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Preface

For several decades the semimartingale processes were the best model in or-
der to implement many ideas. The stochastic calculus for semimartingales
and the general theory of stochastic processes, which are closely connected
to the theory of stochastic integration and stochastic differential equations,
were originated by N. Wiener (Wie23), P. Lévy (Le48), K. It6 (It642), (1t644),
(It651), A.N. Kolmogorov (Kol31), W. Feller (Fel36), J.L. Doob, M. Loéve,
I. Gikhman and A. Skorohod (the list of related papers and books is very long
and we do not mention it here in full). Those ideas were developed further by
several authors, among them there are K. Bichteler (Bi81), C.S. Chou, P.A.
Meyer and C. Stricker (CMS80), K.L. Chung and R.J. Williams (ChW83),
C. Dellacherie (Del72), C. Dellacherie and P.A. Meyer (DM82), C. Doléans-
Dade and P.A. Meyer (DDM70), H. Féllmer (Fol81a), P.A. Meyer (Me76) and
M. Yor (Yor76). These theoretical data were fruitfully discussed and summa-
rized in the monographs of J. Jacod (Jac79), R. Elliott (Ell82), P.E. Kopp
(Kop84), M. Métivier and J. Pellaumail (MP80), B. @Qksendal (Oks03), P.
Protter (Pro90). Limit theorems in the most general semimartingale frame-
work were proved by J. Jacod and A.N. Shiryaev (JS87). A very convenient
way to consider financial markets is to insert them into semimartingale mod-
els, as perfectly demonstrated by I. Karatzas and S. Shreve (KS98), A.N.
Shiryaev (Shi99), F. Delbaen and W. Schachermayer (DS06). The Malliavin
calculus for the Wiener process was presented in the books of P. Malliavin
(Mal97) and D. Nualart (Nua95). However, in recent years the well-studied
theory of semimartingales turns out to be insufficient in order to describe
many phenomena. On one hand, telecommunication connections, asset prices
and other objects have “long memory”. This effect cannot be described with
the help of such processes as the Wiener process, which has independent in-
crements and has no memory. On the other hand, the concept of turbulence in
hydrodynamics can be described by self-similar fields with stationary (depen-
dent) increments (A.M. Yaglom (Yagb7), A. Monin and A.M. Yaglom (MY67)
and A.M. Yaglom (Yag87)).
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A.N. Kolmogorov (Kol40) was the first to consider continuous Gaussian
processes with stationary increments and with the self-similarity property; it
means that for any a > 0 there exists b > 0 such that

Law(X(at); t > 0) = Law(bX (t); t > 0).

It turns out that such processes with zero mean have a special correlation
function:

1
EX(8)X(s) = 5 (s + |7 = |t = s|*")

where 0 < H < 1. A.N. Kolmogorov called such Gaussian processes “Wiener
Spirals” (“Wiener screw-lines”). Later, when the papers of H.E. Hurst (Hur51)
and H.E. Hurst, R.P. Black and Y.M. Simaika (HBS65), devoted to long-term
storage capacity in reservoirs, were published, the parameter H got the name
“Hurst parameter”. The stochastic calculus of the processes mentioned above
originated with the pioneering work of B.B. Mandelbrot and J.W. van Ness
(MvN68) who considered the integral moving average representation of X via
the Wiener process on an infinite interval and called this process fractional
Brownian motion (fBm). Note that B.B. Mandelbrot worked with fractional
processes during a long period and his later results concerned the fractals and
scaling were summarized in the book (Man97). Note also that it was proved
in the paper (GKO05) that the moving average representation of fBm is unique
in the class of the right-continuous, nondecreasing concave functions on R .
The first result where fBm appeared as the limit in the Skorohod topology
of stationary sums of random variables was obtained by M. Taqqu (Taq75);
another scheme of convergence to fBm in the uniform topology was considered
in (Gor77). Spectral properties of fBm were studied by G. Molchan (Mol69),
G. Molchan and J. Golosov (MG69), G. Molchan (Mol03), and later by K.
Dzhaparidze and H. van Zanten (DvZ05), (RLT95), (SL95).

The next intensive wave of interest in fBm arose in the 1990s. It can be
explained by various applications of fBm and other long-memory processes in
teletraffic, finances, climate and weather derivatives. The paper (DU95) was
one of the first paper devoted to stochastic analysis for fBm. Note that fBm
is neither a semimartingale (except the case H = 1/2 when it is a Brownian
motion) nor a Markov process. However, it is closely connected with fractional
calculus and can be represented as a “fractional integral” (with the help of a
comparatively complicated hypergeometric kernel) via the Wiener process not
only on infinite, but also on finite intervals. This was stated by I. Norros, E.
Valkeila and J. Virtamo (NVV99) and C. Bender (Ben03a). Such a representa-
tion, together with the Gaussian property of fBm and the Holder property of
its trajectories (fBm with Hurst index H is Holder up to order H) permits us to
create an interesting and specific stochastic calculus for fBm. The development
of the theory of long-memory processes moved in several directions: stochastic
integration, stochastic differential equations, optimal filtering, financial appli-
cations, statistical inference, from one side (these topics create the main points
of this book) and a lot of other theoretical problems and applications, from
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the other side. In our Preface we mention for the most part the papers that
are not mentioned and used in the text of the book but play a very im-
portant role in the development of the theory of long-memory processes.
For example, series, spectral and wavelet analysis for fBm was considered in
(AS96), (ALP02a), (Mas93), (Mas96), (RZ91), (DvZ05), (DF02), (DvZ04),
(SL95), (Mac81b); local times, the Tanaka formula, the law of the iter-
ated logarithm, maximal properties and the Kallianpur-Robbins law for f{Bm
and related processes were studied in (Ber69), (CNT01), (HO02), (HP04b),
(Sin97), (HOSO05), (GRV03), (KK97), (KM96), (KO99), (Ros87), (KM96),
(Kono96), (Sh96), (EIN93), (Tal96) and (Taq77). Furthermore, stochastic
evolution equations driven by fBm were investigated in the papers (AGO03),
(CDO01), (MNO03), (TTV03) and some methods of construction of fBm were
proposed in (Yor88) and (Sai92).

R.J. Adler and G. Samorodnitsky (AS95) considered super processes con-
nected to fBm. The Clark—Ocone theorem for fBm was established in (BE03)
and (AOPU00); forward and symmetric integrals for fBm were constructed in
(BO04), (CN02), (Zah02b) (note that the general theory of forward, backward
and symmetric integrals was created by F. Russo and P. Vallois in (RV93),
(RV95a), (RV95b), (RV98) and (RV00)).

Detection and prediction problems were discussed in the papers (BP88),
(GN96), (Dun06); the stochastic maximum principle for a controlled process
governed by an SDE involving fBm was proved in (BHOS02); stochastic Fu-
bini theorem for fBm was studied in (KMO0O0); time rescaling for {fBm was in-
vestigated in (Mac81a); Hausdorff measure and packing dimension connected
to fBm were considered in (Tal95), (TX96), (Xiao91), (Xia096), (Xiao97a),
(Xia097b); estimation of the parameters of long-memory processes, in particu-
lar, the estimates of the Hurst parameter are presented in (Ber94), (BGKO06),
(BG96), (BG98), (GR0O3a). Markov properties of some functionals connected
with an fBm were considered in (CC98).

Rough path analysis for fBm was studied in (CQ02) and some of its ap-
plications were considered in the manuscript (HNO6); the properties of the
Gaussian spaces generated by an fBm were established in (PT01); distribution
of functionals connected with fBm was obtained in (CM96), (LN03), (EIN99)
(Sin97), (Zha96), (Zha97); the Skorohod-Stratonovich integral for fBm was
studied in (Dec01), (ALNO1), (AMNO1), (ANO02); the properties of spectral ex-
ponent of fBm were established in (LP95); multi-parameter fractional Brown-
ian fields were studied in (ENO02), (Kam96), (ALP02b), (Lind93), (Gol84),
(KK99), (0Z01), (PT02a), (Tal95), (TV03), (TT03), (Tud03), (Misll03),
(MisIlo4), (MisIlo6), (Mur92); set-parametrized fractional Brownian fields
have been studied in the papers (HMO06a), (HMO6b); asymptotic properties
of two-dimensional fractional Brownian fields were considered in (BaNu06).
The Malliavin calculus for fBm was developed in (Hu05), (Pri98), (Nua03),
(Nua06); fBm in Hilbert space was constructed and investigated in (DPMO02).
The papers (HN04), (KLeB02), (AHL01), (ALNO1), (CKMO03) are devoted
to stochastic fractional Ornstein—Uhlenbeck, Riesz—Bessel and Lévy type
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processes. An interesting formula of transformation of fBm with Hurst in-
dex H into fBm with index 1 — H was obtained in (Jost06). Mention also the
papers (DU98), (Daye03) and forthcoming book (BHOZO0T).

Note that fBm has a long-memory property only for H € (1/2,1). In
the case H € (0,1/2) it is a process with short memory. The theory of such
processes is quite different. FBm with H € (0,1/2) was studied in (ALNO1),
(AMNO00), (AI04) and (CNO5); simulation of fBm and various applications
of fBm were considered in (CM95), (CM96), (Nor95), (Yin96), (Dun00),
(Dun01), (DF02), (Seb95) and (Sin94).

Fractional Brownian motion as a model of financial markets was proposed
in a large number of papers. (See, for example, (AMO06), (BE04), (BSV06),
(BO02), (BH05), (Che01b), (Dun04), (EvHO1), (EvHO03), (Gap04), (HOO03),
(HOS03), (HOS05), (Rog97), (Sch99), (Shi0l), (Sot01), (SV03), (WRLO03),
(WTT99), (Wyss00) and (Zah02a).) Financial markets with memory were
considered in (AI05a), (AIO5b), (INA07) and (INO7). Moreover, filtering
and prediction problems were considered in (CD99), (INA06), (KKA98b),
(LeB98), (KLeBR99), (KLeB99), (KLeBR00), (Dun06) and (GN96). In addi-
tion, some related applied problems were studied, e.g., in (MS99), (Nar98),
(Nor95), (Nor97), (Nor99). An estimate of ruin probabilities for the models
with the long-range dependence was studied in (Mis05), (HP04b). Statistical
inferences for the processes related to fBm are a very extended area. The
major contributions to this theory were made, among other authors, by M.
Taqqu and P.M. Robinson. We mention here also the papers of P. Doukhan,
A. Khezour and G. Lang (DKL03), L. Giraitis and P.M. Robinson (GR03b),
and the papers (DHO03), (HH03), (KS03), (MS03), (BLOPST03), (WTT99).
Of course, our list of the papers devoted to the theory of fBm is not exhaus-
tive. The book of P. Doukhan, G. Oppenheim, M. Taqqu (editors): Theory
and Applications of Long-range Dependence (Birkh&user, Boston 2003) con-
tains papers devoted to different aspects of stochastic calculus for fractional
Brownian motion and related processes. We mention, in particular, the papers
of D. Surgailis (Sur03a), (Sur03b) and M. Maejima (Mae03), devoted to cen-
tral and non-central limit theorems, where the asymptotic distribution is not
the classical standard normal and the limit process is not the Wiener process.
The processes of moving average type are obtained as the limiting ones for
increasing sums of some stationary sequences that do not have finite vari-
ance. See also the papers (H096), (Dec03), (Do03), (Mol03), (PT03), (Taq03),
(SWO03) from this edition describing stochastic analysis and other aspects of
the processes with long memory; papers concerning statistical problems were
mentioned above. It is clear from the aforesaid descriptions and citations that
there exists the urgent need to systematize the existing results devoted to frac-
tional Brownian motion, to select the best of them (in the author’s opinion)
and to present them in appropriate form. Also, some well-known results admit
generalizations, and it can be done without great technical difficulties. The
present book is devoted to the solution of these two problems. Of course, we
cannot claim the complete presentation of all the results concerning fractional
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Brownian motion; it is impossible as the reader can see from aforesaid list.
So, we choose only the following topics: Wiener and stochastic integration,
1t6 formula, Fubini and Girsanov theorems, stochastic differential equations,
filtering in the mixed Brownian—fractional-Brownian models, financial appli-
cations, some statistical inferences for fractional Brownian motion and the
stochastic calculus of multi-parameter fractional Brownian processes. These
fields coincide with the main directions of our own interest in the long-memory
effect.

The book consists of six chapters divided into 41 sections. Chapter 1 is
devoted to the Wiener integration (when the integrand is nonrandom) with
respect to fractional Brownian motion. Section 1.1 is devoted to the principal
definitions from fractional calculus. We recall the notions of fractional integrals
and derivatives both for finite and infinite intervals, formulate the Hardy—
Littlewood theorem, give the Fourier transformation for fractional integrals
and derivatives and calculate the values of some important fractional deriva-
tives. Section 1.2 contains some elementary properties of fractional Brownian
motion including the simplest spectral representations. Section 1.3 contains
the Mandelbrot—van Ness representation of fractional Brownian motion via the
Wiener process and some fractional kernels on real axes. These kernels are the
prototypes for the future definition of the Wiener integration w.r.t. fBm. Sec-
tions 1.4 and 1.5 describe the construction of fractional Brownian motion and
fractional noise on white noise space. Such space is convenient for applications
since it is possible to consider mixed Brownian—fractional-Brownian processes
and linear combinations of fractional Brownian motions with different Hurst
indices on such space and to apply Wick calculus to them. It is proved that
any fractional noise with H € [1/2, 1] belongs to the Hida distribution space
S* (we establish the corresponding estimates for the negative norms). The re-
lations between motion and noise are established as in the usual Wick calculus
for the Wiener noise. In Section 1.6 we return to fBm on arbitrary space. The
section contains the definition of the Wiener integral with respect to fBm and
various relations between different “integrable spaces” related to fBm. Section
1.7 is devoted to (non) completeness of the Gaussian spaces generated by fBm,
in connection with their norms. Section 1.8 contains the representation of fBm
via the Wiener process on any finite interval [0,7] and some representations
for auxiliary processes. Sections 1.9 and 1.10 present moment estimates for
Wiener integrals w.r.t. fractional Brownian motion. Using the conditions of
continuity of the trajectories of Wiener integrals w.r.t. fBm (Section 1.11) we
extend in Section 1.12 the upper moment estimates to solutions of very simple
stochastic differential equations containing Wiener integrals. Section 1.13 con-
tains the proof of the stochastic Fubini theorem for the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.14 deals with such Gaussian processes
that can be transformed into martingales with the help of some kernels
(fBm can be transformed into the Wiener process with the help of hyper-
geometric kernels). Section 1.15 is devoted to different convergence schemes,
in which fBm is approximated by the sequence of semimartingales, and even



X Preface

by the continuous processes with bounded variation. In the last case Wiener
integrals w.r.t. fractional Brownian motion also can be approximated. Sec-
tion 1.16 demonstrates the Holder properties of the Wiener integrals w.r.t.
fractional Brownian motion. Section 1.17 contains some auxiliary estimates
for fractional derivatives of fBm and for the Wiener integrals w.r.t. Wiener
process via the Garsia—Rodemich-Rumsey inequality. Section 1.18 contains
one- and two-sided bounds for power variations for fBm and Wiener integrals
w.r.t. fBm. Section 1.19 contains the result stating that some conditions of
quadratic variation of a stochastic process supply that this process is an fBm;
it is kind of generalization of the Lévy theorem for the Wiener process. Section
1.20 concludes; it describes Wiener fields on the plane and related fractional
integrals and derivatives.

Chapter 2 is devoted to stochastic integration w.r.t. fractional Brownian
motion and other aspects of stochastic calculus of fBm. There exist several ap-
proaches to stochastic integration w.r.t. fractional Brownian motion: pathwise
integration, Wick integration, Skorohod integration, isometric integration and
some others that are not mentioned here. Pathwise stochastic integration in
fractional Sobolev-type spaces and in fractional Besov-type spaces is described
in Section 2.1 and is generalized to fBm fields in Section 2.2. Wick integra-
tion is considered in Section 2.3 and is reduced to the integration w.r.t. white
noise. Two approaches to the Skorohod integration and their connections with
forward, backward and symmetric integration are discussed in Section 2.4.
Isometric integration is the subject of section 2.5. The stochastic Fubini the-
orem and various versions of the Itd formula and the Girsanov theorem are
contained in Sections 2.6-2.8 which conclude Chapter 2.

Chapter 3 is devoted to different properties of stochastic differential equa-
tions involving fBm. Section 3.1 contains the conditions of existence and
uniqueness of solution of a “pure” stochastic differential equation containing
a pathwise integral w.r.t. fBm and the estimates of its solution. Most of the
theorems are stated in the spirit of the paper (NR0O) but the results of Zahle
(Zah99) on existence of local solutions are also presented since they are used
later for construction of global solutions in the cases when other results cannot
help. Some properties of SDEs with stationary coefficients including differen-
tiability and local differentiability of the solutions are presented in Subsection
3.1.4. Existence and uniqueness of solutions of SDEs with two-parameter frac-
tional Brownian fields is contained in Subsection 3.1.6. Semilinear “pure” and
“mixed” SDEs are considered in detail in Subsections 3.1.5 and 3.2.1. The rate
of convergence of Euler approximations of solutions of SDEs involving fBm is
the subject to Section 3.4. SDEs with fractional white noise are considered in
Section 3.3, and a detailed discussion of SDEs with additive Wiener integrals
w.r.t. fBm is presented in Section 3.5.

Chapter 4 is devoted to filtering problems in the mixed fractional models.
Section 4.1 considers the case when the signal process is modeled by mixed sto-
chastic differential equations involving both fractional Brownian motion and
the Wiener process and the observation process is the sum of the fractional
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Brownian integral and the term of bounded variation. Optimal filtering in con-
ditionally Gaussian linear systems with mixed signals and fractional Brownian
observation is studied in Section 4.2. In these sections we consider only non-
random integrands in all the stochastic integrals. In Section 4.3 we make an
attempt to generalize the model and consider polynomial integrands depend-
ing on fBm.

Chapter 5 is devoted to financial models involving fBm. In general, fi-
nancial markets fairly often have a long memory and it is a natural idea to
model them with the help of fBm or with the help of some of its modifica-
tions. Nevertheless, it is not so easy to do this because the market model
is “good” when it does not admit arbitrage and the models involving frac-
tional Brownian motion are not arbitrage-free. So, this chapter is devoted to
some methods of construction of the long-memory arbitrage-free models and
to the discussion of different approaches to this problem. In Section 5.1 we
introduce the mixed Brownian—fractional-Brownian model and establish con-
ditions that ensure the absence of arbitrage in such a model. In Section 5.2
we consider a fractional version of the Black—Scholes equation for the mixed
Brownian-fractional Brownian model which contains pathwise integrals w.r.t.
fBm, discuss possible applications of Wick products in fractional financial
models and produce Black—Scholes equation for the fractional model involv-
ing Wick product w.r.t. fBm.

Chapter 6 is devoted to the solution of some statistical problems involving
fBm. The choice of the first problem which is solved in Sections 6.1 and
6.2 was evoked by some financial reasonings considered in Chapter 5. More
exactly, we try to determine which of the two geometric Brownian motions
from (5.2.6) serves as the better model for the real financial market, i.e. we test
the complex hypothesis concerning the shifts in the geometric fBm; one of the
shifts corresponds to the pathwise integral, and another to the Wick integral.
In Section 6.3 we consider the existence and the properties of estimates of the
shift parameter in different “pure” and “mixed” models involving fBm and,
possibly, the Wiener process, which can be independent of or, conversely,
“linearly dependent” on fractional Brownian motion.

T am grateful to Esko Valkeila who invited me several times to Helsinki Uni-
versity during the period of 1997-2005 and presented a possibility for fruitful
work and discussion of the problems connected to fractional Brownian mo-
tion and related topics. Also, I am grateful to David Nualart for inviting me
to Barcelona University during 2001-2003 when we discussed the problems
connected to stochastic differential equations involving fBm. My thanks to all
my other coauthors, with whom we have written the series of papers devoted
to the stochastic calculus for fractional Brownian motion, especially to Jean
Memin, Alexander Kukush, Georgij Shevchenko and Taras Androshchuk. My
special thanks to Murad Taqqu and Christian Bender for their useful sug-
gestions concerning contents of the minicourse of the lectures devoted to the
stochastic calculus for fBm that I delivered in Helsinki Technology University
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in May 2005. I wish to thank also Celine Jost who has carefully read a part
of the text of this book and made a lot of improvements.

Kiev, Yuliya Mishura
April 24 2007
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1

Wiener Integration with Respect to Fractional
Brownian Motion

1.1 The Elements of Fractional Calculus

Let @ > 0 (and in most cases below o < 1 though this is not obligatory).
Define the Riemann—Liouville left- and right-sided fractional integrals on (a, b)

of order a by
(12, / f)(x —t)*tat,

and
(15 f) / )t -2,
respectively.
We say that the function f € D(Ig, )) (the symbol D(-) denotes the

domain of the corresponding operator), if the respective integrals converge for
almost all (a.a.) € (a,b) (with respect to (w.r.t.) Lebesgue measure).
The Riemann—Liouville fractional integrals on R are defined as

(19 )(x) = ﬁ / ") — e,

(I%f)(z) : / f)(t —2)* tat,

and

respectively.

The function f € D(I¢) if the corresponding integrals converge for a.a.
z € R. According to (SKM93), we have inclusion L,(R) C D(I$),1<p< L
Moreover, the following Hardy—Littlewood theorem holds.

Theorem 1.1.1 ((SKM93)). Let 1 < p,qg < 00, 0 < a < 1. Then the
operators 1§ are bounded from L,(R) to L,(R) if and only if 1 < p < *

[0
and q = p(1 — ap)~t. This means, in particular, that for any 1 < p < é and

9= 1" ap, there exists a constant Cp 4. such that
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([ ([ 15l ) < Conal o 111

Fractional integration admits the following composition formulas for frac-
tional integrals:

I f=100f D) =10 f

for f € Ly[a,b]. If a+ (8 > 1 then these equalities hold at any point = € (a, b),
otherwise they hold for a.a. x. Also,

181 =157 f

for f € Ly(R), o, >0and a+ 3 < %. Let f € L,la,b], g € Lgla,b], p,g>1
and L + 1 <14a,orlet p>1,¢>1and L+ L =1+qa Then we have
the following integration-by-parts formula for fractional integralsintegration-
by-parts formulalfor fractional integrals:

b b
/ g(2)(I% 1) (@)dz = / F@)(I2 g)(@)de.

Let f € Ly(R), g € Ly(R), p>1,¢> 1 and ; + ; =1+a. Then

/R o (&) (IS f) ()de = / F(@)(I%g) () dz. (11.2)

Let C*(T) be the set of Holder continuous functions f : T — R of order ), i.e.

M) = {7 : T —R||Ifllx = sup |£(0)
teT

+ sup |f(s) = FOI(t - )7 < oo}

s,teT

If a > 0 and ap > 1, then I¢(L,(R)) C C*a,b] for any —co < a < b < o0
and 0 < A< «a— %.

The next result is evident.

Lemma 1.1.2. Let 0 < a <1, f € L,(R), 1 <p < é and I$f = 0. Then
f(z) =0 for a.a. x € R.

For p > 1, denote by I$(L,(R)) the class of functions f, that can be
presented as Riemann-Liouville integrals, more exactly, f = I¢y for some
¢ € L,(R), p > 1. Lemma 1.1.2 ensures the uniqueness of such function ¢.
For 0 < a < 1 it coincides for a.a. z € R with the left- (right-) sided Riemann—
Liouville fractional derivative of f of order a. These derivatives are denoted
by
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(12 N@) = (D@ i= e [ A0 =0
and

(1= Pa) = (D2 Pla) = ey zs | FOE=) 7t
respectively.

For p > 1, the class I (L,(R)) coincides with the class of those functions
f € Ly(R), r = ;. for which the integrals

/ T @) - F0) @ -ty

and ~
[ @ - o) -zeta
x+e
respectively, converge in L,(R) as ¢ — 0. Thus, for f € I$(L,(R)) with p >
1 the Riemann-—Liouville derivatives coincide with the Marchaud fractional
derivatives

(D N@) = prr—ey L ()= fla =)y~

and
1

(B2 D) = =gy [, (@) = S+,

respectively. If a > 0 and ap < 1, then I (L,(R)) C Ly(R) for % = % —a.
The Riemann—Liouville fractional derivatives can be considered on any

interval [a,b] C R in the following way: we introduce the class I$(Ly[a,b]) of

functions f that can be presented as f = I o (f = Iy @) for ¢ € Lyla,b],

p > 1, where we denote

1

(L)) = (Dgy () = F(l—a)(zc /z ft)(x —t)"“dt,

and

b
(1, f)(x) = (Dy_f)(x) = —p(ll_a);;/ F#)(t —x)~dt,

respectively. In this case the Riemann-Liouville fractional derivatives Dg
and D" f admit the Weyl representation of fractional derivatives (we suppose
that f = 0 outside (a,b)):

(P20 = Fr—ay (f@ =0

+a [ (@) = SO) @ =7 at) 1o (@),
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and

(D5 D) = pr—a (F)0 =)

b
+a [ (@) = £ = 2)7 ) Lo (o),

respectively, where the convergence of the integrals holds pointwise for a.a.
z € (a,b) for p=1 and in Ly[a,b] for p > 1.

According to (SKM93, Theorem 13.4), we have that f = I ¢ for some
¢ € Lya,b], where 1 < p < oo, if and only if f(z)(x —a)~® € Ly[a, b] and

b
sup/ [the (2)|Pdx < o0,

e>0 +e

where 1. (z) = [T L@ D g g4 e <z <b Let feI¢(L,(R),0<a<1
+\p

a (z—t)ite

and p > 1. Then

1810 = f; (1.13)
moreover, for f € Ly (R) we have that
I1sf=r. (1.1.4)

We set I{ f := f.
The composition formula for fractional derivatives has the form
DS, Dl f=Dy"y, (1.1.5)

where « >0, >0 and f € Igfﬁ(Ll(R)).

Also, under the assumptions 0 < o < 1, f € I2 (Lpyla,b]) and g €
I (Lgla,b]), 1/p+1/q < 1+ a we have the integration-by-parts formula
for fractional derivatives

[0 n@e@ds= [ @O 9@ds. (110)

For 0 < a < 1 and f € C'[a,b], the derivatives D¢, f and D§'_f exist, belong
to Lyla,b] for 1 <r < 1/a, and have the form

a _ 1 _ _ )@
Dg, =T —a) (f( T —a) / It dt)
and
@ _ 1 —«
Dbfl”(l—oz)(“ )(b—z)” /f dt)
respectively.

Let the general indicator function be given by
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1, a<t<b,
l(a,b)(t) =< -1, b<t<a,

0, otherwise.

Lemma 1.1.3. Let H € (0,3) U (
we have the equality

,1) and « = H — 5. Then, for all t € R,

1 1
2 2°

(1210.)(@) = (¢ = 202 = (=)

Proof. Let H € (%,1) and, for example, x <0<t (the other cases can be
considered similarly). Then,

(I1(0.))(x) = ﬁ /°° Lo,y (u)(u — 2)* 'du

_ b tu7$a71u:# e ()
F(a)/o( ) d Ila+1) ((t ) (—x)%). (L.1.7)

Let H € (0,3). According to the definition of the fractional derivative and
(1.1.3), we must prove that

/m((t —u)} — (—w))(u—z) " rdu=T(—a)(a+ 1)1 (z). (1.1.8)

Let, for example, 0 < x < t. Then the left-hand side of (1.1.8) equals

/ (t—uw)*(u— a:)_a_ldul(o’t) (x)

= Bla+1,—a)loy(z) = I'(=a)I(a + 1) 1o (z).
The other cases can be considered similarly. O
Remark 1.1.4. Obviously, (I$1(4 ) (z)) = ﬁ((b —2)% —(a—1x)%),
—00 < a<b<oo.
Let f € Li(R). The Fourier transform of f is defined as

~

(F(z) = (a?)Z/Remf(t)dt.

Denote by S(R) the class of smooth, i.e. infinitely differentiable, and
rapidly decreasing functions.

Theorem 1.1.5 ((SKM93)). (i) Forany0 < a <1 and f € L1(R) it holds
that

FIL) = flz) - (Fiz) ™,

where (Fix)® = |z|* exp {$oz;m signx}.
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(ii) For any 0 < a <1 and f € S(R) it holds that

~

FULf) = [f(z) - (Fix)*.

For H € (0,1) we introduce the set

Fy = {f € Ly(R),f:R—>R ‘/R|f(m)|2|x\_2°‘dx < oo}

with the norm

1%, = / F@)? - 2] -2d.

Here and throughout the whole text « :== H — 1/2 . The set Fy will be
considered in detail in Sections 1.6 and 1.7.

We say that f is step function, or elementary function, if there exist a
finite number of points ¢t € R,0 <k <n—1, and ax € R,
1 < k < n, such that

f(t) = Z a’k]‘[tk—htk)(t)'
k=1

Lemma 1.1.6. Let f € Fy. Then there exists a sequence of step functions
fn, such that

If = fall7m — 0, n — oo

Theorem 1.1.7 ((PT00b)). For H € (0,1), the set F is a linear space with
inner product

(f,9) 7w = / F@)7@)al2dz, a=H-1/2.

Moreover, the set of elementary functions belongs to Fy, and it is dense in
Fr.

Proof. The first statement is evident. Furthermore, for any —oco < a <
b < oo, it holds that 1¢,p) € Fu, because [, |i(a’b) (2)|?|z|2dx =
Jz le?®? — ea|2|3|=272%dy, and the latter integral is equivalent to the con-
vergent integral [ |#|~272%dx, in the neighborhood of +oco, and equivalent
to the convergent integral [ || 2*dz in the neighborhood of 0. Therefore,
any step function belongs to Fg. The second statement then follows from
Lemma 1.1.6.

Lemma 1.1.8 ((PT00b)). Let f € La(R). Then, for any H € (0,1), there
exists a sequence of step functions f, such that

/ |F(x) = ful2)]z]|72Pdz — 0, n — oo. (1.1.9)
R
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Proof. Indeed, for € > 0, put ]/”;(x) = A(x)l{‘wbg}. Then [, |f(:17) ff;(z)|2dx
0 e 0. Let H € (0.1). Then fu() = (F&)|ol"Lyjapoe)le] = =
Je(x)|x| %, where ¢g. € La(R), « = H—1/2. Now (1.1.9) follows from Lemma
1.1.6. In the case H € [1,1) the proof is similar. O

1.2 Fractional Brownian Motion: Definition
and Elementary Properties

Let (2, F, P) be a complete probability space.

Definition 1.2.1. The (two-sided, normalized) fractional Brownian motion
(fBm) with Hurst index H € (0,1) is a Gaussian process B = {Bf t € R}
on (2, F, P), having the properties

(i) Bg' =0,

(ii) EBf =0,t e R,

(iii) EBfBH = L(|t|*" + |s|*" — |t — s|?H),s,t € R.
Remark 1.2.2. Since E(Bf —BH)? = |t—s|*! and B is a Gaussian process, it
has a continuous modification, according to the Kolmogorov theorem. Indeed,

2%
for all n > 1 it holds that E|B/’ — BI|" = = (%[t — s|"H.
T2

Remark 1.2.3. For H = 1, we set B = B} = t£, where ¢ is a standard
normal random variable.

Remark 1.2.4. Tt is possible to consider the fBm only on Ry (one-sided fBm)
with evident changes in Definition 1.2.1.

The characteristic function has the form
< 1
pa(t) := Eexp {z; )\kBéZ} = exp {—2(Ct/\, )\)} ,

where C; = (EB,szf)lSi,kSn and (-,-) is the inner product on R™.
Therefore, it follows from item (iii) of Definition 1.2.1, that for any 8 > 0

Pa(ft) = exp {—;ﬁZH(CtA,A)} : (1.2.1)

Definition 1.2.5. A stochastic process X = {X;,t € R} is called b-self-
similar if
{Xo,t € R} L {0 X, t € R}

in the sense of finite-dimensional distributions.
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From Definition 1.2.5 and (1.2.1) it follows that B is H-self-similar.
Note that

1
BE(Bf'-B) (B, -B}) = 5(|S-U|2H+It—vlw—|t—U|2H—\S—UIZH)~ (1.2.2)

It follows from (1.2.2) that the process B¥ has stationary increments (ev-
idently, it is not stationary itself). Let H = % Then the increments of
BH are non-correlated, and consequently independent. So B¥ is a Wiener
process which we denote further by B or W. For H € (0,1) U (3,1) and
t1 <ty < t3 < ty, it follows from (1.2.2) for « = H — 1/2 that

ta
E(BH — BIY(BE — BI') = 20 / )20 o,

t3

Therefore, the increments are positively correlated for H € (1 1) and neg-
atively correlated for H € (0,%). Furthermore, for any n € Z\ {0}, the
autocovariance function is given by

r(n) == EB{(B},, — B}) _2aH/ / )2 du dv

~2aH|nP** 1, |n| — oo.

If H € (0, %), then >, |r(n)| ~ ZnEZ\{O} [n|2*~1 < oo.

If H € (3,1), then 307 [7(n)] ~ 32, ez oy 177" = oo. In this case we
say that fBm B has the property of long-range dependence. For the spectral
density function of { X[ := BH | — BIf 'n € Z}, which is denoted by fr(}),
it holds that (BG96; DvZ05),

fr(\) = O =123 [+ 27k 7272, X € [-m, 7],
keZ

where Cg)) is some constant depending on H. It is easy to see that
Fr () ~ O AP 7272 = O A7

as A — 0. Therefore, for H € (%, 1) it holds that fg(A) — co as A — 0, and,
for H € (0, %), it holds that f(A) — 0 as A — 0.

According to (PT00b) and (ST94), BH admits the spectral representation
(BE,t € R}y £ {C [ (" — 1) (iz)~}|z|~*dB(z),t € R}, where B =
By + iBs is a complex Gaussian measure with By(A) = B1(—A), By(4) =
—By(—A) and E(B1(A))? = E(By(A))? = %(A) for any Borel set A of

1
finite Lebesgue measure mesh(A) and C’g) = (FQHH)sm(;f'ﬂ(HH/z))) ’
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1.3 Mandelbrot—van Ness Representation of fBm

Let W = {W,,t € R} be the two-sided Wiener process, i.e. the Gaussian
process with independent increments satisfying EW; = 0 and EW, W, = sAt,
s,t € R. Evidently, W = B2. Denote kg (t,u) = (t — u)§ — (—u)$, where
a=H— % The following representation is due to Mandelbrot and van Ness

Theorem 1.3.1. The process B = {Efl,t € R} defined by

_ 1 1
B, =c? / kg (t,u)dW,, H e (0, 2) U <2,1> ,
R

1 )fé _ (2HsinmHI'(2H))

wherng):(/R (1+5)* —5%) ds + oo TH+1/2) ;
+

1/2

has a continuous modification which is a normalized two-sided fBm.
Remark 1.3.2. The constant C’g) is calculated in Appendix A.

Proof. Evidently, B is a Gaussian process with Ef = 0 and EEfI = 0.
Furthermore, it holds that for ¢ > 0,

E(Eff = (C’g))2</ooo k3 (t, u)du + /t(t - u)2adu> =21,

0

For t < 0 we have that
t 0
—H 2 o
BB = () ([ Bitades [ w2 = o,
—00 t

Furthermore, for h > 0, it holds that

S

Eirh_Ef :Cg)/ (kH(S‘FhaU)—kH(S,U))qu

—0o0

s+h
+/ k’H(S—I—h,U)qu =11+ Is. (131)

Note that the terms I; and Iz on the right-hand side of (1.3.1) are indepen-
dent, and the Wiener process W has stationary increments. Therefore,

0 h
L4 / (kaz(s10) — kg (0,u))dW,, I / kgt (h u)dW,,

—o0 0

and E(Birh _§£1>2 = E(EhH)2 = h2H. By combining these results, we obtain

that
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—H—H 1 —H\2 —H\2 —H  —H\2
EBYBY = §<E(BS V' + BB - BB -B) )
1
= 5(WH + |8 — ¢t — s]?). (1.3.2)

The proof follows immediately from Definition 1.2.1 and Remark 1.2.2. O

Define the operator

oPIey,

‘ (1.3.3)

Mff = {
where C} S C(2 I'(H+3).

Corollary 1.3.3. It follows from Lemma 1.1.3 and Theorem 1.3.1, that for
any H € (0,1) the process

Bl = /R(Mfll(o}t))(s)dWS (1.3.4)

is a normalized fractional Brownian motion.
A little later we shall establish (see Corollary 1.6.11) that any fBm B
can be presented in the form (1.3.4) with a suitable Brownian motion .

Remark 1.3.4. It is easy to see that the domain D(M*H) of the operator M
has a form

. UlSp<éLp(R), HE(% 1), a:H—%,
'D(M7 ) = Upzl I:EQ(LP(R))7 He (O %)7
all measurable functions, H = %

1.4 Fractional Brownian Motion with H € (3, 1)
on the White Noise Space

Consider the probability space of the white noise. Namely, recall that S(R)
denotes the Schwartz space of rapidly decreasing infinitely differentiable real-
valued functions, and let S’(R) be the dual space of S(R), i.e., the space of
tempered distributions with weak* topology. We consider S’(R) as a proba-
bility space {2 with the o-algebra F of Borel sets. According to the Bochner—
Minlos theorem, there exists the probability measure P on ({2, F), such that
for any function f € S(R) with the norm || f||z, ), it holds that

Eexp(i(f,w)) =eXp{—;||f%2(R)}, (1.4.1)

where (-, -) denotes the dual operation.
Note that from (1.4.1), we obtain that
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E(f,w) =0, E(f,w)* =fl3,@®): (1.4.2)

where f € S(R), and the duality (f,w) can be extended by isometry
to f € La(R). Note that from (1.4.1)—(1.4.2), it follows that the process
Wi := (1j9,4,w) is a standard Brownian motion.

Now, let H € [3,1), fi € La(R) and f2 € L1 (R). Then M{' fy € L_1_(R),

MH f; € Ly(R), therefore, we can consider on Ly(R) the inner product of the
form

(M ey = [ @) (M7 o))
By (1.1.1) and (1.3.3), it holds that
(f, M),y = (M f1, f2) Law)-
According to (SKM93), denote the spaces
O(R) = {¢ |6 € S(R),¢"(0) = 0,k > 0}

={¢|¢ € S(R), (¢,t")r,®) = 0,k > 0}.

It was proved in (SKM93) that M (#(R)) C #(R) and that the space ®(R)
is closed in S(R).
Now, define two stochastic processes

Bf(t)(w) = <Mfl(0’t),w>, teR.

Then the processes BY(t) are Gaussian, EBY(t) = EBH(t) = 0. For the
covariance function, it holds that

BBIBL () = [ (MF100)(@)(ME10,) ) (1.4.3)

By considering the sign “—”, we obtain from (1.3.4) that the right-hand
side of (1.4.3) coincides with

BB = [ (410 @) (01 10.0) ()
R
1
= SO+ s~ e 22,

One obtains the same result if one considers the sign “4”. Therefore, each of
the processes B (t) has a modification that is a normalized fBm. The process
BH(t) is called a “backward” fBm. It coincides with usual Mandelbrot-van
Ness representation and depends only on the past, i.e. on {Wj, s € (—o0,t)}.
Indeed, B (t) = [(MH1(g))(s)dW,, where Wy (w) = (1(9,4),w). The process
Bf (t) is called a “forward” fBm; it admits the representation

BH(t) = c? /too(ui —(u—1))dW, = /R(Mfyo,t))(s)dm,
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and depends on future values of W, i.e. on {Ws,s € (t,+00)}.

The case H €(0,1/2) can be considered similarly. Also, it is possible to con-
sider the linear combinations of the operators M1* and of fractional Brownian
motions with different Hurst indices (in what follows we consider only the case

Hy € [1/2,1)):

Myf(x):= Zaka’“f(m), o >0
k=1

and

BY(t) =) i Bi*(t) = (Mx1 (o), w). (1.4.4)
k=1

Clearly, the operators M. are mutually adjoint in the same way as M.
Indeed,

(f1, M_f2) L,y = (M4 f1, f2) Lo(m)

for appropriate functions f1, fs.

1.5 Fractional Noise on White Noise Space

Let Ng = NU {0} and Z be the set of all finite multiindices o = (v, ..., ap)
with a; € Ny. Denote || = a1 + -+ apn, al := a1!- - a,!. (Of course, in this
and similar situations « as a multiindex differs from our o = H — 1/2 but it
will not lead to misunderstanding.) Define the Hermite polynomials by

n
w2 d 2

ho(z) := (—1)"e T (e7™)

and Hermite functions

hn(z) := 71_1/4(n!)_1/22_"/2hn(x)e_m2/2, n > 0.

It is well-known that the functions {Em n > 1} form an orthonormal basis in
L>(R) with Fourier transform

/ N hy (z)de = (27)Y2" hy (), 1> 1.
R

Define

n

Hao(w) =[] ha (i, ),

i=1

the product of Hermite polynomials and consider a random variable
F= F(w) S LQ(.Q) = LQ(S/(R),]:, P)

Then, according to (HOUZ96, Theorem 2.2.4), F(w) admits the representation
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F(w) =) caHalw), (1.5.1)

acl

and

|F||L2 @ = Za'c < .
acl

Next, we introduce the following dual spaces.
(i) F € S if the coefficients from expansion (1.5.1) satisfy

1Pz =" aled (2N)* < oo
acl

for any k > 1, where (2N)? = [T/, (27)%,7 = (71,---,¥m € ).
(ii) F € S* if F admits the formal expansion (1.5.1) with finite negative norm

IF2, = alck(2N)™% < oo
acT

for at least one ¢ € N (in this case we say that F' € S_).
For F =3 c,Hy€S, G=>, d.H, € S* we define

= Z alend,,

a€Z

Taking into account the Parceval identity, we can also define
L3, (R) ={f: Msf € Lo(R)} = {f : Mif € Lo(R)},

where, according to our notations, g(A) = [, €*Yg(y)dy is the Fourier trans-
form of the function g.
The inner product in L3, (R) is defined by

(f.9) /Mif r)Myig(z)dz = (Myf, M1g)L,®)-

Also, define an inverse operator M Lin terms of the Fourier transform.
For g(x) = MLI'f(x) € La(R), it holds that f(z) = Mig(z), and, according
to Theorem 1.1.5, we have the equalities

G D o Ciy A7,
k=1
where Cf)) = exp { % sign A} € and oy, = Hy — 1/2. Hence,

(M) (Zakcmw ).
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Lemma 1.5.1. The functions ef = M;lg;;, k > 1, exist and form an ortho-
normal basis in L, (R).

Proof. Let, for simplicity, m = 1, so that My = M¥ and o, = 0. Consider,
for example, the sign “— ”. Then it holds that

—

e (A) = (6C(W) A hi(A) = (0CH(A) " * V2| A he(N), o = H —1/2.
Therefore, e, exists and belongs to S(R). The second assertion is evident. O

Now we want to present the linear combination B} (¢) of fBms in terms
of hy, k> 1.

Lemma 1.5.2. It holds that
0ot
_ Z/ Mt (2)de(hn,w), teR, weS'R),  (15.2)
k— 0

and the series converges in Lo({2).

Proof. Let w € S(R). Then, from equality (1.4.4) it follows that
Bjiw(t) = <Mi1(0,t)7w> = <1(0,t)aM¥w>7

and Mzw € S(R). Since 1o € L?Mi (R), it admits the expansion

M8

Los =Y (Lon e ) maeys

=
Il
—

where the series converges in L3, (R). Then,

8

(Lo, Mzw) = > (Lo, 6 ) ar (€, M),
k=1

and the series converges in Ly ((2). Furthermore,

oo

Z Ot),ek Mi<ekvM:Fw /Mil(o t)( )Miek( )d$<Mi€k, >

k=1
—Z/ o () Mas o () (g ) — /M;hk 2)da (),

i.e. we obtain (1.5.2) for w € S(R). Moreover, we can extend (1.5.2) on S'(R)
since S(R) is dense in S’(R) in weak* topology, and this topology generates
the weak convergence. Since

<%ka w> = HEk (w),
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where e, = (0,...,1,...,0), where 1 is in kth place, we have that

oo t 7 2 oo t T 2
> k=1 ‘fo Mzhy(z)dz (5k!)2 =D =1 ’fo Mijk(x)dx’ = HI(OJ)HLi&
<2mmINT o2t < oo

Now, we introduce the fractional noise B¥ as the formal expansion
B (w) =" M h() (g, w),
k=1
and the linear combination of fractional noises as
By (w) = ZM+%k(x)<7Lk7W>-
k=1
Recall, that here we consider only H € [1/2,1) and that B,(w) =

S5 hy() (hy,w) is white noise.

Lemma 1.5.3. The fractional noise BY and the linear combination BM of
such noises belong to S* for any x € R.

Proof. Tt is sufficient to consider Bf. By using the Fourier transform and
Theorem 1.1.5, we obtain that
/It<1 Aﬁ|>1

o~

where C'y , denotes suitable constants. We have that Ek(A) = Ckﬁk (N, Cx =
i*v2m, and

+CHk

)

’Mf%k(m)‘ = CH7]€

/ e_mINLk(t)(it)_o‘dt' < Cyu
R

~ Ck=Y2 for |\ <2VEk

he(N)| < -

(M) < { Ce= for |\l >2vEk
where C' > 0 and v > 0 do not depend on A and k. Therefore,

‘MfiNLk(o:)’ §C</ k=112) |~y
lt|<1

+/ k71/12|t|70‘dt+/ |t|ae'yt2dt> (153)
1<[t|<2vE [t|>2vEk

< C(kfl/u 4 | 1/12p3/4-H/2 | e—2»yx/E) < Ck2/3-H/2
From (1.5.3) it follows that
IBYN2 g =D 1M he(a)*(2k) 1 < O KYS10 < o0
k=1 k=1

for any ¢ > 7/3 — H. So, for ¢ > 7/3, it holds that ||[BX|]2, < oo for any
x € R. This completes the proof. O
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1.6 Wiener Integration with Respect to fBm

Now we return to an arbitrary complete probability space (£2,F,P), and
continue the considerations of Sections 1.1-1.3.

Consider the space LE(R) := {f : MHf € Ly(R)} equipped with the
norm || fll .z @) = [IMZ f|| L, (w)-

Definition 1.6.1. Let f € LI(R). Then the Wiener integral w.r.t. fBm is

defined as
_ / F(s)dBY = / (M f)(s)dW.. (1.6.1)
R R

Here, B and W, are connected as in (1.3.4). As a particular case, consider
the step function f: R — R given by

n
= Z ak]‘[tk—htk)(t)
k=1

where tg <t; < --- <t, € Rand ar € R,1 < k < n. Then, from the linearity
of the operator M, we have that

In(f) = ak/M Lty ) (8)dW, = Zak B -BI ), (162
k=1

and the latter sum coincides with the usual Riemann—Stieltjes sum. A question
arises: in which sense can we consider formula (1.6.1) as the extension of the
sum (1.6.2)7 Note, that for a step function, it holds that

Oy = 3 astn [ ML @M
i,k=1 (163)

= HMffH;(R) = 2aH/ Fw) f) |u—o** " dudo,
R2

where the last equality holds for H € (1/2,1) but not for H € (0,1/2).
Nevertheless, for any 0 < H < 1 we have the following;:

Lemma 1.6.2 ((Ben03a)). For 0 < H < 1, it holds that the linear span of
the set {MH 1, .y, u,v € R} is dense in Ly(R).

Proof. (1) Let H € (1/2,1) (for H = 1/2 the assertion is evident). Since
(b+a) -2~ Cz~Y?H g5 2 — oo, we have that the function (b —
)1* — (—x){“ € L u(R). Therefore, for any a < b it holds that g(z) :=
M1, 4)(2) € Ly, (R). Therefore, 1(,p) = M%g € I1%(Ly /5 (R)), and this
is true also for step functions. Since the class of step functions is dense in
Ly(R), it follows that I%(Ly,;(R)) is dense in Lo(R). Let h € I%(Ly,5(R)),
h=MHg, g c Ly, (R). Then there exists the sequence of step functions
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gn — g in Ly/p(R). From the Hardy-Littlewood theorem (Theorem 1.1.1) it
follows that

1M g — Bl Ly) < Cllgn = 9llL,, 0w @) — 0,1 — 0.

So, the linear span of {M*1,,),u,v € R} is dense in I*(L;,5(R)), and
therefore it is dense in La(R).
(ii) Let H € (0,1/2). Due to the Parceval identity, it is sufficient to prove

o —

that the linear span of the functions M* 1, is dense in Ly(R). According
to Theorem 1.1.5, we have that

M1 (x) = OF Crr(2)T (00 (2)|2] 72,

where Cp(z) = exp{imsignza/2}. According to Lemma 1.1.8, for any ¢ €
L(R) there exists a sequence of step functions ¢, such that

/ (CD)|Cr(~2)@(x) — Ga(@)|e]Pdz — 0, 1 — oo,
R

because (CS’))_lCH(—x)@(x) = g(x) for some g € La(R). Then, we obtain
that

/R 18(z) — C Crr ()7 ()]~ Pda
- / (O Car(~2)@(x) — Ga(@)a] Pz — 0, n— ox.

O

Remark 1.6.3. Let H € (0,1/2). Then the operator M defines an isometric
isomorphism from L (R) to Ly(R). Indeed, the operator I~* is bounded from
Ly(R) to Lf/H(R), according to Theorem 1.1.1. Let f,, be a Cauchy sequence

in LI(R) and ¢,, = M f,,. Then
[ fn — fm”Lg{(R) = [lon — ‘Pm”Lz(R) — 0,m,n — oo,

whence ¢, — ¢ € La(R), and f, = (M) 1y, — (MH)"lp = f in
Ly/p(R). We have that

||f||L§(1R) = llellp, @ < oo,

and
| fr — f||L§(]R) = llen — 80||L2(R) — 0.

It means that Lﬁq (R) is complete, i.e., it is a Hilbert space, and equals the
closure of the step functions under L -norm. By (1.6.3), there exists a unique
continuous extension of fractional Wiener integrals for the step functions to
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the space LY (R). For any f € L (R) and the approximating sequence of step
functions f,

/f(s)dBf: lim /fn(s)dBf in  Ly(R). (1.6.4)
R n—oo Jr

Remark 1.6.4. Now, let H € (1/2,1). Then, the domain of the operator M#
coincides with
D(IZ%) = D(D2) = Up>112(Ly(R)),

and, according to Theorem 1.1.1 we can take here only 1 < p < a~! since
LER) = {f e DI-*): M7 f € Ly(R)}.

Note, that

L5(R) £ UrcpeaiI2(Ly(R)). (1.6.5)
Indeed, it was proved in (SKM93) that all spaces I*(L,(IR)) coincide for 1 <
p < a !and I*(L,(R)) does not coincide with any space L,(R),1 < r < oc.
The description of I*(L,(R)) for 1 < p < 1/a and for p = 1 is contained in
(SKM93, Theorems 6.2 and 6.3) and (1.6.5) follows from these theorems.

Theorem 1.6.5. The space Li is incomplete for H € (1/2,1).
Proof. The operator M : L¥(R) — Ly(R) is isometric. So, LY (R) can be
identified with its image in Ly(R). According to Lemma 1.6.2, L (R) is dense

in Ly(R), but Remark 1.6.4 demonstrates that LE (R) # Ly(R). Therefore,
the image M (L (R)), and hence LI (R) itself, is incomplete. O

In spite of the incompleteness of LI (R) for H € (1/2,1), due to Lemma
1.6.2, we can approximate any f € LI(R) by step functions f, in LI (R).
Then MY f,, — MY f in Ly(R), and we have that

Tu(f) = / f(z)dBH = / (M f)(s)aWY,
= lim [ (M7 f,)(s)dW, = lim / fu(s)dBH,
R n—oo R

where the convergence is in Lo (§2). Furthermore, for H € (1/2,1), we have
that

BIINP = [ |02 o) do

for f € LY (R); however, in general, it does not hold (compare with (1.6.3))
that

Elu(f)f = 2aH / F(w) £ (0) [ — o> dudo,
RZ
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even if the last integral is finite. This equality can be obtained only
if we can apply the Fubini theorem or if we can prove that the inte-
gral fRz fn V() |Ju—v|** ' dudv with step functions f, converges to

Jr2 f( |u — v[**™" du dv. Both things need some additional assumptions.
For H € (3,1), define the space of measurable functions by

|Rp| = {f RHR‘/ w)||f (v)||u — v|** L dudv < oo},
with the norms

1130 = 20H / F) F@)lu — o dudo (1.6.6)
=2

and
112,12 = 200 / DI @) — v dudo.  (16.7)

For H € (0, 1), we introduce one more space,

Fu={fR-R|fe LQ(R),/R|f(x)|2\m|_2°‘dm <o},

with the norm

1F1%, = / )Pl 2. (1.6.8)

Moreover, consider L (R) with the norm

1 = [ 1047 £)@) P (1.69)

Below we study the most important features of these spaces. (The space
Fr was partially considered in Theorem 1.1.7.) Note, at first, that the norms
defined in (1.6.6)—(1.6.9) are all generated by corresponding inner products.
Namely,

(gt =208 | | gl dudo, (1.6.10)
(f, )|RH‘2f2aH/ w)l|g( )||uf’0\2°‘71dudv7 (1.6.11)
/f x|z d (1.6.12)

and

(f9)up ) = /R (MY f) (@) (M g) () (1.6.13)
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Thus, all these spaces are spaces with inner products. Furthermore, (1.6.6)
is indeed a norm on |Rpy|. Indeed, we can apply the Fubini theorem, use the
following relation from (GN96):

sAt
a— a— 4 a—
/ (s —w)* Lt —u)* Tdu = CP |t — s>,
where C}?) = w, and rewrite (1.6.6) as

QQH/ fw)f(v)|u —v|** tdudv
R

= (Cy)"2aH f( )f(v )/_“ U(“_z)a_l(v— 2)* 'z dudv

C(4) 12aH// flw)(u—2)*" 1du/ f)(v—2)"tdvdz

= (Cy) " 2Ha(C}) 2||MHfHL2<R)—2aH<c >> HCED I -
(1.6.14)
Note that the relation f € LI (R) means, in particular, that the interior
integral [ [f(u)|(u — )~ !du is finite for a.a. z € R.

Lemma 1.6.6. We have that the space L1(R) N Lz(R) C L1 (R) C |Ry| for
any H € (3,1).

Proof. Tt is enough to prove that for any f € Li(R) N Ly(R) the iterated
integral is finite,

r= [1ri( [ 1ol Pt )au < .

_ 1
From Theorem 1.1.1 with « = 2H — 1, p = % and ¢ = 7 gap = = we
obtain that

v (i) ([ ([ ma) Ta)

<l y w0 Cryman-nan-ilfly @ = Cal S, @-

Obviously, L1(R) N Lz(R) € L. (R) for H € (1,1), whence the claim follows.
O

Lemma 1.6.7. The inclusion L1(R) N La(R) C Fg is valid if and only if
H e (3,1).

Proof. Assume that H € (3,1). Since |f(x)| < fllz, ) for any z € R, we
have that
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/R Fl@)Pla| 2 de = /zl>1|f<x>|2|x|2adx+ / Fl@) 2|2 de

|z|<1

S/Rf(w)lzdxﬂlfllil(m/l 1\$|’2adxé IF1Z,@ + Q= H) L, @)
x| <

Let H € (0, 3). According to (PT00D), take the function f(u) = signufluI

[ul?
with p € (H, ). Evidently, f € Li(R) N Ly(R). Nevertheless, due to (GR80,
p. 491),

~

FO) =201 —p)(A* + 1)"% sin (1 — p) arctan A) ~ |A[P~!
as |A\| — oo, and 2p — 2 > 2a¢ — 1 > —1, which means that || ||, = +oco. O
Lemma 1.6.8. For any H € (0,1), we have that Fy C LE (R).

Proof. For H = 3, the statement is evident and Fi = L2 (R) = Ly(R).
2

Let H € (%,1) and f € Fpy. Then, in particular, f € Lo(R), and, there-
fore, according to Theorem 1.1.1, the operator I¢f is well-defined and
bounded from Ls(R) to Lﬁ(R). Moreover, according to Theorem 1.1.5

and since [, |F(2)2|z|~2%dz < oo, it follows that I®f € Lo(R). Therefore,
f € LI(R). Let H € (0,3). We must prove, that for any f € Lo(R) with
Je |f(2)[2]z|~2dz < oo, there exists & € Ly(R), such that

p=MIf=03 Do, (1.6.15)

Consider the function ¢(z) = f(z)|z|~*Cg (z). Since |Cp (z)] = 1, ¥ € Ly(R)
and ¢(x) = (—=x), we conclude that ¢(z) = @(z) for some function ¢ €

L>(R). Now we prove that C’S)go satisfies (1.6.15). Indeed,

F(@) = 3(@)|z|*Cp (), (1.6.16)

whence | f(z)|? = |3(z)[?|z|2. Since f € Ly(R), we have that ¢ € Fy_g, and
from Theorem 1.1.5 and (1.6.16), it follows that

f=1"%.
Therefore, @(z) = C’g’)@(a:) satisfies (1.6.15), whence the claim follows. O

Next, by using Lemma 1.6.8 and an example from (PT00b) with a slightly
modified proof, we establish that |Ry| C LI (R).

Lemma 1.6.9. Let H € (3,1). Then (|Rul,| - ||ry)1) € LE¥(R) and this
inclusion is proper.
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Proof. The inclusion itself follows from (1.6.14). We prove that the inclusion is
strict if we find a function f € Fy\|Rp|. Let f(u) =signu - |u|™? -sinu, 3 <
p < 1. Then f € Lo(R), fe Ly(R). For calculation of f we consider the
approximations fy,(u) = f(u)1{jy<n} — [ in La(R). The function . satisfies
the relations

o~

n
fa(N) = 2/ cos Auju| 7P sinu du
0
= / w Psin((A 4+ Du)du — / u Psin((A — 1)u) du
0 0
n|A+1|
= sign(\ + )|\ + 171 / v Psinv dv
0
n|A—1|
—sign(A — 1)|\ — 1\17_1/ v Psinvdv
0

— (sign()\ + DA+ 1P —sign(A — 1)\ — 1|p*1) / v Psinvdv
0

~

= FN).

Since % < p < 1, we have that

/ FOO2IA-2H
R
<C (/ A2 N+ 1\2p‘2dA+/ A2 - 1|2p—2d)\> < o0
R R

and it means that f € Fg. Now, let 2 < p < H. We shall use the inequalities
|sinu| > L for u € (vk + Z, 7k + 2F), (u+ %)7P > (2u)7? for u > 3T,
(u+Z—2)7'> Qu—2)7 " forz>m u> 3 and (u—2)7' > (u—2)7"
for x > 0. Consider

L (1wl = ortan)ae= [ ([ st - o) o
2 /]R (/EO" |U|_p|sinu|(u—m)a_ldu>2dx

vE

> ;/}R(i/ﬂk—h{r u_p(u—:r:)ﬁ‘:ldufdm

k=0 7Tk+%

1 oo o mk+3F 2
> */ (Z/ u P(u —x)ﬁ‘;ldu) dx
4 Jo k—0/Tk+7%

%) o0 mk+% —p 9
/ ( E / (u + E) (u+ T_ a:)?(_ildu) dx
0 Tk—T 2 2
k=1 4

+

NG
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> i/oo (i/ﬂﬁf u P (2u — x)i_ldu>2da:

k=0 ﬂk-&-%

> k4 2
/ u P(2u — x)ifldu) dx

22

k=177k—F
2—21) o0 oo ‘n'k?-‘rdTﬂ B B
> 3 / (Z/ _u P(2u — x)  du
T Cg=0/7kt+%
> [kt 2
+Z/ ufp(2ufx)i_1du) dx
k=1"7F=%

2—2p /OO /oo . 2
= uw P(2u—x)} du) dx
2—2p [ee] o] 2
=3 / (/ v P (20 — 1)ifldu) 2Py
™ To

2721) o] 0 2
> 3 / x2a*2pdz</ v P (20 — l)o‘fldu) =00
T 1

2

for H > p. O

Now we consider the representation of the Wiener process via fBm, i.e.,
the relation which is inverse to the relation (1.6.1).

Lemma 1.6.10. Let 0 < H < 1. Then M "1y, € LE(R) for all t € R,
and the underlying Wiener process W admits the representation

W, = 5;/ M'H1y,(s)dBH,
R
where Cy = (CS)C§37)H)_1.
Proof. We must check that Mi_Hl(O)t) € LI (R). Indeed,
_ H-1,  1_H e
M7 M = CRCP T (12 1) = (Cr) Moy € La(R).

Furthermore, according to Definition 1.6.1, it holds that

Cu / (M116.)(s)dB! = O / (ME M1 g 1)) (s)dW,
R R

= / 1(0’t)(8)dW5 = Wt. (1617)
R

O

Corollary 1.6.11. Any fBm B¥ admits a Mandelbrot-van Ness representa-
tion with respect to the Wiener process W from representation (1.6.17).
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1.7 The Space of Gaussian Variables Generated by fBm.

Denote
By =span{ B ,t € R},

where the closure is taken in Ly(§2). We are interested in the following ques-
tion: which classes of integrands in the definition of the Wiener integral w.r.t.
fBm are isometric to By or to some of its subspaces? The following theorem
from (PTO0b) gives the general answer to this question.

Theorem 1.7.1. Let T be some class of integrands and let T, C T be the class
of step functions. Under the assumptions

(i) Z is a space with inner product (f,q9)z, f,9 € Z,

(11) fO’I" f’g €7 (fag)I = EI(f)I(g),
(iii) the set I is dense in T,

we have the following:

(a) there is an isomelry between the space T and a linear subspace of By
which is an extension of the map f — I(f) for f € I;
(b) Z is isometric to By if and only if T is complete.

Proof. (a) Let f € Z. By (iii), there exists f,, € Zs, such that {f,,n >1}isa
Cauchy sequence in Z with norm || - ||z = (-, -)z. According to (ii), I(f,) is a
Cauchy sequence in Ly(§2), hence it converges to some r.v. £ € Ly(£2). We set
I(f) :=&. Since I(f,) € By and By is a closed subspace of La({2), we obtain
that I(f) € By. So, we can define the map I: Z — By. For any f,g € Z it
holds that

Moreover, £ does not depend on the choice of the sequence f,, — f in Z. Since
the map I is linear, we get an isometry between Z and some subspace of By.
(b) Since By is complete as a closed subspace of the complete space La({2), it
follows that 7 is complete if I is an isometry between Z and By . Conversely, let
7 be complete. Then, for any n € By, it holds that n = limn,, n, = I(f,) €
span{B} t € R}, f, € Z,. So, I(f,) — n in La(£2). Therefore, from (ii) it
follows that f, is a Cauchy sequence in Z, and from completeness, f, — f in
Z,n=1I(f). O

Corollary 1.7.2. From Lemma 1.6.2, Remark 1.6.3 and Theorem 1.6.5, we
obtain the following: the space T = LE(R) is complete for H € (0,%) and
incomplete for H € (%, 1). Step functions are dense in LY (R) for any H €
(0,1). Therefore, LI (R) is isometric to By for H € (0,%) and isometric to

12
a subspace of By for H € (%, 1).
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Theorem 1.7.3. The space (|Rul, ||| Lz ®)) is incomplete for H € (1,1), the
space (Fu, ||| ) is incomplete unless H = %, and the space (|Ru |, || l|ry1,2),
He (%,1), is complete.

Proof. (i) Consider the space (|Rgl, || [||ry(1), H € (3,1). Evidently, if some
space is dense in an incomplete space, then it is also incomplete. From Lemma
1.6.9, it follows that |Ry| C LI (R), and from Theorem 1.6.5, we have that
LI (R) is incomplete. So, it is enough to establish that |Ry| is dense in L (R).
If the function f € LI (R), then g := MY f € Ly(R). Therefore, there exists a
sequence of step functions {g,,n > 1} C Lo(R) such that ||g, — g||r,®) — 0.
Evidently, any step function g, can be expressed as g, = M ,,, where o,
is a linear combination of functions Mi_Hl(a’b), —00 < a < b< oo, and ¢,
can be determined via Lemma 1.1.3. Note that

If = enllpzm = IMZf— MP |l p,@) — 0,

n — 00, so it is enough to prove that ¢, € |Ryl|. As will be established
in Corollary 1.9.3, there exists some constant C' such that ||, |[|r,2 <

Clignllz , ), and as mentioned in the proof of Lemma 1.6.2, we have that
H

M1, € Ly (R) for all —oo < a < b < oco. Therefore, (|Rul, || - [[|r,.1)

is dense in L& (R), and hence incomplete.
(ii) Consider the space Fp, H # 3. Let 0 < H < 3, and let {f,,,n > 1}
be the sequence of functions

— _ 1
ful2) = |2[Pla oy (@), 5 <p<1-H

Evidently, 3"; € Ly(R) and ;‘;(az) = };(f:c) Therefore, ;"; is the Fourier
transform of some f, € La(R). Moreover, f, € Fg and since —1 < —2p — 2q,
we have for n > m that

Vo= fulZ, = / () — Fn())? |22 d
= /R || 272 1 /nea<i/mydr — 0.

Suppose that there exist f, € Fy such that [|f — fu| 7, — 0,n — oo.

Then, there exists a subsequence ﬁ;(w) such that ﬁ\k(x) — A(x) for a.a.
z € R, whence f(z) = |z| " 1{jz)<1}- Since —2p < —1 we have that fé¢
EE(R), therefore f ¢ Lo(R). For H € (1/2,1), we can take the sequence
falz) = |$|7p 1{1<\x|<n}7 with p >1—H.

(iii) Lastly, consider the space (|Rul, ||l 2): H € (1/2,1). Let {fn,n >
1} C (IRl [l ry),2) Pe a Cauchy sequence. Then there exists a subsequence

fri(x) = f(x) for a.a. x € R, where f is some function. Indeed,

a— 2
0 [lfn = Filligy 2= @**  ifn = fnllLyrpy  as mym — o0
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whence the above statement easily follows. Moreover, by the Fatou lemma,
we have that

Hf”\RHLQ < h7m ankH|RH\72 <0
n—oo

and
||f_an|RH|,2§kh7m ||fn_fnk||\RH|,2_)07n—>oo' 0
— 00

1.8 Representation of fBm via the Wiener Process
on a Finite Interval

Sometimes it is convenient to consider a “one-sided” fBm BH = {B} t > 0}
and to represent it as a functional of the form Bff = ¢(Bs,0 < s < t), of some
Wiener process B = {B;,t > 0}, instead of (1.3.4). For this purpose consider
the kernels

li(t,s) = CF) s~ (t — 8) " “L{ocsery,

and .
t\a
mp(t,s) = C}?) <(;) (t—s)*— as_o‘/ u®(u — s)o‘du),
where
) r(2-2a) LI 2HI(1—a) \?
C(I-[ = 9 CH = 9
2HF(1 —a)3I'(1+a) 'l —20)I"(a+1)
an d oa=H-— , H € (0,1). Throughout the book we shall use the notations
=(1 a)1/2, a=(1-a)"2
( ) L (%, 1). Then, by using the equality

1
/ R —t) e — )Pt = B(p, 1 — p), (1.8.1)
0

that was established in (NVV99, Lemma 2.2) for any p € (0,1),z € (0,1), we
obtain that for any t > 0

10 (& ) R .2

2 t t
= (C}?)) 2Ha/ / (t—u)"(t —8) " “u"%s u — s|**Lduds
o Jo

_ 4l-2a (0(5))2 2Hoz/1 w1 —u) " (/1(1 —8) 7% Yu— s|2°‘_1d3) du
— W ; :
0(5)

2
=l p ) 2HaB(a,1 — a)B(l —a,1 — a)

_ t172a[‘(2 —20)(a)I'(1 - a)?® — -2
I'l—a)3l'(a)(2 - 2a)

< 00.

(1.8.2)
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Therefore, we can consider the integral

H _ [ s)dB .= s)dBy!
1] (zH)f/O lu(t,s)dB," : /ng(t, JdB, (1.8.3)

- /R(ME’ZH)(t, Nz)dW,,

where W = {W,, z € R} is the underlying Wiener process. Similarly to (1.8.2),
for any 0 < t < t/, we obtain that

EI () () = (e (t, ), Ll () ry 2

t t’
= (C’S))QQHO[/ (t—u)"u™® (/ (t'—8) % *u— s|2°‘1ds> du
0 0
= (CPN22Hat'2*B(a,1 - a)B(1 — o, 1 — ) = 1722,
(1.8.4)
From (1.8.3), it follows that {ItH, t> 0} is a centered Gaussian process. More-
over, from (1.8.4), we obtain for any 0 < s <t < s < ¢ that

E (I (ln) — L7 (L)) (I () — 17 (1rr)) = 0.

Thus, the increments of I” (Iz) are uncorrelated, and hence independent. It
follows that I}1(lz) is a martingale w.r.t. its natural filtration

Fl=o {1 (ly),0<s<t},

having angle bracket (I (1)) = t'~2% and I (1) = 0. By the Lévy theorem,
there exists some Wiener process B = {By,t > 0}, such that

t
ME =1H (1) = a/ s~ *dB. (1.8.5)
0

The process M is called the Molchan martingale, or the fundamental mar-
tingale, since it was considered originally in the papers (Mol69; MG69). See
also (NVV99).

(ii) Now, let H € (0, 3). In this case we need some preliminaries.

1) Let f € BV[0,T], where BV[0,T] is the class of functions of bounded
variation on [0, 7], and f = 0 outside [0, T].
Let us calculate M¥ f. For « = H — 3 it holds that

Oa x>T
(M7 f) () = CF [T (u—a)*df (u) — (T —2)*f(T—), 0<a<T
C}f)a fOT fw)(u— ) tdu, x < 0.

Let IZ := [ f(s)dBH. Then
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Bl = (o) <a2 | 0 w)(u— )" du
T| T 2
[N wmardr - @ =T ds

0(2 < / / flu (/ (u—2)* (s — m)o‘_ldx) duds
e[ ([ ot - o) s

e [ [ wew o] ao)- f(T—)>

28
dx

(1.8.6)

Evidently, the function f and its variation var f are bounded on [0, 7]
there exists C' > 0 such that |f(u)| < C and v, := varp, f<C,0<u <T.

Therefore, on the one hand, it holds that

/ / u)| | f(s) (/Ooo(u —z) (s — x)“ldx) du ds

< 02/ / (/ —2)* (s x)“ldx> du ds (1.8.7)
= (%02 /_Oo (T = 2)* = (—2)*)? dz < co.
On the other hand, we obtain that
/T /T (/SAu(u —2)(s — x)"‘da:) dipudip.
/ / (/ w—2)%(s — x)%lw) dipudis
(1.8.8)

// (/ (u—2x) (s—m)ad:C)dwudz/Js
(a1 ( / [ et + / [ s, dm)

T2a+1
<
T 2041
Clearly, the last integral in (1.8.6) is finite. It follows from (1.8.7) and

(1.8.8) that the integrals in (1.8.6) are well defined, E |1 f)|2 < oo and the
limits of integration in (1.8.6) are changed correctly. Moreover, the integral

| /\

C? < .




1.8 Representation of fBm via the Wiener Process on a Finite Interval 29

fOT f(s)dBH exists for any f € BV[0,T]. Now, let {f,,n > 1} be the sequence
of functions satisfying the assumptions

(a) fn € BVI[0,7T] and there exists C' > 0 such that sup,, varyp 1) frn < C;
(b) fn — 0 pointwise on [0, 7.

Then, we can repeat estimates (1.8.6)—(1.8.8) with f,, instead of f and
obtain from the Helly theorem and the Lebesgue dominated convergence the-
orem that E|TH(f,)|> — 0,n — oo. Finally, let f € BV[0,7] N C[0,T] and
fvn(t) =30 f (]%T) 1{M<t<ﬂ}. Then the functions f,, := f — f, satisfy

the assumptions (a) and (b), whence

- kT
IH(F) = 1 “— )AB” in Ly 1.8.9
2(1) n;ngo;f(n) T La(®), (189)
where
ABH =BH. —BHE_, ..
But

n

n T
i (’“T) o B = (DB - Y Bur o fo— £0)BY - [ Bar)
k=1 " =1 0
(1.8.10)

We obtain from (1.8.9) and (1.8.10) that IX(f) = f(T)BH — fOT BHdf(t) for
any f € BV[0,T]NC[0,T].

2) Evidently, for any fixed ¢ > 0 the kernel Iy (t,-) € BV[0,t] N C[0,¢], if
H € (0,%). Therefore,

t t t
() = /O Lu(t, s)dBH — /0 BHdly(t,s) = /0 BH (L) (4, 5)ds
t
= —aCS) / B g7t — s)7271(t — 25)ds,
0

and this integral is obviously a Gaussian random variable. By using the fact
that [ vanishes at the endpoints, we can easily show that
EIF(Ilg)IH(ly) =t'72 forany 0 < t < ¢ :
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Er(1y) Jg?(zH)
/ / (W2 25— i — /22 (L), (1 ) (L) (' ) ds
*ff/ / \ufs|2H lH) (t, s)(lH) (t ,u)duds

=3 [t ([ 6= i) s

1 t # 2 e
- 5/ (L4 (t, 5) (/ (u—s)*H (lm), (¢ v“)d“> ds (1.8.11)

H/OtlH(t s );(t',u)du> ds

([
+H/tlH(t s) (/t/ u—s)(l );(t’,u)du> ds

= —aHC'( / I (t,s)
X / lu — s|?® sign(u — s)u™ "1t —u) "Nt — 2u)duds.
0
From (NVV99, Proposition 2.1), we can obtain that
t/
/ lu — s> sign(u — s)u™ "t —u) "Nt — 2u)du
0

=-2/a-I'l —a)I'(1+ ).

Therefore, EI (1) I (1) = t172*. We can conclude, similarly to part (i),
that I/ (Ig) is a martingale w.r.t. its natural filtration, and

t
IH(ly) = &/ s~ “dB, (1.8.12)
0

for some Wiener process B. Thus, we have proved the following result.

Theorem 1.8.1. Let BY be an fBm with H € (0,1), and let
¢
ME = T1H (1) = / I (t,s)dBH. (1.8.13)
0

Then there exists a Wiener process B such that (1.8.12) holds. Moreover,
o{BH 0<s<t} =0{Bs,0<s<t}.

The inverse relation can be obtained for any H € (0,1) in the following
way: evidently, for any ¢ > 0 the random variable Y; := fg s~dBE is well



1.8 Representation of fBm via the Wiener Process on a Finite Interval 31

~

Furthermore, f(s) := s~ € BV|0,t] N C[0,¢] for any ¢ > 0 and H € (0, 5)
Therefore, it holds that

defined. It can be proved similarly (but more easily) as the existence of I/ (1)
1
2

t
Y =t"*Bf +a | BFs™*lds. (1.8.14)
0

Now, let H € (3,1), f € BV[0,t]NC[0,1] and

t
()= [ st
0

Then

t ot
E |It(f)\2 = 2Ha/ / fw)f(s)|u — s)** tduds < oo,

0 Jo

and it is easy to see, similarly to (1.8.10) that

1(f) = BEf(t) - /0 B df(s).

o~

Let ﬁ(s) = f(8)1fccs<oc} for some e > 0. Then

t t
/fg(s)dBf:/ s~ *dBH
0 5

t
=BHt™ - BHem a/ BHs"1gs.
0

Note that the trajectories of B belong to C*~°[0,T] for any 0 < p < H,
(see Section 1.16). Therefore B~ — 0,6 — 0 a.s. By similar reasoning,
f; BHs=2ds — fot BHs=2ds,e — 0 as.

Evidently, E | [ f(s)dBf’{2 — 0,e — 0, and we obtain (1.8.14) for H €
(3,1). But (1.8.14) is an integral equation with respect to {BH,0 < s <t}
and its solution has the form

t t
Bl =t*Y, —a/ sa_ledSZ/ s*dYs. (1.8.15)
0 0

Let MH := I/ (1) be the Molchan martingale. Then, for H € (0,%)7
integration by parts leads to the equality

t t
M = c§,5>/ (t—s) s “dBH = faC’S)/ (t —s)"*"Y,ds,
0 0

whence
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t t t
/ (t —u)*MHPdu = —aCS’) / YS(/ (t—uw)*(u— s)_l_“du)ds
0 0 s

t
= —aC}f)B (a+1, —a)/ Y,ds,
0

and .
Y, = c}?a/ (t — w)*dMH (1.8.16)
0

Therefore,
t
B =ac (1o / (t — w)*dMH
0

—a/ot sa—l(/os(s—u)ade)ds) z/oth(Ls)st. (1.8.17)

Let H € (3,1). Then, by using Theorem 1.8.1, we obtain that
t t
/ (t —u)*dMH = a/ (t —u)* M du
0 0

t u
= C’g’)a/ (t —u)! / (u—8)" s *dBH du
0 0

t t
= C’S)a/ (/ (t—u)* t(u— s)_o‘du) s~*dBH
0 s

=CYaB(a,1-a)Y, = (CY)'ay,
i.e. we have (1.8.16) and obtain (1.8.17). In this case the kernel my (¢, s) can
be simplified to my(t,s) = aC}f)s*a fst u®(u — 8)* du.
Remark 1.8.2. Tt easily follows from (1.8.17) and (1.8.18) that the process B

satisfying (1.8.17) is an fBm. Indeed, it is a Gaussian process with zero mean
and covariance

(1.8.18)

(t2H ys2H | S|2H).

N[ =

tAs
EBHBH :/ mp (t, u)ymg (s, u)du =
0

Now we state a result of Le Breton (LeB98), see also (KLeBR00), demon-

strating how the Wiener integral fg f(s)dBE can be presented as an integral
with respect to fundamental martingale M :

Theorem 1.8.3. Let f € LY (R) vanish outside [0,T], where H € (3,1).
Furthermore, let

¢
K{I(t,s) = Cg) / fw)u™(u — s)* du,



1.8 Representation of fBm via the Wiener Process on a Finite Interval 33

1/2
(M _ H
where Cpy’ = ((14@%3%) :
Then,

¢ t
/ f(s)dBI = / K (t,s)dM?. (1.8.19)
0 0
Proof. Note that
t ¢
| tshopraan™y. = €20 - 20) [kt 0)Ps s
0 0
t ot
— (CD)2(1 = 20) / / Fu) f(0)uv® (1.8.20)
0o Jo
uNv
X / (u—8)*" v — ) 1s72ds du dv.
0
Further, Lemma 2.2 from (NVV99) states that
1
/ 11—t N e—t) P Vdt = ¢ (¢ — 1) B(p, v)
0
for p,v >0, ¢ > 1. Hence for u < v, p =1 — 2a, v = o we have that
/ (u—s)*"t(v—s)*"1s72%s
0
o E —a E B 2a—1 B
Y (u) (u 1) B<1 2a,a>
= B(l - 2a, a) (uv) (v — u)?* 7L,
Moreover, for v < u it holds that
/ (v—35)*"Yu—s5)*"1s72%s = B(l - 2a, a) (uv) ™ *(u — v)?* L.
0

By substituting these equalities into (1.8.20), we obtain for the integral on
the right-hand side that

(C’g))Q(l - 204)3(1 - 2a, a) /Ot /Ot ) f(v)u—v)** tdudv
= 2Ha/0t /Otf(u)f(’u)|u —v|** Ydudv = E|Ty(f)|)? < oo.

Moreover, the system (I (f), M2, 0 < s < T) is Gaussian and M¥ is
Gaussian martingale. Therefore it follows from Theorem 7.16 (LS01) that

1) = [ (g EOL))arl ¢ e 0.7)
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For u < t, we have that
H
E(M, 1(f))

5)2Ha/ / fv (u—8)""Liscuy|v —s[**dvds
(1.8.21)

= CL)2H04/ f(v)/ s7%u—8) v — s]**ds
0 0
X (1{v<u} + 1{v2u})dv'

The first integral on the right-hand side of (1.8.21) equals, according to
(1.8.1), 20(5)HaB (a 1- a) o f(v)dv. Moreover, according to the equal-
ity (NVV99)):

1
/ 1A =) (e —t) TRVt
0
1
=(p+v— 1)B(u,1/)cf”+1/ sHTV=2 (e —8)7Hds, ¢> 1, u>0, v >0,
0

the second integral equals, for y=1—-a and v =1 — a, to

CS)2Ha(1 - a)B(l —a,1- a) /t flop® /Ou A2 ()0 g o,
u
Therefore, the derivative in u of the right-hand side of (1.8.21) equals
C(H)B(a 1- a)f(u) —C(H)(1- 2a)B(1 —a,1— a)f(u)B(l - 2a, a)
C(H)(l—a)B(l—a l—a 72‘1/ F)v*(v —u)* dv,
where C'(H) = QHQCS). It is easy to check that

(1 —Qa)B(l a1 —a)B(l — %, a> :B(a, 1 —a).

Therefore,
dE(MET
M = C(H)B(l —a,1-— a) (1 = 2a)u=2"
/ flv (v —u)* tdv
— 0(7) w2 / flv _ )a_ld’l}.
Hence %}w = K,’; (t,u), and the theorem is proved. O
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1.9 The Inequalities for the Moments of the Wiener
Integrals with Respect to fBm

These inequalities were originated with paper (MMVO01). Indeed, the Hardy—
Littlewood theorem has an immediate consequence, namely, the estimates for
the moments of the Wiener integrals with respect to fBm.

Theorem 1.9.1. (i) Let H € (0,3). Then L¥(R) C L1 (R) and there ex-
ists a constant Cyr > 0 such that for any f € LE (R), it holds that

||fHL%(R) < Cullfllpsw- (1.9.1)

(i) Let H € (3,1). Then L.(R)C LY (R) and there exists a constant
Cy > 0 such that for any f € L%(R) it holds that

1fllos ) < CHHf”L%(Ry (1.9.2)

Proof. (i) Let f € LH(R). This means that M7 f = CP'D=f € Ly(R).
Evidently, f = IZ*DZ”%f and from the Hardy-Littlewood theorem (Theo-
rem 1.1.1 with ¢ = %, p =2 and o = § — H), it follows that

Hf”L%(R) = HI:O‘D:O‘JCHL%(R) < Co 1 olIDZ fllo@) = Cull fllLy )

(ii) We directly apply the Hardy—Littlewood theorem with
p=+4,a=H—-Landg=2

11y = IME fllpy ey < Cullfllz y @®-

O

Corollary 1.9.2. Let f € LY¥(R). Then there exists I(f) = [ f(s)dBY and
E|I(f)]? = Hf||i£,(R). Therefore, we have for H € (0,3) that E|I(f)]* >
C]}2Hf||2Li(R) and, for H € (%,1), it holds that E|I(f)|* < C%I”f”%L(R)'
Since I(ff is a Gaussian random variable, we obtain the following inequa?ities
for the moments of the Wiener integrals with respect to fBm: for any r > 0,
there exists a constant C(H,r), such that for H € (3,1)

E|I(f)]" < C(Hﬂ‘)HfHZ%(R)
and such that for H € (0, %), we have that

Az, @) = CCH, BT
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Corollary 1.9.3. Let H € (3,1) and f € L%(R). Then it follows from
Theorem 1.9.1, (ii), (1.6.7) and (1.6.14), that

1 lirat2 < Clifllz, @-

Corollary 1.9.4. Let f € L1 [a,b] and f =0 outside (a,b). Then we obtain

the following estimates: for any r > 0, there exists a constant C(H,r), such
that for H € (,1), it holds that

b T
E| [ f6)dBY| < CU DI, s

and

T

b
E

/  f(syaB | ot

S CH AL, fwullglz | e

Furthermore, for H € (0, %) the opposite inequality holds:

T

b
115, sy < CUHNE| [ f(s)aB!

Remark 1.9.5. Let H € (%,1) and f € |Ry|. Then, from Hdélder inequality,
we obtain the estimate

Bt = [ ([ 170l = ) ds
< < / If(S)Iflde)H ( [ s ( / |f<u>|su|2“du)llf’>lH

Further, from the Hardy-Littlewood theorem with o« = 2H — 1,q = ﬁ

and p = %, we obtain that

4 \1-H
< [ as ( / If(u)ls—UIzo‘ldU> ) < Cullfls, w.
R R H

Therefore,

11l Ru2 < OHHfHL%(R)-

Remark 1.9.6. Next, we show that the lower inequality in the case
H € (4,1) fails. Indeed, let f(u) = signu - [u|"Psinu with 1 < p < H. Then
according to the proof of Lemma 1.6.9, it holds that f € L (R). Nevertheless,
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oo oo S. %
/ |f(u)|%du:/ %du:oo7 since L < 1.
0 0 |u|ﬁ H

Therefore, the inclusion L. (R) C LY¥(R) is proper. Moreover, consider
the function f.(u) =u*~H 0<u <1, 0<e < H. Then

H\*" 11— H+¢)I(2a) C
P 2 — ~ —
15 = (£) 0 Ml = 2P 2 S e,
1
where Cy = B(1 — H,2a). Since —— = £>* and we can let € tend to 0, it
e

follows that the inequality
£l e ) = CH“fHL%(R)

is impossible for H € (3,1).
Remark 1.9.7. Tt is very easy to check that the function f(u) = v~ ¢ |Ry|
for any H € (3,1). Indeed,

T T 11
/ / u Hs ™ |y — s[> Lduds = / / u Hs™ |y — s> duds,
o Jo 0o Jo

for any T > 0, and this is possible only in the case when these integrals are
infinite.

Now, let H € (0, ). As mentioned in (SKM93), the domain of the operator
D~® does not coincide with any space L.(R),1 < r < 4o00. Therefore, the
inclusion L (R) C LI (R) is strict. Moreover, let f(u) = u*~# with ¢ > «
(note that £ can be negative). By direct computations, we get

1l L, @ = (26 —2a)72

and
11211, @) = Keun(2e — 20)77,
H
where I ) )
e
Kig=——_(2H)" =H——.
= F(572a+%)( )" @ 2
Therefore,
I£1
ﬂijﬂ(m T 400, € ().
=1,

Set g=1I1"°f, f=D%g, then | f,,r) = ll9]l Lz ) and

191l L
LT ®) T 4+o00, €] o

HQHLL (R)
H
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So, we cannot obtain the inverse inequality to (1.9.1).

Consider now the upper bound for the moments of I(f) with H € (0, 3).

As always, o = H — %

2
Let W3(R) be the standard Sobolev space

WEiR) ={f:R>R| | fllrow®) + IIf |l 2.®) < o0}

Theorem 1.9.8. Let f € CY(R)WE(R) and |f(z)| + |f'(z)] < Colx|*~17¢
for some € > 0, as |x| — oo. Then f € LE(R), and there exists a constant
C(H) depending only on H, such that

1fll Lz @ < CUHEDIfIwzm
Proof. Now, we have that

171y = / et popa)” = o ( [ nope)’

1y 1/2
i ( /| D" po)la)

2

_ CI(LI?)(/R CZU/_OO o — ) (—u)*du dx)1/2
= Cg)( /OO (x4 w)u“du i dx>1/2
r |Jo

/ oy w)” )

2 d:c) 1/2> .

<v2c? ((/R

"(u)(u — z)%du

Further, it holds that

x+1 2 1/2
( f () (u—x)%du dx)
o (1.9.4)
e ([ [ 1500 duan) = 2,
and
9] 2 1/2
( f(w)(u—x)*du dx)
R [Jz+1
o'} 2 1/2
= (/ flz+1)—a fu)(u—z)* tdu dx) (1.9.5)
R z+1

2 1/2
< VIS Ly + Vol ar) .

u)(u—2)* tdu
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From the generalized Minkowsky inequality, we obtain that

2

[eS) 2 1/2 1/2
w)(u — ) du dgc = Y tdu| dr
(LI f=a
a+1
< / w ([ 176 2dx) —1/a||f||%2<R>
(1.9.6)
The claim follows now immediately from (1.9.3)—(1.9.6). O

Now we turn to the case when f = 0 outside some interval [0, 7. In this
case the conditions on f can be much less restrictive. Indeed, then

0, z>T,
(I°f) (0) = { ~Frpa J. JO —2)dt, @ € (0,7), (1.9.7)
—FETD jo (t)(t —2)*"tdt, x < 0.
Consider some partial cases. Let f € IZ%(L,[0,T]), for some p > 1, i.e. we
can present f as a fractional integral f(z) = ﬁ fg o) (t — z)~trodt,
¢ € L,[0,T]. Then, according to (SKM93), for any = € (0,T) it holds that

i | SO —ara = joT -2 o [ @) - 10) -2

(1.9.8)
The same equality holds for f € C?[0,T] for a + 8 > 0.
From (1.9.7) and (1.9.8) it follows immediately that for f € IZ%(L,[0,T)),
in particular, for f € C”[0,T] with a + 3 > 0 we have that

E‘/ I dBH’ a2(C)y? /

+(C§{2))2/0T‘f(x)(T—x) —l—a/x (f(t)—f(x))(t—x)"‘_ldtrda:. (1.9.9)

2

)T Lat| dz

Introduce now some classes of functions vanishing outside [0, T7:

L¥(0.7) = {f [0.7] R'/R | (MY f) (@) Pde < oo} ,
and

00,7 == {f:[O,T]H]R‘

T T 2
11D 10,19 ::/0 (/ |f(x)—f(t)|(t—x)a1dt> dm<oo}.
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Theorem 1.9.9. (i) The following inclusion holds: for any p > % it holds
that
EF0,T) := I=*(L,[0, T)) (| Du[0,T] C L [0,T].

Moreover, there exists a constant C(H,p), such that for any f € Ef [0,T]

we have that
o\ 1/2 -
( )" e (I n T + 1 lpm).
(1.9.10)

(i) CP[0,T) C LE[0,T) and there exists a constant C(H, 3) such that for any
feCho,T]

(e [ s

2
Proof. (i) Let f € EX[0,T]. Then E ‘ T fyaBt ‘ equals the right-hand side
of (1.9.9) and also f € L,[0,T]. We have the following estimate:

// )] [f(s |/ (t —z)(s — 2)* V)dx dsdt
<[ [ uonser [ - e taasa

2
1 1
Sa0-H) (/ o ‘“)

2(p—1)

! p—1 » 2 2H-2
< T35, 1.9.12
<si—mlmo1)  Mlioen (19.12)

Therefore, for f € Lp[0,T7] it holds that Zy < co. Then the Fubini theorem
implies that the first term on the right-hand side of (1.9.9) equals, up to a

constant
[ [ 056 [ a6 orarasa

and can be estimated by the right-hand side of (1.9.12). Moreover, the Holder
inequality implies that

1/2
)" e monn @+ T). o)

' 2 20 2 oH_2 (p—Q)pT?2
@) (T = )2do < | I, oz T2 . (1913)
0 2ap+p—2) »

From (1.9.12) and (1.9.13) we obtain (1.9.10) with
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otp) = o (0~ my e 21) T
V25, m) ) V),

(ii) In this case,

2
1 T 1
Ir<sq—m g ) < e | fl 2o T2, (1914
f= 2(1 _ H) </0 f(t)t dt) - 2(1 fH)H2 ”fHCB[O,T] ) ( 9 )

' 2 2 2 2 2H
| 1@ @ = 0de < S 1 T, (1.9.15)

and

T T o1 2 T2H+2,3 o
/ <L|ﬂmmex> ﬁ)dzs%a+m%H+ﬁﬂﬂbmﬂ-

Thus, we obtain (1.9.11) with

CH:(H%i4%+dz)v<ma+m;H+ﬁJ'

1.10 Maximal Inequalities for the Moments of Wiener
Integrals with Respect to fBm

For any fixed T' > 0, denote ¢} = supg<;<r |C|, where (; is any function
on [0,7). If BY = {BF t >0} is a fractional Brownian motion, then from
its self-similar properties we obtain that E((BH)5)? = C(H,p)T*H, where
6’(H7 p) = E((BH)%)P. (It is an interesting and open problem how to compute
this maximal moment.) Now, let f € L& (R). We try to find possible bounds
for the process I, = Li(f) := fg f(s)dBH both on random and nonrandom
intervals. Denote || 5|, := (E(I%)P)Y/P.

(i) Upper bound on nonrandom interval, H € (%, 1). Note that the process
I(f) is Gaussian, therefore it admits entropy maximal estimates. In this con-
text, suppose that f € |Ry| and consider on [0,7] the semi-metric p; gener-
ated by the process I, i.e.

t 2
pi(s,t) =B(T ~ L) =E| [ f(wdbl!
For any € > 0 denote by N ([0, T],¢) the metric e-capacity of ([0, T], p), or
the minimal number of points in the e-net of the interval [0, 7] in the semi-
metric py, i.e. the minimal number of centers of closed e-balls covering [0, 7.
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Also, let H([0,T7],¢) := log N'([0,T],¢) be the metric e- entropy of this interval
in the semi-metric p;, and let D(T,e) = [; H zdu be the Dudley
integral.

Lemma 1.10.1. Let p(s,t) be some semi-metric on [0,T] and let p(z), © > 0,
be a continuous increasing function, such that p(0) = 0. Also, let g be a
function with g(v) >0, g € L1[0,T], such that for any 0 < s <t < T, it holds
that o(p(s,t)) < f:g(v)dv. Then

Jy 9(w)dv
N([0,T),u) <1+ (2u)

Proof. Consider 0 = sp < 51 < ... < sy < T, where |sg11—sk| =2u,0 < k <
M —1,|T — Sy < 2u. Such a partition exists, because our condition ensures
the continuity of p(s,t). Evidently, p(2u) < fsk“ v)dv, 0 <k < M —1, and
N([0,T),u) < M + 1. So,

Mep(2u) < Aﬁj / g(v)dv = / " glu)du < / o

ie. M < fOTg(v)dv (p(2u))~t 0
Lemma 1.10.2. The Dudley integral admits the estimate
€ L~ T . 1
D(T,e) < / [log(l +u*ﬁCH/ |f(v)|Hdv)} du,
0 0
where éH 1s some constant.

Proof. According to (1.9.2) and Corollary 1.9.2, it holds that

2

wdB,| < CH I, (on-

If we choose p(u) = u# and g(v) = |f(v)|#, then p(p;(s,t)) < f; g(v)dv. We
obtain from Lemma 1.10.1, that for any « > 0 the metric U- entropy of the in-

terval [0,7] does not exceed log (1 +u w(C(H,2))zm -2~ fo |f(v Hdv).
From here the claim follows with Cyy = 2~ # (C(H, 2))z#7 . O

Theorem 1.10.3. For any p > 0, there exists a constant Cp,(H) such that

Izl < Co(E)fllzy fo.7)-
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Proof. Denote

o?:= sup EI%

0<t<T

Then according to (Lif95, Theorem 1, p. 141) and its corollary, for any
r > 4v/2D(T, Z), we have the mequahty

P{IF>r} <2 (1 — ¢ (W)) : (1.10.1)

—y2 .
where @(z) = \/% [* e dy. Since

E(I7)" < p/ooo 2?71 = F(x))dz,

where F(z) = P{I} <}, we obtain from (1.10.1) that for D = D(T, §) it
holds that

4\[D
E(I;) < p / Y1~ F(x))da

+p/:§D P71 = F(z))dz < (4V2D)P

+2p/ooo(x+4\@D)P 1( Qﬁ(x))dx (1.10.2)
< (4\/§D)P+p2p/:owp_1( 2(;))d
+ p2P(4v/2D)P! /OOC( ( )) dr

< (4V2D)P + p2PaPCy(p) + 2Pp(4V2D)P 1o Cy (1),

where Cy(p) = [ 2?~! (1 — &(z)) dz. Now we estimate D = D(T, $). From
Lemma 1.10.2 and Corollary 1.9.4,

DS/OE [log <1+u_1}15H/OT|f(v)|;1dv>1 du

~ o0 dz
< H(CHH 3 GxpEde 1.10.3
(Cu) /logf(expz_l)mp (1.10.3)

where Cy = Cy fOT |f(v)|# dv. Therefore, D < Cy| fllL, 0,7], Where
~ o] 1 exp zdz . ﬁ 1
Cu = (Cu)"H [i 2% 2225 Bvidently, o < (C(H,2)) [If]l1, oy
H
By substituting these two estimates into (1.10.2), we obtain the proof. O



44 1 Wiener Integration with Respect to Fractional Brownian Motion

(ii) Lower bound on nonrandom interval, H € (3,1). According to Remark
1.9.6, the reverse inequality of (1.9.2) fails. Therefore, we obtain the lower

bound under stronger assumptions. We suppose here that f = f(s) > 0 on

[0,T]. Denote g(t) = ﬁ, g7 = esssupg< <7 g(s) and assume that g7. < oo.

Theorem 1.10.4. For any p > 0, we have an estimate
177l = e (H)TH (g7) "

Proof. According to the lower bound obtained by Sudakov (Lif95, Theorem
5, p. 152), for any € > 0 it holds that

E(I7)" = (BI)" > C,H([0,T],¢)%¢”,

where H([0,T],e) =log N([0,T],¢). Evidently, N([0,T],&) > 1\/T(29;5)7%.
Therefore,
H([0,T],2) = log (1v T(2g7e) ¥ ) .

Indeed, take an arbitrary partition 7 = {0 = s < s1 < -+ < s, = T’} such
1

[or, f(s)dB{

1

that (E

2\ 2
> < 2¢. Then

Sk 2 2 0\ —
E fskk_l f(S)dBf‘ = ||M£—I(1(Sk7178k)f)”L2(]R) Z (gT) 2E‘Bsk - B8k71|2
2H

= (95) 2 (sx — sx-1)*",

s0, (g5) "7 (s, — sp_1) < (2¢) 7. Hence N([0,T],¢) > 1V T(2g5e)~/H.
1
For the function p(e) = (log (1v T(QQ}E)Y%) * g, with £ > 0, it holds
that

1 1
m = e 2TH(2¢g:)71,
€<TH(%§%)71<P(5) ¢ (297)

whence the claim follows. O

(iii) Lower bound on nonrandom interval, H € (0, %). This case is very
simple, due to inequality (1.9.1). As an immediate consequence, we obtain
the following statement (see also Corollary 1.9.3). Let f : [0,7] — R be a
measurable function.

Theorem 1.10.5. For any p > 0, there exists a constant C(H,p) such that
1171y = C(H,p) I fllL , 0,17 -
H

(iv) Upper bound on nonrandom interval, H € (0,1).



1.10 Maximal Inequalities for Wiener Integrals w.r.t. fBm 45

Theorem 1.10.6. Let f : [0,T] — R, f € L,[0, T] N DI0,T] for some
p > 2, where D0, T] = {f :[0,T] - R | fo fz (z,t)dt)Pdr < oo} and
o(z,t) = M 1f0<o<t<T}- Then there exists a constant Cy(H,p), such

that
113l < CL(H.p)GA0, T, f), (1.10.4)

where

0.7, f) = <||f|Lp[o,T] ot ([ S0<9wf>dt)pd%)’la> |

Proof. According to (1.10.2), it holds that
E(I;)P < (4V2D)P + p2Pa?Cy (p) + p2P (4V2D)P~ 1o Cy (1), (1.10.5)

where 0% = supy<,;<r EIf, D = D(T fo ,u)2du and Oy (p) =
JoT aP~ (1 — &(x))dx. Further, from (1 9 10), we have that

o < C(H,p) ( 100z THHP + ( / ' ( / ' ol t)it) dr)” >

x

T T » 1/p
< C(H,p) (IfIILp[O,T] TH +T1/21/1’</ (/ go(x,t)dt) dx) ) .
0 T

(1.10.6)
From Lemma 1.10.1 it follows that

(pr(s. 1)) < 2271CP(H, p) ( [ Vrwped o

" /: (/: @(x,t)dt)pdx . Tp/21> _

So, we can put p(z) = aP,

glu) = 2 C7(1H.p) (If(u)lp it ([ o) Tp/2_1> 7

and obtain the estimate

[T g(v)dv
(

( P -p g p pH—1
N(0.7],0) < 1 28 4 C7(H. pu (/0 F(o)|Pdu - TPH

+ /OT </UT (v, t)dt)pdv : T”/Q_l) =1+ u(G,(0, T, f))".

Therefore,
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a

D< /05 (log(l + ufp(G}g(OvTa f))p))

Y2 qu = p1GL(0,T, f) - Cyp, (1.10.7)
where C}, = fg;? zl/QWdz. By substituting (1.10.6) and (1.10.7) into
(1.10.5), we obtain the proof. O

Remark 1.10.7. 1. Let f € CP[0,T] with 8 > —a. Then

11,007 < Fllomo.my T7

T T » 5 )
</0 (/ Sﬁ(l"vt)dt) dl’) < CHf“CB[O,T] Ta+ﬁ+5,

and

17, < Co(H,p) | fll oo,y (T +TH + ),

where I} := supg<g<¢ | 15|

2. Similarly to Theorem 1.10.6, we can suppose that f € L,[0,T] ﬂDf [0,T]
and obtain the estimate for |13, 7 > 0. Indeed, the estimate (1.10.5) holds
for any r > 0, and we obtain from (1.10.6) and (1.10.7) that

E(I7)" < (4V2C,p ™' GL(0, T, £))" + r2"(C(H,p)G)(0,T, f))"Ci(r)
+ 727 (Cpp ' GH(0, T, )"~ - Ci(1) - C(H,p)G}(0,T, f)
< (C(H,p,m))" (G0, T, )"

From here || I}, < C(H,p,r)GL(0,T, f), where C(H,p,r) < 420, - pt +
2C(H,p) - Lo -

r—1 .
L (L)Y e Oy (C1(1)C(H, p)) Y
Evidently, C(H, p,r) can be estimated as C(H,p,r) < C(H, p)(F(%l))l/T for
some constant C'(H,p) depending only on H and p.

We continue now with random intervals. Let F = {F;,t > 0} be the nat-
ural filtration generated by the fBm B and let 7 be any stopping time with
respect to this filtration, i.e., the event {7 < t} € F; for any ¢t > 0.

(v) Upper bound on random i?terval, H € (3,1). Let f be a measurable

positive function on R, o = H — 3.

Theorem 1.10.8. Let the function s*f(s) be nondecreasing on R. Then, for
any p > 0, there exists a constant C(H,p) such that for any stopping time T
we have that

1-H

1151, < CCH,p)(E((f(r)) 5= 77T)) vl (B(rPT)) 5

Remark 1.10.9. For a bounded positive function f with f(z) < f* < oo,
z € R, we obtain that

12|, < C(p, H) f*(E7PH)YP.

In particular, for f(s) = 1, we obtain the upper bound from (NV98, The-
orem 1.2).
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Proof. Denote Y; = fg s~*dBH. Then BF = fg s*dY, and I, = fot s%f(s)dYs.
Integration by parts gives the following upper bound for I}:

t
i = s (1] = su [ soyi- [ st(saf(S))‘ < 2f(1)ey.
0<s<t 0<s<t 0

Now we use the representation (1.8.16) for Y,
gt ot
Y, = C’H/ (t—s)*dMH = aC’H/ (t —s)> " MHds, (1.10.8)
0 0

whence Y;* < Cpt®(MH)*. Here Cy = C\Wa, a = (1 — a)~1/2,
From these two estimates, we obtain for any ¢ > 0 that
I <20t%2 f(t)(MH)*, and for the random stopping time 7 it holds that

Iy < 2Cu7* f(r)(MI)".
Therefore, for any p > 0
E(I;)P < (2Cu)PE(r**?(f(7)P (MI)")P). (1.10.9)
From the Hélder inequality it follows that

(2P (f(r))P(ME))?) < (B(r*er(f(r)yP)s (B(ME)")")}, - (1.10.10)

whereq:%>1andr:1_i
From the Burkholder—Davis—Gundy inequalities for martingales, it follows
that for any p > 0 there exist constants c,, C}, > 0, such that

P

e E(MT)E < B(M7)")? < C,E(M™T)?.
But (MH), =172« and

E((ME) )P < C, B0,

Therefore,
E((M?)yrr < C,.ETPH, (1.10.11)
and the proof follows from (1.10.8)—(1.10.11) with
~ 1 H
C(H,p) = 2Cy)PCh, r= 17

O

(vi) Lower bound on random interval, H € (%, 1). Let f be, as before, a pos-

itive measurable function, 7' > 0 be fixed, g(t) = ﬁ and g7 = supg<,<7 9(5)-

In order to proceed, we need the following auxiliary result from (NV98). De-
note & := t2%|MH|.
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Lemma 1.10.10. For any p > 0 there exists a constant ¢, > 0, such that for
any stopping time T, it holds that

E(&)P > ¢, ETPH. (1.10.12)

Proof. Let p = 2. From the Ito6 formula we obtain that &2 = fot(s%‘ +
das* Y (MHE)?)ds + 2 [} s** MFdME.
Therefore, for any bounded stopping time 7, it holds that

EE > E/ s2*ds = (2H) ' Er*. (1.10.13)
0

For arbitrary stopping time 7, we obtain by applying (1.10.13) to bounded
stopping time 7 A n, that
E€2,. > (2H) 'E(r An)?H,

TAT

and the Fatou lemma gives (1.10.12) with p = 2. Let p < 2. Inequality
(1.10.12) with p = 2 means that continuous and hence predictable process
(¢;)? dominates the (nonrandom) process ¢(t) = 2. Then, from the Lenglart
inequality, for p < 2, we obtain that

B(&) > ¢ Br"

with ¢, = GG (DMS2, VI, p. 113).
Finally, let p > 2. Set £ > 0, § > 0 and define a process with positive
values by
n =0+ kt*" + &

Then, from the It6 formula, for p > 2, we obtain that

P
2

t p
nE =68+ / (B0 (1 + 26H)s2 + das? =3 (ML)
0

1 p_ t
+5p(p = 2)né QSSO‘(Mf)z)ds+/ pnE st M am
0

Therefore, for any bounded stopping time 7

> gE/ 02 (1 + 2k H) s> ds
0

ok

En

v

gE/ kE1s2H(E-D 2005 . (1 + 2kH) (1.10.14)
0

ket

> PH
> g (L+ 2kH) BT

From the Fatou lemma, applied, for any stopping time 7, to 7 A n, we
obtain (1.10.14) for 7 A n and for § = 0.
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So,

k211 + 2kH)
= 2H

\%

E(kr?H 1 e2)% BErPH.

From the inequality
(k7 +2)8 <2571 (k3P + ),
we obtain that

o135 K511+ 2kH)

BeP > ( o —k%)ETPH.

This means that (1.10.12) holds with

cp = k= (217% Vi

for k <

1

. O
H(2% —2)
Now we are in a position to establish the lower bound on a random interval

for H € (3,1).

Theorem 1.10.11. Let, for any t € [0,T], the function
©(s) == s7*(t—s)"%g(s) be nondecreasing on [0,t]. Then, for any p > 0, there
exists a constant ¢(H,p) > 0, such that for any stopping time 7 < T it holds
that

1211y = e(H, p)(g7)~ (B2,

Remark 1.10.12. Either of the following conditions (a) and (b) is sufficient for

Theorem 1.10.11:

(a) g € C'0,T] and for any s € (0,T), it holds that ¢'(s) > g(s)(2 — 72=).

(b) The function g(s)s~“ is nondecreasing on [0, 7] (or the function f(s)s* is
nonincreasing on [0, T]; compare with the condition of Theorem 1.10.8).

Remark 1.10.13. The class of functions satisfying the condition of Theo-
rem 1.10.11 is nonempty. For example, f(s) = s Ve # with v > « and
B3 > 0 belongs to this class. (In this case assumption (b) is satisfied.)

Proof. Let 0 < a < b < 1. Then the martingale M can be represented as

bt t
lu(t,s)dBE + [ 1g(t,s)dBY
at bt

bt

=MF(a)+ | 1u(t,s)g(s)dl, + MF(1—b). (1.10.15)

at

at
MHE =/ Iy (t,s)dBI +
0

The middle term can be integrated by parts, and we obtain from the
condition of the theorem that
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bt
Lu(t, s)g(s)dIs

at

bt (1.10.16)

Ui (£, b) g (bE) Ty — Ly (¢, at)g (at) Loy — /

at

Led(lu (t, 8)9(5))|
<CQP Lt ((1-b) b + (1 - a)"a™).
Therefore, the process & = t2*| M| can be estimated as & < t2%|MH (a)+

MHE(1 - b)| + Cyl;gf, where Oy = 205’)(((1 —b0)7T)b 4+ (1 —a) %™ %).
Now we use Lemma 1.10.10 and obtain

CpETpH < E(gT)p
< 2771 Er2P MH (a) + ME(1 - b)|P + 2P 2OV E(IF)P(g)P. (1.10.17)

Further, from (1.10.8) we have that

M ()] < P10 - @)Y — [ Vit
0

< O 20001 = )™ < 203 Cor = (M)
Hence a
M (0| < Cpyp —2—— (MH)y* 1.10.18
| T(a)I_CH(l_a)a( I ( )

where Cy = ZCS)GH.

In order to estimate M (1 — b), note at first that for fixed ¢, the process
BHF .= BFE — BF 0 < s <t is a fractional Brownian motion with Hurst
index H. Therefore,

t

t(1—b) _
MP(1-b)=C / (t—s)"“s *dBH = C?) / uw(t —u)"*dBH
0

tb

and similarly as in the above estimates (1.10.15), we obtain that

v -o) <o (150) e (110.19)

where MH is the Molchan martingale for By But the symmetry of the kernel
Ii(t, s) leads to the equality Mf" = [} lg(t,s)dBH, = [} lu(t,s)dBE = M.
Hence,
1-b
M (1= b)] < Cu(— ) (ME)". (1.10.20)
From (1.10.7), (1.10.18), (1.10.20), (1.10.10) and (1.10.11) with f =1 we
obtain that
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LI BT - (97
a® (1-0)"
(1—-a)> + b

> Gy B — 2Oy Brre - (M) ( BT -,

By choosing a sufficiently small and b close to 1, we obtain that
E(L;)? 2 (g7) PET - Cp,

where

@ 1—p)™
Cp,H:ZI_pC};p |:Cp—2p_1CHCp ((lia)o‘ -l-( bb) )] > 0. O

(vii) Upper and lower bounds for power functions and H € (1,1).

The function f(s) = 1 does not satisfy the condition of Theorem 1.10.11.
To cover this case, we consider the power functions f(s) = s7, v > —2«, and
obtain a better result than in Theorems 1.10.11 and 1.10.6:

Theorem 1.10.14. Let f(s) = s¥ with v > —2a. Then, for any p > 0, there
exist constants ¢, g and Cp f, such that for any stopping time T it holds that

CnH(ETp(HJrV))l/p < |z, < C’p7H(ETp(H+7))1/p.
Proof. Consider the upper bound. Now inequality (1.10.4) has the form
E(L2)P < (203 ) B(ret VP M )P,

By applying Holder’s inequality with ¢ = % >1land r = % =

{{_i}}, and the Burkholder—Davis—Gundy inequalities, we obtain that
E(I}) < (205 )/(Br 5 P)a (B(M;))

< (ch))pcp’H(ET(H-k"f)p)%(ET(H+v)p)% _ Cp’HET(H*‘"Y)p.

Consider the lower bound. We use expansion (1.10.15) and estimate its
middle term similarly to the first part of (1.10.16) with g(s) = s~7:

bt
/ L (t, $)g(s)dI,

t

= [Ua (¢, 06)g(bt) It | + | (¢, at)g(at) Lt | +

/ zsd<PH<t,s>g<s>>‘

t

<CWprme@ —py o2+ O a1 —a) Ly 2

bt
+CPI; [ (e - sy

at
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The function ¢(s) := (t — s)"*s~*~7 has the following derivative on (at, bt) :
¢'(s) =577t = 5) 7T (v + 20)s — (v +a)t).

For v > —a, on the interval [0,¢], the function ¢(s) has an extremal point

Smax = pt, where p = ]Lz, and for —2a < v < —a, no extremal point exists.

Therefore, the variation of ¢(s) on the interval [at, bt] can be estimated as

bt
/ d((t — 5)"s~)]

t
SR 2T (=) T (1)),

From here,

bt
/ g (t,s)s~7dI,| < C(a,b, H,y)t 2 I},

t

where

Cla,b, H,y) =205 (6777 (1= b) " +a 7 (1 —a) ™ +]p| 77(1 - p)~9).
Therefore, for the process Et = 22T MH|, we have that

& < 2T M/ (a) + M (1= b)| + C(a,b, H,)I;,
whence for any stopping time 7 and p > 0, it holds that
B(&)" < (Cla,b, H, 7)) E(L) + E(r*+| M (a)+ME (1-) 7. (1.10.21)
Similarly to Lemma 1.10.10, we can establish the following bound for ET:
E(é)p > CpETP(HJr’Y).

Further, we apply (1.10.11), the bounds (1.10.15) and (1.10.17), and
Hoélder’s inequality with ¢ = % > 1 and r = % > 1, where

2+ 1 =1, and obtain the bounds of the pth moment of 7>**7M['(a) and
2 NH (1 - b):

a®?

B(r*** M (a))? < (Ch)” E((r)* (M) )

T

(1 —a)r (1.10.22)
< Cp(BEr®etrays (B(MH)* )Py < Oy ErPH+),

where 511 = (C’H)P(ﬁ)ap. Similarly,

E(7_204+~/M71_LI(1 _ b))p < aHETP(H+7)7 (11023)
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O = (Ca )P <1b_b>ap.

From (1.10.21)~(1.10.23)

E(IX)P > Cp’HETP(H+’Y)7

where i
a ap —b\ P P
(o (Cn) ((ﬂ) +(55) ) -
i (Cla,b, H,7))
for sufficiently small ¢ and 1 — . a

(viii) Lower bound on random interval, H € (0, ).
Here, we consider only power functions f(s) = s7, s > 0. According to

(1.8.6), the integral fot s7dBH exists, if

t ot 0
/ / u”’sW(/ (u—2)* (s — x)o‘_ldx)du ds < oo
0 JoO —00
t pt sAu
/ / s (/ (u—2x)%(s — m)o‘dx> duds < oo.
o Jo 0

If we choose v > —H, then both of these inequalities hold.

Theorem 1.10.15. Let H € (0,3) and f(s) = 7 with v € (—H, —a). Then,
for any p > 0, there exists a constant c¢(H,p) such that

and

11|l > e(H, p)(BrPH ),

Proof. We estimate the Molchan martingale from above:

¢ N ¢
(MH)* :c;?(/o s*aﬂ(t—s)*adfs) < c}f’r;/o (s~ (t — 5)~)].

The last integral exists when —a — v > —1 or 7 < 1 — a. As before, the
derivative of the function ¢(s) = s 7(t —s)~%, s € (0,t), equals

Pl(s) =570t = 5) 7 (v + 20)s — (v + )t).

So, for v € (—H, —a), the function ¢(s) has the unique extremal point
s=2t%¢ and fot |d(s™@7 7 (t — 8)7%)| < Cot™2277, where

v+2a
Cqy = - (ot _0‘_“’.
v+ 2a v+ 2a

Hence, for any stopping time 7 and any p > 0 it holds that
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(MI)*)P < (CF Co)P (I )Pr( -2 P,
Further, from the Burkholder—Davis—Gundy inequalities we obtain that
E(M})P > CzprPU—1),

Hence,
1
g

9

CoErP I < C(H ) (E(I)P)s - (Br (20
where C(H,p) = (C)C,)P.

Now, we choose r = 135H1117 >1,q= % > 1and p = W, and
obtain for _
Cs q
e(H,p) = (=)
(H,p)
that c(H, p) Er?H+7) < B(I*)P. O

1.11 The Conditions of Continuity of Wiener Integrals
with Respect to fBm

Consider the case H € (3,1). Let f € L1 1[0,¢], t € [0,T]. Then in particular,

the integral I (f fo s)dBH exists on [0, T] and E(I;(f))? = Hf”LH[O g <

Cullf2 0.4 Accordlng to (Lif95), a sufficient condition for the continuity
o

of separable modification of I;(f) on [0,T] is the finiteness of the Dudley

integral [ H([0,T],u)?du. But in our case, from (1.10.3) with ¢ instead of
2, it follows that

/ H([0,T], du</ (log(1+u_flféH/T|f(u)flldu)>édu
0
g/:u—z%du. (CN'H/Ot|f(u)f11du)é < 00

for H € (3,1).

This means that the separable modification of the Wiener integral w.r.t.
fBm with H € (3,1) is continuous if f € L1 [0,T].

Now, let H € (0,1/2). Then, according to (1.10.7) with ¢ instead of §,we
have that [ H([0, 7], u)"/?du is finite for any f € L,[0,T]NDH[0,T],p > 4.
So, for such f, a separable modification of I;(f) is continuous on [0, T7.
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1.12 The Estimates of Moments of the Solution of
Simple Stochastic Differential Equations Involving fBm

(i) Let H € (3,1) and Fy = o {BY,0 < s < t}.
Consider a stochastic differential equation of the form

dX; = b(t, X;)dt + f(t)aBF, t > 0. (1.12.1)

Here, X, is Fp-measurable random variable, E|Xy[P° < oo for some py > 1
and b(t,z) : Ry x R — R is a measurable Lipschitz function, i.e.

lalt, z) — alt,y)| < Clo —y| (112.2)
with some constant C'. Furthermore, b is of linear growth, meaning that
|b(t, )| < C(1+ |z|) (1.12.3)

and
feL,0,T). (1.12.4)

Theorem 1.12.1. Let b satisfy (1.12.2), (1.12.3) and f satisfy (1.12.4). Then
equation (1.12.1) has a unique solution.

Proof. We establish now that for any p < pg the map

t
(AX); :=Xo + / b(s, Xs)ds + I.(f)
0
is a contraction in the space

£(t,-) is Fi-measurable, sup E|&]P < OQ}’
te[0,Tp]

S, = {S(t,w)7 te0,T))

with the norm .
I€ls, = Sup (El&")7,

Ty

where T, is a number such that T, < C~1.
Indeed, from (1.12.2)—(1.12.4) it follows that

t
E|(AX)[P < 37 (E|X0|P + E|L(H)P + 2ptp—1c(1 + / E|Xs|pds)>.
0

This means that AX € 5, if X € S,. Further, for t <7,

PIAX): = (AV) P < B [ (45, X,) = b(s.Yo)as?

t p t
< CPE(/ X, — Ys|ds> < CPTg’—lE/ X, — Y,|Pds,
0 0
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e, [|[AX — AY||Sp <L||X- Y||Sp7 where L = CPT} < 1. Therefore, on the
interval [0, T)] equation (1.12.1) has unique solution. If we obtain this solution
X; by the method of successive approximations, and the initial process is some
continuous process X §0> € S,, then by the continuity of the process I(b) and
the equicontinuity of the integral fot b(s, -)ds, the solution X} is continuous on
[0,T,]. The proof of the theorem is obtained by extension of the solution from
[0, kT}] to [0, (k + 1)T}] via the relation

t

X = XkTp +/ b(S,XS)dS + (It — IkTp), (1125)
kT,

where k € N and Xyr, is the solution of the “previous” equation taken at the
point t = kT,,. Existence, uniqueness and continuity of the solution of (1.12.5)
is established similarly to previous estimates. O

Now we establish the upper bound for the solution of equation (1.12.1) on
a random interval.

Theorem 1.12.2. Let the functions b and f satisfy the conditions of Theorem
1.12.1, E|Xo|P < oo for any p > 0 and the function s f(s) be nondecreasing
on R. Then,

(a) for any T > 0, p > 0 and stopping time 7 € [0,T], we have the estimate

B(X2)P < 4P """ (B| Xo|P + CPETP

1-H

H)7

+ (C(H,p)P(B((f(r)) 5 7013 (Br#H)

where a constant C'(H,p) appeared in Theorem 1.10.8.
(b) If, in addition, the function f is bounded, i.e. |f(z)| < f* < oo, then

B(XF)P < 4Pt 7T (E\XOV’ +CPETP + (C(H, p))p(b*)pETpH).

Proof. Let 7 € [0,T] and 7, = 7 Ainf {¢t > 0: | X;| > n}. Then

(6 < (Xl +0m+ € [ Xeds 41, ()P

0
< (X + Crrp v [ (s (I, (D)),
0
Therefore, by Gronwall’s inequality, we obtain that
(X2,)P < 4PV (| X + CPE + (Lng (f))P).

Hence,

E(X )P < 4P TN (B Xo P + CPETE + E(IZ (1))

By applying Theorem 1.10.6, we obtain (a) and (b) for 7 = 7,,, n > 1. By
taking n — oo, we obtain the proof. O
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Remark 1.12.3. Exponential estimates for the solution of the more simple
version of equation (1.12.1), were obtained in (TV03). We shall return to this
problem in Section 3.5.

1.13 Stochastic Fubini Theorem for the Wiener Integrals
w.r.t fBm

We consider now only the case H € (1/2,1). Let Py = [0,T]%.

Theorem 1.13.1. Let the measurable function f = f(t,s) : Pr — R satisfy
the conditions

/[ , | f(tw) [ 1f(t8)]|s —ul** " dsdudt < 0o (1.13.1)
0,T

and

/ ()] 1 (b, 8)] |s — ul? ) ds du dty dts < oc. (1.13.2)
0.7}

Then both the repeated integrals Iy := fo fo f(t,s)dt)dB? and
I := fo fo f(t,s)dBH)dt exist and I, = I with probability 1.

Proof The existence of the integral I is evident, due to (1.13.2). As to Is,
fo f(t,s)dBH exists a.e. (mod \), where A is the Lebesgue measure, and
accordlng to (1.13.1), it holds that
. 2
/ f(t5)dB!
0

T| T T 172
E/ / f(t,s)dBH dthW(E/ dt)
0 0 0

1/2
< (T2aH |f(t,s)||f(t,u)|\s—u|2°‘_1dudsdt) < 0.
[0,7]3

We consider at first only the measurable and bounded functions. Let
[ = sup(y geo,rp2 |f(t,8)| < oo. Then there exists the sequence of simple
and totally bounded functions f,, = f.(t,s), such that f,, — f uniformly
on Pr. The statement of the theorem is evident for f,. Further, denote
gn(t,s) := f(t,s) — fn(t,s) and obtain the estimate

/OT (ATgn(t,s)dt)dBf + /OT (ATgn(t,s)dBf>dt

= Iln + 1271,-

[Ih — L] <

Furthermore,
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T T
Bl =201 [ ([ gttt ([ outto upata) s = et dsa
T

<20HT? sup |gn(t,s)|? / |s —ul|**'ds du
(t,S)E[O,TP Pr

=T2H+2 gqup |gn(t,s)|2 — 0,

(t,s)ePr

and

T T )
E|L,|* < T/ E‘ / gn(t,s)dBI| dt < sup |gn(t,s)?T?7T2 -0,
0 0 (t,s)EPT

as n — 0o, and we obtain the proof for bounded f. Now, let f satisfy (1.13.1)
and (1.13.2). For f,,(t,s) := f(t,s)1{|(t,s)|<n}>™ => 1 the theorem is already
proved. Define

C o= {(t,5,0) € [0, TP [ |f(t, )| = n, [f(t,w)| = 0}, fro=f — fu.

Then for any n > 1 we have that

T T
/ (/ f(t, S)I{If(t,s)|>n}dt> dBY
0 0

T T
/ (/ f(ta3)1{\f(t,s)|>n}dB§{)dt
0 0

Furthermore, we have that

|[Ih — L] <

+ = Iin + Ién'

Ti Ti
E|Ll,|? = 2aH - (/0 fn(tl,s)dt1>(/0 fn(tg,s)dt2)|s—u|2“_1dsdu

< 2aH |f,,(t1, 8)||f,,(t2, 8)||s — u|**tds dudty dty — 0,
(0,7

as n — 00, according to (1.13.2), and

Bl|I,|* < T20H [t )|t 0)lls — ul** ™ ds dudt — 0,
(0,773

as n — 00, according to (1.13.1). O

1.14 Martingale Transforms and Girsanov Theorem
for Long-memory Gaussian Processes

According to Section 1.8, the process
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t
MH = C}j”)/ st —s)"*dBH
0

is a square integrable martingale, and B, := a f(f s*dMH is a Wiener process.
In turn, B = ng) fot mp (t,s)dBs. Moreover, the process

t
= C}f)/ (t — s)*s “dB, (1.14.1)

0
has the property that MH = =Cyg (%) fo ~*dY; is square-integrable martin-

gale. All these processes are Gaussmn Therefore, in some sense, it is more con-
venient to consider the processes of a form similar to Y; and M;, and to avoid
fractional Brownian motion itself. In this section we conmder long memory
Gaussian processes that can be presented as integrals V; = fo $)dW
with some Wiener process W; and establish the conditions allowmg us to
transform these processes, similarly to Y;, into square-integrable martingales.

Let {Wt,ftw,t > 0} be the standard Wiener process on a complete
probability space (£2,F,P) with F = Fo = \/,5(F}". Define the con-
volution of two measurable integrable functions ¢ and ¢ : Ry — R by
(1% 2)( fo p1(t—s)pa(s)ds,t € Ry. Let h and ¢ satisfy the assumption

0 € Ly(0,t), (h**p?); <oo, t>0. (1.14.2)

Define the Gaussian process V; = fo (t — s)p(s)dW;. Evidently, EV; = 0.
In the case when h(s) = s* ¢(s) = s7¢ and H € (1/2,1), the covariance
function between distant increments of the process V; vanishes at a power
rate. More precisely,

EVi(Visr—Vi) = /0 (t—8)*((t+k—38)* — (k—s)*)s>%ds

t
> at/ (t —s)(t+ k — 5)* ts72%ds
0
> at* *B(a+1,a)k* !,
and the series Y ;- | k%! diverges for H € (1/2,1). Due to this reason, ac-
cording to the generally accepted terminology (CCMO03; Ber94; WTT99), such
processes are said to have a long memory. Compare this to the notion of long-

range dependence from Section 1.2.
Denote by R, = E'V,,V,, the correlation function. Then we have that

Ry = /Ou ’ h(u — s)h(v — 5)@>(s)ds.

Let FX = o{X,, 0 < s < t} and H¥ = H{X,, 0 < s < t} be, cor-
respondingly, o-fields and Gaussian subspaces, generated by the process X
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on the interval (0,t], X = W, V. It follows from (CCMO03, Proposition 15)
that 7Y = FV, ¢t € Ry if and only if H} = H}V. A necessary and sufficient
condition for this coincidence can be formulated as

the only function f such that V¢ € R

J € La(0,t) and ((f - ) * h); = 0 is the zero function. (1.14.3)

Evidently, in this case FY = F%. We give one sufficient condition for the
latter relation. Denote by

Fr(\) ;:/ e M f(s)ds, A >0
0
the Laplace transform of f. The following result is a direct consequence of
(CCMO03, Proposition 17).
Lemma 1.14.1. Let the following condition hold

0 < [Fr(V)] <00, Fly()) <oo, Fy())#0 (1.14.4)

on some interval A € (a,b) C (0,00). Then FY, = FV.

Now, let (1.14.3) hold. Denote by Lo(V) = Lo(W) = La(£2, Fso, P) the
space of Fo-measurable ¢ with E¢2 < co. Let H (V) be the closed subspace
of Ly(V) consisting of linear functionals of V. Suppose that the function
R : RZ — R has a bounded variation |R|; := varp, R on any rectangle P,
t € R2, and consider the measurable function g : R, — R such that

/ 19(s — )| [g(t — 0)| d| Rluw < 00, s, ¢ € Ry (1.14.5)
Pty

As stated by (HC78), we have an isomorphism I between A3(R) and H(V).
Here A2(R) is the completion of the space A of step functions
f) = Zivzl aplp, ., ¢,)(t) in the norm generated by a scalar product

WE

(f.g) = /R F0) 9(0) AR, 1(F) =3 (Vs — Viy)-

k=1

Denote by I(f) = [ fdV € H(V) the image of f € A3(R) and let

M, ::/O ot —u)dV,, == 1(),

where g(s) = g(t — s) 1{s<sy, t > 0. Then {M;, 7Vt > 0} is a Gaussian
process and

EMth = / g(S—’U,) g(t—v) dRuU
Ps.t)



1.14 Martingale Transforms and Girsanov Theorem 61

Moreover, under the condition:

the double Riemann integral / g(s—u)g(t—v)dRy, exists, (1.14.6)
Ps.ty

the process M; can be considered for any ¢ > 0 as a limit of Riemann sums
in the mean-square sense. Note that the following condition is sufficient for
(1.14.6): the derivative h'(s), s > 0, exists, h(0) = 0, and R,, admits a
representation

Ruv:/
P

and

/79(”) lg(s —u)||g(t —v)]| |:/OU/\U

Now we are in a position to study conditions on ¢, h and g supplying
martingale properties of M;.

UOMUI W (wy = 2) W (o1 = 2) 9°(2) dz] duydv,  (114.7)

(u,v)

h(u—2)h(v— z)‘ ©*(2) dz] dudv < .

Definition 1.14.2. Gaussian process V is called (g)-transformable if the
process

t
My = / g(t — s)dV;
0
is a martingale.

Remark 1.14.3. Since M; is a Gaussian process, it is a square-integrable mar-
tingale if V' is (g)-transformable.

DenoteU:{f:R+—>R‘(f*q)tzo, te Ry, forsuch ¢: Ry — R
that (|f|* |g|): < oo, t >0, if and only if ¢ = 0},
AC[0,f] = {f Ry =R ‘ Fls) = J2 fw)du; 0< s <twith []|f(u)]du<
oo}, Theorems 1.14.4 and 1.14.5 contain two groups of sufficient conditions
on the functions ¢, h, g ensuring (g)-transformability of V; (statements 1)

and 3)). Statements 2) and 4) demonstrate that these conditions are, in some
sense, necessary.

Theorem 1.14.4. 1) Let o, h, g satisfy conditions (1.14.2), (1.14.3),
(1.14.7) and

(lgl % W) < 00, >0, (1.14.8)
(gxh)y=Co, t>0 forsome CpeR. (1.14.9)

Then V; is (g)-transformable and (M), = C? f(f ©%(s) ds.
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2) Let @, h, g satisfy conditions (1.14.2), (1.14.3), (1.14.7) and (1.14.8),
heU, ¢ #0 (mod \) (X is the Lebesque measure), (g* h'); € C(0,00),
Vi be (g)-transformable.
Then (gx h')y = Cy, t > 0, for some Cy € R.

Theorem 1.14.5. 3) Let ¢ and h satisfy (1.14.2) and (1.14.3), ¢ # 0
(mod X), g satisfies (1.14.6) and

g€ AC0,t], t>0, g¢(0)=0, (1.14.10)
(Ig'] % (h? % p*)1/?), < 00, ¢ >0, (1.14.11)
(¢"*h)y =Co, t>0 for some Cye€R. (1.14.12)

Then V, is (g)-transformable and (M), = C? f(f ©%(s) ds.

4) Let ¢ and h satisfy (1.14.2), (1.14.3), ¢ # 0 a.e. (mod ), the process V; is
(9)-transformable with g satisfying (1.14.10), (1.14.11), (¢'*h): € C(0,0).
Then (g’ *h)y = Cy, t >0, for some Cy € R.

Remark 1.14.6. Conditions (1.14.9) and (1.14.12) mean, in particular, that
corresponding convolutions have jumps at zero, so at least one of the functions
involved is singular at 0.

Remark 1.14.7. Let h(s) = s*, ¢(s) = s7%,g(s) = s~*. Then statement 1)
holds for H € (1/2,1) and statement 3) holds for H € (0,1/2).

Proof of Theorem 1.14.4. 1) Tt follows from (1.14.7) that

fi(2) == /Otg(t - v)[/osz B'(v—7r)h (2 —71)p*(r) dr]dv, 0<z<t

is defined for a.a. z <t for any ¢ € R, fixed. Condition (1.14.7) ensures the
Fubini theorem for f;, and from (1.14.8)—(1.14.9) we obtain that

fi(z) = /Ozg(t —v) (/Ov B (v—r)h (2 —7)p(r) dr) dv
+ /:g(t —v) (/OZ B'(v—r)h (2 —7)p(r) dr) dv
_ /0 W(z - 1)@ (r) (/t W (v —r)g(t—v)dv) dr

e /O Kz — ) 2(r) dr,

i.e. f; does not depend on t > z. Further, for any 0 < s < ¢ we have that

E(M; — My)M, = /0 g(s —u) (fe(u) = fs(u)) du = 0.
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It means that the Gaussian process M; with EM; = 0 has uncorrelated, thus
independent, increments. Hence, M; is a Gaussian martingale, and it holds
that

(M), = /Otg(t ) (/Otg(t ) /0A B (u— ) (0 — ) G2(r) dr) du

= Cy /Otg(t —u) (/Ov B (v — 1) @2 (r) dr) dv = C? /Ot ©*(r) dr.

2) Let M; = fgg(t — 5)dVs be a square integrable martingale with g
satisfying (1.14.7) and (1.14.8). Then

E(M; —M,)V,=0, 0<s<t,

0:/08 (/Ovh'(v—r)ngQ(r) (/Tth’(u—r)g(t—u)du

. /: B (u—7)g(s —u) du) dr) dv = (h (" ())s,

or

where
¢(r)= /0 B h'(u) g(t —r — u) du — /Os_rh'(u)g(s —r —u)du.

Since h € U, we obtain ¢? - ( = 0, and, taking into account that ¢ # 0,
we derive that ((r) = 0 (mod \), r < s < t. Together with continuity of
B * g € C(0,00) it means that (k' * g); = Cp, t > 0, for some Cj € R. O

Proof of Theorem 1.14.5. 3) Under condition (1.14.6) the integral M; is a
mean-square limit of Riemann sums, and condition (1.14.10) permits us to
transform the sum:

N-1
t l/\lelrEOiz:;g( 8)( i1 z)
N-1
= Lim. V(sit1) (9(sit1) — g(si))
[An|—0 et

-/ gt 8) Vads = / ) ([ 16 =2 eterarm. ) as

where [Ay| = maxo<i<n—1]9(si+1) — 9(s;)|, and the last integral is the limit
of Riemann sums in the mean-square sense. Further, condition (1.14.11), ac-
cording to (Pro90, p. 160) or (Leb95), permits to apply to M; the stochastic
Fubini theorem, and we obtain from (1.14.12) that
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M, = /Ot o(2) </: g (t —u)h(u—z) du) dWs = Cy /Ot o(z)dW,. (1.14.13)

4) If the process M, is a square-integrable martingale, then from (1.14.13)
it follows that for any 0 < s <t

0= E(M, — M,JFY) = / " o(z)n(z) v,

where
77(2) = (g/ * h)t—z - (g/ * h)s—z-

Hence [ ¢?(z)n*(z)dz = 0, and, arguing similarly to the completion of
the proof of Theorem 1.14.4, part 2), we obtain that (¢’ * h); = Cy for some
Co € R. O

Consider some examples of the functions ¢, h satisfying conditions 1) or 3).
(One example is contained in Remark 1.14.7.)

Example 1.14.8. Let
g(z) = 272 cosh(ax'/?),

R (x) = / s/21,(as"?) (x — s)"ds,
0

where —1 < v < f%,

yu > (_l)ky2k2—2k,
L) =5 D KIT(v+k+1)
k=0

is the Bessel function of the first kind, v + v = —2.

The Laplace transforms of these functions equal

F,(\) = (n/A\)Y? exp(a?/4N), Fyr(\) = T'(y +1)277 L A7V 71

x exp(—a?/ANATTT = D(y + 1)277 La? A2 exp(—a? /4N),
F,NEy(\) =T(y+1)27" ra" A" A > 0,

whence (g * h'); = I'(y+ 1)27V"1ma”, t > 0, and condition (1.14.9) holds.
(For the details of the theory of Bessel functions of the first kind and their
Laplace transforms see (Wat95) and (GR80).)

Condition (1.14.8) is fulfilled since |A/(z)| < Cz¥T7*! on any interval (0, ),
where C' depends on t.

Conditions (1.14.2) and (1.14.7) hold for any ¢ € Ls(0,t), ¢t > 0; condition
(1.14.3), according to Lemma 1.14.1, holds for any ¢ such that Fj /() <
00, F,(A) # 0 for A € (a,b) C (0,00). In this case V; is (g)-transformable,
according to part 1) of Theorem 1.14.4.
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Ezample 1.14.9. Let g(z) = 2= /2 cosh(az'/?), h(z) = [ t~1/% cos(at'/?) dt.
Then F,(\) = (m/A)Y2exp(a®?/4)), Fn(\) = (7m/N)2exp(—a?/4N),
Ey(NFy (M) =m/X\, A>0,50 (g*h'), =m, t>0. Since |h(z)| < Cxl/? we
can conclude as in Example 1.14.8.

Ezample 1.14.10. Let ¢'(z) =[5 t~'/?cosh(at'/?)(z — t)”’dt h(z) =
2V/21,(ax'/?) with v € (— 1, 1), v € (-1,0), y+v = —2. Then Fy()\) =
X 2 exp(a?/4N), Fa(d) = A—Texp(—a?/4N), Fy(NFa(N) =

al/2\1,

Conditions (1.14.2), (1.14.3) and (1.14.11) hold for ¢ € L2(0,t), t > 0,
Flo|(A) <00, Fy(A) # 0 for some interval (a,b) C (0,00), (1.14.10) is evident,
(1.14.6) is fulfilled at least for ¢ € C(R4). So, if ¢ > 0, ¢ € C(R4) and
Fi,|(A\) < oo we have part 3) of Theorem 1.14.5.

Remark 1.14.11. According to Proposition 7 from (HC78), under the condi-
tion h' € Ly(0,t),t > 0, = 1, V; is a semimartingale. In this case we trans-
form semimartingale into martingale by (g)-transformation. For example, let
hz) =2%, 1/2<e<1, p(x)=1. Then

V}:/Oth(t—s)dWS=€/0t</os(s_u)a—1dwu)ds

is a semimartingale, more precibely, a process of bounded variation. Put g(x) =
~¢. Then M, fsfo (t =)= (fy (s —w)*"tdW,)ds = eB(e,1 — £)W;, where
B(~, -) is the beta-function.

Now, let V; be equal to Y; from (1.14.1). Recall that Bff = fo 5dV;
is an fBm with Hurst index H, and in this case B/ can be presented as

BH = fo m (t,s)dBs, where B is a Wiener process and the kernel mpy (¢, s)
is defined in Section 1.8. Consider general conditions on function ¢ : Ry — R
for the process N; := fg 1sdVs to be presented in a similar way.

Theorem 1.14.12. Let conditions (1.14.2), (1.14.3) hold and also
g
hfﬁl wQ(e)/ h*(e —u) @*(u) du = 0; (1.14.14)
€ 0

the Riemann integral / Y(u)p(v) dRy, exists, s,t > 0; (1.14.15)
(0,(s,1)]

there exists a derivative ¥'(s), s > 0 and
(2 % )2y € L1(0,t), (|h] % |[¢'])s < 00, t>0. (1.14.16)

Then
/w )dVy = /mts s)dWs, t >0, a.s.,

where
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m(t,s) = p(t)h(t —s) — / h(u — s)Y'(u) du,

W is a Wiener process.
If (1.14.16) is strengthened to

(h? % )2y € Ly(0,1), t > 0, (1.14.17)
then E( fo s)dVy)? <

Proof. Under (1.14.14)—(1.14.16), we can consider the integral fo u) dV,, as
a mean-square limit of Riemann sums, and integrating by parts, we obtain
the following limits in the mean-square sense

t t
[ vt v =tim [ vav

= 9OV (1)~ lim o) t/w

- /0 v (/0 h(u — S)so(s)dWs> du

Due to (1.14.16), the stochastic Fubini theorem can be applied to the last
integral, and we obtain

/Ot Y(u)dV,, = /Ot¢(t)h(t — 8)p(s)ds — /Ot o(s) (/St h(u — s)i' (u) du) AW,
KMMMMW

The second statement is evident. O

Now let P and P be two probability measures on (92, _7-') Denote by

P, (P, ) the restriction of P (P) on F, and suppose that P << P (it means
that P, < P, t € Ry). Consider the density process Z; = E(X;) :=
exp { Xy — 2(X) ) [Tpeser(1+ A Xy)e 2%, X is a local martingale

As before, we consider the Gaussian process V; = fo (t—s)p(s) dW, and
suppose that V; is (g)-transformable by the function g; moreover, the condi-
tions (1.14.8)—(1.14.9) or (1.14.10)—(1.14.12) hold. Let M; = Cy fot w(s) dWy
with Cy depending on g. Since M; has continuous modification, the process
[M, X] has P-locally bounded variation (see (JS87, Lemma 3.14)).

Denote by A; := (M, X); the P-compensator of [M, X]. Suppose further
that the function v satisfies conditions (1.14.14)—(1.14.16) of Theorem 1.14.12.

Lemma 1.14.13. The integral fo (t,s) dAs exists for any t > 0 P- and P-
a.s.
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Proof. Since m(t,s) = Y(@)h(t — s) — fst h(u — $)¢'(u) du, we consider
fg h(t — s)dAs and fot (f: h(u — 8)y'(u) du) dAg individually. From Kunita’s
inequality and (1.14.2),

[ mte=syaial. < ([ e -oraon. o >);
_CO</ |h(t — s)|%p?(s )dS<X>>2<OO

P- and P-as.
Similarly,
d| Al

h(u — s)du

1
2 2

h(u — s)du

9?(s)ds - <X>t>

0
& ( [
<o 0% ) [0 () ) <o,

P and ﬁ—a.s. O

Theorem 1.14.14. Let V; be (g)-transformable with g satisfying (1.14.8)—
(1.14.9) or (1.14.10)—(1.14.12), ¢ satisfying (1.14.14)—(1.14.16), ¢ # 0 a.e.
(mod X). Then Krt =N, —-Cy fo m(t,s) dAé s a Gaussian process . rt. P
and admits the representation Nt fo dWS, where Wt is a Wiener
process w.r.t. P.

Remark 1.14.15. Consider the case where ¢(s) = s, h(s) = Cis?,
g(s) = Cas™ 2, V; is defined by V; = C fot(t — 8)%s *dWs, (s) = s, and

= fot sdV, is an fBm with Hurst index H. Then we obtain that B :=
Bl — ¢yt fof my(t,8)d{X, M)s is an fBm w.r.t. P, M =C, fot sT¥dW, =
C1Cs fot(t —8)"%dVy, Cy = Cy = |al|cosmH|~1Cy - Cs.

Proof. According to the classical Girsanov theorem, ]\/ft = My — (M, X):
is a P-local martingale with the angle bracket (J\/Z)t = (M), =
C? fo ©?(s)ds. Therefore, Mt is a continuous square-integrable p- martlngale
Since ¢ # 0 a.e. (mod \), we obtain from the Lévy theorem that Mt =
CO fot gosdws, W is P-Wiener process According to Theorem 1.14.12, Et =

ot [ 2 —(M, X)) = Cy't [ mlt, s)dM, = [} m(t,s)p(s)dWs. O

Accordmg to the Theorem 1.14.14, we obtain that the drift has the form
D, :=Cjy fo m(t,s)dAs in the case when the density process Z; is known.
Cons1der also the question: what “drifts” are admissible?



68

1 Wiener Integration with Respect to Fractional Brownian Motion

Theorem 1.14.16. Let (1.14.14)—(1.14.16) and one of the following sets of
conditions hold:

1)
2)
3)

4)

conditions (1.14.2), (1.14.3), (1.14.7)~(1.14.9) and ¢ # 0 a.e. (mod \);
f|h' s)| ¢ (v)]| dv < o0, 0<s<tas;

a process {Dt,ft , > 0} has a.s. bounded variation |D|; = varjg4 D,
t>0, Dy = 0;

¥ # 0, the integral fot lg(t — s)|[~1(s)|d|D]s < oo a.s., t > 0, and we
have a representation

t t ¢
/ g(t —s)y~Y(s)dDs = / dsds, where / |0s] ds < 00 a.s.
0 0 0
¢
E/ @7 20%ds < o0, t>0;
0

EE(X:) =1, where

t
— it [ ertsam, e —ew {xi - S0
0

conditions (1.14.2), (1.14.3), (1.14.6), (1.14.10)—(1.14.12);
conditions 3)-5);
a process By = fo m(t, s) dsds has bounded variation and

t
/ 9t — )| [ ()| d|E]s < 0, as., t>0;
0

g evu.
Then the process Et By — Dy is Gaussicm and admits the representation
fo dW under the measure P << P such that 3112 =E(Xy).
].'

Proof. In our case Ay = (M, X); = fot dsds, therefore from Theorem 1.14.14
the “drift” equals C; ' Ey.

It is enough to establish that D; = Cy ' E;. If conditions 1)-5) hold, then

/0 m(t, ) uds = / t (0t bt 5)

/hu—s )du)d(/otg(t—s)w_l(s)st)
o) ([ o —wwranYds— [ ([ 09w o
I ([ Jo- [ (/. )



1.14 Martingale Transforms and Girsanov Theorem 69

/0t< t" (s - ud8> ¢~ (w)dD,
/t// (v —=5)¢'(v) g(s —u) Y™ (u) {u < s <v < t}dvdsdD,
= Cui(t /w w)dD, 00//¢ W) I{u < v < }dvdD,

= Cout) [ v wap, - G [ @)~ v0) v D, = o,
If conditions 6)-9) hold, then for any ¢ > 0

/Otg(t — ) (s)dE, = /Ot (g'(t — 8) ™1 (5) + gt — ) ' (s) ¥ 2(s))
(v [ s —wsuau= [*( [Tt — v i) s,au) s

(1.14.18)
The right-hand side of (1.14.18) contains four integrals. Consider them sepa-
rately. From (1.14.12),

t s t
/ gt — 5)/ h(s —u)d,duds = CO/ dydu.
0 0 0

/:(/shv wyp )6udu)ds
-7 ( (v / =t

(/ h(v —u) ' (v)d ) 5udu> dz) ds.
0
It is sufficient to prove that

_ OS Zﬁg(é)) <¢(z) /0 " h(z = w)dudu
- /0 ’ ( /u (o — u)i/)'(u)du) (5udu> dz

:¢—1(3)/05 (/:h(v—u)w’(v)dv> Sudu=: 54, (1.14.19)
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and then it follows that the right-hand side of (1.14.18) equals Cy fot Oy du.
But 0¢g = 7¢, and the derivative

5 = z;((‘?) /0 <L h(v — u) ¥’ (v) dv) Sudu

+07) [ hls = wddu v'(s) = o

We obtain that

/Otg(t—s)w_l(s)st _ /Otg(t—s)z/J_l(s)d (Col/osz(s,u) 5 du>,

or

/ t—s/z/J u)dD, ds = Cy / (t—s) (/1/) )
If ¢ € U then [J ¢~ (u)d(D — E), = 0, whence Dy = [}, - ¢;'dD, =
Wi+ o dE, — fozz/ Jo v tdE,ds = E;. 0

__ Theorem 1.14.16 permits us to calculate the Hellinger process for P and
P.
Let P < P and Y; = £(Xy), X: be a continuous square-integrable mar-

tingale. According to (JS87, Corollary 1.37) the Hellinger process in a narrow
sense of order 3 equals h;(83) = %6 (1=75)(X).

Theorem 1.14.17. Let one of conditions 1)-5) or 6)-9) hold, then

- t
() = 2557 [ onaias

_5(210‘025)/;%2 (i /Osg(tu)wl(u)dDu)zds.

The proof follows immediately from Theorem 1.14.16.
Remark 1.14.18. Tt is possible to study if the process V; = fo o(8)dWs
is itself a semimartingale. In the case when ¢ = 1 this question is 1nvest1gated
n (CCMO98).
Theorem 1.14.19. Let the function h be differentiable on R,
fo | (u)|du < oo, t >0, and fo (R (t — u)p(u))?du < co,t > 0.

Then the process {Vy, FV,t > 0} is a semimartingale.

Proof. We have the representation h(t) = h(0) + fo B/ (u)du, which together
with the Fubini theorem supplies the followmg tranbformatlonb.

v, /0 "Bt — s)e(s)dW. = h(0) /0 (s)dWs + /0 t ( /0 - h'(u)dugo(s)) qw,
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=no) [ (), + / t / o — s)p(s)d dW, = h(0) / p(s)aw,

_|_/Ot /OU B (v — s)p(s)dWy dv.

1.15 Nonsemimartingale Properties of fBm; How to
Approximate Them by Semimartingales

A process { Xy, Fi, t > 0} is called semimartingale, if it admits the represen-
tation
Xy = Xo + M + Ay,

where M is an F;-local martingale with My = 0, A is a process of locally
bounded variation, X is Fp-measurable. Evidently, any semimartingale has
locally bounded quadratic variation; if X is continuous, then M and A are
continuous. Let X; = B}f with H € (0,1/2). Then its quadratic variation
is infinite, therefore, it is not a semimartingale. If H € (1/2,1), then the
quadratic variation of X is zero, and if we suppose that X is semimartingale,
then the quadratic variation of M; = X; — Xo — A; is zero, and M is zero.
But X; # A; since X has unbounded variation. Therefore, X; = B is not
a semimartingale for any H # 1/2. (There are many another elegant proofs
of this fact.) Nevertheless, there are many approaches to how to approximate
fBm by a sequence of semimartingales.

1.15.1 Approximation of fBm by Continuous Processes of
Bounded Variation

We follow here the approach of and (And05) and (AMO06). According to (1.8.5)
and (1.8.18), we can represent {B}!, ¢t > 0} with Hurst index H € (1/2,1) as

t
B{f:/ s*dYs,
0

where

t
Y, = C}f’/ (t—s)*s~*dB,,
0

{B¢, t > 0} is a Wiener process, C}?) = C’S)&.
We can rewrite Y; as

t t
Y, = c§§>a/ (/ (u— s)“_ldu) s~dB,. (1.15.1)
0 s
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If we formally apply the stochastic Fubini theorem to the right-hand side
of (1.15.1), we obtain that

t u
Y, = C’S)a/ (/ (u— s)o‘lso‘dBS) du. (1.15.2)
0 \Jo

But the right-hand side of (1.15.2) does not exist, since the variance of
interior integral is infinite,

u
/ (u — 5)**72572%s = oo,
0

Thereupon, we introduce the “truncated” process for 8 € (0, 1),

t Bs
Kﬁ:CS)a/ / (s —u)* 'u=*dB, |ds,
0o \Jo
and

t t Bs
BHP :/ s9dYl = C’g)a/ s“ (/ (s — u)o‘lu20‘dBu> ds (1.15.3)
0 0 0

is a process of bounded variation which will serve as an approximation of Bf.

Theorem 1.15.1. We have that
E(B{' = B/"")* < et (1 - p)**,
where ¢; = ¢1(H) is some constant, independent of t and (3.

Proof. First, we want to change the limits of the integration in (1.15.3) and
consider the process

Bt [
zP = aC’S)/ (/ (s — u)a_lds> u”“dB,
0 u/B
81 NG
=c® (/ (t — u)*u“dB, — <165) Bﬁt> . (1.15.4)
0

We cannot apply here the stochastic Fubini theorem (Pro90, Theorem IV .4.5),
because it is valid if the integral foﬁt fz/ﬁ(s —u)?2~2y~22ds du is finite but
it is infinite. Therefore, we must go an indirect way. We consider the integral
vPe = Df; ( BBES(S — u)o‘*lu*“dBu>ds, where D = aC’S), and the Fubini

theorem ensures the equality

Bt pt
Y =20 =D (/ (s — )" 'ds)u~"dB,.
pe Ju/p
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Furthermore,

€ Bs 1/2
ElYPe —vP| < D(/ (/ (s — u)go‘_Qu_Zadu) ds
0o Jo

+/: (/Oﬁe(s —u)2“_2u_2adu>1/2ds) < D(/Oau_l/zdu(/oﬁ(l — )20

xu*2adu> +a(fe)t/?e /t(s - ﬁs)o‘*lds> -0

g

and

Be t 9
E|Ztﬁ,s _ Ztﬁ|2 < D2/ (/ (8 _ u)a—1d8> u—Qadu < OD2661720¢ =0
o “Nug

as € — 0, where C' > 0 is some constant. This means that Y;’B = Z;B a.s. for
any t € [0,T]. Therefore, for 1/2 < 8 <1

B - ¥ = ()25 / () udB, + (52) Bﬁt>2

[
t

t 2a
<207 /at(t —u)? w2+ 2(CY)? (1_% Bt

3
2a
< O P et - g e (5F)

< oot(1— B)%* with ¢y = (CW)2. 22 1(H~1 1+ 2). (1.15.5)

Integration by parts gives us
t
B = B" = t*(v; = Y{) - a/ (V. = Y/)s* s
0
whence we obtain from (1.15.5) that

t
E(BI — BI'P)? < 2> E(y, - V) + 2a2t/0 E(Y, — YP)?s%*72ds

t
< 20t (1 — 3)% + 2a2t/ 27 ds - co(1 — )2,
0
and we can put ¢; = 2ca(a + 1). O

1.15.2 Convergence BH#:# — BH in Besov Space W*|a, b].

For A € (0,1/2) define the Besov space W*[a,b] as the space of measurable
functions f : [a,b] — R such that

b b s _
”f a,b,\ ::/ (s|f—($cz)|>‘d8+/ / Wdyds<oo
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Theorem 1.15.2. For any A € (0,1/2), H € (1/2,1) and any [a,b] C [0,T]

EHBH_ (Hv)‘aT)(l_ﬁ)a'

Proof. Denote Ef’ﬁ .= BH — BP_ We have

HB

b
E|B™| _E/ B, ds+E// /\+1 |dyds (1.15.6)
From Theorem 1.15.1,
b H,3 b HH:P\2v1/2 b H
1B, | / (E(B,7)%) 1/2 / s
Bl 2 Lgs< [ B8 V) oo Pa—pge [ g
[ oamte < [ SR s sato-or [
< el(HNT)(1 - B)°, (1.15.7)

with ¢1 (H,\,T) = c}/2 ~TH=2 1 (H — X4 1)71. Consider the second term
in the right-hand side of (1.15.6). Rewrite the difference in the numerator as

=H.B
S

BB = (B - B — (B - BIY)

:/ u“d(Yu—Yf):/ wdy” (1.15.8)
Yy Yy

where ?i =Y, — Y/ Equality (1.15.8) and integration by parts give us the
estimates

H,5
|

/ / /\+1 o dyds

:/ / (s —y) ! sa?ffyavara/ ?iuadu dy ds
y
/ / —-A—1 % ?f _

+ / / <s—y>—k—1<sa—y“>|?§|dyds
+a/ / /y V7 jue- 1du)dyds

L(B) + I2(B) + ad3(B).

Now we estimate I5(03):

b s
L) < a / [ v e =0 B ayas

1/2 / / a— 1 Xyl/Qdde(l_ﬁ)a

< co(H, A\, T)( (1.15.9)
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where co(H,\,T) = cé/zaTl’A. Similarly,

1)< [ b |- ( / S(E(Yi)?)l/%aldu) dy ds
1/2// N (/Suo‘_l/Qdu> dyds- (1 B)° (1.15.10)

<cs(H,NT)(1 - B)7,

1/2 H—X\+1
where 63(H’)‘7T) = 62/ m

(1.15.4) to estimate I (0):

Now we use the representation

Sy v 8

s y
/ (s —uw)*u"%dB, — / (s —uw)*u"“dB,
s By

1 _ (e
+ oy (Bﬂ> |Bgs — Byl

C(S)// “A-lga

therefore

X s —u)*u"%dB, —/ —u)%u” “dB,|dyds
/s( S —u)® Y (1.15.11)
+ C(g) < > / / (s —y)~*"!|Bgs — Bgy,|dy ds
= _’Zl(ﬂ) +IQ
Further,
ET < C(S) / / )20y ds BY/2
2(8) < Cp (s ydsf (1.15.12)
= C4(H A T)
_ ®ga TH AT :
where ¢4 (H,\,T) = C},'2% - - (Here we see that indeed A must be less

than 1/2.) Next, we decompose Z; () into two integrals

b (Bs)Va b s
[ [ el [ ], - none
o a a (Bs)Va
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@ [0 [V 1
p@ <o) [ [ ep e

. . o 1/2
x| E (/ (s —u)*u"“dB, — / (y — u)o‘uo‘dBu> dy ds
Bs By
) b r(Bs)Va
S \/§CH / / (8 _ y)—)\—lsa

s Yy 1/2
X (/ (5 — u)**u"*du +/ (y — u)2o‘u2o‘du) dy ds

S By
< 204H71/20§§) /

b p(Bs)Va
[ e s s dyds- (- )"
S C(Hv )‘7T)(1 - ﬂ)H_)\

(1.15.13)
2HT1+H7>\

with C(H, )\, T) = m Finally,

b s
p<cly [ [ smpotse (E
a J(Bs)Va

/S ((5 —u)u” "1 (gs,5) ()
0

1/2
« —Q 2
—(y —uw)*u" L (gy.y) (u)) dBu| ) dy ds

b s s
= CI(LIB) / / (s —y) A 1s® (/ ((s —u)*1(gs,5) (1)
a J(Bs)Va 0

1/2
(07 2 —Z
— (Y —u)*Lgyy)(u) u? du) dy ds.
The interior integral equals

/y ((s —w)™ = (y — w)™)* u”**du + /ys(s - u)**u”*du

S

Bs
+ / (y — u)**u2*du =: Z5(3),
B

y
and via some routine calculations can be estimated as

I5(8) < Cr(1 - B)**(s — y),

where Cg = 1 + 22 + T
Therefore

b s
EL(B) < Cff (Cu)*/*(1 - B)* / Sa/ (s — )" 2dy ds
a (Bs)Va
b

1

e Cm 0=y [ [y

< CHNT)(1-p)HA (1.15.14)

IN
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with C(H,\,T) = CS)(CH)UQ%. Summarizing (1.15.9),
(1.15.10), (1.15.12)—(1.15.14), we obtain the proof. O

We obtain another approximation, considering the “truncated” process of
the form

t (s=B)+
vP = Cs)a/ / (s —u)* 'u~*dB, | ds
0 0

and

t
ij’ﬁ:/sadysﬁ, t>0, He(1/2,1). (1.15.15)
0

Evidently, we intend to obtain the approximation while § — 0.
Theorem 1.15.3. The process BH:P satisfies the relations

t?H t<p

R AT I A A

andf0r2<m<ﬁ

tmH ot < B

H,Bm
E|BtH - Bt ’8| < C(H7 m) {ﬁmatm/Q _|_ﬁm(H—1)+1tm—1 t > ﬂ

Proof. Using the stochastic Fubini theorem we obtain

t=B)+ t
vP = Cs)a/ (/ (s — u)a_lds) u” *dW,
u

0 +B
®) (t=B)+ (t=B)+
=Cy / (t —w)%u=“dW, — B / u”“dW, |,
0 0

whence

— e ([ (- wruodu g O gy
o (t—8)+ 0

t 2a,,—2
—u)**u"*%du, t<p
< 0(8) 2 fo(t U) u )
< (@) 32 fot ut=2du, t>pf

— ¢(H) {gza;;’ﬂt - (1.15.16)
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where ¢(H) = (C’g))2 max(B(2H,1 — 2a), ——). Since V; — Y} is a Gaussian

) T-2a
random variable with zero mean, for m > 0

1
E|Y, — }/tﬁ‘m _ 7_(,71/2F(%)(20,2)771/27

where 02 = E(Y; — Y,”)2, therefore, from (1.15.16)

tm/2 t<

B1m
BV =Y < clm ) { Gt S s (5D
As before, integration by parts gives us
t
B — BI"P — oy, —vf) — a/ (Y, — YP)s* tds. (1.15.18)
0

From (1.15.17) and (1.15.18) we obtain for m > 1:
E B — B < 2m =t (1B, - Y/
¢
+ amtmfl/ E|Yg - }/Sﬁ‘msm(afl)ds)
0

tmH <
< C(m7H) {ﬂmatm/2 _|_tm71 foﬁ Sm(Hfl)dS_thflﬂma f; Sfm/QdS, t> /6

The integrals in the last expression converge for m < ﬁ For m = 2 we get

t?H t<p

H,
E(BtH — Bt B>2 < 0(27H) {ﬁQat-i-ﬁgatlné, t> 8,

1

=7 We obtain

and for 2 <m <

E|Bff — B/"’|™ < ¢(m, H) A
t + S y Bmatm/z +6mH7m+1tm71 +ﬁmatm/2’ t> 6,

whence the proof follows. O

Remark 1.15.4. Note that the approximation of fBm with the sequence of
semimartingales was considered in (Thao03).

1.15.3 Weak Convergence to fBm in the Schemes of Series

We formulate in this section some results concerning weak convergence to fBm
in different schemes of series.

(i) Convergence of the piecewise linear processes to fBm. Let {&, k € Z}
be a sequence of i.i.d. random variables, and {a, }kez, n>0 be a matrix with
real elements satisfying the following assumptions:
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E& =0, E& =1, E|l&P <oo forsomep>2,  (1.15.19)

Vn = Iilax|a;m| — 0 (n— o0) kzza,m =1. (1.15.20)
€

Also, let {¢n(t), n > 1, t € [0,1]} be a sequence of real functions on the unit
interval. Denote 0(z) = 1(zf + 2= — [21/2 — 2= V22H) 2 > 0, H € (0,1).
We construct the sequence of continuous random piecewise linear processes
&n(t), t €10,1], such that

§n(%) = %(%) > armée, 0<m<n.

kEZ

Theorem 1.15.5 ((Gor77)). Let conditions (1.15.19)—(1.15.20) hold and

Zaklakmaﬂ(x) as 1 — oo, l/m — x,

p/2
R (Z(@n(l/n)akz - wn(m/n)akm)2) < ch'™e) for some e>0.
n |(1—m)/nl<h N

Then the sequence of processes {&,(t), n > 1, t € [0,1]} weakly converges
in C[0,1] endowed with uniform topology to the fBm with Hurst index H.

(ii) Convergence of the Weierstrass—Mandelbrot process to complex fBm.
Consider the complex-valued Gaussian process

BY — oy / (€% — V) HV2(qW, (z) + idWa()), t € R,
Ry

where W1 and Ws are two mdepgndent standard Brownian motions. Evidently,
B =0, EBI' =0, E|BIL, — BI|> = ¢ - [t]P" [, sin® - 220 2da - 21720 =
t2H if we choose cg = 2H1( fR+ sin? z - x_2°‘_2dw)_1/2. Therefore, with this

choice of cy EtH is a normalized complex-valued fBm.
Now, suppose that (£,,m,), n € Z, is a sequence of independent random
variables with E¢2 = En2 =1, E¢, = En, = 0, and either
1) ¢ := &, + inp, n € Z are identically distributed random vectors, or
2) sup,, (E|&.1210 + En,|*+°) < oo for some § > 0.
Also, let f(t,u) : R? — C, t € R, be such a function that for all t € R
3) f(t,") € C'(R);
4) |f(t,u)| = 0(|u|~") as u — oo for some | > 1/2.

Theorem 1.15.6 ((PTO00b)).
1. Under conditions 1)—4) the following convergence (in the sense of con-
vergence of finite-dimensional distributions) takes place:
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_ n . d .
&) = a2 Y f (62 ) (Gnring) S €l (1) = / F(t, u) (AW (w) +id W (u),
neE”Z R

as a — oo, where Wy and Wy are two independent standard Brownian mo-
tions.

2. If, in addition, f(0,u) =0,
|f(t,u)—f(s,u)\ SC‘f(t—S7U)| fOT‘ all snﬁ,uER,

|f(t,w)| < ct?|f(1,u+1nt)| for some 0< H <1

and

1
sup E(|&, 2" + |7a]?*) < 00 for some k> —,
nez 2H

then for any T > 0 £,(t) converges weakly to £(t) in the space C|0,T] endowed
with the uniform topology.

Corollary 1.15.7. Let flt,u) = (et — 1)e=H%. Then the corresponding

process &5 (t) is called the normalized Weierstrass—Mandelbrot process and,
according to Theorem 1.15.6, it converges weakly to the process

F () = /R (6"t — 1)e=HU(dTV, (u) + dWa (w)).

Moreover, the processes ff(t) and EtH have identical finite-dimensional dis-
tributions because they are both Gaussian, have zero mean and the same co-
variance functions.

Remark 1.15.8. The proof of Theorem 1.15.6 is based on the Functional Cen-
tral Limit Theorem.

(iii) Weak convergence of random walks to fBm in Besov spaces (in the
scheme of series). Consider a random walk {X,,},>1 consisting of stationary
Gaussian random variables with zero mean and correlations r(i—j) := EX; X;.
Recall that a positive function ¢(z),z > a for some a > 0 is said to be slowly
varying at oo if for all ¢ > 0 lim, . ¢(tx)/¢(z) = 1. Denote by D = DJ0, 1]
the Skorohod space of right-continuous functions on the interval [0, 1] that
have left-hand limits, and equip D with the metric

d(z,y) :=inf{e >0:3IX € A such that ||A]| <e
and sup [(t) — y(A(t))| < e}.
t

Here [[A[| := sup,,; |log(A(t) — A(s))/(t — s)| and

A:={X:[0,1] — [0, 1], A is strictly increasing and continuous mapping
of [0, 1] into itself}.
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Under this metric D is a separable and complete metric space, and we denote
by L. the convergence in the Skorohod topology, which is the weak topology
induced by this metric. That is, X" -2 X if EYp(X™) — E¢(X) asn — oo
for any bounded and continuous ¥ : D — R. We start with the following
result of Taqqu:

Lemma 1.15.9 ((Taq75)). Let {X,}n>1 be a stationary Gaussian sequence
with mean 0 and correlations r(i — j) = EX;X;. Assume that

Z r(i —j) ~n*"p(n) as n — oo, (1.15.21)
ij=1
with 0 < H < 1, ¢ slowly varying.

Then Z, -2+ BH, where Zn(t) =d;t Zyj} X; with d, ~ n*"p(n), B
is an fBm with Hurst index H, not necessarily normalized.

Remark 1.15.10. Condition (1.15.21) is satisfied for H € (1/2,1) when r(k) ~
k?*=1y(k), and for H € (0,1/2), when 7(k) ~ —k?>*~Lp(k) as k — oo with
r(0) +2> 72 (k) =0.

Further, define for a function f € L,[0,1] the modulus of continuity in
L,[0,1]:

1/p

wp(f,t) == sup ( |f(z+h)— f(x)|pdx> ,
[h]<t \J I,

where Ij, ;== {z € [0,1],z + h € [0,1]}. Now, for 0 < 7 < 1 and 8 > 0, we

consider a real function wj : (0,1] — R of the form wj(t) := t7(1 + log 1/t)8,

t € (0,1], and denote

[fllp,wg =1z 00 + sup wp(f,t)/wi(t).
0<t<1

Recall that the Besov space Lip, (7, 3) is the class of functions f in L,[0, 1]
such that [|f[[, oy < o0; Lipy(y, ) endowed with the norm || - [, oy is a
non-separable Banach space. It is possible to consider a separable subspace

lipp(7y, B) of Lipy(v, ) of the functions f € Lip,(y,3) satisfying w,(f,t) =
o(wg(t)) as t | 0. According to (BLO1), the paths of fBm B¥ H € (0,1) are
a.s. in lip,(H, ) for any 8 > 0 and p > 1/H Vv 1/3. The next result is proved
in (BLOL).

Theorem 1.15.11. Let H € (0,1), >0, p>1/HV1/8, and let {X,}n>1
be a stationary Gaussian sequence with mean 0 and correlations r(i — j) =
E X;X;. Assume that

Zr(i—j)anzH asn — oo, where C'> 0.

4,j=1

Then C~127, — BH asn — oo weakly in the space lipy(H, B).
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(iv) Convergence of martingale differences to fBm. We follow here Niemi-
nen’s paper (Nie04), which generalizes the result from (Sot01). Consider the
following scheme of series: let (£2, F, P) be a probability space, (X; n, Fin)n>1,
1 < i < n be a sequence of square integrable martingale-differences, i.e.,
Xin is Fin-adapted, EX?, < oo, E(X;n/Fi—1n) = 0, Fon = (2,9),
Fin C Fix1n C F. Consider the sequence of kernels for H € (1/2,1)

Z(”)(t,s):n/ mpy (mt],u> du
s—1/n n

for s € [1/n,1] and t € [0,1], where [x] = k for k <z < k+ 1, k € Z. Define
the processes

[nt]

ZXW t € [0,1],

and

70 / (t, 5)dW? = § /Zl/n ( il )d &

Theorem 1.15.12 ((Nie04)). Let lim,, oo n(X;,)?> =1 a.s., 1 <i < n and
maxi<i<n |[Xin| < Cn~'2 a.s. for some C > 1.

Then 2" 2 BH n — oo, where the convergence is in D|0, 1].

In the case when 51(") are i.i.d. random variables, the corresponding result
is proved by Sottinen (Sot01) under weaker conditions.

Theorem 1.15.13 ((Sot01)). Let fz(") =0, Dfl(") =1. Then Z, 2 BH in
the Skorohod space D[0,T] for any T > 0.

(v) Convergence of integral functionals. Using Theorem 1.15.13, we can
prove the result, similar to limit theorems for integral functionals on random
walks, established in (SS70) and (Yos78). For example, (Yos78) considers suf-
ficient conditions for

an(, )&“ /ftwtdwt,

3
where ¢; is a sequence of martingale differences, S; = > &, W, is a Wiener
k=1
process. For technical simplicity, we consider i.i.d. random variables and the
interval [0,1]. Let {fn},n > 1, f, : R — R be the sequence of functions
satisfying the conditions
1) fn, f € CY(R) and VR > 0 IMp > 0 such that
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sup sup (|fn(2)| + |f,(2)]) < ME;
n>1|z|<R

2) fn = f uniformly on any [—R, R]. Let m, := {0 = tér) < tY) < e <

t(r) = 1} be the sequence of partitions of [0, 1], |7,] — 0 as r — oo. Denote

AZy (1) = Zn () = 2o (£), AZnjo i= Za (811) = Za (117) and define
the sequence of integral sums

pr—1

. an ntr n,j,r-

Lemma 1.15.14. Under the conditions of Theorem 1.15.13

n—1 2 pr—1
P-lim > <AZ ( )> = P-lim lim > (AZ,;,)* =0.
n—oo i1 T—00 N—00 ]:1
Proof. We can prove even the convergence in L;(P). For this purpose, we can
rewrite the difference Z,,(t2) — Z,(t1) for any 0 < ¢; < to < 1 in the form

200t~ Za(t) = Vi 55 JE (mir (16,5) (21, 5) ) s -

[nta]
+vno X fk 1mH([m2] )dsf,(j).
k= [ntl] —+1
Denote a,(m, 1) fm L my (L,s) ds, and
o an(m 12) - an(m>l1)7 m S ll S 127
ﬂn(nJlalQ) = {Oén(m l2) ll <m< lg. . Then

['I’Ltg

Zaltz) = Zu(tr) = Vit 32 O (s [ota), [ntz]) 7, and

ntz]

E|Zn(t2) = Zn(t)* =n Z B (k. [nt], [nta])

® 2
=n 3 ([, (mn (["%2]78) —mar (15s)) ds)
k=1 n
[ntz} & 2
+n > ( imy (WZ] ) ds)
[ntq] 2 [nta] 2
< J w (mH <[n£2],s> my ([nil],s)) ds—|—f@ (mH (%,5)) ds
o
5 [nth] o [":LQ] o
= (Cz(*{))2(fo nog2 (f[ntl] u®(u — s) 1du> ds
[nta] [ [nto] 2
+ [t <fs o u®(u — s)aldu) ds)

[ntz] [’I’Ltl]

2H
< (ta —t1)*H

(1.15.22)
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n—1 . 1—1
From (1.15.22) E Y. |AZ, (£)]?< Y n 2 -0, n—oo and
i=1 i=1
PR 2 SN L ven
DORVAVAR DD (tj+1 —t; )*H =0, r— o0 g
i=1 j=1

Lemma 1.15.15. Under conditions 1) and 2)

n—1 . .
lim limsup P < Sp () — Zf(Zn(%))AZn(%)‘ > 5) =0 foranyd > 0.

r—=00 n_ 00 —1
i=

Proof. Let a function F' : R — R be such that F'(z) = f(x),2 € R. Then by
the Taylor formula

FZ,1) - FO) =S (F (2, (59) - F (2, (2)
SNCADIECACERS WAURIEEAC
F(Zn(1)) — F(0) = p;;)l (F (20 (t1)) - F (2 (£7)))

pr—1

= (2 (4)) AZusr + 4TS, 1 000) (8205,

where the points 6; ,, are between Z, (%) and Z, (%), and the points 6, ; ,
are between Z,, (t;r)) and Z, <t§21) Therefore

n—1 .

Sp(mr) — z; f (Z" (%)) AZy (%)

pr—1

2

+3 ZO |f Onjir) 1A Zn |
j=

and for any § > 0

P([sutm) - S 7 (20 () 22, 1)

(S (@2, () 2 3 )+ 2 (S (42050 2 ).

=0 =0

(1.15.23)
Note that Z, D, pH , and functionals sup and inf are continuous in the Sko-
rohod topology, whence P (supogtgl |Za(t)] > R) — P (supogtgl |Bf'| > R),
and the last probability tends to 0 as R — oo, according to (Sin97). The proof
follows now from Lemma 1.15.14 and (1.15.23). O

Theorem 1.15.16. Under the conditions of Lemma 1.15.15
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o (1) (2) = [ st o

d . . . .
where — denotes here the convergence in distribution.

Remark 1.15.17. The existence of integral fol f(BH)YdBH for H € (1/2,1) and
f € CY(R) follows from (Zah98) (see also Section 2.1), and this integral is a
limit a.s. of Riemann—Stieltjes sums.

Proof. Consider the difference

oo [ etrant -5 (= (3) 42 ()

4 ,
and write it in the form A, = Ag}, where A%l)r = fo f(BEYaBH —
=1

pr_l

Zl f (Bf)) ABJHJ. is independent of n, ABfr = Bf({:,r)l — BtI({‘,,‘).
= J J J

pr—1 pr—1
Z £ Bw )ABH — Z f <Z<" ) Az,
p1,1
AP, = Z 1(2)A2)7) ~ Z fa (Zf!%) AzZy,

pr—1

(4) — Z I ,5((73 AZ ”) Z fn ( (”)) AZ(H).

From the result of Zahle (Zah98) cited above, P-lim,_, Ag}} = 0. By
Lemma 1.15.15 P-lim, .o A ) =
As to A%z 2-, we have from the weak convergence of Z (") to BH that

pr—1
> (22) azgy - z S(BL},)ABE,

)

as n — oo, for any fixed 7 > 1. We must estimate now A( The technique

here is 51mllar to the proof of Lemma 1.15.15.
Let F(z fo t)dt, F,(x fo fn(t)dt. Then

) =S (F (Z&*i% ) -7 (7))
=1 b ) (1.15.24)
= Z f(Z%)AZ(" +1 2 (6w (aziy,
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and, similarly,
- 2
F, (Z(n)) Z fn( ) Z(") + Z 1 (9](7”2) (AZ;?) , (1.15.25)

(m and Z" (T) . Now,

where 95-’7;) and gj( are between Z
J J+1

IF(ZM) = Fu(ZIM) <120 sup [ falt) — F(D)],
It1<|Z{™)|

whence

P{|F(z(") — F,(z{™)| = 6} < P{|Z{"| > R}

(1.15.26)
+ P {supy< |falt) = F()] = &
(The last event is not random.) Since f,, uniformly converges to f on
[-R, R], the last term in (1.15.26) is zero for all sufficiently large n, and
lim;, 0 P{|Z£n)| > R} = P{|B{’| > R} < 4. Therefore, from (1.15.24)—
(1.15.26) and Lemmas 1.15.14-1.15.15

P-lim lim A(3) =0,

T—=00 N—0o0
and the theorem is proved. ]

Remark 1.15.18. The paper (Wang03) contains a result on a weak convergence
to fBm in the Brownian scenery.

(vi) fBm as a weak limit of Poisson shot noise processes.

Let for all n € Z\{0} X,, be i.i.d.r.v. with EX; = 0 and EX? € (0,0),
g : R, — Rbe a continuously differentiable function with g/(u) = O(u~1/?7¢),
u — oo for some € > 0. Consider the special model of multiplicative shots:
Xi(u) = g(u)X;, u > 0, and a shot noise model, which is defined as

N(t)
S(t) =Y. Xt —T)+ Y [Xi(t — o) — Xi(~T}), £ >0,
i=1 i<—1

where N is a two-sided homogeneous Poisson process with the rate a > 0 and
points -+ - < T o <T_ 1 <0< Ty <Ty<---.Fort =0 we put S(0) =0

According to (KKO04), the multiplicative process with the above restric-
tions on g and X; exists and has the following sample path properties.

Lemma 1.15.19. The process S possesses a right-continuous version with
left limits on Ry and has a finite variation on any [0,T), T > 0. Therefore,
it is a semimartingale with respect to its natural filtration.
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Now, suppose that lim, o, ug’(u)/g(u) = v with v € (0,1/2). Introduce
the rescaled process

S(x,t) = , x €[0,00), t >0,

where 02(t) = Var(S(t)).
Theorem 1.15.20. Under the above assumptions,
S(-,t)—BH, t—

when the convergence is in D0, 00) with the metric of uniform convergence
on compacts, and H = 1/2 + ~.

1.16 Holder Properties of the Trajectories of fBm
and of Wiener Integrals w.r.t. fBm

Let {&:,t € [0, T]} be a separable modification of Gaussian process, pg(s t) =

E(¢— §t) G = G(z) : Ry — Ry be a continuous increasing function, G(0)
0, D(T,¢) fo (T, u)"/?du be the Dudley integral (see Section 1. 10), p(s,t
be some semi- metrlc in [0, 7.

Definition 1.16.1. A function © = O(z) : Ry — Ry is called a modulus of
continuity if ©(0) = 0 and for any x1, 22 > 0

O(x1) < O(x1 + x2) < O(x1) + O(22).
Definition 1.16.2. Let g : [0,7] — R be some function. The function

e — Ay(g,€) = sup lg(s) —g(t)]
p(sat) <e
s,t€10,7T)

~—

is called a modulus of uniform continuity of the function g with respect to the
semi-metric p.

Definition 1.16.3. A modulus O(-) is called a uniform modulus of a Gaussian
process £ with respect to the semi-metric p if for a.a. w € {2

limsup A,(€ (w),)/O(e) <

e—0

The next result is formulated in the book (Lif95).
Theorem 1.16.4. 1. Let for any s,t € [0,T]
pe(s,t) < G(p(s,1)). (1.16.1)

Then the function O(e) := D(T,G(e)) is a uniform modulus of the
Gaussian process £ with respect to the semi-metric p.
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2. Under assumption (1.16.1) with p(s,t) = |s — t|, the function

O(e) = /06 |logr|1/2dG(r)

18 a uniform modulus of the Gaussian process £ with respect to p.

Definition 1.16.5. We say that the function f : [0,7] — R belongs to the
space CP[0,T] if f € C7[0,T] for any v < f3.

Let & = B} be an fBm with Hurst index H € (0,1). Then, evidently,
we can take G(z) = z', so from the second statement of previous theorem,
the function O(¢) ~ e|loge|*/? will be a uniform modulus of B on any
[0,T]. In particular, |Bff — BE| < ¢(w)|t — s[#~7 for any 0 < 3 < H, i..
B € CH=[0,T) for a.a. w and any T > 0. Now, let & = I,(f) = fg f(s)aBH
with f € LI[0,¢] for any 0 < ¢t < T, H € (1/2,1). We can take p(s,t) =
S 1f@)[# du, G(z) = Crra,

Ap(le) = sup 1€ — &l
0<s<t<T:

JEIF @) du<e
D(T,G(e)) = OCHEH H(T,u)"/?du. Then, according to the first statement of
Theorem 1.16.4 and Theorem 1.10.3

limsup A,(1,e)/D(T,G(e)) < 0.
e—0

Now we simplify the situation supposing that f is essentially bounded on
[0,T], fr = esssupg<;<r |f(t)] < co. Then we can take p(s,t) = |s — ¢,
G(x) = Cyfr -z, and O(e) ~ Cy fie|loge|'/? will be a uniform modulus
of I(f) on [0,T].

Now consider the case H € (0,1/2), and f, as before, belongs to L [0, ] for
any 0 < ¢t < T. We suppose additionally that f € C?[0,T] for H + 3 > 1/2.
Then, according to Remark 1.10.7, we can take p(s,t) = |s — t|, G(x) =
Cu I fllceo,m zH and O(e) ~ Cy £l o0, e loge|'/? will be a uniform
modulus of I(f) on [0, 7.

Remark 1.16.6. Some results related to moduli of continuity for non-Gaussian
processes can be found in Subsection 3.5.9.

1.17 Estimates for Fractional Derivatives of fBm
and of Wiener Integrals w.r.t. Wiener Process via
the Garsia—Rodemich—Rumsey Inequality

The following results are not only of independent interest but also will be
used in Chapter 3, devoted to stochastic differential equations involving fBm.
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Consider for any 7" > 0 the random variable that is the right-sided Riemann—
Liouville fractional derivative of order 3 (in Weyl representation) of fBm B,
where 1 - H < 3<1/2and H € (1/2,1):

1 1-BpH
Gy = —— su D,”"B; ,t€(0,T].
() 0§s<€<t| ~(s)l 0,7]

Lemma 1.17.1. For any 1 — H <3< 1/2 and any p >0
EGY < .

Proof. By the Garsia—Rodemich-Rumsey inequality (GRR71), for any p > 1
and p > p~! there exists a constant C,, > 0 such that for any continuous
function f on [0,T] and for all s < 2 <t € [0,T]

6 = 16 < Cple st [ [ L vy

Choose e < 3— (1—H) andput p=H — 5, p= 2 and f(t) = Bf":

B = BJ| < Cnelz — 5|,

Bl
(/ / | | dxdy) ,0<e< H. (1.17.1)
x—y|=

Since BYf — B]! is a Gaussian random variable, and E|Bf — B/|?
28

where

= |z — y|*", we have that for the random variable & . for any ¢ > 1

t |By |% 7%
E|&; | —E(fo a:y|5dxdy)

T E|BY—-B!|
<y, HTfO 7‘1{20@ dy < Cyq.u 1,

lz—y

which means that all moments of & . are finite.
Further, fore < 8 — (1 — H)

|BE —BH| ld
Gy Scﬂsup0§5<z§t [o—s]-P Jrf ‘S y|2 7 dy

< Cﬁ,H,e Sup0§s<t(t - S)H - 1+ﬁ£t,e < C[-},H,sgt,sv

so, EGY < oo for any p > 0. O

Remark 1.17.2. 1) It is easy to see that the random process {G¢,t € [0,T]}
is dominated, up to a constant, by some continuous process with moments of
any order, namely, by & ..

2) Evidently, all moments of the random variable G are finite.

3) It follows immediately from Corollary 1.9.4 that the same conclusions hold
for a Wiener integral w.r.t. fBm with a bounded integrand and H € (1/2,1).
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Now, we establish Holder properties and estimates, similar to the afore-
mentioned, for the integral { fot bsdWs,t € [0,T]}, where b is a predictable
bounded process. For any 0 < § < 1/4 put p = %, 0 = 1/2 —4§/2 in the
Garsia—Rodemich—Rumsey inequality. Then

/t
5/2
| Ub dW |2/6
&= (// Ik Ear— e Y dredy| (1.17.2)

and for any ¢ > 1 from the Hoélder and Burkholder inequalities

t ot (Y 2/5 /2
E|£t,5| _E</0 0 |x_y|1/5 dl‘dy

t ot Bl (Y b, dW,|%dz d tort | (Y92 du|?2dx d
SCq,t/ / |/, |9dz dy ng,t/ / | [ b2 du|??dx dy <c,
0 0 0 0

|z — yla/? |z — yla/?

u| < Célt - 8‘1/2_66267

where

Note that the process §f’ s is continuous and strictly increasing, so, our Wiener
integral with respect to the Wiener process is dominated by a strictly increas-
ing process with all moments bounded on [0, T7.

1.18 Power Variations of fBm and of Wiener Integrals
w.r.t. fBm

We start here with the simple result obtained by Rogers in (Rog97). Consider
for fBm {BH ¢ > 0} with H € (0,1) and for p > 0 the sums

271
p
H H
= E ‘B% —B(j:)_ﬂ;)t
Jj=1

gpH—1) (1.18.1)

and
p

271/
Sn,P(t) =27 Z ‘Bﬁ - Bg—l)t
j=1

Then Law(Sn,(t)) = Law(S, ,(t)) (i.e., these sums have identical dis-
tribution), due to the self-similarity property of B: (Law(BH t > 0) =
Law(c® BH t > 0)).

The sequence (B,f — B,f_l)ke ~ is stationary. Therefore, from the ergodic
theorem

Spp(t) — B|BIP = CptP?  as n — oo
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with probability 1 and in L (P), whence
d pH
Spp(t) = CptP™ n — oo, (1.18.2)

80 Sp p(t) R CptPH  n — 0.
From (1.18.1)~(1.18.2)

2m » Oa p > %7
3 ’Bﬁ - B LN e p< i (1.18.3)
i=1 E|BEY" p=1/H.

Now, consider the interval [0, 1]; let {mg, k > 1} be a sequence of refining
partitions and I7(d) be the set of all partitions 7 of [0, 1] with |7| < 4.
Evidently, from (1.18.3) we obtain that

lim sup S(|z[P,7, BY) =400
64'077617(5)

with probability 1, where p < % and
Sp(w),m, X) ==Y w(Xy, — Xy, ).
tiem
Now we use the result of Kawada and Kéno (KK73).
Theorem 1.18.1. Let {X;,0 <t < 1} be a centered Gaussian process with
continuous trajectories such that
BIX, — X,[* < o®(|t - s]),

where {o(t),0 <t < 1} is a continuous function with o(0) = 0. Let {1 (t),0 <
t < 1} be a non-decreasing regular varying function with exponent o > 0
satisfying

P(o(t)) <ty(t) for 0<t<1 and ltil%lw(t) =0.

Then lims—.o SUPrecp(s) S(¥(x), m, X) = constant (including oo) holds with
probability 1.

Put X, = B, 02(t) = ¢3! 4(t) = t# ¢ for some £ > 0 (recall that

a function is regularly varying if fp(ét)) — p(x) as t — oo and in this case

p(z) = 2# for some 8 > 0). Then ¢(o(t)) = t'+H¢ and all the assumptions of
Theorem 1.18.1 are satisfied. So, lims—.o sup,c sy S(|z(P, 7, BH) = const for

any p > % Evidently, this constant is zero since for any p’ > p > %

S, 7, BTy<  sup  |BF —BJP'?.S(a?, 7, BY),
0<t<t/ <t+6<1
and the first factor tends to zero a.s. as § — 0.
Now, let H € (0, 3). In this case we can use the following theorem for the
case p = 2.
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Theorem 1.18.2 ((KK73)). 1) Let the following assumptions hold:

(a) B|X; — Xi|* < (|t — s]);

(b) o(t) is a non-decreasing regular varying function;

(c) the function o(t),/2loglog 1 is strictly increasing near the origin.

Let II(k) be the set of all partitions such that min [t; —t;_1| > +. Then

limsup,_ sup S0 @hmX)

<1
mell(k) é(%)

)

with probability 1, where

@(t) = sup o (0(8)\/@) |

s>t S

2) Let the assumption (b) hold and also
(d)E|Xs — Xi|* < o(|t = s]);

(e) o2(t) —a%(t—h) < Co?(h) for some C > 0, any smallt and 0 < h < t.
A ~ S(o~(z),7,X) . ..

Then liminfy_, o SWPreiih) — a(1) > 1 with probability 1.

Put o(t) = t¥, X; = BH. Then conditions (a), (b), (c) and (d) hold.

Moreover, for H € (0,3) 02(t) — o2(t — h) = t**T1 — (t — h)?*+! < p2ot!

for all 0 < h < t < 1. The function 43() now has the form @(t) =

(2loglog %)%, whence limy,— oo SUP, ¢ 71 % =1 or, in other words,
1
; Ltjen ‘3573571‘ﬁ _
limg oo SUD ¢ f7(k) 210z log 1) 77 =1.
For H € (1/2,1) we have no assumption (e), so, give only upper bounds.
Namely, from the first statement of Theorem 1.18.2, we can deduce that

Zt €7r|

limsupy,_,,, sup 5
) (2loglog k)zH

- Bl Nk

Moreover, the following result holds.

Theorem 1.18.3. Under assumptions (a)—(c)

lim sup S(y(x),m X) <1,
=0 7e11(5)

with probability 1, where (x) is the inverse function to o(t)y/2loglog + near
the origin.

In our case it means that

lim sup 1/J|BH BH 1) <1,
§—0 well(d) tEE:T(
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where 1(t) is the inverse function to t/21loglog %
Let, as before, IT be the set of all partitions of the interval [0, 1].

Definition 1.18.4. For any p > 0 define p-variation of the function f on the
interval [a, b] as
vp(f) = sup S(|z|”, , f).
well

Also, let p-variation index of the function f be v(f) :=inf(p : v,(f) < 00).

The last relations mean that v(By) = % with probability 1, and, more-
over,

1 1
vp(Br) <oo for p> I and =oo for p< 4

This result was obtained in (Nrv99) from another point of view. Let
{X¢,t > 0} be a Gaussian process with stationary increments and E| X, —
X% = 0%(s). Let v, == inf{y > 0 : limy o ﬁ:) = 0} and 7v* := sup{y > 0:
limg o % = o00}. Then 0 < 4* < 7, < 4o0. If v* = v, then we say that the
process X; has the Orey index y(X) = v* = ~,. Let X; have the Orey index
v(X) € (0,1); then it follows from the results of Berman (Ber69) and also
from (JM83) that the p-variation index of X; equals v(X) = ﬁ Evidently,
the Orey index of the fBm equals its Hurst index and equals H.

Now consider briefly the Gaussian process X; = I;(f) = fg f(s)dB.
Let H € (%, 1) and the function f is essentially bounded on [0,1],
esssupg<,<y | f(t)] = f*.

Then, according to Theorem 1.10.3, E|X;, — X > < o2(t —
s|), where o%(t) = Cy(f*)*?**!, therefore from Theorem 1.18.1
lims o sup,¢r(s) S(|zP, 7, I) = 0 for any p > 4 and from Theorems 1.18.2
and 1.18.3

limsup,_,., sup 17r <1 P-as, (1.18.4)
weﬁ(k) 4 E)
lim sup S(¢(z),7,I)<1 P-as. (1.18.5)

000 1 1(6)

where 1 (z) is the inverse to C’}{/Qf* tH, /21og log% near the origin.
Let f, := essinfo<i<1 f(t) > 0. Then

t t
E|l, - I,* = OH/ / f) f()u—v** tdudv > Cr f2|t — s>,

whence S(|z|P,m,I) £ 0 as |7 — 0 and p < +, and together with Theo-
rem 1.18.1 it means that

1
lim sup S(|z|?,7,I) =00 P-as., p<—.
jm sup (|| ) i
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For H € (0,1) and f with f. > 0 we can immediately conclude from
Theorem 1.9.1 that

B|L - LI* 2 CullfIL, (o0 = Cuf2lt — s,
H

whence S(|[P, 7, 1) & oo as [x| — 0 and p < 4. Let f € C?[0,1]. Then we
can deduce from Remark 1.10.7 that

E|I, — I]* < Cullflles o ((t = 8)°*TH + (£ — 5)27F20),

whence (1.18.4)—(1.18.5) follow for H € (0, 3).

Remark 1.18.5. In the paper (CNWO06) the process of the form fg usdBH is
considered where u, is a stochastic process with paths of finite g-variation
and the integral is pathwise Riemann—Stieltjes integral (construction of such
integrals is described in Section 2.1). The convergence in probability of the
normalized power variations of these integrals is established and their devia-
tions are considered.

Remark 1.18.6. Modern results on power variation of the integrals and other
processes related to fBm are established in (GuNu05), (Nrv99), (CNW06),
(DN99).

1.19 Lévy Theorem for fBm

The idea of this problem belongs to E. Valkeila. The results are published in
(MV06). We start with the classical Lévy theorem:

Theorem 1.19.1. Let {u(t),t > 0} be a continuous local martingale with the
angle bracket (u)y =t. Then u; is the Wiener process.

The natural question is: how can the fBm be characterized in a similar
way or by some other properties?

Let {2, F,{Fi}+>0, P} be some stochastic basis, {X;,t > 0} be a stochas-
tic process (not necessarily adapted, as for beginning). For any ¢ > 0, denote
ty = t%, 1 < k < n. The main result of this section is:

Theorem 1.19.2. Let the process X; satisfy the following conditions:

(a) trajectories of X are Holder of any order 0 < 8 < H, where 0 < H < 1;

(b)n?* >0 (Xy, — Xty 1)? — 29T for any t > 0 in the space Li(P), as
n — o0o.

(c) the process My := fg $T¥(t—s)"“dX; is an Fy-adapted continuous square-
integrable martingale, where « = H — 1/2.

Then Xy is an Fy-adapted fBm with Hurst index H.
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Proof. We shall divide the proof into several steps. Firstz consider the case
H € (3,1). Let the square-integrable martingale W; := [j s*dMj, t € [0,T7,
T > 0 and the process Y; := fot s~ *dXs. For convenience we put T' = 1. We
can establish the existence in the pathwise sense of the latter integral using
Holder properties of X and integration by parts.

Evidently,
t
M, = / (t — 5)-*dY,. (1.19.1)
0

Lemma 1.19.3. The process X; admits the representation

1 t t
X; = —/ {/ s%(s — u)o‘lds} u” *dWy,
Cu 0 u

where Cy = Bla,1 — a).

Proof. Equation (1.19.1) is a generalized Abel integral equation and has the

formal solution .
1

- 07/ (t — s)* ' Mds. (1.19.2)
" Jo

It is very easy to check that (1.19.1) becomes an identity, if we substitute
(1.19.2) into (1.19.1), rewritten as

Y

t
M, = Y, + a/ (t—8)" (Y — Ya)ds. (1.19.3)
0
Moreover, the corresponding homogeneous equation
t
0=t + a/ (t —s)"17(Y; — Ys,)ds,
0
has only a zero solution, whence Y; admits the representation (1.19.2). Further,
t t
X, = / s4dYy = t*Y; — a/ s Y.ds
0 0

ta t a t s
= — [ (t—s)*" ' Mds — — / st / (s —u)* ' M,duds
Cu Jo 0

Cu Jo

1 t t L

= — s%(s —u)* “ds| dM,.
Cu Jo [/u ( ) }

Remark 1.19.4. From Lemma 1.19.3, for any 1 < k < n, it follows that

1 tr tr
X, — Xty = Cn (/0 (/ u®(u — s)o‘_ldu> dM,
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_ /Ot'” (/tk u(u— s)a—ldu> dMS>
- Ci{(/otk (/fk u®(u — s)@du)dMs

tk—1

+ /: (/tk u® (u — s)a_ldu) dMS> : (1.19.4)

Denote .
k
ol (s) = / u®(u — 8)* Ldu,
te—1
and
ty
Vi (s) ::/ u®(u — 8)* du.
Then

1 th_1 ty
AXy, =Xy, — X4y, = — / cp};(s)dMs + w,tc(s)dMs .
Cu 0 th—1

(1.19.5)
Now, let 0 < s <, and let § be a rational number, such that 7 € Q.

Lemma 1.19.5. Let n € N be an increasing sequence, such that n; € N,
t% = tk/ﬁ

- Li(P),
Then n2 Zk:ﬁ%-‘rl (Xt); - Xtﬁ)2 -

t2%(t — ), n — oo.

Proof. Evidently,

, ny ) \2a /1) 2 ng 2 £\ 20
ﬁ « Z (AXt];) = (ﬁg) . (8) Z (AX;S‘I:) — 5204+1 . <S) == St2a.
k=1 k=1 ¢

We know from condition (b) that 722 Y7 _, (AX%)2 — t29F1 whence the
claim follows. O

Now we want to estimate m2% Zﬁzﬁﬁ (AX%)2 in terms of the angle

bracket (M), by using representations (1.19.4)) and (1.19.5). In order to do
this, rewrite the increment of the process X in the form

1 tr—2 th—1 ti
AXt% = FH (/0 ‘pzltc(s)dMs +/ ‘PZ(S)dMS + ¢£(S)dMs>

te—o th_1

1
E(If + 15+ 1),

Evidently,
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a—1 t n-%
¢i(s) < (t% (th — )" n) A ( - ) (1.19.6)
and -
n 2
e Y (ax)
k=241 "
~2a n
= Z«T S (IF? 4 (I5)? + (I§)? + 20f - 1§ + 2If - I§ + 21F - IF)
H \k=ns+1

(1.19.7)
Now we shall estimate the terms on the right-hand side of (1.19.7).

Lemma 1.19.6. There exist two constants C1 > 0, Cy > 0 such that

Cyt2e / t u?*d(M), < P-lim(7** i (I7)?) < Cot™™((M)y — (M)s).

n—oo -
k=715 11

Proof. For simplicity, we shall omit ~, and consider only such n that n$ € N.
From the It6 formula for square-integrable martingales, it follows that

it = ([ ehwann)’ = [ etraan.

te—2 u
Lo / / b ()dM, - ()M,
0 0

First, we estimate

n

th—2
spi=nte Y / (o (w))?d(M)...
k=n$+2

From (1.19.6), we obtain that

th—2 . 9 5 k 2c +2 th—2 22

/ (pk(w) d(M), <t () —2/ (th—1 —u)* "2 d(M),.
0 n n= Jo

So, the estimate of ST from above has the form

n k 2ce th_o 3
Sp < pPomgetz N () / (thoy —u)** 2 d(M),.  (1.19.8)
0

- n
k:n%+2

Now, we rewrite the sum in (1.19.8) for 0 < s < t and
2 < nf <n-3:
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S = Z / (t—1 — u)** 2 d(M),

kn+2

2 >+ Z_: > / (tho1 — u)** 2 d(M),,

i=1 k=ns+2 i=nS4+1lk=it2/ Yli-1

S(s

. (th1 — u)2°‘2> d(M),,. (1.19.9)

zn+1 k=1+2

Evidently,

I 2a-2 _ 1 202 1 2a—1
=N (e - < = (tisr — e (tigg — .
nk:i+2(k 1 —u) < o (i — ) +(1—2a)t( +1—u)

We substitute these estimates into (1.19.9):

trL 1
2a 1
511 < 1— 2 Z/ td<M>“

+n 2”: /ti [i (ti-l—l - u) o + (IJT)t (ti+1 - u)2a1] (M),

i=ns41 7 ti-1

%/ (s—u)2a_1d<M>u+t20‘_2n2_20‘(1+
0

1
1 -2«

(M), = (M),).

IN

We return to (1.19.8) and obtain that

Sy < mer et / (s — )P, + e +1) (M), = (M),).

0 1 -2«

Note that the martingale M is Holder continuous up to order %, so W is
Hélder continuous up to order 3, (W) is Holder continuous up to 1, and the

integral

° S—u 2a—1 _ ° S—u 2a71u72a
/0 (s — > 1d(M), / (s — ) 4,

exists. Therefore, n2®~1 f —u)?*=td(M), — 0, n — oo. We obtain that
lim,, 00 ST < C2t4a(<M>t — (M)). Now we estimate ST from below: first,
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t2

(Ph@))” > ()™ (1 — w2 .

Then,

th—2
SIL > n?(x—2t2 Z / (tkrfl)za (tk _ u)2o¢72 d<M>u

k=nz42"0
n2o— 2t22/ Z (to_1) 2a u)2a’2)d<M>u
k ns +2

n2a—2g2 Z / zn: (tk_l)m(tk—u)2“_2>d<M)u. (1.19.10)

i=ng+1 tic1 "= i+2
Consider the interior sum of the second term:

n o o 1 [t 1\ 2¢
> (1) (b —u)** 7 > ;/ IQQ*Q(:HU*%) dx

k=i+2 tit2—u

1 5 t—u
Z — (ti+1) a/ .Q?Q(X_Qd.’l?
t

t 42— U

- tga_l i+1 2a . (ti+2 i u)2a71 _ (t _ U)Qa—l
- n 1-—2a '

So,

t2a+1 2a—1 n—3
STL
1= " 1-2a 2 (

i=n$+1

I \/

2a ti
) / [(t¢+2 et
ti—1

(- u)ZO‘*l}d(M)u.

Consider the function f(u) := (40 — u)>* ™" — (t —u)2*~! on the interval

[ti—1,ti):
3204—1 _ 4204—1

F) > (tigr —tim1)* 7 = (t—tig)** ' = Ttm_l'

Therefore,
__ {atlpZe-l n—3 L i1\ 2 a1
stz X (n> ppam1 WM

i=ns41 7 tim1
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X(32a—1 _ 42(1—1) Z Clt20¢ 7§ /ti (’LL + %>2Oéd<]\4>u7
) n

i=ns417 -1
and .
nh—{go ST > Cltzo‘/s u?*d(M),,
or, in terms of (W),

lim S > C1t** (W), — (W)s).

n—oo

Now, we try to prove that S7 — 0 in probability, where
n th_o u
Sp=n 3 / ( / Ph(9)AM, ) ok ()M,
k=ns+4270 0

Evidently, it is sufficient to consider the sums of the form

n trp_o u
sp=n > [T ([ o) eioan,.
k=2

because the sums

ng{+2

2 / Y / " h(5)M, ) ol ()M,

can be considered in a similar way.

We use a very weak version of the Lenglart inequality: if IV is a locally
square integrable martingale on R, then for any € > 0, A > 0 and T" > 0 we
have that

P{ sup |N(t)] >¢} < % + P{(N)r > A}. (1.19.11)
0<t<T 15

Rewrite S5 as

n—2 ti
S = n2« E / (
i=1 Jti-1

where

1—2

n

> db) [ etoars)ar, = [y,

u
k=i+2 0 0

=3 soi(u)/usoﬂs)dMs, ue [i_l,i)

n n
k=i+2 0

Since the martingale M is continuous (and square integrable), we can
localize it: let for some L > 1

T, = 1nf{t >0: |Mt| V <M>t Z L}7
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Mt:Mt/\‘rLy<M>t:<M>t/\TLaEu: M TL—OOlf|Mt|\/< > < L for all

t>0.
By (1.19.11), it is sufficient to prove that for any L > 0,

t(1-3) 9
n4a/ wud<M>u
0

4&2/1<

ti k= z+2

2
u)/o wZ(s)dMs> ATy 20, n— oo
(1.19.12)

First, we estimate the function 1, := S heive Ph(u) fo h(s)dM, =
D h=ig2 Pk (@) (W) My — fo" Ms(p(5))sds). Evidently,

(Phw) = (1-a) / * (v — u)o2dy.

th—1
Therefore,
n u tk
[ty < L Z 24 L(1—a) Z go’,i(u)/ / v (v — 8)* ?dv ds.
k=i+2 k=i+2 0 Jtp—s
Estimate the terms separately:
tOH—l a1
¢i(u) < (th—1 —u)™ ",
whence,
n t2+2a n t2+20£
> (phw)? < 3 > (e —w) P < (i1 —u)?*?
k=i+2 k=i+2
t2+2a 1 9 t4a t20¢+1 (t 1 — u)Qoz—l
tr — a—2d - i+ <C —2a
* [H(x u) . n2o n 1 -2« = ’
and

tr
/ / (v —5)*2dvds < C Z ok (u / v (v —u)* dv
te—1 th—1

k=i+2

n

<C Y (phw)? < on
k=i+2

—2
From these estimates, it follows that 1, n?® < C. Therefore, there exists
the bounded dominant. In order to establish (1.19.12), it is sufficient to prove

that 1, n2® 20,0 < u < 1. We have that
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E(¢,n**)* = n**E ( > eilw) /0 ' wi(S)dMs>

k=i42

n 2
— n"E / (Z soz<u>soz<s>> d(3T)..

k=i42

Similarly to previous estimates, we obtain that

n 2 n
n't® ( > @2(@%(8)) < 0714“( > % (thoa —w)*

k=i+2 k=i+2

2 n 2
_ 1 _
> (tk71 _ S)a 1) S Cn4oc—2 <n E (tkfl _ u>2a 2)

k=i+2

22«

2
n
< Cnto—? ( + nl_za) < C, for some C' > 0.
This means that the bounded dominant exists. Moreover,

n n

(0% « 1 a—
Y ehu)ph(s) < Cn® D7 gh(u) - —(u—s)*!
k=i+2 k=i+2
1 1
< Cn?*. 7/ v (v —u)* tdu - (u—s)*"1 =0
nJes

for any s < u. This means that S% Kt 0, and the lemma is proved.

Lemma 1.19.7. There exists a constant Cs3 > 0, such that

P-lim n?* zn: (I < Cst*™ (M) — (M)y).

n—oo
k:n%+2

Proof. We apply the It6 formula to (I5)? and obtain that

a2 = [ atenaan. s [ i)

From (1.19.6) it follows that

n

| kP, we < pec(an. - ().).
k=ns427 k-2
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Similarly to the estimates from Lemma 1.19.6, we obtain that for any
A>0ande>0

pln Y /tt“ (/t o (u)dIT, ) ()0 > e |
k=n242 7 th-2 k—2
< G p{nt 3 /tt“ (/t G (w)dBL (ch(s)) d(BT). > A},
k=n<42 " th—2 k—2

So, it is sufficient to prove that

n
n4a E

k=ns427 th=2

tr—

1 s 2
— —\ P
([ e, e ramm, 2o
th—2
The existence of the bounded dominant is established by the estimates:

w7 L) (o)

tp—2

<t (T = hltn) Ty = ([ () adu)) - (6h(5)?

< CL*n*™ (@Z(S) + o (te—2) + /té /tlc v (v —u)* ?dv du)2 (¢t (5))?

th—1

< 9CL2*n*(1/n)te - 1> < C L2t
Therefore, we must prove, that for any s < v <t

w7 Al (o) £ 0. 0o

th—2

t4a —

Here (¢} (v))? < Ly, Taking into account that (M) is bounded and continu-

ous, and by using the relation

A S (¢h(w)?d(M)ud(M)y < CE((M)s — (M)y,_,) — 0,

th—2 B
for s < tx_1, we obtain the necessary estimates, whence the proof follows. 0O

Lemma 1.19.8. There exists a constant Cy > 0 such that

P-lim n2° z": (1KY < Cy((BT), — (MD)y) - 4.

n—oo
k=75 11

The proof is similar to Lemma 1.19.7.
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Lemma 1.19.9. We have that
n
. 2 krk _
nh_}n;on @ E Iilj =0
k

in probability.

Proof. Consider, for example, n?* >} | T FIF, where we substitute M instead
of M. But in this case,
n 2 n
noB (SO IFIE) = nt B Y ()2 (15,
k=1 k=1

where I} = tt::; (oL (s))2d(M)s, since I, I%, I} are pairwise orthogonal.

Moreover, from inequality (1.19.11), it follows that we must only prove the

relation
n

o P
'Y (IF)*(15)* = 0.
k=1

According to Lemma 1.19.6, we have that

n

1 2c k\2 < 4o
P-limn Z(Il) < Cot™ (M)

and

n2a max / kil((pZ(s))2d<M>S < a_2 max (<M>tk 1 <M>tk—2) — 0.

1<k<n Jy,
All other terms can be estimated similarly, whence the claim follows. O

By using our estimates, we can conclude that for rational s, consequently
for any s < t, the following claims hold:
(a) there exist two constants, C; > 0 and Cy > 0 such that

Cy /t W d(M), < (t— ) < Cot?* (M), — (M)s).

S

This estimate can be rewritten in terms of W and (W):

CL({W): = (W),) < (t—s) < Cot™® / WA )

n t
P-limn®* )" (AXy,)? = Pim [ oUd(M),,

n—oo
k:n%—&-l s
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where ¢7 is a positive, bounded, nonrandom function, separated from 0 by
some constant.

From the left-hand side of (a), it follows that (W); is absolutely continu-
ous w.r.t. the Lebesgue measure, so (W), = fot 0,ds, where 0, is a bounded,
possibly, random variable. From the right-hand side of (a), it follows that

t 1 t
/ w20, du > F(tl_zo‘ — stT2) > Oyt 2 — 5172 = Cg/ u2%du.
s 2 s

This means that .
/ u™2*(0, — C3)du > 0.

Evidently, for any set A € F

t
/ / u"%*(0, — C3)dudP > 0.
AJs

Now, let the set D € o{F x B[4, 1]}, and let § > 0 be fixed. Then u(D) < oo,
where u = P x A, A is the Lebesgue measure on [0, 1].

By the theorem of approximation of measurable sets, for any € > 0 there
exists a collection of the sets

{.Dz = Bz X [Si,ti},Bi € .7:, [Si,ti] S 8[5, 1]},
such that

k k
M((D\ UpaUJU Di\D)) <e.
i=1 i=1
Therefore, since u=2%(f,, — C3) is bounded on D,

/ w26, — C3)du > 0. (1.19.13)
D

Now, set
D = {(w,u) : 0, —C3 <0, and u > ¢}

and we immediately obtain that p(D) = 0. From here we conclude that (W) is

equivalent to the Lebesgue measure, and W; = fot 9§ dVy, where {V5, Fs, s > 0}
is some Wiener process.

Now, if we do all the same calculations as before, but for “true” fractional
Brownian motion B}, we obtain that

n ¢
];jiorglnza Z (AB{Z)2 = ]Zilorgl Y52 ds
k=n$+1 i
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(It is sufficient to take s = 0.) Therefore, P-lim,_, f; Yidu = 0, where
b = 206, — 1),

Counsider any set D € o{F x B[d, 1]}, repeat all the previous reasonings
and obtain that 8, = 1 (otherwise, put D = {(w,u): 8, > 1+ a, or
0, <1—a}).

We proved Theorem 1.19.1 for H € (1/2,1). Now we consider the case
H € (0,1/2). Similarly to Lemma 1.19.3, we can present the process X; as

t t
X = / z(t, 8)dWs, where Wy = / s*dMs,
0 0
and
[e% t
2(t, 8) := (C}?))*lmfl(t, s) = <s) (t—s)* — ozs*a/ u*Hu — s)*du.

Therefore,

tk—2 it s\ —«
Xy — Xy, = —a / (7> (u— $)°~du dW,
tr

0 _ \u
tk—1  ptk s\
— a/ (7> (u— 8)* tdu dW,
theo Jtp_1 U

=JF+ Jy+ I+ Jf

For H € (0,1/2) it is more convenient to deal with Wy, not M;.
Evidently,

n n
. . 2
lim n2“ E (Ath)2 = lim n?® E (Jf)
n—oo n—oo
k=n$+2 k=n$+2

D S €/ R/ S | EE N (N O/ L /3]
k=n3+2 k=n$+2

First, estimate
n

lim n?® Z (Jf)Q

n—oo
k=n{+2

from below and from above. As before,



1.19 Lévy Theorem for fBm 107

n

lim n?® Z (AXy,)” — t2%(t — s).

n—oo
k=n{+2

First, we obtain upper bound for the sum

spi=nte Y /O (6L(5))° AW,

k:n%—i—Q

B(2) 7 (u—s)*"du, s < t5_y. Evidently, for s < t;_5

where 0% (s) = o

0L (s) < ((tk_l _ g 2) A <_1a (i)a) . (1.19.14)

Therefore, for such n, that n3 € N we have that

n k=2 ¢, )
sp=n 3 % / (6L(w)? (W),

k=n242i=1""t

— (Y X Y[ ) am,

i=1k=n$+2 i=n2+1k=i+2

+

n
¢ ¢ 2a—1 n—2 t;
+ — n2ot / d(W),,
1-2a (n> Z,_;H ti1
n—2 t; ¢ 2a0—2
itz 3 / AW () . (1.19.15)
i=ns41 7o K

The integral [ (s+ % — u)mfl d(W),, according to Lemma 2.1
(NVV99), can be estimated as
¢ 2a—1+p
<C(w)<s—|——s> ,
n

/Os (s + % - u) o d(W )y

for some random variable 0 < C'(w) < oo, where [ is Holder index of (W),.
Evidently, 8 > 0, and it holds that

s ¢ 2a—1 1 2a—14p8
/ (S + —_ = u) d<W>u . n2a—1 ~ n2a—1 (n> N 0.
0

n
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The same is true for

s ¢ 20—2
/ <s + - - u) d(W), -n?*~2.
0 n

The last two integrals from (1.19.14) admit the estimate:

n—2 ts 2a—1
! t t
d u - 200—1
Z »/til <W> I —2a <n) "

i:n%+1

+ nf) /ti d(W), (t>2a2t2n2a2 <20, (W) — (W)s).-

n
i=ng 417 ti-1

Now we obtain the lower bound for S}. Return to (M) instead of (W).

n tg—2
n « 2
Sp=n ) / (k(u))? (M),
k=n24270
2, 202 - 20 [2 20—2
2> t°n > (k) (tk —uw)™ " d(M)y
k=n= 0
ngi-—1 n n—2 n ti 20—9
(Y 3 S Jar [ (w-a) o,
i=1 k=ni+2 i=n241k=i+2 ti-1

n—2 t
i1 _
— Of2at2,20-1 Z / 2 ((ti+2 B u)2a 1 (t— u>2a—1) d(M),,.

i=ns417 bim1

Note that )
n— tl
n2a—1 Z / (t _ u)2a71d<M>u
i=ns 417 b1
2 2a—143
~<t—t—|—) n?*7t 50, n— .

n

Therefore,

n
: 20 k)2
lim n E (Jl)
n—oo
k’:n%-&-l

n—2 t;
> Ct2a+1n2a71 Z / (ti+2 _ u)2a—1 d<M>u

i=n$417 i1

n—2 t;

> Ct2a+1n2a71 Z (ti+2 i ti71)2a71/ d<M>u
t

i=ng+1 i—1
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The “remainder” term for > (Jf)2 equals
R, :=n*® / (/ 0 (v dW)et()
k=n$+2

For technical simplicity, it is enough to consider the stopped process W,
instead of W3, and EZT 4 for any r € N, instead of

D hens sig =~ ot H—!—Zk _5. We obtain that
nr k—2 ¢, u 2
E@fﬂﬂ%ZZ/t/%M%ﬂmwﬁ
k=3 i=1 Y ti-1 /0

—wes (5[ [ amdwf

1=1 k=i+3

4an§:2]E/l ( /9t )dW , - 0% (u )) AW ).
k=i+3

Let us estimate

/ 6! (v)dTV,
0

0! ()W, — /O W, (04(0)) do
/“ (92(1})); dv| .

0

< L|6j(u)|+ L

It follows from (1.19.14), that

/Ou (92(1})); dv

Moreover,

= |0}.(u) — 6,(0)| < C <:;) for some C > 0.

nr 2 tr 2
n o1 (u)) < n? ( (v — u)aldv>
() = ([

= Cn® [—(tr — w)® + (tig1 —u)*]* < C,

and the integrand

(Z/ek VAW, 9%)) <C,
k=i+2

i.e. there exists the integrable dominant. Therefore, it is sufficient to establish
that for any u
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nr u
2 e P
e S [ o, e Lo
0

k=i+3

We take the mathematical expectation and obtain that

AR /ou < Z 92(@)02(10) d(W),.

k=i43

The bounded dominant exists. Indeed,

nr 2 nr 2
nt® ( Z 9,2(1))9,2(11)) < n2e ( Z 92(1})) <C,

k=i+3 k=i+2
as before. Further, we must prove that

nr

n*® Y (0)8(w) — 0

k=i+3

for all fixed 0 < v < u. We have that

nr nr th
n Z 0% (v)0% (u) < n*® Z / (s —u)*ds
th—1

k=i+2 k=i+3
tr nr 1 tr
> / (S _ U)a_ldS S n2a Z (tk:—l _ u)a—l 7/ (S _ U)a—lds
ti—1 k=i+3 St
tr
< n2a—1 (ti+2 _ u)afl/ (S _ v)a—lds
tit2

<Cn* Yu—v)*"t =0, n—oo forany 0<v<u.

From all these estimates, the remainder term R, Lt 0, n — oo, and we
have established that

Cit*™ (M), — (M)) < lim n2® i (J{“)Q < Cot?* (W), — (W)

k::n%‘+2

n—oo

(Note, that for H € (1/2,1), we obtained opposite estimates.) Note also
that we cannot estimate ) (Jik)2, ¢t > 1, from above. Indeed, the inte-

grand of the form (t% —u)a that admits the estimate < (%)a — 0 for
H € (1/2,1), now, for H € (0,1/2), tends to oco. So, we mention that

S s o (JE+ JE 4+ JE)? > 0, prove that Y JF (JF + J5 + JF) — 0, and
obtain the estimate from above:

C1t** ((M)e — (M)s) < (t = s).
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In the sequel, we realize this plan.
It is sufficient to estimate the sums from k = 2 till £ = n. By applying the
Lenglart inequality to n2® > or JFJ% we obtain that it is sufficient to prove

that

([ Q) e

n — u—8 udW 4
k=2 \”0 thoa Y

2

te—1 tr s\ —a

X - w—8)*"Ydu | dW),
| (/t“(u) (u=s) ) )

n th_o 2
< Cn*® Z (/ GZ(s)dWS)
0

tr—1 5 -~ p
/ (b1 — )2 d(T)s 2 0.
k=2

tp—2
Integrate the last integral by parts:

/ Tty — 82 () = (s — te2)™ (), — ()i, )

tr—2

_Qa/ T s = 9T (W, — (W).) ds

tr—2

< On 2 AW)y, ., + C/tkl (tems = )" (W), — (W)s) ds.

th—2

/OtM e,g(s)dws>

- /0 - (92(8))2d<W>s + 2/0 o /OS 0L (v)dW 0L (s)dTV .

It was proved that

Now recall that )

VR

ot i=n a;/o (6L(5))° d(W),

is bounded in probability, and
n te—o S o ___ p
oy = n** Z/ / 04 (v)dW 0% (s)dW s — 0, n — o0.
k=270 0

Therefore,

2

n th—2
nte Z (/ HZ(s)dWS> SO AW )y,
k=2 /O
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P
tr.; — 0, m— o00.

tr_2 o 2 th—1
(/ QZ(s)dWS) / (tp—y —s)** "
0 th—2

X (Wi, = (W)s) ds < Cw) (o7 + Ug)nw/ - (th_1 —s)** " ds

< (Col - max AW)y, , +Col - max A(W)
Also,

n
n4oz §

k=2

tp—2

1—¢
/1
R T e I

Consider n?> Y _, JEJ&:

n te—2 tr -«
nZO‘Z/ 9,2(3)dws-/ (5> (b — 5)° dW.
k=170 tioy \ Tk

As before, it is sufficient to prove that

w3 ( /0 e 9;(s)dws>

k=1

2

or, equivalently,

tr .
2 max / (te — 5)2 d(TT), - (o + o) 2 0. (1.19.16)
te—1

Note that by (NVV99, Lemma 2.1) and due to Holder properties of (W),

/tk (t — $)>* d(W), < C(w) (tp — trp_1)** T 7% ~ <1>2a+1s |

tr—1 n

whence we obtain (1.19.16).
Now, consider n?® " JFJ¥: other sums can be estimated similarly. After
some transformations,

2 2

./t:’“ls—za (/t u"_l(u—s)adu> (),

n

iy (/Otk th(v)qu>

k=1

2

tk Tk
< n?e m}gx/t (/ u® 1w — s)%lu) d(W)s - (o7 + 0%)
k—1 S
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Tk Tk Tk -
< n2e mliix/t (/ u?* 2 du - / (u— S)Q“du) d(W)s - (o7 +03)
k—1 S s

tr
< Cn?*® max/ st — )2 AW - (07 + o)

k te—1

1 tk _
<Cnmax [ (0= 5" (W), (o + o)
tp—1

2a+1—¢

ng]?x(tk—tk,l) (o] +05) —0, n—oo.

Due to all these estimates we have proved that

t2(t — s) = lim n2® zn: (AXy,)? > C1t* (M), — (M)y),

nﬁoo k=n{+2
ie.
(M), — (M), < Cot™(1 — ) = Oy (172 — st72%) < 0 (172 — 51727)
or

t t
/ u 2 d(W), < 02/ u” 2 du.
s s

As before, it follows that (W); is absolutely continuous w.r.t. Lebesgue
measure,

(W) = /Ot 0ds, (1.19.17)

0 <0, <C, C is some constant, 6 possibly is random.
Taking this into account, we can continue estimates from above: for exam-
ple, if we take for simplicity the sums over k = 2 till kK = n, then

n 9 n te—1 tk s\ —« 2
n?* Z (J5)" =57 + 55 = Cn* Z/ (/ (7) (u— s)aldu>
t tp_q U

k=1 k=1"tk—2

n

X d(W), + Cne Z/tk’_l (/u 0,2@)dm> 0L (u) AW,

k=17 tk—2
where
o= [ (2) s w90
= - - < (fk—1 — .
g t—q U
Therefore,

n th—1
r<coney / (to1 — )% d(W),.

k=1 tk—2



114 1 Wiener Integration with Respect to Fractional Brownian Motion

Direct estimates give nothing (because of singularity at tx—1). So, we go
by an indirect way: for some A > 0,

th—1 5 th—1— g th—1
/ (bt — 5)% d(W), < / +/
th—2 tp—o2 ¢ !

k—1"nA
¢ 2a
< (tk1 - (tk1 - nA)) - AW )y,
tp—1
+ (thanks to (1.19.17)) C (th—1 —5)**ds
th—1—

¢ 2c ¢ 20+1
<[ — — .
- (nA> A<W>t"'+0(nA>

Taking the sum, we obtain:

n ¢ 2c ¢ 2a+1
Gp < Cn* Y <nA> AWy, +Cn**n (m)

k=1

1

t20¢+1
A2a+1 :

< CA—Zat2a<W>t + C

If we estimate the sum from £ = n$ + 1 to k = n, then

=n —z2Qpix 1 « s
o < CAT2E (W) — (W),) + CA2a+1t2 i (1 B ;)

1
A2a+1

= CA722 (W), — (W) + C t2(t — s).

Now we want to prove that

n tp—1 u
n2’1 Z/ (/ etk(v)dWU> otk(u)qu £> 0, n — o0o.
tr—2 tp_o

k=1

As usual, it is enough to establish that

nio n tp—1 w 0! (U)dWU> ot (u) 2d<W>u 50.
k.zzl/tkg </tk2 k (k: )

But we can bound (W), by Cdu, so, it is enough to prove that
2
= [T o = 2 P
nie Z/ (/ HZ(v)de> (6}, (u))” du = 0.
k=1 tk—2 tr—2

By taking the mathematical expectation, we see that it is sufficient to establish
that
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nio n th—1 pu ot (v) 2d<W>U ot () 2du50_
I;/tk—'z /tk_g( k ) ( k )

By substituting Cdv instead of d(W),, we see that it is enough to establish

that
ol = ne Z/ o (/t (92(1}))%1711) (9,@(1;))2 du — 0.

k=1"tk-2

We have that (8% (u))® < Cn=2%, and

te—1 U 1
03<Z </ >du<nC—>0, n — Q.
tr—2

tr—2

Finally,

n

w2 N () < CATRE (W), — (W) + C

k=n{+2

2a
A2o¢+1t (t=s).

Now, proceed with J¥:

n

it £ () o) o

k= 1

+n2ai/t:kl (/tu <;>_a (t — 5)° dw> (ZZ)_a (th — u)® dWV,.

k=1
The first term can be estimated as

n2a Z/ k (tk — 5)2a d<W>s <C <j;> (<W>t — <W>S)+ A2€+1 tQQ(t—S),

k=1"tk—1

as before.
And With the bound d(W), < Cds, the second term can be estimated as

ntey tk lj;k ) (tr — s)**ds - (tx —u)h du < C:m” — 0. Therefore, for

> (ngf)z we have the same estimate as for ) (JQ) . Finally, estimate
n

w2 3" (JF)" = On </ / usadudW>2

k=1

2

n ti ti
= On?® Z/ s 2 (/ u*Hu — s)“du) d(W)
k=1"tk—1

tr tr
2“ / / / (v — 8)%dv dWj
th—1
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tr
X u_“/ v (v — u)*dvdW,.
u
The first term can be estimated with the help of (1.19.17) as
n th th 2
n2ot—2e Z/ (/ u®(u — s)adu> dW)s <Cn™?" -0 n— occ.
k=27 tk-1 \Js

Ifk:l,thenfor%+%:1,p,q>1

t/n t/n 2
n2at720‘/ / u® Hu — 5)%du | ds
0 s
t/n t/n 2/p t/n 2/q
< n20‘t_20‘/ / P dy / (u—8)*du ds
0 s s

t Hq—4+1)2
0

t/n . [t 2a+2 £ datl
_ n2at72o¢ 5204—2+5 Z g ds ~ n2o¢t72a e N 0’
0 n n

i.e. the “main term” of n?* Y} | (Jff)2 tends to 0. For the remainder term
of n?* %1, (Jf)2 it is sufficient to prove that for any ¢ > 0

LN

2

tr u tr
/ / (sa/ vo‘l(vs)“dv> ds
e Jlp—1 Jtp—1 s

—_n
-t

n

oy = nt
k

2

tr
x u” 2 </ v (v — u)“dv) du—0 n— oo.

But

After all estimates, for s > 0

n

Jm Y (AX,)! S AT (W)= (W).) + Coiy

k=n3$+2

t2(t — s).

We have the opposite estimate,
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Cit?*(t—s) < lim n® Y (AXy,)?

n—oo
k=n{+2

1
< Co A2 (W — (W) + Czwt%‘(t —5).

So, for A sufficiently large, C3 := C; — C’gﬁ > 0, and we obtain that
Cst?*(t — 5) < CL A2 (W), — (W),

whence (W), — (W), > %;Am (t — s), and constants do not depend on s and
t. Therefore, if we write (W), = fot Osds, then ¢1 < 05 < €9, &; > 0, and

W, = fot 9;/ 2dVS with some Wiener process V. Then we can conclude the
proof of the theorem by the same arguments as for H € (1/2,1).
O

1.20 Multi-parameter Fractional Brownian Motion

1.20.1 The Main Definition

There can be at least two approaches to the definition of multi-parameter
fBm. We consider the process which has a “fractional Brownian” property in
each coordinate, but also it is possible to consider this property, for example,
along any ray with its origin at zero (MY67).

For technical simplicity we consider two-parameter fBm (fBm-field)
{Bf,t € R2}, where t = (t1,t2). We suppose that s < ¢ if s = (s1,52),
t= (tl,tg) and S; S ti7 1= 1,2.

Definition 1.20.1. The two-parameter process {Bf',t € R2} is called a
(normalized) two-parameter fBm with Hurst index H = (Hy, Hs) € (0,1)?, if
it satisfies the assumptions

(a) Bfis a Gaussian field, B, = 0 for ¢ € OR?;

(b) EBF =0, EBBI =1 TT (8" + s7 — |t; — s;270).

i=1,2

Evidently, such a process has the modification with continuous trajectories,
and we will always consider such a modification. Moreover, consider “two-
parameter” increments: A;Bf := Bff — B, — BJf_ + BF for s < t. Then

will be

they are stationary. Note, that for any fixed ¢; > 0 the process Bffi 3
the fBm with Hurst index Hj, ¢ = 1,2,j = 3 — ¢, evidently, nonnormalized.

1.20.2 Holder Properties of Two-parameter fBm

Denote Pr := [0,T1] x [0, T3].
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Definition 1.20.2. The function f : RZ — R belongs to the class C*+*2(Pr)
for 0 < A\; <1 (f is Holder of orders A; and Ay on Pr), if there exists a constant
C > 0, such that for all s <t,s,t € Pr

|Asfi] <C H (t; — si)™, (1.20.1)

i=1,2

[f(t) = fs1,t2)| < Clts = 51|, [£(8) = f(tr,82) < Clt2 — 522 (1.20.2)
The norm in the space C*1*2(Pr) is denoted as

I £llxi2s = sup (|f(t)\+w

0<s<t<T (t1 —s1)™
|f(t) = f(t1,52)] |As f(1)]
* (tg — 82)>‘2 * (ti — Sz)/\1>
i=1,2

Evidently, inequalities (1.20.2) hold for B with \; < H, Ay < H and any
Pr C R2. It was proved by Kamont (Kam96), that (1.20.1) holds for B¥ with
any A1 < H,\» < H and on any Pr C R%. Therefore, Bf € CH1—=.H2=¢(Py,)
for any T > 0 and any 0 < ¢; < H;. Moreover, according to (Kam96), for
any T > 0 there exists the random variable 0 < ¢(w) < oo P-a.s. such that

1/2
ABH) < o) TT (=)™ (14105 2) "

t;—sq

1.20.3 Fractional Integrals and Fractional Derivatives of
Two-parameter Functions

For @ = (a1, ) denote I'(a) = m

Definition 1.20.3. (SKM93) Let f € P :=[a,b] := ][] [ai, bi], a = (a1,a2),
i=1,2

b = (b1, b2). Forward and backward Riemann-Liouville fractional integrals of

orders 0 < o; < 1 are defined as

aras T f(u)
Uy =T | o
and
[e3Ke D) e T (= f(U)
e ) =T@ [ o,
correspondingly, where [a,z] = T[] [as, @i, [z,0]) = [ [, bi], du = duidus,

i=1,2 i=1,2
@(uazva) = |U1 - zllal |U2 - x2|042 , U, X € [a,b].
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Definition 1.20.4. Forward and backward fractional Liouville derivatives of
orders 0 < o; < 1 are defined as

R f)
(D212 f) () = T(T =) /[MW( du,

T, U, Q)

and

e Np) =171 —a > f(u) u, =€ la
(Dg2 f)(x) = T(T—a) /{W du, @€ [a,b].

0x10x, (z,u, a)

Definition 1.20.5. Forward fractional Marchaud derivatives of orders 0 <
a; < 1 are defined as

oo T :7fa f(i[,’) e A“f(x)du
(Bese £)(a) = T(1 ><¢( +a Q/WM

x,u, Q) (z,u,1+ @)

o [ @) = flui )

i=3—q (xj - aj) a; (1‘7 — ui)1+ai il

and the backward derivatives can be defined in a similar way.

Let 1 < p < oo, the classes I$'**(Ly(P)) :== {f | f = I;1%¢,p €
L,(P)}, I (L, (P)) :=A{f | f = I;}***¢,¢ € L,(P)}. Similarly to Theorem
13.1 (SKM93), the following result can be proved.

Theorem 1.20.6. Liouville and Marchaud derivatives coincide on the classes
IS (Lyp(P)).

Further we denote Dgi** =: I(;(alaz). Of course, we can introduce the
notions of fractional integrals and fractional derivatives on Ri. For example,
the Riemann—Liouville fractional integralb and derivatives on Ri are defined

by the formulas (I$'*2 f)(x f( 00,2 q,(i(i )
a1 al t
(122 ) =T@ Jieoo) Mi,&),a) dt,
—(a1 o al t
(I f)@) = (DY) = TO=0) 5250 [ s and

(1D f) (@) = (D212 f)(@) := T(T= ) 5.2 J1w00) 3oty
0 < a; < 1. Evidently, all these operators can be expanded into the product
of the form I{'** = I ® I{?, and so on. In what follows we shall consider

only the case H; € (1/2,1). Define the operator

M= T O 15 f.
i=1,2
Definition 1.20.7. A random field {X;,¢ € Ri} is a field with indepen-
dent increments if its increments {Ag, X¢,,7 = 1,n} for any family of disjoint
rectangles {(s;,t; ],4 = 1,n} are independent.
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Definition 1.20.8. The random field {W;,t € R? } is called the Wiener field
if W =0 on BRi, W is the field with the independent increments and

E(AW)? = area((s.t]) = [] ti — si)-

i=1,2

Let we have a probability space ({2, F, P) with two-parameter filtration
{Fi,t € R1} on it. It means that F, C F; C F for s < t. Denote F} :=
o{Fu,s £ u}.

Definition 1.20.9. An adapted random field {X;, F;,¢t € R} is a strong
martingale if X vanishes on OR?, E|X;| < oo for all t € R and for any s <t
E(AX: | F¥) =0.

Evidently, any random field with constant expectation and independent
increments is a strong martingale, in particular, the Wiener field is a strong
martingale.

It is not difficult to prove the following fact.

Lemma 1.20.10. Let {W;,t € R3} be a Wiener field. Then the field
B ;:/ (M 21 ) (2)dW, (1.20.3)
R2

is two-parameter fBm (not necessarily normalized).

Similarly to the one-parameter case, it is easy to show that any two-
parameter fBm can be represented by (1.20.3) via underlying random field
w.

Introduce the notion of Wiener integral w.r.t. two-parameter fBm.

Definition 1.20.11. Let
fe Lyt = {f ‘R? > R: / (MHH2 £y (#))2dt < oo}.
R2

Then we denote [y, f(t)dB/"2 as [, (MM £)(t)dW; for the underlying
Wiener process W.

The following facts are proved similarly to the one-parameter case.

Theorem 1.20.12. Let the kernel lg)(ts) = II lu,(ti,s6) - Lio<cs<sy for
i=1,2
H = (Hy,Hs), t = (t1,t2) and s = (s1, $2).
Then the field

I (1) = / 12)(¢, s)dBI
R

is a strong square integrable Gaussian martingale with independent increments

and E(IF(1g))? = ] ti2v.
i=1,2
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Similarly to the one-parameter case, we call I (By) the strong Molchan
martingale. It can be presented as

w) = ] (120[,-)1/2/[(”] II si*dB., ai=H;—1/2,

i=1,2 i=1,2

where {By, F;,t € R1} is some Wiener field.
In turn, the two-parameter fBm can be presented via some Wiener field
B by the integral

Bt — [ (¢, 5)dB,,
0.4

where H; € (1/2,1), and mg) (t,8) = I mu, (ti;5:)1i0<s,<t)
i=1,2

= T Cilausi ™ [1uf (wi = s0)* duy.
i=1,2
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Stochastic Integration with Respect to fBm
and Related Topics

2.1 Pathwise Stochastic Integration

2.1.1 Pathwise Stochastic Integration in the Fractional
Sobolev-type Spaces

In this subsection we consider pathwise integrals fOT f(t)dBJ for processes f
from the fractional Sobolev type spaces I3, (LP) for some p > 1. This approach
was developed by Z&hle (Zah98), (Zah99), (Zah01).

Consider two nonrandom functions f and ¢ defined on some interval
[a,b] C R and suppose that the limits f(u+) := lims)o f(u+0) and g(u—) :=
limsjog(u — 0), a < u < b, exist. Put foy(z) := (f(z) — fla+))Lap (@),
go—(x) = (g(b—) — g(x))1(ap)(x). Suppose also that f, € I3, (Lyla,b]),
gy— € I}=*(Lyla,b]) for some p > 1,¢ > 1,1/p+1/qg < 1,0 < o < 1. Then,
evidently, D2, fo4 € Lyla,b], Di~"“g,— € Lyla,b].

Definition 2.1.1. The generalized (fractional) Lebesque—Stieltjes integral
f; f(z)dg(x) is defined as

b b
[ t@aste) = [(DF 1) @I g0 )@+ flat)a6-) - glat).

Lemma 2.1.2. Definition 2.1.1 does not depend on the possible choice of a.

Proof. Let for € (I3, N Igfﬁ)(Lp[a,b]), g— € (I}7*nN I;:aiﬁ)(Lq[a,b]) for
some a, 3 such that 0 < @ < 1,0 < a+ 8 <1, 1/p+1/q < 1. Then, ac-
cording to (1.1.5) (composition formula for fractional derivatives) and (1.1.6)
(integration-by-parts formula),

b
/ (DEF? o) (2) (DL g, ) () da
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= [ 0208 o@D i
b 1—
— [ D2 @D D} gy ()

b
— (D2 ) @)D} g ) o),
O

Let ap < 1. Then foq € I3, (Lp[a,b]) if and only if f € I3, (Ly[a,b]) and
in this case we can simplify the formula for the generalized integral:

f F@)dg() = [ (D2, (@) = priy - 2250 ) (D} g )(@)de

+ fla+ ><< =) = gla+)) = [} (D, )(@) (D" gu-) (x)da (2.1.1)
- f(a+)11 a(D;:“ (@) + fla+)(g(b-) — g(a+))
*f D;_agb )(z)dx.

Lemma 2.1.3. Let go— € I,~*(Ly[a,b]) N Cla,b] for some ¢ > = and
0<a<l. Then foranya<c<d<b

b
/ (D2, 1po.0)) (@) (D= *gs) (@) = 9(d) — g(c)- (21.2)

Proof. We have that

0, z <c,
(D34 1pca))(z) = %7 <z,
= P S <o <,
Therefore, by using (2.1.1), we obtain for ap < 1, or ¢ > — a, that
(D81 ea) @)Dy =" g5 ) (@)dx = =y [ (2 = ©)=(Dy =" gy ) () da

~ i [y (@ — &) (D} gy ) (x)da = IL“(D;_agb,)( )
— I-%(D} g, )(d) = g(d) — g(c).

Corollary 2.1.4. Let the function g € C*a,b] for some X\ < 1, then
gp— € I}7*(Lyla,b]) for any p > 1 and 1 — a < \. So, we can put p > 2/,
a=1—X/2 and obtain for g (2.1.2).

n—1

Corollary 2.1.5. For any step function fr(x) = > cxliz, zp,)(x) with
k=0

a=1x9 < - - <axp, =">b and g satisfying the conditions of Lemma 2.1.3, we

have that f: f(x)dg(x) = > er(g(xgs1) — g(zk)).
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Further we suppose that g(b—) = g(b) and g(a+) = g(a).
Denote by BV [a,b] the class of functions of bounded variation on [a, b].

Lemma 2.1.6. Let the functions foq € I (Lpla,b]), go— € I}=*(Ly[a, b)) N
BVa,b] withp>1,¢q>1,1/p+1/qg<1 and

b
/ 12, (D2, F)) (@)l (dz) < oo, (2.1.3)

b b
/ f(@)dg(z) = (L-S) / f(2)dg(z)

Proof. We have that
) J) F@)dgla) = (15) [, 1, (D 1) @)dg(2)
= - (- S)f (f (z = y)* (D&, f)(w)dy)dg(z)-

Condition (2.1.3) together with Fubini theorem permits us to change the order
of integration:

(L S)f (Ji(x— )“ Y(Dgy ) (y)dy)dg(x)
= [2(D D), (@ — y)*~ dg())dy (2.1.5)
= (a = 1) [J(DZ, N[ ([ (2 = y)*~2d2)dg(w))dy.

Further, if y € (a,b) is the point of continuity of function g, then

f;’(f;"(z— )a 2dz>dg< = [} (7 dg())(z — y)*~2dz

Then

(2.1.4)

+ [0 dg(@)) (2 — ) Zdszb %dz (2.1.6)
b r a
T g%i)(b W = 2 (D" g ) ().

Since set of discontinuity points of g is at most countable , and taking (2.1.4)—
(2.1.6) together, we obtain the proof. a

Now we consider the case of Holder functions f and g. The existence of
(R-S) fab fdg for f € C*a,b], g € C*[a,b] with A\ + u > 1 was established by

Kondurar (Kon37). Moreover, this integral coincides with f; fdg , as the next
theorem states.

Let f € C*[a,b] for some 0 < A < 1 and |f(x) — f(y)| < c(\)|z — y|*,
x,y € [a,b]. Consider the following step function:

n—1

fﬂ'(x) = Z f('rk)l[wk,wk+1)('r)7

k=0

where the partition 7 = {a = zg < z1 < -+ < z,, = b}.
Evidently, limz—osup, || fx — fll;_ (a4 =0
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Theorem 2.1.7. 1) For any 0 < a < A

Jim sup (D2 1) = (D2 D110y = 0

2) Let f € C*([a,b]), g € C*[a,b] with A+ pu > 1, then (R-S) fab fdg exists

and . .
/ fdg = (R-S) / fdg.

Proof. 1) It is sufficient to prove that fb de — 0 and

(x—a)~
I2 5@ = y) (@) = f(@) = foly) + f(y)ldyde — 0 as 7] — 0. But
|fr(z) — ( )\ |f(xk) — f(= )LQS c\)|x|* for € [k, Trr1 ), therefore
fab WC&E <ec(A )|7r|’\% — 0 as |w| — 0. Also, for € | zk, Tr41 )

A(:v) = [, (@ =) (@) = f@) = fx(y) + F(y)ldy
Zf““ —y) 7 () = f@) = flxi) + f(y)ldy

+ [, (= o=l f(y) — f(x)|dy < 2¢e(X Z S yoLdy - x>
—a— (z—x ) (z—zp)

+C<A>f (2 = )=y < 260w () O

< Be(n)

which means that f; A(z)dz — 0 as |r| — 0.
2) We take 1 — 1 < a < A, then the fractional derivatives DS, f(x) and
(D} =*g)p—(x) exist, and, moreover,

« —9 b —g9x
(D120 < ey (e + (1= ) [ el
< ey e —apet (14 =) <0

for some constant C. Therefore, according to part 1) of the proof,

1y frdg f fdgl < [ I( |Da+ =)(@) = (D3 £)(@)||(Dy=* 9o (w)|dz
< C [ D fo) (@) = (D, f)(@)|de — 0,

(2.1.7)
as |w| — 0.
Furthermore, according to Corollary 2.1.5,
b nl b
J2 frdg = S F@a(onn) —g(a) = (RS) [} fdg. (218)
and from (2.1.7)—(2.1.8) we obtain the desired equality. O

Now we establish the properties of generalized integral f; fdg as the func-
tion of upper and lower boundaries.
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Lemma 2.1.8 ((Zah98)). 1) Let a < s < t < b and the functions f and g
satisfy the assumptions

(i) (f - L(sn)) € I¢(Lpla,b]), go— € I %(Lyla, b)) for some 0 < a < 1,
p>lg=11/p+1/g<1,

(ii) fsy € 1Y (Ly[s,t]), g1 € Iifo‘,(Lq/[&t]) for some 0 < o/ <1,
p>1,¢d>11/p+1/q¢ <1. Then

/a Lo g = / ' dg
/:fngr/tufdg:/sufdg

holds for a < s <t <u < b, if all the integrals exist as generalized Lebesgue—
Stieltjes integrals.

2) The equality

Proof. 1) Let {¢n(z),z € R} be a sequence of smooth kernels, i.e.

on € C®(R), ¢, >0, ¢, = 0 outside [-1/n, 0] and fEl/n on(z)dz = 1. More
exactly, let ¢, () = np(nz) for p € C*(R), ¢ = 0 outside of [—1,0]. Then
we can approximate the function g,— by smooth functions g,, := gp— *¢,, and
the following properties hold:

gn(b=) =n f[z—b,x—a}m[—l/n,o] (9(b=) — g(z — t))p(nt)dt |s=p—= 0;
(Dp="gn)(x) = Dy~ ([ go— (2 — )pn (t)dt)
= L) (@)1 = )7 (Jg 96— (& = )pn(t)dt(b — )"

b o 1.
+a [y~ )’ ngb x—t)—gb (v~ )n(t)dt)dy) (2.1.9)
a, b x
= 11£(1b) o) f]R on(t (b m)1 a +a f go=( yt)z)gb a(y ) dy) dt

= Lo (@) (D= gb—)wn)( )i

[(Dy=%gn) — (D;:agb—)Hqu[a,b]

(D= g6-) * o0 = (D= g0, 0y

P (DR g ) (@ — 1) — (D" g0 ) (@) (t)dt]1da

<Cf [P D) (- — 1) = (D3 =g )()|9dtdz — 0, n — oo,
(2.1.10)

Therefore, from this L,-convergence, from Lemma 2.1.2 and the properties
of convolutions,

I3 10 fdg - JDE 100 ) (W) (DE= gy ) (uw)du
= limy, oo [ (DY Lo,y f) (W) (D% gn) (u)du
= limpoo [ (L) /) (W) gl (w)du = limy, o ¥ f(u)(g5— * @) (u)du.

Further, for any ¢ > 0 (¢ * ¢),)(u) = 0, therefore
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/ £ () (g * 1) ()l = / £ () (g * ) ()
s s (2111)

- / F(u)(gr— * 1) (u)ds,
and

litmy, oo [7 (1) (go— * @) (w)du = limy, oo [7 f(u)(ge— * ¢ly) (u)du
= lim, o f; F(u)(gi— * on) (u)du. (2.1.12)

Thanks to Lemma 2.1.2, assumption (ii), (2.1.9) and (2.1.10), applied to ¢
instead of b,

hmnﬂoo f: f gtf * (pn)/(u)du/

= lim, oo f (D, far )W) (D= (ge— * @n)) (u)du

= tim e [D2L ) ((DE 0) ) ) 21
= [1(D2, foi) (W) (D= gi— ) (w)du = [! fdg,

and we obtain the first statement. The second one we obtain by using some
of the equalities from (2.1.11):

J. fdg + [ fdg = limyoc [} f(r)(g % ¢7,)(r)dr
i oo [, f(r) (9% @) (M)dr = Timp oo [* f(r) (g @) (r)dr
=, fdg.

2.1.2 Pathwise Stochastic Integration in Fractional Besov-type
Spaces

In this subsection we consider the approach to pathwise stochastic integration
in fractional Besov-type spaces, introduced by Nualart and Ragcanu (NR0O)
(see also (CKR93) and (NOO03a)).

Con81der the followmg functlonal spaces Let for 0 <p < 1
cpf( )= |—|—f0 |f(t)— f(s)|(t—s)"P~lds, and Wo = Wo [0T'] be the space
of real—valued measurable functions f : [0, T] — R such that

I£llo, = sup @(t) < co.
te[0,T]

Furthermore, let Wia = WIB [0, T] be the space of real-valued measurable func-
tions f : [0,T] — R such that

f(t)— f(s Elf(u) — f(s
oo o (L5 [0 <o

0<s<t<T
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and W5 = W2[0,T) be the space of real-valued measurable functions
f:[0,7] — R such that

_ [Tl T 1f(s) = f(w)]
7/0 5 d5+/0 /0 (s —w)pi du < o0.

Note that the spaces Wﬂ i = 0,2 are Banach spaces with respect to corre-
sponding norms and Hf||15 is not the norm in a usual sense.
Moreover, for any 0 < e < A (1 — )

ct*e0, ) c WP, T) ¢ ¢?~¢[0,T], i = 0,1, C#*<[0,T] ¢ WJ[0,T7.

Therefore, the trajectories of fBm B for a.a. w € £2, any T > 0 and any
0 < 8 < H belong to W/[0,T].

Let f € WP[0,T). Then its restriction to [0,#] C [0,7] belongs to
1%(Lso]0,4]) and

A= sup_ (DI i) < s s <o

The restriction of f € W20, T] to [0,#] € [0,T] belongs to Iﬁf(Ll[O,t]).

Now, let f € Wf[O,T], g € Wllfﬁ[O,T}. Then for any 0 < t < T there
exists the Lebesgue integral fg(D€+f)(x)(Dg__ﬂgt_)(9:)dx, so we can define
fg fdg according to Definition 2.1.1 and formula (2.1.2). Moreover, for any
0<t<T fg fdg = fOT 1(0,1).fdg, and the integral fg fdg admits an estimate

| Jy fdgl < [y (DG, f)(@)I[(D; = ge-) () |da
< MAi-p(g )Hf||2ﬁ<( (8))~ 1||g||11 sl fll2.5-

Further we fix some 0 < 8 < 1/2.

Lemma 2.1.9 ((NR00)). 1. Let f € WJ[0,T], g € W, 7P[0,T], Gi(f) :=
fot fdg, t € [0,T]. Then

o () < C}iTAl—ﬂ(g)/o ((t—5)"2 +577)p(s)ds.

2. Let f € W[0,T], g€ WLP[0,T]. Then G.(f) € C*=P[0,T] and

IG()llh1-p < CFrAi—s(g)

Here C’Z;’T,i = 1,2 depend only on T and (3.

Proof. 1. It is not hard to check that for f € W2[0,T] and g € W} [0, T]
condition 1) of Lemma 2.1.8 holds. Therefore, evidently,
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Go(f) = Go(N)l = | [ fdgl < [T 1(DL () |[(D; =P o) (u)|du
<A ﬂ( )f <|f(u)| +ﬂf \f(“ ];(ﬁ‘dv> du.

u—s)P

(2.1.14)

From (2.1.14) it follows that

Jy P du < A1 5(9) (f3 1@y (¢ = )77~ (= 5)Pds)du

+fo fo lJ(cuu)y)J;f)l v)Pdv du) :
(2.1.15)
The first integral on the right-hand side of (2.1.15) can be estimated as
Cfg |f(w)|(t —u)~?Pdu with C' = [;°(1 4 u)"?~'u~Fdu, and the second one
can be estimated as fot (t—u)=? [ %dv du.

Since (t —u)~2% > (t — u)"PT P, we obtain from (2.1.15) that

"G (f) = Gu(f)] ‘ .
LA “({:QBEIT‘*dUSSArﬁﬂgxc“%TﬂjK;( u) "2 (w)du. (2.1.16)

Further, from (2.1.14) it follows that

Gi(f)] < Ars(g) Ji (‘ﬁiz)‘ + 5 o PSSl du

(2.1.17)
< A1_p(g)(1 + BT7) [y u= P (u)du,
and the proof follows from (2.1.16)—(2.1.17).
2. Tt follows from (2.1.14) that
1+ 877
(Gilf) = Golh)l < Arple) 75~ Bt =817,
and from (2.1.17) we obtain that
14 8T
G (NI < Mi-pl9)——5~ 3 | fllo,s,
whence the proof follows with CF , = (1 V Tl‘ﬁ)%gﬂ. O

Similar but more simple estimates hold for the Lebesgue integral F(f) =
fo s)ds, so we omit the proof of the following lemma.

Lemma 2.1.10 ((NR00)). 1. Let 0 < 8 <1 and f : [0,T] — R be a measur-
able function with sup,co 7] fg If()|(t — ) Pds < oo.
Then

t
ol (1) < Ciy / F($)I(t— 5)~Pds,

with C = TP +1/0.
2. Let f be bounded on [0,T). Then F(f) € C*[0,T] and
1E(NHlos < Céjf}, where f1 1= sup,ejo 1 |f(t)\7C’gvT depends on 3 and T.
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2.2 Pathwise Stochastic Integration w.r.t.
Multi-parameter fBm

2.2.1 Some Additional Properties of Two-parameter Fractional
Integrals and Derivatives

Throughout this section we consider two-parameter functions and fields. The
first result can be proved similarly to the one-parameter case. Let the rectangle
P = [a,b] be fixed.

Lemma 2.2.1. 1. Let f € IﬁlﬁQ(L (P)) for some p > 1. Then
limg, 0,8,—0 Dajr% )f( x) = f(x), where the limit is in L,(P). 2. Let, in
addition, the function f be twice continuously diﬁer@ntmble i the neighbor-
hood of the point x. Then limg, 1 g,—1 fo(i_)f(x) 63(9];2( ). So, we can
put Da+(b f=1 D;}r b— )f =/

Theorem 2.2.2. Let0< f; <1l and1l <p< 5;1 \% 551. Then the operator

Igj_ﬁQ is bounded from L,(P) into Ly(P), where
1<qg<p((1=Bp)" A (1= Bap)™ ).

Proof. Denote r := p((1 ﬂlp) ! \/( — B2p)~1). Since r > p, it is sufficient to
consider ¢ € (p,r). Then for 1 g + = =1, i, + % =1-(;, from the generalized
Holder inequality, it holds that

Q=

f(u)lP H (z; — ui)(ﬁﬁl)'yqd@

i=1,2

><(J{Lﬂf(Udiu);‘5<j( T e w0 )
<C ||f||i:;(%7>) (/[a | |f(u)? H (z; — ui)(ﬂiﬂ)yqd@

"z i=1,2

uzrpwiso(f

1
Iy

Q=

Here we choose v satisfying the inequalities (1 — 3;)yg < 1 and (1 — 3;)(1 —
v)p’ < 1, which is equivalent to 1 — (p'(1 — 3;))~! <~ < (¢(1 — 3;))~*. Such
a choice is possible, since the inequality 1 — (p’(1 — 3;))~! < (q(1 — 3;))~!
equivalent to ¢ < p(1 — B;p) !, and this is evident under our suppositions. By
integration over P we obtain that

L, (P) C||pr(7))</|f |pdu / H 7u /31 )’Yde)

1=1,2
<ClflL, @
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Corollary 2.2.3. Let f € L,(P),g € Ly(P), I"Y7?g € L.(P) for 1/p+1/r =
Landr < q((1—B1q) ' A (1= B2q)7 1), de. 1/p+1/q <1+ By A Bo. Then

e = [ gr*
P

Evidently,
IilpzjilﬁZ — Ii1+5lp2+52 on Li(P);

for f € Ii1+61p2+ﬁ2 (Li(P)), pi, 8i > 0,p; +8; <1

DPriPr2 Dﬁ132 f DP1+51P2+52 1

a+(b—) a+(b—)

for f € 1742 (Ly(P)), g € I{***(Ly(P)), p.a > 1, 1/p+1/q < 1+ p1 A pa
/Dpipz du—/f DPIPQ )u
P

2.2.2 Generalized Two-parameter Lebesgue—Stieltjes Integrals

We suppose that all the functions, considered on some rectangle P = [a, b],
belong to the space D(P), i.e. they have the limits in all the quadrants,

Q" (z) ={s € P|s > z}, QF (z) ={s € Pls1 = 21,52 < 22},
Q () ={s € Plsy <x1,520 > w2}, Q" () = {s € P|s < x},

f(z) =lims_g s>4 f(5), and on the sides of rectangle the limits that can be de-
fined are supposed to exist and denoted as f(x1,ba—), f(b1—,x2), f(b—). De-

note fo1 () = Aof(x), x € P, and fo_(x) := f(z)— f(x1,ba—) — f(b1—, z2) +
f(o—).

Definition 2.2.4. Let f,g : P — R. The generalized two-parameter
Lebesgue—Stieltjes integral of f w.r.t. g is defined by

/ fdg = / (DY £ (w)(DL P2 gy, ) (u)du

+ Z/ D, o) (1 0) (DL~ ) (g (1, bi—) — o (1, bi—) )l

1=1,2
+ fla)Aqag(b), (2:2.1)
under the assumption that all the integrals on the right-hand side exist.

A more convenient formula for fP fdg has a form

/ fdg = / (D22 ) () (D™ P2 g, ) (w)du.
P P

(We do not specify here the conditions ensuring the latter equality but it is
very easy to do it, similarly to the one-parameter case.) The next results also
can be proved similarly to the one-parameter case ((SKM93) and (Zah98)).
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Theorem 2.2.5. Definition 2.2.4 is correct, i.e. the right-hand side of (2.2.1)
does not depend on the choice of 8;,1 =1,2.
Theorem 2.2.6. Let f : P — R, f € CM*(P) and \; + 3; < 1,i = 1,2,
0< B <1. Then IR (fayo)) € CRtfretie(p),
Theorem 2.2.7. Let the function f € C**2(P). Then for any p > 1 and
0<ei<Ayi=1,2

far@-) € 1% (Lp(P))

and
DI farp) € CHTERTE(P),

Theorem 2.2.8. Let f € C(P), g € BV(P), f € I?P*(L,(P)), go €
I (Ly(P)), i = 1,2, =3-i, 1 +1 <1,0< 6 < 1,0 = 1,2

Then the generalized two- pammeter Lebesgue—Stieltjes integral fp fdg equals
the Riemann-Stieltjes integral [, f(x)dg(z).

Theorem 2.2.9. 1. Let g € C*1*2(P) for some 0 < \; < 1,i = 1,2. Then
for any Py = [c,d) C P

/ 1p,dg = Acg(d).
P

2. Let g € C**2(P) and let the partition m = n* x w2, where ©* = {a; = x} <
- <, = by} be the partition of lai, by].

Al307 let fw(l‘) - Z Z f]l]z 7’]112( )7 where Pj1j2 = Hz 12[ P ]7+1)

1=1,2 317
1,2
Then [, fxdg =" -, Z firinAa;9(xj11), where xj = (x,23,).
i=1,2 j;=0

Now, let 7, be the sequence of partitions of rectangle P, m, C m,11
and |7,| = max;—1 2 maxogjignm,l(x;ﬁ_l — a: ) Let f: P — R, leJ2 =
f(x},41). We say that the partitions m, are umform7 if ng ) = ng and 3:] T
gt = bicti =12
i = ngn) 0= 1, 4.

Theorem 2.2.10. 1. Let f € C**2(P) for some 0 < \; < 1,i = 1,2. Then
nlirréo sup || fr, = fllp») =0

where sup,. ~is taken over all the sequences of partitions mentioned above.

‘Dgfz( ForVas — D22 fo ‘L =
1
for any By V B2 < A1 A Ao and all the sequences of uniform partitions of P.

2. limy, oo Sup,. ,
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Proof. The first statement is a direct consequence of uniform continuity f on
P. Further, let g,,(z) = fx (x) — f(z). For the second statement it is sufficient
to prove that any of the following functions

G (2) = gn(x)(z — a1) " (y — az) ™%,

Gh(x) = (13 —ag)™™ /I1 (9n(2) = gn(s1,22)) (21 — 51) 7' sy,

ai

G3(w) = o1 =) [ (gul) = gnlir,52)) 2 = s2)
Gy(z) = Aggn(x) | (z; — s;) "1 Pids

[a,z] i=1,2

)

tends to zero in Ly (P). First, note that |g, ()| < C(|7n|* + |mn|*?), whence
1GE L, py < Clmal + mal) TT (b — a5) =% —0, n — oo. Further, let

i=1,2
the point x € P} := Hi:m[x;’i", x;ﬁl) =: [z}, 2%, ). Then it holds that
-l lifl
G;(l’) = (.’EQ — ag)_BZ Z /1 ((El — 81) 1 Bldsl
k=0 i

T
+/ gn(I,fE?,Sl)(l‘l — 81)1’616181) s
x

where g, (z, 27, 51) = f(a7) — f(x) = f(ay",25") + f(s1,22). Therefore,

» Y J2

|G3 (2)[I{z € Pj'}

€
< C(xz _ a2)—ﬂz ( Z |x§;n _ mllA,) / J1 (.%‘1 _ sl)—l—l31d81
i=1,2 ai
Jji—1 L ) 2 Tp1
Y (@ =™+ (@ —23")) /xl,n (1 = 81) 7" dsy
k

i=1,2
= 1n 1,n\ )\ 2,n 2,m\ Ao li}lﬂfl —1-5
+ Z((‘rk+1 =z )M+ (sz—&-l -y, )*?) . (1 — s1) dsy
x,’
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and
_ 1, _
”Gn”Ll ) < Z HGnHL P <C Z </n ( To — a2) ﬂ2(.131 —len))q B
J1,J2 J1,J2 J
+ (z2 — az) P2 (z2 — x?;”)*" (x1 — le-;")_ﬁl
izl mi-:l
1
+ Z (T — MM (2 — ag) P2 /Ln (z1 —51) " Prds
k=0 Ty
2 izl Tht1
+ (22 — a2) BQ(IJ;L M Z / xy —51) 7 Pdsy
k=0
+ (23 —ap) P2 (2 — 20™) ) dx)
n{™
< C(by — ag)' ™7 [ |70 4 |22 ) (a5 — 2
ji=1
A il i 1
+ Z l‘k+1—$k ™) I/M (/” (1 —s1)” _Bldml)dsl
J1=0 zy' Ty'r1
(n) 1,n
Jr|7r |>\2 Z Tt s 17ﬁ1d5 dx +|7_‘, |>\17,61
:El n 1 1 1 1 n

J1=0
(2.2.2)
The first, third and fifth terms on the right-hand side of (2.2.2) are bounded
from above by C|m,|** =% — 0, n — oo, and it is true for any m,,. The second
and fourth terms can be effectively estimated when m, = 7, is uniform. In
this case

nﬁ’”

C
2 Y (@ — )T S —e— =0, n— o,
= 1 1 (ngn)))\z—&
and
n{™ _1
|7, |2 Z fzkﬂ fawk z1 — s1) " Prds day
J1=0 !
gn)
Sl 3 @ - a0, e
J1=
G% and G} can be estimated in a similar way. O

Definition 2.2.11. We say that the two-parameter left Riemann—Stieltjes
integral (- fp fdg exists if the sums S,, have the limit for all sequences of
uniform partitions of P with vanishing diameter.
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Theorem 2.2.12. Let f € C**2(P), g € C*1H2(P) and N +p; > 1,1 =1,2.
Then the generalized two-parameter Lebesgue—Stieltjes integrals fp fdg and
I- [ fdg exist and coincide.

Proof. 1t is sufficient to prove that S,, — fP fdg. But the sums S, equal
Sn = [p fr.dg. Denote () := f. . Then

/P f(n)dg — /P Da61+62 f(n) (m)D;:ﬂl 1—Bng_ (x)dx

for any 1—pu; < 8; < A;. According to previous theorem, foQf(”) — Df}ﬁf
in L1(P), whence the proof follows. O

Remark 2.2.13. We can use the Holder properties of f in order to establish
that [, fdg = lim S,,, where

Sn= Y Py G + 16" 23" = F(E) Ay g(af)

Jijz

and &} is any point of P

2.2.3 Generalized Integrals of Two-parameter fBm in the Case of
the Integrand Depending on fBm

Since the trajectories of two-parameter fBm Bf1H2 as.  belong to
CHi—e1H2=<2(P) for any rectangle P C R? and any 0 < ¢; < H;, the next
result is a direct consequence of Theorem 2.2.12.

Theorem 2.2.14. Let B2 be g two-parameter fBm with H; € (1/2,1), and
the function F : Ry x R — R, F € C*(R; x R). Then there exists the gener-
alized two-parameter Lebesgue—Stieltjes integral fp F(-, B H2)qBHHz yhich
coincides with the left Riemann—Stieltjes integral I- [, F (-, BH1H2)dBH1Hz2,

Remark 2.2.15. Theorem 2.2.14 holds if we replace F(-, BH1H2) with any
Holder field f € C**2(P), such that \; + H; > 1. It means that for such an
f, we can consider the integral [, fdBHHz for any w € 2, P(£2') =1 as the
limit of corresponding integral sums.

2.2.4 Pathwise Integration in Two-parameter Besov Spaces

According to the form of two-parameter forward and backward fractional
Marchaud derivatives (Definition 1.20.8), the Besov type spaces in this case
receive the following form.

Let P; := [O t] =11, 12[O t:],

) = |f(t) F(s1,t2)|(tr — s1) 77" Hdsy,
G2 ()(E) = [77 |F(8) = F(tr, s2)|(t2 — s2) % dss,
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PPN = i, IASOl(p(t, 5,1 + B)Mds, 0 < B < 1,
and G2 (0) = £+ 3 ol ()0 + e (1),

Wﬁlﬁz

Denote by W) (Pr) the Banach space of measurable functions f : Pp —

R, such that
1 £llo,61,62 := sup 7*2(t) < oo,
tePr

WiB 182 (L) the Banach space of measurable functions f : Py — R, such that

1711808, = sPocesrcr (17O TT (10 = 50) 7"
=1,

+(t2 = 52)7 fstf | fi—(u, 52) = fee(8)](u — 1)~ Prdu
+(tr—51) 7 [ fim(s1,0) = fo (5)|(v — 52) "L P2dw
g 1A )y, 1+ 8) 1) < oo

(for the notation of o(r, s, 3) see Definition 1.20.3) and W) (Pr) the Ba-
nach space of measurable functions f : Py — R, such that

1 ll2800 = o, (1) TT 877+ 500 () ()

=1,2
517 (F)(8) + 9 (1)(s) ) ds < oo

Similarly to Lemmas 2.1.9 and 2.1.10, the following bounds can be established.
Let 0 < 3; < 1/2,i=1,2, Gi(f) = fPt fdg, F:(f) = fPt fds.
Lemma 2.2.16. 1. Let f € W' (Pr), g € WP P2(Pr). Then

oo (h(®) < Oy g, 7 Mi-pi1-p, (9)/7) [T 077+ = )P0 7% (r)dr.
t=1,2

2. Let f € W§'"™(Pr), g € Wy PV "%(Pr). Then G.(f) € C'F11=P2(Py)
and

IG(N)l1=p11—8. < CF, gy 0 M—p11-8.(9) 1 Fllo,81.5.-

3. Let 0< g <1 and  f7 = supep, |f(t)] < oo. Then
F.(f) € W (Pr) N C?(Pr) and

1E(F)llo.s1.82 < C3y 5,0 F-

2.2.5 The Existence of the Integrals of the Second Kind of a
Two-parameter fBm

We fix the rectangle P = [0,7] C R% and consider the sequence of uniform
partitions
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= {t; = (T - 27", Taja - 27"),0 < j; <27}

Let the functions f,g: P — R,f\aRfi = fo € R, g|6Ri =go €R,
f € CMA2(P) and g € CHr2(P).

Consider the sequence of integral sums of the second kind, i.e.

2" —1
J1,J2=0
where Alg = g(t7 ,1;,) — 9(t}), A3g = g(t};, 1) — 9(t}).
Theorem 2.2.17. Let \;, p; > %,)\i—ﬁ-ul +po > 2,1 =1,2. Then there exists

lim, o Sy =: S. This limit will be called the integral of the second kind of f
w.r.t. g and denoted as S = [, fd1gdag.

Proof. Let, for technical simplicity, Ty = T5 = 1. Also, let m > n. Consider
the difference S,, — Sy = Sn — Simn + Smn — Sm, Where

2" —1

Spn = Z Z f(""27m,j227n)(g((7‘ + 1)27m,j227") — g(r27m,j22*”))

J1,72=0 ’r‘EAjl
X (g(r2™™, (2 +1)277) — g(r27™,j227")),
Ay = {r: 127" <1 < (L + 1)27 ")

It is sufficient to estimate only S,, — Sy, because Sy, — S, can be estimated
similarly. We have that

where
1 2t 1 2 2=t 1 1 2
Amn = E E f(t?)AjTgAjgrg7 Amn = Z Z AjrfAjQTQAjzrga
J1,j2=0r€A;; J1,J2=0r€Aj;

Ajrg = A g(r2=™, (j2 +1)277),

A}W“g = A%TQ*"",JQQ*")Q((T + 1.)2—m7 (.72 + 1)2—n)’
Aﬁlrf = Algf(r2—7n’j22—n)7 (.]2 + 1)2—n)’

A?zf‘g = A(r2*m,j22*")g(T2_m7 (J2 +1)277).

Transform Al . into the sum

2" —1

Ainn = Z Z f(t?)Ajz'f’gA;rga

J1,§2=071€A;,

where Aj,.g = Ago-m j,o-my(g((r+1)27™(j2 +1)277)),
and Ajlrg = A%’r2_m ,j22_n)g(t;?1+lj2). The increments Aj,,g correspond to the
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rectangles Aj,, = (727, (r+1)27™ ] x ( j227", (j2 + 1)27" ], that do not
intersect, and UA;,, = (0,1 ]2. Therefore the sum A}, can be presented as

a two-parameter generalized Lebesgue—Stieltjes integral fP fmndg, where

Frn(8) = F(£])A},9 - Liseas, -
In turn,

/ Frndg = / (DB Fron) (5)(DI P52, )(s)ds,
P P

where 1 = (1,1),0 = (0,0), 1 — p; < B; < Aj,i = 1,2. With such a choice
of B; DIZP1=P2g e CcmAbi=luatB2=1(P) in particular, there exists such
aC > O that |(Di:ﬁ117ﬁ2g1_)(5)\ < C, s € P. Therefore, it is sufficient to
prove that [, |(D€f2 Fmn)(8)|ds — 0, n,m — oo. Since ngrﬂz fmn consists of
four terms, we must consider them separately. Estimate only fp | ©mni(s)|ds,
where

1 (8) = 557 [T (Frnn(8) = Fonn(u1, 52)) (51 — u1) " Prduy,
and

(Png ‘/\[0‘5 A fmn( ) H (81 —Ui)_l_ﬁidul;

1=1,2
the other two terms can be considered similarly.
Let s € Aj,,. Then, taking into account that |f(s)| < C for some C > 0,
we obtain that

— y 27 ~ i
[mn1(s)] < 55 ﬁz( oj1 f12— |fmn 8) = frn (w1, 52)|(s1 = wa) " Prdu
< 53 (37 ( Fran ()] + | Fon (ur, 52) ) (51 — ua) "2 =Prduy
+ Oy [ [P (51— wn + 27 (51— un) 7P duy < Cisy ™
><(2 "“1(31 ,jlgfn)f,& + (51 _ rgfm)urﬁl + Qfmm(sl _ T-Q*m)*ﬁl),

whence

folemm(ali <€ S > (277 [, 5% (51 = 127 ™)ds

J1,J2=0r€Aj;

+ fAjzr 82—ﬁ2 (s —r2~m)m=Figs 4 27 fA,-QT s;ﬂz (sp —r2~m)=h ds)

< C(1— B)~t(2nBri—m) LgmBi=p)y 0 m,n — oo.
Further, from Holder properties of f and g, it follows that for
u < (J127™,7227 ") we have the estimate |A,fmn(s)] < 2(s2 — ug +
27 22 4 O((sg — ug + 27M)H2 (s — uy) T, for w € (5,277, r27™) x
(0, 7227™) the estimate is | Ay frun(s)| < 2(s2 —ua +27")A2 (51 —uy +27™)H1 +
C27™ (39 —ug + 27 ™)"2 and A, fimn(s) = 0 otherwise. Hence,

[Pmn2(s)| < C27 (51 — j227™) P2 (55 — (ji — 1)27 )R H2—02

+ C 51+ o2 "+ 27O (55 — o2 4 2T NP2
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and fp |S0mn2( )|d$ < 02n(BrtBa—pr—p2Ar2) 0,m,n — oo. So,
|AL | — 0,m,n — oo. Now we want to prove that |[A2 | — 0,m,n — oo.
We can present A2 as

2" —1
2 _ 2,2
AL = E A2

Jj2=0

AL = Z > ALFAL9A g,

71=0 TEAJ1

where

Moreover, AZJ2  can be presented as one-parameter generalized
Lebesgue—Stieltjes integral fo Y, (W)dyg(u, jo2~ ), where 1, (u)
A;TfA§2rgl{r27mSu<(T+1)277n}, ¥(0) = 0. Then fo ¥, (W)drg(u, jo27") =
fol(Dngzpjz)(u)(Dil:ﬂgl,)(u,j22_")du, where 1 — u; < 8 < 1/2. Evidently,
(D1~ g1_)(u, 227 ™)| < C, therefore, it is sufficient to prove that

Z/| +Uj,)(w)|du — 0,m,n — oo.

Jj2=0

Note that
(DF ) (w) = (D1 = 8)) ™ (465, ()™
+5 / (5 0) () — 2) 1Pz,

and [, (u)| < C27Ma+82) whence

2" —1

Z / |1y, (u)|u™ Pdu < C/ uPdu - 2n1=Mmr2) 0 oo

Jj2=0

Further, for j127" <r2 ™ <u < (r+1)27™ < (j; + 1)277,

[ @ - a = [ / m

9, (W) = 1, (2)] < Py, (w)] + 5, (2)] < C27Ratn2),

and

From here,

SR W) = (D = 2) Pl

—n(A1+u2) 2 (r+1)2=™ j127 _oN-1-8

<c2 ST T e ) Pdeldu
J1,J2=0r€A;,

§C2n(1+'@7/\17“2)4)0,n*>00,
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since under assumption A\; 4+ g1 + p2 > 2 we can choose % >p3>1—p; in

such a way that 1+ — A\ — ug < 0. Finally, for j127" < z<wu < (r+1)27™

|, (1) — thj, (2)] < 272 (u — z 4 27™)M
and

Z I |flr n (g (1) = 15, (2)) (u = 2) =~ Pdz|du

J2=0
S C2m 1+ﬁ1 A1—p2) — 07m — 00.

O

Remark 2.2.18. For f(s) = C A2, =0, and it is easy to see from the bounds
of AL . that the theorem will hold under the assumption \;, u; > 5,71 =1,2.

Remark 2.2.19. Multiple stochastic fractional integral with Hurst parameter
less than 1/2 was considered in (BJ06).

2.3 Wick Integration with Respect to fBm with
H € [1/2,1) as S*-integration

2.3.1 Wick Products and S*-integration

Recall (see Sections 1.4-1.5), that the random variable F' on the probability
space S’(R) belongs to S* if F admits the formal expansion (1.5.1) with finite
negative norm

P2, = alc2(2N)"" < oo

a€l

for at least one ¢ € N. Introduce the following notations:

(i) Let the function Z : R — S* and for any F' € S we have that
(Z(¢), F) € Li(R) as a function of t e R.
(ii) In this case, define [, Z(t)dt as the unique element of S* such that

<</R Z0de. F >> = /R (2(t), F) dr,

and say that Z is integrable in S*.

(iii) Define the Wick products: for F(w) =3, caHa(w), and
G(w) =2 gdgHpw), put (FOG)(w) =32, 5CadsHatp(w).
According to the (HOUZ96), for F,G, H € S it holds that

(iv) FOG=GOF,

(v) (FOG)OH = Fo(G o H);

(vi) HO(F+G)=HOF+HOG,

(vii) FOGeSUHF,GeS; FOGeS*if F,G e S*.

In this section we consider only the case H € [1/2,1).
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Theorem 2.3.1. Let the process Y (t) € S* and admit an expansion
Y(t)=>,cat)Ha(w), t € R, with the coefficients, satisfying the inequality

2 —qo
K = sup{al eall], ) (2) 777} < o

for some q > 0. )
Then the Wick product Y (t) { BM is S*-integrable, and, moreover,

/R Y(t)<>Btht:§ /R oYM Ly (£)dt - Hes o, (w). (2.3.1)

Proof. Consider only BtH , and for arbitrary B,fw the proof is the same. Since
(hg,w) = He, (w), we have that the Wick product Y (t) ) BF € S* and
equals > ca(t)Mfﬁk(t)Ha+gk (w). According to (HOUZ96, Lemmas 2.5.6
and 2.5.7), the S*-integrability of Y (¢) ¢ BtH follows from the inequality

2

SNl DT calt)ME () (2N) " < 0o

BET ak:ater=0 Li(R)

for some p > 0. According to estimate (1.5.3),
‘Mfﬁk(t)’ < Ck?/3-H/2 < Ck5/12 for any k > 1 and some C > 0.

Therefore,
/ calOME T (0] di < O e, s
R
and
2 2
HT < HT H
S calt)MIhi(t) > llea®M () ®
a,k:atep=0 Li(R) a,k:ate,=p43

Consider the sum

Si=) p > B el @ | @N)P
BET akiater=8
2

<> BE)™° Yo leallpw | @GN

BeT a,k:ater=p3
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where () equals the number of the last nonzero element in the index 3 (the
length of the index (). Further, for any «, 8 there exists no more than one k,
such that « + ¢, = (. Therefore,

S ealnw | <20 S leal? -

a,k:ater=p0 ak:ater=0

It means that

§ < 3 (ot en)l(ha+ &) T eall?, gy (2N) P
ak

(a4 ex)! 3 —(p—q)a—pe
gKE; o (a+ep)) @)~
<KD (laf+ 1)*27 1057 < oo,

ak

for p > g + 1, and we have established the S*-integrability of Y (t) { BE.
Now, for any F'= ), dg kHpte, (w) € S, we have from the definition of the
S*-integral and of Wick product, that

<</RY(t)<>BtHdt,F>> :/R<<;; ca(t)Mfﬁk(t)Ha+Ek(w)7F>> dt

(2.3.2)
- /]R 3 (@ + er)lea(t)da w MRy (1) (w)dt.
a,k

Note that

D o+ ) [da g * (2N)200FER) = O < o0
ak

for any ¢ € N. Therefore

Z/(a+6k)! ea®) [dakl [MET(t)] dt < 3 (a4 20t da gl K2 a1, ey
ak /R a,k

1/2
< Zﬁk' |da,k|2 (2N)2qﬂk Z 15/6 HCOL”%MR) ﬂk!(QN)—2q(OL+Ek)
ak a,k
1/2

|
< CqKZk5/6%(2N)*Q|a‘k*2q < o0
a,k :
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for ¢ > 11/12, B, = a + e, because 3, 2 (2N)~dlel < = (ja| + 1)279°l <
o0. So, we can change the signs of sum and integral in (2.3.2) and obtain

<</RY(t)<>det,F>> = Z(O‘Jrak)!da,k/Rca(t)Mfﬁk(t)(w)dt

a,k

<<Z JRECLCT >dt,F>>,

whence (2.3.1) follows. O

Corollary 2.3.2. Let Y(t) = Y ca(t)Ha(w) € S* be a process such that
fOT EY?(t)dt < oo for some T > 0. Then )", ol fOT 2 = fOT EY2(t)dt <
00, whence K := sup,{a! ||Ea||2Ll(R) (2N)~9*} < oo for any g > O (hereafter
we put o (t) := ca(t)Ljo,7)(t))-

So, we can use Theorem 2.3.1 and conclude that Y (t) & BM is
S*-integrable, and, moreover, equality (2.3.1) holds.

Corollary 2.3.3. Let Y(t) = 1. Then the previous corollary holds with
co(t) =1, ¢q(t) =0 for a # 0,whence

T T
/ B dt = Z/ M hy(t)dt - H., (w) = BM.
0 ke 0

In this connection, we can say that the fractional noise is the S*-derivative of
fBm.

As a consequence, we can define [, Y; $dBM = [, Y, BMdt for the
process Y;, satisfying the conditions of Theorem 2.3.1.

Now, let Y € L2[0,T] be some nonrandom function, H € (1/2,1).

Then ¢4 (t) =Y (t) =Ca(t), for @ = 0 and ¢, = 0 for other «, so, by using
Theorem 2.3.1, we obtain that

T T _ _
/Y(t)(}BtHdt:Z/ Y ()M T (t)dt - (o, ).
0 — Jo

Further, even for Y € L]0, T] we can replace the operator M f and obtain
[T Y (@) MEhy(t)dt = [ MEY (£)hy(t)dt, whence

T
SH g, HY (V7 A w
/0 Y (t) & B! dt_zk:/RM Y (t)he(t)dt - (hye, w)
_ HY (AT, ) w
_Ek:/RM Y(6)he(t)dt - Hep (),

(2.3.3)



2.3 Wick Integration with Respect to fBm 145

where Y (t) = Y(t)1,7)(t). The right-hand side of (2.3.3) corresponds to
(HOUZ96, representation (2.5.22)) of the integral fOT MHPY (t) & Bydt, where
B, = Btl /? is a white noise:

T ) T _
/ MY (8) 6 Budt = 3 / oV (£t - Hopp e, ().
0 k0
Therefore, for Y € L [0,T)
T . . .
/ Y (t) ) BMdt = / M_Y (t) & Bydt = / M_Y (t) - Bydt. (2.3.4)
0 R R

2.3.2 Comparison of Wick and Pathwise Integrals for “Markov”
Integrands

In this subsection we can, without losing generality, consider instead of S’(R)
the probability space 2 = Cy(R4,R) of real-valued continuous functions on
R, with the initial value zero and the topology of local uniform convergence.
There exists a probability measure P on (§2, F), where F is the Borel o-field,
such that on the probability space ({2, F, P) the coordinate process B : 2 — R
defined as,

Bi(w) = w(t), we N

is the Wiener process.

(i)  Recall the notion of a stochastic derivative. Let F' be a square-integrable
random variable, and suppose that the limit

1 .
lim — (F(o.) + ﬂ/ h(s)ds) — F(w.)) exists in  Lo(P)
p—o0 3 0
for any h € Ly(R). Then this limit is called the directional derivative Dy F.
(ii) If the directional derivative Dy F, h € La(R), is absolutely continuous
w.r.t. the measure h(z)dz, i.e.

Du(F) = [ P @) nwa,

and (dDy,(F))/(dh) does not depend on h, then the Radon-Nikodym deriv-
ative (dDy(F))/(dh) is called the stochastic derivative of F' and is denoted
by D, F.

(iii) We have a chain rule for the stochastic derivative: if D, F' exists and
© € CY(R), then D,¢(F) has the stochastic derivative

Dyp(F) = ¢'(F) Dy F.
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(iv) Let u € La(R) be a nonrandom function. Then it follows from (NP95,
Proposition 5.5), that

DI/uSdBS =u, a.e.
R

(v)  Recall the notion of the class Dy o. This is the Banach space, obtained
as a completion of the set Py of smooth functionals F' = f(By,,...,By,),
w.r.t. the norm |[F[[, , == |[F,p) + I ||DwFHHSHL1(P), where F € Py,
and |[|-|| ;¢ denotes the Hilbert-Schmidt norm.

Denote LY (R) = {f: R — R : [, [M_f(z)|” dz < oo}.
Lemma 2.3.4. Let F € Dy o, f € LY (R). Suppose that the integrals

/(M,f)(s) - D,Fds andF-/(M,f)(s)st = F-/f(s)dB;Vf
R R R
belong to Ly(P). Then F <& [, f(s)dBM exists and

M _ ) s
Fo / f(s)dBM = / (F - M_f)(5)5B.

= . S M* _ S) - S. L.
_F /Rf( )dB! /R(M £)(s) - DsFd (2.3.5)

Proof. By using (HOUZ96, Corollary 2.5.12) and (NP95, Theorem 3.2), we
obtain for nonrandom f that

Fo [ 1amt = Fo [ (1 p)s)aB,
— [(PoM_1)(©)5B. = [ (P2 15108,
R R
- ‘ — d s — : s d
P [(-pas,~ [ G116 - DoFds
=F. dBM — _ - DyFds.
P [ #aBd ~ [ Q1)) D.Fas
(Note that according to (NP95, Theorem 3.2), the Skorohod integral

Jo F - (M_f)(s)dB; exists if and only if the difference F - [, (M_ f)(s)dB
— Jog(M_f)(s) - DyFds belongs to La(P)). 0

Using this result, we can compare the Wick integral and the pathwise
integral w.r.t. fBm BH, H € (1/2,1)(the latter integral coincides with
Stratonovich integral). Therefore, now My = M.
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Lemma 2.3.5. Let o € C'(R), Fy = @(Bf), f(s) = Ly qp)(s), t,h > 0. If
¢ (Bf') and F, - (B[}, — BI") belong to Ly(P), then
F OBy, — Bff) = F-(Bfi, — BfY)
— He'(B{)t**h + c(w)(£>* h? + h*1),
where c¢(w) is a.s. finite and independent of t and h.

Proof. According to equation (2.3.5), we can rewrite formally the left-hand
side of the previous equality:

Fi Q(Btlih - BtH) =F- (B{ih - BtH)
R

Further, according to the chain rule (iii), it holds that
Dsp(Bi") = ¢'(B") DB,
and
DBl = DS/R(Mffl[O,t]) (u)dB, = (M*"1}94)(s).
Therefore,
F,O(BiL, — B = F, - (B, — B")
- ¢'(Bf") /R (ME 11 01m) (5) (ME1p0.) (s)ds,

and under the conditions of the lemma the right-hand side of equation (2.3.6)
is well-defined. Finally,

/R(Mﬁl[t,ﬂrh])(5)(M£11[0,t])(5)d5 = E(Bf, - BB
1

— 5((t+ h)2H _ t2H _ h2H) — Ht2ah+ 2Ha9204—1h2 _ h2H,

where 6 € (t,t + h). The lemma is proved. O

Remark 2.3.6. Evidently, the assumption E(@(BtH))QJrE < oo for some € > 0
is sufficient for Fy(Bf, — Bff) to belong to Ly(P).

Now, fix some T' > 0 and consider the sequence 7, = {0 =t} < -+ <
t" = T} of partitions of [0, 7], such that m, C 741 and |7,| — 0 as n — oco.
Suppose that

¢'(Bf") € La(P), ¢(B{') € L24<(P), t € [0,T] (2.3.7)



148 2 Stochastic Integration with Respect to fBm and Related Topics

for some ¢ > 0.
According to Lemma 2.3.5, we can write

n n
D_w(Bi )0 AB, = > w(Bii )AB,
i=1 i=1
- HZ ‘P/(B{;{_l)(t?—lfaAti,n + Ra(T),
i=1

where At;, =t} — i |, ABF = Bff — Bgfl. Here R, (T) is a remainder
term and R,(T) — 0 a.s. as n — oo. Furthermore, the process C; := p(BH)
is Holder continuous up to order H. Also, by Theorem 2.1.7, part 2), the
sum 1) (Bl JAB], converges a.s. as n — oo to the pathwise integral

RO

foT SO(BSH)dBf. Clearly,

n

T
Z@l(Bg_l)(Zil)ZaAti,nH/ ¢ (BH)s**ds a.s.
0

i=1

Therefore,
n T T
lim Y o(Bfi ) ABf, :/ o(BMaBH —H/ ¢ (BM)s*ds a.s.
n—o0 i ’ 0 0
Moreover, under assumption (2.3.7) and
r 2
E/ (p(BH))" ds < o0, (2.3.8)

0

there exists the Wick integral fOT o(BH) & dBH. Now we are in a position to
prove that

T n
| e odsl = tm S o(Bl )oABE. (239)
0 n— oo i—1 ’

=1

Theorem 2.3.7. Under conditions (2.3.7) and

E sup (4,0(35))2 + Esup(¢’(BH))? < (2.3.10)
s<T s<T

equality (2.3.8) and (2.3.9), consequently, the equality

T T T
/ H(BY) 6 dBY = / o(BY)dBH — H / o (BH)s*ds
0 0 0

holds a.s.
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Proof. Let the random variables F,G € Dy 2. According to equality (2.3.5)
and (NP95, Theorem 3.2), for i < k

E[FOAB!, -G AB[]

=E [ /R FM" 140 ) (5)8Bs - /R GMY 1[%17%,](5)683]

= E |:/]R FGMEI]-[t?’L_l,t;L](S)Mfl]-[tl’;l,tg](s)d8:|

r (2.3.11)
+E|] RDtFDSGMfflmlm(t)Mf’l[tg_l,tg](s)ds dt]
L X
1
= fE[FG’I“ik]
2
+E / Dy FM"1n  oy(t)dt - / DSGMHl[tzlytm(s)ds],
L/R R

where

}QH

ik = [t — T+ (- tp)2 = (= )2 — (R, — )P

Put in (2.3.11) F = %0(35,1)’ G = <P(Bf;§,1) and take the sum over
1 <i <k <n. We obtain that

n 2
E (Z @(Bfi ) OABfn> = ST+ 57,
i=1
where
St = Z ESO(B&IAW(B{L)W,
1<i<k<n
and

Sy= > E / ¢ (B M1 ()M 11 4 (t)dt
1<i<k<n “R

X /R(p'(Bt%il)Mfl[tgil,tm(S)Mfll[o,tgil](s)ds

S Y BB B ) ()P — () (A

1<i<k<n
X ()21 = (7)1 — (A

Evidently,

2
¢ (Bf )|t At?) : (2.3.12)

|SH| < H*E (i

i=1
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If the partition m, is uniform, i.e. t}' = %, then for some Cy > 0

. 2H
2 (zT)
N n
1<i<n

S?SQZE‘@B{%I)
T 2H
w(3) on X fetn el )

1<i<k<n

/ / 2"‘ Ldu dv.
i—1 Jk— 1

(2.3.13)

Now it is very easy to conclude from (2.3.10)—(2.3.13), that the sums
=Y @(Bf) O ABY,
k=1

form a Cauchy sequence in Ly(P), at least, for uniform ,,. From the estimate

CE g < 1Fll L,y 190l Lypy > E € L2(P), g €S,

we obtain that (S, — Sm,g) — 0, n,m — oo for any g € S. This means
that {S,} is a Cauchy sequence in the weak sense. If we establish the weak

convergence S,, — S = fo (BHEY{ dBH | then the theorem will be proved,
since the convergence will be in LQ(P), as well. According to (2.3.1) and
Corollary 2.3.2, we have that

~ T » T ~
5= B OBt =3 / MRy ()t - Hare, (@),

Sn:/ on(t) O BHAt = Z/ My, (8)dt - Hope, (),
0

where

n

ont) =D (B i (1),

i=1
= an(t)Ha(W)v colt) = Zca(t?—l)l[t?_l,t?)(t)-
« i=1

Denote d7} := co — c. Then

5-5,- % /dn (OMI Ty (t)dt - Ha(w)

B ak:ater=p

Furthermore, for any g =>_; gsHp(w) € S and any ¢ > 0
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\<<§‘5m9>>!§§ﬁlﬁ’ DY /Osza)Mf%k(t)dt

a,k:ate,=0
1/2
< [ 2 g2 2y
B
9 1/2
| Ye| Y |dan (2) 7
Ié] a,k:ater=0 L1]0,7)

We estimate only the second multiplicand. According to (1.5.3), for
He(1/2,1) ‘Mfﬁk(t)’ < Ck%/'? with constant C independent of £, k. So,
2 2

dZMfﬁk‘ <C S a0
L1[0,T] a,k:ater=p0

D

a,k:atep=0

< C(1(B))>/® > Ml or |

a,k:ater=0
where [(3) equals the number of nonzero entries in 3. Further,

2

SoareNy A ST |
8 o k:ater=0 L1[0,7)
2
< AEN)TPUBC ST R, e
8 ak:ater=0

<Y BB YT Rl o (2N) T
B

a:Fk,a+ter=03

<D (a+eR)(Ua+er) O dn17, oy (2N)a(eter)
o,k

" o+ eg)! . _
< sup {at 10312 0. } 30 55 1+ ) 70 o) oo

a,k

< sup {al 4117, 0,11 } (I +1)%/027 o0k,
« a,k

The last series converges for ¢ > 1, and it follows from the continuity of ¢
and condition (2.3.10), that
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sup {a! ||dZ||2Ll[O)T]} < ZOA ldell Lypo,r) - T

=T ||90(BH) - ‘pn(')HLZ[mT] — 0, n — oo.

Theorem 2.3.7 can be generalized to the processes of the form

m

2 : Hy,
M. O'kBt k,

k=1

Suppose that H; = 1 and Hy, € (1/2,1), 2<k < m.

Theorem 2.3.8. Assume that conditions (2.3.7), (2.3.8) and (2.3.10) hold
with B replaced by BM. Then

T T
/ P(BM) o dBM = / H(BM)dBM
0 0

n T T
~ 1
— E UiUkCHin(Hi'f'Hk)/o QDI(B?J)SHi+Hk_1dS+§J%/O (p/(Bé\/I)dS,
k=1

where
O e B(H; —1/2,2 — H; — Hy)
(Hi+Hk)(Hz+Hk_1)F( H; —1/2)I'(Hy, - 1/2)’
Hi,Hk€(1/2,1)7
éHH = CS)

e Yy —— =k [, =1/2, H, € (1/2,1),
7 /2, Hy € (1/2,1)
0,H; € (1/2,1),H, = 1/2,
%,Hlv:szl/Z

Proof. We start with (2.3.5) and conclude that
p(BM) (B, — Bi') = o(BY") - (B, — Bi")

— ¢/ (BM) Z 0ok / M™1 ()M TR 1 4 (s)ds
R

ik=1

Further, for f € L£*(R), g € L¥*(R), H;, Hy, € (1/2,1)
/MH MH’“ () ds—cz(lk)H// s)Hi 3/2f( )da
x/ (y — s)Hx=3/2g(y )dydsfcflk)H/ F(2)g(y)da dy

TAY
X / (x — s)H"'*P’/z(y - s)H’f?’/zdS,

— 00
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C(3>C<3>
T(H; —1/2)F(Hk 1/2)"

where C’z(lk) g = Evidently,

TAY
/ (x_s)Hi—3/2(y_S)Hk—3/2dS
—o0
= |y — gt HR—2 (C’i(?k))Hl{y >z} + C,fQ)Hl{y < x}) .

with Ci(?k)’H = fooo 2Hi=3/2(1 4 2)Hx=3/24y = B(H; —1/2,2 — H; — H},). There-
fore,

/MH MHk( ds = zqu/f H+Hk2
1 ZkH1&v<y}+<a?H1{y<a@)dmdy

Let f(z) = 1[t,t+h} (), g(y) = 1[0,t] (y). Then

/ MEII 1[t,t+h] (S)]\4fbc 1[0’15] (S)ds

_H }”H// H+H’° 2dy dx

7j=1,2
= I C9) 4 ((H: + Hy)(H, + Hy — 1)
j=1,2

x [(t + h)HtHe _ gHitHi _ pHitHy]
= C~VH1‘H,€ [(t + h)HH'Hk _ ¢HitHy _ hH'i+Hk]
= Cri.a, [(Hi+ H)t" M h o (H, o+ Hy)(Hy + Hy = 1)0" 11y

— RHHY] g e (¢t + h).
(2.3.14)
For H; = 1/2 and H;, € (1/2,1) we have that MY? = I is identity
operator, and

c®
AMi/Qf(s)Mfkg(s)ds— Hk}ikl/Q /f / 9()(y — )" dy ds.

For f and g as above, the last integral equals

o [ "o
L

3
T(Hy, + 3/2)
= Cyp, [(H,c +1/2)eH1/2),

{(t n h)Hk+1/2 _ pHet1/2 _ th+1/2}

"+ (Hy +1/2)(H)y, — 1/2)¢H-2p2 — th+1/2} . (2:3.15)
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At last, for H; = H, =1/2

/ M1 4 ()M 1y, 410 (5)ds = 0. (2.3.16)
R

Now we can proceed as in Lemma 2.3.5 and Theorem 2.3.7, put 6’% 1= %,
take into account (2.3.14)—(2.3.16) and obtain the proof. O

2.3.3 Comparison of Wick and Stratonovich Integrals for
“General” Integrands

Now we consider the general process F; instead of ¢(BM). Suppose that fBm
{Bff,t >0} is “one-sided”, H € (3,1).
Theorem 2.3.9. Let {F;,F;,t € [0,T]} be the stochastic process satisfying

the conditions

(i) F, €Dy foranyt € [0,T], E|F[*™ < oo for any t € [0,T] and
some € > 0, sup, ;0,77 | Ds Fi| is bounded in probability;

(i) limp o supsepo, 1) |DiF's — DiFsin| = 0 in probability;

(iii) Fy is a.s. Holder continuous of order o > 1 — H (this condition implies
the existence of the Stratonovich integral fOT FdBH, H € (1/2,1));

(iv) EfOT F2dt < oo (this condition implies the existence of the Wick
integral fOT Fy & dBE | according to Corollary 2.5.2);

(v)  there exists a sequence of partitions {m,,n > 1} with |m,| — 0 asn — oo
such that the integral sums Y _, Fin_ & ABJ converge to fOT F; & dBE
in probability.

Then

T T T s
/ F, ¢ dBH :/ F,dBH —CS)/ (/ (s—t)a_leFtdt> ds.
0 0 0 0

Proof. Consider for any 0 < ¢t < t+h < T the function f(u) = Ly qp)(u).
Then we take into account that DgF; = 0 for s > ¢t and s < 0 (since F} is Fy-

adapted) and obtain that [, M¥ fD,Fyds = Cg’) fot ttJrh(ufs)o‘*lduDsFtds,
where fttJrh(u —5)*"du < 2= Hence,

) ®)?
H (OH> 2 ! 2
R 0

Further, F; - [, MY fdB, = F, - (Btlih — BtH), and, according to (i),
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. 2(2+5) s
E|F,- (BE, - BY)| < (E|F|2+6)2+ (E|Bt+h BI| ) < 0.
Therefore, [, MH f- D Fids and Fy - [, MY fdB, belong to Ly(P) and it

follows from Lemma 2.3.4 that the integral sums Y ;' Fyp AB,gn exist.
Moreover,

iy, 0380 = By, A8~ [ Mgy 01D.g s
= P, A8l = [ 1 oy () (ME (D) (5)ds

ty th_
=Fyp - AB, - Cg’) / / (s —u)* 'DyFyp_ duds.
i

(2.3.17)
Consider the difference,

ty t_1
/ / —u)* ' Dy Fyn_ duds
ty
/ / a 1D Ftw l[tgil)tz)(s)duds

<C- sup |DyF|-|m,]" T —0, (2.3.18)

0<u<t<T

as n — oo in probability, according to (i). Further, according to (i) and (ii),

(s —u)* "DyFyp_ ey (s)duds

T s
- / / (s —u)* ' D, F,duds
o Jo

in probability. Now, the proof follows from (v) and (2.3.17)—(2.3.19). O

—0 (2.3.19)

Now consider one sufficient condition for (v) (condition (v) seems to be
the most artificial among other conditions (i)—(iv)). To this end, consider the
middle part of (2.3.11), from which we obtain that for any step processes

F,(t) = ZZ:l kal[tﬁ,l,tﬁ,l)(t) and G, (t) = 22:1 Gkv"]‘[tﬁfl;tﬁfl)(t)

zn:Fn )& dBf - ZG (t) O dBf!
=1

k=1

=F / MYE, (MEG, (t)dt+ E | MPD,F,(t)M" D,G,(s)ds dt.
R R2
(2.3.20)
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The next result was motivated by (Ben03a, Theorem 2.2.8).
Theorem 2.3.10. Let the stochastic process {Fy,Fi,t € [0,T]} satisfy the

assumptions (i)—(iv) and
(vi) B [} F2dt < oo;
(vii) the operator Fy : [0,T] — Dy o is continuous in Ly([0,T] x P).

Then the integral sums Y, _, Fip & ABJL exist, the integral foT F,¢&dBH
exists and

T n
/ F,¢dBM = lim Y Fpn  OGAB[L, in Ly(P)

for any sequence of increasing partitions w, with |m,| — 0 as n — oo.

Proof. Under condition (vi), the existence of sums Y ') Fy» O ABJY and

the integral fOT F, ¢ dBH was established in Theorem 2.3.9. Further, using
(2.3.20) and (vii), we obtain that

T n 2
E/ F&dBf =Y " Fn O AB{,
0

k=1

_ H _n 2
_E/R[M_ (F.— F")(t)] dt

-|-/ E MY (D,F — DtF,")(s)]stdt = E, <x
R2

From the Hardy-Littlewood theorem (Theorem 1.1.1) with ¢ = 2, a =
H—-1/2andp=+

pe 2
[ E = PO de < Cu |IF = PP o
H

and from condition (vii) it follows that
2
/ [MH(DyF — DF")(s)]” ds < Cu [IDF. = DE™ 2 o
R "

whence from (vii) and (iv) we obtain that

T
E, <CyE (F- - F.n”ii[o,T] Jr/0 E|DF. — DtF-nHi;[O,T] dt)
H H

T
a n|2 2
< CyT*E <||F = F"| 70,7 Jr/0 [DeF. = DeF ([0, dt)

T
<cur> [ B~ F,d
0

< CHJT%‘ F—Fm — 0, n — .

L2 ([0,T]x P)
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O

2.3.4 Reduction of Wick Integration w.r.t. Fractional Noise to the
Integration w.r.t. White Noise

Recall that for nonrandom integrands f € L (R)
[ rwasit = [ " pyejas.
R R

In this subsection we reduce fR XtOBf dt to the corresponding integral
Jo (MEX)(t) & Bydt w.r.t. white noise.

Theorem 2.3.11. Let the following conditions hold:
E/ | X |?dt < oo and E/((Mfl|Xt|)(t))2dt < 0.
R R

Then
/ X, & B dt — / (MEX)() O Budt s,
R R

Proof. According to Theorem 2.3.1 and Corollary 2.3.2, the condition
E [ |X|?dt < oo supplies the equality

/Xt<>BHdt Z/ M h()dt - Hege, (). (2.3.21)

First, replace the operator M f in the last equality. Evidently,

/ FOMg(t)dt = / MH F(8)g(t)dt (2.3.22)
R R

for f € Ly(R), g € Ly(R) withp >1,¢ > 1and L + 1 =1+a=H+1/2.
Moreover, %k € Ly(R) for any ¢ > 1. Since E [, | X;|?dt
= Ea' Jg €A (t)dt < oo, we can take p = 2, ¢ = 7; and obtain from (2.3.22)

that

/ ca(t)M Ty (t)dt = / (MH o) (1) (). (2.3.23)
R R

Further, consider the formal expansion Y; := > (M ¢, )(t)H . (w). Again, from

«

Corollary 2.3.2, the condition
E/ Y2dt = Za!/ (M e () 2dt < o0 (2.3.24)
R = R

ensures the equality
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' = He, h ate (W). 3.
AnoBtth;A(M_ (O (8)dt Har e, () (2.3.25)

So, we want to know when (2.3.24) holds and we need the equality
Y; = (MH X)(t). This follows from the equalities

(MEX)(), Ha(w)) Lopy = (M o) (t) = MY (X, Ha (@) 1o(p)s - (2:3.26)

if they hold for any « € Z. Equalities (2.3.26) can be reduced to

/Q (/too(x—t)“‘lXx(w)dx)Ha(w)dp
:/t ) /X o(@)dP)dz (23.27)

for a.a. t € R. In turn, the Fubini theorem can be applied to (2.3.27) in the
case when

o0 2
E(/t (x — t)o‘_1|X$(w)|dx) <oo foraa . teR (2.3.28)

because EHZ(w) = a! < co. Evidently, the condition E [, (M| X|)(t))dt <
oo ensures both (2.3.24) and (2.3.28). The proof now follows from (2.3.21),
(2.3.23), (2.3.25) and (2.3.26). 0

2.4 Skorohod, Forward, Backward and Symmetric
Integration w.r.t. fBm. Two Approaches to Skorohod
Integration

Taking into account the definition of the integral for nonrandom function
w.rt. fBm: [p f(t)dB = [ (M f)(t)dB;, and Theorem 2.3.11, it is desir-
able to define the integral fR (t)dBF for stochastic integrands in a similar
way. Evidently, in this case, even for very sunple and natural integrands, such
as f(t) = BH we have that (M#BH)(t) = C¥ [ (@ — )" B dx is not
adapted. So, we must in this case address the theory of 1ntegrat10n of non-
adapted processes. To this end, recall the definition of the Skorohod integral
(see also the pioneer paper (Sko75)).
Let the stochastic process X; = X;(w) be such that

EX}? < oo forallteR.

Then X; admits a Wiener—It6 chaos expansion

Z fn(s1,. .oy 80, 1)dB®"(s1,...,5,),

R
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where the functions f,(-) € Lo(R™) and are symmetric in variables

($1,---,8n), for n = 0,1,2,... and for each t € R. See, for example,
(HOUZ96, Theorem 2.2.5). Let f,(s1,---,8n,8n+1) be the symmetrization
of fr(s1,...,8n,Sns1) With respect to (n + 1) variables s1,..., 8n, Snt1-

Definition 2.4.1. Assume that

i(n +1)!
n=0

Then we say that the process X is Skorohod integrable, write
X € Dom(0), denote the Skorohod integral as [, X;0B;, and define it as

Jo Xe0Be := > [pui fn(sl, ey Sng1)dB® D (510 s,01). The Skorohod
n=0

F

La(R™F1)

integral belong?s to La(P),

f

E/ X6B; = 0, and E)| / X,0B|* = Z(n+ 1)! ‘
R R

L Rn+1 !
n=0 2( )

Remark 2.4.2 ((NP95)). Define by L2 the class of stochastic processes
X € Ly(R x £2) such that X € Do for almost all ¢, and there exists a
measurable version of two-parameter process D,X; satisfying the relation
E [42(DsXy)?ds dt < oo. Then Ly 5 C Dom(d).

Definition 2.4.3 ((Ben03a)). Let the stochastic process X; = X;(w) be such
that (MH X)(t) exists and belongs to Dom(d). Then we define the Skorohod
integral with respect to fBm B¥ as

/RXtcSBtH = /R(ME’X)(t)cSBt

for the underlying Wiener process B.

Evidently, F fR X:6BH = 0. Of course, we can define in the usual way

the Skorohod integral with finite limits and indefinite integral fg X 6BH  t €
[0,T7]. It is easy to compare now the Skorohod and Wick integral w.r.t. fBm.

Theorem 2.4.4. Let MPX € Dom(5), E [p|X:*dt < oo and
E [L(MP]X|)(t))?dt < co. Then

/XtcSBtH :/XtQBtHdt.
R R

Proof. According to (HOUZ96, Theorem 2.5.9), the condition M7 X €
Dom(§) ensures the existence of [, (MY X)(t) & Bydt and the equalities:

/R(MEJX)(t)QBtdt :/

(MEX)(t)0B, = / X, 6B},
R R
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Further, according to Theorem 2.3.11, in our case

/ (MEX)(t) & Bdt = / X, & BHdt,
R R

whence the proof follows. O

Remark 2.4.5. Let Y € L0, T]. Then Y is a Skorohod integrable adapted
stochastic process. Indeed, it is nonrandom thus adapted. From (2.3.4) and
(HOUZ96, Theorem 2.5.9), Y (t) { BM is S*-integrable, and

T
/ Y(t)QBi‘/[dt:/M,?(t)-Btdt
0 R
T T
:/ M_?(t)(SBt:/ M_Y (t)dB;,
0 0

where 6 means Skorohod integration, and the last integral is the It6, and even
the Wiener, integral. Note that, according to Corollary 1.9.4 (for H > 1/2, or
1/H < 2) L[0,T] C L[0,T]. We obtain that the S*-integral for nonrandom
functions from L2[0,T] coincides with the Wiener integral fOT Y (t)dB} from
Definition 1.6.1.

Another approach to Skorohod integration w.r.t. fBm was developed in
the papers (AN02), (Nua03), (Nua06). The main idea is to use the basic tools
of a stochastic calculus of variations (Malliavin calculus) with respect to B,
Recall some of these notions for H € (1/2,1). (For H € (0,1/2) see, for
example, (AMNOO).)

Let S be a family of smooth random variables of the form

F = f(BH

tl"

... B
with f € Cp°(R™) and t; € [0,7],1 < i < n. Let H be a closure of the linear

space of step functions defined on [0, 7] with respect to the scalar product

t s
(110,75 Ljo,s)) 7 == 2aH/ / lr — u**~du dr.
0 0

Then the derivative operator D : & — L,(£2,H) for p > 1 is defined as

.y BtHn)l[O,tl] .

tos -+

N9 pn g
DHF_Z%(BH,B
i=1 "

Let Dy ,(H) be the Sobolev space, the closure of S with respect to the norm

k
IEI}, = E(FP) + Y E(ID"F|5e);

j=1
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where D7 is the jth iteration of D. The Skorohod integral (divergence op-
erator) dp is defined as the adjoint of Dy : Dy o(H) C La(£2) — La(2,'H),
defined by the means of the duality relationship

E(Gy(u)) = E(DyG,u)s, u € Ly(2,H),G € S.

Its domain is denoted by Dom(dg).
Introduce the Banach space |H| ® |H| as the class of all the measurable
functions ¢ : [0,7]? — R such that

el

= (QaH)Z/[ . |Punl|@s.ells — u** Ht — v]** tdudv ds dt < oo,
0,7

and denote |H| := |Ry| with the norm || - |||z,|,2 (see (1.6.7)). Denote also
S the family of |H|-valued random variables of the form F = Z Fih;,

where F; € S and h; € [H|. Put D¥F := E D*F; ® h;, and define the space

Dy ,(|H|) as the completion of S}y with rebpect to the norm

k
IEIZ = EAEN) + 3 BUD IR y)-
i=1

Then Dy 2(|H|) € Dom(dg). The basic property of the divergence operator is
that for every u € Dy 2(|H|) we have

B(8(w)?) < Ilull3, ,mp-

Consider the forward integral w.r.t. fBm ((AN02), (LT02)). It is defined as

t t
/ usdB?~ = P — lim et / us(B{lyoyn — B )ds. (2.4.1)
0 - 0
(Note that in a similar way the symmetric Stratonovich integral can be de-
fined: fot usdBH— = P — lim._0(2¢)~ fo Ug B(5+E)At — B(s E)M)ds and
also backward integral can be defined.) In (LT02) the ucp-limit is consid-
ered instead of the P-limit, where ucp-convergence is uniform convergence
in probability on [0,7]. Moreover, it is mentioned in (AN02) that forward,
backward and symmetric integrals with integrand w and w.r.t. fBm coin-
cide with each other under the following suppositions: uv € Dj o(|H|) with
fg fot |Dsu,||r — s|?*~dsdr < oo a.s.). Also, it was proved that for processes

u € Dy o(|H|) with fot fg | Dsu||r — s|?*~1ds dr < oo a.s. we have the equality

¢ t gt
/ usdBH* = 55 (u) + 2aH/ / |Dgu,||r — 5| Ldrds. (2.4.2)
0 o Jo
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Evidently, for « € CP[0,T] with 3 + H > 1 all the integrals, symmet-
ric, forward, backward, and pathwise, coincide. We use this fact in order to

establish the conditions of coincidence of Skorohod integrals introduced in
(Ben03a) and in (AN02).

Theorem 2.4.6. Fiz a time interval [0,T]. Let ¢ € CY(R) and satisfy, to-
gether with its derivative ¢, the growth condition |¢(z)| < Cexp(A\x®) for

some A >0 and 0 < b < 2. Then the integrals 5y (¢(BH)) and fg ¢(BEYsBE
coincide on [0,T] a.s.

Proof. According to Proposition 3.3 (Nua06), under the condition of the
theorem (even under the less restrictive condition |¢p(z)| < Cexp(Az?) for
A < (4T?*H)=1) the divergence operator &y (¢(B™)) exists on [0, 7] and sat-
isfies the relation

T T
Su(o(B™) = [ o(BIdBI 1 [ $(BI)ds as.
0 0

where fOT #(BHE)dBH is the pathwise integral. According to Theorem 2.3.7,
under conditions (2.3.10), which evidently hold now, the same equal-
ity is valid for the integral fOT ¢(BH) & dBE. Therefore, 65 (¢(BH)) and
fOT #(BH) ¢ dBE coincide a.s. on [0,T]. Further, the conditions of Theo-
rem 2.4.4 also hold now. Indeed, for example, E [, ((MH|X|)(t))%dt can be
bounded in our case by CfOT |¢(BH)|2ds. Therefore, fOT d(BHE)SBH exists

and equals fOT #(BF) & BH dt. Finally, we use Theorem 2.3.1 and Corollary
2.3.2 and obtain the proof.
O

Remark 2.4.7. A general S-transform approach to the stochastic fractional
integration is presented in (Ben03b); see also (CC00) and (Cou07).

2.5 Isometric Approach to Stochastic Integration with
Respect to fBm

2.5.1 The Basic Idea

Some special approach to stochastic integration w.r.t. fBm was considered in
(MVO00). We will work with a continuous stochastic process {X;,0 <t < T}
defined on a complete probability space (£2, F, P). Let F; := F;< be the sigma-
field generated by X on [0,t]. We assume that Xy = 0. Given a partition
T i={t; : 0 =1ty <ty < -+ <t, =T} and X a stochastic process, define
AX; by AX; == X3, — Xy,_, for 1 < i < n. Assume first that the integrand
[ is a simple predictable process: f; = > fily, ,+,)(t), where the random

K3
variables f; are assumed to be F;, , measurable and t; € m,; denote the
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class of simple predictable processes by L®. With such an f € L° and any
(continuous) process X, define the stochastic integral of f with respect to X
by

(f, X) = ZfiAXi.

Assume now that |, — 0 as n — oo. If the process X is the standard
Brownian motion B, f := La(P®A)-lim ™, where X\ is the Lebesgue measure
on [0,7], one can define the integral (f, B) as the Ly-limit of the simple
stochastic integrals (f (n), B) using the classical It6 isometry
T
E(f™ B)? = E/ (fim)2ds. (2.5.1)
0

Assume now that the process X is any continuous stochastic process and f is
a simple predictable process. Define now a semi-norm for (f, X') using (2.5.1).
Note that such a semi-norm does not depend on the process X. It is the main
feature of this approach. If the process X is the standard Brownian motion,
then the semi-norm is a norm and the integrals of simple function converge
to the classical stochastic integral defined by It6. For an arbitrary integrator
X, even if the semi-norm is a norm, it may happen that the integrals of
simple functions of processes have no limit. However, they have a limit in the
completion of the space integral sums with respect to this norm. In this sense
we generalize the It6 construction of stochastic integrals.

In particular, we show that if X is a fractional Brownian motion B, then
we can define a norm by putting

Bl = (5 [ s2as)"”

in the space G of random variables of the form {g € G : G = (f, B), f € L*}.
Even more turns out to be true: for any & > 2 define random variables
(f, X*®)) by the formula

(f,X®) = Zfi(AXi)k
and define again a semi-norm for such random variables by putting

i x0], = (o )™

Again, if the process X is a fractional Brownian motion B¥, then
| (f, (BH)(k))HGk is a norm. Denote by L5" (P @ \) the space of predictable
process f with the property EfOT f2ds < oo. Now, let f € LY (P ® \) be a

predictable process and f(™) a sequence of simple predictable processes such
that



164 2 Stochastic Integration with Respect to fBm and Related Topics

s

— 0
L2(P®X)

as n — oo. Define the higher-order generalized integral (f, (B)(*)) as a limit
in the Banach space (J%, ||| o), which is the space of some kind of extended
random variables g, which are limits of the sequences of the form (f, (B)®*))
with respect the norm ||| 5.

2.5.2 First- and Higher-order Integrals with Respect to X
Wiener Integrals

Further, if (Y, |]-|ly-) is a complete metric space, then the Y-lim stands for
the limit on the space Y with respect to the norm ||-||,-. Assume that f is a
simple deterministic process, fy = /"1 fily, ,+,)(t). Then |- is a norm if
and only if

(f,X)=> fidX; =0+ fi=0,1<i<m. (2.5.2)
i=1

Let X = (Xi)iejo,r) be a square integrable process with EX; = 0, X, = 0,
and write R(t, s) for the covariance function, R(t,s) = E X;X,. Consider the
quadratic forms

By, = E((fa X))z

where f € L*® has deterministic coefficients f;,1 < 4 < m. Then condition
(2.5.2) is equivalent to the following;:

The quadratic form B,, is positive definite for each m > 1. (2.5.3)

We can write B, in terms of the correlation function R:

f: R(ti t;) — 2R(t;i_1,t;) + R(ti_1,ti-1))]

Z fifi[R(ti; ;) — R(ti—1,t5) — R(ts, tj—1) + R(ti—1,tj-1)].
1#£7,5,j<m
(2.5.4)

Put
6ii = R(t’b7tl)_2R(’L 1 )+R(Z 17 )

and
61]' = R(tiatj) - R(ti—latj) - R(tivtj—l) + R(ti—17tj—1)'

Then condition (2.5.3) is equivalent to the property that the matrix (6;5)i j<m
is positive definite for each m > 1. Assume that condition (2.5.2) is valid for
the process X and assume that f € L3[0,7]. Then there exists f* € L*
such that [|f" = fl[;,0,m) — 0 as n — oo. Moreover, the sequence (f",X)
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is a Cauchy sequence in the space (E?, ||| zs), where E® is the subspace of
L? consisting of deterministic simple functions f. Complete E*® with respect
the norm ||-|| ;. and denote this Banach space by E. Define now the integral
fOT fsdX, as the limit of (", X) in the space E. We say that fOT fsdX, is the
generalized Wiener integral with respect to process X. Note that L® in dense
in L,[0,T] and hence also E* is dense in E, by using the isometry.

We clarify the connection between random variables and Wiener integrals
defined above. Let (™ be a sequence of random variables of the form

"= (" X)

with some f" € L. Assume now that ¢ = P-lim,, ¢" and |[f — " 1,077 — 0,
n — o0o. We show later that it may happen that P{|¢| < co} < 1 or even
P{|¢| < oo} = 0. But even in the above situation the limit

T
/ fsdXs = E-lim(f", X)
0 n

defines the generalized Wiener integral. In this kind of situation we say that
the random variable ( is one of the representatives of fOT fsdXs in the space
of random variables and fOT fsdX is one of the representatives of the random

variable ¢ in the space E: write this as ¢ « fOT fsdXs. It is easy to check that
if X is a process with non-correlated increments and with the property

EX?>EX; (2.5.5)

where s < ¢, then condition (2.5.2) is satisfied. Note first that condition (2.5.5)
is equivalent to the condition E(X; — X,)? > 0 for s < t. Since the process X
has non-correlated increments, we have that

E(;fiAXi)Q = Z;ffE(AXZ-)Z =0

if and only if f; = 0,2 < m. Note that if X is a square integrable martingale
and EX? > EX2 s < t, then (2.5.2) is satisfied.

Similarly, if X is a stationary process with so-called orthogonal vector mea-
sure p(d)) such that the spectral measure F(d)) := E|p(d)\)|? is equivalent
to the Lebesgue measure, then condition (2.5.2) is satisfied.

If the process X is the standard Brownian motion B, then

(£, Bl g = E(f, B)* = | fll 10,19

and then the limits of simple integrals (™), B) in the space E and in Ly (P)
are the same. Similarly, if the process X is a continuous square integrable
martingale M with the angle bracket (M); = f; asds, where 1/K < Fa; < K,

the limits in the space E and Ly(P) are the same.
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First-order Stochastic Integrals with Respect to X

Let F := {F;,t € [0,T]} be a filtration on (£2,F, P) satisfying the usual
conditions of right continuity and completeness.

The notation X € F means that X; is F; measurable. So, let X € F be a
process and introduce the space G* of random variables &:

§=Y fLAX;
i=1
where f; € F, , and f; € Lo(P),1 < i <m,m > 1. Let f be as above, i.e.,
f € L* and the coefficients f;,1 < i < m satisfy f; € F;,_, and f; € La(P).
Then we can define a surjection Z from L® — G* by

i—1

I(f) = (£, X) = >_ f:AX,.
i=1
Introduce the following semi-norm on G*:

1(f, X1

o= (Eiff(ti —ti,l))l/z. (2.5.6)
=1

It is easy to check that the condition
(f,X)=0 P-as.ifand only if f; =0 P-a.s. for 1 <i<m (2.5.7)

is a necessary and a sufficient condition for Z to be a bijection and |[-||. to
be a norm.
Let X be a square integrable process, which satisfies (2.5.7). Now let f be a

predictable process with E fOT f2ds < co. Then there exist processes f™ € L*
such that

T
_ fn)2 N
E/o (fs — f)“ds —0

as n — oo. Now L® is the space of elementary “predictable” processes g,
where g; := 21" fily, 1) (t), and fi € Fy,_,,1 < i < m. Complete again

the space G* with respect to the norm ||-||.. The integral fOT fsdXs =Z(f)
is defined using the extension of the isometry Z on the completed Banach
space G. The sequence f" is a Cauchy sequence with respect the norm ||-||&

and the integral fOT fsdXs is the limit of the elementary integrals (f™, X) in

the space (G, ||||z). We say that the integral fOT fsdX s defined for predictable
f € LY (P ®)) is the first order generalized stochastic integral with respect

to the process X. Later we will use the notation fOT fstgl) for this integral.
If ™ be a sequence of random variables of the form

Cn = (fn7X)
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with some f™ € L* and assume that ( = P-lim, (" and || f — f”||LgT(P®A) —
0, n — oo. Hence also

T
/ f.dX, = G-lim(f™, X).
0 n

It may happen that P{|¢| < oo} < 1 or even P{|¢| < oo} = 0. Again the
random variable ¢ is one of the representatives of the integral fo fsdX M i

)

the space of random variables and fOT fsdX §1 is one of the representatives of

the random variable ¢ in the space G: write this again as ¢ « fOT fstgl).
The first-order integral is linear: (af + bg, X) = a(f, X) + b(g, X).

Higher-order Stochastic Integrals with Respect to X

Let (X, F) be again a stochastic process defined on ({2, F, P). Introduce the
space G*F of the random variables &:

§=) fi(AXy)"

i=1
where k > 1, f; € Fy,_,, i € Lo(P),1 <i<m.If f € L* is a predictable step
function, define a surjection Z* from L*® to G** by putting

m

TH(f) = (F, X W) = fi(AX).

i=1

We suppose that any simple function has different values on the adjoining seg-

ments of the partition. With this assumption only one partition corresponds

to a simple function, we have only one zero function and Z* is a surjection.
Introduce the following semi-norm on G**:

s x

m 1/2
— 2 —
ok (E 21 fi(ti = ti—l)) = Ifllopon -

Let f and g be simple predictable processes, defined with respect to different
partitions m; and m,. Consider f + g on the partition 7 := 7y U 7y, put
(f, X®) 4 (¢, X®)) := (f + g, X*)) and see that

(£, X5 + (9, x|

ooe |G ot e XD 259

Again it is easy to check that the condition

(f,X(k)) =0 P-a.s. if and only if f; =0 for 1 <i <m,

when f € L, f =Y filp,_,.n() (2.5.9)

i=1
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is a necessary and sufficient condition for Z* to be a bijection, for G** to be
a linear space and for ||-|| ;... to be a norm.

If f is a predictable process from LY (P ® M), take f™ € L® such that
If = f"lz,(per) — O. Assume that property (2.5.9) holds for the process

X with some k£ > 1. Define the integral fOT fsts(k) = TF(f) as the limit
of (f*,X®)) in the completed Banach space (ék, |-l ), where G" is the
completion of G** with respect to norm |[|-|| ;... We say that such an integral

fOT fsts(k) is the kth order generalized stochastic integral of f with respect
to the process X.

Assume now that property (2.5.9) holds for all £ < N. Define the Banach
space GV by

GN =G
and define the norm in GV by

N
g =D g -
k=1

In view of (2.5.8), ||-|| o~ satisfies the triangle inequality and hence it is really
a norm. _N
The elements g € G have the form

N7
9= fi(s)dX ()
X,

where fi is a predictable process from Lo(P ® A). Note also that there is
a bijection between such a g from GV and (fiyeos fn) € @M LY (P ® N)

1 =2 —N
xG xX---xG

N
equipped with the norm Y ||fk||L2(P®)\)'
k=1

The following examples clarify the definition of the generalized integrals
of higher order. We assume that the process X satisfies property (2.5.9) for
ecach 1 < k < N below.

Processes with bounded variation. Assume that the process X is a contin-
uous process with bounded variation and consider the random variables X",

where
m

N
Xit=> "3 (AXp)"

=1 k=1

When |7| — 0 we have that X}* L Xr and the right-hand side converges in

—N
the space G~ towards the element

N T
> / dx®.
=170
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Here the random variable X7 is a representative of the integral fOT dX S(l) and

zero is a representative of the sum Z fo ax V.

Standard Brownian Motion. Assume that X is a standard Brownian mo-
tion, X = B. Define again the random variable X7 by

m

7rL . Z A Bk

=1 k=1

Now, when |7| — 0, X7? Kt Br + T, so the constant T is a representative of

. T ,5(2) . . Noor oo
the integral fo dBs” and zero is a representative of the sum fo dBg"’ .
1=3

2.5.3 Generalized Integrals with Respect to fBm
Fractional Brownian Motion and Property (2.5.7)

Theorem 2.5.1. Property (2.5.7) holds for fBm B H € (0,1).

Proof. Assume that > fiABH = 0 almost surely. Assume that my is the
i<m

largest index for which P{f,, # 0} > 0. Then from presentations (1.8.17)—

(1.8.18) we have

tmg tmg—1
ABN{ILO :/ M (tmg, S)dWs +/ (mp(tme,s) — mu(tme—1,5))dWs
t 0

mgp—1

- Amo + Bmoa

For the term B,,, we have By, € Fi, . Put £ :={w : |fi| < c,i < mo}.
Then 2. € F; and

mg—1

m

flgcfiABZH => 1o fiAB =
i=1

i=1

Hence we can conclude the following:

o 2
- E(;lgcfiABf’)

— E(( Z 1gcf7;ABzH) + fmolo, Bmg—1 + meAmo)

i<mo—1

,  (25.10)

The right-hand side of (2.5.10) is equal to
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B( Y (GABI10) + frylo By 1)

i<mo—1

t7YLO
+B( ;Olgc/ (B (tiy: 5))?ds).

trno -1

Hence, from (2.5.10), since

tmg
/ (BH (ts5))2ds > 0

tmg—1

we have that f,,1n. = 0 almost surely for any ¢ > 0 and so f,,,, = 0 P-a.s.
This shows that condition (2.5.7) is fulfilled. Hence f; =0 for all i <m. O

Fractional Brownian Motions and Property (2.5.9)

Theorem 2.5.2. Property (2.5.9) holds for fBm B H € (0,1).

Proof. We know from Theorem 2.5.1 that the claim holds for & = 1. Assume
now that £ > 1 and let mg, Ay, Bm, and W be as in the proof of Theo-
rem 2.5.1. Put f{ :=1g_f;. Note that ff € F,, , for i < mg. Denote by x

the random variable
mo—1

xi= 3 F(ABH.
=1

For the random variable x we have that x € 7, ,, and this fact is used
below. Assume that Y f;(ABf)* = 0. With the above notation we have

i<m
from this assumption that also

k
0 D () B ) =0 (2.5.11)

r
r=0

Write the expression in (2.5.11) as

RS DR () [ e

r
0<r<k, r even

(2.5.12)
+ | fro Z (f) (Brmo)* ™" (Ame)" | =t x1 + Xa-

0<r<k, r odd

The random variable A,,, is a Gaussian random variable with zero expectation
and hence for odd r E(Ap,)" = 0 and by conditioning on ¢, in (2.5.12) it
is easy to see that E(x1x2) = 0. So from this we can conclude that Ex3 = 0,
using also (2.5.11) and (2.5.12). But
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X5 = fa, (11 +72)

with )
k .
w= 2 () Bty (25.13)
0<r<k, r odd
and
kN [k e r
we 2 (D) (5 mar g esa
q
r#q, r,q odd

All the terms in (2.5.13) are nonnegative and since r + ¢ is even, the same
holds for the expression (2.5.14), too. Note also that if » = 1, then

k2 (Bung )" 2 (Amg)? > 0

almost surely. But at the same time E(f2 (y1 + 72)) = 0. Hence f,,, = 0

mo
almost surely. From this follows that f; = 0 almost surely for all : < m. We

have shown that fBm B¥ satisfies property (2.5.9) for all k > 1. O

Some Properties of the Generalized Integrals

In this subsection we discuss some of the properties of the generalized inte-
grals. At this stage we have results mostly on Wiener integrals.
Assume that BY is again an fBm with index H. Take

f& =n"1 2 1)2n,1/241/20)(5)-

Then anHiz[(],T] =n®" NI H € (1/2,1),1/2 <y < H, then || f"|| 1,10 —
oo and the generalized integral does not exist, but E((f", B7))? = n?—2H _,
0, and the limit exists in Lo(P). If H < v < 1/2, then E((f", B¥))? — oo,
but ||fn||L2[o,T] — 0. Hence the integral exists in G and it is = 0, but the limit
does not exist in Ly(P). Note also that here we have that |(f", B)| L .

Lo-integrals and Wiener integrals, H € (1/2,1). If B is an fBm with
Hurst index H € (1/2,1), then according to (1.9.2) we have the following
estimate for Lo-integral, valid for any p > 0:

T
/ f.dBY
0

Hence, if (™), BH) converges in G, it also converges in Ly(P).
Lo-integrals and Wiener integrals, H € (0,1/2). Before the continuation,
we prove the following theorem, which is the opposite to (2.5.15).

Theorem 2.5.3. Let f € L* and BY is an fBm with Hurst index H €

(0,1/2). Then
T
/ fsdBY
0

p
E < CH,p Hf”Z[),L[O’T] . (2.5.15)
y2g

2

E > CIf117,10.17 - (2.5.16)
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Proof. If f € L® and (f, B) = ZfiABZH, then
E(f,B")> =3 (f7EABI')* + > fifv E(AB AB}!). (2.5.17)
i i#k
But BE(ABH ABH) < 0 and hence
i E(ABE ABY) > | £l ful E(ABY ABE).

Use this in (2.5.17) to obtain the inequality

2
E(f,B") >E (Z |f,»|ABf’> :

Hence we can assume that f; > 0 for all ¢ < n in proving (2.5.16).

Denote by D(R) the space of functions f with the two properties: f €
C*(R) and f has compact support.

Let ¢ € D(R). Then the Fourier transform ¢ of ¢ belongs to S(R) C Fg C
LI (R) (see Lemma 1.6.8), and moreover,

/ Ged B
R

where ¢y is some constant.
We want to prove that there exists a sequence (¢")n>1,¢" € D(R) such
that

2 2
E —E :cH/|¢AS()\)||)\\_20‘d)\, (2.5.18)
R

/ ¢ (t)BH dt
R

/R(qs”)’(t)B{fdt L2P) (¢ BH), (2.5.19)

To prove (2.5.19) it is sufficient to prove it for f € L®, f, = al[s 4 (u), s <
t < T and a > 0. Take ¢" € D(R) such that supp(¢™) C [s—1/n,t+1/n] and
¢" =aon [s+1/n,t —1/n]. Then

t+1/n s+1/n
[erwsla= [ @y@slas [ @ @bl
R t—1/n s—1/n
and, for example,

" t+1/n " t+1/n " "

Bl [ @Bl <| [ 6 @BH,, - B

t—1/n t—1/n
<a sup |B{i1/nfo|.

u€l[t—1/n,t+1/n]

From self-similarity of Bf and Remark 1.10.7 with f = 1,7 = 2/n

sup B, —BY 20
u€lt—1/n,t+1/n]
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and so
E(f, BT)? zlim/ 6™ (\)||A| 2 dA.
n R

Since for any A € R f()\) = lim, ;5”()\), we have, using the Fatou lemma
and relation (2.5.18),

2

/ FOVIA2%dA < liminf / B NP2 = E|Y f,ABH
We have that
[ 1FoEAan
- R ~ (2.5.20)
> e-20 / FOO2dA + / PPN 22d.
[A[>e [A|<e

Put p(A) := [A]7*1 . (A). Since H € (0,1/2), we have that p € Li(R). Also,

At = / ¢ (NN = [ cos(tA)A|~d.

—o00 —€

This integral is finite and hence p(-) is the Fourier transform of p(-). Use the
Parceval identity to obtain

[ ROy
[Al<e

:/R /Rf(s) (/_Zcos((t—s))\)|>\|“d>\> ds

Estimate the right-hand side of (2.5.21) from below by

/11 /OT us ( / i cos((t - s)A)W%u) w|

Take in (2.5.22) such an e that (T + 1) < 7/3. Then cos((t — s)A) > 1/2 and
the left-hand side of inequality (2.5.21) can be estimated from below, using
the estimate (2.5.22) and the chosen € by the expression

/ o (f |A|adA>2 _ mﬂow,

o~ ~

but since f is nonnegative, we also have the estimate |f(0)| > |f(\)|. There-
fore, from the above estimates we obtain

) (2.5.21)
dt.

dt. (2.5.22)

1
2

81—2&

S [FOVRIA=20d > 225 [ [F(0)[2d, (2.5.23)
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Take C = min{e~2%,e172%/(1 — a)?} and use (2.5.23) in (2.5.20) to obtain

/R FOPIA2Hdr > ¢ / FOV2AN = Cy 11, o -

O

Random variables and the corresponding integrals. Assume first that H €
(1/2,1). Let f™ € L® be such that f = Lo(P)-lim f". Put ¢" := (f", BY)
and assume that ¢ := Ly(P)-1lim (™. Let g™ € L*® be another sequence such
that ¢ = Lo(P)-lim(g", BY). Use the beginning of this subsection to conclude
that the corresponding integral may not exist, and hence the representative
of the random variable ¢ need not to be unique in the space E. On the other
hand, it follows from inequality (2.5.15) that the integral fOT f+dBE has only
one random variable as a representative.

If H € (0,1/2) then the picture is the opposite. Namely, a random variable
¢ can represent only one Wiener integral; this follows from Theorem 2.5.3. On
the other hand, the zero Wiener integral has at least two representatives as
extended random variables, namely ¢ = 0 and { = oo; this follows again from
the beginning of this subsection.

2.6 Stochastic Fubini Theorem for Stochastic Integrals
w.r.t. Fractional Brownian Motion

In this section we prove the generalization of stochastic Fubini theorem for
the Wiener integrals with respect to fBm (Theorem 1.13.1). First, we con-
sider pathwise integrals and the result is for the most part based on Holder
properties of fBm and of corresponding integrals. Then, the extension to Wick
and Skorohod integration is more or less evident, due to comparison results
of Sections 2.3 and 2.4.

Definition 2.6.1. The nonrandom function f : R — R is called piecewise
Holder of order a on the interval [Ty, 7] C R (f € Cp,, [T, T]), if there exists
a finite set of disjoint subintervals {[a;,b;),1 < i < N | Uil[ai,bi] UTy =
[T1,T3]} and the function f € C%[a;,b;) for 1 <i < N.

As before, we denote

[f(t) = Fs)l
[fllcata, by = sup [f(E)|+  sup &
a; <t<b; a; <s<t<b; |t - S|
Definition 2.6.2. For f € Cp, [T, T3], let
||f||ng[T1,T2] = 123%’5\, ||fHCOc[ai,bi) :
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Let f € C%a,b], g € C%a,b] with a + 3 > 1. Then we know that the
Riemann—Stieltjes integral exists,

kn—1

b
/ F(t)dg(t) = Tlim Z FE) Aglth), (2.6.1)

[Tn]—

where m, = {a = ) < th < --- < th" = b}, Ag(t}) = g(tiy 1) — g(ty),
Tn C Tptl-

Moreover, according to (FdPO1, Theorem 2.1), there exist the se-
quences {fn,gn} C CWla,b] such that o= Floae — 0, n — oo,
lgn — chﬁ[a,b] — 0, n — oo.

We shall use some bounds for integrals involving Hélder functions. They
are proved in the next lemma.

Lemma 2.6.3. Let f € C%a,b], g € CPla,b], a+ B > 1, fum,gm €
C'la,b],m > 1 and ||fm_chaab —’O ||gm_chﬁ[a,b] — 0, as m — .

2) the followmg estzmate holds:

b
/ F(t)dg(t)

3) if f(a) =0, then

< Clfllgagus  Nolesan - ((b— @)=V (b—a)®);

b
F®)dg(®)| < Cl fllgetap - lgllosgas - (b= )=, (2.6.2)

where 0 <e <a+ B —1, C >0 is a constant not depending on o« and (3.

Proof. 1) Evidently,

b kn
F(t)dg( () (£)d dg(t) — Y Ag (P
/ ot / Fun(t)g (1)t / Floe) = 3 162) Aot
b kn
4 / P (Bt — 3 fon() Agun(£])
a 1

I
=

krn
+ DU AG(ER) =D fn () Agmn (1) -

1

>
Il

According to (2.6.1), for any fixed § > 0 we can choose 7, in such a way that

kn

f (t)dg(t) = > f(t) Ag(ty)

k=1

< 6. (2.6.3)
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Further, according to (FdP01, Corollary 20),

< Clmn]™ [ fm]

ce'fap) 19mll oo fap >

(2.6.4)
where 0 < o/ <, 0< ' <f,and '+ =1+c. If ||fr — fHCa[a,b] — 0,
m — oo, then Hfm*f”ca/[a,b] — 0, m — oo for 0 < & < a, and
”fm”C“/[a,b] < (4, where Cy does not depend on m > 1. Similarly,
gmllcer (a4 < C2- From these bounds and from (2.6.4) we obtain that

n
()9r ()t = frn(t7) Agim (7))
k=1

< Oy |mal°. (2.6.5)

/ fm gm dt Z tk Agm tk)

Choose such n that (2.6.3) holds and also C3 |7,,|° < d; then for such fixed
n we can choose such m that

kn kn
D FEDAG(R) =Y fm(t7) Agm (t)] < 6. (2.6.6)
k=1 k=1

It is possible since sup; ¢, 41 [9m (t) — 9(1)| < llgm — 9ll o',y — 0, and the
same is true for f,,.

The proof of the first statement follows now from (2.6.3)—(2.6.6).

The third statement follows from 1) and (FdP01, Lemma 19), which states
that the bound (2.6.2) holds for any f € Cél)[a, b] (it means that f € C(M)[a, b]
and f(a) = 0) and g € CW]a, b].

The second statement follows from 1) and (FdP01, Theorem 22). Indeed,
according to 3)

[ (10~ 10)asto| <15

Cela,b] ||9||ca[a7b] (b— a)1+67

whence

| sagte

Further we consider H € (1,1). Let f € C% [a,b] with 8> 1— H. In this

pw
case the sum Zf;l f: f(t)dB} exists. The next result means that this sum
can be represented as a unique integral.

<C ||fHCa[a,b] : HgHC’B[a,b] (b—a)*= v (b- a)ﬂ)~

O

Lemma 2.6.4. Let f be piecewise Holder of order 3 > 1— H on the interval
[a,b]. Then there exists the Riemann—Stieltjes integral
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b N b;
/ fwydBH =3 / f(w)dBY
a i=1v %

and for an arbitrary sequence m, of partitions of [a,b] it can be represented as
a limit

b k)’!L
/f(u)dBf: lim " f(up)ABL,.
a k=1 '

|70 |—0 —

(We suppose that Uﬁl[ai, b)) = [a,b), ai,b;) are disjoint and f € C%[a;,b;)).

Proof. Put 7, := [a;,b;) N 7. Evidently, |7} | < |my|. It follows from bound-
edness of f and continuity of B that

b;
> sash — [ rwasl,

ST i
Jiug ey

even in the case when 7!, does not contain a; or(and) b;.
n N n
Therefore, Zk:uzewn f(uk)ABgr; =>. Zk:ugeﬂ; f(uk)Aij%
= N, [ fw)dBY = [? f(w)dBY, as |r,| — 0. 0

Let 0 < Ty < Ty, = D(t,u,w) : Pr := [T1,T2)* x 2 — R be the random
function measurable in all the variables.

Theorem 2.6.5. Let there exist the set ' C 2 such that P(£2') =1 and let
for any w € ' the function ®(s,u,w) satisfy the conditions:

1) Vs € (Th,T) D(t,-,w) is piecewise Holder of order 8 >1—H inwu €
[T1, T3], and there exists C = C(w) > 0 such that | P(t, -,w)||C5w ) < C

2) the function fgf &(t,u,w)dBY is Riemann integrable in the interval
[Ty, T).

Then there exist the repeated integrals

T2 Tg T2 T2
L ::/ (/ @(t,u,w)dBf)dt and I ::/ (/ @(t,u,w)dt)dBf,
T T T T

and Iy = Iy P-a.s.

Proof. We fix w € ' and omit w throughout the proof. The integral
f;f &(t,u)dBH exists according to Lemma 2.6.4 and condition 1); the re-
peated integral I exists according to condition 2). Since P(¢,-) is piecewise
Hélder, then from the evident bound fTTf |D(t, u1) — P(t,uz)|ds < C(Ty —
Ty) |uy — uz|® we obtain that ijlz &(t,u)ds is piecewise Holder of order « in
u € [Ty, T»]. Further, since B is Holder up to order H > % and a+H > 1, the
integral I5 also exists. The integral I; can be presented as a limit of integral
sums,
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kn—1

= lim Z/ u)dBE At} (2.6.7)

|70 |—0

For any point t} € m,, according to condition 1), there exists a finite
number of points {uy < ugp < -+ < Ukt such that &(-,u) is Holder
between them. Denote

{T1:7.L0<U1<’LL2<"'<7.LL(n):T2}

>

= (i <uzp <o <ug} U{TL T2}
k=1

For any interval [u;, u;+1] we consider the sequence of partitions m; ., 7 > 1
of the form

T = {U; = UE,OT) < ug}r < < ugjq:r) = U1}, || — 0,7 — o0.
Then 7}7 = UL(n) 17'['1‘77. U {Tl,TQ} = {T1 = u,&o) < ug,N7) — TQ}

is a partition of interval [T7,T5] w.r.t. argument u, its diameter |70, |
MaxXi<;i<[(n)—1 |7r\w, and |7,| — 0,7 — oo.
Estimate the difference |I; — I|:

kn—1 —
L -L|<|hi- ) Z ul))ABM o At

k=0 j=0

N,—1 —
- Y Z u)AGABH, | = AT + A" (2.6.8)
j=0 k=0
Further,
kn—1
AT <L — Z/ (1}, u)dBY - At}

kn—1

+ Z / o7, u)dBY — Z ®( NABH,| Aty

Since @ is piecewise Holder, then, according to Lemma 2.6.4,

Ts
/q;( w)dBI — ng u(7)AB()—>Or—>oo
T

kn—1

According to (2.6.7), |1 A T d(t2,u)dBE - At?| — 0,n — .

Therefore,
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lim lim A7 =0. (2.6.9)
n—oo r—o0

Further,

N.—1 .1, ‘
27 <|n- Y [ e uyi- B,
j=0 7T v

(2.6.10)
Ny.—1k,—1 t;cl+1 ) )

H X3 [ (o) - ot ) ABE .
j=0 k=0 7t& '

The second term can be expanded as

kn,—1 t2+1 N,.—1
> / > (qﬁ(t,ugﬂ) —cﬁ(t;;,ugﬁ)))ABjj)dt (2.6.11)
k=0 ty g "

=0
kn—1L(N)—1 Z+1 ‘ .

=13 > / > ((P(t,ugj))—@(tﬁ,u@))ABﬁj)dt.
k=0 =0 Yt G "

Since the function @(s,u) — @(t},w) is Holder on any interval [u;, u;+1), we
have that

lim (45 t,u?)) — d(tr, w9 )ABH,»
7700 (]ze:. ( T ) (k T ) u&)

:/w (@(t,w) - @3, w))aBl. (2612)

Moreover, ¥V 0 < i < L(n) — 1 the sequence f7 (1) =3 o) (@(t,ugj))

— @(tﬁ,u@)) ABZI(J-) has the integrable dominant. Indeed, we can use the
bounds from (FdP01, Corollary 20), Lemma 2.6.3, and the boundedness of
Holder norms, and obtain that

e

T n T n s n H
et < | - [ (0w - o 0)dB

@7)

+ /u e ((t,w) - @(t7,w)) B!

5_.7’)

€ H
< Clmir|” - ||®(t,-) — (L7, -)||C[u$j)7u5:21]ﬁ/ . HB Hc[u(rj),uf:QI]H/
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3)
Uypfq
+ /(}) (@t w) — @t} w) ) aB!
uy?
i (2.6.13)
r+1
§C+/ (@(t,u)fdi(tz,uodBf,
ul®

where ' < 8, H < H and ' + H' > 1.
Using the second statement of Lemma 2.6.3 and condition 1) of this the-
orem, we obtain the bound

[€)

/u e (#(t,w) — b(t7,w))dBY

o

< C||@(t,-) — Dt} .)||CMT17T2] . HBHHCH/[T1»T2] <C. (2.6.14)

Estimates (2.6.13) and (2.6.14) mean that we can use the Lebesgue dom-
inant convergence theorem and obtain that

thy1 thy1

Uit1
lim fr(t,t7)dt = / (@(t, u) — oty u))ddet,

T—00 n n
tk: tk

where the integrand [ (@(t, w) — (L}, u)) dBH is measurable and bounded

23
in t.

Therefore,
kn—1L(n)—1 e A ‘
im 3% / S (0(tuf) ~ bleg,ul))) ABY de
T k=0 im0 Y L6g . "
kn—1 tiyr T2
== / / (@(t,u)—@(tﬁ,u))ddet
k=0 'tk T
Tg T2 kn71 TQ
:/ (/ qﬁ(t,u)dB{j)dt—Z/ B(7, u)dBH At (2.6.15)
7 N1 o/

According to condition 2) of this theorem, the integral fgf &(t,u)dBH is Rie-
mann integrable in ¢, therefore

kn—1 Ty Ts Ts
lim ) / D7, u)dBHE AL} :/ (/ qs(t,u)dBjjI)dt. (2.6.16)
n—oo = Jny N1y
From Lemma 2.6.4,
L(n)-1 .,
I — Z / @(t,uy))dt . AB:{T) — 0,as n — 0. (2.6.17)
r=0 Ty 4

Now the proof follows from (2.6.8)—(2.6.17). O
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Let I(t) = fg f(s)dBH for some stochastic process f with trajectories
from CP[0,T] with 3+ H > 1. Consider the integral (H € (3,1)) Ji(t) =

fot I (t,s)I(s)ds that will appear in connection with the Girsanov theorem
and stochastic differential equations in subsections 2.8.2 and 3.2.3, and also,

let Jo(t) = [ f(u) ( [, s)ds) dBH.
Lemma 2.6.6. Both the integrals, J, and Js, exist and J, = Jo P-a.s.

Proof. 1t follows from (FdPO01) that the trajectories of I(t), ¢ € [0,T] are
Holder of order H — ¢ for any 0 < ¢ < H, whence the existence of Ji(t)
follows. Further, elementary calculations

u2 1 U2 ws
/ (t—s5) % %ds < 3 {/ (t —s)"2ds +/ s‘zads] < (ug —up)t ™2
u1 u1 uq

demonstrate that the function f(u) fi Ly (t, 8)ds is Holder up to order SA (1—
2a) > 1— H, and Jy(t) exists. We can present these integrals in the following

way:
Jy = /Ot(/otsﬁ(s,u)dBf)d& Jo = /Ot(/otds(sau)ds)dva

where @(s,u) = lg(t, ) f(u)l{o<u<s}-

The function ¢ will satisfy both the conditions of Theorem 2.6.5, if we put
T =d0and Tp =t -6 forany 0 < § < % In particular, @(s,-) is piecewise
Hélder of order 8 on [§,t — 0] with one point u = s of Holder discontinuity for
any s € [0,t — 4]

Therefore, the following equality holds a.s.:

t—6 s t—5 t—6
/ I (t, s) / f(u)dBHds = / f(u) / Iy (t,s)dsdBH .
5 5 s u
The last equality can be rewritten as
Ji1 — Ry = Js — Ry, (2.6.18)

where

R :/05 zH(t,s)(/Osf(u)dBf)ds+/6t_6 lH(t,s)(/Oé F(u)dBY )ds

t S
—|—/ Iy (t,s) (/ f(u)dBf) ds =: Ri1 + Ri2 + Ri3;
t—o 0

t

Ry = /O ' f(u)( /u tlH(t,s)ds>dBf + ;_5 (u)( /H zH(t,s)ds)dBf

t t
+ / F(u) ( / L (t, S)ds)dBf =i Ry1 + Ry + Ros.
t—6 u



182 2 Stochastic Integration with Respect to fBm and Related Topics

According to (FdP01, Theorem 22), there exists C > 0 such that
|f0 BH| < CsH=¢ for any fixed 0 < < . Therefore,

5
|Ri1| < C’/ 5%75(t —5)"%s < Ct'7(1 — oz)71557E —0asd—0.
0
Similarly,

|R12| < CléH_E L9 5 0 and |R13‘ < Czt%_s(sl_a —0asd — 0,
where C7 and C5 are some constants, pos&bly dependlng on w.

As mentioned above, the process f(u f lg(t,s)ds is Holder of order
BA(1—2a) > 1—H. Therefore, by using again (FdPOl Theorem 22), we obtain
the bounds |R21‘ < C(SHiE, |R22| < Cl(t725)H76, and |R23‘ < C6H—¢ with
some constants C, C1, depending on w. Taking in (2.6.18) a limit as § — 0,
we obtain from all these estimates that J; = Js a.s. O

2.7 The It6 Formula for Fractional Brownian Motion

2.7.1 The Simplest Version

First, we present a very elegant proof of the It6 formula involving fBm from
(Shi01).

Lemma 2.7.1. Let BY be an fBm with H € (1/2,1), F € C%(R). Then for
anyt >0

F(BE / F'(BHyaBH,

Proof. The Taylor formula with the reminder term in the integral form gives
us

F(z)=F(y) + F'(y) / F"(u)(z — u)du.
Let the sequence of partitions 7, = {0 =t§ <t} <--- <t} =t}, [m,| — 0,
kn
n — oo. Then F(Bf) — F(0) = Y. [F(t}) — F(t}_))]
k=1

Z FI(Bfi_)(Bfi—Bfi_)+R}, where R} = Z fB F"(u)(Bf —u)du.
k 1

Further sup ’F” BH)| < 00 a.s. and for H € (1/2 1), and
0<u<t

tn

2
i 1‘ ~0.

n—oo

2
Therefore |R?| < 1 sup |F”(BI)] Z ’Btn B{éﬂ’ L, 0. Even if we do

<u<t
not know that the limit of integral sums k2—31 F’ (Bt};,l)(Bt}; — Bt};,l) exists
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(but we know it from Theorem 2.1.7), we can obtain this existence now and,
moreover,

F(BE / F'(BHyaBH .

2.7.2 Ito6 Formula for Linear Combination of Fractional Brownian
Motions with H; € [1/2,1) in Terms of Pathwise Integrals and Ito
Integral

Denote C#~[a,b] = No<y<p Ca, b].

Theorem 2.7.2. Let the process Xy = Z O'iBtHi, where Hy = 1/2 and
i=1
H; € (1/2,1) for 2 <i < m. Let the function F € C*(R). Then for any t >0

F(Xy) :F(0)+01/ &) AW +Zal/ X,)dBH: + 22 /(:F”(Xs)ds.

Proof. Note that fot |F'(X,)|* ds < oo and fg |F"(Xs)|ds < oo a.s., so, the Itd
integral fg F'(X;)dW; exists and is a local square-integrable martingale, and
the Lebesgue integral fg F"(Xs)ds also exists. As to integrals f(f F'(X,)dBH:
for 2 < i < m, they exist as pathwise integrals because X € C/27[0,1],
B ¢ CHi=[0,t] and H; +1/2 > 1. Further calculations are obvious: we use
the Taylor formula and pass to the limit, as usual, taking into account that
. . kn H; H; H; H; P
foranyl<i<mand2<j<m) ", (Btg — Bt?’_l) (BtQ’J _ Btgj_1> —0
as n — 0o.

m
Now, consider the process Y; = Y oy B/, where H; € (1/2,1) for any
i=1
1 <i < m. We can forecast that in this case the class C'(R) of functions can
be used.

Theorem 2.7.3. LetY; = E o: B, where H; € (1/2,1) for any 1 <i < m.

Let F € CY(R), and F' € C’ﬁ[O t] with (84 1) min H; > 1 for any t > 0. Then
foranyt >0

PO - FO) =S o / CP(v)aBi (2.7.1)
i=1

Proof. Clearly, condition (8 + 1)minH; > 1 ensures the existence of
fot F'(Y,)dBH: as the limit of Riemann sums for any i > 1. Consider convo-
lutions F,, = F * ¢, with ¢,, from Lemma 2.1.8. Then F,, € C*(R), formula
(2.7.1) holds for any F;, and for any 1 —min H; < 7 < - min H; we have that
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D{,F) — Dj,F"in Ly[a,b] as n — oo for any a,b € R, which can be proved
similarly to (2.1.10). Therefore,

/ (F(Y.) — F(V.))dB:
0

sup |Ys|
0<s<t
< sup Dtl_vafI_"(s)’ / |D§ Fy(s) — Dy, F'(s)|ds — 0,
0<s<t
— sup |Yi|
0<s<t
whence the proof follows. ]

Remark 2.7.4. Theorems 2.7.2 and 2.7.3 can be extended to the functions F'
of several variables, depending also on t. The It6 formula has the following
form: let Y} = fo fZ YdBHi where Hy = 1/2, H; € (1/2,1),2<i<m—1,

s

fo s)ds, fo f(s)ds < oo as., fi € CP0,t] as. for B + H; > 1,
f0|g s)|ds < 0o as., F'=F(tx): R+XR"—>R,F€CI(R+)XCQ(R)

2
x CH(R"1), the integrals fo (87 (Zs )fl(s)) ds < oo, fot 95(Zy)|ds < o0,

fot %271;(2 f2(s)ds < oo, and fo aml Zs)| lg(s)|ds < oo a.s, Bz( <) fi

€ C7[0,t] a.s. for v + H; > 1 and any t > 0, where Z, = (s,Y},...,Y/").
Then

F(t,Y), ... Y™ = F(0) + /0 OF 7 vis +Z/ OF i
8F1 82F
+ o %(z) g(s)ds +2 ; (%2( Z)f2(s)ds. (2.7.2)

In particular, for the process Y; = fo s)dBH + fo s)ds we have that

t t
F(t,Y;) = F(0,Yp) —|—/ F/(s,Yy)ds —|—/ Fl(s,Y5)b(s)ds
0 0

+/t Fl(s,Y.)a(s)dBY, H € (1/2,1). (2.7.3)
0

2.7.3 The It6 Formula in Terms of Wick Integrals

The next result is a direct consequence of Theorems 2.3.8 and 2.7.3.

Theorem 2.7.5. Let the function F = F(t,x) : R x R — R be con-
tinuously differentiable in t and twice continuously differentiable in x. Let

Y; be as in Theorem 2.7.2, E|2L(t, Yt)|2+8 < 00, t > 0 for some € > 0,

2
E sup {(%(8,}@)) + (%LF(S Y)) ] < o0, t>0. Then

0<s<t
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tOF tOF
F(t7Yt)—F(0,0)—/O a(s,ys)ds+/0 s Y) 0y,
Z O’ZJkCH Hk(H -l-Hk / F 8 Y) Hit He=1 g, (2.7.4)
i,k=1

2.7.4 The Ité6 Formula for H € (0,1/2)

We use the integral representation of fBm via the underlying Wiener process
B on the finite interval [0,¢] :

t
Bl = [ ma(t.5)ab.
0
t t s
:(J}f)ta/ u—a(t—u)adBu—Cg*’a/ s (/ u_a(s—u_o‘)dBu> ds.
0 0 0

Let the function F € C3(R) and we want to expand F(B{T). Note that
Bf' = Bff,, where for 0 < z <t Bft = ng)zo‘ Jo um(t —u)*dB,
—CWa [7 s ([ um(s — u)~*dB,) ds. Therefore

F(BH) = F(0) + / F(BH,)d.BH, + +

t
; 2(0(6))2/0 F”(Bft)(tfz)mdz

t z
:F(o)+ac§§’>/ F’(Bft)za_l/ u(t — u)*dB,dz
0 0

t
+ 0 / F/(BH)(t - 2)*dB.
0

t z
—aCS)/ F’(Bft)za_l(/ u_a(t—u_“)dBu)dz
0 ' 0
L (6)y2 - H 20
E(C > | F'(BI)(t—z)**dz. (2.7.5)
0
Further,
z t
Bft:quLaCl(L?)za/ u*a/ (v —u)* 'dvdB,

=BY 1 ac¥2 / / y*~1dB,dv, (2.7.6)

whence

F/(B;It) = F'(BY) + / F"(BH+01C'(6) a/ / (v—u)*"'dB dv)

xa0§§>za/ W (r — ) dBydr = F'(BHY) 4 ¢(F", 2 1), (2.7.7)
0
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and similar relation holds for F”/(BY,). But

/ / (v — u)*LdBydv = ;/O W [(r — w)® — (2 — )] dBy. (2.7.8)

Substituting (2.7.6)—(2.7.8) into (2.7.5), we obtain the following result.

Theorem 2.7.6. Let H € (0,1/2), BY be an fBm with Hurst index H,
represented as Bff = fot mpy (t,s)dBs. Denote Y, , = C'}(L?) Jo u(r—u)*dBy,
0<2z2<r, Y, =Y, .. Then

t t
F(BH) = F(0) +/O F'(Bf)azo"lYt,zderC}?)/o F'(BH)(t — 2)*dB,

t
/F’(BH) o 1Y}Zdz+2(0(6)) /F”(Bf)(t—z)Qadz—i—Rt,
0 0

where
t ¢
R, = a/ O(F", 2, )z 1Y dz + ng) / O(F", z,t)(t — 2)*dB,

—a/ O(F" 2, 1) 2%~ 1Ytzdz—|— C(G /¢F'” t)(t — 2)**dz.

Remark 2.7.7. The different approaches to the It6 formula for fBm with
H € (1/2,1) are contained in the papers (Lin95), (DH96), (DU99), (AN02),
(DHPO00), (BO04), (CCMO03), (FdP01). An elegant version of the Ité formula
for F(B}) for any H € (0,1) was obtained by C. Bender in (Ben03a) and
(Ben03c), but in terms of distributions. If the distribution F' is of function
type, continuous at 0 and of polynomial growth, the form of such an It6 for-
mula coincides with (2.7.4) for m = 1. For the other forms of the It6 formula
for fBm with H € (0,1/2) see also (Nua03), (GRV03), (ALNO01), (AMNOO0),
(CNO5).

2.7.5 Ito Formula for Fractional Brownian Fields

First, we prove one auxiliary result for Holder two-parameter functions. Let
the function

F:R— R, FeC*R),F" is the Lipschitz function, f(t):= F(g(t)),
g € CMF2(RY) with p; > 1/2, i=1,2. (2.7.9)

Let the rectangle P, = [0,t] C R% be fixed, 7, := {0 =t <t = ti},
where ¢, = 5 f = f(i k2)

ALf = fivik — [k A% f = fikr1 — fiky Ainf = Appir f — AL f
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Lemma 2.7.8. Under assumption (2.7.9) lim I? =0, 1 < j < 7, where

n—oo

2" —1 2" —1 2" —1
kE Al fAirg, I3 = kZ A% fAig, 1§ = kE fikAigAL.g.
i,k=0 i,k=0 i,k=0
2" —1 on_1 on_q
I = ,;OfikAikgAzzk% Ig = ; A f(A%9)?, 1§ = ; (A f)? A%,
1,k= 1,k= 1,k=0
2" —1
Iz = ‘kEOF”’(gi,k)A}kg(A?kg)Q-
1, k=

Proof. Consider I} (I3 is similar). We can rewrite I = fPt fndg, where
Jo= Alf for s € A= [ i, C500) o [ 02002 Furgher,

on 3 on PIC

fndg:/ (DG fu) () (D12 ™2 g1 ) (s)ds,
P P

where 1—p; < o; < pi, @ = 1,2. Since ‘(D%:“ll*aggl,)(s)’ < C for some C' >
0, it is sufficient to prove that lim fPt ‘(DS‘}FO‘Z fn)(s)‘ ds = 0, and in turn, for
this purpose it is sufficient to &352 that fPt |pn,i(s)|ds — 0,1 <4 < 4, where
Bt (5) = 5757 Ful5), Ga() = 57°% [ (Fuls) = ol 2)) (51 — e,
Pn,3(s) =517 [§7 (Fa(s) = Fa(s1,0))(s2 — v) 717 2dv,

bna(s) = fo J Auofn(s)(s1 — u)~ 1= (sy — v)~1"*2dudv. The relation

fP |pn,1(s)|ds — 0 is ev1dent Further, if ;ﬁ% s < (H'l) , then
127

[Pn,2(s)] < Cs3** [ (81 —uy) " dy - 27 whence
Jp, [6n2(s)| ds < Cfo 5 “dsg - 217K — (0, n — oco. Similarly,
Ip, [9n3(s)|ds — 0, n — oo. Finally, [, |¢na(s)|ds < C27™4

2" —1
g ‘;0 Jan Jiogm (51 = W) 717 (s — v 4 2772702 " du du dsy dsy

= g2Martae—pm—p2) _, (0 n — oo. Of course, similar estimates hold for I3
and I}. As to IZ, I} and I7, their estimates resemble each other, so, we con-
sider only IZ'. Note that

2"
lim S, := lim Z Fth ) (ALngivion)? < lim €27 . 272 — ),

n—oo n—oo

Now, present the sum S, as

2" —1

Sn= Y (filAirg)® + 2firAingAlyg + Af F(Alg)? + AT f(Airg)?
ik=0

+ 2AzkazkgAlkg Z S’n 2]

1<i<h
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where S, 1 < C - 2—2n(pmtp2=1) _, (0 pn — oo, similarly, Spa— 0, 8,5 — 0,
n — oo. According to previous estimates lim S, o = lim I3 = 0. Therefore,
n—oo

lim I = lim S,3=0. O
Remark 2.7.9. Let F: R — R, F € C3(R) and F" is the Lipschitz function,
the field g(t) is a linear combination of the fractional Brownian fields,

m
HiHL . ;1 .
g(t):izzlaiBtl 2WlthHJ’»>§7 i=12 1<i<m.

Clearly, the previous lemma holds for such g(¢) and f(t) = F(g(¢)).
Theorem 2.7.10. For any t € R%

F(g(t) = F(0) + /P F(g)dg + /P F"(g)dyg dag.

Proof. According to the one-parameter Ité formula (Theorem 2.7.3)

Fg(t) = F(0) + / CF(gls1,02))drg (51, 12)

= F(0)+ lim >  f(t}30)A] pngisrom as.
=0

The prelimit sum can be presented as

2" —1 2" —1 2" —1
> Fgth)Awg+ Y F"(g(th) Al dlg+ D F"(g(si) Aikg Ay
ik=0 i,k=0 ik=0
1 2"—-1 1 2n—1
+5 2 P00 (A%e)* Al + 5 D F"(9(05))(A%9)* Aing,
i,k=0 i,k=0
(2.7.10)

2" —1
where 67 € AP. According to Theorem 2.2.9, > F'(g(t}))Aig —
i,k=0
fPt F'(g)dg a.s. Furthermore, according to Theorem 2.2.17 and Lemma 2.7.8,
on g 2m—1 ‘
%: F'(g(t5)Al94%9 — [p, F"(9)d1g d2g, ; F"(g(siF) ArgAZg — 0,
i,k=0 i,k=0
2m—1 2n—1
3 }kZOF”’(g(t?k))(ﬂfkg)m}kg -0, 3 }kZOF”’(g(t?k))(A?kg)QAikg — 0, and

2n 1
due to the Lipschitz properties of F", 1 5> F"(g(6%.))(A%.9)?Al.g — 0,
i k=0

[ V)

1,
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2m—1

L3 F(g(05))(A%.9)%Aikg — 0, n — o0, as., and the assertion of the
i,k=0

theorem is proved. ]

Remark 2.7.11. The theorem holds even for F' € C?(R), such that F” is the

Lipschitz function. To prove this, we must rewrite the sum of second and
2n—1

fourth term on the right-hand side of (2.7.10) as > F"(g(0%))AL gA? g.
i,k=0

Then we can prove that this sum has a limit [, F"(g)d1gd2g, similatly to

Theorem 2.2.17. Also, the sum of third and fifth terms can be rewritten as

2" 1
S F"(g(07%))AikgA% g, and we can prove that its limit is zero.
i,k=0

2.7.6 The Itdé Formula for H € (0,1) in Terms of Isometric
Integrals, and Its Applications

Definitions

If f € L3(P®)\), f is predictable, 7 is a partition, then f; is the step function
fr = Z Jti) L, ().
7

Define the class of functions @ as follows: 7 € @ if the following conditions
are satisfied:

(i) f = (f" :i > 1), where f* € L*(P ® \), f" is predictable and
Xi: ||fZHL2(P®,\) < o0

(ii) ? is uniformly tight: P{sup,; sup; |f*(t)] > C} — 0 as C' — oo.

(iii) The random variable u defined by u = ST(fE, (BTY®) (for the no-
tations see Section 2.5.2) does not depend on thezpartition 7, and the series
converges afolu_t)cly with probability one, when 7) € .

Write (f,BY) for the sum S_(fZ,(BH)@), and put U = {u : u =

— . —
(f,Bf), f € ®}. Let &, be the projection of @ to the first p coordinates.
The following example shows that U is nonempty.

Ezample 2.7.12. Assume that f € Cp°(R): then
F(BY) = £(0) =3 Af(B)
i=1
and if f* := (1/k!)f® k > 1, then

F(BHY - £(0) = (T, BY),

FBHEY— f(0)eU and f € ®,(f,....f,) € P, for any p > 1.



190 2 Stochastic Integration with Respect to fBm and Related Topics

s — )
Lemma 2.7.13. Ifu € U,u= ( f,B") withu=0, then f' =0,i > 1.

Proof. Since u does not depend on the partition, take first the partition {0, T'}.
The random variable u has a representation

w=> fi(B), (2.7.11)

where f§ are real numbers, since Fy is the trivial o-algebra. But since u = 0
from (2.7.11) it follows that for almost all y € R we have that Y fiy® = 0 and

hence fé =0foralli>1.
Next, consider the partition {0,¢,7}. We have that

w= Y SBY + Y FiBY - Bl =0

From the above we get that fi = 0 for all i > 1 and hence also f{ = 0 for all
1> 1. O

The It6 Formula for Isometric Integrals

The following is an analogue of the It6 formula in this context.

Theorem 2.7.14. Assume that the Hurst index H satisfies H € (0,1/2).
There exists one-to-one correspondence between U and the set

(1/H]

V= {v Jva= Z (f%, (BH)(i))}.

i=1
Proof. We must show that there exists one-to-one correspondence between U
and @[y p). Assume that f € @[y, p). Then there exists a vector g € & such
that f = g* for i < [1/H]. Assume that T is another element from & such
that f* = h' for i < [1/H]. Put v := (g, BY) and v := (h, BY). Then
u—v= Y (g =h, (BN
i=[1/H]+1

On one hand, since u and v are independent of the partition 7, we can take a
partition 7 such that || < 1. Then for any € > 0 we have that

P{lu—v| >e} < P(D)+ P{lu—v| >¢,02\ D} (2.7.12)
and D is the set D := {sup,.sup; |f{ — g{| > C}. But

c 2: 2: H i
_ < = 4
P{lu—v|>¢e,02\ D} - E |AB, |

i>1/H  k
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and since ‘ ‘
BN |ABH < CT(|x]) !
k
we have that
P{lu—v| >e,2\D}—0

as |w| — 0. By property (iii) of & we can choose C such that P(D) < § for any
d > 0. Use these estimates in (2.7.12) to conclude that u = v. On the other

—

— T — — —
hand, if u = (f,B¥) = (h,B") we have from Lemma 2.7.13 that f = h.
To finish, note that from Example 2.7.12 it follows that the random variable

[ ,
F(BE) = £(0) is a representative of 3> 1/H](1/i!) [ f@ (x,)dB&. O
=1

Ezample 2.7.15 (Fractional Doleans exponent). Assume that [1/H] = 2p,
where p € N. Then the random variable y, = exp(Bff —t/(2p)!) — 1 is a

representative of
2p—1

1 [t ,
> 5 [ waEno.
=1 1. 0

We say that y is the Doleans exponent of BH.

2.8 The Girsanov Theorem for fBm and Its Applications

2.8.1 The Girsanov Theorem for fBm
Consider the kernel Iz (t, s) = CS’)S_"(t —5)"* 0<s <t Let

Fi=o0 {BSH,O <s< t} = 0{B;,0 < s < t}, where B is underlying Wiener
process in the representation

t t
Ml :/ Iy (t,s)dBI, B, :a/ s“dMH .
0 0
Assume that the random process {¢;,t > 0} is adapted to filtration F; and

satisfies .
/ lu(t,s)|ps|ds < o0, t >0, P-as. (2.8.1)
0

Assume also that we have the representation

t t
/ lg(t,s)dsds =a | dsds, t >0, (2.8.2)
0 0

with some F;-adapted process § satisfying

¢
/ |0s] ds < 00, P-a.s.,t >0, (2.8.3)
0
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and .
E/ 52%62ds < oo, t > 0. (2.8.4)
0

Define a square-integrable martingale L by L; := fot §%05dBs.

Theorem 2.8.1. Assume that we have (2.8.1)—(2.8.4) and the martingale L
satisfies

Eexp {Lt — 1/2<L>t} = 1, t > 0.

Then the process EtH = BH — fot osds is an fBm with respect to measure
Q, where the measure Q) is defined by

dqQ { 1
——=| =exp{Li— <L>t}-
dP |, 2
Proof. Note first that the integral
N t _ t t
ME ::/ zH(t,s)dBf:/ ZH(t,s)dBff/ g (t, s)psds (2.8.5)
0 0 0

exists, since both integrals exist as pathwise integrals (the first integral was
studied in Section 1.8 and (2.8.2) ensures the existence of the second integral).
Moreover, from (2.8.2) it follows that

N t t t
MtH:MtH—&/ 5Sds:a(/ s*ast—/ SSds).
0 0 0

Evidently, {MH} = P-lim ) (]\A/.ftH - J\’Zﬁ{fl_l)2 exists and equals {MH} =
¢ ’ ¢

|7T‘_>0 t,em
t1=22_ Therefore, for any 6 € R we have for M := aMH that

e 2 - 1 t t 2 112«
A L A ) R Rl e
2 t 2 0 0

21-2a«a

t t t
1
+/ saésstff/ s2a5§ds:/ (05~ + 5%6,)dBs
0 2 0 0
1 1

t
- 5/ (07572 ~ 26,0 + 8257)ds = R, — ()., (286)
0

where R is a square-integrable martingale given by R; := fOt(QS*a +5%05)dBs.
But (2.8.6) means that the process

—~ 62 r—~ 1
K; = exp{@MtH -5 [MHL + Ly — 2<L>t}

is a local P-martingale. This implies, in turn, that the process
exp{GMtH — % {MH] } is a local @-martingale. From (El82, Theorem
t
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13.22), we can conclude that M MH is a local Q- martlngale with the angle
bracket MH fo —20ds and so M; = & f s~%dBg, where B is a standard
Browman motion with respect to @ (and is obtained from B by subtracting
a drift). This means that

t t
/ Iy (t,s)dBT = 5;/ 5~ %dB,. (2.8.7)
0 0

Now, using two representations for B, (2.8.5) and (2.8.7), we can obtain
(1.8.17) for B and then conclude from Remark 1.8.2 that it is the fBm with
respect to the measure Q. O

2.8.2 When the Conditions of the Girsanov Theorem Are
Fulfilled? Differentiability of the Fractional Integrals

If we analyze the conditions of the Girsanov theorem, we see that condition
(2.8.2) is a principal concern. Now we shall establish that in one particular but
important case this condition holds. Let the process I(t) := fot L (t,s)o(s)ds
with ¢(t) fo s,w)dBH | where the integrand a = a(s,w) : R x 2 — R
is measurable in its variables and for a.a. w € (2 is Holder in s with some
index 8 € (1/2,1). According to Theorem 2.1.7, the integral ¢(t) exists as
a pathwise integral for w € ', P({2') = 1 Moreover, according to Lemma
2.6.6, there exists a repeated integral J(¢ fo u,w) fi lg(t,s)dsdBE and
the equality I(¢) = J(t) holds for w € !Z’

Lemma 2.8.2. Let a € C?[0,t] for anyt > 0 and for anyw € ', P(2') =1
p € (1/2,1). Then for any t > 0 I(t) admits the representation

t
I(t):Cs)tl’%/ S4ds,

0

and 6 € L1[0,¢t] for any t > 0,

u

where 05 = 5272 [T u'~*(s —u)~“a(u,w)dBY
we .

Proof. Further we suppose everywhere that w € 2’ and argument w will be
omitted. We rewrite J(t) as

t 1
J(t) = 20 / / a(u)ly (1, 5)ds dBY
0 Ju/t

t gt
= C’S)tkza/ / 520‘72(5 - u)faulfaa(u)ds dBf =: C’S)thaM(t).
0

Consider now the function

t s
N(t) :/ 520‘72/ (s —u)"“u'"“a(u)dBH ds.
0 0
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The following results ensure its existence:
(i) According to (NVV99, Lemma 2.1), for the function g € C?[0,T] with

0<vy+4+ 0 <1, f(0) =0 the integral fot(t —u)7dg(u) exists and equals
t
[ = wrda(e = tim( ot ) — g(0)

L Og(0) 4 / T (gw) — g(0))(t — u)du). (288)

(ii) According to Lemma 2.6.3, for f € C7[a,b], g € CPla,b], v+ B > 1,
O<e<y+p-1

b
/ FOdg®)| < C 1 Fllenan 19l oagen (=)' v (0 —a)?),  (2.89)

where C' does not depend of f and g. Using (2.8.8)—(2.8.9), we obtain the
following estimates for 0 < s1 < s9 < t:

S2
i (<= [ atoyaz
e—0
So—¢€
So—¢€ S2

+ (s2—s1)7¢ /S2 a(z)dBH + a/ (59 —2)7 172 a(v)ddez)‘

S1 S1 z

/s " a(2) (50 — z)_“dBf‘ _

1

< lim (C lallergo,g HBHHCH’[O,t] ((52 =57V (sp —s1) T )

+ 04/5276(52 —z) e ((52 —2) V(s — Z)HI) dz) , (2.8.10)

S1

where H' is any constant not exceeding H and 0 < € < p+ H — 1. Evidently,
the right-hand side of (2.8.10) can be estimated by CKj(t)(sy — s1)~*H |
where K1(t) < [lallgopoq || B || e 0. (EV 1)+e=H " C does not depend on

p, B t. Further,

/S (55— u)~“ul~*a(u)dBH — / w=od ( / “(52 - z)o‘a(z)dBf)

S2 . 1 .
_ sé*a/ (82— 2)~a(2)dBT — (1 — a)/ u—a/ (52— 2)-a(e)dB  du
S1 . .
The estimate
|L(31752)| < Csé’o‘Kl(t)(32 _ Sl)—a+H/

+C(1 - a)Kq(t) /82 u ¥(u— sl)*‘”H/du

S1

< OKq (1) (Sé_a(& —s1) " g (55 - 81)172O‘+H/> (2.8.11)
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means that |L(0,s)| < CK; (t)5172a+H'.
Now it is clear that

t
|N:| < CK1(t)/ s2o2g1=20+H g < OF (1) < oo
0
Consider the function
t s—¢
Nc(t) ::/ s2a721{s€[67t]}/ u' (s — u)"“a(u)dBH ds.
0 0

Evidently, for any € > 0 the function

¢e(s,u) := 1{86[Eyt]’0<u<576}52a_2u1_0‘(s —u) “a(u)

is piecewise-Hélder in w with index p A (1 — ) > 1/2 (u = s — € is the point
of Holder discontinuity), and the function

t sS—e
Ye(s) ::/ qu(s,u)dBf = 52a721{se[5,t]}/ (s— u)*‘”‘ulf"‘a(u)dBf
0 0

is Riemann integrable on [0,t]. Therefore, ¢.(s,u) satisfies the conditions of
the stochastic Fubini Theorem 2.6.5, whence N, (t) exists and equals

t—e t
M.(t) := / ul_“a(u)/ §202(s —u)"“dsdBH.
0 u+e

Further,

t s
IN(t) — N:(t)] < / 52‘1_2/ ut~%(s — u) " “a(u)dBI ds
EE Ss—E
/ g2 / u' (s — u)"“a(u)dBHds
0 0

t
g/ s2a72CK1(t)(slfasfa+H _’_5172a+H )ds
€

+

+ / s T2CK ()5t 2t ds
0
<CK () (et 1 ety 50, e = 0.

For M(t) — M¢=(t) we use one of the integral transformations from (NVV99,
Lemma 2.2): for p € R, v > —1, ¢ > 1 the integral [ t*(t —1)"dt

1-1/e s¥(1 —s)"#7¥~2ds, and as a result obtain the bound
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t—e u-+te
/ a(u)u=® / 52072(s —u)"*dsdBX
0 u
t t
/ a(u)ut=® / 52972(s —u)"*dsdBX
t—e u

t—e pree
/ a(u)/ 571 —s)"*dsdBY
0 0

¢ 1—u
/ a(u) / 571 —s)"%dsdBH
t—e 0

According to the stochastic Fubini theorem 2.6.5,

t—e
C’/ *(1—s) a/ a(u)dBds
0
c(1—s)

t s
+ C/ sTY(1 - s)_o‘/ a(u)dBH ds
e/t 0

[M(t) = M) < C

+C

=C

+C =: A1(e) + Aa(e).

and
t(1—s)
C/ *(1-19) o‘/ a(u)dBH ds
t—e
Therefore,
e <c| [ awsnr|(1-2) " (5)°
nels =, u t t
1 B H'
+CK1(t)/ sTHL —9)* (5(18 s)> ds — 0, e =0,
e/t
and

e/t ,
14s(e)| < CKl(t)/ 51— ) (e — ts)H'ds — 0, £ — 0.
0

Therefore, N(t) = M (t), and our lemma is proved.
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Stochastic Differential Equations Involving
Fractional Brownian Motion

3.1 Stochastic Differential Equations Driven by
Fractional Brownian Motion with Pathwise Integrals

3.1.1 Existence and Uniqueness of Solutions: the Results of
Nualart and Rascanu

Consider the function o = o (¢, x) : [0,T] x R — R satisfying the assumptions:
o is differentiable in x, there exist M > 0, 0 < v,k < 1 and for any R > 0
there exists Mg > 0 such that

(i) o is Lipschitz continuous in x:

lo(t,z) —o(t,y)| < M|z —y|, Vtel[0,T],z,y€R;
(ii) z-derivative of o is local Holder continuous in :
|02 (t, ) — 0w (t,y)| < Mplz —y[*, V||, |y| < R, €[0,T];
(iii) o is Holder continuous in time:
lo(t,z) — o(s,x)| + |oz(t, ) — ou(s,2)| < M|t —s|7, Ve eRtsel0,T].

Let 0 < 8 <1/2, f € WJ[0,T], g € W, P[0, T]. We need some preliminary
estimates, in addition to Lemmas 2.1.9 and 2.1.10.
Consider on W{'[0,T] the norm, equivalent to | - [|o.5 :

1 Fllo,s,0 := sup e el(t).
t€[0,T]

Lemma 3.1.1 ((NR00)). Let assumptions (i)-(iii) hold with v > 3. Then
the following statements hold.

1. There exists the integral G0 (f)(t) := fg o(-, f(-))dg,t €10,T].

2. GO(f) e C*=F[0,T) ¢ W [0, T).
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3. |G (F)lhi-5 < C1Ai1-5(9) (1 + [ fllo,5)-

4G (Flopa < Colig(@AP A+ (| Fllosn), A > 1,
where C1 and Cy depend only on M, 3,~,T and |c(0,0)|.
5. For any f,h € WP[0,T) such that fV hi < R

GO (f) = GO (h)lo,px < CaAP 1A _5(g) (1 + Cp + Cu)||f — hllo,gxs

where Cy = SUP,-¢o,7] fOT %ds, Cs depends only on M, 3,v, R, Mg, T

Proof. We prove only statement 5; the others can be proved in a similar, but
more simple way. It is easy to check via the Taylor formula in the integral
form that the function o satisfying (i)—(iii) admits the following bound: for
any R>0,¢; €[0,T],i=1,2, and |z;] < R,1<i <4

lo(t1,21) — o(ta, x2) — o(t1, 23) + o (t2, 24)]
S]\4|Z‘1—$2—$3—§—$4|—|—]\4|l‘1—.233||t2—1fl|'Y (311)
+MR‘I1 — Ig‘(|l‘1 — $2|'€ + |1‘3 — l‘4|'€).

Therefore, from Lemma 2.1.9, part 1,

IG)(f) = G (h)|lo,
< ChrMip(g )SuptEOT M= 1)728 4 7780 ()= () (1)
< ChrMi-plg )SuPrGOT}( N P ()= () ()

x [, e A= (8 — ) =28 4= B)dr.,

(3.1.2)
The last integral in (3.1.2) can be estimated by

fo e~ _25du—|—f e Mt —u)"Pdu
— \28- lfo e Uy~ 2Bdy + N8~ 1f>‘t TU(AE— )T Bdu (3.1.3)
< NP0 5 E A1y

with C1 5 = [~ e “u=?Pdu, Cop = Sup,>g Jg e (z — u)~Pdu.
Evidently, for A Z 1

t
/ e—A(t—r)((t _ 7")_26 + r_ﬁ)dr < A2ﬁ_1(C1,5 + Ca.3). (3.1.4)
0

Further, from the Lipschitz property (i) and (3.1.1), it follows that

Po(-f ()=o) (1) < MIf(r) = h(r)[ + M [ |f(r) = f(s) = h(r)
+h(s)[(r - )‘5‘1ds+ 51 () = hr)|r =P (3.1.5)

+ Mgl f(r) (fo If‘r Slfﬁ(ﬁ ds+ [ %d )

The proof follows now directly from (3.1.2)—(3.1.5), with C5 = (Cy g
+ Ca0)(M + M) (1+ Z57). 0
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The next lemma describes the situation with the Lebesgue integrals. Let
the function b = b(t, x) : [0,T] x R — R satisfy the assumptions
(iv) for any R > 0 there exists L > 0 such that

b(t,z) = b(t,y)| < Lrlz —yl, Vlz|,lyl < R,V €[0,T};
(v) there exists the function by € L,[0,T] and L > 0 such that
|b(t,z)| < Llx| +bo(t), V(¢ z)e€[0,T] xR.

Lemma 3.1.2. Let 0 < 3 < 1/2, assumptions (iv) and (v) hold with p = 71,
fe Woﬁ [0,T]. Then the following statements hold.

1. There exists the Lebesgue integral F®)(f)(t) := fg b(s, f(s))ds
te€0,7).

2. FO(f) e C*P0,T7.

3 IEO (f)lli-p < Ca(l + f7) < Cu(1 )

4 IFO(Nllopa < CsAP 1L+ fllo,p.0),
where A > 1, Cy and C5 depend only on 3, T, L and ||bo| 1, [0,1)-

5. Let f,h € WP[0,T) with f;V hi < R. Then

IEC(F) = FOM)lo,gx < CeX IS = hlloga, A=1,

where Cg depends on B, R, T, Lg.

Proof. We prove only statement 4. Indeed, from Lemma 2.1.10,

8 t |b(s,f(s t (L|f(s)|+bo(s
Py () < Chp Jo BLilds < 0F o [y EL0 0 g
) s 1-3
<Cir ( I (|tf I ds + (fo (t—s)" 1“3d«9) ”bO”Ll/B[O,T]) (3.1.6)
< Cir ( Iy (‘tf(s s + Cﬂtl’QﬁBo,ﬂ) ,
h L2 , Bog = |b C3. =78 11
where ¢3 = | 135 0,6 = lIbollL,0.77: C3 1 +1/8.
Hence

IFOF Yo < g L suppegpimy = Ji L ds
+ CE 7¢3Bo,55upsc o, 1) efAttlimt

- C,BT I bupée[o e A|F()] fo e M uPds

+ CF peaBog AP~ sup, s g e 72217 < G5 AT

BA);
where C5 = C§ (L - I'(1 = ) + cgBo gsup,»q e "z 7). O

Now, let 0 < 3 < 1 be fixed, g € W} [0, T]. Consider the (deterministic)
differential equation

t t
X = Xo Jr/ b(s, Xs)ds Jr/ o(s,Xs)dgs, te€]0,T], (3.1.7)
0 0
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where Xy € R, and the coefficients o,b : [0,7] x R — R are measurable
functions satisfying (i)—(v) with p = 1/5,0 < v,k < 1 and
0<ﬂ<ﬂoz%/\w\ﬁ.

Theorem 3.1.3. Equation (3.1.7) has the unique solution X € W{[0,T).
This solution belongs also to the space C*=P[0,T].

Proof. Let the function f € Woﬁ [0,T]. Then, according to statements 3 of
Lemmas 3.1.1 and 3.1.2, G (f) € C*=8[0,T] and F®)(f) € C*=#[0,T]. So,
if X is the solution of (3.1.7) and X € W/[0,T], then X = X, + F®)(X)(t)
+G(X)(t) € C*P[0,T).

Now we prove the uniqueness. Let X and Y be two solutions from
C'=P10,T) and || X||c1-s0,77 V [[Y[|c1-80,77 < R. Then from statements 5
of Lemmas 3.1.1 and 3.1.2, for 8 < v

1X = Yllo,px < [[FO(X) = FOY)lo,50 + [|[G(X) = G (Y) 0,51
< (C3M1_p(@NP 114+ Cx + Oy) + GNP H[X = Yopn, A>1.

Note, that for 3 < % and for (1 — §)-Hélder X and Y’

Cx +Cy <2R sup / (r— s)(lfﬁ)’ifﬁflds < (7,
rel0,T] J0
where C7 depends on R,T and (3. Take A sufficiently large such that for
8<1/2
C3A1_5(g)NP~1C7 + CsAP~1 < 1/2

and obtain
[X = Yllopx < 1/2[[X — Yo,

whence X =Y on [0,7].

Now prove the existence by a fixed-point theorem. Consider the operator
A WE0,T] — C'F[0,T] € WF[0,T] of the form AX = Xo + [ b(s, X,)ds
+ fg o(s,Xs)ds. Then for all A > 1 from Lemmas 3.1.1 and 3.1.2 for any
u e W{[0,T] it follows that

[AX [lo,5.x < | Xo| + [F®(X) 0,55 + IG(X)]|0,,1
< | Xo| 4+ CsA?P 711+ || Xlo,8.0) + CaAip(g) A~ (1 + [ X lo,5.2)
< N5 4 Coi_p(9)) (L4 [ X lo,8.2) + [ Xol-

AN (C5+Coly_5(9)) < 1/2 and || X050, < 2(1 + |Xo|), then [|AX [|o.5.2
< 2(1 + |X(]D So A(B(]) C By, where

By = {X e WP0,T]: | X

0,80 < 2(1+1Xo]) }-

For all X € By | X|os < 2(1 + |Xo|)e*T. Further, for any X,Y € By and
A > 1 from the same lemmas
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IAX — AY [lo,50 < CsA*? ™M1+ Cx + Cy)|X —Y

0,8,\s (3.1.8)

where Cg = C’3A1_5(g) + 06- L -
If X € A(By) C By then there exists X € By such that X = A(X)
€ C'=A[0,T), and from statements 3 of Lemmas 3.1.1 and 3.1.2

X llcr-s10,77 < 1 Xo| + [IFO (X)) 1= 10,7 + 1G(X) | cr-s10,7)
< (C1A1-p(g) + Ca)(1 + || Xlo,5) < Co,

where 09 = (01/11_5(‘9) + 04)(1 + 2(1 + |X0|)€)\OT).
Therefore, for such X

Cy

< = 7Tﬁ7ﬁ(1+n). 1
Cx < Co KB+ r) (3.1.9)
From (3.1.8)—(3.1.9), for any X,Y € A(By)
1
|AX — AY |lo.g.x, < §||X =Yo7 (3.1.10)

for such A; that CsA2? ™1 (1 +2Cy) < 1

Denote by p;(-,-), ¢ = 0,1 the equivalent metrics generated by norms || -
llo,8,5 and | - |lo,8,n,, correspondingly.

Let X, 41 = AX,,,n > 0. Then X,, € A(Byp),n > 1, and p1(X,,, Xin)
< 27"py(Xo, X1) — 0 for m > n — oco. Since the metric space (W(’?[O,T], p1)
is complete, there exists X* € WOB[O,T] such that X,, & X*.n — oco. Ev-
idently, po(X,, X*) — 0, whence || X*|lo.3,5, < 2(1 + |Xo|), and X* € By.
Moreover, Cx, < Cjo and it follows from convergence in py that X, uni-
formly converges to X* on [0, 7], whence Cx < Cig. Therefore, from (3.1.10),

pl(AXTHAX*) = HAXn - AX*”OﬂJ\l

1 *
0,60 = 5P1(Xn, X7) = 0,n — oo,

and it means that X* = AX*. O

1
2

Now, consider the SDE with fBm B, H € (1/2,1) on a complete proba-
bility space (£2,F, P):

t t
Xt:X0+/ b(s,XS)ds+/ o(s,X,)dBE, te0,T]. (3.1.11)
0 0

In this case we can reformulate Theorem 3.1.3 in such a way:

Theorem 3.1.4. Let the coefficients b and o satisfy (i)—(v) with
p=(1—-H+e¢e) ! withsome0<e<H—1/2,y>1—H,x>H 1 —1 (the
constants M, Mg, R, Lr and the function by can depend on w).

Then there exists the unique solution {X;,t € [0,T]} of equation (3.1.11),
X € Lo(2,F, P,Wy H%¢[0,T]) with a.a. trajectories from CH=[0,T].
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Remark 3.1.5. Theorem 3.1.4 admits evident generalization to the multidi-
mensional case. Consider the equation on R?

t m t
X;’:Xg+/ bi(s,Xs)dHZ/ 0ji(s, X )dBHi, 1 <i<dtel0,T]
0 . 0

(3.1.12)
where the processes B are fBms with Hurst index H; € (1/2,1),1 < j <
m. Denote by o = (Uﬂ)iﬁl the matrix of “diffusions” and b = (b;)%_, the
“drift” vector, |of == (3, ; loji|2)Y2, b == (3;(b:)?)'/2, and suppose that
assumptions (i)—(v) hold with these notations, H = minj<j<m, Hj, p = (1 —
H+e) L y>1-H, k>H*'—1.

Then there exists the unique vector solution X; of equation (3.1.12) on
[0,T] in Lo(£2, F, P,Wy %[0, T]) with a.a. trajectories from C*—=[0, T7.

3.1.2 Norm and Moment Estimates of Solution

We consider equation (3.1.7), suppose that the assumptions of Theorem 3.1.3
hold and, in addition, the coefficient o satisfies the following growth condition:
(V') lo(t, )] < M(1+ |z|*) for some 0 < p < 1.

Lemma 3.1.6. The solution of (3.1.7) satisfies the estimate
1X1lo,s < Coexp(Cr(A1-p(g))"),

wher60<ﬁ<ﬁo—1/2/\7/\1+m,

(1 - Qﬁ)_la Zf n= 17

F={ (-5 )< =2, (3.1.13)
> s if R <n<,

and the constants Cy and Cy depend on T,(,u and on the constants from
conditions (i)—(v).

Proof. Evidently,
P (8) < 1Xo| + P ) (8) + P ) (0)- (3.1.14)

From (3.1.6)

Spiw(x)( )< Cir(L fy 3 - u)ﬁd“+cﬂt1 *%Bo,s)

X. (3.1.15)
< LCE} T fo (tl u)‘ﬁ du + CE,Ta
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GO (X)| < dr_plg) (fg 2XNas + 3 fi fy loekedoolnXoll gy gy )
< A1_p(g (M Jo Bel%ds 0 fy o el g dr

t1 8 B+
+ M + Mo—5e—5mm fﬁ+1)>

SC,B,W,TAl—ﬁ( )+ MAy_s(g )(f s+ [ [T ('fui;ldudr)
(3.1.16)

and, similarly to (2.1.15)—(2.1.16)
t 16{7(X)-G( (x t -
Jo e O=C s < MAL_5(9)(Coyr + Jy 1Xul#(t = u) =2 du
—I—fot(t —u) 7P [ Xy = Xol(u—v) 7P dv du).
(3.1.17)
Let us estimate the “worst” integral fot | X |#(t — u)~2Pdu:

[t ([ (B o) ([ )

(3.1.18)
where we must choose up = 1,(26 — p)g < 1, whence p > 20 4+ p — 1, and
estimate (3.1.18) takes the form

B4 — 2By <
Jo I Xul#(t = u)"2Pdu < Cgpur (fo t— u”/“du> (3.1.19)
<CBMT(1+IO( du)

whereu:§> for p =1 we put v = 20).

From (3.1.14)—(3.1.19) we obtain that cpg((t) admits an estimate

2B8+p—1 (
1

P (t) < EKi(1+ Ar_p(g)) + K2(1+ A1_5(9)) - / ) ((t —u) ™ +uP)du

with constants K; and K5 depending on on T, 3, 4 and on the constants from
conditions (i)—(v). Evidently,

Biu'ng(tfu)”

t—u)V+u < (8 VBt —u)v.
(1)~ = T < (¢ ()
For p > 11__255 we have that v > (; for 0 < p < 11__25 we can put

v=0> %—ﬁu—l In any case

P (t) < Ki(1+ Ai_p(9)) + K2(1 + Ay_g(g))t” / P (wyu™ (t —u) "V du.

(3.1.20)
In (NROO) the following version of the Gronwall lemma was proved: if 0 < ¢ <
1,a,b >0,z : Ry — R, is a continuous function such that for each t € [0, T
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t
e <a+ btc/ (t—s)"“s™“ds, (3.1.21)
0

then )
xt < C3exp{CytbT-°}, (3.1.22)

where C5 and C4 depend only on a,b,c. The proof follows from (3.1.20)—
(3.1.22). O

In the case of equation (3.1.11) g(¢) = B¥(¢,w) and instead of A;_g(g)
we have the random variable G := ﬁ SUPg<sci<T |(D}=°BE )(s)|. It was
considered and estimated in Lemma 1.17.1 and Remark 1.17.2.

Corollary 3.1.7. It follows from Lemmas 3.1.6 and 1.17.1 that the moments
of solution of SDE (3.1.7) admit the following estimate: if the coefficients
M, Mg, L,Lg do not depend onw, p>+, 1 —H < < %/\'y/\ HLH and we
can take the value K from (3.1.13) not exceeding 2 (it means that § < % for
p =1, therefore, H > 3/4 for p =1 and 8 < 5 — & if 120 < 1 < 1), then

1-8
E|X|§ 5 < oo for any g > 0.

3.1.3 Some Other Results on Existence and Uniqueness of Solution
of SDE Involving Processes Related to fBm with (H € (1/2,1))

It follows from the results of Subsection 3.1.1, that it is possible to consider
an SDE involving fBm with H € (1/2,1) as an ordinary differential equation
for any w € 2/, P(2") = 1. Therefore, the results for the ordinary differential
equations with the Holder continuous forcing can be applied. One of these
results belongs to Ruzmaikina (Ruz00). Another approach was developed in
the papers (CQ00), (GA98), (GA99a), (GA99Ib), (Jum93), (IT99), (KKAI8a),
(K1i98), (KZ99), (MNO00), (Mis03), (Zah99) (Zah01) and (Zah05). For exam-
ple, in the papers (Zah99) and (Zah05) the author considers SDEs of the form

AXE = 3 oi(t, X2 )dZI + bs(t, X, )t
! Eogj(’ A2+ bilt, Xo) (3.1.23)

te[0,T], X, = X0,0 <t < T,

under the following assumptions:

(vi) 0j; € CH(R%[0,T],R?) and all partial derivatives are locally Lipschitz
in z € R%;

(vii) b; € C(R? x [0, T], R?) is locally Lipschitz in € R? (with probability
1 in the random case). Here 1 < i < d.

Also, Xy is an arbitrary vector random variable. The integrals w.r.t. the
processes Z] are the generalized stochastic forward integrals. What are they
and what processes can we consider here? (Recall that the forward (not gen-
eralized) integrals were introduced in the Section 2.4.)
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Suppose that Y is a stochastic caglad (left continuous with right limits)
process and Z a stochastic cadlag (right continuous with left limits) process
on [0,77].

Then the generalized stochastic forward integral is defined as

t
/de —hms/ e-1 YZt W =2 g, (31.2)
0 0 0 u

whenever the right-hand side is determined, where lim stands for uniform on
[0,T] convergence in probability (ucp-convergence), and fot = lims o [, 61 a.s.
We use the same notation as for the forward integral in the Section 2.4.

Similarly, the generalized quadratic variation process (bracket) is defined
as

Z)¢ := lim 5/ el / (Zs_(s+u)—Z;_(s))*ds du+(Z,— Z;_)? (3.1.25)

e—0

whenever the convergence holds uniformly in probability. If Z is a semimartin-
gale and Y an adapted caglad process then integral (3.1.24) agrees with the

usual Ito integral fg ~YdZ, and notion of the generalized bracket coincides

with the classical one. If Z is a continuous process with the generalized bracket
[Z], and the function F = F(t,z) : R x [0,7] — R, F € C*([0,7]) x C}(R),
then the simple It6 formula holds for 0 < s <t < T:

F(t, ) = F(s, Z.) + [, 55 (u, Z,)dZ;
+ [P (u, Z)du + L [ L (u, Z,)d[ 2]

Now we suppose that the paths of Z7,1 < j < m from equation (3.1.23)

belong to the Sobolev—Slobodeckij space W;I’ = ) W, H € (1/2,1),
B<H

where the norm in Wf is given by

Tt - o, L\
||f||W3ﬁ = Hf”Lz[O,T] + A \/0 st dt .

We suppose also, that Z9 is a continuous process with the generalized bracket.

Then the sample paths of Z° belong to the Sobolev-Slobodeckij space W31 /2-
(for the details see (Zah05)).

Definition 3.1.8. A local solution X = (X!,..., X?) of SDE (3.1.23) is a
process with the generalized bracket admitting the integral representation

m t t
th = Xé + Z/ O'ji(S,XS)ng’i +/ bi(saXS)d‘S?
j=0""%

to

in some neighborhood of ¢y.
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To formulate the main results, it is necessary to consider an auxiliary
partial differential equation on R? x R x [0, 77,

oh
&(yvzat) :JO(tah(yv'zvt))a h(Y()vZOatO) :X07 (3126)
where Zy = Z°(ty), 00 = (001, - - -,004) and Yy is an arbitrary random vector

in R%. Now, the main result of the paper (Zah05) is stated as below.

Theorem 3.1.9 ((Zah05)). Under suppositions (vi) and (vii), any represen-
tation X (t) = h(Y:, Z,t) with the function h satisfying equation (3.1.26) and
Y € W;{’ locally determined in some neighborhood of the point ty € [0,T] by
the following matriz representation:

aY, = (36,2, 29) 7 ( X ot h(t, Vi, 20))dZ] ™

+ (bt h(t, Y2, Z7)) — %Zt Yy, Z7))dt (3.1.27)
— 3222 (8 bt e, Z9)) oo 8, b, Y;,ZO»d[ZO]t)
Yy, = Yo,

provides a pathwise local solution of the SDE (3.1.23). (Here we omit index i
everywhere.) If X is an arbitrary solution of (3.1.23), then it agrees with any
of the above representations on the common interval of definition.

3.1.4 Some Properties of the Stochastic Differential Equations
with Stationary Coefficients

Now we consider the multidimensional stochastic differential equation driven
by the vector fBm BH = (B}'" ... B™") with the same Hurst index
H € (1/2,1) and with coefficients, stationary in time:

t t

Xy = Xo +/ b(Xs)ds +/ o(X,)dBH, t>0, (3.1.28)

0 0
or
X;:X5+/ bi(Xs)ds—i—Z/ 0;i(X)dBM i=1,...d.
0 - 0
Jj=1

where the processes B»H, j = 1,...,m are fBms with Hurst parameter H

defined on the complete probability space (2, F, P), X is a d-dimensional
random variable, and the coefficients oj;,b; : R¢ — R are measurable func-
tions.

The conditions of existence and uniqueness of solution of the equa-
tion (3.1.28) on any interval [0, T], consequently on R, according to Theorem
3.1.4 can be reduced to the following ones:
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(i) Lipschitz continuity of b and o:
lo(z) —o(y)| + |b(x) —b(y)| < M|z —y|, =z,yeR™
(ii’) growth conditions:
b(x)] < C(A+[z]), |o(x)] < A+ []"), zeR"

for some p € [0, 1)(this condition previously was used only for the estimate
of the norm of the solution of SDE (3.1.7));
(iii’) local Holder continuity of d,,0:

|0,0(x) = 02,0 (y)] < MR |z —y|"

for 1 <i<d, |z|,|y| < R and some x> £ — 1.

Existence of Pathwise Solution for Bounded Coefficients
Now we relax the conditions on coefficients to obtain the existence (not unique-
ness) of the solution of equation (3.1.28).

Theorem 3.1.10. Let the coefficient b be bounded and continuous, coefficient
o be bounded and Hélder of order 1 > p > 1/H — 1. Then equation (3.1.28)
has a pathwise solution.

Proof. We consider the sequence {1, (z),z € R% n > 1} of smooth kernels,
such that ¥, > 0; ¢, =0, |z] > L; ¥, € C°(RY); [ ¥ (2)de = 1.
Introduce the functions

bala) = [ bnle =y, on(w) = [ otwinle—u)ds

Rd

Then for any z € R? and any 1 <1i < d

|0z, bn ()| =

Rd
< bl /Rd |0z, ¥n(x — )| dy < Cr [[b]|

where [b]. := sup, ez b(z)].
The same estimate is true for o,,, and it means that b,, and o,, are Lipschitz
continuous, with the constants possibly depending on n. Further, for any
z € R, by (2)] = | [ga b(y)ton(z — y)dy| < ||b]| . i-e. by are bounded functions.
The same is true for o,. Finally, for any N > 0, 2,y € R?, |z| < N,
lyy < Nand 1 <i<d
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|0z,0n () = O, 0n(y)] < lloll /Rd |02, (¢ = 2) = Ox, Yy — 2)| dz

<llollc ~ sup
lz]<L1<i,5<d

n’

02, o, n(2)| (N + )% — g,

i.e. Oy,0y, satisfy the local Lipschitz conditions. These estimates demonstrate
that b, and o, satisfy conditions (i’)—(iii’) that in turn ensure the pathwise
existence (and uniqueness) of the solution of the equation

t t
X' =X, +/ bn(Xs")ds+/ on(X™M)dBE. (3.1.29)
0 0

We fix some w € {2 and denote by C' different constants even if they depend on
2. According to Theorem 3.1.4 and Remark 3.1.5, the solution X} is Holder
continuous of order H —§ for any § > 0; from Hélder continuity of o we obtain
that

oula) = o) < [ oo =2) = oty = 2 Wula)] d < O~y
R
(3.1.30)
therefore, 0, (X?) belongs to the space WQB [0,T] for any S < Hp. By using
estimate (2.1.14) and the boundedness of o, for any 0 < s < ¢, we obtain for
each 1 — H < 3 < pH (this is possible since p > 1/H — 1) the estimate

t
/ oo (X1)dBH
S

|O'n X” |Un (X2) U7L(Xn)|
<@ </ d +/ / LR dy du
(o )" X - x5l
<Glo|l +CG/ / =P dy du.

Here Gp = A;_g(BY) (see Section 1.17) and EGY < oo for any p > 0
(Lemma 1.17.1 and Remark 1.17.2). Finally, we can estimate

/:b (X)du| +

— TL P
Tﬁ( )= O¢+CGT/ / B-&-‘l dydu. (3.1.31)

t

X7 = X < Un(Xn)dBH < Il (= 5)

Consider any fixed interval [0,7] and denote

|Xt _XS‘

X|,_sp:= sup ——F—.
105,z o<s<t<t (t —s)17F
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Check, first, that the inequality HXnHl—ﬁ,T < 00 holds for any T" > 0. Indeed,
X™ are Holder of order H —¢ for any € > 0 with constant, possibly depending
on n (Theorem 3.1.4 and Remark 3.1.5), therefore [ X"[|, 5, < 00 a.s. Now,
from (3.1.31),

n 5 o]l
X" < Dol 77+ G 1
t u Xn _ xXn P
+CGr sup |t—s|’671/ / |u71y| lu—yPPP P dy du
0<s<t<T s Js \(u—y)'=F

<CH+O(X"™M,_gp)"- sup (t— 5)B—1+(1=p+p=pB)
’ 0<s<t<T

<C+ X"y —p.0)"

under the condition p — pf —1—-0 > —1, i.e. p > %, which is possible for
some § > 1 — H, since p > 1/H — 1. Note that for 0 < p < 1 the equality
P = C(1+ P?) has the unique root Py > 0 and the inequality P < C(1+ P*)
holds for P < P. Therefore, || X"||, 5+ < Po(T\ p), where Py(T, p) depends
only on 7" and p, not on n. This means that

X7 — X2| < Po(T, p)(t — )7, (3.1.32)

which according to the Arcela criterion means that the sequence
{X,te€0,T]}, n > 1 is tight for any w € {2 in the space C[0,7T]. Evi-
dently, we can conclude that there exists {X;"*,t € [0,T]}, ng > 1, such that
X{"* — X; in the space C[0,T]. We can suppose that X} — X; in C[0,T].
Now it is sufficient to prove that X (¢) is a solution of (3.1.28). Let consider
some auxiliary estimates. First,

< /0 B (XT) — (X)) dst /0 b (X.) — b(X.)| ds.
(3.1.33)

/0 (ba(X™) — b(X,))ds

Further, for any =,y € R¢

|bn () = bn(y)| =

/ (b — ) — b(y — 1) o (1)
Rd

S/||<1 [b(z —u) = b(y — w)[¢Yn(w)du < sup [b(z —u) = by —u)|.

Ju|< L

(3.1.34)

The process {X¢,t € [0,T]} is continuous on [0,T], so bounded for any w € (2.
Let C(T,w) = supy< <7 | Xs|. For any ¢ > 0 there exists 7 > 0 such that

sup |b(s) — b(2)] < e. (3.1.35)
|s—z|<n,|s|<C(T,w)+1
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For any > 0 and any w € {2 there exists such ng € N that | X7 — X¢| < n,
n > ng, s € [0,7]. From these estimates,

[bn (X§) = bn(Xs)| < sup [by (X — u) — bp(Xs — u))|

lul<%

< sup sup |b(s) —b(2)| < B, n>mne. (3.1.36)
|| <O(Tyw)+ 1 |s—2]<n

Since 8 > 0 is arbitrary, we obtain that a.s.
t
/ |6, (X7) — b, (Xs)|ds — 0, n — oo. (3.1.37)
0

The second term on the right-hand side of (3.1.33) can be estimated in such
a way:

() = DX < [ K =) =X ()i
<

sup  sup |b(z—u)—b(2)|—0, n— oo,
2| <O(T\w) |u|< L

since b is a continuous function. Moreover, b, are bounded, which implies
the convergence f(f|b X;) —b(Xs)|ds — 0, n — oo a.s. We obtain that

fo n(X™)ds — fo s)ds a.s., t > 0. Furthermore,

/ (00(X™) — 0(X.))dBH | < / (0n(X") — 0, (X.))dBH
0 0

+ (3.1.38)

/0 (on(X,) — o(X,))dBY| .

Now we can estimate the first term of (3.1.38) for any 1 — H < 3 < &:

on(XT) o " "o (XD) —on(Xa)]
[ e = anxant| < | —onlX)l

“ |Un Xn *O'n(Xn)+Un(Xr)*‘7n(X)|
—|—G/ / drdu. (3.1.39
o Jo (u—r)t+hs ( )

Similarly to estimates (3.1.34)—(3.1.37), we obtain that a.s.
sup,<r |0n(XP) = on(X,)| — 0 and [§on(XD) = on(Xs)[s7%ds — 0,
while n — oo. Further, recall the estimate (3.1.30). For any sufficiently small
e > 0, present f(f J, on the right-hand side of (3.1.39) as fot Iy

— f; oo+ s fo+ f; [.._, and the integrals on the right-hand side can be
estimated as
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/f /H <o o (X! ‘/ / dr du
sup |0y, — O'n
e JO B SSI% u - T 1+ﬁ

< Ce @ sup|op(X7) —on(Xs)| — 0
s<T

a.s. for any fixed € > 0. Further, from (3.1.32),

Xy — an X, — X,|°
// <c// | |+|1 g du
u—e uir)+ﬁ

SC// (u—r)”(l_m_l_ﬁdrdu:Cep(l_ﬁ)_ﬁ (3.1.40)
0

is small for small € > 0, and moreover, C does not depend on n. The integral
g u
/ / < CeP=PI=A+1 (3.1.41)
0o Jo

Therefore, since € > 0 is arbitrary, fot Js" — 0 a.s. while n — oc.
The second term of (3.1.38) can be estimated as

o (X — o 7 How(X) — o (X
[ onx —otxnast| < ¢ [ 12N

Lo o (Xu) — 00 (X)) — 0(Xy) + 0 (X,
+G/O /0 dr du.

(u—7)1+8

Evidently,

|on(Xs) —o(Xs)[ < | fo(Xs = u) = o(Xs)[¢n(u)du

R4
P 1
< sup |y <— -0 n—oo
|u|<1 n

—n

and fot |0 (X5) — 0(Xs)|s~Pds — 0 as., n — oo. Now, as before,
fg Jo = fat Jo "+ f0u+f5t [ and fet Jo 7 < 255 &7 — 0 for any
fixed € > 0 and other integrals can be estimated as in (3.1.40)—(3.1.41). So,
fo on( X”)dBH — fo dBH a.s. while n — oo and

fo X, )dBH + fo s)ds. The theorem is proved. 0

Remark 3.1.11. By similar, but even more simple arguments we can prove the
existence of the solution of the equation

t t
X, = X+ / b(X.)ds + / f(s)dBH,
0 0

where b is bounded and continuous, f € C'~H[0,T], X, is a real-valued
random variable.
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Differentiability and Local Differentiability of the Solution

Here we shall use the elements of Malliavin calculus with respect to fBm B,
contained in Section 2.4.

Suppose that we consider some subspace {27 C {2 and restrict F and P to
(2. Denote the mathematical expectation w.r.t. restricted measure P; as E.

Definition 3.1.12. Random variable F' belongs locally to the space D1 ,(H)
on [0, T if there exists a sequence 21 C 25 C ... C 2 such that |J,~; 2, = 2
and [|[F|[7, . := En(|F|") + En(|DF])3, < o0

In this case we say that F'is locally differentiable, F' € D1 p 1. According
to Lemma 1.5.4 (Nua95), see also (Nua98), we can formulate the sufficient
conditions of local differentiability. Let {F;., > 1} be a sequence of r.v. from
D1 pioc satisfying the conditions

(viii)) F,. — F in any LP({2,), n > 1,
(ix) sup, |[F7]];,, < oo for any n > 1.

Then F belongs to D1 p 10c-

Remark 3.1.13. Suppose that there exists a localizing sequence (£2,,n > 1),
such that £’ € Dy poc for any p > 1. Then we say that F' € D; o ioc-

Consider equation (3.1.28) and suppose that its coefficients Xy, b and o
satisfy conditions (i’)—(ii’) and

(x) be CHRY);

(xi) |0s,0(z) — 0p,0(y)| < M |z —y|, Vz,y € RY;

(xil) Xo € Di,ec = [\p»1 D1p(H), Xo is a bounded Fo-adapted random
variable.

Theorem 3.1.14. 1. Let conditions (i’)—(ii’) and (z)—(xzii) hold. Then the
unique solution X; of equation (3.1.28) is locally differentiable in the sense
that X} € D1 0010c for any 1 <1 < d with the same localizing sequence.

2. Let equation (3.1.28) be semilinear, i.e. o(x) = ox, conditions (i’), (i),
(z), (zii) hold for b and Xo and H > 3/4. Then X} € Di . for any
1<i<d.

Proof. 1. Let T > 0 be fixed. According to Theorem 3.1.4 and Remark 3.1.5,
under conditions (i’)—(1”) and (x) equation (3.1.28) has the unique solution
X: on the interval [0, T]. Moreover, it can be obtained by successive approx-
imations, {th),n > 0}, t € [0,T] where Xt(o) = X¢ € Dj,c0. Further we
consider the case d = 1, for technical simplicity; in the general case they are
similar. We use induction. Suppose that Xt(k) € Dy, 1 <k < n, and the
derivatives DSXt(k), 0<s<t<T,1<k<n are Holder continuous of order
1 — g for some 1 — H < 3 < 1/2. Since the approximations Xt(n) are Holder
continuous of any order not exceeding H, and from conditions (i’) and (x) o’

and b’ are bounded, o’ (XT("))DSXT(") is Holder continuous in r of order 1 — 3.
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Therefore, the integrals f: o' (XD, x™aBH and fst v (X" D, X" dr
exist, 0 < s <t<t<Tand

t t
DX = 5(x (M) 4 / o (XD, x™MaBY + / V(XMYD, XM dr.

S

Hence for any 1 — H < 8 < %, from (2.1.14),

t t
1D, X"V < |o(X M) + M/ |D.X ™) |dr + MG/ ID. XM |(r — s) Pdr
S S

t T
+ G/ / lo" (XD X — o' (XD XM |(r —u) " Pdudr, (3.1.42)

where G = 1/I'(8) sup ‘(Dg:'@Bﬁ)(s)’, Eexp{pG?} < oo for any
0<s<t<T
p>0and 0<d<2.

Further we denote by C different constants not depending on w. Note that
lo(x) < € (1+1Xk) .
Further, it follows from condition (ii’) and Lemma 3.1.6, that

sup ’XLSTL) < Cexp{CG*}, where
0<s<T

1 .
eyl if p=1;

K= >125,1f 112B<u<1
1-2
17ﬁ, if 0<u< 7[?

Finally, |o(X")| < Cexp{CG¥}, and from (3.1.42) it follows that

‘D XD ’ < Cexp{CGF ™| gy +MG | )ﬁ‘dr
() _ x(m ‘D xm
+MG/ / = u)i+P du dr
D, x™ — p,x™
+C’G/ / (r =)o dudr. (3.1.43)
It follows from Lemmas 3.1.1, 3.1.2 and 3.1.6 that
X" — X < exp{CG*}|s —r|' " (3.1.44)

for any 1 — H < 3 < 3. In this case 1 — 23 > 0 and from (3.1.43)
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t
‘DSXt("H)’ < Cexp{CGF} + M/ )szﬁn) dr

DX
+MG/ 7dr+MGexp{C’G"}/ (n)

(r—s)?

(r—s)'=2Pdr

— DX

+CG// - —u)i+P du dr,

or, briefly,

‘DSXt("H)’ < C’exp{CGg}

L) DSX’L(I,”)
dTJrC'G’/ / =) P dudr.

JrC’G’eXp{C’G"”"}/
Further, forany 0 <u <r <T
DX — p x () — / o' (XD, XMaBH + / V(XM DX do,

and we obtain by similar estimates that

D, XY — p x(n+D) ‘ < CGeXp{C’G“}/ 7)6(11)
— D, X( )‘
+CG/ / I dzdv, (3.1.45)
whence
_D X(n+1)‘
/s (7" —u)'*h
r s\ )‘
< C’Gexp{CG"‘}/ ez / (v — u)ﬁ dv du
+C’G/ _u1+ﬁ// v—zl‘*‘ﬁ dz dv.
(n) VDX
Denote oL (t) := ‘D X", 2 (t Wdu, 0b(t) = DsXy,

@3(t) =0, C1(w) := Cexp{CG* } Cale) = CGexplCGR), Cofes) o= CG:
Then for ¢, (t) := L (t) + @2 (t)
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Phn(®) < C1(w) + Calw) [ b)) P+ Cafw) [ )

< Ci(w) + <C2(W) + és(w)Tﬁ) /t on(r)(r —s) Pdr;

S

=) [0 [ Gyt
+ Cs(w) /: ¥ (v) /: (t_ds)lwd’“

Since [ (v —u) P (t —u) "' Fdu < C(t —v) 72, with
C= fooo u™P(1 + u)~'Pdu, we have that

Prpa(t) < Oz(w)C/ oL (W) (t —v) P dv + 6'3(w)c/ 02 (v)(t — v)~Pdv
<0 (04() + G1°) [ pulwt —v) ¥

S

Finally,

orn 0 <0 (15 [ a0 (1= 07 +07) )
<o) (14 [ et - 0 0.

where C(w) = CC)(w) V (6’2(w) + C3(w)TP v 1) for some C > 0.
It is very easy to check by induction, similarly to (3.1.20)—(3.1.21), that

u(t) < C(w)Cr exp{Cat (Cw)) 77 } =: (1),

(G
where C1 and C; depend only on 8. In particular, ¢;, < (t) and @2 < 1(t).
Evidently, sup,<;<7 %(t) =: C(w) < 0o a.s., and from (3.1.45) it follows that

(r—w'”

DX - p,x] < ccte) (L

+(ru)),

ie. D,X!"V s Holder continuous of index 1—/ (it is necessary for induction).
Denote (2, := {w : C(w) < k}. Then
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p
B, sup ‘Dth(”)‘ < kP < oo, (3.1.46)
0<s<t<T

Moreover,

XM - x| < / t\b<X§“>>—b<X>)ds+ / (0(X0) — o(X.)dBY
0

t
X§"> ’ ds + C(w / |

(x") = o(X, >+a<X< )|
/ / (r—u)”ﬂ dudr.

From Lemma 7.1 (NR0O), conditions (i’), (x) and from (3.1.44), it follows that

[r(X0) = (X)) = 0(X,) + o (X()|

<C ’Xr ~ Xy - XM 4 x(m

+C ]XW =X | (1%, - Xl + ‘XW _xm

)

<C ]X;m - X[ (Coxp{CGFYHu—1r"") +C ’XT — Xy — XM 4 x|
Then
- ) 4 x(™
XY - x| < o) // 7 dudr
7’ — U

¢
—|—/ ‘Xé(,")—Xs‘sfﬁds).
0

By similar estimates we obtain

du

D R
/0 (t —u)t+s

t dU t
_du ) _ x| 45
gC(w)/O (t_u)w),(/ ‘Xs XS’s ds
// T—v)lJrﬁ dudr).

52 fo ‘X(” X(")

Denote &} (1) :== ‘Xt(n)
x (t —u)~ = Pdu, then

511L+1 / £l (s 5d5+/0t éi(s)ds),
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/ & / )Hﬁds)gcw /Ots%—s)ﬁ(fi<s>+si<s>>ds

Let u(t) = &1 (6)+E2(¢), then &1 (1) < C(W)1? [ 572 (t — )26, (s)ds
Denote Cy(w) := sup |§0( )|. Then it is easy to obtain that
0<

L =28)""" a2
< " —_— " . 1.4
£(0) < (O Calw) T2 (3.1.47)
Hence, Ejy, supg<;<7 |6 (t)|” < CE P < o0 for some C > 0 and any p > 0,
where (2 = {w: C(w) < k,C4(w) < k}. Finally, we obtain from (3.1.47) that

p
Ej sup ‘Xt(n) —Xt’ — 0, n — oo. Together with (3.1.46) it means that
0<t<T

X(t) € Dl,oo,loc-
2. Let equation (3.1.28) be semilinear, i.e. it has a form

t t
Xt:X0+/ b(Xs)ds+a/ X,dBH,
0 0

where b satisfies conditions (i’), (ii’), (x), Xo satisfies condition (xii).
Then

t n
(n+1) < O |D Xr|
‘DSXt ’ < Ci(w) + C(w)/s =87 dr

\DX" D, X7
\0|// pE: du dr,

DSXn+1—D Xn-&-l’
"D, X7 |D X — D, X7
()/( )d—i—CH// L

or in terms of . (¢) and @2 (t) from Part 1 of the proof,

oD < Ca(w) + ) [ b)) Pdr + Ol [ ¢ ryar
S (1) < C(w) / (W) (t — v)"2dv + O(w) / 2 (0)(t — v) .

Repeating the same estimates as in Part 1 but with other constants, we obtain

on(t) < Cr(w) exp{CG=(t — )}
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1
1—28°
and for H > % the coefficient 3 > 1 — H can be chosen in such a way that
ﬁ < 2. Moreover, in this, semilinear, case,

Evidently, E|@}L(t)|p < (), < oo since now, of course, p = 1, kK =

‘Xt(nJrl) - Xt‘

— X, + XY

|X" X\ u
/ ———ds+ C(w r—u)“‘ﬂ du dr,

— X, — x4 x, ’

: i
t du t
- (n) _ -8
§/0 (t—u)”ﬂ(c(w)/u X3 s| s Pds
o x
// r—v)l‘*‘ﬁ dvdr)
< C(w / ‘X(”)—X‘ Bt — 5)Pds

A o
t—s)” d
o) [a—o7 [ s

or

€1 (1) < Cw) / £L(s)s~Pds + C(w) / €2(s)ds

€.t <Cw /g At —s)Pds + O(w /g )(t — s)Pds,
" XMpxMox,+X,
where &, (t) = ‘Xt( ) - n(t) = t ) (t—u)iFP |

Repeating the same estimates as in Part 1, but with other constants, we
obtain:

- Cn+1Gn+1é4(w)
0<t<T I'(n(1-23) ’
where &,(t) = €L () + £2(1),

~ X _XT
G = (0] = sup (Lol + [ )

0<t<T (t—

According to Corollary 3.1.7, EC?(w) < oo for any p > 1if H > 3. Clearly,

P

EGP < o for any p > 1. Therefore, £ sup ‘Xt(") - X
0<t<T

obtain the proof. 0

< C), < 0o and we
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Remark 3.1.15. Tt is easy to see that under conditions (i’)—(ii’) and (x)—(xii)
the derivative Dy X; satisfies the equation

t t
DX, = o(X,) + / o' (X,)D, X, dB, + / V(X,)DsX,dr.  (3.1.48)

Remark 3.1.16. For differentiability and local differentiability of the solutions
of SDE involving fBm see also (NS05) and (MS07b).

Smoothness of the Functionals of the Solution

We consider equation (3.1.28) and suppose that the coefficients b and o satisfy
the conditions of Theorem 3.1.10 and the condition
(xiii) b, 0 € CL(R).

Note that under these conditions equation (3.1.28) has a pathwise solution. Let
X; be any solution of (3.1.28) and the function F' € C?(R). Then for any fixed

T>0 fOT |F(X)b(X,)|ds < oo a.s. Suppose that the process F'(X,)o(X,) €
D, 5(|H|) and a.s.

T T
/ / |D(F' (X))o (X)) Ju— s** " duds < .
0 s

According to the It6 formula (2.7.3) and equality (2.4.2), it holds that

F(X,) = F(Xo) + / F/(X,)b(X,)ds + / F'(X,)o(X,)dB!

—F (o) + | Y (XB(X.)ds + | Pxexsny

0
t t
+Cqy / Dy(F'(X,)o(Xy)) lu— s/** " duds. (3.1.49)
0 s

By using this equality, we can prove the following result. Denote

¢ ¢
el = exp {/ V' (Xy)du +/ U’(Xu)dBf} , 0<s<t<T.
S S

Theorem 3.1.17. Let the conditions of Theorem 3.1.10, condition (ziii) and
the following conditions hold:

(ziv) E [ |F(X)b(X,)|dt < 0o, the function f(s) := EF'(X,)b(X,) is con-
tinuous on [0,T];
(zv) F'(X,)o(Xs) € Dy o(|H]|) and

T T
E/ / |D,(F' (X))o (X)) [u— s|** duds < oo.
0 s
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Then the function p(t) := EF(Xy) is differentiable in t and
¢'(t) = EF'(X:)b(Xy)

+20HE </0 (F'(X,)o" (Xs)) o (Xs) |s — t]** " (e3) " Vds - 5g> .

Proof. From the It6 formula (3.1.49) and conditions (xiv)—(xv) it follows that

t
p(t) = EF(Xo) +/ EF'(X,)b(X,)ds
0
t t
+CH/ / EDS(F/(Xu)U(Xu))|U—S\2a_1duds, CH :206H
0 s

Note that the mathematical expectation of the divergence operator
Efot F'(Xs)o(Xs)0BE = 0. Therefore, under (xiv) and (xv) we can differ-
entiate ¢ and obtain that

¢O'(t) = EF'(X)b(Xy) + 2aH/O ED,(F'(X)o(X,)) [t — s** " ds.

Further, from the chain rule, Theorem 3.1.14 and Remark 3.1.15
D (F'(Xy)o(Xy)) = (F'(Xs)o(Xs)) Ds Xy, the derivative DyX,; exists and
satisfies linear differential equation (3.1.48), whence
DX, = o(X,)el1 {s < t}.
Therefore
¢'(t) = EF'(X1)b(Xy)
t
+2aHE (/ (F'(X5)o'(Xs)) o (X,) |s — t2* 7" (e5) " ds - 5’6) .
0

O

3.1.5 Semilinear Stochastic Differential Equations Involving
Forward Integral w.r.t. fBm

Leén and Tudor in their paper (LT02) established the existence of a global
solution of a semilinear stochastic differential equation with forward integrals
(for the definition and properties of forward integral see Section 2.4). Let p > 1
and v € (0,1). A process u € Dy ,(|H|) belongs to LL? if

ol = BQlully, .20) + BADuI o ) < o0. (3.1.50)

It follows from (AN02) that L1? € Dom(dy) for any 0 <~ < H.
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The next statement from (LT02) establishes the relationship between the
forward integral (understood in the sense of ucp-convergence) and the diver-
gence operator that we denote here as f(f us0 B (for P-convergence such a
statement was proved by (AN02), see (2.4.1)). Here something like condition
(3.1.50) is needed.

Theorem 3.1.18 ((LT02)). 1)Let {u,t € [0,T]} be a stochastic process,
U € L;’Q for some 1/2 <~ < H and the trace condition holds,

T
/ / |Dgu,||r — 5| tdsdr < oo a.s.
o Jo

Then both the integrals, fot usdBH~ and fg us6BH | exist for any t € [0,T)

and
¢ ¢ t T
/usdBSH’_:/ uS§BSH+2aH// Dgu,|r — s|** dsdr.
0 0 0 Jo

2) Now consider the semilinear stochastic differential equation
¢ t
X, = X, +/ b(s, Xo)ds +/ o X BT, te[0,T],  (3.1.51)
0 0

where the coefficients b : 2 x [0,T] x R — R and o : 2 x [0,T] — R are
measurable, X is random variable, b and o satisfy the following assumptions:

(zvi) For allw € 2,t € [0,T] and z,y € R

‘b(w7t7 Z‘) - b(wvt’ y)| < “(w)|$ - y|’
[b(w, £,0)] < k(w)

for some random variable k(w).
(zvii) o is forward integrable and there is €9 > 0 such that

. T T _ T _
lime o0 SUPg e e, P {fo | Jo ose (Bl ojap — B )ds — [j osdBI |
X|OTE_1(B(€+E)AT — BH)|dr > c} =0.
(zviii) for all ¢ > 0
lim, .o P {SUpogng ‘fot(for assfl(Bg_Fa)/\T — BH)ds — for o.dBH:~)
xorefl(Bg_s_s)/\T - Bﬁ)dr’ > c} =0.

Also, denote by A the class of all processes X such that (cX) is forward
integrable and for any ¢ >0 and t € [0, T
lim. ¢ lim, o P { ‘f; osXsexp{— f; e (B(ILFE)AT — BH)dr}

X By g — BE) = e N (BH ) — BI))ds| > ¢} = 0.
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Theorem 3.1.19 ((LT02)). Under assumptions (tvi)—-(zviii) equation
(3.1.51) has a unique solution in the class A that is given by the unique solu-
tion of the equation

t t t
Xt:exp{/ asdBf’_}Xo—i—/ exp{/ anBSH’_}b(u,Xu)du,te [0,7].
0 0 u

Here are some classes of coefficients satisfying assumptions (xvii) and
(xviil).
Ezample 3.1.20 ((LT02)). Assume that the stochastic process {o¢,t € [0,T]}
satisfies the following conditions:

(xix) o € L}? for some 1/2 <y < H, and for some to € [0,T]

T 1 2y
E(/ |Dsot0|?d8> < 00;
0

(xx) there exists 3 such that for all s,¢ € [0,T]
Eloy — o4 < c|s —t]?/?

and
T 1 2y
.Q/|m@,wmm@ < cls —t)%;
0

(xxi) Elo|? < oo and E(f) |Dyoy|[t — r[>*1dr)? < oo, t € [0,T];
(xxii) there exists u € (0, H) such that
(a) lime o0 SUPg. ., P{0: > c} = 0, where g9 > 0 and

T T (s—‘rs‘u)/\T 2 1/2
0, = 5_1_"“+H(/ (/ / |Dyos||s — u** tdu ds) dr) )
0 0 Jo

s—er)VO

(b) 95£>Oass—>0,
() B>21—H+p)and H—p>1/2V p.
Then o satisfies assumptions (xvi) and (xvii).

Ezample 3.1.21. Let {o,t € [0,T]} be an absolutely continuous process of
the form

t
atza():/ osds, te€[0,T],
0

with o¢,6 € L1 for some 1/2 < v < H, and o satisfies conditions (xxi) and
(xxii). Then o satisfies assumptions (xvii) and (xviii).
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3.1.6 Existence and Uniqueness of Solutions of SDE with
Two-Parameter Fractional Brownian Field

In this subsection we use the notations introduced in Subsection 2.2.4. We con-
tinue with the estimates of the two-parameter generalized Lebesgue—Stieltjes
integrals (the first result in this direction was formulated in Lemma 2.2.16),
and use these estimates to obtain the conditions of existence and uniqueness of
solution of SDE involving the two-parameter fBm. The estimates of the norms
of integrals on the whole duplicate the corresponding estimates from Lemmas
3.1.1-3.1.2 and Theorem 3.1.3, but are much more technical. Therefore we
omit the proofs. For details, see (MisIl03).

Another approach to SDEs involving a two-parameter fractional Brownian
field was developed in (TT03).

Denote Pr = [0, T3] x [0,73] C R3 and introduce the following norm on

the space W72 (Pp):

—Ait1—Aat2  B1, P2 (t)

||f||ﬁ1,ﬁ2,)\1)\2 ‘= sup e Py

teEPT

Also, recall that ||f]| = sup |f(¢)].
tePr

Lemma 3.1.22. Let the function o : Pr x R — R and satisfy the following
conditions:

(xxiii) 1) o € C3*(Pr x R);
2) 3 C > 0 such that |Do(t,z)| < C, where the symbol D stands for
any differentiation that is possible according to item 1) and (t,x) € PrxR;
3) |o(r,0)] <C;

Also, let [ € W(?I’BQ(’PT), g € W117B1’1752(77T), for some 0 < B; < %,
i=1,2.
Then the following statements hold:

1) o f(Dllo.sr, g2 < Cy o, (L+ IFIDA 41 f]l0,61, )%
2) The generalized Lebesgue—Stieltjes integral

G (f) = / o(s, £.)dgs

Pr

exists, belongs to the spaces C1=Pv1=82 gnd Woﬁl’ﬂ"‘ (Pr) and admits in
these spaces the following estimates:
@) 1G(F)ll1-p1,1-8: < CpyparAi—py1-5,(9) 1+ || f]])
X(L+ 110,61, 52)%
OGO M1, 2 100 < CsrnrAi—pya-pa (9AT T A%

XA AR (L 1 senne + IR, 4 ny 52) - (3152)
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Here Cg, g, 7 depends only on 31,02 and T'.

Remark 3.1.23. All the estimates hold for f, = g, = Bf1H2 with H; € (%, 1),
i=1,2.

Remark 3.1.24. Let the function o be bounded, fi(z) = f(x) + Co, where
Co € R be some constant. Then [|G®)(f1)||3,. 5. 2,.2, can be estimated by
the right-hand side of (3.1.52), i.e. this estimate does not depend on Cj.

Lemma 3.1.25. Let the function o satisfy the condition
(xxv) o0 € C3(Pr) x C5(R), and conditions (xxiii), 2) and 3) hold. Also,
let f,h € Wé}l’ﬁz and g € Wffﬁhl*ﬁ2 for some 0 < (3; < % and i =1,2.
Then

o o Cl, ,TAl— ,1— (g)
G (f) = GO (0)|g,. . A rg < -2 i,% g,wf? (L+11£1+ [IR]])>

XL+ 1fllosa, 52 + 1Allo.sr,50)% (IF = Bllay saorsona + 1 =AU, 4 5y 52 )
N>1, i=1,2.

Lemma 3.1.26. 1) Let the function b = b(t,z) : Pr x R — R be of linear
growth: |b(t,z)] < C(1+ |x|). Also, let f € Wol’ﬁz(PT). Then the integral
FO(f) = [ b(s, f(s))ds € CY(Pr) fort € Pr and

Pt

Cpr 62,7
IO ()15 50 00 < preevel Gl L CICENERE
1 2

2)  If the function b is bounded, we have the same situation as described
in Remark 3.1.24.
3)  If f.h e WYV (Pr) and ||f]| < N, ||h]| < N, then

Cpy,82,TN
IFO) = FOW gm0 < 525505 1 = Bllsnsanivas
1 2

Ai > 1, i=1,2, where Cg, g, 7.n depends on ,B2,T and N.

Consider now a stochastic differential equation on the plane,

X¢ = Xo+ /b(s,Xs)ds - /a(s,Xs)stHl»Hz = Xo+ F"(X) + GV (X),
P P

(3.1.53)

where t € Pp C Rﬁ_, BH1:Hz2 g the fractional Brownian field with the Hurst

indices H; € (%, 1), 0,b: Pr x R — R are measurable bounded functions, o

satisfies conditions (xxv), (xxiii), 2), and the function b(s, x) is continuous in
s and Lipschitz in x.

The two-parameter process X; : Pr x 2 — R will be called a solution of

(3.1.53) if it converts (3.1.53) into identity for a.a. w € {2 and any ¢ € Pr, and
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the integral Ggg)(X ) exists for a.a. w € {2 as the two-parameter generalized
Lebesgue—Stieltjes integral. The proof of the main result, stated in the next
theorem, relies, in particular, on the boundedness of the coefficients and on
Remark 3.1.24.

Theorem 3.1.27. Under the conditions mentioned above, SDE (3.1.53) has

a unique solution in the class Woﬁl’ﬁz (Pr) and for a.a. w € 02,
X e ClPl=0 for any 1 — H; < B; < %, i1=1,2.

3.2 The Mixed SDE Involving Both the Wiener Process
and fBm

Real objects varying in time (climate and weather derivative, prices on the
stock market etc.) can have a component with a long memory (that is mod-
eled by fBm with H € (1/2,1)) and also a component without memory (that
is modeled by a Wiener process). Therefore, it is natural to consider stochas-
tic differential equations involving both Brownian and fractional Brownian
motions. We refer to such equations as mixed stochastic differential equa-
tions(and, correspondingly, to such models as mixed models).

The conditions of existence of a local solution of the mixed SDE were for-
mulated in Theorem 3.1.9. Of course, we would like to establish the conditions
of the existence of a global solution. We start with the semilinear SDE.

3.2.1 The Existence and Uniqueness of the Solution of the Mixed
Semilinear SDE

Consider an SDE of the form
¢ t t

Xt=X0+/ b(s,Xs)ds—i—al/ XSdWS+02/ X,dBH ¢ € 0,T], (3.2.1)
0 0 0

where X is an Fy-measurable random variable, o1 and o5 are real numbers,
{Wy, Fi,t € [0,T)} and {BH,F;,t € [0,T]} are a Wiener process and fBm,
correspondingly, on the same probability space (2, F, F;,t € [0,T]), without
any suppositions on their dependence.

Theorem 3.2.1. Let the function b satisfy Lipschitz and linear growth con-
ditions in x:

|b(t,.’£) - b(tvy)| < L|$ _y|7 |b(t,l’)‘ < L(l + “rl)v L> O,x,y € ]Ra

and is continuous in both variables, b € C([0,T] x R).
Then there exists the unique solution {X,t € [0,T]} of equation (3.2.1),
and the trajectories of X a.s. belong to CY/>=[0,T).
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Proof. First, we use Theorem 3.1.9 and construct a local solution. In this
order we consider an auxiliary system of partial differential equations (3.1.27)
that now acquires the following form:

9z,

(Y, (21, %)) = 03h(Y, (21, 22)), = 1,2,
h(YO7O7O) = XO-

The solution of this system has the form
h(YV, (Z]_,ZQ)) = (Y—Yb +X0) exp{alZl +0'QZQ}, (322)

where Z;(t) = Wy, Zy(t) = Bl

Now we try to construct the local solution X; of equation (3.2.1) in the
form of Xy = h(Y:, (Z1(t), Z2(t))), where the trajectories of Y a.s. belong to
C0,T],Y(0) = Yy be some Fy-measurable random variable. Applying the
It6 formula (2.7.2) from Remark 2.7.4, we obtain that

. 9h
dX; = 8—2(}/}7Zl(t), Z5(t))dZ;(t)
i=1
oh L1,
oo (Vi Zu(8), Za(0)Y{dt + So3h(Ye, Zu(t), Za(t))dt. (3.2.3)

Comparing (3.2.1) and (3.2.3), we get the ordinary differential equation for
the process Y:

{Y; — (1 (£) 7 b(E, (Y — Yo + Xo)er(8)) — 303V — Yo + Xo) = £(1,Y),
Y(O) = YOa

(3.2.4)
where ¢ (t) = exp{o1Z1(t) + 02Z5(t)}.

Further we fix w € £2 and put for this w L (T) := maxo<i<7(c1(t))~*
> 0, LQ(T) ‘= maxXp<t<T C1 (t) >0, D; = L.Ll(T)7 Dy =L+ %0’% Then for
t < ap and |Y; — Yy| < by with some ag, by > 0 we have that
M := maxo<e<r | f(t,Ye)| < L(L1(T) + bo + | Xo|) + 50 (bo + | Xo|)
= D1 + Da(by + | Xo|) =: My, and by the Picard theorem, the solution of
equation (3.2.4) exists and is unique on the interval [0,1(], where 1(0) :=
min(ag, bg/M) > min(ag,by/My) =: to; consequently, the solution exists on
[07 tO]'

By using (3.2.2), the solution at the point ¢ty can be bounded by
|h()/tov Zl(to)’ ZQ(tO)” < tho - Yo +XO‘L2(T) < (bO + |X0|)L2(T) EVidentle
the trajectories of the solution belong to C1/2~ [0, to], since Y is continuously
differentiable (recall that b € C([0,T] x R)) and exp{o1Z1(t) + 022Z2(t)} =
exp{o\W; + oo BT} € CV/27(0,t0).

Now we want to extend the solution for [0,T]. The value X;, will be the

)

new initial value X(()1 , and

X)) < (bo + | Xol) La(T).
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Now, for |t — to| < a1, |Y: — Y3, | < by, for some a; and b; > 0, the solution
of (3.2.4) exists on the interval [to,?1], where t; — tg = min(ay, by /M7) with
My = Dy + Dy(b1 + (bo + | Xo|)L2(T)). In the nth step of this procedure
of the extension of the solution we obtain ¢, — t,,—1 = min(ay,, b,/M,) with
M, = Dy + Dby + 34 —g bn1-kx LEYH(T) + | Xo| L5 (T)) and the solution
exists on [t,—1,ty).

Now we have two possibilities: if | Xo| < 1 we can put b, = 1,0 < k <n
and by, /My, = (D1 + Da(35_o L5(T) + | Xo| L5 TH(T)))

> (Dy + DS TN 1 = K, 1 [ Xo| > 1 then we put by = |Xol,

0 < k < n and in this case also b, /M,, > K,,. For both the cases put a,, = K,
n
n>0and t, —th_1 = an,tn = D a.
k=0

(a) Let Lo(T') < 1. Then the series Y a, diverges, so, there exists only a
n>0
finite number of aforementioned steps and we obtain the existence of a solution
on the whole interval [0, 7.

(b) Let Lo(T) > 1. Then the series > a, converges, possibly, its sum
n>0
S < T and we obtain the existence of a solution on [0, S). Therefore, we have

established the existence of a finite solution on [0, g] By the same method we
%, S] with the same step g, since the size of step does not
depend on the initial value Xy. So, we can extend the solution with the step %
on the whole [0, T]. The uniqueness of the solution follows from Theorem 3.1.9.
It follows from its construction (see (3.2.2) and (3.2.4)), that the trajectories

of solution belong to C*/2=[0,T). O

can extend it on |

3.2.2 The Existence and Uniqueness of the Solution of the Mixed
SDE for fBm with H € (3/4,1)

Now we consider a mixed SDE without any semilinear restrictions but only
for H € (3/4,1).

Existence and Uniqueness of Solution of Mixed SDE for fBm with
H € (3/4,1) and with Stabilizing Term

We follow here the approach of (MP07). Consider the following mixed SDE:
¢ ¢
X =X +/ a(s, Xs)ds —|—/ b(s, Xs)dWs
0 0
¢ ¢
+/ (s, X,)dBH + 5/ (s, Xs)dVs, t€10,T], (3.2.5)
0 0

where a,b,c : [0,T] x R — R are measurable functions, V, W are indepen-
dent Wiener processes, € > 0 and B is independent of W and V fractional
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Brownian motion with H € (3/4,1), X is independent of W, B and V. The

integral Efot c(s, X;5)dVs will play the role of the stabilizing term. It permits
us to establish the existence and uniqueness of the solution of (3.2.5), adapted
to the filtration

F|, t >0, where F| = 0{Xo, W,, (Vs + B)|s € [0,1]}. (3.2.6)

The results are valid also for the case when b = 0. If ¢ = 0 and b = 0, we obtain
equation (3.1.6) with g = B whose existence and uniqueness conditions were
formulated in Theorem 3.1.4. As we shall see, the stabilizing term permits us
to avoid the smoothness condition on ¢, for example, the existence and Holder
properties of d,¢(s,z). The main result that we use in the proof was stated
by Cheridito (Che01b). For the completeness of exposition we shall present it
here. Its proof originated in the papers (HH76) and (Hit68).

Proposition 3.2.2. 1. Let {W;,t € [0,T]} be a Wiener process, {B,t €
[0,T]} be an independent fBm with H € (3/4,1), v € R\ {0},

MPY .= B, +~BF, telo,T],

with its own filtration {FM™" ¢ € [0,T]}.

Then {MtH’V,FtMH'W,t € [0,T1} is equivalent to Brownian motion; conse-
quently it is a semimartingale.

2. There exists a unique real-valued Volterra kernel h = h. € Ls[0,T]?
such that

t s
By := M —/ / h(s,u)dMF7ds, t€0,T]
0o Jo
is a Brownian motion. Furthermore,
t s
M = B, — / / r(s,w)dByds, t€[0,T], (3.2.7)
o Jo
where r = 1., € L3[0,T)?.

1
As a consequence, the process N/ := BH ¢V, = ¢(V, + 1B = 5MtH’5

can be represented as

t s
NEe = ey +/O /0 ere(s,u)dV,.ds, (3.2.8)

where V' is some Wiener process with respect to filtration F; := o{eV; +
B s €0,t]} and, from the independence of V, W, B and X, it is a Wiener
process w.r.t. {F/,t € [0,T]}. Using (3.2.26), we can rewrite the equation
(3.2.4) in the form
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t t
X =Xy +/ a(s,Xs)ds—l—/ b(s, Xs)dWs
0 0

t t s
+8/ c(s,Xs)st'—F/ c(s,Xs)/ ere(s,u)dV,ds. (3.2.9)
0 0 0

The drift coefficient of equation (3.2.9) equals a(s,z) + ¢(s,z,w),
where c(s,z,w) = c(s,x) [ ere(s,u)dV,. Evidently, the random variable

f; ers(s,u)dV, is not bounded, but we can consider the sequence of stopping

times 7™ = inf{t € [0,T] : fot(fos ere(s,u)dV/)?ds > M} AT, and consider the
sequence of corresponding stopped equations. The existence and uniqueness
of the solutions of these equations can be established by standard methods
and then it is easy to pass to the limit when M — oo. Finally, we obtain the
following result (note that in this section we begin with the new numeration
of the conditions).

Theorem 3.2.3. Let the following conditions hold:

(i) The functions |a(s,0)| + |b(s,0)] + |c(s,0)| < L,s € [0,T] and
la(s, )| + |b(s,z)| + |e(s, z)| < L(1 + |z|), for some constant L > 0;
(i) there exists an increasing function l(s) : [0,T] — R such that Vz,y € R

la(s, x) = a(s,y)| + [b(s, z) = b(s, y)| + |e(s, 2) — c(s,y)| < U(s)|z —yl;
(iii) the initial value Xy is square-integrable.

Then equation (3.2.9), and consequently equation (3.2.5), has on [0,T] the
unique Fj-adapted solution X;.

The Existence and Uniqueness of the Solution of the Mixed SDE
Involving fBm with H € (3/4,1) as the Limit Result for the
Equations with the Stabilizing Term

Now we want to pass to the limit as € — 0 in equation (3.2.5). Let
e =1/N,N > 1, and consider the sequence of the equations with the
stabilizing term

t t
XgV=X0+/ a(s,X;V)dH/ b(s, XN )aw,
0 0
. L (3.2.10)
+/ c(s,Xj,V)dBf—i—N/ c(s, XN)dv,, tel0,T).

0 0

Let the coefficients a,b,c and Xy satisty conditions (i), (ii) and (iii). Then,
according to Theorem 3.2.3, equation (3.2.10) has a unique strong solution, say
{X},t € [0,T]}. Evidently, the solutions are adapted to different filtrations
FN = o{Xo,Ws,(N"'V, + BH),s € [0,t]}. The aim of this section is to
establish the conditions of existence and uniqueness of the solution of the
limit mixed equation
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t t t
Xt=X0+/ a(s,XS)ds—i—/ b(s7Xs)dW5+/ (s, X)dBH, te[0,T).
0 0 0

(3.2.11)
Let the coefficients of equation (3.2.11) satisfy assumption (iii) and the
following ones: there exist such constants B,L,M > 0,y € (1 — H,1) and
k€ (3/2—H,1) that
(iv) all the coefficients are bounded:

la(s, )| + |b(s, z)| + |e(s, )| < L,Vs € [0,T),Vz € R;

(v) all the coefficients are Lipschitz in :
|a(t’ (E) - a(t7y)| + ‘(b(hl’) - b(t7y)| + |C(t7x) - C(ta y)| < L|£L’ - y|u

vt € [0,T), Vz,y € R,
(vi) the z-derivative of the function ¢ exists and is Holder continuous in t:
Vs,t €10,T], Vz € R

le(s, z) — c(t, x)| + |0pe(s, x) — Ozc(t, z)| < L|s —t|".
(vii) the z-derivative of the function c¢ is Holder continuous in x:
|0zc(t, ) — Ozc(t,y)| < Lz — y|~,

for vt € [0,T], Vz,y e R .

Remark 3.2.4. Note that for H € [3/4,1) 3/2— H > 1/H — 1, so condition
(vii) is more restrictive than the corresponding condition (ii) used in Theorem
3.1.4. In general, this last group of conditions is evidently more strong than
conditions (i)—(ii) of Theorem 3.2.3.

Now consider for 8 < (1/2AyAk/2A (k— %)) some “stochastic analog”
of the functional space of Besov type:

WP[0,T) = {Y = Yy(w)|(t,w) € [0,T] x 2,]|Y]|5 < o0}

with the norm

¢ 2
Y, - Vi)
Y| := sup EY2+E(/ ————ds ,
1Yl te[Oﬂ( (V)  (t—s)+8

and prove that the solution of SDE (3.2.10) belongs to this space for any
N > 1. We shall denote different constants as C' if they do not depend on N
and it is unimportant to the stated results. First of all we prove the Holder
continuity of the solution of equation (3.2.10), by using (1.17.1) and (1.17.2).

Theorem 3.2.5. For any § € (0,1/2) the solution of equation (3.2.10) is
Hélder continuous with parameter 1/2 — 4.
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Proof. Consider | XY — XN|for 0 <z <r <T:

b(u, Xy,)

T 1 T
XN _xN| < ’/ alu, X,)du +N‘/ e(u, X)dV,
(r —2) + Ol — 21270 4 el — 220

+’/ C(%Xu)
" cu,XfLV)du
+ A1 B(BH)/ 7“ 47 |

u Ny N
+ A BH// |cuX c(v, X )|dvdu

(u—v)1th8
N N
i 1/2—6 1 |X X ‘
< Cl(w)(r—2) + Cl(w / / (0 — o)+ ————dv du,
where
Cl(w) = C(Ar_s(BT) v €5V €65V 1), (3.2.12)

535 and & 5 are defined by (1.17.2), Cj(w) < C7(w) and Cp(w) has the mo-
ments of any order.
Therefore, for 6 < 1/2 —  we have that

"IXY - x| N N
¢r,s¢=/s md z < Ch(w )(/ (r—2) R

IXN
+/s r—z“‘ﬂ// 1_s_ﬁdvdudz>
< Cl(w)((r— w270 / (r =) Py odu).
From the modified Gronwall inequality (Lemma 7.6 (NR0O)) it follows that
drs < Cw)(r = )77 exp{C(w) 77 ).
Return to | XY — XN
XY = XN < Clw)(r —2)127?
+ ) ep{CL ™) [ (0= 9V 0 < Gy = )12
where C,.(w) = Cl.(w) exp{C". (w)ﬁ}, and the theorem is proved for
0 <6 <1/2—p, and consequently for 0 < § < 1/2. O

Introduce the random variable C(w) := sup Ci(w). It also has moments
0<t<T

of any order. Now we want to prove that the solution of (3.2.10) belongs to
the space {W?[0,T),]| - ||} for all N > 1.
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Theorem 3.2.6. Under assumptions (iii)—(vi) the solution of equation
(3.2.10) belongs to the space WP[0,T] of Besov type with norm || - g for
all N >1 and any B < (1/2AYAK/2A K — 3).

Proof. In order to prove the statement of this theorem, we want to estimate

t N N 2
AN + AN () = B(XN)2 + E (/0 wds)

First, for A () we have that

B(XN)? < 5B(X,)? + 5E(/Ot a(s,X;V)ds)2 + 5E(/Ot b(s,X;V)dWs)2

t 1 t
+5E(/ c(s,XSN)dBf)2+5E(N/ (s, XN)av,)?. (3.2.13)
0 0

Evidently, E ( JEa(s, XN ds) < L2T2,

< L?T.

2
B (Jivs. x2)dw,)" < 127, B (& fLets. xM)av) < 27
Further, for § < 1/2 — 8 we have that

E(/t (s, XN)dBH)2 < E(C’Q(w)(/ot C(S’Sifsjv)ds
/ / (s, X;v_;cl(fﬁXN)‘dudsf) < CE( (t/t L

([ [,

< C(E62( )(LQTQ 26 | p272(- [3+'y))_|_L2 w))T3 23— 25)

with C(w) = A;_g(B). From all these estimates it follows that A (t) < oco.
Consider now AY (t). We have that

XN)d
AN (¢ <4E< |f alw, u|ds>

(t — s)1t5

AE |fquNdW|d AN-2E |f uXNdV|d
+ / (t — s)1th sp / (t — 5)1th s

|f (u, XN)dBH]
+4E/ T R IRNCERLY

Evidently,
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Xu)d
(/ lft = 1+ﬁu| S) < CL*?728,
—3)

Now, let p € (8,1/2), then we have the estimate

2
) b, X)W oy [P E| T b(u, X, )dW, |2
E( ] B A e

LB (u, X, ) du

1-2p
<Ct o (t—s)2t26-2p

ds < CL*'7%0 (3.2.15)

and similarly,

|f (u, X\, )dV,| 2,1-28
(/ eyt s | < ore

2
Now we estimate BV := (fo |f c(u, X, )dBH|(t — )*1’ﬁds) . Since

‘/ (4, X)) BH‘<C /|cuX)|(u—s) Pdu

+/: / e, @) e, X2l 1) Pdrdu) < Tw)

x(/st|c(u,Xu)| u—-s) ﬁdu—i—// U_T7+Lc(w)(u_r>1/2_6drdu),

(u—r)it+s

we have that for § < 1/2 — 8 EV can be bounded by

5 <C(w) /t L(t - s)lfﬁ + L(t — 5)1+77B + LCN'(w)(t _ 3)3/275,/3 d8>2
0

(t—s)1+P

< C(LHYBEC (W) + L2220 EC” (w) + L3240 507 (w) O3 (w)).
(3.2.16)

Therefore, AY (t) satisfies the inequality
AN () < C(L2T22 4 L2728 4 [2T2- BT (w)
+ LATH 4 FOR (W) 4+ LT3 248 EC (w0) 02 (w)) < 0o, (3.2.17)

Finally, the statement of our theorem follows from inequalities (3.2.13)-
(3.2.17) with sufficiently small § > 0. O
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Introduce for any R > 1 the stopping time 7r by
TR = inf{t: C}(w) > R} AT, (3.2.18)

where C}(w) is defined by (3.2.12). Evidently, for any w € §2 there exists R(w)
such that 7 =T for all R > R(w).

Define the processes {X2 ., N > 1,¢ € [0,T]} as the solutions of equation
(3.2.10) stopped at the moment 7g, and prove that they are fundamental in
the norm || - || of the space W4[0,T.

Theorem 3.2.7. Under assumptions (iii)—(vi) the sequence
{X{,..N>1,t€[0,T]} of solutions of equations (3.2.10) is fundamental in
the norm || - || for any B < (1/2 Ay AK/2AN K — ).

Proof. Consider

N,M N,M L
Al (t) + A2 (t) T E(Xg\TR - Xt]\/{TR)2
2
+E K |Xt]>]\TR - Xt]\/{TR - Xé\/[\TR + XSM/\TR|dS
o (t— )7
TRAL |XNT 7XMT 7X£V+X£\4| 2
=BXN,, - XM )+E (/0 AR (tti z)lw : ds) :

First, for AN (t) we have the estimate

AYM(t) <4E ( /0 mm(a(s,XéV ) —a(s, X ))ds>2
g ([ s x) - b(s,X;”>>dWs>2
+4F (/OTRM(C(S,X;V) — c(s7X;V[))dBSH>2

2

TRAL XN XM
+4F (/ (C(S’Ns ) — C(S’MS )> st> = AL + I+ I + 1).
0

Then I, < CTL? [} B(XN,,, —XM_)2ds, I, < CL* [} B(XN,,, XM

SATR SATR SATR S/\TR)2d87
I, < CL?’T(N~2+ M~2). Now we are in a position to estimate I3:

TrRAL 2
I3 §2R2(E</ \C(S,Xév)—c(s,XéVIﬂs_ﬁds)
0

TRAL s
FB( [ [ el ) = el ) el X2 + e, X1
0 0

2
x (58— u)*lfﬁduds) ) =2R*(I4 + I5).
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Further,

TRAL t
I < CL2T1*25E/ (XN - xMy2gs = CL2T1*%/ AYM (5)ds.
0 0
By using Lemma 7.1 (NRO0O0), we estimate I5 as

TRAL s LI XN XM XN 4 xM ?
I; <3E | X s
(s —u)lts

TRAE L2 XN XM|( )
+ 3F (/ / (5 —u)i+? duds)

TRAE N _ vM N _ vNis M _ yMix 2
pop ([ [ XY S X XX,
(s —u)tts

2

= 3(-[6 + I; + Ig)

Here

t SATR |X XM XN + XI\/I|
I < CTLQ/ E / SATR SATR d ,
°= 0 < 0 (s —u)t*h ’

I7 S CTL2/ 20=P) E‘Xs/\TR Xi\//{TRFdS’

0

2

TRAL L‘XN XJW‘QR( ) Kk(1/2-96)
IS<E(/ / (5 —u)iP duds)

SCTLQRZ/ K—2K6— 2,8E|X
0

|*ds,

SATR S/\TR

where we choose ¢ in such a way that kK — 2kd — 23 > 0. It is possible since
B<k—1/2s80k—208>1/2— > 0. Finally,

t
I;<C / (A;“M(s) + (2079 4 CRQSK—M—%)A{V’M(S))@,
0
and

t t
ANM () < CR? /0 ANM(§)ds + CR? /O AYM(s)ds

+C(N"2+M~2). (3.2.19)

Return to AY"(t). It admits the following estimate:
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Aé\/,]\/[(t) - ole </OTR/\t ISTR (a(u’é(év)s)—lf[gu,Xy))dud8>
A [T (b, XN) — b(u, X2Y)aw, \
+E</0 (= )10 ds)

(t— s)1+6

B ( [ S e, X2) — c(u, X2)BY d8>2
0

r TRAt  c(u, XN c u,XiM 2
+E RAL fSR ( ( N’u,) _ ( - ))dV“ds
0 (t —s)t*7

=Cly+ o + I11 + T12).

Further, for 8 < p < 1/2

TRAL (t _ S) f”'R/\t L2|XN _ XM|2du
1-2 0 u u
Iy<CT pE/O EPREET ds

t t
<Cor'-% / E (XN, — XM Yds< o' / AYM (5)ds,
0 0

CTEIXN,, - XM 2du

UNTR

(t — 5)2+26-2p ds

Lo <CT' 2
0

t AN,M(S)
1-2p 1
<CT /0 —(t — 3)1+2ﬁ—29ds'

For I15 we have I3 < CT'"2%(N=2 4 M~2). Now consider I ;:

I1 < CR?*T' %/ (I13 + 14),

where

S

TrRAt [TRAL (N x'M 2 du [F(u — s)-284
113 S CE/ fs ( UNTy u/\'r,,w) ufs (u S) U'd
0 (t—s)”

t
<C / ANM (5)(t — 5) 71248y,
0
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TRAL TRAL u LlX{iV _X{i\/[ _X{’)V +Xé\/[| 2
Iy, < CE/ ((/ / (0 — )15 dvdu)
0 s s

TrRAL u 2
+ (/ / LIXY — XM|(u —v)P~1 Py du)

TRAL U
H ([ oy - xn(x - x¥ e x - x2)

2
x (u—v) 1 Pdv du) )(t — ) Yds =: C(I1s + I + I17),

where v = 2+ 28 — 2p, p > (. In turn,

t SATR XN _ XM _ XN X]\/I 2
Iis < C'TQP_M/ E(/ [Xsnr SATR w Ay |du) ds
0 0 (5 —u)tths

¢
= CT2’J*2’3/ ANM (5)ds,
0

TR N M _ 2
e B (J7M X = XM (u sy du)
116 < C/ ds
0

(t—s)”

t
SCTQ"H'Y_M/ ANM (5)ds,
0

where 8 < v, 8 < p. Furthermore,

2
L [TRN (fsTRAt JENXN — XM|(u— v)s(1/2=0=1=0 gy du)
Iis < CR E/ ds,
0

(t—s)”

where we chose 0 < 0 < 1/2 — (/k; note that 8 < k — 1/2. Similarly to I,
t
Iy < CRPTr 20120740 / AP M (s)ds,
0

where kK — 2k + 2p — 48 > 0 for sufficiently small § since p > 8 and k > 2.
Therefore we have

t
Iy < 032/0 (A{“M(s) + AéV’M(s))ds.

Hence N
t ,
I; < CR4/ <( A (5) + AyM(S)) ds.
0

t— S)1+2ﬁf2p

Finally,
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t t
AYM () < CR? ( / ATM(s)(t — s) 717220 gs / A?’M(s)ds)
0 0

+C(N"2 4+ M~2). (3.2.20)

From (3.2.19) and (3.2.20) we obtain that the sum A} (£)+ AN (¢) admits
the same estimate as AY™ (2), i.e.

t

AN (@) + A () < OR! [ (AN - )72 4 A () ds
0

+C(N 2+ M?);

taking into account that p > [ and using the modified Gronwall lemma
(NR00), we obtain that

AT (@) + A (@)
< CRYN72 + M=) exp{t(CR*)/ (=25} (3.2.21)

and we can put, for example, p := 1/4+3/2. When N, M — 0, we obtain that
the right-hand side of (3.2.21) tends to zero, whence the proof follows. O

Theorem 3.2.8. The SDE (8.2.11) has a solution on the interval [0,T], and
this solution is unique.

Proof. Since the space {W?[0,T],|| - ||} is complete, from Theorem 3.2.6 we
can define

XTR/\t = ]\}gnoo X7]-\1/;/\t7
where the limit is taken in space W3[0, T] (in particular, we have that the
limit exists in Ly (§2 x [0,7T])). Using similar estimates and Theorem 3.2.6, we
can prove that X, A; is the unique solution of the original equation (3.2.11)
on the interval [0, 7g].

From the definition (3.2.18) of 7 we have 7g, < 7r, for Ry < Ra. So X,
and X, coincide a.s. on the interval [0, 7r,]. Where R — oo we obtain the
existence and uniqueness of the solution of SDE (3.2.11) on the whole interval
[0,T7. O

3.2.3 The Girsanov Theorem and the Measure Transformation for
the Mixed Semilinear SDE

Consider equation (3.2.1) and suppose that W is underlying Wiener process
for B and that the coefficient b(t, x) satisfies the condition of Theorem 3.2.1
and can be presented as b(t,z) = e(t,x)x, where e € Cp(R4 x R). Denote
é(t,z) :==e(t,x)t™™, a =H—%, H € (1,1). Now we try to change the measure
P for another probability measure Q such that Q7 < Pr, where Pr := P| Fps
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Qr = Q|z,, and such that the drift e(t, X;) X;dt will be annihilated under

Q. First, let some probability measure @ satisfy the assumptions

T 1 /7
= exp / psdWs — f/ ©ids
£ 0 2Jo
T
T 1 (T
Eexp / psdWs — 5/ s p =1 (3.2.22)
0 0

with EfOT p2ds < oo.
Then from the Girsanov theorem the process W; — fg <p§ds =: Wt will be a

dQ
dpP

and

Wiener process under the measure @T. Also, let the measure Q be such that

Q| 1
P . = exp {LT — 2<L>T},

and

Eexp {LT - ;<L>T} =1, (3.2.23)

where L; = fotsaddes, M = fng(t,s)dBf, W, = @fgsadMSH,

Jo lir(t,s)sds = @ [ b,ds, ¢ > 0 with B [ s>*62ds < oo, [; 8.]ds < oo,

P-as., t > 0 (see Subsection 2.8.1). Then the process Bff := Bff — [ 4gds is

an fBm w.r.t. to measure Q‘f . Now we need in the equality @‘ = Q|}_ =
T Fr T

Q\}-T. Hence, in particular, L; = fot psdWy, whence p; = s*d,. Therefore we
want to find ¢ and 1 in such a way that common drift equals

g1¢¢ + 0'2'(/1,5 = —e(tXt), te [07T] (3224)

Now we apply the Abel rearrangement to the relation

t t t
/ I (t, s)sds = &/ deds = &/ $”%psds :
0 0 0

t u
CS) / (t —u)>! / (u—s)"%s “psds du
0 0

t u
= &/ (t —u)*! / s™ %psds du,
0 0

¢
B(a,1 - a)CS) / 5" %psds = &/ (Uil

0 0 @

or

whence after differentiation
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t

(aC) T = a / (t—u)* M pudu. (3.2.25)
0

Substituting (3.2.25) into (3.2.24), we obtain that

¢
o101 +02C§?)t“/ (t—u)* ", du = —e(t,Xt),Cl(L?) = aC’gs)&. (3.2.26)
0

Denote 6, := t~ %y, then
t
010; + 02C\Y / (t —u)* Oudu = —é(t, Xy). (3.2.27)
0

Equation (3.2.27) is a Volterra equation with weak singularity, and its unique
solution has the form

ét, Xy) 1 /t (=)t

b= ——"—">—— e é(s, X;)ds,
¢ 01 01 Jo z::lp F(na) 6(57 ) 5

where p = UQCS))F(Q). Now we must check conditions (3.2.22) and (3.2.23).

Evidently, it is sufficient to check Novikov’s condition: E exp {% fOT wfdt} <

oo and Eexp{%(Lﬁ} < oo. But ¢ = —6(2’75(*)
— o t® fot P p”%é(s, X)ds and is bounded since e is bounded. Fur-
ther, 05 = as™“ps, and Novikov’s condition evidently holds for the function
L, too. So, we have proved the following result.

Theorem 3.2.9. Under our suppositions equation (3.2.1) under measure Q
obtains the differential form

dX, = o1 X dW, + 02 X, dBF,  X(0) = X,
and its solution has a form

X = Xo exp{olﬁ/\t + aggtH — 1/20%t}.

3.3 Stochastic Differential Equations with Fractional
White Noise

3.3.1 The Lipschitz and the Growth Conditions on the Negative
Norms of Coefficients

Now we return to Wick integration with respect to fBm (see Sections 1.5 and
2.3). Cousider the SDE of the form
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Xo = Xo+ [3b(s, Xs)ds + 3 [ 0(s, X,) O B ds,
j=1
te[0,T],

(3.3.1)

where all H; € [1/2,1) are different, BYi are the fractional noises. The equa-
tion, similar to (3.3.1), but with white noise was studied by Vage (Vage96).
Note that the proof of the existence and uniqueness result in (Vage96) is in
fact based not on the structure of white noise, but on its inclusion into S™*,
and this fact holds for fractional noise also, see Lemma 1.5.3. According to
Theorem 1 (Vage96), the negative norm of the Wick products admits the fol-
lowing estimate:

I1FQG|=r < CrgllF)=+||G||=¢ for random variables F' € S_,, G € S_,,
r < q— 1. According to Lemma 1.5.3, BtH’“ € S_, for any ¢ > 7/3, in partic-
ular, B/"* € S_3 and, moreover, sup,~, || B/*||_, < C, for ¢ > 7/3 and some
Cy > 0. -

Therefore, for any r > 0 and F € S_,. |[F & B ||, < C||F||_,.

Suppose now that the coefficients b and o and the initial value X, of
equation (3.3.1) satisfy the conditions:

(i) forany 1 < j < mand somer > 0,b,0; : [0,T]xS_, — S_,, Xo € S_,,
the functions b(t, X;) and o,(¢,X;),1 < j < m are strongly measurable on
[0,T] for any X € C([0,T],S—,);

(ii) for some r >0

bt @) = bt )l + 2 lloj () =05t 9)llr < Clle =y, 0<t<T,
i=
[t @)l + 2 llos (@) < e+ flzf ), O <t <T.
J:

It follows from strong measurability of o; and Theorem 6 (Vage96) that
oi(t,x) o BtH 7 is also strongly measurable. Further, condition (ii) ensures the
existence of fg b(s, X4)ds and fot oj(s,x)Oijds,O < t < T, that can be
considered as the Bochner integrals in S_,. for X € C([0,T],S—,).

The next result can be proved with the help of the standard method of suc-
cessive approximations (similar proof for white noise is contained in (Vage96)).

Theorem 3.3.1. Under conditions (i) and (ii) equation (3.3.1) has on [0,T]
the unique solution X € C([0,T],S—).

3.3.2 Quasilinear SDE with Fractional Noise

As mentioned in (Vage96), simultaneous fulfilment of the Lipschitz and growth
conditions on the negative norms of coefficients is very restrictive. To avoid
this, we consider the quasilinear equation of the form

t mo g
X, =Xy —|—/ b(s, Xs,w)ds + Z/ 0i(s)X, & Blids, (3.3.2)
0 =Jo
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where H; € [1/2,1), the coefficients and the initial value X, satisfy the fol-
lowing conditions:

(iii) o;(s), 1 < j < m are nonrandom functions, o; € Ly, [0, T;

(iv) the function b(s,z,w) : [0,T] x R x S’ — R is measurable in all the
arguments,

[b(s, z,w)| < C(1+|2[), w € §'(R), s € [0, T], z € R;
(v) Xo € L,(22) = L,(S"(R)) for some p > 0.

Theorem 3.3.2. Under conditions (iii)—(v) the equation (3.3.2) has on [0,T]
the unique solution X € Ly (§2) for any p’ < p.

Proof. Let, for simplicity, m =1, H; = H € (1/2,1). Consider the differential
form of equation (3.3.2)

4,
dt

Put o4(s) := o(s)1[,4(s), and suppose that .J,(t) is the Wick exponent of the
form J,(t) = exp<> fo s)dBH), where the Wick exponent is defined as

exp® X := Z XO . Then, according to formula (1.6.1),

=b(t,X;) +o(t)X: O BHE,  X(0) = X,. (3.3.3)

To(t) = exp® { - / (MH,)(5)dW, ).

Denote also Z; := J,(t) & X;.
By the rules of stochastic differentiation (see, for example, (HOUZ96)),

dz, dX dJ,
5 =IO —a®) ()oxtOB
and we obtain from (3.3.3) that
% =) e x). (3.3.4)

Now we use the Gjessing lemma (Gje94), which states that
dJ ( )

dJ,(t
(t Xt7 ) = dt( ) . b(tyT_(MfIa't)th + M{JUt), (335)

where T is the shift operator, T,,,F(w) = F(w + wp) for any wgy € S’(R).
Similarly, Z; = J,(t)-T_ (a1 5,) X1, and from (3.3.4)~(3.3.5) we obtain that
Z; is the solution of the ordinary differential equation

dZy — dJ,(t)
dt ~ dt

b(t, IS N - Zyyw + MP oy, Zo = Xo, (3.3.6)
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for any w € S'(R). Equation (3.3.6) differs from the corresponding equation
(3.6.15) for the white noise (see the book (HOUZ96)) only with the function
MHg, instead of o,. However, it has the same structure, which means that
conditions (iii)—(v) ensure the existence and the uniqueness of the solution of
equation (3.3.2) for any w € S’(R) on the interval [0, T]. Now we estimate the
moments of the solution X;.

First, from conditions (iii)—(iv)

%] < |Xol + Jy Jo(3)lals, I (5) Zs 0 = (M o)) | ds
<|XO|+Cf0 (s)(1+ J; ()|Z |\ds
< | Xo +Cf0 ds+CfO|Z\ds

and from the Gronwall inequality it follows that

|Z:| < (| Xo] + C’fo +(s)ds) exp{CT},

(3.3.7)
E\Z;|P < exp{pCT}2P(E|Xo|? + CE fo |J5(8)|Pds).

Since
E|Js(s)|P + Eexp®{—p [r(MZ0,)(s)dW,}

— exp{p?|MF |2, ).

and condition (iii) and inequality (1.9.2) ensure that (MHo;) € La(R),
therefore we obtain from (3.3.7) that E|Z;[P < oo for any p > 0. Further,
T (oo Xe = ZyJ;(t), and E|J;1(t)]9 < oo for any ¢ > 0, therefore
T_(poy Xt € Ly (£2) for any p’ < p. Since MHg; € Ly(R), we obtain from
Corollary 2.10.5 (HOUZ96) that X € L,/ (£2) for any p’ < p. O

3.4 The Rate of Convergence of Euler Approximations
of Solutions of SDE Involving fBm

The numerical solution of stochastic differential equations driven by Wiener
process is essentially based on the method of time discretization and has a long
history. We refer to the monograph (KP92), which contains an almost com-
plete theory of the numerical solution of such SDEs with regular coefficients.
The paper (KP94) is devoted to the Euler approximations for SDEs driven by
semimartingales. Concerning the numerical solution of SDEs driven by fBm,
we mention first the paper (GA98), where the equations with the modified fBm
(which is a special semimartingale) are studied. The papers (Nou05; NN06)
study Euler approximations for the homogeneous one-dimensional SDEs in-
volving fBm and having bounded coefficients with bounded derivatives up to
third order. It is proved that the error of the approximation is a.s. equivalent
to 62%¢,, and the process &, is given explicitly. These papers also discuss the
Crank—Nicholson and the Milstein schemes for SDEs driven by fBm. Here we
present the results on the rate of convergence of Euler approximations of solu-
tions for SDE with nonstationary coefficients. Of course, our approach differs
from those proposed in (Nou05),(NNOG6).
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3.4.1 Approximation of Pathwise Equations

Consider the multidimensional equation (3.1.12) with the coefficients satis-
fying the Re-version of assumptions (i)-(v) of Subsection 3.1.1 with H; =
H,1<j <m,by(t) = L (see Remark 3.1.5 for additional notations). Under
these assumptions, this equation has the unique solution {X;,t € [0,7]} and
for a.a. w € (2 the trajectories of the solution belong to C*~[0, T].

Now, let t € [0,T],6 = %,Tn = % =nd,n = 0,...,N. Consider the
discrete Euler approximations of the solution of equation (3.1.12),

Vil =Y 4 bi(7a, Y, 6+Zaﬂ (T, Y2)ABZH Y5 = X,
and the corresponding continuous interpolations

V0 = V0 dbi(1, V) (t=70)+ Y i, Y )BT =BEM),  t € [, Tna]-

Tn

j=1
(3.4.1)
The continuous interpolations satisfy the equation
‘ ' t m.o ot .
v = xi +/ bi(tu, Y )du + Z/ ji(te, Yy )dBIH, (3.4.2)
0 — Jo

where t, = 7, , Ny, = max{n : 7, < u}.
For simplicity we denote the vector of solutions as X; = (X});=1,.._a, the
vector of the continuous approximations as Yt‘s = (Yt(s’l)izl,__.’d.

Theorem 3.4.1. 1) Let the modification of conditions (i)-(v’) from Section
3.1 hold for the vector case, withy>1—H, k=pu=1, L =L, Mpr =M
and bp(t) = L

Then for anye > 0 and 0 < p < H there ewist dg > 0 and 2. 5, , C {2 such
that P(£.s,,) > 1 —¢ and for any w € 2. 5, ,, 6 < 8o one has |Y?| < C(w),
V2 -V <Cw)(ts —t)F P, 0<r<s<T.

2) If, instead of (v) and (v’) we assume that b and o are bounded functions,
then |Y?| < C(w), Y2 - Y2 < Cw)(s—r)H=Pr, 0<r<s<T.

In both the cases C(w) does not depend on 6.

Proof. 1) We can always assume that ¢ < 1. It follows immediately from (i)
and (iii), Section 3.1.1 and (3.4.2) that for any 5 € (1 — H,y A 1/2)
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. ) t m t '
<l [ a0 | ajz»@u,ni)dBaH\

j=1

t m t
< |xi| +L/O (1+ |Yt‘i|>du+GTZ/0 074t Y )| u P
j=1

m t r
+GTZ/ / |0—ji(tr>Y¥i) 70’ji(tu,yvti)| (T*U)iﬁildudr
=Jo Jo

-5

1-4
t ty

+MGT/ / ((t,ﬁtu)7+|Yt‘i—Yf|+|ijYti|)
0 0

x (r—u) P Ydudr,

t
< |X4| + (mMGri— + LT) + (mMGT+LTﬁ)/ V7 [u du
0

(3.4.3)
where Gr := Ay_g(B™). (We use here the equality ¢, = t, for t, < u < r.)

Denote C(w) := | Xo| + (mMGquﬂ:s + LT), Cy(w) := (mMGr + LT").

Further, note that ¢, — t, < r — u + 4. Also, it follows from representations
(3.4.1) and (3.4.2) that for any p € (0, H)

V2= 7| gL(1+mi|)(u—tu)+M.0(w,p)(1+}Ytiy)(u—tu)ff-ﬂ

< Ca(w) (14 V2] ) (w— 1),
(3.4.4)
where the value C(w, p) appears in the relation
|Bi{{ - Bs{{| S C(wa p)|t - S|Hipa S, te [07 T]7 03(w) = LTliHer +M : C(w7 p)
Moreover, for v >

t oty
P = / / (t, —tu)"(r —u) P Ydudr
o Jo
t oty
< / / ((r—u)? +6")(r —u)""tdudr
0o Jo
t t
<Gt [ a5 [t
0 0
and for any k£ > 0 and any power m > —1

Tk4+1 Tk+41
/ (r—t,)"dr = / (r — 1) dr = C16™ with €} = (7 +1)71,

k k

whence
t T
/ (r —t,)Pdr < / (r —t,) Pdr = C,N§' =P = C167P. (3.4.5)
0 0

Therefore
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P <P 4 g0 < oy L gTIC =2 O, (3.4.6)

Estimate now

Qt—// |Y‘$ Y5 r—u) “Ldudr,

using (3.4.4) and (3.4.5):
Qi < C3(w)(1+ Yté’*) / / (u —t)EP(r —uw) P Ydudr
o Jo

t
< Ca(w) (1 + Yt‘s’*)éH_”B_l/ (r —t.)Pdr < Cy(w) (1 + V™) —P=r
0

(3.4.7)
with Cy(w) = C3(w)B~! - Cy. Note that Yt‘s’* '= SUPg<s<t ’YS‘S‘ < oo for any
t € [0,T] a.s. Substituting (3.4.6) and (3.4.7) into (3.4.3), we obtain that

t
V]| < Cs(w) + mCa(w) / V) | uPdu+ mCy(w)y; 6" 7
0

t b
+ Cs(w) / / ©rydudr,
o Jo

where ¢, == [V = Y2|(r —u) P71 for 0 < v <t, <T,0< <1 with
05(0.)) = mCl(w) + mGrCq + mC’lGTC’g(u}) + 04((4)), C@(w) = MGr. To
simplify the notations, in what follows we remove subscripts from C'(w) and
C, writing C(w) for all constants depending on w and C for all nonrandom
constants.

Summing up everything, we can write

t t iy
Y5* < Cw) (1 Ly SegtB 4 / IV | u Pl + / / Orudu dr).
0 o Jo
(3.4.9)
In turn, we can estimate fot * s udu. First, similarly to the previous estimates,

(3.4.8)

YV -V < Clw [/t (1+ |Y‘5|)dv—|—/ts <1+ |Yt‘i|>(v—u)*ﬁdv
/ / tU,Y —a(tz,ifti)‘(v—z)_ﬁ_ldzdv}

@[ —w =+ [

ts ts ty
+5"’/ (U—tv)_ﬁdv—i—/ / Yy, 2dz dv
u u u
te  pto
+/ / ‘Yf*Ytﬂ(vfz)f’Bfldzdv};

(3.4.10)
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multiplying by (s —u)™#~! and integrating over [0,,], we obtain that

/ Psudu < C(w ZQ (3.4.11)
0
where

s ts
QL= / (ts —u) 7P (s —u) P tdu < / (s —u) Pdu<C;  (3.4.12)
0 0

ts ts
Q? ::/ (s — u)‘g_l/ |Y;‘i‘ (v —u)Pdv
0 u

ts
A

where C' = [[°(1+y) Pty Pdy;

v ‘.
(U—U)iﬂ(s—u)*ﬁfldudv < C’/ |Yt§,‘ (S—v)*wdv,
0 0
(3.4.13)

ts ts
Q%= (57/ (s —u)™ P71 / (v —t,) Pdvdu
0 u

. (3.4.14)
< 6*157/ (s —v)P(v—t,) Pdv.
0

Let t; = nd for some 0 < n < N. The last integral can be estimated as
ts n—=2 .(k+1)6 (n—1/2)6 né
I::/ (s—v)_ﬁ(v—tv)_ﬁdv:Z/ —|—/ +/ ,
0 k=0 7 ko (n—1)6 (n—1/2)é

where

(k+1)6 (k+1)6
/ <(s—(k+ 1)5)*5/ (v —7,)Pdv < C(s — (k+1)5)Ps*=F
ké ké

and the last two integrals are bounded by C6'~27. Therefore, I < C§°.
Further, using estimate (3.4.4), we can conclude that

ts to
Q‘sl 12/ s—u) —A- 1/ / Py,zdz dv du
/ / / Pu2(5 —u) P dudz dv (3.4.15)
<C/ (s —v) ﬁ/ 0y 2dz dv.

Finally, similarly to the previous estimates,
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ts ts oty
Q> ::/ (s—u)_ﬁ_I/ / |Y;5—Yt‘z|(v—z)_5_1dzdvdu
0 u u
ts ts  ply
< C’(w)/ (s—u)fﬁ*l/ / (v—z)fﬁ*ldzdvdu-épr(l—l— ’Y{S*
0 u u

Jattorh,

)

(3.4.16)
Now, denote 1) := )/;§,*+fgs ©s wdu. Then it follows from (3.4.9) and (3.4.11)—
(3.4.16) that for any ¢ € [0,T] (including t = k¢)

<C)(1+[1"

B(t) < Ow) (1 Y Br /t ((t—v)"2% + v—ﬁ)¢vdv).

0

Let € > 0 be fixed. Note that all constants C'(w) are finite a.s. and independent
of §. Thus, we can choose §y > 0, p small enough such that H — 3 — p > 0,
and (2. 5, , such that C(w)dy ?~? < 1/2 on 2.5,, and P(2.4,,) > 1 —e.
Then for any w € {2 5,

Py < C(w) + %wt + C(w)/0 ((t — U)—zﬁ + v—ﬁ)z/}vdv,

whence .
P < C(w) (1 + 129 / (t— v)_%v_wwvdv),
0

and it follows immediately from the last equation and (3.1.22)—(3.1.23) that
¥y < C(w) whence, in particular, |Yt5| < C(w), t € [0,T]. Moreover, from
(3.4.10) with u = t,, r < s, taking into account that
Jii(w—ty) Pdv=(1—p3)"16P(ts —t,), we obtain the bound

’Yté Y;‘f‘ < C(w)(<ts - tr)l_ﬁ + (Yy_ﬁ(ts - tr) + (ts - tr)

s

s [0 ) ) < Ot 1),

T

and statement 1) is proved.
2) Let |b(t,x)| < b, |o(t,z)| < o. Then it is very easy to see that estimate
(3.4.8) will take the form

t ot
’Yﬂ < C(w)(l +/ / Orpdu dr),
o Jo

(3.4.10) will take the form

Y2

s

Ylﬂ < C’(u})((tS — )P 4 (67 + 5HP) /ts (0 t.)-5d

ts ty b
—|—/ / Oy,2dz dv),
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and instead of (3.4.11)—(3.4.16) we obtain

‘s ts t,
/ Vs udu < C(w) (1 + / (s — v)fﬁ / Pu,2dZ dv),
0 0 0

whence the proof follows. a

Remark 3.4.2. Tt is easy to see that we proved a little more than Theorem
3.2.3 states. Namely, we proved that the norm in Besov space, supg< <7 ¢s,
is bounded by C(w) on {2 s, », with C(w) not depending on 4.

Now we establish the estimates of the rate of convergence of our approx-
imations (3.4.2) for the solution of equation (3.1.12) with pathwise integral
w.r.t. fBm. We establish even more, namely, the estimate of convergence rate
for the norm of the difference X; — Y;% in some Besov space, similarly to the
result of Theorem 3.4.1. Denote

Aus(X,Y0) = |X, - Y) - X, + Y|

Theorem 3.4.3. Let the modification of conditions (i)—(v’) from Section 3.1
hold for the vector case, withy >1—H, k=pu=1, L =L, Mr =M and
bo(t) = L, and suppose also that:

1)the coefficient b is Holder continuous in time: |b(t, 2)—b(s, z)| < Clt—s|?,
C>020<0<1,a=H-1/2

2) the exponent v from condition (iii)(Section 3.1) satisfies v > H.

Then:

1. For anye >0, B € (1 — H,1/2) and any sufficiently small p > 0 there
exists 6o > 0 and (2 5,,, such that P(§2. 5, ,) > 1—¢ and for any w € (2 5, 5,
6 < do

ts
Us :== sup (|XS — Y56| +/ ’Au,S(X, Y5)| (s — u)_ﬁ_ldu)
0

0<s<T
< C(w) - 6%*,
where C(w) does not depend on ¢ and € (but depends on p);
2. If, in addition, the coefficients b and o are bounded, then for any

p € (0,2a) there exists C(w) < 0o a.s. such that Us < C(w)62*=°, C(w) does
not depend on 9.

Proof. 1. Denote Z{ := SUPg<s<t | X, — Y3|. Then
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S
Z? < sup / 1b(w, Xu) — b(ty, Yy )|du
0

0<s<t

+ sup ‘/ oji(u, Xy) — aﬂ(tu,Y ))dBJH

0<s<t

g/ b(u, X.) — b(u, Y \du+/ [bw, Y7) = b(tu, ) |du
0

t
5y s
4 /0 bty Y2 = bt Y| du (3.417)
m S )
s 30| [ () - ot VOB
0<S<t1] 1 0
m s )
I / (9300, Y2) = 053t Y2))ABL|
O<S<tlj 1 0
m s ) 6
+ sup / 05i(tu, Y2) — 0ji(tu, Y7 ng;H‘:; I.
20, 30 | ) ot ) = ot ) >

Now we estimate separately all these terms. Evidently,
t
I < L/ 73 du. (3.4.18)
0
Condition 1) implies that for § < 1
t
I < 0/ lu—t,|° du < €87 < C5%. (3.4.19)
0

It follows from Theorem 3.4.1 that for any ¢ > 0 and any p € (0, H) there
exists dp > 0 and (25, , C {2 such that P({2;,,) > 1 — ¢ and C(w)
independent of ¢ and ¢ such that for for any w € f2.5,, it holds that

[V —Y?| < Cw) ft — s|" 7" In what follows we assume that § < & < 1.
Therefore

L<L-Cw)dr.t<CW)e?r, we s, (3.4.20)

Now we go on with Iy. For 1 — H < < 1/2

m

t
I, < C(w) Z [/0 |Uji(u,Xu) — 0ji(u, Yt‘i)’u_gdu

i,j=1
t r

*/ / |0ji(r, X,) = 05, Xo) — 06(r, Y + i (u, V)| (3:4:21)
0 0

x (r— u) P du dr} = I; + Is.
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Evidently, .
I; < C(w)/ Zou"P du. (3.4.22)
0
According to (3.1.1), under conditions (i)—(iii)
lo(t1,21) — o(ta, x2) — o(ty, x3) + o(te, x4)| < M |z1 — T2 — T3 + 4]

M |z — 4] (\tg |+ |21 — x|+ |23 —sc4|'€).

(3.4.23)
Therefore, Iy < Z,lfzg I;., where
Iy = C(w) /Ot /OT | X, — Yr‘;} (r —u)" P du dr,
Iip = C(w) /Ot /O X, = V21X, — Xo|™ (r —w) P~ dudr,
Iy =C(w) /Ot /OT X, = Y2 Y - Yﬂn (r —u) P dudr,
Ii; = C(w) /Ot /OT Do r(X,Y0)(r —u) P du dr.
Taking into account that § > H > «, we obtain that
Io < C(w) /0 " 2 du (3.4.24)

It follows from Theorem 3.1.4 that under assumptions (i)—(v) for any
0 < p < H there exists a constant C(w) such that

sup | Xy < C(w), sup |X;—X | <C)lt—s"".  (3.4.25)
0<t<T 0<s<t<T

Moreover, we can choose p > 0 and 8 > 1 — H such that k(H — p) > 8 and
H — p > 203, because kH > 1 — H. In this case

T
Ly < Clw / 7 / W)= =B=1 gy dr < C(w) / Zidr.  (3.4.26)

0

Evidently, on the corresponding set (2 5, , the same estimate holds for Iy;.
Now estimate I5.

I; < C(w /| thu,Yu|u m

// |UTY5 —0tT,YT)—U(u,Yj)—&—U(tu,Yj)’
x (r—u) P Ydudr =: L3 + I4.
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Obviously,
I < C(w)d7, (3.4.27)

Ly <C(w // // <c // 87 (r — )P dudr

+/0t /tr <(7"7u)“/+(r—u)pr) (r—u)’ﬁfldudr) < C(w) (878 +5H-r=5),

(3.4.28)
Similarly,
t
Is < C(w)/ o (tu, V) — o(t, YY) | uPdu
0
L 5 5 5 sy (3:4.29)
o) [ [ 1ot Y = ot YE) = o0, ¥) + 01t YE)
0 JO
X (T’ - u)fﬁ*ldudr =: I15 + I15.
Here .
Ii5 < C(w) / SH=Py=Pdu < C(w)dt—*, (3.4.30)
0

Iig < Cw // // <c 5Hﬂ// )P du dr

/ / WP dudr) < Cw)s .
(3.4.31)

Substituting (3.4.18)—(3.4.31) into (3.4.17), we obtain that on (2. s, ,
¢ ¢
78 < C(w)( / Z8r=Bdr + §H=P=F 4 gH=p 4 / Grdr), (3.4.32)
0 0
where 0, = [ Apu(X,Y%)(r — u) P~ 'du. Recall that H — p > 2a, therefore
t
Z} < C(w)(/ (Z2r= 4+ 0,)dr + 52”“7’)).
0
Now we estimate 6;. Evidently, for ¢ > u

Au(X,Y?0) / |b(s, Xs) — blts, V)| ds

5>

3,j=1

/ oji(s, Xs) — crji(ts,Yti))ng’H‘.

Therefore we obtain that 6, < 22:1 Ji, where
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Ji :/Ot/:{b(s,Xs)—b(s,Yj)|(t—u)—ﬁ—ldsdu,

T :/Ot Lt|b(s,n5)—b(ts,nﬁ)|(t—u)ﬁldsdu,

5= [ t / bt Y2) = 00, Y2 (6 — ) du
H=cw) | t / o5, X0) — o5, Y] (5 — )P — )P s du,
//| $,Y2) —o(ts,Y2)| (s —u) P (t —u) " ds du,

J6:C(w)/0 / l0(t, Y23) — oty Y| (5 — u) P (¢ — u) P ds du,

Jr = / / / lo(r, X,) — o(r,Y,)) — o(v, X,) + o(v, V)]

X (r—v) Pt — )P v dr du,

/// |0(r,Y) = o(t,Y))) = 0(0,Y)) + 0 (£, 7))

Pt —w) 7P Y dw dr du,

///\ 0(tr, Y2) = 0(ty, Y2) = 0(te, Y2) + 0(t, Y|

Pt —w) TP dw dr du.

It is clear that J; < Cfo A fo “Blduds, Jy < CH?,
J3 < C(w)§=7. Further,

t s
Jy < C/ Zg/ (s —u) Pt —u) P Lduds.
0 0

The inner integral fos(s—u)_ﬁ(t—u)_ﬁ_ldu < (t—s)728 fooo(l—i—y)_ﬁ_ly_ﬂdy.
Therefore
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t
Jy < 0/ (t —s)" 20 Z%ds.

0
Similarly to Jy, J5 < C(w)d?, and similarly to J3, Js < C(w)d" 7. Estimating
J7, Jg and Jy is, of course, a bit more complicated, but not dramatically.
Obviously, Js < C(w)d” fot fi Li(r=v) 7Pt — )P du
= C(w)d” fot(t —u)"Pdvdrdu < C(w)d; similarly Jo < C(w)df 7. Now
we apply to J7 inequality (3.4.23) and obtain the following estimate of the
integrand:

o(r, X)) — o(r, Y% —o(v, X,) + o (v, YU‘S)’ < M[Am,(X7 Y?)

Xy = Y2 (= o)+ Xy = VP, = Xl | X = VY - Y.
(3.4.33)
According to this, we write J; < Z,lcilo Ji, where, in turn,

Jio = C(w) /Ot /ut /ur Aro(X,YO)(r —0) PNt —u) P v dr du
() /Ot /0 /Ov(t—u)_ﬂ_lAm,(X, Vo) (r — v)~*1dv dr du

< C(w) /Ot(t — r)*ﬁaﬂdr;

t t T
Jin = C(w) / / / | X, — Yr6| (r —v) P Ydvdr(t —u) """ du
0 Ju Ju

< C(w) /Ot 7 /Or(t - u)_ﬁ_l(/ur(r ) o) du dr

< CWw) /0 (t— )2 Z%r,

t t T
Ji2 :C(W)/ / / |XT7YT6| X, — X" (r —v) P Ydvdr(t — u) P tdu
0 Ju Ju
t T T
SC(w)/ / / Z8(r —v)"H=P)=B=1(t — )P~ v dr du
0 JOo Ju
¢
§C’(w)/ Z5(t —r)~Pdr,
0

and Ji3 < C(w) fot Z2(t—7r)~Pdr is obtained the same way. Summing up these
estimates, we obtain that J; < C(w) fot(t —1)7A(Z? + 6, )dr, whence

9, < C(w) ( /0 t(t — )220 4 0,)dr + 0H P 59). (3.4.34)
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Coupling together (3.4.32) and (3.4.34), and taking into account that
H — p > 2a, 0 > 2a, we obtain

Z)+ 0, < C(w) (520‘ + /t (t=r)" +r7P) (20 + HT)dr)

o (3.4.35)

< O (8 + 17 / ()22 (20 40,)dr).
0

The proof now follows immediately from (3.4.35) and (3.1.22)—(3.1.23).
Statement 2 is obvious. O

3.4.2 Approximation of Quasilinear Skorohod-type Equations

Now we proceed with the problem of the numerical solution of Skorohod-
type equations driven by fractional white noise. From now on, we as-
sume that our probability space is the white noise space, i.e. (£2,F,P) =
(S'(R),B(S'(R)), ), the symbol ¢ stands for the Wick product, W, =
(1j0,4,w) is the standard Brownian motion, W is the white noise. (See also
Sections 1.4, 1.5, 2.3 and Subsection 3.3.2.)

Consider the quasilinear Skorohod-type equation driven by fractional
white noise that is the one-dimensional analog of equation (3.3.2):

t t
X, :X0+/ b(s,Xs,w)ds—i—/ o(s)X, O BH ds, (3.4.36)
0 0

with nonrandom initial condition X,. Suppose that the coefficients b and o
satisfy conditions (iii)—(iv) of Theorem 3.3.2 (in this subsection we always
refer to them as to conditions (iii)—(iv)), and

(vi) “Smoothness” of b w.r.t. w: for any ¢ € [0,T] and for h € Ly (R)

|b(t, x,w + h) —b(t,z,w)| < C(1+ |x|) /R |h(s)| ds.

(vii) Holder continuity of b w.r.t. ¢ or order H with constant that grows
linearly in x:

b(t, ,w) — b(s,z,w)| < C(1+|z|) |t — |7 ;

(viii) Holder continuity of o w.r.t. ¢t or order H:

lo(t) —a(s)| < Clt —s|”.

Remark 3.4.4. Condition (vii) holds if, for example, the coefficient b has the
stochastic derivative growing at most linearly in x. It is obviously true if b is
nonrandom and Hélder of order H.
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Consider the fractional Wick exponent

Jo(t) = exp® {—/ MHUt(S)dWS}
R
1
= exp {—/ M?Ut(S)dWs - 5 ||Ut|||2RH,1}
R

It easily follows from Theorem 3.3.2 that for nonrandom X, under conditions
(iii)—(iv) the equation (3.4.36) has a unique solution that belongs to all L,(£2)
and can be represented in the form

Zt = Jg(t) <>Xt7 or Xt = J,o-(t) <>Zt,

where the process Z; solves (ordinary) differential equation
t
Zy = Xo + / T, (8)b(s, J;1(8) Zs, w4 M oy) ds. (3.4.37)
0

This gives the following idea of construction of time-discrete approximations of
the solution of (3.4.36). Take the uniform partition {7, =nd, n=1,...,N}
of [0, 7] and define first the approximations of Z in a recursive way:

Zo = Xo,
e _ _ N (3.4.38)
= Zr, + J(1)b(70, T (1) Zr,, ,w + M5y,)3,

1,
{ —||O'1[0,t]|||2RH’1}a
(ts),

Gn =01y, M = M.

Tn+1

where

a(s)

Note that both ||an||‘ Ry|,1 and Moy, are easily computable as finite sums of
elementary integrals. Further, we interpolate continuously by

t
Zy = Xo+ / J(t)b(ts, J Hts) Zs,,w + M5,,) ds, (3.4.39)
0

where ng = max{n : 7, < s}, and set
Xo =T m1pd ()2, (3.4.40)

where for wy € S'(R) T, is the shift operator, T,,, F(w) = F(w + wp).

Lemma 3.4.5. Under the assumption (vi), the following estimate is true:

e b(t, e M, w) — e™?b(t, ez, w)| < C(1+ e + e + |z]) [or — gl
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Proof. Write
le®1b(t, e z,w) — e*b(t,e” "z, w)|
< ’eo‘lb(t, e Mz,w) — e b(t,e” Pz, w)|
+ €™ b(t, ez, w) — e*?b(t, ez, w)|
and apply (vi). O

Lemma 3.4.6. Let & and & be jointly Gaussian variables. Then for g > 1
2
E “651 — %] q} <O(L,q) (E[(& —&)*])",

where L = maX{E [f%] ,E [53]}

Proof. By the Lagrange theorem, Cauchy—Schwartz inequality and Gaussian
property,

E [|e£1 _ e§2|2Q] < (E [e4q§1 +e4q£2} E [‘51 752‘4(1])1/2
< C(L)C(g) (B[ (&1 —€)*])",
as required. ]

Our first result is about convergence of Z to Z.

Theorem 3.4.7. Under conditions (iii)—(iv) and (vi)—(vii) for any p > 1 the
following estimate holds:

|
Proof. Firstly, we recall that Z; belongs to all L,(£2) and E[|Z]?] <
C(q). Therefore equation (3.4.37) together with condition (vii) gives
E[|Z: — Zs|7] < C(q) |t — s|?. Equation (3.4.38) and conditions (iii)—(iv) al-
low us to write

~ |2p
Zy— 7y

] < C(p)oPH. (3.4.41)

Z .| <(+Co)|Z J () < ° + C8J (7).

Tn

< CZN__l J(7x)8. Then for any ¢ > 1 by the

This gives an estimate

Z;,
q

ZTn C(q )Zk 0 J9(7;)6. Taking expectations, we get

e[ |2.['] < et Y e[ 7] o

Using that each J is exponent of Gaussian variable and o is bounded on [0, T,
we obtain

Jensen inequality,

Tn
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q} < C(q) - 6 =C(q).
k=0

Z,

This through (3.4.39) and (iii)—(iv) implies E HZt‘q} < C(q).

Now we can write

‘Zt—Z( <L+ILh+1Is+ 14+ 15,

where

t
I, = / J(ts)(b(ts, I (ts) Ze,,w + Mcy,)
0

—b(ts, I (ts) Zs,,w + M5,.)) ds

)

t
I = / (J(ts)b(tsvjil(ts)zts,w+M&ns)
0

— T, (8)b(ts, J; N (8) Zs, s w + Ma,,)) ds

s Yo )

= | [ 02(6) 0605 )24 2050

—b(ts, J; ' (8)Z,,w+ Mdy,)) ds|,
Iy = /Ot Jo(5)(0(s, I (8) 21w + MGn,) = b(s, I ' (5) 2y, w + Moy)) ds|
I = /Ot Jo(8)(b(s, J; () Zs,w + Mog) = b(s, J; () Z,,w + Moy)) ds| .

First we estimate I by using Lemma 3.4.5:

I < C/Ot (14 J,(5) + J(ts) +|Ze.]) (/0 (o(u) —5(u)) dBY

1 2 ~ 2
+ ‘U(ts)(Bf - B+ 3 ’”USH\RHM - |Jns||RH,1D ds

)
[ (ot~ 5y an

< c/t (14 Jo(s) + J(ts) + | Zs,
0

g
where the inequality ‘||as||‘2RH|’1 — ||&ns|||2RH\,1‘ < C6" is due to (viii) and

boundedness of ¢ on [0,7]. Applying the Cauchy—Schwartz inequality, we
arrive at

+|BH - Bf| +6H> ds,
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T 1/2
I,<C (/ (14 J2(s) + J2(ts) + Z,i)ds)
0

x (/OT((/O (o(w) — (u)) dBf)2 +(BH — BHy? +62H)ds>1/2.

Further, from (vii) it follows that

T
I, < Cs / (Jo(s) + | Za]) ds,
0

from (vi)

T
I < caH/ (T (s) + | Z]) ds.
0

Conditions (iii)—(iv) allow us to estimate I; < Cfot Zy, — Zy,| ds

s 7

Is < C’fg |Zs — Zi,| ds. Summing up these estimates yields

1/2
Zt —Zt

T ~
<C (/ (L4 J2(s) + J3(ts) + Z,i)ds)
0

x <52H+/0T<</Os (U(U)_5(U))dBf>2+<Bf_Bf)2>d3>1/2

T ~
+C/ ‘Zts — 7.
0

t
0

Then, using the (discrete) Gronwall inequality, we get

1/2
Zy— 7,

T ~
<C (/ (L4 J2(s) + J3(ts) + Z,i)ds)
0

X <52H+/OT<</OS (U(u)—E(u))dBf)2+(Bg{_Bg)2>d8>1/2
+O/OtZs —Z,| ds.

Then we raise this to the 2pth power and use the Jensen inequality. The
last term will be bounded by C(p)d§??; to the first one we apply the Cauchy—
Schwartz inequality for expectations and the Jensen inequality, and use uni-
form boundedness of moments for Z, J, and J (for J, and J it follows from
the fact that the both are exponents of some Gaussian variables with bonded
variance) to get
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E[ 2”] <Cp) (52PH e[| / sy gt " )"
e UBf—Bfr*’”D”)

Using again that E [|-|4p} = C(p)(E[(-)?])?" for Gaussian variables, we get

E “zt_zf”} <C(p (52“’ ‘/ 7(u) D
s (E[\Bf—Bﬁr"})p)

< CE) (M + o —51%,,,) < Cp)*;

Zt_gt

the last is due to (viii). This is the desired result. O

Now we are ready to state the main result of this subsection.

Theorem 3.4.8. Under conditions (iii)—(iv) and (vi)—(viil) the approzima-
tions X defined by (3.4.40) converge to the solution X of (3.4.36) in the
mean-square sense, and, MoTeover,

E [(Xt _ )?t)ﬂ < C82H
Proof. First, estimate for h such that [, |h(s)|ds < C has the difference
ThZ(t) — Z(t) < A1 + Ay + A3, where
A = /Ot T o (5)[b(s, (T 5 () T Zsy o + b+ Mar,)

—b(s, (TpJ; (8)) Zs,w + h+ Moy)| ds,

Ay = /Ot Th,Jo'(S)’b(S’ (ThJ; Y (s))Z(s),w + h+ Moy)

113 /
0

Conditions (iii)—(iv) give A1 < C’f(;t |TnZs — Zs| ds, condition (vi) gives

—b(t, (ThJ; (5) Zs,w + Moy)| ds,

ThJo(s)b(t, (ThJ5 ' (5)) Zs,w + Mo)

— Jo(8)b(t, J; 1 (8) Zs,w + Moy)| ds.

T
A gc/ <1+|zs|>ds/ Ih(s)] ds,
0 R
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and Lemma 3.4.5 together with the boundedness of ¢ and the assumptions
on h yields

Az < C’/O (14 Js(8) + Trdy(s) + | Zs|) 5 (5) /R |[Mos(u) h(u)| duds

T

<c| (1+Jg(s)+ThJ0(s)+|Zs\)JU(s)ds/R|h(s)\ds.

Applying the Gronwall lemma, we get

T
|Tth - Zt| SC/O (1 + JU(S) +Th']0(5) + |Zs|)']o(5) ds/]R |h(5)| ds.

Raising this inequality to the 2pth power, taking expectations and using the
Jensen inequality and boundedness of moments of Z, J, and T} J, (the last
follows from the Girsanov theorem, Cauchy—Schwartz inequality and assump-
tions on h), we get

E|(Thz() - 2()™ | < C) (/R |(s)| ds) . (3.4.42)
Further,
E [(Xt - )?tﬂ < 3(By + By + Bs),
By =E | (TOT w0 - Z)° ]
By = €[ (7o (1) = TO) T-ron %) ]
By = E[ (J-o()(T-a10 (1= Tortor0,0-0) 20) |
where

1
J_o(t) = exp {/ Moy (s)dW, — 3 ||Ut||zRH|,1} ;
R

- 1, 2
J(t) = exp {/]RM(Ul[O,t])(S)dWs ~3 Hal[o»t]HRm,l} .

Now estimate using the Cauchy—Schwartz inequality, Girsanov theorem
(which can be applied as ¢ and & are bounded on [0,7]) and Theorem 3.4.7

B < (E [74@)} E {TfMﬂ[o,t] (Z: - Zt)ﬂ )1/2,
<c(elimz-2)])"

<c(e[7m]e|(z-2)"] )1/

4
< C§%H,
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Similar reasoning and Lemma 3.4.6 imply that

By < CE [(/RM(MM — 0,)(s) dW,

1 - 2 2
+§( ||Ut|||2RH\,1 - ||J]‘[07t]|||RH\,1 )) ] :

Using condition (vii), we obtain By < C§%. And for Bj, using the estimate
(3.4.42), we get

t 2
B3 < (/ |M(51[0)t] — Ut)(s)| ds) < O,
0
This concludes the proof. O

Remark 3.4.9. It is natural to assume that the coefficient b is expressed in
terms of fBm B rather then in terms of the underlying Brownian motion W
(or underlying “Brownian” white noise W) This justifies the fact that it is o
not Mo that is discretized in (3.4.38).

Remark 3.4.10. Similarly to the proof of Theorem 3.4.8 one can prove that
for any s > 1

EHXt—)NQ

S
:| S (;SH.
The case s = 2 is considered here to keep the classical “scent” of the results.

Remark 3.4.11. The results of this subsection can be generalized to a random
initial condition Xy in the following form: under conditions (iii)—(iv), (vi)—
(viil) and L,-integrability of the initial condition one has convergence in any
L, for p’ < p with

e[ e— %[ ] <.

Proofs need some simple changes: the Holder inequality for appropriate powers
instead of the Cauchy—Schwartz inequality.

3.5 Stochastic Differential Equation with Additive
Wiener Integral w.r.t. Fractional Noise

Consider the following scalar stochastic differential equation

t t
Xt:X0+/ b(s,Xs)ds+/ f(s)dBH, (3.5.1)
0 0

where b : [0,7] x R — R is the measurable function, H € (0,1), X € R and
f € LE(R). Equation (3.5.1) generalizes the equation

t
X, = X0+ / b(s, X)ds + BH (3.5.2)
0

that was considered in the papers (MN03), (NO02), (NOO3D).
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3.5.1 Existence of a Weak Solution for Regular Coefficients

Definition 3.5.1. By a weak solution to equation (3.5.1) we mean a cou-

ple of adapted continuous processes (EH ,X) on a filtered probability space
(2, F, P,{F:,t €[0,T]}) such that

(a) B is an F, - fractional Brownian motion;
(b) X and B satisfy (3.5.1).

The general approach to existence of the weak solution of (3.5.1) is the

following. Let the function f be nonzero on R, so that g(s) := f(ls) is deter-

mined on R. Consider the process BY := BH — fot g(8)b(s,x+Is(f))ds, where
L(f) = Jy $(s)dBY.

According to Theorem 2.8.1, under the following conditions

Eexp {Lt _ ;<L>t} —1, te0,T] (3.5.3)

where L; = fot $%04dBs, B is the Wiener process, B; = @fot s*dMH M =
[3 lu(t,s)dBH and

/ lH(t,s)g(s)b(s,x+Is(f))d8:&/ dsds, (3.5.4)
0 0

we have that EtH will be an fBm w.r.t. the measure @ such that

Q| 1
aP . = exp{Lt - 2<L>t}-

In this case it is very easy to check that the couple (B, Xo+1I;(f)) creates
a weak solution of equation (3.5.1).
Due to the Novikov condition, the equality (3.5.3) holds if

1
Eexp {2<L>T} < 00, (3.5.5)
where .
(L), = / 5262 ds. (3.5.6)
0

Therefore, we must check inequality (3.5.5) together with (3.5.4) and (3.5.6).
Denote the stochastic process h(s) := g(s)b(s, Xo + Is(f)). Note that in this
section we begin the new numeration of the conditions.

Theorem 3.5.2. Let one of the following assumptions hold:
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(i) H € (0,1/2), the coefficients b and g satisfy the condition: there exists
A > 0 such that

sup Fexp {/\tm </Otsa(t — s)alh(s)ds)z} < 005 (3.5.7)

0<t<T

(ii) H € (1/2,1), the coefficients b and g satisfy the condition:

T
E)\ := FEexp {)\/O (s=*|n(s)|

o [T 157h(s) = rh(r)]  \®
+ as /0 dr) ds}<oo, (3.5.8)

(s —r)otl

for any A > 0.

Then equation (3.5.1) has a weak solution.

Proof. Let H € (0,1/2). Then we obtain d; directly from (3.5.4) (recall that
lu(t,s) = CW st — 5)~)

5 = CS’)(—oz)&/Ot s7(t — 5)"* Lh(s)ds. (3.5.9)

It follows from Example 13.32 (El82) that the condition: there exists A > 0
such that supy< <r Eexp{\v?} < o0, is sufficient for the Novikov condition,

if it has the form FEexp {% fOT vgds} < 00. Therefore, the proof follows im-

mediately from (3.5.6), (3.5.7) and (3.5.9). Let H € (1/2,1). In this case d; is
a fractional derivative of the form:

t
8 = a (C’S)/ (t— s)_o‘s_ah(s)ds>

_ t*QQh(t)+a/ () — rh(r)(t — )" dr) Lo (1) ]
0

whence the proof follows. a

Now we establish more convenient conditions for the existence of a weak
solution in terms of g and b.
Denote the function h(s,z) := g(s)b(s, ).

Theorem 3.5.3. Let 0 < |f(¢)| < f* for any t € [0,T] and one of the
following assumptions holds:

(i) H € (0,1/2) and h(t,x) is of linear growth:
h(t,2) < CO+]al), (ba) € [0,T] x R
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(iwv) H € (1/2,1), f is essentially bounded on [0,T) and h(s,x) is Hélder
continuous:

|h(t, x) — h(s,y)| < C(lz —y|” + ]t —s"),
where 1 > rho > 1 — —H and 1 > v > a.
Then equation (3.5.1) has a weak solution.

Proof. In both cases we must check the conditions of Theorem 3.5.2.
2
Let H € (0,1/2). Then t>* (fot sTH(t — s)_o‘_lh(s)ds)
< Ct** supge o<y |h(s)|* t=% < CT~2%(1 + | Xo| + I3:(f)). Note that now
a < 0). Furthermore, inequality (3.5.7) is transformed into

Eexp{\(I;(f))*} < oo for some X > 0.

The last inequality follows from the Fernique theorem (Fer74) about exponen-
tial integrability of the square of the supremum norm of a Gaussian process
(recall that the process I;(f) is Gaussian). For H € (1/2,1)

[7(s)] < [R(0,0)] + C (87 + | Xol|” + [Is(£)I*) (3.5.10)

o [ o) [ A,

(s —r)otl (s —r)ott
o [T ) b)) [
+s /0 G r)eh dr + s h(s)/o (S—T)O‘Hd'
Further,
|h(s) — h(r)| < |h(s, Xo + Is(f)) — h(r, Xo + LI.(f))|
<C(s—r" + L) = L(NHI"),
therefore

Sh’() 'y a—1 )|P
/0 (s—ro“H ‘<C/ d7"+C/ s—ra“ " dr
<c+o/ Mdr.

(s —r)ott

Similarly to Lemma 1.17.1, it follows from the Garsia—Rodemich—-Rumsey
inequality that for any 0 < e < H

IL(f) = L.(f)| < Cer —s|" &,

where
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</ / = |2H€1|2/8dxdy>6/2'

Further, according to Corollary 1.9.4, it holds that

. v 1717 0
EE sc( )// T dady

Therefore,

‘/SLCLJ‘gilfﬁ—dr<:c§ £p/w( — )Py < Cgf
0 o -

(s —r)atl

for some constant C' and such e that p(H —e) —a > 0, and

[ h“)—h(’“)dr‘ <c(+e), (3.512)
0

(s —r)ott
The next term admits an estimate

[ - h“))dr‘ < [ )b o,
0 0

(s —r)ott (s—r)

Is( I, P o
<c+c/|&4yﬂr dr < C(1+€0); (3513)

e}

S

the proof follows now from (3.5.10)—(3.5.13), because for p < 1

T
E, < C’Eexp{)\/ L) s~2ds + ATcggp} < .
0

3.5.2 Existence of a Weak Solution for SDE with Discontinuous
Drift

Consider equation (3.5.1) for the case when f = 1, b(s,z) = b(z) and b(z)
is Holder continuous of order p € (1 —1/2H,1) except on a finite number of
points, where there is a jump discontinuity (MNO04).

Theorem 3.5.4. Suppose that the function b(x) is Holder continuous of or-
der p € (1 —1/2H,1) in a finite number of intervals (—oo,ay), (a1,as2),

Slan—1,an), (an,+00) and there is a jump discontinuity in the points
a;,1 < i < N, that is, b(a;—) # b(a;+) = b(a;). Let BF be an fBm with
Hurst parameter H € (;, 1+‘[). Then equation (3.5.1) with f = 1 has a

weak solution.
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Remark 3.5.5. The case H € (0,1/2) is not specific now; for example, if b is
discontinuous but bounded we have a weak solution.

Proof. A function b(z) satisfying the conditions of Theorem 3.5.4 can be de-
composed as follows:

N
b(z) =d(x) + Z cisign(z — a;),

=1

where the function d is Holder continuous of order p € (1— ﬁ, 1), and ¢; € R.
Then, in order to prove Theorem 3.5.4 it suffices to check that the function
sign(x — a;) satisfies condition (3.5.8) for all A > 0.

We have now that h(s) = b(Xy + BH) = sign(X, + BH).

Since
T1—2a
1-2a’

T
2
/ |sign(Xo + BSH)S_Q‘ ds <
0
it suffices to consider the term

A — g0 /S |s~“sign(Xo + BH) — r~*sign(Xo + BfT)|
) 0 (s —r)att

dr.

We have

dr

N 7/5 |sign(Xo + BI) — (£)” sign(Xo + BH)|
"o (s —r)att
)

< /S |sign(Xo + BH) — sign(Xo + Bl)| J
< r
0 (s —r)ott
N /S |(1- (f)a) sign(Xo + BH)| i

0 (s —r)ott
= Al + A%

The term A% can be easily bounded:

where

For the term Al we can write

S
1 —a—1
A < 2/ 1(Xo1+BH>0,X0+BH<0} (8 —7)" % "dr
0

S
+ 2/ 1 x4+ BH<0,x0+BH >0} (5 — r)~dr
0

=24 4242
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We will only consider the term All, because the term Al% can be treated in
the same way. Since X is any pomt from R, we shall denote it simply x. We
have

Ail :/ 1{B§<fx<B§}(3 - T)_a_ldT~
0

Denote T, := sup{t € [0,s] : Bf = —z} and notice that T} is not a stopping
time. But T < s on the set {—z < Bs} and

’ Ts
/ 1{B§<_w<35}(8 —7) *ldr < 1, .<pHy / (s—r)~*tar
0 0
(S B Ts)ia
= 1{*z<35}?.

According to the Garsia—Rodemich—Rumsey inequality, for any 7" > 0,
p=>1,v> % there exists a constant C' = C , > 0 such that

H H 1
B — BH|P < Clt — 5|7~ / / |u_r|w+1d rdu (3.5.14)

for any s,t € [0,T]. Taking ¢t = T, in (3.5.14) we obtain

IBH 4 2P < C|s — T,["P~ 1/ / |u—r|7p+1d r du. (3.5.15)

Fix0<€<Handtakep:%,W:H—%.Set

£ = (/ / |B|Z_:|3H|drdu>g.

The random variable &, verifies E exp ()\55'6) <ooforany A >0,0< 3 <2,
due to (Fer74) and we obtain from (3.5.15) that on the set {B > —z}
|BE 4 2| < C3|T, — s|H%¢..

Hence,
e(2a) _ 2a
T, — 5|72 < O3 |BH 4 giceF—=

Therefore, in order to show (3.5.8) it suffices to prove the estimate

2a T —2a
Eexp <)\€gHE / |BH +a:|stds> < 00
0

for any A > 0, T'> 0, x > 0 and for some fixed 0 < e < H. Set
—2«
S, = fOT |BI + 2| 7= ds. We can write, assuming ¢ < &



3.5 SDE with the Additive Wiener Integral w.r.t. Fractional Noise 269

S.<el¢

Eexp (Agfffss) — E | exp (Ag:fssg> 1{ 1_35}

2a
+ E | exp (/\ng_E Ss> 1 1-3¢
{sszsf“s}
2 = 2H -3¢
< Eexp ()\55 < ) + Eexp ()\SEI"’E ) .

We know that Eexp (A§§7E> < o0, so it suffices to show that

2H—3¢

Eexp <)\Sgl_35 ) < 00. By the Hélder inequality, assuming 22

T >-1l+g¢,

we obtain that

T (H—az)ozl—e)
S. < Cr. / |BH 4 z|71"¢ds )
0

Hence,
2H —3e T P
S < Crpp. / |BSH+x\_1+EdS ,
0

where p = % can be expressed as p = 4o+, where > 0 tends

to zero as € tends to zero. Therefore, it suffices to show that
Eexp (M2t ) < o0, (3.5.16)
where

T
1/}5:/ L i<y BE + 2| Teds.
0

Lemma 3.5.6 below provides a proof for the estimate (3.5.16), provided
4aH < 1, and this leads to the condition H < % . O

Lemma 3.5.6. Fiz v <1 and define

T

G = / 1{‘B§+x|<1}|B§I + £L'|7ud8.
0

Then for any p > 0 such that pH < 1 we have

E (exp ép) < 00.

Proof. We need to estimate the moments of the random variable G. Denote
by A, the simplex {0 < s; < --- < s, < T} We have
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E(G™) :n!E/ H1{|B£+z|<1}|BsI{+x‘7o‘d51'~'d‘9n

n =1

According to (Ber70) the joint density of the random vector (BX BE —
BE ... .BE — B ) can be estimated as follows:

S17 Sn

p(yla-“ayn > n/QH - Si— 1 7

where so = 0, since

det (E [(Bf B Bgfl) (BZ B B‘Z*l)})1<ij<n 227 H(Si — i)

Then

n
E (H Lpa <yl B + xl’*)

n
< ](si—sio1) /nnl{\zl 1yl+x|<1}’zyz+w dyy - dyn
=1 i=1
=" ] i—Sifl)_H/ Hl{\zi+m\<1}|zi+$|_ad21"'d2:
i=1 R™ =1
= dnH(Sz —si1) 1,
=1

3
- 22 — 2
where ¢ = )12 and d = 5

(
G” n'd”/ H i —si—1) Hdsy---dsp

“L 1
n—1
1 I'l-H) F(Q*H)Tn(pH)'

— I dn
M T T T = ) +1)

As a consequence we obtain

E (eXp 5p) <e+1+ i %E(é[pk]ﬂ)
k=1

=1 ([pk] +1)lCPHH
= Cl+C2;HF(([pk]+1)(13—H)+1)’

for some constants Cj, i = 1,2, 3. Using the Stirling formula we finally obtain
that this sum is finite provided pH < 1. ]
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3.5.3 Uniqueness in Law and Pathwise Uniqueness for Regular
Coefficients

We return to the case of subsection 3.5.1 when the conditions of Theorem 3.5.3
are fulfilled.

Lemma 3.5.7 ((NO02)). Let the conditions of Theorem 3.5.3 hold for the
coefficients of equation (3.5.1). Then any weak solution of this equation has
the same distribution under the measure P.

Proof. Let the pair (B, X) creates a weak solution of equation (3.5.1). Con-
sider our function h(s, X;) := g(s)b(s, Xs). In the case H € (0,1/2) we have
by Gronwall inequality

X7 < (I1Xo| + I3 (f) + CT)e“"
and
|h(s, Xs)| < C(1+ X7),
therefore the derivative

d

t t
%/ L (t, $)h(s, X.)ds gc/ s~ (t — 5)=o1 |h(s, X.)| ds,
0 0

evidently, satisfies the condition, similar to (3.5.7):

. 2
sup Fexp {)\t%‘ (/ STt — s)_"_1|h(s,Xs)|ds> } < o0
0<t<T s

for some A > 0. For H € (1/2,1) the condition similar to (3.5.8) can be easily
checked similarly to (iv) in Theorem 3.5.3. So,

Eexp{ L — %(L)t} =1
fort €[0,T), Ly = fg 5*0sdBs with such Wiener process B w.r.t. the measure
P that & [, 0eds = [ Lir(t, $)h(s, Xs)ds, [y lu(t,s)dBE = @ [ s~*dB,. By
Theorem 2.8.1, the process EtH = BtH—kat h(s, Xs)ds is an fBm w.r.t. measure
P such that N
dpP

dpP 2

= exp {Lt - 1<L>t} . (3.5.17)

It means that X; — X = f(f f(s)déf Let B; be a Wiener process such that

Et = B; + fot s%0sds. Also, let ¥ be a bounded measurable functional on
C[0,T]. Then

Ep(¥(X — Xo)) = Ep (W(X ~ Xo)exp {Lt + %(L)t})
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t
0
t t t
=FEp (W(/ f(s)dBf) exp {/ $%0sdBs — 1/2/ 52“55d3}>.
0 0 0

The last relation demonstrates that the distribution of X is the same for any
weak solution. O

t
=Ep (W(X - Xo)exp{/o $%0sdBs — 1/2/ 52a55d3}>

Suppose now that X! and X? are two weak solutions defined on the same
filtered probability space (£2,F,P,{F;,t € [0,T]}) with respect to the
same fBm. Then max(X?', X?) and min(X!, X?) are also solutions and
have the same distributions, whence X' = X2. We proved the following result.

Theorem 3.5.8. Under conditions of Theorem 3.5.8 any two weak solutions
defined on the same filtered probability space coincide almost surely.

3.5.4 Existence of a Strong Solution for the Regular Case

Let H € (1/2,1), the function f be Hélder continuous of order 8 > 1— H, and
the function b be Lipschitz continuous. Then the conditions of Theorem 3.1.4
are fulfilled, therefore equation (3.5.1) has unique strong solution. In the case
when b(s, z) = b(z), according to Remark 3.1.11, equation (3.5.1) has a strong
solution for f € C?[0,T], 8> 1— H , and it is unique due to Theorem 3.5.8.
So, the case H € (1/2,1) is not hard or interesting.

Now, let H € (0,1/2). Consider a Krylov-type inequality as an auxiliary
result.

Lemma 3.5.9. Let functions g(s) and b(s,x) are bounded, so h(s,z) is
bounded, X is a weak solution of (3.5.1), and for some r > 1 the integral

fOT Yr(t)dt < oo, where P (t) = || f]|" 0. Lhen there exists the constant C
200,

depending on h := supyc(o 1] ver |1, 2)| such that for any nonnegative mea-
surable function g(t,x):[0,T] x R — R

T T 1/2
E/O o(t, X))t < C (/O /Rg (t,:c)d:z:dt) . (3.5.18)

Proof. Let X be a weak solution of (3.5.1) and consider the measure P deter-
mined by (3.5.17). Then X; — X under measure P has the Gaussian distribu-
tion with zero mean and covariance o7 := ||It(f)||2L2(P) = Hf||%§(01t). Denote
Zy = exp{—L; — %(L)t} Then from the Holder inequality with 3/, 3 > 1 and
1/8" +1/8 = 1 we have that

1/8
T . , 1/ﬁ/ N T
E/ glt, X,)dt < (EZ;B> (E/ g(t,Xt)ﬂdt> .
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The mathematical expectation
-~ *ﬁl . ~ , ﬁ/
EZ;” =FEexp{f'Lr+ 5<L>T < 00,

which follows from the boundedness of (L)7. Further, let v,~" > 1,
1/y+ 1/ =1and 78 = 2. Then

. _ (w22 z>2
Efng(t, X¢)ldt = foT ﬁ Jeg(ty)Pe >t dyadt

1 T 8 - (ga - 7' v
< 5 (fo f]Rg(tvy) dydt) fo f]R ¢ dy dt

’ _ A 1/7
= \/% (fOT Je 9(t,y)*dy dt) (fOT Jee™” Pl dz dt)

2—-8

)2 T 35 ’
<C(fy feott.v) dydt) o 7Pt

Finally, put Zf =r > 1, which means that § = 1+w ~=1—-5,v=1 + =

«

From inequality (19.1), |[fl|L. > C(H >||f||L%<o,t,so [2orar < oo

whence the proof follows. O

Lemma 3.5.10. Let b, (t,x) = b, (¢, z)1{|z| < C1} be a sequence of measur-
able functions, |by(t,z)| < Ca, limy, o0 by (t, ) = b(t, ), for all

(t,x) € [0, T] x R, and the conditions of Lemma 3.5.9 hold. Let also the cor-
responding solutions Xt(n) of the equations

t
X = X [ b X0is + )t €07
0

converge a.s. to some process Xy for all t € [0,T]. Then the process X is a
solution of equation (3.5.1).

Proof. Tt is sufficient to prove that lim,,_ .o I, := limy,_ oo EfOT by, (s, Xg"))
—b(s, X,)|ds = 0. But I, < IV + I}?, where

I = E/ (5, X{™) — b(s, X(™)|ds,

I®=F |b(s,Xs(” ) — b(s, Xs)|ds.
0

Evidently, from (3.5.18) and finiteness of b, and b, I.") < C(fOT Jg bn(t, ) —

b(t,x)|?dt dz)'/? — 0,n — oo, and also it — 0,n — oo. O

Theorem 3.5.11. Let both the functions h(t,z) and b(t,x) satisfy the linear
growth condition. Then equation (3.5.1) has the unique strong solution.
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Remark 3.5.12. The next condition is sufficient for both the functions h(¢, x)
and b(t,x) to be of linear growth:

[b(s,z)| < C(If(s)| A1+ ). (3.5.19)

Proof. For any R > 0 denote b (t, z) := b(t,z)1{z/<ry- Let ¢ be a smooth
nonnegative function with compact support in R such that fR p(z)dzr = 1. De-
fine br ;(t,x) :==j [ b (t, ) p(j(z —y))dy. Let for n < k ZR,n,k = /\?:anJ-,
FI;R’n = Nj2,bR,;. The functions FZ;R’n,k are Lipschitz in z uniformly in ¢ and
5R7,L,k l ERJL, k — oo, gpw 1), n — oo, for a.a. z and any t. Equation
(3.5.1) with g&mk has the unique solution X R.nk as an ordinary differential
equation with Lipschitz coefficient. By the comparison theorem for ODEs the
sequence Xg p i decreases in k, hence it has a limit X ,,. The sequence Xg ,,
increases in n, hence it has a limit X (). Applying Lemma 3.5.10 we obtain
that {X ¢ € [0,T]} is a solution of (3.5.1) with drift 5@ (t, ). Then we
apply standard techniques: all Xt(R) are bounded by (I%(f) + |z])e®”, and
(3.5.1) has a unique solution on any [0, 7g], where 7 = inf{t : |Xt(R)| > R}.
It means that (3.5.1) has a unique solution on the whole interval [0,7]. O

3.5.5 Existence of a Strong Solution for Discontinuous Drift

Let 2 = Cy([0,T],R) be the Banach space of continuous functions, null at
time 0, equipped with the supremum norm, and P be the unique probability
measure on {2 such that the canonical process is an fBm with Hurst parameter
H € (1/2,1). Assume also that the canonical filtration is augmented with the
P-negligible sets. We consider the following partial case of equation (3.5.1):

t
X, =Xo+ / b(X,)ds + Bl (3.5.20)
0

with b(x) =signz, H € (1/2, Hy), Hy = 1+4\/5. According to Theorem 3.5.4,
equation (3.5.20) has a weak solution. Now we intend to prove the existence
of its strong solution. For this purpose consider the following approximations

of the function b(z) = signz:

-1, x <0
ndz? —1, 0<z<
bu(z) =< 2nz —1, In?<z<t—t
1-n3(z— 12 1/n—-1/n2 <z <L
1, r>1
Then
0, z <0
2n3z, O0<z < #;
b, (z) =< 2n, I/n?<az<i-— L
2nd3(z— 1), 1/n—1/n? <z < L
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Evidently, any b, € C(R); moreover, it is Lipschitz: |b, (x1) — b, (22)] <
2n3|xy — @]

Lemma 3.5.13. For any x € R b,y1(x) > by(x), n > 1.

Proof. Tt is sufficient to consider the interval (0, n%rl)
(a) For z € (0, ﬁ] bopi(z) = (n+1)32% — 1> n?2? — 1 = b, ().

(b) For x € (W, 2] by(x) =nda? — 1,by41(x) = 2(n + 1)z — 1. But the
(n+1)

inequality 2(n + 1)z — 1 > n32z% — 1 holds for z < , and it is our case.

()Forxe(nz,nil m] bn+1(x):2(n+1)x—1>2nx—1—b ().

( ) For z € (n%rl - ﬁ,% — 2zl bapa(x) = 1 - (n+ 1)z - n<1|>1)27
bp(z) = 2nz — 1. The function ¢(z) := (n + 1)*(z — n+1) + 2nx — 2 has
o'(x) =2(n+1)3(x — T+1>+2” =0 for zg = n%rl— iy it is the point

of local minimum and zg € (nJrl — W’% - 2] for n > 2. So, we must

check the inequality ¢(x) < 0 for x = n}H (njl)Q and x = % — #, and it
evidently holds.

(e) Finally, for z € (f — #, TH) the inequality b, 1(z) =1 — (n + 1)3(x —

n+1) >1—n3(x— )% =b,(x) is equivalent to (2n + 1+ /n(n + 1))z > 1

and it is sufficient to chcck it in the point x = l .

n2
-1 3n2-2n-1
(2n+ 14 /n(n+ 1)) <> > (3n+1)"n2 - nQ” >1
for n > 2. Therefore, b,,11(x) > by(z), v € R. 0
Consider the approximating equation
t
Xt =2+ / bo(XM)ds + Bl (3.5.21)
0

The functions b,, are Lipschitz, therefore equation (3.5.21) has a unique strong
solution X7 on [0,T], and X7 < X/ for any t € [0,T] a.s. Moreover, for
any 0 <e < H

X0 (W) = XL ()] < C)[tz = 1|75 + [tz — tal,
so, the set {X,(-,w),n > 1} is tight for any w € 2, P({2') = 1. We obtain

that X7'(w) 1 X;(w), w € 2, where the limit process X is continuous in ¢.
Further,

/Otbn(Xg)ds/tb(X )ds| <

/|b (X™) = b |d5+/ b (X X,)|ds. (3.5.22)
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Note that |b,(X?) — by (Xs)| = bn(Xs) — by (XT) < 2. Consider all the cases
of mutual values of X, X.

(a) For X' <0, X, € (0, 3] bu(Xs) = bu(XY) < 21(x, (0,113

(b) For XI' < 0, Xy > 1 b,(X,) — bu(XD) < 21gx,50.xn<0y — 0 as,
n — o0.

(c) For X, X? € [0,1] b,(X,) —b,(X) <21
(d) For X7 € [0, 2], X5 > & [ba(Xs) — ba(
a.8., N — 00.

Further,

{Xs€l0,51}
;1)| < 21{X3>0,Xge[0,%]} — 0

t t
b — b las < 2/] Lix.co.2)yds (3.5.23)

We obtain from 3 5.22) — (3.5. 23) and (a)—(d) that

t
0 n

n—oo n—oo

t
—6/ l{XS:U}dS-
0

Therefore, to prove the existence of a strong solution of (3.5.20) it is sufficient

to prove that F fOT 1ix,—0yds = 0, and in turn it is sufficient to establish the
existence of bounded density ps(x), x € R, s > 0 of the process X;. For this
purpose, return to X': since the functions b,, are continuously differentiable,
then X" has a stochastic derivative, and on our probability space

t
DX =1+ / DX, (XD du,

whence D, X' = exp{fst b, (X™)du} > 1, since b,, > 0.
Now we use the result of (Nua95): let the random variable F' € Dy o,
h € H, (DF,h)3; # 0 a.s. and € Dom 6. Then F has a continuous

and bounded density

fw)=E (1{F>w}5 (<Mhh>n>) |

Now we put F':= X[, h¢(s) := 1io<s<s}- Then

(DF, By = QaH/Ot /Ot exp{/st b (X2 )}

¢
X exp { / b;(X{j)du}w —s** ldvds > Cyt*" > 0.

v

h
(DF,h)n

Consider the function 6(s) = % = hy(s)€, where € is a bounded random

variable, £ = (DF, h);{l, E£? < 0o. To establish that § € Dom 4, it is sufficient
to verify that
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T
E/ (D4€)%ds < oo. (3.5.24)
0

Indeed,

Dy = D, <(/ / exp / )du}exp{/tb' (X”)d}
X |u—z|2°f*1dvdz)‘1) (DF, h), //exp /b (X7 du
x exp{/Utb;(xg)du}w—zﬁa—l/z b (X™)du dv dz,

where |b, ()] < 2n® (since |b,,(z1) — b, (22)] < 2n®|x1 — 23]). Therefore,
|Ds&| < Ot 27 .4n3 . C(H, n,t) (note that |b, (x)| < 2n), and (3.5.24) holds.
We obtain that § € Dom 6, and the density p*(z) := pxy () equals

h
P(x)=Elixpsid| —=———+ 1 ¢-
@) =B {10207 () |
Let ¥(y) := 1{q,4)(y). Then from Proposition 2.1.1 (Nua95)

b
P{a < X,(t) < b} = / pi (z)dzx

| @{X"Mm%)}dx
E(( > (oxr )>

(s (Dxf,m )= (st = [_vien)
() et

=i B (De(X), h)n)

E

<
= Cpt?

b

= C1,Ht_2H/ E (1{xp>s10(h)) da
¢ b

< Cont ™ Elow)] [

Therefore, p!,(z) < Cy yt=2H, and P{a < X; < b} = lim,,—oo P{a < X <
b} = Co gyt 21 (b — a) for any continuous points of distribution function of
X;. Choosing a 1 0, b | 0, we obtain density p;(0) < Co yt=2H. So, we have
proved the following result:

Theorem 3.5.14. Fquation (3.5.20) with b(z) = signx has a strong solution.
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3.5.6 Estimates of Moments of Solutions for Regular Case
and H € (0,1/2)

Now we consider the case, when H € (0,1/2) and condition (3.5.19) holds.
Then equation (3.5.1) has a unique strong solution. Suppose, in addition,
that f € Ly[0,T] N DH[0,T] for some p > 4. Then the integral I; = I,(f)
is continuous on [0,T] (see Section 1.11). Evidently, the solution X; is also
continuous on [0,T)]. Let 7y = inf{t > 0: |X;| > N} AT. Then | Xiary| < N.
The solution admits the evident estimate

t
Xinr| < 1Xo| + [ Tonmy | +C / (1+ | Xunry s,
0

and for any r > 1

EXinry|” <37 (1Xol" + CTE(fy (1 + [ Xonry)ds)” + ElTinry |
< 37| Xo|" + (6C) + (60)E [ | Xopry |"ds - 171 + 37 B pry |7 (3:5.25)
< g(t) + (60)" 171 [ [ Xonry|"ds.
Here
g(t) = 3"|Xo|" + (6C)"t" + 3"E|I}|". (3.5.26)
From the Gronwall inequality we obtain that

cqt”
e

E|Xinry " < g(t) (1 + Cit"e ),

where Cy = (6C)".
Let N — oo, then it holds that

EIX,[" < g(t)(1 + Crt7e ™). (3.5.27)

Now, it follows from Theorem 1.10.6 and the part 2 of Remark 1.10.7, that
there exists a constant C(H, p) such that

N r+1\\ " 1
il <cwp (r(E)) e @sa)
It follows from (3.5.25)—(3.5.28) that
BIX,J" < g(t) (1+ Cltrecl%r) (3.5.29)
where g(t) = 37| Xo|" + (6C)"t" + 3TC(H7p)’"F(TJQF—1)T(G}9(O,t, f))". Estimate
(3.5.29) means that E|X;|” < oo, t € [0,7T], and this permits us to reduce

the value of the multiplier g(t). Indeed, if we know that E|X;|"” < oo, we can
write the following inequality instead of (3.5.25):
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T

E|X,|" <E<Xo|+lft|+c</0t(1+|Xs)d8>> (3.5.30)

t
< gl(t)+01t’”*1/ E|X,|"ds,
0

where from (1.9.10) and (1.10.4) g1(t) = (3| Xo|)" + C1t" + 3" supg< <, E|Ls|"

or/?

< (31Xo|)" + Cut” + Co(C(H, p)) (G} (0,8, /)", Cp = 3"Cy, C = Z (L),
Hence, from the Gronwall inequality it follows that

EIXJ" < gi(8)(1+ CitTe ™). (3.5.31)
Let estimate similarly E|X; — Xy|", 0 <t <t' <T.

EIX, — Xo|" < QOYE(f, (1 + |Xuds)" +2°B| [ f(o)aBI g oo
<UC) A+ gD+ CiTre 7)) —t)" +27Co(GP(L, ', f))T,

where Gp(t7t/7f) = C(H7p)(Hf||Lp(t,t’)(t/ - t)H_l/p + ||f||DH(t,t’))7

b = U (7 1£) = FOIE — 2)21dt)2da) V2.
Let f € C8[0,7T] with a + 3> 0,0 < 8 < 1. Then

I fllz, ey - (8 = t)I=1/r < | fllesgo,r (' — ",
11w ey < I fllcoor - Chgt’ — ) H?

with O 3= (H+3—1/2)7'(2H + 23)~1/2. Therefore

E|X; — Xo|" < (4C) (14 g1 (T)(1 + C1T"e 5 ) (1 — )" (3.5.33)
+2"C(Cupr) (t' — t)TH )

where Cy a1, = C(H,p)(1 + C}{”BTﬁ) [fllcopo,7)- Estimates (3.5.31) and
(3.5.33) can be strengthened by appropriate choice of partitions of [0, T]. More
exactly, take to := (6C')~!. Then for 0 < t < tq it follows from (3.5.30) that

E| X" < g1(t) + 6C fot E|X,|"ds, and from the Gronwall inequality

E|X;|"<g1-e®"<e-gi, 0<t<ty,

where g1 = (3|Xo|)" + 1+ C(GH(0, T, f))".
Further, for to < t; < 2ty

t
BIX,|" < 37X, + 3B / F(8)ABH|" 4 (6C)" (t — to)"
to

t t
—i—(GC)T(t—tO)T’lE/ IX.["ds < 3 gre+Cu(GL(0, T, f))r+1+60/ X, ["ds,
to to
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whence
E|X,|" < goe59t10) < goe,

where g = 3"g1e + C,.(G*(0,T, f))" + 1.
Further, by induction, for kty <t < (k+1)tg we have that E|X;|"” < grt1e€,
where gx11 < 3"gre+B, < --- < (3"e)*(g1+B,.) for B, = C.(G*(0, T, f))"+1.
The number of such steps on the interval [0, T] does not exceed

k= [%}+1§60T+1.ItmeansthatforanyOStﬁT

and similarly to (3.5.34) we obtain that
B|X; — Xu|" <(4C)" D,.(t' —t)" +2"C.(G*(t, ', )",

where
D, =1+ (3¢)¢T+Vr (g, + B,)

=14 (3¢)6CTHI"(2 4 (3| X, |)" 4 2C,(G1(0, T, f))"). (3.5.35)
For f € C8[0,7T] with 0 < 8 < 1, H+ 3 > 1/2 we have that

E|X; — Xu|" < (4C)" (1 + (3¢) ST+ (g) + B) (' — )"+
+2"C, (Crpryp) (' =), (3.5.36)

whence

E|X; — Xp|" < (4O)"Dp(t' —t)" +27C, (Cprp) ' —t)77.  (3.5.37)

3.5.7 The Estimates of the Norms of the Solution in the Orlicz
Spaces

The results of Subsections 3.5.7— 3.5.9 were motivated by the papers (KMO06)
and (KMO7).
Let the function U(z) = exp{z?} —1, (£2, F, P) be some probability space.

Definition 3.5.15. The Orlicz space Ly (£2) generated by the function U (x)
is the space of random variables £ on (§2,F), such that for some constant
Ce >0 EU(&;) < oo

The next result is proved in the monograph (BK00).

Theorem 3.5.16. The Orlicz space Ly (£2) is the Banach space with respect
to the Luxemburg norm

€]l = inf{r >0 Eexp{fz} <2}
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Let T be some set of parameters
Definition 3.5.17. The random process Y = {Y;, ¢ € T} belongs to the space

Ly (92), if for any ¢t € T the random variable Y; belongs to this space
Introduce the notations a := (3¢)°¢T+1 b := 3| Xy|a, ¢ := 3aG*(0, T, f)

c1 = V2, d :=max {c1,a\/e,by/e}, h:= (3 +2V/2) exp{%}.

Theorem 3.5.18. Let the conditions of the Theorem 3.5.11 hold and

{ X, t €10, T)} be the solution of equation (3.5.1). Then for any e >0
(3.5.38)

22
P{Xy| > €} < hexp{—w}.

Proof. The next inequality follows from (3.5.34)
2c] r+1
E|X;|" < 2a" +b" Lr : 3.5.39
| X" < 2a" + 0" + NG ( 5 ) ( )

Furthermore, from the Stirling formula

I'(u) = V2ru*~Y2e7 %™ with 0(u) < 5

we obtain that
I (252) < VR (2572 exp {~25 exp { sk )

Zr7/2(2) 21+ 1/r) P exp {—4 + it |

It is easy to see that for r > 1
h(r) == (14 1/r)"/? ex —1-&-71
= P12 7 60r+ 1)

Indeed,
Inh(r)=45(1+1) -3+ (M)
L —r—r?
<t(z—z=ta3s) 3+ em = mogne S0
forr >1, ie.
) /2pr/2, (3.5.40)
3.5.40) that
(3.5.41)

It follows from (3.5.39) an
E|X,|" < 2a" + b7 +2V20 "/,

where | = ﬁ
It follows from (3.5.41) and the Chebyshov inequality that
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E|X T b\" "
P{|X,| >} < ' t' <2 (9) + () +2v2 <> /2 (3.5.42)
3 g 3

We put r = (%)2 1, where € > ly/e, and obtain the inequality

{-(5)%}
b+2ep{(me) (5)° L) +2v2exp{-(5)" £}
(3.5.43)

PX,| > ¢} <2(2)
= exp{(n?) (5)*

Let n2VvInt <—1ie e>(avb)/e

Q= ~—
-
—

M
o=
—~
oo
S—
~—
~o
~—
M
o=
[\
S
@
"
T

Then

2

P{|Xt|2€}§(3+2\/§)-exp{—2€;2} (34+2v2)- eXp{—;c} (3.5.44)

Evidently, (3.5.44) holds for ¢ > d. But exp {%} > 1, so it follows from
(3.5.44) that inequality (3.5.38) holds for any € > 0. O
Theorem 3.5.19. Let the conditions of Theorem 3.5.11 hold and

{X4,t €10, T]} be the solution of equation (3.5.1). Then the random variable
X; belongs to the Orlicz space Ly (§2), and its norm in this space admits an

estimate
IXello < V2(1+ h)e.

Proof. The statement of this theorem follows from Theorem 3.5.18 and the
next lemma, which is the partial case of Theorem 2.3.4 (BKO00). O

Lemma 3.5.20. Let & be a random variable such that for any e >0
P{l¢| > e} <Cy exp{ } for some C; > 0,i=1,2. Then § € Ly (£2) and
€l < V2(1+ C1)Co.

Now introduce the notations
By :=2(\/e)"2Cx .1y, By = AC ST, By :=4C(1 + 20+ 0)T' 1,

By:= By + By, By := (212 + l)exp{33VB4} Bs := Biv/e,
By = v/2(1 + Bs)Bs.

Theorem 3.5.21. Let {X;,t € [0,T]} be the solution of equation (3.5.1),
the conditions of Theorem 8.5.11 hold and the function f € CP[0,T] with
H+3>1/2. Then for anye >0 and 0 <t <t <T

P{|Xy — X¢| > e} < Bs exp{ (3.5.45)

and
| Xy — X¢|lu < Br(t — ). (3.5.46)



3.5 SDE with the Additive Wiener Integral w.r.t. Fractional Noise 283

Proof. Inequality (3.5.46) follows from (3.5.45) and Theorem 3.5.19. So we
prove only (3.5.45). It follows from inequalities (3.5.37) and (3.5.40) that

B Xy - Xi|" < (V2Bir'/? + 2V2Byr/ + B ) (¢ — )"

So, for any € > 0

P{Xy — X¢| > e} < (( 2(% +2f( ) )7‘7'/2 + (%)T) t —t)rH
< (2\/5(%)T7”/2 (Bs T) t—

2
Now we substitute r = %(W) and obtain for » > 1, i.e. for

2

e> (' — t)H Bg, that for g(e) := W

P{|Xy — Xi| > e} < 2v2exp {—q} +exp {In (B2 (t' — 1)) - ¢} .

Also, let In (2 (t' — t)H) < —1 ie. e > e(t' — )7 B;.
Then for € > eg, where ¢ := (Bs V By)v/e(t' — t) we have an inequality

P{|Xy — X;| > e} < (2V2+ 1) exp {—q(e)} < Bsexp{—q(e)} .
If 0 < e < gg, then
P{Xy - Xi| > e} < (22 + 1) exp {a(eo)} exp {~q(e)} = Bs exp {—q()} .
O

Corollary 3.5.22. Let {X;,t € [0,T]} be a solution of equation (3.5.1) for
which the conditions of Theorem 3.5.11 hold and the function f € CP[0,T]
with H 4+ 8 > 1/2. Then for any A € R

Eexp{)\|Xt/Xt}§2exp{)\ BH(t' - )2H}

This statement follows directly from (3.5.46) and the following lemma,
which is a partial case of Lemma 2.3.4 (BK00).

Lemma 3.5.23. If the random variable & belongs to the space Ly (£2), where
U(x) = =exp{a?} — 1, then for any A € R

)\2 2
Eexp {Ae]) < zexp{f”U}.
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3.5.8 The Distribution of the Supremum of the Process X on [0, T

First we present some facts from the theory of stochastic processes that belong
to the Orlicz spaces.

Let T be some infinite set of parameters, ¥ = {Y;,t € T} be some
real-valued process from the space Ly ({2), where U(z) = exp{z?} — 1,
sup,er ||Yillo < 00, py (t,s) = ||Yz — Ys||u be a semi-metric on T.

Let the space (T, py ) be separable and the process Y; be a separable process
on (T, py). Also, let N'(e) = N(T,e) be the metric capacity of (T, py), i.e.
the minimal number of closed balls of radius e that cover (T, py). Note that
N(g) — oo as e — 0. (See also the beginning of Section 1.10, where similar
questions are discussed for Gaussian processes.)

The next theorem is a partial case of Theorem 3.3.4 (BKO00).

Theorem 3.5.24. Let the following assumption holds:
€0
/ (In(1 + N(€)))2de < oo,
0

where €y := sup py (t,s). Then the random wvariable sup|Yy| belongs to the
t,s€T teT

space Ly (£2) and

2

980
Isup |Yillo < K = inf [¥illw + / (In(1 + N (£)))2de < oo,
teT teT ‘9) 0

e
O(1 —
(3.5.47)
where 0 < 6 < 1 and N (0gq) > e — 1.

Remark 3.5.25. The statement of the theorem remains true if we replace N (¢)
by any function N;(g) > N (e).

Remark 3.5.26. Under the assumption of Theorem 3.5.24 for any € > 0 we
have that

2
P{sup Y| > e} < 2exp {K2} , (3.5.48)
teT
where K was defined in (3.5.47).
Inequality (3.5.48) is implied by the following one: if £ € Ly (£2), then for
any € >0

P{l¢] > e} < QeXp{ i } . (3.5.49)

&
1€]lo

In turn, inequality (3.5.49) is a partial case of Theorem 3.3.4 (BKO00).

Theorem 3.5.27. Let {Y;,t € T = [a,b]} be the separable process from the
space Ly (82), and let there exist o = o(h) : [0,b — a] — Ry, increasing and
continuous in h, and such that o(0) =0 . Also, let

sup |[Y; = Yillo < o(h), (3.5.50)
jt—s|<h
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/0% (1 <1+m>>1/2du<oo,

where o=V (u) is the inverse function to o(u), and & = o(b — a).

Then sup |Yi| € Ly(£2) and the following estimate holds:
t€la,b]

and

sup |Y|

< Ky = inf [Villo
t€la,b] teT

U

+9(1ei 7 /0950 (m <1 n Zm»m du. (3.5.51)

Here 0 is any number from the interval

3(b—a)
0,11 M . (3.5.52)
’ a(b—a)

Moreover, for any € > 0, we have the estimate

2
P{ sup |Y;|] > e} <2exp {—62} . (3.5.53)
t€la,b] Ki

Proof. The claim follows from Theorem 3.5.24 with T = [a,b]. Indeed, ac-
cording to (3.5.50), the process Y is separable in the space ([a, b], py ), where

py (t,8) = ||V — Ys|lu. It is easy to see that N(u) < 20:’%% + 1, and for

0 < u < &y, ie. for U(f%ﬁ(u) > 1, we have that N(u) < %o(ti;l(u) Therefore

/0%0 (In (1 + N (u)))/? du < /0950 <ln <1 + ;’M))I/Q du.

The inequality N(02p) > €? — 1 can be reduced, according to Remark 3.5.25,
to the inequality w?’fﬁi% > e2—1,i.e. to (3.5.52). Inequality (3.5.53) follows
now from (3.5.48). O

Theorem 3.5.28. Let the condition of Theorem 3.5.11 hold,
{X,t € T=10,T]} be the solution of equation (3.5.1) and 0 <t; <ty <T.
Then the random variable sup |X;| € Ly (£2), and

11 <t<tz
2 o (ta—t)H
sup | X¢||| < (h+1)cr +e“Cy b2 —->T— =1L, (3.5.54)
t1<t<ts U 1-4
(3)%np:

where 0 < 0 < (ﬁ)H, 0<vy<2H, CH,VZW'
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Moreover, for any e > 0

2
P{ sup |X|>e} < 2exp{—€2}. (3.5.55)
t1<t<to L

Proof. We use Theorem 3.5.27 with [a,b] = [t1,t2]. The process X; is con-
tinuous with probability 1, hence is separable. It follows from (3.5.46) that
o(h) = B;h | 1t is easy to see that in this case £y = o(ta — t1) and

~ 0o 3 _to—t 1/2
1(05) == [ (1n (1+§m)) du

o o (3.5.56)
=HB; [, O (In (1 + 3=t)) o1y,
Since for 0 < y<1land z >0
In(1+2)= Sln((L+2)) < ~In(1 +a7) < 2
n r)= —1n T S —1n X =~ T
Y Y Y
we obtain from (3.5.56) the following estimate for any 0 < v < 2H:
. (=1 (9a N
1(620) < (3)7 HBr - L 7 "W oli13du - (1, — 1)}
= OH,,Y(tQ — t1)%(0'(_1)(9a)))H_%.
Evidently, ) )
0'(71)(0?:‘\0) = Gﬁa(il)(go) = oﬁ(tg — tl).
Therefore
I(05y) < Oy A0t~ 27 (ty — t1) M. (3.5.57)
Now the proof follows from (3.5.56)—(3.5.57) and Theorems 3.5.19 and 3.5.27.
O

Remark 3.5.29. Estimate (3.5.54) demonstrates that up to constants the esti-
mates for distribution of the supremum of the process X are of the same form
as similar estimates for the Gaussian process (see (Fer74), for example).

Corollary 3.5.30. Let {X;,t € [0,T]} be a solution of equation (3.5.1) under
the conditions of Theorem 3.5.11 and 0 < t1 < to < T. Then for any p > 1

we have an estimate
N
(E( sup |Xt|) ) <C,-L, (3.5.58)

11 <t<ts
) . o1 B
where L is defined in (3.5.54) and C, = 27 5-.

Proof. This statement follows from Theorem 3.5.28. Indeed, it was established

in Lemma 2.33 (BKO00), that for the random variable £ € Ly (£2), U (z) =
1

exp{z?}—landp > 1 (E[{P)» < Cp|€[lu. Now (3.5.58) follows from (3.5.54).

O
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Corollary 3.5.31. Let {X;,t € [0,T]} be the solution of equation (3.5.1),
0<ty <ty <T. Then for any A € R

)\2L2
Eexp{)\ sup |Xt|}§2exp{ }
t1 <t<ts 4

This estimate follows from Theorem 3.5.27 and Lemma 8.5.23.

3.5.9 Modulus of Continuity of Solution of Equation Involving
Fractional Brownian Motion

Definition 3.5.32. We say that the C-function U(z) (C-function is continu-
ous, even, convex function that increases in > 0 and is zero at the zero point)
satisfies the A2-condition if there exist such constants zo > 0 and Ly > 1,
that U%(z) < U(Lox) for > xo.

Ezample 3.5.33. The function U(z) = exp {2?} —1 satisfies A%-condition with
zo:= 0 and Lo := /2.

Theorem 3.5.34. Let {Y;,t € T} be a stochastic process from the Orlicz space
Ly (£2), where the function U(z) satisfies the A%-condition with constants xy,
Lo, and let Zy := xoV Lg. Let py (t,s) = ||Ye —Ys||u, t,s € T be a semi-metric
generated by Y. Also, let (T, py) be the separable space and the process Y be

the separable process in the space (T, py). Put g := sup py(t,s), let N'(u) be
t,seT
the minimal number of closed u-balls covering (T, py), Ni(u) > N(u),u >0

and let N1(u) increase in u. If for any e >0
q(e) == /U(‘l) (N1 (w)) du < oo, (3.5.59)
0

then for any € € (0,&¢) such that N1(go) > U(Zy), and for any x > Zy

P sup Y, — Y| o3+ V2
0<py (ts)<e Coqlpy (t,s)) = | = Ulx)

Moreover, with probability 1

(3.5.60)

li ave
imsup ———— ,
cl0 P CoZoq () —

where AY, =  sup |V —Y;|, Co=3Lo(5+4Lg).
0<py (t,s)<e

Proof. For Ni(u) = N(u) the theorem is proved in the book (BK00). If we
replace N (u) for Nj(u), the proof will not change substantially. O
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Corollary 3.5.35. Let {Y;,t € T = [a,b]} be the separable stochastic process
from the space Ly(£2), U(x) = exp {xz} — 1. Let for some Dy > 0 and
0<p<1

sup |V — Yillo < DohP. (3.5.61)
s,t€a,bl],|t—s|<h

Then for any x > V2,0 < § < % the inequality holds

|}/75_Y9| <3+\@

P sup — >z, < (3.5.62)
0<t—s <s D1g(Dolt — s[?) U(x),
s,t € [a,b]
1\ \ 2
where g (e) == [ <ln <2 + (ba)}jDOB>> du, D1 = 3V/2 (5 + 4\/?) .
0 2u
Moreover, with probability 1
AY,
lim su d (3.5.63)

- - @0 00< 1’
510 ppl\/ig (Dg - 68) —

where AAY(S = sup |Y:—-Y|
0<|t—s]|<o

Proof. As we have seen from Example 3.5.33, the C-function U(x) =
exp {:102} — 1 satisfies the AZ-condition with 2y = 0, Ly = 2 (so,

Zy = V/2). Moreover, U™V (1) = (ln(l—l—x))%, x > 0, and ¢q(e) =

€ 1 3
J (In (14 N (u)))? du. Since in this case N (u) < Do (za) 4 1 we can put
0 2u B

I € AR
M (u) = Dof(il’;a)—i-l. It means that ¢ (e) = [ <ln (2 + (b_a)lDo>> du =
0

2u P 2uPB
g (¢) . Therefore,
|V — Y| |V — Y|

sup @ —— 0 < sup _—
o<|t—s|<s D19 (Dolt = s|%) = o<py (t.5)<Dosn D19 (py (t,5))

Now (3.5.62) follows from (3.5.60), since separability of ¥ and (3.5.61) imply
its separability in the space (T, py) with T = [a,b]. Inequality (3.5.63) is
proved similarly. The restriction on ¢ follows from the inequality

Ni(e) > U(Zy) = e — 1. O

The next result follows from Corollary 3.5.35.

Theorem 3.5.36. Let {X;,t € [0, T]} be the solution of equation (3.5.1) un-
Y 3

der the condition of Theorem 3.5.21, f(y) := [ (ln (2 + %17%)) dv, y > 0.
0

Thenforanya:zx/i0§t1<t2§T,0<5§2?22‘%
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P sup [Xe = Xl —~ >z, < G \/5. (3.5.64)
g s () *f S T
Moreover, with probability 1
sup | X — X,
[t—sl <9
lim sup — 2 S Bro ¥l <1 (3.5.65)

540 ByDy(ta —t1)H f (ﬁ)
Proof. Tt follows from Theorems 3.5.19, 3.5.21 and Corollary 3.5.35. Indeed,
in this case T = [t1,t2], 8 = H, Dy = By,
_oH
o (Dolt = si1) = 1 (l=or) Dota = 11)" :
Definition 3.5.37. Let (T, p) be a metric space, © = {O(u),u > 0} be a mod-

ulus of continuity (see Definition 1.16.1). The family of functions {y,t € T}
such that

sup lye — ys|
nset Op(t,s))
t#s

is called the Lipschitz space Ag(T, p).

(Compare with the Definition 1.16.3; note that now our process is not
Gaussian.)

Remark 3.5.38. Theorem 3.5.36 states that the solution of equation (3.5.1)
under the conditions of this theorem with probability 1 belongs to the space

H .
Ao(T, p), where T = [t1,12], p(t,s) = [t —s|, O(z) = f (u;TW)’ and in-
equality (3.5.64) gives the estimates of the distribution of the norm of X; in
this space.

Corollary 3.5.39. Let {X;,t € [0,T]} be the solution of equation (3.5.1)
under the conditions of Theorem 8.5.36. Then for any 0 < v < 2H with
probability 1 the trajectories of X; belong to the space Ag(T,p), where T =
[tl,tg] - [O,T},

p(s,u) = |s —ul,0(x) = Cr a3,

CH,%1 = B7D10H,,Y(t2 — tl)% s CH,'y = 7_1/2(21’[ - + 21+7/2H)(2H — ’7)_1.
Moreover, for x > +/2 and § < (to —t1) A do

X, —X
Cylt —ulf—2 U (z)

P sup (3.5.66)
0<|t—ul <,

t, u e [tl, tQ]
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Proof. From the inequality In(1 + z) < %:zﬂ, x>0,0<vy<1itis easy to
obtain for § < (t2 — t1)

and the proof immediately follows from (3.5.64) and (3.5.65). O



4

Filtering in Systems with Fractional Brownian
Noise

4.1 Optimal Filtering of a Mixed
Brownian—Fractional-Brownian Model with Fractional
Brownian Observation Noise

Consider the real-valued signal process X; and the observation process Y;
defined by the following system of equations:

t N t
Xt:77+/ a(s,XS)ds—i—Z/ bi (s, Xs) dW?!
0 i=1 70

Mt
+3° [ eoanih, rep,7), (11
j=1""

t t
Yt=§+/ A(s,Xs)ds+/ C(s)dBH,
0 0

where {W* 1 <i < N} are independent Wiener processes,

{BHJ ,1 < j < M} are independent fractional Brownian motions with Hurst
indices H; € (%71), BY is an fBm with Hurst index H € (%,1), all the
processes are mutually independent, random initial conditions (n, &) are in-
dependent of each other and independent of all the processes (W?, Bfi, BH),
the functions a, b, A:[0,7] x R = R, ¢;,C : [0,T] — R are measurable in
their variables and satisfy the conditions that are sufficient for the existence
of pathwise integrals w.r.t. corresponding fBms.

The problem is to construct the optimal filter of the signal X according
to the observation Y, which will be expressed in terms of the conditional
expectation m;(X) := E(X;/FY), where FY := o{V,,0 < s < t}.

Note that the partial cases of this problem were considered in (KLeBR99),
(KLeBRO00), where N = 1,¢; = 0 (see also (KKA98b), (LeB98)), and in
(Pos05), where b; = 0. Suppose that the following condition holds:

(i) the function C' € LI (R), does not vanish and 1/C(s) is bounded on
[0,T], ¢; € LE(R).
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Here we use the approach to the solution of optimal filtering problem
developed in (KLeBR00) but simplify it and modify it in accordance with our
model (4.1.1).

Introduce the following processes, connected with fBm B:

t t
z ::/ ZH(t,s)C_l(s)dYS:/ Lu(t, )D(s, X, )ds
0 0

t
+/ Iy (t,s)dB? = J,(D) + MH, (4.1.2)
0

where J(D) = fot I (t,s)D(s, Xs)ds, M is the Molchan martingale, intro-
duced in (1.8.5), D(s, X;) = A(s, X5)/C(s). Recall that
1

it 5) = Cjys™*(t = ) “Ljocucyy, @ = H — 2.

Suppose that the functional D satisfies the condition
t
(ii)/ sTUt — 8)TD(s, X)|ds < oo P-a.s., so the integral Ji(D) exists.
0
Moreover, suppose that

(iii) D(s,xs)s™* € 1§, (L1[0,T7]), i.e. there exists the fractional derivative

% (t—5)"%s"*D(s,xs)ds = I'(1 — a) D (D(u, xy)u"*)(t)
0

1t — D(u, 2, t2%u=2
(t —u)lte d“)

= I'(1 - )t 2*E(t,z) € L1]0,T),

=I(1—a)t > (D(t,xt) + a/ot D(t,

where ; is any Holder function from C''/2- [0, T7]; for example, sufficient con-
dition is

(iii’) D(t,z¢)t=> € C**T¢[0,T] for some & > 0.

Then the integral

t
Jy(D) =TI(1 fa)og?)/ E(s, X)s™2*ds
0
has a.s. bounded variation, so, it follows from (4.1.2) that Z; is the semi-
martingale w.r.t. the o-field F; := o{ 7, £, X5, Wi, 1 <i <N, Bf"7
1<j<M,Y; 0<s<t} and admits the representation

t
Zr =M + C’H/ E(s,X)s 2*ds,Cyp = (1 — a)CY, (4.1.3)
0

and, in addition, Z; is F} -adapted.
Further, let
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t
v = 2 — CH/ 7s(E(s, X))s 2%ds, (4.1.4)
0
where 74(Q) := E(Q/FY), It follows from (4.1.4) and (4.1.3) that

vy =Cqg /Ot (E(S,X) - WS(E(S,X)))SQO‘CZS + M.

Moreover, for 0 < s<t<T
E(v —vs/F)) = E(M — M |F,/F}) =0,

and the integral Cyy fg (E(s, X)—ms(E(s, X)))s_Qo‘ds is continuous and has

a bounded variation. Hence (v); = t'72% where (v); is calculated w.r.t. the

filtration {FY,0 <t < T}. So, v is a continuous Gaussian martingale w.r.t.

this filtration. (Evidently, v is adapted to this filtration since Z; is adapted.)
Further we need the following evident result.

Lemma 4.1.1. Any square-integrable martingale {M;, FY ,t € [0,T]} with
My = 0 admits the representation

t
Mt:/ @Sdllwte[OaT]a
0

where the process p,; is FY -adapted and Ef(;t p2s722ds < o0.

The next statement is proved similarly to Theorem 18.11 (ElI82); see also
Theorem 3 (KLeBR00). For any integrable process X, let X; := E(X;/FY).

Theorem 4.1.2. Let {S;, Fi,t € [0,T]} be the semimartingale of the form
t
S =Sy +/ asds +my, t€10,7T],
0
where ES2 < oo, EfOT a?ds < oo and {my, Fy,t € [0,T]} be a square inte-

grable martingale with mutual bracket (m, M), = fot A5 2%ds.

Then the process {Sy,t € [0,T]} satisfies the following stochastic differen-
tial equation:

t t - N

S, = S0+/ asds+/ (AS+C’H (SSE(S,X)szﬂS(E(s,X))))dz/s, te0,T).
0 0

Proof. 1f we define the FY -adapted process

t
Mt = St — SO — / anS, (415)
0
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then for s <t E(M, — My/FY) = E(S, — S;/FY) — [! @udu
= B([! aydu/FY) — [! @ydu = 0.

Therefore, M; is a F -square-integrable martingale. By Lemma 4.1.1, M;
admits the representation

t
M, :/ @sdvg, t € (0,77, (4.1.6)
0

whence . .
§t = §0+/ asds—l—/ psdvs.
0 0
Now we use the same reasonings as in Theorem 18.11 (ElI82). On the one

hand, with the help of (4.1.3) the product S;Z; can be decomposed by the
Ito6 formula as

t t
S, 2r = / S,(dMF + CpE(s, X)s™2%ds) + / Z¥(osds + dmy)
0 0

t
+/ Ass™2%ds,
0

t —_—
StZt* :StZ: :/ (CHSSE(S,X)Siza
0

whence

+ A 25 + A5 2)ds + N}, (4.1.7)

where N} is continuous FY -martingale.
On the other hand, using (4.1.4) and (4.1.5)—(4.1.6) we obtain the following
decomposition for Sy Z;:

t
S ZF = / (Zias + CuSsms(E(s, X))s 2 + pgs ) ds + N7, (4.1.8)
0

where N2 is a continuous F - martingale. It follows from (4.1.7)—(4.1.8) that
N' = N2 and A\, + CyS,E(s, X) = Cp Syms(E(s, X)) + s, whence the proof
follows. O

Now we can establish the form of the optimal filter in our model. In this
order we rewrite all the integrals fg cj(s)dij ,1 < j < M, by using Theorem
1.8.3, in the form

t t
[ estointt =[x esjams,
0 0

where .
K$(t,s) = C’g) / C(w)u®(u — s)* du.
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Further, consider for any t € [0, 7] the process
Xt =y +/ a(s, Xs)ds + Z/ bi(s, X )dW?
0 = Jo

+Z/O K (t,8)dM5,0 <u <t, (4.1.9)

so that X} = X; from (4.1.1).

Evidently, {X!,0 < u < t} is the semimartingale with respect to the
filtration {F;,0 < ¢t < T'}. Therefore we can use Theorem 4.1.2 to establish
the following result.

Theorem 4.1.3. Let ¢ € C}(R), m(¢) = E(6(X,)/F)),
Ei%( ) =a(s,y)¢ Zb2 (s,y)p ” +Zﬁ] “9 (t, s) 2 —2aj¢/l( ),

0<s<t<T, B; =1-2a;, and the conditions (i)-(iii) hold.
Then the equation for the optimal filter m; has the form:

t

7i(6) = mol(g) + / ma(Lhx, (X0))ds + C / (xt (OF) — 7t (6)ma (),

0 0
where w{(¢F) = E(Q(X))E(s, X)/F)), mi(¢) = E(6(X0)/FY),

ms(E) = ms(E(s, X)).

Proof. Tt follows from (4.1.9) that X} is a “boundary” value of the semimartin-

gale X! 0 <u<t.
N

Since 6(X0) = 6(n) + [ (6/(XD)a(s, X.) + 3 3 6 (XHE(s. X,

i=1

+Z — 2a,)(K3 (t,5))%s72% ¢" (X)) ds+Z/ &' (XD)bs(s, X5 )dW
]

1
+ Z/ ¢ (X C] (t, s)dMHJ and /\ = ( in our case, the proof immediately

follow5 from Theorem 4.1.2. O

4.2 Optimal Filtering in Conditionally Gaussian Linear
Systems with Mixed Signal and Fractional Brownian
Observation Noise

Now we suppose that the real-valued signal process {X:,¢ € [0,7]} and the
observation process {Y;, ¢ € [0,T]} satisfy the following system of equations:
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t N t )
X =+ / a(3)Xods + 3 / bi(s) IV
0 = Jo

M t
+Z/ ¢;(s)dB! (4.2.1)
j=1"0

Yi=¢&+ /OtA(s)Xsds + /Ot C(s)dB?, te|0,T)

where {Wi,1 < i < N} are independent Wiener processes, {Bi 1 <
j < M} are independent fBms with Hurst indices H; € (1,1), B¥ is
an fBm with Hurst index H € (%, 1), W¢ BHi BH are mutually indepen-
dent, random initial conditions (n,{) are independent of all the processes
(wt,BHi B"), a, b;, ¢;, A, C:[0,T] — R, are bounded measurable func-
tions which satisfy the conditions sufficient for the existence of Lebesgue in-
tegrals, corresponding pathwise integrals w.r.t. fBms and It6 integrals w.r.t.
Wiener processes.

As before we suppose that C(s) does not vanish and 1/C(s) is a bounded
function on [0, T]. Suppose also that the conditional distribution 7y := E(n/£)
is Gaussian. Under these assumptions the mutual distribution of the pair
(X,Y) is well-defined, and this pair is conditionally Gaussian pair, i.e., for
any 0 < t;7 < tp < --- < t, < t < T the joint conditional distribu-
tion of (Xi,,...,Xs,) given FY is Gaussian. The same is obviously true
for the system ((X,E(-,X)),Y). Then for any ¢ € [0,7] the optimal fil-
ter m; has a Gaussian distribution, which can be completely characterized
by its conditional mean value X; := FE(X;/F}) and conditional variance
o= E((X;— )?t)Q/fg/),t € [0,T]. Denote D(s) := A(s)/C(s) and note that
now E(s,zs) = D(s)zs for any 2 € C/27[0,T]. Suppose that the following
version of the condition (iii) is now fulfilled:

(iii”) D(s)xss™® € I§.(L1[0,T)) for any x € C/27[0,T]. Evidently, the
set of such D(s) is nonempty.

Consider for any t € [0,T] the semimartingale that is similar to (4.1.9):

X! :=n+/ a(s)Xsds+Z/ bi(s)dWSf—kZ/ K (t,5)dM [,
0 i=170 j=1"0

0 <u <t sothat X! = X; from (4.2.1). Denote 53 := E(n?/¢) — (m0)>.
Lemma 4.2.1. For allt € [0,T]

X, =m —|—/ a(s)X.ds + C’H/ D(s)52dvs, (4.2.2)
0 0

t N t
5 :33+2/ a(s)(ag)2d5+z/ b2(s)ds
0 = Jo
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M ¢ t
+3 (1 - 2a) / (K% (t,5))%5~2ds — (1 — 20)C% / D(s)525~2ds
0 0

j=1
t — — A~
+Cur [ D(s)((XDPX. - (XX, - 263(RD) ), (1.2.3)
0

where (o4)% := E((X;5 — XH(X, — )?S)/]-'SY)

S

Proof. By using Theorem 4.1.2 and independence of {W?i M} of M we
obtain that

—_— -~

Rt B(XY/FY) = mo + / a(s)X.ods + Cy / (X, B (5. X) — Xumo(E))dvs
0 0

:7r0+/ a(s))/(\'sds—kCH/ D(s)52dvs,,
0 0

whence (4.2.2) follows. Now we apply the It6 formula to the semimartingale
{XEL,0<u<t}:

(X1)? = (mo)? + / 2a(s)(X)) Xods +2Cy | D(s)52 X dv,
0 0

u
+C2(1—2a) / D(s)52s~2ds, t € [0, T]. (4.2.4)
0
On the other hand,
(XL =+ [ 2a(s)(X0)X.ds
0

N u M "
+Z/ b (s)ds + Z(l — 2aj)/0 (K;;'j (t,s))2s~ 2% ds

0

i=0 j=1
N u My

+> / 2b(s) X1dW! + / 2K} (t,5)XLdM,
=170 j=1"0 '

whence

— u — N u
(Xt)2 :E(n2/§)+/0 2a(s)(X§)Xsds+Z/0 b?(s)ds
=1

M ”
+ Z(l — 2aj)/ (K;jj (t,5))%s 2% ds
j=1 0

+ oy /Ou D(s)(XT)2X,) — (X112 Xa)dvs, t € [0, . (4.2.5)

Subtracting (4.2.4) from (4.2.5) for u = ¢, we obtain (4.2.3). O
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4.3 Optimal Filtering in Systems with Polynomial
Fractional Brownian Noise

In all previous filtering models the noises were presented as the integrals

w.r.t. a Wiener process or w.r.t. an fBm, but everywhere with nonrandom

integrands. In this section we consider the simple case of a random integrand.
Let the signal process {X;,t € [0,T]} and the observation process

{Y;,t € [0,T]} are defined by the following system of equations:

t N
X, =+ / als, X)ds + 3 ba(BEY™,
0

n=1

t t
yt:5+/ A(S,Xs)ds+/ C(s)dBH,t € [0, ],
0 0

where (B*, B2t € [0,T]) are fBms with Hurst indexes H; € (1/2,1),

a,A : [0,T] x R — R are measurable functions and b,,1 < n < N are
real numbers. Suppose that the pair (n,€&) does not depend on (BHl,BH2),
condition (i) holds for the function C, and condition (ii) holds for E(s,x)
with any = € CH1=[0,T]. First we try to present the power term (Bf*)" in
the form

BH1 /MtsdB—i—/Knts

where B is the underlying Wiener process (it means that B/* =
fg myy, (t,s)dBs with the kernel my, (¢,s) from Section 1.8), M,(¢,s) and
K, (t,s) are some Fs-adapted random functions. Evidently, for n =1

t
= / mu, (t, s)dB
0

Therefore M, (t,s) = my, (t,s), Ki(t,s) = 0. For arbitrary n > 2 (Bf")" =
Jo n(BE)" i, (¢, 8)dBs + f "5 (B2 (ma, () ds.
So, the signal process can be presented as

t N t t
X, =n+ / a(s, Xs)ds + Z b, (/ M, (t,s)dBs + / K, (t, s)ds)
0 ot 0 0

t t t
:17+/ a(s,XS)ds—l—/ M(Ls)dBS—i—/ K(t,s)ds,
0 0 0

where
My (t,s) = n(BI)" " tmy, (t, 5),
nin—1)

Kn(tvs) = 2

(BI)" 2 (ma, (¢, )%,
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M(t,s) = Z b My(t,s), K(t,s) = Z b K (t, s).
n=1 n=1

t
Suppose that (B, MH2), = / \ss 2%ds, where M,EH2 = fg L, (t,s)dBHz.

0
Consider the family of semimartingales
Xt 4 / o, Xo)du + / M,y (t, uw)dB. + / Ko (t, u)du,
0 0 0

s € [0,t],t € [0,T)]. Let the function ¢ € C*(R). Then the process
#(X1),s €10,t] is a semimartingale with the representation

o0xt) = o0+ | XM+ [ L),

0
where Lt (6()) = (a(u, X,) + K (&) 8'() + 36" () (M, u))?.
So, Theorem 4.1.3 gives the following representation for the optimal filter
T ($(XY)) :
m(6(X0) = (o) + [ Lt [ (ml XM A
+ Cu(mu(@(XL)E(u, X)) = mu(@(XL)mu(E)) ) du.

If we put s =t then the equation for the optimal filter m;(p(X})) receives
the form:

+ Cu(mu(@(XL)E(u, X)) = mu(@(XL)mu(E)) ) du.
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Financial Applications of Fractional Brownian
Motion

5.1 Discussion of the Arbitrage Problem

5.1.1 Long-range Dependence in Economics and Finance

As mentioned in the paper (WTT99), long-range dependence in economics
and finance has a long history and is an area of active research (e.g.,
see (Lo91), (CKW95)). The importance of long-range dependent processes
as stochastic models lies in the fact that they provide an explanation
and interpretation of an empirical law that is commonly referred to as
the Hurst law or Hurst effect. In short, for a given set of observations

{X;,i > 1} with partial sum Y(n) = ZX“ n > 1, and sample variance
i=1

S%(n) =n""! Z(XZ —n~'Y(n))?, n > 1, the rescaled adjusted range statistic

i=1
or R/S-statistic is defined by

50570 (e (v 2Y0) - i, (0 - Y ) ) mz

Hurst in (Hur51) found that many naturally occurring empirical records
appear to be well represented by the relation E ((R/S)(n)) ~ cinfl asn — oo,
with typical values of the Hurst parameter H € (1/2,1), and ¢; a finite positive
constant not depending on n. But in the case when the observations come from
a short-range dependent model, then E (R/S(n)) ~ can'/? as n — oo, where
co does not depend on n. The discrepancy between these two relations is called
the Hurst effect or Hurst phenomenon. The analysis of the R/S-statistic,
provided in (WTT99), (TTW95) and (TT97), leads to the recommendation
to use a diverse portfolio of time-domain-based and frequency-domain-based
graphics and statistical methods, including the graphical R/S-method, the
modified R/S-statistic (Lo91) and Whittle’s approach. Also, another (possibly,
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surprising) recommendation is: in the case when statistical analysis cannot be
expected to provide a definitive answer concerning the presence or absence
of long-range dependence in asset price returns, a more revealing and also
much more challenging approach to tackle this problem consists of providing
a mathematically rigorous physical “explanation” for the presence or absence
of the long-range dependence phenomenon in stock returns.

5.1.2 Arbitrage in “Pure” Fractional Brownian Model.
The Original Rogers Approach

Suppose that we establish that the existence of long-range dependence on the
financial market in which we operate, and we must model a share price process
using long-range dependence of returns. So, we can try to replace the clasical
log-Brownian model (B1Sc73)

dSt = St(ﬂdt + O'th), t 2 0
involving some Brownian motion W by the model involving fBm B¥:
dS; = Sy(udt +dBH), t >0, (5.1.1)

where H € (1/2,1).

Three main problems arise immediately: what will be the class of finan-
cial strategies, what will be the kind of stochastic integral w.r.t. the fBm
used in the model and is such a model arbitrage-free or not? There has been
wide discussion on these topics and we will present here the main (in our
opinion) results and conclusions. It seems that the first attempt to construct
arbitrage on the financial market that is modeled with fBm, was made by
Rogers (Rog97). He did not use geometric fBm like (5.1.1) but fBm itself,
and exploits its stationary properties, obtains an arbitrage possibility and im-
mediately concludes that fBm is an absurd model for finance markets (as we
shall see later, the situation is not so dramatic).

The notion of arbitrage that will be used (only in this subsection) is the
following: we say that an arbitrage exists on the interval [a, ] if there is some
trading strategy whose gains process {n;,a < t < b} satisfies the following
conditions: (a) n, = 0; (b) ny > —f for all @ < ¢ < b and some § > 0;
(¢) P{m >0} >0.

The brief description of the Rogers construction is the following. Suppose
that (£2,F,{F:, t € Ry}, P) is a filtered probability space and {X;, t € Ry}
is a continuous integrable adapted process. For any a > 0 and 0 < t < b define

7(t,b,a) ;== inf{u > t: X, — X; ¢ [—a,a]} Ab.
Lemma 5.1.1. Let, for any rational a,b,t with t < b,
E (XT(t,b,a) - Xt/ft) =0 a.s. (512)

Then X is a local martingale.



5.1 Discussion of the Arbitrage Problem 303
Proof. For any stopping time T' < ¢ equality (5.1.2) can be extended to
E (XT(T,b,a) - XT/]:T) =0 a.s. (513)

Indeed, we can approximate T by a sequence of stopping times 7(")

= 27" ([2"T] + 1), taking discretely many rational values and decreasing to
T. Now fix N € N, define 7 := 7(0, N, N), fix ¢ > 0 and define the stopping
times of = 0,

oy = inf{u > 05 0 Xy — Xoe ¢ (—€,6)} AT,

n > 0. Evidently, o 1 7 as n — oo. From (5.1.3) it follows that
E (Xai-%—l/}—”i) = Xoe .

Since | X,z | < N + | Xo|, we have that for any n > 0 X,: = E (X,/F,<), and
as € — oo we obtain that for any ¢t < N

Xt/\T = E(X‘r/]:t)y
which means that X;,, is a martingale, and this is sufficient. ]

Now, as we have seen in Section 1.15, fBm B¥ is not a semimartingale (in
particular, it is not a local martingale) unless H = 1/2. As a conclusion, we
obtain from Lemma 5.1.1 that for fBm {B/ ¢t € R} the following is true: if
we define for any n € N the process

Yao(t) := (szfn—zlfn - Bi]zlfn)TLHa

0<t<1,He€e(1/2,1), and Y, := ]-"f;,m then there exist a > 0 and € > 0,
such that

P{E(Y,(7)/Yn-1) > e} > €

where 7, = inf{t > 0 : Y, (t) € [—a,a]} A 1. Note that by the scaling prop-
erties of B¥ the sequence {Y,,n € Z} of C[0,1]-valued random variables is
stationary and even ergodic since (), 0{Ys,k < —n} is trivial. The ergodic
theorem guarantees that

P{E(Y,(7)/Yn-1) > € for infinitely many n >0} = 1.

Consider the period (—21~",—27"] and call this period “promising” if
E(Y(7)/Yn-1) > e. There will be infinitely many “promising” periods. The
investment strategy is the following one: we invest a unit amount in each
“promising” period but immediately sell our holding and wait until the end
of the period if Y;, goes out of [—a,a] during the promising period. So, the
gain ¢, made during a “promising” period satisfies the relations —a < (, < a,
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E((n/Yn-1) > €, and for the “nonpromising” period ¢, = 0. Denote accu-
mulated gain by 7, = Z (k. Then we can take A > 0 sufficiently small such
k<n
that
E(e_)"’]n/yn_l) < e~ Aln—1

Therefore, e~ is a nonnegative supermartingale convergent a.s. to 0. If
we stop 7, at the first time v when 7,, < —a, then

P{v < oo} < exp{—Aa} <1

and on the event {v = 400} 7, — +oo. Finally, the arbitrage strategy can
be described as follows: invest a unit amount in Y (which is the same as
investing an amount 2" in B during period n ) in each “promising” period
until either 7, has risen to 1 or falls to below —a. The former happens at
least with probability 1 — exp{—Xa}, and the resulting gain is 1, and if the
latter happens we lose at most 2a. If the latter happens we invest 1/2 in each
“promising” period until either 7, has risen to 1 or has fallen below 57“ If
the latter happens we lose at most 3a, and invest 1/4 in each “promising”
period until either n has risen to 1 or has fallen below 1%“ and so on. To
continue in this way, successively halving the stake when things go badly, we
shall eventually be successful and make a net gain of at least 1, and the worst
that can happen is that our wealth meantime could fall to 4«, so we have

arbitrage in our definition.

5.1.3 Arbitrage in the “Pure” Fractional Model.
Results of Shiryaev and Dasgupta

Consider a (B(r), S(r))-market with

Bt (T) = ert’

5.1.4
Si(r) = ert+oBl ¢ >0, (514

H € (1/2,1). Let for simplicity p = r, o = 1. We construct a portfolio
m=(B,y) with t =1— eQBtH, vt = 2(BH — 1). For such a portfolio we have
that the corresponding capital X equals

2
XF = BuBu(r) + 3Sir) = et (B —1)

From the It6 formula (2.7.5) for a pathwise integral w.r.t. fBm,

t 2 t
X7 z/ re”® (er — 1) ds + 2/ erst+ B (er — 1) dBH
0 0

t , (5.1.5)
— / BedBs(r) + / Y5dSs(r),
0 0
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and (5.1.5) exactly means that the strategy = is self-financing strategy in
usual sense. So, for this portfolio X§ = 0 and X; > 0 a.s. for any ¢ > 0, and
everyone understands that it is an arbitrage possibility (in any appropriate
definition). This is Shiryaev’s example (Shi01).

A very close result was obtained by Dasgupta (Das98). He considered a
one-dimensional portfolio 74,0 < ¢ < 1, the same model as in (5.1.4), defined
discounted gain as

Gy = / m(s)B; ! (r) (0dBY + (pn —r)ds) ,
0

and determined arbitrage as the following possibility:
(a) there exists « € R such that P{G; > a,0<t <1} =1;
(b) P{Gy >0} =1, (¢) P{G; >0} >0.
Now, consider the particular case u = r and the particular portfolio

7wy = 2e7tHo B <e°'BtH - 1) . (5.1.6)

With portfolio (5.1.6) the gain process equals

t ¢
Gy :/ 2¢7 B (e"Bf — 1) ocdBH :/ 208! (QUdBf)
0 0

¢ 2
,2/ eo’Bf (QO'dBfl) _ eQUB,f{ —1- 260’BtH +92= (eo'BtH o 1) )
0

Of course, we obtain arbitrage possibility. As a conclusion, we see that
the “pure” continuous-time model based on fBm is not arbitrage-free, if the
arbitrage possibility is defined in any appropriate terms. The same fact is
emphasized in PhD thesis of Cheridito (Che01b), the paper of Salopek (Sal98);
see also an early discussion on arbitrage with fBm in finance in (MS93).

Now we can discuss discrete-time models and “mixed” models (the latter
ones are much more promising).

5.1.4 Mixed Brownian—Fractional-Brownian Model:
Absence of Arbitrage and Related Topics

Let {W;,t > 0} be a standard Wiener process and {Bf?,t > 0} be an fBm
with the Hurst index H € (1/2,1), both defined on a filtered probability space
(2, F, {F, t >0}, P).

Consider a mixed version of the Black—Merton—Scholes model, i.e. a
(B, S)—market with a bond B and a stock S, where

B, =e" S = 6“Wt+bBiH+Ct, r,a,b,c € R, t € R,. (5.1.7)

For a given strategy (or a portfolio) m = {3, v:,t > 0} the capital {X;,t > 0}
corresponding to this portfolio equals
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Xt =Bt B+ St m- (5.1.8)

We make the following assumptions about the strategy m:
1) 7 is a self-financing strategy, i.e.

t t
X :X0—|—/ B dBS—i—/ ~s dSs; (5.1.9)
0 0
2) w is a Markov-type strategy, i.e.
Bi=B(Se,t), v ="(S1). (5.1.10)

One needs to be accurate with condition (5.1.9), for it to reflect the real
economic concept of “self-financing”. This entails that the meaning of the
second integral in (5.1.9) should be specified clearly. We understand it now in
the pathwise sense, i.e. as the following limit with probability 1:

t n—1
/0 Vs dSs = lim > Ve (Sspr = Ssi)-
k=0

max|sg41—sk|—0

Here, the sum ZZ;& Ysi (Sspy1r — Ssi) is an obvious formula for the capital,
earned on the price variation of S with a piecewise buy-and-hold strategy
{3t,t € Ry} = {vs,, sk <t < Spy1, t > 0}. Hence, the integral fg ~s dSg,
as the capital earned on S with the continuous strategy {v:,t € R}, agrees
with the “fundamental moral” in the definition of self-financing conditions
(for discussion on this topic see Section 5.2.2).

We say that the strategy 7 has an arbitrage opportunity if there exists
T > 0 such that

Xo=0, X7r>0(P—as), P(Xr>0)>0.

In the mixed model (5.1.7) with a # 0 and b # 0, some results in this direc-
tion have been obtained in the papers of (Ku99), (Che01b), (MV02), (Zah02a).
More exactly, Kuznetsov (Ku99) established the absence of arbitrage under
the condition of independence of processes W and BY. As we mentioned in
Subsection 3.4.2, Cheridito (Che01b) proved that, for H € (3/4,1), the mixed
model with independent W and B¥ is equivalent to the one with Brownian
motion and hence it is arbitrage-free. Zahle (Zah02a) proved the absence of
arbitrage in the general mixed model with independent Wiener process and
the process of zero quadratic variation (Dirichlet processes, see, for exam-
ple, (Fol81b)). In the mixed model, studied in the paper (MV02), there is no
requirement of independence. Conversely, the absence of arbitrage is demon-
strated under the condition that the process B¥ is connected with the process
W as in formula (1.8.17).

The main result of this subsection is that the mixed market is arbitrage-
free without any conditions on the dependence of W and B, if we restrict
ourselves to the self-financing Markov-type strategies with smooth § and ~.
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Conditions of Self-Financing and Their Consequences

Note that in the case of the Markov-type strategy (5.1.10), the process of
capital X; can be written as a function of price of the stock S at the moment
t:

X, = @(St,t), (5.1.11)

where

D(z,t) =™ - Bz, t) +x - y(z,t). (5.1.12)
We prove in this section that the self-financing assumption strongly restricts
the class of possible functions @ in (5.1.11).

In the case of v, = (S, t) with smooth (-, -), the integral fot s dSs exists
and it can be presented in the form

t t t t 2
/%dssz/ a'ySSSdWS—i—/ b%SsdBf—i—/ (c+ ‘;) vsSs ds, (5.1.13)
0 0 0 0

where the first integral on the right-hand side is the It6 integral, the second
integral is the pathwise Riemann—Stieltjes integral and the third one is the
Riemann integral. Formula (5.1.13) gives the It6 formula for an exponent of
the mixed process. In addition, we shall refer in this subsection to the It6
formula for processes with generalized quadratic variation (see Subsection
2.7.2).

The It6 integral in (5.1.13) appears due to the choice of the left end-
point s, in the expression under the summation sign in (5.1.12). Such a choice
is crucial for condition (5.1.9) to have the economic sense of self-financing. The

second integral fot bv:Ss dBE does not depend on the choice of inner points
of the intervals.

Theorem 5.1.2. Let the (B,S) -market be given by (5.1.7) with a # 0. Sup-
pose also that for all t > 0 the support of the distribution of S; coincides with

supp(St) = [0, +00). (5.1.14)
Then in the class of Markov-type strategies (5.1.10) with
{B(z,t),v(z,t)} € C*((0,+00)) x C*([0, +00))
the condition of self-financing (5.1.9) is equivalent to the following one:

(i) There exists a function ¢(z,t) € C?((0,+00)) x C([0,400)), which
satisfies the equation
2

& (z, 1) + % 22" (2,8) +rad(z,t) —rd(z,t) =0, (5.1.15)

and the strategy (3,7) can be expressed in terms of ¢:
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Bz, t) = e " (p(x,t) —z - ¢ (x,1));
{7(% t) = <b’ (2,1). (5.1.16)

Remark 5.1.3. Condition (5.1.14) holds, for example, in the case when the
processes W and B are jointly Gaussian, and, hence, log(S;) = aW; + bB}
+ ct, t > 0 is a Gaussian process.

Remark 5.1.4. Under condition (i) we have the identity &(x,t) = ¢(z,t).

Proof of Theorem 5.1.2. Below we use the It6 formula for processes with
generalized quadratic variation; see (3.1.25), (3.1.26). Firstly, the It6 for-
mula holds for continuous processes with generalized bracket. Secondly, if

the process Z has the usual bracket, then it has the same generalized bracket.
Let consider the process S; and prove that it has usual bracket. Indeed,

n n
2
Z AStk _ Z( aWiy 0B} detepr oW, +be{k+ctk>
k=0 k=0

n
2
z : aWtk+1< tk+1+Ctk+1 B ebeIIc+Ctk)

k=0
n 2 "
n Z (eawfk+1 _ eaWtk> o20BI +2ct
k=0

n
12 Z Wiy B Fetr (eaWthrl _ eaWtk) (eb oo tetien OB +ctk)
k=0
=1 +13+13.

Evidently, I3 — fg 5202 du, a.s. and in La(P). Further,

bB t H H .
‘e S —ebBth'_Ctk < ebBtk+Ctk ’bABtIi +CAtk|

and the trajectories of BY belong to the class C*~[0,T] with H > 1/2.
Therefore I7 — 0 a.s., and the same is true for I§. It means that the bracket
of S has the form

t
[S]t:/ a®S? du. (5.1.17)
0

Let us apply the It6 formula (2.7.8) to the processes B B(St,t) and
Sy 'y(St, t) from (5.1.8). We obtain the equalities

Btﬂ(St,t)—ﬂ(l,O):/O d(By 5(Su.u))
:/tﬁ(Su,u) dBu+/tBuﬁ;(Su,u) du+/tBuﬂ;(Su,u) dS, (5.1.18)
0 0
/ B 8" (Su,u) d[S]..
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and
t
51(81:6) = 7(1.0)= [ d(Sur(Surw))
0
t t t
:/ fy(Su,u)dSu—l—/ Sﬂg(su,u)du+/ Surl (Sur) dS,  (5.1.19)
0 0 0

1 t
+ f/ (27; (Su u) + Su ey (Su,u)) d[S]y.
2 Jo

Combining equations (5.1.18) and (5.1.19), we obtain:
t t
X, - Xo _/ B(Su,u) dB, _/ 2 (Suru) dS,
0 0

:/Ot(Bu5£(Su,u)+5u%<5u,u)) du+/Ot(Buﬂ;(Su,u)+5u7;<gu7u)) is.,

t
b [ (BB (Su ) + 200 (S0 0) + S (Suw) ) S (5:1.20)
0

Comparing equations (5.1.20) and (5.1.9), we conclude that the condition
of self-financing of the strategy m = {8, %,t € Ry} is equivalent to the
equation

t t
/ (Bu B1(Su, 1)+, 'y{(Su,u)) du + / (Bu B, (Sur ) +S ’y;(Su,u)) ds,
0 0
t
%/ (Bu B (Sustw) + 295 (Sus ) + Su s (Susw) ) diS]u =0, >0,
0
(5.1.21)

From the same It6 formula and definition of the process S, we obtain that

t t
Sy =Sy +/ Sy d(aW, + bB + cu) +/ %azSudu,
0 0

where the integral j;f Sy dW,, exists as the usual It6 integral, and the integral
fg S, dB! exists as the limit of the Riemann-Stieltjes sums, because
Sect?=0,1], B € CF~[0,T], and 1/2 + H > 1.

Substituting equation (5.1.17) into equation (5.1.21), we obtain that equa-
tion (5.1.21) can be rewritten as

/Ot (Bu B (Su,u) + Sy 7£(Su,u)) du

¢
+/ (Bu B (Su,u) + Sus (Su,u)> Sud(aWu +bBH + (c+ a2/2) u)
0
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2 t
0

Let us take the quadratic variation of the both sides of (5.1.22). Evidently, the
usual bracket of all Lebesgue integrals in (5.1.22) vanishes, and the bracket of
the Ito integral equals

{/;(Bu Bl (Su,u) + Sy 'y;(Su,u)) S, d(aWu)} _

t

t 2
= [ (BB (Suu) + 8.7 (Suvu)) 82 du
0

Establish now that the usual bracket of the process j;f (Bu Bg(Slu,u) +
Sus(Susw)) Sud(bBH) a.s. equals 0. In this order denote f, = b( Buf, (S.

u) + Syl (Su,u)). Evidently, the trajectories of this process belong to the

class C''/27[0, T]. Further, from the estimate in Proposition 22 (FdP99), it
follows that

<C ||f||C1/2—5 HBHHCH—s (Atk)1/2+H_26

)

th+1

tr

with constant C' not depending on f and B and such § that 1/2+H —26 > 1,
i.e. 0 < /2. Therefore,

n

i(/w fudBl) < Z(/W fudBY — f,, ABY)”

kotk

+2Z (fur)? (ABEY? < 2C2 || f)2ases | BT | s Y (At
k=0

) 14+2H—46

+22 fte) ABg — 0 a.s.
From all these estimations and (5.1.22) we obtain

t 2
a2/ (Bu 3. (Sus ) + S ’y;(Su,u)) S2 du = 0. (5.1.23)
0
Since (5.1.23) holds for all ¢ > 0, we easily deduce that

Bu 35 (Su> ) + Sy (Su,u)= 0 (5.1.24)

for all w > 0 and almost all (a.a.) w € £2.
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Substituting (5.1.24) into (5.1.22) we obtain another equation for all ¢ > 0:
¢ a2 [t
[ (Bupi(Su0) + Suri(Sucw)) dut G [ (Bupie(Suvn) + 202(S00)
0 0

+ Sy, (Su,u)> S2% du = 0.
This means that the equality

By 31 (Susu) + Su i (Sus ) (5.1.25)
2
5 (Bu B (Sust) + 29, (Sur ) + Su e (Suru) ) 82 =0
holds for all © > 0 and a.a. w € £2.
Condition (5.1.14) of the theorem ensures that equations (5.1.24) and
(5.1.25) may hold if and only if

By By (2, t)+x v, (2, 1) = 0; (5.1.26)
2
By Bi(z,t)+zy;(z,t) —&—% (Bt B (z,t)+2v, (2, ) +a vy (2, t)) 2% =0,

(5.1.27)

forallt >0, z > 0.

The last relations mean that the strategy (ﬁ(St,t)/y(St,t)) is self-
financing if and only if the pair (B(z,t),v(z,t)) satisfies equations (5.1.26),
(5.1.27).

Now assume that condition (i) of the theorem holds. Substituting 5 and
~ from (5.1.16) into (5.1.26) and (5.1.27) we obtain an identity 0 = 0 in the
first equation and identity (5.1.15) in the second one.

Conversely, if (5.1.26) and (5.1.27) hold, we set

¢(x,t) :== By - Bz, t) + - y(z, t).
For such function ¢ we obtain from (5.1.26) that
(b;(.'L‘,t) =B ﬁ;(l',t) + ’Y(x’t) +x- '7;;(37775) = 7(xat),
B(z,t) = B ' (¢(z,t) — 2 - v(2,1) = e " (p(z,t) — 2 - ¢y (2, 1)),

i.e. we come to (5.1.16). Substituting 8 and v from (5.1.16) into identity
(5.1.27), we obtain that ¢(x,t) satisfies equation (5.1.15). O

Remark 5.1.5. Let the process {Z;, t > 0} be defined on

(2, F, {Fi,t > 0}, P) with Zy = 0 and [Z] = 0, where [Z] stands for usual
bracket, i.e. quadratic variation. Then it is not hard to see that Theorem 5.1.2
is valid for the (B, g)—market with

Bt — ert, St — eaWt—&-Z,,-&-ct’

if only condition (5.1.14) holds for the process S.



312 5 Financial Applications of Fractional Brownian Motion
Absence of Arbitrage
Theorem 5.1.6. Let the (B, S)-market be given by (5.1.7) with a # 0. Let
the support of the distribution of Sy coincides with
supp(S) = [0, +00) (5.1.28)

for allt > 0.
Then there is no arbitrage strategy in the class of self-financing Markov-
type strategies (5.1.10) with

{ﬂ(m,t),’y(:c,t)} - Cz((07+oo)) X C’l([O, +oo)).

Proof. Theorem 5.1.2 states that for any strategy in the class, described in
the theorem, the process of capital X; is given by

Xt = d)(Sta t)a
where ¢ satisfies the equation
2
oz, t) + % 22 ¢! (x,t) +rad (v,t) —ro(x,t) =0. (5.1.29)

Suppose that an arbitrage strategy exists. So, there exists T' > 0 such that
Xo=0, Xr>0(P—as.). (5.1.30)
Together with (5.1.28) conditions (5.1.30) are equivalent to the following ones:

$(1,0)=0, ¢=,T)>0 Va>0. (5.1.31)

We are going to prove that ¢ = 0 is the only function that satisfies (5.1.29)
and (5.1.31) simultaneously. Hence, it would mean that there is no arbitrage
strategies in the given class.

Let us use the standard approach in solving equation (5.1.29). Suppose
the function ¢ satisfies equation (5.1.29) with boundary conditions (5.1.31).
Then a new function 7(z,t), given by

n(z,t) =0(az, T —1t), z€R, te[0,T],

where
1 r a? 72
_ ,—(az+81) _+ _ e
H(Z,t)—e oz ¢(ez7t)7 Oz—2 2 8= 5 5.7
satisfies a heat equation
1
m(z,t) = 50l (z,t) (5.1.32)

2
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with additional conditions
VzeR n(z0) >0, n0,T)=0. (5.1.33)

Here, an inverse change is given by
(12 7‘2
¢(I7t) = x(%_a%) . e(_7+ﬁ) - (h’l(l’)’T _ t> .
a

The continuous solution of equation (5.1.32) is well known and has the form

et) = [ale.0)- 2n) o (-5 ) ag

which together with boundary conditions (5.1.33) gives n = 0 and, therefore,
¢ =0. O

Convergence of Lebesgue—Stieltjes Integrals to the Integral
w.r.t. fBm

In this subsection, we use Theorem 1.15.3 and prove a theorem which
establishes the convergence in probability of integrals with respect to B>#?
from (1.15.15) to the integral with respect to fBm.

Theorem 5.1.7. Let the process f be such that for some € > 0 and for a.a.
we N
fw) e ¢2a=H+e[0, 7). (5.1.34)

Then " ’
/ f(u)dBI P i/ fw)dBT as B — 0+,
0 0

where 25 denotes the convergence in probability.

Proof. For any N > 0 we introduce the step process of the form

N
() = Flun—) 1,y wy (@), w€[0.T),  fn(T) = fluy),
k=1

where T

Then the following obvious inequality holds:

T T
/ f(u)dBEP / f(u)dBY
0 0

<

T T
/ (F(u) — fr(u) dBH2| + / fx(u) d(BHP — BH)
0 0

T
4 / (F(w) — () dBY| = L(N, B) + (N, ) + Is(N).
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We shall establish that for the subsequence Ng such that Ng = [#} the
following convergence holds:

I(Ng, B8) B0, I(Ng,B8) 250, I3(Ng) 50 as 8 — 0+

Condition (5.1.34) is equivalent to the relation: there exists a finite random
variable K = K(w) such that P-a.s. V0 <z <y <T we have

f(@) = f)| < K o —y* (5.1.35)

with A=2(1—-H) +e.
Consider I1 (Ng, 3). We use (5.1.33), (5.1.34), (5.1.35) to obtain:

I (N3, B) = ‘/ ~ fn,(w)) dBH 8
N Uk - (u—pB)+ g
k=1YUk-1 0
N Uk L (u—a)y ) i
SCKD o _UH)A/ utt / (u—y)*tyr " W, | du
k=1 Uk —1 0

=:CK (1 (N,B).

where W is now the underlying Wiener process (before it was denoted B,
but now B is bond process). From now on C' means a constant, the value of
which is not interesting for us. Without loss of generality we may assume that
B < T/2. Let estimate the mathematical expectation of ¢y (Nﬁ, ﬁ):

(u=PB)+ Lo
/ (u - y)a— Yy dWy
0
N N o pug (u—P)+ 1/2
S 65 Z/ ’U/a / (’U, _ y)2H—3y1_2H dy du
1 0

N

R 1-8/T 1/2
S ﬁi </ (1 _ y)QH—3yl—2de> Z/ UH_l du
0

k=1"7%k-1

. 1/2 1-8/T 1/2
<Cp? </ (1—y)* 3y 2 dy + 22&/ (1- y)QHde>
0

du

1/2
< Cp3 (1+ﬁ2a—1)§, (5.1.36)

Substituting A = 2(1 — H) + ¢ in (5.1.36) we obtain
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1
ECI(Nﬁvﬁ) < Cal—H+E/2<1+ﬁ2a—1)2 :O(ﬁs/Z) _}07 6_>0+

Hence, I1(Ng, ) P00 as 8 — 0+.
Let consider I (Ng,ﬁ).

I5(Ng, B) =

Uk —1 Uk —1

ka1(Bh;’5—B£i) (B5 Bl ))‘

FMZ

Fw)| - [BI? ~ BI |+ | f(r) (BE7 - B

HMZ

U — Up—1) -|B£€75—Bﬁ|+‘f(T)(B¥”G—B¥)‘.

The term ’f(T) (B&F — lef)‘ L, 0because BI'® £ BH as 8 — 0+. Denote

(N, B) = SN (up, — wp—1)" |BEA — BH |, With the help of Theorem

1.15.3, the mathematical expectation of ‘BtH’ﬁ — can be estimated in

the following way:

tH, t<p

E‘Bf’ﬁ— <C

B t(l—i—ln%),ﬂgt

< C max <5H7 84T (1 +1n g)) =o(B*7?), B—0+, (5.1.37)

for any fixed p > 0. For N = [BIT/Q}, p=-¢/2and A = 2(1 — H) + ¢ we obtain
from (5.1.37) that

N
E(y(Np, B) < B2 > E|BIP - Bl < 3% (INg] +1) o (8°) =

=0 (ﬁQM_HZHL_lJF(a—

[N

)) =0o(1) =0, B— 0+.

Hence, I>(Ng, ) P00 as 8 — 0+.
Finally, it follows from Theorem 2.1.7 that

T T
—’/ fvo(wdBl ~ [ ) aBll] —o
0 0

a.s., and hence in probability, as 8 — 0+.
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The Capital Process as a Limit of Semimartingales

Let the (B7S)—market be given by (5.1.7) and a Markov-type strategy

(B, %) be self-financing for this market. Then the capital, based on this strat-
egy, is given by

t t
X, = Xo +/ B(Ss, s) dBs —l—/ 3(Ss, s) dSs.
0 0
For 3 > 0 and the given (ﬁ(-, 9,7, )) consider the processes
Stﬁ _ eaWt—&-beI‘B-‘rct

and
t ~

t
Xf:X0+/ B(S2,s) st+/ 7(82,s)ds?. (5.1.38)
0 0

The It6 formula and definition of B¥:# imply that the process X? can be
rewritten as

t
Xf:x0+/ (rB.A(S.5) + (b (B2), 4 ¢) S0 4(S2.5) ) ds
0

¢
+a/ SP~(S2,5) dW, (5.1.39)
0
with
H,8y _ ~(6) o (=P _.\a—1, —a 171,
(B;9"), =Cq as (s —w)*  u"YdW,,
0

which means that X7 is a semimartingale at least if the following condition
holds:

T
/ E (55’7(55,3))2 ds < oo. (5.1.40)
0

Theorem 5.1.8. Let H € (3/4,1) and the pair (B(,),’y(,)) satisfy the
assumptions:

(i) Vt>0 f(-t), (-, t) € C'(R)
(i) VT,L >0 there exists K = K(T,L) > 0 such that

Blo,t) = Bla.s)| + i@t = ilw9) S K ft= s, Vo] < L, s € [0,7)

(iv) VT >0 there exist M = M(T) >0 and N = N(T) > 0 such that

B, t)] + i@, < M1+ J2Y), Vee[0,T].

ThenXtﬂiXt as (3 — 0+ for any t € [0,T].
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Remark 5.1.9. Evidently, conditions (ii)—(iv) imply (5.1.40) and the pair
(B,S'B) can be regarded as a new stock market with a price of the stock

being a semimartingale. It follows from Theorem 1.15.2 that Sf Ei S; as
8 — 0+ at any moment ¢ > 0. If, additionally, condition (5.1.14) holds for
5% and §,7 € (C? x C1)(R,), then the strategy (B(Sf,s),ﬁ/(Sf,s)) is self-
financing and the market (B , S8 ) is arbitrage-free. In this case the process
X7 is a process of capital in this market.

Proof of Theorem 5.1.8. Using (5.1.38), (5.1.39) and (5.1.9), we may write
x? - X,

= [ (3(52.9) - 5509 a3+ [ 4(s2.6) a2~ [ 4(5..9)as.

= [P0 - ) s 0 [ (6 - o) aw,
wo ([ Pante— [Lgwast)+ e+ 3 [0 - o) ds
where

fP(s) =€ B(SP,s), f(s)=e"B(Ss,s),
97 (s) = SP5(S2,5),  g(s) = Ss7(Ss, ).

To prove that XtB — X4, it is enough to establish that

/0 (£7(s) = f(s)) ds = 0; (5.1.41)
/0 (9°(s) — g(s)) AW, = 0; (5.1.42)
/tgﬁ(S) aB’ i>/tg(8) dBY; (5.1.43)
0 0

/0 (9°(s) = g(s)) ds 0, as B — 0+ (5.1.44)

The convergence in (5.1.41), (5.1.42) and (5.1.44) holds if fot(ffa(s)

- f(s))zds L0 and fot (9°(s) — g(s))2 ds 25 0 as 8 — 0+, which, in turn,
follows immediately from the relations

E(f%(s) — f(5)” < C B>, (5.1.45)
E(¢(s) — 9(s))* < C 5%, (5.1.46)

which will be proved in Lemma 5.1.10.
Let us prove (5.1.43). Obviously, the following inequality holds:
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t t

[ anite [ g ant
0 0
t t

[ atsyaste— [ g(s)an!
0 0

The trajectories of the process n(t) = aW, + bB} + ct a.s. belong to the
space C'2~[0,T]. It means that for any p > 0 there exists K (8,w) > 0 such
that

< + /O(gﬁ(s)—g(s))dBf’ﬂ'. (5.1.47)

In(t) —n(s)| < Ki(8,w) [t —s|2", VYt sel0,T). (5.1.48)

Let us prove that the process g(s) =: ¢(n(s),s) also belongs to C’%_[O,T]
P-a.s. Indeed, it follows from (iii) that VL > 0 there exists K2(L) > 0 such
that

W(z,t) — (@, s)| < Ka(L) |t —s|2, Y|z| <L, t,s€[0,T]. (5.1.49)
It follows from the definition of 4 (x, s) and (iv) that IM, N > 0
[ (x,5)| < Mexp{N |z|}, Vsel0,T]. (5.1.50)
Now we use (5.1.48)—(5.1.50) to obtain

[ (n(t),t) —v(n(s),s)| < [ (n(t),t) — v (n(s) )] + [ (n(s),t) = (n(s),s)|
< sup | [l (2, )] - In(t) — n(s)| + [ (n(s),t) — ¢ (n(s),s)]

[z <|n(s)| VIn(t

sMexp{N sup |n<t>|}K1<a,w> |t—s|%‘5+f<2<sup In(t)|> It — 5|2
te[0,T] t€[0,T1]

< Ky(d,w) [t — 5|70,

where

Ks3(8,w) = Mexp {N sup |77(t)|} Ki(0,w) +T°Ks ( sup n(t)) .
te[0,T] te[0,T

For any H € (3/4,1) it is possible to find ¢ = ¢(H) > 0 such that
Cz7[0,7] ¢ C2A~H)+e[0,T]. So, we can apply Theorem 5.1.7 to the first
term on the right-hand side of (5.1.47) and obtain its convergence to 0 in
probability.

Consider the second term on the right-hand side of (5.1.47). Using (5.1.46)
we obtain, as in (5.1.36), that
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/ (6(9)— o(s)) s

(s—B)+ . 5
/ (s —y)* 'y *dW,
0

E

t

<FE ‘gﬁ(s)—g(s)‘~C’s°‘ ds
0

t 2

(s—=8)+
<c /[ s (E(gﬁ(S) —g(s))” /O (s —y)> 2y dy) ds

0

(1-B/T)+ R
< Oﬁa / (1 _ y)2a72y72a dy / $H71d8
0 0

<op (1+p) o (gt), s-ox

which means that F

f(f(fﬁ(S)—f(s))dBf"”eo it He(3,1). U

Lemma 5.1.10. Inequalities (5.1.45) and (5.1.46) are true for every s € [0, T
and 8 € (0,1) with a constant C' that does not depend on 3 and s.

Proof. We prove only inequality (5.1.46) since (5.1.45) can be established
similarly.
Denote a function ¢ (z, s) := exp{z} - y(exp{z},s). Then the processes
g°(s) and g(s) are given by
9°(s) = ¢ (aW, +bBH-P +cs, s),  g(s) =y (aWs +bB +cs, s).
We obtain from the Holder inequality that

2
o(x, s
E(g°(s) —g(s)" < B ( sup % b (BHP - Bf))
a:EIl(S,ﬁ,w) xXr
(. s) |\ ” 2oy b
<t?’(E sup |T522 E(BI"P - BIM)™) ", 5.1.51
B ( mell(s:pg,w) ox ( ( s s ) ) ( )

where p, ¢ > 1, 1/p+1/g =1 and
Il(sv ﬂa (U)
= {x . aW, 4+ min(bB? P bBE) < 2 — ¢s < aW, —i—max(be’ﬁ,be)}.

In the case when 2¢ < ﬁ (which is equivalent to the inequality p > i),
we can use Theorem 1.15.2 and derive the following estimation:

1
(E(BM - BH)QQ)% <C ()", , °<F
s s - (62qo¢8q +ﬁ2q(H—1)+182q—1)5 ) ﬁ <s
< C' max (/82Ha /82aT + ﬁQa—l/p T1+1/p)
<O VP Be(0,1), (5.1.52)
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where C' = C'max(1, 2T, 272H).
To estimate the first expectation in (5.1.51) note that

Ii(s, B, w) C {x D] < aWs| + ’be| + |be’ﬁ’ + || s}
C {x D] < JaWs —|—2|be‘ + ’b(Bf’B —Bf)‘ + |c|s}
=: I1(s, B, w). (5.1.53)
We use (5.1.50), (5.1.53) and the Holder inequality to obtain

E  sup
z€I (s, B,w)

< 01 (Bexp {20 ¥ (W, + 2 02| + o(B — B2 +1el5) })
(5.

ap(x, s)| >
oz

1
) < M? (E sup exp{2pN|x|}>

z€lz(s, B, w)

S =

)_\

.54)
< M? exp{Ls}

1
x (Bexp(3LIW,| }- Eexp{3L |BI| }- Eexp{3L [BI7 — BE|})",

where L = 2Nmax(\c| .lal,21]b|). For a Gaussian random variable with zero
mean & ~ N (O, 02), the following bound is well-known:

EeXp{a|£}§2€Xp{az;2}. (5.1.55)

We use (5.1.55) and Theorem 1.15.2 to deduce from (5.1.54) that

2p %
E sup
z€l4 (s, B,w)

< 2N exp{LS +312/2 (B(W,)? + B(BE)" + B(BI7 - Bf)2>}

o(z, s)
ox

< 2112 exp{LT+ 3L2/2<T—|—T2H+
+Cmax(52H,ﬂ2“T(1+lnT—lnﬁ)))} < C < 0, (5.1.56)

for some C > 0 and all 8 € (0, 1). Summarizing (5.1.51), (5.1.52) and (5.1.56)
we obtain that for any p > i

E(¢°(s) — g(s))” < Cg**~1/P, s€[0,T], B € (0,1), (5.1.57)

where constant C' does not depend on p or (3. Since p is arbitrary, inequality
(5.1.46) follows from (5.1.57). O
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5.1.5 Equilibrium of Financial Market. The Fractional Burgers
Equation

Definition 5.1.11. The financial market described by equation (5.1.7) is in
equilibrium on [0, T] if both the kernel ¢; and likelihood ratio %| 7 are the
functions of ¢t and W;, twice differential in both the variables, and do not
depend on the path of {W,,0 < s < t} (for the corresponding notations see
Subsection 3.2.3).

This definition generalizes the usual definition of equilibrium of the finan-
cial market involving only the Wiener process (see (HC93)), where the path’s
independence of %| 7, is declared, and the kernel ¢; equals simply e(t, W),
up to a constant multiplier.

Theorem 5.1.12. If the financial market is in equilibrium, then p; satisfies
the Burgers equation

’ ’ 1 »
—9(5,2)¢(8,2) = @4(5,2) + 500 (5, 2).

Proof. Let ¢ = g(t, W;), and fo s dW, — % 0 <p2ds = G(t, W), where
g,G € C? (Ry x R). Then

t 1 [t
/ g(s, Wg)dWs — 5/ g*(s, Wy)ds = G(t, W), t € [0.7].
0 0
From the It6 formula,

t !’ 1 1 t ’
G(t,Wt):/ (Gt(s,Ws)+§Gm(s,Ws))ds+/ G (s, W)W,
0 0

From here g(s, W,) = G.(s, W), —1g%(s,Wy) = Gy(s, W) + %G;m(s Ws),
or, simply, ¢g(s,z) = G! (s 1}) f% 2(5, z) = Gi(s,z) + $GY,(s,z). Further,
95(s, @) = GYy(s, ), —39%(s,z) = G (s,z) + 19%.(s, ). Therefore,
1
92(871') = G::/I(S,.%'), —g(&x)g;(s,x) = ng(&x) + 59;/95(8755)’
whence the proof follows. ]

Remark 5.1.13. It is easy to see that the “principal” kernel 8; = p;t~“ satisfies
the equation

s*M0(s,2)0. (s, 2) = af(s,x) + 50, (s, ) + S;G;’x(s x),

$>0, z €R,and @« = H — 1/2, which can be called, in this connection,
the fractional analog of the Burgers equation. (Recall that the usual Burgers
equation has the form u} = v/ + wul,.)
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5.2 The Different Forms of the Black—Scholes Equation
on the Fractional Market

5.2.1 The Black—Scholes Equation for the Mixed
Brownian—Fractional-Brownian Model

Consider a mixed version of the Black-Merton—Scholes model (5.1.7) with the
value process X, described by (5.1.8), and self-financing strategies, defined
by (5.1.9)—(5.1.10). Consider C(¢, S;), the price of a European call option with
striking price K at time t € [0,77]. Suppose that C € C[0,T] x C?(R), then

we can present the function C(t, S(t)) := C(T — t, S(t)) according to the Ito
formula from Theorem 2.7.2 as

~ -~ t - 2
C(t,5(t) = C(0,z) + / (C;(u, Sy) 4 cCl(u, Sy) Sy + cg%su
0

+ Cl/

SS

2 t t

isg)du + a/ Cli(u, Su)SudW, + b/ Cl(u, Su)SudBE.  (5.2.1)
0 0

Now, let the portfolio on value process consist of one option and an amount

of —4 of underlying assets. The number —4 will be specified later. The value

of this portfolio equals X = C — §5S.
The jump in the value of this portfolio in one-step time equals

~ ~ ~ 2 ~ ~
AX = dC — §ds = (C{+ cCl + %cgssz)du + aClLSdW, + bCLSdBH

29
~ 6(aSdW, +bSdBY + 2 du+ cSdu). (5.2.2)
If we choose § = % to eliminate the stochastic noise, then
ax = (Ci+ 5 C4s- $2)du.
The return of an amount X invested in bank account equals r X dt at time dt.

For absence of arbitrage, these values must be the same. Hence we obtain the
traditional Black—Scholes equation

-~ 1 200 - -
C; + fa25’2% —rC +1rSCy =0,

2 052
or, in terms of C(t, St),
1, ,0°C
—C£+§a S @—TCH—TSCE;:O.

Remark 5.2.1. The same equation was obtained by Zahle (Zah02a) for the
process Z; instead of aW; +bB}, where Z; = aW; +bZ;, and Z is continuous
process with vanishing generalized quadratic variation.
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5.2.2 Discussion of the Place of Wick Products
and Wick—It6—Skorohod Integral in the Problems of Arbitrage
and Replication in the Fractional Black—Scholes Pricing Model

This section appears as a result of the interesting discussion of the related
problems contained in the papers (SV03) and (BH05).

The fact of the existence of arbitrage in the “pure” fractional Brownian
model is, to some degree, the consequence of the fact that the mathematical
expectation of the stochastic integral w.r.t. fBm defined in the pathwise sense
is nonzero (and you immediately obtain such an integral as a limit of the port-
folio value created by step buy-and-hold strategies; we discussed this topic in
Subsection 5.1.4). Note, however, that the arbitrage opportunity constructed
by Rogers (Rog97) does not depend on any particular notion of integration.
The same is true for the pre-limit arbitrage of the fractional Black—Scholes
model considered in (Sot01). Nevertheless, many efforts were made to cre-
ate the “pure” fractional model which will be “free of arbitrage”, with the
help of the stochastic integral constructed by Wick products. We mention in
this connection the papers (HO03), (EvHO03), (Ben03), (BO03), (BHOS02),
(Mis04). Now we present the corresponding list of propositions for alternative
definitions of portfolio values and self-financial conditions:

(i) the price of risky asset S is modeled by a geometric fBm and is the
solution of the equation

dS; = S; $dBE, Sy = s, (5.2.3)

where H € (1/2,1) everywhere. In this case

S; = sgexp®(BJ) = spexp {Bfl - %tQH} (5.2.4)
(see Section 2.3.1 for the definition of the Wick integral and recall that
exp®(X) = Y07, X©™). Such an approach was developed in (EvHO03) and
(HOO03). The portfolio value is defined in (EvHO03). The standard way is
Vi = fiBy + 9:St, where f and ¢ are the respective numbers of units of the
riskless and the risky asset held in the portfolio. However, in (HO03) the
portfolio value is defined as

Vi = fiBi + g+ & St

The standard Ito-type self-financing condition dV; = ¢;dS; is replaced by
dVy; = g:S; & dBH in (EvHO3) and by dV; = g; ¢ dS; in (HO03).

The paper (BHO05) claims that the definition of V; as V; = f;B; + g:.S¢ to-
gether with dV; = g;S; ) dB! (where we put B; = 1) has no economic inter-
pretation as a self-financing condition. Here are the brief arguments. Consider
a buy-and-hold portfolio. It must satisfy

Vi—Vu= gu(St - Su), (525)
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from intuitive point of view. However, in our case V; — V,, = fi guS. & dBH |

where the last integral, in general, does not coincide with g, fi S. ¢ dBH and
does not coincide with the right-hand side of (5.2.5). To be precise with this
statement, consider the following example from (BHO05): let the initial capital
x > 0; at time t = 0 we put our money into the bank account and wait
until ¢ = 1. Since B; = 1 we receive x at time ¢ = 1. At this moment we
put our money into the risky asset, i.e., buy x/S; shares at the price S; and
hold this position until £ = 2. The value of this portfolio at time ¢ = 2 is
Vo = S%Sg. Evidently, such a strategy must be considered as self-similar since

nothing was added or subtracted. Nevertheless, §-Sy # x + f02 GuSy & dBH
with g, = F-1(1,2)(w). Indeed, E(z+ f02 guSu & dBH) exists and equals z, but

S 1 1 1
tEZ2 = zEexp {Bf — B — —2%H 4 712H} = xexp{f(l - 22H)}
St 2 2 2

1 1
xEexp{BY —-BI} = zexp {5(1—22H)} exp {5-(2—1)211} = rexp{1-2%*},

which is not x unless H # 1/2. There are some other objections concerning
this model, see (BH05).

As to the model with dV; = g; & dS;, simple buy-and-hold strategies will
be self-financing in this case. However, the objection in this case is that such
a definition of portfolio V; = fidB; + ¢ {> dS; is hard to motivate from the
economic point of view. The reasoning in (BH05) is more moral and practical
than mathematical: indeed, to calculate the value of portfolio in this case one
needs to know Wick calculus and it is hard to instruct the broker how to
do it. But there are also some mathematical reasonings against this model,
because it can be proved that there exists a portfolio f = 0, g3 > 0 such
that g1 ¢ S1 < 0 with positive probability (index 1 stands for the moment
of time here). It is sufficient to put 2’ = {w € 2|BH(w) € (1/2,3/2)},
g1 = S1 — 1, where S; = exp{B# —1/2}. Then g; > 0 on 2, P(£2') > 0,
g1 <>Sl = Sl <>Sl — Sl = eXp{QBf{ — 2} — exp{B{{ — %} < 0on .

In spite of all this criticism, we can say some positive words about Wick
(and Skorohod) models with fBm in finances. For other interesting facts and
approaches to these topics see, for example, (AOPU00),(Oks07).

First, we mention that geometric fBm can be written in two forms:

(72
Slgl) = S’oe“t""’BfI or 5',52) = SoeﬂHUBtH_thH- (5.2.6)

The first form is very simple to understand but the second one is similar to
usual geometrical Brownian model S; = Soe‘“f*"Bf*%"%7 because ESt(2) =S

for p = 0. (In Section 6.1 we shall consider the null hypothesis H : S = St(2)

against A: S = S,gl), but in a more complex form, see below.)
As mentioned in (SV03), if we consider it in the Riemann—Stieltjes sense,

the geometric fBm St(Q) with p = 0 is the solution of the equation
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ds® = sP(aBH — Ht*at), (5.2.7)

and in the Wick—Skorohod sense 65,5(2) = 5,5(2)6Bg{ or dSEQ) = S’t(z) & dBE,
i.e. we obtain the model (5.2.3). Nevertheless, due to the Riemann—Stieltjes
interpretation, we can consider self-financing condition as

t
Vi =V, +/ 9s8Pd(BI — Hs*ds),
0

and it has a clear economic meaning. Indeed, one can consider the Riemann—
Stieltjes integral as an almost sure limit of simple predictable trading strate-
gies.

Now we use the It6 formula (Theorem 2.7.6) for m = 1, S; := Séz), Y: =
oBH + ut — 2421 H € (1/2,1) and F(t,z) = F(t, Spe"), take (5.2.7) into
account and obtain

LOF
Fi(t.Y:) = F(t.5) = FO.50) + | 5 (u.S.)du
0

t t
4 [ S s Su— Ho*)du+o [ 57w, S,)d(B — Hudu)
0 8.r 0 8$

¢ 0*F oF
2 2a 2
+ Ho /0 U (78302 (u,S,)S; + p (u, Su)Su) du

tOF

L OF
= F —_— —_—
(0,50) + i (u, Sy)du + ,u/o B (u, Sy)Sydu

¢ t 2
+o [ G S — ) + Ho* [T 508k,

Consider the assumption

oF 2 92F 2
E su (— s, S SS> + FE su (— s, S5 Sz) < 0. 5.2.8
s (G5 s (G (s.80 (528)
Let F(t,S) := C(t,8;) := C(T —t,S;), where C(t,z) is the price of some
European option with C(T,z) = ¢(z), and S satisfying assumption (5.2.8).
Then, similarly to (5.2.2), we can present dC' in differential form as

~  aC N
dctza%-S(dBtH — Ht**dt)
ac  aC ., ,.82C ,
— 4+ = Ht** .
+(”Sas+ oy toHt aszS)dt

Now, if the portfolio of value process V' consists of one option and an
amount of —J of underlying assets, then the value V= C — ¢ - S, the jump in
the value of this portfolio in one time step equals
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dV, = dC, — & - dS,
aC

=055 Si(dB{' — H**dt) — 6(0S,(dBf — H*dt))
0C  9C 5. 5a0°C o
+ (ustﬁ o O HE S SE u5t5)dt«

If we choose § := % to eliminate the stochastic noise, then

aC 920
av = (50 + o2 S 5% dt.
T

The return on an amount V; invested in the bank account equals rVdt at
time dt. For absence of arbitrage they must be equal, whence we obtain the
fractional Black-Scholes equation (“Wick” version):

oC 5 .., 0%C aC  ~

—— Ht*“*—-S S— —rC=0.

T R T
We can solve this equation on the segment [0,7] with boundary condition
c(z) = (z — K)T, where K > 0 is strike price, and obtain

~ In £ T—t T2H _ j2Hyo?
C(t,S)ZC(T_t,s):5¢(nK+’"( )+ ( )2>
o /T2 — 2
_ Ke—r(T—w@(ln F (T =) — (12 — M)
U\/m ?

where @( ) is a function of standard normal distribution. Note that it coin-
cides with the solution of usual Black—Scholes equation for H = 1/2.




6

Statistical Inference with Fractional Brownian
Motion

6.1 Testing Problems for the Density Process for fBm
with Different Drifts

As we have seen in Subsection 5.2.2, the form of geometric fBm (5.2.6) depends
on the kind of integral that is used in its calculations: if we use the Riemann—
Stieltjes integral,

1 t
s = sV +u/ Sﬁl)ds+a/ SMABH | then
0 0

Sgl) = Sél) exp{ut+ 0B}, and if the behavior of geometric process is guided
by the Wick integral,

1 t
@ = 8P 4y / SPds + o / S® & dBM, then
0 0

S’t(2) = 362) exp{ut + oBff — 102t*#}. So, the natural question arises: what
trend actually has geometric fBm? This question was considered in the paper
(KMVO05), and here we present a solution of this problem. In what follows

the notation X,, = op(l) means that X, £, 0, X,, = Op(1) means that
Clim limsup P{|X,,| > C} =0 . Assume that H € (1/2,1). For a fixed p € R

let P, »» be the distribution of the process
o2
X, = o—BtH+Mt—7t2H, 0<t<T (6.1.1)
in the space C|o 7} of continuous functions. Similarly, P, , is the distribution

of the process
X;:=0oBF +ut, 0<t<T (6.1.2)

in the space Cio 77
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Suppose now that we observe a trajectory of the process {X;, 0 <t < T}
in the space Co 7). Denote by Px the law of X. We want to test the following
complex hypothesis:

H:Pxe{P,oo: neR oceR}
against the complex alternative
A:Pxe{P,,:peRoeR}.

From the point of view of the general theory, models of observation (6.1.1)
and (6.1.2) are equivalent to the classical model

t
X, = / lu(t,8)dX, = oM + pBit' 2% — 0> H Byt (6.1.3)
0
and B
X; = oM + uBt' 2%, (6.1.4)

where ' t
)}t:/ lu(t, s)dXs, MtH:/ ln(t,s)dBY,
0 0

the kernel [y is defined in Section 1.8, By := CS)B(I —a,1l —a),
By := C’S)B(l +a,1+a).

Introduce the following density processes (Radon—Nikodym derivatives)
based on the observed trajectory of X:

. _ P00
X s p,0,0) = P (X) (6.1.5)
and JP
. e
fo(X i p,0) = P (X). (6.1.6)

Theorem 6.1.1. Assume we observe X on the interval [0,T]. We have

~ ~ 2
fi(X : pyo,0) =exp {a%XT —bXF— C%Tl_Qa +duT — k02T2H} (6.1.7)
o o

and
f2(X : p,0) = exp {aﬂ)?t - cM—QTl_Za} (6.1.8)
) s o2 ;
where ~ -
X} = [y s*dX,, a=Bi, b= zéjff;[), 6.19)
c=3B}, d=BiB:H, k= gt o

Proof. Follows immediately from (6.1.1) to (6.1.6) and the classical Girsanov
theorem. O
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6.1.1 Observations Based on the Whole Trajectory with o and H
Known

In this section we demonstrate how to test the hypothesis H against the

alternative A, when o is known and the whole trajectory {X; : t € [0,T]} is

observed. We can use the likelihood ratio to test this (for the likelihood ratio

see (Bor84), p. 319). In our problem the likelihood ratio I(X.) = I(X.|o) has

the form

sup,cg f1 (X;p,0,0)
SUP,ecRr f2 (X; Hy U) '

Note that in (6.1.10) both upper bounds are attained, since the densities f;
and fo are the quadratic functions of p. More precisely, we have

I(X.|o):=

(6.1.10)

subcp f1(Xs1,0,0) = exp { 32 (X)? T2 = 20bX, - T2

T = (6.1.11)
+ 2ab [, s2e"1X ds — 4a2k02T2H},
and the value of p giving the maximal value in (6.1.11) is
N aX; +dTo?
= — 6.1.12
HH 2cT1—2a ( )
Similarly, for the denominator in (6.1.10) we have
W X370
an the maximum in (6.1.13) is achieved by
~ CLXTTQO‘_l
= — 6.1.14
fia 5 (6.1.14)

We obtain the following theorem as a direct consequence of (6.1.10) —
(6.1.14):

Theorem 6.1.2. The likelihood [(X.|o) from (6.1.10) admits the representa-
tion

T
(X |o) = exp { —2abX T + 2ab / $2271X ds — 4a2k02T2H}.
0

Remark 6.1.3. Note that in the case when H = § we have (X |0) = 1. It
means that our method does not work in this case, because the drift (—o?%)
has the same order in ¢ as ut, and we cannot distinguish them. Therefore our

method works worse if H is close to %
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Next we describe the testing procedure. Given a confidence level 1 — p,
p € (0,1/2), consider the critical areas defined by K, := {X. : {(X.|0) > K, }
and Ky := {X. : [(X.|0) < k,}. The critical values 0 < k, < K, are chosen in
such a way that we have

sup P, (K1) < p, sup P, -(K2) < p. (6.1.15)
HER HER

The test is now clear: if X. € K; we accept H, if X. € K, we accept A. If
I(X.|o) € [ky, K,) then no hypothesis is accepted. Inequalities (6.1.15) show
that the probabilities of so-called errors of the first and of the second kind
will not exceed the level p.

Next we compute the critical values K,,k,. To compute k, recall that
under A the process X has the same distribution as the process cZ; + put.
Similarly, to compute K, we use the fact that under H the process X has the
same distribution as the process 0 Z; + ut — ‘7721521{.
We have that

T
(oZ 4+u-|lo) =exp { —2ab0M¥~T2a—|—2aba/ 52“*1M5d3—4a2k02T2H}
0

and

2

l(aZ. +p- —% . |O‘) =expl(0Z. + p - |o) exp {8a’ka*T?"}.

Hence, we have that

Py (Ky) = P{ — 2aboMH -T2

T (6.1.16)
+2abo [y s***MHds > log K, + 4a2k‘02T2H}
The random variable in the above expression is Gaussian with zero mean
and variance
02— a?HB20?1%H
N 1-H
Therefore, by (6.1.15)

log K
224 2), (6.1.17)

Puo(K1) =1-( =8 4 2

where @ is the distribution function of standard normal distribution. If £, is
2
K

such that 1 —®(&,) = p, then K, > exp{v§, — % }.
Similarly,

1 1 v
P, oo (K :1-@(4 (7) 7)7 6.1.18
1 r(2) pox (1) +3 (61.18)
that is k, < exp{—v, + %} Finally, we can choose K, = max(1,exp{v¢, —

2 —
S, k=K,
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6.1.2 Discretely Observed Trajectory and o Unknown

Assume now that we observe the process X discretely and the intensity o
of the fractional noise is unknown. We replace the parameter o in [(X.|o)
with a consistent estimate &,, where n is the number of time points, and
instead of the stochastic integrals w.r.t. X we will use sums in terms of the
increments of X. We obtain a quasi-likelihood ratio, which is constructed
from the observations. The critical values will be computed uniformly w.r.t.
all possible values of © and 0. We will give an asymptotic description of the
critical levels.

First, choose the critical values independently of the parameter o. For
K, > 1 we have that

1 /1
flogK,,—i—%ZQ §logK =/2log K,,
v

and from (6.1.17)

Puo(K1) <1—3(\/2l0g K,).
£2
Take K, := e and put Ki:={X. : (X)) > K}. Then we have

sup Puq(K7) < p. (6.1.19)
H,0>0

2
Similarly, using (6.1.18) and taking k7 = e~ F and if K3 ={X:1(X) <k}
we will have
sup P, .o (K5) < p. (6.1.20)
p,0>0
Put
Kg:={X 1k, <l(X) <K}

note that K is (a conservative variant of) the region, where neither the
hypothesis H nor the hypothesis A is accepted. Let C; := %.

1/H
Theorem 6.1.4. Assume that T > (‘é—?&,,) . Then we have that

I Cc2r2H
Zu([f) P, (Kj) < C—lT exp{ T } (6.1.21)
and copen
4 T
up Py g o(KY) < —TH {— i } 6.1.22
Sup Puo, (Kg) < c exp D ( )

Proof. We have that

* * (% 1 «
Puo(Kg) < Puo({X :1(X) > ko)) = 1— @(5 + - log k;p). (6.1.23)



332 6 Statistical Inference with Fractional Brownian Motion

We have the following inequality for x > 0:

1 .7.'2
1- Qp u < e 2.,
\/ 2 / \/ﬂx
Apply this ith art 1§ £ vae, \ 4
pply this to (6.1.22) with x = =43 — eopr 3, and if T > (071) we
obtain (6.1.21). The estimate (6.1.22) is obtained similarly. O

Corollary 6.1.5.
lim sup P, ,{K;} =0
T—oo

and
hm 5up o018} = 0.

Assume that we observe the process X at points 0 <t 1 < ---tpp, < T,
where t,, ;, € . Put A" = max{t,, 1, |7"|,T — tn,n} and assume that

lim A" = 0. (6.1.24)

n—oo

We will introduce a discrete version of the functional [(X.). Put sy = t,x,
Asp = sp1 — Sk, o = Xy, , and Azy = xp41 — 2. Assume that 77 is some
consistent estimator of o2. Put

bn(@1,. 0 2n) = exp ( — 2abT*CY) Z Spp1 (T — k)" “ Az,
k=0

+ 2abCY i‘ill (Z sy (s Aa:,> Asj, — 4a2kagT2H>.
k=1

With the help of constants K and &} from (6.1.19) and (6.1.20) define
the critical domains

Kiy = {1, Tnn) ER|ln(Tn, . o 00n) > K}
and
K5, ={(zn1,. - xnn) ERY(Tn1,- s Ton) < k‘;}

If the observations belong to K7, then H is accepted and if the observations
belong to K3, then A is accepted.

Theorem 6.1.6. Assume that we have (6.1.24) as n — oco. Then for any
uwEeR, 0> 0 we have that

P;Laa

ln(@nts s ) 257 U(X o) (6.1.25)

and

Ln(Znts -y Tnm) 25 U(X.|0). (6.1.26)
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Proof. We prove the claim (6.1.25) (the claim (6.1.26) is proved similarly).
Denote by I(X.|o) the random variable [(X.|o), when the process X, is re-
n(@n s s Ton)
the variable where we replace AX,, ; by 6, AZ,  + pAty — M. Then
for any € > 0,C' > 0 we have that

placed by the process 0 Z;

Puroollln(@n, - s Tnn) — (X lo)| > e}

< Pu,o,a{un(xn,lv sy I n)| >Ct+ P, 00{“(){ lo)| > C'}

+ P,.o0{|log ln(fc\nyl, N 10gl(X.|0)\ >ee O (6.1.27)
The first two probabilities can be chosen sufficiently small for large C' > 0.
The structure of the functionals I(X.|o) and 1,,(Zp1, ..., Zn,n), the facts that
G0 B 0, O Y] sy (T = 1)~ Asi = [y Lt s)ds and

CS)Z 2o 12514_‘)‘1 * As; Asy, H/ Za= 1/ lg (s, u)duds,
k=1 0

supply that it is sufficient to prove that
5 —a Piuoo
Ci )Z Spa1(T ABH "7 MH (6.1.28)

where AY}, := Y(x41)r/n — Yir/n for any process Y, and that

n k—1
C’S) Z si(_ﬁl <Z 579 (s — i)™ ABf) Asy,
k=1 i=1

T
Py / s2 1\ H g, (6.1.29)
0

To prove (6.1.28) consider for f,, r(s) = Cg’)s,;fl(T = 8%) " “Lisclsn,snr1)}

E <M;f c® Z 58 (T — s) " ABJ! >
T T _—
— 9Ha /O /O (Uit (Ty8) = for () (st (Totw) = f () [ — 2 2du ds.

We have that f,, r(s) 1 lg(T,s) for s € (0,T), and fOT fOT lg (T, 8)lg (T, u)
X |u — s]**"1duds < co. Therefore, by monotone convergence,

T T
| 0 @) = i 60 i (o0 = for ) = o s = 0
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as n — oo and (6.1.28) follows.
To finish, we prove (6.1.29). Denote g(s) := s>~ MH and

k—1
= 0(5)8204—1

gn(s) H Skt s (sk = 81) " AB 1 aeap 50000}
=1
Then, for any s € (0,77,
Elg(s) — gn(s)| < [s2*71 — {7 | EIMP | + 2Has?* !
1/2

% (B fy Jiy @ (s,0) = fos (@)Ut (5,7) = f () Ju = v dudr)

(6.1.30)

and as in previous inequalities, the second term on the right-hand side of

(6.1.30) goes to zero, moreover the left-hand side can be dominated, according
to Remark 1.9.5, by

5g)s2a—1T1—H + 51%1|UH(37 ')HLl/H[O,s] < 6;}3)T1—H’

where 52) are some constants, ¢ = 1,2, 3. From here
E| fOT(g(s) — gn(8))ds| — 0, as n — oo and we obtain (6.1.29).

Corollary 6.1.7. Assume that (6.1.24) holds. Then

limsup P, »(K7,) < p, limsup P, - (K5,) =0

and
lijm limsup(Py,o + Puo0)(Kj,) =0,

where K, == {(@n,1,-. ., Tnn) : k, < logln(Tn 1y ) Tnn) < K;}

Proof. By Theorem 6.1.6 we have, as n — oo:

PM,U(Kfn) - PM,U(K:T)a PM,UJ(KSTL) - PIMU(K;)
and
(PM,G + PM,U’U)(KSn) - (Pu,o + P, ,U,G')(Kék)‘
Hence the statements of the corollary follow from Theorem 6.1.6. O

Note that according to Corollary 6.1.7 the proposed test procedure has
asymptotically the level of errors less than or equal to p for both kinds of
errors. Note also that the probability not to make a decision goes to zero as
T — oo. It is also easy to see from the proof of Theorem 6.1.6 and Corollary
6.1.7 that this convergence is uniform for all u and all ¢ > oy > 0, where og
is fixed.
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6.2 Goodness-of-fit Test

6.2.1 Introduction

Suppose that H was tested against A, and we conclude that, e.g. A is true.
Consider a certain functional depending on the trajectory of the observed
process {X;,0 < t < T}. If the distribution of this functional under A is
known we can construct the corresponding goodness-of-fit test. For a given
confidence level we either reject A or do not reject A. If we reject A it means
that the observed trajectory does not fit the model described by A, and we
conclude finally in this case that both A and H are wrong.

If the parameters in the models are unknown we propose an asymptotical
test which provides a given confidence level as T — +o0.

6.2.2 The Whole Trajectory Is Observed and the Parameters
p and o Are Known

Introduce a functional which depends on the whole observed trajectory
{z(t),t € [0,T]}, in a linear way:

T
Qr ::/ Z(T,s)dXs,
0
where
Z(T, S) — 81/47H(T _ 5)3/47H.

We choose here the exponents i — H and % — H different from % — H in
order to obtain the functional which is essentially different from MH. The
reason for that will be clear from Theorem 6.2.3. The integral exists in both

cases when X; = 0B + ut and Xy = o B + ut — %thH.
Denote

5 7 17
B :B<7—H,7—H>, B :B(H f,f—H).
3 4 4 4 Tl

Theorem 6.2.1. Let the parameters p and o be known.

(i)  Assume that we have H: Xy = o B + ut — %ZtQH. Then
RE =TH=1Qr — uBs - T + 0?H - By - T ~ N(0,Cy0?);
(ii) Assume that we have A: Xy = o B + ut. Then
R :=T"'Qr — uBs - T'™" ~ N(0,Ca0?),

where

1 1
s :2Ha/ / (us) =T (1 = u)(1 — )i - |u — sP*~duds.
0 0
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Proof. Assume H. Then we have
T
Qr = a/ Z(T,s)dB? + yT'72*B3 — 0? HB4T (6.2.1)
0

and so "
RY = T’Ha/ Z(T,s)dB!.
0

Obviously, R is normally distributed with mean zero and with variance
T /T ) s
E(RT? = 02T2a712ozH/ / (us)* (T —u)(T—s)) 1 H|s—u** " duds,
o Jo

i.e. E(R¥)? = 02Cy and the first claim now follows.
Assume A. Then we can write Qr as

T
Qr = g/ Z(T,s)dB? + uT' =2 B3, (6.2.2)
0

and the second claim follows from (6.2.2) as above. O

The goodness-of-fit tests are based on the statistics

T -—

—H RH Voo R%

o(Cs) -

N

= o(Cy) T

Fix a confidence level 1 — p,p € (0, %), and let {z be a 2-fractile of a
standard normal law, i.e P{N(0,1) > £} = §. We reject H if |E1}~I\ > e,
and reject A if |§?| > s

Note that under H, E? Lo, —00, T' — 400, therefore the inequality
E? < —&g is an additional argument in favor of H.

Also, if A is true, then E? Lo, +00,T — 400, therefore the inequality
E? > &g is an additional argument in favor of A.

Remark 6.2.2. Suppose that in reality we have the model X; = anl
+ ut, Hy > H, not o BY + ut. Denote the law of X in this case by P. Then

_H TH—l
T

T
/ s17H(T — 5)i~HgpMh,
0

and E(E?)Q has the order T?H1=H) for large T, thus E? L 0o, T — oo,
and

— — HB,TH
Re =Ry 20240
(Co)z

Therefore our statistics can distinguish this case, too.

ocHB,TH p
=

=T""H0p(1) + -
R NTEE

+oo, T — oo.
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6.2.3 Goodness-of-fit Tests with Discrete Observations

Asymptotic Behavior of Discrete Statistics for ¢ Unknown and o

Known
Suppose for simplicity that we observe the values X«r,k =0,1,...,n. We

substitute in R%, RH a discretization of Qr,

o= () ()

Instead of 1 we substitute the estimates (6.1.12) and (6.1.14), respectively.
Thus we define

R :=TH=1Qr — fiaBsT" " + 62 HB,TY

and R R
R :=TH 'Qp — iuBsT' 1.

Under hypothesis H we have

n—1 1_ 3 _
§¥:O_T7H2<k:;1)i H(p%)i HABQITT (6.2.3)
k=0
CHR kN H kN H 1 02 N k1A
ar o (50) ) R e ()

(15 (Y () - ama

n n
and under hypothesis A

S S (s R (R L PN VAT )
k=0

n—1 1
k+1\i—H k
1-H rTl _k
Tl Z ( n ) (1 n)
k=0
To begin we find the rate of convergence of the integral sums in (6.2.3)

and (6.2.4) to the corresponding integrals.
Define R%# by

3_H 1
! - — —//J\,HBngiH.
n

.

T
7 / SAH(T — P HABY 4 BT (4 — fig)

and ﬁ;l similarly, with jigg replacing jia .
We study the differences RY — R and R — RH. Put
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n—1
k+ 1T kT
M G M
n

qn (T, s) = Z (T

k=0
1
1(6,8) =B(0+1,8+1) = / $°(1 —s)ds
0

338

and B 5
0B '

k=0

We have that
T
R~ B =1 [ (0 (1) - a(125)) B!
0

— T (1, (1/4-H,3/A—H) - 1(1/4—H,3/4— H)) (6.2.5)
and
RM _RH_RA _RA _ %2TH2H(IH (H —3/4,3/4 — H)
n—1 1\ /AH o\ 34— H
— —_ — —_ — H R
I(H —3/4,3/4 H)) T <;§)<( - ) (1 n> (6.2.6)

() ) OT)

Using self-similarity, we obtain that

T 2
E <TH‘1/0 (gn (T, 5) = q (T, S))dBf>

:E(/O1 (qn(l,s)—q(Ls))dBf)z. (6.2.7)

According to Remark 1.9.5 we have
1 2
E( [ 9 - a0 B ) < cnllontos) - a9, o (625)

Now we use these preliminary calculations to prove the next result. Let

n = n(T) be the number of approximation points

Theorem 6.2.3. Assume

1 3
(iii) For 5 < H <7,
" H
—— — 0, T — o0, with = T
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(iv) For3 < H <1,

T8
mHO,THoo, with 3 = H.
Then under H R _
RE —RH —0p(1), T— o0 (6.2.9)
and under A N _
R® — R} =o0p(1), T — oo. (6.2.10)

Moreover, under H E¥ ~ N(0,72), and under A E? ~ N(0,72), where

1
r? = 202aH/ / o(s)p(u) - |u— s** " duds,
o Jo

with

B
o(s) = s%*H(l - s)%*H - B—js*“(l —s5)” ™

Proof. To prove the claims note first that using Lemmas B.0.1 and B.0.2 from
Appendix B we have that R¥ — R = 0p(1) under H and R% — R% = op(1)
under A. Next, we substitute (6.1.12) into R¥ and obtain

T
SH O g s_y By _, —a H
R = o /0 (34 (T —s)i— 1 — B’ (T — s) )st .

This implies that under H ITZQH ~ N(0,72). Similarly, one shows that under A
R% ~ N(0,72). O

Remark 6.2.4. For the kernel Iy (¢, s) instead of Z(t,s) we obtain the degen-
erate distribution of R¥ and R%. This is the reason why we take the kernel
Z(t, s).

Goodness-of-fit Test

Based on Theorem 6.2.3, we construct the goodness-of-fit test similarly to

the one from Subsection 6.2.2. Choose {» as there. We reject H if ‘E?‘ >rée,

and we reject A if ‘ﬁ?‘ > 1&g . The test is applicable for large T" only, contrary

to the test from Subsection 6.2.2, because for the probability p(T") that H
is rejected when H is true, we have now

Jim pu(T) = p

and similarly for A and pa (7).
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6.2.4 On Volatility Estimation

In this subsection we construct an estimator for the parameter 0. We end this
subsection by giving the goodness-of-fit test for the case where both p and o
are unknown.

Introductory Computations for Volatility Estimation

Assume H. Then the background process is X; = o B + ut — %21521{, t>0.

We make observations at time points t; = ’%T, k=0,1,...,n. Put, as before,
AXp = Xiv1p—Xep, k=0,...,n—1. Then we have, with obvious notation,
that
o2
AX), = 0 ABE + uAty, — ?A(tZH)k,

k=0,...,n—1. Consider now AT)f,k and write this as

AXk 1 p,Atk 02 oH

. ABHpH . . . .

In (6.2.11) we used the notation e;, = =Z—. By self-similarity the distrib-
ution of the vector (eg,...,en—1) is the same as of the vector

BY - Bf' =B, |
- — < B - By ,By - B{',..., Bl - B}l

n—1»

T ey T
T s
where we again used self-similarity. Simple computation gives Fej, = 0,
Ee? =1 and

Beper == (Jk =1+ 127 =20k — 127 + |k —1 - 1)?H).

1
2
Ifk>101>1and % < H < 1, then, applying the mean value theorem twice
gives

0 < Eepe; < 2Ha(k —1)%* 1. (6.2.12)
Denote py := %, Y = % and rewrite (6.2.11):
o2
Yt = 0t + 1 — 7T7HnHAt2H.
To simplify the notation put
o’ H H oA_2H
Yy =oep+pu1 — =T n A7 k=0,1,...,n—1, (6.2.13)

2
where A72H = (EEL)2H _ (k)20 e yse a sample variance to estimate o :

~2 . N - 2 . _ 7y1++yn
= — th == 6.2.14
On = 7 (yn — Un) with 7, - ( )
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Let
Z = O€p — THnHATEH, k=0,1,...,n—1. Then
o2
Zp = 0&p — 7T’jfnh’*l (6.2.15)
and
— 2 —
52 = nﬁ 1(z,% —72) = - i 1 (5% — UTHnHEHAT,%H

2
+ UZTZHTL2H(AT72LH)2 2 (6.2.16)

4 UTHannT,%H _ U:TanzH(m%H)Q)

Again we have a problem with the rate of the discretization with respect
to the observation interval. We start with one lemma:
Lemma 6.2.5. Assume that X,Y are two standard normal random variables:

EX =EY =0and Var(X) =Var(Y) = 1.
Assume that EXY = q. Then
E((X?-1)(Y?-1)) =2¢* (6.2.17)

Lemma 6.2.6. With the notation above:
(v) IfH <3, then Ble2 — 1| < Cﬁ.

(vi) If H= %, then B|e2 — 1| < C’\/@,
(vii) If% < H < 1, then E|e2 — 1| < Cn2*1,

Proof. We have that

— 1
2 _1=- 21
I
From Lemma 6.2.5 and (6.2.6):
- 9 1 n—1 2
E(-1)"==5) EE€ -1+ Y  El-1(E-1)
[ n 0<j<i<n—1
C C
<=+ Y G- (6.218)
non 0<j<i<n—1
Note that .
Yoo G-t =d (- )t
0<j<i<n—1 j=1

This and inequality (6.2.18) give the result. O
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We have o
z, L ont-1 (Bf’ - 5TH) (6.2.19)
so that )
0< B2 < gn2! (2E(B{’)2 + %T“f). (6.2.20)
Estimation of ¢
Theorem 6.2.7. Assume H. If n(T) is such that TH% — 0, then

TH(G2 — 02) = 0p(1).
Assume A. Then

(viii) If + < H < 2 and n(T) is such that s

n('T) — 0, then TH (52 — o2)

= Op(l). .
(ir) If H=2 and n(T) is such that %%(T)) — 0, then TH(52 — o2)
= Op(l). .
) If3 < H <1 and n(T) is such that —1—= — 0, then TH (52 — o2
() 4 n(T) Y n
= Op(l).

Proof. Using Lemma 6.2.5 and (6.2.16) we obtain that

o TH T2H T3H
T7E|g: - 6% < C (THE@ — 1]+ + + ) .

nl 20

where C' depends on 2. Under H the statement follows from Lemma 6.2.6.

Under A we have )

~ no 5 —
5*= o (F - @),

n—1
and
TH
TH . E|G? - o?|<C <THE5 -1+ = 2a) :
The claims (viii)—(x) follow from Lemma 6.2.6. O

6.2.5 Goodness-of-fit Test with Unknown p and o

If the parameter o is unknown, then using the observation Xir, k =
0,1,...,n, with n = n(T), an estimator 62 = 72 is constructed. The con-

struction of this estimator is explained in Subsection 6.2.4.
If

3H
Ti1-—2a
n(T)

—0, T—o0 (6.2.21)

uaa

we have (62 — o?) - TH 0, when H is true.
If conditions ( iii)—(x) of Theorem 6.2.7 hold, we have the same conver-
gence for (62 — 02) - TH then A is true. Define the statistics
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SA .= 'RA | SH.—,'RH| (6.2.22)

Consider the model with unknown u and o.

Theorem 6.2.8. (a) Assume that H is true, and that n(g’% —0,T — oo.
Then
S’}{ — N(0,1) in distribution.

(b) Assume that A is true and conditions (vii)—(x) of Theorem 6.2.7 hold.
Then §75 — N(0,1) in distribution.

Proof. (a) Suppose that H is true. By Theorem 6.2.7 we have 62 — oTH# £ o.
Rewrite (6.2.22) as

GH -1pH
Sy =r" Rplo=z-

SHIS

7 (B + BaT' " (i — pnalo—s) + HBAT (5 - 0%)).

q>\ B

Now, & — ¢ and HB,TH (G — o) 2,0, as T — 0. From (6.1.12)

BT (i1 — pstlo—s) equals BsTH (52 — 02) £ 0, (6.2.23)

where By is some constant.

And now from (6.2.23) and Theorem 6.2.7 the convergence S — N(0,1)
follows.

(b) If A is true then TH (52 — 02) 2 0 holds under the conditions of the
Theorem 6.2.7. The proof now follows in the same way. ]

The goodness-of-fit test is now organized in such a way. We reject H if

|SH| > £e, and we reject A if |SA| > £z. Asymptotic relations for the errors
pa(T) and pu(T) are the same in Section 6.2.4.

6.3 Parameter Estimates in the Models Involving fBm

In this section we consider very simple diffusion models involving fBm and in
some cases the Wiener process. Our goal is to demonstrate the properties of
drift parameter estimates depending on the form of the model. We follow but
slightly modify an approach of (MRO1).
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6.3.1 Consistency of the Drift Parameter Estimates in the Pure
Fractional Brownian Diffusion Model

First we consider the “pure” fractional diffusion (nonlinear) model and estab-
lish strong consistency and asymptotic normality of the maximum likelihood
drift parameter estimate.

The Girsanov Theorem for the Pure Fractional Diffusion Model
and Likelihood Ratio for Drift Parameter

We assume that the fBm B with H € (1/2,1) is defined on a probability
space (2, F, P) and denote by (F;);>0 the filtration generated by B . Con-
sider a diffusion equation containing a stochastic differential driven by B¥:

dX; = Qa(t, X;)dt + b(t, X;)dBI, Xi—o = Xy € R, (6.3.1)
OeR, 0<t<T, T>0.

Differential equation (6.3.1) can be rewritten in the integral form
t ¢
X:=Xo+ 9/ a(s, Xs)ds —|—/ b(s, X,)dBE, t € [0,T). (6.3.2)
0 0

Here we use pathwise construction of the integral w.r.t. fBm. Suppose that
equation (6.3.2) has unique pathwise solution. (Sufficient conditions of exis-
tence and uniqueness of the solution on the interval [0,7] are presented in
Theorem 3.1.4.)

Now, let T" > 0 be fixed. We are in a position to find the likelihood ratio

Zgﬁgg for the probability measure Py(t) corresponding to our model and the

probability measure Py(t) corresponding to the model with zero drift. Suppose
that the following assumption holds:

(i) b(t, X¢) #0,t €[0,T] and % is a.s. Lebesgue integrable on [0, T.
a(t,Xt)

Denote ¢, := DL X,) and introduce the new process

t
BH .= BH 4 9/ psds. (6.3.3)
0

Let also the following conditions hold (recall that & = (1 — 2a)'/2, @ = (1 —
2a)~1/2):

(ii) / L (t,8)|@(s)|ds < 0o, t€[0,T]

0
(iii) H/Ot lg(t,s)p(s)ds = &/Ot 0sds, t€0,T]

and

¢
(iv) E/ §26%ds < oo, t € [0,T).
0
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Then L; = fot so‘ésdés is a square-integrable martingale for the Wiener
process B w.r.t. the measure Py(t) such that fot I (t,s)dBH

=a fg s~ dB,. According to the Girsanov theorem for fBm (Theorem 2.8.1),
under the assumptions (i)—(iv) and

(v) Eexp {Lt - ;(L>t} =1,

the process EtH is an fBm on [0,T] w.r.t. the measure @ defined via the
relation

g =oe {130 el 654

Remark 6.3.1. We can try to present the likelihood ratio (6.3.4) as a function
of the observed process X;, according to statistical tradition. Toward this end
recall that

t t t
/zH(t,s)dsza/ s*adBS:/ Lu(t, s)b~(s, X.)dX,.  (6.3.5)
0 0 0

Suppose that the process J; := fg I (t,s)b~ (s, Xs)dX, admits a differential
of the form dJ; = F(t, X;)dXy; then, evidently,

t t
Ly :/ 5%0,dB; :a/ s226,F (s, X;)dXs,

0 0
and 6, is a functional of the process X under the conditions of Lemma
6.3.2 (see below). In turn, the existence of the differential dJ; can be es-
tablished separately for fot I (t, s)psds (it is realized in Lemma 6.3.2) and for
fg lg(t,s)dBE = M but the last problem is of the same complexity as the
original one. Another possibility is to establish, similarly to Lemma 6.3.2, the
conditions of the existence of the derivative (s*d;)’, in general, this problem
is solvable; then we can rewrite

¢
L; =t“6,B, —/ By(5%8,)"ds,
0

and, of course, B is an adapted functional of X. Indeed, we can present B
via X with the help of B (see (6.3.5)), relation (6.3.3) and the equality
BE = [{b7 (s, X, )dXs — [y psds.

Consistency of the Drift Parameter Estimates

In order to find the maximum likelihood estimate of the parameter 6, we
use likelihood ratio (6.3.4), which can be rewritten as

dPe(t) {/t n 1 /t 20 $2 }
=ex s%04dBs — = s%62ds ¢,
dPy(t) P 0 2 Jo
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where 05 is defined according to the integral representation (iii). First we
establish sufficient conditions ensuring the existence of representation (iii).

Denote (t, z) = Z((zg, so that (¢, X¢) = o(t), I(t):= fg L (t, 8)p(s)ds.

Lemma 6.3.2. Let ¢(t,x) € C1[0,T7] N C?*(R). Then fort >0

I'(t) = C(H)y(0,0)t 7> +/0 lu(t,s) (Wi(s, Xs) + 00 (s, Xs)a(s, X)) ds

t S
—aC® / s gy / (0 (1, Xo) + 00, (1, X Jau, X)) du ds

0

0
t s
+(1— QQ)CS)t_Qa/ 520‘_2/ ut (s — u) YL (u, Xy )b(u, X )dBH ds
0 0
t

+CPt! / O = ) O (u, Xo)b(u, Xo)dB
0

where C(H) = (1 —2a)B(1 — o, 1 — a)CS’).

Proof. According to the It6 formula (2.7.3),

o0 = 6(0,0) + / (s Xo) + 0 X Pa, X))

+/s by (u, X )b(u, X, )dB,. (6.3.6)
0

Substituting (6.3.6) into the integral I(¢) = fot 1 (t, s)psds, we obtain

t s
1(t) = C(H,1)(0,0)¢=2% + / Lu(t,s) / ! (u, Xo)du ds
0 0
t s
o[ 1 ! (u, X)) a(u, X, )du d
+ / H<t,s>/0 4, X, X du ds

t s
+/ Iy (t, s)/ Yl (u, Xo)b(u, X, )dBEH ds, (6.3.7)
0 0
C(H,1) = C’S)B(l —a,1 — a) and now our aim is to differentiate I(t). The

first term on the right-hand side of (6.3.7) is obviously differentiable, i.e. can

be presented as C(H)(0,0) fot s72%ds. The second and the third terms can
be transformed using integration by parts:

S S S u
s_a/ wé(u,Xu)du:/ u_o‘wg(mXu)du—a/ u_l_o‘/ Py (v, X, )dvdu,
0 0 0 0

and
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o /oS W (us Xo)a(u, Xo)du = /08 u” Yl (u, Xo)a(u, Xy)du

o ) e e “ l
a/o u /wa(u,Xu)a(v,Xv)dvdu. (6.3.8)

According to representation (6.3.8), there exist a.s. the fractional derivatives
of order «, i.e. the derivatives of fractional integrals:

d

t s t
— | 1lult, s)/ wg(u,XU)duds:/ L (t, 8);(s, Xs)ds
dt Jo 0 0

t s
_QCS)/() 57170“(75—3)70“/O ¥y (u, Xy )du ds. (6.3.9)
t s t
%/0 zH(t,s)/O w;(u,xu)a(u,xu)duds:/o L (t, )0 (s, X )a(s, X, )ds

t s
o CMO(S) sl _g)@ P! (u, Xy)a(u, Xy )duds. 6.3.10
" x
0 0

Further, it follows from Lemma 2.8.2 that

t s
/ZH(t,s)/ ! (u, X )b(u, Xy )dB2 ds
0 0

t s
:C}L?’tl-?a/ s2a—2/ u' (s — u) YL (u, Xo)b(u, X, )dBHds. (6.3.11)
0 0

The proof follows immediately from relations (6.3.9)—(6.3.11). O

Now, we can rewrite (6.3.6) as

T . 2 T
L A T ey LR e

It follows from (6.3.12) that the maximum likelihood estimate is achieved
under the condition

T 9 T
/ 7 (s)aB* — 2 / $2(1'())2ds = 0,
0 0

o

whence . N

~ o« *J'(s)dBs

5, = Lo L (5)dBy (6.3.13)
Jo 82*(I'(s))?ds

Using Lemma 6.3.2, we obtain
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t A~
B + 9@/ s*I'(s)ds = By, (6.3.14)
0

where Et is a Wiener process under measure Q. Substituting (6.3.14)
into (6.3.13) we obtain

&fot s*I'(s)dBs

9, =9+ Qo= = T
! S 52 (I (s))2ds

(6.3.15)
Recall that under condition (iv) fot s*I'(s)dBs is the square-integrable
Py-martingale with angle bracket fot s2%(I'(s))%ds.

Theorem 6.3.3. Let the conditions of Theorem 3.1.4 and (i)-(v) hold for
any T > 0 and, moreover,

(vi) /000 s2*(I'(s))%ds = 00 a.s.

Then the maximum likelihood estimate §T is strongly consistent as
T — 0.

Proof follows immediately from representation (6.3.15) and from Theorem

6.10 (LS86). This theorem establishes that é*) — 0 as. if X; is a square-

integrable martingale and (X)_ — oo a.s. In other words,

fot s*I'(s)dBs

0”0, t— oo,
Ji 52 (I'(s))?ds

with Py-probability 1.
Ezample 6.3.4. Consider the linear model of the form

dX; = 0X.dt + X, dBE.

In this case p; = 1, so fot dsds = fot lg(t,s)ds = C(H,1)tt=2,
§; = C(H)t=2*. Hence
ot
~ a [y s™*dBs
O, =0+ —=0____—°
Ot e

Since a f(f s~*dBy is the square-integral martingale with the angle bracket

~ [t .—«
t'=2 _ o0 when t — oo, then, according to Theorem 6.3.3, % — 0,

a.s.ast — oo . R
So, the estimate 0, is consistent with probability 1.
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6.3.2 Consistency of the Drift Parameter Estimates in the Mixed
Brownian—fractional-Brownian Diffusion Model with “Linearly”
Dependent W, and BtH

Now we consider the linear mixed Brownian—fractional-Brownian diffusion
model represented by the stochastic differential equation of the form

dX; = 0Xdt 4+ 01 XdB; + 09 X:dBY (6.3.16)

Xi—g = Xp € R, 0<t T, T >0, {0,0’170'2} C R, o109 < 0, 0 is a
parameter that we need to estimate.

We suppose that the Wiener process B and the fBm B in (6.3.16) are con-
nected via the relations (1.8.3), (1.8.5). The integral form of equation (6.3.16)
is

t t t
Xt:Xo—i—H/ Xsds+al/ XSdBS+02/ X dBH, 0<t<T. (6.3.17)
0 0 0

The existence and the uniqueness of the solution of the equation (6.3.17) was
established in Theorem 3.2.1.

The Girsanov Theorem for the Mixed Fractional Diffusion
Model

First we try to change the probability measure Py for the another measure
Py, Py(T) ~ Py(T) in order to exclude the drift 6 X;dt from equations (6.3.16)
and (6.3.17).

We introduce probability measures Fy;,¢ = 1,2 and FPp;,i = 1,2 as fol-
lows. The probability measures Py 1(t) and Py i(t) are determined by the
following condition:

APy (1) { /t 1 /t
) = ex sdBM — = 2ds
iR, () P, VP T ) v

for a nonrandom function s such that fg Y2 ds < oo and

t t
Eexp{/ wsngﬂ—l/ wfds}:l.
0 2 0

Here the process Bt(l) is created according to the Girsanov theorem,

t
BV .= B, +/ P ds, (6.3.18)
0

and Bt(l) is a standard Wiener process with respect to the probability measure
Py1(t). The probability measures Py 2 and Py o(t) satisfy the relation

P, t 1 t
dPys(t) _ eXp{/ %8, dB®) — 7/ §2052 ds},
dP072(t) 0 2 0
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where d, satisfies the relation fg la(t,8)|0s]ds < o0, t € [0,T] and admits the
following integral representation:

¢ ¢
/ lp(t,s)psds = &/ s ds, (6.3.19)
0 0

)

the Wiener process B§2 is defined from the equation

t

t L
/ lg(t,s)dBH? = 52/ s~ dB®.
0 0

Moreover, the process
t
Bf? .= Bf’+/ @, ds (6.3.20)
0

is a fractional Brownian motion on [0, T] with respect to the measure Py o(t).
So, the total drift coefficient equals

t t
01/ wsderUg/ psds = 6t,
0 0

and if we suppose that the functions ¥ and ¢ are continuous, we obtain that

O'l’l/lt + 02t = 0. (6321)

dPy,i(t)
dP(),i(t)

Obviously, from (6.3.18)-(6.3.20) and since the likelihood ratios
must coincide, we obtain that

t
MHE =MF +&/ s %psds
0

and .
MP = MH +a/ Sds,
0

whence t%d; = 1, t € [0,T]. Moreover,

t t
/ L (t, s)psds = &/ s %yds.
0 0

Multiplying by (¢ — s)*~! and integrating, we obtain

t s
C}(qs) / (t—s)>1 / u” (s —u)" “pududs
0 0

t s
:&/ (t—s)’kl/ Sududs, (6.3.22)
0 0
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and the Fubini theorem applied to both sides of (6.3.22) gives

t t
C(H,Q)/ u” %, du = g/ (t —u)*dydu,
0 0

«

whence
1

LT O, 3)

Here C(H,2) = CS)B(CE,]. —«a),C(H,3) = % Substituting (6.3.23)
into (6.3.21), we obtain a Volterra equation of the second kind, with weak
singularity, of the form

t
t"/ (t —u)* tu™ ey du. (6.3.23)
0

t
02 —-1 —
e t—u)® abd :07
or
+021/t(t—u)“_1 du= (6.3.24)
Pt EET pudu =, 3.

where p; = t~%Yy, e, = 0t~*. We solve (6.3.24) using successive approxima-
tions

¢
(nt1) , 02 1 a—1 (n),q,, _ ©t
— t— du = —. 6.3.25
P04 P [t = (6:3.25)
Denote for simplicity C' := Z=5; and start with pgo) =0, pgl) = o+ Then

we obtain from (6.3.25) that

t
(2) C a—1 €t
=== [ (t- wdu+ -
Pt ( )01 0( u) €y 0U o1

It is very simple now to prove by induction that for n > 1

n—1 t k
(n) _ 1 § Mk t— ka—1 r (Oé) d €t
pt o1 ( C) /0 63( S) F(ka) s+ o1 ’

k=1

and the solution p; = lim, . p,E”) evidently can be represented as a series

1 & ¢ r
pr=— (—@”/egpwwwl (@) g 4 Ct.
g1 1 0

o I'(na) o1
Hence
— — 0 - n[m(a) ! —« na—1 0
Y =t%p = o n:1(—C) Tna) /0 sTUt—s) ds + e
_ 9 .- n_ 1) no
= U—IF(I —a)) (-0) Fn~Da 1) + o (6.3.26)
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The series on the right-hand side of (6.3.26) can be expressed in terms of the
Mittag—Leffler function E,(z) := .7, WZH) (see, for example, (P099)),

Ay = —Ct*n(sinma) " By )0 (—CI(a)t®),

and in these terms 0
P = —(Ar +1).
01

Therefore, the likelihood ratio for the mixed fractional Brownian model equals

dPgJ(t ( 2
7dP0)1(t = exp {/ YsdBy 1 / Uy ds}

0 0 162 [t 9

whence the maximum likelihood estimate for 9 equals

3 _ fo (A(s) + 1)dB{"
T fot(A(s) + 1)2ds

Jo (A(s) + 1)dBs + £ [T (A(s) +1)2ds fo s)+ 1)dB,
=01 =
fo )+1 st fo 2ds
For the demonstration of the consistency of the estimate 91 with proba-
bility 1, it is sufficient to prove the divergence of the integral fo s)+1)%ds
when t — oo. Note that C' < 0 since % < 0, and
S (—CP @) s S (e () e
— I((n—=1a+1) = = I'in+1)

no

= Y (-CT(@)" Sy =esp {(-CT (@)} — oo,
n=1 '

when ¢ — oo because a > 0 and —CT'(«) > 0. Note that §; = t~*1); satisfies
conditions (ii)—(vi). So we have proved the following result.

Theorem 6.3.5. The drift parameter mazimum likelithood estimate of the
linear Brownian—fractional-Brownian model (6.3.16) is consistent with prob-
ability 1.

The Asymptotic Normality of the Maximum Likelihood Esti-
mates

First, consider one of the limit theorems for the stochastic integrals w.r.t.
the Wiener process {W;, Fi, ¢t > 0}. Let {h(s),s > 0} be an Fs-adapted pre-
dictable function such that E fo h?(s)ds is finite for any ¢ > 0 and
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Fn(t) = o{h(s), W(s), s <nt}. Consider the sequence Y, (t) := Om h(s)dWs.
Evidently, Y;,(t) are F, (t)-square-integrable martingales, ¢ € [0, T], and their
angle brackets equal (Y;,) (t) = Ont h2(s)ds. Suppose that the following con-
ditions hold:

(vii) there exists an increasing real-valued sequence {A,,, n > 1} such that
A, T 0o, n — oo and for some constant ¢y > 0 we have that

/ h*(s)ds - A2 L e,
0

Consider the sequence of normalized square-integrable martingales
Xa(t) == At Ont h(s)dWs. Then (X,,) (1) = [i" ha(s)ds - A;? L ¢o, there-
fore X,, satisfy conditions of Theorem 4.1 (LS86), if we consider the set of
convergence points consisting of one point ¢ = 1. By using this theorem we
obtain the following result:

Lemma 6.3.6. Let condition (vii) holds. Then the random variable

7, = /0 " h(s)aw, - ( /O ' h2(s)d8> o

weakly converges to the random variable cal/QN(O, 1).

Proof. From the Theorem 4.1 (LS86) and the condition (vii) we obtain
that X, (1) weakly converges to the value Z(1) of the Gaussian martin-
gale Z with independent increments such that (Z) (t) = cot. Evidently,

Z(1) ~ c(l)/ ’N (0,1). Moreover, from the same condition, the weak conver-
gence holds:

Zp=—"" X, (1) = ¢ 2N(0,1).

O

Consider the estimate 5,11 satisfying relation (6.3.15). We see that for the
pure fractional diffusion model h(s) = A(s) + 1 and is nonrandom. Therefore
we obtain from Lemma 6.3.6 that

1/2

(/ (A(s) + 1)%) (@: —0) — N(0,1).
0
Moreover, under the assumption

(viii) there exists an increasing real-valued sequence {4,,, n > 1} such that
A, 1T 0o, n — 0o and

n
/ $2(I0)2ds - A2 5 po,n — oo,
0
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we have a weak convergence
1/2 N
oo/ 2 A (6, — 6) — N(0,1).

In this sense we say that the estimates én and 5711 are asymptotically normal.

6.3.3 The Properties of Maximum Likelihood Estimates
in Diffusion Brownian—Fractional-Brownian Models
with Independent Components

Now we consider an “opposite” situation when the components of the dif-
fusion model are independent, more exactly, the processes B¥ and B are
independent, where B¥ is a fBm and B is a Wiener process.

The Estimates of the Drift Parameter in the Mixed Brownian—
Fractional-Brownian Diffusion Model Where B; and B/ are Inde-
pendent

Let the diffusion equation contain stochastic differentials with respect to
fBm and the Wiener process,

dX, = 0X,dt + 0, X,dB, + 02X, dB}",

Xieo=X0€R, 0<t<T, T>0,{0,01,002} CR\ {0}, where the processes
B; and B are independent. Evidently, we can rewrite the solution of our
simple linear equation as

X: = Xoexp{0t+ o1B; + JgBtH —1/20%t}.

It was mentioned by B.L.S. Prakasa Rao in the private conversation that
we cannot prove the equivalence of the observation of the whole process X;
and the observation of its two independent components, B; and B, i..,
we cannot separate these components (note that the measures corresponding
to these processes are singular). So, we suppose that we observe both the
components. Let, as before, § be the parameter to be estimated. We shall
try to represent the estimate of 6 via the components B; and B} because it
seems to be impossible to represent it via the whole process X;. Let Py be
the basic probability measure corresponding to the process X. We introduce
probability measures Py ;,7 = 1,2 and Py ;,7 = 1,2 as follows. The probability
measures P 1(t) and Py i(t) are determined by the following condition:

dPy,q(t) {/t 1) 1/t 2 }
——=L =e sdBy — = 2 ds
aPor(d) P, Y 3/,

for a nonrandom function v such that fot 2 ds < oo and

t t
Eexp{/ ¢SdB§1)—1/ wﬁds}:L
0 2 0
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Here the process Bt(l) is created according to the Girsanov theorem,
t
BV .= B, +/ Wby ds (6.3.27)
0

and Bt(l) is a standard Wiener process with respect to the probability measure
Py1(t). The probability measures Py 2 and Py o(t) satisfy the relation

dPy 5 (t) { /t 5 1 /t
: = ex $0,dB® — = s295% ds b
dPO,Q(t) p 0 s 2 0 s

where 0, satisfies the relation fot L (t,8)|0s]ds < oo, t € [0,T], admits the
following integral representation:

t

t
lg(t,s)psds =a | dsds, (6.3.28)
0 0

the Wiener process Bt(Z) is defined from the equation

t t
/ lg(t,s)dBH? = a/ s~ dB?,
0 0

and the process
t
BtH’2 ::Bf—k/ Ys ds
0

is a fractional Brownian motion on [0, T] with respect to the measure Py »(t).
So, the total drift coefficient equals

t t
0‘1/ z/)sds—i—ag/ psds = 0t
0 0

or, if we suppose that the functions 9 and ¢ are continuous,
O'li/Jt + 02t = 0. (6329)

Since B; and B} are independent, the final probability measure Py(t) is the
product of the measures Py 1(t) and Py 2(t). Thus the final likelihood ratio is

dPG(t)_ H ' (1)_1 ' 2 }
dPO(t)_eXp /Oi,bsst 2/0 V5 ds

t 1 t
X /saasngm—f/ sQaéfdsH
0 2 0

t t 1 t
:exp{/ Vs dB§1>+/ 5%8, dB? —5/ (Y2 + s2*52) ds}. (6.3.30)
0 0 0
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Solving equations (6.3.28) and (6.3.29) with respect to the functions ¢, and
d¢, respectively, we obtain

1

Ve = —(0 — o2¢1), (6.3.31)
01

5 =a ( /O t lu(t, s)¢5d5>t . (6.3.32)

Substituting equalities (6.3.31) and (6.3.32) into likelihood ratio (6.3.30), we
get at the point t = T that

/

dPg(T) 1 T (1) ~ T s (2)
- - —0yp,) dB! o ., B!
Py (T) exp{a1 /0 (0—o02ps) dB; +a/0 s /0 lg(s,u)p,du | dB;

S

- % /OT [01%(9 — 09p,)? + s2°a ((/0q Lr (s, u)pu du);)T ds}. (6.3.33)

If follows from (6.3.33) that the maximum likelihood estimate 7 L. of the pa-
rameter 6 satisfies the equality

1 (T 1 [T
— | dBWM — 7/ (0 — o9p,)ds = 0,
g1 Jo g1 Jo

which can be rewritten as follows:

T

O’lBé«l) + 02/ psds — 0T =0.
0

This gives us the following estimate of the parameter 0:

alB(Tl) N o9 fOT s ds
T T '

0 = (6.3.34)

Now we solve equation (6.3.29) with respect to the function ¢, and substitute
it into equation (6.3.34):

T
gL—0+ % (B;” - / b ds) . (6.3.35)
0
Substituting (6.3.27) into (6.3.35) yields
0L =0+0,—L. (6.3.36)

It is evident that the estimate (6.3.36) of parameter 6% is strongly consistent.
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We can construct another estimate of the parameter §. The function §; is

!

expressed via ¢; by equality (6.3.28). Denote also ¢; := (fot Lp (t, 8)1)s ds) .
t

Then

!/ /

dy=a </0 U (t, s)ps ds)t = Ji?a </0 I (t,s)(0 — olws)ds>t
—a (9 ( tlH(t,s) ds) - ‘“gt>
g9 0 + g9

0
- &(—C(H)t‘m - ﬂg), (6.3.37)
g2 g2
where C(H) = C’S)(l - 2a)BlC§§),B1 = B(1—a,1—a). Using equal-
ity (6.3.37) for likelihood ratio (6.3.30), taking the logarithms, differentiating
with respect to 8, and equating the derivative to zero, we obtain at the point

t= T T T
9C(H
/ s~@dB® — a/ (()3—2“ — glg;) ds = 0,
0 0 02 02
or T T
C(H
/ s~ *dB® — a0 S U 1-2a +aZt / 1 (T, s)hs ds = 0.
0 02 02 Jo

This implies another estimate for the parameter 6:

ood [i s dBY + o [ 1u(T, s)ibs ds
CS)B1T1_2C“ '

62 = (6.3.38)

Now we substitute the expression (6.3.31) for the function ; into rela-
tion (6.3.38) and obtain with C(H,1) = C?) B, that

~9 . B 09
9T =0 C(H, 1)T172O¢

T T
/ (T, s)gs ds—az/ s~*dB®?
0 0

Recall that &fOT s—«dB{? = foT ly(T,s)dB12.
Further,

T T T
/ 1g(T, s)ps dsf/ Ig(T, s) dBf’Q:f/ (T, s)dB.
0 0 0

So, the second estimate of the parameter 6 is given by

02

T
n2 _ o2 H
eT_9+C<H71)T1_20/0 Iy (T, s)dBH,

or
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o200 fOT s« dés
C(H,1) T'—2« ’

0% =0+ (6.3.39)
where B, is some Wiener process. The strong consistency of the estimate 5%«
is also clear. R R

Now we compare the estimates 61, and 62. First we compute the vari-
ances of the remainder terms in formulae (6.3.36) and (6.3.39) and compare
oiT~' and 03C(H,1)72T?*"!. Since H € (3,1), it is obvious that there
exists a number N such that o?7~! < ¢3C(H, 1) 272071 for all T > N. It
means that the variance of the deviation between the estimate 9} and true
value is smaller than that of the corresponding deviation between the estimate
9% and the true value. It this sense, the estimate 9% is better than 9

Local Asymptotic Normality and Asymptotic Eﬂ"‘imency of the
Estimate of the Drift Parameter in a Linear Brownian Diffusion
Model

Consider (only for comparison with the fractional case, see below) a pure
linear Brownian model

1 1
dXte = W@Xt dt+cX;dBy, Xi—g = Xg, c € R\ {0}, te [O,T], 0 € (2,1:| .

Put © = (0,00) and let § € ©. According to Definition 2.1 (IK81), a family
of measures Py(t) has the property of local asymptotic normality (LAN) at
the point 6 € © as t — oo, if

APy a(t,0)u(t)

Zto( ) dPe()

= exp {Uft,g - %uQ + i (u, 0)} (6.3.40)

for some function A(¢,6) and any number u € R, where &9 = N(0,1) as

t — oo with respect to the measure Py(t), and (:(u,0) g 0, t — oo, for

all numbers v € R. We say in this case that the LAN property holds for the
family of measures Py(t) as t — oo at the point 6.

Theorem 6.3.7. The LAN property holds for the family of measures Py(t)
as t — oo at any point 6 € O.

Proof. We change the probability measure Py(t), which corresponds to the
process X! for the measure Py(t). Then the drift §X; dt disappears and we
obtain

t
X$=X0+c/ X%dB;,
0

where B; = By + t0/(cT?) is a Wiener process w.r.t. the measure P(t).

Consider the likelihood ratio corresponding to this change of measure with
s = 0/(cTP):
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dPy(t P B A
0()=exp /—st—f/ ———ds

O L,
= X _— - .
P B Tt T 2 (P2

Now we consider the linear model with a parameter 6 shifted by A(t)u.
The likelihood ratio for such a change of measure is of the form

P, t u(t) 1 ] 1 2
% — exp {cTﬁ(e + A(t)u)B; — W(e + A(t)u) t}
and
dPGJrA(t,O)u(t) _ dPGJrA(tﬁ)u(t) . <dp9(t)>_l
dPp(t) dPy(t) dPy(t)
= exp {chﬁ(g + A(t)u)l?t - 2(715)2(9 + A(t)u)*t — C}Lﬁét - ;(c;iﬁ)?t}

o8 Tt Y (erpyt T (crhy?
Set A(t) := ¢T'®/\/t. Then

dPp1 A(t,0)u(t) _exp{ B 1, ua\/i}

—exp{UA(t)§ 1, A%(¢) . A(t)u@t}.

dPy (1) Y2 T ars
Since B;/v/t = N(0,1) under both the measures Py(t) and Py(t) and, in
addition, ufv/t/(cI”) — 0ast — oo for T >t and a > 1, the above definition

implies the LAN property for the family Py(t) as t — oo and at any point
0 € 0. O

Consider now the asymptotic efficiency of the estimate of parameter 6.
According to definition (11.3), introduced in the monograph (IK81), an esti-
mate {6;,t > 0} of a parameter ¢ is asymptotically efficient under the LAN
property for the cost function w(A~1(t,0)x) at the point @ if

lim lim  sup Ep,pw (A7 (¢ 0)(6; — 8)) = Ew(N(0,1)).
0—0%—00 |g/—0|<$5

Let w € W, where W is the class of functions defined on © and satisfying the
conditions:

1) w(u) > 0, w(0) = 0, w is a Borel function, continuous at zero and not
identically zero;

2) wlu) =w(=u),

3) the set {u: w(u) < ¢} is convex for any ¢ > 0.
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Further we consider the cost function w (A~!(¢t,0)z) € W), where W, C W
is the class of functions of W that have a dominant polynomial.

Consider the maximum likelihood estimate of the parameter 8 in a linear
Brownian model

—~ EAN 8 B
To prove the asymptotic efficiency of the estimate 5,5 we use Theorem 1.3
of Chapter III from (IK81). According to this theorem, the estimate 6; is as-
ymptotically efficient in the sense mentioned above if the following conditions
hold:
(a)  limy_oo A7Y(t,02)A(t,01) = B(6;,602) exists, the convergence is uniform
in ; € © and B(01,6,) is continuous in 6;;
(b)  ¢(0) := A=1(t,0)(8, — ) = N(0,1) uniformly in §; € O as t — oo with
respect to the measure Py(t);
(c) for any N > 0 random variables |A=L(t,0)(8; —6)|~, are Py(t)-integrable
for any 6 € © uniformly in ¢ > to(N).

cT?
Vit

Condition (a) holds in our case because A(t) = does not depend on

6. Now we check condition (b):
~ N 1
0)=A"'t,0)(0; —0) = ——B, = B;—
Gt (0) (,)(t ) o ¢ Pt t\/i
under both the measures Py(t) and Py(t). Condition (¢) now is evident. Thus
the estimate 6, is asymptotically efficient as ¢t — oc.

Local Asymptotic Normality and Asymptotic Efficiency of the
Estimate of the Drift Parameter in a Linear Fractional Brownian
Diffusion Model

Now consider a pure linear fractional Brownian model

= N(0,1)

1
dX, = ﬁeXtdt—kXtdBf,Xt:O = Xo,0 €0, [0,T),3€ (1 H,1].

It will be clear later that in this model it is sufficient to consider
8 e (1 — H, %) Now ¢y = 0/T7. Then

_ t t /] 0 Con e
a/o dsds = /O ZH(t,s)ﬁds = ﬁC(H,1)tl 2a 5, = (0/T°)C(H, 1)t~ 4.
Therefore 8, = T%a fot s~ dB,C(H, 1)~ 21 where
t R t 0
52/ s~*dBs = a/ 5 *dBs + —C(H, 1)t 72«
0 0 T
In other words,
. TG [ s~ dB,
Gt =40 + — af() i _ .
C(H, 1)t —2
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Theorem 6.3.8. The LAN property holds for the family Py(t) as t — oo at
any point 6 € ©.

Proof. We change the probability measure Py(t) for the measure Py(t). As a
result, the drift 6 X; dt disappears. The corresponding likelihood ratio is given

dPy(t) { /t ~ 1 /t 20 02 }
=ex §%,dBs — = 59462 ds
dPo(t) P 0 2 Jo

— QC(H,].)& ! —a gD 1 2,12«
exp{/o s7dB, — 55 (0C(H, 1))% .

Now we consider the linear model with parameter 6 shifted by A(t)u and
denote for simplicity K = C(H).

Poyawu(t) O+ADWK 1, A
A /o s
1 t1—2()¢
— 5755 (0 + AWK —— }

The likelihood ratio for this model is of the form

dPysao)u(t) _ dPyraou(t) <dP0(t)>l
dPy(t) — dPy(t) dPo(t)

K t PN 1 K t172a K t172o¢

Set A(t) := TPa/Kt'~H. Then the likelihood ratio obtains the form

dPoy a(t,0yu(t) ~ fot sT@dB, 1 , ufKti—H
— L —expl ot — —U" — —————— 5.
dPy(t) ti-H 2 TP
Since . R
~*dB,
afo‘;T‘ = N(0,1)
and
wd K1 —H

Tha — 0 ast— oo,

the LAN property holds for the family Py () as t — oo at any point § € ©. O
Now we check the asymptotic efficiency of the estimate @ Consider con-

ditions (a)-(c). Two of them, (a) and (c), are evident. To check (b) we use the
following relations:

C(H)'=H TP [T s~ dB,
TPa  C(H,1)t—2

G(0) = A7N(1,0)(0, — 0) =
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( fg s_o‘st) o
= = N(0,1).
Therefore, the estimate §t of the parameter 6 is asymptotically efficient as
t — 00.

Remark 6.3.9. The maximum likelihood estimators for the drift coefficient in
the stochastic differential equations involving fBm were considered also in the
paper (TVO03), the estimate of the diffusion coefficient for diffusion driven by
fBm is contained in the paper (LL0O).



A

Mandelbrot—van Ness Representation: Some
Related Calculations

Now we calculate the constant that appeared in the Mandelbrot—van Ness
representation of fBm (see Section 1.3, Theorem 1.3.1).

Lemma A.0.1. The following equalities hold:

-1 . 1/2
o = ([ sy - ) - O

Proof. Recall that the constant Cg) is chosen to normalize the fBm
—H o
B, =C /RkH(t,u)qu =CPr(1+a) /R(I_l(oj))(x)sz

(see Lemma 1.1.3). Therefore, the first equality is evident, since

/R(kH(t,u))2du = /0 (t = 2)* = (—2)%)%dz + /Ot(t —z)%%dx

— 00

e (/000((1 + 8)* — 5%)%ds + 22)

We obtain the second equality if we note that

1
_27T]R

[ @10 @ (P 10)(@) do

and according to Theorem 1.1.5

~ —_—
(0,2

F(I2100) @) = Ton WA exp { 2" sign A}

it)\_l .
_— B |)\|7°‘exp{%sign)\}.
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Therefore,

1 _
/ (11 0.0) (2)2dz = / [N 12|\ 220y
R ’ 2 Jr

1 1
= — [ (1 —costA)?|A| 727 2d\ + — / sin® tAJA| 7247 2dA
27 Jr o s

1 [%(1—cost))? 1 [ sin? )
- ;/o \2o+2 dA+ ;/0 2042 dX

_pn l/oo (1—2cos/\)2d)\+1/OO SinZ)\d)\ _ . 21 ’
T Jo A2at2 mJo A2et2 2H sinwHI'(2H)

whence the proof follows.
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Approximation of Beta Integrals
and Estimation of Kernels

These results were obtained by E.Valkeila (KMVO05).
Lemma B.0.1. Assume that —1 < § <0, 8> —1 andn > 2. Then for 3 >0

|I(§a /8) - 171,(57 ﬂ)‘ S 01(63 5)“70‘717 (BOl)
and with —1 < 8 < 0 we have

[I(cv, B) = 1n(8, B)] < Ca(8, B)yn= P~ (B.0.2)
(for the value of the constants, see the proof).

Proof. We start the proof with
1(5,8) — 1n(5,8) = /n (1 —s)lds —n=0"!
0
n—2 k+1 5 8
B kE+1 k
51 —5)% — 1-— 2
+3 . ( - (& ) as

1
Jr/ $°(1—s)Pds —n P71,
1—1

n

We work first with the integral on (0,1/n). We have

/n s9(1 —s)Pds —n 071 = /n (35 - n_‘s) ds
0 0

+/Oi' 0 ((1 - 1) ds; (B.0.3)

here .

0< /" (55 - nié) ds =—6/(6 +1)n=0"1,
0
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1
|/ 175 71>d5|§/ s°ds
0

and if § < 0 and s < 1/n, then 0 < (1 —5)3 —1 <277 1. Use these estimates
n (B.0.3) to obtain

if 3> 0, then

|/TL S(1— 5)Pds — 01 < C1(6, B)n—" . (B.0.4)
0

Next, we work with the integral on (1 — 1/n,1). We have

/: $(1 = 5)Pds —n—F-1 = /11 (1 -9 —n7) ds
+/11_ (1—s)7 (s° —1) ds,

n

and this gives
’/ 51 —s)Pds —n=P~ 1‘ < |ﬁ|ﬁ B (B.0.5)

We continue with the middle term. We have
n—2 kt1 ) 8
n 1 1
(/ s‘s(l—s)ﬁds—(k+ ) <1—k> )
Pt k n n n
n—2 k1 §
Z(/ (55<k+1>>(1s)5d5>
k n
k=1 ,
n—2 k+1 5 I}
n (k+1 8 k
1-— —(1-— ds|. B.0.
ST (o (-8))w) wos

The first term on the right-hand side of (B.0.6) is always positive, when § < 0.
We use the estimate

s = ((k+1) /n)’ < (k/n)" = ((k+1) /n)".

If 3> 0, then (1 —s)% <1 and so for the first term on the right-hand side of

(B.0.6) we obtain
</(k+1)/n (55 (k1 D) /n)é) (1—s)° ds>
k/n

Tml



B Approximation of Beta Integrals and Estimation of Kernels 367

_61 Z (k6 (k+1) ) nT'7h (B.0.7)
If 8 <0 then
(k+1)/n ) , -
/k/n (567((k+1)/n))(175) dsgmnégl(kg

—k+1)") (=R = (0= R+ 1)) <0 0 (K- (1)),

and this gives the estimate

n=2 [ (k1) /n
0=y (/k (5" = ((k+1) /m)™) (1 = 5)" ds) <n 271 (B.0.9)

k=1 /n

Finally, the second part of the middle term is

(k+1)/n
(/ ((k +1) /n)° ((1 s —a- k/n)ﬁ) ds> :
k/n

If 8 > 0, then with calculations similar to above

M ‘

[ Jn| <0707, (B.0.9)

and if 8 < 0, then
1 B, —a—pB—1
|| < —BQ n . (B.0.10)

Combining the bounds (B.0.3)—(B.0.7) and (B.0.9) we get C1(9, ), and com-
bining the bounds (B.0.3)—(B.0.6), (B.0.8) and (B.0.10) we get C2(4,0). O

Lemma B.0.2. Put
i( ka1 1/4—H 1_& 3/4—H ka1 2H_ E 20
= n n n
Eal H-3/4 E\3/AH
—2H< - ) (1—n> 5).

|H,| < Cp~ (L) (B.0.11)

Then

Proof. The proof of Lemma B.0.2 is similar to Lemma B.0.1. O

The proof of the following lemma is obvious.
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Lemma B.0.3. Consider the expression

S (CORON

Then
(B.0.12)
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bracket, 205

Burkholder—Davis—Gundy inequalities,

47

capital, 305
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complex alternative, 328
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composition formulas for fractional
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conditionally Gaussian pair, 296

confidence level, 330

convolution, 59

critical areas, 330

critical values, 330

density process, 66
derivative operator, 160
directional derivative, 145
discounted gain, 305

divergence operator, 161
Dudley integral, 42

entropy maximal estimates, 41
errors of the first and of the second
kind, 330

field with independent increments, 119
fractional analog of the Burgers
equation, 321

fractional Brownian motion, 7

approximation, 71

backward, 11

forward, 11

geometric, 302

Mandelbrot—van Ness representation,
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multi-parameter, 117
fractional derivative

Marchaud, 3

two-parameter, 119
Riemann—Liouville, 2
two-parameter, 119

Weyl representation, 3
fractional Doleans exponent, 191
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fractional Wick exponent, 256
fundamental martingale, 27

Gaussian subspaces, 59
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for fractional integrals, 2
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local martingale, 66
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modulus of uniform continuity, 87

Molchan martingale, 27

observation process, 291
observed trajectory, 328
optimal filter, 291

optimal filtering problem, 292
Orlicz space, 280

portfolio, 305

quasi-likelihood ratio, 331

random walk, 80

rate of convergence of Euler approxima-

tions, 243
regularly varying, 91
rescaled adjusted range statistic or
R/ S-statistic, 301
Riemann—Liouville fractional integral
on (a,b), 1
on R, 1
two-parameter, 118

self-financing strategy, 305, 306
semi-metric, 41
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spectral density function, 8
spectral representation, 8
stochastic derivative, 145
stochastic differential equation
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moment estimates for solution, 56
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weak solution, 263
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Skorohod, 158, 161
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