LAKSHYA (JEE)

Magnetism and Matter

DPP-03

1. A small coil of N turns has an effective area A and carries a current I. It is suspendered in a horizontal magnetic field \vec{B} such that its plane is perpendicular to \vec{B} . The work done in rotating it by 180° about the vertical axis is

(A)	NAIB	(B)	2 NAIB
(C)	2π NAIB	(D)	4π NAIB

- 2. A circular coil of radius 4 cm has 50 turns. In this coil a current of 2 A is flowing. It is placed in a magnetic field of 0.1 Weber/ m^2 . The amount of work done in rotating it through 180° from its equilibrium position will be
 - (A) 0.1 J (B) 0.2 J
 - (C) 0.4 J (D) 0.8 J
- **3.** A circular loop of area 1 cm², carrying a current of 10 A, is placed in a magnetic field of 0.1 T perpendicular to the plane of the loop. The torque on the loop due to the magnetic field is
 - (A) zero (B) 10^{-4} Nm
 - (C) 10^{-2} Nm (D) 1 Nm
- 4. The magnetic moment of a current carrying loop is 2.1×10^{-25} amp \times m². The magnetic field at a point on its axis at a distance of 1 Å is
 - (A) $4.2\times 10^{-2}\ weber/m^2$
 - (B) 4.2×10^{-3} weber/m²
 - (C) 4.2×10^{-4} weber/m²
 - (D) 4.2×10^{-5} weber/m²
- 5. Two identical thin bar magnets each of length l and pole strength m are placed at right angle to each other with north pole of one touching south pole of the other. Magnetic moment of the system is
 - (A) *ml* (B) 2 *ml*
 - (C) $\sqrt{2} ml$ (D) $\frac{1}{2} ml$

- 6. The magnetic field due to a short magnet at a point on its axis at distance X cm from the middle point of the magnet is 200 Gauss. The magnetic field at a point on the neutral axis at a distance X cm from the middle of the magnet is
 - (A) 100 Gauss(B) 400 Gauss(C) 50 Gauss(D) 200 Gauss
- 7. Two like magnetic poles of strength 10 and 40 SI units are separated by a distance 30 cm. The intensity of magnetic field is zero on the line joining them
 - (A) At a point 10 cm from the stronger pole
 - (B) At a point 20 cm from the stronger pole
 - (C) At the mid-point
 - (D) At infinity
- 8. Point A and B are situated along the extended axis of 2 cm long bar magnet at a distance x and 2x cm respectively. From the pole nearer to the points, the ratio of the magnetic field at A and B will be
 - (A) 4:1 exactly (B) 4:1 approx.
 - (C) 8:1 exactly (D) 8:1 approx.
- 9. Ratio of magnetic intensities for an axial point and a point on broad side-on position at equal distance d from the centre of magnet will be or. The magnetic field at a distance d from a short bar magnet in longitudinal and transverse position are in the ratio

(A)	1:1	(B)	2:3
(C)	2:1	(D)	3:2

10. The work done in rotating a magnet of magnetic moment 2 A-m² in a magnetic field of 5×10^{-3} T from the direction along the magnetic field to opposite direction to the magnetic field, is

(A)	zero	(B) $2 \times 10^{-2} \text{ J}$
(C)	$10^{-2} J$	(D) 10 J

ANSWER KEY

- **1.** (**B**)
- 2. (A)
- **3.** (A)
- 4 (A)
- 5. (C)
- 6. (A)
- **7.** (**B**)
- 8. (D)
- 9. (C)
- **10.** (**B**)

Note - If you have any query/issue

Mail us at support@physicswallah.org

