LAKSHYA (JEE)

Electric Charges and Field

1. ABC is an equilateral triangle. Charges +q are placed at each corner. The electric intensity at *O* will be

- **2.** An electron and a proton are in a uniform electric field, the ratio of their accelerations will be
 - (a) Zero
 - (b) Unity
 - (c) The ratio of the masses of proton and electron
 - (d) The ratio of the masses of electron and proton
- 3. The distance between the two charges $25\mu C$ and $36\mu C$ is 11 cm. At what point on the line joining the two, the intensity will be zero
 - (a) At a distance of 5 cm from $25\mu C$
 - (b) At a distance of 5 cm from $36\mu C$
 - (c) At a distance of 10 cm from $25\mu C$
 - (d) At a distance of 11 cm from $36\mu C$

- 4. Two charges +4e and +e are at a distance *x* apart. At what distance, a charge *q* must be placed from charge +e so that it is in equilibrium
 - (a) x / 2
 (b) 2x / 3
 (c) x / 3
 (d) x / 6

5. The intensity of electric field required to balance a proton of mass $1.7 \times 10^{-27} kg$ and charge $1.6 \times 10^{-19} C$ is nearly (a) $1 \times 10^{-7} V / m$ (b) $1 \times 10^{-5} V / m$ (c) $1 \times 10^{7} V / m$

- (d) $1 \times 10^5 V / m$
- 6. On rotating a point charge having a charge q around a charge Q in a circle of radius r. The work done will be

(a)
$$q \times 2\pi r$$
 (b) $\frac{q \times 2\pi Q}{r}$
(c) Zero (d) $\frac{Q}{2\varepsilon_0 r}$

- Deutron and α particle are put 1 Å apart in air. Magnitude of intensity of electric field due to deutron at α particle is
 (a) Zero
 - (b) 2.88×10^{11} newton / coulomb
 - (c) 1.44×10^{11} newton / coulomb
 - (d) 5.76×10^{11} newton / coulomb

DPP-05

- 8. Two positive charges of 20 coulomb and Q coulomb are situated at a distance of 60 cm. The neutral point between them is at a distance of 20 cm from the 20 coulomb charge. Charge Q is
 - (a) 30 C
 - (b) 40 C
 - (c) 60 C
 - (d) 80 C

9. Four charges are placed on corners of a square as shown in figure having side of 5 cm. If *Q* is one microcoulomb, then electric field intensity at centre will be

- (a) $1.02 \times 10^7 N / C$ upwards
- (b) $2.04 \times 10^7 N / C$ downwards
- (c) $2.04 \times 10^7 N / C$ upwards
- (d) $1.02 \times 10^7 N / C$ downwards

- **1.** (C)
- 2. (C)
- **3.** (A)
- **4.** (C)
- 5. (A)
- 6. (C)
- 7. (C)
- 8. (D)
- 9. (A)

Note - If you have any query/issue

ANSWERS

Mail us at support@physicswallah.org