
(3)
H C

(3)
1−HI

H− 1
2− (I

1
2−H
− 1(0,t)) = (C̃H)−11(0,t) ∈ L2(R).

Furthermore, according to Definition 1.6.1, it holds that

C̃H

∫
R

(M1−H
− 1(0,t))(s)dBH

s = C̃H

∫
R

(MH
− M1−H

− 1(0,t))(s)dWs

=
∫

R

1(0,t)(s)dWs = Wt. (1.6.17)

	

Corollary 1.6.11. Any fBm BH admits a Mandelbrot–van Ness representa-
tion with respect to the Wiener process W from representation (1.6.17).
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1.7 The Space of Gaussian Variables Generated by fBm.

Denote
BH = span{BH

t , t ∈ R},
where the closure is taken in L2(Ω). We are interested in the following ques-
tion: which classes of integrands in the definition of the Wiener integral w.r.t.
fBm are isometric to BH or to some of its subspaces? The following theorem
from (PT00b) gives the general answer to this question.

Theorem 1.7.1. Let I be some class of integrands and let Is ⊂ I be the class
of step functions. Under the assumptions

(i) I is a space with inner product (f, g)I , f, g ∈ I,
(ii) for f, g ∈ Is (f, g)I = EI(f)I(g),
(iii) the set Is is dense in I,
we have the following:

(a) there is an isometry between the space I and a linear subspace of BH

which is an extension of the map f → I(f) for f ∈ Is;
(b) I is isometric to BH if and only if I is complete.

Proof. (a) Let f ∈ I. By (iii), there exists fn ∈ Is, such that {fn, n ≥ 1} is a
Cauchy sequence in I with norm ‖ · ‖I = (·, ·)I . According to (ii), I(fn) is a
Cauchy sequence in L2(Ω), hence it converges to some r.v. ξ ∈ L2(Ω). We set
I(f) := ξ. Since I(fn) ∈ BH and BH is a closed subspace of L2(Ω), we obtain
that I(f) ∈ BH . So, we can define the map I: I → BH . For any f, g ∈ I it
holds that

(f, g)I = lim
n→∞(fn, gn)I = lim

n→∞EI(fn)I(gn) = EI(f)I(g).

Moreover, ξ does not depend on the choice of the sequence fn → f in I. Since
the map I is linear, we get an isometry between I and some subspace of BH .
(b) Since BH is complete as a closed subspace of the complete space L2(Ω), it
follows that I is complete if I is an isometry between I and BH . Conversely, let
I be complete. Then, for any η ∈ BH , it holds that η = lim ηn, ηn = I(fn) ∈
span{BH

t , t ∈ R}, fn ∈ Is. So, I(fn) → η in L2(Ω). Therefore, from (ii) it
follows that fn is a Cauchy sequence in I, and from completeness, fn → f in
I, η = I(f). 	

Corollary 1.7.2. From Lemma 1.6.2, Remark 1.6.3 and Theorem 1.6.5, we
obtain the following: the space I = LH

2 (R) is complete for H ∈ (0, 1
2 ) and

incomplete for H ∈ ( 1
2 , 1). Step functions are dense in LH

2 (R) for any H ∈
(0, 1). Therefore, LH

2 (R) is isometric to BH for H ∈ (0, 1
2 ) and isometric to

a subspace of BH for H ∈ ( 1
2 , 1).
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Theorem 1.7.3. The space (|RH |, ‖·‖LH
2 (R)) is incomplete for H ∈ ( 1

2 , 1), the
space (FH , ‖·‖FH

) is incomplete unless H = 1
2 , and the space (|RH |, ‖·‖|RH |,2),

H ∈ ( 12 , 1
)
, is complete.

Proof. (i) Consider the space (|RH |, ‖ · ‖|RH |,1), H ∈ ( 1
2 , 1). Evidently, if some

space is dense in an incomplete space, then it is also incomplete. From Lemma
1.6.9, it follows that |RH | ⊂ LH

2 (R), and from Theorem 1.6.5, we have that
LH

2 (R) is incomplete. So, it is enough to establish that |RH | is dense in LH
2 (R).

If the function f ∈ LH
2 (R), then g := MH

− f ∈ L2(R). Therefore, there exists a
sequence of step functions {gn, n ≥ 1} ⊂ L2(R) such that ‖gn − g‖L2(R) → 0.
Evidently, any step function gn can be expressed as gn = MH

− ϕn, where ϕn

is a linear combination of functions M1−H
− 1(a,b), −∞ < a < b < ∞, and ϕn

can be determined via Lemma 1.1.3. Note that

‖f − ϕn‖LH
2 (R) = ‖MH

− f −MH
− ϕn‖L2(R) → 0,

n → ∞, so it is enough to prove that ϕn ∈ |RH |. As will be established
in Corollary 1.9.3, there exists some constant C such that ‖ϕn‖|RH |,2 ≤
C‖ϕn‖L 1

H
(R), and as mentioned in the proof of Lemma 1.6.2, we have that

M1−H
− 1(a,b) ∈ L 1

H
(R) for all −∞ < a < b < ∞. Therefore, (|RH |, ‖ · ‖|RH |,1)

is dense in LH
2 (R), and hence incomplete.

(ii) Consider the space FH , H �= 1
2 . Let 0 < H < 1

2 , and let {fn, n ≥ 1}
be the sequence of functions

f̂n(x) = |x|−p1{ 1
n <|x|<1}(x),

1
2

< p < 1−H.

Evidently, f̂n ∈ L2(R) and f̂n(x) = f̂n(−x). Therefore, f̂n is the Fourier
transform of some fn ∈ L2(R). Moreover, fn ∈ FH and since −1 < −2p− 2α,
we have for n > m that

‖fn − fm‖2FH
=
∫

R

(f̂n(x)− f̂m(x))2 |x|−2α
dx

=
∫

R

|x|−2p−2α 1{1/n<x<1/m}dx→ 0.

Suppose that there exist fn ∈ FH such that ‖f − fn‖FH
→ 0, n → ∞.

Then, there exists a subsequence f̂nk
(x) such that f̂nk

(x) → f̂(x) for a.a.
x ∈ R, whence f̂(x) = |x|−p 1{|x|<1}. Since −2p < −1 we have that f̂ /∈
L2(R), therefore f /∈ L2(R). For H ∈ (1/2, 1), we can take the sequence
f̂n(x) = |x|−p 1{1<|x|<n}, with p > 1−H.

(iii)Lastly, consider the space (|RH | , ‖·‖|RH |,2), H ∈ (1/2, 1). Let {fn, n ≥
1} ⊂ (|RH | , ‖·‖|RH |,2) be a Cauchy sequence. Then there exists a subsequence
fnk

(x)→ f(x) for a.a. x ∈ R, where f is some function. Indeed,

0← ‖fn − fm‖|RH |,2 ≥ (2r)2α−1 ‖fn − fm‖2L2[−r,r] as n,m→∞
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whence the above statement easily follows. Moreover, by the Fatou lemma,
we have that

‖f‖|RH |,2 ≤ lim
n→∞

‖fnk
‖|RH |,2 <∞

and
‖f − fn‖|RH |,2 ≤ lim

k→∞
‖fn − fnk

‖|RH |,2 → 0, n→∞. 	


1.8 Representation of fBm via the Wiener Process
on a Finite Interval

Sometimes it is convenient to consider a “one-sided” fBm BH = {BH
t , t ≥ 0}

and to represent it as a functional of the form BH
t = ϕ(Bs, 0 ≤ s ≤ t), of some

Wiener process B = {Bt, t ≥ 0}, instead of (1.3.4). For this purpose consider
the kernels

lH(t, s) = C
(5)
H s−α(t− s)−αI{0<s<t},

and

mH(t, s) = C
(6)
H

(( t
s

)α(t− s)α − αs−α

∫ t

s

uα−1(u− s)αdu
)
,

where

C
(5)
H =

(
Γ (2− 2α)

2HΓ (1− α)3Γ (1 + α)

) 1
2

, C
(6)
H =

(
2HΓ (1− α)

Γ (1− 2α)Γ (α + 1)

) 1
2

,

and α = H− 1
2 , H ∈ (0, 1). Throughout the book we shall use the notations

α̃ = (1− α)1/2, α̂ = (1− α)−1/2.
(i) Let H ∈ ( 1

2 , 1). Then, by using the equality∫ 1

0

t−µ(1− t)−µ|x− t|2µ−1dt = B(µ, 1− µ), (1.8.1)

that was established in (NVV99, Lemma 2.2) for any µ ∈ (0, 1), x ∈ (0, 1), we
obtain that for any t > 0

‖lH(t, ·)‖|RH |,2

=
(
C

(5)
H

)2

2Hα

∫ t

0

∫ t

0

(t− u)−α(t− s)−αu−αs−α|u− s|2α−1du ds

= t1−2α
(
C

(5)
H

)2

2Hα

∫ 1

0

u−α(1− u)−α

(∫ 1

0

(1− s)−αs−α|u− s|2α−1ds

)
du

= t1−2α
(
C

(5)
H

)2

2HαB(α, 1− α)B(1− α, 1− α)

= t1−2α Γ (2− 2α)Γ (α)Γ (1− α)3

Γ (1− α)3Γ (α)Γ (2− 2α)
= t1−2α <∞.

(1.8.2)
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Therefore, we can consider the integral

IH
t (lH) =

∫ t

0

lH(t, s)dBH
s :=

∫
R

lH(t, s)dBH
s

=
∫

R

(MH
− lH)(t, ·)(x)dWx,

(1.8.3)

where W = {Wx, x ∈ R} is the underlying Wiener process. Similarly to (1.8.2),
for any 0 < t < t′, we obtain that

EIH
t (lH)IH

t′ (lH) = (lH(t, ·), lH(t′, ·))|RH |,2

= (C(5)
H )22Hα

∫ t

0

(t− u)−αu−α

(∫ t′

0

(t′ − s)−αs−α|u− s|2α−1ds

)
du

= (C(5)
H )22Hαt1−2αB(α, 1− α)B(1− α, 1− α) = t1−2α.

(1.8.4)
From (1.8.3), it follows that

{
IH
t , t ≥ 0

}
is a centered Gaussian process. More-

over, from (1.8.4), we obtain for any 0 < s < t ≤ s′ < t′ that

E
(
IH
t′ (lH)− IH

s′ (lH)
) (

IH
t (lH)− IH

s (lH)
)

= 0.

Thus, the increments of IH
t (lH) are uncorrelated, and hence independent. It

follows that IH
t (lH) is a martingale w.r.t. its natural filtration

FH
t := σ

{
IH
s (lH), 0 ≤ s ≤ t

}
,

having angle bracket
〈
IH
t (lH)

〉
= t1−2α and IH

0 (lH) = 0. By the Lévy theorem,
there exists some Wiener process B = {Bt, t ≥ 0}, such that

MH
t := IH

t (lH) = α̃

∫ t

0

s−αdBs. (1.8.5)

The process MH is called the Molchan martingale, or the fundamental mar-
tingale, since it was considered originally in the papers (Mol69; MG69). See
also (NVV99).

(ii) Now, let H ∈ (0, 1
2 ). In this case we need some preliminaries.

1) Let f ∈ BV [0, T ], where BV [0, T ] is the class of functions of bounded
variation on [0, T ], and f = 0 outside [0, T ].
Let us calculate MH

− f. For α = H − 1
2 it holds that

(
MH

− f
)
(x) =

⎧⎪⎨⎪⎩
0, x > T

C
(2)
H

∫ T

x
(u− x)αdf(u)− (T − x)αf(T−), 0 < x < T

C
(2)
H α
∫ T

0
f(u)(u− x)α−1du, x < 0.

Let IH
T :=

∫ T

0
f(s)dBH

s . Then



28 1 Wiener Integration with Respect to Fractional Brownian Motion

E
∣∣IH

T (f)
∣∣2 =

(
C

(2)
H

)2

⎛⎝α2

∫ 0

−∞

∣∣∣∣∣
∫ T

0

f(u)(u− x)α−1du

∣∣∣∣∣
2

dx

+
∫ T

0

∣∣∣∣∣
∫ T

x

(u− x)αdf(u)− (T − x)αf(T−)

∣∣∣∣∣
2

dx

⎞⎠
=
(
C

(2)
H

)2
(

α2

∫ T

0

∫ T

0

f(u)f(s)
(∫ 0

−∞
(u− x)α−1(s− x)α−1dx

)
du ds

+
∫ T

0

∫ T

0

(∫ s∧u

0

(u− x)α(s− x)αdx

)
df(u)df(s)

+ f2(T−)
T 2α+1

2α + 1
− 2
∫ T

0

[∫ u

0

(u− x)α(T − x)αdx

]
df(u) · f(T−)

)
.

(1.8.6)
Evidently, the function f and its variation var f are bounded on [0, T ]:

there exists C > 0 such that |f(u)| ≤ C and ψu := var[0,u] f ≤ C, 0 ≤ u ≤ T .
Therefore, on the one hand, it holds that∫ T

0

∫ T

0

|f(u)| |f(s)|
(∫ 0

−∞
(u− x)α−1(s− x)α−1dx

)
du ds

≤ C2

∫ T

0

∫ T

0

(∫ 0

−∞
(u− x)α−1(s− x)α−1dx

)
du ds

= C2α−2

∫ 0

−∞
((T − x)α − (−x)α)2 dx <∞.

(1.8.7)

On the other hand, we obtain that∫ T

0

∫ T

0

(∫ s∧u

0

(u− x)α(s− x)αdx

)
dψudψs

≤
∫ T

0

∫ s

0

(∫ u

0

(u− x)α(s− x)αdx

)
dψudψs

+
∫ T

0

∫ T

s

(∫ s

0

(u− x)α(s− x)αdx

)
dψudψs

≤ (2α + 1)−1

(∫ T

0

∫ s

0

u2α+1dψudψs +
∫ T

0

∫ T

s

s2α+1dψudψs

)

≤ T 2α+1

2α + 1
C2 <∞.

(1.8.8)

Clearly, the last integral in (1.8.6) is finite. It follows from (1.8.7) and
(1.8.8) that the integrals in (1.8.6) are well defined, E

∣∣IH
T (f)

∣∣2 <∞ and the
limits of integration in (1.8.6) are changed correctly. Moreover, the integral
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0
f(s)dBH

s exists for any f ∈ BV [0, T ]. Now, let {fn, n ≥ 1} be the sequence
of functions satisfying the assumptions

(a) fn ∈ BV [0, T ] and there exists C > 0 such that supn var[0,T ] fn ≤ C;
(b) fn → 0 pointwise on [0, T ].

Then, we can repeat estimates (1.8.6)–(1.8.8) with fn instead of f and
obtain from the Helly theorem and the Lebesgue dominated convergence the-
orem that E|IH

T (fn)|2 → 0, n → ∞. Finally, let f ∈ BV [0, T ] ∩ C[0, T ] and
f̃n(t) =

∑n
k=1 f

(
kT
n

)
1{ (k−1)T

n ≤t< kT
n }. Then the functions fn := f− f̃n satisfy

the assumptions (a) and (b), whence

IH
T (f) = lim

n→∞

n∑
k=1

f

(
kT

n

)
∆BH

k in L2(Ω), (1.8.9)

where
∆BH

k = BH
kT
n
−BH

(k−1)T
n

.

But
n∑

k=1

f

(
kT

n

)
� BH

k = f(T )BH
T −

n∑
k=1

B kT
n

� fk → f(T )BH
T −

∫ T

0

BH
t df(t).

(1.8.10)
We obtain from (1.8.9) and (1.8.10) that IH

T (f) = f(T )BH
T −

∫ T

0
BH

t df(t) for
any f ∈ BV [0, T ] ∩ C[0, T ].

2) Evidently, for any fixed t > 0 the kernel lH(t, ·) ∈ BV [0, t] ∩ C[0, t], if
H ∈ (0, 1

2 ). Therefore,

IH
t (lH) =

∫ t

0

lH(t, s)dBH
s =

∫ t

0

BH
s dlH(t, s) =

∫ t

0

BH
s (lH)′s(t, s)ds

= −αC
(5)
H

∫ t

0

BH
s s−α−1(t− s)−α−1(t− 2s)ds,

and this integral is obviously a Gaussian random variable. By using the fact
that lH vanishes at the endpoints, we can easily show that
EIH

t (lH)IH
t′ (lH) = t1−2α for any 0 < t < t′ :
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EIH
t (lH)IH

t′ (lH)

=
1
2

∫ t

0

∫ t′

0

(u2H + s2H − |u− s|2H)(lH)′s(t, s)(lH)′u(t′, u)du ds

= −1
2

∫ t

0

∫ t′

0

|u− s|2H(lH)′s(t, s)(lH)′u(t′, u)du ds

= −1
2

∫ t

0

(lH)′s(t, s)
(∫ s

0

(s− u)2H(lH)′u(t′, u)du

)
ds

− 1
2

∫ t

0

(lH)′s(t, s)

(∫ t′

s

(u− s)2H(lH)′u(t′, u)du

)
ds

= −H

∫ t

0

lH(t, s)
(∫ s

0

(s− u)2α(lH)′u(t′, u)du

)
ds

+ H

∫ t

0

lH(t, s)

(∫ t′

s

(u− s)2α(lH)′u(t′, u)du

)
ds

= −αHC
(5)
H

∫ t

0

lH(t, s)

×
∫ t′

0

|u− s|2α sign(u− s)u−α−1(t′ − u)−α−1(t′ − 2u)du ds.

(1.8.11)

From (NVV99, Proposition 2.1), we can obtain that∫ t′

0

|u− s|2α sign(u− s)u−α−1(t′ − u)−α−1(t′ − 2u)du

= −2/α · Γ (1− α)Γ (1 + α).

Therefore, EIH
t (lH)IH

t′ (lH) = t1−2α. We can conclude, similarly to part (i),
that IH

t (lH) is a martingale w.r.t. its natural filtration, and

IH
t (lH) = α̃

∫ t

0

s−αdBs (1.8.12)

for some Wiener process B. Thus, we have proved the following result.

Theorem 1.8.1. Let BH be an fBm with H ∈ (0, 1), and let

MH
t := IH

t (lH) =
∫ t

0

lH(t, s)dBH
s . (1.8.13)

Then there exists a Wiener process B such that (1.8.12) holds. Moreover,
σ{BH

s , 0 ≤ s ≤ t} = σ{Bs, 0 ≤ s ≤ t}.
The inverse relation can be obtained for any H ∈ (0, 1) in the following

way: evidently, for any t > 0 the random variable Yt :=
∫ t

0
s−αdBH

s is well
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defined. It can be proved similarly (but more easily) as the existence of IH
t (lH).

Furthermore, f̂(s) := s−α ∈ BV [0, t] ∩ C[0, t] for any t > 0 and H ∈ (0, 1
2 ).

Therefore, it holds that

Yt = t−αBH
t + α

∫ t

0

BH
s s−α−1ds. (1.8.14)

Now, let H ∈ ( 1
2 , 1), f ∈ BV [0, t] ∩ C[0, t] and

It(f) :=
∫ t

0

f(s)dBH
s .

Then

E |It(f)|2 = 2Hα

∫ t

0

∫ t

0

f(u)f(s)|u− s|2α−1du ds <∞,

and it is easy to see, similarly to (1.8.10) that

It(f) = BH
t f(t)−

∫ t

0

BH
s df(s).

Let f̂ε(s) = f̂(s)1{ε<s<∞} for some ε > 0. Then∫ t

0

fε(s)dBH
s =

∫ t

ε

s−αdBH
s

= BH
t t−α −BH

ε ε−α − α

∫ t

0

BH
s s−α−1ds.

Note that the trajectories of BH belong to CH−ρ[0, T ] for any 0 < ρ < H,
(see Section 1.16). Therefore BH

ε ε−α → 0, ε → 0 a.s. By similar reasoning,∫ t

ε
BH

s s−αds→ ∫ t

0
BH

s s−αds, ε→ 0 a.s.
Evidently, E

∣∣∫ ε

0
f(s)dBH

s

∣∣2 → 0, ε → 0, and we obtain (1.8.14) for H ∈
( 1
2 , 1). But (1.8.14) is an integral equation with respect to

{
BH

s , 0 ≤ s ≤ t
}

and its solution has the form

BH
t = tαYt − α

∫ t

0

sα−1Ysds =
∫ t

0

sαdYs. (1.8.15)

Let MH
t := IH

t (lH) be the Molchan martingale. Then, for H ∈ (0, 1
2 ),

integration by parts leads to the equality

MH
t = C

(5)
H

∫ t

0

(t− s)−αs−αdBH
s = −αC

(5)
H

∫ t

0

(t− s)−α−1Ysds,

whence
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0

(t− u)αMH
u du = −αC

(5)
H

∫ t

0

Ys

(∫ t

s

(t− u)α(u− s)−1−αdu
)
ds

= −αC
(5)
H B (α + 1,−α)

∫ t

0

Ysds,

and

Yt = C
(6)
H α̂

∫ t

0

(t− u)αdMH
u . (1.8.16)

Therefore,

BH
t = α̂C

(6)
H

(
tα
∫ t

0

(t− u)αdMH
u

− α

∫ t

0

sα−1
(∫ s

0

(s− u)αdMH
u

)
ds
)

=
∫ t

0

mH(t, s)dBs. (1.8.17)

Let H ∈ (1
2 , 1). Then, by using Theorem 1.8.1, we obtain that∫ t

0

(t− u)αdMH
u = α

∫ t

0

(t− u)α−1MH
u du

= C
(5)
H α

∫ t

0

(t− u)α−1

∫ u

0

(u− s)−αs−αdBH
s du

= C
(5)
H α

∫ t

0

(∫ t

s

(t− u)α−1(u− s)−αdu

)
s−αdBH

s

= C
(5)
H αB (α, 1− α) Yt = (C(6)

H )−1α̃Yt,

(1.8.18)

i.e. we have (1.8.16) and obtain (1.8.17). In this case the kernel mH(t, s) can
be simplified to mH(t, s) = αC

(6)
H s−α

∫ t

s
uα(u− s)α−1du.

Remark 1.8.2. It easily follows from (1.8.17) and (1.8.18) that the process BH

satisfying (1.8.17) is an fBm. Indeed, it is a Gaussian process with zero mean
and covariance

E BH
t BH

s =
∫ t∧s

0

mH(t, u)mH(s, u)du =
1
2
(
t2H + s2H − |t− s|2H )

.

Now we state a result of Le Breton (LeB98), see also (KLeBR00), demon-
strating how the Wiener integral

∫ t

0
f(s)dBH

s can be presented as an integral
with respect to fundamental martingale MH :

Theorem 1.8.3. Let f ∈ LH
2 (R) vanish outside [0, T ], where H ∈ (1

2 , 1).
Furthermore, let

Kf
H(t, s) := C

(7)
H

∫ t

s

f(u)uα(u− s)α−1du,
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where C
(7)
H =

(
2Hα

(1−2α)B(1−2α,α)

)1/2

.

Then, ∫ t

0

f(s)dBH
s =

∫ t

0

Kf
H(t, s)dMH

s . (1.8.19)

Proof. Note that∫ t

0

(Kf
H(t, s))2d〈MH〉s = (C(7)

H )2(1− 2α)
∫ t

0

(Kf
H(t, s))2s−2αds

= (C(7)
H )2(1− 2α)

∫ t

0

∫ t

0

f(u)f(v)uαvα

×
∫ u∧v

0

(u− s)α−1(v − s)α−1s−2αds du dv.

(1.8.20)

Further, Lemma 2.2 from (NVV99) states that∫ 1

0

tµ−1(1− t)ν−1(c− t)−µ−νdt = c−ν(c− 1)−µB(µ, ν)

for µ, ν > 0, c > 1. Hence for u < v, µ = 1− 2α, ν = α we have that∫ u

0

(u− s)α−1(v − s)α−1s−2αds

= u−1
( v

u

)−α( v

u
− 1
)2α−1

B
(
1− 2α, α

)
= B
(
1− 2α, α

)
(uv)−α(v − u)2α−1.

Moreover, for v < u it holds that∫ v

0

(v − s)α−1(u− s)α−1s−2αds = B
(
1− 2α, α

)
(uv)−α(u− v)2α−1.

By substituting these equalities into (1.8.20), we obtain for the integral on
the right-hand side that

(C(7)
H )2(1− 2α)B

(
1− 2α, α

)∫ t

0

∫ t

0

f(u)f(v)|u− v|2α−1du dv

= 2Hα

∫ t

0

∫ t

0

f(u)f(v)|u− v|2α−1du dv = E|IH(f)|2 <∞.

Moreover, the system (Is(f), MH
s , 0 ≤ s ≤ T ) is Gaussian and MH is

Gaussian martingale. Therefore it follows from Theorem 7.16 (LS01) that

It(f) =
∫ t

0

( d

d〈MH〉u E(MH
u It(f))

)
dMH

u , t ∈ [0, T ].
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For u ≤ t, we have that

E(MH
u It(f))

= C
(5)
H 2Hα

∫ t

0

∫ t

0

f(v)s−α(u− s)−α1{s<u}|v − s|2α−1dv ds

= C
(5)
H 2Hα

∫ t

0

f(v)
∫ u

0

s−α(u− s)−α|v − s|2α−1ds

× (1{v<u} + 1{v≥u})dv.

(1.8.21)

The first integral on the right-hand side of (1.8.21) equals, according to
(1.8.1), 2C(5)

H HαB
(
α, 1 − α

) ∫ u

0
f(v)dv. Moreover, according to the equal-

ity ((NVV99)):∫ 1

0

tµ−1(1− t)ν−1(c− t)−µ−ν+1dt

= (µ + ν − 1)B(µ, ν)c−ν+1

∫ 1

0

sµ+ν−2 · (c− s)−µds, c > 1, µ > 0, ν > 0,

the second integral equals, for µ = 1− α and ν = 1− α, to

C
(5)
H 2Hα(1− α)B

(
1− α, 1− α

)∫ t

u

f(v)vα

∫ u

0

z1−2H(v − z)α−1dz dv.

Therefore, the derivative in u of the right-hand side of (1.8.21) equals

C(H)B
(
α, 1− α

)
f(u)− C(H)(1− 2α)B

(
1− α, 1− α

)
f(u)B

(
1− 2α, α

)
+ C(H)(1− α)B

(
1− α, 1− α

)
u−2α

∫ t

u

f(v)vα(v − u)α−1dv,

where C(H) = 2HαC
(5)
H . It is easy to check that

(1− 2α)B
(
1− α, 1− α

)
B
(
1− 2α, α

)
= B
(
α, 1− α

)
.

Therefore,

dE(MH
u It(f))
du

= C(H)B
(
1− α, 1− α

)
· (1− 2α)u−2α

×
∫ t

u

f(v)vα · (v − u)α−1dv

= C
(7)
H (1− 2α)u−2α

∫ t

u

f(v)vα · (v − u)α−1dv.

Hence dE(MH
u It(f))

d〈MH〉u
= Kf

H(t, u), and the theorem is proved. 	
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1.9 The Inequalities for the Moments of the Wiener
Integrals with Respect to fBm

These inequalities were originated with paper (MMV01). Indeed, the Hardy–
Littlewood theorem has an immediate consequence, namely, the estimates for
the moments of the Wiener integrals with respect to fBm.

Theorem 1.9.1. (i) Let H ∈ (0, 1
2 ). Then LH

2 (R) ⊂ L 1
H

(R) and there ex-
ists a constant CH > 0 such that for any f ∈ LH

2 (R), it holds that

‖f‖L 1
H

(R) ≤ CH‖f‖LH
2 (R). (1.9.1)

(ii) Let H ∈ (1
2 , 1). Then L 1

H
(R) ⊂ LH

2 (R) and there exists a constant
CH > 0 such that for any f ∈ L 1

H
(R) it holds that

‖f‖LH
2 (R) ≤ CH‖f‖L 1

H
(R). (1.9.2)

Proof. (i) Let f ∈ LH
2 (R). This means that MH

− f = C
(3)
H D−α

− f ∈ L2(R).
Evidently, f = I−α

− D−α
− f and from the Hardy–Littlewood theorem (Theo-

rem 1.1.1 with q = 1
H , p = 2 and α = 1

2 −H), it follows that

‖f‖L 1
H

(R) = ‖I−α
− D−α

− f‖L 1
H

(R) ≤ C2, 1
H ,−α‖D−α

− f‖L2(R) = CH‖f‖LH
2 (R).

(ii) We directly apply the Hardy–Littlewood theorem with
p = 1

H , α = H − 1
2 and q = 2:

‖f‖LH
2 (R) = ‖MH

− f‖L2(R) ≤ CH‖f‖L 1
H

(R).

	

Corollary 1.9.2. Let f ∈ LH

2 (R). Then there exists I(f) =
∫

R
f(s)dBH

s and
E|I(f)|2 = ‖f‖2

LH
2 (R)

. Therefore, we have for H ∈ (0, 1
2 ) that E|I(f)|2 ≥

C−2
H ‖f‖2L 1

H
(R) and, for H ∈ ( 1

2 , 1), it holds that E|I(f)|2 ≤ C2
H‖f‖2L 1

H
(R).

Since I(f) is a Gaussian random variable, we obtain the following inequalities
for the moments of the Wiener integrals with respect to fBm: for any r > 0,
there exists a constant C(H, r), such that for H ∈ (1

2 , 1)

E|I(f)|r ≤ C(H, r)‖f‖rL 1
H

(R)

and such that for H ∈ (0, 1
2 ), we have that

‖f‖rL 1
H

(R) ≤ C(H, r)E|I(f)|r.
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Corollary 1.9.3. Let H ∈ (1
2 , 1) and f ∈ L 1

H
(R). Then it follows from

Theorem 1.9.1, (ii), (1.6.7) and (1.6.14), that

‖f‖|RH |,2 ≤ C‖f‖L 1
H

(R).

Corollary 1.9.4. Let f ∈ L 1
H

[a, b] and f = 0 outside (a, b). Then we obtain
the following estimates: for any r > 0, there exists a constant C(H, r), such
that for H ∈ (1

2 , 1), it holds that

E

∣∣∣∣∣
∫ b

a

f(s)dBH
s

∣∣∣∣∣
r

≤ C(H, r)‖f‖rL 1
H

[a,b]

and

E

∣∣∣∣∣
∫ b

a

f(s)dBH
s

∫ b

a

g(s)dBH
s

∣∣∣∣∣
r

≤ C(H, r)‖f‖rL 1
H

[a,b]‖g‖rL 1
H

[a,b].

Furthermore, for H ∈ (0, 1
2 ) the opposite inequality holds:

‖f‖rL 1
H

[a,b] ≤ C(H, r)E

∣∣∣∣∣
∫ b

a

f(s)dBH
s

∣∣∣∣∣
r

Remark 1.9.5. Let H ∈ (1
2 , 1) and f ∈ |RH |. Then, from Hölder inequality,

we obtain the estimate

‖f‖2|RH |,2 =
∫

R

|f(s)|
(∫

R

|f(u)||s− u|2α−1du

)
ds

≤
(∫

R

|f(s)| 1H ds

)H
(∫

R

ds

(∫
R

|f(u)||s− u|2α−1du

) 1
1−H

)1−H

.

Further, from the Hardy–Littlewood theorem with α = 2H − 1, q = 1
1−H

and p = 1
H , we obtain that(∫

R

ds

(∫
R

|f(u)||s− u|2α−1du

) 1
1−H

)1−H

≤ CH‖f‖L 1
H

(R).

Therefore,

‖f‖|RH |,2 ≤ CH‖f‖L 1
H

(R).

Remark 1.9.6. Next, we show that the lower inequality in the case
H ∈ (1

2 , 1) fails. Indeed, let f(u) = sign u · |u|−p sin u with 1
2 < p < H. Then

according to the proof of Lemma 1.6.9, it holds that f ∈ LH
2 (R). Nevertheless,
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0

|f(u)| 1H du =
∫ ∞

0

| sin u| 1H
|u| p

H

du =∞, since
p

H
< 1.

Therefore, the inclusion L 1
H

(R) ⊂ LH
2 (R) is proper. Moreover, consider

the function fε(u) = uε−H , 0 ≤ u ≤ 1, 0 < ε < H. Then

‖fε‖21
H

=
(

H

ε

)2H

, ‖fε‖2LH
2 (R) =

1
ε

Γ (1−H + ε)Γ (2α)
Γ (H − ε)

∼ C0

ε
, ε→ 0,

where C0 = B(1 − H, 2α). Since
1
ε
1

ε2H

= ε2α and we can let ε tend to 0, it

follows that the inequality

‖f‖LH
2 (R) ≥ CH‖f‖L 1

H
(R)

is impossible for H ∈ ( 1
2 , 1).

Remark 1.9.7. It is very easy to check that the function f(u) = u−H /∈ |RH |
for any H ∈ (1

2 , 1). Indeed,∫ T

0

∫ T

0

u−Hs−H |u− s|2α−1duds =
∫ 1

0

∫ 1

0

u−Hs−H |u− s|2α−1du ds,

for any T > 0, and this is possible only in the case when these integrals are
infinite.

Now, let H ∈ (0, 1
2 ). As mentioned in (SKM93), the domain of the operator

D−α
− does not coincide with any space Lr(R), 1 ≤ r ≤ +∞. Therefore, the

inclusion L 1
H

(R) ⊂ LH
2 (R) is strict. Moreover, let f(u) = uε−H with ε > α

(note that ε can be negative). By direct computations, we get

‖f‖L2(R) = (2ε− 2α)−
1
2

and ∥∥I−α
− f
∥∥

L 1
H

(R)
= Kε,H(2ε− 2α)−H ,

where

Kε,H =
Γ (ε− α)

Γ (ε− 2α + 1
2 )

(2H)H , α = H − 1
2
.

Therefore,
‖f‖L2(R)∥∥I−α
− f
∥∥

L 1
H

(R)

↑ +∞, ε ↓ (α).

Set g = I−α
− f , f = Dα

−g, then ‖f‖L2(R) = ‖g‖LH
2 (R) and

‖g‖LH
2 (R)

‖g‖L 1
H

(R)

↑ +∞, ε ↓ α.
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So, we cannot obtain the inverse inequality to (1.9.1).
Consider now the upper bound for the moments of I(f) with H ∈ (0, 1

2 ).
As always, α = H − 1

2 .
Let W 2

2 (R) be the standard Sobolev space

W 2
2 (R) = {f : R→ R | ‖f‖L2(R) + ‖f ′‖L2(R) <∞}.

Theorem 1.9.8. Let f ∈ C1(R)
⋂

W 2
2 (R) and |f(x)|+ |f ′(x)| ≤ C0|x|α−1−ε

for some ε > 0, as |x| → ∞. Then f ∈ LH
2 (R), and there exists a constant

C(H) depending only on H, such that

‖f‖LH
2 (R) ≤ C(H)‖f‖W 2

2 (R).

Proof. Now, we have that

‖f‖LH
2 (R) =

(∫
R

|(MH
− f)(t)|2dt

)1/2

= C
(3)
H

(∫
R

|(Iα
−f)(t)|2dt

)1/2

= C
(3)
H

(∫
R

|(D 1
2−H
− f)(t)|2dt

)1/2

= C
(2)
H

(∫
R

∣∣∣∣ d

dx

∫ 0

−∞
f(x− u)(−u)αdu

∣∣∣∣2 dx
)1/2

= C
(2)
H

(∫
R

∣∣∣∣∫ ∞

0

f ′(x + u)uαdu

∣∣∣∣2 dx
)1/2

≤
√

2C
(2)
H

((∫
R

∣∣∣∣∫ x+1

x

f ′(u)(u− x)αdu

∣∣∣∣2 dx
)1/2

+
(∫

R

∣∣∣∣∫ ∞

x+1

f ′(u)(u− x)αdu

∣∣∣∣2 dx
)1/2
)

.

(1.9.3)

Further, it holds that(∫
R

∣∣∣∣∫ x+1

x

f ′(u)(u− x)αdu

∣∣∣∣2 dx
)1/2

≤ (2H)−1/2
(∫

R

∫ x+1

x

|f ′(u)|2 du dx
)1/2

= (2H)−1/2‖f ′‖L2(R),

(1.9.4)

and (∫
R

∣∣∣∣∫ ∞

x+1

f ′(u)(u− x)αdu

∣∣∣∣2 dx
)1/2

=
(∫

R

∣∣∣∣f(x + 1)− α

∫ ∞

x+1

f(u)(u− x)α−1du

∣∣∣∣2 dx
)1/2

≤
√

2‖f‖L2(R) +
√

2|α|
(∫

R

∣∣∣∣∫ ∞

x+1

f(u)(u− x)α−1du

∣∣∣∣2 dx
)1/2

.

(1.9.5)
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From the generalized Minkowsky inequality, we obtain that(∫
R

∣∣∣∣∫ ∞

x+1

f(u)(u− x)α−1du

∣∣∣∣2 dx
)1/2

=
(∫

R

∣∣∣∣∫ ∞

1

f(u + x)uα−1du

∣∣∣∣2 dx
)1/2

≤
∫ ∞

1

uα−1du
(∫

R

|f(u + x)|2dx
)1/2

≤ −1/α‖f‖2L2(R).

(1.9.6)
The claim follows now immediately from (1.9.3)–(1.9.6). 	


Now we turn to the case when f = 0 outside some interval [0, T ]. In this
case the conditions on f can be much less restrictive. Indeed, then

(
Iα
−f
)
(x) =

⎧⎪⎨⎪⎩
0, x ≥ T,

− 1
Γ (H+ 1

2 )
d
dx

∫ T

x
f(t)(t− x)αdt, x ∈ (0, T ),

− α
Γ (H+ 1

2 )

∫ T

0
f(t)(t− x)α−1dt, x ≤ 0.

(1.9.7)

Consider some partial cases. Let f ∈ I−α
− (Lp[0, T ]), for some p > 1, i.e. we

can present f as a fractional integral f(x) = 1
Γ (−α)

∫ T

x
ϕ(t)(t − x)−1−αdt,

ϕ ∈ Lp[0, T ]. Then, according to (SKM93), for any x ∈ (0, T ) it holds that

− d

dx

∫ T

x

f(t)(t− x)αdt = f(x)(T − x)α + α

∫ T

x

(f(x)− f(t))(t− x)α−1dt.

(1.9.8)
The same equality holds for f ∈ Cβ [0, T ] for α + β > 0.

From (1.9.7) and (1.9.8) it follows immediately that for f ∈ I−α
− (Lp[0, T ]),

in particular, for f ∈ Cβ [0, T ] with α + β > 0 we have that

E
∣∣∣ ∫ T

0

f(t)dBH
t

∣∣∣2 = α2(C(2)
H )2

∫ 0

−∞

∣∣∣∣∣
∫ T

0

f(t)(t− x)α−1dt

∣∣∣∣∣
2

dx

+ (C(2)
H )2

∫ T

0

∣∣∣f(x)(T − x)α + α

∫ T

x

(f(t)− f(x))(t− x)α−1dt
∣∣∣2dx. (1.9.9)

Introduce now some classes of functions vanishing outside [0, T ]:

LH
2 [0, T ] =

{
f : [0, T ]→ R|

∫
R

| (MH
− f)(x)|2dx <∞

}
,

and

DH [0, T ] :=
{

f : [0, T ]→ R
∣∣∣

‖f‖2DH [0,T ] :=
∫ T

0

(∫ T

x

|f(x)− f(t)|(t− x)α−1dt

)2

dx <∞
}

.
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Theorem 1.9.9. (i) The following inclusion holds: for any p > 1
H it holds

that
EH

p [0, T ] := I−α
− (Lp[0, T ])

⋂
DH [0, T ] ⊂ LH

2 [0, T ].

Moreover, there exists a constant C(H, p), such that for any f ∈ EH
p [0, T ]

we have that(
E
∣∣∣ ∫ T

0

f(t)dBH
t

∣∣∣2)1/2

≤ C(H, p)
(
‖f‖Lp[0,T ]T

H− 1
p + ‖f‖DH [0,T ]

)
.

(1.9.10)
(ii) Cβ [0, T ] ⊂ LH

2 [0, T ] and there exists a constant C(H,β) such that for any
f ∈ Cβ [0, T ](

E
∣∣∣ ∫ T

0

f(t)dBH
t

∣∣∣2)1/2

≤ C(H,β)‖f‖Cβ [0,T ]

(
TH + TH+β

)
. (1.9.11)

Proof. (i) Let f ∈ EH
p [0, T ]. Then E

∣∣∣∫ T

0
f(t)dBH

t

∣∣∣2 equals the right-hand side
of (1.9.9) and also f ∈ Lp[0, T ]. We have the following estimate:

If :=
∫ T

0

∫ T

0

|f(t)| |f(s)|
∫ 0

−∞
((t− x)(s− x)α−1)dx ds dt

≤
∫ T

0

∫ T

0

|f(t)| |f(s)|
∫ 0

−∞
(
√

st− x)2α−2dx ds dt

≤ 1
2(1−H)

(∫ T

0

|f(t)| tH−1dt

)2

≤ 1
2(1−H)

( p− 1
Hp− 1

) 2(p−1)
p ‖f‖2Lp[0,T ] T

2H− 2
p . (1.9.12)

Therefore, for f ∈ Lp[0, T ] it holds that If <∞. Then the Fubini theorem
implies that the first term on the right-hand side of (1.9.9) equals, up to a
constant ∫ T

0

∫ T

0

f(t)f(s)
∫ 0

−∞
(t− x)(s− x)α−1dx ds dt,

and can be estimated by the right-hand side of (1.9.12). Moreover, the Hölder
inequality implies that∫ T

0

|f(x)|2 (T − x)2αdx ≤ ‖f‖2Lp[0,T ] T
2H− 2

p
(p− 2)

p−2
p

(2αp + p− 2)
p−2

p

. (1.9.13)

From (1.9.12) and (1.9.13) we obtain (1.9.10) with
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C(H, p) = C
(2)
H

((
(2(1−H))−1/2α

( p− 1
Hp− 1

) (p−1)
p

+
√

2
( p− 2

2αp + p− 2

) p−2
2p
)
∨
√

2α
)
.

(ii) In this case,

If ≤ 1
2(1−H)

(∫ T

0

f(t)tH−1dt

)2

≤ 1
2(1−H)H2

‖f‖2Cβ [0,T ] T
2H , (1.9.14)

∫ T

0

|f(x)|2 (T − x)2αdx ≤ T 2H

2H
‖f‖2Cβ [0,T ] T

2H , (1.9.15)

and∫ T

0

(∫ T

x

|f(x)− f(t)|(t− x)α−1dt

)2

dx ≤ T 2H+2β

2(α + β)2(H + β)
‖f‖2Cβ [0,T ] .

Thus, we obtain (1.9.11) with

CH =
(

1
H2(1−H)

+
1

2H

)
∨
(

1
2(α + β)2(H + β)

)
.

	


1.10 Maximal Inequalities for the Moments of Wiener
Integrals with Respect to fBm

For any fixed T > 0, denote ζ∗T = sup0≤t≤T |ζt|, where ζt is any function
on [0, T ]. If BH = {BH

t , t ≥ 0} is a fractional Brownian motion, then from
its self-similar properties we obtain that E((BH)∗T )p = Ĉ(H, p)T pH , where
Ĉ(H, p) = E((BH)∗1)

p. (It is an interesting and open problem how to compute
this maximal moment.) Now, let f ∈ LH

2 (R). We try to find possible bounds
for the process It = It(f) :=

∫ t

0
f(s)dBH

s both on random and nonrandom
intervals. Denote ‖I∗T ‖p := (E(I∗T )p)1/p.

(i) Upper bound on nonrandom interval, H ∈ (1
2 , 1). Note that the process

It(f) is Gaussian, therefore it admits entropy maximal estimates. In this con-
text, suppose that f ∈ |RH | and consider on [0, T ] the semi-metric ρI gener-
ated by the process I, i.e.

ρ2
I(s, t) := E(It − Is)2 = E

∣∣∣∣∫ t

s

f(u)dBH
u

∣∣∣∣2 .

For any ε > 0 denote by N ([0, T ], ε) the metric ε-capacity of ([0, T ], ρ), or
the minimal number of points in the ε-net of the interval [0, T ] in the semi-
metric ρI , i.e. the minimal number of centers of closed ε-balls covering [0, T ].
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Also, let H([0, T ], ε) := logN ([0, T ], ε) be the metric ε-entropy of this interval
in the semi-metric ρI , and let D(T, ε) =

∫ ε

0
H([0, T ], u)

1
2 du be the Dudley

integral.

Lemma 1.10.1. Let ρ(s, t) be some semi-metric on [0, T ] and let ϕ(x), x > 0,
be a continuous increasing function, such that ϕ(0) = 0. Also, let g be a
function with g(v) ≥ 0, g ∈ L1[0, T ], such that for any 0 ≤ s < t ≤ T , it holds
that ϕ(ρ(s, t)) ≤ ∫ t

s
g(v)dv. Then

N ([0, T ], u) ≤ 1 +

∫ T

0
g(v)dv

ϕ(2u)
.

Proof. Consider 0 = s0 < s1 < . . . < sM < T , where |sk+1−sk| = 2u, 0 ≤ k ≤
M − 1, |T −SM | ≤ 2u. Such a partition exists, because our condition ensures
the continuity of ρ(s, t). Evidently, ϕ(2u) ≤ ∫ sk+1

sk
g(v)dv, 0 ≤ k ≤M −1, and

N ([0, T ], u) ≤M + 1. So,

Mϕ(2u) ≤
M−1∑
k=0

∫ sk+1

sk

g(v)dv =
∫ sM

a

g(u)du ≤
∫ T

0

g(v)dv,

i.e. M ≤ ∫ T

0
g(v)dv · (ϕ(2u))−1. 	


Lemma 1.10.2. The Dudley integral admits the estimate

D(T, ε) ≤
∫ ε

0

[
log(1 + u− 1

H C̃H

∫ T

0

|f(v)| 1H dv)
] 1

2

du,

where C̃H is some constant.

Proof. According to (1.9.2) and Corollary 1.9.2, it holds that

E
∣∣∣∣∫ t

s

f(u)dBH
u

∣∣∣∣2 ≤ C(H, 2)‖f‖2L 1
H

[s,t].

If we choose ϕ(u) = u
1
H and g(v) = |f(v)| 1H , then ϕ(ρI(s, t)) ≤

∫ t

s
g(v)dv. We

obtain from Lemma 1.10.1, that for any u > 0 the metric u-entropy of the in-
terval [0, T ] does not exceed log

(
1 + u− 1

H (C(H, 2))
1

2H · 2− 1
H

∫ T

0
|f(v)| 1H dv

)
.

From here the claim follows with C̃H = 2−
1
H (C(H, 2))

1
2H . 	


Theorem 1.10.3. For any p > 0, there exists a constant Cp(H) such that

‖I∗T ‖p ≤ Cp(H)‖f‖L 1
H

[0,T ].
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Proof. Denote
σ2 := sup

0≤t≤T
EI2

t .

Then according to (Lif95, Theorem 1, p. 141) and its corollary, for any
r > 4

√
2D(T, σ

2 ), we have the inequality

P {I∗T > r} ≤ 2

(
1− Φ

(
r − 4

√
2D(T, σ

2 )
σ

))
, (1.10.1)

where Φ(x) = 1√
2π

∫ x

−∞ e
−y2

2 dy. Since

E(I∗T )p ≤ p

∫ ∞

0

xp−1(1− F (x))dx,

where F (x) = P {I∗T < x}, we obtain from (1.10.1) that for D = D(T, σ
2 ) it

holds that

E(I∗T )p ≤ p

∫ 4
√

2D

0

xp−1(1− F (x))dx

+ p

∫ ∞

4
√

2D

xp−1(1− F (x))dx ≤ (4
√

2D)p

+ 2p
∫ ∞

0

(x + 4
√

2D)p−1
(
1− Φ

(x

σ

))
dx

≤ (4
√

2D)p + p2p

∫ ∞

0

xp−1
(
1− Φ

(x

σ

))
dx

+ p2p(4
√

2D)p−1

∫ ∞

0

(
1− Φ

(x

σ

))
dx

≤ (4
√

2D)p + p2pσpC1(p) + 2pp(4
√

2D)p−1σC1(1),

(1.10.2)

where C1(p) =
∫∞
0

xp−1 (1− Φ(x)) dx. Now we estimate D = D(T, σ
2 ). From

Lemma 1.10.2 and Corollary 1.9.4,

D ≤
∫ σ

2

0

[
log

(
1 + u− 1

H C̃H

∫ T

0

|f(v)| 1H dv

)] 1
2

du

≤ H(ĈH)H

∫ ∞

log 2

z
1
2

exp zdz

(exp z − 1)H+1
, (1.10.3)

where ĈH = C̃H

∫ T

0
|f(v)| 1H dv. Therefore, D ≤ CH‖f‖L 1

H
[0,T ], where

CH = (C̃H)HH
∫∞
log 2

z
1
2

exp zdz
(exp z−1)H+1 . Evidently, σ ≤ (C(H, 2))

1
2 ‖f‖L 1

H
[0,T ].

By substituting these two estimates into (1.10.2), we obtain the proof. 	
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(ii) Lower bound on nonrandom interval, H ∈ (1
2 , 1). According to Remark

1.9.6, the reverse inequality of (1.9.2) fails. Therefore, we obtain the lower
bound under stronger assumptions. We suppose here that f = f(s) > 0 on
[0,T]. Denote g(t) = 1

f(t) , g∗T = ess sup0≤s≤T g(s) and assume that g∗T <∞.

Theorem 1.10.4. For any p > 0, we have an estimate

‖I∗T ‖p ≥ cp(H)TH(g∗T )−1.

Proof. According to the lower bound obtained by Sudakov (Lif95, Theorem
5, p. 152), for any ε > 0 it holds that

E(I∗T )p ≥ (EI∗T )p ≥ CpH([0, T ], ε)
p
2 εp,

where H([0, T ], ε) = log N([0, T ], ε). Evidently, N([0, T ], ε) ≥ 1∨T (2g∗T ε)−
1
H .

Therefore,
H([0, T ], ε) ≥ log

(
1 ∨ T (2g∗T ε)−

1
H

)
.

Indeed, take an arbitrary partition π = {0 = s0 < s1 < · · · < sn = T} such

that
(

E
∣∣∣∫ sk

sk−1
f(s)dBH

s

∣∣∣2) 1
2

≤ 2ε. Then

E
∣∣∣∫ sk

sk−1
f(s)dBH

s

∣∣∣2 =
∥∥MH

− (1(sk−1,sk)f)
∥∥2

L2(R)
≥ (g∗T )−2E|Bsk

−Bsk−1 |2
= (g∗T )−2(sk − sk−1)2H ,

so, (g∗T )−
1
H (sk − sk−1) ≤ (2ε)

1
H . Hence N([0, T ], ε) ≥ 1 ∨ T (2g∗T ε)−1/H .

For the function ϕ(ε) =
(
log (1 ∨ T (2g∗T ε))−

1
H

) 1
2 · ε, with ε > 0, it holds

that
max

ε<T H(2g∗
T )−1

ϕ(ε) =
1
2
e−

1
2 TH(2g∗T )−1,

whence the claim follows. 	

(iii) Lower bound on nonrandom interval, H ∈ (0, 1

2 ). This case is very
simple, due to inequality (1.9.1). As an immediate consequence, we obtain
the following statement (see also Corollary 1.9.3). Let f : [0, T ] → R be a
measurable function.

Theorem 1.10.5. For any p > 0, there exists a constant C(H, p) such that

‖I∗T ‖p ≥ C(H, p) ‖f‖L 1
H

[0,T ] .

(iv) Upper bound on nonrandom interval, H ∈ (0, 1
2 ).
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Theorem 1.10.6. Let f : [0, T ] → R, f ∈ Lp[0, T ] ∩ DH
p [0, T ] for some

p > 1
H , where DH

p [0, T ] = {f : [0, T ] → R | ∫ T

0
(
∫ T

x
ϕ(x, t)dt)pdx < ∞} and

ϕ(x, t) = |f(t)−f(x)|
(t−x)1−α ·1{0<x<t≤T}. Then there exists a constant C1(H, p), such

that
‖I∗T ‖p ≤ C1(H, p)G1

p(0, T, f), (1.10.4)

where

G1
p(0, T, f) :=

(
‖f‖Lp[0,T ] · TH− 1

p + T
1
2− 1

p

(∫ T

0

(∫ T

x

ϕ(x, t)dt
)p

dx
) 1

p

)
.

Proof. According to (1.10.2), it holds that

E(I∗T )p ≤ (4
√

2D)p + p2pσpC1(p) + p2p(4
√

2D)p−1σC1(1), (1.10.5)

where σ2 = sup0≤t≤T EI2
t , D = D(T, σ

2 ) =
∫ σ

2
0
H([0, T ], u)1/2du and C1(p) =∫∞

0
xp−1(1− Φ(x))dx. Further, from (1.9.10), we have that

σ ≤ C(H, p)
(
‖f‖Lp[0,T ] · TH−1/p +

(∫ T

0

(∫ T

x

ϕ(x, t)dt
)2

dx
)1/2
)

≤ C(H, p)

(
‖f‖Lp[0,T ] T

H−1/p + T 1/2−1/p

(∫ T

0

(∫ T

x

ϕ(x, t)dt
)p

dx

)1/p
)

.

(1.10.6)
From Lemma 1.10.1 it follows that

(ρI(s, t))p ≤ 2p−1Cp(H, p)
(∫ t

s

|f(u)|pdu · T pH−1

+
∫ t

s

(∫ T

x

ϕ(x, t)dt
)p

dx · T p/2−1

)
.

So, we can put ϕ(x) = xp,

g(u) = 2pCp(H, p)

(
|f(u)|p · T pH−1 +

(∫ T

u

ϕ(u, t)dt
)p

· T p/2−1

)
,

and obtain the estimate

N ([0, T ], u) ≤ 1 +

∫ T

0
g(v)dv

ϕ(2u)
+ Cp(H, p)u−p

(∫ T

0

|f(v)|pdv · T pH−1

+
∫ T

0

(∫ T

v

ϕ(v, t)dt
)p

dv · T p/2−1
)

=: 1 + u−p(G1
p(0, T, f))p.

Therefore,
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D ≤
∫ σ

2

0

(
log(1 + u−p(G1

p(0, T, f))p)
)1/2

du = p−1G1
p(0, T, f) · Cp, (1.10.7)

where Cp =
∫∞
log 2

z1/2 ez

(ez−1)1/p+1 dz. By substituting (1.10.6) and (1.10.7) into
(1.10.5), we obtain the proof. 	

Remark 1.10.7. 1. Let f ∈ Cβ [0, T ] with β > −α. Then

‖f‖Lp[0,T ] ≤ ‖f‖Cβ [0,T ] T
1/p,(∫ T

0

(∫ T

x

ϕ(x, t)dt
)p

dx

) 1
p

≤ C ‖f‖Cβ[0,T ] T
α+β+ 1

p ,

and

‖I∗T ‖p ≤ C2(H, p) ‖f‖Cβ [0,T ] (T
H + TH + β),

where I∗t := sup0≤s≤t |Is|.
2. Similarly to Theorem 1.10.6, we can suppose that f ∈ Lp[0, T ]∩DH

p [0, T ]
and obtain the estimate for ‖I∗T ‖r, r > 0. Indeed, the estimate (1.10.5) holds
for any r > 0, and we obtain from (1.10.6) and (1.10.7) that

E(I∗T )r ≤ (4
√

2Cpp
−1G1

p(0, T, f))r + r2r(C(H, p)G1
p(0, T, f))rC1(r)

+ r2r(Cpp
−1G1

p(0, T, f))r−1 · C1(1) · C(H, p)G1
p(0, T, f)

≤ (C(H, p, r))r(G1
p(0, T, f))r.

From here ‖I∗T ‖r ≤ C(H, p, r)G1
p(0, T, f), where C(H, p, r) ≤ 4

√
2Cp · p−1 +

2C(H, p) · 21/2−1/r

π1/2 r · (Γ ( r+1
2 ))1/r + r1/r2 · C

r−1
r

p · p− r−1
r (C1(1)C(H, p))1/r.

Evidently, C(H, p, r) can be estimated as C(H, p, r) ≤ C(H, p)(Γ ( r+1
2 ))1/r for

some constant C(H, p) depending only on H and p.

We continue now with random intervals. Let F = {Ft, t ≥ 0} be the nat-
ural filtration generated by the fBm BH and let τ be any stopping time with
respect to this filtration, i.e., the event {τ ≤ t} ∈ Ft for any t ≥ 0.

(v) Upper bound on random interval, H ∈ (1
2 , 1). Let f be a measurable

positive function on R, α = H − 1
2 .

Theorem 1.10.8. Let the function sαf(s) be nondecreasing on R. Then, for
any p > 0, there exists a constant C(H, p) such that for any stopping time τ
we have that

‖I∗τ ‖p ≤ C(H, p)(E((f(τ))
pH
2α τpH))

2α
pH (E(τpH))

1−H
pH .

Remark 1.10.9. For a bounded positive function f with f(x) ≤ f∗ < ∞,
x ∈ R, we obtain that

‖I∗τ ‖p ≤ C(p,H)f∗(EτpH)1/p.

In particular, for f(s) ≡ 1, we obtain the upper bound from (NV98, The-
orem 1.2).
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Proof. Denote Yt =
∫ t

0
s−αdBH

s . Then BH
t =

∫ t

0
sαdYs and It =

∫ t

0
sαf(s)dYs.

Integration by parts gives the following upper bound for I∗t :

I∗t = sup
0≤s≤t

|Is| = sup
0≤s≤t

∣∣∣∣tαf(t)Yt −
∫ t

0

Ysd(sαf(s))
∣∣∣∣ ≤ 2f(t)tαY ∗

t .

Now we use the representation (1.8.16) for Yt,

Yt = ĈH

∫ t

0

(t− s)αdMH
s = αĈH

∫ t

0

(t− s)α−1MH
s ds, (1.10.8)

whence Y ∗
t ≤ ĈHtα(MH

t )∗. Here ĈH = C
(6)
H α̂, α̂ = (1− α)−1/2.

From these two estimates, we obtain for any t > 0 that
I∗t ≤ 2ĈHt2αf(t)(MH

t )∗, and for the random stopping time τ it holds that

I∗τ ≤ 2ĈHτ2αf(τ)(MH
τ )∗.

Therefore, for any p > 0

E(I∗τ )p ≤ (2ĈH)pE(τ2αp(f(τ))p((MH
τ )∗)p). (1.10.9)

From the Hölder inequality it follows that

E(τ2αp(f(τ))p((MH
τ )∗)p) ≤ (E(τ2αpq(f(τ))pq)

1
q (E((MH

τ )∗)pr)
1
r , (1.10.10)

where q = H
2α > 1 and r = H

1−H .
From the Burkholder–Davis–Gundy inequalities for martingales, it follows

that for any p > 0 there exist constants cp, Cp > 0, such that

cpE〈MH〉
p
2
τ ≤ E((MH

τ )∗)p ≤ CpE〈MH〉
p
2
τ .

But 〈MH〉t = t1−2α, and

E((MH
τ )∗)p ≤ CpEτp(1−H).

Therefore,
E((MH

τ )∗)pr ≤ CprEτpH , (1.10.11)

and the proof follows from (1.10.8)–(1.10.11) with

C(H, p) = (2ĈH)pC
1
p
pr, r =

H

1−H
.

	

(vi) Lower bound on random interval, H ∈ (1

2 , 1). Let f be, as before, a pos-
itive measurable function, T > 0 be fixed, g(t) = 1

f(t) and g∗T = sup0≤s≤T g(s).
In order to proceed, we need the following auxiliary result from (NV98). De-
note ξt := t2α|MH

t |.
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Lemma 1.10.10. For any p > 0 there exists a constant cp > 0, such that for
any stopping time τ , it holds that

E(ξ∗τ )p ≥ cpEτpH . (1.10.12)

Proof. Let p = 2. From the Itô formula we obtain that ξ2
t =

∫ t

0
(s2α +

4αs4α−1(MH
s )2)ds + 2

∫ t

0
s4αMH

s dMH
s .

Therefore, for any bounded stopping time τ , it holds that

Eξ2
τ ≥ E

∫ τ

0

s2αds = (2H)−1Eτ2H . (1.10.13)

For arbitrary stopping time τ , we obtain by applying (1.10.13) to bounded
stopping time τ ∧ n, that

Eξ2
τ∧n ≥ (2H)−1E(τ ∧ n)2H ,

and the Fatou lemma gives (1.10.12) with p = 2. Let p < 2. Inequality
(1.10.12) with p = 2 means that continuous and hence predictable process
(ξ∗t )2 dominates the (nonrandom) process ϕ(t) = t2H . Then, from the Lenglart
inequality, for p < 2, we obtain that

E(ξ∗τ )p ≥ cpEτpH

with cp = (2H)−p(4−p)
2−p (DM82, VI, p. 113).

Finally, let p > 2. Set k > 0, δ > 0 and define a process with positive
values by

ηt = δ + kt2H + ξ2
t .

Then, from the Itô formula, for p > 2, we obtain that

η
p
2
t = δ

p
2 +
∫ t

0

(p

2
η

p
2−1
s ((1 + 2kH)s2α + 4αs2H−3(MH

s )2)

+
1
2
p(p− 2)η

p
2−2
s s6α(MH

s )2
)
ds +

∫ t

0

pη
p
2−1s4αMH

s dMH
s .

Therefore, for any bounded stopping time τ

Eη
p
2
τ ≥ p

2
E

∫ τ

0

η
p
2−1
s (1 + 2kH)s2αds

≥ p

2
E

∫ τ

0

k
p
2−1s2H( p

2−1)s2αds · (1 + 2kH)

≥ k
p
2−1

2H
(1 + 2kH)EτpH .

(1.10.14)

From the Fatou lemma, applied, for any stopping time τ , to τ ∧ n, we
obtain (1.10.14) for τ ∧ n and for δ = 0.
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So,

E(kτ2H + ξ2
τ )

p
2 ≥ k

p
2−1(1 + 2kH)

2H
EτpH .

From the inequality

(kτ2H + ξ2
τ )

p
2 ≤ 2

p
2−1(k

p
2 τpH + ξp

τ ),

we obtain that

Eξp
τ ≥
(
21− p

2
k

p
2−1(1 + 2kH)

2H
− k

p
2

)
EτpH .

This means that (1.10.12) holds with

cp = k
p
2

(
21− p

2
( 1

k + 2H)
2H

− 1
)

> 0

for k < 1

H(2
p
2 −2)

. 	


Now we are in a position to establish the lower bound on a random interval
for H ∈ ( 1

2 , 1).

Theorem 1.10.11. Let, for any t ∈ [0, T ], the function
ϕ(s) := s−α(t−s)−αg(s) be nondecreasing on [0, t]. Then, for any p > 0, there
exists a constant c(H, p) > 0, such that for any stopping time τ ≤ T it holds
that

‖I∗τ ‖p ≥ c(H, p)(g∗T )−1(EτpH)1/p.

Remark 1.10.12. Either of the following conditions (a) and (b) is sufficient for
Theorem 1.10.11:

(a) g ∈ C1[0, T ] and for any s ∈ (0, T ), it holds that g′(s) ≥ g(s)(α
s − α

T−s ).
(b) The function g(s)s−α is nondecreasing on [0, T ] (or the function f(s)sα is

nonincreasing on [0, T]; compare with the condition of Theorem 1.10.8).

Remark 1.10.13. The class of functions satisfying the condition of Theo-
rem 1.10.11 is nonempty. For example, f(s) = s−γe−βs with γ ≥ α and
β ≥ 0 belongs to this class. (In this case assumption (b) is satisfied.)

Proof. Let 0 < a < b < 1. Then the martingale MH
t can be represented as

MH
t =

∫ at

0

lH(t, s)dBH
s +

∫ bt

at

lH(t, s)dBH
s +

∫ t

bt

lH(t, s)dBH
s

:= MH
t (a) +

∫ bt

at

lH(t, s)g(s)dIs + MH
t (1− b). (1.10.15)

The middle term can be integrated by parts, and we obtain from the
condition of the theorem that



50 1 Wiener Integration with Respect to Fractional Brownian Motion∣∣∣∣∣
∫ bt

at

lH(t, s)g(s)dIs

∣∣∣∣∣
=

∣∣∣∣∣lH(t, bt)g(bt)Ibt − lH(t, at)g(at)Iat −
∫ bt

at

Isd(lH(t, s)g(s))

∣∣∣∣∣
≤ C

(5)
H I∗t g∗t t−2α

(
(1− b)−αb−α + (1− a)−αa−α

)
.

(1.10.16)

Therefore, the process ξt = t2α|MH
t | can be estimated as ξt ≤ t2α|MH

t (a)+
MH

t (1 − b)| + CHI∗t g∗t , where CH = 2C(5)
H (((1 − b)−α)b−α + (1 − a)−αa−α).

Now we use Lemma 1.10.10 and obtain

CpEτpH ≤ E(ξτ )p

≤ 2p−1Eτ2pα|MH
τ (a) + MH

τ (1− b)|p + 2p−1Cp−1
H E(I∗τ )p(g∗τ )p. (1.10.17)

Further, from (1.10.8) we have that

|MH
t (a)| ≤ C

(5)
H |(t(1− a))−αYat −

∫ at

0

Ysd(t− s)−α|

≤ C
(5)
H Y ∗

at · 2(t(1− a))−α ≤ 2C
(5)
H ĈH

aα

(1− a)α
(MH

at )
∗.

Hence
|MH

τ (a)| ≤ CH
aα

(1− a)α
(MH

τ )∗, (1.10.18)

where CH = 2C(5)
H ĈH .

In order to estimate MH
t (1− b), note at first that for fixed t, the process

B̃H
s := BH

t − BH
t−s, 0 ≤ s ≤ t, is a fractional Brownian motion with Hurst

index H. Therefore,

MH
t (1− b) = C

(5)
H

∫ t

tb

(t− s)−αs−αdBH
s = C

(5)
H

∫ t(1−b)

0

u−α(t− u)−αdB̃H
u ,

and similarly as in the above estimates (1.10.15), we obtain that

|MH
τ (1− b)| ≤ CH

(
1− b

b

)α

(M̃H
τ )∗, (1.10.19)

where M̃H is the Molchan martingale for B̃H . But the symmetry of the kernel
lH(t, s) leads to the equality M̃H

t =
∫ t

0
lH(t, s)dBH

t−s =
∫ t

0
lH(t, s)dBH

s = MH
t .

Hence,

|MH
τ (1− b)| ≤ CH(

1− b

b
)α(MH

τ )∗. (1.10.20)

From (1.10.7), (1.10.18), (1.10.20), (1.10.10) and (1.10.11) with f ≡ 1 we
obtain that
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2p−1Cp−1
H E(I∗τ )p · (g∗τ )p

≥ CpEτpH − 2p−1CHEτ2pα · (M∗
τ )p
( aα

(1− a)α
+

(1− b)α

bα

)
EτpH · cp.

By choosing a sufficiently small and b close to 1, we obtain that

E(I∗τ )p ≥ (g∗T )−pEτpH · Cp,H ,

where

Cp,H = 21−pC1−p
H

[
Cp − 2p−1CHcp

(
aα

(1− a)α
+

(1− b)α

b

)]
> 0. 	


(vii) Upper and lower bounds for power functions and H ∈ (1
2 , 1).

The function f(s) ≡ 1 does not satisfy the condition of Theorem 1.10.11.
To cover this case, we consider the power functions f(s) = sγ , γ > −2α, and
obtain a better result than in Theorems 1.10.11 and 1.10.6:

Theorem 1.10.14. Let f(s) = sγ with γ > −2α. Then, for any p > 0, there
exist constants cp,H and Cp,H , such that for any stopping time τ it holds that

cp,H(Eτp(H+γ))1/p ≤ ‖I∗τ ‖p ≤ Cp,H(Eτp(H+γ))1/p.

Proof. Consider the upper bound. Now inequality (1.10.4) has the form

E(I∗τ )p ≤ (2C
(6)
H )pE(τ (2α+γ)pM∗

τ )p.

By applying Hölder’s inequality with q = 1+2α+2γ
4α+2γ > 1 and r = 1+2α+2γ

1−2α =
H+γ
1−H , and the Burkholder–Davis–Gundy inequalities, we obtain that

E(I∗τ )p ≤ (2C
(6)
H )p(Eτ

1+2α+2γ
2 p)

1
q (E(M∗

τ )pr)
1
r

≤ (2C
(6)
H )pCp,H(Eτ (H+γ)p)

1
q (Eτ (H+γ)p)

1
r = Cp,HEτ (H+γ)p.

Consider the lower bound. We use expansion (1.10.15) and estimate its
middle term similarly to the first part of (1.10.16) with g(s) = s−γ :∣∣∣∣∣

∫ bt

at

lH(t, s)g(s)dIs

∣∣∣∣∣
= |lH(t, bt)g(bt)Ibt|+ |lH(t, at)g(at)Iat|+

∣∣∣∣∣
∫ bt

at

Isd(PH(t, s)g(s))

∣∣∣∣∣
≤ C

(5)
H b−γ−α(1− b)−αt−2α−γI∗t + C

(5)
H a−γ−α(1− a)−αI∗t · t−2α−γ

+ C
(5)
H I∗t

∫ bt

at

|d((t− s)−αs−α−γ)|.
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The function ϕ(s) := (t− s)−αs−α−γ has the following derivative on (at, bt) :

ϕ′(s) = s−α−γ−1(t− s)−α−1((γ + 2α)s− (γ + α)t).

For γ > −α, on the interval [0, t], the function ϕ(s) has an extremal point
smax = ρt, where ρ = γ+α

γ+2α , and for −2α < γ < −α, no extremal point exists.
Therefore, the variation of ϕ(s) on the interval [at, bt] can be estimated as∫ bt

at

|d((t− s)−αs−α−γ)|

≤ t−2α−γ
(
b−γ−α(1− b)−α + 2|ρ|−γ−α(1− ρ)−α + a−γ−α(1− a)−α

)
.

From here, ∣∣∣∣∣
∫ bt

at

lH(t, s)s−γdIs

∣∣∣∣∣ ≤ C(a, b,H, γ)t−2α−γI∗t ,

where

C(a, b,H, γ) = 2C(5)
H

(
b−γ−α(1− b)−α + a−γ−α(1− a)−α + |ρ|−γ−α(1− ρ)−α

)
.

Therefore, for the process ξ̃t := t2α+γ |MH
t |, we have that

ξ̃t ≤ t2α+γ |MH
t (a) + MH

t (1− b)|+ C(a, b,H, γ)I∗t ,

whence for any stopping time τ and p > 0, it holds that

E(ξ̃τ )p ≤ (C(a, b,H, γ))pE(I∗τ )p+E(τ2α+γ |MH
τ (a)+MH

τ (1−b)|)p. (1.10.21)

Similarly to Lemma 1.10.10, we can establish the following bound for ξ̃τ :

E(ξ̃τ )p ≥ cpEτp(H+γ).

Further, we apply (1.10.11), the bounds (1.10.15) and (1.10.17), and
Hölder’s inequality with q = 1+2α+2γ

4α+2γ > 1 and r = 1+2α+2γ
1−2α > 1, where

1
q + 1

r = 1, and obtain the bounds of the pth moment of τ2α+γMH
τ (a) and

τ2α+γMH
τ (1− b):

E(τ2α+γMH
τ (a))p ≤ (CH)p aαp

(1− a)αp
E((τ)2α+γ(MH

τ )∗)p

≤ C̃H(Eτ (2α+γ)pq)
1
q (E((MH

τ )∗)pr)
1
r ≤ C̃HEτp(H+γ),

(1.10.22)

where C̃H = (CH)p
(

α
1−α

)αp

. Similarly,

E(τ2α+γMH
τ (1− b))p ≤ ĈHEτp(H+γ), (1.10.23)
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ĈH = (CH)p

(
1− b

b

)αp

.

From (1.10.21)–(1.10.23)

E(I∗τ )p ≥ cp,HEτp(H+γ),

where

cp,H =

⎛⎝cp − (CH)p
((

a
1−a

)αp +
(

1−b
b

)αp
)

(C(a, b,H, γ))p

⎞⎠
1
p

> 0

for sufficiently small a and 1− b. 	

(viii) Lower bound on random interval, H ∈ (0, 1

2 ).
Here, we consider only power functions f(s) = sγ , s > 0. According to

(1.8.6), the integral
∫ t

0
sγdBH

s exists, if∫ t

0

∫ t

0

uγsγ
(∫ 0

−∞
(u− x)α−1(s− x)α−1dx

)
du ds <∞

and ∫ t

0

∫ t

0

uγ−1sγ−1
(∫ s∧u

0

(u− x)α(s− x)αdx
)
du ds <∞.

If we choose γ > −H, then both of these inequalities hold.

Theorem 1.10.15. Let H ∈ (0, 1
2 ) and f(s) = sγ with γ ∈ (−H,−α). Then,

for any p > 0, there exists a constant c(H, p) such that

‖I∗t ‖p ≥ c(H, p)(Eτp(H+γ))1/p.

Proof. We estimate the Molchan martingale from above:

(MH
t )∗ = C

(5)
H

(∫ t

0

s−α−γ(t− s)−αdIs

)∗
≤ C

(5)
H I∗t

∫ t

0

|d(s−α−γ(t− s)−α)|.

The last integral exists when −α − γ > −1 or γ < 1 − α. As before, the
derivative of the function ϕ(s) = s−α−γ(t− s)−α, s ∈ (0, t), equals

ϕ′(s) = s−α−γ−1(t− s)−α−1
(
(γ + 2α)s− (γ + α)t

)
.

So, for γ ∈ (−H,−α), the function ϕ(s) has the unique extremal point
s = γ+α

γ+2α t, and
∫ t

0
|d(s−α−γ(t− s)−α)| ≤ Cαt−2α−γ , where

Cα :=
(

α

γ + 2α

)−α(
γ + α

γ + 2α

)−α−γ

.

Hence, for any stopping time τ and any p̃ > 0 it holds that
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((MH
τ )∗)p̃ ≤ (C(5)

H Cα)p̃(I∗τ )p̃τ (−2α−γ)p̃.

Further, from the Burkholder–Davis–Gundy inequalities we obtain that

E(M∗
τ )p̃ ≥ C̃p̃Eτ p̃(1−H).

Hence,
C̃p̃Eτ p̃(1−H) ≤ C̃(H, p̃)(E(I∗τ )p̃q)

1
q · (Eτ (−2α−γ)p̃r)

1
r ,

where C̃(H, p̃) = (C(5)
H Cα)p̃.

Now, we choose r = 1−H
1−2H−γ > 1, q = 1−H

H+γ > 1 and p̃ = p(H+γ)
1−H , and

obtain for

c(H, p) =
( C̃p̃

C̃(H, p̃)

)q

that c(H, p)Eτp(H+γ) ≤ E(I∗τ )p. 	


1.11 The Conditions of Continuity of Wiener Integrals
with Respect to fBm

Consider the case H ∈ (1
2 , 1). Let f ∈ L 1

H
[0, t], t ∈ [0, T ]. Then in particular,

the integral It(f) =
∫ t

0
f(s)dBH

s exists on [0, T ] and E(It(f))2 = ||f ||2
LH

2 [0,t]
≤

CH ||f ||2L 1
H

[0,t]. According to (Lif95), a sufficient condition for the continuity

of separable modification of It(f) on [0, T ] is the finiteness of the Dudley
integral

∫ ε

0
H([0, T ], u)

1
2 du. But in our case, from (1.10.3) with ε instead of

σ
2 , it follows that

∫ ε

0

H([0, T ], u)
1
2 du ≤

∫ ε

0

(
log
(
1 + u− 1

H C̃H

∫ T

0

|f(u)| 1H du
)) 1

2

du

≤
∫ ε

0

u− 1
2H du ·

(
C̃H

∫ t

0

|f(u)| 1H du
) 1

2
<∞

for H ∈ (1
2 , 1).

This means that the separable modification of the Wiener integral w.r.t.
fBm with H ∈ ( 1

2 , 1) is continuous if f ∈ L 1
H

[0, T ].
Now, let H ∈ (0, 1/2). Then, according to (1.10.7) with ε instead of σ

2 ,we
have that

∫ ε

0
H([0, T ], u)1/2du is finite for any f ∈ Lp[0, T ]∩DH

p [0, T ], p > 1
H .

So, for such f , a separable modification of It(f) is continuous on [0, T ].
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1.12 The Estimates of Moments of the Solution of
Simple Stochastic Differential Equations Involving fBm

(i) Let H ∈ ( 1
2 , 1) and Ft = σ

{
BH

s , 0 ≤ s ≤ t
}
.

Consider a stochastic differential equation of the form

dXt = b(t,Xt)dt + f(t)dBH
t , t ≥ 0. (1.12.1)

Here, X0 is F0-measurable random variable, E|X0|p0 < ∞ for some p0 > 1
and b(t, x) : R+ × R −→ R is a measurable Lipschitz function, i.e.

|a(t, x)− a(t, y)| ≤ C|x− y| (1.12.2)

with some constant C. Furthermore, b is of linear growth, meaning that

|b(t, x)| ≤ C(1 + |x|) (1.12.3)

and
f ∈ L 1

H
[0, T ]. (1.12.4)

Theorem 1.12.1. Let b satisfy (1.12.2), (1.12.3) and f satisfy (1.12.4). Then
equation (1.12.1) has a unique solution.

Proof. We establish now that for any p ≤ p0 the map

(AX)t := X0 +
∫ t

0

b(s,Xs)ds + It(f)

is a contraction in the space

Sp :=
{

ξ(t, ω), t ∈ [0, Tp]
∣∣∣ ξ(t, ·) is Ft-measurable, sup

t∈[0,Tp]

E|ξt|p <∞
}

,

with the norm
‖ξ‖Sp

:= sup
t∈[0,Tp]

(E|ξt|p) 1
p ,

where Tp is a number such that Tp < C−1.
Indeed, from (1.12.2)–(1.12.4) it follows that

E|(AX)t|p ≤ 3p

(
E|X0|p + E|It(f)|p + 2ptp−1C

(
1 +
∫ t

0

E|Xs|pds
))

.

This means that AX ∈ Sp if X ∈ Sp. Further, for t ≤ Tp

E|(AX)t − (AY )t|p ≤ E|
∫ t

0

(b(s,Xs)− b(s, Ys)ds|p

≤ CpE
(∫ t

0

|Xs − Ys|ds
)p

≤ CpT p−1
p E

∫ t

0

|Xs − Ys|pds,



56 1 Wiener Integration with Respect to Fractional Brownian Motion

i.e., ‖AX −AY ‖Sp
≤ L ‖X − Y ‖Sp

, where L = CpT p
p < 1. Therefore, on the

interval [0, Tp] equation (1.12.1) has unique solution. If we obtain this solution
Xt by the method of successive approximations, and the initial process is some
continuous process X

(0)
s ∈ Sp, then by the continuity of the process I(b) and

the equicontinuity of the integral
∫ t

0
b(s, ·)ds, the solution Xt is continuous on

[0, Tp]. The proof of the theorem is obtained by extension of the solution from
[0, kTp] to [0, (k + 1)Tp] via the relation

Xt = XkTp
+
∫ t

kTp

b(s,Xs)ds + (It − IkTp
), (1.12.5)

where k ∈ N and XkTp
is the solution of the “previous” equation taken at the

point t = kTp. Existence, uniqueness and continuity of the solution of (1.12.5)
is established similarly to previous estimates. 	


Now we establish the upper bound for the solution of equation (1.12.1) on
a random interval.

Theorem 1.12.2. Let the functions b and f satisfy the conditions of Theorem
1.12.1, E|X0|p < ∞ for any p > 0 and the function sαf(s) be nondecreasing
on R. Then,

(a) for any T > 0, p > 0 and stopping time τ ∈ [0, T ], we have the estimate

E(X∗
τ )p ≤ 4pe4pCpT p−1

(E|X0|p + CpEτp

+ (C(H, p))p(E((f(τ))
pH
2α τpH))

2α
H (EτpH)

1−H
H ),

where a constant C(H, p) appeared in Theorem 1.10.8.
(b) If, in addition, the function f is bounded, i.e. |f(x)| ≤ f∗ <∞, then

E(X∗
τ )p ≤ 4pe4pCpT p−1

(
E|X0|p + CpEτp + (C(H, p))p(b∗)pEτpH

)
.

Proof. Let τ ∈ [0, T ] and τn = τ ∧ inf {t > 0 : |Xt| ≥ n}. Then

(X∗
τn

)p ≤ (|X0|+ Cτn + C

∫ τn

0

X∗
s ds + I∗τn

(f))p

≤ 4p(|X0|p + Cpτp
n + Cp

∫ τn

0

(X∗
s )pds · τp−1

n + (I∗τn
(f))p).

Therefore, by Gronwall’s inequality, we obtain that

(X∗
τn

)p ≤ 4pe4pCpτp−1
n (|X0|p + Cpτp

n + (Iτ∗
n
(f))p).

Hence,

E(X∗
τn

)p ≤ 4pe4pCpT p−1
(E|X0|p + CpEτp

n + E(I∗τn
(f))p).

By applying Theorem 1.10.6, we obtain (a) and (b) for τ = τn, n ≥ 1. By
taking n→∞, we obtain the proof. 	
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Remark 1.12.3. Exponential estimates for the solution of the more simple
version of equation (1.12.1), were obtained in (TV03). We shall return to this
problem in Section 3.5.

1.13 Stochastic Fubini Theorem for the Wiener Integrals
w.r.t fBm

We consider now only the case H ∈ (1/2, 1). Let PT = [0, T ]2.

Theorem 1.13.1. Let the measurable function f = f(t, s) : PT → R satisfy
the conditions∫

[0,T ]3
| f(t, u) | |f(t, s)| |s− u|2α−1

ds du dt <∞ (1.13.1)

and ∫
[0,T ]4

|f(t1, u)| |f(t2, s)| |s− u|2α−1
ds du dt1 dt2 <∞. (1.13.2)

Then both the repeated integrals I1 :=
∫ T

0
(
∫ T

0
f(t, s)dt)dBH

s and
I2 :=

∫ T

0
(
∫ T

0
f(t, s)dBH

s )dt exist and I1 = I2 with probability 1.

Proof. The existence of the integral I1 is evident, due to (1.13.2). As to I2,∫ T

0
f(t, s)dBH

s exists a.e. (mod λ), where λ is the Lebesgue measure, and
according to (1.13.1), it holds that

E

∫ T

0

∣∣∣∣∣
∫ T

0

f(t, s)dBH
s

∣∣∣∣∣ dt ≤ T 1/2
(
E

∫ T

0

∣∣∣∣∣
∫ T

0

f(t, s)dBH
s

∣∣∣∣∣
2

dt
)1/2

≤
(
T2αH

∫
[0,T ]3

|f(t, s)||f(t, u)||s− u|2α−1du ds dt
)1/2

<∞.

We consider at first only the measurable and bounded functions. Let
f∗ := sup(t,s)∈[0,T ]2 |f(t, s)| < ∞. Then there exists the sequence of simple
and totally bounded functions fn = fn(t, s), such that fn → f uniformly
on PT . The statement of the theorem is evident for fn. Further, denote
gn(t, s) := f(t, s)− fn(t, s) and obtain the estimate

|I1 − I2| ≤
∣∣∣∣∣
∫ T

0

(∫ T

0

gn(t, s)dt
)
dBH

s

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

(∫ T

0

gn(t, s)dBH
s

)
dt

∣∣∣∣∣
=: I1n + I2n.

Furthermore,
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E|I1n|2 = 2αH

∫
PT

(∫ T

0

gn(t1, s)dt1

)(∫ T

0

gn(t2, u)dt2

)
|s− u|2α−1ds du

≤ 2αHT 2 sup
(t,s)∈[0,T ]2

|gn(t, s)|2
∫
PT

|s− u|2α−1ds du

= T 2H+2 sup
(t,s)∈PT

|gn(t, s)|2 → 0,

and

E|I2n|2 ≤ T

∫ T

0

E
∣∣∣ ∫ T

0

gn(t, s)dBH
s

∣∣∣2dt ≤ sup
(t,s)∈PT

|gn(t, s)|2T 2H+2 → 0,

as n→∞, and we obtain the proof for bounded f . Now, let f satisfy (1.13.1)
and (1.13.2). For fn(t, s) := f(t, s)1{|f(t,s)|≤n}, n ≥ 1 the theorem is already
proved. Define

Cn := {(t, s, u) ∈ [0, T ]3 | |f(t, s)| ≥ n, |f(t, u)| ≥ n}, fn = f − fn.

Then for any n ≥ 1 we have that

|I1 − I2| ≤
∣∣∣∣∣
∫ T

0

(∫ T

0

f(t, s)1{|f(t,s)|>n}dt
)
dBH

s

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(∫ T

0

f(t, s)1{|f(t,s)|>n}dBH
s

)
dt

∣∣∣∣∣ =: I ′1n + I ′2n.

Furthermore, we have that

E|I ′1n|2 = 2αH

∫
[0,T ]2

(∫ T

0

fn(t1, s)dt1

)(∫ T

0

fn(t2, s)dt2

)
|s− u|2α−1ds du

≤ 2αH

∫
[0,T ]4

|fn(t1, s)||fn(t2, s)||s− u|2α−1ds du dt1 dt2 → 0,

as n→∞, according to (1.13.2), and

E|I ′2n|2 ≤ T2αH

∫
[0,T ]3

|fn(t, s)||fn(t, u)||s− u|2α−1ds du dt→ 0,

as n→∞, according to (1.13.1). 	


1.14 Martingale Transforms and Girsanov Theorem
for Long-memory Gaussian Processes

According to Section 1.8, the process
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MH
t := C

(5)
H

∫ t

0

s−α(t− s)−αdBH
s

is a square integrable martingale, and Bt := α̂
∫ t

0
sαdMH

s is a Wiener process.
In turn, BH

t = C
(6)
H

∫ t

0
mH(t, s)dBs. Moreover, the process

Yt = C
(6)
H

∫ t

0

(t− s)αs−αdBs (1.14.1)

has the property that MH
t = C

(5)
H

∫ t

0
(t− s)−αdYs is square-integrable martin-

gale. All these processes are Gaussian. Therefore, in some sense, it is more con-
venient to consider the processes of a form similar to Yt and Mt, and to avoid
fractional Brownian motion itself. In this section we consider long-memory
Gaussian processes that can be presented as integrals Vt =

∫ t

0
h(t−s)ϕ(s)dWs

with some Wiener process Wt and establish the conditions allowing us to
transform these processes, similarly to Yt, into square-integrable martingales.

Let {Wt,FW
t , t ≥ 0} be the standard Wiener process on a complete

probability space (Ω,F , P ) with F = F∞ :=
∨

t≥0 FW
t . Define the con-

volution of two measurable integrable functions ϕ1 and ϕ2 : R+ → R by
(ϕ1 ∗ϕ2)(t) =

∫ t

0
ϕ1(t−s)ϕ2(s)ds, t ∈ R+. Let h and ϕ satisfy the assumption

ϕ ∈ L2(0, t), (h2 ∗ ϕ2)t <∞, t > 0. (1.14.2)

Define the Gaussian process Vt =
∫ t

0
h(t − s)ϕ(s)dWs. Evidently, EVt = 0.

In the case when h(s) = sα, ϕ(s) = s−α and H ∈ (1/2, 1), the covariance
function between distant increments of the process Vt vanishes at a power
rate. More precisely,

EVt(Vt+k−Vk) =
∫ t

0

(t− s)α((t + k − s)α − (k − s)α)s−2αds

≥ αt

∫ t

0

(t− s)α(t + k − s)α−1s−2αds

≥ αt2−αB(α + 1, α)kα−1,

and the series
∑∞

k=1 kα−1 diverges for H ∈ (1/2, 1). Due to this reason, ac-
cording to the generally accepted terminology (CCM03; Ber94; WTT99), such
processes are said to have a long memory. Compare this to the notion of long-
range dependence from Section 1.2.

Denote by Ruv = E VuVv the correlation function. Then we have that

Ruv =
∫ u∧v

0

h(u− s)h(v − s)ϕ2(s)ds.

Let FX
t = σ{Xs, 0 ≤ s ≤ t} and HX

t = H{Xs, 0 ≤ s ≤ t} be, cor-
respondingly, σ-fields and Gaussian subspaces, generated by the process X
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on the interval (0, t], X = W,V . It follows from (CCM03, Proposition 15)
that FV

t = FW
t , t ∈ R+ if and only if HV

t = HW
t . A necessary and sufficient

condition for this coincidence can be formulated as

the only function f such that ∀t ∈ R+

f ∈ L2(0, t) and ((f · ϕ) ∗ h)t = 0 is the zero function.
(1.14.3)

Evidently, in this case FV
∞ = FW

∞ . We give one sufficient condition for the
latter relation. Denote by

Ff (λ) :=
∫ ∞

0

e−λsf(s)ds, λ > 0

the Laplace transform of f . The following result is a direct consequence of
(CCM03, Proposition 17).

Lemma 1.14.1. Let the following condition hold

0 < |Fh(λ)| <∞, F|ϕ|(λ) <∞, Fϕ(λ) �= 0 (1.14.4)

on some interval λ ∈ (a, b) ⊂ (0,∞). Then FV
∞ = FW

∞ .

Now, let (1.14.3) hold. Denote by L2(V ) = L2(W ) = L2(Ω,F∞, P ) the
space of F∞-measurable ξ with Eξ2 < ∞. Let H(V ) be the closed subspace
of L2(V ) consisting of linear functionals of V . Suppose that the function
R : R2

+ → R has a bounded variation |R|t := varPt
R on any rectangle Pt,

t ∈ R2
+, and consider the measurable function g : R+ → R such that∫

P(s,t)

|g(s− u)| |g(t− v)| d |R|uv <∞, s, t ∈ R+. (1.14.5)

As stated by (HC78), we have an isomorphism I between Λ2(R) and H(V ).
Here Λ2(R) is the completion of the space Λ of step functions
f(t) =

∑N
k=1 αk1[tk+1,tk)(t) in the norm generated by a scalar product

〈f, g〉 =
∫

R

f(u) g(v) dRuv, I(f) =
N∑

k=1

αk(Vtk+1 − Vtk
).

Denote by I(f) =
∫

R
f dV ∈ H(V ) the image of f ∈ Λ2(R) and let

Mt :=
∫ t

0

g(t− u) dVu := I(g̃),

where g̃(s) = g(t − s)1{s≤t}, t ≥ 0. Then {Mt,FW
t , t ≥ 0} is a Gaussian

process and

EMsMt =
∫
P(s,t)

g(s− u) g(t− v) dRuv.
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Moreover, under the condition:

the double Riemann integral
∫
P(s,t)

g(s−u) g(t−v) dRuv exists, (1.14.6)

the process Mt can be considered for any t ≥ 0 as a limit of Riemann sums
in the mean-square sense. Note that the following condition is sufficient for
(1.14.6): the derivative h′(s), s > 0, exists, h(0) = 0, and Ruv admits a
representation

Ruv =
∫
P(u,v)

[∫ u1∧v1

0

h′(u1 − z)h′(v1 − z)ϕ2(z) dz

]
du1 dv1 (1.14.7)

and∫
P(s,t)

|g(s− u)| |g(t− v)|
[∫ u∧v

0

∣∣∣h′(u− z)h′(v − z)
∣∣∣ϕ2(z) dz

]
du dv <∞.

Now we are in a position to study conditions on ϕ, h and g supplying
martingale properties of Mt.

Definition 1.14.2. Gaussian process V is called (g)-transformable if the
process

Mt :=
∫ t

0

g(t− s) dVs

is a martingale.

Remark 1.14.3. Since Mt is a Gaussian process, it is a square-integrable mar-
tingale if V is (g)-transformable.

Denote U = {f : R+ → R
∣∣∣ (f ∗ q)t = 0, t ∈ R+, for such q : R+ → R

that (|f | ∗ |q|)t <∞, t ≥ 0, if and only if q = 0},
AC[0, t] = {f : R+ → R

∣∣∣ f(s) =
∫ s

0
f ′(u) du; 0 ≤ s ≤ t with

∫ t

0
|f ′(u)| du <

∞}. Theorems 1.14.4 and 1.14.5 contain two groups of sufficient conditions
on the functions ϕ, h, g ensuring (g)-transformability of Vt (statements 1)
and 3)). Statements 2) and 4) demonstrate that these conditions are, in some
sense, necessary.

Theorem 1.14.4. 1) Let ϕ, h, g satisfy conditions (1.14.2), (1.14.3),
(1.14.7) and

(|g| ∗ |h′|)t <∞, t > 0, (1.14.8)
(g ∗ h′)t = C0, t > 0 for some C0 ∈ R. (1.14.9)

Then Vt is (g)-transformable and 〈M〉t = C2
0

∫ t

0
ϕ2(s) ds.
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2) Let ϕ, h, g satisfy conditions (1.14.2), (1.14.3), (1.14.7) and (1.14.8),
h ∈ U , ϕ �= 0 (mod λ) (λ is the Lebesgue measure), (g ∗ h′)t ∈ C(0,∞),
Vt be (g)-transformable.
Then (g ∗ h′)t = C0, t > 0, for some C0 ∈ R.

Theorem 1.14.5. 3) Let ϕ and h satisfy (1.14.2) and (1.14.3), ϕ �= 0
(mod λ), g satisfies (1.14.6) and

g ∈ AC[0, t], t ≥ 0, g(0) = 0, (1.14.10)

(|g′| ∗ (h2 ∗ ϕ2)1/2)t <∞, t > 0, (1.14.11)
(g′ ∗ h)t = C0, t > 0 for some C0 ∈ R. (1.14.12)

Then Vt is (g)-transformable and 〈M〉t = C2
0

∫ t

0
ϕ2(s) ds.

4) Let ϕ and h satisfy (1.14.2), (1.14.3), ϕ �= 0 a.e. (modλ), the process Vt is
(g)-transformable with g satisfying (1.14.10), (1.14.11), (g′∗h)t ∈ C(0,∞).
Then (g′ ∗ h)t = C0, t > 0, for some C0 ∈ R.

Remark 1.14.6. Conditions (1.14.9) and (1.14.12) mean, in particular, that
corresponding convolutions have jumps at zero, so at least one of the functions
involved is singular at 0.
Remark 1.14.7. Let h(s) = sα, ϕ(s) = s−α, g(s) = s−α. Then statement 1)
holds for H ∈ (1/2, 1) and statement 3) holds for H ∈ (0, 1/2).

Proof of Theorem 1.14.4. 1) It follows from (1.14.7) that

ft(z) :=
∫ t

0

g(t− v)
[ ∫ z∧v

0

h′(v − r)h′(z − r)ϕ2(r) dr
]
dv, 0 ≤ z ≤ t

is defined for a.a. z ≤ t for any t ∈ R+ fixed. Condition (1.14.7) ensures the
Fubini theorem for ft, and from (1.14.8)–(1.14.9) we obtain that

ft(z) =
∫ z

0

g(t− v)
(∫ v

0

h′(v − r)h′(z − r)ϕ2(r) dr

)
dv

+
∫ t

z

g(t− v)
(∫ z

0

h′(v − r)h′(z − r)ϕ2(r) dr

)
dv

=
∫ z

0

h′(z − r)ϕ2(r)
(∫ t

r

h′(v − r) g(t− v) dv

)
dr

= C0

∫ z

0

h′(z − r)ϕ2(r) dr,

i.e. ft does not depend on t ≥ z. Further, for any 0 ≤ s ≤ t we have that

E(Mt −Ms)Ms =
∫ s

0

g(s− u)
(
ft(u)− fs(u)

)
du = 0.



1.14 Martingale Transforms and Girsanov Theorem 63

It means that the Gaussian process Mt with EMt = 0 has uncorrelated, thus
independent, increments. Hence, Mt is a Gaussian martingale, and it holds
that

〈M〉t =
∫ t

0

g(t− u)
(∫ t

0

g(t− v)
∫ u∧v

0

h′(u− r)h′(v − r)ϕ2(r) dr

)
du

= C0

∫ t

0

g(t− u)
(∫ v

0

h′(v − r)ϕ2(r) dr

)
dv = C2

0

∫ t

0

ϕ2(r) dr.

2) Let Mt =
∫ t

0
g(t − s) dVs be a square integrable martingale with g

satisfying (1.14.7) and (1.14.8). Then

E(Mt −Ms)Vs = 0, 0 ≤ s < t,

or

0 =
∫ s

0

(∫ v

0

h′(v − r)ϕ2(r)
(∫ t

r

h′(u− r) g(t− u) du

−
∫ s

r

h′(u− r) g(s− u) du

)
dr

)
dv = (h ∗ (ϕ2 · ζ))s,

where

ζ(r) =
∫ t−r

0

h′(u) g(t− r − u) du−
∫ s−r

0

h′(u) g(s− r − u) du.

Since h ∈ U , we obtain ϕ2 · ζ = 0, and, taking into account that ϕ �= 0,
we derive that ζ(r) = 0 (mod λ), r ≤ s ≤ t. Together with continuity of
h′ ∗ g ∈ C(0,∞) it means that (h′ ∗ g)t = C0, t > 0, for some C0 ∈ R. 	

Proof of Theorem 1.14.5. 3) Under condition (1.14.6) the integral Mt is a
mean-square limit of Riemann sums, and condition (1.14.10) permits us to
transform the sum:

Mt = l.i.m.
|λN |→0

N−1∑
i=0

g(t− si) (Vsi+1 − Vsi
)

= l.i.m.
|λN |→0

N−1∑
i=0

V (si+1) (g(si+1)− g(si))

=
∫ t

0

g′(t− s)Vsds =
∫ t

0

g′(t− s)
(∫ s

0

h(s− z)ϕ(z)dWz

)
ds,

where |λN | = max0≤i≤N−1 |g(si+1)− g(si)|, and the last integral is the limit
of Riemann sums in the mean-square sense. Further, condition (1.14.11), ac-
cording to (Pro90, p. 160) or (Leb95), permits to apply to Mt the stochastic
Fubini theorem, and we obtain from (1.14.12) that
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Mt =
∫ t

0

ϕ(z)
(∫ t

z

g′(t− u)h(u− z) du

)
dWs = C0

∫ t

0

ϕ(z) dWz. (1.14.13)

4) If the process Mt is a square-integrable martingale, then from (1.14.13)
it follows that for any 0 ≤ s ≤ t

0 = E(Mt −Ms/FW
s ) =

∫ s

0

ϕ(z) η(z) dWz,

where
η(z) = (g′ ∗ h)t−z − (g′ ∗ h)s−z.

Hence
∫ s

0
ϕ2(z) η2(z) dz = 0, and, arguing similarly to the completion of

the proof of Theorem 1.14.4, part 2), we obtain that (g′ ∗ h)t = C0 for some
C0 ∈ R. 	


Consider some examples of the functions ϕ, h satisfying conditions 1) or 3).
(One example is contained in Remark 1.14.7.)
Example 1.14.8. Let

g(x) = x−1/2 cosh(ax1/2),

h′(x) =
∫ x

0

sν/2Iν(as1/2) (x− s)γds,

where −1 < ν < − 1
2 ,

Iν(y) =
yν

2ν

∞∑
k=0

(−1)ky2k2−2k

k!Γ (ν + k + 1)

is the Bessel function of the first kind, γ + ν = − 3
2 .

The Laplace transforms of these functions equal

Fg(λ) = (π/λ)1/2 exp(a2/4λ), Fh′(λ) = Γ (γ + 1)2−ν−1aνλ−ν−1

× exp(−a2/4λ)λ−γ−1 = Γ (γ + 1)2−ν−1aνλ−1/2 exp(−a2/4λ),

Fg(λ)Fh′(λ) = Γ (γ + 1)2−ν−1πaνλ−1, λ > 0,

whence (g ∗ h′)t = Γ (γ + 1)2−ν−1πaν , t > 0, and condition (1.14.9) holds.
(For the details of the theory of Bessel functions of the first kind and their
Laplace transforms see (Wat95) and (GR80).)

Condition (1.14.8) is fulfilled since |h′(x)| ≤ Cxν+γ+1 on any interval (0, t),
where C depends on t.

Conditions (1.14.2) and (1.14.7) hold for any ϕ ∈ L2(0, t), t > 0; condition
(1.14.3), according to Lemma 1.14.1, holds for any ϕ such that F|ϕ|(λ) <
∞, Fϕ(λ) �= 0 for λ ∈ (a, b) ⊂ (0,∞). In this case Vt is (g)-transformable,
according to part 1) of Theorem 1.14.4.
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Example 1.14.9. Let g(x) = x−1/2 cosh(ax1/2), h(x) =
∫ x

0
t−1/2 cos(at1/2) dt.

Then Fg(λ) = (π/λ)1/2 exp(a2/4λ), Fh′(λ) = (π/λ)1/2 exp(−a2/4λ),
Fg(λ)Fh′(λ) = π/λ, λ > 0, so (g ∗ h′)t = π, t > 0. Since |h(x)| ≤ Cx1/2, we
can conclude as in Example 1.14.8.
Example 1.14.10. Let g′(x) =

∫ x

0
t−1/2 cosh(at1/2) (x − t)γdt, h(x) =

xν/2Iν(ax1/2) with γ ∈ (−1,− 1
2 ), ν ∈ (−1, 0), γ + ν = − 3

2 . Then Fg′(λ) =
π1/2λ−γ−3/2 exp(a2/4λ), Fh(λ) = λ−ν−1 exp(−a2/4λ), Fg′(λ)Fh(λ) =
π1/2λ−1.

Conditions (1.14.2), (1.14.3) and (1.14.11) hold for ϕ ∈ L2(0, t), t > 0,
F|ϕ|(λ) <∞, Fϕ(λ) �= 0 for some interval (a, b) ⊂ (0,∞), (1.14.10) is evident,
(1.14.6) is fulfilled at least for ϕ ∈ C(R+). So, if ϕ > 0, ϕ ∈ C(R+) and
F|ϕ|(λ) <∞ we have part 3) of Theorem 1.14.5.
Remark 1.14.11. According to Proposition 7 from (HC78), under the condi-
tion h′ ∈ L2(0, t), t > 0, ϕ ≡ 1, Vt is a semimartingale. In this case we trans-
form semimartingale into martingale by (g)-transformation. For example, let
h(x) = xε, 1/2 < ε < 1, ϕ(x) = 1. Then

Vt =
∫ t

0

h(t− s)dWs = ε

∫ t

0

(∫ s

0

(s− u)ε−1dWu

)
ds

is a semimartingale, more precisely, a process of bounded variation. Put g(x) =
x−ε. Then Mt = ε

∫ t

0
(t − s)−ε(

∫ s

0
(s − u)ε−1dWu)ds = εB(ε, 1 − ε)Wt, where

B(·, ·) is the beta-function.

Now, let Vt be equal to Yt from (1.14.1). Recall that BH
t =

∫ t

0
sαdVs

is an fBm with Hurst index H, and in this case BH
t can be presented as

BH
t =

∫ t

0
mH(t, s)dBs, where B is a Wiener process and the kernel mH(t, s)

is defined in Section 1.8. Consider general conditions on function ψ : R+ → R

for the process Nt :=
∫ t

0
ψsdVs to be presented in a similar way.

Theorem 1.14.12. Let conditions (1.14.2), (1.14.3) hold and also

lim
ε↓0

ψ2(ε)
∫ ε

0

h2(ε− u)ϕ2(u) du = 0; (1.14.14)

the Riemann integral
∫

[0,(s,t)]

ψ(u)ψ(v) dRuv exists, s, t > 0; (1.14.15)

there exists a derivative ψ′(s), s > 0 and

(h2 ∗ ϕ2)1/2ψ′ ∈ L1(0, t), (|h| ∗ |ψ′|)t <∞, t > 0. (1.14.16)

Then ∫ t

0

ψ(s) dVs =
∫ t

0

m(t, s)ϕ(s) dWs, t > 0, a.s.,

where



66 1 Wiener Integration with Respect to Fractional Brownian Motion

m(t, s) = ψ(t)h(t− s)−
∫ t

s

h(u− s)ψ′(u) du,

W is a Wiener process.
If (1.14.16) is strengthened to

(h2 ∗ ϕ2)1/2ψ′ ∈ L2(0, t), t > 0, (1.14.17)

then E(
∫ t

0
ψ(s) dVs)2 <∞.

Proof. Under (1.14.14)–(1.14.16), we can consider the integral
∫ t

0
ψ(u) dVu as

a mean-square limit of Riemann sums, and integrating by parts, we obtain
the following limits in the mean-square sense∫ t

0

ψ(u) dVu = lim
ε↓0

∫ t

ε

ψ(u) dVu

= ψ(t)V (t)− lim
ε↓0

ψ(ε)V (ε)−
∫ t

0

ψ′(u)V (u) du

= ψ(t)V (t)−
∫ t

0

ψ′(u)
(∫ u

0

h(u− s)ϕ(s)dWs

)
du.

Due to (1.14.16), the stochastic Fubini theorem can be applied to the last
integral, and we obtain∫ t

0

ψ(u) dVu =
∫ t

0

ψ(t)h(t− s)ϕ(s)ds−
∫ t

0

ϕ(s)
(∫ t

s

h(u− s)ψ′(u) du

)
dWs

=
∫ t

0

m(t, s)ϕ(s)dWs.

The second statement is evident. 	

Now let P and P̂ be two probability measures on (Ω,F). Denote by

Pt (P̂t) the restriction of P (P̂ ) on Ft and suppose that P̂
loc� P (it means

that P̂t � Pt, t ∈ R+). Consider the density process Zt = E(Xt) :=
exp
{
Xt − 1

2 〈Xc〉t
}∏

0≤s≤t(1+ � Xs)e−�Xs , X is a local martingale.
As before, we consider the Gaussian process Vt =

∫ t

0
h(t− s)ϕ(s) dWs and

suppose that Vt is (g)-transformable by the function g; moreover, the condi-
tions (1.14.8)–(1.14.9) or (1.14.10)–(1.14.12) hold. Let Mt = C0

∫ t

0
ϕ(s) dWs

with C0 depending on g. Since Mt has continuous modification, the process
[M,X] has P -locally bounded variation (see (JS87, Lemma 3.14)).

Denote by At := 〈M,X〉t the P -compensator of [M,X]. Suppose further
that the function ψ satisfies conditions (1.14.14)–(1.14.16) of Theorem 1.14.12.

Lemma 1.14.13. The integral
∫ t

0
m(t, s) dAs exists for any t > 0 P - and P̂ -

a.s.
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Proof. Since m(t, s) = ψ(t)h(t − s) − ∫ t

s
h(u − s)ψ′(u) du, we consider∫ t

0
h(t− s) dAs and

∫ t

0

(∫ t

s
h(u− s)ψ′(u) du

)
dAs individually. From Kunita’s

inequality and (1.14.2),∫ t

0

|h(t− s)| d|A|s ≤
(∫ t

0

|h(t− s)|2 d〈M〉s · 〈X〉t
) 1

2

= C0

(∫ t

0

|h(t− s)|2ϕ2(s) ds〈X〉t
) 1

2

<∞

P - and P̂ -a.s.
Similarly, ∫ t

0

∣∣∣∣∫ t

s

ψ′(u)h(u− s) du

∣∣∣∣ d|A|s
≤ C0

(∫ t

0

∣∣∣∣∫ t

s

ψ′(u)h(u− s) du

∣∣∣∣2 ϕ2(s)ds · 〈X〉t
) 1

2

≤ C0

(∫ t

0

(h2 ∗ ϕ2)u |ψ′(u)|2 du · 〈X〉t
) 1

2

<∞,

P and P̂ -a.s. 	

Theorem 1.14.14. Let Vt be (g)-transformable with g satisfying (1.14.8)–
(1.14.9) or (1.14.10)–(1.14.12), ψ satisfying (1.14.14)–(1.14.16), ϕ �= 0 a.e.
(mod λ). Then N̂t := Nt − C−1

0

∫ t

0
m(t, s)dAs is a Gaussian process w.r.t. P̂

and admits the representation N̂t =
∫ t

0
m(t, s)ϕ(s)dŴs, where Ŵt is a Wiener

process w.r.t. P̂ .

Remark 1.14.15. Consider the case where ϕ(s) = s−α, h(s) = C1s
α,

g(s) = C2s
−α, Vt is defined by Vt = C1

∫ t

0
(t − s)αs−αdWs, ψ(s) = sα, and

BH
t =

∫ t

0
sαdVs is an fBm with Hurst index H. Then we obtain that B̂H

t :=
BH

t − C−1
0

∫ t

0
mH(t, s)d〈X,M〉s is an fBm w.r.t. P̂ , Mt = C4

∫ t

0
s−αdWs =

C1C2

∫ t

0
(t− s)−αdVs, C0 = C4 = π|α| | cos πH|−1C1 · C2.

Proof. According to the classical Girsanov theorem, M̂t := Mt − 〈M,X〉t
is a P̂ -local martingale with the angle bracket 〈M̂〉t = 〈M〉t =
C2

0

∫ t

0
ϕ2(s)ds. Therefore, M̂t is a continuous square-integrable P̂ -martingale.

Since ϕ �= 0 a.e. (mod λ), we obtain from the Lévy theorem that M̂t =
C0

∫ t

0
ϕsdŴs, Ŵ is P̂ -Wiener process. According to Theorem 1.14.12, B̂t =

C−1
0

∫ t

0
z(t, s)d(Ms−〈M,X〉s) = C−1

0

∫ t

0
m(t, s)dM̂s =

∫ t

0
m(t, s)ϕ(s)dŴs. 	


According to the Theorem 1.14.14, we obtain that the drift has the form
Dt := C−1

0

∫ t

0
m(t, s)dAs in the case when the density process Zt is known.

Consider also the question: what “drifts” are admissible?
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Theorem 1.14.16. Let (1.14.14)–(1.14.16) and one of the following sets of
conditions hold:

1) conditions (1.14.2), (1.14.3), (1.14.7)–(1.14.9) and ϕ �= 0 a.e. (mod λ);
2)
∫ t

s
|h′(v − s)| |ψ′(v)| dv <∞, 0 ≤ s ≤ t a.s;

3) a process
{
Dt,FW

t , t ≥ 0
}

has a.s. bounded variation |D|t = var[0,t] D,
t > 0, D0 = 0;

4) ψ �= 0, the integral
∫ t

0
|g(t − s)| |ψ−1(s)| d|D|s < ∞ a.s., t > 0, and we

have a representation∫ t

0

g(t− s)ψ−1(s) dDs =
∫ t

0

δsds, where
∫ t

0

|δs| ds <∞ a.s.

E

∫ t

0

ϕ−2
s δ2

sds <∞, t > 0;

5) EE(Xt) = 1, where

Xt = C−1
0

∫ t

0

ϕ−1
s δsdWs, E(Xt) = exp

{
Xt − 1

2
〈X〉t

}
;

or:

6) conditions (1.14.2), (1.14.3), (1.14.6), (1.14.10)–(1.14.12);
7) conditions 3)–5);
8) a process Et =

∫ t

0
m(t, s) δsds has bounded variation and∫ t

0

|g(t− s)| |ψ−1(s)| d|E|s <∞, a.s., t > 0;

9) g′ ∈ U .

Then the process B̂t = Bt−Dt is Gaussian and admits the representation

B̂t =
∫ t

0
m(t, s)ϕ(s)dŴs under the measure P̂

loc� P such that dP̂
dP

∣∣∣
FW

t

= E(Xt).

Proof. In our case At = 〈M,X〉t =
∫ t

0
δsds, therefore from Theorem 1.14.14

the “drift” equals C−1
0 Et.

It is enough to establish that Dt = C−1
0 Et. If conditions 1)–5) hold, then∫ t

0

m(t, s) δsds =
∫ t

0

(
ψ(t)h(t− s)

−
∫ t

0

h(u− s)ψ′(u)du
)
d

(∫ t

0

g(t− s)ψ−1(s) dDs

)
=
∫ t

0

ψ(t)h′(t− s)
(∫ s

0

g(s− u)ψ−1 dDu

)
ds−

∫ t

0

(∫ t

s

h′(v − s)ψ′(v) dv

)
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×
(∫ s

0

g(s− u)ψ−1(u) dDu

)
ds

= ψ(t)
∫ t

0

(∫ t

u

h′(t− s) g(s− u) ds

)
ψ−1(u) dDu

−
∫ t

0

∫ t

0

∫ t

0

h′(v − s)ψ′(v) g(s− u)ψ−1(u) I{u ≤ s ≤ v ≤ t}dv ds dDu

= C0ψ(t)
∫ t

0

ψ−1(u) dDu − C0

∫ t

0

∫ t

0

ψ′(v)ψ−1(u) I{u ≤ v ≤ t}dv dDu

= C0ψ(t)
∫ t

0

ψ−1(u) dDu − C0

∫ t

0

(ψ(t)− ψ(u))ψ−1(u) dDu = C0Dt.

If conditions 6)–9) hold, then for any t > 0∫ t

0

g(t− s)ψ−1(s) dEs =
∫ t

0

(
g′(t− s)ψ−1(s) + g(t− s)ψ′(s)ψ−2(s)

)
×
(

ψ(s)
∫ s

0

h(s− u) δudu−
∫ s

0

(∫ s

u

h(v − u)ψ′(v) dv

)
δudu

)
ds.

(1.14.18)
The right-hand side of (1.14.18) contains four integrals. Consider them sepa-
rately. From (1.14.12),∫ t

0

g′(t− s)
∫ s

0

h(s− u) δudu ds = C0

∫ t

0

δudu.

Further, ∫ t

0

g(t− s)
ψ′(s)
ψ2(s)

(
ψ(s)

∫ s

0

h(s− u)δudu

−
∫ s

0

(∫ s

u

h(v − u)ψ′(v)dv

)
δudu

)
ds

=
∫ t

0

g′(t− s)
(∫ s

0

ψ′(z)
ψ2(z)

(
ψ(z)

∫ z

0

h(z − u) δu du

−
∫ z

0

(∫ z

0

h(v − u)ψ′(v) dv

)
δudu

)
dz

)
ds.

It is sufficient to prove that

σs :=
∫ s

0

ψ′(z)
ψ2(z)

(
ψ(z)

∫ z

0

h(z − u)δudu

−
∫ z

0

(∫ z

u

h(v − u)ψ′(v)dv

)
δudu

)
dz

= ψ−1(s)
∫ s

0

(∫ s

u

h(v − u)ψ′(v) dv

)
δudu =: σ̄s, (1.14.19)
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and then it follows that the right-hand side of (1.14.18) equals C0

∫ t

0
δudu.

But σ0 = σ̄0, and the derivative

σ̄′
s = − ψ′(s)

ψ2(s)

∫ s

0

(∫ s

u

h(v − u)ψ′(v) dv

)
δudu

+ ψ−1(s)
∫ s

0

h(s− u) δudu · ψ′(s) = σ′
s.

We obtain that∫ t

0

g(t− s)ψ−1(s)dDs =
∫ t

0

g(t− s)ψ−1(s) d

(
C−1

0

∫ s

0

z(s, u) δu du

)
,

or ∫ t

0

g′(t− s)
∫ s

0

ψ−1(u) dDu ds = C−1
0

∫ t

0

g′(t− s)
(∫ s

0

ψ−1(u) dEu

)
ds.

If g′ ∈ U then
∫ s

0
ψ−1(u) d (D − E)u = 0, whence Dt =

∫ t

0
ψs · ψ−1

s dDs =
ψt ·
∫ t

0
ψ−1

s dEs −
∫ t

0
ψ′

s ·
∫ s

0
ψ−1

u dEuds = Et. 	

Theorem 1.14.16 permits us to calculate the Hellinger process for P and

P̂ .
Let P̂ � P and Yt = E(Xt), Xt be a continuous square-integrable mar-

tingale. According to (JS87, Corollary 1.37) the Hellinger process in a narrow
sense of order β equals ht(β) = 1

2β (1− β) 〈X〉t.
Theorem 1.14.17. Let one of conditions 1)–5) or 6)–9) hold, then

ht(β) =
β (1− β)

2C2
0

∫ t

0

ϕ−2
s δ2

sds

=
β (1− β)

2C2
0

∫ t

0

ϕ−2
s

(
d

ds

∫ s

0

g(t− u)ψ−1(u) dDu

)2

ds.

The proof follows immediately from Theorem 1.14.16.
Remark 1.14.18. It is possible to study if the process Vt =

∫ t

0
h(t−s)ϕ(s)dWs

is itself a semimartingale. In the case when ϕ ≡ 1 this question is investigated
in (CCM98).

Theorem 1.14.19. Let the function h be differentiable on R+,∫ t

0
|h′(u)|du <∞, t ≥ 0, and

∫ t

0
(h′(t− u)ϕ(u))2du <∞, t ≥ 0.

Then the process {Vt,FW
t , t ≥ 0} is a semimartingale.

Proof. We have the representation h(t) = h(0) +
∫ t

0
h′(u)du, which together

with the Fubini theorem supplies the following transformations:

Vt =
∫ t

0

h(t− s)c(s)dWs = h(0)
∫ t

0

c(s)dWs +
∫ t

0

(∫ t−s

0

h′(u)duϕ(s)
)

dWs
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= h(0)
∫ t

0

ϕ(s)dWs +
∫ t

0

∫ t

s

h′(v − s)ϕ(s)dv dWs = h(0)
∫ t

0

ϕ(s)dWs

+
∫ t

0

∫ v

0

h′(v − s)ϕ(s)dWs dv.

	


1.15 Nonsemimartingale Properties of fBm; How to
Approximate Them by Semimartingales

A process {Xt,Ft, t ≥ 0} is called semimartingale, if it admits the represen-
tation

Xt = X0 + Mt + At,

where M is an Ft-local martingale with M0 = 0, A is a process of locally
bounded variation, X0 is F0-measurable. Evidently, any semimartingale has
locally bounded quadratic variation; if X is continuous, then M and A are
continuous. Let Xt = BH

t with H ∈ (0, 1/2). Then its quadratic variation
is infinite, therefore, it is not a semimartingale. If H ∈ (1/2, 1), then the
quadratic variation of X is zero, and if we suppose that X is semimartingale,
then the quadratic variation of Mt = Xt − X0 − At is zero, and M is zero.
But Xt �= At since X has unbounded variation. Therefore, Xt = BH

t is not
a semimartingale for any H �= 1/2. (There are many another elegant proofs
of this fact.) Nevertheless, there are many approaches to how to approximate
fBm by a sequence of semimartingales.

1.15.1 Approximation of fBm by Continuous Processes of
Bounded Variation

We follow here the approach of and (And05) and (AM06). According to (1.8.5)
and (1.8.18), we can represent {BH

t , t ≥ 0} with Hurst index H ∈ (1/2, 1) as

BH
t =

∫ t

0

sαdYs,

where

Yt = C
(8)
H

∫ t

0

(t− s)αs−αdBs,

{Bt, t ≥ 0} is a Wiener process, C
(8)
H = C

(6)
H α̃.

We can rewrite Yt as

Yt = C
(8)
H α

∫ t

0

(∫ t

s

(u− s)α−1du

)
s−αdBs. (1.15.1)
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If we formally apply the stochastic Fubini theorem to the right-hand side
of (1.15.1), we obtain that

Yt = C
(8)
H α

∫ t

0

(∫ u

0

(u− s)α−1s−αdBs

)
du. (1.15.2)

But the right-hand side of (1.15.2) does not exist, since the variance of
interior integral is infinite,∫ u

0

(u− s)2α−2s−2αds =∞.

Thereupon, we introduce the “truncated” process for β ∈ (0, 1),

Y β
t = C

(8)
H α

∫ t

0

(∫ βs

0

(s− u)α−1u−αdBu

)
ds,

and

BH,β
t =

∫ t

0

sαdY β
s = C

(8)
H α

∫ t

0

sα

(∫ βs

0

(s− u)α−1u−2αdBu

)
ds (1.15.3)

is a process of bounded variation which will serve as an approximation of BH
t .

Theorem 1.15.1. We have that

E(BH
t −BH,β

t )2 ≤ c1t
2H(1− β)2α,

where c1 = c1(H) is some constant, independent of t and β.

Proof. First, we want to change the limits of the integration in (1.15.3) and
consider the process

Zβ
t := αC

(8)
H

∫ βt

0

(∫ t

u/β

(s− u)α−1ds

)
u−αdBu

= C
(8)
H

(∫ βt

0

(t− u)αu−αdBu −
(

1− β

β

)α

Bβt

)
. (1.15.4)

We cannot apply here the stochastic Fubini theorem (Pro90, Theorem IV.4.5),
because it is valid if the integral

∫ βt

0

∫ t

u/β
(s − u)2α−2u−2αds du is finite but

it is infinite. Therefore, we must go an indirect way. We consider the integral
Y β,ε

t = D
∫ t

ε

(∫ βs

βε
(s− u)α−1u−αdBu

)
ds, where D = αC

(8)
H , and the Fubini

theorem ensures the equality

Y β,ε
t = Zβ,ε

t := D

∫ βt

βε

(
∫ t

u/β

(s− u)α−1ds)u−αdBu.
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Furthermore,

E|Y β,ε
t − Y β

t | ≤ D
(∫ ε

0

(∫ βs

0

(s− u)2α−2u−2αdu
)1/2

ds

+
∫ t

ε

(∫ βε

0

(s− u)2α−2u−2αdu
)1/2

ds
)
≤ D
(∫ ε

0

u−1/2du
(∫ β

0

(1− u)2α−2

×u−2αdu
)

+ α̂(βε)1/2−α

∫ t

ε

(s− βε)α−1ds
)
→ 0

and

E|Zβ,ε
t − Zβ

t |2 ≤ D2

∫ βε

0

(∫ t

u/β

(s− u)α−1ds
)2

u−2αdu ≤ CD2βε1−2α → 0

as ε → 0, where C > 0 is some constant. This means that Y β
t = Zβ

t a.s. for
any t ∈ [0, T ]. Therefore, for 1/2 < β < 1

E(Yt − Y β
t )2 = (C(8)

H )2E
(∫ t

βt

(t− u)αu−αdBu +
(

1− β

β

)α

Bβt

)2

≤ 2(C(8)
H )2

∫ t

βt

(t− u)2αu−2αdu + 2(C(8)
H )2

(
1− β

β

)2α

βt

≤ H−1(C(8)
H )2(βt)−2αt2H(1− β)2H + 2(C(8)

H )2
(

1− β

β

)2α

βt

≤ c2t(1− β)2α with c2 = (C(8)
H )2 · 22α−1(H−1 + 2). (1.15.5)

Integration by parts gives us

BH
t −BH,β

t = tα(Yt − Y β
t )− α

∫ t

0

(Ys − Y β
s )sα−1ds

whence we obtain from (1.15.5) that

E(BH
t −BH,β

t )2 ≤ 2t2αE(Yt − Y β
t )2 + 2α2t

∫ t

0

E(Ys − Y β
s )2s2α−2ds

≤ 2c2t
2H(1− β)2α + 2α2t

∫ t

0

s2α−1ds · c2(1− β)2α,

and we can put c1 = 2c2(α + 1). 	


1.15.2 Convergence BH,β → BH in Besov Space W λ[a, b].

For λ ∈ (0, 1/2) define the Besov space Wλ[a, b] as the space of measurable
functions f : [a, b]→ R such that

‖f‖a,b,λ :=
∫ b

a

|f(s)|
(s− a)λ

ds +
∫ b

a

∫ s

a

|f(s)− f(y)|
(s− y)λ+1

dy ds <∞.
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Theorem 1.15.2. For any λ ∈ (0, 1/2), H ∈ (1/2, 1) and any [a, b] ⊂ [0, T ]

E‖BH −BH,β‖a,b,λ ≤ c1(H,λ, T )(1− β)α.

Proof. Denote B
H,β

t := BH
t −BH,β

t . We have

E‖BH,β‖λ = E

∫ b

a

|BH,β

s |
(s− a)λ

ds + E

∫ b

a

∫ s

a

|BH,β

s −B
H,β

y |
(s− y)λ+1

dy ds. (1.15.6)

From Theorem 1.15.1,

E

∫ b

a

|BH,β

s |
(s− a)λ

ds ≤
∫ b

a

(E(B
H,β

s )2)1/2

(s− a)λ
ds ≤ c

1/2
1 (1− β)α

∫ b

a

sH

(s− a)λ
ds

≤ c1(H,λ, T )(1− β)α, (1.15.7)

with c1(H,λ, T ) = c
1/2
1 · TH−λ+1 · (H − λ + 1)−1. Consider the second term

in the right-hand side of (1.15.6). Rewrite the difference in the numerator as

B
H,β

s −B
H,β

y = (BH
s −BH,β

s )− (BH
y −BH,β

y )

=
∫ s

y

uαd(Yu − Y β
u ) =

∫ s

y

uαdY
β

u, (1.15.8)

where Y
β

u = Yu − Y β
u . Equality (1.15.8) and integration by parts give us the

estimates∫ b

a

∫ s

a

|BH,β

s −B
H,β

y |
(s− y)λ+1

dy ds

=
∫ b

a

∫ s

a

(s− y)−λ−1

∣∣∣∣sαY
β

s − yαY
β

y + α

∫ s

y

Y
β

uuαdu

∣∣∣∣ dy ds

≤
∫ b

a

∫ s

a

(s− y)−λ−1sα
∣∣∣Y β

s − Y
β

y

∣∣∣ dy ds

+
∫ b

a

∫ s

a

(s− y)−λ−1(sα − yα)|Y β

y |dy ds

+ α

∫ b

a

∫ s

a

(s− y)−λ−1
(∫ s

y

|Y β

u|uα−1du
)
dy ds

=: I1(β) + I2(β) + αI3(β).

Now we estimate I2(β):

EI2(β) ≤ α

∫ b

a

∫ s

a

yα−1(s− y)−λ(E(Y
β

y )2)1/2dy ds

≤ c
1/2
2 α

∫ b

a

∫ s

a

yα−1(s− y)−λy1/2dy ds · (1− β)α

≤ c2(H,λ, T )(1− β)α, (1.15.9)
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where c2(H,λ, T ) = c
1/2
2 αT 1−λ. Similarly,

E I3(β) ≤
∫ b

a

∫ s

a

(s− y)−λ−1

(∫ s

y

(E(Y
β

u)2)1/2uα−1du

)
dy ds

≤ c
1/2
2

∫ b

a

∫ s

a

(s− y)−λ−1

(∫ s

y

uα−1/2du

)
dy ds · (1− β)α

≤ c3(H,λ, T )(1− β)α,

(1.15.10)

where c3(H,λ, T ) = c
1/2
2

T H−λ+1

H(H−λ)(H−λ+1) . Now we use the representation
(1.15.4) to estimate I1(β):

|Y β

s − Y
β

y | ≤ C
(8)
H

∣∣∣∣∫ s

βs

(s− u)αu−αdBu −
∫ y

βy

(s− u)αu−αdBu

∣∣∣∣
+ C

(8)
H

(
1− β

β

)α

|Bβs −Bβy|,

therefore

I1(β) ≤ C
(8)
H

∫ b

a

∫ s

a

(s− y)−λ−1sα

×
∣∣∣∣∫ s

βs

(s− u)αu−αdBu −
∫ y

βy

(y − u)αu−αdBu

∣∣∣∣ dy ds

+ C
(8)
H

(
1− β

β

)α ∫ b

a

∫ s

a

sα(s− y)−λ−1|Bβs −Bβy|dy ds

=: I1(β) + I2(β).

(1.15.11)

Further,

E I2(β) ≤ C
(8)
H

(
1− β

β

)α ∫ b

a

∫ s

a

sα(s− y)−λ−1/2dy ds β1/2

= c4(H,λ, T )(1− β)α,

(1.15.12)

where c4(H,λ, T ) = C
(8)
H 2α · T H−λ+1

1/2−λ . (Here we see that indeed λ must be less
than 1/2.) Next, we decompose I1(β) into two integrals

I1(β) = C
(8)
H

∫ b

a

∫ (βs)∨a

a

+C
(8)
H

∫ b

a

∫ s

(βs)∨a

=: I3(β) + I4(β).
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EI3(β) ≤ C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1sα

×
(

E

(∫ s

βs

(s− u)αu−αdBu −
∫ y

βy

(y − u)αu−αdBu

)2
)1/2

dy ds

≤
√

2C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1sα

×
(∫ s

βs

(s− u)2αu−2αdu +
∫ y

βy

(y − u)2αu−2αdu

)1/2

dy ds

≤ 2αH−1/2C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1(s + y)1/2sαdy ds · (1− β)H

≤ c(H,λ, T )(1− β)H−λ

(1.15.13)
with c(H,λ, T ) = 2HT 1+H−λ

λ(1−λ)H1/2 . Finally,

EI4(β) ≤ C
(8)
H

∫ b

a

∫ s

(βs)∨a

(s− y)−λ−1sα

(
E

∣∣∣∣∫ s

0

(
(s− u)αu−α1(βs,s)(u)

− (y − u)αu−α1(βy,y)(u)
)
dBu

∣∣2)1/2

dy ds

= C
(8)
H

∫ b

a

∫ s

(βs)∨a

(s− y)−λ−1sα

(∫ s

0

(
(s− u)α1(βs,s)(u)

− (y − u)α1(βy,y)(u)
)2

u−2αdu

)1/2

dy ds.

The interior integral equals∫ y

βs

((s− u)α − (y − u)α)2 u−2αdu +
∫ s

y

(s− u)2αu−2αdu

+
∫ βs

βy

(y − u)2αu−2αdu =: I5(β),

and via some routine calculations can be estimated as

I5(β) ≤ CH(1− β)2α(s− y),

where CH = 1 + 22α + α
1−2α .

Therefore

EI4(β) ≤ C
(8)
H (CH)1/2(1− β)α

∫ b

a

sα

∫ s

(βs)∨a

(s− y)−λ−1/2dy ds

≤ C
(8)
H (CH)1/2(1− β)α

∫ b

a

sH−λds

∫ 1

β

(1− y)−λ−1/2dy

≤ C(H,λ, T )(1− β)H−λ (1.15.14)
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with C(H,λ, T ) = C
(8)
H (CH)1/2 T H−λ+1

(H−λ+1)(1/2−λ) . Summarizing (1.15.9),
(1.15.10), (1.15.12)–(1.15.14), we obtain the proof. 	


We obtain another approximation, considering the “truncated” process of
the form

Y β
t := C

(8)
H α

∫ t

0

(∫ (s−β)+

0

(s− u)α−1u−αdBu

)
ds

and

BH,β
t =

∫ t

0

sαdY β
s , t ≥ 0, H ∈ (1/2, 1). (1.15.15)

Evidently, we intend to obtain the approximation while β → 0.

Theorem 1.15.3. The process BH,β satisfies the relations

E(BH
t −BH,β

t )2 ≤ c(H)
{

t2H , t < β
β2αt(1 + ln t

β ), t ≥ β,

and for 2 < m < 1
1−H

E|BH
t −BH,β

t |m ≤ c(H,m)
{

tmH , t < β
βmαtm/2 + βm(H−1)+1tm−1, t ≥ β.

Proof. Using the stochastic Fubini theorem we obtain

Y β
t = C

(8)
H α

∫ (t−β)+

0

(∫ t

u+β

(s− u)α−1ds

)
u−αdWu

= C
(8)
H

(∫ (t−β)+

0

(t− u)αu−αdWu − βα

∫ (t−β)+

0

u−αdWu

)
,

whence

E(Yt − Y β
t )2 = (C(8)

H )2E

(∫ t

(t−β)+

(t− u)αu−αdWu

+ βα

∫ (t−β)+

0

u−αdWu

)2

= (C(8)
H )2

(∫ t

(t−β)+

(t− u)2αu−2αdu + β2α

∫ (t−β)+

0

u−2αdu

)

≤ (C(8)
H )2

{∫ t

0
(t− u)2αu−2αdu, t < β

β2α
∫ t

0
u1−2αdu, t ≥ β

= c(H)
{

t, t < β
β2αt−2α, t ≥ β,

(1.15.16)
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where c(H) = (C(8)
H )2 max(B(2H, 1− 2α), 1

1−2α ). Since Yt−Y β
t is a Gaussian

random variable with zero mean, for m ≥ 0

E|Yt − Y β
t |m = π−1/2Γ

(m + 1
2

)
(2σ2)m/2,

where σ2 = E(Yt − Y β
t )2, therefore, from (1.15.16)

E|Yt − Y β
t |m ≤ c(m,H)

{
tm/2, t < β
βmαtm(1−H), t ≥ β.

(1.15.17)

As before, integration by parts gives us

BH
t −BH,β

t = tα(Yt − Y β
t )− α

∫ t

0

(Ys − Y β
s )sα−1ds. (1.15.18)

From (1.15.17) and (1.15.18) we obtain for m ≥ 1:

E |BH
t −BH,β

t |m ≤ 2m−1
(
tmαE|Yt − Y β

t |m

+ αmtm−1

∫ t

0

E|Ys − Y β
s |msm(α−1)ds

)
≤ c(m,H)

{
tmH , t < β

βmαtm/2 + tm−1
∫ β

0
sm(H−1)ds + tm−1βmα

∫ t

β
s−m/2ds, t ≥ β.

The integrals in the last expression converge for m < 1
1−H . For m = 2 we get

E(BH
t −BH,β

t )2 ≤ c(2,H)
{

t2H , t < β
β2αt + β2αt ln t

β , t ≥ β,

and for 2 < m < 1
1−H we obtain

E|BH
t − BH,β

t |m ≤ c(m,H)
{

tmH , t < β
βmαtm/2 + βmH−m+1tm−1 + βmαtm/2, t ≥ β,

whence the proof follows. 	

Remark 1.15.4. Note that the approximation of fBm with the sequence of
semimartingales was considered in (Thao03).

1.15.3 Weak Convergence to fBm in the Schemes of Series

We formulate in this section some results concerning weak convergence to fBm
in different schemes of series.

(i) Convergence of the piecewise linear processes to fBm. Let {ξk, k ∈ Z}
be a sequence of i.i.d. random variables, and {akn}k∈Z, n≥0 be a matrix with
real elements satisfying the following assumptions:
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Eξ0 = 0, Eξ2
0 = 1, E|ξ0|p <∞ for some p > 2, (1.15.19)

γn = max
k∈Z

|akn| → 0 (n→∞),
∑
k∈Z

a2
kn = 1. (1.15.20)

Also, let {ϕn(t), n ≥ 1, t ∈ [0, 1]} be a sequence of real functions on the unit
interval. Denote θ(x) = 1

2 (xH + x−H − |x1/2 − x−1/2|2H), x > 0, H ∈ (0, 1).
We construct the sequence of continuous random piecewise linear processes
ξn(t), t ∈ [0, 1], such that

ξn

(m

n

)
= ϕn

(m

n

)∑
k∈Z

akmξk, 0 ≤ m ≤ n.

Theorem 1.15.5 ((Gor77)). Let conditions (1.15.19)–(1.15.20) hold and∑
k

aklakm → θ(x) as l→∞, l/m→ x,

sup
n

sup
|(l−m)/n|≤h

(∑
k

(ϕn(l/n)akl − ϕn(m/n)akm)2
)p/2

≤ ch1+ε, for some ε>0.

Then the sequence of processes {ξn(t), n ≥ 1, t ∈ [0, 1]} weakly converges
in C[0, 1] endowed with uniform topology to the fBm with Hurst index H.

(ii) Convergence of the Weierstrass–Mandelbrot process to complex fBm.
Consider the complex-valued Gaussian process

B̃H
t := cH

∫
R+

(eitx − 1)x−H−1/2(dW1(x) + idW2(x)), t ∈ R,

where W1 and W2 are two independent standard Brownian motions. Evidently,
B̃H

0 = 0, EB̃H
t = 0, E|B̃H

t+s − B̃H
s |2 = c2

H · |t|2H
∫

R
sin2 x · x−2α−2dx · 21−2α =

t2H , if we choose cH = 2H−1(
∫

R+
sin2 x · x−2α−2dx)−1/2. Therefore, with this

choice of cH B̃H
t is a normalized complex-valued fBm.

Now, suppose that (ξn, ηn), n ∈ Z, is a sequence of independent random
variables with Eξ2

n = Eη2
n = 1, Eξn = Eηn = 0, and either

1) ζn := ξn + iηn, n ∈ Z are identically distributed random vectors, or
2) supn(E|ξn|2+δ + E|ηn|2+δ) <∞ for some δ > 0.

Also, let f(t, u) : R2 → C, t ∈ R, be such a function that for all t ∈ R
3) f(t, ·) ∈ C1(R);
4) |f(t, u)| = 0(|u|−l) as u→∞ for some l > 1/2.

Theorem 1.15.6 ((PT00b)).
1. Under conditions 1)–4) the following convergence (in the sense of con-

vergence of finite-dimensional distributions) takes place:
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ξf
a (t) := a−1/2

∑
n∈Z

f
(
t,

n

a

)
(ξn+iηn) d→ ξf (t) :=

∫
R

f(t, u)(dW1(u)+idW2(u)),

as a → ∞, where W1 and W2 are two independent standard Brownian mo-
tions.

2. If, in addition, f(0, u) = 0,

|f(t, u)− f(s, u)| ≤ c|f(t− s, u)| for all s, t, u ∈ R,

|f(t, u)| ≤ ctH |f(1, u + ln t)| for some 0 < H < 1

and

sup
n∈Z

E(|ξn|2k + |ηn|2k) <∞ for some k >
1

2H
,

then for any T > 0 ξa(t) converges weakly to ξ(t) in the space C[0, T ] endowed
with the uniform topology.

Corollary 1.15.7. Let f̃(t, u) = (eieut − 1)e−Hu. Then the corresponding
process ξf̃

a (t) is called the normalized Weierstrass–Mandelbrot process and,
according to Theorem 1.15.6, it converges weakly to the process

ξf̃ (t) :=
∫

R

(eieut − 1)e−Hu(dW1(u) + dW2(u)).

Moreover, the processes ξf̃ (t) and B̃H
t have identical finite-dimensional dis-

tributions because they are both Gaussian, have zero mean and the same co-
variance functions.

Remark 1.15.8. The proof of Theorem 1.15.6 is based on the Functional Cen-
tral Limit Theorem.

(iii) Weak convergence of random walks to fBm in Besov spaces (in the
scheme of series). Consider a random walk {Xn}n≥1 consisting of stationary
Gaussian random variables with zero mean and correlations r(i−j) := EXiXj .
Recall that a positive function ϕ(x), x ≥ a for some a > 0 is said to be slowly
varying at ∞ if for all t > 0 limx→∞ ϕ(tx)/ϕ(x) = 1. Denote by D = D[0, 1]
the Skorohod space of right-continuous functions on the interval [0, 1] that
have left-hand limits, and equip D with the metric

d(x, y) := inf{ε > 0 : ∃λ ∈ Λ such that ‖λ‖ < ε

and sup
t
|x(t)− y(λ(t))| ≤ ε}.

Here ‖λ‖ := sups �=t | log(λ(t)− λ(s))/(t− s)| and

Λ := {λ : [0, 1]→ [0, 1], λ is strictly increasing and continuous mapping
of [0, 1] into itself}.
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Under this metric D is a separable and complete metric space, and we denote
by D−→ the convergence in the Skorohod topology, which is the weak topology
induced by this metric. That is, Xn D−→ X if Eψ(Xn) → Eψ(X) as n → ∞
for any bounded and continuous ψ : D → R. We start with the following
result of Taqqu:

Lemma 1.15.9 ((Taq75)). Let {Xn}n≥1 be a stationary Gaussian sequence
with mean 0 and correlations r(i− j) = EXiXj. Assume that

n∑
i,j=1

r(i− j) ∼ n2Hϕ(n) as n→∞, (1.15.21)

with 0 < H < 1, ϕ slowly varying.
Then Zn

D−→ B̃H , where Zn(t) = d−1
n

∑[nt]
i=1 Xi with dn ∼ n2Hϕ(n), B̃H

is an fBm with Hurst index H, not necessarily normalized.

Remark 1.15.10. Condition (1.15.21) is satisfied for H ∈ (1/2, 1) when r(k) ∼
k2α−1ϕ(k), and for H ∈ (0, 1/2), when r(k) ∼ −k2α−1ϕ(k) as k → ∞ with
r(0) + 2

∑∞
k=1 r(k) = 0.

Further, define for a function f ∈ Lp[0, 1] the modulus of continuity in
Lp[0, 1]:

ωp(f, t) := sup
|h|≤t

(∫
Ih

|f(x + h)− f(x)|pdx

)1/p

,

where Ih := {x ∈ [0, 1], x + h ∈ [0, 1]}. Now, for 0 < γ < 1 and β > 0, we
consider a real function ωγ

β : (0, 1]→ R of the form ωγ
β(t) := tγ(1 + log 1/t)β ,

t ∈ (0, 1], and denote

‖f‖p, ωα
β

:= ‖f‖Lp[0,1] + sup
0<t≤1

ωp(f, t)/ωγ
β(t).

Recall that the Besov space Lipp(γ, β) is the class of functions f in Lp[0, 1]
such that ‖f‖p, ωγ

β
< ∞; Lipp(γ, β) endowed with the norm ‖ · ‖p, ωγ

β
is a

non-separable Banach space. It is possible to consider a separable subspace
lipp(γ, β) of Lipp(γ, β) of the functions f ∈ Lipp(γ, β) satisfying ωp(f, t) =
o(ωγ

β(t)) as t ↓ 0. According to (BL01), the paths of fBm BH , H ∈ (0, 1) are
a.s. in lipp(H,β) for any β > 0 and p ≥ 1/H ∨ 1/β. The next result is proved
in (BL01).

Theorem 1.15.11. Let H ∈ (0, 1), β > 0, p > 1/H ∨ 1/β, and let {Xn}n≥1

be a stationary Gaussian sequence with mean 0 and correlations r(i − j) =
E XiXj. Assume that

n∑
i,j=1

r(i− j) ∼ Cn2H as n→∞, where C > 0.

Then C−1/2Zn → BH as n→∞ weakly in the space lipp(H,β).
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(iv) Convergence of martingale differences to fBm. We follow here Niemi-
nen’s paper (Nie04), which generalizes the result from (Sot01). Consider the
following scheme of series: let (Ω,F , P ) be a probability space, (Xi,n,Fi,n)n≥1,
1 ≤ i ≤ n be a sequence of square integrable martingale-differences, i.e.,
Xi,n is Fi,n-adapted, EX2

i,n < ∞, E(Xi,n/Fi−1,n) = 0, F0,n = (∅, Ω),
Fi,n ⊂ Fi+1,n ⊂ F . Consider the sequence of kernels for H ∈ (1/2, 1)

Z(n)(t, s) = n

∫ s

s−1/n

mH

(
[nt]
n

, u

)
du

for s ∈ [1/n, 1] and t ∈ [0, 1], where [x] = k for k ≤ x < k + 1, k ∈ Z. Define
the processes

Wn
t :=

[nt]∑
i=1

Xi,n, t ∈ [0, 1],

and

Zn
t :=

∫ t

0

Z(n)(t, s)dWn
s =

[nt]∑
i=1

n

∫ i/n

i−1/n

mH

(
[nt]
n

, u

)
du · ξ(n)

i .

Theorem 1.15.12 ((Nie04)). Let limn→∞ n(Xi,n)2 = 1 a.s., 1 ≤ i ≤ n and
max1≤i≤n |Xi,n| ≤ Cn−1/2 a.s. for some C ≥ 1.

Then Zn D−→ BH , n→∞, where the convergence is in D[0, 1].

In the case when ξ
(n)
i are i.i.d. random variables, the corresponding result

is proved by Sottinen (Sot01) under weaker conditions.

Theorem 1.15.13 ((Sot01)). Let ξ
(n)
i = 0, Dξ

(n)
i = 1. Then Zn

D−→ BH in
the Skorohod space D[0, T ] for any T > 0.

(v) Convergence of integral functionals. Using Theorem 1.15.13, we can
prove the result, similar to limit theorems for integral functionals on random
walks, established in (SS70) and (Yos78). For example, (Yos78) considers suf-
ficient conditions for

n−1∑
i=1

fn

(
i

n
,

Si√
n

)
ξi+1√

n

D−→
∫ 1

0

f(t,Wt)dWt,

where ξi is a sequence of martingale differences, Si =
i∑

k=1

ξk, Wt is a Wiener

process. For technical simplicity, we consider i.i.d. random variables and the
interval [0, 1]. Let {fn}, n ≥ 1, fn : R → R be the sequence of functions
satisfying the conditions
1) fn, f ∈ C1(R) and ∀R > 0 ∃MR > 0 such that
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sup
n≥1

sup
|x|≤R

(|fn(x)|+ |f ′
n(x)|) ≤MR;

2) fn ⇒ f uniformly on any [−R,R]. Let πr := {0 = t
(r)
0 < t

(r)
1 < · · · <

t
(r)
pr = 1} be the sequence of partitions of [0, 1], |πr| → 0 as r → ∞. Denote

∆Zn

(
i
n

)
:= Zn

(
i+1
n

)− Zn

(
i
n

)
, ∆Zn,j,r := Zn

(
t
(r)
j+1

)
− Zn

(
t
(r)
j

)
and define

the sequence of integral sums

Sn(πr) :=
pr−1∑
j=1

fn

(
Zn(t(r)j )

)
∆Zn,j,r.

Lemma 1.15.14. Under the conditions of Theorem 1.15.13

P -lim
n→∞

n−1∑
i=1

(
∆Zn

(
i

n

))2

= P -lim
r→∞ lim

n→∞

pr−1∑
j=1

(∆Zn,j,r)
2 = 0.

Proof. We can prove even the convergence in L1(P ). For this purpose, we can
rewrite the difference Zn(t2)− Zn(t1) for any 0 ≤ t1 < t2 ≤ 1 in the form

Zn(t2)− Zn(t1) =
√

n
[nt1]∑
k=1

∫ k
n

k−1
n

(
mH

(
[nt2]

n , s
)
−mH

(
[nt1]

n , s
))

ds · ξ(n)
k

+
√

n
[nt2]∑

k=[nt1]+1

∫ k
n

k−1
n

mH

(
[nt2]

n , s
)

ds · ξ(n)
k .

Denote αn(m, l) :=
∫ m

n
m−1

n

mH

(
l
n , s
)
ds, and

βn(n, l1, l2) :=
{

αn(m, l2)− αn(m, l1), m ≤ l1 ≤ l2,
αn(m, l2), l1 ≤ m ≤ l2.

. Then

Zn(t2)− Zn(t1) =
√

n
[nt2]∑
k=1

βn (k, [nt1], [nt2]) ξ
(n)
k , and

E|Zn(t2)− Zn(t1)|2 = n
[nt2]∑
k=1

β2
n (k, [nt1], [nt2])

= n
[nt1]∑
k=1

(∫ k
n

k−1
n

(
mH

(
[nt2]

n , s
)
−mH

(
[nt1]

n , s
))

ds
)2

+ n
[nt2]∑

k=[nt1]+1

(∫ k
n

k−1
n

mH

(
[nt2]

n , s
)

ds
)2

≤ ∫ [nt1]
n

0

(
mH

(
[nt2]

n , s
)
−mH

(
[nt1]

n , s
))2

ds +
∫ [nt2]

n
[nt1]

n

(
mH

(
[nt2]

n , s
))2

ds

= (C(5)
H )2
( ∫ [nt1]

n

0
s−2α

(∫ [nt2]
n

[nt1]
n

uα(u− s)α−1du

)2

ds

+
∫ [nt2]

n
[nt1]

n

(∫ [nt2]
n

s
uα(u− s)α−1du

)2

ds
)

= E|BH(t2)−BH(t1)|2 =
∣∣∣ [nt2]

n − [nt1]
n

∣∣∣2H

≤ (t2 − t1)2H .

(1.15.22)
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From (1.15.22) E
n−1∑
i=1

∣∣∆Zn

(
i
n

)∣∣2 ≤ n−1∑
i=1

n−2H → 0, n→∞ and

E
pr−1∑
i=1

|∆Zn,j,r|2 ≤
pr−1∑
j=1

(t(r)j+1 − t
(r)
j )2H → 0, r →∞. 	


Lemma 1.15.15. Under conditions 1) and 2)

lim
r→∞ lim sup

n→∞
P

(∣∣∣Sn(πr)−
n−1∑
i=1

f
(
Zn

( i

n

))
∆Zn

( i

n

)∣∣∣ > δ

)
= 0 for any δ > 0.

Proof. Let a function F : R→ R be such that F ′(x) = f(x), x ∈ R. Then by
the Taylor formula

F (Zn(1))− F (0) =
n−1∑
i=0

(
F
(
Zn

(
i+1
n

))− F
(
Zn

(
i
n

)))
=

n−1∑
i=0

f
(
Zn

(
i
n

))
∆Zn

(
i
n

)
+ 1

2

n−1∑
i=0

f ′ (θi,n)
(
∆Zn

(
i
n

))2
,

F (Zn(1))− F (0) =
pr−1∑
j=0

(
F
(
Zn

(
t
(r)
j+1

))
− F
(
Zn

(
t
(r)
j

)))
=

pr−1∑
j=0

f
(
Zn

(
t
(r)
j

))
∆Zn,j,r + 1

2

pr−1∑
j=0

f ′ (θn,j,r) (∆Zn,j,r)
2
,

where the points θi,n are between Zn

(
i
n

)
and Zn

(
i+1
n

)
, and the points θn,j,r

are between Zn

(
t
(r)
j

)
and Zn

(
t
(r)
j+1

)
. Therefore∣∣∣∣Sn(πr)−

n−1∑
i=1

f
(
Zn

(
i
n

))
∆Zn

(
i
n

)∣∣∣∣ ≤ 1
2

n−1∑
i=0

|f (θi,n)| ∣∣∆Zn

(
i
n

)∣∣2
+ 1

2

pr−1∑
j=0

|f ′ (θn,j,r) | |∆Zn,j,r|2 ,

and for any δ > 0

P

(∣∣∣∣Sn(πr)−
n−1∑
i=1

f
(
Zn

(
i
n

))
∆Zn

(
i
n

)∣∣∣∣ > δ

)
≤ P

(
sup0≤t≤1 |Zn(t)| ≥ R

)
+P

(
n−1∑
i=0

(
∆Zn

(
i
n

))2 ≥ 2δ
MR

)
+ P

(
n−1∑
i=0

(∆Zn,j,r)
2 ≥ 2δ

MR

)
.

(1.15.23)
Note that Zn

D−→ BH , and functionals sup and inf are continuous in the Sko-
rohod topology, whence P

(
sup0≤t≤1 |Zn(t)| ≥ R

)→ P
(
sup0≤t≤1 |BH

t | ≥ R
)
,

and the last probability tends to 0 as R→∞, according to (Sin97). The proof
follows now from Lemma 1.15.14 and (1.15.23). 	

Theorem 1.15.16. Under the conditions of Lemma 1.15.15
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n−1∑
i=1

fn

(
Zn

(
i

n

))
∆Zn

(
i

n

)
d−→
∫ 1

0

f(BH
t )dBH

t , n→∞,

where d−→ denotes here the convergence in distribution.

Remark 1.15.17. The existence of integral
∫ 1

0
f(BH

t )dBH
t for H ∈ (1/2, 1) and

f ∈ C1(R) follows from (Zah98) (see also Section 2.1), and this integral is a
limit a.s. of Riemann–Stieltjes sums.

Proof. Consider the difference

∆n :=
∫ 1

0

f(BH
t )dBH

t −
n−1∑
i=1

fn

(
Zn

(
i

n

))
∆Zn

(
i

n

)

and write it in the form ∆n :=
4∑

j=1

∆
(j)
n,r, where ∆

(1)
n,r =

∫ 1

0
f(BH

t )dBH
t −

pr−1∑
j=1

f

(
BH

t
(r)
j

)
∆BH

j,r is independent of n, ∆BH
j,r = BH

t
(r)
j+1
−BH

t
(r)
j

.

∆(2)
n,r =

pr−1∑
j=1

f(BH

t
(r)
j

)∆BH
j,r −

pr−1∑
j=1

f

(
Z

(n)

t
(r)
j

)
∆Z

(n)
j,r ,

∆(3)
n,r =

pr−1∑
j=1

f(Z(n)

t
(r)
j

)∆Z
(n)
j,r −

pr−1∑
j=1

fn

(
Z

(n)

t
(r)
j

)
∆Z

(n)
j,r ,

∆(4)
n,r =

pr−1∑
j=1

fn(Z(n)

t
(r)
j

)∆Z
(n)
j,r −

pr−1∑
j=1

fn

(
Z

(n)
i
n

)
∆Z

(n)
i
n

.

From the result of Zähle (Zah98) cited above, P -limr→∞ ∆
(1)
n,r = 0. By

Lemma 1.15.15 P -limr→∞ ∆
(4)
n,r = 0.

As to ∆
(2)
n,r, we have from the weak convergence of Z(n) to BH that

pr−1∑
j=1

f

(
Z

(n)

t
(r)
j

)
∆Z

(n)
j,r

d−→
pr−1∑
j=1

f(BH

t
(r)
j

)∆BH
j,r,

as n → ∞, for any fixed r ≥ 1. We must estimate now ∆
(3)
n,r. The technique

here is similar to the proof of Lemma 1.15.15.
Let F (x) =

∫ x

0
f(t)dt, Fn(x) =

∫ x

0
fn(t)dt. Then

F (Z(n)
1 ) =

pr−1∑
j=1

(
F

(
Z

(n)

t
(r)
j+1

)
− F

(
Z

(n)

t
(r)
j

))
=

pr−1∑
j=1

f(Z(n)

t
(r)
j

)∆Z
(n)
j,r + 1

2

pr−1∑
j=0

f ′
(
θ
(n)
j,r

)(
∆Z

(n)
j,r

)2

,

(1.15.24)
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and, similarly,

Fn(Z(n)
1 ) =

pr−1∑
j=1

fn(Z(n)

t
(r)
j

)∆Z
(n)
j,r + 1

2

pr−1∑
j=0

f ′
n

(
θ̃
(n)
j,r

)(
∆Z

(n)
j,r

)2

, (1.15.25)

where θ
(n)
j,r and θ̃

(n)
j,r are between Z

(n)

t
(r)
j

and Z
(n)

t
(r)
j+1

. Now,

|F (Z(n)
1 )− Fn(Z(n)

1 )| ≤ |Z(n)
1 | sup

|t|≤|Z(n)
1 |
|fn(t)− f(t)|,

whence

P{|F (Z(n)
1 )− Fn(Z(n)

1 )| ≥ δ} ≤ P{|Z(n)
1 | ≥ R}

+ P
{

sup|t|≤R |fn(t)− f(t)| ≥ δ
R

} (1.15.26)

(The last event is not random.) Since fn uniformly converges to f on
[−R,R], the last term in (1.15.26) is zero for all sufficiently large n, and
limn→∞ P{|Z(n)

1 | ≥ R} = P{|BH
1 | ≥ R} ≤ 1

R2 . Therefore, from (1.15.24)–
(1.15.26) and Lemmas 1.15.14–1.15.15

P -lim
r→∞ lim

n→∞∆(3)
n,r = 0,

and the theorem is proved. 	

Remark 1.15.18. The paper (Wang03) contains a result on a weak convergence
to fBm in the Brownian scenery.

(vi) fBm as a weak limit of Poisson shot noise processes.
Let for all n ∈ Z\{0} Xn be i.i.d.r.v. with EX1 = 0 and EX2

1 ∈ (0,∞),
g : R+ → R be a continuously differentiable function with g′(u) = O(u−1/2−ε),
u → ∞ for some ε > 0. Consider the special model of multiplicative shots:
Xi(u) = g(u)Xi, u ≥ 0, and a shot noise model, which is defined as

S(t) =
N(t)∑
i=1

Xi(t− Ti) +
∑

i≤−1

[Xi(t− Ti)−Xi(−Ti)], t ≥ 0,

where N is a two-sided homogeneous Poisson process with the rate α > 0 and
points · · · < T−2 < T−1 < 0 < T1 < T2 < · · · . For t = 0 we put S(0) = 0.

According to (KK04), the multiplicative process with the above restric-
tions on g and Xi exists and has the following sample path properties.

Lemma 1.15.19. The process S possesses a right-continuous version with
left limits on R+ and has a finite variation on any [0, T ], T > 0. Therefore,
it is a semimartingale with respect to its natural filtration.
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Now, suppose that limu→∞ ug′(u)/g(u) = γ with γ ∈ (0, 1/2). Introduce
the rescaled process

S(x, t) =
S(xt)
σ(t)

, x ∈ [0,∞), t > 0,

where σ2(t) = V ar(S(t)).

Theorem 1.15.20. Under the above assumptions,

S(·, t)−→BH , t→∞
when the convergence is in D[0,∞) with the metric of uniform convergence
on compacts, and H = 1/2 + γ.

1.16 Hölder Properties of the Trajectories of fBm
and of Wiener Integrals w.r.t. fBm

Let {ξt, t ∈ [0, T ]} be a separable modification of Gaussian process, ρ2
ξ(s, t) =

E(ξs−ξt)2, G = G(x) : R+ → R+ be a continuous increasing function, G(0) =
0, D(T, ε) =

∫ ε

0
H(T, u)1/2du be the Dudley integral (see Section 1.10), ρ(s, t)

be some semi-metric in [0, T ].

Definition 1.16.1. A function Θ = Θ(x) : R+ → R+ is called a modulus of
continuity if Θ(0) = 0 and for any x1, x2 ≥ 0

Θ(x1) ≤ Θ(x1 + x2) ≤ Θ(x1) + Θ(x2).

Definition 1.16.2. Let g : [0, T ]→ R be some function. The function

ε→ ∆ρ(g, ε) := sup
ρ(s, t) ≤ ε
s, t ∈ [0, T ]

|g(s)− g(t)|

is called a modulus of uniform continuity of the function g with respect to the
semi-metric ρ.

Definition 1.16.3. A modulus Θ(·) is called a uniform modulus of a Gaussian
process ξ with respect to the semi-metric ρ if for a.a. ω ∈ Ω

lim sup
ε→0

∆ρ(ξ.(ω), ε)/Θ(ε) <∞.

The next result is formulated in the book (Lif95).

Theorem 1.16.4. 1. Let for any s, t ∈ [0, T ]

ρξ(s, t) ≤ G(ρ(s, t)). (1.16.1)

Then the function Θ(ε) := D(T,G(ε)) is a uniform modulus of the
Gaussian process ξ with respect to the semi-metric ρ.
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2. Under assumption (1.16.1) with ρ(s, t) = |s− t|, the function

Θ(ε) =
∫ ε

0

| log r|1/2dG(r)

is a uniform modulus of the Gaussian process ξ with respect to ρ.

Definition 1.16.5. We say that the function f : [0, T ] → R belongs to the
space Cβ−[0, T ] if f ∈ Cγ [0, T ] for any γ < β.

Let ξt = BH
t be an fBm with Hurst index H ∈ (0, 1). Then, evidently,

we can take G(x) = xH , so from the second statement of previous theorem,
the function Θ(ε) ∼ εH | log ε|1/2 will be a uniform modulus of BH on any
[0, T ]. In particular, |BH

t − BH
s | ≤ c(ω)|t − s|H−β for any 0 < β < H, i.e.

BH ∈ CH−[0, T ] for a.a. ω and any T > 0. Now, let ξt = It(f) =
∫ t

0
f(s)dBH

s

with f ∈ LH
2 [0, t] for any 0 ≤ t ≤ T , H ∈ (1/2, 1). We can take ρ(s, t) =∫ t

s
|f(u)| 1H du, G(x) = CHxH ,

∆ρ(I, ε) = sup
0≤s<t≤T :∫ t

s
|f(u)| 1

H du<ε

|ξt − ξs|,

D(T,G(ε)) =
∫ CHεH

0
H(T, u)1/2du. Then, according to the first statement of

Theorem 1.16.4 and Theorem 1.10.3

lim sup
ε→0

∆ρ(I, ε)/D(T,G(ε)) <∞.

Now we simplify the situation supposing that f is essentially bounded on
[0, T ], f∗

T := ess sup0≤t≤T |f(t)| < ∞. Then we can take ρ(s, t) = |s − t|,
G(x) = CHf∗

T · xH , and Θ(ε) ∼ CHf∗
T εH | log ε|1/2 will be a uniform modulus

of I(f) on [0, T ].
Now consider the case H ∈ (0, 1/2), and f , as before, belongs to LH

2 [0, t] for
any 0 ≤ t ≤ T . We suppose additionally that f ∈ Cβ [0, T ] for H + β > 1/2.
Then, according to Remark 1.10.7, we can take ρ(s, t) = |s − t|, G(x) =
CH ‖f‖Cβ [0,T ] x

H , and Θ(ε) ∼ CH ‖f‖Cβ [0,T ] ε
H | log ε|1/2 will be a uniform

modulus of I(f) on [0, T ].
Remark 1.16.6. Some results related to moduli of continuity for non-Gaussian
processes can be found in Subsection 3.5.9.

1.17 Estimates for Fractional Derivatives of fBm
and of Wiener Integrals w.r.t. Wiener Process via
the Garsia–Rodemich–Rumsey Inequality

The following results are not only of independent interest but also will be
used in Chapter 3, devoted to stochastic differential equations involving fBm.



1.17 Estimates for Fractional Derivatives of fBm and Wiener Integrals 89

Consider for any T > 0 the random variable that is the right-sided Riemann–
Liouville fractional derivative of order β (in Weyl representation) of fBm BH ,
where 1−H < β < 1/2 and H ∈ (1/2, 1):

Gt :=
1

Γ (β)
sup

0≤s<z≤t
|D1−β

z− BH
z−(s)|, t ∈ [0, T ].

Lemma 1.17.1. For any 1−H < β < 1/2 and any p > 0

EGp
t <∞.

Proof. By the Garsia–Rodemich–Rumsey inequality (GRR71), for any p ≥ 1
and ρ > p−1 there exists a constant Cρ,p > 0 such that for any continuous
function f on [0, T ] and for all s < z ≤ t ∈ [0, T ]

|f(z)− f(s)|p ≤ Cρ,p|z − s|ρp−1

∫ z

0

∫ z

0

|f(x)− f(y)|p
|x− y|ρp+1

dx dy.

Choose ε < β − (1−H) and put ρ = H − ε
2 , p = 2

ε and f(t) = BH
t :

|BH
z −BH

s | ≤ CH,ε|z − s|H−εξt,ε,

where

ξt,ε =

(∫ t

0

∫ t

0

|BH
x −BH

y |
2
ε

|x− y| 2H
ε

dx dy

) ε
2

, 0 < ε < H. (1.17.1)

Since BH
x −BH

y is a Gaussian random variable, and E|BH
x −BH

y |2
= |x− y|2H , we have that for the random variable ξt,ε for any q > 1

E|ξt,ε|q = E

(∫ t

0

∫ t

0

|BH
x −BH

y | 2ε
|x−y| 2H

ε
dx dy

)q ε
2

≤ Cq,H,T

∫ T

0

∫ T

0

E|BH
x −BH

y |q
|x−y|Hq dx dy ≤ Cq,H,T ,

which means that all moments of ξt,ε are finite.
Further, for ε < β − (1−H)

Gt ≤ Cβ sup0≤s<z≤t

(
|BH

z −BH
s |

|z−s|1−β +
∫ z

s

|BH
s −BH

y |
|s−y|2−β dy

)
≤ Cβ,H,ε sup0≤s<t(t− s)H−ε−1+βξt,ε ≤ Cβ,H,εξt,ε,

so, EGp
t <∞ for any p > 0. 	


Remark 1.17.2. 1) It is easy to see that the random process {Gt, t ∈ [0, T ]}
is dominated, up to a constant, by some continuous process with moments of
any order, namely, by ξt,ε.
2) Evidently, all moments of the random variable GT are finite.
3) It follows immediately from Corollary 1.9.4 that the same conclusions hold
for a Wiener integral w.r.t. fBm with a bounded integrand and H ∈ (1/2, 1).
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Now, we establish Hölder properties and estimates, similar to the afore-
mentioned, for the integral {∫ t

0
bsdWs, t ∈ [0, T ]}, where bs is a predictable

bounded process. For any 0 < δ < 1/4 put p = 2
δ , θ = 1/2 − δ/2 in the

Garsia–Rodemich–Rumsey inequality. Then∣∣∣∣∫ t

s

budWu

∣∣∣∣ ≤ Cδ|t− s|1/2−δξb
t,δ,

where

ξb
t,δ :=

(∫ t

0

∫ t

0

| ∫ y

x
budWu|2/δ

|x− y|1/δ
dx dy

)δ/2

, (1.17.2)

and for any q > 1 from the Hölder and Burkholder inequalities

E|ξb
t,δ|q = E

(∫ t

0

∫ t

0

| ∫ y

x
budWu|2/δ

|x− y|1/δ
dx dy

)qδ/2

≤ Cq,t

∫ t

0

∫ t

0

E| ∫ y

x
budWu|qdx dy

|x− y|q/2
≤ Cq,t

∫ t

0

∫ t

0

| ∫ y

x
b2
udu|q/2dx dy

|x− y|q/2
≤ Cq,t,

Note that the process ξb
t,δ is continuous and strictly increasing, so, our Wiener

integral with respect to the Wiener process is dominated by a strictly increas-
ing process with all moments bounded on [0, T ].

1.18 Power Variations of fBm and of Wiener Integrals
w.r.t. fBm

We start here with the simple result obtained by Rogers in (Rog97). Consider
for fBm {BH

t , t ≥ 0} with H ∈ (0, 1) and for p > 0 the sums

Sn,p(t) =
2n∑

j=1

∣∣∣BH
jt
2n
−BH

(j−1)t
2n

∣∣∣p · 2n(pH−1), (1.18.1)

and

S̃n,p(t) = 2−n
2n∑

j=1

∣∣∣BH
jt −BH

(j−1)t

∣∣∣p .

Then Law(Sn,p(t)) = Law(S̃n,p(t)) (i.e., these sums have identical dis-
tribution), due to the self-similarity property of BH : (Law(BH

ct , t > 0) =
Law(cHBH

t , t > 0)).
The sequence (BH

k −BH
k−1)k∈N is stationary. Therefore, from the ergodic

theorem
S̃n,p(t)→ E|BH

t |p =: Cpt
pH as n→∞
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with probability 1 and in L1(P ), whence

Sn,p(t)
d−→ Cpt

pH , n→∞, (1.18.2)

so Sn,p(t)
P−→ Cpt

pH , n→∞.
From (1.18.1)–(1.18.2)

2n∑
j=1

∣∣∣BH
jt
2n
−BH

(j−1)t
2n

∣∣∣p P−→

⎧⎪⎨⎪⎩
0, p > 1

H ,
+∞, p < 1

H ,

E
∣∣BH

t

∣∣1/H
, p = 1/H.

(1.18.3)

Now, consider the interval [0, 1]; let {πk, k ≥ 1} be a sequence of refining
partitions and Π(δ) be the set of all partitions π of [0, 1] with |π| < δ.

Evidently, from (1.18.3) we obtain that

lim
δ→0

sup
π∈Π(δ)

S(|x|p, π,BH) = +∞

with probability 1, where p < 1
H and

S(ψ(x), π,X) :=
∑
tj∈π

ψ(Xtj
−Xtj−1).

Now we use the result of Kawada and Kôno (KK73).

Theorem 1.18.1. Let {Xt, 0 ≤ t ≤ 1} be a centered Gaussian process with
continuous trajectories such that

E|Xt −Xs|2 ≤ σ2(|t− s|),
where {σ(t), 0 ≤ t ≤ 1} is a continuous function with σ(0) = 0. Let {ψ(t), 0 ≤
t ≤ 1} be a non-decreasing regular varying function with exponent α > 0
satisfying

ψ(σ(t)) ≤ tγ(t) for 0 ≤ t ≤ 1 and lim
t↓0

γ(t) = 0.

Then limδ→0 supπ∈Π(δ) S(ψ(x), π,X) = constant (including ∞) holds with
probability 1.

Put Xt = BH
t , σ2(t) = t2α+1, ψ(t) = t

1
H +ε for some ε > 0 (recall that

a function is regularly varying if ψ(xt)
ψ(t) → ρ(x) as t → ∞ and in this case

ρ(x) = xβ for some β ≥ 0). Then ψ(σ(t)) = t1+Hε and all the assumptions of
Theorem 1.18.1 are satisfied. So, limδ→0 supπ∈Π(δ) S(|x|p, π,BH) = const for
any p > 1

H . Evidently, this constant is zero since for any p′ > p > 1
H

S(xp′
, π,BH) ≤ sup

0≤t<t′≤t+δ≤1
|BH

t −BH
t′ |p

′−p · S(xp, π,BH),

and the first factor tends to zero a.s. as δ → 0.
Now, let H ∈ (0, 1

2 ). In this case we can use the following theorem for the
case p = 1

H .
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Theorem 1.18.2 ((KK73)). 1) Let the following assumptions hold:
(a)E|Xs −Xt|2 ≤ σ2(|t− s|);
(b) σ(t) is a non-decreasing regular varying function;

(c) the function σ(t)
√

2 log log 1
t is strictly increasing near the origin.

Let Π̃(k) be the set of all partitions such that min |tj− tj−1| ≥ 1
k . Then

lim supk→∞ sup
π∈Π̃(k)

S(σ−1(x), π,X)
Φ( 1

k )
≤ 1,

with probability 1, where

Φ(t) = sup
s≥t

σ−1
(
σ(s)
√

2 log log 1
s

)
s

.

2) Let the assumption (b) hold and also
(d)E|Xs −Xt|2 ≤ σ2(|t− s|);
(e) σ2(t)−σ2(t−h) ≤ Cσ2(h) for some C > 0, any small t and 0 ≤ h ≤ t.
Then lim infk→∞ supπ∈Π̃(k)

S(σ−1(x),π,X)

Φ( 1
k )

≥ 1 with probability 1.

Put σ(t) = tH , Xt = BH
t . Then conditions (a), (b), (c) and (d) hold.

Moreover, for H ∈ (0, 1
2 ) σ2(t) − σ2(t − h) = t2α+1 − (t − h)2α+1 ≤ h2α+1

for all 0 ≤ h ≤ t ≤ 1. The function Φ(t) now has the form Φ(t) =

(2 log log 1
t )

1
H , whence limk→∞ supπ∈Π̃(k)

S(|x| 1
H ,π,BH)

(2 log log k)
1

2H
= 1 or, in other words,

limk→∞ supπ∈Π̃(k)

∑
tj∈π |BH

tj
−BH

tj−1
| 1

H

(2 log log k)
1

2H
= 1.

For H ∈ (1/2, 1) we have no assumption (e), so, give only upper bounds.
Namely, from the first statement of Theorem 1.18.2, we can deduce that

lim supk→∞ sup
π∈Π̃(k)

∑
tj∈π |BH

tj
−BH

tj−1
| 1H

(2 log log k)
1

2H

≤ 1.

Moreover, the following result holds.

Theorem 1.18.3. Under assumptions (a)–(c)

lim
δ→0

sup
π∈Π(δ)

S(ψ(x), π,X) ≤ 1,

with probability 1, where ψ(x) is the inverse function to σ(t)
√

2 log log 1
t near

the origin.

In our case it means that

lim
δ→0

sup
π∈Π(δ)

∑
tj∈π

ψ(|BH
tj
−BH

tj−1
|) ≤ 1,
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where ψ(t) is the inverse function to tH
√

2 log log 1
t .

Let, as before, Π be the set of all partitions of the interval [0, 1].

Definition 1.18.4. For any p > 0 define p-variation of the function f on the
interval [a, b] as

vp(f) = sup
π∈Π

S(|x|p, π, f).

Also, let p-variation index of the function f be v(f) := inf(p : vp(f) <∞).
The last relations mean that v(BH) = 1

H with probability 1, and, more-
over,

vp(BH) <∞ for p >
1
H

and =∞ for p <
1
H

.

This result was obtained in (Nrv99) from another point of view. Let
{Xt, t ≥ 0} be a Gaussian process with stationary increments and E|Xt+s −
Xt|2 = σ2(s). Let γ∗ := inf{γ > 0 : lims↓0 sγ

σ(s) = 0} and γ∗ := sup{γ > 0 :

lims↓0 sγ

σ(s) = ∞}. Then 0 ≤ γ∗ ≤ γ∗ ≤ +∞. If γ∗ = γ∗ then we say that the
process Xt has the Orey index γ(X) = γ∗ = γ∗. Let Xt have the Orey index
γ(X) ∈ (0, 1); then it follows from the results of Berman (Ber69) and also
from (JM83) that the p-variation index of Xt equals v(X) = 1

γ(X) . Evidently,
the Orey index of the fBm equals its Hurst index and equals H.

Now consider briefly the Gaussian process Xt = It(f) =
∫ t

0
f(s)dBH

s .
Let H ∈ (1

2 , 1) and the function f is essentially bounded on [0, 1],
ess sup0≤t≤1 |f(t)| = f∗.

Then, according to Theorem 1.10.3, E|Xt − Xs|2 ≤ σ2(|t −
s|), where σ2(t) = CH(f∗)2t2α+1, therefore from Theorem 1.18.1
limδ→0 supπ∈Π(δ) S(|x|p, π, I) = 0 for any p > 1

H and from Theorems 1.18.2
and 1.18.3

lim supk→∞ sup
π∈Π̃(k)

S(|x| 1H , π, I)
Φ( 1

k )
≤ 1 P -a.s., (1.18.4)

lim
δ→∞

sup
π∈Π̃(δ)

S(ψ(x), π, I) ≤ 1 P -a.s. (1.18.5)

where ψ(x) is the inverse to C
1/2
H f∗ tH

√
2 log log 1

t near the origin.
Let f∗ := ess inf0≤t≤1 f(t) > 0. Then

E|It − Is|2 = CH

∫ t

s

∫ t

s

f(u)f(v)|u− v|2α−1du dv ≥ CHf2
∗ |t− s|2α+1,

whence S(|x|p, π, I) P−→ ∞ as |π| → 0 and p < 1
H , and together with Theo-

rem 1.18.1 it means that

lim
δ→0

sup
π∈Π(δ)

S(|x|p, π, I) =∞ P -a.s., p <
1
H

.
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For H ∈ (0, 1
2 ) and f with f∗ > 0 we can immediately conclude from

Theorem 1.9.1 that

E|It − Is|2 ≥ CH‖f‖2L 1
H

[s,t] ≥ CHf2
∗ |t− s|2α+1,

whence S(|x|p, π, I) P−→ ∞ as |π| → 0 and p < 1
H . Let f ∈ Cβ [0, 1]. Then we

can deduce from Remark 1.10.7 that

E|It − Is|2 ≤ CH‖f‖Cβ([0,1])((t− s)2α+1 + (t− s)2H+2β),

whence (1.18.4)–(1.18.5) follow for H ∈ (0, 1
2 ).

Remark 1.18.5. In the paper (CNW06) the process of the form
∫ t

0
usdBH

s is
considered where us is a stochastic process with paths of finite q-variation
and the integral is pathwise Riemann–Stieltjes integral (construction of such
integrals is described in Section 2.1). The convergence in probability of the
normalized power variations of these integrals is established and their devia-
tions are considered.
Remark 1.18.6. Modern results on power variation of the integrals and other
processes related to fBm are established in (GuNu05), (Nrv99), (CNW06),
(DN99).

1.19 Lévy Theorem for fBm

The idea of this problem belongs to E. Valkeila. The results are published in
(MV06). We start with the classical Lévy theorem:

Theorem 1.19.1. Let {µ(t), t ≥ 0} be a continuous local martingale with the
angle bracket 〈µ〉t = t. Then µt is the Wiener process.

The natural question is: how can the fBm be characterized in a similar
way or by some other properties?

Let {Ω,F , {Ft}t≥0, P} be some stochastic basis, {Xt, t ≥ 0} be a stochas-
tic process (not necessarily adapted, as for beginning). For any t > 0, denote
tk := t k

n , 1 ≤ k ≤ n. The main result of this section is:

Theorem 1.19.2. Let the process Xt satisfy the following conditions:

(a) trajectories of X are Hölder of any order 0 < β < H, where 0 < H < 1;
(b) n2α

∑n
k=1(Xtk

− Xtk−1)
2 → t2α+1 for any t > 0 in the space L1(P ), as

n→∞.
(c) the process Mt :=

∫ t

0
s−α(t−s)−αdXs is an Ft-adapted continuous square-

integrable martingale, where α = H − 1/2.

Then Xt is an Ft-adapted fBm with Hurst index H.
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Proof. We shall divide the proof into several steps. First, consider the case
H ∈ ( 1

2 , 1). Let the square-integrable martingale Wt :=
∫ t

0
sαdMs, t ∈ [0, T ],

T > 0 and the process Yt :=
∫ t

0
s−αdXs. For convenience we put T = 1. We

can establish the existence in the pathwise sense of the latter integral using
Hölder properties of X and integration by parts.

Evidently,

Mt =
∫ t

0

(t− s)−αdYs. (1.19.1)

Lemma 1.19.3. The process Xt admits the representation

Xt =
1

CH

∫ t

0

[∫ t

u

sα(s− u)α−1ds

]
u−αdWu,

where CH = B(α, 1− α).

Proof. Equation (1.19.1) is a generalized Abel integral equation and has the
formal solution

Yt =
1

CH

∫ t

0

(t− s)α−1Msds. (1.19.2)

It is very easy to check that (1.19.1) becomes an identity, if we substitute
(1.19.2) into (1.19.1), rewritten as

Mt = t−αYt + α

∫ t

0

(t− s)−1−α(Yt − Ys)ds. (1.19.3)

Moreover, the corresponding homogeneous equation

0 = t−αYt + α

∫ t

0

(t− s)−1−α(Yt − Ys)ds,

has only a zero solution, whence Yt admits the representation (1.19.2). Further,

Xt =
∫ t

0

sαdYs = tαYt − α

∫ t

0

sα−1Ysds

=
tα

CH

∫ t

0

(t− s)α−1Msds− α

CH

∫ t

0

sα−1

∫ s

0

(s− u)α−1Mudu ds

=
1

CH

∫ t

0

[∫ t

u

sα(s− u)α−1ds

]
dMu.

	

Remark 1.19.4. From Lemma 1.19.3, for any 1 ≤ k ≤ n, it follows that

Xtk
−Xtk−1 =

1
CH

(∫ tk

0

(∫ tk

s

uα(u− s)α−1du

)
dMs
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−
∫ tk−1

0

(∫ tk−1

s

uα(u− s)α−1du

)
dMs

)
=

1
CH

(∫ tk−1

0

(∫ tk

tk−1

uα(u− s)αdu
)
dMs

+
∫ tk

tk−1

(∫ tk

s

uα(u− s)α−1du

)
dMs

)
. (1.19.4)

Denote

ϕt
k(s) :=

∫ tk

tk−1

uα(u− s)α−1du,

and

ψt
k(s) :=

∫ tk

s

uα(u− s)α−1du.

Then

�Xtk
:= Xtk

−Xtk−1 =
1

CH

(∫ tk−1

0

ϕt
k(s)dMs +

∫ tk

tk−1

ψt
k(s)dMs

)
.

(1.19.5)
Now, let 0 < s < t, and let s

t be a rational number, such that s
t ∈ Q.

Lemma 1.19.5. Let ñ ∈ N be an increasing sequence, such that ñ s
t ∈ N,

tk̃ := tk/ñ.

Then ñ2α
∑ñ

k=ñ s
t +1 (Xt

k̃
−Xt

˜k−1
)2

L1(P )−−−−→ t2α(t− s), ñ→∞.

Proof. Evidently,

ñ2α

ñ s
t∑

k=1

(
∆Xt

k̃

)2 =
(
ñ

s

t

)2α

·
(

t

s

)2α ñ s
t∑

k=1

(
∆X sk

ñ s
t

)2

→ s2α+1 ·
(

t

s

)2α

= st2α.

We know from condition (b) that ñ2α
∑ñ

k=1

(
∆Xt

k̃

)2 → t2α+1, whence the
claim follows. 	


Now we want to estimate ñ2α
∑ñ

k=ñ s
t

(
∆Xt

k̃

)2 in terms of the angle
bracket 〈M〉, by using representations (1.19.4)) and (1.19.5). In order to do
this, rewrite the increment of the process X in the form

∆Xt k
n

=
1

CH

(∫ tk−2

0

ϕt
k(s)dMs +

∫ tk−1

tk−2

ϕt
k(s)dMs +

∫ tk

tk−1

ψt
k(s)dMs

)

=:
1

CH
(Ik

1 + Ik
2 + Ik

3 ).

Evidently,
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ϕt
k(s) ≤

(
tαk (tk−1 − s)α−1 · t

n

)
∧
(

n−α

α

)
(1.19.6)

and

ñ2α
ñ∑

k=ñ s
t +1

(
∆Xt k

ñ

)2

=
ñ2α

C2
H

⎛⎝ ñ∑
k=ñ s

t +1

(
(Ik

1 )2 + (Ik
2 )2 + (Ik

3 )2 + 2Ik
1 · Ik

2 + 2Ik
1 · Ik

3 + 2Ik
2 · Ik

3

)⎞⎠ .

(1.19.7)
Now we shall estimate the terms on the right-hand side of (1.19.7).

Lemma 1.19.6. There exist two constants C1 > 0, C2 > 0 such that

C1t
2α

∫ t

s

u2αd〈M〉u ≤ P -lim
ñ→∞

(ñ2α
ñ∑

k= ñs
t +1

(Ik
1 )2) ≤ C2t

4α(〈M〉t − 〈M〉s).

Proof. For simplicity, we shall omit ∼, and consider only such n that n s
t ∈ N.

From the Itô formula for square-integrable martingales, it follows that

(Ik
1 )2 =

(∫ tk−2

0

ϕt
k(u)dMu

)2

=
∫ tk−2

0

(ϕt
k(u))2d〈M〉u

+ 2
∫ tk−2

0

∫ u

0

ϕt
k(v)dMv · ϕt

k(u)dMu.

First, we estimate

Sn
1 := n2α

n∑
k=n s

t +2

∫ tk−2

0

(ϕt
k(u))2d〈M〉u.

From (1.19.6), we obtain that∫ tk−2

0

(ϕt
k(u))2d〈M〉u ≤ t2α

(
k

n

)2α
t2

n2

∫ tk−2

0

(tk−1 − u)2α−2
d〈M〉u.

So, the estimate of Sn
1 from above has the form

Sn
1 ≤ n2α−2t2α+2

n∑
k=n s

t +2

(
k

n

)2α ∫ tk−2

0

(tk−1 − u)2α−2
d〈M〉u. (1.19.8)

Now, we rewrite the sum in (1.19.8) for 0 < s < t and
2 ≤ n s

t ≤ n− 3:
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Sn
11 :=

n∑
k=n s

t +2

∫ tk−2

0

(tk−1 − u)2α−2
d〈M〉u

=

⎛⎝ n s
t∑

i=1

n∑
k=n s

t +2

+
n−2∑

i=n s
t +1

n∑
k=i+2

⎞⎠∫ ti

ti−1

(tk−1 − u)2α−2
d〈M〉u

+
n−2∑

i=n s
t +1

∫ ti

ti−1

(
n∑

k=i+2

(tk−1 − u)2α−2

)
d〈M〉u. (1.19.9)

Evidently,

1
n

n∑
k=n s

t +2

(tk−1 − u)2α−2 ≤
∫ s+t−u

s−u

x2α−2dx · 1
t
≤ (s− u)2α−1 1

t
· (1− 2α)−1,

and

1
n

n∑
k=i+2

(tk−1 − u)2α−2 ≤ 1
n

(ti+1 − u)2α−2 +
1

(1− 2α)t
(ti+1 − u)2α−1

.

We substitute these estimates into (1.19.9):

Sn
11 ≤

n

1− 2α

n s
t∑

i=1

∫ ti

ti−1

(s− u)2α−1 1
t
d〈M〉u

+ n

n∑
i=n s

t +1

∫ ti

ti−1

[
1
n

(
ti+1 − u

)2α−2

+
1

(1− 2α)t

(
ti+1 − u

)2α−1
]

d〈M〉u

≤ n

t

∫ s

0

(s− u)2α−1d〈M〉u + t2α−2n2−2α
(
1 +

1
1− 2α

)
(〈M〉t − 〈M〉s).

We return to (1.19.8) and obtain that

Sn
1 ≤ n2α−1t2α+1

∫ s

0

(s− u)2α−1d〈M〉u + t4α
( 1

1− 2α
+ 1
)
(〈M〉t − 〈M〉s).

Note that the martingale M is Hölder continuous up to order 1
2 , so W is

Hölder continuous up to order 1
2 , 〈W 〉 is Hölder continuous up to 1, and the

integral ∫ s

0

(s− u)2α−1d〈M〉u =
∫ s

0

(s− u)2α−1u−2αd〈W 〉u

exists. Therefore, n2α−1
∫ s

0
(s− u)2α−1d〈M〉u → 0, n→∞. We obtain that

limn→∞ Sn
1 ≤ C2t

4α(〈M〉t − 〈M〉s). Now we estimate Sn
1 from below: first,
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(
ϕt

k(u)
)2 ≥ (tk−1)2α(tk − u)2α−2 · t2

n2
.

Then,

Sn
1 ≥ n2α−2t2

n∑
k=n s

t +2

∫ tk−2

0

(tk−1)
2α (tk − u)2α−2

d〈M〉u

= n2α−2t2
n s

t∑
i=1

∫ ti

ti−1

( n∑
k=n s

t +2

(tk−1)2α(tk − u)2α−2
)
d〈M〉u

+ n2α−2t2
n−2∑

i=n s
t +1

∫ ti

ti−1

( n∑
k=i+2

(tk−1)2α(tk − u)2α−2
)
d〈M〉u. (1.19.10)

Consider the interior sum of the second term:

1
n

n∑
k=i+2

(tk−1)
2α (tk − u)2α−2 ≥ 1

t

∫ t−u

ti+2−u

x2α−2
(
x + u− 1

n

)2α

dx

≥ 1
t

(ti+1)
2α
∫ t−u

ti+2−u

x2α−2dx

≥ t2α−1

(
i + 1

n

)2α

· (ti+2 − u)2α−1 − (t− u)2α−1

1− 2α
.

So,

Sn
1 ≥

t2α+1n2α−1

1− 2α

n−3∑
i=n s

t +1

(
i + 1

n

)2α ∫ ti

ti−1

[
(ti+2 − u)2α−1

− (t− u)2α−1
]
d〈M〉u.

Consider the function f(u) := (ti+2 − u)2α−1− (t−u)2α−1 on the interval
[ti−1, ti]:

f(u) ≥ (ti+2 − ti−1)
2α−1 − (t− ti−1)

2α−1 =
32α−1 − 42α−1

n2α−1
t2α−1.

Therefore,

Sn
1 ≥

t2α+1n2α−1

1− 2α

n−3∑
i=n s

t +1

∫ ti

ti−1

(
i + 1

n

)2α
t2α−1

n2α−1
d〈M〉u
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×(32α−1 − 42α−1) ≥ C1t
2α

n−3∑
i=n s

t +1

∫ ti

ti−1

(
u +

2t

n

)2α

d〈M〉u,

and

lim
n→∞Sn

1 ≥ C1t
2α

∫ t

s

u2αd〈M〉u,

or, in terms of 〈W 〉,
lim

n→∞Sn
1 ≥ C1t

2α (〈W 〉t − 〈W 〉s) .

Now, we try to prove that Sn
2 → 0 in probability, where

Sn
2 = n2α

n∑
k=n s

t +2

∫ tk−2

0

(∫ u

0

ϕt
k(s)dMs

)
ϕt

k(u)dMu.

Evidently, it is sufficient to consider the sums of the form

Sn
3 = n2α

n∑
k=2

∫ tk−2

0

(∫ u

0

ϕt
k(s)dMs

)
ϕt

k(u)dMu,

because the sums

n s
t +2∑

k=2

∫ tk−2

0

(∫ u

0

ϕt
k(s)dMs

)
ϕt

k(u)dMu

can be considered in a similar way.
We use a very weak version of the Lenglart inequality: if N is a locally

square integrable martingale on R, then for any ε > 0, A > 0 and T > 0 we
have that

P{ sup
0≤t≤T

|N(t)| ≥ ε} ≤ A

ε2
+ P{〈N〉T ≥ A}. (1.19.11)

Rewrite Sn
3 as

Sn
3 = n2α

n−2∑
i=1

∫ ti

ti−1

( n∑
k=i+2

ϕt
k(u)

∫ u

0

ϕt
k(s)dMs

)
dMu = n2α

∫ 1− 2
n

0

ψM
u dMu,

where

ψM
u =

n∑
k=i+2

ϕt
k(u)

∫ u

0

ϕt
k(s)dMs, u ∈

[
i− 1

n
,

i

n

)
.

Since the martingale M is continuous (and square integrable), we can
localize it: let for some L > 1

τL = inf{t > 0 : |Mt| ∨ 〈M〉t ≥ L},
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M t = Mt∧τL
, 〈M〉t = 〈M〉t∧τL

, ψu = ψM
u , τL =∞ if |Mt| ∨ 〈M〉∞ < L for all

t > 0.
By (1.19.11), it is sufficient to prove that for any L > 0,

n4α

∫ t(1− 2
n )

0

ψ
2

ud〈M〉u

= n4α
n−2∑
i=1

∫ ti

ti−1

(
n∑

k=i+2

ϕt
k(u)

∫ u

0

ϕt
k(s)dMs

)2

d〈M〉u P→ 0, n→∞.

(1.19.12)

First, we estimate the function ψu :=
∑n

k=i+2 ϕt
k(u)

∫ u

0
ϕt

k(s)dMs =∑n
k=i+2 ϕt

k(u)(ϕt
k(u)Mu −

∫ u

0
Ms(ϕt

k(s))′sds). Evidently,

(
ϕt

k(u)
)′
u

= (1− α)
∫ tk

tk−1

vα(v − u)α−2dv.

Therefore,

|ψu| ≤ L

n∑
k=i+2

(ϕt
k(u))2 + L(1− α)

n∑
k=i+2

ϕt
k(u)

∫ u

0

∫ tk

tk−1

vα(v − s)α−2dv ds.

Estimate the terms separately:

ϕt
k(u) ≤ tα+1

n
(tk−1 − u)α−1

,

whence,

n∑
k=i+2

(ϕt
k(u))2 ≤ t2+2α

n2

n∑
k=i+2

(tk−1 − u)2α−2 ≤ t2+2α

n2
(ti+1 − u)2α−2

+
t2+2α

n

∫ 1

i+1
n

(tx− u)2α−2dx =
t4α

n2α
+

t2α+1

n

(ti+1 − u)2α−1

1− 2α
≤ Cn−2α,

and
n∑

k=i+2

ϕt
k(u)

∫ u

0

∫ tk

tk−1

vα(v − s)α−2dvds ≤ C

n∑
k=i+2

ϕt
k(u)

∫ tk

tk−1

vα(v − u)α−1dv

≤ C

n∑
k=i+2

(ϕt
k(u))2 ≤ Cn−2α.

From these estimates, it follows that ψ
2

un4α ≤ C. Therefore, there exists
the bounded dominant. In order to establish (1.19.12), it is sufficient to prove
that ψun2α P→ 0, 0 < u < 1. We have that
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E(ψun2α)2 = n4αE

(
n∑

k=i+2

ϕt
k(u)

∫ u

0

ϕt
k(s)dMs

)2

= n4αE

∫ u

0

(
n∑

k=i+2

ϕt
k(u)ϕt

k(s)

)2

d〈M〉s.

Similarly to previous estimates, we obtain that

n4α

(
n∑

k=i+2

ϕt
k(u)ϕt

k(s)

)2

≤ Cn4α

( n∑
k=i+2

1
n2

(tk−1 − u)α−1

× (tk−1 − s)α−1

)2

≤ Cn4α−2

(
1
n

n∑
k=i+2

(tk−1 − u)2α−2

)2

≤ Cn4α−2

(
n2−2α

n
+ n1−2α

)2

≤ C, for some C > 0.

This means that the bounded dominant exists. Moreover,

n2α
n∑

k=i+2

ϕt
k(u)ϕt

k(s) ≤ Cn2α
n∑

k=i+2

ϕt
k(u) · 1

n
(u− s)α−1

≤ Cn2α · 1
n

∫ 1

i+1
n

vα(v − u)α−1du · (u− s)α−1 → 0

for any s < u. This means that Sn
3

P→ 0, and the lemma is proved. 	

Lemma 1.19.7. There exists a constant C3 > 0, such that

P -lim
n→∞ n2α

n∑
k=n s

t +2

(Ik
2 )2 ≤ C3t

4α(〈M〉t − 〈M〉s).

Proof. We apply the Itô formula to (Ik
2 )2 and obtain that

(Ik
2 )2 =

∫ tk−1

tk−2

(ϕt
k(s))2d〈M〉s +

∫ tk−1

tk−2

(∫ s

tk−2

ϕt
k(u)dMu

)
ϕk

t (s)dMs.

From (1.19.6) it follows that

n∑
k=n s

t +2

∫ tk−1

tk−2

(ϕt
k(s))2d〈M〉s · n2α ≤ t4αC(〈M〉t − 〈M〉s).
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Similarly to the estimates from Lemma 1.19.6, we obtain that for any
A > 0 and ε > 0

P
{
n2α
∣∣∣ n∑

k=n s
t +2

∫ tk−1

tk−2

(∫ s

tk−2

ϕt
k(u)dMu

)
ϕt

k(s)dMs

∣∣∣ ≥ ε
}

≤ A

ε2
+ P
{

n4α
n∑

k=n s
t +2

∫ tk−1

tk−2

(∫ s

tk−2

ϕt
k(u)dMu)2(ϕt

k(s)
)2

d〈M〉s ≥ A
}

.

So, it is sufficient to prove that

n4α
n∑

k=n s
t +2

∫ tk−1

tk−2

(∫ s

tk−2

ϕt
k(u)dMu

)2

(ϕt
k(v))2d〈M〉v P→ 0.

The existence of the bounded dominant is established by the estimates:

n4α ·
(∫ s

tk−2

ϕt
k(u)dMu

)2

(ϕt
k(s))2

≤ n4α
(
ϕt

k(s)Ms − ϕt
k(tk−2) ·M tk−2 −

(∫ s

tk−2

(ϕt
k(u))′uMudu

)2)
· (ϕt

k(s))2

≤ CL2n4α
(
ϕt

k(s) + ϕt
k(tk−2) +

∫ s

tk−2

∫ tk

tk−1

vα(v − u)α−2dv du
)2

· (ϕt
k(s))2

≤ 9CL2n4α(1/n)4α · t4α ≤ CL2t4α.

Therefore, we must prove, that for any s < v < t

n2α
(∫ s

tk−2

ϕt
k(u)dMu

)
(ϕt

k(v)) P→ 0, n→∞.

Here (ϕt
k(v))2 ≤ t4α

n2α . Taking into account that 〈M〉 is bounded and continu-
ous, and by using the relation

n4α(ϕt
k(v))2E

∫ s

tk−2

(ϕt
k(u))2d〈M〉ud〈M〉u ≤ CE(〈M〉s − 〈M〉tk−2)→ 0,

for s < tk−1, we obtain the necessary estimates, whence the proof follows. 	

Lemma 1.19.8. There exists a constant C4 > 0 such that

P -lim
n→∞ n2α

n∑
k= ns

t +1

(Ik
3 )2 ≤ C4(〈M〉t − 〈M〉s) · t4α.

The proof is similar to Lemma 1.19.7.
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Lemma 1.19.9. We have that

lim
n→∞n2α

n∑
k

Ik
i Ik

j = 0

in probability.

Proof. Consider, for example, n2α
∑n

k=1 Ik
1 Ik

2 , where we substitute M instead
of M . But in this case,

n4αE
( n∑

k=1

Ik
1 Ik

2

)2

= n4αE
n∑

k=1

(Ik
1 )2(Ik

2 )2,

where Ik
2 =

∫ tk−1

tk−2
(ϕt

k(s))2d〈M〉s, since Ik
1 , Ik

2 , Ik
3 are pairwise orthogonal.

Moreover, from inequality (1.19.11), it follows that we must only prove the
relation

n4α
n∑

k=1

(Ik
1 )2(Ik

2 )2 P→ 0.

According to Lemma 1.19.6, we have that

P -lim
n→∞ n2α

n∑
k=1

(Ik
1 )2 ≤ C2t

4α〈M〉t

and

n2α max
1≤k≤n

∫ tk−1

tk−2

(ϕt
k(s))2d〈M〉s ≤ α−2 max

1≤k≤n
(〈M〉tk−1 − 〈M〉tk−2)

P→ 0.

All other terms can be estimated similarly, whence the claim follows. 	

By using our estimates, we can conclude that for rational s, consequently

for any s < t, the following claims hold:
(a) there exist two constants, C1 > 0 and C2 > 0 such that

C1

∫ t

s

u2αd〈M〉u ≤ (t− s) ≤ C2t
2α(〈M〉t − 〈M〉s).

This estimate can be rewritten in terms of W and 〈W 〉:

C1(〈W 〉t − 〈W 〉s) ≤ (t− s) ≤ C2t
2α

∫ t

s

u−2αd〈W 〉u.

(b)

P -lim
n→∞ n2α

n∑
k=n s

t +1

(�Xtk
)2 = P -lim

n→∞

∫ t

s

ϕn
s d〈M〉s,
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where ϕn
s is a positive, bounded, nonrandom function, separated from 0 by

some constant.
From the left-hand side of (a), it follows that 〈W 〉t is absolutely continu-

ous w.r.t. the Lebesgue measure, so 〈W 〉t =
∫ t

0
θsds, where θs is a bounded,

possibly, random variable. From the right-hand side of (a), it follows that∫ t

s

u−2αθudu ≥ 1
C2

(t1−2α − st−2α) ≥ C3(t1−2α − s1−2α) = C3

∫ t

s

u−2αdu.

This means that ∫ t

s

u−2α(θu − C3)du ≥ 0.

Evidently, for any set A ∈ F∫
A

∫ t

s

u−2α(θu − C3)du dP ≥ 0.

Now, let the set D ∈ σ{F ×B[δ, 1]}, and let δ > 0 be fixed. Then µ(D) <∞,
where µ = P × λ, λ is the Lebesgue measure on [0, 1].

By the theorem of approximation of measurable sets, for any ε > 0 there
exists a collection of the sets

{Di = Bi × [si, ti], Bi ∈ F , [si, ti] ∈ B[δ, 1]},
such that

µ
((

D\
k⋃

i=1

Di)
⋃

(
k⋃

i=1

Di\D
))

< ε.

Therefore, since u−2α(θu − C3) is bounded on D,∫
D

u−2α(θu − C3)dµ ≥ 0. (1.19.13)

Now, set
D = {(ω, u) : θu − C3 < 0, and u ≥ δ}

and we immediately obtain that µ(D) = 0. From here we conclude that 〈W 〉 is
equivalent to the Lebesgue measure, and Wt =

∫ t

0
θ

1
2
s dVs, where {Vs,Fs, s ≥ 0}

is some Wiener process.
Now, if we do all the same calculations as before, but for “true” fractional

Brownian motion BH
t , we obtain that

P -lim
n→∞ n2α

n∑
k=n s

t +1

(�BH
tk

)2 = P -lim
n→∞

∫ t

s

ϕn
s s−2αds

= P -lim
n→∞ n2α

n∑
k=n s

t +1

(�BH
tk

)2.
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(It is sufficient to take s = 0.) Therefore, P -limn→∞
∫ t

s
ψn

udu = 0, where
ψn

u = u−2αϕn
u(θu − 1).

Consider any set D ∈ σ{F × B[δ, 1]}, repeat all the previous reasonings
and obtain that θu ≡ 1 (otherwise, put D = {(ω, u): θu > 1 + α, or
θu < 1− α}).

We proved Theorem 1.19.1 for H ∈ (1/2, 1). Now we consider the case
H ∈ (0, 1/2). Similarly to Lemma 1.19.3, we can present the process Xt as

Xt =
∫ t

0

z(t, s)dWs, where Wt =
∫ t

0

sαdMs,

and

z(t, s) := (C(6)
H )−1mH(t, s) =

(
t

s

)α

(t− s)α − αs−α

∫ t

s

uα−1(u− s)αdu.

Therefore,

Xtk
−Xtk−1 = −α

∫ tk−2

0

∫ tk

tk−1

( s

u

)−α

(u− s)α−1du dWs

− α

∫ tk−1

tk−2

∫ tk

tk−1

( s

u

)−α

(u− s)α−1du dWs

+
∫ tk

tk−1

(
s

tk

)−α

(tk − s)α
dWs

− α

∫ tk

tk−1

s−α

∫ tk

s

uα−1(u− s)αdu dWs

= Jk
1 + Jk

2 + Jk
3 + Jk

4 .

For H ∈ (0, 1/2) it is more convenient to deal with Wt, not Mt.
Evidently,

lim
n→∞n2α

n∑
k=n s

t +2

(∆Xtk
)2 = lim

n→∞n2α

⎛⎝ n∑
k=n s

t +2

(
Jk

1

)2

+
n∑

k=n s
t +2

(
Jk

2 + Jk
3 + Jk

4

)2
+

n∑
k=n s

t +2

Jk
1

(
Jk

2 + Jk
3 + Jk

4

)⎞⎠ .

First, estimate

lim
n→∞n2α

n∑
k=n s

t +2

(
Jk

1

)2
from below and from above. As before,
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lim
n→∞n2α

n∑
k=n s

t +2

(∆Xtk
)2 → t2α(t− s).

First, we obtain upper bound for the sum

Sn
4 := n2α

n∑
k=n s

t +2

∫ tk−2

0

(
θt

k(s)
)2

d〈W 〉s,

where θt
k(s) =

∫ tk

tk−1

(
s
u

)−α (u− s)α−1du, s ≤ tk−1. Evidently, for s ≤ tk−2

θt
k(s) ≤

(
(tk−1 − s)α−1 t

n

)
∧
(

1
−α

(
t

n

)α)
. (1.19.14)

Therefore, for such n, that n s
t ∈ N we have that

Sn
4 = n2α

n∑
k=n s

t +2

k−2∑
i=1

∫ ti

ti−1

(
θt

k(u)
)2

d〈W 〉u

= n2α

⎛⎝ n s
t∑

i=1

n∑
k=n s

t +2

+
n−2∑

i=n s
t +1

n∑
k=i+2

⎞⎠∫ ti

ti−1

(
θt

k(u)
)2

d〈W 〉u

≤ n2α−1t

∫ s

0

(
s +

t

n
− u

)2α−1

d〈W 〉u

+ n2α−2t2
∫ s

0

(
s +

t

n
− u

)2α−2

d〈W 〉u

+
t

1− 2α

(
t

n

)2α−1

n2α−1
n−2∑

i=n s
t +1

∫ ti

ti−1

d〈W 〉u

+ t2n2α−2
n−2∑

i=n s
t +1

∫ ti

ti−1

d〈W 〉u
(

t

n

)2α−2

. (1.19.15)

The integral
∫ s

0

(
s + t

n − u
)2α−1

d〈W 〉u, according to Lemma 2.1
(NVV99), can be estimated as∣∣∣∣∣

∫ s

0

(
s +

t

n
− u

)2α−1

d〈W 〉u
∣∣∣∣∣ ≤ C(ω)

(
s +

t

n
− s

)2α−1+β

,

for some random variable 0 < C(ω) < ∞, where β is Hölder index of 〈W 〉u.
Evidently, β > 0, and it holds that∫ s

0

(
s +

t

n
− u

)2α−1

d〈W 〉u · n2α−1 ∼ n2α−1

(
1
n

)2α−1+β

→ 0.
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The same is true for∫ s

0

(
s +

t

n
− u

)2α−2

d〈W 〉u · n2α−2.

The last two integrals from (1.19.14) admit the estimate:

n−2∑
i=n s

t +1

∫ ti

ti−1

d〈W 〉u t

1− 2α

(
t

n

)2α−1

n2α−1

+
n−2∑

i=n s
t +1

∫ ti

ti−1

d〈W 〉u
(

t

n

)2α−2

t2n2α−2 ≤ t2αC2 (〈W 〉t − 〈W 〉s) .

Now we obtain the lower bound for Sn
4 . Return to 〈M〉 instead of 〈W 〉.

Sn
4 = n2α

n∑
k=n s

t +2

∫ tk−2

0

(
ϕk

t (u)
)2

d〈M〉u

≥ t2n2α−2
n∑

k=n s
t

(tk)2α
∫ tk−2

0

(tk − u)2α−2
d〈M〉u

≥ t2n2α−2
( n s

t −1∑
i=1

n∑
k=n s

t +2

+
n−2∑

i=n s
t +1

n∑
k=i+2

)
(tk)2α

∫ ti

ti−1

(
tk − u

)2α−2

d〈M〉u

= Ct2α+2n2α−1
n−2∑

i=n s
t +1

∫ ti

ti−1

1
t

(
(ti+2 − u)2α−1 − (t− u)2α−1

)
d〈M〉u.

Note that

n2α−1
n−2∑

i=n s
t +1

∫ ti

ti−1

(t− u)2α−1d〈M〉u

∼
(

t− t +
2
n

)2α−1+β

· n2α−1 → 0, n→∞.

Therefore,

lim
n→∞n2α

n∑
k=n s

t +1

(
Jk

1

)2
≥ Ct2α+1n2α−1

n−2∑
i=n s

t +1

∫ ti

ti−1

(ti+2 − u)2α−1
d〈M〉u

≥ Ct2α+1n2α−1
n−2∑

i=n s
t +1

(ti+2 − ti−1)
2α−1

∫ ti

ti−1

d〈M〉u.
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The “remainder” term for
∑(

Jk
1

)2 equals

Rn := n2α
n∑

k=n s
t +2

∫ tk−2

0

(∫ z

0

θt
k(v)dWv

)
θt

k(u)dWu.

For technical simplicity, it is enough to consider the stopped process W t,
instead of Wt, and

∑nr
k=3 for any r ∈ N, instead of∑n

k=n s
t +2 = −∑n s

t +1

k=3 +
∑n

k=3. We obtain that

E(Rn)2 = n4αE

(
nr∑

k=3

k−2∑
i=1

∫ ti

ti−1

∫ u

0

θt
k(v)dW v · θt

k(u)dWu

)2

= n4αE

(
nr−2∑
i=1

nr∑
k=i+3

∫ ti

t i−1
n

∫ u

0

θt
k(v)dW v · θt

k(u)dWu

)2

= n4α
nr−2∑
i=1

E

∫ ti

t i−1
n

(
nr∑

k=i+3

∫ u

0

θt
k(v)dW v · θt

k(u)

)2

d〈W 〉u.

Let us estimate∣∣∣∣∫ u

0

θt
k(v)dW v

∣∣∣∣ = ∣∣∣∣θt
k(u)Wu −

∫ u

0

W v

(
θt

k(v)
)′
v
dv

∣∣∣∣
≤ L
∣∣θt

k(u)
∣∣+ L

∣∣∣∣∫ u

0

(
θt

k(v)
)′
v
dv

∣∣∣∣ .
It follows from (1.19.14), that∣∣∣∣∫ u

0

(
θt

k(v)
)′
v
dv

∣∣∣∣ = ∣∣θt
k(u)− θt

k(0)
∣∣ ≤ C

(
t

n

)α

for some C > 0.

Moreover,

n2α

(
nr∑

k=i+3

θt
k(u)

)2

≤ n2α

(∫ tr

ti+1

(v − u)α−1dv

)2

= Cn2α [−(tr − u)α + (ti+1 − u)α]2 ≤ C,

and the integrand

n4α

(
nr∑

k=i+2

∫ u

0

θt
k(v)dW v · θt

k(u)

)2

≤ C,

i.e. there exists the integrable dominant. Therefore, it is sufficient to establish
that for any u
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n2α
nr∑

k=i+3

∫ u

0

θt
k(v)dW v · θt

k(u) P→ 0.

We take the mathematical expectation and obtain that

n4αE

∫ u

0

(
nr∑

k=i+3

θt
k(v)θt

k(u)

)2

d〈W 〉v.

The bounded dominant exists. Indeed,

n4α

(
nr∑

k=i+3

θt
k(v)θt

k(u)

)2

≤ n2α

(
nr∑

k=i+2

θt
k(v)

)2

≤ C,

as before. Further, we must prove that

n2α
nr∑

k=i+3

θt
k(v)θt

k(u)→ 0

for all fixed 0 < v < u. We have that

n2α
nr∑

k=i+2

θt
k(v)θt

k(u) ≤ n2α
nr∑

k=i+3

∫ tk

tk−1

(s− u)α−1ds

×
∫ tk

tk−1

(s− v)α−1ds ≤ n2α
nr∑

k=i+3

(tk−1 − u)α−1 1
n

∫ tk

tk−1

(s− v)α−1ds

≤ n2α−1 (ti+2 − u)α−1
∫ tr

ti+2

(s− v)α−1ds

≤ Cnα−1(u− v)α−1 → 0, n→∞ for any 0 < v < u.

From all these estimates, the remainder term Rn
P→ 0, n → ∞, and we

have established that

C1t
4α (〈M〉t − 〈M〉s) ≤ lim

n→∞n2α
n∑

k=n s
t +2

(
Jk

1

)2 ≤ C2t
2α (〈W 〉t − 〈W 〉s) .

(Note, that for H ∈ (1/2, 1), we obtained opposite estimates.) Note also
that we cannot estimate

∑(
Jk

i

)2
, i > 1, from above. Indeed, the inte-

grand of the form
(
t l

n − u
)α

that admits the estimate <
(

1
n

)α → 0 for
H ∈ (1/2, 1), now, for H ∈ (0, 1/2), tends to ∞. So, we mention that∑n

k=n s
t +2

(
Jk

2 + Jk
3 + Jk

4

)2 ≥ 0, prove that
∑

Jk
1

(
Jk

2 + Jk
3 + Jk

4

) → 0, and
obtain the estimate from above:

C1t
2α (〈M〉t − 〈M〉s) ≤ (t− s).



1.19 Lévy Theorem for fBm 111

In the sequel, we realize this plan.
It is sufficient to estimate the sums from k = 2 till k = n. By applying the

Lenglart inequality to n2α
∑n

k=2 Jk
1 Jk

2 , we obtain that it is sufficient to prove
that

n4α
n∑

k=2

(∫ tk−2

0

∫ tk

tk−1

( s

u

)−α

(u− s)α−1du dW s

)2

×
⎛⎝∫ tk−1

tk−2

(∫ tk

tk−1

( s

u

)−α

(u− s)α−1du

)2

d〈W 〉s
⎞⎠

≤ Cn4α
n∑

k=2

(∫ tk−2

0

θt
k(s)dW s

)2 ∫ tk−1

tk−2

(tk−1 − s)2α
d〈W 〉s P→ 0.

Integrate the last integral by parts:∫ tk−1

tk−2

(tk−1 − s)2α
d〈W 〉s = (tk−1 − tk−2)

2α (〈W 〉tk−1 − 〈W 〉tk−2

)
− 2α

∫ tk−1

tk−2

(tk−1 − s)2α−1 (〈W 〉tk−1 − 〈W 〉s
)
ds

≤ Cn−2α∆〈W 〉tk−1 + C

∫ tk−1

tk−2

(tk−1 − s)2α−1 (〈W 〉tk−1 − 〈W 〉s
)
ds.

Now recall that (∫ tk−2

0

θt
k(s)dW s

)2

=
∫ tk−2

0

(
θt

k(s)
)2

d〈W 〉s + 2
∫ tk−2

0

∫ s

0

θt
k(v)dW vθ

t
k(s)dW s.

It was proved that

σn
1 := n2α

n∑
k=2

∫ tk−2

0

(
θt

k(s)
)2

d〈W 〉s

is bounded in probability, and

σn
2 := n2α

n∑
k=2

∫ tk−2

0

∫ s

0

θt
k(v)dW vθt

k(s)dW s
P→ 0, n→∞.

Therefore,

n4α
n∑

k=2

(∫ tk−2

0

θt
k(s)dW s

)2

· Cn−2α∆〈W 〉tk−1



112 1 Wiener Integration with Respect to Fractional Brownian Motion

≤ Cσn
1 ·max

k
∆〈W 〉tk−1 + Cσn

2 ·max
k

∆〈W 〉tk−1

P→ 0, n→∞.

Also,

n4α
n∑

k=2

(∫ tk−2

0

θt
k(s)dW s

)2

·
∫ tk−1

tk−2

(tk−1 − s)2α−1

× (〈W 〉tk−1 − 〈W 〉s
)
ds ≤ C(ω) (σn

1 + σn
2 ) n2α

∫ tk−1

tk−2

(tk−1 − s)2α−ε
ds

≤ C(ω) (σn
1 + σn

2 ) n2α (tk−1 − tk−2)
2H−ε ∼

(
1
n

)1−ε

→ 0, n→∞.

Consider n2α
∑n

k=2 Jk
1 Jk

3 :

n2α
n∑

k=1

∫ tk−2

0

θt
k(s)dWs ·

∫ tk

tk−1

(
s

tk

)−α

(tk − s)α
dWs.

As before, it is sufficient to prove that

n4α
n∑

k=1

(∫ tk−2

0

θt
k(s)dW s

)2

·
∫ tk

tk−1

(
s

tk

)−2α

(tk − s)2α
d〈W 〉s P→ 0,

n→∞,

or, equivalently,

n2α max
k

∫ tk

tk−1

(tk − s)2α
d〈W 〉s · (σn

1 + σn
2 ) P→ 0. (1.19.16)

Note that by (NVV99, Lemma 2.1) and due to Hölder properties of 〈W 〉,∫ tk

tk−1

(tk − s)2α
d〈W 〉s ≤ C(ω) (tk − tk−1)

2α+1−ε ∼
(

1
n

)2α+1−ε

,

whence we obtain (1.19.16).
Now, consider n2α

∑
Jk

1 Jk
4 ; other sums can be estimated similarly. After

some transformations,

n4α
n∑

k=1

(∫ tk−2

0

θt
k(v)dWu

)2

·
∫ tk

tk−1

s−2α

(∫ tk

s

uα−1(u− s)αdu

)2

d〈W 〉s

≤ n2α max
k

∫ tk

tk−1

(∫ tk

s

uα−1(u− s)αdu

)2

d〈W 〉s · (σn
1 + σn

2 )
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≤ n2α max
k

∫ tk

tk−1

(∫ tk

s

u2α−2du ·
∫ tk

s

(u− s)2αdu

)
d〈W 〉s · (σn

1 + σn
2 )

≤ Cn2α max
k

∫ tk

tk−1

s2α−1 (tk − s)2α+1
d〈W 〉s · (σn

1 + σn
2 )

≤ Cn · 1
n

max
k

∫ tk

tk−1

(tk − s)2α
d〈W 〉s · (σn

1 + σn
2 )

≤ C max
k

(tk − tk−1)
2α+1−ε · (σn

1 + σn
2 )→ 0, n→∞.

Due to all these estimates we have proved that

t2α(t− s) = lim
n→∞n2α

n∑
k=n s

t +2

(∆Xtk
)2 ≥ C1t

4α (〈M〉t − 〈M〉s) ,

i.e.

〈M〉t − 〈M〉s ≤ C2t
−2α(t− s) = C2

(
t1−2α − st−2α

) ≤ C2

(
t1−2α − s1−2α

)
,

or ∫ t

s

u−2αd〈W 〉u ≤ C2

∫ t

s

u−2αdu.

As before, it follows that 〈W 〉t is absolutely continuous w.r.t. Lebesgue
measure,

〈W 〉t =
∫ t

0

θsds, (1.19.17)

0 ≤ θs ≤ C, C is some constant, θs possibly is random.
Taking this into account, we can continue estimates from above: for exam-

ple, if we take for simplicity the sums over k = 2 till k = n, then

n2α
n∑

k=1

(
Jk

2

)2
= σ̃n

1 + σ̃n
2 := Cn2α

n∑
k=1

∫ tk−1

tk−2

(∫ tk

tk−1

( s

u

)−α

(u− s)α−1du

)2

× d〈W 〉s + Cn2α
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

θt
k(v)dWv

)
θt

k(u)dWu,

where

θt
k(s) =

∫ tk

tk−1

( s

u

)−α

(u− s)α−1du ≤ (tk−1 − s)α
C.

Therefore,

σ̃n
1 ≤ Cn2α

n∑
k=1

∫ tk−1

tk−2

(tk−1 − s)2α
d〈W 〉s.
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Direct estimates give nothing (because of singularity at tk−1). So, we go
by an indirect way: for some A > 0,∫ tk−1

tk−2

(tk−1 − s)2α
d〈W 〉s ≤

∫ tk−1− t
nA

tk−2

+
∫ tk−1

tk−1− t
nA

≤
(

tk−1 −
(

tk−1 − t

nA

))2α

·∆〈W 〉tk

+ (thanks to (1.19.17)) C

∫ tk−1

tk−1− t
nA

(tk−1 − s)2α
ds

≤
(

t

nA

)2α

∆〈W 〉tk
+ C

(
t

nA

)2α+1

.

Taking the sum, we obtain:

σ̃n
1 ≤ Cn2α

n∑
k=1

(
t

nA

)2α

∆〈W 〉tk
+ Cn2αn

(
t

nA

)2α+1

≤ CA−2αt2α〈W 〉t + C
1

A2α+1
t2α+1.

If we estimate the sum from k = n s
t + 1 to k = n, then

σ̃n
1 ≤ CA−2αt2α (〈W 〉t − 〈W 〉s) + C

1
A2α+1

t2α+1
(
1− s

t

)
= CA−2αt2α (〈W 〉t − 〈W 〉s) + C

1
A2α+1

t2α(t− s).

Now we want to prove that

n2α
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

θt
k(v)dWv

)
θt

k(u)dWu
P→ 0, n→∞.

As usual, it is enough to establish that

n4α
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

θt
k(v)dW v

)2 (
θt

k(u)
)2

d〈W 〉u P→ 0.

But we can bound 〈W 〉u by Cdu, so, it is enough to prove that

n4α
n∑

k=1

∫ tk−1

tk−2

(∫ u

tk−2

θt
k(v)dW v

)2 (
θt

k(u)
)2

du
P→ 0.

By taking the mathematical expectation, we see that it is sufficient to establish
that
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n4α
n∑

k=1

∫ tk−1

tk−2

∫ u

tk−2

(
θt

k(v)
)2

d〈W 〉v
(
θt

k(u)
)2

du
P→ 0.

By substituting Cdv instead of d〈W 〉v, we see that it is enough to establish
that

σn
3 := n4α

n∑
k=1

∫ tk−1

tk−2

(∫ u

tk−2

(
θt

k(v)
)2

dv

)(
θt

k(u)
)2

du→ 0.

We have that (θt
k(u))2 ≤ Cn−2α, and

σn
3 ≤

n∑
k=1

∫ tk−1

tk−2

(∫ u

tk−2

dv

)
du ≤ 1

n
C → 0, n→∞.

Finally,

n2α
n∑

k=n s
t +2

(
Jk

2

)2 ≤ CA−2αt2α (〈W 〉t − 〈W 〉s) + C
1

A2α+1
t2α(t− s).

Now, proceed with Jk
3 :

n2α
n∑

k=1

(
Jk

3

)2
= n2α

n∑
k=1

∫ tk

tk−1

((
s

tk

)−α

(tk − s)α

)2

d〈W 〉s

+ n2α
n∑

k=1

∫ tk

tk−1

(∫ u

tk−1

(
s

tk

)−α

(tk − s)α
dWs

)(
u

tk

)−α

(tk − u)α
dWu.

The first term can be estimated as

n2α
n∑

k=1

∫ tk

tk−1

(tk − s)2α
d〈W 〉s ≤ C

(
t

A

)2α

(〈W 〉t − 〈W 〉s)+
C

A2α+1
t2α(t−s),

as before.
And with the bound d〈W 〉s ≤ Cds, the second term can be estimated as

n4α
∑n

k=1

∫ tk

tk−1

∫ u

tk−1
(tk − s)2α

ds · (tk − u)2α
du ≤ Cn4α

n4α+2 → 0. Therefore, for∑(
Jk

3

)2 we have the same estimate as for
∑(

Jk
2

)2. Finally, estimate

n2α
n∑

k=1

(
Jk

4

)2
= Cn2α

n∑
k=1

(∫ tk

tk−1

s−α

∫ tk

s

uα−1(u− s)αdu dWs

)2

= Cn2α
n∑

k=1

∫ tk

tk−1

s−2α

(∫ tk

s

uα−1(u− s)αdu

)2

d〈W 〉s

+ Cn2α
n∑

k=1

∫ tk

tk−1

∫ u

tk−1

s−α

∫ tk

s

vα−1(v − s)αdv dWs
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× u−α

∫ tk

u

vα−1(v − u)αdvdWu.

The first term can be estimated with the help of (1.19.17) as

n2αt−2α
n∑

k=2

∫ tk

tk−1

(∫ tk

s

uα−1(u− s)αdu

)2

d〈W 〉s ≤ Cn−2H → 0 n→∞.

If k = 1, then for 1
p + 1

q = 1, p, q > 1

n2αt−2α

∫ t/n

0

(∫ t/n

s

uα−1(u− s)αdu

)2

ds

≤ n2αt−2α

∫ t/n

0

(∫ t/n

s

up(α−1)du

)2/p(∫ t/n

s

(u− s)αqdu

)2/q

ds

≤ n2αt−2α

∫ t/n

0

s(pH− 3p
2 +1) 2

p

(
t

n
− s

)(Hq− q
2+1) 2

q

ds

= n2αt−2α

∫ t/n

0

s2α−2+ 2
p

(
t

n
− s

)2α+ 2
q

ds ∼ n2αt−2α

(
t

n

)4α+1

→ 0,

i.e. the “main term” of n2α
∑n

k=1

(
Jk

4

)2 tends to 0. For the remainder term
of n2α

∑n
k=1

(
Jk

4

)2 it is sufficient to prove that for any ε > 0

σn
4 := n4α

n∑
k= nε

t

∫ tk

tk−1

∫ u

tk−1

(
s−α

∫ tk

s

vα−1(v − s)αdv

)2

ds

× u−2α

(∫ tk

u

vα−1(v − u)αdv

)2

du→ 0 n→∞.

But

σn
4 ≤ n4α

n∑
k= nε

t

∫ tk

tk−1

∫ u

tk−1

(∫ tk

s

vα−1(v − s)αdv

)2

ds

×
(∫ tk

u

vα−1(v − u)αdv

)2

du ≤ n−6
n∑

k= nε
t

(tk−1)
−4 ∼ n−2 → 0, n→∞.

After all estimates, for s > 0

lim
n→∞n2α

n∑
k=n s

t +2

(∆Xtk
)2 ≤ C2A

−2αt2α (〈W 〉t − 〈W 〉s) + C2
1

A2α+1
t2α(t− s).

We have the opposite estimate,



1.20 Multi-parameter Fractional Brownian Motion 117

C1t
2α(t− s) ≤ lim

n→∞n2α
n∑

k=n s
t +2

(∆Xtk
)2

≤ C2A
−2αt2α (〈W 〉t − 〈W 〉s) + C2

1
A2α+1

t2α(t− s).

So, for A sufficiently large, C3 := C1 − C2
1

A2α+1 > 0, and we obtain that

C3t
2α(t− s) ≤ C2A

−2αt2α (〈W 〉t − 〈W 〉s) ,

whence 〈W 〉t − 〈W 〉s ≥ C3
C2

A2α(t− s), and constants do not depend on s and

t. Therefore, if we write 〈W 〉t =
∫ t

0
θsds, then ε1 ≤ θs ≤ ε2, εi > 0, and

Wt =
∫ t

0
θ
1/2
s dVs with some Wiener process V . Then we can conclude the

proof of the theorem by the same arguments as for H ∈ (1/2, 1).
	


1.20 Multi-parameter Fractional Brownian Motion

1.20.1 The Main Definition

There can be at least two approaches to the definition of multi-parameter
fBm. We consider the process which has a “fractional Brownian” property in
each coordinate, but also it is possible to consider this property, for example,
along any ray with its origin at zero (MY67).

For technical simplicity we consider two-parameter fBm (fBm-field)
{BH

t , t ∈ R2
+}, where t = (t1, t2). We suppose that s ≤ t if s = (s1, s2),

t = (t1, t2) and si ≤ ti, i = 1, 2.

Definition 1.20.1. The two-parameter process {BH
t , t ∈ R2

+} is called a
(normalized) two-parameter fBm with Hurst index H = (H1,H2) ∈ (0, 1)2, if
it satisfies the assumptions

(a) BH is a Gaussian field, Bt = 0 for t ∈ ∂R2
+;

(b) E BH
t = 0, E BH

t BH
s = 1

4

∏
i=1,2

(t2Hi
i + s2Hi

i − |ti − si|2Hi).

Evidently, such a process has the modification with continuous trajectories,
and we will always consider such a modification. Moreover, consider “two-
parameter” increments: ∆sB

H
t := BH

t − BH
s1t2 − BH

t1s2
+ BH

s for s ≤ t. Then
they are stationary. Note, that for any fixed ti > 0 the process BH

(ti,·) will be
the fBm with Hurst index Hj , i = 1, 2, j = 3− i, evidently, nonnormalized.

1.20.2 Hölder Properties of Two-parameter fBm

Denote PT := [0, T1]× [0, T2].
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Definition 1.20.2. The function f : R2
+ → R belongs to the class Cλ1,λ2(PT )

for 0 < λi ≤ 1 (f is Hölder of orders λ1 and λ2 on PT ), if there exists a constant
C > 0, such that for all s ≤ t, s, t ∈ PT

|∆sft| ≤ C
∏

i=1,2

(ti − si)λi , (1.20.1)

|f(t)− f(s1, t2)| ≤ C|t1 − s1|λ1 , |f(t)− f(t1, s2)| ≤ C|t2 − s2|λ2 . (1.20.2)

The norm in the space Cλ1,λ2(PT ) is denoted as

‖f‖λ1,λ2 := sup
0≤s<t≤T

(
|f(t)|+ |f(t)− f(s1, t2)|

(t1 − s1)λ1

+
|f(t)− f(t1, s2)|

(t2 − s2)λ2
+

|∆sf(t)|∏
i=1,2

(ti − si)λi

)
.

Evidently, inequalities (1.20.2) hold for BH with λ1 < H,λ2 < H and any
PT ⊂ R2

+. It was proved by Kamont (Kam96), that (1.20.1) holds for BH with
any λ1 < H,λ2 < H and on any PT ⊂ R2

+. Therefore, BH ∈ CH1−ε,H2−ε(PT )
for any T ≥ 0 and any 0 < εi < Hi. Moreover, according to (Kam96), for
any T > 0 there exists the random variable 0 < c(ω) < ∞ P -a.s. such that

|∆sB
H
t | ≤ c(ω)

∏
i=1,2

(ti − si)Hi

(
1 + log 1

ti−si

)1/2

.

1.20.3 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions

For α = (α1, α2) denote Γ (α) = 1
Γ (α1)Γ (α2)

.

Definition 1.20.3. (SKM93) Let f ∈ P := [a, b] :=
∏

i=1,2

[ai, bi], a = (a1, a2),

b = (b1, b2). Forward and backward Riemann–Liouville fractional integrals of
orders 0 < αi < 1 are defined as

(Iα1α2
a+ f)(x) := Γ (α)

∫
[a,x]

f(u)
ϕ(x, u, 1− α)

du,

and

(Iα1α2
b− f)(x) := Γ (α)

∫
[x,b]

f(u)
ϕ(x, u, 1− α)

du,

correspondingly, where [a, x] =
∏

i=1,2

[ai, xi], [x, b] =
∏

i=1,2

[xi, bi], du = du1du2,

ϕ(u, x, α) = |u1 − x1|α1 |u2 − x2|α2 , u, x ∈ [a, b].
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Definition 1.20.4. Forward and backward fractional Liouville derivatives of
orders 0 < αi < 1 are defined as

(Dα1α2
a+ f)(x) := Γ (1− α)

∂2

∂x1∂x2

∫
[a,x]

f(u)
ϕ(x, u, α)

du,

and

(Dα1α2
b− f)(x) := Γ (1− α)

∂2

∂x1∂x2

∫
[x,b]

f(u)
ϕ(x, u, α)

du, x ∈ [a, b].

Definition 1.20.5. Forward fractional Marchaud derivatives of orders 0 <
αi < 1 are defined as

(D̃α1α2
a+ f)(x) := Γ (1− α)

(
f(x)

ϕ(x, u, α)
+ α1α2

∫
[a,x]

∆uf(x)du

ϕ(x, u, 1 + α)

+
∑

i=1,2,j=3−i

αi

(xj − aj)
αj

∫ xi

ai

f(x)− f(ui, xj)
(xi − ui)1+αi

dui

⎞⎠ ,

and the backward derivatives can be defined in a similar way.

Let 1 ≤ p ≤ ∞, the classes Iα1α2
+ (Lp(P)) := {f | f = Iα1α2

a+ ϕ,ϕ ∈
Lp(P)}, Iα1α2− (Lp(P)) := {f | f = Iα1α2

b− ϕ,ϕ ∈ Lp(P)}. Similarly to Theorem
13.1 (SKM93), the following result can be proved.

Theorem 1.20.6. Liouville and Marchaud derivatives coincide on the classes
Iα1α2± (Lp(P)).

Further we denote Dα1α2
a+ =: I

−(α1α2)
a+ . Of course, we can introduce the

notions of fractional integrals and fractional derivatives on R2
+. For example,

the Riemann–Liouville fractional integrals and derivatives on R2
+ are defined

by the formulas (Iα1α2
+ f)(x) := Γ (α)

∫
(−∞,x]

f(t)
ϕ(x,u,α)dt,

(Iα1α2− f)(x) := Γ (α)
∫

[x,∞ )
f(t)

ϕ(x,u,α)dt,

(I−(α1α2)
+ f)(x) = (Dα1α2

+ f)(x) := Γ (1− α) ∂2

∂x1∂x2

∫
(−∞,x]

f(t)
ϕ(x,t,α)dt, and

(I−(α1α2)
− f)(x) = (Dα1α2− f)(x) := Γ (1− α) ∂2

∂x1∂x2

∫
[x,∞ )

f(t)
ϕ(x,t,α)dt,

0 < αi < 1. Evidently, all these operators can be expanded into the product
of the form Iα1α2

+ = Iα1
+ ⊗ Iα2

+ , and so on. In what follows we shall consider
only the case Hi ∈ (1/2, 1). Define the operator

MH1H2± f :=
∏

i=1,2

C
(3)
Hi

Iα1α2± f.

Definition 1.20.7. A random field {Xt, t ∈ R2
+} is a field with indepen-

dent increments if its increments {∆si
Xti

, i = 1, n} for any family of disjoint
rectangles { ( si, ti ] , i = 1, n} are independent.
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Definition 1.20.8. The random field {Wt, t ∈ R2
+} is called the Wiener field

if W = 0 on ∂R2
+, W is the field with the independent increments and

E(∆sWt)2 = area( ( s, t ]) =
∏

i=1,2

(ti − si).

Let we have a probability space (Ω,F , P ) with two-parameter filtration
{Ft, t ∈ R2

+} on it. It means that Fs ⊂ Ft ⊂ F for s ≤ t. Denote F∗
s :=

σ{Fu, s ≮ u}.
Definition 1.20.9. An adapted random field {Xt,Ft, t ∈ R2

+} is a strong
martingale if X vanishes on ∂R2

+, E|Xt| <∞ for all t ∈ R2
+ and for any s ≤ t

E(∆sXt | F∗
s ) = 0.

Evidently, any random field with constant expectation and independent
increments is a strong martingale, in particular, the Wiener field is a strong
martingale.

It is not difficult to prove the following fact.

Lemma 1.20.10. Let {Wt, t ∈ R2
+} be a Wiener field. Then the field

BH1H2
t :=

∫
R2

(MH1H2− 1(0,t))(x)dWx (1.20.3)

is two-parameter fBm (not necessarily normalized).

Similarly to the one-parameter case, it is easy to show that any two-
parameter fBm can be represented by (1.20.3) via underlying random field
W .

Introduce the notion of Wiener integral w.r.t. two-parameter fBm.

Definition 1.20.11. Let

f ∈ LH1H2
2 :=

{
f : R2 → R :

∫
R2

((MH1H2− f)(t))2dt <∞
}

.

Then we denote
∫

R2 f(t)dBH1H2
t as

∫
R2(MH1H2− f)(t)dWt for the underlying

Wiener process W .

The following facts are proved similarly to the one-parameter case.

Theorem 1.20.12. Let the kernel l
(2)
H (t, s) =

∏
i=1,2

lHi
(ti, si) · 1{0<s<t} for

H = (H1,H2), t = (t1, t2) and s = (s1, s2).
Then the field

IH
t (lH) :=

∫
R2

l
(2)
H (t, s)dBH1H2

s

is a strong square integrable Gaussian martingale with independent increments
and E(IH

t (lH))2 =
∏

i=1,2

t1−2αi
i .



1.20 Multi-parameter Fractional Brownian Motion 121

Similarly to the one-parameter case, we call IH(BH) the strong Molchan
martingale. It can be presented as

IH
t (lH) =

∏
i=1,2

(1− 2αi)1/2

∫
[0,t]

∏
i=1,2

s−αi
i dBs, αi = Hi − 1/2,

where {Bt,Ft, t ∈ R2
+} is some Wiener field.

In turn, the two-parameter fBm can be presented via some Wiener field
B by the integral

BH1H2
t =

∫
[0,t]

m
(2)
H (t, s)dBs,

where Hi ∈ (1/2, 1), and m
(2)
H (t, s) =

∏
i=1,2

mHi
(ti, si)1{0<si<ti}

=
∏

i=1,2

C
(6)
Hi

αis
−αi
i

∫ ti

si
uαi

i (ui − si)αi−1dui.



2

Stochastic Integration with Respect to fBm
and Related Topics

2.1 Pathwise Stochastic Integration

2.1.1 Pathwise Stochastic Integration in the Fractional
Sobolev-type Spaces

In this subsection we consider pathwise integrals
∫ T

0
f(t)dBH

t for processes f
from the fractional Sobolev type spaces Iα

a+(Lp) for some p > 1. This approach
was developed by Zähle (Zah98), (Zah99), (Zah01).

Consider two nonrandom functions f and g defined on some interval
[a, b] ⊂ R and suppose that the limits f(u+) := limδ↓0 f(u + δ) and g(u−) :=
limδ↓0 g(u − δ), a ≤ u ≤ b, exist. Put fa+(x) := (f(x) − f(a+))1(a,b)(x),
gb−(x) := (g(b−) − g(x))1(a,b)(x). Suppose also that fa+ ∈ Iα

a+(Lp[a, b]),
gb− ∈ I1−α

b− (Lp[a, b]) for some p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1, 0 ≤ α ≤ 1. Then,
evidently, Dα

a+fa+ ∈ Lp[a, b], D1−α
b− gb− ∈ Lq[a, b].

Definition 2.1.1. The generalized (fractional) Lebesgue–Stieltjes integral∫ b

a
f(x)dg(x) is defined as∫ b

a

f(x)dg(x) :=
∫ b

a

(Dα
a+fa+)(x)(D1−α

b− gb−)(x)dx + f(a+)(g(b−)− g(a+)).

Lemma 2.1.2. Definition 2.1.1 does not depend on the possible choice of α.

Proof. Let fa+ ∈ (Iα
a+ ∩ Iα+β

a+ )(Lp[a, b]), gb− ∈ (I1−α
b− ∩ I1−α−β

b− )(Lq[a, b]) for
some α, β such that 0 ≤ α ≤ 1, 0 ≤ α + β ≤ 1, 1/p + 1/q ≤ 1. Then, ac-
cording to (1.1.5) (composition formula for fractional derivatives) and (1.1.6)
(integration-by-parts formula),∫ b

a

(Dα+β
a+ fa+)(x)(D1−α−β

b− gb−)(x)dx
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=
∫ b

a

(Dβ
a+Dα

a+fa+)(x)(D1−α−β
b− gb−)(x)dx

=
∫ b

a

(Dα
a+fa+)(x)(Dβ

b−D1−α−β
b− gb−)(x)dx

=
∫ b

a

(Dα
a+fa+)(x)(D1−α

b− gb−)(x)dx.

	

Let αp < 1. Then fa+ ∈ Iα

a+(Lp[a, b]) if and only if f ∈ Iα
a+(Lp[a, b]) and

in this case we can simplify the formula for the generalized integral:∫ b

a
f(x)dg(x) =

∫ b

a

(
(Dα

a+f)(x)− 1
Γ (1−α) · f(a+)

(x−a)α

)
(D1−α

b− gb−)(x)dx

+ f(a+)(g(b−)− g(a+)) =
∫ b

a
(Dα

a+f)(x)(D1−α
b− gb−)(x)dx

− f(a+)I1−α
b− (D1−α

b− g)(a) + f(a+)(g(b−)− g(a+))
=
∫ b

a
(Dα

a+f)(x)(D1−α
b− gb−)(x)dx.

(2.1.1)

Lemma 2.1.3. Let gb− ∈ I1−α
b− (Lq[a, b]) ∩ C[a, b] for some q > 1

1−α and
0 < α < 1. Then for any a < c < d < b∫ b

a

(Dα
a+1[c,d))(x)(D1−α

b− gb−)(x)dx = g(d)− g(c). (2.1.2)

Proof. We have that

(Dα
a+1[c,d))(x) =

⎧⎪⎨⎪⎩
0, x ≤ c,
(x−c)−α

Γ (1−α) , c < x ≤ d,
(x−c)−α−(x−d)−α

Γ (1−α) , d ≤ x ≤ b.

Therefore, by using (2.1.1), we obtain for αp < 1, or q > 1
1−α , that∫ b

a
(Dα

a+1[c,d))(x)(D1−α
b− gb−)(x)dx = 1

Γ (1−α)

∫ b

c
(x− c)−α(D1−α

b− gb−)(x)dx

− 1
Γ (1−α)

∫ b

d
(x− d)−α(D1−α

b− gb−)(x)dx = I1−α
b− (D1−α

b− gb−)(c)
− I1−α

b− (D1−α
b− gb−)(d) = g(d)− g(c).

	

Corollary 2.1.4. Let the function g ∈ Cλ[a, b] for some λ ≤ 1, then
gb− ∈ I1−α

b− (Lp[a, b]) for any p ≥ 1 and 1 − α < λ. So, we can put p > 2/λ,
α = 1− λ/2 and obtain for g (2.1.2).

Corollary 2.1.5. For any step function fπ(x) =
n−1∑
k=0

ck1[xk,xk+1 )(x) with

a = x0 < · · · < xn = b and g satisfying the conditions of Lemma 2.1.3, we

have that
∫ b

a
f(x)dg(x) =

n−1∑
k=0

ck(g(xk+1)− g(xk)).



2.1 Pathwise Stochastic Integration 125

Further we suppose that g(b−) = g(b) and g(a+) = g(a).
Denote by BV [a, b] the class of functions of bounded variation on [a, b].

Lemma 2.1.6. Let the functions fa+ ∈ Iα
a+(Lp[a, b]), gb− ∈ I1−α

b− (Lq[a, b]) ∩
BV [a, b] with p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 and∫ b

a

Iα
a+(|(Dα

a+f)|)(x)|g|(dx) <∞. (2.1.3)

Then ∫ b

a

f(x)dg(x) = (L-S)
∫ b

a

f(x)dg(x).

Proof. We have that

(L-S)
∫ b

a
f(x)dg(x) = (L-S)

∫ b

a
Iα
a+(Dα

a+f)(x)dg(x)
= 1

Γ (1−α) (L-S)
∫ b

a
(
∫ x

a
(x− y)α−1(Dα

a+f)(y)dy)dg(x).
(2.1.4)

Condition (2.1.3) together with Fubini theorem permits us to change the order
of integration:

(L-S)
∫ b

a
(
∫ x

a
(x− y)α−1(Dα

a+f)(y)dy)dg(x)
=
∫ b

a
(Dα

a+f)(y)(
∫ b

y
(x− y)α−1dg(x))dy

= (α− 1)
∫ b

a
(Dα

a+f)(y)(
∫ b

y
(
∫∞

x
(z − y)α−2dz)dg(x))dy.

(2.1.5)

Further, if y ∈ (a, b) is the point of continuity of function g, then∫ b

y
(
∫∞

x
(z − y)α−2dz)dg(x) =

∫ b

y
(
∫ z

y
dg(x))(z − y)α−2dz

+
∫∞

b
(
∫ b

y
dg(x))(z − y)α−2dz =

∫ b

y
g(z)−g(y)
(z−y)2−α dz

+ g(b)−g(y)
(α−1)(b−y)α−1 = Γ (α)

α−1 (D1−α
b− gb−)(y).

(2.1.6)

Since set of discontinuity points of g is at most countable , and taking (2.1.4)–
(2.1.6) together, we obtain the proof. 	


Now we consider the case of Hölder functions f and g. The existence of
(R-S)

∫ b

a
fdg for f ∈ Cλ[a, b], g ∈ Cµ[a, b] with λ + µ > 1 was established by

Kondurar (Kon37). Moreover, this integral coincides with
∫ b

a
fdg , as the next

theorem states.
Let f ∈ Cλ[a, b] for some 0 < λ ≤ 1 and |f(x) − f(y)| ≤ c(λ)|x − y|λ,

x, y ∈ [a, b]. Consider the following step function:

fπ(x) =
n−1∑
k=0

f(xk)1[xk,xk+1 )(x),

where the partition π = {a = x0 < x1 < · · · < xn = b}.
Evidently, lim|π|→0 supπ ‖fπ − f‖L∞[a,b] = 0.
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Theorem 2.1.7. 1) For any 0 < α < λ

lim
|π|→0

sup
π

∥∥(Dα
a+fπ)− (Dα

a+f)
∥∥

L1[a,b]
= 0.

2) Let f ∈ Cλ([a, b]), g ∈ Cµ[a, b] with λ + µ > 1, then (R-S)
∫ b

a
fdg exists

and ∫ b

a

fdg = (R-S)
∫ b

a

fdg.

Proof. 1) It is sufficient to prove that
∫ b

a
|fπ(x)−f(x)|

(x−a)α dx→ 0 and∫ b

a

∫ x

a
(x − y)−α−1|fπ(x) − f(x) − fπ(y) + f(y)|dy dx → 0 as |π| → 0. But

|fπ(x) − f(x)| ≤ |f(xk) − f(x)| ≤ c(λ)|π|λ for x ∈ [ xk, xk+1 ), therefore∫ b

a
|fπ(x)−f(x)|

(x−a)α dx ≤ c(λ)|π|λ (b−a)1−α

1−α → 0 as |π| → 0. Also, for x ∈ [ xk, xk+1 )

A(x) :=
∫ x

a
(x− y)−α−1|fπ(x)− f(x)− fπ(y) + f(y)|dy

=
k−1∑
i=0

∫ xi+1

xi
(x− y)−α−1|f(xk)− f(x)− f(xi) + f(y)|dy

+
∫ x

xk
(x− y)−α−1|f(y)− f(x)|dy ≤ 2c(λ)

k−1∑
i=0

∫ xi+1

xi
(x− y)−α−1dy · |π|λ

+ c(λ)
∫ x

xk
(x− y)λ−α−1dy ≤ 2c(λ)|π|λ (x−xk)−α

1−α + c(λ) (x−xk)λ−α

λ−α

≤ 3c(λ) |π|
λ−α

λ−α ,

which means that
∫ b

a
A(x)dx→ 0 as |π| → 0.

2) We take 1 − µ < α < λ, then the fractional derivatives Dα
a+f(x) and

(D1−α
b− g)b−(x) exist, and, moreover,

|(D1−α
b− g)b−(x)| ≤ 1

Γ (1−α)

(
|g(b)−g(x)|
(b−x)1−α + (1− α)

∫ b

x
|g(y)−g(x)|
(y−x)2−α dy

)
≤ 1

Γ (1−α) · c(λ)(b− x)µ+α−1
(
1 + 1−α

µ+α−1

)
≤ C

for some constant C. Therefore, according to part 1) of the proof,

| ∫ b

a
fπdg − ∫ b

a
fdg| ≤ ∫ b

a
|(Dα

a+fπ)(x)− (Dα
a+f)(x)||(D1−α

b− g)b−(x)|dx

≤ C
∫ b

a
|(Dα

a+fπ)(x)− (Dα
a+f)(x)|dx→ 0,

(2.1.7)
as |π| → 0.

Furthermore, according to Corollary 2.1.5,∫ b

a
fπdg =

n−1∑
k=0

f(xk)(g(xk+1)− g(xk))→ (R-S)
∫ b

a
fdg, (2.1.8)

and from (2.1.7)–(2.1.8) we obtain the desired equality. 	

Now we establish the properties of generalized integral

∫ t

s
fdg as the func-

tion of upper and lower boundaries.
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Lemma 2.1.8 ((Zah98)). 1) Let a ≤ s < t ≤ b and the functions f and g
satisfy the assumptions
(i) (f · 1(s,t)) ∈ Iα

+(Lp[a, b]), gb− ∈ I1−α
− (Lq[a, b]) for some 0 < α < 1,

p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1,
(ii) fs+ ∈ Iα′

+ (Lp′ [s, t]), gt− ∈ I1−α′
− (Lq′ [s, t]) for some 0 < α′ < 1,

p′ ≥ 1, q′ ≥ 1, 1/p′ + 1/q′ ≤ 1. Then∫ b

a

1(s,t)fdg =
∫ t

s

fdg.

2) The equality ∫ t

s

fdg +
∫ u

t

fdg =
∫ u

s

fdg

holds for a ≤ s < t < u ≤ b, if all the integrals exist as generalized Lebesgue–
Stieltjes integrals.

Proof. 1) Let {ϕn(x), x ∈ R} be a sequence of smooth kernels, i.e.
ϕn ∈ C∞(R), ϕn ≥ 0, ϕn = 0 outside [−1/n, 0] and

∫ 0

−1/n
ϕn(x)dx = 1. More

exactly, let ϕn(x) = nϕ(nx) for ϕ ∈ C∞(R), ϕ = 0 outside of [−1, 0]. Then
we can approximate the function gb− by smooth functions gn := gb− ∗ϕn, and
the following properties hold:

gn(b−) = n
∫
[x−b,x−a]∩[−1/n,0]

(g(b−)− g(x− t))ϕ(nt)dt |x=b−= 0;
(D1−α

b− gn)(x) = D1−α
b− (

∫
R

gb−(x− t)ϕn(t)dt)
= 1(a,b)(x)(Γ (1− α))−1

(∫
R

gb−(x− t)ϕn(t)dt(b− x)α−1

+ α
∫ b

x
(y − x)2−α(

∫
R
(gb−(x− t)− gb−(y − t))ϕn(t)dt)dy

)
= 1(a,b)(x)

Γ (1−α)

∫
R

ϕn(t)
(

gb−(x−t)
(b−x)1−α + α

∫ b

x
gb−(x−t)−gb−(y−t)

(y−x)2−α dy
)

dt

= 1(a,b)(x)((D1−α
b− gb−) ∗ ϕn)(x);

(2.1.9)

∥∥(D1−α
b− gn)− (D1−α

b− gb−)
∥∥q

Lq [a,b]∥∥(D1−α
b− gb−) ∗ ϕn − (D1−α

b− gb−)
∥∥q

Lq [a,b]

=
∫ b

a
| ∫ 0

−1
((D1−α

b− gb−)(x− t
n )− (D1−α

b− gb−)(x))ϕ(t)dt|qdx

≤ C
∫ b

a

∫ 0

−1
|(D1−α

b− gb−)(· − t
n )− (D1−α

b− gb−)(·)|qdt dx→ 0, n→∞.

(2.1.10)
Therefore, from this Lq-convergence, from Lemma 2.1.2 and the properties

of convolutions,∫ b

a
1(s,t)fdg =

∫ b

a
(Dα

a+1(s,t)f)(u)(D1−α
b− gb−)(u)du

= limn→∞
∫ b

a
(Dα

a+1(s,t)f)(u)(D1−α
b− gn)(u)du

= limn→∞
∫ b

a
(1(s,t)f)(u)g′n(u)du = limn→∞

∫ t

s
f(u)(gb− ∗ ϕ′

n)(u)du.

Further, for any c > 0 (c ∗ ϕ′
n)(u) = 0, therefore



128 2 Stochastic Integration with Respect to fBm and Related Topics∫ t

s

f(u)(gb− ∗ ϕ′
n)(u)du =

∫ t

s

f(u)(g ∗ ϕ′
n)(u)du

=
∫ t

s

f(u)(gt− ∗ ϕ′
n)(u)du,

(2.1.11)

and

limn→∞
∫ t

s
f(u)(gb− ∗ ϕ′

n)(u)du = limn→∞
∫ t

s
f(u)(gt− ∗ ϕ′

n)(u)du

= limn→∞
∫ t

s
f(u)(gt− ∗ ϕn)′(u)du.

(2.1.12)

Thanks to Lemma 2.1.2, assumption (ii), (2.1.9) and (2.1.10), applied to t
instead of b,

limn→∞
∫ t

s
f(u)(gt− ∗ ϕn)′(u)du

= limn→∞
∫ t

s
(Dα′

s+fs+)(u)(D1−α′
t− (gt− ∗ ϕn))(u)du

= limn→∞
∫ t

s
(Dα′

s+fs+)(u)((D1−α′
t− gt−) ∗ ϕn)(u)du

=
∫ t

s
(Dα′

s+fs+)(u)(D1−α′
t− gt−)(u)du =

∫ t

s
fdg,

(2.1.13)

and we obtain the first statement. The second one we obtain by using some
of the equalities from (2.1.11):∫ t

s
fdg +

∫ u

t
fdg = limn→∞

∫ t

s
f(r)(g ∗ ϕ′

n)(r)dr
+ limn→∞

∫ u

t
f(r)(g ∗ ϕ′

n)(r)dr = limn→∞
∫ u

s
f(r)(g ∗ ϕ′

n)(r)dr
=
∫ u

s
fdg.

	


2.1.2 Pathwise Stochastic Integration in Fractional Besov-type
Spaces

In this subsection we consider the approach to pathwise stochastic integration
in fractional Besov-type spaces, introduced by Nualart and Rǎşcanu (NR00)
(see also (CKR93) and (NO03a)).

Consider the following functional spaces. Let for 0 < β < 1
ϕβ

f (t) := |f(t)|+∫ t

0
|f(t)−f(s)|(t−s)−β−1ds, and W β

0 = W β
0 [0T ] be the space

of real-valued measurable functions f : [0, T ]→ R such that

‖f‖0,β := sup
t∈[0,T ]

ϕβ
f (t) <∞.

Furthermore, let W β
1 = W β

1 [0, T ] be the space of real-valued measurable func-
tions f : [0, T ]→ R such that

‖f‖1,β := sup
0≤s<t≤T

( |f(t)− f(s)|
(t− s)β

+
∫ t

s

|f(u)− f(s)|
(u− s)1+β

du

)
<∞
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and W β
2 = W β

2 [0, T ] be the space of real-valued measurable functions
f : [0, T ]→ R such that

‖f‖2,β :=
∫ T

0

|f(s)|
sβ

ds +
∫ T

0

∫ s

0

|f(s)− f(u)|
(s− u)β+1

du <∞.

Note that the spaces W β
i , i = 0, 2 are Banach spaces with respect to corre-

sponding norms and ‖f‖1,β is not the norm in a usual sense.
Moreover, for any 0 < ε < β ∧ (1− β)

Cβ+ε[0, T ] ⊂W β
i [0, T ] ⊂ Cβ−ε[0, T ], i = 0, 1, Cβ+ε[0, T ] ⊂W β

2 [0, T ].

Therefore, the trajectories of fBm BH for a.a. ω ∈ Ω, any T > 0 and any
0 < β < H belong to W β

1 [0, T ].
Let f ∈ W β

1 [0, T ]. Then its restriction to [0, t] ⊂ [0, T ] belongs to
Iβ
−(L∞[0, t]) and

Λβ(f) := sup
0≤s<t≤T

|(Dβ
t−ft−)(s)| ≤ 1

Γ (1− β)
‖f‖1,β <∞.

The restriction of f ∈W β
2 [0, T ] to [0, t] ⊂ [0, T ] belongs to Iβ

+(L1[0, t]).
Now, let f ∈ W β

2 [0, T ], g ∈ W 1−β
1 [0, T ]. Then for any 0 < t ≤ T there

exists the Lebesgue integral
∫ t

0
(Dβ

0+f)(x)(D1−β
t− gt−)(x)dx, so we can define∫ t

0
fdg according to Definition 2.1.1 and formula (2.1.2). Moreover, for any

0 < t ≤ T
∫ t

0
fdg =

∫ T

0
1(0,t)fdg, and the integral

∫ t

0
fdg admits an estimate

| ∫ t

0
fdg| ≤ ∫ t

0
|(Dβ

0+f)(x)||(D1−β
t− gt−)(x)|dx

≤ Λ1−β(g)‖f‖2,β ≤ (Γ (β))−1‖g‖1,1−β‖f‖2,β .

Further we fix some 0 < β < 1/2.

Lemma 2.1.9 ((NR00)). 1. Let f ∈ W β
0 [0, T ], g ∈ W 1−β

1 [0, T ], Gt(f) :=∫ t

0
fdg, t ∈ [0, T ]. Then

ϕβ
G·(f)(t) ≤ C1

β,T Λ1−β(g)
∫ t

0

((t− s)−2β + s−β)ϕβ
f (s)ds.

2. Let f ∈W β
0 [0, T ], g ∈W 1−β

1 [0, T ]. Then G·(f) ∈ C1−β [0, T ] and

‖G(f)‖1,1−β ≤ C2
β,T Λ1−β(g)‖f‖0,β .

Here Ci
β,T , i = 1, 2 depend only on T and β.

Proof. 1. It is not hard to check that for f ∈ W β
0 [0, T ] and g ∈ W 1−β

1 [0, T ]
condition 1) of Lemma 2.1.8 holds. Therefore, evidently,



130 2 Stochastic Integration with Respect to fBm and Related Topics

|Gt(f)−Gs(f)| = | ∫ t

s
fdg| ≤ ∫ t

s
|(Dβ

s+f)(u)||(D1−β
t− gt−)(u)|du

≤ Λ1−β(g)
∫ t

s

(
|f(u)|
(u−s)β + β

∫ u

s
|f(u)−f(v)|
(u−v)β+1 dv

)
du.

(2.1.14)

From (2.1.14) it follows that∫ t

0
|Gt(f)−Gu(f)|

(t−u)β+1 du ≤ Λ1−β(g)
(∫ t

0
|f(u)|(∫ u

0
(t− s)−β−1(u− s)−βds)du

+
∫ t

0

∫ u

0
|f(u)−f(v)|
(u−v)β+1 (t− v)−βdv du

)
.

(2.1.15)
The first integral on the right-hand side of (2.1.15) can be estimated as
C
∫ t

0
|f(u)|(t− u)−2βdu with C =

∫∞
0

(1 + u)−β−1u−βdu, and the second one
can be estimated as

∫ t

0
(t− u)−β

∫ u

0
|f(u)−f(v)|
(u−v)β+1 dv du.

Since (t− u)−2β ≥ (t− u)−βT−β , we obtain from (2.1.15) that∫ t

0

|Gt(f)−Gu(f)|
(t− u)β+1

du ≤ Λ1−β(g)(C + T β)
∫ t

0

(t− u)−2βϕβ
f (u)du. (2.1.16)

Further, from (2.1.14) it follows that

|Gt(f)| ≤ Λ1−β(g)
∫ t

0

(
|f(u)|

uβ + β
∫ u

0
|f(u)−f(v)|
(u−v)β+1 dv

)
du

≤ Λ1−β(g)(1 + βT β)
∫ t

0
u−βϕβ

f (u)du,
(2.1.17)

and the proof follows from (2.1.16)–(2.1.17).
2. It follows from (2.1.14) that

|Gt(f)−Gs(f)| ≤ Λ1−β(g)
1 + βT β

1− β
‖f‖0,β(t− s)1−β ,

and from (2.1.17) we obtain that

|Gt(f)| ≤ Λ1−β(g)
1 + βT β

1− β
T 1−β‖f‖0,β ,

whence the proof follows with C2
β,T = (1 ∨ T 1−β) 1+βT β

1−β . 	

Similar but more simple estimates hold for the Lebesgue integral Ft(f) =∫ t

0
f(s)ds, so we omit the proof of the following lemma.

Lemma 2.1.10 ((NR00)). 1. Let 0 < β < 1 and f : [0, T ]→ R be a measur-
able function with supt∈[0,T ]

∫ t

0
|f(s)|(t− s)−βds <∞.

Then

ϕβ
F·(f)(t) ≤ C3

β,T

∫ t

0

|f(s)|(t− s)−βds,

with C3
β,T = T β + 1/β.

2. Let f be bounded on [0, T ]. Then F (f) ∈ C1[0, T ] and
‖F (f)‖0,β ≤ C4

β,T f∗
T , where f∗

T := supt∈[0,T ] |f(t)|, C4
β,T depends on β and T .



2.2 Pathwise Stochastic Integration w.r.t. Multi-parameter fBm 131

2.2 Pathwise Stochastic Integration w.r.t.
Multi-parameter fBm

2.2.1 Some Additional Properties of Two-parameter Fractional
Integrals and Derivatives

Throughout this section we consider two-parameter functions and fields. The
first result can be proved similarly to the one-parameter case. Let the rectangle
P = [a, b] be fixed.

Lemma 2.2.1. 1. Let f ∈ Iβ1β2
± (Lp(P)) for some p > 1. Then

limβ1→0,β2→0 Dβ1β2
a+(b−)f(x) = f(x), where the limit is in Lp(P). 2. Let, in

addition, the function f be twice continuously differentiable in the neighbor-
hood of the point x. Then limβ1→1,β2→1 Dβ1β2

a+(b−)f(x) = ∂2f
∂x1∂x2

(x). So, we can
put D00

a+(b−)f := f , D11
a+(b−)f := f .

Theorem 2.2.2. Let 0 < βi < 1 and 1 < p < β−1
1 ∨ β−1

2 . Then the operator
Iβ1β2
a+ is bounded from Lp(P) into Lq(P), where

1 < q < p((1− β1p)−1 ∧ (1− β2p)−1).

Proof. Denote r := p((1−β1p)−1∨ (1−β2p)−1). Since r > p, it is sufficient to
consider q ∈ (p, r). Then for 1

p′ + 1
p = 1, 1

p′
i
+ 1

r = 1−βi, from the generalized
Hölder inequality, it holds that

|(Iβ1β2
a+ f)(x)| ≤ C

(∫
[a,x]

|f(u)|p
∏

i=1,2

(xi − ui)(βi−1)γqdu
) 1

q

×
(∫

[a,x]

|f(u)|pdu
) 1

p− 1
q
(∫

[a,x]

∏
i=1,2

(xi − ui)(βi−1)(1−γ)p′
dui

) 1
p′

≤ C ‖f‖1−
p
q

Lp(P)

(∫
[a,x]

|f(u)|p
∏

i=1,2

(xi − ui)(βi−1)γqdu
) 1

q

.

Here we choose γ satisfying the inequalities (1 − βi)γq < 1 and (1 − βi)(1 −
γ)p′ < 1, which is equivalent to 1− (p′(1− βi))−1 < γ < (q(1− βi))−1. Such
a choice is possible, since the inequality 1− (p′(1− βi))−1 < (q(1− βi))−1 is
equivalent to q < p(1−βip)−1, and this is evident under our suppositions. By
integration over P we obtain that

∥∥∥Iβ1β2
a+ f

∥∥∥
Lq(P)

≤ C ‖f‖1−
p
q

Lp(P)

(∫
P
|f(u)|pdu ·

∫
P

∏
i=1,2

(xi − ui)(βi−1)γqdx

) 1
q

≤ C ‖f‖Lp(P) .
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Corollary 2.2.3. Let f ∈ Lp(P), g ∈ Lq(P), Iβ1β2
a+ g ∈ Lr(P) for 1/p+1/r =

1 and r < q((1− β1q)−1 ∧ (1− β2q)−1), i.e. 1/p + 1/q < 1 + β1 ∧ β2. Then∫
P

f(u)Iβ1β2
a+ g(u)du =

∫
P

g(u)Iβ1β2
b− f(u)du.

Evidently,
Iρ1ρ2
± Iβ1β2

± = Iρ1+β1ρ2+β2
± on L1(P);

for f ∈ Iρ1+β1ρ2+β2
± (L1(P)), ρi, βi ≥ 0, ρi + βi ≤ 1

Dρ1ρ2
a+(b−)D

β1β2
a+(b−)f = Dρ1+β1ρ2+β2

a+(b−) f ;

for f ∈ Iρ1ρ2
a+(b−)(Lp(P)), g ∈ Iρ1ρ2

b− (Lq(P)), p, q > 1, 1/p + 1/q < 1 + ρ1 ∧ ρ2∫
P

Dρ1ρ2
a+ f(u)g(u)du =

∫
P

f(u)Dρ1ρ2
b− g(u)du.

2.2.2 Generalized Two-parameter Lebesgue–Stieltjes Integrals

We suppose that all the functions, considered on some rectangle P = [a, b],
belong to the space D(P), i.e. they have the limits in all the quadrants,

Q++(x) = {s ∈ P|s ≥ x}, Q+−(x) = {s ∈ P|s1 ≥ x1, s2 < x2},
Q−+(x) = {s ∈ P|s1 < x1, s2 ≥ x2}, Q−−(x) = {s ∈ P|s < x},

f(x) = lims→x,s≥x f(s), and on the sides of rectangle the limits that can be de-
fined are supposed to exist and denoted as f(x1, b2−), f(b1−, x2), f(b−). De-
note fa+(x) = ∆af(x), x ∈ P, and fb−(x) := f(x)−f(x1, b2−)−f(b1−, x2)+
f(b−).

Definition 2.2.4. Let f, g : P → R. The generalized two-parameter
Lebesgue–Stieltjes integral of f w.r.t. g is defined by∫

P
fdg :=

∫
P

(Dβ1β2
a+ fa+)(u)(D1−β11−β2

b− gb−)(u)du

+
∑

i=1,2

∫ bi

ai

(Dβi

ai+fai+)(u, ai)(D
1−βi

bi− )(gbi−(u, bi−)− gbi−(u, bi−))du

+ f(a)∆ag(b), (2.2.1)

under the assumption that all the integrals on the right-hand side exist.

A more convenient formula for
∫
P fdg has a form∫

P
fdg =

∫
P

(Dβ1β2
a+ f)(u)(D1−β11−β2

b− gb−)(u)du.

(We do not specify here the conditions ensuring the latter equality but it is
very easy to do it, similarly to the one-parameter case.) The next results also
can be proved similarly to the one-parameter case ((SKM93) and (Zah98)).
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Theorem 2.2.5. Definition 2.2.4 is correct, i.e. the right-hand side of (2.2.1)
does not depend on the choice of βi, i = 1, 2.

Theorem 2.2.6. Let f : P → R, f ∈ Cλ1λ2(P) and λi + βi < 1, i = 1, 2,
0 < βi < 1. Then Iβ1β2

a+(b−)(fa+(b−)) ∈ Cλ1+β1λ2+β2(P).

Theorem 2.2.7. Let the function f ∈ Cλ1λ2(P). Then for any p ≥ 1 and
0 < εi < λi, i = 1, 2

fa+(b−) ∈ Iε1ε2± (Lp(P))

and
Dε1ε2

a+(b−)fa+(b−) ∈ Cλ1−ε1λ2−ε2(P).

Theorem 2.2.8. Let f ∈ C(P), g ∈ BV (P), f ∈ Iβ1β2
+ (Lp(P)), gb− ∈

I1−β11−β2
− (Lq(P)), i = 1, 2, j = 3 − i, 1

p + 1
q ≤ 1, 0 ≤ βi ≤ 1, i = 1, 2.

Then the generalized two-parameter Lebesgue–Stieltjes integral
∫
P fdg equals

the Riemann–Stieltjes integral
∫
P f(x)dg(x).

Theorem 2.2.9. 1. Let g ∈ Cλ1λ2(P) for some 0 < λi ≤ 1, i = 1, 2. Then
for any P1 = [c, d) ⊂ P ∫

P
1P1dg = ∆cg(d).

2. Let g ∈ Cλ1λ2(P) and let the partition π = π1×π2, where πi = {ai = xi
0 <

· · · < xi
ni

= bi} be the partition of [ai, bi].

Also, let fπ(x) =
∑

i=1,2

ni−1∑
ji=0

fj1j21Pj1j2
(x), where Pj1j2 =

∏
i=1,2[x

i
ji

, xi
ji+1).

Then
∫
P fπdg =

∑
i=1,2

ni−1∑
ji=0

fj1j2∆xj
g(xj+1), where xj = (x1

j1
, x2

j2
).

Now, let πn be the sequence of partitions of rectangle P, πn ⊂ πn+1

and |πn| = maxi=1,2 max0≤ji≤ni,n−1(x
i,n
ji+1 − xi,n

ji
). Let f : P → R, fj1j2 =

f(xn
ji+1). We say that the partitions πn are uniform, if n

(n)
1 = n

(n)
2 and xi,n

ji+1−
xi,n

ji
= bi−ai

n
(n)
1

, i = 1, 2.

Theorem 2.2.10. 1. Let f ∈ Cλ1λ2(P) for some 0 < λi ≤ 1, i = 1, 2. Then

lim
n→∞ sup

πn

‖fπn
− f‖L∞(P) = 0,

where supπn
is taken over all the sequences of partitions mentioned above.

2. limn→∞ supπ′
n

∥∥∥Dβ1β2
a+ (fπ′

n
)a+ −Dβ1β2

a+ fa+

∥∥∥
L1(P)

= 0,

for any β1 ∨ β2 < λ1 ∧ λ2 and all the sequences of uniform partitions of P.
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Proof. The first statement is a direct consequence of uniform continuity f on
P. Further, let gn(x) = fπ′

n
(x)−f(x). For the second statement it is sufficient

to prove that any of the following functions

Gn
1 (x) := gn(x)(x− a1)−β1(y − a2)−β2 ,

Gn
2 (x) := (x2 − a2)−β2

∫ x1

a1

(
gn(x)− gn(s1, x2)

)
(x1 − s1)−1−β1ds1,

Gn
3 (x) := (x1 − a1)−β1

∫ x2

a2

(
gn(x)− gn(x1, s2)

)
(x2 − s2)−1−β2ds2,

Gn
4 (x) :=

∫
[a,x]

∆sgn(x)
∏

i=1,2

(xi − si)−1−βids

tends to zero in L1(P). First, note that |gn(x)| ≤ C(|πn|λ1 + |πn|λ2), whence
‖Gn

1‖L1(P) ≤ C(|πn|λ1 + |πn|λ2)
∏

i=1,2

(bi − ai)1−βi → 0, n→∞. Further, let

the point x ∈ Pn
j :=

∏
i=1,2[x

i,n
ji

, xi,n
ji+1

) =: [xn
j , xn

j+1). Then it holds that

Gn
2 (x) = (x2 − a2)−β2

(
j1−1∑
k=0

∫ x1,n
k+1

x1,n
k

(x1 − s1)−1−β1ds1

+
∫ x1

xj1

gn(x, xn
j , s1)(x1 − s1)−1−β1ds1

)
,

where gn(x, xn
j , s1) = f(xn

j )− f(x)− f(x1,n
k , x2,n

j2
) + f(s1, x2). Therefore,

|Gn
2 (x)|I{x ∈ Pn

j }

≤ C(x2 − a2)−β2

⎡⎣( ∑
i=1,2

|xi,n
ji
− xi|λi

)∫ x1,n
j1

a1

(x1 − s1)−1−β1ds1

+
j1−1∑
k=0

(
(x1,n

k+1 − x1,n
k )λ1 + (x2,n

j2+1 − x2,n
j2

)λ2
) ∫ x1,n

k+1

x1,n
k

(x1 − s1)−1−β1ds1

+
∫ x

xj1

(x1 − s1)λ1−1−β1ds1

]

≤ C(x2 − a2)−β2

⎡⎣∑
i=1,2

(x1 − x1,n
j1

)λi(x1 − x1,n
j1

)−β1

+
j1−1∑
k=0

((x1,n
k+1 − x1,n

k )λ1 + (x2,n
j2+1 − x2,n

j2
)λ2)
∫ x1,n

k+1

x1,n
k

(x1 − s1)−1−β1ds1

+ (x1 − x1,n
j1

)λ1−β1

]
,
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and

‖Gn
1‖L1(P) ≤

∑
j1,j2

‖Gn
1‖L1(Pn

j ) ≤ C
∑
j1,j2

(∫
Pn

j

(
(x2 − a2)−β2(x1 − x1,n

j1
)λ1−β1

+ (x2 − a2)−β2(x2 − x2,n
j2

)λ2(x1 − x1,n
j1

)−β1

+
j1−1∑
k=0

(x1,n
k+1 − x1,n

k )λ1(x2 − a2)−β2

∫ x1,n
k+1

x1,n
k

(x1 − s1)−1−β1ds1

+ (x2 − a2)−β2(x2,n
j2+1 − x2,n

j2
)λ1

j1−1∑
k=0

∫ x1,n
k+1

x1,n
k

(x1 − s1)−1−β1ds1

+ (x2 − a2)−β2(x1 − x1,n
j1

)λ1−β1

)
dx
)

≤ C(b2 − a2)1−β2

⎛⎝|πn|λ1−β1 + |πn|λ2

n
(n)
1∑

j1=1

(x1,n
j1+1 − x1,n

j1
)1−β1

+
n

(n)
1 −1∑
j1=0

(x1,n
k+1 − x1,n

k )λ1

∫ x1,n
k+1

x1,n
k

(
∫ b1

x1,n
k+1

(x1 − s1)−1−β1dx1)ds1

+ |πn|λ2

n
(n)
1 −1∑
j1=0

∫ x1,n
k+1

x1,n
k

∫ x1,n
k

a1

(x1 − s1)−1−β1ds1dx1 + |πn|λ1−β1

⎞⎠ .

(2.2.2)
The first, third and fifth terms on the right-hand side of (2.2.2) are bounded
from above by C|πn|λ1−β1 → 0, n→∞, and it is true for any πn. The second
and fourth terms can be effectively estimated when πn = π′

n is uniform. In
this case

|π′
n|λ2

n
(n)
1∑

j1=1

(x1,n
j1+1 − x1,n

j1
)1−β1 ≤ C

(n(n)
1 )λ2−β1

→ 0, n→∞,

and

|π′
n|λ2

n
(n)
1 −1∑
j1=0

∫ x1,n
k+1

x1,n
k

∫ x1,n
k

a1
(x1 − s1)−1−β1ds1dx1

≤ |π′
n|λ2

n
(n)
1∑

j1=1

(x1,n
j1+1 − x1,n

j1
)1−β1 → 0, n→∞.

Gn
3 and Gn

4 can be estimated in a similar way. 	

Definition 2.2.11. We say that the two-parameter left Riemann–Stieltjes
integral l-

∫
P fdg exists if the sums Sn have the limit for all sequences of

uniform partitions of P with vanishing diameter.
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Theorem 2.2.12. Let f ∈ Cλ1λ2(P), g ∈ Cµ1µ2(P) and λi +µi > 1, i = 1, 2.
Then the generalized two-parameter Lebesgue–Stieltjes integrals

∫
P fdg and

l-
∫
P fdg exist and coincide.

Proof. It is sufficient to prove that Sn →
∫

P
fdg. But the sums Sn equal

Sn =
∫

P
fπn

dg. Denote f (n) := fπn
. Then∫

P
f (n)dg =

∫
P

Dβ1β2
a+ f (n)(x)D1−β11−β2

b− gb−(x)dx

for any 1−µi < βi < λi. According to previous theorem, Dβ1β2
a+ f (n) → Dβ1β2

a+ f
in L1(P), whence the proof follows. 	

Remark 2.2.13. We can use the Hölder properties of f in order to establish
that

∫
P fdg = lim S̃n, where

S̃n =
∑
j1j2

(f(x1,n
j1

, ξ2,n
j2

) + f(ξ1,n
j1

, x2,n
j2

)− f(ξn
j ))∆xn

j
g(xn

j+1)

and ξn
j is any point of Pn

j .

2.2.3 Generalized Integrals of Two-parameter fBm in the Case of
the Integrand Depending on fBm

Since the trajectories of two-parameter fBm BH1H2 a.s. belong to
CH1−ε1H2−ε2(P) for any rectangle P ⊂ R2

+ and any 0 < εi < Hi, the next
result is a direct consequence of Theorem 2.2.12.

Theorem 2.2.14. Let BH1H2 be a two-parameter fBm with Hi ∈ (1/2, 1), and
the function F : R+ ×R→ R, F ∈ C1(R+ ×R). Then there exists the gener-
alized two-parameter Lebesgue–Stieltjes integral

∫
P F (·, BH1H2)dBH1H2 which

coincides with the left Riemann–Stieltjes integral l-
∫

P
F (·, BH1H2)dBH1H2 .

Remark 2.2.15. Theorem 2.2.14 holds if we replace F (·, BH1H2) with any
Hölder field f ∈ Cλ1λ2(P), such that λi + Hi > 1. It means that for such an
f , we can consider the integral

∫
P

fdBH1H2 for any ω ∈ Ω′, P (Ω′) = 1 as the
limit of corresponding integral sums.

2.2.4 Pathwise Integration in Two-parameter Besov Spaces

According to the form of two-parameter forward and backward fractional
Marchaud derivatives (Definition 1.20.8), the Besov type spaces in this case
receive the following form.

Let Pt := [0, t] =
∏

i=1,2[0, ti],

ϕβ1
1 (f)(t) :=

∫ t1
0
|f(t)− f(s1, t2)|(t1 − s1)−β1−1ds1,

ϕβ2
2 (f)(t) :=

∫ t2
0
|f(t)− f(t1, s2)|(t2 − s2)−β2−1ds2,
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ϕβ1β2
3 (f)(t) :=

∫
Pt
|∆sf(t)|(ϕ(t, s, 1 + β))−1ds, 0 < βi < 1,

and ϕβ1β2
f (t) := |f(t)|+ ∑

i=1,2

ϕβi

i (f)(t) + ϕβ1β2
3 (f)(t).

Denote by W β1,β2
0 (PT ) the Banach space of measurable functions f : PT →

R, such that
‖f‖0,β1,β2 := sup

t∈PT

ϕβ1β2
f (t) <∞,

W β1,β2
1 (PT ) the Banach space of measurable functions f : PT → R, such that

‖f‖1,β1,β2 := sup0<s≤t<T

(
|∆sf(t)| ∏

i=1,2

(ti − si)−βi

+ (t2 − s2)−β2
∫ t1

s1
|ft−(u, s2)− ft−(s)|(u− s1)−1−β1du

+ (t1 − s1)−β1
∫ t2

s2
|ft−(s1, v)− ft−(s)|(v − s2)−1−β2dv

+
∫
[s,t]
|∆sf(r)|(ϕ(r, s, 1 + β))−1dr

)
<∞

(for the notation of ϕ(r, s, β) see Definition 1.20.3) and W β1,β2
2 (PT ) the Ba-

nach space of measurable functions f : PT → R, such that

‖f‖2,β1,β2 :=
∫
PT

(
|f(s)| ∏

i=1,2

s−βi

i + s−β2
2 ϕβ1

1 (f)(s)

+ s−β1
1 ϕβ2

2 (f)(s) + ϕβ1β2
3 (f)(s)

)
ds <∞.

Similarly to Lemmas 2.1.9 and 2.1.10, the following bounds can be established.
Let 0 < βi < 1/2, i = 1, 2, Gt(f) =

∫
Pt

fdg, Ft(f) =
∫
Pt

fds.

Lemma 2.2.16. 1. Let f ∈W β1β2
2 (PT ), g ∈W 1−β1,1−β2

1 (PT ). Then

ϕβ1β2
G·(f)(t) ≤ C1

β1,β2,T Λ1−β11−β2(g)
∫
Pt

∏
i=1,2

(r−βi

i + (ti − ri)−2βi)ϕβ1β2
f (r)dr.

2. Let f ∈ W β1β2
0 (PT ), g ∈ W 1−β1,1−β2

1 (PT ). Then G·(f) ∈ C1−β11−β2(PT )
and

‖G(f)‖1−β1,1−β2 ≤ C2
β1,β2,T Λ1−β11−β2(g)‖f‖0,β1,β2 .

3. Let 0 < βi < 1 and f∗
T := supt∈PT

|f(t)| < ∞. Then
F·(f) ∈W β1β2

0 (PT ) ∩ C2(PT ) and

‖F (f)‖0,β1,β2 ≤ C3
β1,β2,T f∗

T .

2.2.5 The Existence of the Integrals of the Second Kind of a
Two-parameter fBm

We fix the rectangle P = [0, T ] ⊂ R2
+ and consider the sequence of uniform

partitions
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πn = {tnj = (T1j1 · 2−n, T2j2 · 2−n), 0 ≤ ji ≤ 2n}.
Let the functions f, g : P → R, f |∂R

2
+

= f0 ∈ R, g|∂R
2
+

= g0 ∈ R,
f ∈ Cλ1λ2(P) and g ∈ Cµ1µ2(P).

Consider the sequence of integral sums of the second kind, i.e.

S̃n :=
2n−1∑

j1,j2=0

f(tnj )∆1
jg∆2

jg,

where ∆1
jg = g(tnj1+1j2

)− g(tnj ), ∆2
jg = g(tnj1j2+1)− g(tnj ).

Theorem 2.2.17. Let λi, µi > 1
2 , λi +µ1 +µ2 > 2, i = 1, 2. Then there exists

limn→∞ S̃n =: S̃. This limit will be called the integral of the second kind of f
w.r.t. g and denoted as S̃ =

∫
P

fd1gd2g.

Proof. Let, for technical simplicity, T1 = T2 = 1. Also, let m > n. Consider
the difference Sn − Sm = Sn − Smn + Smn − Sm, where

Smn =
2n−1∑

j1,j2=0

∑
r∈Aj1

f(r2−m, j22−n)(g((r + 1)2−m, j22−n)− g(r2−m, j22−n))

× (g(r2−m, (j2 + 1)2−n)− g(r2−m, j22−n)),

Aj1 = {r : j12m−n ≤ r < (j1 + 1)2m−n}.
It is sufficient to estimate only Sn−Smn, because Smn−Sm can be estimated
similarly. We have that

|Sn − Smn| ≤ |∆1
mn|+ |∆2

mn|,
where

∆1
mn =

2n−1∑
j1,j2=0

∑
r∈Aj1

f(tnj )∆jrg∆1
j2rg,∆2

mn =
2n−1∑

j1,j2=0

∑
r∈Aj1

∆1
jrf∆1

j2rg∆2
j2rg,

∆jrg = ∆tn
j
g(r2−m, (j2 + 1)2−n),

∆1
j2rg = ∆1

(r2−m,j22−n)g((r + 1)2−m, (j2 + 1)2−n),
∆1

jrf = ∆1
tn
j
f(r2−m, j22−n), (j2 + 1)2−n),

∆2
j2rg = ∆2

(r2−m,j22−n)g(r2−m, (j2 + 1)2−n).

Transform ∆1
mn into the sum

∆1
mn =

2n−1∑
j1,j2=0

∑
r∈Aj1

f(tnj )∆j2rg∆1
jrg,

where ∆j2rg = ∆(r2−m,j22−n)(g((r + 1)2−m(j2 + 1)2−n)),
and ∆1

jrg = ∆1
(r2−m,j22−n)g(tnj1+1j2

). The increments ∆j2rg correspond to the
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rectangles ∆j2r = ( r2−m, (r + 1)2−m ] × ( j22−n, (j2 + 1)2−n ], that do not
intersect, and ∪∆j2r = ( 0, 1 ]2. Therefore the sum ∆1

n,m can be presented as
a two-parameter generalized Lebesgue–Stieltjes integral

∫
P f̃mndg, where

f̃mn(s) = f(tnj )∆1
jrg · 1{s∈∆j2r}.

In turn, ∫
P

f̃mndg =
∫
P

(Dβ1β2
0+ f̃mn)(s)(D1−β11−β2

1− g1−)(s)ds,

where 1 = (1, 1), 0 = (0, 0), 1 − µi < βi < λi, i = 1, 2. With such a choice
of βi D1−β11−β2

1− g1− ∈ Cµ1+β1−1µ2+β2−1(P), in particular, there exists such
a C > 0 that |(D1−β11−β2

1− g1−)(s)| ≤ C, s ∈ P. Therefore, it is sufficient to
prove that

∫
P |(Dβ1β2

0+ f̃mn)(s)|ds→ 0, n,m→∞. Since Dβ1β2
0+ f̃mn consists of

four terms, we must consider them separately. Estimate only
∫
P |ϕmni(s)|ds,

where
ϕmn1(s) = s−β2

2

∫ s1

0
(f̃mn(s)− f̃mn(u1, s2))(s1 − u1)−1−β1du1,

and
ϕmn2(s) =

∫
[0,s]

∆uf̃mn(s)
∏

i=1,2

(si − ui)−1−βidu1;

the other two terms can be considered similarly.
Let s ∈ ∆j2r. Then, taking into account that |f(s)| ≤ C for some C > 0,

we obtain that

|ϕmn1(s)| ≤ s−β2
2 (
∫ j12

−n

0
+
∫ r2−m

j12−n )|f̃mn(s)− f̃mn(u1, s2)|(s1 − u1)−1−β1du1

≤ s−β2
2

∫ j12
−n

0
(|f̃mn(s)|+ |f̃mn(u1, s2)|)(s1 − u1)−1−β1du1

+ Cs−β2
2

∫ r2−m

j12−n |f(tnj )|(s1 − u1 + 2−m)µ1(s1 − u1)−1−β1du1 ≤ Cs−β2
2

×(2−nµ1(s1 − j12−n)−β1 + (s1 − r2−m)µ1−β1 + 2−mµ1(s1 − r2−m)−β1),

whence∫
P |ϕmn1(s)|ds ≤ C

2n−1∑
j1,j2=0

∑
r∈Aj1

(
2−nµ1

∫
∆j2r

s−β2
2 (s1 − j12−n)ds

+
∫

∆j2r
s−β2
2 (s1 − r2−m)µ1−β1ds + 2−mµ1

∫
∆j2r

s−β2
2 (s1 − r2−m)−β1ds

)
≤ C(1− β2)−1(2n(β1−µ1) + 2m(β1−µ1))→ 0, m, n→∞.

Further, from Hölder properties of f and g, it follows that for
u ≤ (j12−n, j22−n) we have the estimate |∆uf̃mn(s)| ≤ 2(s2 − u2 +
2−n)λ22−nµ1 + C(s2 − u2 + 2−n)µ2(s1 − u1)−nµ1 , for u ∈ (j12−n, r2−m) ×
(0, j22−n) the estimate is |∆uf̃mn(s)| ≤ 2(s2−u2 +2−n)λ2(s1−u1 +2−m)µ1 +
C2−mµ1(s2 − u2 + 2−n)µ2 , and ∆uf̃mn(s) = 0 otherwise. Hence,

|ϕmn2(s)| ≤ C2−nµ1(s1 − j22−n)−β1(s2 − (j1 − 1)2−n)λ2∧µ2−β2

+ C(s1 + j22−n + 2−m)µ1−β1(s2 − j22−m + 2−n)µ2∧µ2−β2 ,
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and
∫
P |ϕmn2(s)|ds ≤ C2n(β1+β2−µ1−µ2∧λ2) → 0,m, n→∞. So,

|∆1
mn| → 0,m, n → ∞. Now we want to prove that |∆2

mn| → 0,m, n → ∞.
We can present ∆2

mn as

∆2
mn =

2n−1∑
j2=0

∆2,j2
mn ,

where

∆2,j2
mn =

2n−1∑
j1=0

∑
r∈Aj1

∆1
jrf∆1

j2rg∆2
j2rg.

Moreover, ∆2,j2
mn can be presented as one-parameter generalized

Lebesgue–Stieltjes integral
∫ 1

0
ψj2(u)d1g(u, j22−n), where ψj2(u) =

∆1
jrf∆2

j2rg1{r2−m≤u<(r+1)2−m}, ψ(0) = 0. Then
∫ 1

0
ψj2(u)d1g(u, j22−n) =∫ 1

0
(Dβ

0+ψj2)(u)(D1−β
1− g1−)(u, j22−n)du, where 1 − µ1 < β < 1/2. Evidently,

|(D1−β
1− g1−)(u, j22−n)| ≤ C, therefore, it is sufficient to prove that

2n−1∑
j2=0

∫ 1

0

|(Dβ
0+ψj2)(u)|du→ 0,m, n→∞.

Note that

(Dβ
0+ψj2)(u) = (Γ (1− β))−1

(
ψj2(u)u−β

+ β

∫ u

0

(ψj2(u)− ψj2(z))(u− z)−1−βdz
)
,

and |ψj2(u)| ≤ C2−n(λ1+µ2), whence

2n−1∑
j2=0

∫ 1

0

|ψj2(u)|u−βdu ≤ C

∫ 1

0

u−βdu · 2n(1−λ1−µ2) → 0, n→∞.

Further, for j12−n ≤ r2−m ≤ u < (r + 1)2−m ≤ (j1 + 1)2−n,∫ u

0

(ψj2(u)− ψj2(z))(u− z)−1−βdz =
∫ j12

−n

0

+
∫ r2−m

j12−n

,

and
|ψj2(u)− ψj2(z)| ≤ |ψj2(u)|+ |ψj2(z)| ≤ C2−n(λ1+µ2).

From here,

2n−1∑
j2=0

∫ 1

0
| ∫ j12

−n

0
(ψj2(u)− ψj2(z))(u− z)−1−βdz|du

≤ C2−n(λ1+µ2)
2n−1∑

j1,j2=0

∑
r∈Aj1

∫ (r+1)2−m

r2−m | ∫ j12
−n

0
(u− z)−1−βdz|du

≤ C2n(1+β−λ1−µ2) → 0, n→∞,



2.3 Wick Integration with Respect to fBm 141

since under assumption λ1 + µ1 + µ2 > 2 we can choose 1
2 > β > 1 − µ1 in

such a way that 1 + β−λ1−µ2 < 0. Finally, for j12−n ≤ z ≤ u ≤ (r + 1)2−m

|ψj2(u)− ψj2(z)| ≤ 2−nµ2(u− z + 2−m)λ1 ,

and
2n−1∑
j2=0

∫ 1

0
| ∫ r2−m

j1r−n (ψj2(u)− ψj2(z))(u− z)−1−βdz|du

≤ C2m(1+β1−λ1−µ2) → 0,m→∞.

	

Remark 2.2.18. For f(s) = C ∆2

mn = 0, and it is easy to see from the bounds
of ∆1

mn that the theorem will hold under the assumption λi, µi > 1
2 , i = 1, 2.

Remark 2.2.19. Multiple stochastic fractional integral with Hurst parameter
less than 1/2 was considered in (BJ06).

2.3 Wick Integration with Respect to fBm with
H ∈ [1/2, 1) as S∗-integration

2.3.1 Wick Products and S∗-integration

Recall (see Sections 1.4–1.5), that the random variable F on the probability
space S′(R) belongs to S∗ if F admits the formal expansion (1.5.1) with finite
negative norm

‖F‖2−q =
∑
α∈I

α! c2
α(2N)−qα <∞

for at least one q ∈ N. Introduce the following notations:

(i) Let the function Z : R → S∗, and for any F ∈ S we have that
〈〈Z(t), F 〉〉 ∈ L1(R) as a function of t ∈ R.

(ii) In this case, define
∫

R
Z(t)dt as the unique element of S∗ such that〈〈∫

R

Z(t)dt, F

〉〉
=
∫

R

〈〈Z(t), F 〉〉 dt,

and say that Z is integrable in S∗.
(iii) Define the Wick products: for F (ω) =

∑
α cαHα(ω), and

G(ω) =
∑

β dβHβ(ω), put (F ♦G)(ω) =
∑

α,β cαdβHα+β(ω).
According to the (HOUZ96), for F,G,H ∈ S it holds that

(iv) F ♦G = G♦F ;
(v) (F ♦G)♦H = F ♦(G♦H);
(vi) H ♦(F + G) = H ♦F + H ♦G;
(vii) F ♦G ∈ S if F,G ∈ S; F ♦G ∈ S∗ if F,G ∈ S∗.

In this section we consider only the case H ∈ [1/2, 1).
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Theorem 2.3.1. Let the process Y (t) ∈ S∗ and admit an expansion
Y (t) =

∑
α cα(t)Hα(ω), t ∈ R, with the coefficients, satisfying the inequality

K := sup
α
{α! ‖cα‖2L1(R) (2N)−qα} <∞

for some q > 0.
Then the Wick product Y (t)♦ ḂM

t is S∗-integrable, and, moreover,∫
R

Y (t)♦ ḂM
t dt =

∑
α,k

∫
R

cα(t)M+h̃k(t)dt · Hα+εk
(ω). (2.3.1)

Proof. Consider only ḂH
t , and for arbitrary ḂM

t the proof is the same. Since
〈h̃k, ω〉 = Hεk

(ω), we have that the Wick product Y (t)♦ ḂH
t ∈ S∗ and

equals
∑

α,k cα(t)MH
+ h̃k(t)Hα+εk

(ω). According to (HOUZ96, Lemmas 2.5.6
and 2.5.7), the S∗-integrability of Y (t)♦ ḂH

t follows from the inequality

∑
β∈I

β!

∥∥∥∥∥∥
∑

α,k:α+εk=β

cα(t)MH
+ h̃k(t)

∥∥∥∥∥∥
2

L1(R)

(2N)−pβ <∞

for some p > 0. According to estimate (1.5.3),∣∣∣MH
+ h̃k(t)

∣∣∣ ≤ Ck2/3−H/2 < Ck5/12 for any k ≥ 1 and some C > 0.
Therefore, ∫

R

∣∣∣cα(t)MH
+ h̃k(t)

∣∣∣ dt ≤ Ck5/12 ‖cα‖L1(R) ,

and∥∥∥∥∥∥
∑

α,k:α+εk=β

cα(t)MH
+ h̃k(t)

∥∥∥∥∥∥
2

L1(R)

≤
⎛⎝ ∑

α,k:α+εk=β

∥∥∥cα(t)MH
+ h̃k(t)

∥∥∥
L1(R)

⎞⎠2

≤ C

⎛⎝ ∑
α,k:α+εk=β

k5/12 ‖cα‖L1(R)

⎞⎠2

.

Consider the sum

S :=
∑
β∈I

β!

⎛⎝ ∑
α,k:α+εk=β

k5/12 ‖cα‖L1(R)

⎞⎠2

(2N)−pβ

≤
∑
β∈I

β!(l(β))5/6

⎛⎝ ∑
α,k:α+εk=β

‖cα‖L1(R)

⎞⎠2

(2N)−pβ ,
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where l(β) equals the number of the last nonzero element in the index β (the
length of the index β). Further, for any α, β there exists no more than one k,
such that α + εk = β. Therefore,⎛⎝ ∑

α,k:α+εk=β

‖cα‖L1(R)

⎞⎠2

≤ l2(β)
∑

α,k:α+εk=β

‖cα‖2L1(R) .

It means that

S ≤
∑
α,k

(α + εk)!(l(α + εk))17/6 ‖cα‖2L1(R) (2N)−pα−pεk

≤ K
∑
α,k

(α + εk)!
α!

(l(α + εk))3(2N)−(p−q)α−pεk

≤ K
∑
α,k

(|α|+ 1)42−|α|(p−q)k−p <∞,

for p > q + 1, and we have established the S∗-integrability of Y (t)♦ ḂH
t .

Now, for any F =
∑

β,k dβ,kHβ+εk
(ω) ∈ S, we have from the definition of the

S∗-integral and of Wick product, that〈〈∫
R

Y (t)♦ ḂH
t dt, F

〉〉
=
∫

R

〈〈∑
α,k

cα(t)MH
+ h̃k(t)Hα+εk

(ω), F

〉〉
dt

=
∫

R

∑
α,k

(α + εk)!cα(t)dα,kMH
+ h̃k(t)(ω)dt.

(2.3.2)

Note that ∑
α,k

(α + εk)! |dα,k|2 (2N)2q(α+εk) =: Cq <∞

for any q ∈ N. Therefore

∑
α,k

∫
R

(α + εk)! |cα(t)| |dα,k|
∣∣∣MH

+ h̃k(t)
∣∣∣ dt ≤

∑
α,k

(α + εk)! |dα,k| k5/12 ‖cα‖L1(R)

≤
⎛⎝∑

α,k

βk! |dα,k|2 (2N)2qβk

∑
α,k

k5/6 ‖cα‖2L1(R) βk!(2N)−2q(α+εk)

⎞⎠1/2

≤
⎛⎝CqK

∑
α,k

k5/6 βk!
α!

(2N)−q|α|k−2q

⎞⎠1/2

<∞
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for q > 11/12, βk = α + εk, because
∑

α
βk!
α! (2N)−q|α| ≤∑α(|α|+ 1)2−q|α| <

∞. So, we can change the signs of sum and integral in (2.3.2) and obtain〈〈∫
R

Y (t)♦ ḂH
t dt, F

〉〉
=
∑
α,k

(α + εk)!dα,k

∫
R

cα(t)MH
+ h̃k(t)(ω)dt

=

〈〈∑
α,k

∫
R

cα(t)MH
+ h̃k(t)(ω)dt, F

〉〉
,

whence (2.3.1) follows. 	

Corollary 2.3.2. Let Y (t) =

∑
α cα(t)Hα(ω) ∈ S∗ be a process such that∫ T

0
EY 2(t)dt <∞ for some T > 0. Then

∑
α α!
∫ T

0
c2
α(t)dt =

∫ T

0
EY 2(t)dt <

∞, whence K := supα{α! ‖cα‖2L1(R) (2N)−qα} < ∞ for any q > 0 (hereafter
we put cα(t) := cα(t)1[0,T ](t)).

So, we can use Theorem 2.3.1 and conclude that Y (t)♦ ḂM
t is

S∗-integrable, and, moreover, equality (2.3.1) holds.

Corollary 2.3.3. Let Y (t) ≡ 1. Then the previous corollary holds with
c0(t) = 1, cα(t) = 0 for α �= 0,whence∫ T

0

ḂM
t dt =

∑
k

∫ T

0

M+h̃k(t)dt · Hεk
(ω) = BM

T .

In this connection, we can say that the fractional noise is the S∗-derivative of
fBm.

As a consequence, we can define
∫

R
Yt♦ dBM

t :=
∫

R
Yt♦ ḂM

t dt for the
process Yt, satisfying the conditions of Theorem 2.3.1.

Now, let Y ∈ L2[0, T ] be some nonrandom function, H ∈ (1/2, 1).
Then cα(t) = Y (t) = cα(t), for α = 0 and cα ≡ 0 for other α, so, by using

Theorem 2.3.1, we obtain that∫ T

0

Y (t)♦ ḂH
t dt =

∑
k

∫ T

0

Y (t)MH
+ h̃k(t)dt · 〈h̃k, ω〉.

Further, even for Y ∈ L1[0, T ] we can replace the operator MH
+ and obtain∫ T

0
Y (t)MH

+ h̃k(t)dt =
∫ T

0
MH

− Y (t)h̃k(t)dt, whence∫ T

0

Y (t)♦ ḂH
t dt =

∑
k

∫
R

MH
− Y (t)h̃k(t)dt · 〈h̃k, ω〉

=
∑

k

∫
R

MH
− Y (t)h̃k(t)dt · Hεk

(ω),
(2.3.3)
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where Y (t) = Y (t)1[0,T ](t). The right-hand side of (2.3.3) corresponds to
(HOUZ96, representation (2.5.22)) of the integral

∫ T

0
MH

− Y (t)♦ Ḃtdt, where
Ḃt = Ḃ

1/2
t is a white noise:∫ T

0

MH
− Y (t)♦ Ḃtdt =

∑
α,k

∫ T

0

cα(t)h̃k(t)dt · Hα+εk
(ω).

Therefore, for Y ∈ LH
2 [0, T ]∫ T

0

Y (t)♦ ḂM
t dt =

∫
R

M−Y (t)♦ Ḃtdt =
∫

R

M−Y (t) · Ḃtdt. (2.3.4)

2.3.2 Comparison of Wick and Pathwise Integrals for “Markov”
Integrands

In this subsection we can, without losing generality, consider instead of S′(R)
the probability space Ω = C0(R+, R) of real-valued continuous functions on
R+ with the initial value zero and the topology of local uniform convergence.
There exists a probability measure P on (Ω,F), where F is the Borel σ-field,
such that on the probability space (Ω,F , P ) the coordinate process B : Ω → R
defined as,

Bt(ω) = ω(t), ω ∈ Ω

is the Wiener process.

(i) Recall the notion of a stochastic derivative. Let F be a square-integrable
random variable, and suppose that the limit

lim
β→0

1
β

(
F (ω. + β

∫ .

0

h(s)ds)− F (ω.)
)

exists in L2(P )

for any h ∈ L2(R). Then this limit is called the directional derivative DhF .
(ii) If the directional derivative DhF , h ∈ L2(R), is absolutely continuous

w.r.t. the measure h(x)dx, i.e.

Dh(F ) =
∫

R

dDh(F )
dh

(x) · h(x)dx,

and (dDh(F ))/(dh) does not depend on h, then the Radon–Nikodym deriv-
ative (dDh(F ))/(dh) is called the stochastic derivative of F and is denoted
by DxF .

(iii) We have a chain rule for the stochastic derivative: if DxF exists and
ϕ ∈ C1(R), then Dxϕ(F ) has the stochastic derivative

Dxϕ(F ) = ϕ′(F )DxF.
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(iv) Let u ∈ L2(R) be a nonrandom function. Then it follows from (NP95,
Proposition 5.5), that

Dx

∫
R

usdBs = ux a.e.

(v) Recall the notion of the class D1,2. This is the Banach space, obtained
as a completion of the set P0 of smooth functionals F = f(Bt1 , . . . , Bti

),
w.r.t. the norm ‖F‖1,2 := ‖F‖L2(P ) +

∥∥ ‖DxF‖HS

∥∥
L1(P )

, where F ∈ P0,
and ‖·‖HS denotes the Hilbert–Schmidt norm.

Denote LM
2 (R) = {f : R→ R :

∫
R
|M−f(x)|2 dx <∞}.

Lemma 2.3.4. Let F ∈ D1,2, f ∈ LM
2 (R). Suppose that the integrals∫

R

(M−f)(s) ·DsFds and F ·
∫

R

(M−f)(s)dBs = F ·
∫

R

f(s)dBM
s

belong to L2(P ). Then F ♦ ∫
R

f(s)dBM
s exists and

F ♦
∫

R

f(s)dBM
s =

∫
R

(F ·M−f)(s)δBs

= F ·
∫

R

f(s)dBM
s −

∫
R

(M−f)(s) ·DsFds. (2.3.5)

Proof. By using (HOUZ96, Corollary 2.5.12) and (NP95, Theorem 3.2), we
obtain for nonrandom f that

F ♦
∫

R

f(s)dBM
s = F ♦

∫
R

(M−f)(s)dBs

=
∫

R

(F ♦M−f)(s)δBs =
∫

R

(F ·M−f)(s)δBs

= F ·
∫

R

(M−f)(s)dBs −
∫

R

(M−f)(s) ·DsFds

= F ·
∫

R

f(s)dBM
s −

∫
R

(M−f)(s) ·DsFds.

(Note that according to (NP95, Theorem 3.2), the Skorohod integral∫
R

F · (M−f)(s)δBs exists if and only if the difference F · ∫
R
(M−f)(s)dBs

− ∫
R
(M−f)(s) ·DsFds belongs to L2(P )). 	


Using this result, we can compare the Wick integral and the pathwise
integral w.r.t. fBm BH

t , H ∈ (1/2, 1)(the latter integral coincides with
Stratonovich integral). Therefore, now M± = MH

± .
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Lemma 2.3.5. Let ϕ ∈ C1(R), Ft = ϕ(BH
t ), f(s) = 1[t,t+h](s), t, h > 0. If

ϕ′(BH
t ) and Ft · (BH

t+h −BH
t ) belong to L2(P ), then

Ft♦(BH
t+h −BH

t ) = F · (BH
t+h −BH

t )

−Hϕ′(BH
t )t2αh + c(ω)(t2α−1h2 + h2H),

where c(ω) is a.s. finite and independent of t and h.

Proof. According to equation (2.3.5), we can rewrite formally the left-hand
side of the previous equality:

Ft♦(BH
t+h −BH

t ) = Ft · (BH
t+h −BH

t )

−
∫

R

(
MH

− 1[t,t+h]

)
(s)Dsϕ(BH

t )ds. (2.3.6)

Further, according to the chain rule (iii), it holds that

Dsϕ(BH
t ) = ϕ′(BH

t )DsB
H
t ,

and
DsB

H
t = Ds

∫
R

(
MH

− 1[0,t]

)
(u)dBu = (MH

− 1[0,t])(s).

Therefore,

Ft♦(BH
t+h −BH

t ) = Ft · (BH
t+h −BH

t )

− ϕ′(BH
t )
∫

R

(
MH

− 1[t,t+h]

)
(s)
(
MH

− 1[0,t]

)
(s)ds,

and under the conditions of the lemma the right-hand side of equation (2.3.6)
is well-defined. Finally,∫

R

(MH
− 1[t,t+h])(s)(MH

− 1[0,t])(s)ds = E(BH
t+h −BH

t )BH
t

=
1
2
((t + h)2H − t2H − h2H) = Ht2αh + 2Hαθ2α−1h2 − h2H ,

where θ ∈ (t, t + h). The lemma is proved. 	


Remark 2.3.6. Evidently, the assumption E
(
ϕ(BH

t )
)2+ε

<∞ for some ε > 0
is sufficient for Ft(BH

t+h −BH
t ) to belong to L2(P ).

Now, fix some T > 0 and consider the sequence πn = {0 = tn0 < · · · <
tnn = T} of partitions of [0, T ], such that πn ⊂ πn+1 and |πn| → 0 as n→∞.
Suppose that

ϕ′(BH
t ) ∈ L2(P ), ϕ(BH

t ) ∈ L2+ε(P ), t ∈ [0, T ] (2.3.7)
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for some ε > 0.
According to Lemma 2.3.5, we can write

n∑
i=1

ϕ(BH
tn
i−1

)♦∆BH
i,n =

n∑
i=1

ϕ(BH
tn
i−1

)∆BH
i,n

−H
n∑

i=1

ϕ′(BH
tn
i−1

)(tni−1)
2α∆ti,n + Rn(T ),

where ∆ti,n = tni − tni−1, ∆BH
i,n = BH

tn
i
− BH

tn
i−1

. Here Rn(T ) is a remainder
term and Rn(T ) → 0 a.s. as n → ∞. Furthermore, the process Ct := ϕ(BH

t )
is Hölder continuous up to order H. Also, by Theorem 2.1.7, part 2), the
sum

∑n
i=1 ϕ(BH

tn
i−1

)∆BH
i,n converges a.s. as n → ∞ to the pathwise integral∫ T

0
ϕ(BH

s )dBH
s . Clearly,

n∑
i=1

ϕ′(BH
tn
i−1

)(tni−1)
2α∆ti,n →

∫ T

0

ϕ′(BH
s )s2αds a.s.

Therefore,

lim
n→∞

n∑
i=1

ϕ(BH
tn
i−1

)♦∆BH
i,n =

∫ T

0

ϕ(BH
s )dBH

s −H

∫ T

0

ϕ′(BH
s )s2αds a.s.

Moreover, under assumption (2.3.7) and

E

∫ T

0

(
ϕ(BH

s )
)2

ds <∞, (2.3.8)

there exists the Wick integral
∫ T

0
ϕ(BH

s )♦ dBH
s . Now we are in a position to

prove that ∫ T

0

ϕ(BH
s )♦ dBH

s = lim
n→∞

n∑
i=1

ϕ(BH
tn
i−1

)♦∆BH
i,n. (2.3.9)

Theorem 2.3.7. Under conditions (2.3.7) and

E sup
s≤T

(
ϕ(BH

s )
)2

+ E sup
s≤T

(ϕ′(BH
s ))2 <∞ (2.3.10)

equality (2.3.8) and (2.3.9), consequently, the equality∫ T

0

ϕ(BH
s )♦ dBH

s =
∫ T

0

ϕ(BH
s )dBH

s −H

∫ T

0

ϕ′(BH
s )s2αds

holds a.s.
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Proof. Let the random variables F,G ∈ D1,2. According to equality (2.3.5)
and (NP95, Theorem 3.2), for i ≤ k

E
[
F ♦∆BH

i,n ·G♦∆BH
k,n

]
= E

[∫
R

FMH
− 1[tn

i−1,tn
i ](s)δBs ·

∫
R

GMH
− 1[tn

k−1,tn
k ](s)δBs

]
= E

[∫
R

FGMH
− 1[tn

i−1,tn
i ](s)MH

− 1[tn
k−1,tn

k ](s)ds

]
+ E

[∫
R×R

DtFDsGMH
− 1[tn

i−1,tn
i ](t)MH

− 1[tn
k−1,tn

k ](s)ds dt

]
=

1
2
E[FGrik]

+ E

[∫
R

DtFMH
− 1[tn

i−1,tn
i ](t)dt ·

∫
R

DsGMH
− 1[tn

k−1,tn
k ](s)ds

]
,

(2.3.11)

where

rik =
∣∣tnk−1 − tni

∣∣2H + (tnk − tni−1)
2H − (tnk − tni )2H − (tnk−1 − tni−1)

2H .

Put in (2.3.11) F = ϕ(BH
tn
i−1

), G = ϕ(BH
tn
k−1

) and take the sum over
1 ≤ i ≤ k ≤ n. We obtain that

E

(
n∑

i=1

ϕ(BH
tn
i−1

)♦∆BH
i,n

)2

= Sn
1 + Sn

2 ,

where

Sn
1 =

∑
1≤i≤k≤n

Eϕ(BH
tn
i−1

)ϕ(BH
tn
k−1

)rik,

and

Sn
2 =

∑
1≤i≤k≤n

E

∫
R

ϕ′(BH
tn
i−1

)MH
− 1[tn

i−1,tn
i ](t)MH

− 1[0,tn
i−1]

(t)dt

×
∫

R

ϕ′(BH
tn
k−1

)MH
− 1[tn

k−1,tn
k ](s)MH

− 1[0,tn
k−1]

(s)ds

=
1
4

∑
1≤i≤k≤n

Eϕ′(BH
tn
i−1

)ϕ′(BH
tn
k−1

)
(
(tnk )2H − (tnk−1)

2H − (∆tnk )2H
)

× ((tni )2H − (tni−1)
2H − (∆tni )2H

)
.

Evidently,

|Sn
2 | ≤ H2E

(
n∑

i=1

∣∣∣ϕ′(BH
tn
i−1

)
∣∣∣ t2α

i ·∆tni

)2

. (2.3.12)
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If the partition πn is uniform, i.e. tni = iT
n , then for some CH > 0

Sn
1 ≤ 2

∑
1≤i≤n

E
∣∣∣ϕ(BH

tn
i−1

)
∣∣∣2( iT

n

)2H

+
(

T

n

)2H

CH

∑
1≤i≤k≤n

∣∣∣ϕ(BH
tn
i−1

)ϕ(BH
tn
k−1

)
∣∣∣ · ∫ i

i−1

∫ k

k−1

(u− v)2α−1du dv.

(2.3.13)

Now it is very easy to conclude from (2.3.10)–(2.3.13), that the sums

Sn :=
n∑

k=1

ϕ(BH
tn
k
)♦∆BH

k,n

form a Cauchy sequence in L2(P ), at least, for uniform πn. From the estimate

|〈〈F, g〉〉| ≤ ‖F‖L2(P ) ‖g‖L2(P ) , F ∈ L2(P ), g ∈ S,

we obtain that 〈〈Sn − Sm, g〉〉 → 0, n,m → ∞ for any g ∈ S. This means
that {Sn} is a Cauchy sequence in the weak sense. If we establish the weak
convergence Sn → S̃ :=

∫ T

0
ϕ(BH

s )♦ dBH
s , then the theorem will be proved,

since the convergence will be in L2(P ), as well. According to (2.3.1) and
Corollary 2.3.2, we have that

S̃ =
∫ T

0

ϕ(BH
t )♦ ḂH

t dt =
∑
α,k

∫ T

0

cα(t)MH
+ h̃k(t)dt · Hα+εk

(ω),

Sn =
∫ T

0

ϕn(t)♦ ḂH
t dt =

∑
α,k

∫ T

0

cn
α(t)MH

+ h̃k(t)dt · Hα+εk
(ω),

where

ϕn(t) =
n∑

i=1

ϕ(BH
tn
i−1

)1[tn
i−1,tn

i )(t),

ϕ(BH
t ) =

∑
α

cα(t)Hα(ω), cn
α(t) =

n∑
i=1

cα(tni−1)1[tn
i−1,tn

i )(t).

Denote dn
α := cα − cn

α. Then

S − Sn =
∑

β

∑
α,k:α+εk=β

∫ T

0

dn
α(t)MH

+ h̃k(t)dt · Hβ(ω).

Furthermore, for any g =
∑

β gβHβ(ω) ∈ S and any q > 0
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∣∣∣〈〈S̃ − Sn, g
〉〉∣∣∣ ≤∑

β

β!

∣∣∣∣∣∣gβ

∑
α,k:α+εk=β

∫ T

0

dn
α(t)MH

+ h̃k(t)dt

∣∣∣∣∣∣
≤
⎛⎝∑

β

β!(gβ)2(2N)βq

⎞⎠1/2

×

⎛⎜⎝∑
β

β!

∥∥∥∥∥∥
∑

α,k:α+εk=β

∣∣∣dn
αMH

+ h̃k

∣∣∣
∥∥∥∥∥∥

2

L1[0,T ]

(2N)−βq

⎞⎟⎠
1/2

.

We estimate only the second multiplicand. According to (1.5.3), for
H ∈ (1/2, 1)

∣∣∣MH
+ h̃k(t)

∣∣∣ ≤ Ck5/12 with constant C independent of t, k. So,

∥∥∥∥∥∥
∑

α,k:α+εk=β

∣∣∣dn
αMH

+ h̃k

∣∣∣
∥∥∥∥∥∥

2

L1[0,T ]

≤ C

⎛⎝ ∑
α,k:α+εk=β

k5/12 ‖dn
α‖L1[0,T ]

⎞⎠2

≤ C(l(β))5/6

⎛⎝ ∑
α,k:α+εk=β

‖dn
α‖L1[0,T ]

⎞⎠2

,

where l(β) equals the number of nonzero entries in β. Further,

∑
β

β! (2N)−βq

∥∥∥∥∥∥
∑

α,k:α+εk=β

∣∣∣dn
αMH

+ h̃k

∣∣∣
∥∥∥∥∥∥

2

L1[0,T ]

≤
∑

β

β! (2N)−βql(β)5/6

⎛⎝ ∑
α,k:α+εk=β

‖dn
α‖L1[0,T ]

⎞⎠2

≤
∑

β

β! l(β)17/6
∑

α:∃k,α+εk=β

‖dn
α‖L1[0,T ] (2N)−βq

≤
∑
α,k

(α + εk)!(l(α + εk))17/6 ‖dn
α‖2L1[0,T ] (2N)−q(α+εk)

≤ sup
α

{
α! ‖dn

α‖2L1[0,T ]

}∑
α,k

(α + εk)!
α!

(l(α + εk))17/6(2N)−qα(2N)−qεk

≤ sup
α

{
α! ‖dn

α‖2L1[0,T ]

}∑
α,k

(|α|+ 1)23/62−|α|qk−q.

The last series converges for q > 1, and it follows from the continuity of ϕ
and condition (2.3.10), that
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sup
α

{
α! ‖dn

α‖2L1[0,T ]

}
≤
∑
α

α! ‖dn
α‖L2[0,T ] · T

= T
∥∥ϕ(BH

· )− ϕn(·)∥∥
L2[0,T ]

→ 0, n→∞.

	

Theorem 2.3.7 can be generalized to the processes of the form

BM
t :=

m∑
k=1

σkBHk
t .

Suppose that H1 = 1
2 and Hk ∈ (1/2, 1), 2 ≤ k ≤ m.

Theorem 2.3.8. Assume that conditions (2.3.7), (2.3.8) and (2.3.10) hold
with BH

t replaced by BM
t . Then∫ T

0

ϕ(BM
t )♦ dBM

t =
∫ T

0

ϕ(BM
t )dBM

t

−
n∑

i,k=1

σiσkC̃HiHk
(Hi + Hk)

∫ T

0

ϕ′(BM
s )sHi+Hk−1ds +

1
2
σ2

1

∫ T

0

ϕ′(BM
s )ds,

where

C̃HiHk
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
(3)
Hi

C
(3)
Hk

B(Hi − 1/2, 2−Hi −Hk)
(Hi + Hk)(Hi + Hk − 1)Γ (Hi − 1/2)Γ (Hk − 1/2)

,

Hi,Hk ∈ (1/2, 1),

C
(3)
Hk

Γ (Hk + 3/2)
, Hi = 1/2,Hk ∈ (1/2, 1),

0,Hi ∈ (1/2, 1),Hk = 1/2,

1
2
,Hi = Hk = 1/2.

Proof. We start with (2.3.5) and conclude that

ϕ(BM
t )♦(BM

t+h −BM
t ) = ϕ(BM

t ) · (BM
t+h −BM

t )

− ϕ′(BM
t )

m∑
i,k=1

σiσk

∫
R

MHi− 1[t,t+h](s)M
Hk− 1[0,t](s)ds.

Further, for f ∈ LHi
2 (R), g ∈ LHk

2 (R),Hi,Hk ∈ (1/2, 1)∫
R

MHi− f(s)MHk− g(s)ds = C
(1)
i,k,H

∫
R

∫ ∞

s

(x− s)Hi−3/2f(x)dx

×
∫ ∞

s

(y − s)Hk−3/2g(y)dy ds = C
(1)
i,k,H

∫
R2

f(x)g(y)dx dy

×
∫ x∧y

−∞
(x− s)Hi−3/2(y − s)Hk−3/2ds,
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where C
(1)
i,k,H =

C
(3)
Hi

C
(3)
Hk

Γ (Hi−1/2)Γ (Hk−1/2) . Evidently,∫ x∧y

−∞
(x− s)Hi−3/2(y − s)Hk−3/2ds

= |y − x|Hi+Hk−2
(
C

(2)
i,k,H1{y > x}+ C

(2)
k,i,H1{y ≤ x}

)
.

with C
(2)
i,k,H =

∫∞
0

zHi−3/2(1+z)Hk−3/2dz = B(Hi−1/2, 2−Hi−Hk). There-
fore,∫

R

MHi− f(s)MHk− g(s)ds = C
(1)
i,k,H

∫
R

f(x) |y − x|Hi+Hk−2

·
(
C

(2)
i,k,H1{x < y}+ C

(2)
k,i,H1{y < x}

)
dx dy.

Let f(x) = 1[t,t+h](x), g(y) = 1[0,t](y). Then∫
R

MHi− 1[t,t+h](s)M
Hk− 1[0,t](s)ds

=
∏

j=1,2

C
(j)
k,i,H

∫ t

0

∫ t+h

t

(y − x)Hi+Hk−2dy dx

=
∏

j=1,2

C
(j)
k,i,H((Hi + Hk)(Hi + Hk − 1))−1

× [(t + h)Hi+Hk − tHi+Hk − hHi+Hk
]

=: C̃HiHk

[
(t + h)Hi+Hk − tHi+Hk − hHi+Hk

]
= C̃HiHk

[
(Hi + Hk)tHi+Hk−1h + (Hi + Hk)(Hi + Hk − 1)θHi+Hk−1h2

− hHi+Hk
]
, θ ∈ (t, t + h).

(2.3.14)
For Hi = 1/2 and Hk ∈ (1/2, 1) we have that M

1/2
− = I is identity

operator, and∫
R

M
1/2
− f(s)MHk− g(s)ds =

C
(3)
Hk

Γ (Hk − 1/2)

∫
R

f(s)
∫ ∞

s

g(y)(y − s)Hk−3/2dy ds.

For f and g as above, the last integral equals

C
(3)
Hk

Γ (Hk − 1/2)

∫ t

0

∫ t+h

t

(y − s)Hk−3/2dy ds

=
C

(3)
Hk

Γ (Hk + 3/2)

[
(t + h)Hk+1/2 − tHk+1/2 − hHk+1/2

]
=: C̃ 1

2 Hk

[
(Hk + 1/2)tHk−1/2h

+ (Hk + 1/2)(Hk − 1/2)tHk−2h2 − hHk+1/2
]
. (2.3.15)
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At last, for Hi = Hk = 1/2∫
R

M
1/2
− 1[0,t](s)M

1/2
− 1[t,t+h](s)ds = 0. (2.3.16)

Now we can proceed as in Lemma 2.3.5 and Theorem 2.3.7, put C̃ 1
2

1
2

:= 1
2 ,

take into account (2.3.14)–(2.3.16) and obtain the proof. 	


2.3.3 Comparison of Wick and Stratonovich Integrals for
“General” Integrands

Now we consider the general process Ft instead of ϕ(BM
t ). Suppose that fBm

{BH
t , t ≥ 0} is “one-sided”, H ∈ (1

2 , 1).

Theorem 2.3.9. Let {Ft,Ft, t ∈ [0, T ]} be the stochastic process satisfying
the conditions

(i) Ft ∈ D1,2 for any t ∈ [0, T ], E |Ft|2+ε
< ∞ for any t ∈ [0, T ] and

some ε > 0, sups,t∈[0,T ] |DsFt| is bounded in probability;

(ii) limh↓0 supt∈[0,T ] |DtFs −DtFs+h| = 0 in probability;

(iii) Ft is a.s. Hölder continuous of order α > 1−H (this condition implies
the existence of the Stratonovich integral

∫ T

0
FtdBH

t , H ∈ (1/2, 1));

(iv) E
∫ T

0
F 2

t dt < ∞ (this condition implies the existence of the Wick
integral

∫ T

0
Ft♦ dBH

t , according to Corollary 2.3.2);

(v) there exists a sequence of partitions {πn, n ≥ 1} with |πn| → 0 as n→∞
such that the integral sums

∑n
k=1 Ftn

k−1
♦∆BH

k,n converge to
∫ T

0
Ft♦ dBH

t

in probability.

Then∫ T

0

Fs♦ dBH
s =

∫ T

0

FsdBH
s − C

(3)
H

∫ T

0

(∫ s

0

(s− t)α−1DsFtdt

)
ds.

Proof. Consider for any 0 ≤ t < t + h ≤ T the function f(u) = 1[t,t+h](u).
Then we take into account that DsFt = 0 for s > t and s < 0 (since Ft is Ft-
adapted) and obtain that

∫
R

MH
− fDsFtds = C

(3)
H

∫ t

0

∫ t+h

t
(u−s)α−1duDsFtds,

where
∫ t+h

t
(u− s)α−1du ≤ hα

α . Hence,

E

(∫
R

MH
− fDsFtds

)2

≤
(
C

(3)
H

)2

α2
h2αtE

∫ t

0

|DsFt|2 ds <∞.

Further, Ft ·
∫

R
MH

− fdBs = Ft ·
(
BH

t+h −BH
t

)
, and, according to (i),
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E
∣∣Ft ·

(
BH

t+h −BH
t

)∣∣2 ≤ (E |Ft|2+ε
) 2

2+ε

(
E
∣∣BH

t+h −BH
t

∣∣ 2(2+ε)
ε

) ε
2+ε

<∞.

Therefore,
∫

R
MH

− f ·DsFtds and Ft ·
∫

R
MH

− fdBs belong to L2(P ) and it
follows from Lemma 2.3.4 that the integral sums

∑n
k=1 Ftn

k−1
♦∆BH

k,n exist.
Moreover,

Ftn
k−1
♦∆BH

k,n = Ftn
k−1
·∆BH

k,n −
∫

R

MH
− 1[tn

k−1,tn
k ](s)DsFtn

k−1
ds

= Ftn
k−1
·∆BH

k,n −
∫

R

1[tn
k−1,tn

k ](s)
(
MH

+ (D.Ftn
k−1

)
)
(s)ds

= Ftn
k−1
·∆BH

k,n − C
(3)
H

∫ tn
k

tn
k−1

∫ tn
k−1

0

(s− u)α−1DuFtn
k−1

du ds.

(2.3.17)
Consider the difference,∣∣∣∣∣

n∑
k=1

∫ tn
k

tn
k−1

∫ tn
k−1

0

(s− u)α−1DuFtn
k−1

du ds

−
∫ T

0

∫ s

0

(s− u)α−1DuFtn
k−1

1[tn
k−1,tn

k )(s)du ds

∣∣∣∣∣
≤ C · sup

0≤u≤t≤T
|DuFt| · |πn|α · T → 0, (2.3.18)

as n→∞ in probability, according to (i). Further, according to (i) and (ii),∣∣∣∣∣
∫ T

0

∫ s

0

(s− u)α−1DuFtn
k−1

1[tn
k−1,tn

k )(s)du ds

−
∫ T

0

∫ s

0

(s− u)α−1DuFsdu ds

∣∣∣∣∣→ 0 (2.3.19)

in probability. Now, the proof follows from (v) and (2.3.17)–(2.3.19). 	

Now consider one sufficient condition for (v) (condition (v) seems to be

the most artificial among other conditions (i)–(iv)). To this end, consider the
middle part of (2.3.11), from which we obtain that for any step processes
Fn(t) =

∑n
k=1 Fk,n1[tn

k−1,tn
k−1)

(t) and Gn(t) =
∑n

k=1 Gk,n1[tn
k−1,tn

k−1)
(t)

E

[
n∑

k=1

Fn(t)♦ dBH
t ·

n∑
k=1

Gn(t)♦ dBH
t

]

= E

∫
R

MH
− Fn(t)MH

− Gn(t)dt + E

∫
R2

MH
− DsFn(t)MH

− DtGn(s)ds dt.

(2.3.20)
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The next result was motivated by (Ben03a, Theorem 2.2.8).

Theorem 2.3.10. Let the stochastic process {Ft,Ft, t ∈ [0, T ]} satisfy the
assumptions (i)–(iv) and

(vi) E
∫ T

0
F 2

t dt <∞;
(vii) the operator Ft : [0, T ]→ D1,2 is continuous in L2([0, T ]× P ).

Then the integral sums
∑n

k=1 Ftn
k−1
♦∆BH

k,n exist, the integral
∫ T

0
Fs♦ dBH

s

exists and ∫ T

0

Fs♦ dBH
s = lim

n→∞

n∑
k=1

Ftn
k−1
♦∆BH

k,n in L2(P )

for any sequence of increasing partitions πn with |πn| → 0 as n→∞.

Proof. Under condition (vi), the existence of sums
∑n

k=1 Ftn
k−1
♦∆BH

k,n and

the integral
∫ T

0
Fs♦ dBH

s was established in Theorem 2.3.9. Further, using
(2.3.20) and (vii), we obtain that

E

∣∣∣∣∣
∫ T

0

Ft♦ dBH
t −

n∑
k=1

Ftn
k−1
♦∆BH

k,n

∣∣∣∣∣
2

= E

∫
R

[
MH

− (F· − Fn
· )(t)

]2
dt

+
∫

R2
E
[
MH

− (DtF· −DtF
n
· )(s)

]2
dsdt =: En <∞

From the Hardy–Littlewood theorem (Theorem 1.1.1) with q = 2, α =
H − 1/2 and p = 1

H∫
R

[
MH

− (F· − Fn
· )(t)

]2
dt ≤ CH ‖F· − Fn

· ‖2L 1
H

[0,T ]

and from condition (vii) it follows that∫
R

[
MH

− (DtF· −DtF
n
· )(s)

]2
ds ≤ CH ‖DtF· −DtF

n
· ‖2L 1

H
[0,T ]

whence from (vii) and (iv) we obtain that

En ≤ CHE

(
‖F· − Fn

· ‖2L 1
H

[0,T ] +
∫ T

0

E ‖DtF· −DtF
n
· ‖2L 1

H
[0,T ] dt

)

≤ CHT 2αE

(
‖F· − Fn

· ‖2L2[0,T ] +
∫ T

0

‖DtF· −DtF
n
· ‖2L2[0,T ] dt

)

≤ CHT 2α

∫ T

0

E ‖F· − Fn
· ‖21,2 dt

≤ CH,1T
2α
∥∥∥F − F (n)

∥∥∥
L2([0,T ]×P )

→ 0, n→∞.



2.3 Wick Integration with Respect to fBm 157

	


2.3.4 Reduction of Wick Integration w.r.t. Fractional Noise to the
Integration w.r.t. White Noise

Recall that for nonrandom integrands f ∈ LH
2 (R)∫

R

f(t)dBH
t :=

∫
R

(MH
− f)(t)dBt.

In this subsection we reduce
∫

R
Xt♦ ḂH

t dt to the corresponding integral∫
R
(MH

− X)(t)♦ Ḃtdt w.r.t. white noise.

Theorem 2.3.11. Let the following conditions hold:

E

∫
R

|Xt|2dt <∞ and E

∫
R

((MH
− |Xt|)(t))2dt <∞.

Then ∫
R

Xt♦ ḂH
t dt =

∫
R

(MH
− X)(t)♦ Ḃtdt a.s.

Proof. According to Theorem 2.3.1 and Corollary 2.3.2, the condition
E
∫

R
|Xt|2dt <∞ supplies the equality∫

R

Xt♦ ḂH
t dt =

∑
α,k

∫
R

cα(t)MH
+ h̃k(t)dt · Hα+εk

(ω). (2.3.21)

First, replace the operator MH
+ in the last equality. Evidently,∫

R

f(t)MH
+ g(t)dt =

∫
R

MH
− f(t)g(t)dt (2.3.22)

for f ∈ Lp(R), g ∈ Lq(R) with p > 1, q > 1 and 1
p + 1

q = 1 + α = H + 1/2.

Moreover, h̃k ∈ Lq(R) for any q > 1. Since E
∫

R
|Xt|2dt

=
∑
α

α!
∫

R
c2
α(t)dt < ∞, we can take p = 2, q = 1

H and obtain from (2.3.22)

that ∫
R

cα(t)MH
+ h̃k(t)dt =

∫
R

(MH
− cα)(t)h̃k(t)dt. (2.3.23)

Further, consider the formal expansion Yt :=
∑
α

(MH
− cα)(t)Hα(ω). Again, from

Corollary 2.3.2, the condition

E

∫
R

Y 2
t dt =

∑
α

α!
∫

R

|(MH
− cα)(t)|2dt <∞ (2.3.24)

ensures the equality
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R

Yt♦ Ḃtdt =
∑
α,k

∫
R

(MH
− cα)(t)h̃k(t)dtHα+εk

(ω). (2.3.25)

So, we want to know when (2.3.24) holds and we need the equality
Yt = (MH

− X)(t). This follows from the equalities

((MH
− X)(t),Hα(ω))L2(P ) = (MH

− cα)(t) = MH
− (Xt,Hα(ω))L2(P ), (2.3.26)

if they hold for any α ∈ I. Equalities (2.3.26) can be reduced to∫
Ω

(∫ ∞

t

(x− t)α−1Xx(ω)dx
)
Hα(ω)dP

=
∫ ∞

t

(x− t)α−1
(∫

Ω

Xx(ω)Hα(ω)dP
)
dx (2.3.27)

for a.a. t ∈ R. In turn, the Fubini theorem can be applied to (2.3.27) in the
case when

E
(∫ ∞

t

(x− t)α−1|Xx(ω)|dx
)2

<∞ for a.a. t ∈ R (2.3.28)

because EH2
α(ω) = α! <∞. Evidently, the condition E

∫
R
((MH

− |X|)(t))2dt <
∞ ensures both (2.3.24) and (2.3.28). The proof now follows from (2.3.21),
(2.3.23), (2.3.25) and (2.3.26). 	


2.4 Skorohod, Forward, Backward and Symmetric
Integration w.r.t. fBm. Two Approaches to Skorohod
Integration

Taking into account the definition of the integral for nonrandom function
w.r.t. fBm:

∫
R

f(t)dBH
t :=

∫
R
(MH

− f)(t)dBt, and Theorem 2.3.11, it is desir-
able to define the integral

∫
R

f(t)dBH
t for stochastic integrands in a similar

way. Evidently, in this case, even for very simple and natural integrands, such
as f(t) = BH

t , we have that (MH
− BH)(t) = C

(3)
H

∫∞
t

(x − t)α−1BH
x dx is not

adapted. So, we must in this case address the theory of integration of non-
adapted processes. To this end, recall the definition of the Skorohod integral
(see also the pioneer paper (Sko75)).

Let the stochastic process Xt = Xt(ω) be such that

EX2
t <∞ for all t ∈ R.

Then Xt admits a Wiener–Itô chaos expansion

Xt =
∞∑

n=0

∫
Rn

fn(s1, . . . , sn, t)dB⊗n(s1, . . . , sn),
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where the functions fn(·) ∈ L2(Rn) and are symmetric in variables
(s1, . . . , sn), for n = 0, 1, 2, . . . and for each t ∈ R. See, for example,
(HOUZ96, Theorem 2.2.5). Let f̂n(s1, . . . , sn, sn+1) be the symmetrization
of fn(s1, . . . , sn, sn+1) with respect to (n + 1) variables s1, . . . , sn, sn+1.

Definition 2.4.1. Assume that
∞∑

n=0

(n + 1)!
∥∥∥f̂n

∥∥∥
L2(Rn+1)

<∞.

Then we say that the process X is Skorohod integrable, write
X ∈ Dom(δ), denote the Skorohod integral as

∫
R

XtδBt, and define it as∫
R

XtδBt :=
∞∑

n=0

∫
Rn+1 f̂n(s1, . . . , sn+1)dB⊗(n+1)(s1, . . . , sn+1). The Skorohod

integral belongs to L2(P ),

E

∫
R

XtδBt = 0, and E|
∫

R

XtδBt|2 =
∞∑

n=0

(n + 1)!
∥∥∥f̂n

∥∥∥
L2(Rn+1)

.

Remark 2.4.2 ((NP95)). Define by L1,2 the class of stochastic processes
X ∈ L2(R × Ω) such that X ∈ D1,2 for almost all t, and there exists a
measurable version of two-parameter process DsXt satisfying the relation
E
∫

R2(DsXt)2ds dt <∞. Then L1,2 ⊂ Dom(δ).

Definition 2.4.3 ((Ben03a)). Let the stochastic process Xt = Xt(ω) be such
that (MH

− X)(t) exists and belongs to Dom(δ). Then we define the Skorohod
integral with respect to fBm BH as∫

R

XtδB
H
t :=

∫
R

(MH
− X)(t)δBt

for the underlying Wiener process B.

Evidently, E
∫

R
XtδB

H
t = 0. Of course, we can define in the usual way

the Skorohod integral with finite limits and indefinite integral
∫ t

0
XtδB

H
t , t ∈

[0, T ]. It is easy to compare now the Skorohod and Wick integral w.r.t. fBm.

Theorem 2.4.4. Let MH
− X ∈ Dom(δ), E

∫
R
|Xt|2dt < ∞ and

E
∫

R
((MH

− |X|)(t))2dt <∞. Then∫
R

XtδB
H
t =

∫
R

Xt♦ ḂH
t dt.

Proof. According to (HOUZ96, Theorem 2.5.9), the condition MH
− X ∈

Dom(δ) ensures the existence of
∫

R
(MH

− X)(t)♦ Ḃtdt and the equalities:∫
R

(MH
− X)(t)♦ Ḃtdt =

∫
R

(MH
− X)(t)δBt =

∫
R

XtδB
H
t .
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Further, according to Theorem 2.3.11, in our case∫
R

(MH
− X)(t)♦ Ḃtdt =

∫
R

Xt♦ ḂH
t dt,

whence the proof follows. 	

Remark 2.4.5. Let Y ∈ LH

2 [0, T ]. Then Y is a Skorohod integrable adapted
stochastic process. Indeed, it is nonrandom thus adapted. From (2.3.4) and
(HOUZ96, Theorem 2.5.9), Y (t)♦ ḂM

t is S∗-integrable, and

∫ T

0

Y (t)♦ ḂM
t dt =

∫
R

M−Y (t) · Ḃtdt

=
∫ T

0

M−Y (t)δBt =
∫ T

0

M−Y (t)dBt,

where δ means Skorohod integration, and the last integral is the Itô, and even
the Wiener, integral. Note that, according to Corollary 1.9.4 (for H > 1/2, or
1/H < 2) L2[0, T ] ⊂ LH

2 [0, T ]. We obtain that the S∗-integral for nonrandom
functions from L2[0, T ] coincides with the Wiener integral

∫ T

0
Y (t)dBH

t from
Definition 1.6.1.

Another approach to Skorohod integration w.r.t. fBm was developed in
the papers (AN02), (Nua03), (Nua06). The main idea is to use the basic tools
of a stochastic calculus of variations (Malliavin calculus) with respect to BH .
Recall some of these notions for H ∈ (1/2, 1). (For H ∈ (0, 1/2) see, for
example, (AMN00).)

Let S be a family of smooth random variables of the form

F = f(BH
t1 , . . . , BH

tn
)

with f ∈ C∞
b (Rn) and ti ∈ [0, T ], 1 ≤ i ≤ n. Let H be a closure of the linear

space of step functions defined on [0, T ] with respect to the scalar product

〈1[0,t], 1[0,s]〉H := 2αH

∫ t

0

∫ s

0

|r − u|2α−1du dr.

Then the derivative operator D : S → Lp(Ω,H) for p ≥ 1 is defined as

DHF =
n∑

i=1

∂f

∂xi
(BH

t1 , BH
t2 , . . . , BH

tn
)1[0,ti].

Let Dk,p(H) be the Sobolev space, the closure of S with respect to the norm

‖F‖pk,p = E(|F |p) +
k∑

j=1

E(‖DνF‖pH⊗j ),
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where Dj is the jth iteration of D. The Skorohod integral (divergence op-
erator) δH is defined as the adjoint of DH : D1,2(H) ⊂ L2(Ω) → L2(Ω,H),
defined by the means of the duality relationship

E(GδH(u)) = E〈DHG, u〉H, u ∈ L2(Ω,H), G ∈ S.

Its domain is denoted by Dom(δH).
Introduce the Banach space |H| ⊗ |H| as the class of all the measurable

functions ϕ : [0, T ]2 → R such that

‖ϕ‖2|H|⊗|H|

:= (2αH)2
∫

[0,T ]4
|ϕu,v||ϕs,t||s− u|2α−1|t− v|2α−1du dv ds dt <∞,

and denote |H| := |RH | with the norm ‖ · ‖|RH |,2 (see (1.6.7)). Denote also

S|H| the family of |H|-valued random variables of the form F =
n∑

i=1

Fihi,

where Fi ∈ S and hi ∈ |H|. Put DkF :=
n∑

i=1

DkFi ⊗ hi, and define the space

Dk,p(|H|) as the completion of S|H| with respect to the norm

‖F‖pk,p,|H| = E(‖F‖p|H|) +
k∑

i=1

E(‖DiF‖pH⊗i⊗|H|).

Then D1,2(|H|) ⊂ Dom(δH). The basic property of the divergence operator is
that for every u ∈ D1,2(|H|) we have

E(|δ(u)|2) ≤ ‖u‖2
D1,2(|H|).

Consider the forward integral w.r.t. fBm ((AN02), (LT02)). It is defined as∫ t

0

usdBH,−
s := P − lim

ε→0
ε−1

∫ t

0

us(BH
(s+ε)∧t −BH

s )ds. (2.4.1)

(Note that in a similar way the symmetric Stratonovich integral can be de-
fined:

∫ t

0
usdBH,−

s := P − limε→0(2ε)−1
∫ t

0
us(BH

(s+ε)∧t − BH
(s−ε)∧t)ds, and

also backward integral can be defined.) In (LT02) the ucp-limit is consid-
ered instead of the P -limit, where ucp-convergence is uniform convergence
in probability on [0, T ]. Moreover, it is mentioned in (AN02) that forward,
backward and symmetric integrals with integrand u and w.r.t. fBm coin-
cide with each other under the following suppositions: u ∈ D1,2(|H|) with∫ t

0

∫ t

0
|Dsur||r − s|2α−1ds dr <∞ a.s.). Also, it was proved that for processes

u ∈ D1,2(|H|) with
∫ t

0

∫ t

0
|Dsur||r− s|2α−1ds dr <∞ a.s. we have the equality∫ t

0

usdBH,s
s = δH(u) + 2αH

∫ t

0

∫ t

0

|Dsur||r − s|2α−1drds. (2.4.2)
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Evidently, for u ∈ Cβ [0, T ] with β + H > 1 all the integrals, symmet-
ric, forward, backward, and pathwise, coincide. We use this fact in order to
establish the conditions of coincidence of Skorohod integrals introduced in
(Ben03a) and in (AN02).

Theorem 2.4.6. Fix a time interval [0, T ]. Let φ ∈ C1(R) and satisfy, to-
gether with its derivative φ′, the growth condition |φ(x)| ≤ C exp(λxb) for
some λ > 0 and 0 < b < 2. Then the integrals δH(φ(BH)) and

∫ t

0
φ(BH

s )δBH
s

coincide on [0, T ] a.s.

Proof. According to Proposition 3.3 (Nua06), under the condition of the
theorem (even under the less restrictive condition |φ(x)| ≤ C exp(λx2) for
λ < (4T 2H)−1), the divergence operator δH(φ(BH)) exists on [0, T ] and sat-
isfies the relation

δH(φ(BH)) =
∫ T

0

φ(BH
s )dBH

s −H

∫ T

0

φ′(BH
s )s2αds a.s.,

where
∫ T

0
φ(BH

s )dBH
s is the pathwise integral. According to Theorem 2.3.7,

under conditions (2.3.10), which evidently hold now, the same equal-
ity is valid for the integral

∫ T

0
φ(BH

s )♦ dBH
s . Therefore, δH(φ(BH)) and∫ T

0
φ(BH

s )♦ dBH
s coincide a.s. on [0, T ]. Further, the conditions of Theo-

rem 2.4.4 also hold now. Indeed, for example, E
∫

R
((MH

− |X|)(t))2dt can be
bounded in our case by C

∫ T

0
|φ(BH

s )|2ds. Therefore,
∫ T

0
φ(BH

t )δBH
t exists

and equals
∫ T

0
φ(BH

t )♦ ḂH
t dt. Finally, we use Theorem 2.3.1 and Corollary

2.3.2 and obtain the proof.
	


Remark 2.4.7. A general S-transform approach to the stochastic fractional
integration is presented in (Ben03b); see also (CC00) and (Cou07).

2.5 Isometric Approach to Stochastic Integration with
Respect to fBm

2.5.1 The Basic Idea

Some special approach to stochastic integration w.r.t. fBm was considered in
(MV00). We will work with a continuous stochastic process {Xt, 0 ≤ t ≤ T}
defined on a complete probability space (Ω,F , P ). Let Ft := FX

t be the sigma-
field generated by X on [0, t]. We assume that X0 = 0. Given a partition
πn := {ti : 0 = t0 < t1 < · · · < tn = T} and X a stochastic process, define
∆Xi by ∆Xi := Xti

−Xti−1 for 1 ≤ i ≤ n. Assume first that the integrand
f is a simple predictable process: ft =

∑
i

fi1[ti−1,ti)(t), where the random

variables fi are assumed to be Fti−1 measurable and ti ∈ πn; denote the
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class of simple predictable processes by Ls. With such an f ∈ Ls and any
(continuous) process X, define the stochastic integral of f with respect to X
by

(f,X) :=
∑

i

fi∆Xi.

Assume now that |πn| → 0 as n → ∞. If the process X is the standard
Brownian motion B, f := L2(P ⊗λ)- lim fn, where λ is the Lebesgue measure
on [0, T ], one can define the integral (f,B) as the L2-limit of the simple
stochastic integrals (f (n), B) using the classical Itô isometry

E(f (n), B)2 = E

∫ T

0

(f (n)
s )2ds. (2.5.1)

Assume now that the process X is any continuous stochastic process and f is
a simple predictable process. Define now a semi-norm for (f,X) using (2.5.1).
Note that such a semi-norm does not depend on the process X. It is the main
feature of this approach. If the process X is the standard Brownian motion,
then the semi-norm is a norm and the integrals of simple function converge
to the classical stochastic integral defined by Itô. For an arbitrary integrator
X, even if the semi-norm is a norm, it may happen that the integrals of
simple functions of processes have no limit. However, they have a limit in the
completion of the space integral sums with respect to this norm. In this sense
we generalize the Itô construction of stochastic integrals.

In particular, we show that if X is a fractional Brownian motion BH , then
we can define a norm by putting

∥∥(f,BH)
∥∥

G
:=
(
E

∫ T

0

f2
s ds
)1/2

in the space G of random variables of the form {g ∈ G : G = (f,BH), f ∈ Ls}.
Even more turns out to be true: for any k ≥ 2 define random variables

(f,X(k)) by the formula

(f,X(k)) :=
∑

i

fi(∆Xi)k

and define again a semi-norm for such random variables by putting∥∥∥(f,X(k))
∥∥∥

Gk
:=
(
E

∫ T

0

f2
s ds
)1/2

.

Again, if the process X is a fractional Brownian motion BH , then∥∥(f, (BH)(k))
∥∥

Gk is a norm. Denote by Lpr
2 (P ⊗ λ) the space of predictable

process f with the property E
∫ T

0
f2

s ds < ∞. Now, let f ∈ Lpr
2 (P ⊗ λ) be a

predictable process and f (n) a sequence of simple predictable processes such
that
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∥∥∥

L2(P⊗λ)
→ 0

as n→∞. Define the higher-order generalized integral (f, (BH)(k)) as a limit
in the Banach space (J k, ‖·‖Gk), which is the space of some kind of extended
random variables g, which are limits of the sequences of the form (f, (BH)(k))
with respect the norm ‖·‖Gk .

2.5.2 First- and Higher-order Integrals with Respect to X

Wiener Integrals

Further, if (Y, ‖·‖Y ) is a complete metric space, then the Y - lim stands for
the limit on the space Y with respect to the norm ‖·‖Y . Assume that f is a
simple deterministic process, ft =

∑m
i=1 fi1[ti−1,ti)(t). Then ‖·‖G is a norm if

and only if

(f,X) =
m∑

i=1

fi∆Xi = 0⇐⇒ fi = 0, 1 ≤ i ≤ m. (2.5.2)

Let X = (Xt)t∈[0,T ] be a square integrable process with EXt = 0, X0 = 0,
and write R(t, s) for the covariance function, R(t, s) = E XtXs. Consider the
quadratic forms

Bm = E((f,X))2

where f ∈ Ls has deterministic coefficients fi, 1 ≤ i ≤ m. Then condition
(2.5.2) is equivalent to the following:

The quadratic form Bm is positive definite for each m ≥ 1. (2.5.3)

We can write Bm in terms of the correlation function R:

Bm =
m∑

i=1

[f2
i (R(ti, ti)− 2R(ti−1, ti) + R(ti−1, ti−1))]

+ 2
∑

i�=j,i,j≤m

fifj [R(ti, tj)−R(ti−1, tj)−R(ti, tj−1) + R(ti−1, tj−1)].

(2.5.4)
Put

δii := R(ti, ti)− 2R(ti−1, ti) + R(ti−1, ti−1)

and
δij := R(ti, tj)−R(ti−1, tj)−R(ti, tj−1) + R(ti−1, tj−1).

Then condition (2.5.3) is equivalent to the property that the matrix (δij)i,j≤m

is positive definite for each m ≥ 1. Assume that condition (2.5.2) is valid for
the process X and assume that f ∈ L2[0, T ]. Then there exists fn ∈ Ls

such that ‖fn − f‖L2[0,T ] → 0 as n → ∞. Moreover, the sequence (fn, X)
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is a Cauchy sequence in the space (Es, ‖·‖Es), where Es is the subspace of
Ls consisting of deterministic simple functions f . Complete Es with respect
the norm ‖·‖Es and denote this Banach space by E. Define now the integral∫ T

0
fsdXs as the limit of (fn, X) in the space E. We say that

∫ T

0
fsdXs is the

generalized Wiener integral with respect to process X. Note that Ls in dense
in L2[0, T ] and hence also Es is dense in E, by using the isometry.

We clarify the connection between random variables and Wiener integrals
defined above. Let ζn be a sequence of random variables of the form

ζn := (fn, X)

with some fn ∈ Ls. Assume now that ζ = P -limn ζn and ‖f − fn‖L2[0,T ] → 0,
n → ∞. We show later that it may happen that P{|ζ| < ∞} < 1 or even
P{|ζ| <∞} = 0. But even in the above situation the limit∫ T

0

fsdXs = E- lim
n

(fn, X)

defines the generalized Wiener integral. In this kind of situation we say that
the random variable ζ is one of the representatives of

∫ T

0
fsdXs in the space

of random variables and
∫ T

0
fsdXs is one of the representatives of the random

variable ζ in the space E: write this as ζ ↔ ∫ T

0
fsdXs. It is easy to check that

if X is a process with non-correlated increments and with the property

E X2
t > E X2

s (2.5.5)

where s < t, then condition (2.5.2) is satisfied. Note first that condition (2.5.5)
is equivalent to the condition E(Xt−Xs)2 > 0 for s < t. Since the process X
has non-correlated increments, we have that

E
( m∑

i=1

fi∆Xi

)2

=
m∑

i=1

f2
i E(∆Xi)2 = 0

if and only if fi = 0, i ≤ m. Note that if X is a square integrable martingale
and EX2

t > EX2
s , s < t, then (2.5.2) is satisfied.

Similarly, if X is a stationary process with so-called orthogonal vector mea-
sure ϕ(dλ) such that the spectral measure F (dλ) := E|ϕ(dλ)|2 is equivalent
to the Lebesgue measure, then condition (2.5.2) is satisfied.

If the process X is the standard Brownian motion B, then

‖(f,B)‖Es = E(f,B)2 = ‖f‖L2[0,T ]

and then the limits of simple integrals (f (n), B) in the space E and in L2(P )
are the same. Similarly, if the process X is a continuous square integrable
martingale M with the angle bracket 〈M〉t =

∫ t

0
asds, where 1/K ≤ Eas ≤ K,

the limits in the space E and L2(P ) are the same.
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First-order Stochastic Integrals with Respect to X

Let F := {Ft, t ∈ [0, T ]} be a filtration on (Ω,F , P ) satisfying the usual
conditions of right continuity and completeness.

The notation X ∈ F means that Xt is Ft measurable. So, let X ∈ F be a
process and introduce the space Gs of random variables ξ:

ξ =
m∑

i=1

fi∆Xi

where fi ∈ Fti−1 and fi ∈ L2(P ), 1 ≤ i ≤ m,m ≥ 1. Let f be as above, i.e.,
f ∈ Ls and the coefficients fi, 1 ≤ i ≤ m satisfy fi ∈ Fti−1 and fi ∈ L2(P ).
Then we can define a surjection I from Ls → Gs by

I(f) := (f,X) =
m∑

i=1

fi∆Xi.

Introduce the following semi-norm on Gs:

‖(f,X)‖Gs :=
(
E

m∑
i=1

f2
i (ti − ti−1)

)1/2

. (2.5.6)

It is easy to check that the condition

(f,X) = 0 P -a.s. if and only if fi = 0 P -a.s. for 1 ≤ i ≤ m (2.5.7)

is a necessary and a sufficient condition for I to be a bijection and ‖·‖Gs to
be a norm.

Let X be a square integrable process, which satisfies (2.5.7). Now let f be a
predictable process with E

∫ T

0
f2

s ds <∞. Then there exist processes fn ∈ Ls

such that

E

∫ T

0

(fs − fn
s )2ds→ 0

as n → ∞. Now Ls is the space of elementary “predictable” processes g,
where gt :=

∑m
i=1 fi1[ti−1,ti)(t), and fi ∈ Fti−1 , 1 ≤ i ≤ m. Complete again

the space Gs with respect to the norm ‖·‖Gs . The integral
∫ T

0
fsdXs =: I(f)

is defined using the extension of the isometry I on the completed Banach
space G. The sequence fn is a Cauchy sequence with respect the norm ‖·‖G
and the integral

∫ T

0
fsdXs is the limit of the elementary integrals (fn, X) in

the space (G, ‖·‖G). We say that the integral
∫ T

0
fsdXs defined for predictable

f ∈ Lpr
2 (P ⊗ λ) is the first order generalized stochastic integral with respect

to the process X. Later we will use the notation
∫ T

0
fsdX

(1)
s for this integral.

If ζn be a sequence of random variables of the form

ζn := (fn, X)
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with some fn ∈ Ls and assume that ζ = P -limn ζn and ‖f − fn‖Lpr
2 (P⊗λ) →

0, n→∞. Hence also ∫ T

0

fsdXs = G- lim
n

(fn, X).

It may happen that P{|ζ| < ∞} < 1 or even P{|ζ| < ∞} = 0. Again the
random variable ζ is one of the representatives of the integral

∫ T

0
fsdX

(1)
s in

the space of random variables and
∫ T

0
fsdX

(1)
s is one of the representatives of

the random variable ζ in the space G: write this again as ζ ↔ ∫ T

0
fsdX

(1)
s .

The first-order integral is linear: (af + bg,X) = a(f,X) + b(g,X).

Higher-order Stochastic Integrals with Respect to X

Let (X,F) be again a stochastic process defined on (Ω,F , P ). Introduce the
space Gs,k of the random variables ξ:

ξ :=
m∑

i=1

fi(∆Xi)k

where k > 1, fi ∈ Fti−1 , fi ∈ L2(P ), 1 ≤ i ≤ m. If f ∈ Ls is a predictable step
function, define a surjection Ik from Ls to Gs,k by putting

Ik(f) := (f,X(k)) :=
m∑

i=1

fi(∆Xi)k.

We suppose that any simple function has different values on the adjoining seg-
ments of the partition. With this assumption only one partition corresponds
to a simple function, we have only one zero function and Ik is a surjection.

Introduce the following semi-norm on Gs,k:∥∥∥(f,X(k))
∥∥∥

Gs,k
:=
(
E

m∑
i=1

f2
i (ti − ti−1)

)1/2

= ‖f‖L2(P⊗λ) .

Let f and g be simple predictable processes, defined with respect to different
partitions πf and πg. Consider f + g on the partition π := πf ∪ πg, put
(f,X(k)) + (g,X(k)) := (f + g,X(k)) and see that∥∥∥(f,X(k)) + (g,X(k))

∥∥∥
Gs,k
≤
∥∥∥(f,X(k))

∥∥∥
Gs,k

+
∥∥∥(g,X(k))

∥∥∥
Gs,k

. (2.5.8)

Again it is easy to check that the condition

(f,X(k)) = 0 P -a.s. if and only if fi = 0 for 1 ≤ i ≤ m,

when f ∈ Ls, f =
m∑

i=1

fi1[ti−1,ti)(·) (2.5.9)
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is a necessary and sufficient condition for Ik to be a bijection, for Gs,k to be
a linear space and for ‖·‖Gs,k to be a norm.

If f is a predictable process from Lpr
2 (P ⊗ λ), take fn ∈ Ls such that

‖f − fn‖L2(P⊗λ) → 0. Assume that property (2.5.9) holds for the process

X with some k > 1. Define the integral
∫ T

0
fsdX

(k)
s := Ik(f) as the limit

of (fn, X(k)) in the completed Banach space (G
k
, ‖·‖

G
k), where G

k
is the

completion of Gs,k with respect to norm ‖·‖Gs,k . We say that such an integral∫ T

0
fsdX

(k)
s is the kth order generalized stochastic integral of f with respect

to the process X.
Assume now that property (2.5.9) holds for all k ≤ N . Define the Banach

space GN by
GN := G

1 ×G
2 × · · · ×G

N

and define the norm in GN by

‖·‖GN :=
N∑

k=1

‖·‖
G

k .

In view of (2.5.8), ‖·‖GN satisfies the triangle inequality and hence it is really
a norm.

The elements g ∈ G
N

have the form

g =
N∑

k=1

∫ T

0

fk(s)dX(k)
s

where fk is a predictable process from L2(P ⊗ λ). Note also that there is
a bijection between such a g from G

N
and (f1, . . . , fN ) ∈ ⊗N

k=1L
pr
2 (P ⊗ λ)

equipped with the norm
N∑

k=1

‖fk‖L2(P⊗λ).

The following examples clarify the definition of the generalized integrals
of higher order. We assume that the process X satisfies property (2.5.9) for
each 1 ≤ k ≤ N below.

Processes with bounded variation. Assume that the process X is a contin-
uous process with bounded variation and consider the random variables Xm

T ,
where

Xm
T :=

N∑
l=1

m∑
k=1

(∆Xk)l.

When |π| → 0 we have that Xm
T

P→ XT and the right-hand side converges in
the space G

N
towards the element

N∑
l=1

∫ T

0

dX(l)
s .
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Here the random variable XT is a representative of the integral
∫ T

0
dX

(1)
s and

zero is a representative of the sum
N∑

l=2

∫ T

0
dX

(l)
s .

Standard Brownian Motion. Assume that X is a standard Brownian mo-
tion, X = B. Define again the random variable Xm

T by

Xm
T :=

N∑
l=1

m∑
k=1

(∆Bk)l.

Now, when |π| → 0, Xm
T

P→ BT + T , so the constant T is a representative of

the integral
∫ T

0
dB

(2)
s and zero is a representative of the sum

N∑
l=3

∫ T

0
dB

(l)
s .

2.5.3 Generalized Integrals with Respect to fBm

Fractional Brownian Motion and Property (2.5.7)

Theorem 2.5.1. Property (2.5.7) holds for fBm BH ,H ∈ (0, 1).

Proof. Assume that
∑

i≤m

fi∆BH
i = 0 almost surely. Assume that m0 is the

largest index for which P{fm0 �= 0} > 0. Then from presentations (1.8.17)–
(1.8.18) we have

∆BH
m0

=
∫ tm0

tm0−1

mH(tm0 , s)dWs +
∫ tm0−1

0

(mH(tm0 , s)−mH(tm0−1, s))dWs

= Am0 + Bm0 ,

For the term Bm0 we have Bm0 ∈ Ftm0−1 . Put Ωc := {ω : |fi| ≤ c, i ≤ m0}.
Then Ωc ∈ Ftm0−1 and

m0∑
i=1

1Ωc
fi∆BH

i =
m∑

i=1

1Ωc
fi∆BH

i = 0.

Hence we can conclude the following:

0 = E
( m0∑

i=1

1Ωc
fi∆BH

i

)2

= E

(( ∑
i≤m0−1

1Ωc
fi∆BH

i

)
+ fm01Ωc

Bm0−1 + fm0Am0

)2

.

(2.5.10)

The right-hand side of (2.5.10) is equal to



170 2 Stochastic Integration with Respect to fBm and Related Topics

E
( ∑

i≤m0−1

(fi∆BH
i 1Ωc

) + fm01Ωc
Bm0−1

)2

+ E
(
f2

m0
1Ωc

∫ tm0

tm0−1

(BH(tm0 , s))
2ds
)
.

Hence, from (2.5.10), since∫ tm0

tm0−1

(BH(tm0 , s))
2ds > 0

we have that fm01Ωc
= 0 almost surely for any c > 0 and so fm0 = 0 P -a.s.

This shows that condition (2.5.7) is fulfilled. Hence fi = 0 for all i ≤ m. 	


Fractional Brownian Motions and Property (2.5.9)

Theorem 2.5.2. Property (2.5.9) holds for fBm BH ,H ∈ (0, 1).

Proof. We know from Theorem 2.5.1 that the claim holds for k = 1. Assume
now that k > 1 and let m0, Am0 , Bm0 and W be as in the proof of Theo-
rem 2.5.1. Put fc

i := 1Ωc
fi. Note that fc

i ∈ Ftm0−1 for i ≤ m0. Denote by χ
the random variable

χ :=
m0−1∑
i=1

fc
i (∆BH

i )k.

For the random variable χ we have that χ ∈ Ftm0−1 , and this fact is used
below. Assume that

∑
i≤m

fi(∆BH
i )k = 0. With the above notation we have

from this assumption that also

χ + fc
m0

k∑
r=0

(
k
r

)
(Bm0)

k−r(Am0)
r = 0. (2.5.11)

Write the expression in (2.5.11) as⎛⎝χ + fc
m0

∑
0≤r≤k, r even

(
k
r

)
(Bm0)

k−r(Am0)
r

⎞⎠
+

⎛⎝fc
m0

∑
0≤r≤k, r odd

(
k
r

)
(Bm0)

k−r(Am0)
r

⎞⎠ =: χ1 + χ2.

(2.5.12)

The random variable Am0 is a Gaussian random variable with zero expectation
and hence for odd r E(Am0)

r = 0 and by conditioning on Ftm0−1 in (2.5.12) it
is easy to see that E(χ1χ2) = 0. So from this we can conclude that Eχ2

2 = 0,
using also (2.5.11) and (2.5.12). But
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χ2
2 = f2

m0
(γ1 + γ2)

with

γ1 :=
∑

0≤r≤k, r odd

((
k
r

)
(Bm0)

k−r(Am0)
r

)2

(2.5.13)

and

γ2 :=
∑

r �=q, r,q odd

(
k
r

)(
k
q

)
(Bm0)

2k−r−q(Am0)
r+q. (2.5.14)

All the terms in (2.5.13) are nonnegative and since r + q is even, the same
holds for the expression (2.5.14), too. Note also that if r = 1, then

k2(Bm0)
2k−2(Am0)

2 > 0

almost surely. But at the same time E(f2
m0

(γ1 + γ2)) = 0. Hence fm0 = 0
almost surely. From this follows that fi = 0 almost surely for all i ≤ m. We
have shown that fBm BH satisfies property (2.5.9) for all k ≥ 1. 	


Some Properties of the Generalized Integrals

In this subsection we discuss some of the properties of the generalized inte-
grals. At this stage we have results mostly on Wiener integrals.

Assume that BH is again an fBm with index H. Take

fn
s := nγ1(T/2−1/2n,T/2+1/2n](s).

Then ‖fn‖2L2[0,T ] = n2γ−1. If H ∈ (1/2, 1), 1/2 < γ < H, then ‖fn‖L2[0,T ] →
∞ and the generalized integral does not exist, but E((fn, BH))2 = n2γ−2H →
0, and the limit exists in L2(P ). If H < γ < 1/2, then E((fn, BH))2 → ∞,
but ‖fn‖L2[0,T ] → 0. Hence the integral exists in G and it is = 0, but the limit

does not exist in L2(P ). Note also that here we have that |(fn, BH)| P→∞.
L2-integrals and Wiener integrals, H ∈ (1/2, 1). If BH is an fBm with

Hurst index H ∈ (1/2, 1), then according to (1.9.2) we have the following
estimate for L2-integral, valid for any p > 0:

E

∣∣∣∣∣
∫ T

0

fsdBH
s

∣∣∣∣∣
p

≤ cH,p ‖f‖pL 1
H

[0,T ] . (2.5.15)

Hence, if (f (n), BH) converges in G, it also converges in L2(P ).
L2-integrals and Wiener integrals, H ∈ (0, 1/2). Before the continuation,

we prove the following theorem, which is the opposite to (2.5.15).

Theorem 2.5.3. Let f ∈ Ls and BH is an fBm with Hurst index H ∈
(0, 1/2). Then

E

∣∣∣∣∣
∫ T

0

fsdBH
s

∣∣∣∣∣
2

≥ C ‖f‖2L2[0,T ] . (2.5.16)
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Proof. If f ∈ Ls and (f,BH) =
∑
i

fi∆BH
i , then

E(f,BH)2 =
∑

i

(f2
i E∆BH

i )2 +
∑
i�=k

fifkE(∆BH
i ∆BH

k ). (2.5.17)

But E(∆BH
i ∆BH

k ) < 0 and hence

fifkE(∆BH
i ∆BH

k ) ≥ |fi||fk|E(∆BH
i ∆BH

k ).

Use this in (2.5.17) to obtain the inequality

E(f,BH)2 ≥ E

(∑
i

|fi|∆BH
i

)2

.

Hence we can assume that fi ≥ 0 for all i ≤ n in proving (2.5.16).
Denote by D(R) the space of functions f with the two properties: f ∈

C∞(R) and f has compact support.
Let φ ∈ D(R). Then the Fourier transform φ̂ of φ belongs to S(R) ⊂ FH ⊂

LH
2 (R) (see Lemma 1.6.8), and moreover,

E

∣∣∣∣∫
R

φtdBH
t

∣∣∣∣2 = E

∣∣∣∣∫
R

φ′(t)BH
t dt

∣∣∣∣2 = cH

∫
R

|φ̂(λ)||λ|−2αdλ, (2.5.18)

where cH is some constant.
We want to prove that there exists a sequence (φn)n≥1, φ

n ∈ D(R) such
that ∫

R

(φn)′(t)BH
t dt

L2(P )→ (f,BH). (2.5.19)

To prove (2.5.19) it is sufficient to prove it for f ∈ Ls, fu = a1[s,t)(u), s <
t ≤ T and a > 0. Take φn ∈ D(R) such that supp(φn) ⊂ [s−1/n, t+1/n] and
φn = a on [s + 1/n, t− 1/n]. Then∫

R

(φn)′(u)BH
u du =

∫ t+1/n

t−1/n

(φn)′(u)BH
u du +

∫ s+1/n

s−1/n

(φn)′(u)BH
u du

and, for example,∣∣∣∣∣aBH
t+1/n −

∫ t+1/n

t−1/n

(φn)′(u)BH
u du

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t+1/n

t−1/n

(φn)′(u)(BH
t+1/n −BH

u )du

∣∣∣∣∣
≤ a sup

u∈[t−1/n,t+1/n]

|BH
t+1/n −BH

u |.

From self-similarity of BH and Remark 1.10.7 with f = 1, T = 2/n

sup
u∈[t−1/n,t+1/n]

|BH
t+1/n −BH

u |
L2(P )−−−−→ 0
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and so
E(f,BH)2 = lim

n

∫
R

|φ̂n(λ)||λ|−2αdλ.

Since for any λ ∈ R f̂(λ) = limn→∞ φ̂n(λ), we have, using the Fatou lemma
and relation (2.5.18),∫ ∞

−∞
|f̂(λ)|2|λ|−2αdλ ≤ lim inf

n→∞

∫ ∞

−∞
|φ̂n(λ)|2|λ|−2αdλ = E

∣∣∣∣∣∑
i

fi∆BH
i

∣∣∣∣∣
2

.

We have that∫ ∞

−∞
|f̂(λ)|2|λ|−2αdλ

≥ ε−2α

∫
|λ|>ε

|f̂(λ)|2dλ +
∫
|λ|≤ε

|f̂(λ)|2|λ|−2αdλ.

(2.5.20)

Put ρ(λ) := |λ|−α1[−ε,ε](λ). Since H ∈ (0, 1/2), we have that ρ ∈ L1(R). Also,

ρ̂(t) :=
∫ ∞

−∞
eitλρ(λ)dλ =

∫ ε

−ε

cos(tλ)|λ|−αdλ.

This integral is finite and hence ρ(·) is the Fourier transform of ρ̂(·). Use the
Parceval identity to obtain∫

|λ|<ε

|f̂(λ)|2|λ|−2αdλ

=
∫

R

∣∣∣∣∫
R

f(s)
(∫ ε

−ε

cos((t− s)λ)|λ|−αdλ

)
ds

∣∣∣∣2 dt.

(2.5.21)

Estimate the right-hand side of (2.5.21) from below by∫ 1

−1

∣∣∣∣∣
∫ T

0

f(s)
(∫ ε

−ε

cos((t− s)λ)|λ|−αdλ

)
ds

∣∣∣∣∣
2

dt. (2.5.22)

Take in (2.5.22) such an ε that ε(T + 1) ≤ π/3. Then cos((t− s)λ) ≥ 1/2 and
the left-hand side of inequality (2.5.21) can be estimated from below, using
the estimate (2.5.22) and the chosen ε by the expression

1
2

∣∣∣∣∣
∫ T

0

f(s)ds

∣∣∣∣∣
2(∫ ε

−ε

|λ|−αdλ

)2

=
2ε2−2α

(1− α)2
|f̂(0)|2,

but since f is nonnegative, we also have the estimate |f̂(0)| ≥ |f̂(λ)|. There-
fore, from the above estimates we obtain∫

|λ|≤ε
|f̂(λ)|2|λ|−2αdλ ≥ ε1−2α

(1−α)2

∫ ε

−ε
|f̂(λ)|2dλ. (2.5.23)
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Take C = min{ε−2α, ε1−2α/(1− α)2} and use (2.5.23) in (2.5.20) to obtain∫
R

|f̂(λ)|2|λ|1−2Hdλ ≥ C

∫
R

|f̂(λ)|2dλ = C1 ‖f‖2L2[0,T ] .

	

Random variables and the corresponding integrals. Assume first that H ∈

(1/2, 1). Let fn ∈ Ls be such that f = L2(P )- lim fn. Put ζn := (fn, BH)
and assume that ζ := L2(P )- lim ζn. Let gn ∈ Ls be another sequence such
that ζ = L2(P )- lim(gn, BH). Use the beginning of this subsection to conclude
that the corresponding integral may not exist, and hence the representative
of the random variable ζ need not to be unique in the space E. On the other
hand, it follows from inequality (2.5.15) that the integral

∫ T

0
fsdBH

s has only
one random variable as a representative.

If H ∈ (0, 1/2) then the picture is the opposite. Namely, a random variable
ζ can represent only one Wiener integral; this follows from Theorem 2.5.3. On
the other hand, the zero Wiener integral has at least two representatives as
extended random variables, namely ζ = 0 and ζ =∞; this follows again from
the beginning of this subsection.

2.6 Stochastic Fubini Theorem for Stochastic Integrals
w.r.t. Fractional Brownian Motion

In this section we prove the generalization of stochastic Fubini theorem for
the Wiener integrals with respect to fBm (Theorem 1.13.1). First, we con-
sider pathwise integrals and the result is for the most part based on Hölder
properties of fBm and of corresponding integrals. Then, the extension to Wick
and Skorohod integration is more or less evident, due to comparison results
of Sections 2.3 and 2.4.

Definition 2.6.1. The nonrandom function f : R → R is called piecewise
Hölder of order α on the interval [T1, T2] ⊂ R (f ∈ Cα

pw[T1, T2]), if there exists
a finite set of disjoint subintervals {[ai, bi), 1 ≤ i ≤ N | ⋃N

i=1[ai, bi] ∪ T2 =
[T1, T2]} and the function f ∈ Cα[ai, bi) for 1 ≤ i ≤ N .

As before, we denote

‖f‖Cα[ai,bi)
:= sup

ai≤t<bi

|f(t)|+ sup
ai≤s<t<bi

|f(t)− f(s)|
|t− s|α .

Definition 2.6.2. For f ∈ Cα
pw[T1, T2], let

‖f‖Cα
pw[T1,T2]

= max
1≤i≤N

‖f‖Cα[ai,bi)
.
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Let f ∈ Cα[a, b], g ∈ Cβ [a, b] with α + β > 1. Then we know that the
Riemann–Stieltjes integral exists,∫ b

a

f(t)dg(t) := lim
|πn|→0

kn−1∑
k=0

f(tnk )∆g(tnk ), (2.6.1)

where πn = {a = t0k < t1k < · · · < tkn

k = b},∆g(tnk ) = g(tnk+1) − g(tnk ),
πn ⊂ πn+1.

Moreover, according to (FdP01, Theorem 2.1), there exist the se-
quences {fn, gn} ⊂ C(1)[a, b] such that ‖fn − f‖Cα[a,b] → 0, n → ∞,
‖gn − g‖Cβ [a,b] → 0, n→∞.

We shall use some bounds for integrals involving Hölder functions. They
are proved in the next lemma.

Lemma 2.6.3. Let f ∈ Cα[a, b], g ∈ Cβ [a, b], α + β > 1, fm, gm ∈
C1[a, b],m ≥ 1 and ‖fm − f‖Cα[a,b] → 0, ‖gm − g‖Cβ [a,b] → 0, as m→∞.

Then 1)
∫ b

a
f(t)dg(t) = limm→∞

∫ b

a
fm(t)g′m(t)dt;

2) the following estimate holds:∣∣∣∣∣
∫ b

a

f(t)dg(t)

∣∣∣∣∣ ≤ C ‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · ((b− a)1+ε ∨ (b− a)β);

3) if f(a) = 0, then∣∣∣∣∣
∫ b

a

f(t)dg(t)

∣∣∣∣∣ ≤ C ‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · (b− a)1+ε, (2.6.2)

where 0 < ε < α + β − 1, C > 0 is a constant not depending on α and β.

Proof. 1) Evidently,∣∣∣∣∣
∫ b

a

f(t)dg(t)−
∫ b

a

fm(t)g′m(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

f(t)dg(t)−
kn∑

k=1

f(tnk )∆g(tnk )

∣∣∣∣∣
+

∣∣∣∣∣
∫ b

a

fm(t)g′m(t)dt−
kn∑

k=1

fm(tnk )∆gm(tnk )

∣∣∣∣∣
+

∣∣∣∣∣
kn∑

k=1

f(tnk )∆g(tnk )−
kn∑

k=1

fm(tnk )∆gm(tnk )

∣∣∣∣∣ .
According to (2.6.1), for any fixed δ > 0 we can choose πn in such a way that∣∣∣∣∣

∫ b

a

f(t)dg(t)−
kn∑

k=1

f(tnk )∆g(tnk )

∣∣∣∣∣ < δ. (2.6.3)
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Further, according to (FdP01, Corollary 20),∣∣∣∣∣
∫ b

a

fm(t)g′m(t)dt−
kn∑

k=1

fm(tnk )∆gm(tnk )

∣∣∣∣∣ ≤ C |πn|ε · ‖fm‖Cα′ [a,b] · ‖gm‖Cβ′ [a,b] ,

(2.6.4)
where 0 < α′ < α, 0 < β′ < β, and α′ + β′ = 1 + ε. If ‖fn − f‖Cα[a,b] → 0,

m → ∞, then ‖fm − f‖Cα′ [a,b] → 0, m → ∞ for 0 < α′ < α, and
‖fm‖Cα′ [a,b] ≤ C1, where C1 does not depend on m ≥ 1. Similarly,
‖gm‖Cβ′ [a,b] ≤ C2. From these bounds and from (2.6.4) we obtain that∣∣∣∣∣

∫ b

a

fm(t)g′m(t)dt−
kn∑

k=1

fm(tnk )∆gm(tnk )

∣∣∣∣∣ ≤ C3 |πn|ε . (2.6.5)

Choose such n that (2.6.3) holds and also C3 |πn|ε < δ; then for such fixed
n we can choose such m that∣∣∣∣∣

kn∑
k=1

f(tnk )∆g(tnk )−
kn∑

k=1

fm(tnk )∆gm(tnk )

∣∣∣∣∣ < δ. (2.6.6)

It is possible since supt∈[a,b] |gm(t)− g(t)| ≤ ‖gm − g‖Cβ′ [a,b] → 0, and the
same is true for fm.

The proof of the first statement follows now from (2.6.3)–(2.6.6).
The third statement follows from 1) and (FdP01, Lemma 19), which states

that the bound (2.6.2) holds for any f ∈ C
(1)
0 [a, b] (it means that f ∈ C(1)[a, b]

and f(a) = 0) and g ∈ C(1)[a, b].
The second statement follows from 1) and (FdP01, Theorem 22). Indeed,

according to 3)∣∣∣∣∣
∫ b

a

(
f(t)− f(0)

)
dg(t)

∣∣∣∣∣ ≤ C ‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · (b− a)1+ε,

whence∣∣∣∣∣
∫ b

a

f(t)dg(t)

∣∣∣∣∣ ≤ C ‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · ((b− a)1+ε ∨ (b− a)β).

	

Further we consider H ∈ (1

2 , 1). Let f ∈ Cβ
pw[a, b] with β > 1−H. In this

case the sum
∑N

i=1

∫ bi

ai
f(t)dBH

t exists. The next result means that this sum
can be represented as a unique integral.

Lemma 2.6.4. Let f be piecewise Hölder of order β > 1−H on the interval
[a, b]. Then there exists the Riemann–Stieltjes integral
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a

f(u)dBH
u =

N∑
i=1

∫ bi

ai

f(u)dBH
u

and for an arbitrary sequence πn of partitions of [a, b] it can be represented as
a limit ∫ b

a

f(u)dBH
u = lim

|πn|→0

kn∑
k=1

f(un
k )∆BH

un
k
.

(We suppose that
⋃N

i=1[ai, bi) = [a, b), [ai, bi) are disjoint and f ∈ Cα[ai, bi)).

Proof. Put πi
n := [ai, bi) ∩ πn. Evidently,

∣∣πi
n

∣∣ ≤ |πn|. It follows from bound-
edness of f and continuity of BH that

∑
j:un

j ∈πi
n

f(un
j )∆BH

un
j
→
∫ bi

ai

f(u)dBH
u ,

even in the case when πi
n does not contain ai or(and) bi.

Therefore,
∑

k:un
k∈πn

f(un
k )∆BH

un
k

=
∑N

i=1

∑
k:un

k∈πi
n

f(un
k )∆BH

un
k

→∑N
i=1

∫ bi

ai
f(u)dBH

u =
∫ b

a
f(u)dBH

u , as |πn| → 0. 	


Let 0 < T1 < T2, Φ = Φ(t, u, ω) : PT := [T1, T2]2 ×Ω → R be the random
function measurable in all the variables.

Theorem 2.6.5. Let there exist the set Ω′ ⊂ Ω such that P (Ω′) = 1 and let
for any ω ∈ Ω′ the function Φ(s, u, ω) satisfy the conditions:

1) ∀s ∈ (T1, T2) Φ(t, ·, ω) is piecewise Hölder of order β > 1 − H in u ∈
[T1, T2], and there exists C = C(ω) > 0 such that ‖Φ(t, ·, ω)‖Cβ

pw[T1,T2]
≤ C;

2) the function
∫ T2

T1
Φ(t, u, ω)dBH

u is Riemann integrable in the interval
[T1, T2].

Then there exist the repeated integrals

I1 :=
∫ T2

T1

(∫ T2

T1

Φ(t, u, ω)dBH
u

)
dt and I2 :=

∫ T2

T1

(∫ T2

T1

Φ(t, u, ω)dt
)
dBH

u ,

and I1 = I2 P -a.s.

Proof. We fix ω ∈ Ω′ and omit ω throughout the proof. The integral∫ T2

T1
Φ(t, u)dBH

u exists according to Lemma 2.6.4 and condition 1); the re-
peated integral I1 exists according to condition 2). Since Φ(t, ·) is piecewise
Hölder, then from the evident bound

∫ T2

T1
|Φ(t, u1)− Φ(t, u2)| ds ≤ C(T2 −

T1) |u1 − u2|α we obtain that
∫ T2

T1
Φ(t, u)ds is piecewise Hölder of order α in

u ∈ [T1, T2]. Further, since BH is Hölder up to order H > 1
2 and α+H > 1, the

integral I2 also exists. The integral I1 can be presented as a limit of integral
sums,
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I1 = lim
|πn|→0

kn−1∑
k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk . (2.6.7)

For any point tnk ∈ πn, according to condition 1), there exists a finite
number of points {u1,k < u2,k < · · · < ul(k),k} such that Φ(·, u) is Hölder
between them. Denote

{T1 = u0 < u1 < u2 < · · · < uL(n) = T2}

:=
kn⋃

k=1

{u1,k < u2,k < · · · < ul(k),k} ∪ {T1, T2}.

For any interval [ui, ui+1] we consider the sequence of partitions πi,r, r ≥ 1
of the form

πi,r := {ui = u
(0)
i,r < u

(1)
i,r < · · · < u

(mr)
i,r = ui+1}, |πi,r| → 0, r →∞.

Then π̃r :=
⋃L(n)−1

i=0 πi,r ∪ {T1, T2} := {T1 = u
(0)
r < · · · < u

(Nr)
r = T2}

is a partition of interval [T1, T2] w.r.t. argument u, its diameter |π̃r| =
max1≤i≤L(n)−1 |π|i,r, and |π̃r| → 0, r →∞.

Estimate the difference |I1 − I2|:

|I1 − I2| ≤
∣∣∣∣∣∣I1 −

kn−1∑
k=0

Nr−1∑
j=0

Φ(tnk , u(j)
r )∆BH

u
(j)
r

∆tnk

∣∣∣∣∣∣
+

∣∣∣∣∣∣I2 −
Nr−1∑
j=0

kn−1∑
k=0

Φ(tnk , u(j)
r )∆tnk∆BH

u
(j)
r

∣∣∣∣∣∣ =: ∆n,r
1 + ∆n,r

2 . (2.6.8)

Further,

∆n,r
1 ≤

∣∣∣∣∣I1 −
kn−1∑
k=0

∫ T2

T1

Φ(tnk , u)dBH
u ·∆tnk

∣∣∣∣∣
+

kn−1∑
k=0

∣∣∣∣∣∣
∫ T2

T1

Φ(tnk , u)dBH
u −

Nr−1∑
j=0

Φ(tnk , u(j)
r )∆BH

u
(j)
r

∣∣∣∣∣∣∆tnk .

Since Φ is piecewise Hölder, then, according to Lemma 2.6.4,∣∣∣∣∣∣
∫ T2

T1

Φ(tnk , u)dBH
u −

Nr−1∑
j=0

Φ(tnk , u(j)
r )∆BH

u
(j)
r

∣∣∣∣∣∣→ 0, r →∞.

According to (2.6.7),
∣∣∣I1 −

∑kn−1
k=0

∫ T2

T1
Φ(tnk , u)dBH

u ·∆tnk

∣∣∣→ 0, n→∞.

Therefore,
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lim
n→∞ lim

r→∞∆n,r
1 = 0. (2.6.9)

Further,

∆n,r
2 ≤

∣∣∣∣∣∣I2 −
Nr−1∑
j=0

∫ T2

T1

Φ(t, u(j)
r )dt ·∆BH

u
(j)
r

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Nr−1∑
j=0

kn−1∑
k=0

∫ tn
k+1

tn
k

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )
)
dt ·∆BH

u
(j)
r

∣∣∣∣∣∣ .
(2.6.10)

The second term can be expanded as∣∣∣∣∣∣
kn−1∑
k=0

∫ tn
k+1

tn
k

Nr−1∑
j=0

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )
)
∆BH

u
(j)
r

dt

∣∣∣∣∣∣ (2.6.11)

=

∣∣∣∣∣∣∣
kn−1∑
k=0

L(N)−1∑
i=0

∫ tn
k+1

tn
k

∑
u

(j)
r ∈πi,r

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )
)
∆BH

u
(j)
r

dt

∣∣∣∣∣∣∣ .
Since the function Φ(s, u) − Φ(tnk , u) is Hölder on any interval [ui, ui+1), we
have that

lim
|πi,r|→0

∑
u

(j)
r ∈πi,r

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )
)
∆BH

u
(j)
r

=
∫ ui+1

ui

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u . (2.6.12)

Moreover, ∀ 0 ≤ i ≤ L(n)− 1 the sequence fr
i (t, tnk ) :=

∑
u

(j)
r ∈πi,r

(
Φ(t, u(j)

r )

− Φ(tnk , u
(j)
r )
)
∆BH

u
(j)
r

has the integrable dominant. Indeed, we can use the
bounds from (FdP01, Corollary 20), Lemma 2.6.3, and the boundedness of
Hölder norms, and obtain that

|fr
i (t, tnk | ≤

∣∣∣∣∣fr
i (t, tnk )−

∫ u
(j)
r+1

u
(j)
r

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u

∣∣∣∣∣
+

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u

∣∣∣∣∣
≤ C |πi,r|ε · ‖Φ(t, ·)− Φ(tnk , ·)‖

C[u
(j)
r ,u

(j)
r+1]

β′ · ∥∥BH
∥∥

C[u
(j)
r ,u

(j)
r+1]

H′
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+

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u

∣∣∣∣∣
≤ C +

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u

∣∣∣∣∣ ,
(2.6.13)

where β′ < β, H ′ < H and β′ + H ′ > 1.
Using the second statement of Lemma 2.6.3 and condition 1) of this the-

orem, we obtain the bound∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u

∣∣∣∣∣
≤ C ‖Φ(t, ·)− Φ(tnk , ·)‖Cα′

pw[T1,T2]
· ∥∥BH

∥∥
CH′ [T1,T2]

≤ C. (2.6.14)

Estimates (2.6.13) and (2.6.14) mean that we can use the Lebesgue dom-
inant convergence theorem and obtain that

lim
r→∞

∫ tn
k+1

tn
k

fr
i (t, tnk )dt =

∫ tn
k+1

tn
k

∫ ui+1

ui

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u dt,

where the integrand
∫ ui+1

ui

(
Φ(t, u)−Φ(tnk , u)

)
dBH

u is measurable and bounded
in t.

Therefore,

lim
r→∞

kn−1∑
k=0

L(n)−1∑
i=0

∫ tn
k+1

tn
k

∑
u

(j)
r ∈ πi,r

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )
)
∆BH

u
(j)
r

dt

=
kn−1∑
k=0

∫ tn
k+1

tn
k

∫ T2

T1

(
Φ(t, u)− Φ(tnk , u)

)
dBH

u dt

=
∫ T2

T1

(∫ T2

T1

Φ(t, u)dBH
u

)
dt−

kn−1∑
k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk . (2.6.15)

According to condition 2) of this theorem, the integral
∫ T2

T1
Φ(t, u)dBH

u is Rie-
mann integrable in t, therefore

lim
n→∞

kn−1∑
k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk =

∫ T2

T1

(∫ T2

T1

Φ(t, u)dBH
u

)
dt. (2.6.16)

From Lemma 2.6.4,∣∣∣∣∣∣I2 −
L(n)−1∑

r=0

∫ T2

T1

Φ(t, u(r)
j )dt ·∆BH

u
(r)
j

∣∣∣∣∣∣→ 0, as n→∞. (2.6.17)

Now the proof follows from (2.6.8)–(2.6.17). 	
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Let I(t) =
∫ t

0
f(s)dBH

s for some stochastic process f with trajectories
from Cβ [0, T ] with β + H > 1. Consider the integral

(
H ∈ ( 1

2 , 1)
)

J1(t) =∫ t

0
lH(t, s)I(s)ds that will appear in connection with the Girsanov theorem

and stochastic differential equations in subsections 2.8.2 and 3.2.3, and also,
let J2(t) =

∫ t

0
f(u)
(∫ t

u
lH(t, s)ds

)
dBH

u .

Lemma 2.6.6. Both the integrals, J1 and J2, exist and J1 = J2 P -a.s.

Proof. It follows from (FdP01) that the trajectories of I(t), t ∈ [0, T ] are
Hölder of order H − ε for any 0 < ε < H, whence the existence of J1(t)
follows. Further, elementary calculations∫ u2

u1

(t− s)−αs−αds ≤ 1
2

[∫ u2

u1

(t− s)−2αds +
∫ u2

u1

s−2αds

]
≤ (u2 − u1)1−2α

demonstrate that the function f(u) ·∫ t

u
lH(t, s)ds is Hölder up to order β∧(1−

2α) > 1−H, and J2(t) exists. We can present these integrals in the following
way:

J1 =
∫ t

0

(∫ t

0

Φ(s, u)dBH
u

)
ds, J2 =

∫ t

0

(∫ t

0

Φ(s, u)ds
)
dBH

u ,

where Φ(s, u) = lH(t, s)f(u)1{0≤u≤s}.
The function Φ will satisfy both the conditions of Theorem 2.6.5, if we put

T1 = δ and T2 = t − δ for any 0 < δ < t
2 . In particular, Φ(s, ·) is piecewise

Hölder of order β on [δ, t− δ] with one point u = s of Hölder discontinuity for
any s ∈ [δ, t− δ].

Therefore, the following equality holds a.s.:∫ t−δ

δ

lH(t, s)
∫ s

δ

f(u)dBH
u ds =

∫ t−δ

δ

f(u)
∫ t−δ

u

lH(t, s)dsdBH
u .

The last equality can be rewritten as

J1 −R1 = J2 −R2, (2.6.18)

where

R1 =
∫ δ

0

lH(t, s)
(∫ s

0

f(u)dBH
u

)
ds +

∫ t−δ

δ

lH(t, s)
(∫ δ

0

f(u)dBH
u

)
ds

+
∫ t

t−δ

lH(t, s)
(∫ s

0

f(u)dBH
u

)
ds =: R11 + R12 + R13;

R1 =
∫ δ

0

f(u)
(∫ t

u

lH(t, s)ds
)
dBH

u +
∫ t−δ

δ

f(u)
(∫ t

t−δ

lH(t, s)ds
)
dBH

u

+
∫ t

t−δ

f(u)
(∫ t

u

lH(t, s)ds
)
dBH

u =: R21 + R22 + R23.
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According to (FdP01, Theorem 22), there exists C > 0 such that∣∣∫ s

0
f(u)dBH

u

∣∣ ≤ CsH−ε for any fixed 0 < ε < 1
2 . Therefore,

|R11| ≤ C

∫ δ

0

s
1
2−ε(t− s)−αds ≤ Ct1−α(1− α)−1δ

1
2−ε → 0 as δ → 0.

Similarly,
|R12| ≤ C1δ

H−ε · δ−α · δ1−α → 0 and |R13| ≤ C2t
1
2−εδ1−α → 0 as δ → 0,

where C1 and C2 are some constants, possibly depending on ω.
As mentioned above, the process f(u) · ∫ t

u
lH(t, s)ds is Hölder of order

β∧(1−2α) > 1−H. Therefore, by using again (FdP01, Theorem 22), we obtain
the bounds |R21| ≤ CδH−ε, |R22| ≤ C1(t− 2δ)H−ε, and |R23| ≤ CδH−ε with
some constants C, C1, depending on ω. Taking in (2.6.18) a limit as δ → 0,
we obtain from all these estimates that J1 = J2 a.s. 	


2.7 The Itô Formula for Fractional Brownian Motion

2.7.1 The Simplest Version

First, we present a very elegant proof of the Itô formula involving fBm from
(Shi01).

Lemma 2.7.1. Let BH be an fBm with H ∈ (1/2, 1), F ∈ C2(R). Then for
any t > 0

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
u )dBH

u .

Proof. The Taylor formula with the reminder term in the integral form gives
us

F (x) = F (y) + F ′(y)(x− y) +
∫ x

y

F ′′(u)(x− u)du.

Let the sequence of partitions πn = {0 = tn0 < tn1 < · · · < tnkn
= t}, |πn| → 0,

n→∞. Then F (BH
t )− F (0) =

kn∑
k=1

[
F (tnk )− F (tnk−1)

]
=

kn∑
k=1

F ′(BH
tn
k−1

)(BH
tn
k
−BH

tn
k−1

)+Rn
t , where Rn

t =
kn∑

k=1

∫ BH
tn
k

BH
tn
k−1

F ′′(u)(BH
tn
k
−u)du.

Further, sup
0�u�t

∣∣F ′′(BH
u )
∣∣ <∞ a.s. and for H ∈ (1/2, 1), and

P -lim
n→∞

kn∑
k=1

∣∣∣BH
tn
k
−BH

tn
k−1

∣∣∣2 = 0.

Therefore |Rn
t | � 1

2 sup
0�u�t

∣∣F ′′(BH
u )
∣∣ kn∑

k=1

∣∣∣BH
tn
k
−BH

tn
k−1

∣∣∣2 P−→ 0. Even if we do

not know that the limit of integral sums
kn∑

k=1

F ′(BH
tn
k−1

)(BH
tn
k
− BH

tn
k−1

) exists
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(but we know it from Theorem 2.1.7), we can obtain this existence now and,
moreover,

F (BH
t )− F (0) =

∫ t

0

F ′(BH
u )dBH

u .

	


2.7.2 Itô Formula for Linear Combination of Fractional Brownian
Motions with Hi ∈ [1/2, 1) in Terms of Pathwise Integrals and Itô
Integral

Denote Cβ−[a, b] =
⋂

0<γ<β Cγ [a, b].

Theorem 2.7.2. Let the process Xt =
m∑

i=1

σiB
Hi
t , where H1 = 1/2 and

Hi ∈ (1/2, 1) for 2 � i � m. Let the function F ∈ C2(R). Then for any t > 0

F (Xt) = F (0)+σ1

∫ t

0

F ′(Xs)dWs+
m∑

i=2

σi

∫ t

0

F ′(Xs)dBHi
s +

σ2
1

2

∫ t

0

F ′′(Xs)ds.

Proof. Note that
∫ t

0
|F ′(Xs)|2 ds <∞ and

∫ t

0
|F ′′(Xs)| ds <∞ a.s., so, the Itô

integral
∫ t

0
F ′(Xs)dWs exists and is a local square-integrable martingale, and

the Lebesgue integral
∫ t

0
F ′′(Xs)ds also exists. As to integrals

∫ t

0
F ′(Xs)dBHi

s

for 2 � i � m, they exist as pathwise integrals because X ∈ C1/2−[0, t],
BHi ∈ CHi−[0, t] and Hi + 1/2 > 1. Further calculations are obvious: we use
the Taylor formula and pass to the limit, as usual, taking into account that
for any 1 � i � m and 2 � j � m

∑kn

k=1

(
BHi

tn
k
−BHi

tn
k−1

)(
B

Hj

tn
k
−B

Hj

tn
k−1

)
P−→ 0

as n→∞. 	


Now, consider the process Yt =
m∑

i=1

σiB
Hi
t , where Hi ∈ (1/2, 1) for any

1 � i � m. We can forecast that in this case the class C1(R) of functions can
be used.

Theorem 2.7.3. Let Yt =
m∑

i=1

σiB
Hi
t , where Hi ∈ (1/2, 1) for any 1 � i � m.

Let F ∈ C1(R), and F ′ ∈ Cβ [0, t] with (β +1)min Hi > 1 for any t > 0. Then
for any t > 0

F (Yt)− F (0) =
m∑

i=1

σi

∫ t

0

F ′(Ys)dBHi
s . (2.7.1)

Proof. Clearly, condition (β + 1)min Hi > 1 ensures the existence of∫ t

0
F ′(Ys)dBHi

s as the limit of Riemann sums for any i > 1. Consider convo-
lutions Fn = F ∗ ϕn with ϕn from Lemma 2.1.8. Then Fn ∈ C∞(R), formula
(2.7.1) holds for any Fn and for any 1−min Hi < γ < β ·min Hi we have that
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Dγ
0+F ′

n → Dγ
0+F ′ in L1[a, b] as n→∞ for any a, b ∈ R, which can be proved

similarly to (2.1.10). Therefore,∣∣∣∣∫ t

0

(F ′(Ys)− F ′
n(Ys))dBHi

s

∣∣∣∣
� sup

0�s�t

∣∣∣D1−γ
t− BHi

t− (s)
∣∣∣

sup
0�s�t

|Ys|∫
− sup

0�s�t
|Ys|

∣∣Dγ
0+F ′

n(s)−Dγ
0+F ′(s)

∣∣ ds→ 0,

whence the proof follows. 	

Remark 2.7.4. Theorems 2.7.2 and 2.7.3 can be extended to the functions F
of several variables, depending also on t. The Itô formula has the following
form: let Y i

t =
∫ t

0
fi(s)dBHi

s , where H1 = 1/2, Hi ∈ (1/2, 1), 2 � i � m− 1,
Y m

t =
∫ t

0
g(s)ds,

∫ t

0
f2
1 (s)ds < ∞ a.s., fi ∈ Cβi [0, t] a.s. for βi + Hi > 1,∫ t

0
|g(s)| ds <∞ a.s., F = F (t, x) : R+ × Rn → R, F ∈ C1(R+)× C2(R)

× C1(Rn−1), the integrals
∫ t

0

(
∂F
∂x1

(Zs)f1(s)
)2

ds < ∞,
∫ t

0

∣∣∂F
∂t (Zs)

∣∣ ds < ∞,∫ t

0

∣∣∣∂2F
∂x2

1
(Zs)
∣∣∣ f2

1 (s)ds <∞, and
∫ t

0

∣∣∣ ∂F
∂x1

(Zs)
∣∣∣ |g(s)| ds <∞ a.s, ∂F

∂xi
(Zs)fi

∈ Cγ [0, t] a.s. for γ + Hi > 1 and any t > 0, where Zs = (s, Y 1
s , . . . , Y m

s ).
Then

F (t, Y 1
t , . . . , Y m

t ) = F (0) +
∫ t

0

∂F

∂t
(Zs)ds +

m−1∑
i=1

∫ t

0

∂F

∂xi
(Zs)fi(s)dBHi

s

+
∫ t

0

∂F

∂xm
(Zs)g(s)ds +

1
2

∫ t

0

∂2F

∂x2
1

(Zs)f2
1 (s)ds. (2.7.2)

In particular, for the process Yt =
∫ t

0
a(s)dBH

s +
∫ t

0
b(s)ds we have that

F (t, Yt) = F (0, Y0) +
∫ t

0

F ′
t (s, Ys)ds +

∫ t

0

F ′
x(s, Ys)b(s)ds

+
∫ t

0

F ′
x(s, Ys)a(s)dBH

s , H ∈ (1/2, 1). (2.7.3)

2.7.3 The Itô Formula in Terms of Wick Integrals

The next result is a direct consequence of Theorems 2.3.8 and 2.7.3.

Theorem 2.7.5. Let the function F = F (t, x) : R+ × R → R be con-
tinuously differentiable in t and twice continuously differentiable in x. Let
Yt be as in Theorem 2.7.2, E

∣∣∂F
∂x (t, Yt)

∣∣2+ε
< ∞, t > 0 for some ε > 0,

E sup
0�s�t

[(
∂F
∂x (s, Ys)

)2
+
(

∂2F
∂x2 (s, Ys)

)2
]

<∞, t > 0. Then
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F (t, Yt)− F (0, 0) =
∫ t

0

∂F

∂t
(s, Ys)ds +

∫ t

0

∂F

∂x
(s, Ys)♦ dYs

+
m∑

i,k=1

σiσkC̃Hi,Hk
(Hi + Hk)

∫ t

0

∂2F

∂x2
(s, Ys)sHi+Hk−1ds. (2.7.4)

2.7.4 The Itô Formula for H ∈ (0, 1/2)

We use the integral representation of fBm via the underlying Wiener process
B on the finite interval [0, t] :

BH
t =

∫ t

0

mH(t, s)dBs

= C
(6)
H tα

∫ t

0

u−α(t−u)αdBu−C
(6)
H α

∫ t

0

sα−1

(∫ s

0

u−α(s− u−α)dBu

)
ds.

Let the function F ∈ C3(R) and we want to expand F (BH
t ). Note that

BH
t = BH

t,t, where for 0 < z < t BH
z,t = C

(6)
H zα

∫ z

0
u−α(t− u)αdBu

− C
(6)
H α
∫ z

0
sα−1

(∫ s

0
u−α(s− u)−αdBu

)
ds. Therefore

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
z,t)dzB

H
z,t +

1
2
(C(6)

H )2
∫ t

0

F ′′(BH
z,t)(t− z)2αdz

= F (0) + αC
(6)
H

∫ t

0

F ′(BH
z,t)z

α−1

∫ z

0

u−α(t− u)αdBudz

+ C
(6)
H

∫ t

0

F ′(BH
z,t)(t− z)αdBz

− αC
(6)
H

∫ t

0

F ′(BH
z,t)z

α−1
(∫ z

0

u−α(t− u−α)dBu

)
dz

+
1
2
(C(6)

H )2
∫ t

0

F ′′(BH
z,t)(t− z)2αdz. (2.7.5)

Further,

BH
z,t = BH

z + αC
(6)
H zα

∫ z

0

u−α

∫ t

z

(v − u)α−1dv dBu

= BH
z + αC

(6)
H zα

∫ t

z

∫ z

0

u−α(v − u)α−1dBudv, (2.7.6)

whence

F ′(BH
z,t) = F ′(BH

z ) +
∫ t

z

F ′′
(
BH

z + αC
(6)
H zα

∫ r

z

∫ z

0

u−α(v − u)α−1dBudv
)

× αC
(6)
H zα

∫ z

0

u−α(r − u)α−1dBudr =: F ′(BH
z ) + φ(F ′′, z, t), (2.7.7)



186 2 Stochastic Integration with Respect to fBm and Related Topics

and similar relation holds for F ′′(BH
z,t). But∫ r

z

∫ z

0

u−α(v − u)α−1dBudv =
1
α

∫ z

0

u−α [(r − u)α − (z − u)α] dBu. (2.7.8)

Substituting (2.7.6)–(2.7.8) into (2.7.5), we obtain the following result.

Theorem 2.7.6. Let H ∈ (0, 1/2), BH be an fBm with Hurst index H,
represented as BH

t =
∫ t

0
mH(t, s)dBs. Denote Yr,z := C

(6)
H

∫ z

0
u−α(r−u)αdBu,

0 � z � r, Yz := Yz,z. Then

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
z )αzα−1Yt,zdz + C

(6)
H

∫ t

0

F ′(BH
z )(t− z)αdBz

− α

∫ t

0

F ′(BH
z )zα−1Yt,zdz +

1
2
(C(6)

H )2
∫ t

0

F ′′(BH
z )(t− z)2αdz + Rt,

where

Rt = α

∫ t

0

φ(F ′′, z, t)αzα−1Yt,zdz + C
(6)
H

∫ t

0

φ(F ′′, z, t)(t− z)αdBz

− α

∫ t

0

φ(F ′′, z, t)zα−1Yt,zdz +
1
2
(C(6)

H )2
∫ t

0

φ(F ′′′, z, t)(t− z)2αdz.

Remark 2.7.7. The different approaches to the Itô formula for fBm with
H ∈ (1/2, 1) are contained in the papers (Lin95), (DH96), (DU99), (AN02),
(DHP00), (BO04), (CCM03), (FdP01). An elegant version of the Itô formula
for F (BH

t ) for any H ∈ (0, 1) was obtained by C. Bender in (Ben03a) and
(Ben03c), but in terms of distributions. If the distribution F is of function
type, continuous at 0 and of polynomial growth, the form of such an Itô for-
mula coincides with (2.7.4) for m = 1. For the other forms of the Itô formula
for fBm with H ∈ (0, 1/2) see also (Nua03), (GRV03), (ALN01), (AMN00),
(CN05).

2.7.5 Itô Formula for Fractional Brownian Fields

First, we prove one auxiliary result for Hölder two-parameter functions. Let
the function

F : R→ R, F ∈ C3(R), F ′′′ is the Lipschitz function, f(t) := F (g(t)),

g ∈ Cµ1µ2(R2
+) with µi > 1/2, i = 1, 2. (2.7.9)

Let the rectangle Pt = [0, t] ⊂ R2
+ be fixed, πi

n :=
{

0 = ti,n0 < · · · ti,n2n = ti

}
,

where ti,nk = kti

2n , fik = f( it1
2n , kt2

2n ),

∆1
ikf = fi+1k − fik,∆2

ikf = fik+1 − fik,∆ikf = ∆1
ik+1f −∆1

ikf.
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Lemma 2.7.8. Under assumption (2.7.9) lim
n→∞ In

j = 0, 1 � j � 7, where

In
1 =

2n−1∑
i,k=0

∆1
ikf∆ikg, In

2 =
2n−1∑
i,k=0

∆2
ikf∆ikg, In

3 =
2n−1∑
i,k=0

fik∆ikg∆1
ikg,

In
4 =

2n−1∑
i,k=0

fik∆ikg∆2
ikg, In

5 =
2n−1∑
i,k=0

∆1
ikf(∆2

ikg)2, In
6 =

2n−1∑
i,k=0

(∆1
ikf)2∆2

ikg,

In
7 =

2n−1∑
i,k=0

F ′′′(gi,k)∆1
ikg(∆2

ikg)2.

Proof. Consider In
1 (In

2 is similar). We can rewrite In
1 =

∫
Pt

f̃ndg, where

f̃n = ∆1
ikf for s ∈ ∆n

ik :=
[

it1
2n , (i+1)t1

2n

)
×
[

kt2
2n , (k+1)t2

2n

)
. Further,∫

Pt

f̃ndg =
∫
Pt

(Dα1α2
0+ f̃n)(s)(D1−α11−α2

1− g1−)(s)ds,

where 1−µ1 < αi < µi, i = 1, 2. Since
∣∣(D1−α11−α2

1− g1−)(s)
∣∣ � C for some C >

0, it is sufficient to prove that lim
n→∞

∫
Pt

∣∣∣(Dα1α2
0+ f̃n)(s)

∣∣∣ ds = 0, and in turn, for

this purpose it is sufficient to prove that
∫
Pt
|φn,i(s)| ds→ 0, 1 � i � 4, where

φn,1(s) = s−α
1 s−α

2 f̃n(s), φn,2(s) = s−α2
2

∫ s1

0
(f̃n(s)− f̃n(u, s2))(s1−u)−1−α1du,

φn,3(s) = s−α1
1

∫ s2

0
(f̃n(s)− f̃n(s1, v))(s2 − v)−1−α2dv,

φn,4(s) =
∫
[0,s]

∆u,v f̃n(s)(s1 − u)−1−α1(s2 − v)−1−α2du dv. The relation∫
Pt
|φn,1(s)| ds→ 0 is evident. Further, if it1

2n � s < (i+1)t1
2n , then

|φn,2(s)| � Cs−α2
2

∫ i2−n

0
(s1 − u1)−1−α1du · 2−nµ1 , whence∫

Pt
|φn,2(s)| ds � C

∫ t2
0

s−α2
2 ds2 · 2n(α1−µ1) → 0, n→∞. Similarly,∫

Pt
|φn,3(s)| ds→ 0, n→∞. Finally,

∫
Pt
|φn,4(s)| ds � C2−nµ1

×
2n−1∑
i,k=0

∫
∆n

ik

∫
[0,ti,n

k ]
(s1 − u)−1−α1(s2 − v + 2−n)µ2−α2−1du dv ds1 ds2

= C2n(α1+α2−µ1−µ2) → 0, n → ∞. Of course, similar estimates hold for In
3

and In
4 . As to In

5 , In
6 and In

7 , their estimates resemble each other, so, we con-
sider only In

5 . Note that

lim
n→∞Sn := lim

n→∞

2n−1∑
i=0

f(tni2n)(∆1
i2ngi+12n)2 � lim

n→∞C · 2n · 2−2nµ1 = 0.

Now, present the sum Sn as

Sn =
2n−1∑
i,k=0

(fik(∆ikg)2 + 2fik∆ikg∆1
ikg + ∆2

ikf(∆1
ikg)2 + ∆2

ikf(∆ikg)2

+ 2∆2
ikf∆1

ikg∆ikg) =:
∑

1�i�5

Sn,i,
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where Sn,1 � C · 2−2n(µ1+µ2−1) → 0, n → ∞, similarly, Sn,4 → 0, Sn,5 → 0,
n→∞. According to previous estimates lim

n→∞Sn,2 = lim
n→∞ In

3 = 0. Therefore,
lim

n→∞ In
5 = lim

n→∞Sn,3 = 0. 	


Remark 2.7.9. Let F : R→ R, F ∈ C3(R) and F ′′′ is the Lipschitz function,
the field g(t) is a linear combination of the fractional Brownian fields,

g(t) =
m∑

i=1

σiB
Hi

1Hi
2

t with Hi
j >

1
2
, j = 1, 2, 1 � i � m.

Clearly, the previous lemma holds for such g(t) and f(t) = F (g(t)).

Theorem 2.7.10. For any t ∈ R2
+

F (g(t)) = F (0) +
∫
Pt

F ′(g)dg +
∫
Pt

F ′′(g)d1g d2g.

Proof. According to the one-parameter Itô formula (Theorem 2.7.3)

F (g(t)) = F (0) +
∫ t1

0

F ′(g(s1, t2))d1g(s1, t2)

= F (0) + lim
n→∞

2n∑
i=0

f(tni,2n)∆1
i,2ngi+1,2n a.s.

The prelimit sum can be presented as

2n−1∑
i,k=0

F ′(g(tnik))∆ikg+
2n−1∑
i,k=0

F ′′(g(tnik))∆1
ikg∆2

ikg+
2n−1∑
i,k=0

F ′′(g(sik
n ))∆ikg∆2

ikg

+
1
2

2n−1∑
i,k=0

F ′′′(g(θn
ik))(∆2

ikg)2∆1
ikg +

1
2

2n−1∑
i,k=0

F ′′′(g(θn
ik))(∆2

ikg)2∆ikg,

(2.7.10)

where θn
ik ∈ ∆n

ik. According to Theorem 2.2.9,
2n−1∑
i,k=0

F ′(g(tnik))∆ikg →∫
Pt

F ′(g)dg a.s. Furthermore, according to Theorem 2.2.17 and Lemma 2.7.8,
2n−1∑
i,k=0

F ′′(g(tnik))∆1
ikg∆2

ikg → ∫Pt
F ′′(g)d1g d2g,

2n−1∑
i,k=0

F ′′(g(sik
n ))∆ikg∆2

ikg → 0,

1
2

2n−1∑
i,k=0

F ′′′(g(tnik))(∆2
ikg)2∆1

ikg → 0, 1
2

2n−1∑
i,k=0

F ′′′(g(tnik))(∆2
ikg)2∆ikg → 0, and

due to the Lipschitz properties of F ′′′, 1
2

2n−1∑
i,k=0

F ′′′(g(θn
ik))(∆2

ikg)2∆1
ikg → 0,
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1
2

2n−1∑
i,k=0

F ′′′(g(θn
ik))(∆2

ikg)2∆ikg → 0, n → ∞, a.s., and the assertion of the

theorem is proved. 	

Remark 2.7.11. The theorem holds even for F ∈ C2(R), such that F ′′ is the
Lipschitz function. To prove this, we must rewrite the sum of second and

fourth term on the right-hand side of (2.7.10) as
2n−1∑
i,k=0

F ′′(g(θn
ik))∆1

ikg∆2
ikg.

Then we can prove that this sum has a limit
∫
Pt

F ′′(g)d1g d2g, similarly to
Theorem 2.2.17. Also, the sum of third and fifth terms can be rewritten as
2n−1∑
i,k=0

F ′′(g(θn
ik))∆ikg∆2

ikg, and we can prove that its limit is zero.

2.7.6 The Itô Formula for H ∈ (0, 1) in Terms of Isometric
Integrals, and Its Applications

Definitions

If f ∈ L2(P ⊗λ), f is predictable, π is a partition, then fπ is the step function
fπ =

∑
i

f(ti−1)1[ti−1,ti)(t).

Define the class of functions Φ as follows:
−→
f ∈ Φ if the following conditions

are satisfied:
(i)
−→
f := (f i : i ≥ 1), where f i ∈ L2(P ⊗ λ), f i is predictable and∑

i

∥∥f i
∥∥

L2(P⊗λ)
<∞.

(ii)
−→
f is uniformly tight: P{supt≤T supi |f i(t)| > C} → 0 as C →∞.

(iii) The random variable u defined by u :=
∑
i

(f i
π, (BH)(i)) (for the no-

tations see Section 2.5.2) does not depend on the partition π, and the series
converges absolutely with probability one, when

−→
f ∈ Φ.

Write (
−→
f ,
−−→
BH) for the sum

∑
i

(f i
π, (BH)(i)), and put U := {u : u =

(
−→
f ,
−−→
BH),

−→
f ∈ Φ}. Let Φp be the projection of Φ to the first p coordinates.

The following example shows that U is nonempty.
Example 2.7.12. Assume that f ∈ C∞

b (R): then

f(BH
T )− f(0) =

n∑
i=1

∆f(BH
ti

)

and if fk := (1/k!)f (k), k ≥ 1, then

f(BH
T )− f(0) = (

−→
f ,
−−→
BH),

f(BH
T )− f(0) ∈ U and

−→
f ∈ Φ, (f1, . . . , fp) ∈ Φp for any p ≥ 1.
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Lemma 2.7.13. If u ∈ U , u = (
−→
f ,
−−→
BH) with u = 0, then f i = 0, i ≥ 1.

Proof. Since u does not depend on the partition, take first the partition {0, T}.
The random variable u has a representation

u =
∑

i

f i
0(B

H
T )i, (2.7.11)

where f i
0 are real numbers, since F0 is the trivial σ-algebra. But since u = 0

from (2.7.11) it follows that for almost all y ∈ R we have that
∑
i

f i
0y

i = 0 and

hence f i
0 = 0 for all i ≥ 1.

Next, consider the partition {0, t, T}. We have that

u =
∑

i

f i
0(B

H
t )i +

∑
i

f i
t (B

H
T −BH

t )i = 0.

From the above we get that f i
0 = 0 for all i ≥ 1 and hence also f i

t = 0 for all
i ≥ 1. 	


The Itô Formula for Isometric Integrals

The following is an analogue of the Itô formula in this context.

Theorem 2.7.14. Assume that the Hurst index H satisfies H ∈ (0, 1/2).
There exists one-to-one correspondence between U and the set

V :=
{

v : v :=
[1/H]∑
i=1

(f i, (BH)(i))
}

.

Proof. We must show that there exists one-to-one correspondence between U
and Φ[1/H]. Assume that f ∈ Φ[1/H]. Then there exists a vector −→g ∈ Φ such
that f i = gi for i ≤ [1/H]. Assume that

−→
h is another element from Φ such

that f i = hi for i ≤ [1/H]. Put u := (−→g ,
−−→
BH) and v := (

−→
h ,
−−→
BH). Then

u− v =
∞∑

i=�1/H�+1

(gi − hi, (BH)(i)).

On one hand, since u and v are independent of the partition π, we can take a
partition π such that |π| < 1. Then for any ε > 0 we have that

P{|u− v| > ε} ≤ P (D) + P{|u− v| > ε,Ω \D} (2.7.12)

and D is the set D := {supt≤T supi |f i
t − gi

t| ≥ C}. But

P{|u− v| > ε,Ω \D} ≤ C

ε

∑
i>1/H

E
∑

k

|∆BH
k |i
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and since
E
∑

k

|∆BH
k |i ≤ CT (|π|)Hi−1

we have that
P{|u− v| > ε,Ω \D} → 0

as |π| → 0. By property (iii) of Φ we can choose C such that P (D) < δ for any
δ > 0. Use these estimates in (2.7.12) to conclude that u = v. On the other

hand, if u = (
−→
f ,
−−→
BH) = (

−→
h ,
−−→
BH) we have from Lemma 2.7.13 that

−→
f =

−→
h .

To finish, note that from Example 2.7.12 it follows that the random variable

f(BH
T )− f(0) is a representative of

[∑
i=1

1/H](1/i!)
∫ T

0
f (i)(xs)dB

H(i)
s . 	


Example 2.7.15 (Fractional Doleans exponent). Assume that [1/H] = 2p,
where p ∈ N. Then the random variable yt = exp(BH

t − t/(2p)!) − 1 is a
representative of

2p−1∑
i=1

1
i!

∫ t

0

ysd(BH
s )(i).

We say that y is the Doleans exponent of BH .

2.8 The Girsanov Theorem for fBm and Its Applications

2.8.1 The Girsanov Theorem for fBm

Consider the kernel lH(t, s) = C
(5)
H s−α(t− s)−α, 0 < s < t. Let

Ft = σ
{
BH

s , 0 � s � t
}

= σ {Bs, 0 � s � t}, where B is underlying Wiener
process in the representation

MH
t =

∫ t

0

lH(t, s)dBH
s , Bt = α̂

∫ t

0

sαdMH
s .

Assume that the random process {φt, t � 0} is adapted to filtration Ft and
satisfies ∫ t

0

lH(t, s) |φs| ds <∞, t > 0, P -a.s. (2.8.1)

Assume also that we have the representation∫ t

0

lH(t, s)φsds = α̃

∫ t

0

δsds, t > 0, (2.8.2)

with some Ft-adapted process δ satisfying∫ t

0

|δs| ds <∞, P -a.s., t > 0, (2.8.3)
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and

E

∫ t

0

s2αδ2
sds <∞, t > 0. (2.8.4)

Define a square-integrable martingale L by Lt :=
∫ t

0
sαδsdBs.

Theorem 2.8.1. Assume that we have (2.8.1)–(2.8.4) and the martingale L
satisfies

E exp {Lt − 1/2〈L〉t} = 1, t > 0.

Then the process B̃H
t := BH

t −
∫ t

0
φsds is an fBm with respect to measure

Q, where the measure Q is defined by

dQ

dP

∣∣∣∣
Ft

= exp
{

Lt − 1
2
〈L〉t
}

.

Proof. Note first that the integral

M̃H
t :=

∫ t

0

lH(t, s)dB̃H
s =

∫ t

0

lH(t, s)dBH
s −

∫ t

0

lH(t, s)φsds (2.8.5)

exists, since both integrals exist as pathwise integrals (the first integral was
studied in Section 1.8 and (2.8.2) ensures the existence of the second integral).
Moreover, from (2.8.2) it follows that

M̃H
t = MH

t − α̃

∫ t

0

δsds = α̃
(∫ t

0

s−αdBs −
∫ t

0

δsds
)
.

Evidently,
[
M̃H
]

t
:= P -lim

|π|→0

∑
ti∈π

(M̃H
ti
− M̃H

ti−1
)2 exists and equals

[
M̃H
]

t
=

t1−2α. Therefore, for any θ ∈ R we have for M̂H
t := α̂M̃H

t that

θM̂H
t −

θ2

2

[
M̂H
]

t
+ Lt − 1

2
〈L〉t = θ

∫ t

0

s−αdBs − θ

∫ t

0

δsds− θ2

2
t1−2α

1− 2α

+
∫ t

0

sαδsdBs − 1
2

∫ t

0

s2αδ2
sds =

∫ t

0

(θs−α + sαδs)dBs

− 1
2

∫ t

0

(θ2s−2α − 2δsθ + δ2
ss2α)ds =: Rt − 1

2
〈R〉t, (2.8.6)

where R is a square-integrable martingale given by Rt :=
∫ t

0
(θs−α+sαδs)dBs.

But (2.8.6) means that the process

Kt := exp
{

θM̂H
t −

θ2

2

[
M̂H
]

t
+ Lt − 1

2
〈L〉t
}

is a local P -martingale. This implies, in turn, that the process
exp
{

θM̂H
t − θ2

2

[
M̂H
]

t

}
is a local Q-martingale. From (Ell82, Theorem
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13.22), we can conclude that M̂H is a local Q-martingale with the angle
bracket 〈M̂H〉t =

∫ t

0
s−2αds and so M̃t = α̃

∫ t

0
s−αdB̃s, where B̃ is a standard

Brownian motion with respect to Q (and is obtained from B by subtracting
a drift). This means that∫ t

0

lH(t, s)dB̃H
s = α̃

∫ t

0

s−αdB̃s. (2.8.7)

Now, using two representations for B̃H , (2.8.5) and (2.8.7), we can obtain
(1.8.17) for B̃H and then conclude from Remark 1.8.2 that it is the fBm with
respect to the measure Q. 	


2.8.2 When the Conditions of the Girsanov Theorem Are
Fulfilled? Differentiability of the Fractional Integrals

If we analyze the conditions of the Girsanov theorem, we see that condition
(2.8.2) is a principal concern. Now we shall establish that in one particular but
important case this condition holds. Let the process I(t) :=

∫ t

0
lH(t, s)φ(s)ds

with φ(t) =
∫ t

0
a(s, ω)dBH

s , where the integrand a = a(s, ω) : R × Ω → R
is measurable in its variables and for a.a. ω ∈ Ω is Hölder in s with some
index β ∈ (1/2, 1). According to Theorem 2.1.7, the integral φ(t) exists as
a pathwise integral for ω ∈ Ω′, P (Ω′) = 1. Moreover, according to Lemma
2.6.6, there exists a repeated integral J(t) :=

∫ t

0
a(u, ω)

∫ t

u
lH(t, s)ds dBH

u and
the equality I(t) = J(t) holds for ω ∈ Ω′.

Lemma 2.8.2. Let a ∈ Cρ[0, t] for any t > 0 and for any ω ∈ Ω′, P (Ω′) = 1,
ρ ∈ (1/2, 1). Then for any t > 0 I(t) admits the representation

I(t) = C
(5)
H t1−2α

∫ t

0

δsds,

where δs = s2α−2
∫ s

0
u1−α(s−u)−αa(u, ω)dBH

u , and δ ∈ L1[0, t] for any t > 0,
ω ∈ Ω′.

Proof. Further we suppose everywhere that ω ∈ Ω′ and argument ω will be
omitted. We rewrite J(t) as

J(t) = t1−2α

∫ t

0

∫ 1

u/t

a(u)lH(1, s)ds dBH
u

= C
(5)
H t1−2α

∫ t

0

∫ t

u

s2α−2(s− u)−αu1−αa(u)ds dBH
u =: C

(5)
H t1−2αM(t).

Consider now the function

N(t) :=
∫ t

0

s2α−2

∫ s

0

(s− u)−αu1−αa(u)dBH
u ds.
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The following results ensure its existence:
(i) According to (NVV99, Lemma 2.1), for the function g ∈ Cβ [0, T ] with
0 < γ + β < 1, f(0) = 0 the integral

∫ t

0
(t− u)γdg(u) exists and equals∫ t

0

(t− u)γdg(u) = lim
ε→0

(εγ(g(t− ε)− g(t))

+ tγg(t) + γ

∫ t−ε

0

(g(u)− g(t))(t− u)γ−1du). (2.8.8)

(ii) According to Lemma 2.6.3, for f ∈ Cγ [a, b], g ∈ Cβ [a, b], γ + β > 1,
0 < ε′ < γ + β − 1∣∣∣∣∣

∫ b

a

f(t)dg(t)

∣∣∣∣∣ � C ‖f‖Cγ [a,b] ‖g‖Cβ [a,b] ((b− a)1+ε′ ∨ (b− a)β), (2.8.9)

where C does not depend of f and g. Using (2.8.8)–(2.8.9), we obtain the
following estimates for 0 < s1 < s2 < t:∣∣∣∣∫ s2

s1

a(z)(s2 − z)−αdBH
z

∣∣∣∣ = ∣∣∣∣ limε→0

(
−ε

∫ s2

s2−ε

a(v)dBH
v

+ (s2 − s1)−α

∫ s2

s1

a(z)dBH
z + α

∫ s2−ε

s1

(s2 − z)−1−α

∫ s2

z

a(v)dBH
v dz

)∣∣∣∣
� lim

ε→0

(
C ‖a‖Cρ[0,t]

∥∥BH
∥∥

CH′ [0,t]

(
(s2 − s1)1−α+ε′ ∨ (s2 − s1)−α+H′)

+ α

∫ s2−ε

s1

(s2 − z)−1−α
(
(s2 − z)1+ε′ ∨ (s2 − z)H′)

dz

)
, (2.8.10)

where H ′ is any constant not exceeding H and 0 < ε < ρ + H − 1. Evidently,
the right-hand side of (2.8.10) can be estimated by CK1(t)(s2 − s1)−α+H′

,
where K1(t) � ‖a‖Cρ[0,t]

∥∥BH
∥∥

CH′ [0,t]
(t ∨ 1)1+ε−H′

, C does not depend on
ρ,BH , t. Further,∫ s2

s1

(s2 − u)−αu1−αa(u)dBH
u =

∫ s2

s1

u1−αd

(∫ u

s1

(s2 − z)−αa(z)dBH
z

)
= s1−α

2

∫ s2

s1

(s2 − z)−αa(z)dBH
z − (1− α)

∫ s2

s1

u−α

∫ u

s1

(s2 − z)−αa(z)dBH
z du

=: L(s1, s2).

The estimate

|L(s1, s2)| � Cs1−α
2 K1(t)(s2 − s1)−α+H′

+ C(1− α)K1(t)
∫ s2

s1

u−α(u− s1)−α+H′
du

� CK1(t)
(
s1−α
2 (s2 − s1)−α+H′

+ (s2 − s1)1−2α+H′)
(2.8.11)
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means that |L(0, s)| � CK1(t)s1−2α+H′
.

Now it is clear that

|Nt| � CK1(t)
∫ t

0

s2α−2s1−2α+H′
ds � CK1(t)tH

′
<∞.

Consider the function

Nε(t) :=
∫ t

0

s2α−21{s∈[ε,t]}

∫ s−ε

0

u1−α(s− u)−αa(u)dBH
u ds.

Evidently, for any ε > 0 the function

φε(s, u) := 1{s∈[ε,t],0�u�s−ε}s2α−2u1−α(s− u)−αa(u)

is piecewise-Hölder in u with index ρ ∧ (1− α) > 1/2 (u = s− ε is the point
of Hölder discontinuity), and the function

ψε(s) :=
∫ t

0

φε(s, u)dBH
u = s2α−21{s∈[ε,t]}

∫ s−ε

0

(s− u)−αu1−αa(u)dBH
u

is Riemann integrable on [0, t]. Therefore, φε(s, u) satisfies the conditions of
the stochastic Fubini Theorem 2.6.5, whence Nε(t) exists and equals

Mε(t) :=
∫ t−ε

0

u1−αa(u)
∫ t

u+ε

s2α−2(s− u)−αds dBH
u .

Further,

|N(t)−Nε(t)| �
∣∣∣∣∫ t

ε

s2α−2

∫ s

s−ε

u1−α(s− u)−αa(u)dBH
u ds

∣∣∣∣
+
∣∣∣∣∫ ε

0

s2α−2

∫ s

0

u1−α(s− u)−αa(u)dBH
u ds

∣∣∣∣
�
∫ t

ε

s2α−2CK1(t)(s1−αε−α+H′
+ ε1−2α+H′

)ds

+
∫ ε

0

s2α−2CK1(t)s1−2α+H′
ds

≤ CK1(t)(ε−α+H′
+ εH′

)→ 0, ε→ 0.

For M(t) −Mε(t) we use one of the integral transformations from (NVV99,
Lemma 2.2): for µ ∈ R, ν > −1, c > 1 the integral

∫ c

1
tµ(t− 1)νdt

=
∫ 1−1/c

0
sν(1− s)−µ−ν−2ds, and as a result obtain the bound
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|M(t)−Mε(t)| � C

∣∣∣∣∫ t−ε

0

a(u)u1−α

∫ u+ε

u

s2α−2(s− u)−αds dBH
u

∣∣∣∣
+ C

∣∣∣∣∫ t

t−ε

a(u)u1−α

∫ t

u

s2α−2(s− u)−αds dBH
u

∣∣∣∣
= C

∣∣∣∣∣
∫ t−ε

0

a(u)
∫ ε

u+ε

0

s−α(1− s)−αds dBH
u

∣∣∣∣∣
+ C

∣∣∣∣∣
∫ t

t−ε

a(u)
∫ 1−u

t

0

s−α(1− s)−αds dBH
u

∣∣∣∣∣ =: A1(ε) + A2(ε).

According to the stochastic Fubini theorem 2.6.5,

A1(ε) = C

∫ ε/t

0

s−α(1− s)−α

∫ t−ε

0

a(u)dBH
u ds

+ C

∫ t

ε/t

s−α(1− s)−α

∫ ε(1−s)
s

0

a(u)dBH
u ds

and

A2(ε) = C

∫ ε/t

0

s−α(1− s)−α

∫ t(1−s)

t−ε

a(u)dBH
u ds.

Therefore,

|A1(ε)| � C

∣∣∣∣∫ t−ε

0

a(u)sBH
u

∣∣∣∣ (1− ε

t

)−α (ε

t

)1−α

+ CK1(t)
∫ 1

ε/t

s−α(1− s)α

(
ε(1− s)

s

)H′

ds→ 0, ε→ 0,

and

|A2(ε)| � CK1(t)
∫ ε/t

0

s−α(1− s)−α(ε− ts)H′
ds→ 0, ε→ 0.

Therefore, N(t) = M(t), and our lemma is proved. 	




3

Stochastic Differential Equations Involving
Fractional Brownian Motion

3.1 Stochastic Differential Equations Driven by
Fractional Brownian Motion with Pathwise Integrals

3.1.1 Existence and Uniqueness of Solutions: the Results of
Nualart and Rǎşcanu

Consider the function σ = σ(t, x) : [0, T ]×R→ R satisfying the assumptions:
σ is differentiable in x, there exist M > 0, 0 < γ, κ ≤ 1 and for any R > 0
there exists MR > 0 such that

(i) σ is Lipschitz continuous in x:

|σ(t, x)− σ(t, y)| ≤M |x− y|, ∀t ∈ [0, T ], x, y ∈ R;

(ii) x-derivative of σ is local Hölder continuous in x:

|σx(t, x)− σx(t, y)| ≤MR|x− y|κ, ∀|x|, |y| ≤ R, t ∈ [0, T ];

(iii) σ is Hölder continuous in time:

|σ(t, x)− σ(s, x)|+ |σx(t, x)− σx(s, x)| ≤M |t− s|γ , ∀x ∈ R, t, s ∈ [0, T ].

Let 0 < β < 1/2, f ∈W β
0 [0, T ], g ∈W 1−β

1 [0, T ]. We need some preliminary
estimates, in addition to Lemmas 2.1.9 and 2.1.10.

Consider on W β
0 [0, T ] the norm, equivalent to ‖ · ‖0,β :

‖f‖0,β,λ := sup
t∈[0,T ]

e−λtϕβ
f (t).

Lemma 3.1.1 ((NR00)). Let assumptions (i)–(iii) hold with γ > β. Then
the following statements hold.
1. There exists the integral G(σ)(f)(t) :=

∫ t

0
σ(·, f(·))dg, t ∈ [0, T ].

2. G(σ)(f) ∈ C1−β [0, T ] ⊂W β
0 [0, T ].
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3. ‖G(σ)(f)‖1−β ≤ C1Λ1−β(g)(1 + ‖f‖0,β).
4. ‖G(σ)(f)‖0,β,λ ≤ C2Λ1−β(g)λ2β−1(1 + ‖f‖0,β,λ), λ ≥ 1,
where C1 and C2 depend only on M,β, γ, T and |σ(0, 0)|.
5. For any f, h ∈W β

0 [0, T ] such that f∗
T ∨ h∗

T ≤ R

‖G(σ)(f)−G(σ)(h)‖0,β,λ ≤ C3λ
2β−1Λ1−β(g)(1 + Cf + Ch)‖f − h‖0,β,λ,

where Cf := supr∈[0,T ]

∫ r

0
|fr−fs|κ
(r−s)β+1 ds, C3 depends only on M,β, γ,R,MR, T.

Proof. We prove only statement 5; the others can be proved in a similar, but
more simple way. It is easy to check via the Taylor formula in the integral
form that the function σ satisfying (i)–(iii) admits the following bound: for
any R > 0, ti ∈ [0, T ], i = 1, 2, and |xi| ≤ R, 1 ≤ i ≤ 4

|σ(t1, x1)− σ(t2, x2)− σ(t1, x3) + σ(t2, x4)|
≤M |x1 − x2 − x3 + x4|+ M |x1 − x3||t2 − t1|γ
+ MR|x1 − x3|(|x1 − x2|κ + |x3 − x4|κ).

(3.1.1)

Therefore, from Lemma 2.1.9, part 1,

‖G(σ)(f)−G(σ)(h)‖0,β,λ

≤ C1
β,T Λ1−β(g) supt∈[0,T ] e

−λt
∫ t

0
((t− r)−2β + r−β)ϕσ(·,f(·))−σ(·,h(·))(r)dr

≤ C1
β,T Λ1−β(g) supr∈[0,T ](e−λrϕσ(·,f(·))−σ(·,h(·))(r))

× ∫ t

0
e−λ(t−r)((t− r)−2β + r−β)dr.

(3.1.2)
The last integral in (3.1.2) can be estimated by∫∞

0
e−λuu−2βdu +

∫ t

0
e−λu(t− u)−βdu

= λ2β−1
∫∞
0

e−uu−2βdu + λβ−1
∫ λt

0
e−u(λt− u)−βdu

≤ λ2β−1C1,β + λβ−1C2,β

(3.1.3)

with C1,β =
∫∞
0

e−uu−2βdu, C2,β = supz≥0

∫ z

0
e−u(z − u)−βdu.

Evidently, for λ ≥ 1∫ t

0

e−λ(t−r)((t− r)−2β + r−β)dr ≤ λ2β−1(C1,β + C2,β). (3.1.4)

Further, from the Lipschitz property (i) and (3.1.1), it follows that

ϕσ(·,f(·))−σ(·,h(·))(r) ≤M |f(r)− h(r)|+ M
∫ r

0
|f(r)− f(s)− h(r)

+ h(s)|(r − s)−β−1ds + M
γ−β |f(r)− h(r)|rγ−β

+ MR|f(r)− h(r)|
(∫ r

0
|f(r)−f(s)|κ
|r−s|β+1 ds +

∫ r

0
|h(r)−h(s)|κ
|r−s|β+1 ds

)
.

(3.1.5)

The proof follows now directly from (3.1.2)–(3.1.5), with C3 = (C1,β

+ C2,β)(M + MR)
(
1 + T γ−β

γ−β

)
. 	
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The next lemma describes the situation with the Lebesgue integrals. Let
the function b = b(t, x) : [0, T ]× R→ R satisfy the assumptions

(iv) for any R ≥ 0 there exists LR > 0 such that

|b(t, x)− b(t, y)| ≤ LR|x− y|, ∀|x|, |y| ≤ R,∀t ∈ [0, T ];

(v) there exists the function b0 ∈ Lp[0, T ] and L > 0 such that

|b(t, x)| ≤ L|x|+ b0(t), ∀(t, x) ∈ [0, T ]× R.

Lemma 3.1.2. Let 0 < β < 1/2, assumptions (iv) and (v) hold with p = β−1,
f ∈W β

0 [0, T ]. Then the following statements hold.
1. There exists the Lebesgue integral F (b)(f)(t) :=

∫ t

0
b(s, f(s))ds,

t ∈ [0, T ].
2. F (b)(f) ∈ C1−β [0, T ].
3. ‖F (b)(f)‖1−β ≤ C4(1 + f∗

T ) ≤ C4(1 + ‖f‖0,β).
4. ‖F (b)(f)‖0,β,λ ≤ C5λ

2β−1(1 + ‖f‖0,β,λ),
where λ ≥ 1, C4 and C5 depend only on β, T, L and ‖b0‖Lp[0,T ].

5. Let f, h ∈W β
0 [0, T ] with f∗

T ∨ h∗
T ≤ R. Then

‖F (b)(f)− F (b)(h)‖0,β,λ ≤ C6λ
β−1‖f − h‖0,β,λ, λ ≥ 1,

where C6 depends on β,R, T, LR.

Proof. We prove only statement 4. Indeed, from Lemma 2.1.10,

ϕβ
F (b)(f)

(t) ≤ C3
β,T

∫ t

0
|b(s,f(s))|

(t−s)β ds ≤ C3
β,T

∫ t

0
(L|f(s)|+b0(s))

(t−s)β ds

≤ C3
β,T

(
L
∫ t

0
|f(s)|
(t−s)β ds +

(∫ t

0
(t− s)−

β
1−β ds

)1−β

‖b0‖L1/β [0,T ]

)
≤ C3

β,T

(
L
∫ t

0
|f(s)|
(t−s)β ds + cβt1−2βB0,β

)
,

(3.1.6)

where cβ =
(

1−β
1−2β

)1−β

, B0,β = ‖b0‖Lp[0,T ], C
3
β,T = T β + 1/β.

Hence

‖F (b)(f)‖0,β,λ ≤ C3
β,T · L · supt∈[0,T ] e

−λt
∫ t

0
|f(s)|
(t−s)β ds

+ C3
β,T cβB0,β supt∈[0,T ] e

−λtt1−2β

≤ C3
β,T · L · sups∈[0,T ] e

−λs|f(s)| ∫ t

0
e−λuu−βds

+ C3
β,T cβB0,βλ2β−1 supz≥0 e−zz1−2β ≤ C5λ

2β−1(1 + ‖f‖0,β,λ),

where C5 = C3
β,T (L · Γ (1− β) + cβB0,β supz≥0 e−zz1−2β). 	


Now, let 0 < β < 1 be fixed, g ∈W 1−β
1 [0, T ]. Consider the (deterministic)

differential equation

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dgs, t ∈ [0, T ], (3.1.7)
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where X0 ∈ R, and the coefficients σ, b : [0, T ] × R → R are measurable
functions satisfying (i)–(v) with p = 1/β, 0 < γ, κ ≤ 1 and
0 < β < β0 = 1

2 ∧ γ ∧ κ
1+κ .

Theorem 3.1.3. Equation (3.1.7) has the unique solution X ∈ W β
0 [0, T ].

This solution belongs also to the space C1−β [0, T ].

Proof. Let the function f ∈ W β
0 [0, T ]. Then, according to statements 3 of

Lemmas 3.1.1 and 3.1.2, G(σ)(f) ∈ C1−β [0, T ] and F (b)(f) ∈ C1−β [0, T ]. So,
if X is the solution of (3.1.7) and X ∈W β

0 [0, T ], then X = X0 + F (b)(X)(t)
+ G(σ)(X)(t) ∈ C1−β [0, T ].

Now we prove the uniqueness. Let X and Y be two solutions from
C1−β [0, T ] and ‖X‖C1−β [0,T ] ∨ ‖Y ‖C1−β [0,T ] ≤ R. Then from statements 5
of Lemmas 3.1.1 and 3.1.2, for β < γ

‖X − Y ‖0,β,λ ≤ ‖F (b)(X)− F (b)(Y )‖0,β,λ + ‖G(σ)(X)−G(σ)(Y )‖0,β,λ

≤ (C3Λ1−β(g)λ2β−1(1 + CX + CY ) + C6λ
β−1)‖X − Y ‖0,β,λ, λ ≥ 1.

Note, that for β < κ
1+κ and for (1− β)-Hölder X and Y

CX + CY ≤ 2R sup
r∈[0,T ]

∫ r

0

(r − s)(1−β)κ−β−1ds ≤ C7,

where C7 depends on R, T and β. Take λ sufficiently large such that for
β < 1/2

C3Λ1−β(g)λ2β−1C7 + C6λ
β−1 ≤ 1/2

and obtain
‖X − Y ‖0,β,λ ≤ 1/2‖X − Y ‖0,β,λ

whence X = Y on [0, T ].
Now prove the existence by a fixed-point theorem. Consider the operator

A : W β
0 [0, T ]→ C1−β [0, T ] ⊂W β

0 [0, T ] of the form AX = X0 +
∫ t

0
b(s,Xs)ds

+
∫ t

0
σ(s,Xs)ds. Then for all λ ≥ 1 from Lemmas 3.1.1 and 3.1.2 for any

u ∈W β
0 [0, T ] it follows that

‖AX‖0,β,λ ≤ |X0|+ ‖F (b)(X)‖0,β,λ + ‖G(σ)(X)‖0,β,λ

≤ |X0|+ C5λ
2β−1(1 + ‖X‖0,β,λ) + C2Λ1−β(g)λ2β−1(1 + ‖X‖0,β,λ)

≤ λ2β−1(C5 + C2Λ1−β(g))(1 + ‖X‖0,β,λ) + |X0|.

If λ2β−1
0 (C5+C2Λ1−β(g)) < 1/2 and ‖X‖0,β,λ0 ≤ 2(1 + |X0|), then ‖AX‖0,β,λ

≤ 2(1 + |X0|). So A(B0) ⊂ B0, where

B0 =
{

X ∈W β
0 [0, T ] : ‖X‖0,β,λ0 ≤ 2(1 + |X0|)

}
.

For all X ∈ B0 ‖X‖0,β ≤ 2(1 + |X0|)eλ0T . Further, for any X,Y ∈ B0 and
λ ≥ 1 from the same lemmas
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‖AX −AY ‖0,β,λ ≤ C8λ
2β−1(1 + CX + CY )‖X − Y ‖0,β,λ, (3.1.8)

where C8 = C3Λ1−β(g) + C6.
If X ∈ A(B0) ⊂ B0 then there exists X ∈ B0 such that X = A(X)

∈ C1−β [0, T ], and from statements 3 of Lemmas 3.1.1 and 3.1.2

‖X‖C1−β [0,T ] ≤ |X0|+ ‖F (b)(X)‖C1−β [0,T ] + ‖G(σ)(X)‖C1−β [0,T ]

≤ (C1Λ1−β(g) + C4)(1 + ‖X‖0,β) ≤ C9,

where C9 = (C1Λ1−β(g) + C4)(1 + 2(1 + |X0|)eλ0T ).
Therefore, for such X

CX ≤ C10 :=
C9

κ− β(1 + κ)
Tκ−β(1+κ). (3.1.9)

From (3.1.8)–(3.1.9), for any X,Y ∈ A(B0)

‖AX −AY ‖0,β,λ1 ≤
1
2
‖X − Y ‖0,β,λ1 , (3.1.10)

for such λ1 that C8λ
2β−1
1 (1 + 2C10) ≤ 1

2 .
Denote by ρi(·, ·), i = 0, 1 the equivalent metrics generated by norms ‖ ·

‖0,β,λ0 and ‖ · ‖0,β,λ1 , correspondingly.
Let Xn+1 = AXn, n ≥ 0. Then Xn ∈ A(B0), n ≥ 1, and ρ1(Xn, Xm)

≤ 2−nρ1(X2, X1)→ 0 for m ≥ n→∞. Since the metric space (W β
0 [0, T ], ρ1)

is complete, there exists X∗ ∈ W β
0 [0, T ] such that Xn

ρ1→ X∗, n → ∞. Ev-
idently, ρ0(Xn, X∗) → 0, whence ‖X∗‖0,β,λ0 ≤ 2(1 + |X0|), and X∗ ∈ B0.
Moreover, CXn

≤ C10 and it follows from convergence in ρ0 that Xn uni-
formly converges to X∗ on [0, T ], whence CX ≤ C10. Therefore, from (3.1.10),

ρ1(AXn, AX∗) = ‖AXn −AX∗‖0,β,λ1

≤ 1
2
‖Xn −X∗‖0,β,λ1 =

1
2
ρ1(Xn, X∗)→ 0, n→∞,

and it means that X∗ = AX∗. 	

Now, consider the SDE with fBm BH

t , H ∈ (1/2, 1) on a complete proba-
bility space (Ω,F , P ):

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dBH
s , t ∈ [0, T ]. (3.1.11)

In this case we can reformulate Theorem 3.1.3 in such a way:

Theorem 3.1.4. Let the coefficients b and σ satisfy (i)–(v) with
p = (1−H + ε)−1 with some 0 < ε < H − 1/2, γ > 1−H,κ > H−1 − 1 (the
constants M,MR, R, LR and the function b0 can depend on ω).

Then there exists the unique solution {Xt, t ∈ [0, T ]} of equation (3.1.11),
X ∈ L0(Ω,F , P,W 1−H+ε

0 [0, T ]) with a.a. trajectories from CH−ε[0, T ].
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Remark 3.1.5. Theorem 3.1.4 admits evident generalization to the multidi-
mensional case. Consider the equation on Rd

Xi
t = Xi

0 +
∫ t

0

bi(s,Xs)ds +
m∑

j=1

∫ t

0

σji(s,Xs)dBHj
s , 1 ≤ i ≤ d, t ∈ [0, T ],

(3.1.12)
where the processes BHj are fBms with Hurst index Hj ∈ (1/2, 1), 1 ≤ j ≤
m. Denote by σ = (σji)

d,m
i,j=1 the matrix of “diffusions” and b = (bi)d

i=1 the
“drift” vector, |σ| := (

∑
i,j |σji|2)1/2, |b| := (

∑
i(bi)2)1/2, and suppose that

assumptions (i)–(v) hold with these notations, H = min1≤j≤m Hj , p = (1 −
H + ε)−1, γ > 1−H, κ > H−1 − 1.

Then there exists the unique vector solution Xt of equation (3.1.12) on
[0, T ] in L0(Ω,F , P,W 1−H+ε

0 [0, T ]) with a.a. trajectories from CH−ε[0, T ].

3.1.2 Norm and Moment Estimates of Solution

We consider equation (3.1.7), suppose that the assumptions of Theorem 3.1.3
hold and, in addition, the coefficient σ satisfies the following growth condition:
(v’) |σ(t, x)| ≤M(1 + |x|µ) for some 0 ≤ µ ≤ 1.

Lemma 3.1.6. The solution of (3.1.7) satisfies the estimate

‖X‖0,β ≤ C0 exp(C1(Λ1−β(g))κ̃),

where 0 < β < β0 = 1/2 ∧ γ ∧ κ
1+κ ,

κ̃ =

⎧⎪⎨⎪⎩
(1− 2β)−1, if µ = 1,
(1− β)−1, if 0 ≤ µ < 1−2β

1−β ,

> µ
1−2β , if 1−2β

1−β ≤ µ < 1,

(3.1.13)

and the constants C0 and C1 depend on T, β, µ and on the constants from
conditions (i)–(v).

Proof. Evidently,

ϕβ
X(t) ≤ |X0|+ ϕβ

F (b)(X)
(t) + ϕβ

G(σ)(X)
(t). (3.1.14)

From (3.1.6)

ϕβ
F (b)(X)

(t) ≤ C3
β,T (L

∫ t

0
|Xu|

(t−u)β du + cβt1−2βB0,β)

≤ LC3
β,T

∫ t

0
|Xu|

(t−u)β du + C4
β,T ,

(3.1.15)
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|G(σ)(X)| ≤ Λ1−β(g)
(∫ t

0
|σ(s,Xs)|

sβ ds + β
∫ t

0

∫ r

0
|σ(r,Xr)−σ(u,Xu)|

(r−u)β+1 du dr
)

≤ Λ1−β(g)
(
M
∫ t

0
|Xs|µ

sβ ds + M
∫ t

0

∫ r

0
|Xr−Xu|
(r−u)β+1 du dr

+ M t1−β

1−β + M tγ−β+1

(γ−β)(γ−β+1)

)
≤ Cβ,γ,T Λ1−β(g) + MΛ1−β(g)

(∫ t

0
|Xs|µ

sβ ds +
∫ t

0

∫ r

0
|Xr−Xu|
(r−u)β+1 du dr

)
,

(3.1.16)
and, similarly to (2.1.15)–(2.1.16)∫ t

0
|G(σ)

t (X)−G(σ)
s (X)|

(t−s)β+1 ds ≤MΛ1−β(g)(Cβ,γ,T +
∫ t

0
|Xu|µ(t− u)−2βdu

+
∫ t

0
(t− u)−β

∫ u

0
|Xu −Xv|(u− v)−β−1dv du).

(3.1.17)
Let us estimate the “worst” integral

∫ t

0
|Xu|µ(t− u)−2βdu:∫ t

0

|Xu|µ(t− u)−2βdu ≤
(∫ t

0

( |Xu|µ
(t− u)ρ

)p

du

)1/p(∫ t

0

ds

(t− s)(2β−ρ)q

)1/q

,

(3.1.18)
where we must choose µp = 1, (2β − ρ)q < 1, whence ρ > 2β + µ − 1, and
estimate (3.1.18) takes the form∫ t

0
|Xu|µ(t− u)−2βdu ≤ Cβ,µ,T

(∫ t

0
|Xu|

(t−u)ρ/µ du
)µ

≤ Cβ,µ,T

(
1 +
∫ t

0
|Xu|

(t−u)ν du
)

,
(3.1.19)

where ν = ρ
µ > 2β+µ−1

µ (for µ = 1 we put ν = 2β).

From (3.1.14)–(3.1.19) we obtain that ϕβ
X(t) admits an estimate

ϕβ
X(t) ≤ K1(1 + Λ1−β(g)) + K2(1 + Λ1−β(g)) ·

∫ t

0

ϕβ
X(u)((t− u)−ν + u−β)du

with constants K1 and K2 depending on on T, β, µ and on the constants from
conditions (i)–(v). Evidently,

(t− u)−ν + u−β =
uβ + (t− u)ν

uβ(t− u)ν
≤ (tβ + tν)u−β(t− u)−ν .

For µ > 1−2β
1−β we have that ν > β; for 0 < µ ≤ 1−2β

1−β we can put
ν = β > 2β+µ−1

µ . In any case

ϕβ
X(t) ≤ K1(1 + Λ1−β(g)) + K2(1 + Λ1−β(g))tν

∫ t

0

ϕβ
X(u)u−ν(t− u)−νdu.

(3.1.20)
In (NR00) the following version of the Gronwall lemma was proved: if 0 ≤ c <
1, a, b ≥ 0, x : R+ → R+ is a continuous function such that for each t ∈ [0, T ]
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xt ≤ a + btc
∫ t

0

(t− s)−cs−cds, (3.1.21)

then
xt ≤ C3 exp{C4tb

1
1−c }, (3.1.22)

where C3 and C4 depend only on a, b, c. The proof follows from (3.1.20)–
(3.1.22). 	


In the case of equation (3.1.11) g(t) = BH(t, ω) and instead of Λ1−β(g)
we have the random variable G := 1

Γ (1−β) sup0≤s<t≤T |(D1−β
t− BH

t−)(s)|. It was
considered and estimated in Lemma 1.17.1 and Remark 1.17.2.

Corollary 3.1.7. It follows from Lemmas 3.1.6 and 1.17.1 that the moments
of solution of SDE (3.1.7) admit the following estimate: if the coefficients
M,MR, L, LR do not depend on ω, p ≥ 1

β , 1−H < β < 1
2 ∧ γ ∧ κ

1+κ and we
can take the value κ̃ from (3.1.13) not exceeding 2 (it means that β < 1

4 for
µ = 1, therefore, H > 3/4 for µ = 1 and β < 1

2 − µ
4 if 1−2β

1−β ≤ µ < 1), then
E‖X‖q0,β <∞ for any q > 0.

3.1.3 Some Other Results on Existence and Uniqueness of Solution
of SDE Involving Processes Related to fBm with (H ∈ (1/2, 1))

It follows from the results of Subsection 3.1.1, that it is possible to consider
an SDE involving fBm with H ∈ (1/2, 1) as an ordinary differential equation
for any ω ∈ Ω′, P (Ω′) = 1. Therefore, the results for the ordinary differential
equations with the Hölder continuous forcing can be applied. One of these
results belongs to Ruzmaikina (Ruz00). Another approach was developed in
the papers (CQ00), (GA98), (GA99a), (GA99b), (Jum93), (IT99), (KKA98a),
(Kli98), (KZ99), (MN00), (Mis03), (Zah99) (Zah01) and (Zah05). For exam-
ple, in the papers (Zah99) and (Zah05) the author considers SDEs of the form

dXi
t =

m∑
j=0

σji(t,Xt)dZ
j,−
t + bi(t,Xt)dt,

t ∈ [0, T ], Xt0 = X0, 0 ≤ t0 < T,
(3.1.23)

under the following assumptions:
(vi) σji ∈ C1(Rd×[0, T ], Rd) and all partial derivatives are locally Lipschitz

in x ∈ Rd;
(vii) bi ∈ C(Rd× [0, T ], Rd) is locally Lipschitz in x ∈ Rd (with probability

1 in the random case). Here 1 ≤ i ≤ d.
Also, X0 is an arbitrary vector random variable. The integrals w.r.t. the

processes Zj
t are the generalized stochastic forward integrals. What are they

and what processes can we consider here? (Recall that the forward (not gen-
eralized) integrals were introduced in the Section 2.4.)
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Suppose that Y is a stochastic càglàd (left continuous with right limits)
process and Z a stochastic càdlàg (right continuous with left limits) process
on [0, T ].

Then the generalized stochastic forward integral is defined as∫ t

0

Y dZ− := lim
ε→0

ε

∫ 1

0

uε−1

∫ t

0

Ys
Zt−(s + u)− Zt−(s)

u
ds du, (3.1.24)

whenever the right-hand side is determined, where lim stands for uniform on
[0, T ] convergence in probability (ucp-convergence), and

∫ t

0
= limδ↓0

∫ 1

δ
a.s.

We use the same notation as for the forward integral in the Section 2.4.
Similarly, the generalized quadratic variation process (bracket) is defined

as

[Z]t := lim
ε→0

ε

∫ 1

0

uε−1,

∫ t

0

1
u

(Zt−(s+u)−Zt−(s))2ds du+(Zt−Zt−)2 (3.1.25)

whenever the convergence holds uniformly in probability. If Z is a semimartin-
gale and Y an adapted càglàd process then integral (3.1.24) agrees with the
usual Itô integral

∫ t−
0+

Y dZ, and notion of the generalized bracket coincides
with the classical one. If Z is a continuous process with the generalized bracket
[Z], and the function F = F (t, x) : R × [0, T ] → R, F ∈ C1([0, T ]) × C1(R),
then the simple Itô formula holds for 0 ≤ s < t ≤ T :

F (t, Zt) = F (s, Zs) +
∫ t

s
∂F
∂x (u,Zu)dZ−

u

+
∫ t

s
∂F
∂t (u,Zu)du + 1

2

∫ t

s
∂2F
∂x2 (u,Zu)d[Z]u.

Now we suppose that the paths of Zj , 1 ≤ j ≤ m from equation (3.1.23)
belong to the Sobolev–Slobodeckij space W

H−
3 :=

⋂
β<H

Wα
3 , H ∈ (1/2, 1),

where the norm in W β
3 is given by

‖f‖W β
3

:= ‖f‖L2[0,T ] +

(∫ T

0

∫ T

0

|f(s)− f(t)|2
(t− s)2β+1

ds dt

)1/2

.

We suppose also, that Z0 is a continuous process with the generalized bracket.
Then the sample paths of Z0 belong to the Sobolev–Slobodeckij space W

1/2−
3

(for the details see (Zah05)).

Definition 3.1.8. A local solution X = (X1, . . . , Xd) of SDE (3.1.23) is a
process with the generalized bracket admitting the integral representation

Xi
t = Xi

0 +
m∑

j=0

∫ t

t0

σji(s,Xs)dZj,−
s +

∫ t

t0

bi(s,Xs)ds,

in some neighborhood of t0.
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To formulate the main results, it is necessary to consider an auxiliary
partial differential equation on Rd × R× [0, T ],

∂h

∂z
(y, z, t) = σ0(t, h(y, z, t)), h(Y0, Z0, t0) = X0, (3.1.26)

where Z0 = Z0(t0), σ0 = (σ01, . . . , σ0d) and Y0 is an arbitrary random vector
in Rd. Now, the main result of the paper (Zah05) is stated as below.

Theorem 3.1.9 ((Zah05)). Under suppositions (vi) and (vii), any represen-
tation X(t) = h(Yt, Z

0
t , t) with the function h satisfying equation (3.1.26) and

Y ∈W
H−
3 locally determined in some neighborhood of the point t0 ∈ [0, T ] by

the following matrix representation:

dYt = (∂h
∂y (t, Yt, Z

0
t ))−1

( m∑
j=1

σj(t, h(t, Yt, Z
0
t ))dZj,−

t

+ (b(t, h(t, Yt, Z
0
t ))− ∂h

∂t (t, Yt, Z
0
t ))dt

− 1
2

∂σ0
∂x (t, h(t, Yt, Z

0
t ))σ0(t, h(t, Yt, Z

0
t ))d[Z0]t

)
,

Yt0 = Y0,

(3.1.27)

provides a pathwise local solution of the SDE (3.1.23). (Here we omit index i
everywhere.) If X is an arbitrary solution of (3.1.23), then it agrees with any
of the above representations on the common interval of definition.

3.1.4 Some Properties of the Stochastic Differential Equations
with Stationary Coefficients

Now we consider the multidimensional stochastic differential equation driven
by the vector fBm BH

t = (B1,H
t , . . . , Bm,H

t ) with the same Hurst index
H ∈ (1/2, 1) and with coefficients, stationary in time:

Xt = X0 +
∫ t

0

b(Xs)ds +
∫ t

0

σ(Xs)dBH
s , t ≥ 0, (3.1.28)

or

Xi
t = Xi

0 +
∫ t

0

bi(Xs)ds +
m∑

j=1

∫ t

0

σji(Xs)dBj,H
s , i = 1, . . . , d.

where the processes Bj,H , j = 1, . . . , m are fBms with Hurst parameter H
defined on the complete probability space (Ω,F , P ), X0 is a d-dimensional
random variable, and the coefficients σji, bi : Rd → R are measurable func-
tions.

The conditions of existence and uniqueness of solution of the equa-
tion (3.1.28) on any interval [0, T ], consequently on R+, according to Theorem
3.1.4 can be reduced to the following ones:
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(i’) Lipschitz continuity of b and σ:

|σ(x)− σ(y)|+ |b(x)− b(y)| ≤M |x− y| , x, y ∈ Rn;

(ii’) growth conditions:

|b(x)| ≤ C(1 + |x|), |σ(x)| ≤ (1 + |x|µ), x ∈ Rn

for some µ ∈ [0, 1)(this condition previously was used only for the estimate
of the norm of the solution of SDE (3.1.7));

(iii’) local Hölder continuity of ∂xi
σ:

|∂xi
σ(x)− ∂xi

σ(y)| ≤MR |x− y|κ

for 1 ≤ i ≤ d, |x| , |y| ≤ R and some κ > 1
H − 1.

Existence of Pathwise Solution for Bounded Coefficients

Now we relax the conditions on coefficients to obtain the existence (not unique-
ness) of the solution of equation (3.1.28).

Theorem 3.1.10. Let the coefficient b be bounded and continuous, coefficient
σ be bounded and Hölder of order 1 > ρ > 1/H − 1. Then equation (3.1.28)
has a pathwise solution.

Proof. We consider the sequence {ψn(x), x ∈ Rd, n ≥ 1} of smooth kernels,
such that ψn ≥ 0; ψn = 0, |x| ≥ 1

n ; ψn ∈ C∞(Rd);
∫

Rd ψn(x)dx = 1.
Introduce the functions

bn(x) =
∫

Rd

b(y)ψn(x− y)dy, σn(x) =
∫

Rd

σ(y)ψn(x− y)dy.

Then for any x ∈ Rd and any 1 ≤ i ≤ d

|∂xi
bn(x)| =

∣∣∣∣∫
Rd

b(y)∂xi
ψn(x− y)dy

∣∣∣∣
≤ ‖b‖∞

∫
Rd

|∂xi
ψn(x− y)| dy ≤ Cn ‖b‖∞ ,

where ‖b‖∞ := supx∈Rd |b(x)|.
The same estimate is true for σn, and it means that bn and σn are Lipschitz

continuous, with the constants possibly depending on n. Further, for any
x ∈ Rd, |bn(x)| = ∣∣∫

Rd b(y)ψn(x− y)dy
∣∣ ≤ ‖b‖∞ i.e. bn are bounded functions.

The same is true for σn. Finally, for any N > 0, x, y ∈ Rd, |x| ≤ N ,
|y| ≤ N and 1 ≤ i ≤ d
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|∂xi
σn(x)− ∂xi

σn(y)| ≤ ‖σ‖∞
∫

Rd

|∂xi
ψn(x− z)− ∂xi

ψn(y − z)| dz

≤ ‖σ‖∞ sup
|z|≤ 1

n ,1≤i,j≤d

∣∣∣∂2
xi,xj

ψn(z)
∣∣∣ (N + 1)d|x− y|,

i.e. ∂xi
σn satisfy the local Lipschitz conditions. These estimates demonstrate

that bn and σn satisfy conditions (i’)–(iii’) that in turn ensure the pathwise
existence (and uniqueness) of the solution of the equation

Xn
t = X0 +

∫ t

0

bn(Xn
s )ds +

∫ t

0

σn(Xn
s )dBH

s . (3.1.29)

We fix some ω ∈ Ω and denote by C different constants even if they depend on
Ω. According to Theorem 3.1.4 and Remark 3.1.5, the solution Xn

t is Hölder
continuous of order H−δ for any δ > 0; from Hölder continuity of σ we obtain
that

|σn(x)− σn(y)| ≤
∫

Rd

|σ(x− z)− σ(y − z)| |ψn(z)| dz ≤ C |x− y|ρ ,

(3.1.30)
therefore, σn(Xn

s ) belongs to the space W β
2 [0, T ] for any β < Hρ. By using

estimate (2.1.14) and the boundedness of σn for any 0 ≤ s ≤ t, we obtain for
each 1−H < β < ρH (this is possible since ρ > 1/H − 1) the estimate

∣∣∣∣∫ t

s

σn(Xn
u )dBH

u

∣∣∣∣
≤ G

(∫ t

s

|σn(Xn
u )|

(u− s)β
du +

∫ t

s

∫ u

s

∣∣σn(Xn
u )− σn(Xn

y )
∣∣

(u− y)β+1
dy du

)

≤ G ‖σ‖∞
(t− s)1−β

1− β
+ CG

∫ t

s

∫ u

s

∣∣Xn
u −Xn

y

∣∣ρ
(u− y)β+1

dy du.

Here GT := Λ1−β(BH) (see Section 1.17) and EGp
T < ∞ for any p > 0

(Lemma 1.17.1 and Remark 1.17.2). Finally, we can estimate

|Xn
t −Xn

s | ≤
∣∣∣∣∫ t

s

bn(Xn
u )du

∣∣∣∣+ ∣∣∣∣∫ t

s

σn(Xn
u )dBH

u

∣∣∣∣ ≤ ‖b‖∞ (t− s)

+ GT
‖σ‖∞
1− α

(t− s)1−α + CGT

∫ t

s

∫ u

s

∣∣Xn
u −Xn

y

∣∣ρ
(u− y)β+1

dy du. (3.1.31)

Consider any fixed interval [0, T ] and denote

‖X‖1−β,T := sup
0≤s<t≤T

|Xt −Xs|
(t− s)1−β

.
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Check, first, that the inequality ‖Xn‖1−β,T <∞ holds for any T > 0. Indeed,
Xn are Hölder of order H−ε for any ε > 0 with constant, possibly depending
on n (Theorem 3.1.4 and Remark 3.1.5), therefore ‖Xn‖1−β,T <∞ a.s. Now,
from (3.1.31),

‖Xn‖1−β,T ≤ ‖b‖∞ T β + GT
‖σ‖∞
1− β

+ CGT sup
0≤s<t≤T

|t− s|β−1
∫ t

s

∫ u

s

(∣∣Xn
u −Xn

y

∣∣
(u− y)1−β

)ρ

|u− y|ρ−ρβ−1−β
dy du

≤ C + C(‖Xn‖1−β,T )ρ · sup
0≤s<t≤T

(t− s)β−1+(1−β+ρ−ρβ)

≤ C + C(‖Xn‖1−β,T )ρ,

under the condition ρ − ρβ − 1 − β > −1, i.e. ρ > β
1−β , which is possible for

some β > 1 − H, since ρ > 1/H − 1. Note that for 0 < ρ < 1 the equality
P = C(1+P ρ) has the unique root P0 > 0 and the inequality P ≤ C(1+P ρ)
holds for P ≤ P0. Therefore, ‖Xn‖1−β,T ≤ P0(T, ρ), where P0(T, ρ) depends
only on T and ρ, not on n. This means that

|Xn
t −Xn

s | ≤ P0(T, ρ)(t− s)1−β , (3.1.32)

which according to the Arcela criterion means that the sequence
{Xn

t , t ∈ [0, T ]}, n ≥ 1 is tight for any ω ∈ Ω in the space C[0, T ]. Evi-
dently, we can conclude that there exists {Xnk

t , t ∈ [0, T ]}, nk ≥ 1, such that
Xnk

t → Xt in the space C[0, T ]. We can suppose that Xn
t → Xt in C[0, T ].

Now it is sufficient to prove that X(t) is a solution of (3.1.28). Let consider
some auxiliary estimates. First,∣∣∣∣∫ t

0

(bn(Xn
s )− b(Xs))ds

∣∣∣∣ ≤ ∫ t

0

|bn(Xn
s )− bn(Xs)| ds+

∫ t

0

|bn(Xs)− b(Xs)| ds.

(3.1.33)
Further, for any x, y ∈ Rd

|bn(x)− bn(y)| =
∣∣∣∣∫

Rd

(b(x− u)− b(y − u))ψn(u)du

∣∣∣∣
≤
∫
|u|≤ 1

n

|b(x− u)− b(y − u)|ψn(u)du ≤ sup
|u|≤ 1

n

|b(x− u)− b(y − u)| .

(3.1.34)

The process {Xt, t ∈ [0, T ]} is continuous on [0,T], so bounded for any ω ∈ Ω.
Let C(T, ω) = sup0≤s≤T |Xs|. For any ε > 0 there exists η > 0 such that

sup
|s−z|<η, |s|≤C(T,ω)+1

|b(s)− b(z)| < ε. (3.1.35)
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For any η > 0 and any ω ∈ Ω there exists such n0 ∈ N that |Xn
s −Xs| < η,

n ≥ n0, s ∈ [0, T ]. From these estimates,

|bn(Xn
s )− bn(Xs)| ≤ sup

|u|≤ 1
n

|bn(Xn
s − u)− bn(Xs − u)|

≤ sup
|s|≤C(T,ω)+ 1

n

sup
|s−z|<η

|b(s)− b(z)| < β, n ≥ n0. (3.1.36)

Since β > 0 is arbitrary, we obtain that a.s.∫ t

0

|bn(Xn
s )− bn(Xs)| ds→ 0, n→∞. (3.1.37)

The second term on the right-hand side of (3.1.33) can be estimated in such
a way:

|bn(Xs)− b(Xs)| ≤
∫

Rd

|b(Xs − u)− b(Xs)|ψn(u)du

≤ sup
|z|≤C(T,ω)

sup
|u|≤ 1

n

|b(z − u)− b(z)| → 0, n→∞,

since b is a continuous function. Moreover, bn are bounded, which implies
the convergence

∫ t

0
|bn(Xs)− b(Xs)| ds → 0, n → ∞ a.s. We obtain that∫ t

0
bn(Xn

s )ds→ ∫ t

0
b(Xs)ds a.s., t > 0. Furthermore,∣∣∣∣∫ t

0

(σn(Xn
s )− σ(Xs))dBH

s

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

(σn(Xn
s )− σn(Xs))dBH

s

∣∣∣∣
+
∣∣∣∣∫ t

0

(σn(Xs)− σ(Xs))dBH
s

∣∣∣∣ . (3.1.38)

Now we can estimate the first term of (3.1.38) for any 1−H < β < 1
2 :∣∣∣∣∫ t

0

(σn(Xn
s )− σn(Xs))dBH

s

∣∣∣∣ ≤ G

∫ t

0

|σn(Xn
s )− σn(Xs)|

sβ
ds

+ G

∫ t

0

∫ u

0

|σn(Xn
u )− σn(Xn

r ) + σn(Xr)− σn(X)|
(u− r)1+β

dr du. (3.1.39)

Similarly to estimates (3.1.34)–(3.1.37), we obtain that a.s.
sups≤T |σn(Xn

s )− σn(Xs)| → 0 and
∫ t

0
|σn(Xn

s )− σn(Xs)| s−βds → 0,
while n→∞. Further, recall the estimate (3.1.30). For any sufficiently small
ε > 0, present

∫ t

0

∫ u

0
on the right-hand side of (3.1.39) as

∫ t

0

∫ u

0

=
∫ t

ε

∫ u−ε

0
+
∫ ε

0

∫ u

0
+
∫ t

ε

∫ u

u−ε
, and the integrals on the right-hand side can be

estimated as
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ε

∫ u−ε

0

≤ 2 sup
s≤T
|σn(Xn

s )− σn(Xs)|
∫ t

ε

∫ u−ε

0

dr du

(u− r)1+β

≤ Cε−α · sup
s≤T
|σn(Xn

s )− σn(Xs)| → 0

a.s. for any fixed ε > 0. Further, from (3.1.32),∫ t

ε

∫ u

u−ε

≤ C

∫ t

ε

∫ u

u−ε

|Xn
u −Xn

r |ρ + |Xr −Xu|ρ
(u− r)1+β

dr du

≤ C

∫ t

0

∫ u

u−ε

(u− r)ρ(1−β)−1−βdr du = Cερ(1−β)−β (3.1.40)

is small for small ε > 0, and moreover, C does not depend on n. The integral∫ ε

0

∫ u

0

≤ Cερ(1−β)−β+1. (3.1.41)

Therefore, since ε > 0 is arbitrary,
∫ t

0

∫ u

0
→ 0 a.s. while n→∞.

The second term of (3.1.38) can be estimated as∣∣∣∣∫ t

0

(σn(Xs)− σ(Xs))dBH
s

∣∣∣∣ ≤ G

∫ t

0

|σn(Xs)− σ(Xs)|
sβ

ds

+ G

∫ t

0

∫ u

0

|σn(Xu)− σn(Xr)− σ(Xu) + σ(Xr)|
(u− r)1+β

dr du.

Evidently,

|σn(Xs)− σ(Xs)| ≤
∫

Rd

|σ(Xs − u)− σ(Xs)|ψn(u)du

≤ sup
|u|≤ 1

n

|u|ρ ≤ 1
nρ
→ 0, n→∞

and
∫ t

0
|σn(Xs)− σ(Xs)|s−βds→ 0 a.s., n→∞. Now, as before,∫ t

0

∫ u

0
=
∫ t

ε

∫ u−ε

0
+
∫ ε

0

∫ u

0
+
∫ t

ε

∫ u

u−ε
and

∫ t

ε

∫ u−ε

0
≤ 2 1

nρ · ε−β → 0 for any
fixed ε > 0 and other integrals can be estimated as in (3.1.40)–(3.1.41). So,∫ t

0
σn(Xn

s )dBH
s →

∫ t

0
σ(Xs)dBH

s a.s. while n→∞ and
Xt =

∫ t

0
σ(Xs)dBH

s +
∫ t

0
b(Xs)ds. The theorem is proved. 	


Remark 3.1.11. By similar, but even more simple arguments we can prove the
existence of the solution of the equation

Xt = X0 +
∫ t

0

b(Xs)ds +
∫ t

0

f(s)dBH
s ,

where b is bounded and continuous, f ∈ C1−H [0, T ], X0 is a real-valued
random variable.
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Differentiability and Local Differentiability of the Solution

Here we shall use the elements of Malliavin calculus with respect to fBm BH ,
contained in Section 2.4.

Suppose that we consider some subspace Ω1 ⊂ Ω and restrict F and P to
Ω1. Denote the mathematical expectation w.r.t. restricted measure P1 as E1.

Definition 3.1.12. Random variable F belongs locally to the space D1,p(H)
on [0, T ] if there exists a sequence Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ω such that

⋃∞
n=1 Ωn = Ω

and ‖F‖p1,p,n := En(|F |p) + En(‖DF‖)p
H <∞.

In this case we say that F is locally differentiable, F ∈ D1,p,loc. According
to Lemma 1.5.4 (Nua95), see also (Nua98), we can formulate the sufficient
conditions of local differentiability. Let {Fr, r ≥ 1} be a sequence of r.v. from
D1,p,loc satisfying the conditions

(viii) Fr → F in any Lp(Ωn), n ≥ 1,
(ix) supr ‖Fr‖1,p,n <∞ for any n ≥ 1.

Then F belongs to D1,p,loc.
Remark 3.1.13. Suppose that there exists a localizing sequence (Ωn, n ≥ 1),
such that F ∈ D1,p,loc for any p > 1. Then we say that F ∈ D1,∞,loc.

Consider equation (3.1.28) and suppose that its coefficients X0, b and σ
satisfy conditions (i’)–(ii’) and

(x) b ∈ C1(Rd);
(xi) |∂xi

σ(x)− ∂xi
σ(y)| ≤M |x− y|, ∀x, y ∈ Rd;

(xii) X0 ∈ D1,∞ :=
⋂

p≥1 D1,p(H), X0 is a bounded F0-adapted random
variable.

Theorem 3.1.14. 1. Let conditions (i’)–(ii’) and (x)–(xii) hold. Then the
unique solution Xt of equation (3.1.28) is locally differentiable in the sense
that Xi

t ∈ D1,∞,loc for any 1 ≤ i ≤ d with the same localizing sequence.
2. Let equation (3.1.28) be semilinear, i.e. σ(x) = σx, conditions (i’), (ii’),

(x), (xii) hold for b and X0 and H > 3/4. Then Xi
t ∈ D1,∞ for any

1 ≤ i ≤ d.

Proof. 1. Let T > 0 be fixed. According to Theorem 3.1.4 and Remark 3.1.5,
under conditions (i’)–(i”) and (x) equation (3.1.28) has the unique solution
Xt on the interval [0, T ]. Moreover, it can be obtained by successive approx-
imations,

{
X

(n)
t , n ≥ 0

}
, t ∈ [0, T ] where X

(0)
t = X0 ∈ D1,∞. Further we

consider the case d = 1, for technical simplicity; in the general case they are
similar. We use induction. Suppose that X

(k)
t ∈ D1,∞, 1 ≤ k ≤ n, and the

derivatives DsX
(k)
t , 0 ≤ s ≤ t ≤ T , 1 ≤ k ≤ n are Hölder continuous of order

1 − β for some 1 −H < β < 1/2. Since the approximations X
(n)
t are Hölder

continuous of any order not exceeding H, and from conditions (i’) and (x) σ′

and b′ are bounded, σ′(X(n)
r )DsX

(n)
r is Hölder continuous in r of order 1−β.
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Therefore, the integrals
∫ t

s
σ′(X(n)

r )DsX
(n)
r dBH

r and
∫ t

s
b′(X(n)

r )DsX
(n)
r dr

exist, 0 ≤ s ≤ t ≤ t ≤ T and

DsX
(n+1)
t = σ(X(n)

s ) +
∫ t

s

σ′(X(n)
r )DsX

(n)
r dBH

r +
∫ t

s

b′(X(n)
r )DsX

(n)
r dr.

Hence for any 1−H < β < 1
2 , from (2.1.14),

|DsX
(n+1)
t | ≤ |σ(X(n)

s )|+ M

∫ t

s

|DsX
(n)
r |dr + MG

∫ t

s

|DsX
(n)
r |(r − s)−βdr

+ G

∫ t

s

∫ r

s

|σ′(X(n)
r )DsX

(n)
r − σ′(X(n)

u )DsX
(n)
u |(r − u)−1−βdu dr, (3.1.42)

where G = 1/Γ (β) sup
0<s<t<T

∣∣∣(D1−β
t− BH

t−)(s)
∣∣∣, E exp{pGδ} < ∞ for any

p > 0 and 0 < δ < 2.
Further we denote by C different constants not depending on ω. Note that

|σ(Xn
s )| ≤ C

(
1 + |X(n)

s |µ
)

.

Further, it follows from condition (ii’) and Lemma 3.1.6, that
sup

0≤s≤T

∣∣∣X(n)
s

∣∣∣ ≤ C exp{CGκ̃}, where

κ̃ =

⎧⎪⎨⎪⎩
1

1−2β , if µ = 1;
> µ

1−2β , if 1−2β
1−β ≤ µ < 1;

1
1−β , if 0 ≤ µ < 1−2β

1−β .

Finally, |σ(Xn
s )| ≤ C exp{CGκ̃}, and from (3.1.42) it follows that

∣∣∣DsX
(n+1)
t

∣∣∣ ≤ C exp{CGκ̃}+ M

∫ t

s

∣∣∣DsX
(n)
r

∣∣∣ dr + MG

∫ t

s

∣∣∣DsX
(n)
r

∣∣∣
(r − s)β

dr

+ MG

∫ t

s

∫ r

s

∣∣∣X(n)
r −X

(n)
u

∣∣∣ ∣∣∣DsX
(n)
r

∣∣∣
(r − u)1+β

du dr

+ CG

∫ t

s

∫ r

s

∣∣∣DsX
(n)
r −DsX

(n)
u

∣∣∣
(r − u)1+β

du dr. (3.1.43)

It follows from Lemmas 3.1.1, 3.1.2 and 3.1.6 that

|Xn
s −Xn

r | ≤ exp{CGκ̃} |s− r|1−β (3.1.44)

for any 1−H < β < 1
2 . In this case 1− 2β > 0 and from (3.1.43)
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(n+1)
t

∣∣∣ ≤ C exp{CGκ̃}+ M

∫ t

s

∣∣∣DsX
(n)
r

∣∣∣ dr

+ MG

∫ t

s

∣∣∣DsX
(n)
r

∣∣∣
(r − s)β

dr + MG exp{CGκ̃}
∫ t

s

∣∣∣DsX
(n)
r

∣∣∣ (r − s)1−2βdr

+ CG

∫ t

s

∫ r

s

∣∣∣DsX
(n)
r −DsX

(n)
u

∣∣∣
(r − u)1+β

du dr,

or, briefly,∣∣∣DsX
(n+1)
t

∣∣∣ ≤ C exp{CGκ̃}

+ CG exp{CGκ̃}
∫ t

s

∣∣∣DsX
(n)
r

∣∣∣
(r − s)β

dr + CG

∫ t

s

∫ r

s

∣∣∣DsX
(n)
r −DsX

(n)
u

∣∣∣
(r − u)1+β

du dr.

Further, for any 0 ≤ u < r ≤ T

DsX
(n+1)
r −DsX

(n+1)
u =

∫ r

u

σ′(X(n)
v )DsX

(n)
v dBH

v +
∫ r

u

b′(X(n)
v )DsX

(n)
v dv,

and we obtain by similar estimates that

∣∣∣DsX
(n+1)
r −DsX

(n+1)
u

∣∣∣ ≤ CG exp{CGκ̃}
∫ r

u

∣∣∣DsX
(n)
u

∣∣∣
(v − u)β

dv

+ CG

∫ r

u

∫ v

u

∣∣∣DsX
(n)
v −DsX

(n)
z

∣∣∣
(v − z)1+β

dz dv, (3.1.45)

whence

∫ r

s

∣∣∣DsX
(n+1)
r −DsX

(n+1)
u

∣∣∣
(r − u)1+β

du

≤ CG exp{CGκ̃}
∫ r

s

1
(r − u)1+β

∫ r

u

∣∣∣DsX
(n)
v

∣∣∣
(v − u)β

dv du

+ CG

∫ r

s

1
(r − u)1+β

∫ r

u

∫ v

u

∣∣∣DsX
(n)
v −DsX

(n)
z

∣∣∣
(v − z)1+β

dz dv.

Denote ϕ1
n(t) :=

∣∣∣DsX
(n)
t

∣∣∣, ϕ2
n(t) :=

∫ t

s

∣∣∣DsX
(n)
t −DsX(n)

u

∣∣∣
(t−u)1+β du, ϕ1

0(t) := DsX0,

ϕ2
0(t) := 0, C̃1(ω) := C exp{CGκ̃}, C̃2(ω) := CG exp{CGκ̃}, C̃3(ω) := CG.

Then for ϕn(t) := ϕ1
n(t) + ϕ2

n(t)
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ϕ1
n+1(t) ≤ C̃1(ω) + C̃2(ω)

∫ t

s

ϕ1
n(r)(r − s)−βdr + C̃3(ω)

∫ t

s

ϕ2
n(r)dr

≤ C̃1(ω) +
(
C̃2(ω) + C̃3(ω)T β

)∫ t

s

ϕn(r)(r − s)−βdr;

ϕ2
n+1(t) ≤ C̃2(ω)

∫ t

s

1
(t− u)1+β

∫ t

u

ϕ1
n(v)

(v − u)β
dv du

+ C̃3(ω)
∫ t

s

1
(t− u)1+β

∫ t

u

ϕ2
n(v)dv du

= C̃2(ω)
∫ t

s

ϕ1
n(v)

∫ v

s

du

(v − u)β(t− u)1+β
dv

+ C̃3(ω)
∫ t

s

ϕ2
n(v)

∫ v

s

du

(t− u)1+β
dv.

Since
∫ v

s
(v − u)−β(t− u)−1−βdu ≤ C(t− v)−2β , with

C =
∫∞
0

u−β(1 + u)−1−βdu, we have that

ϕ2
n+1(t) ≤ C̃2(ω)C

∫ t

s

ϕ1
n(v)(t− v)−2βdv + C̃3(ω)C

∫ t

s

ϕ2
n(v)(t− v)−βdv

≤ C
(
C̃2(ω) + C̃3(ω)T β

)∫ t

s

ϕn(v)(t− v)−2βdv.

Finally,

ϕn+1(t) ≤ C(ω)
(

1 +
∫ t

0

ϕn(v)
(
(t− v)−2β + v−2β

)
dv

)
≤ C(ω)

(
1 + t2β

∫ t

0

ϕn(v)(t− v)−2βv−2βdv

)
,

where C(ω) = CC̃1(ω) ∨
(
C̃2(ω) + C̃3(ω)T β ∨ 1

)
for some C > 0.

It is very easy to check by induction, similarly to (3.1.20)–(3.1.21), that

ϕn(t) ≤ C(ω)C1 exp{C2t (C(ω))
1

1−2β } =: ψ(t),

where C1 and C2 depend only on β. In particular, ϕ1
n ≤ ψ(t) and ϕ2

n ≤ ψ(t).
Evidently, sups≤t≤T ψ(t) =: C̃(ω) <∞ a.s., and from (3.1.45) it follows that∣∣∣DsX

(n+1)
r −DsX

(n+1)
u

∣∣∣ ≤ C(ω)C̃(ω)
(

(r − u)1−β

1− β
+ (r − u)

)
,

i.e. DsX
(n+1)
r is Hölder continuous of index 1−β (it is necessary for induction).

Denote Ωk := {ω : C̃(ω) ≤ k}. Then
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Ek sup
0≤s≤t≤T

∣∣∣DsX
(n)
t

∣∣∣p ≤ kp <∞. (3.1.46)

Moreover,

∣∣∣X(n+1)
t −Xt

∣∣∣ ≤ ∫ t

0

∣∣∣b(X(n)
s )− b(Xs)

∣∣∣ ds +
∣∣∣∣∫ t

0

(σ(X(n)
s )− σ(Xs))dBH

s

∣∣∣∣
≤M

∫ t

0

∣∣∣X(n)
s −Xs

∣∣∣ ds + C(ω)
∫ t

0

∣∣∣X(n)
s −Xs

∣∣∣
sβ

ds

+ C(ω)
∫ t

0

∫ r

0

∣∣∣σ(Xr)− σ(X(n)
r )− σ(Xn) + σ(X(n)

u )
∣∣∣

(r − u)1+β
du dr.

From Lemma 7.1 (NR00), conditions (i’), (x) and from (3.1.44), it follows that∣∣∣σ(Xr)− σ(X(n)
r )− σ(Xu) + σ(X(n)

u )
∣∣∣

≤ C
∣∣∣Xr −Xu −X(n)

r + X(n)
u

∣∣∣+C
∣∣∣X(n)

r −Xr

∣∣∣ (|Xr −Xu|+
∣∣∣X(n)

r −X(n)
u

∣∣∣)
≤ C

∣∣∣X(n)
r −Xr

∣∣∣ (C exp{CGκ̃} |u− r|1−β
)

+C
∣∣∣Xr −Xu −X(n)

r + X(n)
u

∣∣∣ .
Then

∣∣∣X(n+1)
t −Xt

∣∣∣ ≤ C(ω)
(∫ t

0

∫ r

0

∣∣∣Xr −Xu −X
(n)
r + X

(n)
u

∣∣∣
(r − u)1+β

du dr

+
∫ t

0

∣∣∣X(n)
s −Xs

∣∣∣ s−βds
)
.

By similar estimates we obtain

∫ t

0

∣∣∣X(n+1)
t −X

(n+1)
u −Xt −Xu

∣∣∣
(t− u)1+β

du

≤ C(ω)
∫ t

0

du

(t− u)1+β

(∫ t

u

∣∣∣X(n)
s −Xs

∣∣∣ s−βds

+
∫ t

u

∫ r

u

∣∣∣Xr −Xv −X
(n)
r + X

(n)
v

∣∣∣
(r − v)1+β

du dr

)
.

Denote ξ1
n(t) :=

∣∣∣X(n)
t −Xt

∣∣∣, ξ2
n(t) :=

∫ t

0

∣∣∣X(n)
t −X

(n)
u −Xt + Xu

∣∣∣
× (t− u)−1−βdu, then

ξ1
n+1(t) ≤ C(ω)

(∫ t

0

ξ1
n(s)s−βds +

∫ t

0

ξ2
n(s)ds

)
,
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ξ2
n+1(t) ≤ C(ω)

(∫ t

0

ξ1
n(s)s−β

∫ s

0

du

(t− u)1+β
ds

+
∫ t

0

ξ2
n(s)
∫ s

0

du

(t− u)1+β
ds
)
≤ C(ω)

∫ t

0

s−β(t− s)−β(ξ1
n(s) + ξ2

n(s))ds.

Let ξn(t) = ξ1
n(t)+ξ2

n(t), then ξn+1(t) ≤ C(ω)t2β
∫ t

0
s−2β(t− s)−2βξn(s)ds.

Denote C4(ω) := sup
0≤s≤T

|ξ0(s)|. Then it is easy to obtain that

ξn(t) ≤ (C(ω))nC4(ω)
Γ (1− 2β)n+1

Γ (n(1− 2β))
tn(1−2β). (3.1.47)

Hence, Ek sup0≤t≤T |ξn(t)|p ≤ Ck(n+1)p <∞ for some C > 0 and any p > 0,
where Ωk = {ω : C(ω) ≤ k,C4(ω) ≤ k}. Finally, we obtain from (3.1.47) that

Ek sup
0≤t≤T

∣∣∣X(n)
t −Xt

∣∣∣p → 0, n → ∞. Together with (3.1.46) it means that

X(t) ∈ D1,∞,loc.
2. Let equation (3.1.28) be semilinear, i.e. it has a form

Xt = X0 +
∫ t

0

b(Xs)ds + σ

∫ t

0

XsdBH
s ,

where b satisfies conditions (i’), (ii’), (x), X0 satisfies condition (xii).
Then∣∣∣DsX

(n+1)
t

∣∣∣ ≤ C̃1(ω) + C(ω)
∫ t

s

|DsX
n
r |

(r − s)β
dr

+ C(ω) |σ|
∫ t

s

∫ r

s

|DsX
n
r −DsX

n
u |

(r − u)1+β
du dr,

∣∣DsX
n+1
r −DsX

n+1
u

∣∣
≤ C(ω)

∫ r

u

|DsX
n
z |

(z − u)β
dz + C(ω)|σ|

∫ r

u

∫ z

u

|DsX
n
z −DsX

n
v |

(z − v)1+β
dv dz,

or in terms of ϕ1
n(t) and ϕ2

n(t) from Part 1 of the proof,

ϕ1
n(t) ≤ C̃1(ω) + C(ω)

∫ t

s

ϕ1
n(r)(r − s)−βdr + C(ω) |σ|

∫ t

s

ϕ2
n(r)dr,

ϕ2
n(t) ≤ C(ω)

∫ t

s

ϕ1
n(v)(t− v)−2βdv + C(ω)

∫ t

s

ϕ2
n(v)(t− v)−βdv.

Repeating the same estimates as in Part 1 but with other constants, we obtain

ϕ1
n(t) ≤ C̃1(ω) exp{CGκ̃(t− s)}.
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Evidently, E
∣∣ϕ1

n(t)
∣∣p ≤ Cp < ∞ since now, of course, µ = 1, κ̃ = 1

1−2β ,
and for H > 3

4 the coefficient β > 1 − H can be chosen in such a way that
1

1−2β < 2. Moreover, in this, semilinear, case,∣∣∣X(n+1)
t −Xt

∣∣∣
≤ C(ω)

∫ t

0

|Xn
s −Xs|
sβ

ds + C(ω)
∫ t

0

∫ r

0

∣∣∣Xr −X
(n)
r −Xu + X

(n)
u

∣∣∣
(r − u)1+β

du dr,

∫ t

0

∣∣∣X(n+1)
t −Xt −X

(n+1)
u + Xu

∣∣∣
(t− u)1+β

du

≤
∫ t

0

du

(t− u)1+β

(
C(ω)

∫ t

u

∣∣∣X(n)
s −Xs

∣∣∣ s−βds

+ C(ω)
∫ t

u

∫ r

u

∣∣∣Xr −Xv −X
(n)
r + X

(n)
v

∣∣∣
(r − v)1+β

dv dr
)

≤ C(ω)
∫ t

0

∣∣∣X(n)
s −Xs

∣∣∣ s−β(t− s)−βds

+ C(ω)
∫ t

0

(t− s)−β

∫ s

0

∣∣∣Xs −Xv −X
(n)
s + X

(n)
v

∣∣∣
(s− v)1+β

ds,

or

ξ1
n+1(t) ≤ C(ω)

∫ t

0

ξ1
n(s)s−βds + C(ω)

∫ t

0

ξ2
n(s)ds,

ξ2
n+1(t) ≤ C(ω)

∫ t

0

ξ1
n(s)s−β(t− s)−βds + C(ω)

∫ t

0

ξ2
n(s)(t− s)−βds,

where ξ1
n(t) =

∣∣∣X(n)
t −Xt

∣∣∣, ξ2
n(t) =

∫ t

0

∣∣∣X(n)
t +X(n)

u −Xt+Xu

∣∣∣
(t−u)1+β du.

Repeating the same estimates as in Part 1, but with other constants, we
obtain:

sup
0≤t≤T

ξn(t) ≤ Cn+1Gn+1C̃4(ω)
Γ (n(1− 2β))

,

where ξn(t) = ξ1
n(t) + ξ2

n(t),

C̃4(ω) = sup
0≤t≤T

|ξ0(t)| = sup
0≤t≤T

(
|X0|+ |Xt|+

∫ t

0

|Xt −Xr|
(t− r)1+β

dr

)
.

According to Corollary 3.1.7, EC̃p
4 (ω) <∞ for any p ≥ 1 if H > 3

4 . Clearly,

EGp <∞ for any p ≥ 1. Therefore, E sup
0≤t≤T

∣∣∣X(n)
t −Xt

∣∣∣p ≤ Cp <∞ and we

obtain the proof. 	
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Remark 3.1.15. It is easy to see that under conditions (i’)–(ii’) and (x)–(xii)
the derivative DsXt satisfies the equation

DsXt = σ(Xs) +
∫ t

s

σ′(Xr)DsXrdBr +
∫ t

s

b′(Xr)DsXrdr. (3.1.48)

Remark 3.1.16. For differentiability and local differentiability of the solutions
of SDE involving fBm see also (NS05) and (MS07b).

Smoothness of the Functionals of the Solution

We consider equation (3.1.28) and suppose that the coefficients b and σ satisfy
the conditions of Theorem 3.1.10 and the condition

(xiii) b, σ ∈ C1(R).

Note that under these conditions equation (3.1.28) has a pathwise solution. Let
Xt be any solution of (3.1.28) and the function F ∈ C2(R). Then for any fixed
T > 0

∫ T

0
|F (Xs)b(Xs)| ds <∞ a.s. Suppose that the process F ′(Xs)σ(Xs) ∈

D1,2(|H|) and a.s.∫ T

0

∫ T

s

|Ds(F ′(Xu)σ(Xu))| |u− s|2α−1
du ds <∞.

According to the Itô formula (2.7.3) and equality (2.4.2), it holds that

F (Xt) = F (X0) +
∫ t

0

F ′(Xs)b(Xs)ds +
∫ t

0

F ′(Xs)σ(Xs)dBH
s

= F (X0) +
∫ t

0

F ′(Xs)b(Xs)ds +
∫ t

0

F ′(Xs)σ(Xs)δBH
s

+ CH

∫ t

0

∫ t

s

Ds(F ′(Xu)σ(Xu)) |u− s|2α−1
du ds. (3.1.49)

By using this equality, we can prove the following result. Denote

εt
s := exp

{∫ t

s

b′(Xu)du +
∫ t

s

σ′(Xu)dBH
u

}
, 0 ≤ s < t ≤ T.

Theorem 3.1.17. Let the conditions of Theorem 3.1.10, condition (xiii) and
the following conditions hold:

(xiv) E
∫ T

0
|F ′(Xt)b(Xt)| dt <∞, the function f(s) := EF ′(Xs)b(Xs) is con-

tinuous on [0, T ];
(xv) F ′(Xs)σ(Xs) ∈ D1,2(|H|) and

E

∫ T

0

∫ T

s

|Ds(F ′(Xu)σ(Xu))| |u− s|2α−1
du ds <∞.
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Then the function ϕ(t) := EF (Xt) is differentiable in t and

ϕ′(t) = EF ′(Xt)b(Xt)

+ 2αHE

(∫ t

0

(F ′(Xs)σ′(Xs))′σ(Xs) |s− t|2α−1 (εs
0)

−1ds · εt
0

)
.

Proof. From the Itô formula (3.1.49) and conditions (xiv)–(xv) it follows that

ϕ(t) = EF (X0) +
∫ t

0

EF ′(Xs)b(Xs)ds

+ CH

∫ t

0

∫ t

s

EDs(F ′(Xu)σ(Xu)) |u− s|2α−1
du ds, CH = 2αH.

Note that the mathematical expectation of the divergence operator
E
∫ t

0
F ′(Xs)σ(Xs)δBH

s = 0. Therefore, under (xiv) and (xv) we can differ-
entiate ϕ and obtain that

ϕ′(t) = EF ′(Xt)b(Xt) + 2αH

∫ t

0

EDs(F ′(Xt)σ(Xt)) |t− s|2α−1
ds.

Further, from the chain rule, Theorem 3.1.14 and Remark 3.1.15
Ds(F ′(Xt)σ(Xt)) = (F ′(Xs)σ(Xs))′DsXt, the derivative DsXt exists and
satisfies linear differential equation (3.1.48), whence

DsXt = σ(Xs)εt
s1 {s ≤ t} .

Therefore

ϕ′(t) = EF ′(Xt)b(Xt)

+ 2αHE

(∫ t

0

(F ′(Xs)σ′(Xs))′σ(Xs) |s− t|2α−1 (εs
0)

−1ds · εt
0

)
.

	


3.1.5 Semilinear Stochastic Differential Equations Involving
Forward Integral w.r.t. fBm

León and Tudor in their paper (LT02) established the existence of a global
solution of a semilinear stochastic differential equation with forward integrals
(for the definition and properties of forward integral see Section 2.4). Let p > 1
and γ ∈ (0, 1). A process u ∈ D1,p(|H|) belongs to L1,p

γ if

‖u‖p
L
1,p
γ

:= E(‖u‖pL 1
γ

[0,T ]) + E(‖Du‖pL 1
γ

[0,T ]2) <∞. (3.1.50)

It follows from (AN02) that L1,p
γ ⊂ Dom(δH) for any 0 ≤ γ ≤ H.
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The next statement from (LT02) establishes the relationship between the
forward integral (understood in the sense of ucp-convergence) and the diver-
gence operator that we denote here as

∫ t

0
usδB

H
s (for P-convergence such a

statement was proved by (AN02), see (2.4.1)). Here something like condition
(3.1.50) is needed.

Theorem 3.1.18 ((LT02)). 1)Let {ut, t ∈ [0, T ]} be a stochastic process,
u ∈ L1,2

γ for some 1/2 < γ < H and the trace condition holds,∫ T

0

∫ t

0

|Dsur||r − s|2α−1dsdr <∞ a.s.

Then both the integrals,
∫ t

0
usdBH,−

s and
∫ t

0
usδB

H
s , exist for any t ∈ [0, T ]

and ∫ t

0

usdBH,−
s =

∫ t

0

usδB
H
s + 2αH

∫ t

0

∫ T

0

Dsur|r − s|2α−1dsdr.

2) Now consider the semilinear stochastic differential equation

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σsXsdBH,−
s , t ∈ [0, T ], (3.1.51)

where the coefficients b : Ω × [0, T ] × R → R and σ : Ω × [0, T ] → R are
measurable, X0 is random variable, b and σ satisfy the following assumptions:

(xvi) For all ω ∈ Ω, t ∈ [0, T ] and x, y ∈ R

|b(ω, t, x)− b(ω, t, y)| ≤ κ(ω)|x− y|,
|b(ω, t, 0)| ≤ κ(ω)

for some random variable κ(ω).
(xvii) σ is forward integrable and there is ε0 > 0 such that

limc→∞ sup0<ε<ε0
P
{∫ T

0
| ∫ r

0
σsε

−1(BH
(s+ε)∧T −BH

s )ds− ∫ r

0
σsdBH,−

s |
×|σrε

−1(BH
(r+ε)∧T −BH

r )|dr > c
}

= 0.

(xviii) for all c > 0

limε→0 P
{

sup0≤t≤T

∣∣∣∫ t

0
(
∫ r

0
σsε

−1(BH
(s+ε)∧T −BH

s )ds− ∫ r

0
σsdBH,−

s )

×σrε
−1(BH

(r+ε)∧T −BH
r )dr

∣∣∣ > c
}

= 0.

Also, denote by A the class of all processes X such that (σX) is forward
integrable and for any c > 0 and t ∈ [0, T ]

limε→0 limη→0 P
{∣∣∣∫ s

0
σsXs exp{− ∫ s

0
σrε

−1(BH
(r+ε)∧T −BH

r )dr}
×(η−1(BH

(s+η)∧T −BH
s )− ε−1(BH

(s+ε)∧T −BH
s ))ds

∣∣∣ > c
}

= 0.
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Theorem 3.1.19 ((LT02)). Under assumptions (xvi)–(xviii) equation
(3.1.51) has a unique solution in the class A that is given by the unique solu-
tion of the equation

Xt = exp
{∫ t

0

σsdBH,−
s

}
X0 +

∫ t

0

exp
{∫ t

u

σsdBH,−
s

}
b(u,Xu)du, t ∈ [0, T ].

Here are some classes of coefficients satisfying assumptions (xvii) and
(xviii).
Example 3.1.20 ((LT02)). Assume that the stochastic process {σt, t ∈ [0, T ]}
satisfies the following conditions:

(xix) σ ∈ L1,2
γ for some 1/2 < γ < H, and for some t0 ∈ [0, T ]

E
(∫ T

0

|Dsσt0 |
1
γ ds
)2γ

<∞;

(xx) there exists β such that for all s, t ∈ [0, T ]

E|σt − σs| ≤ c|s− t|β/2

and

E
(∫ T

0

|Du(σs − σt)| 1γ du
)2γ

≤ c|s− t|β ;

(xxi) E|σt|2 <∞ and E(
∫ T

0
|Drσt||t− r|2α−1dr)2 <∞, t ∈ [0, T ];

(xxii) there exists µ ∈ (0,H) such that
(a) limc→∞ sup0<ε<ε0

P{θε > c} = 0, where ε0 > 0 and

θε = ε−1−µ+H
(∫ T

0

(∫ r

0

∫ (s+εµ)∧T

(s−εµ)∨0

|Duσs||s− u|2α−1du ds
)2

dr
)1/2

,

(b) θε
P→ 0 as ε→ 0,

(c) β > 2(1−H + µ) and H − µ > 1/2 ∨ µ.

Then σ satisfies assumptions (xvi) and (xvii).
Example 3.1.21. Let {σt, t ∈ [0, T ]} be an absolutely continuous process of
the form

σt = σ0 =
∫ t

0

σ̇sds, t ∈ [0, T ],

with σ0, σ̇ ∈ L1,2
γ for some 1/2 < γ < H, and σ satisfies conditions (xxi) and

(xxii). Then σ satisfies assumptions (xvii) and (xviii).
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3.1.6 Existence and Uniqueness of Solutions of SDE with
Two-Parameter Fractional Brownian Field

In this subsection we use the notations introduced in Subsection 2.2.4. We con-
tinue with the estimates of the two-parameter generalized Lebesgue–Stieltjes
integrals (the first result in this direction was formulated in Lemma 2.2.16),
and use these estimates to obtain the conditions of existence and uniqueness of
solution of SDE involving the two-parameter fBm. The estimates of the norms
of integrals on the whole duplicate the corresponding estimates from Lemmas
3.1.1–3.1.2 and Theorem 3.1.3, but are much more technical. Therefore we
omit the proofs. For details, see (MisIl03).

Another approach to SDEs involving a two-parameter fractional Brownian
field was developed in (TT03).

Denote PT = [0, T1] × [0, T2] ⊂ R2
+ and introduce the following norm on

the space W β1, β2
0 (PT ):

||f ||β1,β2,λ1,λ2 := sup
t∈PT

e−λ1t1−λ2t2ϕβ1, β2
f (t).

Also, recall that ||f || = sup
t∈PT

|f(t)|.

Lemma 3.1.22. Let the function σ : PT × R → R and satisfy the following
conditions:

(xxiii) 1) σ ∈ C3(PT × R);
2) ∃ C > 0 such that |Dσ(t, x)| ≤ C, where the symbol D stands for

any differentiation that is possible according to item 1) and (t, x) ∈ PT×R;
3) |σ(r, 0)| ≤ C;

Also, let f ∈ W β1, β2
0 (PT ), g ∈ W 1−β1,1−β2

1 (PT ), for some 0 < βi < 1
2 ,

i = 1, 2.
Then the following statements hold:

1) ||σ(·, f(·))||0,β1, β2 ≤ Cβ1,β2,T (1 + ||f ||)(1 + ||f ||0,β1, β2)
2;

2) The generalized Lebesgue–Stieltjes integral

G
(σ)
t (f) :=

∫
PT

σ(s, fs)dgs

exists, belongs to the spaces C1−β1,1−β2 and W β1, β2
0 (PT ) and admits in

these spaces the following estimates:
(a) ||G(σ)(f)||1−β1, 1−β2 ≤ Cβ1,β2,T Λ1−β1,1−β2(g)(1 + ||f ||)

×(1 + ||f ||0,β1, β2)
2;

(b) ||G(σ)(f)||β1, β2, λ1, λ2 ≤ Cβ1,β2,T Λ1−β1,1−β2(g)λ−1+2β1
1 λ−1+2β2

2

×(1 + ||f ||2)
(
1 + ||f ||β1,β2,λ1, λ2 + ||f ||2

β1,β2,
λ1
2 ,

λ2
2

)
. (3.1.52)
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Here Cβ1,β2,T depends only on β1, β2 and T .

Remark 3.1.23. All the estimates hold for fs = gs = BH1H2
s with Hi ∈

(
1
2 , 1
)
,

i = 1, 2.
Remark 3.1.24. Let the function σ be bounded, f1(x) = f(x) + C0, where
C0 ∈ R be some constant. Then ||G(σ)(f1)||β1, β2, λ1, λ2 can be estimated by
the right-hand side of (3.1.52), i.e. this estimate does not depend on C0.

Lemma 3.1.25. Let the function σ satisfy the condition
(xxv) σ ∈ C3(PT )×C5(R), and conditions (xxiii), 2) and 3) hold. Also,

let f, h ∈W β1, β2
0 and g ∈W 1−β1,1−β2

1 for some 0 < βi < 1
2 and i = 1, 2.

Then

||G(σ)(f)−G(σ)(h)||β1, β2, λ1, λ2 ≤
Cβ1,β2,T Λ1−β1,1−β2(g)

λ1−2β1
1 λ1−2β2

2

(1 + ||f ||+ ||h||)2

×(1 + ||f ||0,β1, β2 + ||h||0,β1, β2)
2
(
||f − h||β1,β2,λ1, λ2 + ||f − h||2

β1,β2,
λ1
2 ,

λ2
2

)
,

λi ≥ 1, i = 1, 2.

Lemma 3.1.26. 1) Let the function b = b(t, x) : PT × R → R be of linear
growth: |b(t, x)| ≤ C(1 + |x|). Also, let f ∈ W β1,β2

0 (PT ). Then the integral
F

(b)
t (f) :=

∫
Pt

b(s, f(s))ds ∈ C1(PT ) for t ∈ PT and

‖F (b)(f)‖β1,β2,λ1,λ2 ≤
Cβ1,β2,T

λ1−β1
1 λ1−β2

2

(1 + ‖f‖β1,β2,λ1,λ2) .

2) If the function b is bounded, we have the same situation as described
in Remark 3.1.24.
3) If f, h ∈W β1,β2

0 (PT ) and ||f || ≤ N , ||h|| ≤ N , then

‖F (b)(f)− F (b)(h)‖β1,β2,λ1,λ2 ≤
Cβ1,β2,T,N

λ1−β1
1 λ1−β2

2

||f − h||β1,β2,λ1,λ2 ,

λi ≥ 1, i = 1, 2, where Cβ1,β2,T,N depends on β1, β2, T and N .

Consider now a stochastic differential equation on the plane,

Xt = X0 +
∫
Pt

b(s,Xs)ds +
∫
Pt

σ(s,Xs)dBH1,H2
s = X0 + F

(b)
t (X) + G

(σ)
t (X),

(3.1.53)
where t ∈ PT ⊂ R2

+, BH1,H2 is the fractional Brownian field with the Hurst
indices Hi ∈ ( 1

2 , 1), σ, b : PT × R → R are measurable bounded functions, σ
satisfies conditions (xxv), (xxiii), 2), and the function b(s, x) is continuous in
s and Lipschitz in x.

The two-parameter process Xt : PT × Ω → R will be called a solution of
(3.1.53) if it converts (3.1.53) into identity for a.a. ω ∈ Ω and any t ∈ PT , and
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the integral G
(σ)
t (X) exists for a.a. ω ∈ Ω as the two-parameter generalized

Lebesgue–Stieltjes integral. The proof of the main result, stated in the next
theorem, relies, in particular, on the boundedness of the coefficients and on
Remark 3.1.24.

Theorem 3.1.27. Under the conditions mentioned above, SDE (3.1.53) has
a unique solution in the class W β1,β2

0 (PT ) and for a.a. ω ∈ Ω,
X ∈ C1−β1,1−β2 for any 1−Hi < βi < 1

2 , i = 1, 2.

3.2 The Mixed SDE Involving Both the Wiener Process
and fBm

Real objects varying in time (climate and weather derivative, prices on the
stock market etc.) can have a component with a long memory (that is mod-
eled by fBm with H ∈ (1/2, 1)) and also a component without memory (that
is modeled by a Wiener process). Therefore, it is natural to consider stochas-
tic differential equations involving both Brownian and fractional Brownian
motions. We refer to such equations as mixed stochastic differential equa-
tions(and, correspondingly, to such models as mixed models).

The conditions of existence of a local solution of the mixed SDE were for-
mulated in Theorem 3.1.9. Of course, we would like to establish the conditions
of the existence of a global solution. We start with the semilinear SDE.

3.2.1 The Existence and Uniqueness of the Solution of the Mixed
Semilinear SDE

Consider an SDE of the form

Xt = X0 +
∫ t

0

b(s,Xs)ds + σ1

∫ t

0

XsdWs + σ2

∫ t

0

XsdBH
s , t ∈ [0, T ], (3.2.1)

where X0 is an F0-measurable random variable, σ1 and σ2 are real numbers,
{Wt,Ft, t ∈ [0, T ]} and {BH

t ,Ft, t ∈ [0, T ]} are a Wiener process and fBm,
correspondingly, on the same probability space (Ω,F ,Ft, t ∈ [0, T ]), without
any suppositions on their dependence.

Theorem 3.2.1. Let the function b satisfy Lipschitz and linear growth con-
ditions in x:

|b(t, x)− b(t, y)| ≤ L|x− y|, |b(t, x)| ≤ L(1 + |x|), L > 0, x, y ∈ R,

and is continuous in both variables, b ∈ C([0, T ]× R).
Then there exists the unique solution {Xt, t ∈ [0, T ]} of equation (3.2.1),

and the trajectories of X a.s. belong to C1/2−[0, T ].
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Proof. First, we use Theorem 3.1.9 and construct a local solution. In this
order we consider an auxiliary system of partial differential equations (3.1.27)
that now acquires the following form:{ ∂h

∂Zj
(Y, (Z1, Z2)) = σjh(Y, (Z1, Z2)), j = 1, 2,

h(Y0, 0, 0) = X0.

The solution of this system has the form

h(Y, (Z1, Z2)) = (Y − Y0 + X0) exp{σ1Z1 + σ2Z2}, (3.2.2)

where Z1(t) = Wt, Z2(t) = BH
t .

Now we try to construct the local solution Xt of equation (3.2.1) in the
form of Xt = h(Yt, (Z1(t), Z2(t))), where the trajectories of Y a.s. belong to
C1[0, T ], Y (0) = Y0 be some F0-measurable random variable. Applying the
Itô formula (2.7.2) from Remark 2.7.4, we obtain that

dXt =
2∑

i=1

∂h

∂Zi
(Yt, Z1(t), Z2(t))dZi(t)

+
∂h

∂Y
(Yt, Z1(t), Z2(t))Y ′

t dt +
1
2
σ2

1h(Yt, Z1(t), Z2(t))dt. (3.2.3)

Comparing (3.2.1) and (3.2.3), we get the ordinary differential equation for
the process Y :{

Y ′
t = (c1(t))−1b(t, (Yt − Y0 + X0)c1(t))− 1

2σ2
1(Yt − Y0 + X0) =: f(t, Y ),

Y (0) = Y0,
(3.2.4)

where c1(t) = exp{σ1Z1(t) + σ2Z2(t)}.
Further we fix ω ∈ Ω and put for this ω L1(T ) := max0≤t≤T (c1(t))−1

> 0, L2(T ) := max0≤t≤T c1(t) > 0, D1 = LL1(T ), D2 = L + 1
2σ2

1 . Then for
t ≤ a0 and |Yt − Y0| ≤ b0 with some a0, b0 > 0 we have that
M := max0≤t≤T |f(t, Yt)| ≤ L(L1(T ) + b0 + |X0|) + 1

2σ2
1(b0 + |X0|)

= D1 + D2(b0 + |X0|) =: M0, and by the Picard theorem, the solution of
equation (3.2.4) exists and is unique on the interval [0, l(0)], where l(0) :=
min(a0, b0/M) ≥ min(a0, b0/M0) =: t0; consequently, the solution exists on
[0, t0].

By using (3.2.2), the solution at the point t0 can be bounded by
|h(Yt0 , Z1(t0), Z2(t0))| ≤ |Yt0 − Y0 + X0|L2(T ) ≤ (b0 + |X0|)L2(T ). Evidently,
the trajectories of the solution belong to C1/2−[0, t0], since Y is continuously
differentiable (recall that b ∈ C([0, T ] × R)) and exp{σ1Z1(t) + σ2Z2(t)} =
exp{σ1Wt + σ2B

H
t } ∈ C1/2−[0, t0].

Now we want to extend the solution for [0, T ]. The value Xt0 will be the
new initial value X

(1)
0 , and

|X(1)
0 | ≤ (b0 + |X0|)L2(T ).
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Now, for |t − t0| ≤ a1, |Yt − Yt0 | ≤ b1, for some a1 and b1 > 0, the solution
of (3.2.4) exists on the interval [t0, t1], where t1 − t0 = min(a1, b1/M1) with
M1 = D1 + D2(b1 + (b0 + |X0|)L2(T )). In the nth step of this procedure
of the extension of the solution we obtain tn − tn−1 = min(an, bn/Mn) with
Mn = D1 + D2(bn +

∑n−1
k=0 bn−1−kLk+1

2 (T ) + |X0|Ln+1
2 (T )) and the solution

exists on [tn−1, tn].
Now we have two possibilities: if |X0| ≤ 1 we can put bn = 1, 0 ≤ k ≤ n

and bn/Mn = (D1 + D2(
∑n

k=0 Lk
2(T ) + |X0|Ln+1

2 (T )))−1

≥ (D1 + D2
Ln+2

2 (T )−1
L2(T )−1 )−1 =: Kn. If |X0| > 1 then we put bk = |X0|,

0 ≤ k ≤ n and in this case also bn/Mn ≥ Kn. For both the cases put an = Kn,

n ≥ 0 and tn − tn−1 = an, tn =
n∑

k=0

ak.

(a) Let L2(T ) ≤ 1. Then the series
∑
n≥0

an diverges, so, there exists only a

finite number of aforementioned steps and we obtain the existence of a solution
on the whole interval [0, T ].

(b) Let L2(T ) > 1. Then the series
∑
n≥0

an converges, possibly, its sum

S ≤ T and we obtain the existence of a solution on [0, S). Therefore, we have
established the existence of a finite solution on [0, S

2 ]. By the same method we
can extend it on [S

2 , S] with the same step S
2 , since the size of step does not

depend on the initial value X0. So, we can extend the solution with the step S
2

on the whole [0, T ]. The uniqueness of the solution follows from Theorem 3.1.9.
It follows from its construction (see (3.2.2) and (3.2.4)), that the trajectories
of solution belong to C1/2−[0, T ]. 	


3.2.2 The Existence and Uniqueness of the Solution of the Mixed
SDE for fBm with H ∈ (3/4, 1)

Now we consider a mixed SDE without any semilinear restrictions but only
for H ∈ (3/4, 1).

Existence and Uniqueness of Solution of Mixed SDE for fBm with
H ∈ (3/4, 1) and with Stabilizing Term

We follow here the approach of (MP07). Consider the following mixed SDE:

Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs

+
∫ t

0

c(s,Xs)dBH
s + ε

∫ t

0

c(s,Xs)dVs, t ∈ [0, T ], (3.2.5)

where a, b, c : [0, T ] × R → R are measurable functions, V,W are indepen-
dent Wiener processes, ε > 0 and BH is independent of W and V fractional
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Brownian motion with H ∈ (3/4, 1), X0 is independent of W,BH and V . The
integral ε

∫ t

0
c(s,Xs)dVs will play the role of the stabilizing term. It permits

us to establish the existence and uniqueness of the solution of (3.2.5), adapted
to the filtration

F ′
t, t ≥ 0, where F ′

t = σ{X0,Ws, (εVs + BH
s )|s ∈ [0, t]}. (3.2.6)

The results are valid also for the case when b = 0. If ε = 0 and b = 0, we obtain
equation (3.1.6) with g = BH , whose existence and uniqueness conditions were
formulated in Theorem 3.1.4. As we shall see, the stabilizing term permits us
to avoid the smoothness condition on c, for example, the existence and Hölder
properties of ∂xc(s, x). The main result that we use in the proof was stated
by Cheridito (Che01b). For the completeness of exposition we shall present it
here. Its proof originated in the papers (HH76) and (Hit68).

Proposition 3.2.2. 1. Let {Wt, t ∈ [0, T ]} be a Wiener process, {BH
t , t ∈

[0, T ]} be an independent fBm with H ∈ (3/4, 1), γ ∈ R \ {0},

MH,γ
t := Bt + γBH

t , t ∈ [0, T ],

with its own filtration {FMH,γ

t , t ∈ [0, T ]}.
Then {MH,γ

t , FMH,γ

t , t ∈ [0, T ]} is equivalent to Brownian motion; conse-
quently it is a semimartingale.

2. There exists a unique real-valued Volterra kernel h = hγ ∈ L2[0, T ]2

such that

Bt := MH,γ
t −

∫ t

0

∫ s

0

h(s, u)dMH,γ
u ds, t ∈ [0, T ]

is a Brownian motion. Furthermore,

MH,γ
t = Bt −

∫ t

0

∫ s

0

r(s, u)dBuds, t ∈ [0, T ], (3.2.7)

where r = rγ ∈ L2[0, T ]2.

As a consequence, the process NH,ε
t := BH

t +εVt = ε(Vt + 1
εBH

t ) = εM
H, 1

ε
t

can be represented as

NH,ε
t = εV ′

t +
∫ t

0

∫ s

0

εrε(s, u)dV ′
uds, (3.2.8)

where V ′ is some Wiener process with respect to filtration Ft := σ{εVs +
BH

s , s ∈ [0, t]} and, from the independence of V,W,BH and X0, it is a Wiener
process w.r.t. {F ′

t, t ∈ [0, T ]}. Using (3.2.26), we can rewrite the equation
(3.2.4) in the form
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Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs

+ ε

∫ t

0

c(s,Xs)dV ′
s +
∫ t

0

c(s,Xs)
∫ s

0

εrε(s, u)dV ′
uds. (3.2.9)

The drift coefficient of equation (3.2.9) equals a(s, x) + c(s, x, ω),
where c(s, x, ω) = c(s, x)

∫ s

0
εrε(s, u)dV ′

u. Evidently, the random variable∫ s

0
εrε(s, u)dV ′

u is not bounded, but we can consider the sequence of stopping
times τM = inf{t ∈ [0, T ] :

∫ t

0
(
∫ s

0
εrε(s, u)dV ′

u)2ds > M}∧T, and consider the
sequence of corresponding stopped equations. The existence and uniqueness
of the solutions of these equations can be established by standard methods
and then it is easy to pass to the limit when M →∞. Finally, we obtain the
following result (note that in this section we begin with the new numeration
of the conditions).

Theorem 3.2.3. Let the following conditions hold:

(i) The functions |a(s, 0)|+ |b(s, 0)|+ |c(s, 0)| ≤ L, s ∈ [0, T ] and
|a(s, x)|+ |b(s, x)|+ |c(s, x)| ≤ L(1 + |x|), for some constant L > 0;

(ii) there exists an increasing function l(s) : [0, T ]→ R such that ∀x, y ∈ R

|a(s, x)− a(s, y)|+ |b(s, x)− b(s, y)|+ |c(s, x)− c(s, y)| ≤ l(s)|x− y|;
(iii) the initial value X0 is square-integrable.

Then equation (3.2.9), and consequently equation (3.2.5), has on [0, T ] the
unique F ′

t-adapted solution Xt.

The Existence and Uniqueness of the Solution of the Mixed SDE
Involving fBm with H ∈ (3/4, 1) as the Limit Result for the
Equations with the Stabilizing Term

Now we want to pass to the limit as ε→ 0 in equation (3.2.5). Let
ε = 1/N,N ≥ 1, and consider the sequence of the equations with the
stabilizing term

XN
t = X0 +

∫ t

0

a(s,XN
s )dt +

∫ t

0

b(s,XN
s )dWt

+
∫ t

0

c(s,XN
s )dBH

s +
1
N

∫ t

0

c(s,XN
s )dVs, t ∈ [0, T ].

(3.2.10)

Let the coefficients a, b, c and X0 satisfy conditions (i), (ii) and (iii). Then,
according to Theorem 3.2.3, equation (3.2.10) has a unique strong solution, say
{XN

t , t ∈ [0, T ]}. Evidently, the solutions are adapted to different filtrations
FN

t = σ{X0,Ws, (N−1Vs + BH
s ), s ∈ [0, t]}. The aim of this section is to

establish the conditions of existence and uniqueness of the solution of the
limit mixed equation
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Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs +
∫ t

0

c(s,Xs)dBH
s , t ∈ [0, T ].

(3.2.11)
Let the coefficients of equation (3.2.11) satisfy assumption (iii) and the

following ones: there exist such constants B,L,M > 0, γ ∈ (1 − H, 1) and
κ ∈ (3/2−H, 1) that
(iv) all the coefficients are bounded:

|a(s, x)|+ |b(s, x)|+ |c(s, x)| ≤ L,∀s ∈ [0, T ],∀x ∈ R;

(v) all the coefficients are Lipschitz in x:

|a(t, x)− a(t, y)|+ |(b(t, x)− b(t, y)|+ |c(t, x)− c(t, y)| ≤ L|x− y|,

∀t ∈ [0, T ], ∀x, y ∈ R,
(vi) the x-derivative of the function c exists and is Hölder continuous in t:
∀s, t ∈ [0, T ], ∀x ∈ R

|c(s, x)− c(t, x)|+ |∂xc(s, x)− ∂xc(t, x)| ≤ L|s− t|γ .

(vii) the x-derivative of the function c is Hölder continuous in x:

|∂xc(t, x)− ∂xc(t, y)| ≤ L|x− y|κ,

for ∀t ∈ [0, T ], ∀x, y ∈ R .
Remark 3.2.4. Note that for H ∈ [3/4, 1) 3/2 − H > 1/H − 1, so condition
(vii) is more restrictive than the corresponding condition (ii) used in Theorem
3.1.4. In general, this last group of conditions is evidently more strong than
conditions (i)–(ii) of Theorem 3.2.3.

Now consider for β < (1/2 ∧ γ ∧ κ/2 ∧ (κ− 1
2 )) some “stochastic analog”

of the functional space of Besov type:

W β [0, T ] := {Y = Yt(ω)|(t, ω) ∈ [0, T ]×Ω, ||Y ||β <∞}

with the norm

‖Y ‖β := sup
t∈[0,T ]

(
E(Yt)2 + E

(∫ t

0

|Yt − Ys|
(t− s)1+β

ds

)2
)

,

and prove that the solution of SDE (3.2.10) belongs to this space for any
N > 1. We shall denote different constants as C if they do not depend on N
and it is unimportant to the stated results. First of all we prove the Hölder
continuity of the solution of equation (3.2.10), by using (1.17.1) and (1.17.2).

Theorem 3.2.5. For any δ ∈ (0, 1/2) the solution of equation (3.2.10) is
Hölder continuous with parameter 1/2− δ.
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Proof. Consider |XN
r −XN

z | for 0 < z < r < T :

|XN
r −XN

z | ≤
∣∣∣ ∫ r

z

a(u,Xu)du
∣∣∣+ ∣∣∣ ∫ r

z

b(u,Xu)dWu

∣∣∣+ 1
N

∣∣∣ ∫ r

z

c(u,Xu)dVu

∣∣∣
+
∣∣∣ ∫ r

z

c(u,Xu)dBH
u

∣∣∣ ≤ L(r − z) + Cξb
r,δ|r − z|1/2−δ +

C

N
ξc
r,δ|r − z|1/2−δ

+ Λ1−β(BH)
∫ r

z

|c(u,XN
u )|du

uβ

+ Λ1−β(BH)
∫ r

z

∫ u

z

|c(u,XN
u )− c(v,XN

v )|
(u− v)1+β

dv du

≤ C ′
r(ω)(r − z)1/2−δ + C ′

r(ω)
∫ r

z

∫ u

z

|XN
u −XN

v |
(u− v)1+β

dv du,

where
C ′

t(ω) := C(Λ1−β(BH) ∨ ξb
t,δ ∨ ξc

t,δ ∨ 1), (3.2.12)

ξb
t,δ and ξc

t,δ are defined by (1.17.2), C ′
t(ω) ≤ C ′

T (ω) and C ′
T (ω) has the mo-

ments of any order.
Therefore, for δ < 1/2− β we have that

φr,s :=
∫ r

s

|XN
r −XN

z |
(r − z)1+β

dz ≤ C ′
r(ω)
(∫ r

s

(r − z)−1/2−δ−βdz

+
∫ r

s

1
(r − z)1+β

∫ r

z

∫ u

z

|XN
u −XN

v |
(u− v)1+β

dvdudz
)

≤ C ′
r(ω)
(
(r − u)1/2−β−δ +

∫ r

s

(r − u)−βφu,sdu
)
.

From the modified Gronwall inequality (Lemma 7.6 (NR00)) it follows that

φr,s ≤ C ′
r(ω)(r − s)1/2−β−δ exp{C ′

r(ω)
1

1−β }.
Return to |XN

r −XN
z |:

|XN
r −XN

z | ≤ C ′
r(ω)(r − z)1/2−δ

+ C ′
r(ω) exp{C ′

r(ω)
1

1−β }
∫ r

z

(v − z)1/2−β−δdv ≤ C̃r(ω)(r − z)1/2−δ,

where C̃r(ω) = C ′
r(ω) exp{C ′

r(ω)
1

1−β }, and the theorem is proved for
0 < δ < 1/2− β, and consequently for 0 < δ < 1/2. 	


Introduce the random variable C̃(ω) := sup
0≤t≤T

C̃t(ω). It also has moments

of any order. Now we want to prove that the solution of (3.2.10) belongs to
the space {W β [0, T ], ‖ · ‖β} for all N > 1.
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Theorem 3.2.6. Under assumptions (iii)–(vi) the solution of equation
(3.2.10) belongs to the space W β [0, T ] of Besov type with norm ‖ · ‖β for
all N > 1 and any β < (1/2 ∧ γ ∧ κ/2 ∧ κ− 1

2 ).

Proof. In order to prove the statement of this theorem, we want to estimate

AN
1 (t) + AN

2 (t) := E(XN
t )2 + E

(∫ t

0

|XN
t −XN

s |
(t− s)1+β

ds

)2

.

First, for AN
1 (t) we have that

E(XN
t )2 ≤ 5E(X0)2 + 5E

(∫ t

0

a(s,XN
s )ds

)2

+ 5E
(∫ t

0

b(s,XN
s )dWs

)2

+ 5E(
∫ t

0

c(s,XN
s )dBH

s )2 + 5E(
1
N

∫ t

0

c(s,XN
s )dVs)2. (3.2.13)

Evidently, E
(∫ t

0
a(s,XN

s )ds
)2

≤ L2T 2,

E
(∫ t

0
b(s,XN

s )dWs

)2

≤ L2T, E
(

1
N

∫ t

0
c(s,XN

s )dVs

)2

≤ L2T
N2 ≤ L2T .

Further, for δ < 1/2− β we have that

E
(∫ t

0

c(s,XN
s )dBH

s

)2

≤ E
(
C

2
(ω)
(∫ t

0

c(s,XN
s )

sβ
ds

+
∫ t

0

∫ s

0

|c(s,XN
s )− c(u,XN

u )|
(s− u)1+β

du ds
)2)
≤ CE

(
C

2
(ω)
(

t

∫ t

0

L2

s2β
ds

+

(∫ t

0

∫ s

0

L(s− u)γ + LC̃(ω)(s− u)1/2−δ

(s− u)1+β
du ds

)2
⎞⎠⎞⎠

≤ C(EC
2
(ω)(L2T 2−2β + L2T 2(1−β+γ)) + L2E(C̃2(ω)C

2
(ω))T 3−2β−2δ)

with C(ω) = Λ1−β(BH). From all these estimates it follows that AN
1 (t) <∞.

Consider now AN
2 (t). We have that

AN
2 (t) ≤ 4E

(∫ t

0

| ∫ t

s
a(u,XN

u )du|
(t− s)1+β

ds

)2

+ 4E

(∫ t

0

| ∫ t

s
b(u,XN

u )dWu|
(t− s)1+β

ds

)2

+ 4N−2E

(∫ t

0

| ∫ t

s
c(u,XN

u )dVu|
(t− s)1+β

ds

)2

+ 4E

(∫ t

0

| ∫ t

s
c(u,XN

u )dBH
u |

(t− s)1+β
ds

)2

. (3.2.14)

Evidently,
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E

(∫ t

0

| ∫ t

s
a(u,Xu)du|

(t− s)1+β
ds

)2

≤ CL2t2−2β .

Now, let ρ ∈ (β, 1/2), then we have the estimate

E

(∫ t

0

| ∫ t

s
b(u,Xu)dWu|
(t− s)1+β

ds

)2

≤ Ct1−2ρ

∫ t

0

E| ∫ t

s
b(u,Xu)dWu|2

(t− s)2+2β−2ρ
ds

≤ Ct1−2ρ

∫ t

0

∫ t

s
b2(u,Xu)du

(t− s)2+2β−2ρ
ds ≤ CL2t1−2β , (3.2.15)

and similarly,

E

(∫ t

0

| ∫ t

s
c(u,Xu)dVu|
(t− s)1+β

ds

)2

≤ CL2t1−2β .

Now we estimate EN := E
(∫ t

0
| ∫ t

s
c(u,Xu)dBH

u |(t− s)−1−βds
)2

. Since

∣∣∣ ∫ t

s

c(u,Xu)dBH
u

∣∣∣ ≤ C(ω)
(∫ t

s

|c(u,Xu)|(u− s)−βdu

+
∫ t

s

∫ u

s

|c(u, xN
u )− c(r,XN

r )|(u− r)−1−βdr du
)
≤ C(ω)

×
(∫ t

s

|c(u,Xu)|(u−s)−βdu+
∫ t

s

∫ u

s

L(u− r)γ + LC̃(ω)(u− r)1/2−δ

(u− r)1+β
dr du

)
,

we have that for δ < 1/2− β EN can be bounded by

E

(
C(ω)

∫ t

0

L(t− s)1−β + L(t− s)1+γ−β + LC̃(ω)(t− s)3/2−δ−β

(t− s)1+β
ds

)2

≤ C(L2t2−4βEC
2
(ω) + L2t2+2γ−4βEC

2
(ω) + L2t3−2δ−4βEC

2
(ω)C̃2(ω)).

(3.2.16)

Therefore, AN
2 (t) satisfies the inequality

AN
2 (t) ≤ C(L2T 2−2β + L2T 1−2β + L2T 2−4βEC

2
(ω)

+ L2T 2+2γ−4βEC
2
(ω) + L2T 3−2δ−4βEC

2
(ω)C̃2(ω)) <∞. (3.2.17)

Finally, the statement of our theorem follows from inequalities (3.2.13)–
(3.2.17) with sufficiently small δ > 0. 	
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Introduce for any R > 1 the stopping time τR by

τR := inf{t : C ′
t(ω) ≥ R} ∧ T, (3.2.18)

where C ′
t(ω) is defined by (3.2.12). Evidently, for any ω ∈ Ω there exists R(ω)

such that τR = T for all R > R(ω).
Define the processes {XN

τR∧t, N ≥ 1, t ∈ [0, T ]} as the solutions of equation
(3.2.10) stopped at the moment τR, and prove that they are fundamental in
the norm ‖ · ‖β of the space W β [0, T ].

Theorem 3.2.7. Under assumptions (iii)–(vi) the sequence
{XN

t∧τR
, N ≥ 1, t ∈ [0, T ]} of solutions of equations (3.2.10) is fundamental in

the norm ‖ · ‖β for any β < (1/2 ∧ γ ∧ κ/2 ∧ κ− 1
2 ).

Proof. Consider

AN,M
1 (t) + AN,M

2 (t) := E(XN
t∧τR

−XM
t∧τR

)2

+ E

(∫ t

0

|XN
t∧τR

−XM
t∧τR

−XN
s∧τR

+ XM
s∧τR
|

(t− s)1+β
ds

)2

= E(XN
t∧τR

−XM
t∧τR

)2 + E

(∫ τR∧t

0

|XN
t∧τR

−XM
t∧τR

−XN
s + XM

s |
(t− s)1+β

ds

)2

.

First, for AN,M
1 (t) we have the estimate

AN,M
1 (t) ≤ 4E

(∫ τR∧t

0

(a(s,XN
s )− a(s,XM

s ))ds

)2

+ 4E
(∫ τR∧t

0

(b(s,XN
s )− b(s,XM

s ))dWs

)2

+ 4E
(∫ τR∧t

0

(c(s,XN
s )− c(s,XM

s ))dBH
s

)2

+ 4E
(∫ τR∧t

0

(
c(s,XN

s )
N

− c(s,XM
s )

M

)
dVs

)2

=: 4(I1 + I2 + I3 + I4).

Then I1 ≤ CTL2
∫ t

0
E(XN

s∧τR
−XM

s∧τR
)2ds, I2 ≤ CL2

∫ t

0
E(XN

s∧τR
−XM

s∧τR
)2ds,

I4 ≤ CL2T (N−2 + M−2). Now we are in a position to estimate I3:

I3 ≤ 2R2
(
E
(∫ τR∧t

0

|c(s,XN
s )− c(s,XM

s )|s−βds
)2

+ E
(∫ τR∧t

0

∫ s

0

|c(s,XN
s )− c(s,XM

s )− c(u,XN
u ) + c(u,XM

u )|

× (s− u)−1−βduds
)2)

= 2R2(I4 + I5).
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Further,

I4 ≤ CL2T 1−2βE

∫ τR∧t

0

(XN
s −XM

s )2ds = CL2T 1−2β

∫ t

0

AN,M
1 (s)ds.

By using Lemma 7.1 (NR00), we estimate I5 as

I5 ≤ 3E

(∫ τR∧t

0

∫ s

0

L|XN
s −XM

s −XN
u + XM

u |
(s− u)1+β

du ds

)2

+ 3E
(∫ τR∧t

0

∫ s

0

L2|XN
s −XM

s |(s− u)γ

(s− u)1+β
du ds

)2

+ 3E
(∫ τR∧t

0

∫ s

0

L|XN
s −XM

s |(|XN
s −XN

u |κ + |XM
s −XM

u |κ)
(s− u)1+β

du ds

)2

= 3(I6 + I7 + I8).

Here

I6 ≤ CTL2

∫ t

0

E

(∫ s∧τR

0

|XN
s∧τR

−XM
s∧τR

−XN
u + XM

u |
(s− u)1+β

du

)2

ds,

I7 ≤ CTL2

∫ t

0

s2(γ−β)E|XN
s∧τR

−XM
s∧τR
|2ds,

I8 ≤ E

(∫ τR∧t

0

∫ s

0

L|XN
s −XM

s |2R(s− u)κ(1/2−δ)

(s− u)1+β
du ds

)2

≤ CTL2R2

∫ t

0

sκ−2κδ−2βE|XN
s∧τR

−XM
s∧τR
|2ds,

where we choose δ in such a way that κ − 2κδ − 2β > 0. It is possible since
β < κ− 1/2 so κ− 2β > 1/2− β > 0. Finally,

I5 ≤ C

∫ t

0

(
AN,M

2 (s) + (s2(γ−β) + CR2sκ−2κδ−2β)AN,M
1 (s)

)
ds,

and

AN,M
1 (t) ≤ CR2

∫ t

0

AN,M
1 (s)ds + CR2

∫ t

0

AN,M
2 (s)ds

+ C(N−2 + M−2). (3.2.19)

Return to AN,M
2 (t). It admits the following estimate:
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AN,M
2 (t) ≤ C

⎛⎝E

(∫ τR∧t

0

∫ τR∧t

s
(a(u,XN

u )− a(u,XM
u ))du

(t− s)1+β
ds

)2

+ E

(∫ τR∧t

0

∫ τR∧t

s
(b(u,XN

u )− b(u,XM
u ))dWu

(t− s)1+β
ds

)2

+ E

(∫ τR∧t

0

∫ τR∧t

s
(c(u,XN

u )− c(u,XM
u ))dBH

u

(t− s)1+β
ds

)2

+ E

(∫ τR∧t

0

∫ τR∧t

s
( c(u,XN

u )
N − c(u,XM

u )
M )dVu

(t− s)1+β
ds

)2
⎞⎠

= C(I9 + I10 + I11 + I12).

Further, for β < ρ < 1/2

I9 ≤ CT 1−2ρE

∫ τR∧t

0

(t− s)
∫ τR∧t

0
L2|XN

u −XM
u |2du

(t− s)2+2β−2ρ
ds

≤ CT 1−2β

∫ t

0

E
(
XN

s∧τR
−XM

s∧τR

)2
ds ≤ CT 1−2β

∫ t

0

AN,M
1 (s)ds,

I10 ≤ CT 1−2ρ

∫ t

0

∫ t

s
E|XN

u∧τR
−XM

u∧τR
|2du

(t− s)2+2β−2ρ
ds

≤ CT 1−2ρ

∫ t

0

AN,M
1 (s)

(t− s)1+2β−2ρ
ds.

For I12 we have I12 ≤ CT 1−2β(N−2 + M−2). Now consider I11:

I11 ≤ CR2T 1−2ρ(I13 + I14),

where

I13 ≤ CE

∫ τR∧t

0

∫ τR∧t

s

(
XN

u∧τr
−XM

u∧τr

)2
du
∫ t

s
(u− s)−2βdu

(t− s)ν
ds

≤ C

∫ t

0

AN,M
1 (s)(t− s)−1+2ρ−4βds,
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I14 ≤ CE

∫ τR∧t

0

((∫ τR∧t

s

∫ u

s

L|XN
u −XM

u −XN
v + XM

v |
(u− v)1+β

dv du
)2

+
(∫ τR∧t

s

∫ u

s

L|XN
u −XM

u |(u− v)ρ−1−βdv du
)2

+
(∫ τR∧t

s

∫ u

s

L|XN
u −XM

u |
(
|XN

u −XN
v |κ + |XM

u −XM
v |κ
)

× (u− v)−1−βdv du
)2)

(t− s)−νds =: C(I15 + I16 + I17),

where ν = 2 + 2β − 2ρ, ρ > β. In turn,

I15 ≤ CT 2ρ−2β

∫ t

0

E
(∫ s∧τR

0

|XN
s∧τR

−XM
s∧τR

−XN
u + XM

u |
(s− u)1+β

du
)2

ds

= CT 2ρ−2β

∫ t

0

AN,M
2 (s)ds,

I16 ≤ C

∫ t

0

E
(∫ τR∧t

s
|XN

u −XM
u |(u− s)γ−βdu

)2

(t− s)ν
ds

≤ CT 2ρ+2γ−4β

∫ t

0

AN,M
1 (s)ds,

where β < γ, β < ρ. Furthermore,

I17 ≤ CR2E

∫ τR∧t

0

(∫ τR∧t

s

∫ u

s
|XN

u −XM
u |(u− v)κ(1/2−δ)−1−βdv du

)2

(t− s)ν
ds,

where we chose 0 < δ < 1/2− β/κ; note that β < κ− 1/2. Similarly to I16,

I17 ≤ CR2Tκ−2κδ+2ρ−4β

∫ t

0

AN,M
1 (s)ds,

where κ− 2κδ + 2ρ− 4β > 0 for sufficiently small δ since ρ > β and κ > 2α.
Therefore we have

I14 ≤ CR2

∫ t

0

(
AN,M

1 (s) + AN,M
2 (s)

)
ds.

Hence

I11 ≤ CR4

∫ t

0

(
AN,M

1 (s)
(t− s)1+2β−2ρ

+ AN,M
2 (s)

)
ds.

Finally,
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AN,M
2 (t) ≤ CR4

(∫ t

0

AN,M
1 (s)(t− s)−1−2β+2ρds +

∫ t

0

AN,M
2 (s)ds

)
+ C(N−2 + M−2). (3.2.20)

From (3.2.19) and (3.2.20) we obtain that the sum AN,M
1 (t)+AN,M

2 (t) admits
the same estimate as AN,M

2 (t), i.e.

AN,M
1 (t) + AN,M

2 (t) ≤ CR4

∫ t

0

(
AN,M

1 (s)(t− s)−1−2β+2ρ + AN,M
2 (s)

)
ds

+ C(N−2 + M−2);

taking into account that ρ > β and using the modified Gronwall lemma
(NR00), we obtain that

AN,M
1 (t) + AN,M

2 (t)

≤ CR4(N−2 + M−2) exp{t(CR4)1/(2ρ−2β)}, (3.2.21)

and we can put, for example, ρ := 1/4+β/2. When N,M → 0, we obtain that
the right-hand side of (3.2.21) tends to zero, whence the proof follows. 	

Theorem 3.2.8. The SDE (3.2.11) has a solution on the interval [0, T ], and
this solution is unique.

Proof. Since the space {W β [0, T ], ‖ · ‖β} is complete, from Theorem 3.2.6 we
can define

XτR∧t := lim
N→∞

XN
τR∧t,

where the limit is taken in space Wβ [0, T ] (in particular, we have that the
limit exists in L2(Ω× [0, T ])). Using similar estimates and Theorem 3.2.6, we
can prove that XτR∧t is the unique solution of the original equation (3.2.11)
on the interval [0, τR].

From the definition (3.2.18) of τR we have τR1 ≤ τR2 for R1 ≤ R2. So XτR1

and XτR2
coincide a.s. on the interval [0, τR1 ]. Where R → ∞ we obtain the

existence and uniqueness of the solution of SDE (3.2.11) on the whole interval
[0, T ]. 	


3.2.3 The Girsanov Theorem and the Measure Transformation for
the Mixed Semilinear SDE

Consider equation (3.2.1) and suppose that W is underlying Wiener process
for BH and that the coefficient b(t, x) satisfies the condition of Theorem 3.2.1
and can be presented as b(t, x) = e(t, x)x, where e ∈ Cb(R+ × R). Denote
ê(t, x) := e(t, x)t−α, α = H− 1

2 , H ∈ ( 1
2 , 1). Now we try to change the measure

P for another probability measure Q such that QT � PT , where PT := P |FT
,
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QT := Q|FT
, and such that the drift e(t,Xt)Xtdt will be annihilated under

QT . First, let some probability measure Q̃ satisfy the assumptions

dQ̃

dP

∣∣∣∣∣
FT

= exp

{∫ T

0

ϕsdWs − 1
2

∫ T

0

ϕ2
sds

}

and

E exp

{∫ T

0

ϕsdWs − 1
2

∫ T

0

ϕ2
sds

}
= 1 (3.2.22)

with E
∫ T

0
ϕ2

sds <∞.
Then from the Girsanov theorem the process Wt−

∫ t

0
ϕ2

sds =: Ŵt will be a
Wiener process under the measure Q̃T . Also, let the measure Q̄ be such that

dQ̄

dP

∣∣∣∣
FT

= exp
{

LT − 1
2
〈L〉T

}
,

and

E exp
{

LT − 1
2
〈L〉T

}
= 1, (3.2.23)

where Lt =
∫ t

0
sαδsdWs, MH

t =
∫ t

0
lH(t, s)dBH

s , Wt = α̂
∫ t

0
sαdMH

s ,∫ t

0
lH(t, s)ψsds = α̃

∫ t

0
δsds, t > 0 with E

∫ t

0
s2αδ2

sds < ∞,
∫ t

0
|δs| ds < ∞,

P -a.s., t > 0 (see Subsection 2.8.1). Then the process B̂H
t := BH

t −
∫ t

0
ψsds is

an fBm w.r.t. to measure Q̄
∣∣
FT

. Now we need in the equality Q̃
∣∣∣
FT

= Q̄
∣∣
FT

=

Q|FT
. Hence, in particular, Lt =

∫ t

0
ϕsdWs, whence ϕs = sαδs. Therefore we

want to find ϕ and ψ in such a way that common drift equals

σ1ϕt + σ2ψt = −e(t,Xt), t ∈ [0, T ]. (3.2.24)

Now we apply the Abel rearrangement to the relation∫ t

0

lH(t, s)ψsds = α̃

∫ t

0

δsds = α̃

∫ t

0

s−αϕsds :

C
(5)
H

∫ t

0

(t− u)α−1

∫ u

0

(u− s)−αs−αψsds du

= α̃

∫ t

0

(t− u)α−1

∫ u

0

s−αϕsds du,

or

B(α, 1− α)C(5)
H

∫ t

0

s−αψsds = α̃

∫ t

0

(t− u)α

α
u−αϕudu,

whence after differentiation
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(αC
(6)
H )−1t−αψt = α̃

∫ t

0

(t− u)α−1u−αϕudu. (3.2.25)

Substituting (3.2.25) into (3.2.24), we obtain that

σ1ϕt +σ2C
(9)
H tα

∫ t

0

(t−u)α−1u−αϕudu = −e(t,Xt), C
(9)
H = αC

(6)
H α̃. (3.2.26)

Denote θt := t−αϕt, then

σ1θt + σ2C
(9)
H

∫ t

0

(t− u)α−1θudu = −ê(t,Xt). (3.2.27)

Equation (3.2.27) is a Volterra equation with weak singularity, and its unique
solution has the form

θt = − ê(t,Xt)
σ1

− 1
σ1

∫ t

0

∞∑
n=1

ρn (t− s)nα−1

Γ (nα)
ê(s,Xs)ds,

where ρ = σ2C
(9)
H Γ (α). Now we must check conditions (3.2.22) and (3.2.23).

Evidently, it is sufficient to check Novikov’s condition: E exp
{

1
2

∫ T

0
ϕ2

t dt
}

<

∞ and E exp
{

1
2 〈L〉T

}
<∞. But ϕt = − e(t,Xt)

σ1

− 1
σ1

tα
∫ t

0

∑∞
n=1 ρn (t−s)nα−1

Γ (nα) ê(s,Xs)ds and is bounded since e is bounded. Fur-
ther, δs = α̃s−αϕs, and Novikov’s condition evidently holds for the function
L, too. So, we have proved the following result.

Theorem 3.2.9. Under our suppositions equation (3.2.1) under measure Q
obtains the differential form

dXt = σ1XtdŴt + σ2XtdB̂H
t , X(0) = X0,

and its solution has a form

Xt = X0 exp{σ1Ŵt + σ2B̂
H
t − 1/2σ2

1t}.

3.3 Stochastic Differential Equations with Fractional
White Noise

3.3.1 The Lipschitz and the Growth Conditions on the Negative
Norms of Coefficients

Now we return to Wick integration with respect to fBm (see Sections 1.5 and
2.3). Consider the SDE of the form
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Xt = X0 +
∫ t

0
b(s,Xs)ds +

m∑
j=1

∫ t

0
σj(s,Xs)♦ Ḃ

Hj
s ds,

t ∈ [0, T ],
(3.3.1)

where all Hj ∈ [1/2, 1) are different, ḂHj are the fractional noises. The equa-
tion, similar to (3.3.1), but with white noise was studied by V̊age (Vage96).
Note that the proof of the existence and uniqueness result in (Vage96) is in
fact based not on the structure of white noise, but on its inclusion into S∗,
and this fact holds for fractional noise also, see Lemma 1.5.3. According to
Theorem 1 (Vage96), the negative norm of the Wick products admits the fol-
lowing estimate:
‖F ♦G‖−r ≤ Cr,q‖F‖−r‖G‖−q for random variables F ∈ S−r, G ∈ S−q,
r < q − 1. According to Lemma 1.5.3, ḂHk

t ∈ S−q for any q > 7/3, in partic-
ular, ḂHk

t ∈ S−3 and, moreover, supt≥0 ‖ḂHk
t ‖−q ≤ Cq for q > 7/3 and some

Cq > 0.
Therefore, for any r > 0 and F ∈ S−r ‖F ♦ ḂHk

t ‖−r ≤ C‖F‖−r.
Suppose now that the coefficients b and σ and the initial value X0 of

equation (3.3.1) satisfy the conditions:
(i) for any 1 ≤ j ≤ m and some r > 0, b, σj : [0, T ]×S−r → S−r, X0 ∈ S−r,

the functions b(t,Xt) and σj(t,Xt), 1 ≤ j ≤ m are strongly measurable on
[0, T ] for any X ∈ C([0, T ], S−r);

(ii) for some r > 0

‖b(t, x)− b(t, y)‖−r +
m∑

j=1

‖σj(t, x)− σj(t, y)‖−r ≤ C‖x− y‖−r, 0 ≤ t ≤ T,

‖b(t, x)‖−r +
m∑

j=1

‖σj(t, x)‖−r ≤ c(1 + ‖x|−r), 0 ≤ t ≤ T.

It follows from strong measurability of σj and Theorem 6 (Vage96) that
σj(t, x)♦ Ḃ

Hj

t is also strongly measurable. Further, condition (ii) ensures the
existence of

∫ t

0
b(s,Xs)ds and

∫ t

0
σj(s, x)♦ Ḃ

Hj
s ds, 0 ≤ t ≤ T, that can be

considered as the Bochner integrals in S−r for X ∈ C([0, T ], S−r).
The next result can be proved with the help of the standard method of suc-

cessive approximations (similar proof for white noise is contained in (Vage96)).

Theorem 3.3.1. Under conditions (i) and (ii) equation (3.3.1) has on [0, T ]
the unique solution X ∈ C([0, T ], S−r).

3.3.2 Quasilinear SDE with Fractional Noise

As mentioned in (Vage96), simultaneous fulfilment of the Lipschitz and growth
conditions on the negative norms of coefficients is very restrictive. To avoid
this, we consider the quasilinear equation of the form

Xt = X0 +
∫ t

0

b(s,Xs, ω)ds +
m∑

j=1

∫ t

0

σj(s)Xs♦ ḂHj
s ds, (3.3.2)
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where Hj ∈ [1/2, 1), the coefficients and the initial value X0 satisfy the fol-
lowing conditions:

(iii) σj(s), 1 ≤ j ≤ m are nonrandom functions, σj ∈ L1/Hj
[0, T ];

(iv) the function b(s, x, ω) : [0, T ] × R × S′ → R is measurable in all the
arguments,

|b(s, x, ω)| ≤ C(1 + |x|), ω ∈ S′(R), s ∈ [0, T ], x ∈ R;
|b(s, x, ω)− b(s, y, ω)| ≤ C|x− y|, x, y ∈ R, ω ∈ S′(R), s ∈ [0, T ];

(v) X0 ∈ Lp(Ω) = Lp(S′(R)) for some p > 0.

Theorem 3.3.2. Under conditions (iii)–(v) the equation (3.3.2) has on [0, T ]
the unique solution X ∈ Lp′(Ω) for any p′ < p.

Proof. Let, for simplicity, m = 1,H1 = H ∈ (1/2, 1). Consider the differential
form of equation (3.3.2)

dXt

dt
= b(t,Xt) + σ(t)Xt♦ ḂH

t , X(0) = X0. (3.3.3)

Put σt(s) := σ(s)1[0,t](s), and suppose that Jσ(t) is the Wick exponent of the
form Jσ(t) = exp♦(− ∫ t

0
σ(s)dBH

s ), where the Wick exponent is defined as

exp♦ X :=
∞∑

n=0

X♦ n

n! . Then, according to formula (1.6.1),

Jσ(t) = exp♦
{
−
∫

R

(MH
− σt)(s)dWs

}
.

Denote also Zt := Jσ(t)♦Xt.
By the rules of stochastic differentiation (see, for example, (HOUZ96)),

dZt

dt
= Jσ(t)♦ dXt

dt
− σ(t)

dJσ(t)
dt

♦Xt♦ ḂH
t ,

and we obtain from (3.3.3) that

dZt

dt
=

dJσ(t)
dt

♦ b(t,Xt). (3.3.4)

Now we use the Gjessing lemma (Gje94), which states that

dJσ(t)
dt

♦ b(t,Xt, ω) =
dJσ(t)

dt
· b(t, T−(MH

− σt)Xt, ω + MH
− σt), (3.3.5)

where T is the shift operator, Tω0F (ω) = F (ω + ω0) for any ω0 ∈ S′(R).
Similarly, Zt = Jσ(t)·T−(MH

− σt)Xt, and from (3.3.4)–(3.3.5) we obtain that
Zt is the solution of the ordinary differential equation

dZt

dt
=

dJσ(t)
dt

· b(t, J−1
σ (t) · Zt, ω + MH

− σt), Z0 = X0, (3.3.6)
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for any ω ∈ S′(R). Equation (3.3.6) differs from the corresponding equation
(3.6.15) for the white noise (see the book (HOUZ96)) only with the function
MH

− σt instead of σt. However, it has the same structure, which means that
conditions (iii)–(v) ensure the existence and the uniqueness of the solution of
equation (3.3.2) for any ω ∈ S′(R) on the interval [0, T ]. Now we estimate the
moments of the solution Xt.

First, from conditions (iii)–(iv)

|Zt| ≤ |X0|+
∫ t

0
Jσ(s)|a(s, J−1

σ (s)Zs, ω − (MH
− σs))|ds

≤ |X0|+ C
∫ t

0
Jσ(s)(1 + J−1

σ (s)|Zs|)ds

≤ |X0|+ C
∫ t

0
Jσ(s)ds + C

∫ t

0
|Zs|ds,

and from the Gronwall inequality it follows that

|Zt| ≤ (|X0|+ C
∫ T

0
Jσ(s)ds) exp{CT},

E|Zt|p ≤ exp{pCT}2p(E|X0|p + CE
∫ T

0
|Jσ(s)|pds).

(3.3.7)

Since
E|Jσ(s)|p + E exp♦{−p

∫
R
(MH

− σt)(s)dWs}
= exp{p2‖MH

− σt‖2L2(R)},
and condition (iii) and inequality (1.9.2) ensure that (MH

− σt) ∈ L2(R),
therefore we obtain from (3.3.7) that E|Zt|p < ∞ for any p > 0. Further,
T−(MH

− σt)Xt = ZtJ
−1
σ (t), and E|J−1

σ (t)|q < ∞ for any q > 0, therefore
T−(MH

− σt)Xt ∈ Lp′(Ω) for any p′ < p. Since MH
− σt ∈ L2(R), we obtain from

Corollary 2.10.5 (HOUZ96) that X ∈ Lp′(Ω) for any p′ < p. 	


3.4 The Rate of Convergence of Euler Approximations
of Solutions of SDE Involving fBm

The numerical solution of stochastic differential equations driven by Wiener
process is essentially based on the method of time discretization and has a long
history. We refer to the monograph (KP92), which contains an almost com-
plete theory of the numerical solution of such SDEs with regular coefficients.
The paper (KP94) is devoted to the Euler approximations for SDEs driven by
semimartingales. Concerning the numerical solution of SDEs driven by fBm,
we mention first the paper (GA98), where the equations with the modified fBm
(which is a special semimartingale) are studied. The papers (Nou05; NN06)
study Euler approximations for the homogeneous one-dimensional SDEs in-
volving fBm and having bounded coefficients with bounded derivatives up to
third order. It is proved that the error of the approximation is a.s. equivalent
to δ2αξt, and the process ξt is given explicitly. These papers also discuss the
Crank–Nicholson and the Milstein schemes for SDEs driven by fBm. Here we
present the results on the rate of convergence of Euler approximations of solu-
tions for SDE with nonstationary coefficients. Of course, our approach differs
from those proposed in (Nou05),(NN06).
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3.4.1 Approximation of Pathwise Equations

Consider the multidimensional equation (3.1.12) with the coefficients satis-
fying the Rd-version of assumptions (i)–(v) of Subsection 3.1.1 with Hj =
H, 1 ≤ j ≤ m, b0(t) = L (see Remark 3.1.5 for additional notations). Under
these assumptions, this equation has the unique solution {Xt, t ∈ [0, T ]} and
for a.a. ω ∈ Ω the trajectories of the solution belong to CH−[0, T ].

Now, let t ∈ [0, T ], δ = T
N , τn = nT

N = nδ, n = 0, . . . , N . Consider the
discrete Euler approximations of the solution of equation (3.1.12),

Ỹ i,δ
τn+1

= Ỹ i,δ
τn

+ bi(τn, Ỹ δ
τn

)δ +
m∑

j=1

σji(τn, Ỹ δ
τn

)∆Bj,H
τn

, Ỹ i,δ
0 = Xi

0,

and the corresponding continuous interpolations

Y i,δ
t = Ỹ i,δ

τn
+bi(τn, Ỹ δ

τn
)(t−τn)+

m∑
j=1

σji(τn, Ỹ δ
τn

)(Bj,H
t −Bj,H

τn
), t ∈ [τn, τn+1].

(3.4.1)
The continuous interpolations satisfy the equation

Y i,δ
t = Xi

0 +
∫ t

0

bi(tu, Y δ
tu

)du +
m∑

j=1

∫ t

0

σji(tu, Y δ
tu

)dBj,H
u , (3.4.2)

where tu = τnu
, nu = max{n : τn ≤ u}.

For simplicity we denote the vector of solutions as Xt = (Xi
t)i=1,...,d, the

vector of the continuous approximations as Y δ
t = (Y δ,i

t )i=1,...,d.

Theorem 3.4.1. 1) Let the modification of conditions (i)–(v’) from Section
3.1 hold for the vector case, with γ > 1 −H, κ = µ = 1, LR = L, MR = M
and b0(t) = L.

Then for any ε > 0 and 0 < ρ < H there exist δ0 > 0 and Ωε,δ0,ρ ⊂ Ω such
that P (Ωε,δ0,ρ) > 1− ε and for any ω ∈ Ωε,δ0,ρ, δ < δ0 one has |Y δ

t | ≤ C(ω),
|Y δ

s − Y δ
r | ≤ C(ω)(ts − tr)H−ρ, 0 ≤ r < s ≤ T .

2) If, instead of (v) and (v’) we assume that b and σ are bounded functions,
then |Y δ

t | ≤ C(ω), |Y δ
s − Y δ

r | ≤ C(ω)(s− r)H−ρ, 0 ≤ r < s ≤ T .
In both the cases C(ω) does not depend on δ.

Proof. 1) We can always assume that δ ≤ 1. It follows immediately from (i)
and (iii), Section 3.1.1 and (3.4.2) that for any β ∈ (1−H, γ ∧ 1/2)
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|Y i,δ
t | ≤

∣∣Xi
0

∣∣+ ∫ t

0

∣∣bi(tu, Y δ
tu

)
∣∣ du +

m∑
j=1

∣∣∣∣∫ t

0

σji(tu, Y δ
tu

)dBj,H
u

∣∣∣∣
≤ ∣∣Xi

0

∣∣+ L

∫ t

0

(
1 +
∣∣Y δ

tu

∣∣ )du + GT

m∑
j=1

∫ t

0

∣∣σji(tu, Y δ
tu

)
∣∣u−βdu

+ GT

m∑
j=1

∫ t

0

∫ r

0

∣∣σji(tr, Y δ
tr

)− σji(tu, Y δ
tu

)
∣∣ (r − u)−β−1du dr

≤ ∣∣Xi
0

∣∣+ (mMGT
T 1−β

1− β
+ LT

)
+
(
mMGT + LT β

) ∫ t

0

∣∣Y δ
tu

∣∣u−βdu

+ MGT

∫ t

0

∫ tr

0

(
(tr − tu)γ +

∣∣Y δ
tr
− Y δ

u

∣∣+ ∣∣Y δ
u − Y δ

tu

∣∣ )
× (r − u)−β−1du dr,

(3.4.3)
where GT := Λ1−β(BH). (We use here the equality tr = tu for tr ≤ u < r.)

Denote C1(ω) := |X0| +
(
mMGT

T 1−α

1−α + LT
)
, C2(ω) :=

(
mMGT + LT β

)
.

Further, note that tr − tu ≤ r − u + δ. Also, it follows from representations
(3.4.1) and (3.4.2) that for any ρ ∈ (0,H)∣∣Y δ

u − Y δ
tu

∣∣ ≤ L
(
1 +
∣∣Y δ

tu

∣∣ )(u− tu) + M · C(ω, ρ)
(
1 +
∣∣Y δ

tu

∣∣ )(u− tu)H−ρ

≤ C3(ω)
(
1 +
∣∣Y δ

tu

∣∣ )(u− tu)H−ρ,

(3.4.4)
where the value C(ω, ρ) appears in the relation
|BH

t −BH
s | ≤ C(ω, ρ)|t− s|H−ρ, s, t ∈ [0, T ], C3(ω) = LT 1−H+ρ +M ·C(ω, ρ).

Moreover, for γ > β

Pt :=
∫ t

0

∫ tr

0

(tr − tu)γ(r − u)−β−1du dr

≤
∫ t

0

∫ tr

0

(
(r − u)γ + δγ

)
(r − u)−β−1du dr

≤ (γ − β)−1

∫ t

0

rγ−βdr + β−1δγ

∫ t

0

(r − tr)−βdr,

and for any k ≥ 0 and any power π > −1∫ τk+1

τk

(r − tr)πdr =
∫ τk+1

τk

(r − τk)πdr = C1δ
π+1 with C1 = (π + 1)−1,

whence∫ t

0

(r − tr)−βdr ≤
∫ T

0

(r − tr)−βdr = C1Nδ1−β = C1δ
−β . (3.4.5)

Therefore
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Pt ≤ C1T
γ−β+1 + β−1C1δ

γ−β ≤ C1T
γ−β+1 + β−1C1 =: C2. (3.4.6)

Estimate now

Qt :=
∫ t

0

∫ tr

0

∣∣Y δ
u − Y δ

tu

∣∣ (r − u)−β−1du dr,

using (3.4.4) and (3.4.5):

Qt ≤ C3(ω)
(
1 + Y δ,∗

t

) ∫ t

0

∫ tr

0

(u− tu)H−ρ(r − u)−β−1du dr

≤ C3(ω)
(
1 + Y δ,∗

t

)
δH−ρβ−1

∫ t

0

(r − tr)−βdr ≤ C4(ω)
(
1 + Y δ,∗

t

)
δH−β−ρ

(3.4.7)
with C4(ω) = C3(ω)β−1 · C1. Note that Y δ,∗

t := sup0≤s≤t

∣∣Y δ
s

∣∣ < ∞ for any
t ∈ [0, T ] a.s. Substituting (3.4.6) and (3.4.7) into (3.4.3), we obtain that∣∣Y δ

t

∣∣ ≤ C5(ω) + mC2(ω)
∫ t

0

∣∣Y δ
tu

∣∣u−βdu + mC4(ω)Y δ,∗
t δH−β−ρ

+ C6(ω)
∫ t

0

∫ tr

0

ϕr,udu dr,

(3.4.8)

where ϕr,u := |Y δ
tr
− Y δ

u |(r − u)−β−1, for 0 < v < tu < T, 0 < β < 1 with
C5(ω) = mC1(ω) + mGT C1 + mC1GT C3(ω) + C4(ω), C6(ω) = MGT . To
simplify the notations, in what follows we remove subscripts from C(ω) and
C, writing C(ω) for all constants depending on ω and C for all nonrandom
constants.

Summing up everything, we can write

Y δ,∗
t ≤ C(ω)

(
1 + Y δ,∗

t δH−β−ρ +
∫ t

0

∣∣Y δ
tu

∣∣u−βdu +
∫ t

0

∫ tr

0

ϕr,udu dr
)
.

(3.4.9)
In turn, we can estimate

∫ ts

0
ϕs,udu. First, similarly to the previous estimates,

∣∣Y δ
ts
− Y δ

u

∣∣ ≤ C(ω)
[ ∫ ts

u

(
1 +
∣∣Y δ

tv

∣∣ )dv +
∫ ts

u

(
1 +
∣∣Y δ

tv

∣∣)(v − u)−βdv

+
∫ ts

u

∫ tv

u

∣∣σ(tv, Y δ
tv

)− σ(tz, Y δ
tz

)
∣∣ (v − z)−β−1dz dv

]
≤ C(ω)

[
(ts − u)1−β +

∫ ts

u

∣∣Y δ
tv

∣∣ (v − u)−βdv

+ δγ

∫ ts

u

(v − tv)−βdv +
∫ ts

u

∫ tv

u

ϕv,zdz dv

+
∫ ts

u

∫ tv

u

∣∣Y δ
z − Y δ

tz

∣∣ (v − z)−β−1dz dv
]
;

(3.4.10)



3.4 The Rate of Convergence of Euler Approximations 247

multiplying by (s− u)−β−1 and integrating over [0, ts], we obtain that∫ s

0

ϕs,udu ≤ C(ω)
5∑

i=1

Qi
s, (3.4.11)

where

Q1
s :=

∫ s

0

(ts − u)1−β(s− u)−β−1du ≤
∫ ts

0

(s− u)−2βdu ≤ C; (3.4.12)

Q2
s :=

∫ ts

0

(s− u)−β−1

∫ ts

u

∣∣Y δ
tv

∣∣ (v − u)−βdv

=
∫ ts

0

∣∣Y δ
tv

∣∣ ∫ v

0

(v − u)−β(s− u)−β−1du dv ≤ C

∫ ts

0

∣∣Y δ
tv

∣∣ (s− v)−2βdv,

(3.4.13)
where C =

∫∞
0

(1 + y)−β−1y−βdy;

Q3
s := δγ

∫ ts

0

(s− u)−β−1

∫ ts

u

(v − tv)−βdv du

≤ β−1δγ

∫ ts

0

(s− v)−β(v − tv)−βdv.

(3.4.14)

Let ts = nδ for some 0 < n ≤ N . The last integral can be estimated as

I :=
∫ ts

0

(s− v)−β(v − tv)−βdv =
n−2∑
k=0

∫ (k+1)δ

kδ

+
∫ (n−1/2)δ

(n−1)δ

+
∫ nδ

(n−1/2)δ

,

where∫ (k+1)δ

kδ

≤ (s− (k + 1)δ)−β

∫ (k+1)δ

kδ

(v − τv)−βdv ≤ C(s− (k + 1)δ)−βδ1−β ,

and the last two integrals are bounded by Cδ1−2β . Therefore, I ≤ Cδ−β .
Further, using estimate (3.4.4), we can conclude that

Q4
s :=

∫ ts

0

(s− u)−β−1

∫ ts

u

∫ tv

u

ϕv,zdz dv du

≤
∫ ts

0

∫ tv

0

∫ z∧v

0

ϕv,z(s− u)−β−1du dz dv

≤ C

∫ ts

0

(s− v)−β

∫ tv

0

ϕv,zdz dv.

(3.4.15)

Finally, similarly to the previous estimates,
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Q5
s :=

∫ ts

0

(s− u)−β−1

∫ ts

u

∫ tv

u

∣∣Y δ
z − Y δ

tz

∣∣ (v − z)−β−1dz dv du

≤ C(ω)
∫ ts

0

(s− u)−β−1

∫ ts

u

∫ tv

u

(v − z)−β−1dz dv du · δH−ρ
(
1 +
∣∣∣Y δ,∗

ts

∣∣∣ )
≤ C(ω)

(
1 +
∣∣∣Y δ,∗

ts

∣∣∣ )δH−ρ−β .

(3.4.16)
Now, denote ψs := Y δ,∗

s +
∫ ts

0
ϕs,udu. Then it follows from (3.4.9) and (3.4.11)–

(3.4.16) that for any t ∈ [0, T ] (including t = kδ)

ψ(t) ≤ C(ω)
(
1 + Y δ,∗

t δH−β−ρ +
∫ t

0

(
(t− v)−2β + v−β

)
ψvdv

)
.

Let ε > 0 be fixed. Note that all constants C(ω) are finite a.s. and independent
of δ. Thus, we can choose δ0 > 0, ρ small enough such that H − β − ρ > 0,
and Ωε,δ0,ρ such that C(ω)δH−β−ρ

0 ≤ 1/2 on Ωε,δ0,ρ and P (Ωε,δ0,ρ) > 1 − ε.
Then for any ω ∈ Ωε,δ0,ρ

ψt ≤ C(ω) +
1
2
ψt + C(ω)

∫ t

0

(
(t− v)−2β + v−β

)
ψvdv,

whence

ψt ≤ C(ω)
(
1 + t2β

∫ t

0

(t− v)−2βv−2βψvdv
)
,

and it follows immediately from the last equation and (3.1.22)–(3.1.23) that
ψt ≤ C(ω) whence, in particular,

∣∣Y δ
t

∣∣ ≤ C(ω), t ∈ [0, T ]. Moreover, from
(3.4.10) with u = tr, r ≤ s, taking into account that∫ ts

tr
(v − tv)−βdv = (1− β)−1δ−β(ts − tr), we obtain the bound∣∣Y δ

ts
− Y δ

tr

∣∣ ≤ C(ω)
(
(ts − tr)1−β + δγ−β(ts − tr) + (ts − tr)

+ δH−ρ

∫ ts

tr

(v − tv)−βdv
)
≤ C(ω)(ts − tr)1−β ,

and statement 1) is proved.
2) Let |b(t, x)| ≤ b, |σ(t, x)| ≤ σ. Then it is very easy to see that estimate

(3.4.8) will take the form∣∣Y δ
t

∣∣ ≤ C(ω)
(
1 +
∫ t

0

∫ tr

0

ϕr,vdu dr
)
,

(3.4.10) will take the form∣∣Y δ
ts
− Y δ

u

∣∣ ≤ C(ω)
(
(ts − u)1−β + (δγ + δH−ρ)

∫ ts

u

(v − tv)−βdv

+
∫ ts

u

∫ tv

u

ϕv,zdz dv
)
,
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and instead of (3.4.11)–(3.4.16) we obtain∫ ts

0

ϕs,udu ≤ C(ω)
(
1 +
∫ ts

0

(s− v)−β

∫ tv

0

ϕv,zdz dv
)
,

whence the proof follows. 	

Remark 3.4.2. It is easy to see that we proved a little more than Theorem
3.2.3 states. Namely, we proved that the norm in Besov space, sup0≤s≤T ψs,
is bounded by C(ω) on Ωε,δ0,ρ, with C(ω) not depending on δ.

Now we establish the estimates of the rate of convergence of our approx-
imations (3.4.2) for the solution of equation (3.1.12) with pathwise integral
w.r.t. fBm. We establish even more, namely, the estimate of convergence rate
for the norm of the difference Xt − Y δ

t in some Besov space, similarly to the
result of Theorem 3.4.1. Denote

∆u,s(X,Y δ) :=
∣∣Xs − Y δ

s −Xu + Y δ
u

∣∣ .
Theorem 3.4.3. Let the modification of conditions (i)–(v’) from Section 3.1
hold for the vector case, with γ > 1−H, κ = µ = 1, LR = L, MR = M and
b0(t) = L, and suppose also that:

1)the coefficient b is Hölder continuous in time: |b(t, x)−b(s, x)| ≤ C|t−s|θ,
C > 0, 2α < θ ≤ 1, α = H − 1/2;

2) the exponent γ from condition (iii)(Section 3.1) satisfies γ > H.
Then:
1. For any ε > 0, β ∈ (1−H, 1/2) and any sufficiently small ρ > 0 there

exists δ0 > 0 and Ωε,δ0,ρ such that P (Ωε,δ0,ρ) > 1− ε and for any ω ∈ Ωε,δ0,ρ,
δ < δ0

Uδ := sup
0≤s≤T

( ∣∣Xs − Y δ
s

∣∣+ ∫ ts

0

∣∣∆u,s(X,Y δ)
∣∣ (s− u)−β−1du

)
≤ C(ω) · δ2α−ρ,

where C(ω) does not depend on δ and ε (but depends on ρ);
2. If, in addition, the coefficients b and σ are bounded, then for any

ρ ∈ (0, 2α) there exists C(ω) <∞ a.s. such that Uδ ≤ C(ω)δ2α−ρ, C(ω) does
not depend on δ.

Proof. 1. Denote Zδ
t := sup0≤s≤t

∣∣Xs − Y δ
s

∣∣. Then
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Zδ
t ≤ sup

0≤s≤t

∫ s

0

|b(u,Xu)− b(tu, Y δ
tu

)|du

+ sup
0≤s≤t

m∑
i,j=1

∣∣∣ ∫ s

0

(σji(u,Xu)− σji(tu, Y δ
tu

))dBj,H
u

∣∣∣
≤
∫ t

0

|b(u,Xu)− b(u, Y δ
u )|du +

∫ t

0

|b(u, Y δ
u )− b(tu, Y δ

u )|du

+
∫ t

0

|b(tu, Y δ
u )− b(tu, Y δ

tu
)|du

+ sup
0≤s≤t

m∑
i,j=1

∣∣∣ ∫ s

0

(σji(u,Xu)− σji(u, Y δ
u ))dBj,H

u

∣∣∣
+ sup

0≤s≤t

m∑
i,j=1

∣∣∣ ∫ s

0

(σji(u, Y δ
u )− σji(tu, Y δ

u ))dBj,H
u

∣∣∣
+ sup

0≤s≤t

m∑
i,j=1

∣∣∣ ∫ s

0

(σji(tu, Y δ
u )− σji(tu, Y δ

tu
))dBj,H

u

∣∣∣ =:
6∑

k=1

Ik.

(3.4.17)

Now we estimate separately all these terms. Evidently,

I1 ≤ L

∫ t

0

Zδ
udu. (3.4.18)

Condition 1) implies that for δ < 1

I2 ≤ C

∫ t

0

|u− tu|θ du ≤ Cδθ ≤ Cδ2α. (3.4.19)

It follows from Theorem 3.4.1 that for any ε > 0 and any ρ ∈ (0,H) there
exists δ0 > 0 and Ωε,δ0,ρ ⊂ Ω such that P (Ωε,δ0,ρ) > 1 − ε and C(ω)
independent of ε and δ such that for for any ω ∈ Ωε,δ0,ρ it holds that∣∣Y δ

t − Y δ
s

∣∣ ≤ C(ω) |t− s|H−ρ. In what follows we assume that δ < δ0 < 1.
Therefore

I3 ≤ L · C(ω)δH−ρ · t ≤ C(ω)δH−ρ, ω ∈ Ωε,δ0,ρ. (3.4.20)

Now we go on with I4. For 1−H < β < 1/2

I4 ≤ C(ω)
m∑

i,j=1

[ ∫ t

0

∣∣σji(u,Xu)− σji(u, Y δ
tu

)
∣∣u−βdu

+
∫ t

0

∫ r

0

∣∣σji(r,Xr)− σji(u,Xu)− σji(r, Y δ
r ) + σji(u, Y δ

u )
∣∣

× (r − u)−β−1du dr

]
=: I7 + I8.

(3.4.21)
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Evidently,

I7 ≤ C(ω)
∫ t

0

Zδ
uu−βdu. (3.4.22)

According to (3.1.1), under conditions (i)–(iii)

|σ(t1, x1)− σ(t2, x2)− σ(t1, x3) + σ(t2, x4)| ≤M |x1 − x2 − x3 + x4|
+ M |x1 − x3|

(
|t2 − t1|γ + |x1 − x2|κ + |x3 − x4|κ

)
.

(3.4.23)
Therefore, I8 ≤

∑12
k=9 Ik, where

I9 = C(ω)
∫ t

0

∫ r

0

∣∣Xr − Y δ
r

∣∣ (r − u)γ−β−1du dr,

I10 = C(ω)
∫ t

0

∫ r

0

∣∣Xr − Y δ
r

∣∣ |Xr −Xu|κ (r − u)−β−1du dr,

I11 = C(ω)
∫ t

0

∫ r

0

∣∣Xr − Y δ
r

∣∣ ∣∣Y δ
r − Y δ

u

∣∣κ (r − u)−β−1du dr,

I12 = C(ω)
∫ t

0

∫ r

0

∆u,r(X,Y δ)(r − u)−β−1du dr.

Taking into account that β > H > α, we obtain that

I9 ≤ C(ω)
∫ t

0

Zδ
udu (3.4.24)

It follows from Theorem 3.1.4 that under assumptions (i)–(v) for any
0 < ρ < H there exists a constant C(ω) such that

sup
0≤t≤T

|Xt| ≤ C(ω), sup
0≤s≤t≤T

|Xt −Xs| ≤ C(ω) |t− s|H−ρ
. (3.4.25)

Moreover, we can choose ρ > 0 and β > 1 −H such that κ(H − ρ) > β and
H − ρ > 2β, because κH > 1−H. In this case

I10 ≤ C(ω)
∫ t

0

Zδ
r

∫ r

0

(r − u)κ(H−ρ)−β−1du dr ≤ C(ω)
∫ T

0

Zδ
rdr. (3.4.26)

Evidently, on the corresponding set Ωε,δ0,ρ the same estimate holds for I11.
Now estimate I5.

I5 ≤ C(ω)
∫ t

0

∣∣σ(u, Y δ
u )− σ(tu, Y δ

u )
∣∣u−βdu

+ C(ω)
∫ t

0

∫ r

0

∣∣σ(r, Y δ
r )− σ(tr, Y δ

r )− σ(u, Y δ
u ) + σ(tu, Y δ

u )
∣∣

× (r − u)−β−1du dr =: I13 + I14.
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Obviously,
I13 ≤ C(ω)δγ , (3.4.27)

I14 ≤ C(ω)
(∫ t

0

∫ tr

0

+
∫ t

0

∫ r

tr

)
≤ C(ω)

(∫ t

0

∫ tr

0

δγ(r − u)−β−1du dr

+
∫ t

0

∫ r

tr

(
(r−u)γ +(r−u)H−ρ

)
(r−u)−β−1du dr

)
≤ C(ω)(δγ−β + δH−ρ−β).

(3.4.28)
Similarly,

I6 ≤ C(ω)
∫ t

0

∣∣σ(tu, Y δ
u )− σ(tu, Y δ

tu
)
∣∣u−βdu

+ C(ω)
∫ t

0

∫ r

0

∣∣σ(tr, Y δ
r )− σ(tr, Y δ

tr
)− σ(tu, Y δ

u ) + σ(tu, Y δ
tu

)
∣∣

× (r − u)−β−1du dr =: I15 + I16.

(3.4.29)

Here

I15 ≤ C(ω)
∫ t

0

δH−ρu−βdu ≤ C(ω)δH−ρ, (3.4.30)

I16 ≤ C(ω)
(∫ t

0

∫ tr

0

+
∫ t

0

∫ r

tr

)
≤ C(ω)

(
δH−ρ

∫ t

0

∫ tr

0

(r − u)−β−1du dr

+
∫ t

0

∫ r

tr

(r − u)H−ρ−β−1du dr
)
≤ C(ω)δH−ρ−β .

(3.4.31)
Substituting (3.4.18)–(3.4.31) into (3.4.17), we obtain that on Ωε,δ0,ρ

Zδ
t ≤ C(ω)

(∫ t

0

Zδ
r r−βdr + δH−ρ−β + δH−ρ +

∫ t

0

θrdr
)
, (3.4.32)

where θr =
∫ r

0
∆r,u(X,Y δ)(r − u)−β−1du. Recall that H − ρ > 2α, therefore

Zδ
t ≤ C(ω)

(∫ t

0

(
Zδ

r r−α + θr

)
dr + δ2α−ρ

)
.

Now we estimate θt. Evidently, for t > u

∆t,u(X,Y δ) ≤
∫ t

u

∣∣b(s,Xs)− b(ts, Y δ
ts

)
∣∣ ds

+
m∑

i,j=1

∣∣∣∣∫ t

u

(
σji(s,Xs)− σji(ts, Y δ

ts
)
)
dBj,H

s

∣∣∣∣ .
Therefore we obtain that θt ≤

∑9
k=1 Jk, where
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J1 =
∫ t

0

∫ t

u

∣∣b(s,Xs)− b(s, Y δ
s )
∣∣ (t− u)−β−1ds du,

J2 =
∫ t

0

∫ t

u

∣∣b(s, Y δ
s )− b(ts, Y δ

s )
∣∣ (t− u)−β−1ds du,

J3 =
∫ t

0

∫ t

u

∣∣b(ts, Y δ
s )− b(ts, Y δ

ts
)
∣∣ (t− u)−β−1ds du,

J4 = C(ω)
∫ t

0

∫ t

u

∣∣σ(s,Xs)− σ(s, Y δ
s )
∣∣ (s− u)−β(t− u)−β−1ds du,

J5 = C(ω)
∫ t

0

∫ t

u

∣∣σ(s, Y δ
s )− σ(ts, Y δ

s )
∣∣ (s− u)−β(t− u)−β−1ds du,

J6 = C(ω)
∫ t

0

∫ t

u

∣∣σ(ts, Y δ
s )− σ(ts, Y δ

ts
)
∣∣ (s− u)−β(t− u)−β−1ds du,

J7 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∣∣σ(r,Xr)− σ(r, Y δ
r )− σ(v,Xv) + σ(v, Y δ

v )
∣∣

× (r − v)−β−1(t− u)−β−1dv dr du,

J8 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∣∣σ(r, Y δ
r )− σ(tr, Y δ

r )− σ(v, Y δ
v ) + σ(tv, Y δ

v )
∣∣

× (r − v)−β−1(t− u)−β−1dv dr du,

J9 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∣∣σ(tr, Y δ
r )− σ(tr, Y δ

tr
)− σ(tv, Y δ

v ) + σ(tv, Y δ
tv

)
∣∣

× (r − v)−β−1(t− u)−β−1dv dr du.

It is clear that J1 ≤ C
∫ t

0
Zδ

s

∫ s

0
(t− u)−β−1du ds, J2 ≤ Cδθ,

J3 ≤ C(ω)δH−ρ. Further,

J4 ≤ C

∫ t

0

Zδ
s

∫ s

0

(s− u)−β(t− u)−β−1du ds.

The inner integral
∫ s

0
(s−u)−β(t−u)−β−1du ≤ (t−s)−2β

∫∞
0

(1+y)−β−1y−βdy.
Therefore
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J4 ≤ C

∫ t

0

(t− s)−2βZδ
sds.

Similarly to J2, J5 ≤ C(ω)δγ , and similarly to J3, J6 ≤ C(ω)δH−ρ. Estimating
J7, J8 and J9 is, of course, a bit more complicated, but not dramatically.
Obviously, J8 ≤ C(ω)δγ

∫ t

0

∫ t

u

∫ r

u
(r − v)−β−1(t− u)−β−1du

= C(ω)δγ
∫ t

0
(t − u)−2βdv dr du ≤ C(ω)δγ ; similarly J9 ≤ C(ω)δH−ρ. Now

we apply to J7 inequality (3.4.23) and obtain the following estimate of the
integrand:∣∣σ(r,Xr)− σ(r, Y δ

r )− σ(v,Xv) + σ(v, Y δ
v )
∣∣ ≤M

[
∆r,v(X,Y δ)

+
∣∣Xr − Y δ

r

∣∣ (r − v)γ +
∣∣Xr − Y δ

r

∣∣ |Xr −Xv|κ +
∣∣Xr − Y δ

r

∣∣ ∣∣Y δ
r − Y δ

v

∣∣κ ].
(3.4.33)

According to this, we write J7 ≤
∑13

k=10 Jk, where, in turn,

J10 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∆r,v(X,Y δ)(r − v)−β−1(t− u)−β−1dv dr du

= C(ω)
∫ t

0

∫ r

0

∫ v

0

(t− u)−β−1∆r,v(X,Y δ)(r − v)−β−1dv dr du

≤ C(ω)
∫ t

0

(t− r)−βθrdr;

J11 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∣∣Xr − Y δ
r

∣∣ (r − v)γ−β−1dv dr(t− u)−β−1du

≤ C(ω)
∫ t

0

Zδ
r

∫ r

0

(t− u)−β−1
(∫ r

u

(r − v)γ−β−1dv
)
du dr

≤ C(ω)
∫ t

0

(t− r)−βZδ
rdr,

J12 = C(ω)
∫ t

0

∫ t

u

∫ r

u

∣∣Xr − Y δ
r

∣∣ |Xr −Xv|κ (r − v)−β−1dv dr(t− u)−β−1du

≤ C(ω)
∫ t

0

∫ r

0

∫ r

u

Zδ
r (r − v)κ(H−ρ)−β−1(t− u)−β−1dv dr du

≤ C(ω)
∫ t

0

Zδ
r (t− r)−βdr,

and J13 ≤ C(ω)
∫ t

0
Zδ

r (t−r)−βdr is obtained the same way. Summing up these
estimates, we obtain that J7 ≤ C(ω)

∫ t

0
(t− r)−β

(
Zδ

r + θr

)
dr, whence

θt ≤ C(ω)
(∫ t

0

(t− r)−2β
(
Zδ

r + θr

)
dr + δH−ρ + δθ

)
. (3.4.34)
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Coupling together (3.4.32) and (3.4.34), and taking into account that
H − ρ > 2α, θ > 2α, we obtain

Zδ
t + θt ≤ C(ω)

(
δ2α +

∫ t

0

(
(t− r)−2β + r−β

)(
Zδ

r + θr

)
dr
)

≤ C(ω)
(
δ2α + t2β

∫ t

0

(t− r)−2βr−2β
(
Zδ

r + θr

)
dr
)
.

(3.4.35)

The proof now follows immediately from (3.4.35) and (3.1.22)–(3.1.23).
Statement 2 is obvious. 	


3.4.2 Approximation of Quasilinear Skorohod-type Equations

Now we proceed with the problem of the numerical solution of Skorohod-
type equations driven by fractional white noise. From now on, we as-
sume that our probability space is the white noise space, i.e. (Ω,F , P ) =
(S′(R),B(S′(R)), µ), the symbol ♦ stands for the Wick product, Wt =
〈1[0,t], ω〉 is the standard Brownian motion, Ẇ is the white noise. (See also
Sections 1.4, 1.5, 2.3 and Subsection 3.3.2.)

Consider the quasilinear Skorohod-type equation driven by fractional
white noise that is the one-dimensional analog of equation (3.3.2):

Xt = X0 +
∫ t

0

b(s,Xs, ω) ds +
∫ t

0

σ(s)Xs♦ ḂH
s ds, (3.4.36)

with nonrandom initial condition X0. Suppose that the coefficients b and σ
satisfy conditions (iii)–(iv) of Theorem 3.3.2 (in this subsection we always
refer to them as to conditions (iii)–(iv)), and

(vi) “Smoothness” of b w.r.t. ω: for any t ∈ [0, T ] and for h ∈ L1(R)

|b(t, x, ω + h)− b(t, x, ω)| ≤ C(1 + |x|)
∫

R

|h(s)| ds.

(vii) Hölder continuity of b w.r.t. t or order H with constant that grows
linearly in x:

|b(t, x, ω)− b(s, x, ω)| ≤ C(1 + |x|) |t− s|H ;

(viii) Hölder continuity of σ w.r.t. t or order H:

|σ(t)− σ(s)| ≤ C |t− s|H .

Remark 3.4.4. Condition (vii) holds if, for example, the coefficient b has the
stochastic derivative growing at most linearly in x. It is obviously true if b is
nonrandom and Hölder of order H.
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Consider the fractional Wick exponent

Jσ(t) = exp�
{
−
∫

R

MH
− σt(s)dWs

}
= exp

{
−
∫

R

MH
− σt(s)dWs − 1

2
‖σt‖2|RH |,1

}
It easily follows from Theorem 3.3.2 that for nonrandom X0 under conditions
(iii)–(iv) the equation (3.4.36) has a unique solution that belongs to all Lp(Ω)
and can be represented in the form

Zt = Jσ(t)♦Xt, or Xt = J−σ(t)♦Zt,

where the process Zt solves (ordinary) differential equation

Zt = X0 +
∫ t

0

Jσ(s)b(s, J−1
σ (s)Zs, ω + MH

− σs) ds. (3.4.37)

This gives the following idea of construction of time-discrete approximations of
the solution of (3.4.36). Take the uniform partition {τn = nδ, n = 1, . . . , N}
of [0, T ] and define first the approximations of Z in a recursive way:

Z̃0 = X0,

Z̃τn+1 = Z̃τn
+ J̃(τn)b(τn, J̃−1(τn)Z̃τn

, ω + Mσ̃n)δ,
(3.4.38)

where

J̃(t) := exp
{
−
∫ t

0

σ̃(s)dBH
s −

1
2

∥∥σ̃1[0,t]

∥∥2
|RH |,1

}
,

σ̃(s) := σ(ts), σ̃n := σ̃1[0,τn],M := MH
− .

Note that both ‖σ̃n‖|RH |,1 and Mσ̃n are easily computable as finite sums of
elementary integrals. Further, we interpolate continuously by

Z̃t = X0 +
∫ t

0

J̃(ts)b(ts, J̃−1(ts)Z̃ts
, ω + Mσ̃ns

) ds, (3.4.39)

where ns = max{n : τn ≤ s}, and set

X̃t = T−M(σ̃1[0,t])J̃
−1(t)Z̃t, (3.4.40)

where for ω0 ∈ S′(R) Tω0 is the shift operator, Tω0F (ω) = F (ω + ω0).

Lemma 3.4.5. Under the assumption (vi), the following estimate is true:∣∣eα1b(t, e−α1x, ω)− eα2b(t, e−α2x, ω)
∣∣ ≤ C(1 + eα1 + eα2 + |x|) |α1 − α2| .
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Proof. Write ∣∣eα1b(t, e−α1x, ω)− eα2b(t, e−α2x, ω)
∣∣

≤ ∣∣eα1b(t, e−α1x, ω)− eα1b(t, e−α2x, ω)
∣∣

+
∣∣eα1b(t, e−α2x, ω)− eα2b(t, e−α2x, ω)

∣∣
and apply (vi). 	

Lemma 3.4.6. Let ξ1 and ξ2 be jointly Gaussian variables. Then for q ≥ 1

E
[ ∣∣eξ1 − eξ2

∣∣2q
]
≤ C(L, q)

(
E
[
(ξ1 − ξ2)2

])q
,

where L = max
{
E
[
ξ2
1

]
,E
[
ξ2
2

]}
.

Proof. By the Lagrange theorem, Cauchy–Schwartz inequality and Gaussian
property,

E
[ ∣∣eξ1 − eξ2

∣∣2q
]
≤
(
E
[
e4qξ1 + e4qξ2

]
E
[
|ξ1 − ξ2|4q

])1/2

≤ C(L)C(q)
(
E
[
(ξ1 − ξ2)2

])q
,

as required. 	

Our first result is about convergence of Z̃ to Z.

Theorem 3.4.7. Under conditions (iii)–(iv) and (vi)–(vii) for any p ≥ 1 the
following estimate holds:

E

[ ∣∣∣Zt − Z̃t

∣∣∣2p
]
≤ C(p)δ2pH . (3.4.41)

Proof. Firstly, we recall that Zt belongs to all Lq(Ω) and E [ |Zt|q ] ≤
C(q). Therefore equation (3.4.37) together with condition (vii) gives
E [ |Zt − Zs|q ] ≤ C(q) |t− s|q. Equation (3.4.38) and conditions (iii)–(iv) al-
low us to write∣∣∣Z̃τn+1

∣∣∣ ≤ (1 + Cδ)
∣∣∣Z̃τn

∣∣∣+ CδJ̃(τn) ≤ eCδ
∣∣∣Z̃τn

∣∣∣+ CδJ̃(τn).

This gives an estimate
∣∣∣Z̃τn

∣∣∣ ≤ C
∑N−1

k=0 J̃(τk)δ. Then for any q ≥ 1 by the

Jensen inequality,
∣∣∣Z̃τn

∣∣∣q ≤ C(q)
∑N−1

k=0 J̃q(τk)δ. Taking expectations, we get

E
[ ∣∣∣Z̃τn

∣∣∣q ] ≤ C(q)
N−1∑
k=0

E
[
J̃q(τk)

]
δ.

Using that each J̃ is exponent of Gaussian variable and σ is bounded on [0, T ],
we obtain



258 3 Stochastic Differential Equations Involving Fractional Brownian Motion

E
[ ∣∣∣Z̃τn

∣∣∣q ] ≤ C(q)
N−1∑
k=0

δ = C(q).

This through (3.4.39) and (iii)–(iv) implies E
[ ∣∣∣Z̃t

∣∣∣q ] ≤ C(q).
Now we can write∣∣∣Zt − Z̃t

∣∣∣ ≤ I1 + I2 + I3 + I4 + I5,

where

I1 =
∣∣∣∣∫ t

0

J̃(ts)
(
b(ts, J̃−1(ts)Zts

, ω + Mσ̃ns
)

− b(ts, J̃−1(ts)Z̃ts
, ω + Mσ̃ns

)
)
ds

∣∣∣∣ ,
I2 =

∣∣∣∣∫ t

0

(
J̃(ts)b(ts, J̃−1(ts)Zts

, ω + Mσ̃ns
)

− Jσ(s)b(ts, J−1
σ (s)Zts

, ω + Mσ̃ns
)
)
ds

∣∣∣∣ ,
I3 =

∣∣∣∣∫ t

0

Jσ(s)
(
b(s, J−1

σ (s)Zts
, ω + Mσ̃ns

)

− b(ts, J−1
σ (s)Zts

, ω + Mσ̃ns
)
)
ds

∣∣∣∣ ,
I4 =

∣∣∣∣∫ t

0

Jσ(s)
(
b(s, J−1

σ (s)Zts
, ω + Mσ̃ns

)− b(s, J−1
σ (s)Zts

, ω + Mσs)
)
ds

∣∣∣∣ ,
I5 =

∣∣∣∣∫ t

0

Jσ(s)
(
b(s, J−1

σ (s)Zs, ω + Mσs)− b(s, J−1
σ (s)Zts

, ω + Mσs)
)
ds

∣∣∣∣ .
First we estimate I2 by using Lemma 3.4.5:

I2 ≤ C

∫ t

0

(
1 + Jσ(s) + J̃(ts) + |Zts

| )(∣∣∣∣∫ s

0

(
σ(u)− σ̃(u)

)
dBH

u

∣∣∣∣
+
∣∣σ(ts)

(
BH

s −BH
ts

)∣∣+ 1
2

∣∣∣‖σs‖2|RH |,1 − ‖σ̃ns
‖2|RH |,1

∣∣∣) ds

≤ C

∫ t

0

(
1 + Jσ(s) + J̃(ts) + |Zts

| )
×
(∣∣∣∣∫ s

0

(
σ(u)− σ̃(u)

)
dBH

u

∣∣∣∣+ ∣∣BH
s −BH

ts

∣∣+ δH

)
ds,

where the inequality
∣∣∣‖σs‖2|RH |,1 − ‖σ̃ns

‖2|RH |,1
∣∣∣ < CδH is due to (viii) and

boundedness of σ on [0, T ]. Applying the Cauchy–Schwartz inequality, we
arrive at
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I2 ≤ C

(∫ T

0

(
1 + J2

σ(s) + J̃2(ts) + Z2
ts

)
ds

)1/2

×
(∫ T

0

((∫ s

0

(
σ(u)− σ̃(u)

)
dBH

u

)2

+ (BH
t −BH

ts
)2 + δ2H

)
ds

)1/2

.

Further, from (vii) it follows that

I3 ≤ CδH

∫ T

0

(Jσ(s) + |Zs|) ds,

from (vi)

I3 ≤ CδH

∫ T

0

(Jσ(s) + |Zs|) ds.

Conditions (iii)–(iv) allow us to estimate I1 ≤ C
∫ t

0

∣∣∣Zts
− Z̃ts

∣∣∣ ds,

I5 ≤ C
∫ t

0
|Zs − Zts

| ds. Summing up these estimates yields

∣∣∣Zt − Z̃t

∣∣∣ ≤ C

(∫ T

0

(
1 + J2

σ(s) + J̃2(ts) + Z2
ts

)
ds

)1/2

×
(

δ2H +
∫ T

0

((∫ s

0

(
σ(u)− σ̃(u)

)
dBH

u

)2

+ (BH
t −BH

ts
)2
)

ds

)1/2

+ C

∫ T

0

∣∣∣Zts
− Z̃ts

∣∣∣ ds + C

∫ t

0

|Zs − Zts
| ds.

Then, using the (discrete) Gronwall inequality, we get

∣∣∣Zt − Z̃t

∣∣∣ ≤ C

(∫ T

0

(
1 + J2

σ(s) + J̃2(ts) + Z2
ts

)
ds

)1/2

×
(

δ2H +
∫ T

0

((∫ s

0

(
σ(u)− σ̃(u)

)
dBH

u

)2

+ (BH
t −BH

ts
)2
)

ds

)1/2

+ C

∫ t

0

|Zs − Zts
| ds.

Then we raise this to the 2pth power and use the Jensen inequality. The
last term will be bounded by C(p)δ2p; to the first one we apply the Cauchy–
Schwartz inequality for expectations and the Jensen inequality, and use uni-
form boundedness of moments for Z, Jσ and J̃ (for Jσ and J̃ it follows from
the fact that the both are exponents of some Gaussian variables with bonded
variance) to get
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E

[ ∣∣∣Zt − Z̃t

∣∣∣2p
]
≤ C(p)

(
δ2pH +

(
E
[ ∣∣∣∫ T

0

(
σ(u)− σ̃(u)

)
dBH

u

∣∣∣4p ])1/2

+
(
E
[ ∣∣BH

t −BH
ts

∣∣4p
])1/2

)
.

Using again that E
[
|·|4p
]

= C(p)(E
[
(·)2 ])2p for Gaussian variables, we get

E

[ ∣∣∣Zt − Z̃t

∣∣∣2p
]
≤ C(p)

(
δ2pH +

(
E
[ ∣∣∣ ∫ T

0

(
σ(u)− σ̃(u)

)
dBH

u

∣∣∣2 ])p

+
(
E
[ ∣∣BH

t −BH
ts

∣∣2 ])p
)

≤ C(p)
(
δ2pH + ‖σ − σ̃‖2p

|RH |,1
) ≤ C(p)δ2pH ;

the last is due to (viii). This is the desired result. 	

Now we are ready to state the main result of this subsection.

Theorem 3.4.8. Under conditions (iii)–(iv) and (vi)–(viii) the approxima-
tions X̃ defined by (3.4.40) converge to the solution X of (3.4.36) in the
mean-square sense, and, moreover,

E
[
(Xt − X̃t)2

]
≤ Cδ2H .

Proof. First, estimate for h such that
∫

R
|h(s)| ds < C has the difference

ThZ(t)− Z(t) ≤ A1 + A2 + A3,where

A1 =
∫ t

0

ThJσ(s)
∣∣∣b(s, (ThJ−1

σ (s))ThZs, ω + h + Mσs)

− b(s, (ThJ−1
σ (s))Zs, ω + h + Mσs)

∣∣∣ ds,

A2 =
∫ t

0

ThJσ(s)
∣∣∣b(s, (ThJ−1

σ (s))Z(s), ω + h + Mσs)

− b(t, (ThJ−1
σ (s))Zs, ω + Mσs)

∣∣∣ ds,

A3 =
∫ t

0

∣∣∣ThJσ(s)b(t, (ThJ−1
σ (s))Zs, ω + Mσs)

− Jσ(s)b(t, J−1
σ (s)Zs, ω + Mσs)

∣∣∣ ds.

Conditions (iii)–(iv) give A1 ≤ C
∫ t

0
|ThZs − Zs| ds, condition (vi) gives

A2 ≤ C

∫ T

0

(1 + |Zs|) ds

∫
R

|h(s)| ds,
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and Lemma 3.4.5 together with the boundedness of σ and the assumptions
on h yields

A3 ≤ C

∫ T

0

(1 + Jσ(s) + ThJσ(s) + |Zs|)Jσ(s)
∫

R

|Mσs(u)h(u)| du ds

≤ C

∫ T

0

(1 + Jσ(s) + ThJσ(s) + |Zs|)Jσ(s) ds

∫
R

|h(s)| ds.

Applying the Gronwall lemma, we get

|ThZt − Zt| ≤C

∫ T

0

(1 + Jσ(s) + ThJσ(s) + |Zs|)Jσ(s) ds

∫
R

|h(s)| ds.

Raising this inequality to the 2p th power, taking expectations and using the
Jensen inequality and boundedness of moments of Z, Jσ and ThJσ (the last
follows from the Girsanov theorem, Cauchy–Schwartz inequality and assump-
tions on h), we get

E
[ (

ThZ(t)− Z(t)
)2p
]
≤ C(p)

(∫
R

|h(s)| ds

)2p

. (3.4.42)

Further,

E
[ (

Xt − X̃t

)2 ] ≤ 3(B1 + B2 + B3),

B1 = E
[ (

J(t)T−Mσ̃1[0,t]

(
Zt − Z̃t

))2 ]
,

B2 = E
[ ((

J−σ(t)− J(t)
)
T−Mσ̃1[0,t]Zt

)2 ]
,

B3 = E
[ (

J−σ(t)
(
T−Mσ(1− T−M(σ̃1[0,t]−σt)

)
Zt

)2 ]
,

where

J−σ(t) = exp
{∫

R

Mσt(s)dWs − 1
2
‖σt‖2|RH |,1

}
,

J(t) = exp
{∫

R

M(σ̃1[0,t])(s)dWs − 1
2

∥∥σ̃1[0,t]

∥∥2
|RH |,1

}
.

Now estimate using the Cauchy–Schwartz inequality, Girsanov theorem
(which can be applied as σ and σ̃ are bounded on [0, T ]) and Theorem 3.4.7

B1 ≤
(
E
[
J

4
(t)
]
E
[
T−Mσ̃1[0,t]

(
Zt − Z̃t

)4 ] )1/2

,

≤ C
(
E
[
J̃(t)
(
Zt − Z̃t

)4 ] )1/2

≤ C
(
E
[
J̃2(t)

]
E
[ (

Zt − Z̃t

)8 ] )1/4

≤ Cδ2H .
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Similar reasoning and Lemma 3.4.6 imply that

B2 ≤ CE

[(∫
R

M(σ̃1[0,t] − σt)(s) dWs

+
1
2
( ‖σt‖2|RH |,1 −

∥∥σ̃1[0,t]

∥∥2
|RH |,1

))2
]

.

Using condition (vii), we obtain B2 ≤ Cδ2H . And for B3, using the estimate
(3.4.42), we get

B3 ≤
(∫ t

0

∣∣M(σ̃1[0,t] − σt)(s)
∣∣ ds
)2

≤ Cδ2H .

This concludes the proof. 	

Remark 3.4.9. It is natural to assume that the coefficient b is expressed in
terms of fBm BH rather then in terms of the underlying Brownian motion W
(or underlying “Brownian” white noise Ẇ ). This justifies the fact that it is σ
not Mσ that is discretized in (3.4.38).
Remark 3.4.10. Similarly to the proof of Theorem 3.4.8 one can prove that
for any s ≥ 1

E
[ ∣∣∣Xt − X̃t

∣∣∣s ] ≤ δsH .

The case s = 2 is considered here to keep the classical “scent” of the results.
Remark 3.4.11. The results of this subsection can be generalized to a random
initial condition X0 in the following form: under conditions (iii)–(iv), (vi)–
(viii) and Lp-integrability of the initial condition one has convergence in any
Lp′ for p′ < p with

E
[ ∣∣∣Xt − X̃t

∣∣∣s ] ≤ δsH .

Proofs need some simple changes: the Hölder inequality for appropriate powers
instead of the Cauchy–Schwartz inequality.

3.5 Stochastic Differential Equation with Additive
Wiener Integral w.r.t. Fractional Noise

Consider the following scalar stochastic differential equation

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

f(s)dBH
s , (3.5.1)

where b : [0, T ] × R → R is the measurable function, H ∈ (0, 1), X0 ∈ R and
f ∈ LH

2 (R). Equation (3.5.1) generalizes the equation

Xt = X0 +
∫ t

0

b(s,Xs)ds + BH
s , (3.5.2)

that was considered in the papers (MN03), (NO02), (NO03b).
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3.5.1 Existence of a Weak Solution for Regular Coefficients

Definition 3.5.1. By a weak solution to equation (3.5.1) we mean a cou-
ple of adapted continuous processes (B̃H , X) on a filtered probability space
(Ω,F , P, {Ft, t ∈ [0, T ]}) such that

(a) B̃H is an Ft - fractional Brownian motion;
(b) X and B̃H satisfy (3.5.1).

The general approach to existence of the weak solution of (3.5.1) is the
following. Let the function f be nonzero on R, so that g(s) := 1

f(s) is deter-

mined on R. Consider the process B̃H
t := BH

t −
∫ t

0
g(s)b(s, x+Is(f))ds, where

It(f) =
∫ t

0
f(s)dBH

s .
According to Theorem 2.8.1, under the following conditions

E exp
{

Lt − 1
2
〈L〉t
}

= 1, t ∈ [0, T ] (3.5.3)

where Lt =
∫ t

0
sαδsdBs, B is the Wiener process, Bt = α̂

∫ t

0
sαdMH

s , MH
t =∫ t

0
lH(t, s)dBH

s and∫ t

0

lH(t, s)g(s)b(s, x + Is(f))ds = α̃

∫ t

0

δsds, (3.5.4)

we have that B̃H
t will be an fBm w.r.t. the measure Q such that

dQ

dP

∣∣∣∣
Ft

= exp
{

Lt − 1
2
〈L〉t
}

.

In this case it is very easy to check that the couple (B̃H
t , X0+It(f)) creates

a weak solution of equation (3.5.1).
Due to the Novikov condition, the equality (3.5.3) holds if

E exp
{

1
2
〈L〉T

}
<∞, (3.5.5)

where

〈L〉t =
∫ t

0

s2αδ2
sds. (3.5.6)

Therefore, we must check inequality (3.5.5) together with (3.5.4) and (3.5.6).
Denote the stochastic process h(s) := g(s)b(s,X0 + Is(f)). Note that in this
section we begin the new numeration of the conditions.

Theorem 3.5.2. Let one of the following assumptions hold:
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(i) H ∈ (0, 1/2), the coefficients b and g satisfy the condition: there exists
λ > 0 such that

sup
0≤t≤T

E exp

{
λt2α

(∫ t

0

s−α(t− s)−α−1h(s)ds

)2
}

<∞; (3.5.7)

(ii) H ∈ (1/2, 1), the coefficients b and g satisfy the condition:

Eλ := E exp

{
λ

∫ T

0

(
s−α|h(s)|

+ αsα

∫ s

0

|s−αh(s)− r−αh(r)|
(s− r)α+1

dr

)2

ds

}
<∞, (3.5.8)

for any λ > 0.

Then equation (3.5.1) has a weak solution.

Proof. Let H ∈ (0, 1/2). Then we obtain δt directly from (3.5.4) (recall that
lH(t, s) = C

(5)
H s−α(t− s)−α)

δt = C
(5)
H (−α)α̂

∫ t

0

s−α(t− s)−α−1h(s)ds. (3.5.9)

It follows from Example 13.32 (Ell82) that the condition: there exists λ > 0
such that sup0≤s≤T E exp{λv2

s} < ∞, is sufficient for the Novikov condition,

if it has the form E exp
{

1
2

∫ T

0
v2

sds
}

< ∞. Therefore, the proof follows im-
mediately from (3.5.6), (3.5.7) and (3.5.9). Let H ∈ (1/2, 1). In this case δt is
a fractional derivative of the form:

δt =
d

dt

(
C

(5)
H

∫ t

0

(t− s)−αs−αh(s)ds

)

= C
(5)
H

⎛⎝t−2αh(t)+α

t∫
0

(t−αh(t)− r−αh(r))(t− r)−α−1dr)1(0,T )(t)

⎞⎠,

whence the proof follows. 	

Now we establish more convenient conditions for the existence of a weak

solution in terms of g and b.
Denote the function h(s, x) := g(s)b(s, x).

Theorem 3.5.3. Let 0 < |f(t)| < f∗ for any t ∈ [0, T ] and one of the
following assumptions holds:

(iii) H ∈ (0, 1/2) and h(t, x) is of linear growth:

|h(t, x)| ≤ C(1 + |x|), (t, x) ∈ [0, T ]× R



3.5 SDE with the Additive Wiener Integral w.r.t. Fractional Noise 265

(iv) H ∈ (1/2, 1), f is essentially bounded on [0, T ] and h(s, x) is Hölder
continuous:

|h(t, x)− h(s, y)| ≤ C (|x− y|ρ + |t− s|γ) ,

where 1 > rho > 1− 1
2H and 1 ≥ γ > α.

Then equation (3.5.1) has a weak solution.

Proof. In both cases we must check the conditions of Theorem 3.5.2.

Let H ∈ (0, 1/2). Then t2α
(∫ t

0
s−α(t− s)−α−1h(s)ds

)2

≤ Ct2α sup0≤s≤t |h(s)|2 t−4α ≤ CT−2α(1 + |X0|+ I∗T (f)). Note that now
α < 0). Furthermore, inequality (3.5.7) is transformed into

E exp{λ(I∗T (f))2} <∞ for some λ > 0.

The last inequality follows from the Fernique theorem (Fer74) about exponen-
tial integrability of the square of the supremum norm of a Gaussian process
(recall that the process It(f) is Gaussian). For H ∈ (1/2, 1)

|h(s)| ≤ |h(0, 0)|+ C (sγ + |X0|ρ + |Is(f)|ρ) , (3.5.10)

sα

∫ s

0

s−αh(s)− r−αh(r)
(s− r)α+1

dr =
∫ s

0

h(s)− h(r)
(s− r)α+1

dr

+ sα

∫ s

0

(s−α − r−α)(h(r)− h(s))
(s− r)α+1

dr + sαh(s)
∫ s

0

s−α − r−α

(s− r)α+1
dr.

Further,

|h(s)− h(r)| ≤ |h(s,X0 + Is(f))− h(r,X0 + Ir(f))|
≤ C (|s− r|γ + |Is(f)− Ir(f)|ρ) ,

therefore∣∣∣∣∫ s

0

h(s)− h(r)
(s− r)α+1

dr

∣∣∣∣ ≤ C

∫ s

0

(s− r)γ−α−1dr + C

∫ s

0

|Is(f)− Ir(f)|ρ
(s− r)α+1

dr

≤ C + C

∫ s

0

|Is(f)− Ir(f)|ρ
(s− r)α+1

dr.

Similarly to Lemma 1.17.1, it follows from the Garsia–Rodemich–Rumsey
inequality that for any 0 < ε < H

|Is(f)− Ir(f)| ≤ CH,ε |r − s|H−ε
ξε,

where
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ξε =

(∫ T

0

∫ T

0

|Ix(f)− Iy(f)|2/ε

|x− y|2H/ε
dx dy

)ε/2

.

Further, according to Corollary 1.9.4, it holds that

Eξ2/ε
ε ≤ C

(
H,

2
ε

)∫ T

0

∫ T

0

‖f‖2/ε
L 1

H
[x,y]

|x− y|2H/ε
dx dy

≤ C

(
H,

2
ε

)
(f∗)2/ε

T 2. (3.5.11)

Therefore,

∫ s

0

|Is(f)− Ir(f)|ρ
(s− r)α+1

dr ≤ Cρ
H,εξ

ρ
ε

∫ s

0

(s− r)ρ(H−ε)−α−1dr ≤ Cξρ
ε

for some constant C and such ε that ρ(H − ε)− α > 0, and∣∣∣∣∫ s

0

h(s)− h(r)
(s− r)α+1

dr

∣∣∣∣ ≤ C (1 + ξρ
ε ) . (3.5.12)

The next term admits an estimate

sα

∣∣∣∣∫ s

0

(s−α − r−α)(h(s)− h(r))
(s− r)α+1

dr

∣∣∣∣ ≤ ∫ s

0

|h(s)− h(r)|
(s− r)

r−αdr

≤ C + C

∫ s

0

|Is(f)− Ir(f)|ρ
(s− r)

r−αdr ≤ C (1 + ξρ
ε ) ; (3.5.13)

the proof follows now from (3.5.10)–(3.5.13), because for ρ < 1

Eλ ≤ CE exp
{

λ

∫ T

0

|Is(f)|2ρ
s−2αds + λTCξ2ρ

ε

}
<∞.

	


3.5.2 Existence of a Weak Solution for SDE with Discontinuous
Drift

Consider equation (3.5.1) for the case when f ≡ 1, b(s, x) = b(x) and b(x)
is Hölder continuous of order ρ ∈ (1 − 1/2H, 1) except on a finite number of
points, where there is a jump discontinuity (MN04).

Theorem 3.5.4. Suppose that the function b(x) is Hölder continuous of or-
der ρ ∈ (1 − 1/2H, 1) in a finite number of intervals (−∞, a1), (a1, a2),
. . . ,(aN−1, aN ), (aN ,+∞) and there is a jump discontinuity in the points
ai, 1 ≤ i ≤ N , that is, b(ai−) �= b(ai+) = b(ai). Let BH

t be an fBm with
Hurst parameter H ∈

(
1
2 , 1+

√
5

4

)
. Then equation (3.5.1) with f ≡ 1 has a

weak solution.
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Remark 3.5.5. The case H ∈ (0, 1/2) is not specific now; for example, if b is
discontinuous but bounded we have a weak solution.

Proof. A function b(x) satisfying the conditions of Theorem 3.5.4 can be de-
composed as follows:

b(x) = d(x) +
N∑

i=1

cisign(x− ai),

where the function d is Hölder continuous of order ρ ∈ (1− 1
2H , 1), and ci ∈ R.

Then, in order to prove Theorem 3.5.4 it suffices to check that the function
sign(x− ai) satisfies condition (3.5.8) for all λ > 0.

We have now that h(s) = b(X0 + BH
s ) = sign(X0 + BH

s ).
Since ∫ T

0

∣∣sign(X0 + BH
s )s−α

∣∣2 ds ≤ T 1−2α

1− 2α
,

it suffices to consider the term

As = sα

∫ s

0

∣∣s−αsign(X0 + BH
s )− r−αsign(X0 + BH

r )
∣∣

(s− r)α+1
dr.

We have

As =
∫ s

0

∣∣sign(X0 + BH
s )− ( s

r

)α sign(X0 + BH
r )
∣∣

(s− r)α+1
dr

≤
∫ s

0

∣∣sign(X0 + BH
s )− sign(X0 + BH

r )
∣∣

(s− r)α+1
dr

+
∫ s

0

∣∣(1− ( s
r

)α) sign(X0 + BH
r )
∣∣

(s− r)α+1
dr

= A1
s + A2

s.

The term A2
s can be easily bounded:

A2
s ≤
∫ s

0

(
s
r

)α − 1
(s− r)α+1

dr = c,

where

c =
∫ 1

0

z−α − 1
(1− z)α+1

dz <∞.

For the term A1
s we can write

A1
s ≤ 2

∫ s

0

1{X0+BH
s >0,X0+BH

r <0}(s− r)−α−1dr

+ 2
∫ s

0

1{X0+BH
s <0,X0+BH

r >0}(s− r)−α−1dr

= 2A11
s + 2A12

s .
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We will only consider the term A11
s , because the term A12

s can be treated in
the same way. Since X0 is any point from R, we shall denote it simply x. We
have

A11
s =

∫ s

0

1{BH
r <−x<BH

s }(s− r)−α−1dr.

Denote Ts := sup{t ∈ [0, s] : BH
t = −x} and notice that Ts is not a stopping

time. But Ts < s on the set {−x < Bs} and∫ s

0

1{BH
r <−x<BH

s }(s− r)−α−1dr ≤ 1{−x<BH
s }

∫ Ts

0

(s− r)−α−1dr

= 1{−x<BH
s }

(s− Ts)−α

α
.

According to the Garsia–Rodemich–Rumsey inequality, for any T > 0,
p ≥ 1, γ > 1

p there exists a constant C = Cγ,p > 0 such that

|BH
s −BH

t |p ≤ C|t− s|γp−1

∫ T

0

∫ T

0

|Bu −Br|p
|u− r|γp+1

dr du (3.5.14)

for any s, t ∈ [0, T ]. Taking t = Ts in (3.5.14) we obtain

|BH
s + x|p ≤ C|s− Ts|γp−1

∫ T

0

∫ T

0

|Bu −Br|p
|u− r|γp+1

dr du. (3.5.15)

Fix 0 < ε < H and take p = 2
ε , γ = H − ε

2 . Set

ξε :=

(∫ T

0

∫ T

0

|BH
u −BH

r |
2
ε

|u− r| 2H
ε

dr du

) ε
2

.

The random variable ξε verifies E exp
(
λξβ

ε

)
< ∞ for any λ > 0, 0 < β < 2,

due to (Fer74) and we obtain from (3.5.15) that on the set {BH
s > −x}

|BH
s + x| ≤ C

ε
2 |Ts − s|H−εξε.

Hence,

|Ts − s|−2α ≤ C
ε(2α)

2(H−ε) |BH
s + x| −2α

H−ε ξ
2α

H−ε
ε .

Therefore, in order to show (3.5.8) it suffices to prove the estimate

E exp

(
λξ

2α
H−ε
ε

∫ T

0

|BH
s + x| −2α

H−ε ds

)
<∞

for any λ > 0, T > 0, x > 0 and for some fixed 0 < ε < H. Set
Sε :=

∫ T

0
|BH

s + x| −2α
H−ε ds. We can write, assuming ε < 1

3
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E exp
(

λξ
2α

H−ε
ε Sε

)
= E

⎛⎜⎝exp
(

λξ
2α

H−ε
ε Sε

)
1{

Sε<ξ
1−3ε
H−ε

ε

}
⎞⎟⎠

+ E

⎛⎜⎝exp
(

λξ
2α

H−ε
ε Sε

)
1{

Sε≥ξ
1−3ε
H−ε

ε

}
⎞⎟⎠

≤ E exp
(
λξ

2− ε
H−ε

ε

)
+ E exp

(
λS

2H−3ε
1−3ε

ε

)
.

We know that E exp
(
λξ

2− ε
H−ε

ε

)
< ∞, so it suffices to show that

E exp
(

λS
2H−3ε
1−3ε

ε

)
< ∞. By the Hölder inequality, assuming −2α

H−ε > −1 + ε,

we obtain that

Sε ≤ CT,ε

(∫ T

0

|BH
s + x|−1+εds

) 2α
(H−ε)(1−ε)

.

Hence,

S
2H−3ε
1−3ε

ε ≤ CT,ε

(∫ T

0

|BH
s + x|−1+εds

)ρ

,

where ρ = (2α)(2H−3ε)
(H−ε)(1−ε)(1−3ε) can be expressed as ρ = 4α+δ, where δ > 0 tends

to zero as ε tends to zero. Therefore, it suffices to show that

E exp
(
λψ4α+δ

ε

)
<∞, (3.5.16)

where

ψε =
∫ T

0

1{|BH
s +x|<1}|BH

s + x|−1+εds.

Lemma 3.5.6 below provides a proof for the estimate (3.5.16), provided
4αH < 1, and this leads to the condition H < 1+

√
5

4 . 	

Lemma 3.5.6. Fix ν < 1 and define

G̃ :=
∫ T

0

1{|BH
s +x|<1}|BH

s + x|−νds.

Then for any p > 0 such that pH < 1 we have

E
(
exp G̃p

)
<∞.

Proof. We need to estimate the moments of the random variable G̃. Denote
by ∆n the simplex {0 < s1 < · · · < sn < T}. We have
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E(Gn) = n!E
∫

∆n

n∏
i=1

1{|BH
si

+x|<1}|BH
si

+ x|−αds1 · · · dsn.

According to (Ber70) the joint density of the random vector (BH
s1

, BH
s2
−

BH
s1

, . . . , BH
sn
−BH

sn−1
) can be estimated as follows:

p(y1, . . . , yn) ≤ 2
3
2 n

(2π)n/2

n∏
i=1

(si − si−1)−H ,

where s0 = 0, since

det
(
E
[(

BH
si
−BH

si−1

)(
BH

sj
−BH

sj−1

)])
1≤i,j≤n

≥ 2−3n
n∏

i=1

(si − si−1)2H .

Then

E

(
n∏

i=1

1{|BH
si

+x|<1}|BH
si

+ x|−α

)

≤ cn
n∏

i=1

(si − si−1)−H

∫
Rn

n∏
i=1

1{|∑i
l=1 yl+x|<1}

∣∣∣ i∑
l=1

yl + x
∣∣∣−α

dy1 · · · dyn

= cn
n∏

i=1

(si − si−1)−H

∫
Rn

n∏
i=1

1{|zi+x|<1}|zi + x|−αdz1 · · · dzn

= dn
n∏

i=1

(si − si−1)−H ,

where c = 2
3
2

(2π)1/2 and d = 2c
1−α . Finally,

E(G̃n) ≤ n!dn

∫
∆n

n∏
i=1

(si − si−1)−Hds1 · · · dsn

= n!dn 1
1−H

Γ (1−H)n−1Γ (2−H)
Γ (n(1−H) + 1)

Tn(1−H).

As a consequence we obtain

E
(
exp G̃p

)
≤ e + 1 +

∞∑
k=1

1
k!

E(G̃[pk]+1)

≤ C1 + C2

∞∑
k=1

1
k!

([pk] + 1)!C [pk]+1
3

Γ (([pk] + 1) (1−H) + 1)
,

for some constants Ci, i = 1, 2, 3. Using the Stirling formula we finally obtain
that this sum is finite provided pH < 1. 	
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3.5.3 Uniqueness in Law and Pathwise Uniqueness for Regular
Coefficients

We return to the case of subsection 3.5.1 when the conditions of Theorem 3.5.3
are fulfilled.

Lemma 3.5.7 ((NO02)). Let the conditions of Theorem 3.5.3 hold for the
coefficients of equation (3.5.1). Then any weak solution of this equation has
the same distribution under the measure P .

Proof. Let the pair (BH , X) creates a weak solution of equation (3.5.1). Con-
sider our function h(s,Xs) := g(s)b(s,Xs). In the case H ∈ (0, 1/2) we have
by Gronwall inequality

X∗
T ≤ (|X0|+ I∗T (f) + CT )eCT

and
|h(s,Xs)| ≤ C(1 + X∗

T ),

therefore the derivative∣∣∣∣ ddt

∫ t

0

lH(t, s)h(s,Xs)ds

∣∣∣∣ ≤ C

∫ t

0

s−α(t− s)−α−1 |h(s,Xs)| ds,

evidently, satisfies the condition, similar to (3.5.7):

sup
0≤t≤T

E exp

{
λt2α

(∫ t

s

s−α(t− s)−α−1|h(s,Xs)|ds

)2
}

<∞

for some λ > 0. For H ∈ (1/2, 1) the condition similar to (3.5.8) can be easily
checked similarly to (iv) in Theorem 3.5.3. So,

E exp
{
− Lt − 1

2
〈L〉t
}

= 1

for t ∈ [0, T ], Lt =
∫ t

0
sαδsdBs with such Wiener process B w.r.t. the measure

P that α̃
∫ t

0
δsds =

∫ t

0
lH(t, s)h(s,Xs)ds,

∫ t

0
lH(t, s)dBH

s = α̃
∫ t

0
s−αdBs. By

Theorem 2.8.1, the process B̂H
t := BH

t +
∫ t

0
h(s,Xs)ds is an fBm w.r.t. measure

P̂ such that
dP̂

dP

∣∣∣∣∣
t

= exp
{
−Lt − 1

2
〈L〉t
}

. (3.5.17)

It means that Xt −X0 =
∫ t

0
f(s)dB̂H

s . Let B̂t be a Wiener process such that
B̂t = Bt +

∫ t

0
sαδsds. Also, let Ψ be a bounded measurable functional on

C[0, T ]. Then

EP (Ψ(X −X0)) = EP̂

(
Ψ(X −X0) exp

{
Lt +

1
2
〈L〉t
})
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= EP̂

(
Ψ(X −X0) exp{

∫ t

0

sαδsdB̂s − 1/2
∫ t

0

s2αδ2
sds}
)

= EP

(
Ψ
(∫ t

0

f(s)dBH
s

)
exp
{∫ t

0

sαδsdBs − 1/2
∫ t

0

s2αδ2
sds
})

.

The last relation demonstrates that the distribution of X is the same for any
weak solution. 	


Suppose now that X1 and X2 are two weak solutions defined on the same
filtered probability space (Ω,F , P, {Ft, t ∈ [0, T ]}) with respect to the
same fBm. Then max(X1, X2) and min(X1, X2) are also solutions and
have the same distributions, whence X1 = X2. We proved the following result.

Theorem 3.5.8. Under conditions of Theorem 3.5.3 any two weak solutions
defined on the same filtered probability space coincide almost surely.

3.5.4 Existence of a Strong Solution for the Regular Case

Let H ∈ (1/2, 1), the function f be Hölder continuous of order β > 1−H, and
the function b be Lipschitz continuous. Then the conditions of Theorem 3.1.4
are fulfilled, therefore equation (3.5.1) has unique strong solution. In the case
when b(s, x) = b(x), according to Remark 3.1.11, equation (3.5.1) has a strong
solution for f ∈ Cβ [0, T ], β > 1−H , and it is unique due to Theorem 3.5.8.
So, the case H ∈ (1/2, 1) is not hard or interesting.

Now, let H ∈ (0, 1/2). Consider a Krylov-type inequality as an auxiliary
result.

Lemma 3.5.9. Let functions g(s) and b(s, x) are bounded, so h(s, x) is
bounded, X is a weak solution of (3.5.1), and for some r > 1 the integral∫ T

0
ψr(t)dt < ∞, where ψr(t) = ||f ||−r

L 1
H

[0,t]. Then there exists the constant C

depending on h := supt∈[0,T ],x∈R
|h(t, x)| such that for any nonnegative mea-

surable function g(t, x) : [0, T ]× R→ R

E

∫ T

0

g(t,Xt)dt ≤ C

(∫ T

0

∫
R

g2(t, x)dx dt

)1/2

. (3.5.18)

Proof. Let X be a weak solution of (3.5.1) and consider the measure P̂ deter-
mined by (3.5.17). Then Xt−X0 under measure P̂ has the Gaussian distribu-
tion with zero mean and covariance σ2

t := ||It(f)||2L2(P ) = ||f ||2
LH

2 (0,t)
. Denote

Zt := exp{−Lt− 1
2 〈L〉t}. Then from the Hölder inequality with β′, β > 1 and

1/β′ + 1/β = 1 we have that

E

∫ T

o

g(t,Xt)dt ≤
(
ÊZ−β′

T

)1/β′
(

Ê

∫ T

o

g(t,Xt)βdt

)1/β

.
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The mathematical expectation

ÊZ−β′
T = Ê exp

{
β′LT +

β′

2
〈L〉T

}
<∞,

which follows from the boundedness of 〈L〉T . Further, let γ, γ′ > 1,
1/γ + 1/γ′ = 1 and γβ = 2. Then

Ê
∫ T

0
g(t,Xt)βdt =

∫ T

0
1√

2πσt

∫
R

g(t, y)βe
− (y−x)2

2σ2
t dy dt

≤ 1√
2π

(∫ T

0

∫
R

g(t, y)γβdy dt
)1/γ

(∫ T

0

∫
R

e
− γ′(y−x)2

2σ2
t σ−γ′

t dy dt

)1/γ′

= 1√
2π

(∫ T

0

∫
R

g(t, y)2dy dt
)1/γ (∫ T

0

∫
R

e−γ′z2
σ1−γ′

t dz dt
)1/γ′

≤ C
(∫ T

0

∫
R

g(t, y)2dy dt
)1/γ

(∫ T

0
σ
− β

2−β

t dt

) 2−β
2

.

Finally, put β
2−β = r > 1, which means that β = 2r

1+r , 1
α = 1− 1

β , γ = 1 + 1
r .

From inequality (1.9.1), ||f ||LH
2 (0,t) ≥ C(H)||f ||L 1

H
(0,t), so

∫ T

0
σ−r

t dt < ∞,

whence the proof follows. 	

Lemma 3.5.10. Let bn(t, x) = bn(t, x)1{|x| ≤ C1} be a sequence of measur-
able functions, |bn(t, x)| ≤ C2, limn→∞ bn(t, x) = b(t, x), for all
(t, x) ∈ [0, T ] × R, and the conditions of Lemma 3.5.9 hold. Let also the cor-
responding solutions X

(n)
t of the equations

X
(n)
t = X0 +

∫ t

0

bn(s,X(n)
s )ds + It(f), t ∈ [0, T ],

converge a.s. to some process Xt for all t ∈ [0, T ]. Then the process X is a
solution of equation (3.5.1).

Proof. It is sufficient to prove that limn→∞ In := limn→∞ E
∫ T

0
|bn(s,X(n)

s )
− b(s,Xs)|ds = 0. But In ≤ I

(1)
n + I

(2)
n , where

I(1)
n = E

∫ T

0

|bn(s,X(n)
s )− b(s,X(n)

s )|ds,

I(2)
n = E

∫ T

0

|b(s,X(n)
s )− b(s,Xs)|ds.

Evidently, from (3.5.18) and finiteness of bn and b, I
(1)
n ≤ C(

∫ T

0

∫
R
|bn(t, x)−

b(t, x)|2dt dx)1/2 → 0, n→∞, and also I
(2)
n → 0, n→∞. 	


Theorem 3.5.11. Let both the functions h(t, x) and b(t, x) satisfy the linear
growth condition. Then equation (3.5.1) has the unique strong solution.
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Remark 3.5.12. The next condition is sufficient for both the functions h(t, x)
and b(t, x) to be of linear growth:

|b(s, x)| ≤ C(|f(s)| ∧ 1)(1 + |x|). (3.5.19)

Proof. For any R > 0 denote b(R)(t, x) := b(t, x)1{|x|≤R}. Let ϕ be a smooth
nonnegative function with compact support in R such that

∫
R

ϕ(x)dx = 1. De-
fine bR,j(t, x) := j

∫
R

b(R)(t, y)ϕ(j(x− y))dy. Let for n ≤ k b̃R,n,k = ∧k
j=nbR,j ,

b̃R,n = ∧∞j=nbR,j . The functions b̃R,n,k are Lipschitz in x uniformly in t and
b̃R,n,k ↓ b̃R,n, k → ∞, b̃R,n ↑ b(R), n → ∞, for a.a. x and any t. Equation
(3.5.1) with b̃R,n,k has the unique solution X̃R,n,k as an ordinary differential
equation with Lipschitz coefficient. By the comparison theorem for ODEs the
sequence X̃R,n,k decreases in k, hence it has a limit X̃R,n. The sequence X̃R,n

increases in n, hence it has a limit X(R). Applying Lemma 3.5.10 we obtain
that {X(R)

t , t ∈ [0, T ]} is a solution of (3.5.1) with drift b(R)(t, x). Then we
apply standard techniques: all X

(R)
t are bounded by (I∗T (f) + |x|)eCT , and

(3.5.1) has a unique solution on any [0, τR], where τR = inf{t : |X(R)
t | ≥ R}.

It means that (3.5.1) has a unique solution on the whole interval [0, T ]. 	


3.5.5 Existence of a Strong Solution for Discontinuous Drift

Let Ω = C0([0, T ], R) be the Banach space of continuous functions, null at
time 0, equipped with the supremum norm, and P be the unique probability
measure on Ω such that the canonical process is an fBm with Hurst parameter
H ∈ (1/2, 1). Assume also that the canonical filtration is augmented with the
P -negligible sets. We consider the following partial case of equation (3.5.1):

Xt = X0 +
∫ t

0

b(Xs)ds + BH
t (3.5.20)

with b(x) = sign x, H ∈ (1/2,H0), H0 = 1+
√

5
4 . According to Theorem 3.5.4,

equation (3.5.20) has a weak solution. Now we intend to prove the existence
of its strong solution. For this purpose consider the following approximations
of the function b(x) = sign x:

bn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, x ≤ 0;
n3x2 − 1, 0 < x ≤ 1

n2 ;
2nx− 1, 1/n2 < x ≤ 1

n − 1
n2 ;

1− n3(x− 1
n )2, 1/n− 1/n2 < x ≤ 1

n ;
1, x ≥ 1

n .

Then

b
′
n(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, x ≤ 0;
2n3x, 0 < x ≤ 1

n2 ;
2n, 1/n2 < x ≤ 1

n − 1
n2 ;

2n3(x− 1
n ), 1/n− 1/n2 < x ≤ 1

n ;
0, x ≥ 1

n .
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Evidently, any b
′
n ∈ C(R); moreover, it is Lipschitz: |b′

n(x1) − b
′
n(x2)| ≤

2n3|x1 − x2|.
Lemma 3.5.13. For any x ∈ R bn+1(x) > bn(x), n ≥ 1.

Proof. It is sufficient to consider the interval (0, 1
n+1 ).

(a) For x ∈ (0, 1
(n+1)2 ] bn+1(x) = (n + 1)3x2 − 1 > n3x2 − 1 = bn(x).

(b) For x ∈ ( 1
(n+1)2 , 1

n2 ] bn(x) = n3x2 − 1, bn+1(x) = 2(n + 1)x− 1. But the

inequality 2(n + 1)x− 1 > n3x2 − 1 holds for x < 2(n+1)
n3 , and it is our case.

(c) For x ∈ ( 1
n2 , 1

n+1 − 1
(n+1)2 ] bn+1(x) = 2(n + 1)x− 1 > 2nx− 1 = bn(x).

(d) For x ∈ ( 1
n+1 − 1

(n+1)2 , 1
n − 1

n2 ] bn+1(x) = 1 − (n + 1)3(x − 1
n+1 )2,

bn(x) = 2nx − 1. The function ϕ(x) := (n + 1)3(x − 1
n+1 )2 + 2nx − 2 has

ϕ′(x) = 2(n + 1)3(x − 1
n+1 ) + 2n = 0 for x0 = 1

n+1 − n
(n+1)3 , it is the point

of local minimum and x0 ∈ ( 1
n+1 − 1

(n+1)2 , 1
n − 1

n2 ] for n > 2. So, we must
check the inequality ϕ(x) < 0 for x = 1

n+1 − 1
(n+1)2 and x = 1

n − 1
n2 , and it

evidently holds.
(e) Finally, for x ∈ ( 1

n − 1
n2 , 1

n+1 ) the inequality bn+1(x) = 1 − (n + 1)3(x −
1

n+1 )2 > 1− n3(x− 1
n )2 = bn(x) is equivalent to (2n + 1 +

√
n(n + 1))x > 1

and it is sufficient to check it in the point x = 1
n − 1

n2 :

(2n + 1 +
√

n(n + 1))
(

1
n
− 1

n2

)
> (3n + 1)

n− 1
n2

=
3n2 − 2n− 1

n2
> 1

for n ≥ 2. Therefore, bn+1(x) ≥ bn(x), x ∈ R. 	

Consider the approximating equation

Xn
t = x +

∫ t

0

bn(Xn
s )ds + BH

t . (3.5.21)

The functions bn are Lipschitz, therefore equation (3.5.21) has a unique strong
solution Xn

t on [0, T ], and Xn
t ≤ Xn+1

t for any t ∈ [0, T ] a.s. Moreover, for
any 0 < ε < H

|Xn
t1(ω)−Xn

t2(ω)| ≤ C(ω)|t2 − t1|H−ε + |t2 − t1|,

so, the set {Xn(·, ω), n ≥ 1} is tight for any ω ∈ Ω′, P (Ω′) = 1. We obtain
that Xn

t (ω) ↑ Xt(ω), ω ∈ Ω′, where the limit process X is continuous in t.
Further,∣∣∣∣∫ t

0

bn(Xn
s )ds−

∫ t

0

b(Xs)ds

∣∣∣∣ ≤∫ t

0

|bn(Xn
s )− bn(Xs)|ds +

∫ t

0

|bn(Xs)− b(Xs)|ds. (3.5.22)
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Note that |bn(Xn
s ) − bn(Xs)| = bn(Xs) − bn(Xn

s ) ≤ 2. Consider all the cases
of mutual values of Xs, Xn

s .
(a) For Xn

s < 0, Xs ∈ (0, 1
n ] bn(Xs)− bn(Xn

s ) ≤ 21{Xs∈(0, 1
n ]}.

(b) For Xn
s < 0, Xs > 1

n bn(Xs) − bn(Xn
s ) ≤ 21{Xs>0,Xn

s <0} → 0 a.s.,
n→∞.
(c) For Xs, X

n
s ∈ [0, 1

n ] bn(Xs)− bn(Xn
s ) ≤ 21{Xs∈[0, 1

n ]}.
(d) For Xn

s ∈ [0, 1
n ], Xs > 1

n |bn(Xs) − bn(Xn
s )| ≤ 21{Xs>0,Xn

s ∈[0, 1
n ]} → 0

a.s., n→∞.
Further, ∫ t

0

|bn(Xs)− b(Xs)|ds ≤ 2
∫ t

0

1{Xs∈[0, 1
n ]}ds. (3.5.23)

We obtain from (3.5.22) – (3.5.23) and (a)–(d) that

lim
n→∞ |

∫ t

0

bn(Xn
s )ds−

∫ t

0

b(Xs)ds| ≤ 6 lim
n→∞

∫ t

0

1{Xs∈(0, 1
n )}ds

= 6
∫ t

0

1{Xs=0}ds.

Therefore, to prove the existence of a strong solution of (3.5.20) it is sufficient
to prove that E

∫ T

0
1{Xs=0}ds = 0, and in turn it is sufficient to establish the

existence of bounded density ps(x), x ∈ R, s > 0 of the process Xs. For this
purpose, return to Xn

s : since the functions bn are continuously differentiable,
then Xn

s has a stochastic derivative, and on our probability space

DsX
n
t = 1 +

∫ t

s

DsX
n
u b

′
n(Xn

u )du,

whence DsX
n
t = exp{∫ t

s
b
′
n(Xn

u )du} ≥ 1, since b
′
n ≥ 0.

Now we use the result of (Nua95): let the random variable F ∈ D1,2,
h ∈ H, 〈DF, h〉H �= 0 a.s. and h

〈DF,h〉H ∈ Dom δ. Then F has a continuous
and bounded density

f(x) = E

(
1{F>x}δ

(
h

〈DF, h〉H

))
.

Now we put F := Xn
t , ht(s) := 1{0≤s≤t}. Then

〈DF, h〉H = 2αH

∫ t

0

∫ t

0

exp
{∫ t

s

b
′
n(Xn

u )du
}

× exp
{∫ t

v

b
′
n(Xn

u )du
}
|v − s|2α−1dv ds ≥ CHt2H > 0.

Consider the function θ(s) = ht(s)
〈DF,ht〉H = ht(s)ξ, where ξ is a bounded random

variable, ξ = 〈DF, h〉−1
H , Eξ2 <∞. To establish that θ ∈ Dom δ, it is sufficient

to verify that
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E

∫ T

0

(Dsξ)2ds <∞. (3.5.24)

Indeed,

Dsξ = Ds

((∫ t

0

∫ t

0

exp
{∫ t

z

b
′
n(Xn

u )du
}

exp
{∫ t

v

b
′
n(Xn

u )du
}

× |v − z|2α−1dvdz
)−1
)

= 〈DF, h〉−2
H ·
∫ t

0

∫ t

0

exp
{∫ t

z

b
′
n(Xn

u )du
}

× exp
{∫ t

v

b
′
n(Xn

u )du
}
|v − z|2α−1

∫ t

z

b
′′
n(Xn

u )du dv dz,

where |b′′
n(x)| ≤ 2n3 (since |b′

n(x1)− b
′
n(x2)| ≤ 2n3|x1 − x2|). Therefore,

|Dsξ| ≤ C−2
H t−2H ·4n3 ·C(H,n, t) (note that |b′

n(x)| ≤ 2n), and (3.5.24) holds.
We obtain that θ ∈ Dom δ, and the density pn

t (x) := pXn
t
(x) equals

pn
t (x) = E

{
1{Xn

t >x}δ
(

h

〈DXn
t , ht〉H

)}
.

Let ψ(y) := 1[a,b](y). Then from Proposition 2.1.1 (Nua95)

P{a ≤ Xn(t) ≤ b} =
∫ b

a

pn
t (x)dx

=
∫ b

a

E

{
1{Xn

t >x}δ
(

h

〈DXn
t , ht〉H

)}
dx

= E

((∫ Xn
t

−∞
ψ(x)dx

)
· δ
(

h

〈DXn
t , ht〉H

))

= E

(
ϕ(Xn

t )δ
(

h

〈DXn
t , ht〉H

))
=
(

ϕ(y) =
∫ y

−∞
ψ(z)dz

)
= E

(〈
Dϕ(Xn

t ),
h

〈DXn
t , ht〉H

〉
H

)
≤ 1

CHt2H
E (〈Dϕ(Xn

t ), h〉H)

= C1,Ht−2H

∫ b

a

E
(
1{Xn

t >x}δ(h)
)
dx

≤ C1,Ht−2HE|δ(h)|
∫ b

a

dx.

Therefore, pt
n(x) ≤ C2,Ht−2H , and P{a ≤ Xt ≤ b} = limn→∞ P{a ≤ Xn

t ≤
b} = C2,Ht−2H(b − a) for any continuous points of distribution function of
Xt. Choosing a ↑ 0, b ↓ 0, we obtain density pt(0) ≤ C2,Ht−2H . So, we have
proved the following result:

Theorem 3.5.14. Equation (3.5.20) with b(x) = signx has a strong solution.
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3.5.6 Estimates of Moments of Solutions for Regular Case
and H ∈ (0, 1/2)

Now we consider the case, when H ∈ (0, 1/2) and condition (3.5.19) holds.
Then equation (3.5.1) has a unique strong solution. Suppose, in addition,
that f ∈ Lp[0, T ] ∩ DH

p [0, T ] for some p > 1
H . Then the integral It = It(f)

is continuous on [0, T ] (see Section 1.11). Evidently, the solution Xt is also
continuous on [0, T ]. Let τN = inf{t > 0 : |Xt| ≥ N} ∧ T. Then |Xt∧τN

| ≤ N.
The solution admits the evident estimate

|Xt∧τN
| ≤ |X0|+ |It∧τN

|+ C

∫ t

0

(1 + |Xs∧τN
|)ds,

and for any r > 1

E|Xt∧τN
|r ≤ 3r

(
|X0|r + CrE(

∫ t

0
(1 + |Xs∧τN

|)ds)r + E|It∧τN
|r
)

≤ 3r|X0|r + (6C)rtr + (6C)rE
∫ t

0
|Xs∧τN

|rds · tr−1 + 3rE|It∧τN
|r

≤ g(t) + (6C)rtr−1
∫ t

0
|Xs∧τN

|rds.

(3.5.25)

Here
g(t) = 3r|X0|r + (6C)rtr + 3rE|I∗t |r. (3.5.26)

From the Gronwall inequality we obtain that

E|Xt∧τN
|r ≤ g(t)(1 + C1t

re
C1tr

r ),

where C1 = (6C)r.
Let N →∞, then it holds that

E|Xt|r ≤ g(t)(1 + C1t
re

C1tr

r ). (3.5.27)

Now, it follows from Theorem 1.10.6 and the part 2 of Remark 1.10.7, that
there exists a constant C(H, p) such that

‖I∗t ‖r ≤ C(H, p)
(

Γ

(
r + 1

2

))1/r

G1
p(0, t, f). (3.5.28)

It follows from (3.5.25)–(3.5.28) that

E|Xt|r ≤ g(t)
(
1 + C1t

re
C1tr

r

)
(3.5.29)

where g(t) = 3r|X0|r + (6C)rtr + 3rC(H, p)rΓ ( r+1
2 )r(G1

p(0, t, f))r. Estimate
(3.5.29) means that E|Xt|r < ∞, t ∈ [0, T ], and this permits us to reduce
the value of the multiplier g(t). Indeed, if we know that E|Xt|r <∞, we can
write the following inequality instead of (3.5.25):
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E|Xt|r ≤ E

(
|X0|+ |It|+ C

(∫ t

0

(1 + |Xs|)ds

))r

≤ g1(t) + C1t
r−1

∫ t

0

E|Xs|rds,

(3.5.30)

where from (1.9.10) and (1.10.4) g1(t) = (3|X0|)r + C1t
r + 3r sup0≤s≤t E|Is|r

≤ (3|X0|)r +C1t
r + C̃r(C(H, p))r(G1

p(0, t, f))r, C̃r = 3rCr, Cr = 2r/2

π1/2 Γ ( r+1
2 ).

Hence, from the Gronwall inequality it follows that

E|Xt|r ≤ g1(t)(1 + C1t
re

C1tr

r ). (3.5.31)

Let estimate similarly E|Xt −Xt′ |r, 0 ≤ t < t′ ≤ T.

E|Xt −Xt′ |r ≤ (2C)rE(
∫ t′

t
(1 + |Xs|)ds)r + 2rE| ∫ t′

t
f(s)dBH

s |r
≤ (4C)r(1 + g1(T )(1 + C1T

re
C1T r

r ))(t′ − t)r + 2rCr(Gp(t, t′, f))r,
(3.5.32)

where Gp(t, t′, f) = C(H, p)(‖f‖Lp(t,t′)(t′ − t)H−1/p + ‖f‖DH(t,t′)),

‖f‖DH(t,t′) = (
∫ t′

t
(
∫ t′

x
|f(x)− f(t)|(t− x)α−1dt)2dx)1/2.

Let f ∈ Cβ [0, T ] with α + β > 0, 0 < β < 1. Then

‖f‖Lp(t,t′) · (t′ − t)H−1/p ≤ ‖f‖Cβ [0,T ](t
′ − t)H ,

‖f‖DH(t,t′) ≤ ‖f‖Cβ [0,T ] · C1
H,β(t′ − t)H+β

with C1
H,β = (H + β − 1/2)−1(2H + 2β)−1/2. Therefore

E|Xt −Xt′ |r ≤ (4C)r(1 + g1(T )(1 + C1T
re

C1T r

r ))(t′ − t)r

+ 2rCr(CH,β,T )r (t′ − t)rH
,

(3.5.33)

where CH,β,T,p = C(H, p)(1 + C1
H,βT β) ‖f‖Cβ [0,T ]. Estimates (3.5.31) and

(3.5.33) can be strengthened by appropriate choice of partitions of [0, T ]. More
exactly, take t0 := (6C)−1. Then for 0 ≤ t ≤ t0 it follows from (3.5.30) that
E|Xt|r ≤ g1(t) + 6C

∫ t

0
E|Xs|rds, and from the Gronwall inequality

E|Xt|r ≤ g1 · e6Ct ≤ e · g1, 0 ≤ t ≤ t0,

where g1 = (3|X0|)r + 1 + C̃r(G1(0, T, f))r.
Further, for t0 ≤ t1 ≤ 2t0

E|Xt|r ≤ 3r|Xt0 |r + 3rE|
∫ t

t0

f(s)dBH
s |r + (6C)r(t− t0)r

+(6C)r(t−t0)r−1E

∫ t

t0

|Xs|rds ≤ 3rg1e+C̃r(G1(0, T, f))r+1+6C
∫ t

t0

|Xs|rds,
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whence
E|Xt|r ≤ g2e

6C(t−t0) ≤ g2e,

where g2 = 3rg1e + C̃r(G1(0, T, f))r + 1.
Further, by induction, for kt0 ≤ t ≤ (k+1)t0 we have that E|Xt|r ≤ gk+1e,

where gk+1 ≤ 3rgke+Br ≤ · · · ≤ (3re)k(g1+Br) for Br = C̃r(G1(0, T, f))r+1.
The number of such steps on the interval [0, T ] does not exceed

k =
[

T
t0

]
+ 1 ≤ 6CT + 1. It means that for any 0 ≤ t ≤ T

E|Xt|r ≤ (3re)6CT+1(g1 +Br) ≤ (3e)(6CT+1)r(3r|x|r +2+2C̃r(G1(0, T, f))r),
(3.5.34)

and similarly to (3.5.34) we obtain that

E|Xt −Xt′ |r ≤ (4C)r
Dr(t′ − t)r + 2rCr(G2(t, t′, f))r,

where
Dr = 1 + (3e)(6CT+1)r(g1 + Br)

= 1 + (3e)(6CT+1)r(2 + (3|X0|)r + 2C̃r(G1(0, T, f))r). (3.5.35)

For f ∈ Cβ [0, T ] with 0 < β < 1, H + β > 1/2 we have that

E|Xt −Xt′ |r ≤ (4C)r(1 + (3e)(6CT+1)r(g1 + Br))(t′ − t)r+

+ 2rCr (CH,β,T,p)
r (t′ − t)Hr, (3.5.36)

whence

E|Xt −Xt′ |r ≤ (4C)rDr(t′ − t)r + 2rCr (CH,β,T,p)
r (t′ − t)Hr. (3.5.37)

3.5.7 The Estimates of the Norms of the Solution in the Orlicz
Spaces

The results of Subsections 3.5.7– 3.5.9 were motivated by the papers (KM06)
and (KM07).

Let the function U(x) = exp{x2}−1, (Ω,F , P ) be some probability space.

Definition 3.5.15. The Orlicz space LU (Ω) generated by the function U(x)
is the space of random variables ξ on (Ω,F), such that for some constant
Cξ > 0 EU( ξ

Cξ
) <∞.

The next result is proved in the monograph (BK00).

Theorem 3.5.16. The Orlicz space LU (Ω) is the Banach space with respect
to the Luxemburg norm

‖ξ‖U = inf{r > 0 : E exp
{

ξ2

r2

}
≤ 2}.
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Let T be some set of parameters.

Definition 3.5.17. The random process Y = {Yt, t ∈ T} belongs to the space
LU (Ω), if for any t ∈ T the random variable Yt belongs to this space.

Introduce the notations a := (3e)6CT+1, b := 3|X0|a, c := 3aG1(0, T, f),
c1 = c

√
2, d := max {c1, a

√
e, b
√

e}, h := (3 + 2
√

2) exp{ d2

2c2 }.
Theorem 3.5.18. Let the conditions of the Theorem 3.5.11 hold and
{Xt, t ∈ [0, T ]} be the solution of equation (3.5.1). Then for any ε > 0

P{|Xt| ≥ ε} ≤ h exp
{
− ε2

2c2

}
. (3.5.38)

Proof. The next inequality follows from (3.5.34):

E|Xt|r ≤ 2ar + br +
2cr

1√
π

Γ

(
r + 1

2

)
. (3.5.39)

Furthermore, from the Stirling formula

Γ (u) =
√

2πuu−1/2e−ueθ(u) with θ(u) <
1
2u

, u ≥ 1,

we obtain that

Γ
(

r+1
2

) ≤ √2π
(

r+1
2

)r/2 · exp
{− r+1

2

}
exp
{

1
6(r+1)

}
=
√

2πrr/2(2e)−r/2(1 + 1/r)r/2 exp
{
− 1

2 + 1
6(r+1)

}
.

It is easy to see that for r ≥ 1

h(r) := (1 + 1/r)r/2 exp
{
−1

2
+

1
6(r + 1)

}
≤ 1.

Indeed,
lnh(r) = r

2 ln(1 + 1
r )− 1

2 + 1
6(r+1)

≤ r
2

(
1
r − 1

2r2 + 1
3r3

)− 1
2 + 1

6(r+1) = 2−r−r2

12(r+1)r2 ≤ 0

for r ≥ 1, i.e.

Γ

(
r + 1

2

)
≤
√

2π(2e)−r/2rr/2. (3.5.40)

It follows from (3.5.39) and (3.5.40) that

E|Xt|r ≤ 2ar + br + 2
√

2lrrr/2, (3.5.41)

where l = c√
e
.

It follows from (3.5.41) and the Chebyshov inequality that
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P{|Xt| ≥ ε} ≤ E|Xt|r
εr

≤ 2
(a

ε

)r

+
(

b

ε

)r

+ 2
√

2
(

l

ε

)r

rr/2. (3.5.42)

We put r =
(

ε
l

)2 1
e , where ε > l

√
e, and obtain the inequality

P{|Xt| ≥ ε} ≤ 2
(

a
ε

)( ε
l )

2 1
e +
(

b
ε

)( ε
l )

2 1
e + 2

√
2 exp

{
− ( ε

l

)2 1
2e

}
= exp

{(
ln b

ε

) (
ε
l

)2 1
e

}
+ 2 exp

{(
ln a

ε

) (
ε
l

)2 1
e

}
+ 2
√

2 exp
{
− ( ε

l

)2 1
2e

}
.

(3.5.43)
Let ln a

ε ∨ ln b
ε ≤ − 1

2 , i.e. ε ≥ (a ∨ b)
√

e.

Then

P{|Xt| ≥ ε} ≤ (3+2
√

2) ·exp
{
− ε2

2el2

}
= (3+2

√
2) ·exp

{
− ε2

2c2

}
. (3.5.44)

Evidently, (3.5.44) holds for ε ≥ d. But exp
{

d2

2c2

}
≥ 1, so it follows from

(3.5.44) that inequality (3.5.38) holds for any ε > 0. 	

Theorem 3.5.19. Let the conditions of Theorem 3.5.11 hold and
{Xt, t ∈ [0, T ]} be the solution of equation (3.5.1). Then the random variable
Xt belongs to the Orlicz space LU (Ω), and its norm in this space admits an
estimate

‖Xt‖U ≤
√

2(1 + h)c.

Proof. The statement of this theorem follows from Theorem 3.5.18 and the
next lemma, which is the partial case of Theorem 2.3.4 (BK00). 	

Lemma 3.5.20. Let ξ be a random variable such that for any ε > 0
P{|ξ| ≥ ε} ≤ C1 exp

{
− ε2

2C2
2

}
for some Ci > 0, i = 1, 2. Then ξ ∈ LU (Ω) and

‖ξ‖U ≤
√

2(1 + C1)C2.

Now introduce the notations
B1 := 2(

√
e)−1/2CH,β,T,p, B2 := 4C c√

e
T 1−H , B3 := 4C(1 + 2a + b)T 1−H ,

B4 := B1 + B2, B5 := (2
√

2 + 1) exp
{

B3∨B4
2B2

4

}
, B6 := B4

√
e,

B7 :=
√

2(1 + B5)B6.

Theorem 3.5.21. Let {Xt, t ∈ [0, T ]} be the solution of equation (3.5.1),
the conditions of Theorem 3.5.11 hold and the function f ∈ Cβ [0, T ] with
H + β > 1/2. Then for any ε > 0 and 0 ≤ t < t′ ≤ T

P{|Xt′ −Xt| ≥ ε} ≤ B5 exp
{
− ε2

2B2
6(t′ − t)2H

}
(3.5.45)

and
‖Xt′ −Xt‖U ≤ B7(t′ − t)H . (3.5.46)
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Proof. Inequality (3.5.46) follows from (3.5.45) and Theorem 3.5.19. So we
prove only (3.5.45). It follows from inequalities (3.5.37) and (3.5.40) that

E|Xt′ −Xt|r ≤
(√

2Br
1rr/2 + 2

√
2Br

2rr/2 + Br
3

)
(t′ − t)rH .

So, for any ε > 0

P{|Xt′ −Xt| ≥ ε} ≤
((√

2
(

B1
ε

)r
+ 2
√

2
(

B2
ε

)r)
rr/2 +

(
B3
ε

)r)
(t′ − t)rH

≤
(
2
√

2
(

B4
ε

)r
rr/2 +

(
B3
ε

)r)
(t′ − t)rH .

Now we substitute r = 1
e

(
ε

(t′−t)HB4

)2

and obtain for r ≥ 1, i.e. for

ε > (t′ − t)HB6, that for q(ε) := ε2

2(t′−t)2HB2
6

P{|Xt′ −Xt| ≥ ε} ≤ 2
√

2 exp {−q}+ exp
{
ln
(

B3
e (t′ − t)H

) · q} .

Also, let ln
(

B3
ε (t′ − t)H

) ≤ − 1
2 , i.e. ε ≥ √e(t′ − t)HB3.

Then for ε ≥ ε0, where ε0 := (B3 ∨B4)
√

e(t′ − t)H we have an inequality

P{|Xt′ −Xt| ≥ ε} ≤ (2
√

2 + 1) exp {−q(ε)} ≤ B5 exp {−q(ε)} .

If 0 < ε < ε0, then

P{|Xt′ −Xt| ≥ ε} ≤ (2
√

2 + 1) exp {q(ε0)} exp {−q(ε)} = B5 exp {−q(ε)} .

	

Corollary 3.5.22. Let {Xt, t ∈ [0, T ]} be a solution of equation (3.5.1) for
which the conditions of Theorem 3.5.11 hold and the function f ∈ Cβ [0, T ]
with H + β > 1/2. Then for any λ ∈ R

E exp {λ|Xt′ −Xt|} ≤ 2 exp
{

λ2

4
B2

7(t′ − t)2H

}
.

This statement follows directly from (3.5.46) and the following lemma,
which is a partial case of Lemma 2.3.4 (BK00).

Lemma 3.5.23. If the random variable ξ belongs to the space LU (Ω) , where
U (x) = = exp

{
x2
}− 1, then for any λ ∈ R

E exp {λ|ξ|} ≤ 2 exp
{

λ2‖ξ‖2U
4

}
.
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3.5.8 The Distribution of the Supremum of the Process X on [0, T ]

First we present some facts from the theory of stochastic processes that belong
to the Orlicz spaces.

Let T be some infinite set of parameters, Y = {Yt, t ∈ T} be some
real-valued process from the space LU (Ω), where U(x) = exp{x2} − 1,
supt∈T

‖Yt‖U <∞, ρY (t, s) = ‖Yt − Ys‖U be a semi–metric on T.
Let the space (T, ρY ) be separable and the process Yt be a separable process

on (T, ρY ). Also, let N (ε) = N (T, ε) be the metric capacity of (T, ρY ), i.e.
the minimal number of closed balls of radius ε that cover (T, ρY ). Note that
N (ε) → ∞ as ε → 0. (See also the beginning of Section 1.10, where similar
questions are discussed for Gaussian processes.)

The next theorem is a partial case of Theorem 3.3.4 (BK00).

Theorem 3.5.24. Let the following assumption holds:∫ ε0

0

(ln(1 +N (ε)))1/2dε <∞,

where ε0 := sup
t,s∈T

ρY (t, s). Then the random variable sup
t∈T

|Yt| belongs to the

space LU (Ω) and

‖ sup
t∈T

|Yt|‖U ≤ K := inf
t∈T

‖Yt‖U +
e2

θ(1− θ)

∫ θε0

0

(ln(1 +N (ε)))1/2dε <∞,

(3.5.47)
where 0 < θ < 1 and N (θε0) > e2 − 1.

Remark 3.5.25. The statement of the theorem remains true if we replace N (ε)
by any function N1(ε) ≥ N (ε).
Remark 3.5.26. Under the assumption of Theorem 3.5.24 for any ε > 0 we
have that

P{sup
t∈T

|Yt| ≥ ε} ≤ 2 exp
{
− ε2

K2

}
, (3.5.48)

where K was defined in (3.5.47).
Inequality (3.5.48) is implied by the following one: if ξ ∈ LU (Ω), then for

any ε > 0

P{|ξ| ≥ ε} ≤ 2 exp
{
− ε2

‖ξ‖U

}
. (3.5.49)

In turn, inequality (3.5.49) is a partial case of Theorem 3.3.4 (BK00).

Theorem 3.5.27. Let {Yt, t ∈ T = [a, b]} be the separable process from the
space LU (Ω), and let there exist σ = σ(h) : [0, b − a] → R+, increasing and
continuous in h, and such that σ(0) = 0 . Also, let

sup
|t−s|≤h

‖Yt − Ys‖U ≤ σ(h), (3.5.50)
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and ∫ ε̂0

0

(
ln
(

1 +
3(b− a)

2σ(−1)(u)

))1/2

du <∞,

where σ(−1)(u) is the inverse function to σ(u), and ε̂0 = σ(b− a).
Then sup

t∈[a,b]

|Yt| ∈ LU (Ω) and the following estimate holds:

∥∥∥∥∥ sup
t∈[a,b]

|Yt|
∥∥∥∥∥

U

≤ K1 := inf
t∈T

‖Yt‖U

+
e2

θ(1− θ)

∫ θε̂0

0

(
ln
(

1 +
3
2

b− a

σ(−1)(u)

))1/2

du. (3.5.51)

Here θ is any number from the interval⎛⎝0, 1 ∧
σ
(

3(b−a)
2(e2−1)

)
σ(b− a)

⎞⎠ . (3.5.52)

Moreover, for any ε > 0, we have the estimate

P{ sup
t∈[a,b]

|Yt| ≥ ε} ≤ 2 exp
{
− ε2

K2
1

}
. (3.5.53)

Proof. The claim follows from Theorem 3.5.24 with T = [a, b]. Indeed, ac-
cording to (3.5.50), the process Y is separable in the space ([a, b], ρY ), where
ρY (t, s) = ‖Yt − Ys‖U . It is easy to see that N (u) ≤ b−a

2σ(−1)(u)
+ 1, and for

0 < u ≤ ε̂0, i.e. for b−a
σ(−1)(u)

≥ 1, we have that N (u) ≤ 3
2

b−a
σ(−1)(u)

. Therefore

∫ θε̂0

0

(ln (1 +N (u)))1/2
du ≤

∫ θε̂0

0

(
ln
(

1 +
3
2

b− a

σ(−1)(u)

))1/2

du.

The inequality N (θε̂0) > e2 − 1 can be reduced, according to Remark 3.5.25,
to the inequality 3(b−a)

2σ(−1)(θε̂0)
> e2−1, i.e. to (3.5.52). Inequality (3.5.53) follows

now from (3.5.48). 	

Theorem 3.5.28. Let the condition of Theorem 3.5.11 hold,
{Xt, t ∈ T = [0, T ]} be the solution of equation (3.5.1) and 0 ≤ t1 < t2 ≤ T .
Then the random variable sup

t1≤t≤t2

|Xt| ∈ LU (Ω), and

∥∥∥∥ sup
t1≤t≤t2

|Xt|
∥∥∥∥

U

≤ (h + 1)c1 + e2CH,γθ−
γ

2H
(t2 − t1)H

1− θ
=: L, (3.5.54)

where 0 < θ <
(

3
2(e2−1)

)H , 0 < γ < 2H, CH,γ = ( 3
2 )

γ
2 HB7

γ(H− γ
2 ) .
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Moreover, for any ε > 0

P{ sup
t1≤t≤t2

|Xt| ≥ ε} ≤ 2 exp
{
− ε2

L2

}
. (3.5.55)

Proof. We use Theorem 3.5.27 with [a, b] = [t1, t2]. The process Xt is con-
tinuous with probability 1, hence is separable. It follows from (3.5.46) that
σ(h) = B7h

H . It is easy to see that in this case ε̂0 = σ(t2 − t1) and

I(θε̂0) :=
∫ θε̂0

0

(
ln
(
1 + 3

2
t2−t1

σ(−1)(u)

))1/2

du

= HB7

∫ σ(−1)(θε̂0)

0

(
ln
(
1 + 3

2
t2−t1

v

))1/2
vH−1dv.

(3.5.56)

Since for 0 < γ ≤ 1 and x > 0

ln(1 + x) =
1
γ

ln((1 + x)γ) ≤ 1
γ

ln(1 + xγ) ≤ xγ

γ
,

we obtain from (3.5.56) the following estimate for any 0 < γ < 2H:

I(θε̂0) ≤
(

3
2

) γ
2 HB7 · 1

γ

∫ σ(−1)(θε̂0)

0
vH−1− γ

2 dv · (t2 − t1)
γ
2

= CH,γ(t2 − t1)
γ
2 (σ(−1)(θε̂0))H− γ

2 .

Evidently,
σ(−1)(θε̂0) = θ

1
H σ(−1)(ε̂0) = θ

1
H (t2 − t1).

Therefore
I(θε̂0) ≤ CH,γθ1− γ

2H (t2 − t1)H . (3.5.57)

Now the proof follows from (3.5.56)–(3.5.57) and Theorems 3.5.19 and 3.5.27.
	


Remark 3.5.29. Estimate (3.5.54) demonstrates that up to constants the esti-
mates for distribution of the supremum of the process X are of the same form
as similar estimates for the Gaussian process (see (Fer74), for example).

Corollary 3.5.30. Let {Xt, t ∈ [0, T ]} be a solution of equation (3.5.1) under
the conditions of Theorem 3.5.11 and 0 ≤ t1 < t2 ≤ T. Then for any p ≥ 1
we have an estimate (

E

(
sup

t1≤t≤t2

|Xt|
)p) 1

p

≤ Cp · L, (3.5.58)

where L is defined in (3.5.54) and Cp = 2
1
p

√
p

2 .

Proof. This statement follows from Theorem 3.5.28. Indeed, it was established
in Lemma 2.33 (BK00), that for the random variable ξ ∈ LU (Ω) , U (x) =
exp
{
x2
}−1 and p ≥ 1 (E |ξ|p) 1

p ≤ Cp‖ξ‖U . Now (3.5.58) follows from (3.5.54).
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Corollary 3.5.31. Let {Xt, t ∈ [0, T ]} be the solution of equation (3.5.1),
0 ≤ t1 < t2 ≤ T. Then for any λ ∈ R

E exp
{

λ sup
t1≤t≤t2

|Xt|
}
≤ 2 exp

{
λ2L2

4

}
.

This estimate follows from Theorem 3.5.27 and Lemma 3.5.23.

3.5.9 Modulus of Continuity of Solution of Equation Involving
Fractional Brownian Motion

Definition 3.5.32. We say that the C-function U(x) (C-function is continu-
ous, even, convex function that increases in x > 0 and is zero at the zero point)
satisfies the ∆2-condition if there exist such constants x0 > 0 and L0 > 1,
that U2(x) ≤ U(L0x) for x ≥ x0.

Example 3.5.33. The function U(x) = exp
{
x2
}−1 satisfies ∆2-condition with

x0 := 0 and L0 :=
√

2.

Theorem 3.5.34. Let {Yt, t ∈ T} be a stochastic process from the Orlicz space
LU (Ω), where the function U(x) satisfies the ∆2-condition with constants x0,
L0, and let Z0 := x0∨L0. Let ρY (t, s) = ‖Yt−Ys‖U , t, s ∈ T be a semi-metric
generated by Y. Also, let (T, ρY ) be the separable space and the process Y be
the separable process in the space (T, ρY ) . Put ε0 := sup

t,s∈T

ρY (t, s), let N (u) be

the minimal number of closed u-balls covering (T, ρY ) , N1(u) ≥ N (u), u > 0
and let N1(u) increase in u. If for any ε > 0

q(ε) :=

ε∫
0

U (−1) (N1(u)) du <∞, (3.5.59)

then for any ε ∈ (0, ε0) such that N1(ε0) ≥ U(Z0), and for any x ≥ Z0

P

{
sup

0<ρY (t,s)≤ε

|Yt − Ys|
C0q(ρY (t, s))

≥ x

}
≤ 3 +

√
2

U(x)
. (3.5.60)

Moreover, with probability 1

lim
ε↓0

sup
∆Yε

C0Z0q (ε)
≤ 1,

where ∆Yε = sup
0<ρY (t,s)≤ε

|Yt − Ys|, C0 = 3L0 (5 + 4L0) .

Proof. For N1(u) = N (u) the theorem is proved in the book (BK00). If we
replace N (u) for N1(u), the proof will not change substantially. 	
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Corollary 3.5.35. Let {Yt, t ∈ T = [a, b]} be the separable stochastic process
from the space LU (Ω), U(x) = exp

{
x2
} − 1. Let for some D0 > 0 and

0 < β ≤ 1
sup

s,t∈[a,b],|t−s|≤h

‖Yt − Ys‖U ≤ D0h
β . (3.5.61)

Then for any x >
√

2, 0 < δ ≤ b−a
2(e2−2) the inequality holds

P

⎧⎪⎨⎪⎩ sup
0 < |t − s| ≤ δ,

s, t ∈ [a, b]

|Yt − Ys|
D1g (D0|t− s|β)

≥ x

⎫⎪⎬⎪⎭ ≤ 3 +
√

2
U(x),

(3.5.62)

where g (ε) :=
ε∫
0

(
ln

(
2 + (b−a)D

1
β
0

2u
1
β

)) 1
2

du, D1 = 3
√

2
(
5 + 4

√
2
)
.

Moreover, with probability 1

lim
δ↓0

sup
∆̂Yδ

D1

√
2g (D0 · δβ)

≤ 1, (3.5.63)

where ∆̂Yδ = sup
0<|t−s|≤δ

|Yt − Ys|.

Proof. As we have seen from Example 3.5.33, the C-function U(x) =
exp
{
x2
} − 1 satisfies the ∆2-condition with x0 = 0, L0 =

√
2 (so,

Z0 =
√

2). Moreover, U (−1) (x) = (ln (1 + x))
1
2 , x > 0, and q (ε) =

ε∫
0

(ln (1 +N1(u)))
1
2 du. Since in this case N (u) ≤ D

1
β
0 (b−a)

2u
1
β

+ 1, we can put

N1 (u) = D
1
β
0 (b−a)

2u
1
β

+1. It means that q (ε) =
ε∫
0

(
ln

(
2 + (b−a)D

1
β
0

2u
1
β

)) 1
2

du =

g (ε) . Therefore,

sup
0<|t−s|≤δ

|Yt − Ys|
D1g (D0|t− s|β)

≤ sup
0<ρY (t,s)≤D0δγ

|Yt − Ys|
D1g (ρY (t, s))

.

Now (3.5.62) follows from (3.5.60), since separability of Y and (3.5.61) imply
its separability in the space (T, ρY ) with T = [a, b] . Inequality (3.5.63) is
proved similarly. The restriction on ε follows from the inequality
N1(ε) ≥ U(Z0) = e2 − 1. 	


The next result follows from Corollary 3.5.35.

Theorem 3.5.36. Let {Xt, t ∈ [0, T ]} be the solution of equation (3.5.1) un-

der the condition of Theorem 3.5.21, f(y) :=
y∫
0

(
ln
(
2 + 1

2v− 1
H

)) 1
2

dv, y > 0.

Then for any x ≥ √2, 0 ≤ t1 < t2 ≤ T , 0 < δ ≤ t2−t1
2(e2−2)
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P

⎧⎪⎨⎪⎩ sup
0 < |t − s| ≤ δ
t, s ∈ [t1, t2]

|Xt −Xs|
B7D1(t2 − t1)Hf

(
|t−s|H

(t2−t1)H

) ≥ x

⎫⎪⎬⎪⎭ ≤ 3 +
√

2
U (x)

. (3.5.64)

Moreover, with probability 1

lim
δ↓0

sup

sup
|t − s| ≤ δ

t, s ∈ [t1, t2]

|Xt −Xs|

B7D1(t2 − t1)Hf
(

δH

(t2−t1)H

) ≤ 1. (3.5.65)

Proof. It follows from Theorems 3.5.19, 3.5.21 and Corollary 3.5.35. Indeed,
in this case T = [t1, t2], β = H, D0 = B7,
g
(
D0|t− s|H) = f

(
|t−s|H

(t2−t1)H

)
D0(t2 − t1)H . 	


Definition 3.5.37. Let (T, ρ) be a metric space, Θ = {Θ(u), u ≥ 0} be a mod-
ulus of continuity (see Definition 1.16.1). The family of functions {yt, t ∈ T}
such that

sup
t, s ∈ T

t �= s

|yt − ys|
Θ(ρ(t, s))

<∞

is called the Lipschitz space ΛΘ(T, ρ).

(Compare with the Definition 1.16.3; note that now our process is not
Gaussian.)
Remark 3.5.38. Theorem 3.5.36 states that the solution of equation (3.5.1)
under the conditions of this theorem with probability 1 belongs to the space
ΛΘ(T, ρ), where T = [t1, t2], ρ(t, s) = |t− s|, Θ(x) = f

(
xH

(t2−t1)H

)
, and in-

equality (3.5.64) gives the estimates of the distribution of the norm of Xt in
this space.

Corollary 3.5.39. Let {Xt, t ∈ [0, T ]} be the solution of equation (3.5.1)
under the conditions of Theorem 3.5.36. Then for any 0 < γ < 2H with
probability 1 the trajectories of Xt belong to the space ΛΘ(T, ρ), where T =
[t1, t2] ⊂ [0, T ],

ρ(s, u) = |s− u| , Θ(x) = CH,γ,1x
H− γ

2 ,

CH,γ,1 = B7D1CH,γ(t2 − t1)
γ
2 , CH,γ = γ−1/2(2H − γ + 21+γ/2H)(2H − γ)−1.

Moreover, for x >
√

2 and δ < (t2 − t1) ∧ δ0

P

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ sup
0 < |t− u| < δ,

t, u ∈ [t1, t2]

|Xt −Xu|
Cγ |t− u|H− γ

2
> x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ≤
3 +
√

2
U (x)

. (3.5.66)
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Proof. From the inequality ln(1 + x) ≤ 1
γ xγ , x > 0, 0 < γ ≤ 1 it is easy to

obtain for δ < (t2 − t1)

f
(
δH (t2 − t1)

−H
)
≤

(
δ

t2−t1

)H∫
0

(
ln
(

1
2
v− 1

H + 2
)) 1

2

dv

≤

(
δ

t2−t1

)H∫
0

1 + 2γ/2v− γ
2H

γ
1
2

dv ≤ γ− 1
2

(
δ

t2 − t1

)H

+ 2γ/2 γ− 1
2

1− γ
2H

(
δ

t2 − t1

)H− γ
2

≤ CH,γ

(
δ

t2 − t1

)H− γ
2

, (3.5.67)

and the proof immediately follows from (3.5.64) and (3.5.65). 	




4

Filtering in Systems with Fractional Brownian
Noise

4.1 Optimal Filtering of a Mixed
Brownian–Fractional-Brownian Model with Fractional
Brownian Observation Noise

Consider the real-valued signal process Xt and the observation process Yt

defined by the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = η +
∫ t

0

a(s,Xs)ds +
N∑

i=1

∫ t

0

bi (s,Xs) dW i
s

+
M∑

j=1

∫ t

0

cj(s)dBHj
s , t ∈ [0, T ] ,

Yt = ξ +
∫ t

0

A (s,Xs) ds +
∫ t

0

C(s)dBH
s ,

(4.1.1)

where {W i, 1 ≤ i ≤ N} are independent Wiener processes,
{BHj , 1 ≤ j ≤ M} are independent fractional Brownian motions with Hurst
indices Hj ∈ ( 1

2 , 1), BH is an fBm with Hurst index H ∈ ( 1
2 , 1), all the

processes are mutually independent, random initial conditions (η, ξ) are in-
dependent of each other and independent of all the processes (W i, BHj , BH),
the functions a, b, A : [0, T ] × R → R, cj , C : [0, T ] → R are measurable in
their variables and satisfy the conditions that are sufficient for the existence
of pathwise integrals w.r.t. corresponding fBms.

The problem is to construct the optimal filter of the signal X according
to the observation Y , which will be expressed in terms of the conditional
expectation πt(X) := E(Xt/FY

t ), where FY
t := σ{Ys, 0 ≤ s ≤ t}.

Note that the partial cases of this problem were considered in (KLeBR99),
(KLeBR00), where N = 1, cj = 0 (see also (KKA98b), (LeB98)), and in
(Pos05), where bi = 0. Suppose that the following condition holds:

(i) the function C ∈ LH
2 (R), does not vanish and 1/C(s) is bounded on

[0, T ], cj ∈ LH
2 (R).
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Here we use the approach to the solution of optimal filtering problem
developed in (KLeBR00) but simplify it and modify it in accordance with our
model (4.1.1).

Introduce the following processes, connected with fBm BH :

Z∗
t :=

∫ t

0

lH(t, s)C−1(s)dYs =
∫ t

0

lH(t, s)D(s,Xs)ds

+
∫ t

0

lH(t, s)dBH
s = Jt(D) + MH

t , (4.1.2)

where Jt(D) =
∫ t

0
lH(t, s)D(s,Xs)ds, MH

t is the Molchan martingale, intro-
duced in (1.8.5), D(s,Xs) = A(s,Xs)/C(s). Recall that

lH(t, s) = C
(5)
H s−α(t− s)−α1{0<s<t}, α = H − 1

2
.

Suppose that the functional D satisfies the condition

(ii)
∫ t

0

s−α(t− s)−α|D(s,Xs)|ds <∞ P-a.s., so the integral Jt(D) exists.

Moreover, suppose that
(iii) D(s, xs)s−α ∈ Iα

0+(L1[0, T ]), i.e. there exists the fractional derivative

d

dt

∫ t

0

(t− s)−αs−αD(s, xs)ds = Γ (1− α)Dα
0+(D(u, xu)u−α)(t)

= Γ (1− α)t−2α
(
D(t, xt) + α

∫ t

0

D(t, xt)tα −D(u, xu)t2αu−α

(t− u)1+α
du
)

=: Γ (1− α)t−2αE(t, x) ∈ L1[0, T ],

where xt is any Hölder function from C1/2−[0, T ]; for example, sufficient con-
dition is

(iii’) D(t, xt)t−α ∈ Cα+ε[0, T ] for some ε > 0.
Then the integral

Jt(D) = Γ (1− α)C(5)
H

∫ t

0

E(s,X)s−2αds

has a.s. bounded variation, so, it follows from (4.1.2) that Z∗
t is the semi-

martingale w.r.t. the σ-field Ft := σ{ η, ξ, Xs, W i
s , 1 ≤ i ≤ N, B

Hj
s ,

1 ≤ j ≤M, Ys, 0 ≤ s ≤ t } and admits the representation

Z∗
t = MH

t + CH

∫ t

0

E(s,X)s−2αds, CH = Γ (1− α)C(5)
H , (4.1.3)

and, in addition, Z∗
t is FY

t -adapted.
Further, let
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νt := Z∗
t − CH

∫ t

0

πs(E(s,X))s−2αds, (4.1.4)

where πs(Q) := E(Q/FY
s ), It follows from (4.1.4) and (4.1.3) that

νt = CH

∫ t

0

(
E(s,X)− πs(E(s,X))

)
s−2αds + MH

t .

Moreover, for 0 ≤ s < t ≤ T

E(νt − νs/FY
s ) = E(MH

t −MH
s /Fs/FY

s ) = 0,

and the integral CH

∫ t

0

(
E(s,X)−πs(E(s,X))

)
s−2αds is continuous and has

a bounded variation. Hence 〈ν〉t = t1−2α, where 〈ν〉t is calculated w.r.t. the
filtration {FY

t , 0 ≤ t ≤ T}. So, ν is a continuous Gaussian martingale w.r.t.
this filtration. (Evidently, ν is adapted to this filtration since Z∗

t is adapted.)
Further we need the following evident result.

Lemma 4.1.1. Any square-integrable martingale {Mt,FY
t , t ∈ [0, T ]} with

M0 = 0 admits the representation

Mt =
∫ t

0

ϕsdνs, t ∈ [0, T ],

where the process ϕt is FY
t -adapted and E

∫ t

0
ϕ2

ss
−2αds <∞.

The next statement is proved similarly to Theorem 18.11 (Ell82); see also
Theorem 3 (KLeBR00). For any integrable process X, let X̂t := E(Xt/FY

t ).

Theorem 4.1.2. Let {St,Ft, t ∈ [0, T ]} be the semimartingale of the form

St = S0 +
∫ t

0

αsds + mt, t ∈ [0, T ],

where ES2
0 < ∞, E

∫ T

0
α2

sds < ∞ and {mt,Ft, t ∈ [0, T ]} be a square inte-
grable martingale with mutual bracket 〈m,MH〉t =

∫ t

0
λss

−2αds.

Then the process {Ŝt, t ∈ [0, T ]} satisfies the following stochastic differen-
tial equation:

Ŝt = Ŝ0+
∫ t

0

α̂sds+
∫ t

0

(
λ̂s+CH

(
̂SsE(s,X)−Ŝsπs(E(s,X))

))
dνs, t ∈ [0, T ].

Proof. If we define the FY
t -adapted process

Mt := Ŝt − Ŝ0 −
∫ t

0

α̂sds, (4.1.5)
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then for s ≤ t E(Mt −Ms/FY
s ) = E(Ŝt − Ŝs/FY

s )− ∫ t

s
α̂udu

= E(
∫ t

s
αudu/FY

s )− ∫ t

s
α̂udu = 0.

Therefore, Mt is a FY
t -square-integrable martingale. By Lemma 4.1.1, Mt

admits the representation

Mt =
∫ t

0

ϕsdνs, t ∈ [0, T ], (4.1.6)

whence

Ŝt = Ŝ0 +
∫ t

0

α̂sds +
∫ t

0

ϕsdνs.

Now we use the same reasonings as in Theorem 18.11 (Ell82). On the one
hand, with the help of (4.1.3) the product StZ

∗
t can be decomposed by the

Itô formula as

StZ∗
t =
∫ t

0

Ss(dMH
s + CHE(s,X)s−2αds) +

∫ t

0

Z∗
s (αsds + dms)

+
∫ t

0

λss
−2αds,

whence

ŜtZ∗
t = ŜtZ∗

t =
∫ t

0

(CH
̂SsE(s,X)s−2α

+ α̂sZ∗
s + λ̂ss

−2α)ds + N1
t , (4.1.7)

where N1
t is continuous FY

t -martingale.
On the other hand, using (4.1.4) and (4.1.5)–(4.1.6) we obtain the following

decomposition for ŜtZ∗
t :

ŜtZ∗
t =
∫ t

0

(Z∗
s α̂s + CH Ŝsπs(E(s,X))s−2α + ϕss

−2α)ds + N2
t , (4.1.8)

where N2
t is a continuous FY

t - martingale. It follows from (4.1.7)–(4.1.8) that
N1 = N2 and λ̂s + CH

̂SsE(s,X) = CH Ŝsπs(E(s,X)) + ϕs, whence the proof
follows. 	


Now we can establish the form of the optimal filter in our model. In this
order we rewrite all the integrals

∫ t

0
cj(s)dB

Hj
s , 1 ≤ j ≤M, by using Theorem

1.8.3, in the form ∫ t

0

cj(s)dBHj
s =

∫ t

0

K
cj

Hj
(t, s)dMHj

s ,

where

KC
H(t, s) = C

(7)
H

∫ t

s

C(u)uα(u− s)α−1du.
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Further, consider for any t ∈ [0, T ] the process

Xt
u := η +

∫ u

0

a(s,Xs)ds +
N∑

i=1

∫ u

0

bi(s,Xs)dW i
s

+
M∑

j=1

∫ u

0

K
cj

Hj
(t, s)dMHj

s , 0 ≤ u ≤ t, (4.1.9)

so that Xt
t = Xt from (4.1.1).

Evidently, {Xt
u, 0 ≤ u ≤ t} is the semimartingale with respect to the

filtration {Ft, 0 ≤ t ≤ T}. Therefore we can use Theorem 4.1.2 to establish
the following result.

Theorem 4.1.3. Let φ ∈ C2
b (R), πt(φ) = E(φ(Xt)/FY

t ),

Lt
sφy(x) = a(s, y)φ′(x) +

1
2

N∑
i=1

b2
i (s, y)φ′′(x) +

M∑
j=1

βj(K
cj

Hj
(t, s))2s−2αj φ′′(x),

0 ≤ s ≤ t ≤ T, βj = 1− 2αj, and the conditions (i)–(iii) hold.
Then the equation for the optimal filter πt has the form:

πt(φ) = π0(φ) +
∫ t

0

πs(Lt
sφXs

(Xt
s))ds + CH

∫ t

0

(πt
s(φE)− πt

s(φ)πs(E))dνs,

where πt
s(φE) = E(φ(Xt

s)E(s,X)/FY
s ), πt

s(φ) = E(φ(Xt
s)/FY

s ),
πs(E) = πs(E(s,X)).

Proof. It follows from (4.1.9) that Xt is a “boundary” value of the semimartin-
gale Xt

u, 0 ≤ u ≤ t.

Since φ(Xt
u) = φ(η) +

∫ u

0

(φ′(Xt
s)a(s,Xs) +

1
2

N∑
i=1

φ′′(Xt
s)b

2
i (s,Xs)

+
M∑

j=1

(1− 2αj)(K
cj

Hj
(t, s))2s−2αj φ′′(Xt

s))ds +
N∑

i=1

∫ u

0

φ′(Xt
s)bi(s,Xs)dW i

s

+
M∑

j=1

∫ u

0

φ′(Xt
s)K

cj

Hj
(t, s)dMHj

s and λ̂s = 0 in our case, the proof immediately

follows from Theorem 4.1.2. 	


4.2 Optimal Filtering in Conditionally Gaussian Linear
Systems with Mixed Signal and Fractional Brownian
Observation Noise

Now we suppose that the real-valued signal process {Xt, t ∈ [0, T ]} and the
observation process {Yt, t ∈ [0, T ]} satisfy the following system of equations:
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Xt = η +
∫ t

0

a(s)Xsds +
N∑

i=1

∫ t

0

bi(s)dW i
s

+
M∑

j=1

∫ t

0

cj(s)dBHj
s ,

Yt = ξ +
∫ t

0

A(s)Xsds +
∫ t

0

C(s)dBH
s , t ∈ [0, T ]

(4.2.1)

where {W i, 1 ≤ i ≤ N} are independent Wiener processes, {BHj , 1 ≤
j ≤ M} are independent fBms with Hurst indices Hj ∈ ( 1

2 , 1), BH is
an fBm with Hurst index H ∈ (1

2 , 1), W i, BHj , BH are mutually indepen-
dent, random initial conditions (η, ξ) are independent of all the processes
(W i, BHj , BH), a, bi, cj , A, C : [0, T ] → R, are bounded measurable func-
tions which satisfy the conditions sufficient for the existence of Lebesgue in-
tegrals, corresponding pathwise integrals w.r.t. fBms and Itô integrals w.r.t.
Wiener processes.

As before we suppose that C(s) does not vanish and 1/C(s) is a bounded
function on [0, T ]. Suppose also that the conditional distribution π0 := E(η/ξ)
is Gaussian. Under these assumptions the mutual distribution of the pair
(X,Y ) is well-defined, and this pair is conditionally Gaussian pair, i.e., for
any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t ≤ T the joint conditional distribu-
tion of (Xt1 , . . . , Xtn

) given FY
t is Gaussian. The same is obviously true

for the system ((X,E(·, X)), Y ). Then for any t ∈ [0, T ] the optimal fil-
ter πt has a Gaussian distribution, which can be completely characterized
by its conditional mean value X̂t := E(Xt/FY

t ) and conditional variance
σ̂2

t := E((Xt− X̂t)2/FY
t ), t ∈ [0, T ]. Denote D(s) := A(s)/C(s) and note that

now E(s, xs) = D(s)xs for any x ∈ C1/2−[0, T ]. Suppose that the following
version of the condition (iii) is now fulfilled:

(iii”) D(s)xss
−α ∈ Iα

0+(L1[0, T ]) for any x ∈ C1/2−[0, T ]. Evidently, the
set of such D(s) is nonempty.

Consider for any t ∈ [0, T ] the semimartingale that is similar to (4.1.9):

Xt
u := η +

∫ u

0

a(s)Xsds +
N∑

i=1

∫ u

0

bi(s)dW i
s +

M∑
j=1

∫ u

0

K
cj

Hj
(t, s)dMHj

s ,

0 ≤ u ≤ t, so that Xt
t = Xt from (4.2.1). Denote σ̂2

0 := E(η2/ξ)− (π0)2.

Lemma 4.2.1. For all t ∈ [0, T ]

X̂t = π0 +
∫ u

0

a(s)X̂sds + CH

∫ u

0

D(s)σ̂2
sdνs, (4.2.2)

σ̂2
t = σ̂2

0 + 2
∫ t

0

a(s)(σ̂t
s)

2ds +
N∑

i=1

∫ t

0

b2
i (s)ds
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+
M∑

j=1

(1− 2αj)
∫ t

0

(Kcj

Hj
(t, s))2s−2αds− (1− 2α)C2

H

∫ t

0

D(s)σ̂2
ss−2αds

+ CH

∫ t

0

D(s)
(

̂(Xt
s)2Xs − (̂Xt

s)2X̂s − 2σ̂2
s(X̂t

s)
)
dνs, (4.2.3)

where (σ̂t
s)

2 := E
(
(Xt

s − X̂t
s)(Xs − X̂s)/FY

s

)
.

Proof. By using Theorem 4.1.2 and independence of {W i,MHj} of MH we
obtain that

X̂t
u := E(Xt

u/FY
u ) = π0 +

∫ u

0

a(s)X̂sds + CH

∫ u

0

( ̂XsE(s,X)− X̂sπs(E))dνs

= π0 +
∫ u

0

a(s)X̂sds + CH

∫ u

0

D(s)σ̂2
sdνs,

whence (4.2.2) follows. Now we apply the Itô formula to the semimartingale
{X̂t

u, 0 ≤ u ≤ t} :

(X̂t
u)2 = (π0)2 +

∫ u

0

2a(s)(X̂t
s)X̂sds + 2CH

∫ u

0

D(s)σ̂2
sX̂t

sdνs

+ C2
H(1− 2α)

∫ u

0

D(s)σ̂2
ss−2αds, t ∈ [0, T ]. (4.2.4)

On the other hand,

(Xt
u)2 = η2 +

∫ u

0

2a(s)(Xt
s)Xsds

+
N∑

i=0

∫ u

0

b2
i (s)ds +

M∑
j=1

(1− 2αj)
∫ u

0

(Kcj

Hj
(t, s))2s−2αj ds

+
N∑

i=1

∫ u

0

2bi(s)Xt
sdW i

s +
M∑

j=1

∫ u

0

2K
cj

Hj
(t, s)Xt

sdMHj
s ,

whence

(̂Xt
u)2 = E(η2/ξ) +

∫ u

0

2a(s) ̂(Xt
s)Xsds +

N∑
i=1

∫ u

0

b2
i (s)ds

+
M∑

j=1

(1− 2αj)
∫ u

0

(Kcj

Hj
(t, s))2s−2αj ds

+ CH

∫ u

0

D(s)( ̂(Xt
s)2Xs)− (̂Xt

s)2X̂s)dνs, t ∈ [0, T ]. (4.2.5)

Subtracting (4.2.4) from (4.2.5) for u = t, we obtain (4.2.3). 	
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4.3 Optimal Filtering in Systems with Polynomial
Fractional Brownian Noise

In all previous filtering models the noises were presented as the integrals
w.r.t. a Wiener process or w.r.t. an fBm, but everywhere with nonrandom
integrands. In this section we consider the simple case of a random integrand.

Let the signal process {Xt, t ∈ [0, T ]} and the observation process
{Yt, t ∈ [0, T ]} are defined by the following system of equations:

Xt = η +
∫ t

0

a(s,Xs)ds +
N∑

n=1

bn(BH1
t )n,

Yt = ξ +
∫ t

0

A(s,Xs)ds +
∫ t

0

C(s)dBH2
s , t ∈ [0, T ],

where (BH1
t , BH2

t , t ∈ [0, T ]) are fBms with Hurst indexes Hi ∈ (1/2, 1),
a, A : [0, T ] × R → R are measurable functions and bn, 1 ≤ n ≤ N are
real numbers. Suppose that the pair (η, ξ) does not depend on (BH1 , BH2),
condition (i) holds for the function C, and condition (ii) holds for E(s, xs)
with any x ∈ CH1−[0, T ]. First we try to present the power term (BH1

t )n in
the form

(BH1
t )n =

∫ t

0

Mn(t, s)dBs +
∫ t

0

Kn(t, s)ds,

where B is the underlying Wiener process (it means that BH1
t =∫ t

0
mH1(t, s)dBs with the kernel mH1(t, s) from Section 1.8), Mn(t, s) and

Kn(t, s) are some Fs-adapted random functions. Evidently, for n = 1

BH1
t =

∫ t

0

mH1(t, s)dBs.

Therefore M1(t, s) = mH1(t, s), K1(t, s) = 0. For arbitrary n ≥ 2 (BH1
t )n =∫ t

0
n(BH1

s )n−1mH1(t, s)dBs +
∫ t

0
n(n−1)

2 (BH1
s )n−2(mH1(t, s))

2ds.
So, the signal process can be presented as

Xt = η +
∫ t

0

a(s,Xs)ds +
N∑

n=1

bn

(∫ t

0

Mn(t, s)dBs +
∫ t

0

Kn(t, s)ds

)

= η +
∫ t

0

a(s,Xs)ds +
∫ t

0

M(t, s)dBs +
∫ t

0

K(t, s)ds,

where
Mn(t, s) = n(BH1

s )n−1mH1(t, s),

Kn(t, s) =
n(n− 1)

2
(BH1

s )n−2(mH1(t, s))
2,
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M(t, s) =
N∑

n=1

bnMn(t, s),K(t, s) =
N∑

n=1

bnKn(t, s).

Suppose that 〈B,MH2〉t =
∫ t

0

λss
−2αds, where MH2

t =
∫ t

0
lH2(t, s)dBH2

s .

Consider the family of semimartingales

Xt
s := η +

∫ s

0

a(u,Xu)du +
∫ s

0

Mn(t, u)dBu +
∫ s

0

Kn(t, u)du,

s ∈ [0, t], t ∈ [0, T ]. Let the function φ ∈ C2(R). Then the process
φ(Xt

s), s ∈ [0, t] is a semimartingale with the representation

φ(Xt
s) = φ(η) +

∫ s

0

φ′(Xt
u)M(t, u)dBu +

∫ s

0

Lt
u(φ(·))du,

where Lt
u(φ(·)) = (a(u,Xu) + K(t, u)) φ′(·) + 1

2φ′′(·)(M(t, u))2.
So, Theorem 4.1.3 gives the following representation for the optimal filter

πs(φ(Xt
s)) :

πs(φ(Xt
s)) = π(φ(η)) +

∫ s

0

πu(Lt
u(φ(Xt

u)))du +
∫ s

0

(
πu(φ′(Xt

u)M(t, u)λu)

+ CH(πu(φ(Xt
u)E(u,X))− πu(φ(Xt

u))πu(E))
)
dνu.

If we put s = t then the equation for the optimal filter πt(φ(Xt)) receives
the form:

πt(φ(Xt)) = π(φ(η)) +
∫ t

0

πu(Lt
u(φ(Xt

u)))du +
∫ t

0

(
πu(φ′(Xt

u)M(t, u)λu)

+ CH(πu(φ(Xt
u)E(u,X))− πu(φ(Xt

u))πu(E))
)
dνu.



5

Financial Applications of Fractional Brownian
Motion

5.1 Discussion of the Arbitrage Problem

5.1.1 Long-range Dependence in Economics and Finance

As mentioned in the paper (WTT99), long-range dependence in economics
and finance has a long history and is an area of active research (e.g.,
see (Lo91), (CKW95)). The importance of long-range dependent processes
as stochastic models lies in the fact that they provide an explanation
and interpretation of an empirical law that is commonly referred to as
the Hurst law or Hurst effect. In short, for a given set of observations

{Xi, i ≥ 1} with partial sum Y (n) =
n∑

i=1

Xi, n ≥ 1, and sample variance

S2(n) = n−1
n∑

i=1

(Xi − n−1Y (n))2, n ≥ 1, the rescaled adjusted range statistic

or R/S-statistic is defined by

R

S
(n) =

1
S(n)

(
max

0≤t≤n

(
Y (t)− t

n
Y (n)

)
− min

0≤t≤n

(
Y (t)− t

n
Y (n)

))
, n ≥ 1.

Hurst in (Hur51) found that many naturally occurring empirical records
appear to be well represented by the relation E ((R/S)(n)) ∼ c1n

H as n→∞,
with typical values of the Hurst parameter H ∈ (1/2, 1), and c1 a finite positive
constant not depending on n. But in the case when the observations come from
a short-range dependent model, then E (R/S(n)) ∼ c2n

1/2 as n→∞, where
c2 does not depend on n. The discrepancy between these two relations is called
the Hurst effect or Hurst phenomenon. The analysis of the R/S-statistic,
provided in (WTT99), (TTW95) and (TT97), leads to the recommendation
to use a diverse portfolio of time-domain-based and frequency-domain-based
graphics and statistical methods, including the graphical R/S-method, the
modified R/S-statistic (Lo91) and Whittle’s approach. Also, another (possibly,
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surprising) recommendation is: in the case when statistical analysis cannot be
expected to provide a definitive answer concerning the presence or absence
of long-range dependence in asset price returns, a more revealing and also
much more challenging approach to tackle this problem consists of providing
a mathematically rigorous physical “explanation” for the presence or absence
of the long-range dependence phenomenon in stock returns.

5.1.2 Arbitrage in “Pure” Fractional Brownian Model.
The Original Rogers Approach

Suppose that we establish that the existence of long-range dependence on the
financial market in which we operate, and we must model a share price process
using long-range dependence of returns. So, we can try to replace the clasical
log-Brownian model (BlSc73)

dSt = St(µdt + σdWt), t ≥ 0

involving some Brownian motion W by the model involving fBm BH :

dSt = St(µdt + dBH
t ), t ≥ 0, (5.1.1)

where H ∈ (1/2, 1).
Three main problems arise immediately: what will be the class of finan-

cial strategies, what will be the kind of stochastic integral w.r.t. the fBm
used in the model and is such a model arbitrage-free or not? There has been
wide discussion on these topics and we will present here the main (in our
opinion) results and conclusions. It seems that the first attempt to construct
arbitrage on the financial market that is modeled with fBm, was made by
Rogers (Rog97). He did not use geometric fBm like (5.1.1) but fBm itself,
and exploits its stationary properties, obtains an arbitrage possibility and im-
mediately concludes that fBm is an absurd model for finance markets (as we
shall see later, the situation is not so dramatic).

The notion of arbitrage that will be used (only in this subsection) is the
following: we say that an arbitrage exists on the interval [a, b] if there is some
trading strategy whose gains process {ηt, a ≤ t ≤ b} satisfies the following
conditions: (a) ηa = 0; (b) ηt ≥ −β for all a ≤ t ≤ b and some β > 0;
(c) P{ηb > 0} > 0.

The brief description of the Rogers construction is the following. Suppose
that (Ω,F , {Ft, t ∈ R+}, P ) is a filtered probability space and {Xt, t ∈ R+}
is a continuous integrable adapted process. For any a > 0 and 0 ≤ t < b define

τ(t, b, a) := inf{u > t : Xu −Xt /∈ [−a, a]} ∧ b.

Lemma 5.1.1. Let, for any rational a, b, t with t < b,

E
(
Xτ(t,b,a) −Xt/Ft

)
= 0 a.s. (5.1.2)

Then X is a local martingale.
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Proof. For any stopping time T ≤ c equality (5.1.2) can be extended to

E
(
Xτ(T,b,a) −XT /FT

)
= 0 a.s. (5.1.3)

Indeed, we can approximate T by a sequence of stopping times T (n)

= 2−n ([2nT ] + 1), taking discretely many rational values and decreasing to
T. Now fix N ∈ N, define τ := τ(0, N,N), fix ε > 0 and define the stopping
times σε

0 = 0,

σε
n+1 := inf{u > σε

n : Xu −Xσε
n

/∈ (−ε, ε)} ∧ τ,

n ≥ 0. Evidently, σε
n ↑ τ as n→∞. From (5.1.3) it follows that

E
(
Xσε

n+1
/Fσε

n

)
= Xσε

n
.

Since |Xσε
n
| ≤ N + |X0|, we have that for any n ≥ 0 Xσε

n
= E

(
Xτ/Fσε

n

)
, and

as ε→∞ we obtain that for any t < N

Xt∧τ = E(Xτ/Ft),

which means that Xt∧τ is a martingale, and this is sufficient. 	

Now, as we have seen in Section 1.15, fBm BH is not a semimartingale (in

particular, it is not a local martingale) unless H = 1/2. As a conclusion, we
obtain from Lemma 5.1.1 that for fBm {BH

t , t ∈ R} the following is true: if
we define for any n ∈ N the process

Yn(t) := (BH
t·2−n−21−n −BH

−21−n)2nH ,

0 ≤ t ≤ 1,H ∈ (1/2, 1), and Yn := FBH

−2−n , then there exist a > 0 and ε > 0,
such that

P{E(Yn(τn)/Yn−1) ≥ ε} ≥ ε

where τn = inf{t > 0 : Yn(t) ∈ [−a, a]} ∧ 1. Note that by the scaling prop-
erties of BH the sequence {Yn, n ∈ Z} of C[0, 1]-valued random variables is
stationary and even ergodic since

⋂
n σ{Yk, k ≤ −n} is trivial. The ergodic

theorem guarantees that

P{E(Yn(τn)/Yn−1) ≥ ε for infinitely many n ≥ 0} = 1.

Consider the period (−21−n,−2−n] and call this period “promising” if
E(Y (τn)/Yn−1) ≥ ε. There will be infinitely many “promising” periods. The
investment strategy is the following one: we invest a unit amount in each
“promising” period but immediately sell our holding and wait until the end
of the period if Yn goes out of [−a, a] during the promising period. So, the
gain ζn made during a “promising” period satisfies the relations −a ≤ ζn ≤ a,
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E(ζn/Yn−1) ≥ ε, and for the “nonpromising” period ζn = 0. Denote accu-
mulated gain by ηn =

∑
k≤n

ζk. Then we can take λ > 0 sufficiently small such

that
E(e−ληn/Yn−1) ≤ e−ληn−1 .

Therefore, e−ληn is a nonnegative supermartingale convergent a.s. to 0. If
we stop ηn at the first time ν when ηn < −a, then

P{ν <∞} ≤ exp{−λa} < 1

and on the event {ν = +∞} ηn → +∞. Finally, the arbitrage strategy can
be described as follows: invest a unit amount in Y (which is the same as
investing an amount 2nH in BH during period n ) in each “promising” period
until either ηn has risen to 1 or falls to below −a. The former happens at
least with probability 1 − exp{−λa}, and the resulting gain is 1, and if the
latter happens we lose at most 2a. If the latter happens we invest 1/2 in each
“promising” period until either ηn has risen to 1 or has fallen below 5a

2 . If
the latter happens we lose at most 3a, and invest 1/4 in each “promising”
period until either η has risen to 1 or has fallen below 13a

4 and so on. To
continue in this way, successively halving the stake when things go badly, we
shall eventually be successful and make a net gain of at least 1, and the worst
that can happen is that our wealth meantime could fall to 4α, so we have
arbitrage in our definition.

5.1.3 Arbitrage in the “Pure” Fractional Model.
Results of Shiryaev and Dasgupta

Consider a (B(r), S(r))-market with

Bt(r) = ert,

St(r) = eµt+σBH
t , t ≥ 0,

(5.1.4)

H ∈ (1/2, 1). Let for simplicity µ = r, σ = 1. We construct a portfolio
π = (β, γ) with βt = 1− e2BH

t , γt = 2(BH
t − 1). For such a portfolio we have

that the corresponding capital Xπ
t equals

Xπ
t = βtBt(r) + γtSt(r) = ert

(
eBH

t − 1
)2

.

From the Itô formula (2.7.5) for a pathwise integral w.r.t. fBm,

Xπ
t =
∫ t

0

rers
(
eBH

s − 1
)2

ds + 2
∫ t

0

ers+BH
s

(
eBH

s − 1
)

dBH
s

=
∫ t

0

βsdBs(r) +
∫ t

0

γsdSs(r),
(5.1.5)
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and (5.1.5) exactly means that the strategy π is self-financing strategy in
usual sense. So, for this portfolio Xπ

0 = 0 and Xπ
t > 0 a.s. for any t > 0, and

everyone understands that it is an arbitrage possibility (in any appropriate
definition). This is Shiryaev’s example (Shi01).

A very close result was obtained by Dasgupta (Das98). He considered a
one-dimensional portfolio πt, 0 ≤ t ≤ 1, the same model as in (5.1.4), defined
discounted gain as

Gt =
∫ t

0

π(s)B−1
s (r)

(
σdBH

s + (µ− r)ds
)
,

and determined arbitrage as the following possibility:
(a) there exists α ∈ R such that P{Gt ≥ α, 0 ≤ t ≤ 1} = 1;
(b) P{Gt ≥ 0} = 1, (c) P{G1 > 0} > 0.

Now, consider the particular case µ = r and the particular portfolio

πt = 2ert+σBH
t

(
eσBH

t − 1
)

. (5.1.6)

With portfolio (5.1.6) the gain process equals

Gt =
∫ t

0

2eσBH
s

(
eσBH

s − 1
)

σdBH
s =

∫ t

0

e2σBH
s
(
2σdBH

s

)
−2
∫ t

0

eσBH
s
(
2σdBH

s

)
= e2σBH

t − 1− 2eσBH
t + 2 =

(
eσBH

t − 1
)2

.

Of course, we obtain arbitrage possibility. As a conclusion, we see that
the “pure” continuous-time model based on fBm is not arbitrage-free, if the
arbitrage possibility is defined in any appropriate terms. The same fact is
emphasized in PhD thesis of Cheridito (Che01b), the paper of Salopek (Sal98);
see also an early discussion on arbitrage with fBm in finance in (MS93).

Now we can discuss discrete-time models and “mixed” models (the latter
ones are much more promising).

5.1.4 Mixed Brownian–Fractional-Brownian Model:
Absence of Arbitrage and Related Topics

Let {Wt, t ≥ 0} be a standard Wiener process and {BH
t , t ≥ 0} be an fBm

with the Hurst index H ∈ (1/2, 1) , both defined on a filtered probability space(
Ω, F , {Ft, t ≥ 0}, P

)
.

Consider a mixed version of the Black–Merton–Scholes model, i.e. a(
B,S
)
-market with a bond B and a stock S, where

Bt = ert, St = eaWt+bBH
t +ct, r, a, b, c ∈ R, t ∈ R+. (5.1.7)

For a given strategy (or a portfolio) π = {βt, γt, t ≥ 0} the capital {Xt, t ≥ 0}
corresponding to this portfolio equals
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Xt = Bt · βt + St · γt. (5.1.8)

We make the following assumptions about the strategy π:
1) π is a self-financing strategy, i.e.

Xt = X0 +
∫ t

0

βs dBs +
∫ t

0

γs dSs; (5.1.9)

2) π is a Markov-type strategy, i.e.

βt = β
(
St, t
)
, γt = γ

(
St, t
)
. (5.1.10)

One needs to be accurate with condition (5.1.9), for it to reflect the real
economic concept of “self-financing”. This entails that the meaning of the
second integral in (5.1.9) should be specified clearly. We understand it now in
the pathwise sense, i.e. as the following limit with probability 1:∫ t

0

γs dSs = lim
max|sk+1−sk|→0

n−1∑
k=0

γsk
(Ssk+1 − Ssk

).

Here, the sum
∑n−1

k=0 γsk
(Ssk+1 − Ssk

) is an obvious formula for the capital,
earned on the price variation of S with a piecewise buy-and-hold strategy
{γ̃t, t ∈ R+} = {γsk

, sk ≤ t < sk+1, t ≥ 0}. Hence, the integral
∫ t

0
γs dSs,

as the capital earned on S with the continuous strategy {γt, t ∈ R+}, agrees
with the “fundamental moral” in the definition of self-financing conditions
(for discussion on this topic see Section 5.2.2).

We say that the strategy π has an arbitrage opportunity if there exists
T > 0 such that

X0 = 0, XT ≥ 0 (P − a.s.), P (XT > 0) > 0.

In the mixed model (5.1.7) with a �= 0 and b �= 0, some results in this direc-
tion have been obtained in the papers of (Ku99), (Che01b), (MV02), (Zah02a).
More exactly, Kuznetsov (Ku99) established the absence of arbitrage under
the condition of independence of processes W and BH . As we mentioned in
Subsection 3.4.2, Cheridito (Che01b) proved that, for H ∈ (3/4, 1), the mixed
model with independent W and BH is equivalent to the one with Brownian
motion and hence it is arbitrage-free. Zähle (Zah02a) proved the absence of
arbitrage in the general mixed model with independent Wiener process and
the process of zero quadratic variation (Dirichlet processes, see, for exam-
ple, (Fol81b)). In the mixed model, studied in the paper (MV02), there is no
requirement of independence. Conversely, the absence of arbitrage is demon-
strated under the condition that the process BH is connected with the process
W as in formula (1.8.17).

The main result of this subsection is that the mixed market is arbitrage-
free without any conditions on the dependence of W and BH , if we restrict
ourselves to the self-financing Markov-type strategies with smooth β and γ.
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Conditions of Self-Financing and Their Consequences

Note that in the case of the Markov-type strategy (5.1.10), the process of
capital Xt can be written as a function of price of the stock S at the moment
t:

Xt = Φ
(
St, t
)
, (5.1.11)

where
Φ(x, t) = ert · β(x, t) + x · γ(x, t). (5.1.12)

We prove in this section that the self-financing assumption strongly restricts
the class of possible functions Φ in (5.1.11).

In the case of γt = γ(St, t) with smooth γ(·, ·), the integral
∫ t

0
γs dSs exists

and it can be presented in the form∫ t

0

γs dSs =
∫ t

0

a γsSs dWs+
∫ t

0

b γsSs dBH
s +
∫ t

0

(
c +

a2

2

)
γsSs ds, (5.1.13)

where the first integral on the right-hand side is the Itô integral, the second
integral is the pathwise Riemann–Stieltjes integral and the third one is the
Riemann integral. Formula (5.1.13) gives the Itô formula for an exponent of
the mixed process. In addition, we shall refer in this subsection to the Itô
formula for processes with generalized quadratic variation (see Subsection
2.7.2).

The Itô integral in (5.1.13) appears due to the choice of the left end-
point sk in the expression under the summation sign in (5.1.12). Such a choice
is crucial for condition (5.1.9) to have the economic sense of self-financing. The
second integral

∫ t

0
b γsSs dBH

s does not depend on the choice of inner points
of the intervals.

Theorem 5.1.2. Let the
(
B,S
)
-market be given by (5.1.7) with a �= 0. Sup-

pose also that for all t > 0 the support of the distribution of St coincides with

supp(St) = [0,+∞). (5.1.14)

Then in the class of Markov-type strategies (5.1.10) with{
β(x, t), γ(x, t)

} ⊂ C 2
(
(0,+∞)

)× C 1
(
[0,+∞)

)
the condition of self-financing (5.1.9) is equivalent to the following one:

(i) There exists a function φ(x, t) ∈ C 2
(
(0,+∞)

) × C 1
(
[0,+∞)

)
, which

satisfies the equation

φ′
t(x, t) +

a2

2
x2 φ′′

xx(x, t) + r x φ′
x(x, t)− r φ(x, t) = 0, (5.1.15)

and the strategy (β, γ) can be expressed in terms of φ:
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β(x, t) = e−rt

(
φ(x, t)− x · φ′

x(x, t)
)
;

γ(x, t) = φ′
x(x, t). (5.1.16)

Remark 5.1.3. Condition (5.1.14) holds, for example, in the case when the
processes W and BH are jointly Gaussian, and, hence, log(St) = aWt + bBH

t

+ ct, t ≥ 0 is a Gaussian process.
Remark 5.1.4. Under condition (i) we have the identity Φ(x, t) = φ(x, t).

Proof of Theorem 5.1.2. Below we use the Itô formula for processes with
generalized quadratic variation; see (3.1.25), (3.1.26). Firstly, the Itô for-
mula holds for continuous processes with generalized bracket. Secondly, if
the process Z has the usual bracket, then it has the same generalized bracket.

Let consider the process St and prove that it has usual bracket. Indeed,
n∑

k=0

(
∆Stk

)2 =
n∑

k=0

(
e

aWtk+1+bBH
tk+1

+c tk+1 − eaWtk
+bBH

tk
+c tk

)2

=
n∑

k=0

e2aWtk+1

(
e

bBH
tk+1

+c tk+1 − ebBH
tk

+c tk

)2

+
n∑

k=0

(
eaWtk+1 − eaWtk

)2

e2bBH
tk

+2c tk

+2
n∑

k=0

eaWtk+1 ebBH
tk

+c tk

(
eaWtk+1 − eaWtk

)(
e

bBH
tk+1

+c tk+1 − ebBH
tk

+c tk

)
=: In

1 + In
2 + In

3 .

Evidently, In
2 →

∫ t

0
S2

ua2 du, a.s. and in L2(P ). Further,∣∣∣ebBH
tk+1

+c tk+1 − ebBH
tk

+c tk

∣∣∣ ≤ ebBH
tk

+c tk
∣∣b∆BH

tk
+ c∆tk

∣∣
and the trajectories of BH belong to the class CH−[0, T ] with H > 1/2.
Therefore In

1 → 0 a.s., and the same is true for In
3 . It means that the bracket

of S has the form

[S]t =
∫ t

0

a2S2
u du. (5.1.17)

Let us apply the Itô formula (2.7.8) to the processes Bt β
(
St, t
)

and
St γ
(
St, t
)

from (5.1.8). We obtain the equalities

Bt β
(
St, t
)− β

(
1, 0
)
=
∫ t

0

d
(
Bu β

(
Su, u

))
=
∫ t

0

β
(
Su, u

)
dBu +

∫ t

0

Bu β′
t

(
Su, u

)
du +

∫ t

0

Bu β′
x

(
Su, u

)
dSu (5.1.18)

+
1
2

∫ t

0

Bu β′′
xx

(
Su, u

)
d[S]u,
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and

St γ
(
St, t
)− γ

(
1, 0
)
=
∫ t

0

d
(
Su γ
(
Su, u

))
=
∫ t

0

γ
(
Su, u

)
dSu +

∫ t

0

Su γ′
t

(
Su, u

)
du +

∫ t

0

Su γ′
x

(
Su, u

)
dSu (5.1.19)

+
1
2

∫ t

0

(
2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
d[S]u.

Combining equations (5.1.18) and (5.1.19), we obtain:

Xt −X0 −
∫ t

0

β
(
Su, u

)
dBu −

∫ t

0

γ
(
Su, u

)
dSu

=
∫ t

0

(
Bu β′

t

(
Su, u

)
+Su γ′

t

(
Su, u

))
du +

∫ t

0

(
Bu β′

x

(
Su, u

)
+Su γ′

x

(
Su, u

))
dSu

+
1
2

∫ t

0

(
Bu β′′

xx

(
Su, u

)
+ 2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
d[S]u. (5.1.20)

Comparing equations (5.1.20) and (5.1.9), we conclude that the condition
of self-financing of the strategy π = {βt, γt, t ∈ R+} is equivalent to the
equation∫ t

0

(
Bu β′

t

(
Su, u

)
+Su γ′

t

(
Su, u

))
du +

∫ t

0

(
Bu β′

x

(
Su, u

)
+Su γ′

x

(
Su, u

))
dSu

+
1
2

∫ t

0

(
Bu β′′

xx

(
Su, u

)
+ 2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
d[S]u = 0, t > 0.

(5.1.21)

From the same Itô formula and definition of the process S, we obtain that

St = S0 +
∫ t

0

Su d
(
aWu + bBH

u + cu
)

+
∫ t

0

1
2

a2 Su du,

where the integral
∫ t

0
Su dWu exists as the usual Itô integral, and the integral∫ t

0
Su dBH

u exists as the limit of the Riemann–Stieltjes sums, because
S ∈ C1/2−[0, T ], BH ∈ CH−[0, T ], and 1/2 + H > 1.

Substituting equation (5.1.17) into equation (5.1.21), we obtain that equa-
tion (5.1.21) can be rewritten as∫ t

0

(
Bu β′

t

(
Su, u

)
+ Su γ′

t

(
Su, u

))
du

+
∫ t

0

(
Bu β′

x

(
Su, u

)
+ Su γ′

x

(
Su, u

))
Su d
(
aWu + bBH

u +
(
c + a2/2

)
u
)
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+
a2

2

∫ t

0

(
Bu β′′

xx

(
Su, u

)
+ 2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
S2

u du = 0. (5.1.22)

Let us take the quadratic variation of the both sides of (5.1.22). Evidently, the
usual bracket of all Lebesgue integrals in (5.1.22) vanishes, and the bracket of
the Itô integral equals[∫ ·

0

(
Bu β′

x

(
Su, u

)
+ Su γ′

x

(
Su, u

))
Su d
(
aWu

)]
t

=

= a2

∫ t

0

(
Bu β′

x

(
Su, u

)
+ Su γ′

x

(
Su, u

))2

S2
u du.

Establish now that the usual bracket of the process
∫ t

0

(
Bu β′

x

(
Su, u

)
+

Su γ′
x

(
Su, u

))
Su d
(
bBH

u

)
a.s. equals 0. In this order denote fu := b

(
Buβ′

x

(
Su,

u
)

+ Su γ′
x

(
Su, u

))
. Evidently, the trajectories of this process belong to the

class C1/2−[0, T ]. Further, from the estimate in Proposition 22 (FdP99), it
follows that∣∣∣∣∫ tk+1

tk

fu dBH
u − ftk

∆BH
tk

∣∣∣∣ ≤ C ‖f‖C1/2−δ

∥∥BH
∥∥

CH−δ

(
∆tk
)1/2+H−2δ

,

with constant C not depending on f and BH and such δ that 1/2+H−2δ > 1,
i.e. δ < α/2. Therefore,

n∑
k=0

(∫ tk+1

tk

fu dBH
u

)2

≤ 2
n∑

k=0

(∫ tk+1

tk

fu dBH
u − ftk

∆BH
tk

)2

+ 2
n∑

k=0

(
ftk

)2 (
∆BH

tk

)2 ≤ 2C2 ‖f‖2C1/2−δ

∥∥BH
∥∥2

CH−δ

n∑
k=0

(
∆tk
)1+2H−4δ

+ 2
n∑

k=0

(
ftk

)2 (
∆BH

tk

)2 → 0 a.s.

From all these estimations and (5.1.22) we obtain

a2

∫ t

0

(
Bu β′

x

(
Su, u

)
+ Su γ′

x

(
Su, u

))2

S2
u du = 0. (5.1.23)

Since (5.1.23) holds for all t > 0, we easily deduce that

Bu β′
x

(
Su, u

)
+ Su γ′

x

(
Su, u

)
= 0 (5.1.24)

for all u > 0 and almost all (a.a.) ω ∈ Ω.
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Substituting (5.1.24) into (5.1.22) we obtain another equation for all t > 0:∫ t

0

(
Bu β′

t

(
Su, u

)
+ Su γ′

t

(
Su, u

))
du +

a2

2

∫ t

0

(
Bu β′′

xx

(
Su, u

)
+ 2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
S2

u du = 0.

This means that the equality

Bu β′
t

(
Su, u

)
+ Su γ′

t

(
Su, u

)
(5.1.25)

+
a2

2

(
Bu β′′

xx

(
Su, u

)
+ 2γ′

x

(
Su, u

)
+ Su γ′′

xx

(
Su, u

))
S2

u = 0

holds for all u > 0 and a.a. ω ∈ Ω.
Condition (5.1.14) of the theorem ensures that equations (5.1.24) and

(5.1.25) may hold if and only if

Bt β′
x

(
x, t
)
+x γ′

x

(
x, t
)
= 0; (5.1.26)

Bt β′
t

(
x, t
)
+x γ′

t

(
x, t
)
+

a2

2

(
Bt β′′

xx

(
x, t
)
+2γ′

x

(
x, t
)
+x γ′′

xx

(
x, t
))

x2 = 0,

(5.1.27)

for all t > 0, x > 0.
The last relations mean that the strategy

(
β(St, t), γ(St, t)

)
is self-

financing if and only if the pair
(
β(x, t), γ(x, t)

)
satisfies equations (5.1.26),

(5.1.27).
Now assume that condition (i) of the theorem holds. Substituting β and

γ from (5.1.16) into (5.1.26) and (5.1.27) we obtain an identity 0 = 0 in the
first equation and identity (5.1.15) in the second one.

Conversely, if (5.1.26) and (5.1.27) hold, we set

φ(x, t) := Bt · β(x, t) + x · γ(x, t).

For such function φ we obtain from (5.1.26) that

φ′
x(x, t) = Bt · β′

x(x, t) + γ(x, t) + x · γ′
x(x, t) = γ(x, t),

β(x, t) = B−1
t

(
φ(x, t)− x · γ(x, t)

)
= e−rt

(
φ(x, t)− x · φ′

x(x, t)
)
,

i.e. we come to (5.1.16). Substituting β and γ from (5.1.16) into identity
(5.1.27), we obtain that φ(x, t) satisfies equation (5.1.15). 	

Remark 5.1.5. Let the process {Zt, t ≥ 0} be defined on(
Ω, F , {Ft, t ≥ 0}, P

)
with Z0 = 0 and [Z] ≡ 0, where [Z] stands for usual

bracket, i.e. quadratic variation. Then it is not hard to see that Theorem 5.1.2
is valid for the

(
B, S̃
)
-market with

Bt = ert, S̃t = eaWt+Zt+ct,

if only condition (5.1.14) holds for the process S̃.
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Absence of Arbitrage

Theorem 5.1.6. Let the
(
B,S
)
-market be given by (5.1.7) with a �= 0. Let

the support of the distribution of St coincides with

supp(St) = [0,+∞) (5.1.28)

for all t > 0.
Then there is no arbitrage strategy in the class of self-financing Markov-

type strategies (5.1.10) with{
β(x, t), γ(x, t)

} ⊂ C 2
(
(0,+∞)

)× C 1
(
[0,+∞)

)
.

Proof. Theorem 5.1.2 states that for any strategy in the class, described in
the theorem, the process of capital Xt is given by

Xt = φ
(
St, t
)
,

where φ satisfies the equation

φ′
t(x, t) +

a2

2
x2 φ′′

xx(x, t) + r x φ′
x(x, t)− r φ(x, t) = 0. (5.1.29)

Suppose that an arbitrage strategy exists. So, there exists T > 0 such that

X0 = 0, XT ≥ 0 (P − a.s.). (5.1.30)

Together with (5.1.28) conditions (5.1.30) are equivalent to the following ones:

φ(1, 0) = 0, φ(x, T ) ≥ 0 ∀x > 0. (5.1.31)

We are going to prove that φ ≡ 0 is the only function that satisfies (5.1.29)
and (5.1.31) simultaneously. Hence, it would mean that there is no arbitrage
strategies in the given class.

Let us use the standard approach in solving equation (5.1.29). Suppose
the function φ satisfies equation (5.1.29) with boundary conditions (5.1.31).
Then a new function η(z, t), given by

η(z, t) = θ(az, T − t), z ∈ R, t ∈ [0, T ],

where

θ(z, t) = e−(α z+β t) φ (ez, t) , α =
1
2
− r

a2
, β = −a2

8
+

r2

2a2
,

satisfies a heat equation

η′
t(z, t) =

1
2

η′′
zz(z, t) (5.1.32)



5.1 Discussion of the Arbitrage Problem 313

with additional conditions

∀ z ∈ R η(z, 0) ≥ 0, η(0, T ) = 0. (5.1.33)

Here, an inverse change is given by

φ(x, t) = x( 1
2− r

a2 ) · e
(
− a2

8 + r2

2a2

)
· η
(

ln(x)
a

, T − t

)
.

The continuous solution of equation (5.1.32) is well known and has the form

η(z, t) =
∫

R

η(ξ, 0) · (2πt)−
1
2 · exp

(
− (z − ξ)2

2t

)
dξ,

which together with boundary conditions (5.1.33) gives η ≡ 0 and, therefore,
φ ≡ 0. 	


Convergence of Lebesgue–Stieltjes Integrals to the Integral
w.r.t. fBm

In this subsection, we use Theorem 1.15.3 and prove a theorem which
establishes the convergence in probability of integrals with respect to BH, β

from (1.15.15) to the integral with respect to fBm.

Theorem 5.1.7. Let the process f be such that for some ε > 0 and for a.a.
ω ∈ Ω

f(·, ω) ∈ C 2(1−H)+ε[0, T ]. (5.1.34)

Then ∫ T

0

f(u) dBH, β
u

P−→
∫ T

0

f(u) dBH
u as β → 0+,

where P−→ denotes the convergence in probability.

Proof. For any N > 0 we introduce the step process of the form

fN (u) =
N∑

k=1

f(uk−1)1[uk−1, uk)(u), u ∈ [0, T ), fN (T ) = f(uN ),

where
uk =

kT

N
, 0 ≤ k ≤ N.

Then the following obvious inequality holds:∣∣∣∣∣
∫ T

0

f(u) dBH, β
u −

∫ T

0

f(u) dBH
u

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

(
f(u)− fN (u)

)
dBH, β

u

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

fN (u) d
(
BH, β

u −BH
u

)∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(
fN (u)− f(u)

)
dBH

u

∣∣∣∣∣ =: I1(N, β) + I2(N, β) + I3(N).
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We shall establish that for the subsequence Nβ such that Nβ =
[

T
β1/2

]
the

following convergence holds:

I1

(
Nβ , β

) P−→ 0, I2

(
Nβ , β

) P−→ 0, I3

(
Nβ

) P−→ 0 as β → 0+.

Condition (5.1.34) is equivalent to the relation: there exists a finite random
variable K = K(ω) such that P -a.s. ∀ 0 ≤ x < y ≤ T we have

|f(x)− f(y)| ≤ K |x− y|λ (5.1.35)

with λ = 2(1−H) + ε.
Consider I1

(
Nβ , β

)
. We use (5.1.33), (5.1.34), (5.1.35) to obtain:

I1

(
Nβ , β

)
=

∣∣∣∣∣
∫ T

0

(
f(u)− fNβ

(u)
)
dBH, β

u

∣∣∣∣∣
= C

∣∣∣∣∣
N∑

k=1

∫ uk

uk−1

(
f(u)− f(uk−1)

)(
uH− 1

2

∫ (u−β)+

0

(u− y)α−1y
1
2−H dW̃y

)
du

∣∣∣∣∣
≤ C K

N∑
k=1

(uk − uk−1)λ

∫ uk

uk−1

uH− 1
2

∣∣∣∣∣
∫ (u−α)+

0

(u− y)α−1y
1
2−H dW̃y

∣∣∣∣∣ du

=: C K ζ1(N, β).

where W̃ is now the underlying Wiener process (before it was denoted B,
but now B is bond process). From now on C means a constant, the value of
which is not interesting for us. Without loss of generality we may assume that
β < T/2. Let estimate the mathematical expectation of ζ1

(
Nβ , β

)
:

Eζ1

(
Nβ , β

) ≤ β
λ
2

N∑
k=1

∫ uk

uk−1

uH− 1
2 E

∣∣∣∣∣
∫ (u−β)+

0

(u− y)α−1y
1
2−HdW̃y

∣∣∣∣∣ du

≤ β
λ
2

N∑
k=1

∫ uk

uk−1

uα

(∫ (u−β)+

0

(u− y)2H−3y1−2H dy

)1/2

du

≤ β
λ
2

(∫ 1−β/T

0

(1− y)2H−3y1−2Hdy

)1/2 N∑
k=1

∫ uk

uk−1

uH−1 du

≤ C β
λ
2

(∫ 1/2

0

(1− y)2H−3y1−2Hdy + 22α

∫ 1−β/T

1/2

(1− y)2H−3dy

)1/2

≤ C β
λ
2

(
1 + β2α−1

) 1
2
, (5.1.36)

Substituting λ = 2(1−H) + ε in (5.1.36) we obtain
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Eζ1

(
Nβ , β

) ≤ C α1−H+ε/2
(
1 + β2α−1

) 1
2

= O
(
βε/2
)→ 0, β → 0+.

Hence, I1(Nβ , β) P−→ 0 as β → 0+.
Let consider I2

(
Nβ , β

)
.

I2

(
Nβ , β

)
=

∣∣∣∣∣
N∑

k=1

f(uk−1)
((

BH, β
uk
−BH

uk

)− (BH, β
uk−1

−BH
uk−1

))∣∣∣∣∣
≤

N∑
k=1

∣∣f(uk)− f(uk−1)
∣∣ · ∣∣BH, β

uk
−BH

uk

∣∣+ ∣∣∣f(T )
(
BH, β

T −BH
T

)∣∣∣
≤ K

N∑
k=1

(
uk − uk−1

)λ · ∣∣BH, β
uk
−BH

uk

∣∣+ ∣∣∣f(T )
(
BH, β

T −BH
T

)∣∣∣ .
The term

∣∣∣f(T )
(
BH, β

T −BH
T

)∣∣∣ P−→ 0 because BH, β
T

P−→ BH
T as β → 0+. Denote

ζ2(Nβ , β) :=
∑N

k=1

(
uk − uk−1

)λ ∣∣BH, β
uk
−BH

uk

∣∣. With the help of Theorem

1.15.3, the mathematical expectation of
∣∣∣BH, β

t −BH
t

∣∣∣ can be estimated in
the following way:

E
∣∣∣BH, β

t −BH
t

∣∣∣ ≤ C

⎧⎪⎪⎨⎪⎪⎩
tH , t < β

βα

√
t
(
1 + ln t

β

)
, β ≤ t

≤ C max

(
βH , βα

√
T

(
1 + ln

T

β

))
= o
(
βα−ρ

)
, β → 0+, (5.1.37)

for any fixed ρ > 0. For N =
[

T
β1/2

]
, ρ = ε/2 and λ = 2(1−H) + ε we obtain

from (5.1.37) that

Eζ2

(
Nβ , β

) ≤ β
λ
2

N∑
k=1

E
∣∣BH, β

uk
−BH

uk

∣∣ ≤ β
λ
2
(
[Nβ ] + 1

)
o
(
βα−ρ

)
=

= o
(
β

2(1−H)+ε−1
2 +(α− ε

2 )
)

= o(1)→ 0, β → 0+.

Hence, I2(Nβ , β) P−→ 0 as β → 0+.
Finally, it follows from Theorem 2.1.7 that

I3

(
Nβ

)
=

∣∣∣∣∣
∫ T

0

fNβ
(u) dBH

u −
∫ T

0

f(u) dBH
u

∣∣∣∣∣→ 0

a.s., and hence in probability, as β → 0+. 	
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The Capital Process as a Limit of Semimartingales

Let the
(
B,S
)
-market be given by (5.1.7) and a Markov-type strategy

(β̃, γ̃) be self-financing for this market. Then the capital, based on this strat-
egy, is given by

Xt = X0 +
∫ t

0

β̃
(
Ss, s
)
dBs +

∫ t

0

γ̃
(
Ss, s
)
dSs.

For β > 0 and the given
(
β(·, ·), γ(·, ·)) consider the processes

Sβ
t = eaWt+bBH, β

t +ct

and

Xβ
t = X0 +

∫ t

0

β̃
(
Sβ

s , s
)
dBs +

∫ t

0

γ̃
(
Sβ

s , s
)
dSβ

s . (5.1.38)

The Itô formula and definition of BH, β imply that the process Xβ can be
rewritten as

Xβ
t = X0 +

∫ t

0

(
r Bs β̃

(
Sβ

s , s
)

+
(
b (BH, β

s )′s + c
)
Sβ

s γ
(
Sβ

s , s
))

ds

+ a

∫ t

0

Sβ
s γ
(
Sβ

s , s
)
dWs (5.1.39)

with

(BH, β
s )′s = C

(6)
H αsα

∫ (s−β)+

0

(s− u)α−1u−αdW̃u,

which means that Xβ is a semimartingale at least if the following condition
holds: ∫ T

0

E
(
Sβ

s γ̃
(
Sβ

s , s
))2

ds <∞. (5.1.40)

Theorem 5.1.8. Let H ∈ (3/4, 1) and the pair
(
β̃(·, ·), γ̃(·, ·)) satisfy the

assumptions:

(ii) ∀ t ≥ 0 β̃(·, t), γ̃(·, t) ∈ C1(R)

(iii) ∀T,L > 0 there exists K = K(T,L) > 0 such that∣∣∣β̃(x, t)− β̃(x, s)
∣∣∣+ |γ̃(x, t)− γ̃(x, s)| ≤ K |t− s| 12 , ∀ |x| ≤ L, t, s ∈ [0, T ].

(iv) ∀T > 0 there exist M = M(T ) > 0 and N = N(T ) > 0 such that∣∣∣β̃′
x(x, t)

∣∣∣+ |γ̃′
x(x, t)| ≤M (1 + |x|N ), ∀ t ∈ [0, T ].

Then Xβ
t

P−→ Xt as β → 0+ for any t ∈ [0, T ].
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Remark 5.1.9. Evidently, conditions (ii)–(iv) imply (5.1.40) and the pair(
B,Sβ

)
can be regarded as a new stock market with a price of the stock

being a semimartingale. It follows from Theorem 1.15.2 that Sβ
t

P−→ St as
β → 0+ at any moment t ≥ 0. If, additionally, condition (5.1.14) holds for
Sβ and β̃, γ̃ ∈ (C 2 × C 1)(R+), then the strategy

(
β̃(Sβ

s , s), γ̃(Sβ
s , s)
)

is self-
financing and the market

(
B,Sβ

)
is arbitrage-free. In this case the process

Xβ is a process of capital in this market.

Proof of Theorem 5.1.8. Using (5.1.38), (5.1.39) and (5.1.9), we may write

Xβ
t −Xt

=
∫ t

0

(
β̃
(
Sβ

s , s
)− β̃

(
Ss, s
))

dBs +
∫ t

0

γ
(
Sβ

s , s
)
dSβ

s −
∫ t

0

γ
(
Ss, s
)
dSs

= r

∫ t

0

(
fβ(s)− f(s)

)
ds + a

∫ t

0

(
gβ(s)− g(s)

)
dWs

+ b

(∫ t

0

gβ(s) dBH, β
s −

∫ t

0

g(s) dBH
s

)
+
(

c +
a2

2

)∫ t

0

(
gβ(s)− g(s)

)
ds,

where
fβ(s) = ersβ̃

(
Sβ

s , s
)
, f(s) = ersβ̃

(
Ss, s
)
,

gβ(s) = Sβ
s γ̃
(
Sβ

s , s
)
, g(s) = Ssγ̃

(
Ss, s
)
.

To prove that Xβ
t → Xt, it is enough to establish that∫ t

0

(
fβ(s)− f(s)

)
ds

P−→ 0; (5.1.41)∫ t

0

(
gβ(s)− g(s)

)
dWs

P−→ 0; (5.1.42)∫ t

0

gβ(s) dBH, β
s

P−→
∫ t

0

g(s) dBH
s ; (5.1.43)∫ t

0

(
gβ(s)− g(s)

)
ds

P−→ 0, as β → 0+. (5.1.44)

The convergence in (5.1.41), (5.1.42) and (5.1.44) holds if
∫ t

0

(
fβ(s)

− f(s)
)2

ds
P−→ 0 and

∫ t

0

(
gβ(s) − g(s)

)2
ds

P−→ 0 as β → 0+, which, in turn,
follows immediately from the relations

E
(
fβ(s)− f(s)

)2 ≤ C β2α, (5.1.45)

E
(
gβ(s)− g(s)

)2 ≤ C β2α, (5.1.46)

which will be proved in Lemma 5.1.10.
Let us prove (5.1.43). Obviously, the following inequality holds:
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0

gβ(s) dBH, β
s −

∫ t

0

g(s) dBH
s

∣∣∣∣
≤
∣∣∣∣∫ t

0

g(s) dBH, β
s −

∫ t

0

g(s) dBH
s

∣∣∣∣+ ∣∣∣∣∫ t

0

(
gβ(s)− g(s)

)
dBH, β

s

∣∣∣∣ . (5.1.47)

The trajectories of the process η(t) = aWt + bBH
t + ct a.s. belong to the

space C
1
2−[0, T ]. It means that for any ρ > 0 there exists K1(δ, ω) > 0 such

that

|η(t)− η(s)| ≤ K1(δ, ω) |t− s| 12−ρ
, ∀ t, s ∈ [0, T ]. (5.1.48)

Let us prove that the process g(s) =: ψ
(
η(s), s

)
also belongs to C

1
2−[0, T ]

P -a.s. Indeed, it follows from (iii) that ∀L > 0 there exists K2(L) > 0 such
that

|ψ(x, t)− ψ(x, s)| ≤ K2(L) |t− s| 12 , ∀ |x| ≤ L, t, s ∈ [0, T ]. (5.1.49)

It follows from the definition of ψ(x, s) and (iv) that ∃ M̃, Ñ > 0

|ψ′
x(x, s)| ≤ M̃ exp{Ñ |x|}, ∀ s ∈ [0, T ]. (5.1.50)

Now we use (5.1.48)–(5.1.50) to obtain∣∣ψ(η(t), t
)− ψ

(
η(s), s

)∣∣ ≤ ∣∣ψ(η(t), t
)− ψ

(
η(s), t

)∣∣+ ∣∣ψ(η(s), t
)− ψ

(
η(s), s

)∣∣
≤ sup

|x|≤|η(s)| ∨|η(t)|
|ψ′

x(x, t)| · |η(t)− η(s)|+ ∣∣ψ(η(s), t
)− ψ

(
η(s), s

)∣∣
≤ M̃ exp

{
Ñ sup

t∈[0,T ]

|η(t)|
}

K1(δ, ω) |t− s| 12−δ + K2

(
sup

t∈[0,T ]

|η(t)|
)
|t− s| 12

≤ K3(δ, ω) |t− s| 12−δ
,

where

K3(δ, ω) = M̃ exp

{
Ñ sup

t∈[0,T ]

|η(t)|
}

K1(δ, ω) + T δK2

(
sup

t∈[0,T ]

|η(t)|
)

.

For any H ∈ (3/4, 1) it is possible to find ε = ε(H) > 0 such that
C

1
2−[0, T ] ⊂ C2(1−H)+ε[0, T ]. So, we can apply Theorem 5.1.7 to the first

term on the right-hand side of (5.1.47) and obtain its convergence to 0 in
probability.

Consider the second term on the right-hand side of (5.1.47). Using (5.1.46)
we obtain, as in (5.1.36), that
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E

∣∣∣∣∫ t

0

(
gβ(s)− g(s)

)
dBH, β

s

∣∣∣∣
≤ E

∫ t

0

∣∣gβ(s)− g(s)
∣∣ · C sα

∣∣∣∣∣
∫ (s−β)+

0

(s− y)α−1y−α dW̃y

∣∣∣∣∣ ds

≤ C

∫ t

0

sα

(
E
(
gβ(s)− g(s)

)2 · ∫ (s−β)+

0

(s− y)2α−2y−2α dy

) 1
2

ds

≤ C βα

(∫ (1−β/T )+

0

(1− y)2α−2y−2α dy

) 1
2 ∫ t

0

sH−1ds

≤ C βα
(
1 + β2α−1

) 1
2

= O
(
β2α− 1

2

)
, β → 0+,

which means that E
∣∣∣∫ t

0

(
fβ(s)− f(s)

)
dBH, β

s

∣∣∣→ 0 if H ∈ ( 34 , 1
)
. 	


Lemma 5.1.10. Inequalities (5.1.45) and (5.1.46) are true for every s ∈ [0, T ]
and β ∈ (0, 1) with a constant C that does not depend on β and s.

Proof. We prove only inequality (5.1.46) since (5.1.45) can be established
similarly.

Denote a function ψ(x, s) : = exp{x} · γ
(
exp{x}, s). Then the processes

gβ(s) and g(s) are given by

gβ(s) = ψ
(
aWs + bBH, β

s + cs, s
)
, g(s) = ψ

(
aWs + bBH

s + cs, s
)
.

We obtain from the Hölder inequality that

E
(
gβ(s)− g(s)

)2 ≤ E

(
sup

x∈I1(s, β, ω)

∣∣∣∣∂ψ(x, s)
∂x

∣∣∣∣ · b (BH, β
s −BH

s

))2

≤ b2

(
E sup

x∈I1(s, β, ω)

∣∣∣∣∂ψ(x, s)
∂x

∣∣∣∣ 2p
) 1

p (
E
(
BH, β

s −BH
s

)2q
) 1

q

, (5.1.51)

where p, q > 1, 1/p + 1/q = 1 and

I1(s, β, ω)

=
{

x : aWs + min(bBH, β
s , bBH

s ) < x− cs < aWs + max(bBH, β
s , bBH

s )
}

.

In the case when 2q < 1
1−H (which is equivalent to the inequality p > 1

2α ),
we can use Theorem 1.15.2 and derive the following estimation:(

E
(
BH, β

s −BH
s

)2q
) 1

q ≤ C

{ (
s2qH

) 1
q , s < β(

β2qαsq + β2q(H−1)+1s2q−1
) 1

q , β ≤ s

≤ C max
(
β2H , β2αT + β2α−1/p T 1+1/p

)
≤ C̃ β2α−1/p, β ∈ (0, 1), (5.1.52)
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where C̃ = C max
(
1, 2T, 2T 2H

)
.

To estimate the first expectation in (5.1.51) note that

I1(s, β, ω) ⊂
{

x : |x| ≤ |aWs|+
∣∣bBH

s

∣∣+ ∣∣bBH, β
s

∣∣+ |c| s}
⊂
{

x : |x| ≤ |aWs|+ 2
∣∣bBH

s

∣∣+ ∣∣b(BH, β
s −BH

s

)∣∣+ |c| s}
=: I2(s, β, ω). (5.1.53)

We use (5.1.50), (5.1.53) and the Hölder inequality to obtain(
E sup

x∈I1(s, β, ω)

∣∣∣∣∂ψ(x, s)
∂x

∣∣∣∣ 2p
) 1

p

≤ M̃2

(
E sup

x∈I2(s, β, ω)

exp
{
2p Ñ |x|}) 1

p

≤ M̃2
(
E exp

{
2p Ñ

(
|aWs|+ 2

∣∣bBH
s

∣∣+ ∣∣b(BH, α
s −BH

s

)∣∣+ |c| s)}) 1
p

(5.1.54)

≤ M̃2 exp
{
Ls
}

×
(
E exp

{
3L |Ws|

}·E exp
{
3L
∣∣BH

s

∣∣ }·E exp
{
3L
∣∣BH, β

s −BH
s

∣∣ }) 1
3
,

where L = 2 Ñ max
(|c| , |a| , 2 |b|). For a Gaussian random variable with zero

mean ξ ∼ N (0, σ2
)
, the following bound is well-known:

E exp
{
a |ξ|}≤ 2 exp

{
a2 σ2

2

}
. (5.1.55)

We use (5.1.55) and Theorem 1.15.2 to deduce from (5.1.54) that(
E sup

x∈I1(s, β, ω)

∣∣∣∣∂ψ(x, s)
∂x

∣∣∣∣ 2p
) 1

p

≤ 2M̃2 exp
{

Ls + 3L2/2
(
E(Ws)2 + E

(
BH

s

)2 + E
(
BH, β

s −BH
s

)2)}
≤ 2M̃2 exp

{
LT + 3L2/2

(
T + T 2H+

+ C max
(
β2H , β2αT (1 + lnT − lnβ)

))} ≤ C <∞, (5.1.56)

for some C > 0 and all β ∈ (0, 1). Summarizing (5.1.51), (5.1.52) and (5.1.56)
we obtain that for any p > 1

2α

E
(
gβ(s)− g(s)

)2 ≤ C β2α−1/p, s ∈ [0, T ], β ∈ (0, 1), (5.1.57)

where constant C does not depend on p or β. Since p is arbitrary, inequality
(5.1.46) follows from (5.1.57). 	
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5.1.5 Equilibrium of Financial Market. The Fractional Burgers
Equation

Definition 5.1.11. The financial market described by equation (5.1.7) is in
equilibrium on [0, T ] if both the kernel ϕt and likelihood ratio dQ

dp

∣∣
Ft

are the
functions of t and Wt, twice differential in both the variables, and do not
depend on the path of {Ws, 0 ≤ s < t} (for the corresponding notations see
Subsection 3.2.3).

This definition generalizes the usual definition of equilibrium of the finan-
cial market involving only the Wiener process (see (HC93)), where the path’s
independence of dQ

dp

∣∣
Ft

is declared, and the kernel ϕt equals simply e(t,Wt),
up to a constant multiplier.

Theorem 5.1.12. If the financial market is in equilibrium, then ϕt satisfies
the Burgers equation

−ϕ(s, x)ϕ
′
x(s, x) = ϕ

′
t(s, x) +

1
2
ϕ

′′
xx(s, x).

Proof. Let ϕt = g(t,Wt), and
∫ t

0
ϕsdWs − 1

2

∫ t

0
ϕ2

sds = G(t,Wt), where
g,G ∈ C2 (R+ × R). Then∫ t

0

g(s,Ws)dWs − 1
2

∫ t

0

g2(s,Ws)ds = G(t,Wt), t ∈ [0.T ].

From the Itô formula,

G(t,Wt) =
∫ t

0

(G
′
t(s,Ws) +

1
2
G

′′
xx(s,Ws))ds +

∫ t

0

G
′
x(s,Ws)dWs.

From here g(s,Ws) = G
′
x(s,Ws), − 1

2g2(s,Ws) = G
′
t(s,Ws) + 1

2G
′′
xx(s,Ws),

or, simply, g(s, x) = G′
x(s, x), − 1

2g2(s, x) = G′
t(s, x) + 1

2G′′
xx(s, x). Further,

g′2(s, x) = G′′
22(s, x), − 1

2g2(s, x) = G
′
t(s, x) + 1

2g′x(s, x). Therefore,

g′t(s, x) = G′′
tx(s, x),−g(s, x)g′x(s, x) = G′′

tx(s, x) +
1
2
g′′xx(s, x),

whence the proof follows. 	

Remark 5.1.13. It is easy to see that the “principal” kernel θt = ϕtt

−α satisfies
the equation

sα+1θ(s, x)θ′x(s, x) = αθ(s, x) + sθ′t(s, x) + s
1
2
θ′′xx(s, x),

s > 0, x ∈ R, and α = H − 1/2, which can be called, in this connection,
the fractional analog of the Burgers equation. (Recall that the usual Burgers
equation has the form u′

t = u′′
xx + uu′

x.)
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5.2 The Different Forms of the Black–Scholes Equation
on the Fractional Market

5.2.1 The Black–Scholes Equation for the Mixed
Brownian–Fractional-Brownian Model

Consider a mixed version of the Black–Merton–Scholes model (5.1.7) with the
value process Xt, described by (5.1.8), and self-financing strategies, defined
by (5.1.9)–(5.1.10). Consider C(t, St), the price of a European call option with
striking price K at time t ∈ [0, T ]. Suppose that C ∈ C1[0, T ] × C2(R), then
we can present the function C̃(t, S(t)) := C(T − t, S(t)) according to the Itô
formula from Theorem 2.7.2 as

C̃(t, S(t)) = C̃(0, x) +
∫ t

0

(
C̃ ′

t(u, Su) + cC̃ ′
S(u, Su)Su + C̃ ′

S

a2

2
Su

+ C ′′
ss

a2

2
S2

u

)
du + a

∫ t

0

C̃ ′
S(u, Su)SudWu + b

∫ t

0

C ′
S(u, Su)SudBH

u . (5.2.1)

Now, let the portfolio on value process consist of one option and an amount
of −δ of underlying assets. The number −δ will be specified later. The value
of this portfolio equals X = C̃ − δS.

The jump in the value of this portfolio in one-step time equals

dX = dC̃ − δdS =
(
C̃ ′

t + cC̃ ′
S +

a2

2
C̃ ′′

SSS2
)
du + aC̃ ′

SSdWu + bC ′
SSdBH

u

− δ
(
aSdWu + bSdBH

u +
a2S

2
du + cSdu

)
. (5.2.2)

If we choose δ = ∂C̃
∂S to eliminate the stochastic noise, then

dX =
(
C̃ ′

t +
a2

2
C̃ ′′

SS · S2
)
du.

The return of an amount X invested in bank account equals rXdt at time dt.
For absence of arbitrage, these values must be the same. Hence we obtain the
traditional Black–Scholes equation

C̃ ′
t +

1
2
a2S2 ∂2C̃

∂S2
− r C̃ + rSC̃ ′

S = 0,

or, in terms of C(t, St),

−C ′
t +

1
2
a2S2 ∂2C

∂S2
− rC + rSC ′

S = 0.

Remark 5.2.1. The same equation was obtained by Zähle (Zah02a) for the
process Z̃t instead of aWt + bBH

t , where Z̃t = aWt + bZt, and Z is continuous
process with vanishing generalized quadratic variation.
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5.2.2 Discussion of the Place of Wick Products
and Wick–Itô–Skorohod Integral in the Problems of Arbitrage
and Replication in the Fractional Black–Scholes Pricing Model

This section appears as a result of the interesting discussion of the related
problems contained in the papers (SV03) and (BH05).

The fact of the existence of arbitrage in the “pure” fractional Brownian
model is, to some degree, the consequence of the fact that the mathematical
expectation of the stochastic integral w.r.t. fBm defined in the pathwise sense
is nonzero (and you immediately obtain such an integral as a limit of the port-
folio value created by step buy-and-hold strategies; we discussed this topic in
Subsection 5.1.4). Note, however, that the arbitrage opportunity constructed
by Rogers (Rog97) does not depend on any particular notion of integration.
The same is true for the pre-limit arbitrage of the fractional Black–Scholes
model considered in (Sot01). Nevertheless, many efforts were made to cre-
ate the “pure” fractional model which will be “free of arbitrage”, with the
help of the stochastic integral constructed by Wick products. We mention in
this connection the papers (HO03), (EvH03), (Ben03), (BO03), (BHOS02),
(Mis04). Now we present the corresponding list of propositions for alternative
definitions of portfolio values and self-financial conditions:

(i) the price of risky asset S is modeled by a geometric fBm and is the
solution of the equation

dSt = St♦ dBH
t , S0 = s0, (5.2.3)

where H ∈ (1/2, 1) everywhere. In this case

St = s0 exp♦(BH
t ) = s0 exp

{
BH

t −
1
2
t2H
}

(5.2.4)

(see Section 2.3.1 for the definition of the Wick integral and recall that
exp♦(X) =

∑∞
n=0 X♦n). Such an approach was developed in (EvH03) and

(HO03). The portfolio value is defined in (EvH03). The standard way is
Vt = ftBt + gtSt, where f and g are the respective numbers of units of the
riskless and the risky asset held in the portfolio. However, in (HO03) the
portfolio value is defined as

Vt = ftBt + gt♦St.

The standard Itô-type self-financing condition dVt = gtdSt is replaced by
dVt = gtSt♦ dBH

t in (EvH03) and by dVt = gt♦ dSt in (HO03).
The paper (BH05) claims that the definition of Vt as Vt = ftBt + gtSt to-

gether with dVt = gtSt♦ dBH
t (where we put Bt ≡ 1) has no economic inter-

pretation as a self-financing condition. Here are the brief arguments. Consider
a buy-and-hold portfolio. It must satisfy

Vt − Vu = gu(St − Su), (5.2.5)
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from intuitive point of view. However, in our case Vt − Vu =
∫ t

u
guSz ♦ dBH

z ,

where the last integral, in general, does not coincide with gu

∫ t

u
Sz ♦ dBH

z and
does not coincide with the right-hand side of (5.2.5). To be precise with this
statement, consider the following example from (BH05): let the initial capital
x > 0; at time t = 0 we put our money into the bank account and wait
until t = 1. Since Bt ≡ 1 we receive x at time t = 1. At this moment we
put our money into the risky asset, i.e., buy x/S1 shares at the price S1 and
hold this position until t = 2. The value of this portfolio at time t = 2 is
V2 = x

S1
S2. Evidently, such a strategy must be considered as self-similar since

nothing was added or subtracted. Nevertheless, x
S1

S2 �= x +
∫ 2

0
guSu♦ dBH

u

with gu = x
S1

1(1,2](u). Indeed, E(x+
∫ 2

0
guSu♦ dBH

u ) exists and equals x, but

xE
S2

S1
= xE exp

{
BH

2 −BH
1 −

1
2
22H +

1
2
12H
}

= x exp
{1

2
(1− 22H)

}
×E exp{BH

2 −BH
1 } = x exp

{1
2
(1−22H)

}
exp
{1

2
·(2−1)2H

}
= x exp{1−22α},

which is not x unless H �= 1/2. There are some other objections concerning
this model, see (BH05).

As to the model with dVt = gt♦ dSt, simple buy-and-hold strategies will
be self-financing in this case. However, the objection in this case is that such
a definition of portfolio Vt = ftdBt + gt♦ dSt is hard to motivate from the
economic point of view. The reasoning in (BH05) is more moral and practical
than mathematical: indeed, to calculate the value of portfolio in this case one
needs to know Wick calculus and it is hard to instruct the broker how to
do it. But there are also some mathematical reasonings against this model,
because it can be proved that there exists a portfolio f = 0, g1 > 0 such
that g1♦S1 < 0 with positive probability (index 1 stands for the moment
of time here). It is sufficient to put Ω′ = {ω ∈ Ω|BH

1 (ω) ∈ (1/2, 3/2)},
g1 = S1 − 1, where S1 = exp{BH

1 − 1/2}. Then g1 > 0 on Ω′, P (Ω′) > 0,
g1♦S1 = S1♦S1 − S1 = exp{2BH

1 − 2} − exp{BH
1 − 1

2} < 0 on Ω′.
In spite of all this criticism, we can say some positive words about Wick

(and Skorohod) models with fBm in finances. For other interesting facts and
approaches to these topics see, for example, (AOPU00),(Oks07).

First, we mention that geometric fBm can be written in two forms:

S
(1)
t = S0e

µt+σBH
t or S

(2)
t = S0e

µt+σBH
t −σ2

2 t2H

. (5.2.6)

The first form is very simple to understand but the second one is similar to
usual geometrical Brownian model St = S0e

µt+σBt− 1
2 σ2t, because ES

(2)
t = S0

for µ = 0. (In Section 6.1 we shall consider the null hypothesis H : S = S
(2)
t

against A : S = S
(1)
t , but in a more complex form, see below.)

As mentioned in (SV03), if we consider it in the Riemann–Stieltjes sense,
the geometric fBm S

(2)
t with µ = 0 is the solution of the equation
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dS
(2)
t = S

(2)
t (dBH

t −Ht2αdt), (5.2.7)

and in the Wick–Skorohod sense δS
(2)
t = S

(2)
t δBH

t or dS
(2)
t = S

(2)
t ♦ dBH

t ,
i.e. we obtain the model (5.2.3). Nevertheless, due to the Riemann–Stieltjes
interpretation, we can consider self-financing condition as

Vt = V0 +
∫ t

0

gsS
(2)
s d(BH

s −Hs2αds),

and it has a clear economic meaning. Indeed, one can consider the Riemann–
Stieltjes integral as an almost sure limit of simple predictable trading strate-
gies.

Now we use the Itô formula (Theorem 2.7.6) for m = 1, St := S
(2)
t , Yt =

σBH
t + µt − σ2

2 t2H , H ∈ (1/2, 1) and F̃ (t, x) = F (t, S0e
x), take (5.2.7) into

account and obtain

F̃ (t, Yt) := F (t, St) = F (0, S0) +
∫ t

0

∂F

∂t
(u, Su)du

+
∫ t

0

∂F

∂x
(u, Su)Su(µ−Hσ2u2α)du + σ

∫ t

0

∂F

∂x
(u, Su)d(BH

u −Hu2αdu)

+ Hσ2

∫ t

0

u2α
(∂2F

∂x2
(u, Su)S2

u +
∂F

∂x
(u, Su)Su

)
du

= F (0, S0) +
∫ t

0

∂F

∂t
(u, Su)du + µ

∫ t

0

∂F

∂x
(u, Su)Sudu

+ σ

∫ t

0

∂F

∂x
(u, Su)d(BH

u −Hu2αdu) + Hσ2

∫ t

0

u2α ∂2F

∂x2
(u, Su)S2

udu.

Consider the assumption

E sup
0≤s≤t

(∂F

∂x
(s, Ss)Ss

)2

+ E sup
0≤s≤t

(∂2F

∂x2
(s, Ss)S2

s

)2

<∞. (5.2.8)

Let F (t, St) := C̃(t, St) := C(T − t, St), where C(t, x) is the price of some
European option with C(T, x) = c(x), and S satisfying assumption (5.2.8).
Then, similarly to (5.2.2), we can present dC̃ in differential form as

dC̃t = σ
∂C̃

∂S
· S(dBH

t −Ht2αdt)

+
(
µS

∂C̃

∂S
+

∂C̃

∂t
+ σ2Ht2α ∂2C̃

∂S2
S2
)
dt.

Now, if the portfolio of value process V consists of one option and an
amount of −δ of underlying assets, then the value V = C̃ − δ · S, the jump in
the value of this portfolio in one time step equals
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dVt = dC̃t − δ · dSt

= σ
∂C̃

∂S
· St(dBH

t −Ht2αdt)− δ(σSt(dBH
t −Ht2αdt))

+
(
µSt

∂C̃

∂S
+

∂C̃

∂t
+ σ2Ht2α ∂2C̃

∂S2
S2

t − µStδ
)
dt.

If we choose δ := ∂C̃
∂S to eliminate the stochastic noise, then

dV =
(∂C̃

∂t
+ σ2Ht2α ∂2C̃

∂S2
S2
)
dt.

The return on an amount Vt invested in the bank account equals rV dt at
time dt. For absence of arbitrage they must be equal, whence we obtain the
fractional Black–Scholes equation (“Wick” version):

∂C̃

∂t
+ σ2Ht2α ∂2C̃

∂S2
S2 + rS

∂C̃

∂S
− rC̃ = 0.

We can solve this equation on the segment [0, T ] with boundary condition
c(x) = (x−K)+, where K > 0 is strike price, and obtain

C(t, S) = C̃(T − t, S) = SΦ
( ln S

K + r(T − t) + (T 2H − t2H)σ2

2

σ
√

T 2H − t2H

)
−Ke−r(T−t)Φ

( ln S
K + r(T − t)− (T 2H − t2H)σ2

2

σ
√

T 2H − t2H

)
,

where Φ( · ) is a function of standard normal distribution. Note that it coin-
cides with the solution of usual Black–Scholes equation for H = 1/2.



6

Statistical Inference with Fractional Brownian
Motion

6.1 Testing Problems for the Density Process for fBm
with Different Drifts

As we have seen in Subsection 5.2.2, the form of geometric fBm (5.2.6) depends
on the kind of integral that is used in its calculations: if we use the Riemann–
Stieltjes integral,

S
(1)
t = S

(1)
0 + µ

∫ 1

0

S(1)
s ds + σ

∫ t

0

S(1)
s dBH

s , then

S
(1)
t = S

(1)
0 exp{µt+σBH

t }, and if the behavior of geometric process is guided
by the Wick integral,

S
(2)
t = S

(2)
0 + µ

∫ 1

0

S(2)
s ds + σ

∫ t

0

S(2)
s ♦ dBH

s , then

S
(2)
t = S

(2)
0 exp{µt + σBH

t − 1
2σ2t2H}. So, the natural question arises: what

trend actually has geometric fBm? This question was considered in the paper
(KMV05), and here we present a solution of this problem. In what follows
the notation Xn = oP (1) means that Xn

P−→ 0, Xn = OP (1) means that
lim

C→∞
lim sup

n
P{|Xn| ≥ C} = 0 . Assume that H ∈ (1/2, 1). For a fixed µ ∈ R

let Pµ,σ,σ be the distribution of the process

Xt := σBH
t + µt− σ2

2
t2H , 0 ≤ t ≤ T (6.1.1)

in the space C[0,T ] of continuous functions. Similarly, Pµ,σ is the distribution
of the process

Xt := σBH
t + µt, 0 ≤ t ≤ T (6.1.2)

in the space C[0,T ].
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Suppose now that we observe a trajectory of the process {Xt, 0 ≤ t ≤ T}
in the space C[0,T ]. Denote by PX the law of X. We want to test the following
complex hypothesis:

H : PX ∈ {Pµ,σ,σ : µ ∈ R, σ ∈ R+}
against the complex alternative

A : PX ∈ {Pµ,σ : µ ∈ R, σ ∈ R+}.
From the point of view of the general theory, models of observation (6.1.1)

and (6.1.2) are equivalent to the classical model

X̃t =
∫ t

0

lH(t, s)dXs = σMH
t + µB1t

1−2α − σ2HB2t (6.1.3)

and
X̃t = σMH

t + µB1t
1−2α, (6.1.4)

where

X̃t =
∫ t

0

lH(t, s)dXs, MH
t =

∫ t

0

lH(t, s)dBH
s ,

the kernel lH is defined in Section 1.8, B1 := C
(5)
H B(1− α, 1− α),

B2 := C
(5)
H B(1 + α, 1 + α).

Introduce the following density processes (Radon–Nikodym derivatives)
based on the observed trajectory of X:

f1(X : µ, σ, σ) :=
dPµ,σ,σ

dP0,σ
(X) (6.1.5)

and
f2(X : µ, σ) :=

dPµ,σ

dP0,σ
(X). (6.1.6)

Theorem 6.1.1. Assume we observe X on the interval [0, T ]. We have

f1(X : µ, σ, σ) = exp
{

a
µ

σ2
X̃T − bX̃1

T − c
µ2

σ2
T 1−2α +dµT −kσ2T 2H

}
(6.1.7)

and

f2(X : µ, σ) = exp
{

a
µ

σ2
X̃t − c

µ2

σ2
T 1−2α

}
, (6.1.8)

where
X̃1

t =
∫ t

0
s2αdX̃s, a = B1, b = HB2

2(1−H) ,

c = 1
2B2

1 , d = B1B2H, k = HB2
2

8(1−H) .
(6.1.9)

Proof. Follows immediately from (6.1.1) to (6.1.6) and the classical Girsanov
theorem. 	
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6.1.1 Observations Based on the Whole Trajectory with σ and H
Known

In this section we demonstrate how to test the hypothesis H against the
alternative A, when σ is known and the whole trajectory {Xt : t ∈ [0, T ]} is
observed. We can use the likelihood ratio to test this (for the likelihood ratio
see (Bor84), p. 319). In our problem the likelihood ratio l(X·) = l(X·|σ) has
the form

l(X·|σ) :=
supµ∈R f1 (X;µ, σ, σ)
supµ∈R f2 (X;µ, σ)

. (6.1.10)

Note that in (6.1.10) both upper bounds are attained, since the densities f1

and f2 are the quadratic functions of µ. More precisely, we have

supµ∈R f1(X;µ, σ, σ) = exp
{

a2

4σ2c (X̃t)2T 2α−1 − 2αbX̃t · T 2α

+ 2αb
∫ T

0
s2α−1X̃sds− 4α2kσ2T 2H

}
,

(6.1.11)

and the value of µ giving the maximal value in (6.1.11) is

µ̂H :=
aX̃t + dTσ2

2cT 1−2α
. (6.1.12)

Similarly, for the denominator in (6.1.10) we have

sup
µ∈R

f2(X;µ, σ) = exp
{aX̃2

T T 2α−1

4σ2C

}
(6.1.13)

an the maximum in (6.1.13) is achieved by

µ̂A :=
aX̃T T 2α−1

2c
. (6.1.14)

We obtain the following theorem as a direct consequence of (6.1.10) –
(6.1.14):

Theorem 6.1.2. The likelihood l(X·|σ) from (6.1.10) admits the representa-
tion

l(X·|σ) = exp
{
− 2αbX̃T T 2α + 2αb

∫ T

0

s2α−1X̃sds− 4α2kσ2T 2H
}

.

Remark 6.1.3. Note that in the case when H = 1
2 we have l(X.|σ) = 1. It

means that our method does not work in this case, because the drift (−σ2 t
2 )

has the same order in t as µt, and we cannot distinguish them. Therefore our
method works worse if H is close to 1

2 .
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Next we describe the testing procedure. Given a confidence level 1 − ρ,
ρ ∈ (0, 1/2), consider the critical areas defined by K1 := {X· : l(X·|σ) ≥ Kρ}
and K2 := {X· : l(X·|σ) < kρ}. The critical values 0 < kρ ≤ Kρ are chosen in
such a way that we have

sup
µ∈R

Pµ,σ(K1) ≤ ρ, sup
µ∈R

Pµ,σ,σ(K2) ≤ ρ. (6.1.15)

The test is now clear: if X· ∈ K1 we accept H, if X· ∈ K2 we accept A. If
l(X·|σ) ∈ [kρ,Kρ) then no hypothesis is accepted. Inequalities (6.1.15) show
that the probabilities of so-called errors of the first and of the second kind
will not exceed the level ρ.

Next we compute the critical values Kρ, kρ. To compute kρ recall that
under A the process X has the same distribution as the process σZt + µt.
Similarly, to compute Kρ we use the fact that under H the process X has the
same distribution as the process σZt + µt− σ2

2 t2H .
We have that

l(σZ·+µ · |σ) = exp
{
−2αbσMH

T ·T 2α +2αbσ

∫ T

0

s2α−1MH
s ds−4α2kσ2T 2H

}
and

l
(
σZ· + µ · −σ2

2
· |σ
)

= exp l(σZ· + µ · |σ) exp
{
8α2kσ2T 2H}.

Hence, we have that

Pµ,σ(K1) = P
{
− 2αbσMH

T · T 2α

+ 2αbσ
∫ T

0
s2α−1MH

s ds ≥ log Kρ + 4α2kσ2T 2H
} (6.1.16)

The random variable in the above expression is Gaussian with zero mean
and variance

v2 =
α2HB2

2σ2T 2H

1−H
.

Therefore, by (6.1.15)

Pµ,σ(K1) = 1− Φ
( log Kρ

v
+

v

2

)
, (6.1.17)

where Φ is the distribution function of standard normal distribution. If ξρ is
such that 1− Φ(ξρ) = ρ, then Kρ ≥ exp{vξρ − v2

2 }.
Similarly,

Pµ,σ,σ(K2) = 1− Φ
(1

v
log
( 1

kρ

)
+

v

2

)
, (6.1.18)

that is kρ ≤ exp{−vξρ + v2

2 }. Finally, we can choose Kρ = max(1, exp{vξρ −
v2

2 }), kρ = Kρ
−1.
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6.1.2 Discretely Observed Trajectory and σ Unknown

Assume now that we observe the process X discretely and the intensity σ
of the fractional noise is unknown. We replace the parameter σ in l(X·|σ)
with a consistent estimate σ̂n, where n is the number of time points, and
instead of the stochastic integrals w.r.t. X we will use sums in terms of the
increments of X. We obtain a quasi-likelihood ratio, which is constructed
from the observations. The critical values will be computed uniformly w.r.t.
all possible values of µ and σ. We will give an asymptotic description of the
critical levels.

First, choose the critical values independently of the parameter σ. For
Kρ ≥ 1 we have that

1
v

log Kρ +
v

2
≥ 2

√
1
2

log Kρ =
√

2 log Kρ,

and from (6.1.17)
Pµ,σ(K1) ≤ 1− Φ(

√
2 log Kρ).

Take K∗
ρ := e

ξ2
ρ
2 and put K∗

1 := {X· : l(X·) ≥ K∗
ρ}. Then we have

sup
µ,σ>0

Pµ,σ(K∗
1 ) ≤ ρ. (6.1.19)

Similarly, using (6.1.18) and taking k∗
ρ = e−

ξ2
ρ
2 and if K∗

2 := {X· : l(X·) ≤ k∗
ρ}

we will have
sup

µ,σ>0
Pµ,σ,σ(K∗

2 ) ≤ ρ. (6.1.20)

Put
K∗

0 := {X· : k∗
ρ < l(X·) < K∗

ρ};
note that K∗

0 is (a conservative variant of) the region, where neither the
hypothesis H nor the hypothesis A is accepted. Let C1 := α

√
HB2σ√
1−H

.

Theorem 6.1.4. Assume that T >
(√

2
C1

ξρ

)1/H

. Then we have that

sup
µ,σ

Pµ,σ(K∗
0 ) ≤ 4

C1
T−H exp

{
− C2

1T 2H

32

}
(6.1.21)

and

sup
µ,σ,σ

Pµ,σ,σ(K∗
0 ) ≤ 4

C1
T−H exp

{
− C2

1T 2H

32

}
. (6.1.22)

Proof. We have that

Pµ,σ(K∗
0 ) ≤ Pµ,σ({X· : l(X·) > k∗

ρ}) = 1− Φ
(v

2
+

1
v

log k∗
ρ

)
. (6.1.23)
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We have the following inequality for x > 0:

1− Φ(x) =
1√
2π

∫ ∞

x

e−
u2
2 du ≤ 1√

2πx
e−

x2
2 .

Apply this to (6.1.22) with x = C1T H

2 − 1
C1T H

ξ2
ρ

2 , and if T >
(√

2ξρ

C1

)1/4

we
obtain (6.1.21). The estimate (6.1.22) is obtained similarly. 	

Corollary 6.1.5.

lim
T→∞

sup
µ

Pµ,σ{K∗
0} = 0

and
lim

T→∞
sup

µ
Pµ,σ,σ{K∗

0} = 0.

Assume that we observe the process X at points 0 ≤ tn,1 < · · · tn,n ≤ T ,
where tn,k ∈ πn. Put ∆n = max{tn,1, |πn|, T − tn,n} and assume that

lim
n→∞∆n = 0. (6.1.24)

We will introduce a discrete version of the functional l(X·). Put sk = tn,k,
∆sk = sk+1 − sk, xk = Xtn,k

and ∆xk = xk+1 − xk. Assume that σ̂2
n is some

consistent estimator of σ2. Put

ln(x1, . . . , xn) = exp

(
− 2αbT 2αC

(5)
H

n−1∑
k=0

s−α
k+1(T − sk)−α∆xk

+ 2αbC
(5)
H

n∑
k=1

s2α−1
k+1

(
k−1∑
i=0

s−α
i+1 (sk − si)

−α
∆xi

)
∆sk − 4α2kσ̂2

nT 2H

)
.

With the help of constants K∗
ρ and k∗

ρ from (6.1.19) and (6.1.20) define
the critical domains

K∗
1n := {(xn,1, . . . , xn,n) ∈ Rn|ln(xn,1, . . . , xn,n) ≥ K∗

ρ}
and

K∗
2n := {(xn,1, . . . , xn,n) ∈ Rn|ln(xn,1, . . . , xn,n) < k∗

ρ}.
If the observations belong to K∗

1n then H is accepted and if the observations
belong to K∗

2n then A is accepted.

Theorem 6.1.6. Assume that we have (6.1.24) as n → ∞. Then for any
µ ∈ R, σ > 0 we have that

ln(xn,1, . . . , xn,n)
Pµ,σ,σ−→ l(X·|σ) (6.1.25)

and
ln(xn,1, . . . , xn,n)

Pµ,σ−→ l(X·|σ). (6.1.26)
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Proof. We prove the claim (6.1.25) (the claim (6.1.26) is proved similarly).
Denote by l(X̂·|σ) the random variable l(X·|σ), when the process Xt is re-
placed by the process σZt + µt− σ2t2H

2 , 0 ≤ t ≤ T , and by ln(x̂n,1, . . . , x̂n,n)

the variable where we replace ∆Xn,k by σ̂n∆Zn,k + µ∆tk − σ2(∆tk)2H

2 . Then
for any ε > 0, C > 0 we have that

Pµ,σ,σ{|ln(xn,1, . . . , xn,n)− l(X̂·|σ)| > ε}
≤ Pµ,σ,σ{|ln(xn,1, . . . , xn,n)| ≥ C}+ Pµ,σ,σ{|l(X̂·|σ)| ≥ C}
+ Pµ,σ,σ{| log ln(x̂n,1, . . . , x̂n,n)− log l(X̂·|σ)| > εe−C}. (6.1.27)

The first two probabilities can be chosen sufficiently small for large C > 0.
The structure of the functionals l(X̂·|σ) and ln(x̂n,1, . . . , x̂n,n), the facts that

σ̂n
Pµ,σ,σ−→ σ, C

(5)
H

∑n−1
k=1 s−α

k+1(T − sk)−α∆sk →
∫ t

0
lH(t, s)ds and

C
(5)
H

n∑
k=1

s2α−1
k

k−1∑
i=1

s−α
i+1 (sk − si)

−α
∆si∆sk →

∫ T

0

s2α−1

∫ s

0

lH(s, u)du ds,

supply that it is sufficient to prove that

C
(5)
H

n∑
k=1

s−α
k+1(T − sk)−α∆BH

k

Pµ,σ,σ−→ MH
T , (6.1.28)

where ∆Yk := Y(k+1)T/n − YkT/n for any process Y, and that

C
(5)
H

n∑
k=1

s2α−1
k+1

(
k−1∑
i=1

s−α
i+1 (sk − si)

−α
∆BH

i

)
∆sk

Pµ,σ,σ−→
∫ T

0

s2α−1MH
s ds. (6.1.29)

To prove (6.1.28) consider for fn,T (s) = C
(5)
H s−α

k+1(T − sk)−α1{s∈[sk,sk+1)}

E

(
MH

T − C
(5)
H

n−1∑
k=1

s−α
k+1 (T − sk)−α

∆BH
k

)2

= 2Hα

∫ T

0

∫ T

0

(lH (T, s)− fn,T (s)) (lH (T, u)− fn,T (u)) |u− s|2α−2du ds.

We have that fn,T (s) ↑ lH(T, s) for s ∈ (0, T ), and
∫ T

0

∫ T

0
lH(T, s)lH(T, u)

× |u− s|2α−1du ds <∞. Therefore, by monotone convergence,∫ T

0

∫ T

0

(lH (T, s)− fn,T (s)) (lH (T, u)− fn,T (u)) |u− s|2α−1du ds→ 0
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as n→∞ and (6.1.28) follows.
To finish, we prove (6.1.29). Denote g(s) := s2α−1MH

s and

gn(s) := C
(5)
H s2α−1

k+1

k−1∑
i=1

s−α
i+1 (sk − si)

−α
∆BH

i 1{s∈[sk,sk+1)}.

Then, for any s ∈ (0, T ],

E|g(s)− gn(s)| ≤ |s2α−1 − s2α−1
k+1 |E|MH

s |+ 2Hαs2α−1

×
(
E
∫ s

0

∫ s

0
(lH(s, u)− fn,s(u))(lH(s, r)− fn,s(r))|u− r|2α−1du dr

)1/2

,

(6.1.30)
and as in previous inequalities, the second term on the right-hand side of
(6.1.30) goes to zero, moreover the left-hand side can be dominated, according
to Remark 1.9.5, by

C̃
(1)
H s2α−1T 1−H + C̃2

H ||lH(s, ·)||L1/H [0,s] ≤ C̃
(3)
H T 1−H ,

where C̃
(i)
H are some constants, i = 1, 2, 3. From here

E| ∫ T

0
(g(s)− gn(s))ds| → 0, as n→∞ and we obtain (6.1.29).

Corollary 6.1.7. Assume that (6.1.24) holds. Then

lim sup
n

Pµ,σ(K∗
1n) ≤ ρ, lim sup

n
Pµ,σ,σ(K∗

2n) = 0

and
lim
T

lim sup
n

(Pµ,σ + Pµ,σ,σ)(K∗
0n) = 0,

where K∗
0n := {(xn,1, . . . , xn,n) : k∗

ρ < log ln(xn,1, . . . , xn,n) < K∗
ρ}.

Proof. By Theorem 6.1.6 we have, as n→∞:

Pµ,σ(K∗
1n)→ Pµ,σ(K∗

1 ), Pµ,σ,σ(K∗
2n)→ Pµ,σ(K∗

2 )

and
(Pµ,σ + Pµ,σ,σ)(K∗

0n)→ (Pµ,σ + Pµ,σ,σ)(K∗
0 ).

Hence the statements of the corollary follow from Theorem 6.1.6. 	

Note that according to Corollary 6.1.7 the proposed test procedure has

asymptotically the level of errors less than or equal to ρ for both kinds of
errors. Note also that the probability not to make a decision goes to zero as
T →∞. It is also easy to see from the proof of Theorem 6.1.6 and Corollary
6.1.7 that this convergence is uniform for all µ and all σ ≥ σ0 > 0, where σ0

is fixed.
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6.2 Goodness-of-fit Test

6.2.1 Introduction

Suppose that H was tested against A, and we conclude that, e.g. A is true.
Consider a certain functional depending on the trajectory of the observed
process {Xt, 0 ≤ t ≤ T}. If the distribution of this functional under A is
known we can construct the corresponding goodness-of-fit test. For a given
confidence level we either reject A or do not reject A. If we reject A it means
that the observed trajectory does not fit the model described by A, and we
conclude finally in this case that both A and H are wrong.

If the parameters in the models are unknown we propose an asymptotical
test which provides a given confidence level as T → +∞.

6.2.2 The Whole Trajectory Is Observed and the Parameters
µ and σ Are Known

Introduce a functional which depends on the whole observed trajectory
{x(t), t ∈ [0, T ]}, in a linear way:

QT :=
∫ T

0

Z(T, s)dXs,

where
Z(T, s) = s1/4−H(T − s)3/4−H.

We choose here the exponents 1
4 − H and 3

4 − H different from 1
2 − H in

order to obtain the functional which is essentially different from MH
T . The

reason for that will be clear from Theorem 6.2.3. The integral exists in both
cases when Xt = σBH

t + µt and Xt = σBH
t + µt− σ2

2 t2H .
Denote

B3 = B
(5

4
−H,

7
4
−H
)
, B4 = B

(
H +

1
4
,
7
4
−H
)
.

Theorem 6.2.1. Let the parameters µ and σ be known.

(i) Assume that we have H: Xt = σBH
t + µt− σ2

2 t2H . Then

RH
T := TH−1QT − µB3 · T 1−H + σ2H ·B4 · TH ∼ N(0, C2σ

2);

(ii) Assume that we have A: Xt = σBH
t + µt. Then

RA
T := TH−1QT − µB3 · T 1−H ∼ N(0, C2σ

2),

where

C2 = 2Hα

∫ 1

0

∫ 1

0

(us)
1
4−H((1− u)(1− s))

3
4−H · |u− s|2α−1du ds.
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Proof. Assume H. Then we have

QT = σ

∫ T

0

Z(T, s)dBH
s + µT 1−2αB3 − σ2HB4T (6.2.1)

and so

RH
T = TH−1σ

∫ T

0

Z(T, s)dBH
s .

Obviously, RH
T is normally distributed with mean zero and with variance

E(RH
T )2 = σ2T 2α−12αH

∫ T

0

∫ T

0

(us)
1
4−H((T−u)(T−s))

3
4−H |s−u|2α−1du ds,

i.e. E(RH
T )2 = σ2C2 and the first claim now follows.

Assume A. Then we can write QT as

QT = σ

∫ T

0

Z(T, s)dBH
s + µT 1−2αB3, (6.2.2)

and the second claim follows from (6.2.2) as above. 	

The goodness-of-fit tests are based on the statistics

R
H

T :=
RH

T

σ(C2)
1
2
, R

A

T :=
RA

T

σ(C2)
1
2
.

Fix a confidence level 1 − ρ, ρ ∈ (0, 1
2 ), and let ξ ρ

2
be a ρ

2 -fractile of a

standard normal law, i.e P{N(0, 1) ≥ ξ ρ
2
} = ρ

2 . We reject H if |RH

T | > ξ ρ
2
,

and reject A if |RA

T | > ξ ρ
2
.

Note that under H, R
A

T

Pµ,σ,σ−−−−→ −∞, T → +∞, therefore the inequality
R

A

T < −ξ ρ
2

is an additional argument in favor of H.

Also, if A is true, then R
H

T

Pµ,σ−−−→ +∞, T → +∞, therefore the inequality
R

A

T > ξ ρ
2

is an additional argument in favor of A.

Remark 6.2.2. Suppose that in reality we have the model Xt = σBH1
t

+ µt, H1 > H, not σBH
t + µt. Denote the law of X in this case by P . Then

R
H

T =
TH−1

(C2)
1
2

∫ T

0

s
1
4−H(T − s)

3
4−HdBH1

s ,

and E(R
H

T )2 has the order T 2(H1−H) for large T , thus R
H

T
P−→ ∞, T → ∞,

and

R
H

T = R
A

T +
σHB4T

H

(C2)
1
2

= TH1−HOP (1) +
σHB4T

H

(C2)
1
2

P−→ +∞, T →∞.

Therefore our statistics can distinguish this case, too.
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6.2.3 Goodness-of-fit Tests with Discrete Observations

Asymptotic Behavior of Discrete Statistics for µ Unknown and σ
Known

Suppose for simplicity that we observe the values X kT
n

, k = 0, 1, . . . , n. We
substitute in RA

T , RH
T a discretization of QT ,

Q̂T :=
n−1∑
k=0

( (k + 1)T
n

) 1
4−H(

T − kT

n

) 3
4−H

�Xk.

Instead of µ we substitute the estimates (6.1.12) and (6.1.14), respectively.
Thus we define

R̂H
T := TH−1Q̂T − µ̂AB3T

1−H + σ2HB4T
H

and
R̂A

T := TH−1Q̂T − µ̂HB3T
1−H .

Under hypothesis H we have

R̂H
T = σT−H

n−1∑
k=0

(k + 1
n

) 1
4−H(

1− k

n

) 3
4−H

�BH
kT
n

(6.2.3)

+ µT 1−H
n−1∑
k=0

(k + 1
n

) 1
4−H(

1− k

n

) 3
4−H

· 1
n
− σ2

2
TH

n−1∑
k=0

(k + 1
n

) 1
4−H

×
(
1− k

n

) 3
4−H((k + 1

n

)2H

−
(k

n

)2H)
− µ̂AB3T

1−H + σ2HB4T
H ,

and under hypothesis A

R̂A
T = σT−H

n−1∑
k=0

(k + 1
n

) 1
4−H(

1− k

n

) 3
4−H

�BH
kT
n

(6.2.4)

+ µT 1−H
n−1∑
k=0

(k + 1
n

) 1
4−H(

1− k

n

) 3
4−H

· 1
n
− µ̂HB3T

1−H .

To begin we find the rate of convergence of the integral sums in (6.2.3)
and (6.2.4) to the corresponding integrals.

Define R̃A
T by

R̃A
T :=

σ

T 1−H

∫ T

0

s1/4−H(T − s)3/4−HdBH
s + B3T

1−H(µ− µ̂A)

and R̃H
T similarly, with µ̂H replacing µ̂A.

We study the differences R̂A
T − R̃A

T and R̂H
T − R̃H

T . Put
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qn(T, s) :=
n−1∑
k=0

( (k + 1)T
n

) 1
4−H(

T − kT

n

) 3
4−H

· 1
[ kT

n , (k+1)T
n )

(s),

I(δ, β) := B(δ + 1, β + 1) =
∫ 1

0

sδ(1− s)βds,

and

In(δ, β) =
n−1∑
k=0

(
k + 1

n

)δ (
1− k

n

)β 1
n

.

We have that

R̂A
T − R̃A

T = TH−1

∫ T

0

(qn (T, s)− q (T, s)) dBH
s

− T 1−Hµ (In (1/4−H, 3/4−H)− I (1/4−H, 3/4−H)) (6.2.5)

and

R̂H
T − R̃H

T = R̂A
T − R̃A

T −
σ2

2
TH2H

(
In (H − 3/4, 3/4−H)

− I (H − 3/4, 3/4−H)
)
− σ2

2
TH

(
n−1∑
k=0

((
k + 1

n

)1/4−H (
1− k

n

)3/4−H

(6.2.6)

×
((

k + 1
n

)2H

−
(

k

n

)2H
)
− 2H

(
k + 1

n

)H−3/4(
1− k

n

)3/4−H 1
n

))
.

Using self-similarity, we obtain that

E

(
TH−1

∫ T

0

(qn (T, s)− q (T, s)) dBH
s

)2

= E

(∫ 1

0

(qn (1, s)− q (1, s)) dBH
s

)2

. (6.2.7)

According to Remark 1.9.5 we have

E

(∫ 1

0

(qn (1, s)− q (1, s)) dBH
s

)2

≤ cH ||qn(1, s)− q(1, s)||2L1/H [0,1]. (6.2.8)

Now we use these preliminary calculations to prove the next result. Let
n = n(T ) be the number of approximation points.

Theorem 6.2.3. Assume

(iii) For 1
2 < H ≤ 3

4 ,

T β

n(T )
→ 0, T →∞, with β =

H

H + 1
4

.
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(iv) For 3
4 < H < 1,

T β

n(T )
→ 0, T →∞, with β = H.

Then under H
R̂H

T − R̃H
T = oP (1), T →∞ (6.2.9)

and under A
R̂A

T − R̃A
T = oP (1), T →∞. (6.2.10)

Moreover, under H R̃H
T ∼ N(0, r2), and under A R̃A

T ∼ N(0, r2), where

r2 := 2σ2αH

∫ 1

0

∫ 1

0

ϕ(s)ϕ(u) · |u− s|2α−1
du ds,

with
ϕ(s) := s

1
4−H(1− s)

3
4−H − B3

B1
s−α(1− s)−α.

Proof. To prove the claims note first that using Lemmas B.0.1 and B.0.2 from
Appendix B we have that R̂H

T − R̃H
T = oP (1) under H and R̂A

T − R̃A
T = oP (1)

under A. Next, we substitute (6.1.12) into R̃H
T and obtain

R̃H
T =

σ

T 1−H

∫ T

0

(
s

1
4−H(T − s)

3
4−H − B3

B1
s−α(T − s)−α

)
dBH

s .

This implies that under H R̃H
T ∼ N(0, r2). Similarly, one shows that under A

R̃A
T ∼ N(0, r2). 	


Remark 6.2.4. For the kernel lH(t, s) instead of Z(t, s) we obtain the degen-
erate distribution of R̃H

T and R̃A
T . This is the reason why we take the kernel

Z(t, s).
Goodness-of-fit Test
Based on Theorem 6.2.3, we construct the goodness-of-fit test similarly to

the one from Subsection 6.2.2. Choose ξ ρ
2

as there. We reject H if
∣∣∣R̂H

T

∣∣∣ > rξ ρ
2
,

and we reject A if
∣∣∣R̂A

T

∣∣∣ > rξ ρ
2
. The test is applicable for large T only, contrary

to the test from Subsection 6.2.2, because for the probability pH(T ) that H
is rejected when H is true, we have now

lim
T→∞

pH(T ) = ρ

and similarly for A and pA(T ).
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6.2.4 On Volatility Estimation

In this subsection we construct an estimator for the parameter σ. We end this
subsection by giving the goodness-of-fit test for the case where both µ and σ
are unknown.

Introductory Computations for Volatility Estimation
Assume H. Then the background process is Xt = σBH

t +µt− σ2

2 t2H , t ≥ 0.
We make observations at time points tk = kT

n , k = 0, 1, . . . , n. Put, as before,
∆Xk = X k+1

n T −X k
n T , k = 0, . . . , n−1. Then we have, with obvious notation,

that

∆Xk = σ∆BH
k + µ∆tk − σ2

2
∆(t2H)k,

k = 0, . . . , n− 1. Consider now ∆Xk

T H and write this as

∆Xk

TH
= σ

1
nH

εk +
µ∆tk
TH

− σ2

2TH
∆(t2H)k. (6.2.11)

In (6.2.11) we used the notation εk = ∆BH
k nH

T H . By self-similarity the distrib-
ution of the vector (ε0, . . . , εn−1) is the same as of the vector

BH
1
n

−BH
0

1
nH

, . . . ,
BH

1 −BH
(n−1)

n

1
nH

d= BH
1 −BH

0 , BH
2 −BH

1 , . . . , BH
n −BH

n−1,

where we again used self-similarity. Simple computation gives Eεk = 0,
Eε2

k = 1 and

Eεkεl =
1
2
(|k − l + 1|2H − 2|k − l|2H + |k − l − 1|2H

)
.

If k > l ≥ 1 and 1
2 ≤ H < 1, then, applying the mean value theorem twice

gives
0 ≤ Eεkεl ≤ 2Hα(k − l)2α−1. (6.2.12)

Denote µ1 := nHµ∆t
T H , yt := nH∆Xt

T H and rewrite (6.2.11):

yt = σεt + µ1 − σ2

2
T−HnH∆t2H .

To simplify the notation put

yk := σεk + µ1 − σ2

2
THnH∆τ2H

k , k = 0, 1, . . . , n− 1, (6.2.13)

where �τ2H
k = (k+1

n )2H − ( k
n )2H . We use a sample variance to estimate σ :

σ̂2
n :=

n

n− 1
(y2

n − y2
n) with yn :=

y1 + · · ·+ yn

n
. (6.2.14)
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Let

zk = σεk − σ2

2
THnH∆τ2H

k , k = 0, 1, . . . , n− 1. Then

z̄n = σε̄n − σ2

2
THnH−1 (6.2.15)

and

σ̂2 =
n

n− 1
(z2

n − z2
n) =

nσ2

n− 1

(
ε2

n − σTHnHεn∆τ2H
n

+
σ2

4
T 2Hn2H(∆τ2H

n )2 − ε2
n (6.2.16)

+ σTHnHεn∆τ2H
n − σ2

4
T 2Hn2H(∆τ2H

n )2
)

.

Again we have a problem with the rate of the discretization with respect
to the observation interval. We start with one lemma:

Lemma 6.2.5. Assume that X,Y are two standard normal random variables:

EX = EY = 0 and V ar(X) = V ar(Y ) = 1.

Assume that EXY = q. Then

E
(
(X2 − 1)(Y 2 − 1)

)
= 2q2. (6.2.17)

Lemma 6.2.6. With the notation above:

(v) If H < 3
4 , then E|ε2

n − 1| ≤ C 1√
n
.

(vi) If H = 3
4 , then E|ε2

n − 1| ≤ C
√

log n
n .

(vii) If 3
4 < H < 1, then E|ε2

n − 1| ≤ Cn2α−1.

Proof. We have that

ε2
n − 1 =

1
n

n−1∑
i=0

(ε2
i − 1).

From Lemma 6.2.5 and (6.2.6):

E
(
ε2

n − 1
)2 =

1
n2

n−1∑
i=0

E(ε2
i − 1)2 +

2
n2

∑
0≤j<i≤n−1

E(ε2
i − 1)(ε2

j − 1)

≤ C

n
+

C

n2

∑
0≤j<i≤n−1

(i− j)4H−4. (6.2.18)

Note that ∑
0≤j<i≤n−1

(i− j)4H−4 =
n−1∑
j=1

(n− j)j4H−4.

This and inequality (6.2.18) give the result. 	
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We have
zn

d= σnH−1
(
BH

1 −
σ

2
TH
)

(6.2.19)

so that

0 ≤ Ez2
n ≤ σ2n2α−1

(
2E(BH

1 )2 +
σ2

2
T 2H
)
. (6.2.20)

Estimation of σ

Theorem 6.2.7. Assume H. If n(T ) is such that T 3H

n(T )1−2α → 0, then
TH(σ̂2

n − σ2) = oP (1).
Assume A. Then

(viii) If 1
2 < H < 3

4 and n(T ) is such that T 2H

n(T ) → 0, then TH(σ̂2
n − σ2)

= oP (1).

(ix) If H = 3
4 and n(T ) is such that T

3
2 log(n(T ))

n(T ) → 0, then TH(σ̂2
n − σ2)

= oP (1).
(x) If 3

4 < H < 1 and n(T ) is such that T H

n(T )1−2α → 0, then TH(σ̂2
n − σ2)

= oP (1).

Proof. Using Lemma 6.2.5 and (6.2.16) we obtain that

THE|σ̂2
n − σ2| ≤ C

(
THE|ε2

n − 1|+ TH + T 2H + T 3H

n1−2α

)
.

where C depends on σ2. Under H the statement follows from Lemma 6.2.6.
Under A we have

σ̂2 =
nσ2

n− 1

(
ε2

n − (εn)2
)

,

and

TH · E|σ̂2
n − σ2| ≤ C

(
THE|ε2

n − 1|+ TH

n1−2α

)
.

The claims (viii)–(x) follow from Lemma 6.2.6. 	


6.2.5 Goodness-of-fit Test with Unknown µ and σ

If the parameter σ is unknown, then using the observation X kT
n

, k =
0, 1, . . . , n, with n = n(T ), an estimator σ̂2 = σ̂2

n is constructed. The con-
struction of this estimator is explained in Subsection 6.2.4.

If
T

3H
1−2α

n(T )
→ 0, T →∞ (6.2.21)

we have (σ̂2 − σ2) · TH Pµ,σ,σ−−−−→ 0, when H is true.
If conditions (viii)–(x) of Theorem 6.2.7 hold, we have the same conver-

gence for (σ̂2 − σ2) · TH , then A is true. Define the statistics
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ŜA
T := r−1R̂A

T

∣∣∣∣
σ=σ̂

, ŜH
T := r−1R̂H

T

∣∣∣∣
σ=σ̂

. (6.2.22)

Consider the model with unknown µ and σ.

Theorem 6.2.8. (a) Assume that H is true, and that T 3H

n(T )1−2α → 0, T →∞.

Then
ŜH

T → N(0, 1) in distribution.
(b) Assume that A is true and conditions (vii)–(x) of Theorem 6.2.7 hold.

Then ŜA
T → N(0, 1) in distribution.

Proof. (a) Suppose that H is true. By Theorem 6.2.7 we have σ̂2−σTH P−→ 0.
Rewrite (6.2.22) as

ŜH
T = r−1R̂H

T |σ=σ̂ · σ
σ̂

= r−1 σ

σ̂

(
R̂H

T + B3T
1−H(µ̂H − µH|σ=σ̂) + HB4T

H(σ̂2 − σ2)
)

.

Now, σ̂
P−→ σ and HB4T

H(σ̂ − σ) P−→ 0, as T →∞. From (6.1.12)

B3T
1−H(µ̂H − µH|σ=σ̂) equals B5T

H(σ̂2 − σ2) P−→ 0, (6.2.23)

where B5 is some constant.
And now from (6.2.23) and Theorem 6.2.7 the convergence ŜA

T → N(0, 1)
follows.

(b) If A is true then TH(σ̂2 − σ2) P−→ 0 holds under the conditions of the
Theorem 6.2.7. The proof now follows in the same way. 	


The goodness-of-fit test is now organized in such a way. We reject H if
|ŜH

T | > ξ ρ
2
, and we reject A if |ŜA

T | > ξ ρ
2
. Asymptotic relations for the errors

pA(T ) and pH(T ) are the same in Section 6.2.4.

6.3 Parameter Estimates in the Models Involving fBm

In this section we consider very simple diffusion models involving fBm and in
some cases the Wiener process. Our goal is to demonstrate the properties of
drift parameter estimates depending on the form of the model.We follow but
slightly modify an approach of (MR01).
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6.3.1 Consistency of the Drift Parameter Estimates in the Pure
Fractional Brownian Diffusion Model

First we consider the “pure” fractional diffusion (nonlinear) model and estab-
lish strong consistency and asymptotic normality of the maximum likelihood
drift parameter estimate.

The Girsanov Theorem for the Pure Fractional Diffusion Model
and Likelihood Ratio for Drift Parameter

We assume that the fBm BH
t with H ∈ (1/2, 1) is defined on a probability

space (Ω,F , P ) and denote by (Ft)t≥0 the filtration generated by BH
t . Con-

sider a diffusion equation containing a stochastic differential driven by BH :

dXt = θa(t,Xt)dt + b(t,Xt)dBH
t , Xt=0 = X0 ∈ R, (6.3.1)

θ ∈ R, 0 ≤ t ≤ T, T > 0.

Differential equation (6.3.1) can be rewritten in the integral form

Xt = X0 + θ

∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dBH
s , t ∈ [0, T ]. (6.3.2)

Here we use pathwise construction of the integral w.r.t. fBm. Suppose that
equation (6.3.2) has unique pathwise solution. (Sufficient conditions of exis-
tence and uniqueness of the solution on the interval [0, T ] are presented in
Theorem 3.1.4.)

Now, let T > 0 be fixed. We are in a position to find the likelihood ratio
dPθ(t)
dP0(t)

for the probability measure Pθ(t) corresponding to our model and the
probability measure P0(t) corresponding to the model with zero drift. Suppose
that the following assumption holds:

(i) b(t,Xt) �= 0, t ∈ [0, T ] and a(t,Xt)
b(t,Xt)

is a.s. Lebesgue integrable on [0, T ].

Denote ϕt := a(t,Xt)
b(t,Xt)

and introduce the new process

B̂H
t := BH

t + θ

∫ t

0

ϕsds. (6.3.3)

Let also the following conditions hold (recall that α̃ = (1− 2α)1/2, α̂ = (1−
2α)−1/2):

(ii)
∫ t

0

lH(t, s)|ϕ(s)|ds <∞, t ∈ [0, T ]

(iii) θ

∫ t

0

lH(t, s)ϕ(s)ds = α̃

∫ t

0

δsds, t ∈ [0, T ]

and

(iv) E

∫ t

0

s2αδ2
sds <∞, t ∈ [0, T ].
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Then Lt =
∫ t

0
sαδsdB̂s is a square-integrable martingale for the Wiener

process B̂ w.r.t. the measure P0(t) such that
∫ t

0
lH(t, s) dB̂H

s

= α̃
∫ t

0
s−α dB̂s. According to the Girsanov theorem for fBm (Theorem 2.8.1),

under the assumptions (i)–(iv) and

(v) E exp
{

Lt − 1
2
〈L〉t
}

= 1,

the process B̂H
t is an fBm on [0, T ] w.r.t. the measure Q defined via the

relation
dPθ(t)
dP0(t)

= exp
{

Lt − 1
2
〈L〉t
}

, t ∈ [0, T ]. (6.3.4)

Remark 6.3.1. We can try to present the likelihood ratio (6.3.4) as a function
of the observed process Xt, according to statistical tradition. Toward this end
recall that∫ t

0

lH(t, s) dB̂H
s = α̃

∫ t

0

s−α dB̂s =
∫ t

0

lH(t, s)b−1(s,Xs)dXs. (6.3.5)

Suppose that the process Jt :=
∫ t

0
lH(t, s)b−1(s,Xs)dXs admits a differential

of the form dJt = F (t,Xt)dXt; then, evidently,

Lt =
∫ t

0

sαδsdB̂s = α̂

∫ t

0

s2αδsF (s,Xs)dXs,

and δs is a functional of the process X under the conditions of Lemma
6.3.2 (see below). In turn, the existence of the differential dJt can be es-
tablished separately for

∫ t

0
lH(t, s)ϕsds (it is realized in Lemma 6.3.2) and for∫ t

0
lH(t, s)dBH

s = MH
t , but the last problem is of the same complexity as the

original one. Another possibility is to establish, similarly to Lemma 6.3.2, the
conditions of the existence of the derivative (sαδs)′, in general, this problem
is solvable; then we can rewrite

Lt = tαδtB̂t −
∫ t

0

B̂s(sαδs)′ds,

and, of course, B̂ is an adapted functional of X. Indeed, we can present B̂
via X with the help of B̂H (see (6.3.5)), relation (6.3.3) and the equality
BH

t =
∫ t

0
b−1(s,Xs)dXs −

∫ t

0
ϕsds.

Consistency of the Drift Parameter Estimates
In order to find the maximum likelihood estimate of the parameter θ, we

use likelihood ratio (6.3.4), which can be rewritten as

dPθ(t)
dP0(t)

= exp
{∫ t

0

sαδsdB̂s − 1
2

∫ t

0

s2αδ2
sds

}
,
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where δs is defined according to the integral representation (iii). First we
establish sufficient conditions ensuring the existence of representation (iii).

Denote ψ(t, x) = a(t,x)
b(t,x) , so that ψ(t,Xt) = ϕ(t), I(t) :=

∫ t

0
lH(t, s)ϕ(s)ds.

Lemma 6.3.2. Let ψ(t, x) ∈ C1[0, T ] ∩ C2(R). Then for t > 0

I ′(t) = C(H)ψ(0, 0)t−2α +
∫ t

0

lH(t, s) (ψ′
t(s,Xs) + θψ′

x(s,Xs)a(s,Xs)) ds

− αC
(5)
H

∫ t

0

s−1−α(t− s)−α

∫ s

0

(ψ′
t(u,Xu) + θψ′

x(u,Xu)a(u,Xu)) du ds

+ (1− 2α)C(5)
H t−2α

∫ t

0

s2α−2

∫ s

0

u1−α(s− u)−αψ′
x(u,Xu)b(u,Xu)dBH

u ds

+ C
(5)
H t−1

∫ t

0

u1−α(t− u)−αψ′
x(u,Xu)b(u,Xu)dBH

u ,

where C(H) = (1− 2α)B(1− α, 1− α)C(5)
H .

Proof. According to the Itô formula (2.7.3),

ϕs = φ(0, 0) +
∫ s

0

(ψ′
t(u,Xu) + ψ′

x(u,Xu)θa(u,Xu))du

+
∫ s

0

ψ′
x(u,Xu)b(u,Xu)dBH

u . (6.3.6)

Substituting (6.3.6) into the integral I(t) =
∫ t

0
lH(t, s)ϕsds, we obtain

I(t) = C(H, 1)ψ(0, 0)t1−2α +
∫ t

0

lH(t, s)
∫ s

0

ψ′
t(u,Xu)du ds

+ θ

∫ t

0

lH(t, s)
∫ s

0

ψ′
x(u,Xu)a(u,Xu)du ds

+
∫ t

0

lH(t, s)
∫ s

0

ψ′
x(u,Xu)b(u,Xu)dBH

u ds, (6.3.7)

C(H, 1) = C
(5)
H B(1 − α, 1 − α) and now our aim is to differentiate I(t). The

first term on the right-hand side of (6.3.7) is obviously differentiable, i.e. can
be presented as C(H)ψ(0, 0)

∫ t

0
s−2αds. The second and the third terms can

be transformed using integration by parts:

s−α

∫ s

0

ψ′
t(u,Xu)du =

∫ s

0

u−αψ′
t(u,Xu)du− α

∫ s

0

u−1−α

∫ u

0

ψ′
t(v,Xv)dvdu,

and
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s−α

∫ s

0

ψ′
x(u,Xu)a(u,Xu)du =

∫ s

0

u−αψ′
x(u,Xu)a(u,Xu)du

−α

∫ s

0

u−1−α

∫ u

0

ψ′
x(u,Xu)a(v,Xv)dv du. (6.3.8)

According to representation (6.3.8), there exist a.s. the fractional derivatives
of order α, i.e. the derivatives of fractional integrals:

d

dt

∫ t

0

lH(t, s)
∫ s

0

ψ′
t(u,Xu)duds =

∫ t

0

lH(t, s)ψ′
t(s,Xs)ds

−αC
(5)
H

∫ t

0

s−1−α(t− s)−α

∫ s

0

ψ′
t(u,Xu)du ds. (6.3.9)

d

dt

∫ t

0

lH(t, s)
∫ s

0

ψ′
x(u,Xu)a(u,Xu)du ds =

∫ t

0

lH(t, s)ψ′
x(s,Xs)a(s,Xs)ds

− αC
(5)
H

∫ t

0

s−1−α(t− s)−α

∫ s

0

ψ′
x(u,Xu)a(u,Xu)du ds. (6.3.10)

Further, it follows from Lemma 2.8.2 that∫ t

0

lH(t, s)
∫ s

0

ψ′
x(u,Xu)b(u,Xu)dBH

u ds

= C
(5)
H t1−2α

∫ t

0

s2α−2

∫ s

0

u1−α(s− u)−αψ′
x(u,Xu)b(u,Xu)dBH

u ds. (6.3.11)

The proof follows immediately from relations (6.3.9)–(6.3.11). 	

Now, we can rewrite (6.3.6) as

dPθ(t)
dP0(t)

= exp

{
θ

α̃

∫ T

0

sαI ′(s)dB̂s − θ2

2(1− 2α)

∫ T

0

s2α(I ′(s))2ds

}
. (6.3.12)

It follows from (6.3.12) that the maximum likelihood estimate is achieved
under the condition∫ T

0

sαI ′(s)dBs − θ

α̃

∫ T

0

s2α(I ′(s))2ds = 0,

whence

θ̂t =
α̃
∫ t

0
sαI ′(s)dB̂s∫ t

0
s2α(I ′(s))2ds

. (6.3.13)

Using Lemma 6.3.2, we obtain
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Bt + θα̂

∫ t

0

sαI ′(s)ds = B̂t, (6.3.14)

where B̂t is a Wiener process under measure Q. Substituting (6.3.14)
into (6.3.13) we obtain

θ̂t = θ +
α̃
∫ t

0
sαI ′(s)dBs∫ t

0
s2α(I ′(s))2ds

. (6.3.15)

Recall that under condition (iv)
∫ t

0
sαI ′(s)dBs is the square-integrable

Pθ-martingale with angle bracket
∫ t

0
s2α(I ′(s))2ds.

Theorem 6.3.3. Let the conditions of Theorem 3.1.4 and (i)–(v) hold for
any T > 0 and, moreover,

(vi)
∫ ∞

0

s2α(I ′(s))2ds =∞ a.s.

Then the maximum likelihood estimate θ̂T is strongly consistent as
T →∞.

Proof follows immediately from representation (6.3.15) and from Theorem
6.10 (LS86). This theorem establishes that Xt

〈X〉t
→ 0 a.s. if Xt is a square-

integrable martingale and 〈X〉∞ →∞ a.s. In other words,∫ t

0
sαI ′(s)dBs∫ t

0
s2α(I ′(s))2ds

→ 0, t→∞,

with Pθ-probability 1.
Example 6.3.4. Consider the linear model of the form

dXt = θXtdt + XtdBH
t .

In this case ϕt = 1, so
∫ t

0
δsds =

∫ t

0
lH(t, s)ds = C(H, 1)t1−2α,

δt = C(H)t−2α. Hence

θ̂t = θ +
α̃
∫ t

0
s−αdBs

C(H)t1−2α
.

Since α̃
∫ t

0
s−αdBs is the square-integral martingale with the angle bracket

t1−2α →∞ when t→∞, then, according to Theorem 6.3.3, α̃
∫ t
0 s−αdBs

C(H)t1−2α → 0,
a.s. as t→∞ .

So, the estimate θ̂t is consistent with probability 1.
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6.3.2 Consistency of the Drift Parameter Estimates in the Mixed
Brownian–fractional-Brownian Diffusion Model with “Linearly”
Dependent Wt and BH

t

Now we consider the linear mixed Brownian–fractional-Brownian diffusion
model represented by the stochastic differential equation of the form

dXt = θXtdt + σ1XtdBt + σ2XtdBH
t , (6.3.16)

Xt=0 = X0 ∈ R, 0 ≤ t ≤ T, T > 0, {θ, σ1, σ2} ⊂ R, σ1σ2 < 0, θ is a
parameter that we need to estimate.

We suppose that the Wiener process B and the fBm BH in (6.3.16) are con-
nected via the relations (1.8.3), (1.8.5). The integral form of equation (6.3.16)
is

Xt = X0 + θ

∫ t

0

Xsds + σ1

∫ t

0

XsdBs + σ2

∫ t

0

XsdBH
s , 0 ≤ t ≤ T. (6.3.17)

The existence and the uniqueness of the solution of the equation (6.3.17) was
established in Theorem 3.2.1.

The Girsanov Theorem for the Mixed Fractional Diffusion
Model

First we try to change the probability measure Pθ for the another measure
P0, Pθ(T ) ∼ P0(T ) in order to exclude the drift θXtdt from equations (6.3.16)
and (6.3.17).

We introduce probability measures P0,i, i = 1, 2 and Pθ,i, i = 1, 2 as fol-
lows. The probability measures P0,1(t) and Pθ,1(t) are determined by the
following condition:

dPθ,1(t)
dP0,1(t)

= exp
{∫ t

0

ψs dB(1)
s − 1

2

∫ t

0

ψ2
s ds

}
for a nonrandom function ψs such that

∫ t

0
ψ2

s ds <∞ and

E exp
{∫ t

0

ψs dB(1)
s − 1

2

∫ t

0

ψ2
s ds

}
= 1.

Here the process B
(1)
t is created according to the Girsanov theorem,

B
(1)
t := Bt +

∫ t

0

ψs ds, (6.3.18)

and B
(1)
t is a standard Wiener process with respect to the probability measure

P0,1(t). The probability measures P0,2 and Pθ,2(t) satisfy the relation

dPθ,2(t)
dP0,2(t)

= exp
{∫ t

0

sαδs dB(2)
s − 1

2

∫ t

0

s2αδ2
s ds

}
,
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where δs satisfies the relation
∫ t

0
lH(t, s)|δs| ds <∞, t ∈ [0, T ] and admits the

following integral representation:∫ t

0

lH(t, s)ϕs ds = α̃

∫ t

0

δs ds, (6.3.19)

the Wiener process B
(2)
t is defined from the equation∫ t

0

lH(t, s) dBH,2
s = α̃

∫ t

0

s−α dB(2)
s .

Moreover, the process

BH,2
t := BH

t +
∫ t

0

ϕs ds (6.3.20)

is a fractional Brownian motion on [0, T ] with respect to the measure P0,2(t).
So, the total drift coefficient equals

σ1

∫ t

0

ψs ds + σ2

∫ t

0

ϕs ds = θt,

and if we suppose that the functions ψ and ϕ are continuous, we obtain that

σ1ψt + σ2ϕt = θ. (6.3.21)

Obviously, from (6.3.18)–(6.3.20) and since the likelihood ratios dPθ,i(t)
dP0,i(t)

must coincide, we obtain that

M̂H
t = MH

t + α̃

∫ t

0

s−αψsds

and

M̂H
t = MH

t + α̃

∫ t

0

δsds,

whence tαδt = ψt, t ∈ [0, T ]. Moreover,∫ t

0

lH(t, s)ϕsds = α̃

∫ t

0

s−αψsds.

Multiplying by (t− s)α−1 and integrating, we obtain

C
(5)
H

∫ t

0

(t− s)α−1

∫ s

0

u−α(s− u)−αϕudu ds

= α̃

∫ t

0

(t− s)α−1

∫ s

0

δudu ds, (6.3.22)
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and the Fubini theorem applied to both sides of (6.3.22) gives

C(H, 2)
∫ t

0

u−αϕudu =
α̃

α

∫ t

0

(t− u)αδudu,

whence

ϕt =
1

C(H, 3)
tα
∫ t

0

(t− u)α−1u−αψudu. (6.3.23)

Here C(H, 2) = C
(5)
H B(α, 1 − α), C(H, 3) = α̃

C(H,2) . Substituting (6.3.23)
into (6.3.21), we obtain a Volterra equation of the second kind, with weak
singularity, of the form

σ1ψt +
σ2

C(H, 3)
tα
∫ t

0

(t− u)α−1u−αψudu = θ,

or

ρt +
σ2

σ1

1
C(H, 3)

∫ t

0

(t− u)α−1ρudu =
et

σ1
, (6.3.24)

where ρt = t−αψt, et = θt−α. We solve (6.3.24) using successive approxima-
tions

ρ
(n+1)
t +

σ2

σ1

1
C(H, 3)

∫ t

0

(t− u)α−1ρ(n)
u du =

et

σ1
. (6.3.25)

Denote for simplicity C := σ2
σ1C(H,3) and start with ρ

(0)
t = 0, ρ

(1)
t = et

σ1
. Then

we obtain from (6.3.25) that

ρ
(2)
t = (−1)

C

σ1

∫ t

0

(t− u)α−1eudu +
et

σ1
.

It is very simple now to prove by induction that for n > 1

ρ
(n)
t =

1
σ1

n−1∑
k=1

(−C)k

∫ t

0

es(t− s)kα−1 Γ k(α)
Γ (kα)

ds +
et

σ1
,

and the solution ρt = limn→∞ ρ
(n)
t evidently can be represented as a series

ρt =
1
σ1

∞∑
n=1

(−C)n

∫ t

0

es(t− s)nα−1 Γn(α)
Γ (nα)

ds +
et

σ1
.

Hence

ψt = tαρt =
tαθ

σ1

∞∑
n=1

(−C)n Γn(α)
Γ (nα)

∫ t

0

s−α(t− s)nα−1ds +
θ

σ1

=
θ

σ1
Γ (1− α)

∞∑
n=1

(−C)n Γn(α)
Γ ((n− 1)α + 1)

tnα +
θ

σ1
. (6.3.26)
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The series on the right-hand side of (6.3.26) can be expressed in terms of the
Mittag–Leffler function Eρ(z) :=

∑∞
n=0

zn

Γ (n/ρ+1) (see, for example, (Po99)),

At = −Ctαπ(sin πα)−1E1/α(−CΓ (α)tα),

and in these terms
ψt =

θ

σ1
(At + 1).

Therefore, the likelihood ratio for the mixed fractional Brownian model equals

dPθ,1(t)
dP0,1(t)

= exp
{∫ t

0

ψsdB(1)
s − 1

2

∫ t

0

ψ2
sds

}

= exp
{

θ

σ1

∫ t

0

(As + 1)dB(1)
s − 1

2
θ2

σ2
1

∫ t

0

(As + 1)2ds

}
,

whence the maximum likelihood estimate for θ equals

θ̂1
T = σ1

∫ T

0
(A(s) + 1)dB

(1)
s∫ t

0
(A(s) + 1)2ds

= σ1

∫ T

0
(A(s) + 1)dBs + θ

σ1

∫ T

0
(A(s) + 1)2ds∫ t

0
(A(s) + 1)2ds

= θ + σ1

∫ t

0
(A(s) + 1)dBs∫ T

0
(A(s) + 1)2ds

.

For the demonstration of the consistency of the estimate θ̂1
T with proba-

bility 1, it is sufficient to prove the divergence of the integral
∫ t

0
(A(s) + 1)2ds

when t→∞. Note that C < 0 since σ1
σ2

< 0, and

∞∑
n=1

(−CΓ (α))n tnα

Γ ((n− 1)α + 1)
>

∞∑
n=1

(−CΓ (α))n tnα

Γ (n + 1)
=

=
∞∑

n=1

(−CΓ (α))n tnα

n!
= exp {−CΓ (α)tα} → ∞,

when t→∞ because α > 0 and −CΓ (α) > 0. Note that δt = t−αψt satisfies
conditions (ii)–(vi). So we have proved the following result.

Theorem 6.3.5. The drift parameter maximum likelihood estimate of the
linear Brownian–fractional-Brownian model (6.3.16) is consistent with prob-
ability 1.

The Asymptotic Normality of the Maximum Likelihood Esti-
mates

First, consider one of the limit theorems for the stochastic integrals w.r.t.
the Wiener process {Wt,Ft, t > 0}. Let {h(s), s ≥ 0} be an Fs-adapted pre-
dictable function such that E

∫ t

0
h2(s)ds is finite for any t > 0 and
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Fn(t) = σ{h(s), W (s), s ≤ nt}. Consider the sequence Yn(t) :=
∫ nt

0
h(s)dWs.

Evidently, Yn(t) are Fn(t)-square-integrable martingales, t ∈ [0, T ], and their
angle brackets equal 〈Yn〉 (t) =

∫ nt

0
h2(s)ds. Suppose that the following con-

ditions hold:
(vii) there exists an increasing real-valued sequence {An, n ≥ 1} such that

An ↑ ∞, n→∞ and for some constant c0 > 0 we have that∫ n

0

h2(s)ds ·A−2
n

P→ c0,

Consider the sequence of normalized square-integrable martingales
Xn(t) := A−1

n · ∫ nt

0
h(s)dWs. Then 〈Xn〉 (1) =

∫ n

0
h2(s)ds · A−2

n
P→ c0, there-

fore Xn satisfy conditions of Theorem 4.1 (LS86), if we consider the set of
convergence points consisting of one point t = 1. By using this theorem we
obtain the following result:

Lemma 6.3.6. Let condition (vii) holds. Then the random variable

Zn :=
∫ n

0

h(s)dWs ·
(∫ n

0

h2(s)ds

)−1/2

weakly converges to the random variable c
−1/2
0 N(0, 1).

Proof. From the Theorem 4.1 (LS86) and the condition (vii) we obtain
that Xn(1) weakly converges to the value Z(1) of the Gaussian martin-
gale Z with independent increments such that 〈Z〉 (t) = c0t. Evidently,
Z(1) ∼ c

1/2
0 N(0, 1). Moreover, from the same condition, the weak conver-

gence holds:

Zn =
An(∫ n

0
h2(s)ds

)1/2
·Xn(1)→ c

−1/2
0 N(0, 1).

	

Consider the estimate θ̂1

n satisfying relation (6.3.15). We see that for the
pure fractional diffusion model h(s) = A(s) + 1 and is nonrandom. Therefore
we obtain from Lemma 6.3.6 that(∫ n

0

(A(s) + 1)2ds

)1/2

(θ̂1
n − θ)→ N(0, 1).

Moreover, under the assumption
(viii) there exists an increasing real-valued sequence {An, n ≥ 1} such that

An ↑ ∞, n→∞ and∫ n

0

s2α(I ′s)
2ds ·A−2

n
P→ ϕ0, n→∞,
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we have a weak convergence

ϕ
1/2
0 An(θ̂n − θ)→ N(0, 1).

In this sense we say that the estimates θ̂n and θ̂1
n are asymptotically normal.

6.3.3 The Properties of Maximum Likelihood Estimates
in Diffusion Brownian–Fractional-Brownian Models
with Independent Components

Now we consider an “opposite” situation when the components of the dif-
fusion model are independent, more exactly, the processes BH and B are
independent, where BH is a fBm and B is a Wiener process.

The Estimates of the Drift Parameter in the Mixed Brownian–
Fractional-Brownian Diffusion Model Where Bt and BH

t are Inde-
pendent

Let the diffusion equation contain stochastic differentials with respect to
fBm and the Wiener process,

dXt = θXt dt + σ1Xt dBt + σ2Xt dBH
t ,

Xt=0 = X0 ∈ R, 0 ≤ t ≤ T , T > 0, {θ, σ1, σ2} ⊂ R \ {0}, where the processes
Bt and BH

t are independent. Evidently, we can rewrite the solution of our
simple linear equation as

Xt = X0 exp{θt + σ1Bt + σ2B
H
t − 1/2σ2

1t}.

It was mentioned by B.L.S. Prakasa Rao in the private conversation that
we cannot prove the equivalence of the observation of the whole process Xt

and the observation of its two independent components, Bt and BH
t , i.e.,

we cannot separate these components (note that the measures corresponding
to these processes are singular). So, we suppose that we observe both the
components. Let, as before, θ be the parameter to be estimated. We shall
try to represent the estimate of θ via the components Bt and BH

t because it
seems to be impossible to represent it via the whole process Xt. Let Pθ be
the basic probability measure corresponding to the process X. We introduce
probability measures P0,i, i = 1, 2 and Pθ,i, i = 1, 2 as follows. The probability
measures P0,1(t) and Pθ,1(t) are determined by the following condition:

dPθ,1(t)
dP0,1(t)

= exp
{∫ t

0

ψs dB(1)
s − 1

2

∫ t

0

ψ2
s ds

}
for a nonrandom function ψs such that

∫ t

0
ψ2

s ds <∞ and

E exp
{∫ t

0

ψs dB(1)
s − 1

2

∫ t

0

ψ2
s ds

}
= 1.
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Here the process B
(1)
t is created according to the Girsanov theorem,

B
(1)
t := Bt +

∫ t

0

ψs ds (6.3.27)

and B
(1)
t is a standard Wiener process with respect to the probability measure

P0,1(t). The probability measures P0,2 and Pθ,2(t) satisfy the relation

dPθ,2(t)
dP0,2(t)

= exp
{∫ t

0

sαδs dB(2)
s − 1

2

∫ t

0

s2αδ2
s ds

}
,

where δs satisfies the relation
∫ t

0
lH(t, s)|δs| ds < ∞, t ∈ [0, T ], admits the

following integral representation:∫ t

0

lH(t, s)ϕs ds = α̃

∫ t

0

δs ds, (6.3.28)

the Wiener process B
(2)
t is defined from the equation∫ t

0

lH(t, s) dBH,2
s = α̃

∫ t

0

s−α dB(2)
s ,

and the process

BH,2
t := BH

t +
∫ t

0

ϕs ds

is a fractional Brownian motion on [0, T ] with respect to the measure P0,2(t).
So, the total drift coefficient equals

σ1

∫ t

0

ψs ds + σ2

∫ t

0

ϕs ds = θt,

or, if we suppose that the functions ψ and ϕ are continuous,

σ1ψt + σ2ϕt = θ. (6.3.29)

Since Bt and BH
t are independent, the final probability measure P0(t) is the

product of the measures P0,1(t) and P0,2(t). Thus the final likelihood ratio is

dPθ(t)
dP0(t)

= exp
[{∫ t

0

ψs dB(1)
s − 1

2

∫ t

0

ψ2
s ds

}

×
{∫ t

0

sαδs dB(2)
s − 1

2

∫ t

0

s2αδ2
s ds

}]

= exp
{∫ t

0

ψs dB(1)
s +

∫ t

0

sαδs dB(2)
s − 1

2

∫ t

0

(
ψ2

s + s2αδ2
s

)
ds

}
. (6.3.30)
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Solving equations (6.3.28) and (6.3.29) with respect to the functions ψt and
δt, respectively, we obtain

ψt =
1
σ1

(θ − σ2ϕt), (6.3.31)

δt = α̂

(∫ t

0

lH(t, s)ϕsds

)′

t

. (6.3.32)

Substituting equalities (6.3.31) and (6.3.32) into likelihood ratio (6.3.30), we
get at the point t = T that

dPθ(T )
dP0(T )

= exp

{
1
σ1

∫ T

0

(θ−σ2ϕs) dB(1)
s +α̂

∫ T

0

sα

(∫ s

0

lH(s, u)ϕu du

)′

s

dB(2)
s

− 1
2

∫ T

0

[
1
σ2

1

(θ − σ2ϕs)2 + s2αα̂

((∫ s

0

lH(s, u)ϕu du

)′

s

)2]
ds

}
. (6.3.33)

If follows from (6.3.33) that the maximum likelihood estimate θ̂ 1
T of the pa-

rameter θ satisfies the equality

1
σ1

∫ T

0

dB(1)
s − 1

σ2
1

∫ T

0

(θ − σ2ϕs) ds = 0,

which can be rewritten as follows:

σ1B
(1)
T + σ2

∫ T

0

ϕs ds− θT = 0.

This gives us the following estimate of the parameter θ:

θ̂ 1
T =

σ1B
(1)
T

T
+

σ2

∫ T

0
ϕs ds

T
. (6.3.34)

Now we solve equation (6.3.29) with respect to the function ϕt and substitute
it into equation (6.3.34):

θ̂ 1
T = θ +

σ1

T

(
B

(1)
T −

∫ T

0

ψs ds

)
. (6.3.35)

Substituting (6.3.27) into (6.3.35) yields

θ̂ 1
T = θ + σ1

BT

T
. (6.3.36)

It is evident that the estimate (6.3.36) of parameter θ1
T is strongly consistent.
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We can construct another estimate of the parameter θ. The function δt is

expressed via ϕt by equality (6.3.28). Denote also ζt :=
(∫ t

0
lH(t, s)ψs ds

)′
t
.

Then

δt = α̂

(∫ t

0

lH(t, s)ϕs ds

)′

t

=
1
σ2

α̂

(∫ t

0

lH(t, s)(θ − σ1ψs) ds

)′

t

= α̂

(
θ

σ2

(∫ t

0

lH(t, s) ds

)′

t

− σ1

σ2
ζt

)

= α̂
( θ

σ2
C(H)t−2α − σ1

σ2
ζt

)
, (6.3.37)

where C(H) = C
(5)
H (1 − 2α)B1C

(5)
H , B1 = B (1− α, 1− α). Using equal-

ity (6.3.37) for likelihood ratio (6.3.30), taking the logarithms, differentiating
with respect to θ, and equating the derivative to zero, we obtain at the point
t = T ∫ T

0

s−α dB(2)
s − α̂

∫ T

0

(
θC(H)

σ2
s−2α − σ1

σ2
ζs

)
ds = 0,

or ∫ T

0

s−α dB(2)
s − α̂3θ

C(H)
σ2

T 1−2α + α̂
σ1

σ2

∫ T

0

lH(T, s)ψs ds = 0.

This implies another estimate for the parameter θ:

θ̂ 2
T =

σ2α̃
∫ T

0
s−α dB

(2)
s + σ1

∫ T

0
lH(T, s)ψs ds

C
(5)
H B1T 1−2α

. (6.3.38)

Now we substitute the expression (6.3.31) for the function ψt into rela-
tion (6.3.38) and obtain with C(H, 1) = C

(5)
H B1 that

θ̂ 2
T = θ − σ2

C(H, 1)T 1−2α

[∫ T

0

lH(T, s)ϕs ds− α̃

∫ T

0

s−αdB(2)
s

]
.

Recall that α̃
∫ T

0
s−α dB

(2)
s =

∫ T

0
lH(T, s) dBH,2

s .
Further,∫ T

0

lH(T, s)ϕs ds−
∫ T

0

lH(T, s) dBH,2
s = −

∫ T

0

lH(T, s) dBH
s .

So, the second estimate of the parameter θ is given by

θ̂ 2
T = θ +

σ2

C(H, 1)T 1−2α

∫ T

0

lH(T, s) dBH
s ,

or
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θ̂ 2
T = θ +

σ2α̃

C(H, 1)

∫ T

0
s−α dB̃s

T 1−2α
, (6.3.39)

where B̃s is some Wiener process. The strong consistency of the estimate θ̂ 2
T

is also clear.
Now we compare the estimates θ̂1

T and θ̂2
T . First we compute the vari-

ances of the remainder terms in formulae (6.3.36) and (6.3.39) and compare
σ2

1T−1 and σ2
2C(H, 1)−2T 2α−1. Since H ∈ ( 12 , 1

)
, it is obvious that there

exists a number N such that σ2
1T−1 < σ2

2C(H, 1)−2T 2α−1 for all T > N . It
means that the variance of the deviation between the estimate θ̂1

T and true
value is smaller than that of the corresponding deviation between the estimate
θ̂2

T and the true value. It this sense, the estimate θ̂1
T is better than θ̂2

T .
Local Asymptotic Normality and Asymptotic Efficiency of the

Estimate of the Drift Parameter in a Linear Brownian Diffusion
Model

Consider (only for comparison with the fractional case, see below) a pure
linear Brownian model

dXθ
t =

1
T β

θXt dt + cXt dBt, Xt=0 = X0, c ∈ R \ {0}, t ∈ [0, T ], β ∈
(

1
2
, 1
]

.

Put Θ = (0,∞) and let θ ∈ Θ. According to Definition 2.1 (IK81), a family
of measures Pθ(t) has the property of local asymptotic normality (LAN) at
the point θ ∈ Θ as t→∞, if

Zt,θ(u) :=
dPθ+A(t,θ)u(t)

dPθ(t)
= exp

{
uξt,θ − 1

2
u2 + ζt(u, θ)

}
(6.3.40)

for some function A(t, θ) and any number u ∈ R, where ξt,θ ⇒ N(0, 1) as

t → ∞ with respect to the measure Pθ(t), and ζt(u, θ)
Pθ(t)→ 0, t → ∞, for

all numbers u ∈ R. We say in this case that the LAN property holds for the
family of measures Pθ(t) as t→∞ at the point θ.

Theorem 6.3.7. The LAN property holds for the family of measures Pθ(t)
as t→∞ at any point θ ∈ Θ.

Proof. We change the probability measure Pθ(t), which corresponds to the
process Xθ

t for the measure P0(t). Then the drift θXt dt disappears and we
obtain

X0
t = X0 + c

∫ t

0

X0
s dB̂t,

where B̂t = Bt + tθ/(cT β) is a Wiener process w.r.t. the measure P 0(t).
Consider the likelihood ratio corresponding to this change of measure with

ϕs = θ/(cT β):
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dPθ(t)
dP0(t)

= exp
{∫ t

0

θ

cT β
dB̂s − 1

2

∫ t

0

θ2

(cT β)2
ds

}
= exp

{
θ

cT β
B̂t − 1

2
θ2

(cT β)2
t

}
.

Now we consider the linear model with a parameter θ shifted by A(t)u.
The likelihood ratio for such a change of measure is of the form

Pθ+A(t)u(t)
dP0(t)

= exp
{

1
cT β

(θ + A(t)u)B̂t − 1
2(cT β)2

(θ + A(t)u)2t
}

and
dPθ+A(t,θ)u(t)

dPθ(t)
=

dPθ+A(t,θ)u(t)
dP0(t)

·
(

dPθ(t)
dP0(t)

)−1

= exp
{

1
cT β

(θ + A(t)u)B̂t − 1
2(cT β)2

(θ + A(t)u)2t− θ

cT β
B̂t − 1

2
θ2

(cT β)2
t

}
= exp

{
uA(t)
cT β

B̂t − 1
2
u2 A2(t)

(cT β)2
t− A(t)uθ

(cT β)2
t

}
.

Set A(t) := cT β/
√

t. Then

dPθ+A(t,θ)u(t)
dPθ(t)

= exp

{
u

B̂t√
t
− 1

2
u2 − uθ

√
t

cT β

}
.

Since B̂t/
√

t ⇒ N(0, 1) under both the measures P0(t) and Pθ(t) and, in
addition, uθ

√
t/(cT β)→ 0 as t→∞ for T ≥ t and α > 1

2 , the above definition
implies the LAN property for the family Pθ(t) as t → ∞ and at any point
θ ∈ Θ. 	


Consider now the asymptotic efficiency of the estimate of parameter θ.
According to definition (11.3), introduced in the monograph (IK81), an esti-
mate {θt, t > 0} of a parameter θ is asymptotically efficient under the LAN
property for the cost function ω(A−1(t, θ)x) at the point θ if

lim
δ→0

lim
t→∞

sup
|θ′−θ|<δ

EPθ′ (t)ω
(
A−1(t, θ)(θt − θ′)

)
= Eω(N(0, 1)).

Let ω ∈W , where W is the class of functions defined on Θ and satisfying the
conditions:

1) ω(u) ≥ 0, ω(0) = 0, ω is a Borel function, continuous at zero and not
identically zero;

2) ω(u) = ω(−u),
3) the set {u : ω(u) < c} is convex for any c > 0.
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Further we consider the cost function ω
(
A−1(t, θ)x

) ∈Wp, where Wp ⊂W
is the class of functions of W that have a dominant polynomial.

Consider the maximum likelihood estimate of the parameter θ in a linear
Brownian model

θ̂t =
cT β

t
B̂t =

cT β

t

(
Bt +

1
cT β

θt

)
= θ +

cT β

t
Bt.

To prove the asymptotic efficiency of the estimate θ̂t we use Theorem 1.3
of Chapter III from (IK81). According to this theorem, the estimate θ̂t is as-
ymptotically efficient in the sense mentioned above if the following conditions
hold:

(a) limt→∞ A−1(t, θ2)A(t, θ1) = B(θ1, θ2) exists, the convergence is uniform
in θi ∈ Θ and B(θ1, θ2) is continuous in θ1;

(b) ζt(θ) := A−1(t, θ)(θ̂t − θ)⇒ N(0, 1) uniformly in θi ∈ Θ as t→∞ with
respect to the measure Pθ(t);

(c) for any N > 0 random variables |A−1(t, θ)(θ̂t−θ)|N , are Pθ(t)-integrable
for any θ ∈ Θ uniformly in t > t0(N).

Condition (a) holds in our case because A(t) = cT β√
t

does not depend on
θ. Now we check condition (b):

ζt(θ) = A−1(t, θ)
(
θ̂t − θ

)
=
√

t

cT β

cT β

t
Bt = Bt

1√
t
⇒ N(0, 1)

under both the measures P0(t) and Pθ(t). Condition (c) now is evident. Thus
the estimate θ̂t is asymptotically efficient as t→∞.

Local Asymptotic Normality and Asymptotic Efficiency of the
Estimate of the Drift Parameter in a Linear Fractional Brownian
Diffusion Model

Now consider a pure linear fractional Brownian model

dXt =
1

T β
θXt dt + Xt dBH

t , Xt=0 = X0, θ ∈ Θ, t ∈ [0, T ], β ∈ (1−H, 1].

It will be clear later that in this model it is sufficient to consider
β ∈ (1−H, 1

2

)
. Now ϕt = θ/T β . Then

α̃

∫ t

0

δs ds =
∫ t

0

lH(t, s)
θ

T β
ds =

θ

T β
C(H, 1)t1−2α, δt = (θ/T β)C(H, 1)t−2αα̃.

Therefore θ̂t = T βα̃
∫ t

0
s−α dB̂sC(H, 1)−1t2α−1, where

α̃

∫ t

0

s−α dB̂s = α̃

∫ t

0

s−α dBs +
θ

T β
C(H, 1)t1−2α.

In other words,

θ̂t = θ +
T βα̃

∫ t

0
s−α dBs

C(H, 1)t1−2α
.
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Theorem 6.3.8. The LAN property holds for the family Pθ(t) as t → ∞ at
any point θ ∈ Θ.

Proof. We change the probability measure Pθ(t) for the measure P0(t). As a
result, the drift θXt dt disappears. The corresponding likelihood ratio is given
by

dPθ(t)
dP0(t)

= exp
{∫ t

0

sαδs dB̂s − 1
2

∫ t

0

s2αδ2
s ds

}
= exp

{
θC(H, 1)α̃

T β

∫ t

0

s−α dB̂s − 1
2T 2β

(θC(H, 1))2t1−2α

}
.

Now we consider the linear model with parameter θ shifted by A(t)u and
denote for simplicity K = C(H).

Pθ+A(t)u(t)
dP0(t)

= exp
{ (θ + A(t)u)K

T β

∫ t

0

s−α dB̂s

− 1
2T 2β

((θ + A(t)u)K)2
t1−2α

1− 2α

}
.

The likelihood ratio for this model is of the form

dPθ+A(t,θ)u(t)
dPθ(t)

=
dPθ+A(t,θ)u(t)

dP0(t)
·
(

dPθ(t)
dP0(t)

)−1

= exp
{

K

T β
A(t)u

(∫ t

0

s−α dB̂s − 1
2
A(t)u

K

T β

t1−2α

1− 2α
− θ

K

T β

t1−2α

1− 2α

)}
.

Set A(t) := T βα̃/Kt1−H . Then the likelihood ratio obtains the form

dPθ+A(t,θ)u(t)
dPθ(t)

= exp

{
α̃u

∫ t

0
s−αdB̂s

t1−H
− 1

2
u2 − uθKt1−H

T βα̃

}
.

Since

α̃

∫ t

0
s−α dB̂s

t1−H
⇒ N(0, 1)

and
uθKt1−H

T βα̃
→ 0 as t→∞,

the LAN property holds for the family Pθ(t) as t→∞ at any point θ ∈ Θ. 	

Now we check the asymptotic efficiency of the estimate θ̂t. Consider con-

ditions (a)-(c). Two of them, (a) and (c), are evident. To check (b) we use the
following relations:

ζt(θ) = A−1(t, θ)(θ̂t − θ) =
C(H)t1−H

T βα̃

T β
∫ t

0
s−α dBs

C(H, 1)t1−2α
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=

(∫ t

0
s−αdBs

)
α̃

t1−H
⇒ N(0, 1).

Therefore, the estimate θ̂t of the parameter θ is asymptotically efficient as
t→∞.
Remark 6.3.9. The maximum likelihood estimators for the drift coefficient in
the stochastic differential equations involving fBm were considered also in the
paper (TV03), the estimate of the diffusion coefficient for diffusion driven by
fBm is contained in the paper (LL00).



A

Mandelbrot–van Ness Representation: Some
Related Calculations

Now we calculate the constant that appeared in the Mandelbrot–van Ness
representation of fBm (see Section 1.3, Theorem 1.3.1).

Lemma A.0.1. The following equalities hold:

C
(2)
H :=

(∫
R+

((1 + s)α − sα)2ds +
1

2H

)−1

=
(2H sin πHΓ (2H))1/2

Γ (1 + α)
.

Proof. Recall that the constant C
(2)
H is chosen to normalize the fBm

B
H

t = C
(2)
H

∫
R

kH(t, u)dWu = C
(2)
H Γ (1 + α)

∫
R

(Iα
−1(0,t))(x)dWx

(see Lemma 1.1.3). Therefore, the first equality is evident, since∫
R

(kH(t, u))2du =
∫ 0

−∞
((t− x)α − (−x)α)2dx +

∫ t

0

(t− x)2αdx

= t2H

(∫ ∞

0

((1 + s)α − sα)2ds +
1

2H

)
.

We obtain the second equality if we note that∫
R

(Iα
−1(0,t))(x)2dx =

1
2π

∫
R

(
F̂(Iα

−1(0,t))(x)
)2

dx

and according to Theorem 1.1.5

F̂(Iα
−1(0,t))(x)(λ) = 1̂(0,t)(λ)|λ|−α exp

{απi

2
sign λ

}
=

eitλ − 1
iλ

|λ|−α exp
{απi

2
sign λ

}
.
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Therefore, ∫
R

(Iα
−1(0,t))(x)2dx =

1
2π

∫
R

|eitλ − 1|2|λ|−2α−2dλ

=
1
2π

∫
R

(1− cos tλ)2|λ|−2α−2dλ +
1
2π

∫
R

sin2 tλ|λ|−2α−2dλ

=
1
π

∫ ∞

0

(1− cos tλ)2

λ2α+2
dλ +

1
π

∫ ∞

0

sin2 tλ

λ2α+2
dλ

= t2H

(
1
π

∫ ∞

0

(1− cos λ)2

λ2α+2
dλ +

1
π

∫ ∞

0

sin2 λ

λ2α+2
dλ

)
=

t2H

2H sin πHΓ (2H)
,

whence the proof follows. 	




B

Approximation of Beta Integrals
and Estimation of Kernels

These results were obtained by E.Valkeila (KMV05).

Lemma B.0.1. Assume that −1 < δ < 0, β > −1 and n ≥ 2. Then for β ≥ 0

|I(δ, β)− In(δ, β)| ≤ C1(δ, β)n−α−1, (B.0.1)

and with −1 < β < 0 we have

|I(α, β)− In(δ, β)| ≤ C2(δ, β)n−α−β−1 (B.0.2)

(for the value of the constants, see the proof).

Proof. We start the proof with

I(δ, β)− In(δ, β) =
∫ 1

n

0

sδ(1− s)βds− n−δ−1

+
n−2∑
k=1

∫ k+1
n

k
n

(
sδ(1− s)β −

(
k + 1

n

)δ (
1− k

n

)β
)

ds

+
∫ 1

1− 1
n

sδ(1− s)βds− n−β−1.

We work first with the integral on (0, 1/n). We have∫ 1
n

0

sδ(1− s)βds− n−δ−1 =
∫ 1

n

0

(
sδ − n−δ

)
ds

+
∫ 1

n

0

sδ
(
(1− s)β − 1

)
ds; (B.0.3)

here

0 ≤
∫ 1

n

0

(
sδ − n−δ

)
ds = −δ/(δ + 1)n−δ−1,
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if β ≥ 0, then

|
∫ 1

n

0

sδ
(
(1− s)β − 1

)
ds| ≤

∫ 1
n

0

sδds

and if β < 0 and s ≤ 1/n, then 0 ≤ (1−s)β−1 ≤ 2−β−1. Use these estimates
in (B.0.3) to obtain

|
∫ 1

n

0

sδ(1− s)βds− n−δ−1| ≤ C1(δ, β)n−δ−1. (B.0.4)

Next, we work with the integral on (1− 1/n, 1). We have∫ 1

1− 1
n

sδ(1− s)βds− n−β−1 =
∫ 1

1− 1
n

(
(1− s)β − n−β

)
ds

+
∫ 1

1− 1
n

(1− s)β (
sδ − 1

)
ds,

and this gives∣∣∣ ∫ 1

1− 1
n

sδ(1− s)βds− n−β−1
∣∣∣ ≤ |β|

1 + β
n−β−1 + 2−δn−β−1. (B.0.5)

We continue with the middle term. We have

n−2∑
k=1

(∫ k+1
n

k
n

sδ (1− s)β
ds−

(
k + 1

n

)δ (
1− k

n

)β 1
n

)

=
n−2∑
k=1

(∫ k+1
n

k
n

(
sδ −

(
k + 1

n

)δ
)

(1− s)β
ds

)

+
n−2∑
k=1

(∫ k+1
n

k
n

(
k + 1

n

)δ
(

(1− s)β −
(

1− k

n

)β
)

ds

)
. (B.0.6)

The first term on the right-hand side of (B.0.6) is always positive, when δ < 0.
We use the estimate

sδ − ((k + 1) /n)δ ≤ (k/n)δ − ((k + 1) /n)δ
.

If β ≥ 0, then (1− s)β ≤ 1 and so for the first term on the right-hand side of
(B.0.6) we obtain

0 ≤
n−2∑
k=1

(∫ (k+1)/n

k/n

(
sδ − ((k + 1) /n)δ

)
(1− s)β

ds

)
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≤ n−δ−1
n−2∑
k=1

(
kδ − (k + 1)δ

)
≤ n−δ−1. (B.0.7)

If β ≤ 0 then∫ (k+1)/n

k/n

(
sδ − ((k + 1)/n)δ

)
(1− s)β

ds ≤ 1
1 + β

n−δ−β−1
(
kδ

− (k + 1)δ
)(

(n− k)β+1 − (n− (k + 1))β+1
)
≤ n−δ−β−1

(
kδ − (k + 1)δ

)
,

and this gives the estimate

0 ≤
n−2∑
k=1

(∫ (k+1)/n

k/n

(sα − ((k + 1) /n)α) (1− s)β
ds

)
≤ n−α−β−1. (B.0.8)

Finally, the second part of the middle term is

Jn :=
n−2∑
k=1

(∫ (k+1)/n

k/n

((k + 1) /n)δ
(
(1− s)β − (1− k/n)β

)
ds

)
.

If β ≥ 0, then with calculations similar to above

|Jn| ≤ n−δ−1, (B.0.9)

and if β < 0, then

|Jn| ≤ − 1
β

2βn−α−β−1. (B.0.10)

Combining the bounds (B.0.3)–(B.0.7) and (B.0.9) we get C1(δ, β), and com-
bining the bounds (B.0.3)–(B.0.6), (B.0.8) and (B.0.10) we get C2(δ, β). 	

Lemma B.0.2. Put

Hn :=
n−1∑
k=0

((k + 1
n

)1/4−H (
1− k

n

)3/4−H
((

k + 1
n

)2H

−
(

k

n

)2H
)

−2H

(
k + 1

n

)H−3/4(
1− k

n

)3/4−H 1
n

)
.

Then
|Hn| ≤ Cn−min(1, 1

4+H). (B.0.11)

Proof. The proof of Lemma B.0.2 is similar to Lemma B.0.1. 	

The proof of the following lemma is obvious.
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Lemma B.0.3. Consider the expression

ūn(H) :=
1
n

n−1∑
k=0

((
k + 1

n

)2H

−
(

k

n

)2H
)2

.

Then
|ūn(H)| ≤ C

n2
. (B.0.12)
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In: Lect. Notes Math. 850, 144–150 (1981)
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[Hu05] Hu,Y.: Integral tranformations and anticipative calculus for frac-
tional Brownian motions. Mem. Amer. Math. Soc., 175 (2005)

[HN04] Hu,Y., Nualart, D.: Some processes associated with fractional
Bessel processes. Preprint No. 347, Univ. de Barcelona (2004)

[HN06] Hu,Y., Nualart, D.: Rough path analysis via fractional calculus.
Manuscript. arXiv:math.PR/0602050 v1 2Feb (2006)

[HO02] Hu, Y., Øksendal, B.: Chaos expansion of local time of fractional
Brownian motions. Stoch. Anal. Appl., 20, 815–837 (2002)

[HO03] Hu, Y., Øksendal, B.: Fractional white noise calculus and appli-
cations to finance. Infin. Dimens. Anal. Quantum Prob. Relat.
Top., 6, 1–32 (2003)

[HOS05] Hu, Y., Øksendal, B., Salopek, D., M.: Weighted local time for
fractional Brownian motion and applications to finance. Stochas-
tic Anal. Appl., 23, 15–30 (2005)



378 References

[HOS03] Hu, Y., Øksendal, B., Sulem, A.: Optimal portfolio in a frac-
tional Black and Scholes market. Infin. Dimens. Anal. Quantum
Probab. Relat. Top. 6, 519–536 (2003)

[HC78] Huang, S.T., Cambanis, S.: Stochastic and multiple Wiener in-
tegrals for Gaussian processes. Ann. Prob. 6, 585–614 (1978)

[Hur51] Hurst, H.E.: Long-term storage capacity in reservoirs. Trans.
Amer Soc. Civil. Eng., 116, 400–410 (1951)

[HBS65] Hurst, H.E., Black, R.P., Simaika, Y.M.: Long Term Storage in
Reservoirs. An Experimental Study. Constable, London (1965)
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[Kli98] Klingenhöfer, F.: Differential equations with fractal noise. PhD
Thesis, University of Jena (1998)
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Birkhäuser, Boston, 251–301 (2003)

[Mur92] Muraoka, H.: A fractional Brownian motion and the canonical
representations of its coefficient processes. Soochow J. Math.,
18, 361–377 (1992)

[Nar98] Narayan, O.: Exact asymptotic queue length distribution for
fractional Brownian traffic. Adv. Perform. Analysis, 1, 39–63
(1998)

[NN06] Neunkirch, A., Nourdin, I.: Exact rate of convergence of
some approximation schemes associated to SDEs driven by
a fractional Brownian motion. Preprint, available online at
http://arxiv.org/abs/math.PR/0601038 (2006)



384 References

[Nie04] Nieminen, A.: Fractional Brownian motion and martingale-
differences. Stat. Prob. Lett., 70, 1–10 (2004)

[Nor95] Norros, I.: On the use of the fractional Brownian motion in the
theory of connectionless networks. IEEE J. Sel. Areas Commun.,
13, 953–962 (1995)

[Nor97] Norros, I.: Four approaches to the fractional Brownian storage.
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