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Preface

This volume begins with auxiliary results in partial differential equations
(Chapter 10) that are needed in the sequel. In Chapters 11 and 12 we study
the behavior of the sample paths of solutions of stochastic differential
equations in the same spirit as in Chapter 9. Chapter 11 deals with the
question whether the paths can hit a given set with positive probability.
Chapter 12 is concerned with the stability of paths about a given manifold,
and {in case of two dimensions) with spiraling of paths about this manifold.

Chapters 13-15 are concerned with applications to partial differential
equations. In Chapter 13 we deal with the Dirichlet problem for degenerate
elliptic equations. The results of Chapter 12 play here a fundamental role. In
Chapter 14 we consider questions of singular perturbations. Chapter 15 is
concerned with the existence of fundamental solutions for degenerate para-
bolic equations.

Chapters 16 and 17 deal with stopping time problems, stochastic games
and stochastic differential games.

This material (except for Chapter 10) appears for the first time in book
form. It is based on recent research. We hope that this book will increase
and stimulate interest in this emerging area of research which involves
stochastic differential equations, partial differential equations, and stochastic
control.

I would like to thank Steve Orey for some useful suggestions in connection
with the writing of Chapter 14.






General Notation

All functions are real valued, unless otherwise explicity stated.

In Chapter n, Section m the formulas and theorems are indexed by (m.k)
and m.k respectively. When in Chapter I, we refer to such a formula (m.k)
(or Theorem m.k), we designate it by (n.m.k) (or Theorem n.m.k) if [+n,
and by (m.k) (or Theorem m.k) if I=n.

Similarly, when referring to Section m in the same chapter, we designate
the section by m; when referring to Section m of another chapter, say n, we
designate the section by n.m,

Finally, when we refer to conditions (A), (A,), (B} etc., these conditions are
usually stated earlier in the same chapter.
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Auxiliary Results in Partial Differential
Equations

1. Schauder’'s estimates for elliptic and parabolic equations

In this section and in Sections 3 and 4 we state some estimates for solutions
of the Dirichlet problem for elliptic equations and for solutions of the
initial-boundary value problem for parabolic equations. These estimates do
not depend on the fact that the corresponding boundary value problems do
in fact have unique solutions; they are therefore called a priori estimates.
These a priori estimates provide a powerful tool in the theory of partial
differential equations. They will be needed in the subsequent chapters.
We begin with the Schauder estimates for elliptic operators

Lu= > a,-j(x)ux‘x’ + X bx)u, + c(xu (1.1)
iLj=1 i=1
in a bounded domain D.

Denote by d, the distance from a point x of D to the boundary 9D of D,
and set d,, = min(d,, d,). Define

k —_ k+a |u(x) - u’( y)l
H(d*u) = Jj;l'ebbd’y FERT
@¥uly =Lub|dPu(x)

m
|| = 20 2 |dDlul,
i:z

b

where Diu is the vector whose components are all the jth derivatives of u,
and the inner summation on the right is taken over all the components of
D'u. Define also

|t e = U] + DH(d™D™) (0<a<1)
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where H,(d™D™u) is the vector with components H, (d™w,}, w, varies over
the components of D™u, and the summation is taken over the components of
H,(d"D™u).

If a function u has m continuous derivatives in D, then we say that u
belongs to C™(D). If the mth derivatives of u are uniformly Hélder con-
tinuous (exponent a) in compact subsets of D, then we say that u belongs to
Cm+a(D)‘

Theorem 1.1 (Schauder’s interior estimates). Assume that

n

Y afx&s > K if x€D, ¢erR” (K, >0), (12)

ij=1
iaifia < K, |dby|, < K,, |d%]|, < K,. (1.3)
If Lu = f(x) in D and if |d*|, < o, u€C?*%(D) and |u|, < o, then
|ulera < Kllulp + |%1,) (L4)
where K is a constant depending only on K,, K,, n, a.
Next define
— u(x) —
H.(w) = Lub, |u(x) uiy)l ’
xyeD Ix - y|
m
W= 3 Dty where  [ol = Lub[o(x).
j=0 *

Tilmea =Tulpm + SH(D™) (0<a<l)

We shall now assume that 3D is in C%*“, i.e., 9D can locally be written in
the form

X = (X oo K Ky e e s Xy) (1.5)

for some i, where A is in C2*“ in some domain. A function ¢ defined on 3D
is said to belong to C2**(3D) if in terms of the local C%*“ representations
(1.5) of 3D this function ¢ is in C2**.

It is not difficult to see that, when dD is in C2*%, the function ¢ is in
C2+%(3D) if an only if there exists a function ¥ with [¥[,, ., < oo such
that ¥ = ¢ on dD. We define [¢[#,, = Lub. [¥],,, where the “Lub.” is
taken over all such ¥’s,

Theorem 1.2 (Schauder’s boundary estimates). Assume that (1.2) holds
and that

Wa< K,, |B] < Ky, Telo< K, (16)
Assume also that 3D belongs to C***, ¢ € C***(dD) and [f[, < 0. Ifu is
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a solution of Lu = fin D, u = ¢ on 3D and if [u[,,, < oo, then

Tulgra < K(T#]54q + lulo + TF1.) (L7)

where K is a constant depending only on K,, K,, a, and D.

For a proof of Theorems 1.1, 1.2 the reader is referred to Agmon et al. [1].
Consider next the parabolic operator

du _ < d%u ¢ Ou _ Ou
Lu - — = > ay(x, t) o, o, +i§1 b,(x, t) o, +c(x, thu %

(1.8)

with coefficients defined in a bounded domain Q. We assume that Q is
bounded by the closure of a domain B on ¢ = 0, the closure of a domain B,
on t = T and a manifold S lying in the strip 0 < ¢t < T.

Set S, = § N {t < 7}. We introduce the distance function
d(P,P)={|x—x°+ |t —¢) (1.9)

where P = (x, t), P = (%, ). If R = (£, ) belongs to Q. we denote by dy the
distance from R to B U S, ie,,

dy = inf d(R, P).

ij=1

1/2

PEBUS,
If R, P are any points in Q, we define dpp = min(dy, dp).
Define
u(P) — u(R
H (d™u) = lub. d;";"‘l ( ) l(., )
B PREQ d(P, R)

dmuly = Luby d7u(P).

|d™u

for any 0 < a < 1, and
|l o = |ula + 2 |dD,ul, + 2 1d°Diul, + |d*Dyul,

= |d™uly + H,(d™u)

[

where D, u is the vector (du/dx,, ..., du/0dx,), and the summations are
with respect to the components of D,u and D}u.
We now state the Schauder interior estimates for parabolic equations.

Theorem 1.3. Assume that

i a;(x, &g > K& if (x.t)eQ, teR" (K, >0), (110

ij=1

Iaijla < K2; |dbi|a < KZ’ |d2c|a < K2' (111)
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If Lu —3u/dt = f(x, t) in Q and if |d*f|, < o, |uly < 00 and u, D,u,
DZ2u, D,u are Holder continuous (exponent a) in compact subsets of Q with
respect to the metric (1.9), then

|tlera < K(Julo + [dfl.) (L12)

where K is a constant depending only on K,, Ky, n, a

We next define

ula = Julo + Hy(u),
Tul2vo = Tulo + 2 D], + 3 |Dul, + 1D,

A function ¢ defined on BU § is said to belong to C 2+’J‘(B U S) if there
exists a function ¥ defined on Q such that [¥[,,, < 0 and ¥ = ¢ on
B U S. We define [¢] 3., = Lub. [¥[,, , where the “Lu.b.” is taken over all
such ¥’s,

The domain Q is said to have the property (E) if for every point P on S
there is a neighborhood V such that V1 S can be represented in the form

xl’ = h(xl,.. . ,xi_ul, xi+1, voroa )xn,i t)

for some 1 < i < n, and h, D,h, D?h, D,h are Holder continuous (ex-
ponent a) with respect to the metric (1.9).

We can now state the Schauder boundary estimates for parabolic equa-
tions.

Theorem 1.4. Assume that (1.10) holds and that

lagf < Ko TBl.< Ky Je[o< K, (1.13)

Assume also that Q has the property (E), €C***(BUS) and |f|, < e

If u is a solution of Lu —du/ot = f(x,t) in Q, u =¢ on BUS and if
U] g4 < o0, then

m2+a< K(m;+a +|—f|a) (1'14)
where K is a constant depending only on K|, K, a, and Q.
For a proof of Theorems 1.3, 1.4 the reader is referred to Friedman [1].

thp case “I]'\DI‘Q f] ig f]'\p dicstance Frnm x

NAiS il 22

AT ITVWEY A LIVAFL U a.-a. VALV 148 T

ds to the
to a subset I of aD. Theorem .3 extends to the case where dp is the distance
(in the metric (1.9)) from P = (x, f) to the set TN {s; s < ¢} where I' is a
subset of the normal boundary; see Friedman [1].
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Remark 2. Theorem 1.4 can be used to prove existence of solutions u with
[ul g2« < oo of the first initial-boundary value problem. Thus, if L, Q, ¢, f,
are as in Theorem 1.4 and if Lé — 3¢/ 3t = f for x € 0B, then there exists a
unique solution u of

Lu—%%=f in Q, u=¢ on BUS,

and [u],,, < o; the function Lé — d¢ /3¢ at (y, 0), y€ 9B, is computed
by taking an extension ¥ of ¢ into Q with |¥|,,, < c0, and computing

im(LY —0¥/0t)(x, t) as x-»y, t | 0. For the proof of this result, see
Friedman [1].

2. Sobolev’s inequality

We review a few facts used in the standard theory of partial differential
equations.

The following notation will be used: x = (x,, ..., x,) is a variable point
in R*, D,=9/dx;, D* = Df*--: D where a = (a,,...,aqa,), a
=ol---al, o= a1+ e o, x% = x{ - - - x% If £ is an open set

in R", C’"(SZ) (C™(&)) is the set of all real-valued functions continuous
(uniformly continuous) in { together with their first m derivatives; Cg*({) is
the subset of C™({2) consisting of all functions with compact support;
C*(Q) = M>_,C™R) and C{*(Q) consists of all functions in C () with
compact support.

If u, v are locally integrable in Q and if

fguD“¢dx= (—l)la'fvrpdx

for all ¢ € C5°(), then we say that v is the ath weak derivative of u and
write: D% = v in the weak sense, or D*u = v (w.d.).

Definition. Let m be a nonnegative integer and let 1 < p < co. The space
W™ P(§2) consists of all functions u in the real space LP(§2) whose weak
derivatives of all orders < m exist and belong to L?(£l). The space W™ P({)
is normed by y

/p

> fg |D%u(x)|P dx}

la|<m

lulf,, = Hullwms @) = {

is
Hil ..l’t

-.--u

easy to show that W™P({l) is a Banach space; if p = 2, then it is a

nace,
|

Theorem 2.1. Let Q be a bounded domain with C* boundary and let j be a
positive integer and p a real number > 1. Then there exists a positive
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constant €, depending only on Q, p, j such that, for any 0 < € < ¢,

?—1.;9 < e|u|?;p + C|u|gp forall ueCi(Q) (2.1)

where C is a constant depending only on Q, p. i €

|ul

For proof see Nirenberg [1] or Friedman [2].
We introduce the notation

Lub. [v], = Lub, [o(x) — o(y)
Q nye |x — y|

oo = { [l ax} " p>o,

= h = A
ul, g l.lbb.ID u| [ﬁ|2=h 1.13b.{D u|

3

ifp<O0,h=[-n/p,h+n/p=0,

lul, o =[D"], = 2 1.lb.b. [DPu],
|Bl=h

if p<0, h=[—n/pl, h+n/p<0 where —a=h+n/p.
If #=R", then we write |u|, instead of |lul,, g
The extended Sobolev inequality in R" asserts the following.

Theorem 2.2, Let q, r be any numbers satisfying 1< q, r< oo and let j, m
be any integers satisfying 0< j<m. If u is any function in C§*(R™), then

|Diul, < CID™ulf|ul™" (2.2)
where
-1—=1+a(l—ﬂ)+(1—a)-l—
p n rooon q
for all a in the interval
1
m
where C is a constant depending only on n, m, j, q, 1, a, with the following
exception: If m — | — n/r is a nonnegative integer, then (2.2) is asserted
only for (j/m) < a < 1.

€ ac<l,

For proof the reader is referred to Nirenberg [1], Gagliardo [1, 2], or
Friedman [2].

From Theorem 2.2 one can derive (see Friedman [2]) the corresponding
extended Sobolev inequality in a bounded domain:
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Theorem 2.3. Let  be a bounded domain with 9 in C™, and let u be any
Junction in W™"(Q)NLI(RQ), 1 < r, g < oo. For any integer j, 0 < j < m
and for any number a in the interval j/m < a < 1, set

-l-=L+a(l——n1)+(1—a)%’.

p n roon
If m — j — n/ris not a nonnegative integer, then
; a l-a
ID'qu,B < C(I“"?ﬁ, r) (lul(s)l, q) . (2'3)

If m — j — n/r is a nonnegative integer, then (2.3) holds for j/m < a < L.
The constant C depends only on Q, r, g, m, |, a.

We state two special cases which are most useful.

Theorem 2.4. Let  be a bounded domain with boundary 3 in C*, and let
u be any function W™ (R), 1 < r < 0. Then, for any integer j, 0 < j
< m,

Q o 1_71.1 m
|ulf,p < Clulm,r’ p n + r n

provided p > 0. The constant C depends only on 2, m, j, r.

(2.4)

Since we have not assumed that 99 is in C™, we cannot deduce Theorem
2.4 as a truly special case of Theorem 2.3. It is a special case of Theorem 2.3
when j = 0, m = 1. But once (2.4) is known for j = 0, m = 1, the proof for
general j, m follows by induction on m.

Theorem 2.5. Let @ be a bounded domain with boundary 3§ in C*, and let

4 be a function in W™ P(Q) for some p > 1. If m > n/p, then u(x) has a
continuous version (which will be denoted again by u(x)) and

max |u(x)| < Clul?;,,p, (2.5)
Q
u(x) — u
Lub, & eyl e (2.6)
=yl |x -~y P
where
Lom _ Ll w=1 4 %51 a=2 iy Doy
k n p° k ’ k k ’
the constant C depends only on Q, m, p.
If m = 1, then Theorem 2.5 is a special case of Theorem 2.3. For m > 1,

one proceeds by .induction on m.

Theorem 2.4 can be used to prove the following compact imbedding
theorem.
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Theorem 2.6. Let § be a bounded domain with boundary 9 in C'. Let r
be a positive number, 1 < r < oo, and let j, m be integers, 0 < j < m. Ifp

is any positive number > 1 satisfying
11,1 m
p n r n

then the imbedding u—u from W™ () into W?(Q) is compact.

Thus, from any bounded sequence {#,} in W™'({2) one can extract a
convergent subsequence in W7 ().
For proof of Theorem 2.6, see Friedman [2].

3. LP estimates for elliptic equations

Let L be the elliptic operator (1.1) with coefficients defined in a bounded
domain D. We shall assume:

i aix)&t, > piff  if xeD, éeR*  (p>0); (31)
ij=1

b,(x), c(x) are measurable functions, (3.2)

2|b )| + |e(x)| <€ K, if xeD;

i=1
the a,(x) are continuous in D. (3.3)

The last condition implies that there is a function w(p) (p > 0) such that

2 la(x) — a,(y)| < w(lx — y|) fxeD,yeD; wlp) 0 ifplO0.
i,j=1
(3.4)
Consider the Dirichlet problem
Lu(x) = f(x) in D, (3.5)
u=0  ondD. (3.6)

If f and the coefficients of L are Holder continuous and if ¢ <0,
dD € C?, then by Theorem 2.4 there exists a unique solution of (3.5), (3.6).
When the coefficients of L satisfy only (3.1)-(3.3), we have to introduce a
weaker concept of solution.

Definition. A function u(x) in W*?(D) is said to be a strong solution of
(3.5) if (3.5) holds a.e. in D when the derivatives of u are taken in the weak
sense.
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Thus the concept of a strong solution is weaker than the concept of a
classical solution (i.e., a solution u in C*(D)).

There is also a weaker concept of solution: A function in L?(D) is a weak
solution of (3.5) if

fD u(x)L*¢(x) dx = fD flp(x) dx  forany ¢€CE(D).

This definition requires that the adjoint L* be defined. This concept will not
be used in the future.

Denote by Wy'?(D) (p > 1) the completion in the space W7 (D) of the
subset C¢°(D). If 9D is in C!, then it can be shown that if u« € CY{D) and
u = 0 on 9D, then u& W3 P(D); conversely, if u€ Wy P(D) and u & C%D),
then # = 0 on 9D. For proof in case p = 2, see Friedman [2]; the proof for
any p > 1 is similar. These facts motivate the following

Definition. A function u in W P(Q) satisfies (3.6) in the generalized sense
if ue W-r(Q).

Combining the above two definitions, we shall say that u is a strong
solution of the Dirichlet problem (3.5), (3.6) if u€ W*?(D)n Wy ?(D) and
Lu = fas.

We define an operator A with domain 0, = W2P(D)n Wy ?(D) and
range in L?(D) by

(Au)(x) = Lu(x).

Thus, u is a strong solution of the Dirichlet problem (3.5), (3.6) if and only if

=) nrned Ay = £ a0 n
2 = JJA Qi Ay = J Aoy

Theorem 3.1. Let D be a bounded domain with boundary 3D in C?, and
suppose that (3.1)-(3.3) hold and that ¢ < 0. Let 1 < p < oo. For any
f € LP (D), there exists a unique strong solution u of the Dirichlet problem
(3.5), (3.6).

Theorem 3.2. Let D be a bounded domain with boundary 0D in C?, and
suppose that (3.1)-(3.3) hold. Let 1 < p < 0. Then there exist positive
constants C, A such that

R, < C|Lulf, + |uly,). (3.7)
2
NV A1-/21,.1D0 » v, _ Y. D Y S A {2 )
"‘J AN iuli:P = U!L;u I\u|0,p U N =z Ui \\J.Uj

for all ue W?(D)n W P(D). If ¢ < 0, then (3.7) can be replaced by the
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stronger inequality
|ulz, < C|Lulg (3.9)

and (3.8) holds with A = 0. The constants C, A depend only on p, K, the
function w(p) and the domain D.

For the proof of Theorems 3.1, 3.2 in case p = 2, see Agmon [1] and
Friedman [2]. The proof for general p is given in Agmon et al [1].

Notice that Theorem 3.1 asserts that the operator A maps %9, onto
L?(D). Theorem 3.2 implies the estimate, on the resolvent of A,

IAM - A Y <C/N i A>A (C,const).

Theorems 3.1, 3.2 can be used to derive regularity theorems for solutions
of elliptic equations.

Remark. From the proof of Theorem 3.2 one sees that if dD can be
covered by a finite number < N of local coordinates x, = h,(x)) (x]
= (Xp ..., X, X4 -..,%,)) where the h; have their first two deriva-
tives bounded by a constant K,, and if every x€dD is contained together
with a »-neighborhood of 0D in one of the coordinate patches (v positive
constant), then C and A depend only on p, K,, N, », K, and the function
w(p).

4. LP estimates for parabolic equations

If X is a Bapach space with norm || |y and 1 < p < o0, the space L?(a, B;
X) is the space of all functions u(t) from (a, 8) into X with finite norm

. 8 1/p
|| Lo(a, g, x) = {L (llu(t)llx)”dt} .

Similarly one defines the space L*(a, 8; X).
C([a, B]; X) is the space of all continuous functions u(¢t) from [a, 8] into
X with finite norm

|“|C([a,ﬂ]; x = a‘g‘f‘fﬁ ||u(t)||x-

For functions u(t) from (a, B8) into X, the derivative u'(¢t) = du(t)/dt is
defined as the limit in X of the quotient differences (u(t + h) — u(t))/h as
h-0, i.e.,

+ + — u/l\ sl +) I
\&/ \¢/

1] 45
'l \L e (2277

—

>
&

|
l_>0 if h—0.
X

We call it the strong derivative.
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Lemma 4.1. If u(t) and v’(t) belong to L¥(a, B; X) for some 1 < p < o0,
then u(t) helongs to C([a, B]; X).

More precisely, one can redefine u(¢) on a set of Lebesgue measure zero
so that the modified function is in C([a, 8]; X).

The proof is left to the reader (see Problem 12).

Consider the parabolic operator L — 9 /9t defined by (1.8), where the
coefficients are defined in the closure  of a bounded cylinder Q = B X
0, T).

Consider the initial-boundary value problem

Lu —0u/dt = f(x, t), (4.1)
u(x,t) =0 if x€9B, 0<t<T,
u(x,0) =0 if xEB. (4.3)

We shall need the following conditions:

n

D afx &g > plEP i (x,)€Q  (p>0) (4.4)

i,j=1
b,(x, t), c(x, Tt) are measurable functions in Q and
éw,.(x, Ol + lo(x, O < Ky (45)
2lay(x, 1) — aly, 8) < nlx — y| + [t = 5|) (4.6)
for all (x, H)EQ, (y, s)EQ, n(r) L 0if r | 0.
Theorem 4.2. Let 9B belong to C? and let (4.4)-(4.6) hold. Let 1 < p

< . Then for any f € L?(0, T; LP(B)) there exists a unique “strong
solution” u of (4.1)~(4.3) in the following sense:

u(t)eLP(0, T; W>P(B))n L=(0, T; Wi 2(B)), (4.7)
du(t
m";(t ) eL*(0, T; L?(B)), (4.8)
for almost all t € (0, T) the equation (4.1) holds a.e. in B
(4.9)
(where the x-dertvatives are in the weak sense),
w(lwo0 i tL0. (410)

Notice, by Lemma 4.1, that (4.7), (4.8) imply that
u(t) e C([0, T]; L*(B)),

i.e., the solution u(t) is a continuous function from [0, T} into L?(B).
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Theorem 4.3. Let 3B belong to C* and let (4.4)-(4.6) hold. Let 1 < p
< oo. Then there exists a constant C depending only on pu, K,, T, the
function n(p), and the domain B, such that for any f € L¥(0, T; L¥(B)),
p 73, the unique strong solution u of (4.1)—(4.3) satisfies:

f f |u|P + |D,ul? + |D2u|? + |D,ul?) dx di < cf flfl"dxdt
(4.11)

If p = 3, then an estimate involving a slightly different norm is valid.
For the proof of Theorems 4.2, 4.3 see Solonnikov [1] or Fabes and
Riviere [1).

e o B e w m e

FRUBLEMYS

1. Let D be a bounded domain in R". Let {u,} be a sequence of
functions defined in D and satisfying [u_[,,, < C, C constant. Prove that
there exists a subsequence {u_.} and a function v defined in D such that

0] kso < 00 and |u,,. — v, z—>0as m'—o0, forany 0 < g < a.

2. Prove the same result with the norm ||;,, replaced by the norm
I |k+a'

3. Ifin Theorem 1.2, ¢(x) < 0, then the Schauder inequality (1.7) reduces
to

Tulgsa< K(To] *50n + [fla) (with a different constant K).

4. Let I = 20',- (x) 9%/0x, 0x; + Zb™(x) 3/dx, + c™(x) be elliptic
operators W1th c¢™(x) < 0, satisfying the conditions (1.2), (1.6) with constants
K‘l’ K, mr]ptqpnrlpnf of m, and assume that 3D hp]nnac to C2+e Let b be
functions in C***(dD) satlsfymg [Oml 340 < Kg where K, is 1ndependent of
m. Let f, be functions defined on D w1th r—[ < K4, where K, is a
constant independent of m. Suppose u,, is a solution of L, u, = f, in D,
u, = ¢, on 9D, for each m. Prove: "if a;"—>ay, b,-'"*»bi, c"‘—>c, fm—f
uniformly in D and ¢,_,-»¢ uniformly on 9D, as m—oc, then u,—u uni-
formly in D where u is the solution of Lu = f(x)in D, u = ¢ on dD and L is
given by (1.1). _

5. Extend the result of the preceding problem to parabolic equations
L,u, —du, /9t = f, in a cylinder Q with u,, = ¢,, on BU S.

6. If D*u = v in the weak sense and DPv = w in the weak sense, prove
that D**fy = w in the weak sense.

7. If u has weak derivative D,u and f is continuously differentiable, then
D\(fu) = fD,u + uD, f in the weak sense.

8. Let A be a compact set in R" and let B be an open set in R", BD A.
Prove that there exists a function ¢(x) in C*(R") such that ¢(x) =0 in
R™\B, ¢(x) = 1 on A, and 0 < ¢(x) < 1 elsewhere. [Hint: Let ACGCG
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C B, G open and bounded, and take ¢ to be the mollifier of x..]
9. Letl < p < . Let & be a bounded domain with boundary 9§ in C™
and let £, be any open set containing £. Then there exists a constant K

depending only on §, @, such that for any u€ C™(Q) there exists a & in
CJ(€,) such that & = u in @ and

|u|§i°,p < Klulf, .

[Hint: If @ = {x; x, > 0, |x| < p} and u vanishes in an Q-neighborhood of
the boundary |x| = p, take

Alxy, o X, X)) = c,-u(xl, e Xy — —Iﬂ) if x, <0
=1

For general &, use a partition of unity of {; each open set in the covering of
3 is taken so small that its intersection with £ can be transformed (via the
local representation of 3 ) into a hemiball with the points of 3§ going into
the planar part of the boundary of the hemiball.]
10. Prove that WP ™({) is a Banach space.
11. Prove that LP(a, 8; X) is a Banach space if X is a Banach space.
12. Prove Lemma 4.1. [Hint: Let u,(t) be a mollifier of u(t). Apply
Sobolev’s inequality to f(u,(t)) (f any bounded linear functional on X) to
deduce that |y, (t) — u,(s)] < Clt —s|(1/p + 1/q = 1). Take € | 0.]
13. Let u(x) be a uniformly Lipschitz continuous function in a bounded
domain Q. Prove that u € Wh?(Q) forany 1 < p < o0,
14. Let u € W3 Q). Prove that D_u = 0 a.e. on the set

S = {x e Q;u(x) = 0}.
[Hint: It suffices to consider n = 1. Use the fact that almost every point of §

is a Lebesgue point of u,, and the relation (2 u_dx = u(b) — u(a).]
15. Let u € W 2Q). Prove that |u|, u* belong to W Q).



Nonattainability

If £(t) is a solution of a stochastic differential system in R” and if M is a
closed set in R™ such that

P {{(t) € Mforsomet >0} =0  whenever x & M,

then we say that M is nonattainable by the process £(¢). In Section 9.4 we
have shown that (in the present terminology) a two-sided obstacle is non-
attainable. The reason for this is that since the normal diffusion and normal
component of the Fichera drift both vanish at M, there is “insufficient
mobility” for hitting M.

It is well known that an n-dimensional Brownian motion w(¢) does not hit
a prescribed point x # 0, with probability 1, if n > 2. This is another
example of nonattainability of a set M. The reason here is that the set
M = {x} is “too thin.”

In this chapter we shall establish general nonattainability theorems that
include, as special cases, the previous two examples.

1. Baslc definitlons; a lemma

Let M be a k-dimensional C? manifold in R". At each point x° € M, let
N**#(x% (1 < i € n — k) form a set of linearly independent vectors in R™
which are normal to M and «°.

Let a(x) be an n X n matrix, and consider the (n — k) X {(n — k) matrix
a = (ay) where

ay = {a(z")N*** (2%, N**1 (%> (1< i,j<n—k)

here { , ) denotes the scalar product in R".
Denote the rank of a by r,,.(x%. This number is clearly independent of
the choice of the particular set of normals N**#(x).

(] L] 3
Definition. The rank of afx) orthogonal to M at x° is the number .. (x%).

If the manifold M has boundary oM, then we always take M to be a
closed set, ie, M = MU oM = M. If x°€ 0M, then by a normal N to M at
242



x? we mean a vector N that is lim N (x), where x € int M, x — x° and N(x)
is normal to M at x. We now define ,,.(x°), for x° € 9M, in the same way as
before.

Notice that dM is also a manifold, and one can define 73y,+(x%. Clearly,

T(aw-‘-(xo) > er(xo).
Notice also that when M consists of just one point x°, r,,.(x?) is the rank
of the matrix a(x°).
Consider now a diffusion process governed by a system of n stochastic
differential equations

d§(t) = o(£(t)) dw + b(&(e)) dt; (1.1)
o(x) is an n X n matrix (o,(x)), b(x) is a vector (b1 x), ..., b,(x)), and w(¢)
is an n-dimensional Brownian motion (w,(¢), . . ., wn(t))

We assume:
(A;) o(x) and b(x) satisfy, for all x€R™,
lo(x)l + [b(x)] < C(1 +[xf)  (C const);
further, for any R > 0 there is a positive constant Cg such that

lo(x) — o(y)| + [b(x) — b(y)| < Cglx — 9]
if |x] < R, |y| < R.

Introduce the diffusion matrix a(x) = (g,(x)):

a(x) = o(x)o*(x) [6*(x) = transpose of o(x)],
and denote the rank of a(x) orthogonal to M at x by d(x), i.e
d(x) = r,i(x) for xEM. (1.2)

Definition. A closed set M in R" is nonattainable by the process §(¢) if
P{¢t)eMforsomet >0} =0  foreach xZM. (1.3)

If (1.3) holds for all x in a set G (G N M = ), then we say that M is
nonattainable from G.

It will be shown later that, roughly speaking, if d(x) > 2 forallx € M (M
a C? manifold), then M is nonattainable. The same assertion is true in some
cases when d(x) > 1 (but not always), provided n > 2. The interpretation of
these results is that M is “too thin” for £(¢) to hit it.

It will also be shown that when d(x) = 0 on M, then the assertion (1.3) is
still true provided the normal component of the Fichera drift of £(t) vanishes
on M. The interpretation of this result is that M is an “obstacle” for the
diffusion process £(t).

We conclude this section with a lemma that will be useful in reducing the
proof of the assertion (1.3) from a global manifold M to a local one.

Let x® € M. Then, in a neighborhood of x° M can be represented in the
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form X = ful=") (14)
where i’ varies over n — k of the indices 1, 2, . . ., n, the coordinates of x”
are x,., and i” varies over the remaining indices. Suppose for simplicity that i’
variesover k + 1, ..., n, i.e, M is given locally by

Bers = feei (%005 %) (i=1....,n— k) (1.5)
Introduce the mapping
y, = x, — x; (i=1...,k),
yk+i=xk+‘-_fk+i(x1,-..,xk) (‘=1,...,n"k) (1.6)
0

where 2% = (x), ..., 0. This is a diffeomorphism from a neighborhood
V (x%) of 2° into a neighborhood V* of 0 in the y-space. Denote by M* the
image of M N V(x°). Then M* is given by
y=0 (i=1...,k, (Yop.--.y) EA (1.7)
for some set A.
Consider the operator

1 <« 02%u = du
Lu=~= 2_ aﬁ(x) a—xi'"gx—' + z b,.(x) -"a-;'

i=1 i

where

NE (%) = Voga (), 8kwi(®) = Tty = frws (X1 o 5 ®)-

Notice that if x & M N V(x%), then the N**¥(x) (1 < i < n — k) form a set of
linearly independent normal vectors to M at x. Hence

d(x) = rank(a,’("ﬂ-,kﬁ(x))z:l (xeM N V(x9)). (1.8)
By performing an affine transformation in the space of variables
(Yrs1s -« - » Y,) We do not affect the manifold M* given by (1.7), except for a

change in the set A. At the same time, after performing such a transforma-
tion we can achieve the conditions

1 if i=j=k+1,...,k+d(x%,

(19)
0 forallotheri,j (1 <i,j<n-—k

ak+4,k+;‘(0) = {

where 4, ; ., are the new ¢, ..
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Next, by an affine transformation in the space of variables (y,, ..., 1)
we do not affect the manifold M*. At the same time we can achieve the
additional conditions

s oy (7 Ei=i=ho L d (n>0),
g, ;(0) 0 forallotheri,j (1 <i,j<k)

where n is any given positive number, d* is the rank of the matrix
a‘f y and g, ; are the new g, ;. Notice that d* can be any number > 0

an F

(1.10)

Notation. Let B be any set in R" and let x € R". The distance from x to B
will be denoted by d(x, B).

Let M, = M V(x% and let W be a neighborhood of M,. We shall be
interested later in finding a function u satisfying:

Lu(x) € pu(x) if xeW\M, ( p nonnegative constant),
u(x)»oo  if xe W\M,, d(x, My)—>0. (1.11)

Suppose after performing the transformation (1.6) and the two affine
transformations used above (to get (1.9), (1.10)), we can construct a function
u'(x’) satisfying (1.11) in the new x’-variable and with the transformed L and
M. Then the function u(x) = u'(x") will satisfy (1.11). Consequently, in
trying to prove the existence of u(x) satisfying (1.11), we may, without loss of
generality, assume that M is given by

5.,=0, ..., x =0, (1.12)
that x° = 0, and that

1 i LA, -
ki ki 0 forallotheri,j (1<i,j<n—k), '
Cfm i i=j=1...,d* (n>0),
a;(0) = [() for all otheri,j (1 <i,j < k). (114)

for some 0 < d* < k

In the above arguments we have assumed the local representation (1.5).
The same arguments also apply, of course, in the general case where M has a
local representation of the form (1.4). We sum up:

Yemma 1.1 T, o doae $3 Fdand 3 Farmndioen 20 cntiofritaan (T V1Y tio s aer ocesnnns
AARRALAL Aol LIe UTULCT vV lebu, Ujul' LEUTE W UL Jy e (1411, WE lfuby waurine,
without loss of generality, that x° = 0, that M is given by (1.12), and that

(1.13), (1.14) hold.

From the proof of Lemma 1.1 we obtain:



248 11 NONATTAINABILITY

Lemma 1.2. Let p be a given positive number. In order to find a function u
satisfying

Lu(x) < — o

(d(x, M)
tu(x) = 00 if x€W\M,, d(x,M,)->0,

we may assume, without loss of generality, that x* = 0, that M is given by
(1.12) and that (1.13), (1.14) hold.

if x€ W\M,  (p positive constant),

2. A fundamental lemma

A function v(x) is said to be piecewise continuous in a region G of R" if
there is in G a finite number of C' hypersurfaces S, ..., S; and a finite
number of C! manifolds of dimensions < n — 2, Vi . - -, V3, such that:

(i) for any compact subset G, of G, v(x) is contmuous and bounded on
the set Gy\(SU V) where S = Ui=18,, V= Ui . Vis and
(i) v(x) (x€G\(SUV)) tends to a limit from either side of each S,

Let D be an open set in R”. Denote by 8D the boundary of D, and by D
the closure of D. Let

T = exit time of &(¢) from D.
Let K be a compact subset of D. For any € > 0, let
K, = {x€D;d(x, K) < €},
K, = K\K.
Notice that K need not lie entirely in D, i.e., K N 9D may be nonempty. The
following lemma will be fundamental for the subsequent developments.

Lemma 2.1, Let (A,) hold. Let u be a continuously differentiable function
in K ., for some €, > 0, and let D?u be piecewise continuous in K, . Denote
by Sl, - Sz the (n — 1)- dimensional manifolds of d:scontmulty of D2u,
and by Vl, , 'V, the manifolds of discontinuity of D2u of dimensions

< n-—2 LetS— Ui_IS,,V— U Vi Suppose
Lu(x) < pu(x) if xEI&EO\(SU V) (p nonnegative constant), (2.1)

u(x)—>00 if xEIio, d{x, K)—0. (2.2)
Ly o/ NPT S ~— T\
l’lﬁ'v,] Iuty AT L7 VDN,
P{&t)EK forsome 0 < t < 1} =0, (2.3)

This lemma was implicitly proved, by the argument following (9.4.11), in
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the special case where K is a point or a bounded closed domain, D = R",
K., is replaced by R", and u is twice continuously differentiable in R"\K.

Proof. Let R, p be positive numbers; R will be arbitrarily large and p
arbitrarily small. Set

Bg = {x;|x| < R},
D, = {x€D;d(x, 3D) > p}.
R is such that K C Bg.
Fix a number ¢;, 0 < ¢; < ¢, and let
0<e<e< g
Modify and extend u inside K, and outside K, so as to obtain a function
U in D satisfying:
Uand D .U are continuous in D;
DU is piecewise continuous in D; (24)
U is positive in D.

Since (by (2.2)) u(x) is positive in some D-neighborhood of K, we can
accomplish (2.4) provided ¢, is sufficiently small.
Denote by = the set of discontinuities of D2U. Clearly, for any p, R,

|D U| + |D2U| < C(p, R) if x€ (D, s\K)N Bgyy, xE&Z,
U>clp,R) if x€(D,5\K)n Bray (2.5)

where C(p, R), c(p, R) are positive constants depending on p, R, but
independent of €. Since U = u in K \K,,, we conclude, upon using (2.1} and
(2.5), that

LU(x) < p, gU(x) if x€(D,,,\K,)NBgyy, xEZ (2.6)

where g, g is a positive constant depending on p, R, but independent of ¢'.

Let p(x) be a C* function in R", with support in the unit ball |x| < 1,
such that p(x)}) > 0, [z~ p(x) dx = 1. For any A > 0, we introduce the
mollifier Uy(x) of U(x) defined by (cf. Problem 4, Chapter 4)

GR=[ _ Unc-nd |[p@=5re(5)] @7

We take A < p/2, A < € — €, x€D,. Then Uy(x) is in C*(D,), and

DU = [ DU - palx = y)dy. (28)
Also,
D) = — [ D,U(y) - D,prlx — y) dy. (29)

fy— =l <A
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If d(x, X} > A, then clearly
DX = [ DIU(y) - plx - y) dy. (2.10)
ly—x| <A

Suppose next that d(x, Z) < A and En{y; |y ~ x| < A} consists of a
hypersurface S;. Then S, divides {y; |y — x| < A} into two sets: S}, and
So,. Integrating by parts in (2.9) over S, and Sy, separately, and using the
continuity of D, U across §,, we again get (2.10).

If 2N{y; |y — x| < A} consists of manifold V of dimension < n — 2,
then we surround V by an n-neighborhood V,, and split the integral in (2.9)
into a part I, integrated over { y; |y — x| <A}NV, and a part I,. In I, we
integrate by parts so as to obtain

[' n2rr/ S DU S ST Y S A1
12 JW Uy y PA\J' y/ uy T AT, V
Taking n—0 in I; + I, (2.10) follows.
Finally, the general case where d(x, Z) < A can be handled by combining
the above two special cases. Thus (2.10) holds in general.

From (2.7), (2.8), and (2.10) we obtain
LU = o nUn(x) = [ [EU(Y) = i, aU(9) s = ) dy.

Notice that in LU ( y) the coefficients of L are evaluated at the point x. Since
these coefficients are Lipschitz continuous, and since U, Dy U, Dy2U are
bounded functions,

LU (y) = (LU)(y)t < Clx = y| < C
where C is a constant depending on p, R, €. Using (2.6), we get
LU\(x) < p, gUy(x) + CX  if x€(D\K,)N By. (2.11)

-

{... A A\ L7 )
=1y y X< A YEVg.

Let

™ = 1 g . = exit ime of £(¢) from (D,\K,) N By,

and write, for simplicity, p = p, z. By Itd’s formula, if x €(D\K)N By,
T >0,

AT

E{e ™ MU AT)) - Ux) = E, [ e™™(L ~ wUy(K(s)) ds.

0
(2.12)

Notice that £(s) € (D,\NK) N B if 0 < s < 7° A T. Hence, by (2.11), the
integral on the right- hand side is < CT?\ Taking A — 0 in (2. 12) and using

tha fnn+ that TT { 1) — TT{ oY vinifarm C ™ B ralt

(D \N KO
LiiWs 1AL Liiggn A\ yl w/ \yl ullll\.’lllll] ll.l. y \Up Al ‘\El 11

E (e *""DUEr° A T))} - Ulx) < 0.
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Since U > 0, this yields
E (e DU (41" A T))(gour)eax,,) | < U(%) (2.13)

where p = p 5, 7" = 7,z o 0K, =9K, N D, and 3K, is the boundary of
K,.
Noting that

U(§(r° A T)) > alé'(nrfDu( y) if {°AT)EIK,_,
and taking T — oo in (2.13), we get
E, {e "I oca rmmex,,)) < U(x)/[ inf u(y)]. (2.14)

€dK,ND

Qe vy 2 ey hoas sl ol e (O ")\ o Falon ML
DUPPLSC LIUW tnat i€ assSeitioil (<) ) S Taise. 16€n UJCI.U Cllblb a bCl. \J Ul

positive probability such that: if wE€ G, then £(t, w)€K for some finite
t = t*{w) < 7(w). This implies that for all small ¢, say 0 < € < €*, &(s, w)
€D,NB; if 0 < s < ¢, for some small p > 0 and large R, &(s, w) €K, if
0<s<t,and §t, w)EK; here t, = t (@) < t*(w), p and R are indepen-
dent of ¢ (but they depend on w) and one can take, for instance, €* = ¢,
where ¢, is as above.

Setting p,, = 1/m, R, = m,

G, = Gﬂ{'rpm,ﬂwe < o0;é(r, g JEIWK , forall0 < e < e*}
we then have G = U _ G, Since P,(G) > 0, it follows that P,(G,,) > 0

m=1

for some m. If we take p = p,, R = R,, in (2.14), and let € — 0, we obtain,
after using (2.2),

Ex{exp[—u%ﬁmTpm, e Icm}—w if €—0.
This implies that for almost all wEC,_,
T, R, W)= if 0. (2.15)
But if wEG,, then
To R Jw) € t*{w) < oo,
which contradicts (2.15), since P,(G,,) > O.

Remark. The above proof remains valid in case u is continuous in Kc and
has two weak derivatives in L*(A) for any compact subset A of K s 21)
holds almost everywhere, and (2.2) holds. Indeed, the assertions (2. 8) (2.10)
are then valid by definition of weak derivatives, and the rest of the proof is
essentially the same.
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3. Thecased(x) > 3

When we speak of a manifold M with boundary M, it is always assumed
that M is a closed set, i.e., IM C M.

Theorem 3.1. Let M be a k-dimensional C* submanifold of R (0 < k
< n — 3) with C* boundary M (3M may be empty), and let (A,) hold.
Suppose d(x) > 3 for each x € M. Then (1.3) holds, i.e., M is nonattainable.

Proof. 1If the assertion is not true, then for some x@2M there is a point
x°€ M such that, for any §, > 0,

P{¢ (t)€EM N B, for some t > 0} > 0 (3.1)

~~~~~

with B, is the closed ball with center x® and radius é,,.
Consnder first the case where 2°2 dM. We want to apply Lemma 2.1 with

D=R" K=MnB;,
Thus we wish to construct a function u in a 8-neighborhood Wj of K such
that
Lu(x) € pu(x) if x€W,\K (u > 0),
u(x)o>c i x€ W;\K, d(x, K)—0.
In view of Lemma 1.1, we may assume that x° = 0,

={xx%,=0,...,%,=0,{x,...,5)EA} (3.3)

and that the g, x) satisfy (1.13), (1. 14) with a given arbitrarily small n > 0.
Further, since 8, can be taken arbitrarily small, we may assume that A is a
k-dimensional 0ube, say

A=A ={(x,....,%); —e<x,<efori=1...,k} (34)

and e is sufficiently small. We shall determine later how small € and 7 are
going to be. Also § can be taken arbitrarily small.
Set x = (x', x”) where x’ = (x, ..., %), 2" = (x,,1, ..., *,), and let

r=r(x) = |x"|

Thus r(x) is the distance from x to K provided x' €A,.
Let

(3.2)

u(x) = ¢(r) = log % if xeW;\K, ¥ €A, (3.5)
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fk+1<ij<nandu,, =0otherwise. Hence, if d = d(0),

d 2 c e 2
82u d Xp+1 + + Xk+d 1
0 ——=—-=+2 < — =
‘glak+l,k+i( ) 3xf+, 1_2 1_4 1'2
sinced > 3.Ifi=f>dorifi#j,k+1<ij<n,then
9% _ _ 3 °%u
ak+4.k+1(x) 0%y axkﬂ = |ak+i,k+1(x) ak+i,k+f(0)| _““'-_‘"“"“axk” axkﬂ
1 C(8 + ()
S Clx| = <€ ——
Ma<—%
where C is a generic constant. Also
‘ 9% | C(O+eg .
[9ri, kei(%) = i k44(0)] a2 if 1<ic<d.
X v T

Noting also that a,u, . = 0 if either 1 < i < kor1 < j < k, and that
b, | < Clu,| < C/r,
we conclude that

1 C(8 + € 1
Lu< — — + < - ==
2r2 . 47°
provided § + € < 1/4C.,
We next extend the definition of u(x) to the set of points (x, x”) in Wy\K
where x' £ A,. We begin with the subset where

if xEW,\K x'EA

€

X, > € —e<x, <€ if 2<i<k (3.6)

Let r, = r(x) = {(x, — € + [x"[>}'/2 if x€ W;\K, and suppose x satis-
fies (3.6). Thus ri(x) is the distance from x to K. Define u(x) = log 1/r, if
x € W;\K and x’ satisfies (3.6).

Denote by L’ the operator L when a,;(x) and the a, ;,,(x), @, (%)
(1 < i € d) are replaced by 0. Then, by the same calculation as before,

L'u(x) < —1/4r}. (3.7)

Since a,,(0) = 0, a;;(x) < n + C(8 + €} if x€ W;. Recalling that a(x) is a
nonnegative definite matrix, we also have

lal,k+i(x)l <‘/‘111(5‘7) \/ak+i,k+i(x) < Cln+6+ 5)1/2 (xEWs)'
Since

9 %u
dx; dx;

3
<5
r
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we conclude that

6nC(n + 6 + ¢)'/*

2
n

|Lu — L'u| < (x & W, ' satisfies (3.6)).

Combining this with (3.7) and taking n + & + € to be sufficiently small, we
get
Lu(x) < —1/57%7 if x€ W)\K, « satisfies (3.6).
Notice that r and r; agree with their first derivatives on the set where
x, = €. Hence the function u(x) constructed so far is continuously differen-
tiable, and DJu is piecewise continuous.
Similarly we extend the definition of u(x) to each of the subsets M,, N,
(1 € i < k) of Wi\ K given by
M= (xEW\K,x, > ¢, —e < x; < eif 1 < j<kj#i),
N, ={x€W;\K,x, < —¢, —e < x,; < eif ] < j < k,j*i}.

Next we extend the definition of u(x) to the subset I' of W;\K where
x, > €, x5 > €. Introducing

rig(x) = {(x, - ()2 + (xy — 5)2 + |x”|2}1/2,

we define u(x) = log(1/r,(x)). Again we have (if n, 8, € are sufficiently
small}
Lu < —c¢/ (rg)?  for some positive constant c.

Notice that the functions ry,, r;, and their first derivatives agree on the set
x, = €. Similarly the furctions r,, and 7, = [(x, — € + |x”|%}'/% and their
first derivatives agree on the set x; = ¢. Hence, the function u(x) con-
structed so far is continuously differentiable, and D2u is piecewise con-
tinuous.

We extend the definition of u, in a similar manner, to the subsets of
W; \ K defined by

X, > €, x,.>c, or xi>c,x,<—c,

or
x‘<—e,'xi>e, or x < —E, x,.<—e

for some i # j, 1 <4, j < k. Then we proceed to define u(x) on sets
determined by three inequalities, i.e., x, > € or 5, < —€, x> € or x <
— €, 1, > € or x, < —¢; etc. The resulting function u(x) is continuously
differentiable in the entire set W\ K, D2u is piecewise continuous, and
Lu(x) < 0 at all the points of W, \ K where Du exists. Finally, it is clear
that u(x) > 0 if x € Wi\ K, d(x, K) = 0.
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Having constructed u that satisfies (3.2) in the special case where (3.3)
and (1.13), (1.14) hold, we appeal to Lemma 1.1 in order to conclude the
existence of a continuously differentiable function u, with D2u piecewise
continuous, which satisfies (3.2) in the general case where K = M N B, .
Applying Lemma 2.1, it follows that

P{&t)eK forsomet >0} =0  forany xZK.

This, however, contradicts (3.1).
We have assumed so far that x°& 0M. If x° € 9M, then the proof is similar.
The set A, is simply replaced by its intersection with the half-space x, > 0.

We first consider the case where M consists of one point x°, The number
d(x°) now coincides with the rank of the matrix a(x°.

Theorem 4.1. Let (A,) hold and let d(x°) > 2. Then

P{&(t) = 2% forsomet >0} =0  forany x # x° (4.1)

Proof. We may take x° = 0. We wish to construct a function u such that
Lu(x) <0 if 0<|x| <8, (4.2)
u{x)=o0  if |x|-0 (4.3)

where 8 is a sufficiently small positive number, and u(x) is in C* for
0 < |x| < 6. In view of Lemma 2.1, this will complete the proof of (4.1).
Because of Lemma 1.1, we may assume, without loss of generality, that

a;(0)=1 if i=1...,d (d>2),
a;(0)=0 i i=j>d orif i#j

We shall take u(x) = ¢(r) where r = |x| and where ¢(7) is defined by
¢'(r) = —r7%e"/?  $(0) = (45)

for some constant 8, 0 < # < 1. Since (4.3) clearly holds, it remains to verify
(4.2). Now

(4.4)

x,- 8
- v /8
U= T3 e’
[ %, X% R 0]
uxle 2 4 4
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Using the fact that d > 2, we get

2 2 2 2
d 3% _ _i+2x1+"'+xd_xl+"'+xdroer‘/0
2 2 2 2
xd+1+---+xn_x1+---+xd 8| +/0
<l -2 " r’le
r r
8
r = ,l/8
< —¢c—3 (c—e/)

7
if r < 1. On the other hand,
C

r b

1
l[aif(x) - aif(o)]"x,x,l < Clx| ;g <
[bi{x)u,] < Clu| < <.

Recalling (4.4), we conclude that

. C :
Lu < —¢c— + =<0 if 0<r<é
21> 7
and § is sufficiently small. This completes the proof of (4.2) and thereby also

the proof of Theorem 4.1.

We shall now consider the case of a general manifold M (without
boundary). By Lemma 1.1, for any x°€ M there is a suitable diffeomorphism
of a neighborhood of x® such that in the new coordinates W N M has the
form :

%1 =0,...,x, =0, 51+ - +22<8* (=0 (46)
where W is a neighborhood of 1% and a(x) satisfies (1.13), (1.14). Set
x = (', x"), o= (x), ..., %) X = (G, 1),

(1) = Gip ke u(75 0) (1<Ap<n-—k).

Denote by a(x’) the (n — k) X (n — k) matrix (a,(x")). If d (2% = 2 and
n — k > 2, we introduce the (n — k) X (n — k) symmetric matrix a2(x")
= (a‘?(x’)) (e > 0), where

n—k
ay (x') = agp(x’) = (1 - ¢ AZ an(x),  aly(x) =0,
=3
a?f(x’) = _20‘1,‘(7")’ ag'.(x’) = "’2‘!2,'(37’) B<j<n—-k),
ay(x)=2—-€¢ @B<i<n—k), @f)=0
B<i<j<n—k i%j.

We shall require the condition:



(Nyo) If d(x®%) =2 and n — k > 2, then, for some € > 0, the matrix
a?(x’) is nonnegative definite for all |x’| sufficiently small.

Definition. Let n — k > 2. If at each point x®€M where d(x% = 2 the
condition (N,o} holds, then we say that the condition (N} is satisfied.

Recall that a(x’) is nonnegative definite. Hence a. < ayay. It follows
that, for any € > 0,

|a‘f(x')| < {1 + €)Yay(x) if 1<i<2 3<j<n,

provided |x’'| is sufficiently small. It is easily seen that if, for some 0 < 6 < §,

lay(x')] < o\/aﬁ(x') if 1<i<2 3<j<n,

for all |x’| sufficiently small, then the matrix a(x’} is positive definite, for
some ¢ > 0, provided |x'| is sufficiently small; hence (N,o) follows in this
case.

Theorem 4.2. Let M be a k-dimensional C? submanifold of R" (0 < k
€ n —2), and let (A;) hold. Assume also that a(x) is twice continuously
differentiable in a neighborhood of M. If d(x) > 2 and if either n — k =
or (N) holds, then (1.3) is satisfied, i.e., M is nonattainable.

Proof. Consider first the case where M is bounded. Let x& M and let B,
be a closed ball with center x° and radius 8. We wish to construct a function
u in B;\ M such that

Lu(x) < —c(d(x, M)’ > if x€B\M (¢>0,0<8<1), (4.7

|D,u(x)| gd(xCM) if x€B\M, (4.8)
u(x)>oo  if x€B;\M, d(x, M)-0. (4.9)

We first consider the case where x° = 0, B;n M is given by (4.6), and
(when n — k > 3) (N,o) holds. If d = d(0) > 3, then we can construct u as
in the proof of Theorem 3.1 {(even with § = 0). We shall therefore consider
only the case d = 2.

Let

"

m=n—k  x=(x,p--->%) = (Y. ., Yn)
and introduce the distance function

{ > by( y.y,}l/z, by(x') = by(x'),

L gi=1

where the b,(x') are still to be determined, and b, :(0) = &, Let ¢(r) be the
function defmed by (4.5). We wish to determine the b,(x ) m such a way that
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the function

u(x) = ¢(r(x))
satisfies (4.7)-(4.9), provided § is sufficiently small.

Clearly,
Ou _ _ 1 o /0
ay)\ B 1‘2 (,-gl bﬂyi)e ’
9% 1 2 ( m )( m )
=|{——b,, 6 + = b,y, b u
dy,, y, [ 2 AT i§1 Y jgl i Y
(3 b 3 ) e
- _;4_ \ 2 bihyl' '2 bmyj 14 /
i=1 / \]=1 / _l
Hence
N IO SR LY oY)
ol by, + 3 bavill = by
A’Elam dx, Ox, [ 72 7\,;12=1aw Aw T4 A,Elaxp igl A Yi igl il
] m m
- 7_2 2> 0‘;\”( 2> bi)\yi)( 2> ‘u_yf)} . (4.10)
™ Ap=1 i=1 :

One is tempted to solve the system

m m
i = bi,-)\z apr;\p -2 2 a;\pbixb,p = "'2(0‘17(0) - 5tf)
=1

in a neighborhood of " = 0, b, = 6“, in the form b; = by(x). Unfortunately,

the Jacobian vanishes at the point where ' =0, b, = 5,;. We therefore
proceed differently. We define
bll = Oy, b22 = 0y, b12 = —'Ol12, bn =1 lf 3 < i < m,
by=0 if 1<i<j j>3, i#j
Set A = I_,ay,, in case m > 3. One can easily check that F;, = 0if m = 2
and 1 < i < § < 2. If m > 2, then
Fii = agA, Fy = a4, Fip = —apA,

Fy; = —2ag0a) + 20,50, Fy; = —2ay 04 + 2050y, (3<j<m),

b

F,= 3 ayby,, — 2a; =2 + O(|x'|) if 3<j<m,
A=1

F,= -2, if 3<i<j<m

Suppose m > 3. Using the condition (N,0) we find that

> F,yy, > Oo(ys + -+ + ys)  for some 6, > 0,

ij=1
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provided & is sufficiently small. Using this in (4.10), and noting that

- 8wl Eran)(Z ) = vt -+ B 0l

Ap=1l i,f=1
we get
& 0%
2 o,(7)
Ap=1 Ay ax, ax#
i 2 4 ... 42 2 4 2 9
< _00 Y3 - Ym '—1‘0 Y1 - Yo +O(lx’|) r e"'/”
T T 7
- 1yl ] r?
<| =0 — +O(|x’|);2— e/’ < — 10, (4.11)
L r r

provided & is sufficiently small. The final inequality is valid (by obvious
modifications in the proof) also when m = 2.
Next,if I< Lh <k 1<i<m,

or _ A% Ir 0%
5y = Ok e =00 =00 5 5., ~ O
Hence,
du 3%
—_— = O
ax, (1) 3x, o, 0O(1),
du 1) 3% (1)
x4, O( r ) ox; 9x; , | O( r )
Further,
! » ! 82 ”n C C
[ak+7\,k+n(x’ x") ~ ak+)\,k+p(xs0)]ﬁ < Clx”| = ==
+ +u

From (4.11) and the subsequent estimates it follows that

6
Lu<—00—2+%<—2:-2- (c > 0)
provided 8 is sufficiently small. Thus (4.7) has been established. The asser-
tions (4.8), (4.9) obviously hold.
Having established (4.7)—(4.9) in the special coordinates where B;N\ M is
given by (4.6) and (1.13) holds, we can now return to the original
coordinates, and conclude (cf. Lemma 1.2):

For every y € M, there is a ball B(y, §,) with center y and radius §, and a
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C? function u¥(x) defined in B(y, § )\ M, such that

LuY < —c(d(x, M)’ if x€B(y,\M  (c>0), (4.12)
|D,u¥(z)l < C/d(x, M) if x€B(y,5,)\M, (4.13)
u¥(x)»eo  if xEB(y, S\M, d(x, M)-0. (4.14)

Cover a small neighborhood W of M by a finite number of balls B(y, é,).
Denote these balls by B, = B(y,, §,) and the corresponding functions u’(qx)
by ui(x); 1 < i < I

Let {{,} be a partition of unity subordinate to the covering {B,}, and set

_ { {u' if x€B\M,
“WH=1o i xeB,

Since {; = 0 outside B,, 4(x) is in C¥(W\M). Further, by (4.12), (4.13),

C -2 C
L Lut + —¢(d{x, M +
ui < g‘i U d(x, M) < gx( (x )) d(x, M)
it x& B,\M. Setting u = ! u, we get
! 2—4¢ C
Lu < — > ¢(d(x, M))" "+ <0

i=1 d(x’ M)

if x€ W\M and (d(x, M))'"? < 1/C, since 2§ =1 on W.
From (4.14) we also have

!
u(x) = 3 {(x)ul(x)»0  if xEW\M, d(x, M)—0.
i=1
An application of Lemma 2.1 with £ = R", K = M now yields the assertion
of Theorem 4.2, in case M is a bounded set.

Consider next the case where the set M is unbounded. We modify the
above construction of «. Thus, instead of a finite covering of M by balls B,,
we now use a countable (but locally finite) covering. Note that the radii of
the B, may decrease to 0 as i—co. However, there is still a neighborhood W
of M such that

Lu(x) <0 if x€W\M,
u(x)»0 if x€W\M, d(x, M)—0;

the last relation holds uniformly in x in bounded subsets. The “thickness” of
WA\M may go to zero at co.

Now, if the assertion (1.3) is false, then there is an event G with
P.(G) > O such that, if wEG, §(t, w)EM for some ¢ = ¢, < co. Introduce
the balls B, = { y; |y| < m}, m a positive integer, and the events

G, = {wEG;{t,weEB, if0< t< ¢}
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Clearly G = U *_ G,,. Hence there is an m for which P,(G,,) > 0. But this
contradicts Lemma 2.1 in the case where K = MNB,, Q = B,,.

Corollary 4.3. Any C? (n — 2)-dimensional manifold in R" is nonattain-
able by any diffusion process (1.1) with C® nondegenerating diffusion
matrix, for which (A,) holds.

Remark. Let M be a manifold with boundary. Suppose that d(x) > 3 if
x€ 0M and d(x) > 2 and (when n — k > 3) (N,) holds for each x € M. Then
M is nonattainable. Indeed, if xX°€ M, then we can construct a function
satisfying (4.12)—(4.14) by the proof of Theorem 3.1. If 2% M\9M, then we
can construct « satisfying (4.12)-(4.14) as in the proof of Theorem 4.2. Now
use partition of unity (as in the proof of Theorem 4.2) in order to complete
the proof.

5. M consists of one pointandd = 1

We shall consider the case where M consists of one point x° =0 and
d = d(x% = 1. We begin, for simplicity, with the case n = 2. Without loss
of generality we may take

,,(0,0) >0,  ag(0,0) =0,

Since agy(x, y) > 0, we conclude that da,,/9x = 0, day,/0y = 0 at the
origin. Hence, if a,,(x, y) is in C? in a neighborhood of the origin,

as(x, y) = O(r*)  where r* =2+ y%
From the inequality |a,,| < Va;, Va,, we see that a,,(0, 0) = 0. Hence, if

a,5(x, y) is continuously differentiable and ay,(x, x) is twice continuously
differentiable in a neighborhood of the origin, then

A + ofl) Mx + Ny + o(r)
a(x, y) = . ) o) A>O0
Mx + Ny + o(r) Bx® + Cxy + Dy® + o(+?)
as r—0. Since the matrix a(x, y) is positive semidefinite,

B >0, D>0, M2<AB, C?<4BD.
We shall assume:

B >0, (5.2)
and |C|, |M| are “sufficiently small,” so that forsomep > 1,q > 1,p" > 1,
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q > 1,p, > 1, go > 1, where
1,1 1 1 1 1

=+ = =1, =+ = =1, — 4+ — =],
p g 4 q Po 4o
and for some A > 0, the following inequalities hold:
CA  2|M
ICA | 2IM] gy (53)
p p
C
el D, (5.4)
q
M|\
|——-,|— 2A, (5.5)
q
4| M|\
MR 24 < BA (5.6)
9o
4M|
+ B\ < BA. (5.7)
Po
Finally, we assume:
If D=0, then ay(x, y) = Bl + o(1)). (5.8)
Notice that if | M| is sufficiently small so that
M| 2|M|
< B, < 3A,
9o Po
and
. ____2A 2034 - 2IM|/po) _ ,
a = < =a,
B — 4|M|/q, B

then any A satisfying o’ < A < a” also satisfies (5.6), (5.7).
Regarding the b,, we require that b,(0, 0) = 0. Hence, if by(x, y) is
continuously differentiable in a neighborhood of the origin, then

by(x, y) = c;x + ¢,y + o(7). (5.9)
Theorem 5.1. Let (5.1)-(5.9) hold. Then, for any (x, y) ¥ (0, 0),
P, »{£&(2) = 0 for some t > 0} = 0. (5.10)
Proof. Let
DN 4 202 )2
nix, y)=a -+ uxy -+ AY-

where A is a positive number satisfying (5.3)-(5.7), and p is a positive
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constant to be determined later. We shall find a function u = ®(R) such
that, for some small y > 0,

LO(R)<0 if 0<r<y, (5.11)
®(R)»w  if R-»co. (5.12)

By Lemma 2.1, this will complete the proof of the theorem.
We can write Lu in the form
Lu = a®”(R) + B®'(R).
If we show that

«>0, B >a/R (5.13)
ul N 1 oz T\ ~ At N N IR WA
PR T g PRI=, () <O (5.14)

then (5.11) follows. A solution of (5.14) is given by
®(R) = log(1/R).

With this ®(R), (5.12) is also satistied. Thus, it remains to verify (5.13).

We shall use the following notation: if E is a constant, then E is a
function of the form E(1 + o(1)).

Now, by direct calculation one finds that

= 16Ax® + 4BA%%2 + 4DA%* + 4CA%y® + 8MAxYy
BR = (124 + 2BA)x® + (12AX + 2BA2)x%? + (2DAZ + 2AAp + 2cA2)y*
+ 2CA%y® + 20,M %y

2.2 4 x2y2 xe
i<+ Ly <+ X
=7l P q / 4 q
and (5.3)-(5.5), we find that a > 0 (if D = 0 we use also (5.8)).
In order to show that BR > a, we use the inequalities
1 Py’ f°
x| < mx¥y? + =yt xyl < —— + =—,
Wyl < eyt yh IRyl

in both o and BR. We then obtain the inequality

BR — a > $.x% + §px%? + 954 (F; = v(1 + o(1))).
By (5.8), y; > 0, and by (5.7), v, > 0 provided 7 is sufficiently small. Since g
does not appear in v, v, and since it appears only in the additive term

2AAp of Y5, We can choose p so large that y; > 0. It follows that SR > a.
We have thus completed the proof of (5.13).
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Remark 1. The condition {5.2) is essential for the validity of the assertion of
Theorem 5.1. Consider, for example, the system

d§, = dw, d§, = o(gl’ 52) dw,
where o(x;, 0) = 0. If (£,(0), £&(0)) = (a, 0), then the solution 5 §(t) = a +
w,(t), §(t) = 0. Hence

Pio 0y{£(t) = 0 for some t > 0} = 1.

Remark 2. A review of the proof of (5.13) shows that we have actually
proved also that 8 > (1 + 8)a/R for some sufficiently small § > 0. Hence
in the above proof we can take

x/ mh 1 8

®R)=1/R

Consider now the case n > 2. Without loss of generality we may assume
that
a,(0) >0, a,0)=0 if 2<i<n.
If a,(x) (2 < i < n)is in C? in a neighborhood of 0, then a;(x) = O(|x%). It
follows that
ay(x) = O(lx]),  ay(x) = O(|x]*) (2 <i,j<n)

Settmgy, % (L<j<n-=1),m=n -1 and assuming that the a,
are in C? in a neighborhood of the origin, we then have

m
=My + S Ao P < n)
T L T % ]

m m (5.15)
ay = B,.xf + 121 Ciniyp + lkEle,Ikylyk + o(r®) 2<j<n),

a, = Ex} + 121 E %y + zkz—lEif’ wYiyx + o(r®) 2 <i,j<n)

We shall assume:

2B >0 (5.16)
i=2
> (D, 5b, + E; Ik)ylykyiyj >clyl*  (c>0), (5.17)

Lk.i,f
|C,|, M., |EJ], |E

(et 11 ERNN lnider 1 1 1L b

itly sm
Notice that the left-hand side of (5 17) is always > 0. In case (5.17) does

j3+]
=
7]
VJ
E
l"J
('D
=
=
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not hold, we shall have to impose further restrictions:
if c = 0in (5.17), then C; = 0, E; , = 0 and the
terms o(r?) occurring in a,, a, (in (5.15)) are re- (5.19)
placed by o(x?).

Theorem 5.2. Let (5.15), (5.16) hold. Assume also that either (5.17), (5.18)
hold, or (5.19) holds and the |M,|, |E,| are sufficiently small. Then,
P{&(t) =0forsomet >0} =0 if x+#0. (5.20)

The proof is similar to the proof of Theorem 5.1. We now take u = ®(R)
with ® as before, but with

R(zx) =z} + p X afy? + A 2 o,

j=1 j=1
A is a suitable positive number and p is sufficiently large positive number.

6. Thecased(x)=0
In Section 9.4 we have proved the following theorem:

Theorem 6.1. Let G be a closed bounded domain in R® with C* boundary

M and denote by v = (v,, . .., v,) the outward normal to G at M. Let (A))
old. and assume

+hoat
'uum, u.uou QSSUTe tnde

n
> awy,=0 onM, (6.1)
ij=1

1 & 0%
(b, v>+ — a,—— 20 on M 6.2
2 ‘.’12_1 Y 9x, dx, (62)

where p(x) = dist(x, M) if xZint G. Then
P{&t)EM forsomet >0} =0  forany xZG. (6.3)

The conditions (6.1), (6.2) are sharp; this is seen from the results in
Problems 4-7.
Notlce that the condition (6.1) means that d(x) = 0 along M. The asser-

cmnatic bha taina Aalla f..AM thn nvlawl~e f 7
UUI.]. \U Q, HHIC 41y uld.l iVI lb o1 d.l. aifianié ol uic €X(enor O1 .

Recall that when the a, belong to C' in a neighborhood of M, the



condition (6.2) is equivalent to
2 (b - = 2 ) on M. (6.4)
jm=1
The proof of Theorem 6.1 follows by producing a function « satisfying:
Lu < pu ina é-neighborhood of M, G = R™G, p >0,
u(x)=o0  if x€G, p(x)-0.
Such a function is

u(x) = 1 - forany € > 0. (6.5)
(o(x))

Suppose now that G is a bounded, closed, and convex domain, with
piecewise c? boundary Thus each point x of the boundary M lies on a finite
number of C* (n — I)-dimensional submanifolds of M, say M,, ..., M,.
Their intersection is a k-dimensional C* manifold through x (k =n— ).
Denote by N, the (n — k)-dimensional space of the normals to this submani-
fold at x. R

The function D, p(y) is continuous in a G-neighborhood W of M. On the
other hand, D} (y) is piecewise continuous in W; denote by X the set of its
discontinuities,

Theorem 6.1 extends to the present case provided (6.1) holds for any
x € M, v € N,, and provided (6.2) is replaced by

1 1 < 2

. < a
lim —— b, —po(y) + = a, —_—
y—ox P( y) 1‘§1 ( y) ay’ (y) 2 i,,'2= ) i;( y) ayt ayf

(y & G U Z, C positive constant).  (6.6)
Notice that condition (6.1) for all » € N, can be interpreted as
dMJ_(x) = 0,

when the notion of d,,. is extended in a natural way to the case of a
piecewise smooth manifold.
When dim N, = n, the conditions (6.1) for all » € N, and (6.6) reduce to

a(x) =0, b(x)=0.

Suppose next that M is a piecewise C> bounded submanifold in R", of any
dimension k (1 < k < n — 1), with piecewise C* boundary M. We can still
extend Theorem 6.1 (taking u(x) = 1/(d(x, M))’, ¢ > 0) provided the fol-
lowing conditions hold:

p(y)|> —C

(i) d(x, M) is contmuously differentiable and its second derivatives are
iecewise continuous o M noichhn rlnnnrl nf M. ll - 'Rﬂ\ LY B Annn}n l\w
t

DK 10 vidi
CWISE COoNnUnuous in sgme LV"‘IIUIEIJUUIJ L Ll"'., ivk \AVE 5 ACLIUN

he set of discontinuities of D2d(x, M). in M.
(i) For any x€int M, (6.1) holds for all »€N, (N, is the space of normals

pi
pX
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to M at x), and

lim —1— | 3 b(y) L d(y, M)

y—>r d(y, M) /2 dy,
+ 1 3 aly) 55 dlym| > —c
2 ij=1 dy; dy;
(y&MUZ, C positive constant) (6.7)

uniformly with respect to x;
(ili) For any x &€ dM, (6.1) holds for all » normal to M at x, and (6.7)
holds.

7. Mixed case

Set
d(x) = ryu(x),  d'(x) = rgant(x).
We shall consider the case where n = 2, M is an arc, and
dx) =0 if xeM, d(x) =1 if x€aM. (7.1)

One can also consider, by the same method, other mixed cases.
The idea for handling the mixed case (7.1) is to form two functions u, and
t, such that;

(i) u,is a function constructed for the case d(x) = 0 (in Section 6);
(if) u, is a function constructed for the case d’(x) = 1 (in Section 5);
(iii) «, and u, fit together in a continuously differentiable manner.
For simplicity we take
M= {(x,%);x,=00<x < B8} (7.2)
The case of a general arc M follows by first performing a local diffeo-
morphism, mapping the arc onto a linear segment as in (7.2).

Let £ be a bounded closed domain lying in the half-plane x, > 0, with
boundary 8,£ U 9,8, where

3,2 = {(x, x,); —a < x, € a, %, =0}

and 3,% lies in the half-plane x;, > 0. We assume that M C Q.
The stochastic differential system is

dg, = g o (&) dw, + b(E) dt (i =1,2). (7.3)

Denote by 7 the exit time from £. In view of the application for the Dirichlet
problem (in Section 13.3) we are interested in the process §(t) only as long as
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t < 7. Thus, we would like to prove that M is nonattainable in time < 7,
ie.,
P{¢(t)EMforsomet < 7} =0 if xEQM. (7.4)

First we assume that (6.1), (6.4) hold with respect to both sides of M, i.e.,
if a = oo™, then

a,,(0,x,)=0 for 0<x, < B, (7.5)
daq,(0, x. 0d,,(0, x
2b,(0, x,) — ‘iaﬁ—- %%2)=0 if 0<x< B (7.6)

If the point (0, B) lies on the boundary of @, then (7.4) follows from the
proof of Theorem 6.1 (when slightly modified). Recall that we apply here
Lemma 2.1 with any function

A\

(c >0,¢>0). (7.7)

u(x) = -
(=)

We shall now consider the case
(0, ) €int L. (7.8)

We shall also assume that not all the 4,(0, B) (1 < i, j < 2) vanish. (If they
all vanish, then (7.4) again follows from the results of Section 6.)

Assuming the g, to be in C* in a neighborhood of (0, 8), and recalling
(7.5), we then have

a(x,, x,)
_ (B2 + Cxy(x — B)+ Dlz, — ) +o(r?) Mx,+N(z, — B)+ ols))
\ Mx, + N(x, — B) + o(r) A + o(1) }’
A >0, (7.9)
where r* = xf + (x, — f8)%. We shall require (cf. (5.9)) that
by(xy, %) = ¢1%; + c3{x, — B) + ofr). (7.10)

From (7.10), (7.6) it follows that N = 0 in (7.9). We finally require that
either

D>0, B>0, |C| is sufficiently small, (7.11)

D>0, B=0, C=0 and ay(x, x) = Bx}(1 + o(1)).
7.12)

Ve

Consider the function
u(x) =1/ (R(x))° (8 >0) (7.13)
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where
R(x) =(x = B)'+ plxy — B)'al + A,
By Remark 2 at the end of the proof of Theorem 5.1,
Lu<0 if 0<2®+ (x,— )< ¢

for some ¢, > 0, provided § is sufficiently small; here p, A are suitable
positive constants.
Note that the function
R if > B,
d(x) =[ (? > B
Ay if x < B

2 Ben “lno‘ /7 7\ /7 ]Q\ we nnnc] 1ide }}\at t“e

ie C! and niecewise
L N N Y AW AN

C
u(x) = 1/(d(x)) is E and p1ecew1se C2 in SZ\M and
Lu <0 for =xin (2\M)-neighborhood of M, x, # f3;
u(x)»c0  if x€Q\M, d(x, M)-0.
Hence, by Lemma 2.1, (7.4) holds. We sum up:

Theorem 7.1. Let (7.5), (7.6), (7.9), (7.10) hold, and let (7.11) or (7.12) hold.
Then (7.4) is satisfied.

PROBLEMS

1. Complete the proof of Theorem 5.2.

2. Let G be a bounded domain with C! boundary 9G. Denote by
v=(»,...,»,) the outward normal. buppose a,ECHG), b,EC(G). Let
x°€9G and let V be a neighborhood of x°. Consider a transformation
y, = Y (%, ...,x,) (1 <i<n)from V onto V* which is in C? together
with its inverse. Denote by W* the image of VN G and by I'* the image of

I' =9G N V. The outward normal at I'* will be denoted by 7 = (7}, ..., 7,).
The operator

1
Lu_zza,.i(x aax, +§b
is transformed into

- 1 ¢ - 9% N dv
Lv == ; —— +2b - v(y) = u(x)).
v=3 Zay) o5, +ZE(Y) 5o (o(9) = u()
Denote by y° the image of x°, and set A = Za,,, A= Za.v v,

‘?(”i“z'z %‘1) f=2‘(” ;3 a“")

f
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Prove that sgn A (y°) = sgn A(x%), sgn [ (y°%) = sgn I(x°).

3. Let (A)) hold. Let W be a bounded domain and denote by 7y, the
exit time from W. Suppose there exists a function v in C 2(W) such that
Lv € —y < 0in W. Prove that

E,7y <?1 Lub,[o(y) ~ ol
4. Let (A)) hold. Let G be a bounded domain and let x°€ 3G. Let Vbe a
neighborhood of x° and denote by w, the exit time from W= VnQG.
Suppose there exists a function u(x) in C (W) such that u(x ) =0,u(x) >0
if x& W\{x%), Lu < —y < 0in W (i.e., u is a barrier at x° with respect to
the domain W; cf. Section 6.2). Prove that

Bory <1 Iygg\u( §) - (714)
lim P ' {|&(ry) — 2 < 8} = forany & > 0, (7.15)
2%
lim P, {r < oo, (7)) — 2% <8} =1 forany & >0. (7.16)
ek

5. Let (A,) hold and let G, x°, y° W, W*, L, L be as in Problem 2. If
there exists a function v(y) in C %(W*) such that Lv < —y < 0 in W*,
o(y% =0, o(y) > 0 if y& W*\{ y°}, then the assertions (7.14)-(7.16) hold.

6. Let (A) hold and let G be a bounded domain with C? boundary. Let

x°€3G, V, = {x; |x — x°| < p}, W V,NG and denote by 7, the exit
time from W If Sa,v; > 0at 2°, then, for any p sufficiently small

Er, < Cp if x€W, (7.17)
where C is a constant independent of g, and (7.15), (7.16) hold with 7, = 7.
[Hint: If x, = ¢(xy, ..., x,_ 1) is a representation of 3G N V,, perform a
transformation yy=x, (1 <i<n-— 1) Y, = %, — ¢(x, . . ., x,) and take

o(y) = ynle — ya) + 23}y, — ¥0P]
7. Suppose in the preceding problem Zagny, =0 on G NV,, a; €

W, ) for some p, > 0, and

da,
2(,- ")vi>0 at 2%

Prove that (7.15)—(7.17) hold with 7y = 7,, p small. [Hint: Show that

“’

a,, =0, b~ < 0 and take v(y) =y, + ¢ 1==1(y,—y,)]

8_ Tho nccarti on nf tha nranadin ~hla t

E IJU Ao 1 L1Vl Wi vaiC 1.'1 U\;Gullls tll UULDlll lclllalllﬂ e l

if one ms umes
and x° € §,
C*® boundary. Let

that 3a,v,7; only vanishes on an open subset S of 3G N V,,
9. Let (A,) hold and let G be a bounded domain with C
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x® € 3G. Denote by p(x) the distance from x to 3G, if x € G. If

b-v+—1-2a _ﬁfﬁ_>0 at x° (7.18)
2 " 9x, Ox, '

then the assertions (7.15)~(7.17) hold with 7y, = 7, p small. [Hint: Let
x = g(s) be a representation of 3G N V, with g(0) = x°. For any x € W,
let g(s(x)) be the nearest point to x on 0G. Take u(x) = p(x) + €| g(s(x)) —
x°%]

10. Prove the assertion of Problem 6 in case 3G is in C*, without resorting
to a transformation of coordinates. [Hint: Take u(x) = p(x)[e — p(x)] +
¢ g(s(x)) — x°F]

11. Prove the assertion of Problem 7 in case 3G is in C® without resorting
to a change of coordinates.

12. Let K be a compact nonattainable set, and let U be an open set
containing K. Denote by 7 the exit time from U. Let u€ C*(V\K) where V
is an open set containing U, Prove Itd’s formula

TAL

ulglr A 0) = ulx) = [ wlels) - olels)) dls) + [ (La)(e(s)) ds

0
where £(0) € U\K. [Hint: Let 7, be the exit time from U\K, where K, = {x;
dist(x, K) < €}. The above formula holds for 7. A ¢. Take € | 0.]
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Stability and Spiraling of Solutions

1. Criterlon for stablility

We denote by d(x, A) the distance from a point x to a set A.
We consider a system of n stochastic differential equations

d§(t) = o((1)) duw(t) + b(4(e)) dt (11)

and assume, throughout this chapter, that the condition (A,) of Section 10.1
holds.
Let

where a, = X% _,0,0;.
Definition. A closed set K is said to be invariant wit
process defined by (1.1) if

P {&(t) € Kforallt > 0} =1 forall x € K;

i.e., solutions beginning on K never leave K.

Definition. A nonattainable closed set K is said to be stable if for any
neighborhood U of K and for any € > 0 there exists a neighborhood U, of K
such that

P {§(t) € Uforallt >0} > 1~ ¢ forany x € U, \ K.

If for any neighborhood U of K and for any € > 0 there exists a neigh-
borhood U, of K such that

P{¢(t)eU forall t > 0, lim d(¢(2), K) = 0} >1—¢€ forany x€U\K,

then we say that K is asymptotically stable.
Let K be a closed set. Let K’ be one of the open connected components
270
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of R"\K. Suppose K is nonattainable from the set K’, i.e.,
P{¢(t)eK’ forall ¢ >0} =1 if xEK".

Then we define the concepts K stable from K’ and K asymptotically stable
from K’ by replacing in the previous definitions U and U, by UnK’,
U K’'. If, in particular, K is the boundary of a bounded domain D with
connected boundary, then we can speak of K being stable (or asymptotically
stable) from the inside (i.e., from K’ = D) or from the outside (i.e., from
K’ = R™\D).

It is easily seen (see Problem 2) that if K is stable then K is also an
invariant set. If the boundary K of a domain D is stable from the outside,
then D is an invariant set (see Problem 3).

Definition. Let K be a compact set. Let v(x) be a function in C*(U\K),
where U is some neighborhood of K, satisfying:

Lo(x) <0 if x€U\K, (1.2)

< Jv dv :
i,fz_laii(x) o ox <C if x€UNK (Cconst),  (13)
olx) >0 if x€U\K, (1.4)
o(x)=»0 if xeU\K, d(x, K)-0. (1.5)

Then we say that v(x) is a Liapunov function for K. If the second derivatives
of v(x) are only piecewise continuous (and (1.2) is satisfied at the points
where the second derivatives exist), then we call v(x) a piecewise smooth
Liapunov function for K.

Definition. Let K be a compact set. Let u(x) be a function in C%U\K),
where U is some neighborhood of K, satisfying:

Lu(x) € =1 if x€U\K, (1.6)
< du oJu _
2 ay(x) 5 3 <C i EUNK (Coons) (L7)

fj=1
u(x)> — oo if x€UNK, d(x,K)-0. (1.8)

Then we call u(x) an S-function for K. If the second derivatives of u(x) are
only piecewise continuous, then we call u(x) a piecewise smooth S-function
for K.

Let K be a compact set and let K’ be one of the open components of
R"\K. If (1.2)-(1.5) hold with U replaced by UNK’, then we speak of
Liapunov function for K from K'. In particular, if K is the boundary 9G of a
bounded domain G with connected boundary, then we speak of a Liapunov
function for 9G from the outside if K’ = R™\G, and from the inside if
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K’ = (. Similarly, one defines an S-function for K from K’, from the
outside, and from the inside.

If u is an S-function, then v = ¢ is a Liapunov function provided A is a
sufficiently small positive constant. Indeed, this follows from the identity

F At — S Au K __aiﬂ_
Le e {?\Lu+ 3 Eaﬁ 7 ox J

This identity also shows that if v is a Liapunov function and if

Au

2 a;(x) do o, yv* (v positive constant),

then u = (log v)/A is an S-function provided A is a sufficiently large positive
constant. .

Theorem 1.1. Let K be a compact set and let K’ be an open connected
component of R"\K. Suppose K is nonattainable from K'. If there exists a
piecewise smooth Liapunov function for K from K’', then K is stable from
K’

Proof. For simplicity we take K’ = R™ \ K. Suppose first that there exists
a smooth Liapunov function v(x) satisfying (1.2)~(1.5). Let U’ be any
neighborhood of K contained in U. Denote by 7 the exit time for U’. By ItG’s
formula (see Problem 12, Chapter 11),

AT

o(t(r A T)) = (%) +j:ATvx codw+ [ Lods

if §(0) = x € U’ \ K. Here we use the fact that K is nonattainable, so that
£(s) e U'NK forall s < 7.
Since

o, + o = 2 agv, 0, < C

X
the expectation of the stochastic integral vanishes. Using also (1.2) we get
Ev(¢(r A T)) < o(x). (1.9)
Taking T T co and using (1.4) we cobtain
[yienan'v(y)}Px(T < o) € v(x).

By (1.5), v(x) < e{infy, v} if d(x, K) < 8. Thus

P(r <o) <e if d(x,K)<3$,
and, consequently, K is stable.

In the above proof we have assumed that v is in C3(U\K). Suppose now
that v is only piecewise smooth. We use mollifiers v, as in the proof of
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Lemma 11.2.1. By It6's formula

v\ (£(, A T)) = v,(x) +f0 D,v, * ¢ dw +f0 Lo, ds

where 7, is the exit time from W,,; here the W, are open sets satisfying:
W,CW,,., U_W, =U\K. Smce Ly, < CA'in W, if A is sufficiently
small where C is a positive constant (cf. the derivation of (11.2.11)),

TNT T T

TaAT
0, (&(r, A T)) < v,(x) +f0 D,v, - o dw + CA.

Hence
Ev,(&(r, A T)) < vy(x) + CA.

Taking first A | 0 and then m 1 oo, the inequality (1.9) follows. Now proceed
as before.

Theorem 1.2. Let K be a compact set and let K’ be an open connected
component of R"\K. Suppose K is nonattainable from K’. If there exists an
S-function for K from K', then K is asymptotically stable from K’.

Proof. For simplicity, we take K’ = R™ \ K. Let u(x) be an S-function.
Since v = ¢ is a Liapunov function (if A is positive and small), K is stable
by Theorem 1.1. To prove asymptotic stability, suppose first that u is in
C%U \K). Let Ube a nelghborhood of K whose closure is contained in U.
Then we can construct a function & in C*(R™ \ K) that coincides with u on
U \K, such that #(x) vanishes if |x| is sufficiently large. Using (1.7) we
conclude that

D4 - o’ = ¥ ad, G, < ¢ (C const) (1.10)

for all xe R™"\K.
By It6’s formula,

t t
(&) = ii(x) +f i - odw +f Ld ds. (1.11)
0 0
In view of (1.10), Corollary 4.4.6 gives
t
f . - odw = oft). (1.12)
0

Let U’ be any neighborhood of K contained in U. Since K is stable, for
any € > 0 there is a neighborhood U, of K such that

P&t eUNK forall t>0}>1~-e if x€UNK. (113)
Hence, by (1.6),
P{Lu((t)) < =1  forall t>0}>1— e
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Using this and (1.12) in (1.11), we get

u(g(1))
t

P,{s(t)EU'\K forall ¢t > 0, ;1_@0 < —1] >1-¢ (114)

In view of (1.8) we conclude that
P{¢(t)eUNK  forall t>» 0,d(4(¢),K)>0 if t—w} >1—¢

Thus K is asymptotically stable.

We has assumed in the above proof that u is in C% Suppose now that u is
only piecewise smooth. Let K, be (1/m)-neighborhood of K, and V,
= R™\K,. Introducing mollifiers 4, of u,, we have, by Itd’s formula

AT,
. D, -odw+ [ L ds,
JO A ‘]0 A
where 7, is the exit time from K, and A < 1/m. Denote by £, the set
occurring in (1.13), i.e.,

Q, = {&eUNK  forall t>» 0}.

If wel,, Liy(§(s)) < =1+ CAif 0 < s < 7,(w), x€ U\K, where C is a
positive constant. Hence
AT,

(8t A T,)) < d(x) +f0 D, - odw—(1— CAt on Q.

Taking A | 0 we get

EATm
a(E(t A T)) < dx) +f0 Dfi-odw—t on . (L15)

x

Let
(s) = { 1 if s<r1,
X 0 if s>,
Since K is nonattainable, lim ,, = oo a.s., so that
Orél?zt|xm(s) —1}-»0  if m—oo0, as.

Hence, for any f € L2[0, t],
i Clxf ~ fI2 ds—0 as.
It follows (using Lemma 4.4.1) that
fotmmfdw =J[)txmfdwf» J[)tfdw.
| Applying this to f = D, i - 0 we obtain, after taking m—» co in (1.15),
af5(0) < a(x) + ‘Dii-odw-t aeon Q.  (L16)
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We now use (1.12) in order to derive from (1.16) the inequality (1.14). This
completes the proof of the theorem.

Definition. An asymptotically stable set K is said to be globally asymptoti-
cally stable if

P{ tl_i’xgd(f(t), K)=0}=1 forany xER™\K. (1.17)

Let K be a closed set and let K’ be one of its open connected components, If
K is asymptotically stable from K’ and if (1.17) holds for any x € K’, then we
say that K is globally asymptotically stable from K'. If, in particular, K is the
boundary of a bounded domain G with connected boundary and K’
= R™\C (or K’ = ), then we say that K is globally asymptotically stable
from the outside (or from the inside).

Definition. Let K be a compact set. Let ¢ be a function in C*R"\K)
satisfying:

Lo(x) <0 if xeR™MK, (1.18)

¢{x)>c0  if x€R™\K, I|x|-co. (1.19)

Then we call ¢(x) a G-function for K. If the second derivatives of ¢(x) are
piecewise continuous and their set of discontinuities is bounded, then we call
¢(x) a piecewise smooth G-function for K.

Let K be a compact set and let K’ be one of its open connected
components. If (1.18), (1.19) hold for all x € K’, then we call ¢ a (piecewise
smooth) G-function for K from K'. When K is the boundary of a bounded
domain G with connected boundary and K’ is R"\ G (or G), then we call ¢ a
G-function for K from the outside (or from the inside). When K’ is a
bounded set, the condition (1.19) is dropped out.

Theorem 1.3. Let K be a compact set and let K’ be an open connected
component of R"\K. Suppose K is nonattainable from K'. If there exist
piecewise smooth S-function and G-function for K from K’, then K is
globally asymptotically stable from K'.

For simplicity we give the proof in case K’ = R"\K. First we establish a
lemma.

Lemma 1.4. Under the conditions of Theorem 1.3 (with K’ = R"\K), for

ang neichborhond [T of K and for anuy x= R™\ K
any newgndo N ant Y J

FraL UL A W

P{¢(t)EU forsome t >0} =1.

Proof. Let ¢ be a G-function. For any bounded domain D with D n K
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= @, denote by 7* the exit time from D. If ¢ is in C?, then, by It5’s formula,
Egle(r* A ) - o(x) = E, [ Lods < —yE(r* A )
if x€ D, where L¢(y) < —y < 0if y&E D. Hence
YE (7* A t) < 2[1.1}5b.]|¢|.
Taking ¢t 1 o0 we get

2
Bt < [l.%b. |¢|] (x € D). (1.20)

If ¢ is piecewise smooth, we use a mollifier ¢, of ¢ in order to derive (1.20).
Now take D = Bg \ U where By = {x; {x| < R} and R is sufficiently
large. Denote the exit time from D by 7. By (1.20)

P{r, <w}=1 if x€B\U. (1.21)

We shall now employ the argument used in the proof of Theorem 9.2.1.
If ¢ is in C2, then, by It6’s formula,

TrRAL

Eb(E(ra A9) = 9(x) = E, [ LolEls)) ds < 0.

Thus
E¢(é(rr A t)) < o(x). (1.22)
If ¢ is piecewise smooth, then
Ed\(E(rr A 1)) < $2(x) + CA (C const)
for a mollifier ¢, of ¢. Taking A | O we obtain (1.22).
Taking t 1 oo in (1.22) and using (1.21) we get

E,¢(£(7r)) X (st cay + Ed(E(Tr))X (1= m) < (%)
As R 1 o0, miny,_z ¢(y)—>. Hence P, {|§(7p)| = R} | 0. Hence, by (1.21),
P_{§(tg)€0U} 1 1. This yields the assertion of the lemma.

Completion of the proof of Theorem 1.3. Since there exists an S-function,
K is asymptotically stable. Hence for any neighborhood U of K and for any
€ > 0, there exists a neighborhood U, of K such that

P{¢(t)eU  forall t>0}>1—-€¢ if x€U. (1.23)

Denote by 7, the first time £(¢) hits U,. Denote by o, the first time > 7,
that £(¢) exists from U (if such a time exists). Generally, denote by 7,, the first
time > o,,_, that £(¢) hits U,, and denote by o, the first time > =, that £(¢)
exits U (if such a time exists).



1. CRITERION FOR STABILITY am

By Lemma 1.4, 7, < oo a.s. By the strong Markov property,
P (0, < o0) = E X\ cooXoco = E X, cowPeirp{é(t) exits U} < €
by (1.23). Next, the event {o, < o0} coincides with the event {1, < o0},
Indeed, by the strong Markov property,
P, {73 < 00,0, < 0} = Ex, cooFe(op{§(£) hits U, }

xxol<oo = Px{ol < OO}

where Lemma 1.4 has been used.
Proceeding by induction, we have

Px{om < CO} = ExXo <coX*r <ooXO < o

&

= E. X, _,<wXn,<xler1 £(¢) exits U }

< EEI m—1<°ﬂx‘fm<°° P{ w} < em’

P {7py < 00,0, < 0} = Exxom<wP£(om){§(t) hits IZ}

Xo <o = Fe {05 < 0}.
The event o, ; < o is well defined when the event 6,, < oo is already

defined. We have thus defined, by induction, the events o, < o and
established the inequalities
P.{o, <o} <1/e™

Taking € ={ and using the Borel-Cantelli lemma, we deduce that
P_ {6, < o io0.} = 0. Thus, for a.a. w there is m = m(w) such that o,, < oo,
0,+1 = . By what we have proved above, 7,, ., < . Hence §(t) € U if
t > Tw), Tw) =r1,,; < .

Suppose now that there exists a C* S-function u(x) for K. Extend it into a
C? function in R™ \ K with bounded support. Denoting this new function
again by u, we have, by Ito’s formula,

u(&(t)) = u(x) +j: u, - o dw +f: Lu(g(s)) ds.

If we take in the above analysis U to be a neighborhood of K for which
Lu(y) < —1if y&€ U\K, then we have

Lu(é(s) < —1  if s> T(w).

Using also (1.12) with & = u, we conclude that

P{s(t)eu if t>» T(w); Iim “(gt(t)) < —1} =1.

t— o0
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This gives the assertion
P{d(&(1), K)»0  if t—ooo} =1,

We have assumed so far that the S-function u is in C2. If u is only
piecewise smooth, we use mollifiers u, as in the proof of Theorem 1.2 and
obtain the inequality {cf. (1.16))

u(£(t)) < u(x) +j: u -odw+ M-t - T(w)] (1.24)

where M is a random variable. (For each w, M = Lu.b. |Lu(y)| where y
varies in the set £(s), 0 < s < T(w).) Using (1.24) we can now complete the
proof of the theorem as before.

Remark. From the proof of Theorem 1.3 we see that the theorem remains
true if instead of assuming that a G-function ¢(x) exists for K from K’ we
assume that, for any neighborhood V of K, there exists a function ¢
(depending on V) satisfying (1.18), (1.19) for x in K'\ V.

2. Stable obstacles

Let G be a closed bounded domain with C® connected boundary 9G, and let
G = R"\G. Denote by » = (vl, ..., ¥,) the outward normal to 9G. By
Theorem 9.4.1, if

o
2 agvy; = 0 on 0G, (2.1)
it

2 b Enj 9 >0 G 2.2

=1 v‘ t,f aii ax' ax' o ( ‘ )

then G is nonattainable from the outside. Here p(x) = d(x, G) is a function
defined in G U 3G; it belongs to CZ in a small (G U d G )-neighborhood of
0G.

We now replace (2.2) by

2

Elb,v, ’E_Ia‘, o ax, <0 ondG. (2.3)

Theorem 2.1. If (2.1), (2.3) hold, then G is an invariant set.

Prnnf Let R(x) be a C? function in R™"\ 3¢ cahe{:\nna R(x) p(x) if x Eé

and p(x) is sufficiently small R(x) = 0 if x€QG, R(x) # 0 if xZG, and
R(x) = const if |x| is sufficiently large. If R%*(x) were in CZ, then, by It5’s
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formula,
ERE() - R¥x) = E, [ LRY() ds
Using (2.1), (2.3) we find that

LR%x) = $a,R R, +2R{} Sa.R,. + ShR,} < CR®

if p(x) is small, say p(x) < ¢, where C is a positive constant; by the
definition of R(x) this inequality holds also if p(x) > ¢, Hence

E,R%(1) - Rx) < C fo " ER*(¢(s)) ds. (2.4)

Since R%x) is in C' and piecewise in C2 we can establish (24),
rigorously, using mollifiers.
Now take x in G. Then R(x) = 0. Setting ¢(t) = E,R%({(t)), (2.4) becomes

t) < c fo ' o(s) ds,  ¢(0) =0.

Hence ¢(t) = O for all ¢, i.e., R(§(¢)) = O a.s. for all ¢ > 0. By the definition
of R, then, {()EG as. for all t > 0.
We shall now assume that (2.1) holds and that

n 2
4§1 by, + ”2“ a Bx, 9%, Bxf =0 ondG. (2.5)
Then, by Theorems 9.4.1 and 2.1, G is both nonattainable and invariant. The
proofs of these theorems, when slightly modified, establish also the fact that
L: U OU jS m‘)ﬁaﬁ:&iﬁauw dn(l mvandnt bonbequenuy, lI (4 l), \4 D} noul,
then 9G is nonattainable and invariant.
We shall next study the asymptotic stability of 3G from the outside.
Introduce the functions

_1 %, 2R AR
@ = 9 i”2’“1‘%‘("‘) axi axi ’ (2'6)
_ R 1< )R
B = i§1 b,(x) o, + 2 i"zgla,-f(x) s, 07, (2.7)
1 @
where R(x) = p(x) = d(x, 8G) for x € G UG, p(x) < ¢, where ¢, is

sufficiently small. If u(x) = ®(R (x)), then (cf. (9.5.1))
®"(R) + %{-cp'( )] + RQ®(R). (2.9)
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Consequently,
u(x) = log R(x)
in an S-function for 3G from the outside, provided
Qlx) < —8, if plx)< e (6, positive constant)  (2.10)

for some 0 < ¢; < ¢,
This condition holds if and only if

lim [ B _ @: ] <0 along 9G. (2.11)

el o p* ]
If b,€C, a;€ C? in a neighborhood of 3G, then (2.11) reduces to

2
{Bi- g -2 628 ] <0  along dG. (2.12)
P ap p=0+

Consider next the construction of an S-function for 9G from the inside.
We define &, B, Q as before, but take R(x) = d(x, 9G) if x€G and
d(x, 9G) is sufficiently small. We find that log R(x) is an S-function if
Q(x) < —8, < 0 when d(x, 3G) is sufficiently small. If b,EC', a,EC*in a
neighborhood of 9G, then this condition holds if and only if the inequality
(2.12) holds. Thus, when (2.10) holds, the 8G is asymptotically stable both
from the outside and from the inside, i.e., it is asymptotically stable.

We sum up:

Theorem 2.2. Let (2.1), (2.5) hold. If (2.10) holds, then 0G is asymptotically
stable from the outside. If b€ C', a,€ C? in a neighborhood of 3G, then
(2.12) holds if and only if (2.10) holds and, in that case, 0G is asymptotically
stable.

Consider now a more general case where
k
G=UG G=R"G;
j=1
the G, are mutually disjoint sets, G, = {z,} if 1 < i < k; (where z, is a point)

and G; is a closed bounded domain with connected C % boundary aG; if
ko + 1 < j < k. We assume that

a;(z) =0, b(z)=0 if 1<ij<n 1<h<k, (213)

2 ary=0 ondG, for ky+1<h<k (2.14)
i,j=1

n 1 n a2p
o1 ) — <
,-§1 by, 3 ,-,,-2=1a'] 9% 0% 0 on 0G, for kg+1<h<k

(2.15)
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where p(x) = d(x, G) is defined for x& G U 9G. We define the function
Q(x) as before, with R(x) = p(x).
Set 3G, = (g} if 1 < i < ky, 3G = U_,3G,

Theorem 2.3. Let (2.13)-(2.15) hold. Then dG is nonattainable and in-

variant. If, further, (2.10) holds, then 3G is asymptotically stable from G. If

b,€ C', a,€ C* in a neighborhood of T = : k,+10Gn: and if (in addition

to (2.13)~(2.15)) (2.10) holds, then 3G is asymptotwally stable; the condition
(2.10) for the boundary 0G,, ky + 1 < h < k, is equivalent, in this case, to
the condition (2.12) along SC,,.

Consider next the global asymptotic stability for 0G. We shall assume:
(2.16)
R%H <@ if R(x) = |x|, for all |x] sufficiently large. (2.17)
The functions &, B are defined as in (2.6), (2.7);
G, is C?diffeomorphic toaclosed ball, for ky+ 1< h < k. (2.18)

(a‘f(x)) is positive definite for all x& é

Theorem 2.4. If (2.13)-(2.18) and (2.10) hold, then 3G is globally asymp-
totically stable from G.

Proof. Since we have already constructed an S-function, it sufficies (in view
of Theorem 1.3) to construct a piecewise smooth G-function.

We shall employ the function R (x) established in Lemma 9.4.5. In view of
property (v) (asserted in that lemma), there is a compact set E containing in
its interior the set of points where D,R = 0, such that

Q(x) <0 if x€E. (2.19)
For any smalln > 0, let r, = 0, r, = 1 /7. In view of (2.16)
@(x) > aR®* if r, < R(x) <1, xZE (2.20)

where a is a positive constant. We shall construct a continuously differenti-
able function ®(r) for r > r; whose second derivative ®”(r) has a jump
discontinuity at r, and

L®(R(x)) <0 if rn<R(x)< oo, R(x)#*r, (2.21)

®'(r) > 0, (2.22)
d(r)—»oo  if rooo. (2.23)

Let 8(r) (r, < r < ry + 1) be a continuous function satisfying
Q(x) < 8(R(x)) if r < R(x) <1, (2.24)

such that 8(R(x)) > 0 if x € E. We take 7 so small that E is contained in the
set R(x) < ry, and (2.17) holds if R(x) > r,.
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Define

M(r)-‘expj;r —————IH’S(S)/O‘ ds

and define ®(r) for r, < r < 1, by

Then ®'(r) > 0 and

(2.25)

®”(r) + {1 + —-—r—)

\ (44

T
From (2.9) we have, for xZE, r; < R(x) < 1,

LO(R(x)) = @{@”(R) + (1 + RZO) -

8(R) ) ®'(R) }

o R

where (2.20), (2.24), and (2.22) have been used. In view of (2.25) we then
have

< @{rb”(ﬂ) + (1 +

@
L®(R(x)) < — ze < 0.
If x € E, then by (2.22), (2.25) and the fact that (R (x)) > 0,
" (R(x)) + —— &'(R(x) < 0.
R(x)
Since also ®(R) > 0, Q(x) <0, we obtain from (2.9) the inequality
L®(R(x)) < 0.
We have thus constructed a C? function ®(r) satisfying (2.21), (2.22) for
r, € r < 1, Consider next the function
¥(r) = Alogr + B (r, < r < )
where A and B are constants and A > 0. Since ¥'(r) > 0, using (2.9) and the
assumption (2.17) we see that LY¥(R(x)) < 0 if R(x) > .
If we can choose the constants A, B such that
¥(r,) = ®(1y), V'(ry) = @'(ry) (2.26)
then by defining ®(r) = ¥(r) for r > r, we obtain the desired function ®
satisfying (2.21)—(2.23). We solve (2.26) by taking

A = 1,®(r,), B=®(r,) — n,®(r,) logr,.
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The function ®(R(x)) is a piecewise smooth G-function for the 7-
neighborhood of G (recall that r, = 7). Since 7 can be arbitrarily small, the
remark at the end of Section 1 shows that 3G is asymptotically stable from
G.

Remark 1. One can easily construct a G-function in the whole domain G,
by extending the above function ®(R(x)) as A, log R(x) + B, into the set
0 < R(x) < r,, where A,, B, are suitable constants and A, > 0.

Remark 2. Theorem 2.4 establishes global asymptotic stability from G If
for a particular G, (k, + 1 < h < k), there is an i such that a;(x) # 0 for all
x€int G, then in any compact subset E of G, there is a function

¢(x) = et — e

satisfying: Lo(x) < 0 if x € E. (Here x, < x for all x = (x,,...,
X, - .., %,) in E and a is a sufficiently large positive constant.) By the remark
at the end of Section 1 it follows that 8G, is globally asymptotically stable
from int G,.

3. Stabllity of point obstacles

We consider the case where x = 0 is a point obstacle, and refine the stability
theorem derived in the previous section. Consider first the case of a linear
stochastic differential system

n

dg = 2 ogédw, + i bgdt (1<i<n) (3.1)
j=1

jra=1
where o‘j, b‘!. are constants. Set

n

n (]
O (x) = 2 0%, aif(x) = 2 o“,(x)a,s(x) = 2 Ok 0,1 X5 X}.
f=1 s=1] ski=1

We shall assume that
Say(x)tE> ofxPlé?  if xER" (ER" x-§{=0 (a>0)

(3.2)
Taking R (x) = |x| in the definition of Q () in (2.8), we have
Zbyxx, 1 Zag(x) Eaif(x)x,x,. X
= > - = — | 3.3
S A I v

If u(x)= v(p, 8) = vy(p) + vy(#) where p=1loglx| and 0 =(0,,...,
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8,_,) are local coordinates on the sphere S"~', then (see Problem 5)
3% | 5,0\ 00
Lu=§02(9)F +Q(9)-§5+LOU (34)
where
Zag(x)x,x; -
200y = — 1~ 271 §) = X
0( ) le4 ? Q( ) Q(|x|)

and L, is a nondegenerate elliptic operator on S" L. The elliptic estimates of
Section 10.3 remain valid also'on the sphere. Therefore by the elliptic theory
(see, for instance, Friedman [2]) the Fredholm alternative holds for the
equation Lyh = g. By the maximum principle, the only solutions of the
homogeneous equation are constants. Consequently the eigenspace of the
adjoint L{ is spanned by one function only, say h,. We normalize it by

f hy dA =1 (3.5)
Sn—l
where dA is the surface element. Let
Qo = fsn_l Qhy dA. (3.6)
Theorem 3.1. If (3.2) holds, then
log [£(2)]
Jim =S = 0, (37)

Thus, if Qy < 0, then x = 0 is globally asymptotically stable.

Proof. Since —Q + Q, is orthogonal to the homogeneous solutions of
Liw =0 (ie. to hy), there is a solution g of Log= —Q + Q, on S*~ %,
Consider the function

u(x) = log |x| + g. (3.8)
If we apply It6’s formula with this function, we obtain, upon using (3.4),
£(2) ) x
1 t)h+gl == 1=1 + gl = )+ tQy + k(¢ 3.9
og [£(1) g( d ) = el e ) F ot k0 (9
where
i n f éi '\g \
k() = S 28 dw, |
() '/(‘) 5,32=1( gF o )% “ .10
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Let

n

f,(t)=2[

i=1

(1)  og ( ) ) 0, (§(1)).

le(er 3 \ (01

1£(e)l

Since |dg/0x,| < const/|x],
|f,(t)] < C as.forall ¢t >0  (Cconst) (3.11)

By Corollary 4.4.6 it follows that k(¢) = o(t). Hence, dividing both sides of
(3.9) by ¢t and letting t—c0, the assertion (3.7) follows.
We now replace (3.2) by a stronger condition of nondegeneracy:

> a0 > afxPigP forall x€R", £ER" (3.12)

Theorem 3.2. If (3.12) holds, then for any positive-valued function ¢(t)
= o(Vt logiog t),

— log [&(¢)] — Qo

Py o(t) = as., (3.13)
gl - Qe _

tLl_To (1) = .S (3.14)

Proof. Since the function g is homogeneous of degree 0,

0
> x, £ _ 0 by Euler’ s theorem.
i B Yy

Hence, by (3.12),

o252
2 1A @F=2 '( g o\ o

& g\
>a|§|22(|“£F—a—i) > a

where £ = £(t) and the argument of g is &(t)/|¢(¢)|. Recalling (3.11) we
conclude that

a <QABOPF< B ( B const). (3.15)
By Theorem 4.7.4, the process



208 12 STABILITY AND SPIRALING OF SOLUTIONS

where
" n
ot = | s [* S (f ) =
0 sm]
is a one-dimensional Brownian motion. In view of (3.15)
t/B < 7(t) € t/a. (3.18)

Applying the law of the iterated logarithm to %(t) and using (3.16) we
deduce that

lim — = o as., lim — = —oc0 a.s,
=% ¢(t) i~ ¢(t)
o Bl 2N In Al T 2 /Y T T Tolemer Abiin 2o /OO Al mconswdimes /D T /D TAN
WIICI1C I\.\L} Ld UCTLLIICU 111 \\.) .I.U}. Ul ls wlid inl \O.U}, LLIT AMDTILIVILD \O-lo/, \O .I.‘t}

follow.
Consider now the general case of a nonlinear stochastic differential
system. We assume that
040) =0, b{0)=0

and that ¢, b, belong to C !in a neighborhood of x = 0. Then

oulx) = 3 oz, + olixl),  bx) = 3 by, + ollal).

i=1 =1

Theorem 3.3. If the oy, b, are such that (3.2) holds, and if Qy < 0, then

x = 0 is asymptotically stable.
AAVA YO A VA/ALLIIVNA U] \UIU/ CARANA Y L

can easily verify that

Q(#) = lim 25,bi(x) 1 2ay(x) Ea,,(x)xixi ]

=0 | faf? 2 |« Ex

where (r, #) are the polar coordinates of x.

The proof of Theorem 3.3 follows from the easily checked fact that cu(x)
is an S-function (for the present nonlinear system), where u(x) is defined by
(3.8) and c is a suitable positive constant.

4. The method of descent

HAang wa - NraTs) idorad tha cuctam nf matinne (1 1)
W1CIiS WC fiavo (U L 15

PALTIMIIC » ) O
R VLV N YL v O]Dl.blll L e U\iual.l\.lllﬂ \.I...I.},

Tn tha Ty can
AEL AL t’AUVlUuD s L vl
where w(t) is n-dimensional Brownian motion. However all the results
remain valid if w(t) is l-dimensional Brownian motion. In the present section

we shall need to work with this slightly more general setting.
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Consider a system of n + 1 equations

287
i
d¢, = 21 o,(& m) dw, + b¢, n) dt

(1<i<n)
i
dn = 21 0o,(é, ) dw, + by(, ) dt

(4.1)
and suppose that the last equation degenerates on the hyperplane y = 0, i.e.,
0.(x, 0) = 0,

by(x,0) =0 if |2 <8, (4.2)
We also assume that the stability condition (2.11) holds with respect to
the hyperplane y = 0 at (0, 0), i.e.,
AL (0 0) 1 [as (oo 12
— = UUo\U, v) _ 1 [ 0008‘\",’ V)
ay 2 s=1
borhood of the origin.

(4.3)
of the solution of the reduced system

3y j <0
it is assumed that 0b,/dy, do,, /0y exist and are continuous in a neigh-
We shall compare the behavior of the solution of (4.1) with the behavior

I
d§ = 3 o,(£ 0) dw, + bt 0) dt
sm=]

(1<i< n) (4.4)
The differential operators corresponding to (4.1) and (4.4) are
1 < 3% o ou
Lu(x, y) == a,(x, + b (x, y) —
(v y) =3 "1_2#0 o5 Y) G om 2 bilxy) 3
and
1 < 3% o du
Lu(x) == a,(x, 0 + b(x, 0) — ,
0 ( ) 9 i,fE-I ii( ) axi axf i§1 i( ) axi
respectively.
We shall assume that
0,(0, 0) = 0,

b(0,0)=0 if 1<i,j<n. (4.5)
Theorem 4.1. Let (4.2), (4.3), (4.5) hold. If f(x) = log {x| + H(x/|x|) is an
S-function for the reduced system (4.4) for x = 0, then there exists an
S-function for the system (4.1) for {x, y) = (0, 0) having the form

flx, y) = ia, log( y* + ¢ exp2f(x)]}

for appropriate nonnegative constants o, €.

(4.6)
This theorem will be referred to as the method of descent.



Proof. Consider a function
fo(xy) =log[ y* + e exp(2f ()] = log[ y* + €h()],
h(x) = | exp[2H (6)].
Setting b, = dh/x,, b, =3°h/dx, dx, ¥ = y> + €h(x), we have
Q. (%, y) = (Lf)(x y)

n Gh.. hh n 2€yh
- i f i
=4 i’izzla,-,-(x, y){ “‘\I‘,J' ~ ¢ ¥ ] + i§1 aio(x’ y)[ - 2 ]
\ —2y® + 2¢h
+ S ag(x, y)[ — ‘
- 5hi(x) 2
+ 2 by, y)[ T ] + by(x, y)[ ‘3 ] (4.7)
i=1 x x

If |x> + y®> = 1 and if a = miny o, h(x),
€ € € 1 . 1
= < = < = if e<=, (48)
T U+ oealxt ea+ y(l—ea) @ «

and
4y y _ y®
s < 2 2
¥ [y® + ea|x?] [ca + y*(1 - ea)]

since the maximum of the third term is attained at y = 1.
Consider the first term I on the right-hand side of (4.7). Since, by (4.5),

|la, (%, y)| < const(|x[* + y?) (if, say, |x[* + y* < 1) and since h, = O(|x|),
h, = O(1)
if ’

<1 (4.9)

le?' + yz‘c e2|x|?
[I| < Cﬁ——\l—,—)— +C \|I'| < C' (C, C’ const)

by (4.8), provided |x|> + y® < 1.The other termson the right-hand side of
(4.7) are estimated similarly, using (4.8), (4.9), and the inequalities

age(t, ¥) < Coy®  |bi(x y)l < CVIaf + 4%, [Bo(x y)| < Cilyl

which follow from (4.2), (4.5), provided |x|> + y* < g, u sufficiently small,
We conclude that

Q.(x,y) <B* if [xP+y*<p €<1l/a (4.10)
for some u > 0, B > 0; p and B are independent of e.
If y #0,
yace(% y)  2bo(%. )
li = — + . 4.11
lim Q, (x, y) ,: y (4.11)

Using (4.2) we find that the right-hand side is a continuous function
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(extendable to y = 0 by continuity) and its value at (0, 0) is —2» where » is
defined in (4.3). Since the convergence in (4.11) is uniform in any region
|yl > &', where 8’ > 0, we conclude, after using the fact that Q,(x, y) is
homogeneous in (x, y), that

Qe(x’ !I) < —v
if

xf + > <t (x, y)ES = {|x|2 + y? < p¥tan”? % < 8} (4.12)
provided € = ¢(8) is sufficiently small. Here p is a sufficiently small positive
number, independent of e, §.

On the other hand, as seen from (4.7),
Qx,0) = 2Ly flx) < —2 if |x| is small.

Since, for any € > 0, Q,(x, y) is continuous in (x, y), we conclude that
Q.(x, y) < —1if |x* + y* < p® (x, y) ESs provided p is sufficiently small
and provided 8’ is sufficiently small. The constant g can be taken to be
independent of ¢, but 8" = §'(e).

We conclude that for any small § > O there exist small € and small
8’ = 8'(€) such that

Q.x,y) < —A%  if (xy)&S\S AP + y* < p¥ (413)
here u and A” are sufficiently small positive numbers independent of §, ¢, 6.
We now take a sequence of numbers §,, decreasing to 0 such that the
regions S,, = S, \S;  are disjoint; for instance, §,,,, =18,. Toeach § = §,
there corresponds an € = ¢, such that (4.13) holds if (x, y)ES,..
We now form the function in (4.6) with

o0
21 x=1 >0 (4.14)
-
If
2« log % <o, 320, (4.15)

f
then the series in (4.6) is absolutely and uniformly convergent together with
any number of its derivatives in any compact subset lying in the domain
0 < |x]* + y® < p. Hence,

Lf(x, 4) = 3 0,0, (x, y).
If (x, y)ES,, and |x[* + y® < p, then

(Lf)(x, y) < o, B>~ Az.; a = a,B* — A¥1 ~ o)
’ m

2 2

=(BZ+A2)am—A2<A7—A2= _ A?
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if
a, < A%/2(A? + BY). (4.16)
On the other hand, if (x, y) & §m for all m, then

(Lf)(x, y) <i§1(_A2“f) = — A%

Thus, if the a; can be chosen to satisfy (4.14)~(4.16), then Lf(x, y) < —A?/2
if {x]* + y® < p; thus cf(x, y) is an S-function for the system (4.1), where
c=2/A%

It remains to construct the a«; satisfying (4.14)~(4.16). Let N be a
sufficiently large positive number such that

§ 1
— 1,
j=n+1 i log(1/¢)
1 < A
N2?log(l/ey)  2(A% + B%)°

1, _ & 1 A
N [1 f-%+l ’-2 ].Og(l/%) } < 2(A2 + Bz) .

Defining
1 3 1 | . .
= 11— _— if 1< j<N,
o = Nl l-§+1 12 log(1/¢) ] ’
—1 if j>N+1,
i* log(1/¢)

it is readily seen that (4.14)-(4.16) hold.

5. Spiraling of solutions about a point obstacle

We shall now specialize to the case n = 2 and consider the angular behavior
of solutions near a stable obstacle. In this section we consider the special
case of a point obstacle at x = 0. Thus we consider a system

d¢§, = é 0,(§) dw, + bi(é) dt, i=12 (5.1)
s=1
with
2
o,(x) = 2 o % + o(lx]) as [af >0,
=1 (5.2)

2 byx, + o(|x|) as |x| = 0.
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We introduce polar coordinates (r, ¢) by
X; = r COS ¢, Xp = r sin ¢.
The stochastic differentials dr, dp may formally be computed by
dr = r, d§, + ., dé; + Tayree, dt + ajree dt + fagre, dt,
do = ¢, d§, + &g, d&; + Fay g, At + arede, dt + 3 Gasde e di.
Noting that

T, = COs ¢, Ty, = sin ¢,
sin® ¢ sin ¢ cos ¢ cos® ¢
ox, = ’ N, - — Teexe — s
1%1 r 1%2 r g ] r
_ sin ¢ _Ccos¢
¢xl = r s ¢:. - r )
2 sin ¢ cos ¢ sin® ¢ — cos? ¢ 2 sin ¢ cos ¢
= —— b = h = — —_———
mx 2 > Tz 2 Y Txgxy o ’
we get
l s
dr =2 &(r, ¢) dw, + b(r, ¢) dt,
7 _ (53)
dé = X G, (r, ¢) dw, + b (r, ¢) dt
s=1
where
5,(r, $) = 0, cos ¢ + oy, sin ¢,
b(r,¢) = by cos ¢ + by sin ¢ + él—r la(x)A L, AL,
. 5.4
Frg) =0, 8¢, o4
i AR r “ls “25%
= sin ¢ cos ¢ 1
b (re) =~ —=b+— by~ 5 alX\ A"
here
A = {cos ¢, sin ¢), AL = (—sin ¢, cos ¢)
and
(a(x)u, vy = D ay(Dmr, (s = (my, so) v = (v, v3))-
If we substitute (5.4) into (5.3) and make use of (5.2), we find that
! . !
dr = r[ S 6,(¢) dw, + b(p)dt| +| > R, dw, + R, dt]
s=1 s=1
ro 1T 1 (5.5)

do = t S & (6) dw, + b(¢) dtJ +[ S 0, dw, + 6, dt]

s=1 s=1
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where R, = o(r), ©, = o{r) when r—0, uniformly for 0 < ¢ < 27.

We proceed to justify (5.5) rigorously. Let y(t) = (r(¢), ¢(t)) be the
diffusion process defined by the solution of the system of stochastic differen-
tial equations (5.5) with r(0) > 0. By the proof of Theorem 9.4.1 (with
R(x) = r) we see that the solution y(¢) remains in (0, c0) X (— o0, o0) for all
t > 0. Define x(t) = (x,(¢), x,(t)) by

x,(t) = r(t) cos o(2), x,(t) = () sin ¢(¢). (5.6)

Theorem 5.1. The solution of (5.1) can be represented in the form (5.6)
where (r(t), ¢(t)) is the solution of (5.5).

Pf(’}(‘)f. We have to veriry uie €qua i
an argument of general nature.

Write x,(f) = g (y) where y = (y,, y,) and g is the global differentiable
transformation (r, ¢)~>(r cos ¢, 7 sin ¢). The stochastic differential of x can
be computed by It6’s formula (subscripts following commas denote partial
derivatives)

dx; = Ek\g'k dy, + 3 kEIg,"kz dy, dy;. (5.7)

On the other hand, by (5.5), (5.6), the stochastic differentials of (y;,
t/o) = (r, ¢) were obtained in terms of the local inverse of g:

x,
x—>f(x) = (\/xf + 2 tan"! 2 );

Xy

thus
zf" dx, +12f" dx; dx;
- gf,':(g )| Soe(y) du, + bilely) dt]
+ 1 i%f,’ff( g(y)o,(g(y))o(g(y)) dt. (5.8)

If we substitute (5.8) into (5.7), we get (omitting the arguments of g, f, o, b)

s, = Db St do, +[ 4 S jovo, + ) o
(3 eistoting) i

tkLp.q.r
Since f and g are inverse functions (locally), it follows (by differentiating
once the relation f(g(y)) = y) that Z,f¥g% = §,, and (by differentiating
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once the relation = f§ g% = §,) that

2 g,‘kf,’l‘m + Ef,'; g.‘kpf:rr,n = 0'

Using these relations in the last expression for dx, we arrive at dx;, =
2o, dw, + b, dt. This completes the proof.

Theorem 5.1 shows that ¢(t), in (5.5), can be identified with the algebraic
angle of the solution of (5.1).
Set

1/2 .
(és(w)z}  ble) = B(@) 59)

d¢ = o(¢) dw + b(¢o) dt (5.10)

where here w(t) is a one-dimensional Brownian motion. This equation has
the differential operator

Lyf =40%9)f” + blo)f" (5.11)
The equation

d¢ = X, 5,(9) dw, + b(¢) dt
s=1
is an approximation to the second equation in (5.5), and it has the same
differential operator (5.11). Thus one expects to study the behavior of the
algebraic angle of the solution of (5.1) by analyzing the behavior of the
solution of the equation (5.10).

Notice that the 5, (¢), b(¢) are trigonometric polynomials, homogeneous of
degree 2. In the following analysis, however, we shall not make use of the
specific form of a(¢), b(¢). We shall only make use of the fact that o(¢), b(¢)
are periodic functions of period 2.

We first consider the case where o(¢) does not vanish.

Theorem 5.2. Assume that r(t)—0 a.s. when t—>c0, that o(¢) > 0 for all ¢,

and that
27 b()
A=2 do #= 0.
e

Then

o o(t)

lim — = ¢ a.s.

t—>oo t

where ¢ is a constant having the same sign as A.
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Proof. Consider first the case A > 0. It suffices to find a function f such
that

$o%(e)f"(¢) + blo)f'(9) =1 (-0 <9< ), (5.12)
(bl_u& f(q!)) % (c positive constant),  (5.13)

fl¢p) remains bounded from above as ¢— — oo, (5.14)
f/(¢) is bounded. (5.15)

Indeed, if f is such a function, then by Itd’s formula,

el = flol0)) + 3 [ &l 4)f(¢) du

+ fo t[ é 2z (a(r, OF"(9) + B(r, 9)f (9) | dr. (5.16)
Since |g,(r(t), qb(t))f’ t))| < const, Corollary 4.4.6 gives
Jim ? f 20 (r, $)f (¢) dw, =0 a.s. (5.17)

We now consider the integrand of the second integral on the right-hand
side of (5.16). Given € > 0, let r, > 0 be such that

S (Elr - 0] < 15(0) - blO) <

sm=]

for 0 < r < 7y Let T, = sup{t > 0; r(t) > r,}. By assumption, T, < o a.s.
From (5.15) and the equation (5.12) we see that f” is a bounded function.
Denote by K a bound on | f'| and | f”|. For ¢t > T, we then have, by (5.12),

8 (G0, o)) F lo(0) + B(r(e), (1) (1) — 1|< 2¢K.
Combining this with (5.17), we conclude from (5.16) that

f(¢ < 1 4+ 26K,
t—-boo
t
t__'h_l;n_ f(d)t( ) > 1 — 2¢K.
This implies that a.s.
t
L fe) )
t—oo t

in particular, because of (5.14), ¢(f)—oo if t—oc. Invoking condition (5.13),
we then get

() fle(r)
=o flo(e) ¢

=c’
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which completes the proof of the theorem, subject to the construction of f.
To construct f, let

B(x) =exp{zfo" e d¢},

28(¢) 519
Y R S e h 4
=, 5w b e ¢
Clearly f satisfies (5.12). Since A > 0, we may write
= b(z) x
2 fo i =M + m(x)
where
x—[x/27]27 b(Z) x x
m(x)=2f0 () dz_A(é;F[é;])
is a 27-periodic function. Thus
B(x) = exp{Ax + m(x)} (A = A/2n).
Hence we have
oy 1 = B(z) _[F exp{Az + m(z) — Ax — m(x)}
P& =g b a =k (3 *
=f0’ opl M :2?::(3‘__“;‘) = miz)) du (u=x-—2).

Since m is a bounded function and o® is bounded below by a positive
constant, the last integral (§ differs from the integral [§° (with the same
integrand) by a quantity which is bounded by

oD
const f e ™ du = const e ™.
x

Therefore,

(%) =f0°° expl — A J;;("fc__u;‘) —ma} O(e™™). (5.19)

Denote the last integral by G(x). Since m and o are 2#-periodic, the same is
true of G(x). Noting that

Loty — (5 ol o] o cmmce {5 oA 1 = (1)
Jix) _} L %) u.ol % COTiSt J € az Wi/,
| 0 0
we conclude that
x *Glz) dz o
limf()_limfo() ——1—fG(zdz
X—>00 x x—>00 X 2 0



298 12 STABILITY AND SPIRALING OF SOLUTIONS

This proves (5.13). The condition (5.15) follows immediately from (5.19).
Finally the condition (5.14) follows from the fact that f'(x) > 0. We have
thus completed the proof of the theorem in case A > 0. The proof in case
A < 0 is reduced to the previous case when applied to the process (r(t),
— ().

We now consider the case where o(¢) is degenerate at a finite number of
points.

Theorem 5.3. Assume that r(t)—0 a.s. as t—oco and that o(¢) has a finite
number of zeros. If b(¢) > 0 at any point ¢ where o{¢) = 0, then

m ﬂﬂ =c as. (5.20)

f—>00 t

where c is a positive constant.

Proof. Since o(¢) vanishes at some points, one cannot find, in general, a
regular solution of (5.12). We shall therefore aim at constructing a family of
functions f. (¢ > 0) in C*(— 0, %0) satisfying;:

)
1 —Ce < Lofx) 1+ C if —oo<x<ow (Cconst), (521)
|f/(x}) < C; if —oo <x< o0 (Cconst), (5.22)
1

X
— —¢€ < lim AC
c [x| =0 X

N

1
- +€ (523)

where ¢ is a positive constant.
Once the f, have been constructed, we apply 1td’s formula to f, (cf. (5.16))

. (9(2)) — £(0)
= [ fdo(s) ds + 2 [ E(r(s), oo 0ls) s

+3 | [6%(r(s), o(s)) — o*(s(s)]f (o(s)) ds

+ [ 16 (1(5). 9(6)) = blolsN]flols) ds = I, + Ty + Ty + I,

where o%(r, ¢) = Z(5,(r, 4))%. By Corollary 4.4.6, J, = o(t) at t—. Since
r(£)—0 a.s. as t—>00, we also have from the continuity of o*(r, ¢), b(r, ¢) at
r=0,

Iy=o(t), Ji=ot).

Using also (5.21), we conclude that
— flo(2)
t

1 — Ce < lim fio(t) < lim

f—» 00 { t—00

< 1+ Ce.
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From this and (5.23) it follows that ¢(t)—co if t—o0, and

o(t)  — o(¢)

c,(€)(1 — Ce) < tll_m — < Jim — < co(€)(1 + Ce)
~—c0 -
where
N S o
l C,(G) p % €.

Taking e—>0 we get lim,_, ., [¢(t)/t] = ¢ a.s. Thus it remains to construct the
functions f,.
We shall need a few facts regarding the differential equation

Lo¥(x)u'(x) + b(x)u(x) = g (a < x < B). (5.24)

We assume that b, g are continuous on [a, 8] and o{a) = o(B) =0.
Further, o(x) is Lipschitz continuous in [&, 8] and does not vanish faster
than exp[ —e€|x — x| '] at x, = a, B, for any € > 0.

Lemma 5.4. Let the foregoing assumptions hold and assume that ¢%(x) > 0
for a < x < B, b{a) >0, b{(B) > 0. Then there exists a unique bounded
solution u(x) of (5.24) in the interval a < x < . This solution satisfies

gle) )
) u(B—o)_b(B). (5.25)

Furthermore, if g is everywhere positive, then u(x) is everywhere positive.

u{a + 0) =

Proof. Let

s(x) = exp{ -2 j;: (1:2((!;)) dy} (a < x5 < B).

Then {0’ + bs =0, s(a + 0) = o0, (B — 0) = 0. Observe that u is a
solution of (5.24) if and only if
;2
(2) = 2E

$ sa>

Consequently the general solution of (5.24) is

« _ 2g(y)
u(x) = ¢;8(x) + 2s(x) —— dy;
1 J s(y)o*(y)
the integral is convergent since
£ ex [— ¢ ], c > 0.
s(y) "Ly«

If u(x) is a bounded solution, then w(x)/s(x)—0 if x | a. Consequently
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¢, = 0, and

ulx) = 2s(x) fa ’ Z(E'(y")%' (5.26)

It remains to prove (5.25). Since
(m-fo2
s
an application of I'Hospital’s rule gives
2
ula + 0) = lim BF/s@E) - gla)
1% b(x)/s(x)o%x)  bla)

Fa 3N 71

Similarly, (8 — 0) = g(8)/b(8).

Lemma 5.5. Let the assumptions of Lemma 5.4 hold and assume that
g = 1 and that b(x) is constant in a neighborhood of the end points a, B.
Then the bounded solution u(x) of (5.24) is in C'la, B] and ' (a + 0)
= w(B—0) =0.

Proof. Since

1 _ _ 1 s . 1 (*2bs , _ ("D
2s(x) 2f 52 4y 21; o’ 4y -l; so2 4.

we get from (5.26),
x dy / * bdy
= — . 527
fa s0° fa 502 (5:27)

If b(x) = b(a) for « < x < a + 8, then it follows from (5.27) that u(x)
= 1/b(a) for a < x < a + 8. Thus u is continuously differentiable in
[a, a + &) with v'(a + 0) = 0.

Suppose next that u(x) = b(B) if 8§ — § < x < B. Using (5.27) we see

that
B—8 b——b
L=/ L
= 2s( )j;ﬁ ’ 2:-;-:2—) dy.
Hence

’ u(lx) “”(B)| < Cs(x) < Cexp[—clx — B| 7] (5.28)
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for some C > 0, ¢ > 0. Since

we conclude that «’ is continuous in (8 — §, 8] when defined at 8 by
u'(8) = 0. By the mean value theorem we thus also have v'(8 — 0) = 0.
This completes the proof.

We shall now approximate the solution of (5.24) with g =1 by the
bounded solutions u, of

Yo (x)u(x) + b(x)u(x) = 1, (5.29)
where
(b(a) if a<x<a+d,
bla) +(x — a — §)
b(a + 28) — bla)
X 5 if a+d<x< a+ 28,
b(x) = { b(x) if a+28<x<B—26,
b(B) - (B~x-9) ‘
xb(B)_I;(B—zs) if B—20<x<pB—3,
| b(B) if p-8<x< B

where 8 > 0 is chosen such that |b {x) — b(x)| < e. Note that, by Lemma
5.5, u_is in C'[a, B).

Lemma 5.6. Let the conditions of Lemma 5.4 hold with g = 1. The unique
bounded solutions u, u, of (5.24) (with g = 1) and (5.29) satisfy
|u(x) = u(x)| < Ce (a < x< B) (5.30)
where C is a constant independent of «.
Proof. Clearly
$0%(u — u) + b(u~ u,) = (b, — b,

From the proof of Lemma 5.4 we have

x (b, - b
u — u, = 2s(x) f (—cg};—)ﬁ dy. (5:31)
Setting
x d
Klxy) = 2s(x) [* =%
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we then have

u(x) < u(x) + € ./:K(x, yu(y) dy.

Since K(x, y) < C’ (C’ constant), we obtain, by iteration, u, (x) < C’ Lub.
u(x), with another positive constant C’. Substituting this into the right-hand
side of (5.31), the assertion of the lemma follows.

Completion of the proof of Theorem 35.3. Let - - <ax_, <1x3< 1
< - - - be the zeros of 0%(x). In each interval (x;, x,, ;) we form a function
b, as in the proof of Lemma 5.6. Denote the corresponding solution of (5.29)
by u*(x), and setu( )—u ( x) if & < x < xy. ByLemmaS4 u (x) is

nts ith 2 (x.) = 1/b(x.)) and by Lemma 5.5 1/ (x)

continuous at the points x, (with © (%) = 1/b(x)) and by Lemma 5.5 u/(x)
is also continuous at the points x;, with «/(x) = 0. By uniqueness of the
bounded solution and the periodicity of 6*(x), b_(x) we deduce that also u_(x)
is periodic. Set

filx) = [ uly) dy.
0
Then clearly f,€ C%* — 0, o) and, due to the uniform boundedness of «,
(which follows from (5.30)), the estimate (5.22) is valid. Next, as easily seen,
Lyf. =1+ (b — b)u,

and (5.21) thus follows.
To prove (5.23) write

fix) = fx ul ) du + fx[g, (1) — ul )] du.
JENTT/ JO T/ J JO L™eN F/ VT4 J
Using the periodicity of u and (5.30) we see that
— |fx) 1
R <
lxl—>oo | =% 27 fo u(y) dy| < Coe

where C; is a constant independent of €. This gives (5.23) with ¢ > 0.

Remark. 1f in Theorem 5.3 we assume that b(¢) < 0 at each point ¢ where
o(¢) = 0, then the assertion (5.20) holds with a negative constant c.

6. Spiraling of solutions about any obstacle

We continue to specialize to the case n = 2. We shall consider the spiraling
of solution about a general obstacle. Consider first the case where G is a
closed unit disk and assume that o,, b, are continuously differentiable in a
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neighborhood of |x| = 1, We also assume the conditions (2.1), (2.5) so that
9C is nonattainable and invariant.

Introducing coordinates (r, ¢) by x;, = (r + 1) cos ¢, x, = (r + 1) sin ¢
we can rewrite the differential system (5.1) in the form

dr = r[ }l] &(o) dw, + b(o) dt

s=1

i
> R, dw, + R, dt|,

s=1

(6.1)

d¢={ S §.(0) duw, + 5 (9)

s=1

l
2 8, dw, + 6, dt]

where R, = o(r), 8, = o(1) if r | 0. The functlons &,(®), b(¢), 6.(o), If(qb) are
2m-periodic continuous functions which are not necessarily trigonometric

malvnamiale We adhere t+a tha notation
r\’-l] AA\JABAACRR T, ¥V W GALZALLWL W LA LAARY LANJARGALANLL

) 1/2 : .
o) = | S E6P) . bl =Elo)

s=1
Let y(t) = (r(t), ¢(t)) be the solution of (6.1) with r(0) > 0 and set

2,(t) = (r(t) + 1) cos d(t),  xy(t) = (r(t) + 1) sin o(2).
As in Section 5 one can show that 7(f) > 0 as. for all ¢ > 0 and x(#)
= (x,(t), x5(t)) is a solution of (5.1), Thus ¢(t) represents the algebraic angle
of the solution of (5.1).

Theorem 5.2 now extend word by word to the present case.

If we assume that o(x) has no zeros of infinite order (more precisely, that,
for any € > 0, o(x) does not vanish faster than exp[— €|x — x,| '] at each of
its zeros x;), then Theorem 5.3 also remains valid (with precisely the same
proof) in this case.

Consider now the case of a general closed domain G with connected C°
boundary 9G.

We introduce new variables (r, ¢) in a G° = R™\(int G) neighborhood of
G, by

¢ =2ms/L,  x,=fls)+rg(s), x=g(s)—rf(s), (62
0< s< L, 0<r< ¢ and f2+ 3 =1; L is the length of the boundary
aG.

Then the stochastic differentials dr, d¢ can be computed in the form

l ~
dr= 2 6 dw, + b dt.

s=1

il
IR

Qi

. (6.3)
+ b dt.

Ql!!

In order to express 5., 5., b, b in terms of the 0, b, we compute dx, using

(6.2) and then compare with the expression for dx;, given by (5.1) (with



§ = x,). After some calculation we arrive at the formulas

(ﬁ’ls + go%)

= 27

3, (0, ¢)

t~

S, 20,0,
2013028 20223 (]gc)

(6.4)

[ Qe

b (0,6)= 201 (o, + gb) - (& — f)

Set

1/2 _
o(#) ={ S (.0, ¢))2}  ble) = £(0, ). 65)

sm=1
The system (6.3) was defined only locally, i.e., for 0 < r < ¢, Suppose we
could extend the mapping (x|, x,) — (r, ¢) into a global diffeomorphism A
from R™\ G into { y; | y| > 0}, where y, = r cos ¢, y, = r sin ¢, such that
the first derivatives of A and of its inverse are bounded near co. Then we
could apply Theorems 5.2, 5.3 directly to the system (6.3) and conclude:

Theorem 6.1. Theorems 5.2, 5.3 remain valid for G with o(¢), b(¢) given
by (6.4), (6.5), provided the conditions (2.1), (2.5) hold and provided the zeros
of 6(¢) are of finite order,

This theorem can be proved without assuming the existence of the above
diffeomorphism A. Indeed, we first construct a function f satisfying (5.12)—
(5.15) (for Theorem 5.2) and functions f, satisfying (5.21)—(5.23) (for Theorem
5.3). These are functions of ¢ which in turn is a function of s (by (6.2)). Thus,
f = f(s), f. = f.(s). One can check that _

Lof(s) =1, 1- Ce< Lyfis) < 1+ Ce, (6.6)

where Lyv is the differential operator Lv restricted to 3G, ie., to r=0.
Since r(t)—0 a.s. as f—oc, we can now proceed to apply Ité’s formula to
f(xy, x) (for Theorem 5.2) and to f (x,, x,) (for Theorem 5.3) and argue in
the same way as in the proofs of Theorems 5.2, 5.3; here f and f, are C?
extensions of f and f,, respectively, into R", which are constants along the

normal to dG in a small neighborhood of 9G.

Remark 1. The assertion ¢(t)/t—c can be stated in the following form:
Denote by (r(t), s(t)) the position of the solution £(¢) near the boundary 9G,
where r(¢) is the distance from 3G and s(¢) is the “algebraic length.” (If a
point moves along 9G so that its argument increases (decreases) by 27, its
“algebraic length” increases (decreases) by L.) Then s(t)/t—cL/27 as
t—c0.

Remark 2. If in Theorem 6.1 we assume that r(f)—0 as t—o0 forall w in a
set {J,, then the assertion ¢(t)/t—c as t—oo is valid a.s. in £, This is
obvious from the proofs of Theorems 5.2, 5.3, 6.1.
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7. Spiraling for linear systems

Consider a linear stochastic system

dg, = 2 2 0g¢ dw, + 2 byt dt  (i=12) (7.1)

f=1 =1
in the plane. Introducing polar coordmates X; = rCOS ¢, X, = rSin ¢, we

find that
do = é (oA AL dw, + {(BA ALY — CaAA ALY df (7.2)

s=1

where
o, = (0{;), B = (bq), A = (cos ¢, sin ¢), A+ = (—sin ¢, cos ¢),

a\) = (aif()\))’ alf(x) = kEl 033 O X.

Thus the variable r does not enter into the differential equation for ¢.
Consequently ¢(t) defines a diffusion process. The differential operator
corresponding to it is

Lu = $o*(x)u” + b{x)uw’

where

! 172
= { 2 (o, 7\*>2] , b(¢) = (BA ALY — (aMA, AL, (7.3)
s=1
We shall now study the behavior of ¢ in cases not covered by Theorems
5.2, 5.3. Suppose first that
ole) >0 if a<o<p, ola)=0, o(B)=0, (7.4)
b(a) >0, b(B)<0O. (1.5)
If a <¢0)< B, then a <o¢(t) < B for all £ > 0. To study the limit
behavior of ¢(t), let @ < y < B and introduce the function

a(x) =fx exp —j;z 2b(s) ds] dz.

Y o*(s)

This is a solution of L7 = 0.

Theorem 7.1. Let ¢(0) = x, a < x < f8 and let (74), (7.5) hold.
) Ifn(a)= —o0, w(B) = o0, then a < ¢(t) < B forall t > 0 and
lim ¢(¢) = info(t) = a a.s,

f—>oo t>0

11m o(t) =supo(t) = B a.s.

t>0
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(i) Ifw{a) > —oco,m(B) = oo, thena < ¢(t) < B forallt > 0and
t

tl_imozp( ) = ti;ngqb(t) =a as,
supo(t) < B a.s.
t>0
(iii) Ifw(a) = —oc, w(B) < 0, then a < ¢(t) < B forall t > 0 and
lim o(t) =supo(t) = B a.s.,
—® t>0
inf ¢(t) > a a.s.
>0

(iv) Ifm(a) > —o0, 7(B) < oc, then a < ¢(t) < B for all t > 0 and

P{ lim ¢(t) = a} = P{ inf o(t) = a} = W(B) — w(x) ,
LR = = PR = ) = (e
: _ _ (x) — m(a)

d Hm, (1) = B} = P{fgpocp(t) B B} " w(B) - 7(a)

The proof is similar to the proof of 9.7.1, with the roles of —oco, +0o0
given to the points ¢ = a and ¢ = f respectively. The details are left to the
reader.

We next consider the case where (7.4) holds and

b(a) = 0, b(B) > 0. (7.6)
Notice that if $(0) = x > «, then ¢(#) > « as. for all £ > 0. We denote by

7.4, c] the exit time from (a, c¢) given ¢(0) = xE(a, ¢).

Theorem 7.2. Let ¢(0) = x, « < x < B and let (7.4), (7.6) hold. If =(«)
= — 0, then 7 [a, B] < o a.s. and

P{o(r ], ) = B} = 1.
If w{«) > — o0, then ¢(t) > « a.s. and

7(x) — m(a)

P{o(r[e, B]) = B} = -

(B) — m(a)’
Pl et = o) = gt = o} = ZE=T

Proof. The proof of Theorem 5.3 provides C? functions f, in [ + §, 8 +
8] satisfying Lf, > 1 — € here 6 and € are any positive numbers. An
application of It6’s formula with f, (when € = {) gives Er_[a + 8, B + 6]
< co. In particular, 7.[a + €, B] < o0 a.s. for any € > 0.
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Using this last fact and It0’s formula we get (cf. Problem 12, Chapter 8)
W(x) - W(a + e)

Plolrfa + e f) = B) = T 5 5

7(x) — 7(a + €)
7(B) — wla +¢€
Taking €—0 the assertions of the theorem readily follow.
The function (o(9))® is a homogeneous polynomial of degree 4 in (cos ¢,
sin ¢). Consequently, a(¢) is periodic of period 7, and it can have at most

two zeros in the interval [0, 7). The function b(¢) is also periodic of period =.
The following possibilities may take place:

P{qb('rx[a +efB)=a+ €} =

(i) o(e) has two distinct zeros ¢,, ¢, in the interval [0,7).
(ii) o(¢) has one zero ¢, in the interval [0, ).
(iii) o(¢) does not vanish in the interval [0, 7).

If (iii) holds, then Theorem 5.2 can be applied. Suppose (ii) holds. If
b(¢,) # 0, then Theorem 5.3 can be applied (see the remark at the end of
Section 5). If, on the other hand, b(¢;) = 0, then Theorem 7.1 can be
applied.

Suppose finally that (i) holds. If b(¢,) > 0 for i = 1, 2 or b(¢,) < O for
i = 1,2 then Theorem 5.3 can be applied. If b(¢,) > 0, b(¢,) < O, then
Theorem 7.1 can be applied. If b(¢,) = 0, b(¢,) > 0, then Theorem 7.2
applies. The last possibility is b(¢,) < 0, b(¢y) = O; in this case an analogue
of Theorem 7.2 can be applied.

We shall now compare the behavior of ¢(t) for the stochastic system (7.1)
with the behavior of ¢(¢) for the deterministic system

2
dx, = Y bx dt (i =1,2) (7.7)
f=1

-

Lemma 7.3. If for some ¢, a{(¢) = 0, then b(¢) = (BA\, A L),

Proof. From the definition of o(¢) we have

(o()= 3 ( s o‘;x,-v) = S (T, sin ¢ — Ty cos ¢)°

s=1\ij=1 s=1

where T, =0} cos ¢+ o3 sin ¢. Next

bg) — (BAAYY = —~G@MAAD == 3 S il A AN

s=1 i,kjm=1
1
= — > (T, cos ¢ + Ty, sin ¢)(~ T, sin ¢ + T,, cos p).

s=1
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Consequently, the right-hand side vanishes whenever o(¢) = 0, and the
assertion follows.

Theorem 7.4. Let (i) or (ii) hold. If for the deterministic system (7.7)

¢(t)—>00 as t—00, then the same is true for the stochastic system (7.1), i.e.,
if x(t) = (r(t) cos ¢(t), r(t) sin ¢(t)), then a.s. $(t)>o0 as t—co; in fact
[¢(t)/t]—¢, ¢ a positive constant. Similarly if ¢(t)— — oo as t— ~ oo for
the deterministic system, then, for the stochastic system, a.s. [¢(t)/t]— — ¢,
as t—c0, where ¢, is a positive constant.

Proof. In the deterministic case, |¢(t)|— 0o as — oo if and only if the origin
is a focal point (spiral or vortex). This is the case if and only if the
eigenvalues of B are nonreal, i.e., if and only if (BA, ALY 50 for all
A = (cos, ¢, sin ¢). Now use Lemma 7.3 and Theorem 5.3.

If the eigenvalues of B are real (of the same sign for nodal points, and of
different sign for saddle points), then (BA, A} does not have a fixed
(positive or negative) sign. Nevertheless, the stochastic solutions may still
spiral in accordance with Theorems 5.2, 5.3 if either (iii) holds and A # 0 or
if (ii) holds and {BA,, A{-> # 0, or if (i} holds and (BA,, A;") is positive for
i = 1, 2 or negative for i = 1, 2; here A\, = (cos ¢,, sin ¢,). In all other cases,
the stochastic solution does not spiral.

PROBLEMS
1. Let (A;) hold and let A, B be sets in R", A compact, B open, A CB.
Prove that forany 0 < ¢, < t, < - - - < ¢,
Eﬁypx{g(tl)eA, ..., Ht,)EA} > P{&t)EB, ..., &t,)EB).

2. A stable set K is invariant. [Hint: Let U be any neighborhood of K and
€, U, as in the definition of stability; 7, is the exit time from U, 7 the exit
time from U. If x€K, P (7 < ) = EX, o Py, (T < 0) < e. Another
method if K is the boundary of a domain: Use Problem 1.]

3. If the boundary of a domain D is stable from the outside, then D is an
invariant set. [Hint: Cf. Problem 2.]

4. Extend Theorem 2.3 to G convex and with piecewise C* boundary,
assumning (11.6.6) and (2.13) for any » € N,, x € dG [see Section 11.6 for the
definition of N,.]

5. Verify (3.4). [Hint: If v = v(#), Lo = Za,, 3°0v/30, 30, +
2 B, 9v/30, where a,, = Za,(36,/3x,)(80,/3x) The 1nequahty
Sy, MY, > aly? follows from (3.2), noting that grad(EyABA) is orthogonal
to x.]

6. Extend Theorem 3.1 to the case of an obstacle 3G = {x; |x| = 1}.

7. Let G be a convex domain containing the origin, with boundary 3G
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given by r = g(¢*. The function g(¢) is Lipschitz continuous. Define

P 1/2 -
o) = | 3 e oF] . blo) = Flglo) o
g=]
where the 5,, b are as in Section 5. Prove that Theorem 6.1 extends to the
present case. (Note that 3G is not assumed to be in C2.)
8. Let G be a closed bounded domain with C? boundary, and let
p(x) = d(x, G) if x€G. If (2.1) holds and if
p 1 9%
Eb‘"é"g+§20ijm>0 onE)G,
then R" \ (int G} is not an invariant set and, consequently, 3G is not stable
from the inside. [Hint: If P, {(t) € G} 1 when x €9G, then get a contra-
diction by using It4’s formula with p*(x).]
9. If for a linear system, with x = 0 as obstacle, Q(x) > 8 > 0 for all x,
|x| = 1, then
!
P,{ i 281 B} E, log [¢(8)] > —C + Bt

t— 00

for any x 5= 0, where C is a constant (depending on x).

10. Verify (6.4).

11. Give the details of the proof of Theorem 7.1.

12. For a linear system, the assertions of Theorem 5.2 can be stated as

follows:
.. ¢( t) 27 "

Jim : =E(T1) a.s. if A>0

where T, = inf{t; ¢(t) — ¢, = 27}, and

o(2) 27
>t E(T_,)

where T_, = inf{¢; ¢(t) — ¢y = —27}. Further, if A = 0, then

a.s. if A0

Jim ¢(t) = 0o,  lim ¢(t) = —o0 as.

[Hint: If A =0, cf. Theorem 9.7.1(a). If A > 0, take ¢, = 0 and define
= inf{t; ¢(t) = 2mn}. Show E(T;) < co. By the strong law of large
numbers T, ~ mE(T,).]
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The Dirichlet Problem for Degenerate
Elliptic Equations

1. A general existence theorem

Consider a partial differential operator

n 2 n

Lu=} 3 a(x) 5a + S b(x) o (11)
ii=1 i 1 i=1 i

with coefficients defined in the closure D of a bounded domain D. It is

assumed that the matrix (g,(x)) is nonnegative definite in D. If L is

uniformly elliptic, then the Dirichlet problem consists in solving

Lu + c(x)u = f(x) inD, (1.2)

u=¢ ondD. (1.3)

This problem has already been studied in Chapter 6. In this chapter we
consider the case where L is degenerating on a subset of D. Our methods

will rely upon the theory of stochastic differential equations. We therefore
assume:

(A) There exists a uniformly Lipschitz continuous matrix (o,(x)) in R"
such that a,(x) = k- o4(x)ou(x) if x € D. Further, the vector b =
(by, ..., b,) is uniformly Lipschitz continuous in R".

s Yn
We can then introduce the stochastic differential equations

d¢ = o(§) dw + b(¢) dt (14)
whose differential operator is L.

Recall that, by Section 6.1, if the matrix (a,;) belongs to C 2in a
neighborhood of D, then there exists a matrix 6 = (0;) as in the condition
(A). We can further take o,(x) = § if || is sufficiently large.

Observe that the elliptic operator, in one dimension,

Lu = xu_, in 0<zx<1

does not satisfy the condition (A).
308
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The coefficient ¢(x) in (1.2) will henceforth be subject to the condition:

cx) 0 inD, c(x) isHolder continuous in D. (1.5)

In Section 6.5 we have represented the solution « of (1.2), (1.3) (for
nondegenerating L) in the form

ul(x) = E(E(r)) exp[ [ elels) ds]
_E, fo " AE9) exp[ fo “oléls) ds} s (16)

where 7 is the exit time from D. The right-hand side makes sense even if L is
degenerate, provided either

Er<C forall x€D (C const), (1.7)
or
c(x) < —y <0 forall x€D  (y const). (1.8)

When at least one of these conditions is satisfied, it was shown by Stroock
and Varadhan [2] that the function u(x), defined by (1.6), is continuous
almost everywhere in D; if the condition (B) stated below is also satisfied,
then u(x) is continuous everywhere in D.

In this chapter we shall deal with the case where neither (1.7) nor (1.8) is
assumed. In order to formulate precisely the Dirichlet problem, we divide
the boundary 9D into four disjoint subsets. Setting p(x) = dist(x, dD) for
xED and assuming 3D to belong to C® (so that p€C? in some D-
neighborhood of 0D), we define

2, = {xE aD; > a;vy; > 0}

{xEBD 2(.1"%1!'_0 Ebpx +1da G4iPy <0}
= {IED; 2 aqplvy 0 Zbipx + %. 2 ypx,x }
{XED; 2 a,-iV,'Vf =0, zbipx, + % Zaiipx,x, = 0}

where » = (v, ..., »,) is the inward normal. Notice that » = D,p on 3D.
Set
Spy = ZUZ,.
We shall assume:

(B) 9D is in C3 Z,, consists of a finite number of connected hypersur-
faces; =, consists of a finite number of connected hypersurfaces, and Z,
consists of a finite number of connected hypersurfaces.

Thus, the sets 2,,, Z,, £, are closed sets.
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Definition. A point x°€ 3D is called a regular point if for any § > 0

limon{'r < oo; (1) — 2% < 8} =1,
xeD

where 7 is the exit time from D. If, in addition, for any p positive and
sufficiently small,
E1, < Cp if xeW,

where W, = {x€ D; |x — 2% < p} and 7, is the exit time from W, then we
call 1% a strongly regular point.

From Problems 8 and 9 of Chapter 11 we have that every point of Z,, is a
strongly regular point. On the other hand, the set =, U Z, is nonattainable
from D. By Problem 8, Chapter 12, the set =, is not even stable. Thus, in the
event 7 = co, £(t) can only be expected to approach the set =, as t — oo, if
it approaches the boundary at all.

These considerations indicate that, when L is degenerate, the boundary
conditions (1.3) should be replaced by

u=¢  onZy (1.9)
with perhaps some additional boundary conditions on the set Z,. If either
(L.7) or (1.8) holds, then as suggested by the previous considerations and
formula (1.6), the boundary condition (1.3) should be replaced by just (1.9).

In the next section we shall show, under some conditions, that there exist
a finite number of points {;, . . . , §; on Z; such that if 7(w) = oo, then §(t, w)
converges to one of these points. We call these points distinguished

nurndires moinfc
LU T LT y 'Ju."w

Setting
A = {1=o00,¢t)>¢ iftoo}, plx) = P(A), (1.10)
we thus have

ép,.(x) = P{r = c0}. (1.11)

i=1

We shall also show that

§, is asymptotically stable fromD (1< i <) (1.12)

This implies that p,(x) > 1 ifx — {,, x € D.
We now add to (1.9) the boundary conditions

wu(t)=g (1<i<l) (L13)

where the g; are given numbers.
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Definition. A classical solution to the Dirichlet problem

Lu +cu=20 in D,
u=¢ onZy, (1.14)

u=g  at{ (1<i<l)
is a solution which is in C*(D) and is continuous on Z,; and at the points ;.
Thus
u(x) — ¢(y) if *x—yEZ,, (1.15)
u(x)—>g, if x>, (1.16)
By applying It6’s formula (cf. the proof of Theorem 6.5.1) one finds that if
u(x) is a classical solution of the Dirichlet problem (1.14), then

) = E, ottt exp| [ elatt) |t

+ é g,Ex{exp[ f0°° c(g(t) dt IA‘} (1.17)

i=1

where I, is the indicator function of a set A. In order that

Ex{exp[ fw c(&(8) dt]IA‘} =0
0
we must have c({;) = 0. We shall actually assume that
c(x) = 0 in aneighborhoodof §, 1<i<L (1.18)
We shall now prove that, conversely, the function u(x) given by (1.17) is a
classical solution of (1.14) provided the following additional condition holds:
(aﬁ(x)) is positive definite forall x&D. (1.19)

Theorem 1.1. Let the conditions (A), (B), (1.5), (1.11), (1.12), and (1.18),
(1.19) hold, and let ¢ be a continuous function on Z4,. Then there exists a
unique classical solution u of the Dirichlet problem (1.14), and it is given by
(L.17).

Proof. In view of the remark asserting (1.17), a classical solution, if existing,
must be given by (1.17). Thus it remains to show that u(x), given by (1.17), is
a classical solution. We first verify (1.15).

Let y€Z,, W, = {x€D; |x — y| < p}, 7, = exit time from W,. Since y
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is a strongly regular point,
E.7, < Cu if xeWw, 0<p< pg (1.20)
P.{r<oo;l|§(r) —y|<A}—>1 if x—>y, forany A>0 (121)

where C is a constant independent of . It follows that

Er C
B(r,>8) <<= (xrew,)
for any 6 > 0, and
— — Cp
J11_{1191’1('1' > §) =}}_I)I;PI(TF > 8) < 5

Since p is arbitrary,
}i_l’)r!lIPx(T >8) =0 forany § > 0.

Since ¢(x) is a bounded function, we also have

exp| [ clels) ds| - 1

An application of the Lebesgue bounded convergence theorem then gives

exp{ j(‘)f c(&(s)) ds} -1

Using (1.21) and the continuity of ¢, we also have
lim EJo(&(7)) — ¢(y)l = 0.
£

hmP{ >8}=0 forany 6 > 0.

x—y

lim E,

x—>y

= 0. (1.22)

' 1.2 s ) /1 99 . o oot & y
\_;Uluuuuug L[.llb Wlul \J. ol }, wE llllu uld.l. Ul 15U U

of (1.17) converges to ¢(y), as x—y. Each of the other terms on the
right-hand side of (1.17) converges to zero, as x—y, since

P(A) < P(1 = o0)—0

x T

by (1.21). Thus the proof of (1.15) is complete.
Let U be a neighborhood of {; such that c¢(x) = 0 in U N D. Since {; is
asymptotically stable from D,

P{t(t)eUforallt > 0} -1, P,(A)-1

x

if x->{, x€D. Hence, by the Lebesgue bounded convergence theorem,

ok {om] [eltls) 5|1 | e i 2ot

All the other terms on the right-hand side of (1.17) converg
x—¢,), since P,(A,)—1. Thus (1. 16) is satisfied.
Before showm that u(x) is a C? solution of Lu + cu = 0 in D, we prove

a lemma.

e to zero (as
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Lemma 1.2. The function p,(x) is in C¥D) and Lp,(x) = 0 in D.

Proof. Let N be a ball of radius r, with boundary N, such that N =
N U N is contained in D. Since L is nondegenerate in D, the exit time 1y
from N is finite a.s. By a standard argument (see Problem 1), p,( y) is a Borel
measurable function, Hence, by the strong Markov property (see Problem 2),
ifx €N,

pilx) = E,p;(¢(1y)) ='/;N pil y)Py(g(TN)EdSy) (1.23)

where dS, is the surface element on dN.
Let ¢ be a continuous function on dN and let v be the solution of the
Dirichlet problem
Lv=0 inN, o=44 ondN. (1.24)
One can represent v in terms of Green’s function (see, for instance, Fried-
man [1]):
4G (%, y)
o(x) =f8N4,(y) = dS, (1.25)

¥

where », is the inward normal. Let 0 < € < r; and denote by N, a ball
concentric to N with radius r, ~ €. Denote by 7y the exit time from N,. If
x € N, then, by It6’s formula,

v(x) = E,o(¢(my)).
Taking €—0 we arrive at the formula

o(z) = E,v(f(ry)) = f W y)P(E(ny) €dS,). (1.26)
Comparing this with (1.25) we find that

3Gz y) ds, . (1.27)

y
va

Px(g(TN) = dsy) =

Using this formula in (1.23), we find that

G(x, y)

plx) = | ply) —5—dS, (1.28)
aN y

Since 8G(x, y)/ dv, is continuous in x € N uniformly with respect to y € oN,
p;(x)is a continuous function.

Taklng ¢ = p, in (1.25) and comparing this with (1.28), we see that
v(x) = p,(x). Thus p,(x) is a C? solution of Lu = 0 in D. This completes the
proof of the lemma.
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Consider now the function

q(x) = Ex{qb(g(‘r))lf(oo}‘
By the strong Markov property we have
q(x) = E.q(&(ry)).
Hence we can prooceed as in the case of p,(x) to show that g(x) is a C?
solution of Lu = 0 in D. Thus if c¢(x) = 0, then the proof of the thearem is

complete. We shall now consider the general case where c(x) = 0.
Let

k(x) = Ex{exp[ J(;w c(&(s)) ds}IA'}.
By the strong Markov property

kis) = B emp| [ cle(e) i [k(ein) | (129
Let k,,(y) be continuous functions on dN, uniformly bounded, such that
f ku(y) — K(y)| dS,—~0  if m—oo. (1.30)
N

Let v,, be the solution of
Lv, +cv, =0 in N,
v, = k, on dN.

By the interior Schauder estimates (Section 10.1) we find that there is a
subsequence of {v,} (which we again denote by {v,)}) that is uniformly
convergent in compact subsets of N to a solution v(x) of Lv + cv = 0.

By It6’s formula we get (cf. the derivation of (1.26))

v, (x) = Ex[exp[ fow c(&(t)) dt]vm(g(TN))]. (1.31)
Notice that
EJKE(n) = ealelrl = | 1k(y) ~ Ko g)P(Eir €5,
= [ Ik(y) - Kol E2 s, o
N Py
if m—ooo

by (1.30). Therefore, by (1.29), (1.31),
loa(x) — k(x)] < EJk(£(y)) ~ v, (£(1y)|=0  if m—co.

It follows that k(x) = v(x). Since N is arbitrary, k(x) is in C%D) and
Lk + ¢k =0 in D.
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Similarly one can prove that the first term on the right-hand side of (1.17)
is in C*D) and satisfies the equation Lu + cu = 0. Thus the proof of
Theorem 1.1 is complete.

2. Convergence of paths to boundary points

Suppose (A), (B) hold. We wish to find sufficient conditions for (1.11), (1.12).
For any C? function p(x), define

€,(x) =4 2 ay(x)p, (x)o, (x), B, (x) = X bx)p, (2) +} T ayx)p, . (%),

(1) = 1] @ (x)
(Sl p l_ o\
Denote by d(x, A) the distance from a point x to a set A. For any set
A C Z,, we denote by AY or (A)' the set {x € D, d(x, A) < y}; in particu-
lar, 2% is A® when A = I,

Denote by Z,; ; the manifold consisting of all points x & D with
d(x, Z,3) = §. Denote by D; the domain bounded by =, Z,, =, ,. Notice
that on =,, we have either @, > 0 or %, < 0, where p(x) = d (x, Z,,). This
implies that, for any ¢ > 0,

Q,(x) < —c if xED;, pyx) <€ (psx) = d(x, Zg5 5)) (2.1)

for any sufficiently small §, €.
Next, for any ¢ > O,

O (x) > c if x€D, p(x) < €” (o(x) = d(x, Z,)) (2.2)

gt 13

O
X p

for some ¢” > 0.
We now make the assumption that

Q.(x) € =0, <0 if x€D, p(x) < e* (o(x) = d(x, Z,)) (2.3)

for some §, > 0, ¢* > 0.
Next we assume:

(G) There exists a function R(x) in C%(D) such that R(x) = d(x, =) if
d{x, Z5) < g, R(x)=1—d(x,Z) if 2, # @ and d(x, Z,) € ¢, and ¢,
< R(x) < 1 — ¢, elsewhere in D. Further, D_R(x) vanishes only at a finite
number of points z, in D, and ZauR, . >0 at these points. Finally,
@p(x) #0ifx # z, xED.

If (1.19) holds and if each connected component of R"\ D is C?
diffeomorphic to a closed ball, then the method of proof of Lemma 9.4.5
shows that the condition (G) holds if either (i) Z, is the outer boundary of D,
or (i) £, = & and I, # .
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Theorem 2.1. Let the conditions (A), (B), (G), and (2.3) hold. Then 1 =
implies a.s. that d (§(t), Z,) — 0 if t — oo.

Proof. By Theorem 12.2.2, for any neighborhood U of 3, there is a
neighborhood U, of X, such that

P {§(t) € Uforallt > 0,d(§(2), Zy)) »0ift 500} > 1~ ¢
if xeU nD (24)

Next we construct a G-function . From the condition (G) one can
deduce that the same condition holds also with respect to D, if § is
sufficiently small. Denote the corresponding R function by R;. For any
e > 0 we wish to construct a function

u,s(x) = Q)(Ra(x)) in C2(Ds\23)

such that Lu; (x) < —» < 0in D;\Z§. The construction of ®(r) is similar to
the construction given in the proof of Theorem 12.2.4. Here one makes use
of the inequalities (2.1), (2.2) when one takes

®(r) = A,logr+ B, near r=0, A, >0,
®(r) = Aylog(l— 1) + B, near r=1, A, >0.
Using this function one can show that for any neighborhood V of X,
T = oo implies a.s. that §(¢) hits V. (2.5)

Indeed, take € in the construction of w;(x) so that V contains an e-
neighborhood of Z,. Denoting by 7* the hitting time of V, we then have by
Ito’s formula,

us(E(r* AT A L)) — ug(x) =f D,u; - ¢ dw +f Lug ds. (2.6)
0 0
If 7(w) = c0 and 7*(w) = cc on a set B of positive probability, then the
right-hand side of (2.6) is < o(t) — »t (a.s. for w € B). But this is impossible
since the left-hand side of (2.6) is bounded.
We can now use (2.4), (2.5) in order to complete the proof of Theorem 2.1
by the argument used in the proof of Theorem 12.1.3.

EATAL T*ATAL

Remark. Theorem 2.1 remains valid if the conditions (2.3) and (G) are
replaced by weaker conditions, namely:

Suppose 2, = =5 UZ; where 5, = are disjoint sets, each consisting
of a finite number of connected manifolds. The inequality (2.3) holds with

SN s A Y M LY w1
pkx) - a\x, AO }, wnereas, 10r 5oime A 2 v,

B, + % € >0 if xeD, p(x) <e*,  where p(x) = d(x, Z;).
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The condition (G) holds with Z, replaced by £,UZ; and with R(x) = A —
d(x, Z,UZ])if d(x, Z)UZ] ) € ¢,

In fact, under these conditions we can again construct a G-function
®(R,(x)) with the same ®(r) as before, and thus the rest of the proof of
Theorem 2.1 remains the same.

Let u be a C? function on =, Extend it into a small D-neighborhood of

2, by defining it to be constant along normals. Denote by i the extended
function.

Definition. The operator

St v

io nallad tha ancdnd o~
1 Tesinclion O

o A P
Id Caudd uic

Notice that for any € > 0 there is a § > 0 such that

|Lou(y) — Lii(x)] < e if x€D, |x— y| < 8.

We shall assume:

There exist points {,, . . ., {; on Z; such that
(i) L is totally degenerate at each §,,
and (ii) there exists an S-function for each ¢, from D. (2.7)

Set
K={{,....8)

For any p > 0, let £, = {y&Z, d(y, K) > p}. We shall need another
assumption:

For any p > 0 sufficiently small, there exists a
function ¢, in Cz(ZO, p) such that Ly¢, < — 1. (2.8)

Theorem 2.2. Let the conditions (A), (B), (G), (2.3), (2.7), (2.8) hold. Then,
for any xE D,

T = 0 implies a.s. that d(¢(t), K)—0 if t->o0. (2.9)

Proof. By Theorem 2.1, for any A’ > 0,
T = 00 implies a.s. that &(¢) hits =) in finite time 7,.. (2.10)
Since I, is stable from D, we also have, for any € > 0, A > 0,
P, {é(t) exits 2} in finite time} < € if ye3z2v (2.11)
provided A’ is sufficiently small.
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Let ¢, be as in (2.8). Extend ¢, into D by defining it as constant along
normals. Then, for any p’ > p, the extended function ¢, satisfies, in some
region (=, )", the inequality L, < — %, provided A is sufficiently small.
But then (cf. the proof of Lemma 12.1.4), if £0) = xE(Z, , )", &(t) exits
(Z,, ) with probability 1. Combining this fact with (2.10), (2.11), and using
the strong Markov property, we get, for any x € D,

P{1 = oo, &(t) does not hit p-neighborhood of K}
= E,X, = oo FPr(r,){ () does not hit p-neighborhood of K }

= E.X, - o Py { (1) exits I3} < e
where p = p’ + A, and A’ depends on ¢, A. Since ¢ is arbitrary, we get:
P{1 = oo, &t) does not hit p-neighborhood of K} = 0. (2.12)
Note that u can be any positive number. Using (2.12) and the condition

(2.7), we can now employ the proof of Theorem 12.1.3 in order to complete
the proof of Theorem 2.2.

3. Application to the Dirichlet problem

Theorem 3.1. Let the conditions (A), (B), (G), (1.5), (1.18), (1.19), and (2.3),
(2.7), (2.8) hold, and let ¢ be a continuous function on Zy,. Then there exists
a unique classical solution of the Dirichlet problem (1.14), and it is given by
(1.17).

Indeed, in view of Theorem 1.1, we only have to verify the conditions
(1.11), (1.12). But (1.11) follows from Theorem 2.2 and (1.12) follows from
the condition (2.7).

In order to apply Theorem 3.1 one has to verify the conditions (G), (2.7),
(2.8). As for (G), see the remark following the definition of this condition.

The condition (2.8) is satisfied if L, is nondegenerate on Z,\K, with

do(x) = — A explalx — &[]
where A, a are sufficiently large positive numbers (depending on p). We
shall see later that, when n = 2, the condition (2.8) is satisfied also in some
cases where L, degenerates at some points of Z\K.

As for (2.7), the construction of an S-function for §;, from D was already
studied in Chapter 12. Thus, if

Q,(x) < — 6, if pfx) =|x—~ | < ¢ (3.1)

for some 8, > 0, ¢, > 0, then there exists an S-function, namely, —log p,(x).
A more delicate sufficient condition for the existence of an S-function for
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§, can be obtained by the method of descent (Theorem 12.4.1), assuming:

Oj by are continuously differentiable and ay, are twice
continuous differentiable in a neighborhood of §,. (3.2)

We perform a diffeomorphism x—y from a neighborhood V of x = (|
onto a neighborhood W of y = 0 ({; is mapped into 0) such that VN D is
mapped into y, > 0 and VN 0D is mapped into y, = 0. The stochastic
differential equations take the form

2 Galy) duy(t) + I;,( y) dt (1< {<mn). (3.3)
Set y' = (yl, Cee yn_l). The condition (2.3) implies (see Problem 9)
b, 1 & (36,
B, 2 k=1( 3

This is precisely the condition (12.4.3) (in the notation of Theorem 12.4.1). In
view of Theorem 12.4.1, if there exists an S-function for

dy, = X Gl y', 0) dun(t) + I;,( y,00dt (1<j<n-—1) (34)
k=1

2
)<0 at y =20

about y’ = 0 having the form f( y') = log| y’| + H(y’/|y’|), then there exists
an S-function for §,.
If n = 2, then (3.4) reduces to

2
dy, = 2 &(y,) dwi(t) + b(y,)dt.

k=1
In this case, f(y,) = log | y,| is an S-function if and only if

d 1 d%

b(0) <o a*(0 35
G FO<g 2500 3)
where 02 = 67 + 45

For the remainder of this section we specialize to the case n = 2. For

simplicity we assume that =, consists of just one simple closed curve. Let
x = f(s), x= g(s) 0<s< L)
be a C® representation of Z,, with (f'(s))® + (g'(s) = 1.

Denote by p(x) the distance from x (in D) to =, and introduce
coordinates (y,, y,) in a D-neighborhood of 2, by y, = s, y, = p(x). As
easily verified,

= f(y1) + 928(y1)s % = 8(y1) = v (yy) (36)
where y, = p(x) and ( f(y,), g(y,)) is the nearest point on Z; to x = (x,, x).
The curve 2 is mapped into y, = 0, and the original stochastic system
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can formally be written in the form (3.3) with n = 2. Set

9 1/2
~ ~ 2 ™~ ~
)= { 3 Guls ) . 500 = Bis.0)
-1
Notice that the transformation (3.6) “flattens” the boundary X, entirely.
Comparing the transformation (3.6) with the transformation (12.6.2), it is
clear that

o= o22) s0-H22)

where o(¢) are defined in (12.6.4), (11.6.5).
Denote by L the differential operator corresponding to (3.3). Then one

ﬂv sees that the restriction I. of L to Yy = 0 is gnrpn hv

AT TRALIALRAVEL L 2

Lov(s) =4 (5(s)Y 0" (s) + b(s)v'(s).

A point x = (f(s), g(s)) of =, is called nondegenerate if 6(s) > 0, and
degenerate if G(s) = 0. A degenerate point x° = (f(s), g(s)) is called a shunt
if b(s) # 0. If a degenerate point is not a shunt, ie., if 5(s) = 0, b(s) = 0
then the point is called a stable trap if

FlY) @
Q”"}'-"{t—s <t—s>2}

is negative, and an unstable trap if Q(s) > 0. Notice that x® = (f(s), g(s)) is
a stable trap if and only if L,log [t — s| < —p < O for all ¢t with |t — s|
small, or if and only if

£ A2 w2l 1/2 s o
bologl-kxl—IkS}) -i-(x‘—g(&‘”] € —r<90
for all x = (xl, %y) on 2, with [x — x| sufficiently small. Similarly, x
= (f(x) ) is unstable trap if and only if Ljlog|t — s| > p > 0forall ¢
with |t — s| small
We shall make the following assumption:

(S) There are a finite number of stable traps {; = (f(s,), g(s,)) (1 € ¢
< [). Between two consecutive points {;, {;,, (where {;,, = {,) there is at
most a finite number of degenerate points 4, ; = (f(s; ;) g(s;, ;) 1 <
< M,, each being a shunt, and, for each i, the numbers

E(s”), 1< j<M,
have the same sign.
From previous considerations it then follows (cf. (3.5)) that the condition
(2.7) holds. Also the condition (2.8) holds. That is (since this condition is

invariant under the diffeomorphism (3.6)), for each i = 1,...,! and for
each small p > 0 there is a function ¢y(s) in s; + p € s < §,, — p, satisfy-
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ing Lodo < ~1. (Here s3+1 ™= L + s,.) Indeed, if f, is the function con-
structed in the proof of Theorem 12.5.3 (cf. (12.5.21)-(12.5.23)) with €
sufficiently small, then take ¢, = —2f,.

Appealing to Theorem 3.1, we can now state:

Theorem 3.2. Let n = 2 and assume that (A), (B), (G), (1.5), (1.18), (1.19),
(2.3), (3.2) (for 1 < i < I), and (S) hold. Then, for any continuous function
¢ on Z,, and numbers g, . . ., g, there exists a unique classical solution of
the Dirichlet problem (1.14), and it is given by (1.17).

Let n =2 and consider now the situation where the matrix (a,(x))
degenerates along arcs v, (1 < i < [); each arc initiates at {; and terminates
at a point n,€ D, and it lies entirely in D, with the exception of its initial
point {,. We shall call y; a boundary spoke.

Let us assume that

y, is nonattainable from D. (3.7)

Recall that in Section 11.7 we have stated sufficient conditions for (3.7) to
hold.

Let N be a small neighborhood of {;. Then (DN N)\y, consists of two
regions: N;* and N,”. If

x—{ xEN*

i

then we write x—{,". Similarly we define the concept of x—§,~. The
boundary conditions

u(iM) =g’ w7 )=e

are understood in the sense that

u(x) — g if x> §*,  ux)-gn fx-§7. (3.8)
Consider now the Dirichlet problem
lu+cu=0 in D,
u=¢  onZ,y, (3.9)
u(T) =g uwl)=g (1<i<).

Set y = U i_l (v; U {m;}). By a classical solution of (3.9) we shall mean a
function u in C%D\y) which satisfies Lu + cu = 0 in D\y and which

satisfies the boundary conditions: (i) (3.8), and (ii) u(x)—¢(y) if x—>yEZy,
The consideration leading to the proof of Theorem 3.2 gives:

Theorem 3.3. Let all the conditions of Theorem 3.2 hold, with the excep-
tion of (1.19). Assume also that (a,(x)) is nondegenerate in D\y, and that
(3.7) holds. Then there exists a unique classical solution of the Dirichlet
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problem (3.9), and it is given by

where
At ={1=00,§1t)$" }, A7 ={r=00,8t)>8 }

'T'l-\nnrnmc 3.1. 3.2 ca n ha rfnnnralivnr] to include unst b!e tr apS, prgvided

IIIIIIIII P Ay U l L4 5\/5‘\/ LW/ N VNS ARANAARARLANS  LAL AW A TA
there are boundary spokes initiating at these points that nonattainable
from D; see Friedman and Pinsky [3].

PROBLEMS

1. Prove that p,(x) is a Borel measurable function. [Hint: Let {1} be dense
in {0, o), {q,} dense in D, D, = {x € D, d(x, 9D) > 1/i}. Let

B—U ARY. U{Iét, = gl <1/m},

i m>2i
C= U M U {If t) — §‘|<1/l}.

Prove that A, = B N C.]
2. Prove the first relation in (1.23). [Hint: Cf. the proof of Problem 10,
Chapter 2.]
3. Suppose 3D = Z,,, 0D is in C3, and (A), (1.5), (1.7), (1.19) hold. Let f be
a Holder continuous function in D. Prove that there is a unique C? solution
of

Lu+cu=f inD, u=4¢ ondD,

and it is given by (6.5.10).
4. Suppose that (A), (1.5), (1.19) hold and =,; =9D, 9D in C>. Prove that:
(i) P{r < 0} =1foranyx€D;
(i) there is a unique classical solution of Lu + cu = 0 in D, u = ¢ on
oD and it is given by

u(x) = { )exn (5(8)) dsn
U |_ JO 1)

[Hint: For (i), let I', = {x € D, d(x, 0D) = €}, 7, = hitting time of T,.

P (r < o0) = EP;,, ('r < oo). Estunate P, (1 < o) for y near 3D by Prob-

lems 8, 9 of Chapter 11.]
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8. Let (A) hold and assume that Z,, = 3D, 3D in C>. Assume that the exit
time 7 from D is finite for every §(0) = x € D, and P, (r > t;) < 8 < 1 for
all x € D, where ¢, is some positive number. Let ¢(x) be a Lipschitz
continuous function on 9D. Prove that the function u(x) = E_¢(§(1)) is
uniformly Holder continuous in D. [Hint: Let 7, =1 given £(0) = z,
Fomrnmpy A, ={r. <1} A ={7, <7} On the set A, u(§, (7)) =
E"(,‘)cp(.f( )3 where §,(2) is E (t) when 0 ) y. Show that
|u(x) = u(y)l < Elué (7)) — u(& (7))
< Ej¢(& (7)) = Eg (np9(§(7))IXa,

+E|Eg (-p0(E(7)) = (& (,)lxa,
Use the barrier v,(x) of Problems 8, 9 of Chapter 11 to show
E,|§(1) — b| < Civ(x) < Gylx — b|.
Hence deduce
|, — u(y)| < GER,(T) ~ £ (7).

By the strong Markov property, P,(7 > t) < P (1 > t) < ce”* for some
¢ > 0, a > 0. Finally, if x,, is the indicator function of (m < ¥ < m + 1),

E(7) - &P <ZE[  sup  [&(s) — &(s)kn)

mEs<m+1
1/2 1/2
<S[E{, s 6l6) - g0} P> mry)]
< Cylx — yI

if A is sufficiently small, since

A
E! su s)— ¢t ()P K E! s s) — 21 ¢ MYy — yl¥
{5 I6(9) =& ()P} < E{ sup 16 (s) = & (5)F) jx ~ yy

6. Let D be a domain with C® boundary 3D, and let H(x) dist(x, 9D).
Denote by (v, . . ., ,) the normal to 9D, and by (¢, ..., t,) any tangent to
i)Di ]Prove that 29°R/(9x, dx)t,p, = 0. [Hint: Differentiate (3R / ox)?
7. LetD be a domain with C® boundary 3D, and let V be a neighborhood
of a point x° €9D. Let R (x) be a C? function in D N V satisfying:

i) R>0 in DNV,
i) R=0 on DNV,
(i) DLR#0 on 3D NV,

2
(iv) > _8__5_; ty, =0  atx’,
1
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where the »,, ¢, are defined as in Problem 6. _Suppose also that x° is an
interior point of Z,, that oy, b, are in C(D NV), and the g, are in
C¥D n V). Set

& () % p(x)

Qr(x) =L (logR) = — R? + R
On (+) = lim On (x).
Prove
, Cr(x) .
hm0 R? is independent of the function R.

g — S Ny ATy = e

[Hini: Suppose n = 2 and, without loss of generality, x° = (0, 0), 0D is given
by x, = f(x;) with f 0 = O. Then (), xp) = Axy + Ca\c1 + Dx} + o(|x[%),
A#0, and o, (x) = 02 + o}x; + olx, + (| %), The condition Xo, 0R/
dx, — 0 as x approaches =, gives oj, = 0 and (taking x, = O (x})) Aol, +
2Co¢, = 0; hence

2 0 __" = Aog,x, + of|x[), (@ /RZ)—*%(Z 023)2 ]

Hn

8. Under the same assumptions as in the preceding problem show
that lim,_, .0 Bj/R is independent of the function R; consequently
Qg (" is also independent of R. [Hint:

%R=2( -3 5 )——-EB.
By = B+ X Byx; + of|x[?).

®Br — 0 as x approaches =, gives B3 = 0 and (with x, = O(x})) ABy; +
2CBY) = 0. Hence By = AByx, + 0(|x|), (Bg/R) - Bas]

ox, ’

9. Letx, = f(x),...,x,_;) bea representatlon of 9D in a neighborhood V
of x*€ D, x, > f(x},...,%,_;)in D N V. Perform a transformation
y=% (1<i<n—-1), y,=x-Ffx. .., 5,

Then DN Vis mapped intoy, > 0, and dD N V is mapped into y, = 0. Let
y? be the image of x°. Assume that x° is an interior point of =, oy, b, belong
to C{DNV), Gy €C¥DN V), and let R(x) = dist(x, 3D), x(—ED Define
Qr(x% as in Problem 7, and define, analogously,

where Li(y) = Lu(x) if 4(y) = u(x). Let R*(y) = y, (i.e., the distance to
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the image of 3D, for small | y|), and let R( y) = R(x). Prove

Qr (x°) = Q~R'( y°);
thus, Qg (x%) (where R(x) is the distance to the boundary) does not change by
a transformation that “flattens” the boundary. [Hint: Take n =2 and,
without loss of generality, x° = 0, x, = f(x,), f(0) = f(0) = 0, and check
that

0%R(y%)  3%R(x°)

dy, dy, 0x, dxy

The latter vanishes by Problem 6. Apply Problem 8.]
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Small Random Perturbations of
Dynamical Systems

1. The functional Iy(¢)

Consider a system of n stochastic differential equations
d&(t) = b(E(t)) dt + eo(¢%(2)) dw(t) (e > 0) (1.1)
where 6 = (a,) is n X n matrix and b = (b,, ..., b,). Set

n
a, = > O Ojk>
k=1

and let a be the matrix (a,), i.e.,, a = 00* where ¢* = transpose of ¢. In this
chapter we shall study tfle behavior of £°(#) as €—>0. This behavior will
depend on the behavior of solutions of the dynamical system

dg%(t) = b(£°(1)). (12)

The system (1.1) can be considered as a small random perturbation of (1.2),
with randomness expressed by a diffusion term eo dw.
We shall make the following assumption throughout this chapter:

(A) a(x), b(x) are uniformly Lipschitz continuous in compact subsets of
R", and

la(x)] < M, la(x) — a(y)] < M|x — y|,
|b(x)l < M, Ib(x) — b(y)| < M|x — y|%,

for all x, y in R", where M, a are positive constants and 0 < a < 1, and
1

> a(x)&E > wléf ( u positive constant) (1.3)
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Notice that, since (1.3) holds, a{(x) is Hélder (or Lipschitz) continuous if
and only if o(x) is Holder (or Lipschitz) continuous.

The process (1.1} determines a time-homogeneous Markov process with
probabilities P; and expectations Ef which depend on the parameter e.
However, for brevity, we shall often write these probabilities and expecta-
tions simply as P, and E_ respectively.

For x, y in R", set

p(x, y) = |x — yl.

Denote by Cy. r, the space of all continuous functions ¢(t), T) < £ < Ty,
with range in R", and set

Pr, (9, ¥) = _max _p(¢(1), ¥(t))

i<t Ty

if ¢, ¢ belong to Cy, 5. If @ is a subset of C, 1, let
dr, T,(‘Pa o) = ‘;gfb Pr, T,(‘Ps ).

If € Cr 1, we set Iy 1($) = co in case ¢ is not absolutely continuous,

and

T 2

Ir, r2(¢) = fr

1

d¢

o ~blo())| dt

in case ¢ is absolutely continuous; here

NTAF

2
198 ool =] o~ 2taten] 22 — bis(a) ||
|| dt i [ at 1

We write
Cr=Cy 1
pr(®: ¥) = po, 1
dr (¢, @) = do 1 (¢, ),
)

Lemma 1.1. A function F(t) in a bounded interval a < t < b can be

2L

PUNGNLIPY ST JUN o L
wrien n e jorin

F(t)=fa‘f(s)ds with FELP(a,b) (1<p<o) (14)
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if and only if

m |F(t) — &)l

M; =

sup
aitp< - <t,<b k=1 (tk - B,

is finite, and in this case
b
My = [ | fs)|P ds. (15)
a

Proof. Suppose (1.4) holds. By Holder’s inequality,

[ ref

b1

<(te = )" [ 1 F(s)IP ds.

|F(t) — F{t_)|? <

Hence

Me < [ 1)1 ds (16)

Suppose conversely that My < oo. Then, for any sequence of disjoint
intervals {(a,, ;) in (a, b),

p 1/p .
S F(B) - Fley) <| 3 L7 ) X (S8 -]

(Bk—ak)P
< MF[E(Bk - ak)]

by Holder’s inequality and the definition of Mj. It follows that F is
absolutely continuous, i.e., F(#) = f* f(s) ds for some f € L(a, b).

Take a sequence of partitions 11, of (a, b} into intervals (a,, ,_, @, ;) of
equal length (b — a)/2" (I=1,...,2"). For any function g in L?(a, b},
define step functions g, by

Qn, 1 .
gn = f m (an,l—l’ aﬂ,l)'
nl 1

Write g, = ], g. Then the operator ]ﬂ acts on functions in L?(a, b) somewhat
like a mollifier (see Chapter 4, Problem 4), namely,

(p-1)/p

) fil.gPds < filglP ds;
(ii) J,g—g uniformly in (g, b) if g is contim

From (ii) it follows that

(i) f2J g — g|? ds—0 if g is continuous in [a, b].
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Using (i), (ii') one can then establish the fact that
b
f 7.6 — g|P ds—0  as n-—o0, forany g€LP(a,b). (17)

We return to the function f = F’. Since f € L'(a, b), we can apply (1.7)
with p = 1. Thus,

[ 1= flds>0 i nowo (= Lf).

a

Hence

|fl—=1fl as.  for asubsequence n'—oo. (1.8)

Notice next that

fom=— : in (a1 &)

Hence

b
[ 1l ds < My

Taking n = n’ > cc and using (1.8) and Fatou’s lemma, we find that
f € LP(a, b) and

b b
[ 1frds < lm [ |flrds < My

n—o0 a

Recalling (1.6), the assertion (1.5) follows, and the proof of the lemma is
complete.

Remark. If F = (F,, ..., F,) and Mg is defined as before, with

n 1/2
F(8) - K= | 3 () - B

i=1
then, by Lemma 1.1, (1.4) holds with f = (f,,..., f,), f€LP(a, b} if and
only if My < oo. A look at the proof of (1.5) (for n = 1) shows that the
equality (1.5) remains valid for any n > 1.

Lemma 1.2, The function I.(¢) is lower semicontinuous, i.e., if ¢,—>¢ in

Proof. 'We may assume that lim I.(¢,) < o0. We may further assume that
lim I .(¢,,) exists (otherwise we proceed with a subsequence ¢, for which
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lim Ip(¢,,) = lim I.(¢,)). From the boundedness of the sequence I.(¢,) we
immediately deduce that

T .
[ lealtPdt <K< o0 forallm, (19)
0
Let {m’} be a subsequence such that

r . T .
lim | o, () dt = lim | o, (¢) dt.

m—x Jyp m -0 Jg
If 0<¢t <:-- <4 <T then, by Lemma 1.1 (with p = 2) and the
remark following it,

|¢(tk) - ¢(tk—1)|2 . ! |¢m’(tk) - ¢m(tk——l)|2
2. = lim D,
k=1 L — by m'—co ) b — 4ty
T .
< lim [ |gu(0Fdt = lim f 91 d.
m'—=o0 Jy m—co
Taking the supremum with respect to £, . . ., f, and l, and using Lemma 1.1

and the remark following it, and (1.9), we conclude that ¢ is absolutely
continuous, ¢ € L0, T), and

[ 1s0pd < im [ g (0F d (1.10)
Take any partltlon O0=qaq,<a, <-:- <a=Tof (0, T) with mesh .
Set 0 ~!(t) = o~} (¢(t)). By (1.10) applied to o l(ai)ci)(t)
[ " o Na (o) d < lim f 9 (1)1 dt.
Summing ojer i,
S [l e de < tim 3 [ o ok (O . (L11)

Since o 1(t) is continuous,
lo " Ha,) — a7 8)] < ¥(n) (o <t < apy)

where y(n) — 0 if 7 — 0. Using (1.9) and the fact that ¢ €L¥0, T), we
obtain from (1.11),

T . T .
J, 1o e(D)b(P de < im [ |0 6()ba(0F de + Avin)
where A is a constant independent of 7. Since 7 is arbitrary,

[ 1o (@0 de < lm [ lo™Npld)bn(0F dr.  (112)

0
Since ¢,,—¢ uniformly in [0, T],

lo Y o(2)) — 6o, ()] < €,, €0 if m—co.



Using this and (1.9) in (1.12), we find that
[ o ole0r ar < Jim [ lo~ o)l dr. (L13)
Next, using (1.9) it is clear that
L7 la7 on ()b (8 (1) = a7 @(DNB(B(E)] - da(t) dt 0
if m — co. By integration by parts we find that
fOTy(t) é(8) dt —>J;Ty(t) L d(f)dt  as m— oo,

for any absolute continuous function y(t) with ¥y €L*0, T). Using these
observations and (1.13) we deduce that

¥ [
ir\e

—
]
o
—
=)

Lemma 1.3, LetK be a compact set in R", and let A be a positive number.
Denote by @y , the class of all functions ¢ in C, with ¢(0)EK and

T SN - A [ o) MRy ¥ U R MNP I Al e |
Ir(¢} < A. Then @ , is a compact supset of Cy.

Proof. If0<t<t+h<T,

t+h 1/2

[o(2 + h) — o(t)] = 'ft'+hq'>(s)ds| <ﬁ{jt |¢(s)|2ds}

Since I (¢) < A implies
T .
[ 1e0rde < B
0

where B is a constant independent of ¢, we conclude that

lo(t + h) — o(t)) VB VR if ¢EQ, ,.

Thus, @K, 4 1s a class of equicontinuous functions. These functions are also
uniformly bounded, since ¢(0)&K and K is bounded. By the lemma of
Ascoli-Arzela, every sequence in ® , has a convergent subsequence in Cy.
Thus, if @ , is also closed then it is compact, and the proof of the lemma is
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complete. To prove that @ , is closed let ¢, &€ @ 4, ¢, — ¢ in Cp. Then
clearly ¢(0) = lim ¢,,(0) € K, and, by Lemma 1.2, I.(¢} < A. It follows that
¢ € Dy 4

Corollary 14. Consider the function I (¢} over the set ¥ consisting of all

Y= (’., with qx( OeK,Ka compact set. Then I...(d)\ attains a minimum on V¥,

V) n & (U L2 2 0% 2 L

Proo_ﬁ Let J = inf, .y I;(¢). Then there is a sequence ¢, in ¥ with
I+($,,)—]. Since I(9,,) < J + 1 for all m sufficiently large, and ¢m(O)EK
we can apply Lemma 1.3 to deduce that G ¢ In Cr, €Y where {q')m}

a subsequence of {¢,,}. By Lemma 1.2, I (¢) <limI;(¢,,) < J. Hence & is a
minimum point for I (¢) on V.

2. The first Ventcel-Freldiin estimate

Theorem 2.1. Let (A) hold. For any 8 > 0, x€R", and for any ¢ €Cy,
with ¢(0) =

Lim {2¢* log[P, (p,{¢°, ¢) < )]} > — Lr(#); (2.1)
more precisely, zf fo (1 + |d¢/ds|®) ds < K < cc, then

I;($) %  (4CK)"*
P (pr(£°, ¢) < 8) >-§- exP[— 262 - C;lz i (22)

provided C,®T < 182, where C, C, are positive constants depending only on
M, p.

Proof. The function n*(t) = £°(f) — ¢(t) (with £¢(0) = x) satisfies

) =c [ “a(n<(s) + 6(s)) dwls) + f “[b(n<(s) + o(s) — (s)] ds,
(2.3)

where ¢ = d¢/ds. We shall compare this process with the process {* given
by

(1) = ¢ [[a(8* (s) + (s)) duo(s). 24)

By Girsanov’s formula (Theorem 7.3.4)

- (8) = exp{%foTh(s) dw(s) — —1—~for|h(s)|2ds} =p (25)

h(s) = a7H(§<(s) + o(s)(B(S°(s) + o(s) — ¥(s)).

Here we think of {°(f) as the process X(f) of continuous functions on
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(Cp, OMy) with probability P, and expectation E,, and we think of 7*(¢) as
the same process X(t) defined on the same measure space, but with probabil-
ity P} and expectation E}. Then (2.5) gives

Er®(n'(ty), .. .. n(ta)) = EJ®(E(t), . .., £(t))e]
for any bounded measurable function ®(x,, . . ., x,,} where each x, varies in
R" and 0< ¢, <.+ <1, <T. Taking a sequence of ®’s such that
®(X(t,), ..., X(t,)) decreases to

-+

sgn[8 — sup |X(1)]] .
0Kt T

we get

P sup In“(s)l <8} =B {x; ap ion<nyp}- (26

0<s<T

Notice that E} is actually the expectation E, with respect to the Markov
process { (). Denoting this expectation by E_ (this should cause no confu-
sion), we can rewrite (2.6} in the form

dit,
P, {Pr(gca 95) < -8} = E, {X{ozugrif‘(ﬂi <a} E}"; (g'E )} (2-7)
Now, if [{¢(s)] < 8 for 0 < s < T, then
T T .
.f |h|2 ds —f Ib(e(s)) — o(s)]? ds.< Cé°K (2.8)
0 0

where C is a constant depending only on M, p.
By Chebyshev’s inequality,

T T
—1—]; h(s) dw(s)| < e"“/‘} = Px{—j;) h(s) dw(s) > a]

1 rT 24.< C
< azfo Eh(s)ds< S K (2.9)

P, { exp

with another constant C depending on M, x. We can take C to be the same
constant as in (2.8).
Applying the martingale inequality to the solution {“(¢) of (2.4) we get
Co€*T
82

B{ sup [¢(s) > 8) < 31—2E|§‘(T)12 < (2.10)

0<s<T

where C, is a constant depending only on M.
Taking a® = 4CK in (2.9) and € such that Cye’T < 82/4, we see that the

set where

exp{ —}J;Th(s) dw(s)} > e and sup [$€(s)|< 8

0<s<T

has probability > 1. From (2.5), (2.8) we then conclude that the right-hand
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side of (2.7) is larger than
1 1 T : Cé°K V4CK
o) eXP{ - Efo 1B((s)) — <1>(8)H2d8] eXP{ ~ e }eXP{ - }

€

and (2.2) is thereby proved.

Let {C, 9N, 9MN,, w(t), P{} be the Markov process corresponding to £¢(¢)
and let & = C; where C; is the space of all continuous functions w defined
on 0 < £ < T with values w(f) in R". Let G be any open set in {, and let

= {w € G; w(0) = x}.

If ¢ € G,, then

[£°(0) = x,p, (85 ¢) <8} C {£°(0) =, £ € G)
provided & is sufficiently small. Applying Theorem 2.1, we get

lim 2% log B (G) ] > ~ Ly (9)
e—0

for any ¢ € G,. Hence:

Theorem 2.2. Let (A) hold. Then for any x € R" and for any open set
G c Gy,
1i_m_[2c2 log P;(C)] > — inf Ip(w) (2.11)
e—0 wE Gy

where G, = {0 € G; w(0) = x}.
Notice that Theorem 2.2 contains the assertion (2.1).
3. The second Ventcei-Freidiin estimate

Let I' and A be disjoint sets in R"; T is compact and A is a finite disjoint
union of closed domains with C? boundary A,

For any set A, write p(x, A) = inf, , p(x, y).
Nannta ke, D T A\ sha cnt AF ,.ll A = 0 catichring
g PLV AL v L)y ‘i’ T\.I. l-li LLICT OCL Ul 1 Yr . UT aaumy:u

(1) ¢(0) =

(2) ¢ intersects T';

(3) if £ = min{t; ¢(t) €T), then ¢(s) €A for all 0 < s < ¢, ie, ¢
intersects I' before it can possibly intersect A.

Let I, be a positive number and denote by @, the subset of @, (T, A)
consisting of all ¢ with I (¢) < I,

Theorem 3.1. Let (A) hold. For any § > 0, xER™\A,

Tim (2¢* log[P,(dr{t", @) > 8,§°€0, AT, Q)] < ~L,  (31)
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If the set @, is empty, then the condition d.(£*, ®;) > 8 is trivially true,
i.e., (3.1) becomes

@ {2€% log[P,(¢c €@, (T, A)]} < ~1,

Proof. We shall give the proof only in case the set @, is nonempty; the
proof in case @, is empty can be obtained by minor modifications.
Let 0 < u < 4 dist(A, T'), J > 0, and define

r,= {x€R" p(x,T) < u},

@, ;= {s€®, {T,, A); I{¢) < J}.

We claim that for every ¢ €@, ; there exists a function ¢ in @, (T, 4)
such that

Ir{e) = L) < €(J + g, (3.2)
oo, ¥) < C(J + D, (3.3)

where C is a constant independent of J, p.
Indeed, let s, denote the first time ¢ intersects I',. If

[gb(s) if 0<s<s

(s) = straight segment of length u connecting ¢(s;) to I and
vis) = 1then traced back to ¢(s), for 55 < s < s, + 24,

o(s —2u) i sp+2u<s< T+ 2,

ofs) = g ST 20
o) = 9| = )

then (3.2), (3.3) hold.
Let 1, h, be small positive numbers to be determined later. Define

Markov times: 7, = 0 and
7, = (1, + ho) A inf{t > T lo—l(gc("}—l))[g(t) — £(r,.1)
=bE ()t = )] = 7o} (3-4)
By Theorem 8.1.1, the =, are all finite. Further, 7, 1 oo if i 7 co. Indeed, if
7,7 7 and r(w) < co on a set of positive probability, then, by taking ¢t = 7,
i— o0 in the equality under the “inf” in (3.4) we get a contradiction.
Let » be the positive-integer random variable such that 7,_, < T < 7,.
We construct a polygonal curve [*(f) by

t— 7,

L(t) = £5(n, ) + ";*f () — &(r,_))  (r_ <t <)
i i—-1

for1 < i<
It is clear that for any §, > 0,

£5(8) — &(r,_ )] < & if 7, <t<m (3.5)
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provided h,, r, are sufficiently small (depending on M, p, §,). Hence, for any
8, >0,

() — £<(t)l < & 0<t<T (3.8)
iEAE T sy S 9 WS VS L (>0
if hy, ry are sufficiently small (depending on M, p, §,).
Suppose
d{Es, ®y) > 8, £€®, T, A). (3.7)

Using (3.6) we conclude that for any small p > 0, » > 0,
lred, (T, &), pll5E9) < 8/2

provided h,, 7, are sufficiently small; here A” is the subset of A consisting of
all points x with p(x, R"\4) > ».

Suppose I:(1°) < J. Then, by (3.2), (3.3) (with A replaced by &”), there
exists a curve ¢ in @, (T, A”) such that

I{y) <J+ CU+Dp, oy, 19 < CJ+ Dy

Further, since 0A is in C%, we can modify y into a curve y* in C, such
that

yre®, (T, 4), L{y*) <L)+ 0, pld*y) < Oy,

where C = C,(J + 1) and C, is a constant independent of J, ». Indeed, let {2,
be a §*-neighborhood of 34, §* small. Let A be a diffeomorphism of R" onto
R™ such that A maps R"\A" onto R\A and its Jacobian is equal to the
identity + O(»). A can be constructed by “pushing” the points of £, along
the normals to 3A in an appropriate smooth manner, while leaving the points
of R"\{, unchanged. Now take y*(t) = Ay(%).

If J+ C(J+ L)u+ Cr < I,and C(J + g + Cr < 8/2, then I (4*)
< I, (so that y* € @) and pr(§, Y*) < §; ie., dp(£5, ®y) < 8. Since this
contradicts (3.7), we must have

IL{i9>171  J=1,-h, (3.8)

where h can be taken arbitrarily small (if p, » are arbitrarily small).
We have proved that (3.7) implies (3.8). Hence

Plofts, @) > 8, €, AT A< P11 >7] (J=1,-h). (39)

We proceed to evaluate the right-hand side.
Clearly,

L9 <S [" 1) - b de+ [T 1) — b(I(0)® de.

fuc] .,,.‘.‘__1 v'rv—l

(3.10



Since

€¢(Ti) - f‘('ﬁ_;)

Ty = Ti-a

I(t) =

(o1 <t <),

we can write
I+(e) — B(e)I® = o~ (1<(e))[I(2) — B(1=(e))]?
_l(le(t))[g (7}') — ("'i—l) - b(ge(”'i—l))('ri - 7:'—1)]

T, — Ti—1

2

+ o711 (8)[bE(r,_y)) — BUIH()]] -

Since, by (3.6), o~ '(I*(¢)) = o " }¢*(r,_))(1 + @) where |#] < C8} (and
C = C (M, p) is a constant), the numerator is bounded by (1 + «)r,, for any
given « > 0, provided 8, = §,(x) is sufficiently small. The second term
under the absolute value sign on the right is bounded (by (3.5)) by any given
positive number B, provided §, is sufficiently small. We thus have, for
Ty <t<n1,

2
. 1+
() - B < [ Al g,
T T Ti—1
2
< r2(1 + rc)2 . 2ry(1 + ) e By B2
(r, — 1,_1) Ti T Tioy Vi
201 4 &)
= —(ZQ(—K)—E +B§(1 + %)
T~ Tiq1

Consequently, by (3.10),
v 2 3
L) <1+ 'S —2— 4 (1+1)gr
i—1

i=1 T T
Hence, for any 8 (0 < 8 < 1),
r2

P,{IT(l‘)>J}<P,[1+x 2 >]-(1+%)ﬁ02T‘]

T—Tl

_ K o2
E,{exp ST LA g
< @1
(L= B)T— (1— )1 + 1/ B2T)

2€>
The constants k, 8 will be chosen so that (1 — 8)(1 + «)* < 1. Hence, if

1= =(1-8)1+x> 1-8"=(01=B) 1+«
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then 8’ > 0, 8” > 0. By Holder’s inequality,

- RS I 2
F”“ BYL+ o ]

2 _
2¢ i=1 T Ti—1

o0 _ A m r2
S ]

2¢2 o1 T Tioa

< 3 By = m] 7O

m=1]1
’ 1/{(1+«)
| B, | LBV & %] 319
[ * [ 22 i=1 Ti—TileJ \>22)
It is elementary to verify that if
m
> a< T, a; > 0,
i=1
then
- 1 m2
El x T
Using this inequality with a; = 7, — 7,_,, we find that
Px(y = m) = Px(Tm—l < T < Tm) < Px(Tm—l < T)
= Px{('r1 — 1) F(Te— T+ F (Tl — Tmog) < T}
2
<P,{ L 1 >ﬂ}
Ty 7 To Tg ™ T Tm—1" Tm—2 T
1-— Bﬂ m ,'.(2)
E
= 4P 2¢2 ,-§1 Ty = Ti—1 }
< . 3.13
1= ) o
ex
P 262T?
Setting
1-8" & _ 1
F (x) = E_e , 3.14
m(®) = E, XP[ 2z 2 f,-—'r.-_x] (3.14)
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we then have, by (3.11)—(3.13),
. 2 Fulv
E{L{L) > T} < 2 —r
(1-B)J~-(1- B +1/x)BT g o (L= B")rgm’
2¢> ’ ™ 2k + 1)
(3.15)

A =

We shall estimate

1- 8"
Fl(x)=ExeXp B ;(_’_

262

Consider the process

() = L o™ Mg (0))E(2) — £4(0) — b(£<(0))2).

€

It satisfies
dn*(t) = b*(n(t), t) dt + o*(n(t), 1) dult)
where
b‘(x, t) = ¢ 071 (£(0))[B(§<(0) + B(§°(0))t + €o(£4(0))x) — B(§%(0))]
o o~ H(§°(0)[o(£°(0) + b(£<(0))t + ea(£<(0)a)].
Denote by 7, the exit time of 4 (t) from the (r,/ €)-neighborhood of 0. Then

We shall compare the process n° with a process {* defined as follows:
Let {¢ (t) be the solution of

£ = [ "o (€4s), 5) dw(s)

and denote by 7, the exit time of §<(t) from the (r,/ €)-neighborhood of 0.
Let {¢(¢) be the solution of

1) = [ 0" (¢(0). o) duels) + [ty b(4°(s) ) i

By Theorem 5.5.1, this equation has a unique solution. By the proof of local

uniqueness (Theorem 5.2.1), a.s. {*(f) = § ‘() for all # < 7. Notice that {*(¢)
has zero drift until its exit time (which is r,) from the (r,/€)-neighborhood of
0; thereafter it has the same drift as the process 1°(z).

LY. V9N vy Tha
Yv € Now “PP‘)’ Gii'safiGV s foulula { 1 neorei 7 3.1 d milia .3.2) aﬂd

obtain (cf. the argument in the paragraph following (2.5))
Px{’r'q < h} = Ex{X{'r:(h}p} (316)



340 14 SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS

where
dp.,«
P = T (£°)
is given by
h/\‘r_; 1 h/\"'_;
o=l [ B, ol ~ L [ B, 0P ],
0
where

= o (£°(0) + b(E (O)t + eo(§* (0)x)[b(£° (0) + b(£* (0))
+eo(£°(0))x) — b(£°(0))].
Set
- [l hmgee 1 hm fpe 2
D, = exp Kfo Be(¢<(t), 1) dw(t) » fo |Be(¢<(t), t)|* dt |-

By Theorem 7.1.1, E p, = 1. Using this fact and Holder’s inequality, we get
from (3.16)

B{r, < h} <[B{r < B)] (BT

<t en]( 5 2)

K

where ¥ is a bound on B*({*(t), t), for 0 < t < 7, A h. Since y < C(h +

PRRY: B v S
’0} / £, WG 5‘3[

P {r, < h} <[P {7 < h}]“"exp{( K—lz - l)C1'-(—}“2’,2;—Tg) } (3.17)

K

where C is a constant depending only on M, p.
To evaluate the right-hand side we shall need the following lemma:

Lemma 3.2. Let z(t) be a diffusion process in R" with drift 0 and diffusion
matrix a(x, t). Let h > 0, R > 0 and suppose that

‘zllal'i(x, t) - 8"‘ < K, Kk <1

ij=

Denote by tq the exit time from the ball {x; jx| < R}. Then
(1 — Jc)zﬂz ]

P,{mx < h} < C(x) exp[— o

where C{«) is a constant depending only on «, n.
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It is tacitly assumed that a = o6* where o(x, t) is uniformly Lipschitz
continuous in bounded sets, and |o(x, )| < const(1 + |x]).

Proof. Let 0 < 8 < 1, and choose points e,, . .., ¢ on the unit sphere
such that

|x > 1  implies x-¢ > 6  foratleast one j.
For any A > 0, let \ = Ae,. If

sup |2(t, w)| > R
0<it<h

then |z(#, w)| > R for at least one t, = ¢,(w) in [0, h]. Hence
#(ty @) - A > ORA for at least one j, = jy(t,, w).
Consequently,

sup z(t, w) + A; > 6RA for at least one j.
0<i<h

We therefore have
l

PO{ sup |z(t, w)| > R} <> PO{ sup z(t, )+ A 2 BRA}. (3.18)

0<t<h j=1 ‘0<t<h
Set
(0= - 2() ~ 1{ [ Ta(s(0). ) d) -2, )
Then
Py{ sup z(t,w)- A > #RA) < B sup g(t) > 6RA - A—z (1+ mhl
“Locech ‘ locecn 7 J
< exp[—BRA + % (1+ x)h]

by the exponential martingale inequality (Theorem 4.7.5). Taking # = [1 +
+ (1 — x)*]/2, A= R/h and using (3.18), the assertion of the lemma
follows.
We shall now apply Lemma 3.2 to {*(t), with h < hy, R = ry/e. If hy, 1,
are sufficiently small, then the diffusion matrix a*(x, £) = (aj(x, t)) satisfies

lea,, x, t) — 8 < &, x as in (3.17),
hi=

if 0 < t < h, |x| < R. Hence, from (3.17) and Lemma 3.2,
P {7, < h} <(C(x)"""
h{ht + 1) 1— «)’r
X exp 1_1 CM- ex _(_K)TP. . (3.19)
2 P

K 22 2¢2h
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We can now estimate F\(x) by writing
1-8" %
2¢2 ho FAN L

ht0 (1= B")ry
j(; €xp wé,_e—z—l:_ th{hO A ’Tn < h}

Fl(x) = Ex exp

and integrating by parts. We get
- Y ,.2
B2 ot el (£ - )
K K
[ (-l (=g (L= B

><-]0 expl T 2¢%h - 2¢%h j 2¢2h? )

If we choose k so small (with respect to 8) that
(1-x)’>1-8"={1-pB)1+«),
then we find that

Chy(hE + 18"
2¢2

Fi(x) < exp[

1- 8" Ch a
Fi(x) € C’ exp[ # ] =T, where y= ( hf )% + Kzo (h2 + 12)
(3.20)

and C’ is a constant depending on «, 8”.
By the strong Markov property, if ¢ = (1 — 8”)r2 /(2¢€%),

rm c 93

<rifon S |} -rr .

where (3.20) has been used. Hence, by induction,
F,(x) < ™ (3.21)

m
Substituting this in (3.15), we get
0 — ” 2
PO > 1) < ot § ap| T L BN’ |
m=0 [ 2¢2 2€2T2(1c + 1) J
We break the series into two sums

%’ + i (3.22)

m=0 m=m'+1
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where
Tk + 1
S C Ut Y
(1 - B")rak
The first sum can be estimated by
m my ) m'y
m2=0 exp[ ;5] <m exp[ e ]

If € is sufficiently small, depending on h,, r,, we get the bound

cy?

i

where ¢, ¢, are positive constants (depending on 87, ). The second sum in

(3.22) is bounded by 1 if € is sufficiently small. Recalling the definition of y
in (3.20), we find that

Co €Xp

2 chi(h+ 1)
PL{l) > J} < eA{l + ¢ expk :2:2 + 2 o r‘;€2 a ” (3.23)
0 0

with a different constant ¢, depending on 87, «.

Recalling the definition of A in (3.15) we see that if we first choose
sufficiently small (depending on h, where h is as in (3.8), (3.9)) and then §,
sufficiently small (depending on 8, h) and finally hy, r, sufficiently small
(depending on B, B,, &, h) such that also

Too o B ey per
hy ' 1, 0T o/
are sufficiently small (depending on ¢ in (3.23)), then we get from (3.23)
P{IL(19) > J} < e U~P/2¢
provided e is sufficiently small. Substituting this into (3.9), we find that
E [2€® log P{d{¢, @y) > 8,£°€®, (T, A)}] < ~ 1, + 2h.
Since h is arbitrary, the assertion (3.1) follows.

Denote by @} (T, A) the subset of ®_ (T, A) consisting of all the curves
¢ that actually do intersect the set A (of course, only after intersecting I" at
some preceding time). Let ®F be the subset of @} (T, A) consisting of all ¢
with I(¢) < I,

. .
Later we shall need the following variant of Theorem 3.1.

Theorem 3.3. Let (A) hold. For any § > 0, x ER"\A,
@ {2€® log[P {dr{¢c, ®3) > 8, £ €®* (T, A)}]} < — I, (3.24)
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Proof. Arguing as before we conclude that if
dT (gt, (I)(’;) < 8:

£ € @3 (T, ) (523)

and if I;(I€) < J, then there is a curve Y* in @, (I, A) such that

pr(€5, ¢*) <k,
I (y*) <J+h

where k, h are any given positive and small numbers, provided h,, r, are
sufficiently small.

Medify ¢* into **€®F (T, A) as follows: If *€®? (I, A), take
Pr* o= y* If Yy* @2 (T, A), then notice that, since {* €@} (T, A), £°(¢,)
€T and £°(t,) €A for some 0 < ¢, < £, < T. Therefore *(t;) and *(¢,)
belong to k-neighborhoods of T and A respectively. Modify * into ** so
that ¢** intersects I' at ¢, + O(k) and intersects A for the first time at
t, + O(k), and

[ I(y*) — L(y**)] < Cik,
pT(\D*’ \b**) < Clk

(cf. the modification from ¢ into y in the proof of Theorem 3.1).
We conclude that, if k is sufficiently small,

pr(£S, ¥**) < &,
Ir(y**) < J + 2h.

Since y** € @} (T, A), we get a contradiction to the first part of (3.25) if
J + 2h < I,. Therefore, if I(I*) < J, then J > I, — 2h, i.e., (3.25) implies
that I(I*) > I, — 2h.

We can now proceed precisely as in the proof of Theorem 3.1.

Let D be a bounded domain with C 2 boundary, and let " be a closed ball
in D. Let A= R"\ D. Denote by @, (I, A) the set of all curves ¢ in C;
such that ¢(0) = x, ¢(t) € A for some 0 < t < T, ¢(T) € I'. Let @, be the
subset of @, (T, A) consisting of all curves ¢ with I.(¢) < Iy I, a given
positive number.

Theorem 3.4. Let (A) hold. For any § > 0, x€D\T,

im (262 log[P, {d(§%, By) > 8, £ €®, (T, A)}]) — < I,

-0

The proof proceeds similarly to the proof of Theorem 3.3. One shows that
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if
d(§s, By) <8, ged, (I 4), I{) <],

then there exists a curve zpecf)x, (L, &) with pp(§4¢) < &k, Ip(y) < J+ h
(k, h are small); in this proof one employs a smooth deformation of neigh-
borhoods of 3D and 9 T'; cf. the proof of Theorem 3.1. Details are left to the
reader.

Theorem 3.5. Let (A) hold. Then for any x € R™ and for any closed set C
in Cy,
lim [2€®log P (C)] < — inf Ir(w) (3.26)

«—0 weC,
where C, = {w € C; w(0) = x}.

This theorem is a complement to Theorem 2.2. Strictly speaking, it does
not contain Theorems 3.1, 3.3, 3.4. These theorems, however, can be
deduced from Theorem 3.5 applied to appropriate sequences of sets C. As
we shall see, the proof of Theorem 3.5 is not much different from the proof
of Theorem 3.1.

Proof. Let & be any small positive number. Denote by C; the 4-
neighborhood of C, i.e., w € Cs if and only if there exists an w’ € C such
that pr(w, @) < 8. Let G5 | = {w € C;; w(0) = x},

fo = inf I (w), js = inf I (w). (3.27)

wECx wEC&,

Let g5 € C; , be such that I(¢g;) < j5 + &, and choose §5 € C, such that
pr(Ps, @5) > 0 if 8 — 0. Since I (ps) < ¢, ¢ independent of &, from any
sequence {8,} (8, —0) we can extract a subsequence {§,} such that
@s_— ¢ in C;. But then, by Lemma 1.2,

Ip (@) <lm I (g;, ) <lim j, .

We also have p(9, §5 ) =0, §_€ C,. Since C is closed, we deduce that

¢ € C,. Therefore,

fo = wiclzlfC,IT(w) < Ip () <li_mj8m.

Choosing 6~m such that jz —lims_o f5, We get
jo < Hm f5
§—-0
Since, obviously, js < f, for any &, we conclude that

lm jo= j. = inf I, (o). 398
lim fy=fo = inf r (@) (3.28)
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Using the same notation [* as in the proof of Theorem 3.1, we have, for any
6 >0,

{&EECI}C{FEC&x}C{IT(IQ)>1.8}
provided hy, 7, are sufficiently small (depending on u, M, 6). Hence,
B(C) < BIL () > 1], T=j—h (329)

where h = j, — j5 = 0 if § -0, by (3.28). Thus (3.29) holds for any small
h > 0 provided h,, r, are sufficiently small. We can now proceed precisely
as in the proof of Theorem 3.1.

4. Application to the first Iinitial-boundary value problem

Let D be a bounded domain in R™ with C? boundary 3D. Let

92 " 9
Lu=5% 3 g “f + 3 b(x) “a% : (4.1)

Definition. A function g,(¢, x, y) defined and continuous for x€ D, y & D,
t > 0 is called Green’s function for L, —3/9t in the cylinder Q = D X
(0, o) if for any continuous function f(x) in D vanishing on aD,

u(x, t) = f glt. x, y) R y) dy
D
is the classical solution of

d .
Lou — a—'; =0 in Q,
u(x, 0) = f(x) if xeD, (4.2)

u(x,t)=0 if x€9D, t> 0
note that « is continuous in Q and u,, D, u, D’ are continuous in Q.
By the maximum principle it follows that Green’s function, if existing, is

unique. Indeed, if g, and §, are two Green’s functions, then from the
uniqueness of the solution of (4.2) it follows that

fD la.(t. % y) = Glt. . y)lf(y) dy = 0.

Since this is true for any continuous f with support in D, q,(t, x, y) =

q(t, . y).
One can construct the Green function g (¢, x, ) in the form

qc(t’ x’ y) = pg(t: x’ y) + Vg(t’ x’ y)
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where p,(t, x, y) is the fundamental solution T'(x,t; y, 0) of L, —9d/0t
occurring in Section 6.4. The function V, is defined, for each y, as the
solution of

_i) =0 i
(L¢ o V,=0 in Q

V{0, x,y) =0 if xeD,
Vit x, y) = —plt x, y) if x€dD, t>0.
One can prove (see Friedman [1)) that q, D.q,., Dq, and D,q, are con-
tinuous in (¢, x, y) for t > 0, x € D, y € D. By the maximum principle
qe(t, x, y) < p((t, x, y). (4.3)
In Section 5 we shall study the behavior of the fundamental solution p,, as
€¢—0. In Section 6 we shall study the behavior of g, as €—0. In the present

section we study the behavior, as €0, of the solution u, of the initial-
boundary value problem

du /ot =Lu, if x&€D, t>0
u(x,0)=0 if x€D, (4.4)
u(x,t)=1 if x€dD, t>0.

By a solution u of (4.4) we understand a function u that has continuous
derivatives D,u, D}u, D,u in the cylinder Q = D X (0, o0), that is con-
tinuous at all the points of () with the exception of {(x, 0); x€0D}, that is
bounded in Q, and that satisfies (4.4).

One can show (see Problems 1, 2) that there exists a unique solution of
(4.4), and (see Problem 3)

u(x t) = P{r < t} (4.5)

where 7° is the exit time of £¢(¢) from D.
Let

I(t, %, 0D) = inf I1(9)

where V¥, consists of all functions ¢ in C, satisfying: ¢(0) = «x,
ming ., p(¢(s), D) = 0.

Theorem 4.1. Let (A) hold. Then, for any x& D, t > 0,
lim [2€2 log u (x, t)] = —I(¢, x, OD). (4.6)

Proof. Denote by Dy (6 > 0) a 6-neighborhood of D. For any h; > 0 there
exists a § > O sufficiently small such that the following is true: There is a
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curve ¢ in C, with ¢(0) = x such that
I(#) < I(t, %, 3D) + h,
and ¢(s) intersects the boundary of Dy at some time s < ¢. By Theorem 2.1,

I(t,x,dD) + hy + h }

Pt <t} > P{plt, ) <8} > exP[ - 2¢2

for any h > 0, provided ¢ is sufficiently small. From this and from (4.5) we
get
Lim [262 log u,(x, t)] > —1I(t,x,dD).

e—0

It remains to prove that

lim [2€®log u (%, t)]| < —I(t,x, D). (4.7)

€—0

Notice that the class ¥, introduced in the definition of I(¢, x, D)
coincides with ®_ (9D, &), in the notation of Theorem 3.1. Denote by @,
the subset of ¥, consisting of all ¢ with I.(¢) < I,. If I, = I(t, x, dD) — h,
(h, > 0) then @, is empty. Hence, by Theorem 3.1,

lim {2¢* log[P{¢° €@, (3D, @)}]} < ~1(t, %, 3D) + h,

Since

{re<t}c{ted (9D, 2)},
the assertion (4.7) follows.

5. Behavior of the fundamental solution as ¢ - 0

In this section and in the following one we assume:

(A’) The condition (A) holds and, in addition, the b, are continuously
differentiable and
ob,(x) b, (%)

Bxi ax,.

< Mlx — x|

Denote by p, (¢, x, y) the fundamental solution I'(x, ¢; i, 0) (constructed in
Section 6.4) of the Cauchy problem for the parabolic equation

% lu  (zER%t>0), (5.1)
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where L, is given by (4.1). It was proved by Aronson [1] that (when (A")
holds)

Ao clo(t, x) — yf? _
A, Ylo(t, x) = y|?
plt x, y) > /3 exp{ - =,
Ay clo(t, x) — yf? _
- €ﬂ—2atn/2—a xp{ - €2t lf t < t*; (5.3)

T* is any positive number, t* is a sufficiently small positive number, Ay, A,
A,, ¢, y are positive constants, and ¢(t, x) is the solution of

do/dt = b(¢), ¢(0) = x.

The proof of (5.2), (5.3) is obtained by a careful analysis of a variant of the
parametrix method. If b, = 0, then (5.2), (5.3) are obtained immediately from

the explicit formula for the fundamental solution for the heat equation.
Let

I{x, y) = igf It(q))
where ¢ varies in C,, ¢(0) = x, ¢(t) = y.
We shall prove:

Theorem 5.1. Let (A’) hold. Then, for any x, y in R" and t > 0,

lil’I(l) [2e2log p.(t, x, y)] = — L(x, y). (5.4)

Proof. We first prove that
Tim [2€® log p(t, x, y)] € —IL(x, y), (5.5)

«¢—0

i.e., for any h > 0,

plt, x, y) < exp{

—L(x,y) + h }
2¢?

if €’is sufficiently small.
Let

é&‘ = {(Z, S);S < |¢’(t - 9§, Z) - y‘ < 6}.

Note that if (z, s) € 3C;, then the trajectory of dx/dt = b(x) which is at z at
time 0 will be at a distance § from y at time t — s.
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If ¢(t, x) = y, then (5.5) is a consequence of (5.2). We shall therefore
assume that ¢(t, x) # y. Then (x, 0) does not belong to C; for any &8
sufficiently small. Let

s=inf{t>0; (£, ) € G}, ui(xs) =P (75 <s)
By the proof of Theorem 4.1 we have,

A B
lim [2€* log 5 (x, )] < —4s (5.7)

where

g = inf L(9) P = {6€Cio(0) =x min dist((s(s), 5), 9G) = 0).

By the strong Markov property,
Pc(t, x, B) =E {X{T,‘==sforsomes< t}[Px[ge (t - S) = BI&E (0) = x]] x=£‘(s)}

< E{X(mstrsmes<n)sup_ [B[E° (¢ = $)BIE(0) = 2]])
{z, 5) €0C,

t
= [ P(ri€ds) sup_ p(t— sz B) (5.8)
0 (z, s)EICs

for any Borel set B such that B X {¢} c C;; here
p(t.x, B) = [ p.(t % y) dy.
B

Hence,

t
Pt 5 y) < [ 65 (x ds)sup pi(t = 5,7, y) (5.9)
Since |¢p(t — 5, 2) — y| = & in the last integral, (5.2) gives
Ao 682
plt — s, 2, y) < - eXP[‘ }

Substituting this into (5.9), we get

A(8) ftu‘(x ds) A(8) )

pe(t’ x, y) < " = __..E%ua

n

(x, 1)

where A(8) is a constant depending only on 8. Recalling (5.7), we conclude
that
. ﬁ"rﬁ(; 22 log p(t, x, y)] < —iy  forany & > 0. (5.10)

As 8 | 0, i5 T i5. Hence, in order to prove (5.5), it suffices to show that
io 2 L(x,y). Since I,(¢) is lower semicontinuous, we find that there exists a
curve ¢ €@, with I,(¢) = i, Let

s = inf{% (¢(F), 1) € G, ).

Since ¢ is a minimum for I, over ®;,, we must have d¢/dA = b(¢) if



5. BEHAVIOR OF THE FUNDAMENTAL SOLUTION AS «—0 1))

8 <A < t. But since (¢(f),%) € C,, it then follows that ¢(f) = y. Con-

sequently, I,(x, y) < L(¢$) = i,
We next have to prove that

lim [2¢2 log p,(t, x, y)] > —L(x, y), (5.11)

c—0

i.e., for any hy > 0,

(5.12)

—I({x, - h
Bt 5 4) > oxp (x, y) }

2¢2

provided ¢ is sufficiently small.
Let {€ER", 8§ >0, |{ —y| < h where 0 < h <1, and consider the

curve y:
Y(s) =¢(—s,y) for 0<s<8b.
Let M be a positive number (to be determined later). Suppose first that
1§ — ¥(8)] > Me. (5.13)
Let 0 < A < # and consider the function

w(z,s) =pls+Azy for z€B,,,, 0<s<l—-A

where B, = {z; |z — Y(s)| > Me). lf z€ 0B, ,,, |z — ¥(s + A)| = Me; hence
lo(s + A, z) — a(s + A, y(s + A))| < CMe  (C const).

But since

¢(s + A d(s + A) = o(s + A, (-5 — A y) =9¢(0, y) =y,

we oet
we gec

g
lo(s + A, 2) — y| < CMe.
Using (5.3) we conclude that
C
w(z, s) = pls + Nz y) > ??

if z2€0B,,,, 0<s<@—A &<t (5.14)
where C, is a positive constant depending on A, provided ¢ is sufficiently
small (depending on A).

We also have

w(z,0) >0 if zEB,. (5.15)
Let
c=c= U (Bx{s)
0<s<f—2
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Consider the solution u (z, s) of
du /ot =Lu if z€B,,,, 0<s<8—A,
u(z,0)=0 if z€B,, (5.16)
u(z,s)=1 if z€0B,,,, 0<s< @ —A.

Assume first that 9,G is in C% Then there exists a unique solution u,_ of
(5.16). By Ito’s formula,

u (2,0 —A) =P(r<8—]N) if zEBy_n+r= Bs,  (5.17)

where 7 is the first time the path (8 — A — s, £%(s)) hits the set 9,G(M).
Notice that, by (5.13), { €B,; hence (5.17) holds, in particular, for z = {.

Let y, be a straight line in C,_, connecting { to Y(A), ie., Y4(0) = ¢,

Yo(f — A) = Y(A). Since [{ — yA)| < |§ — y| + [¥(A) — y| < h + (const)A,

~0 .
IL_\(%o) < Bcf — +(8—X) (& positive constant), K% = h?+ AZ

(5.18)
Clearly
{r <80 —A}D{pp_a(E% ¥o) < Me}.
Hence, by Theorem 2.1 and (5.17) (with z = {)
(. 0 — A) > Blpp_alt*, o) < Me)

1/2
Loalvo) oo (4CK)7
>4 exp) — - ~
2€® 2¢* €
where K = [§7M1 + |dy,/ds]?) ds, 8 = Me, provided Cpe®d < 8%/4. Notice
that the last inequality means that C;f# < M?/4. We now choose M so that
this last inequality holds. Making use also of (5.18), we get

(6 + 1)(h2 + 89
(8 — N)e? }

u($,0—-N) > exp{— (5.19)
provided e is sufficiently small.

We now apply the maximum principle in order to compare u,(z, §) with
p(s + Az y) for z€B_,,, 0 < s < # — A. Using (5.14), (5.15), we get

C k
pls + Az, y) > €—: u(z, ). (5.20)

Taking, in particular, s = # — A, z = {, A = §/2 and using (5.19), we obtain

Cc(8) c(h® + 0%
P9, y) > —= exp{—‘—";‘;z—

} (I — y| < h, 8 <t*),
(5.21)
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for all € sufficiently small, where C(8) is a positive constant depending on 8
(C(8)—0 if 8—-0), and ¢ = 3(C + 1).

We have proved (5.21) assuming that 3,G(M) is in C2 If this is not the
case, we replace G by a region G’ with G(M')C G’ C G(M) such that its
lateral boundary 3,G’ is in C? and (8 — A, {)EG’. We then proceed as
before, replacing G and 3,G everywhere by G’ and 9,G’ respectively.

So far we have proved (5.21) under the restriction (5.13). If |{ — ¢(8)]
< Me, then |¢(8, §) — y| < CMe for some constant C. But then (5.21)
follows immediately from (5.3), provided 0 < # < ¢* and € is sufficiently
small (depending on #).

In order to prove (5.11) we shall need, in addition to (5.21), the following
result:

Let G be a ball of radius |G| and center z. Then, for any s > 0 and for
any b’ > 0,

L(x,z) p }
PrE(s —v)EG} 2 exp| — -
{es = e > ol - 2 - 2
for any v > O sufficiently small, provided e is sufficiently small.
To prove (5.22) let Y be a curve in C, such that

(5.22)

’

WO =x  Ws-n=z LW<Lxd+Z
for some » > 0 sufficiently small. Clearly
{¢(s = v)€CG}D{p,_,(€% ¥) <IG]},
and (5.22) follows upon taking P, of both sides and applying Theorem 2.1.
We proceed to prove (5.11), using the semigroup property

plemy) = [ plt = aplm s y) d (523)
This implies that

pdt = y) > [ pdt = mw 2pd w7 y) ds

where G = {z;]z — y| < h}, and p, h are any given small positive numbers.
By (5‘21)3

B(R* + p?) }
€2M

plu, 2, y) > B(p) exP[ -

provided ¢ is sufficiently small, where B(u), 8 are positive constants inde-
pendent of h, € (and B is also independent of u). Hence
B (h* +

Pe(t. %, y) > Yo B (1) exp[— 7}}—) }Px{ﬁ‘(t - p) €EGJ (524)

where vy, is a positive constant.
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By (5.22) with s = ¢t and » = p,

Lix,y) + h'
P{¢t(t— weEG} > exp{ — —t(%—— }
€
if € is sufficiently small. Recalling (5.24), we get

lim [2€® log p (¢, =, y)] > — E“(““J“y—)“
€0

Notice that p is independent of the parameter h. Taking first h—0, then
u—0, and finally h’'—0, the assertion (5.11) follows.

—I(x, y) — .

6. Behavilor of Green’s function as ¢ > 0

Let D be a bounded domain in R™ with C? boundary dD. Denote by
g.(t, x, y) the Green function of L, — 9 /3¢ in the cylinder Q = D X (0, o0),
and set

a(txa)=[ qltxy) dy (6.1)

for any Borel set A in D. Let
u(x, t) = f qt, x y)fy) dy
D

where f is continuous in D and vanishes on 9D. Applying Itd’s formula to
u(x, t — s) and £°(s), we find that

u(x, ) = E{ fE(0)x),
where 7 is the exit time from D. Since f is arbitrary, we conclude that
g(t.x,A) =P {{(s) €EDfor0 < s <t £(t) € A).
For any x, y in D, let
IP (5, ) = inf 1,(9) (62)

where ¢ varies over the function in C, satisfying: ¢(0) = x, ¢(f) = y, and
o(s)EDfor0< s <t

Theorem 6.1. Let (A’) hold. Then
lim [2¢%log q.(t, x, y)] = — IP(x, y). (6.3)

Proof. We first prove that
lim [2¢* log q(t, %, y)] < = 17(x, y). (6.4)
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Let :
C={(2,5);0<s<t|o(t—s2) -yl <8 ¢(t—ueDforuelos]).
Introduce

75 = inf(# £ (s) € Dforall 0 < s < , (£ (3), ) €3G, ).
Notice that if (2, s) = (£¢(%), ?), then |p(t — s, z) — y| = &, so that
glt = 5,2, y) < plt - s,2y)

< Ag exP[ __cb? }
et — s)"° (t - )
< A(9) (A{8) const) (8.5)
~ cn \ll\ul \zulla\l- \U-UI
By the strong Markov property we get (cf. (5.8), (5.9))
gt %, y) <f 7 € ds) sup gt = 5, y)llglt = 5.0) = yl = 8).
Using (6.5) we obtain
A(d
altonv) < 22 pas < o). 66)

Let &5 = {¢p € C; $(0) = , (¢(s), 5) €3C, for some 0 < s < ¢; if 5 =
inf s such that (¢(s), s) € 9C;, then ¢(\) € D if 0 < A < 5},

iy = inf I(9).

scd,
By slightly modifying the first part of the proof of Theorem 4.1, we get
-l r =¥ hd ? o>t
lim [2€® log P(7§ < £)] < —-i;
€
Using this in (6.6), we conclude that
Tim [2¢2 log g (t, x, y)] < —i;. (6.7)
-0

Aséd |0, ‘Ts 1 i for some i. Since D is not closed, a compactness argument
is not available here. However we can still prove that i > I,°(x, y) as
follows: -

For any € > 0, there is a § > 0 and ¢ € ®; such that

L($) <is+ €, 1o(t) =yl <&
8 can be taken arbitrarily small. But then ¢ can be modified into ¢ such that
¢ E®D,, 1,($) < iy + 2€, $(t) = y. Hence

IP(x, y) < is + 2¢ < i + 2¢.

Since € is arbitrary, I,°(x, y) < i. Taking 80 in (6.7) and using the last
inequality, (6.4) follows



3se 14 SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS

We shall next prove that
lirr(l) [2¢% log q.(t, x, y)] > — IP(x, y). (6.8)
We shall need the following lemma:

Lemma 62. Let p(y,9D) > 8, > 0. If z€D, |z — y| < 8 and 6, t are
positive and sufficiently small (depending on §,), then
B(8% + %)

ge(t, 2, y) > By(t) eXP[ B (6.9)

for all e sufficiently small (depending on 8, t), where By(t) is a positive
constant depending on t but not on 8, €, and B is a positive constant
independent of t, 8, «.

Proof. Denote by 7 the exit time from D. By the strong Markov property, if
z € D and B is a Borel subset of D,
p.(t, z, B) = q/t, z, B) + P {7 < t, £(t) € B}
= q{t, 2, B) + Exp<oplt — 7, £(7), B).
Hence

gt. 2, y) > pdt, 2, y) — sup plt — 7(w), (7, w), y).  (6.10)

Hw)<t
If 7(w) < ¢, then |£5(7(w)) — y| > 6, Hence
lo(t — 7(w), £(F(w) — yl >48,
provided ¢ is sufficiently small, say ¢t €(0, t;). But then, by (5.2),
p(t — (@), £&(F, w), y) < C exp[—k/ €]

where C, k are positive constants depending on §, Using also (5.21), we
deduce from (6.10) that, if ¢, < t*,

C(¢) c(8% + %)
q.(t, z y) > = exp[— —

—Clexp[—:kz—t]

where C, is a positive constant. Thus, if ¢(8% + ¢*) < k/2 and € is
sufficiently small then (6.10) follows.

The next fact we need is the following: Let A be a ball with center { and
radius |A|, contained in D. Then, for any b’ > 0 and s €(0, ]

/ AN { ISD(x’ g‘) + h’ ]
gdls = ». %, A) > exp| = —— 5

if » > 0 is sufficiently small, provided ¢ is sufficiently small.

—
>
[
Pt

S—
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To prove it, let Y be a curve in C, such that ¢(0) = x, y(s — ») = {,
VA)ED for 0 K A < s — », and
L) < I7(x, §) + b
Then, p(y(A), 0D) > ¢, > 0 if 0 < A < s — », where ¢, is some positive
constant. Hence,
(AN EDfr0O<KA<s—»8(s—r)EA}D{p_,(§. ¥) <&}
provided 8; < min{c,, |A|). Using Theorem 2.1, (6.11) follows.

We shall now prove (6.8). By the semigroup property of g, (see Problem
5),

ACER) =fn Ge(t = 1 %, 2)qe( 1 2, y) dz

s

)f g(t — w x, 2)q. (1, 2, y) dz (6.12)
G
where G = {z; |z — y| < 8}. By (6.9),

3@313] (6.13)

qc( 2, %, y) > BO( uu‘) exp{ - 52}1‘
provided g and 8 are_sufficiently small, say p < p*, 8 < 8% and € is
sufficiently small, and S4( ), B are positive constants.

By (6.11) with s = ¢

1P (x,y) + I
f g.(t — v, x,2)dz= q(t — v,x,G) > exp{ —
G

} : (6.14)

P Wiy T e TTa2n o /10N 0 1 AN /010
Cdll L dKe V . Usl lg \U.J..O}, \U.l‘t) 111 ‘U.J..A}, we gt?(

HNere w

i

altn y) > Clt, 5, ) exp{ -

where c¢ is a positive constant (independent of §, u). Hence

2
l-im[zez IOg qe(t’ X, y)] > —I:D(xs y) - h’ - 2%‘ — Cl.

e—0

Taking §—0, then p—0, and finally h'—0, the assertion (6.8) follows.
Let

17 (x, y) = inf(9) (6.15)
where ¢ varies over the subset & of C, of functions ¢ satisfying: ¢(0) = «x,
o(t) = y, and ¢(s)ED for 0 < s < t. Clearly

IP(x, y) < IP(x, y).
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Since, however, 3D is in C?, it is easily seen that

IP(x, y) = 1P(x, y)
(cf. the construction of y* in the proof of Theorem 3.1). Notice that there
actually exists a function ¢ in ® such that

ItD(x: y) = It((—p)'

Theorem 6.3. (i) Let (A') hold. If L(x, y) < IP(x, y), then

9t x y)
Pt %, y)

(ii) Let (A") hold. If L(x, y) = IP(x, y) and for every & in & for which
L(x, y) = L($) we have: ¢(s) € Dfor all 0 < s < t, then

(1, x,
%—((_t,_x_,—% -1 if €-0. (6.17)

S0 if eo0. (6.16)

Proof. The assertion (i) is a consequence of Theorems 5.1, 6.1. To prove
(i), denote by 7 the first time £¢(s) reaches the sphere S;, with center y and
radius 8, after hitting 0D at some previous time. If such time does not exist,
set 7 = co0. By the strong Markov property we get

Pe(t % y) = .t %, y) = Exgenp(t — 7. §(7). y).  (618)
Since |£(7) — y| = 8 > 0, we have, by (5.2),

Pt = 7 £(7), y) <

Denote by @ the set of all ¢ in C, with ¢(0) = x, such that ¢(¢) € S; and
¢(s") €0D for some 0 < s’ < t. If ¢ € P, then, by the assumptions of (ii)
and Lemma 1.2,

C
el

- (6.19)

L(¢) > L(x, y) + 2¢

whete ¢ is a positive constant (independent of ¢), provided & is sufficiently
small (independently of ¢). Hence, by Theorem 3.3,

3 L(x,y)+c
P {7 <t} < exp{— o }
Using this and (6.19) in (6.18), we get
pt, %, ) : 1
q.(t, x, y) 2¢? J qlt, x, y)

Since, by Theorem 6.1, the right-hand side converges to zero as €—0, the
proof of (6.17) is complete.

—-1<
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7. The problem of exit

Let D be a bounded domain with C® boundary dD. We shall assume, in
addition to (A), that

(B;) b - » <0 along 0D, where v is the outward normal.
It follows that every solution of the dynamical system

dx
i b(x) (7.1)

with x(0)E D remains in D for all £ > 0.

Notice that the solution £°(¢) of (1.1) leaves D in finite time 7. The
problem of exit is concerned with the behavior of the set £¢(7¢), as ¢ —0. This
problem will be studied in this section and in the following one.

Lemma 7.1. Let (A) hold and let K be a compact set in R". Suppose that
every solution of (7.1) with x(0) EK leaves K in finite time. Then there exist
positive constants a, Ty such that: (i) If T > T,, ¢ ECp and ¢(t) EK for all
0 < t < T, then I(¢p) > (T —~ T); (ii) If 75 is the exit time of £*(t) from
K, then, for all € > 0 sufficiently small,

a(T — Tp)

2¢?

PAirs > T} < exp{— } if T>T,

Proof. For any x €K, let 7(x) be the exit time from K of the solution of
(7.1) with x(0) = x. By assumption, 7(x) < c0. Since 7(x) is an upper

PR S N Lo ar o oce oL ot

semicontinuous function, it achieves a maximum T, on K. Let Ty = T, + 1,
and consider the class @ of all functions ¢ in C; with values in K. This is a
closed set in C; . By Lemma 1.2, I (¢) attains a minimum A on the set ®.
Since no solutions of (7.1) are among the elements of ®, we must have
A > 0. Thus, I (¢) > A > 0 for any ¢ €®. But then also [, ,, 1. (¢) > A for
any $E€C, 7. for which ¢(t)EK for all s < ¢ < s + T, It follows that, if
HHEKfor0< t < T,

I(¢) > ITO(“r") + I, 2T0(¢') + -+ Iy, r(9) > A
where v = [T/T,]. Hence

I{9) >A[%]>A(—%—l)=a(T—TO)

ifa=A/T,

To prove (ii) notice first that if 8 is a sufficiently small positive number,
then every solution of (7.1) with x(0) in K leaves a closed 6-neighborhood K;;
of K in finite time. In fact, this follows from the continuous dependence of
the solution of (7.1) upon the initial condition. We fix such a small 8, and
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denote by «, T, the positive constants asserted in (i), when K is replaced by
K.
Let x€ K and denote by @, the class of all ¢ € C; such that ¢(0) = x and
I:(¢) < a(T — T,). Then each ¢ EP, exits K; at some time < T. Hence,
Px{TIE > T} < Px{pT(ge’ (I)O) > 8}'
Applying Theorem 3.1 to the right-hand side, we get

a(T— Ty = h }
2€*
for any h > 0, provided e is sufficiently small. This completes the proof of
(if). .
For any x, y in D, let

I(3y) = jnf _inf 1(¢)

P (v > T) < expl -

where @, is the subset of C, consisting of all functions ¢ satisfying ¢(0) =
¢(t) =y, ¢(s) €D for all 0 <s < ¢ It is easily seen that I(x, y) is
Lipschitz continuous in (x, y) € D X D.

If I{x, y) = 0 and I(y, x) = 0, then we say that x is equivalent to y, and
write x ~ y.

A point { is said to be in the w-limit set of a solution x(¢) of (7.1) if there
exists a sequence t,, T oo such that x(z, )—{. The w-limit set of any solution
is clearly a closed set. Notice that if {,n belong to the w-limit set of a
solution of (7.1) then { ~ n.

Set

I(x, A) = ylélg I(x, y).

We shall assume:

(Bg) (i) There exists a finite number of disjoint compact sets
K, .. K in D such that the w-limit set of each solution of (4.1) with x(0)
in D\( U -1K,) is contained in one of the sets K.

(if) IfxEK z €K thenx~z1fz—;andx74z1fz#]

(iii) For every p- nelgl()borhood K,(p) of K, ( p sufficiently small) and for
every pair of points x, y on dK;( ), the boundary of K;(p), there exists a
curve ¢(s) (0 < s < ) such that ¢(0) = x, ¢(B) = y, ¢(s) € D\ K;(3 ) if
0 < s < B, and Ip(p) < m(p), where n(p) | 0if p | 0.

The last condition is clearly satisfied for a set K, consisting of one point
only. It is also generally satisfied for all the K in case n = 2 and b(x) has
only a finite number of zeros; this follows from the Poincaré-Bendixon
theory (see Coddington and Levinson [1]). Finally, all the subsequent devel-

opments remain valid (with few obvious changes) if in the condition (B,) (iii)
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we replace the restriction that ¢(s) € D \ K;(] ) by the restriction that
o(s) € K\ K,(p') for some p’ = p/'(p) > 0.

For any x€K,, let V, = I(x, D). This number is clearly independent of
the choice of x in K|. In view of (B,), V, > 0; see Problem 11.

Let x€K,. Consider all sequences {{;}, ¥, E€Cy, % (t)ED for 0 < ¢
< T $i(0) = x, Y4 (T}) € 8D, Iz ()= V;. Denote by 2, the set of all limit
points of the sequences {; (T})}. This is a subset of 3D. Since, as easily seen,
this set is independent of x in K;, we shall denote it by 2,. Notice that
Vi =min,,p I(x, y), Z, = {y; yE0D and I(x, y) = V;} for any xEK,.

SetZ=2,U---UZ,

Denote by 7¢ the first time £(¢) leaves D. Since the solution of (7.1) does
not leave D in finite time, it is a priori not clear at all how the set {£(7%)}
behaves as e—0.

Theorem 7.2. Let (A), (B,), (By) hold. Then p(§<(7¢), £)—0 in probability,
as -0,

The proof given below is based on Theorems 2.1, 3.1. Another (somewhat
different) proof which does not require the condition (B,)(iii) is outlined in
Problem 18; it is based on extensions of Theorems 2.2, 3.5 (see Problems 16,
17).

)In the next section we shall generalize Theorem 7.2 to the case where
instead of the condition (B)) it is assumed that no solution of (7.1) with
x(0) € D leaves D in finite time.

Proof of Theorem 7.2. For
=K, V=V,

For v > O let b, be a v-neighborhood of K, and denote its boundary by

8 b, Lety* =29 5 Let & be a finite union of domains with C? boundary
~"such that &, 8C b,Cb,,, Forany d >0, if p is suff1c1ently small

(dependmg on d) then ‘the followmg is true: For any x€y™ there exists a

curve ¢(s), 0 < s < T for some T > 0, such that
$(0) =x, o(s)eD\E, if 0<s<T, ¢T)€aD, 72)
I-($) < V + d/4. '
In fact, let ¢(s) (& < s < B) be a curve such that J(a)EK, ¢(8)E0D,
Y($)ED for a < s < B, and I, () < V + d/8. Let s = yyEla, B) be
the last time when y(s) intersects y*. By (B,) (iii) there exists a curve x(s)
(0 < s < a;) connecting x to Y(y,) and lying outside &, ,, with I, ()
< n(p). The curve
s if 0<s<ay
¢(S) = {X( ) . 1
Yls —ay+y) if e <s<B-v+ o

larity we consider first the case I = 1. Set

7::
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satisfies (7.2) provided pu is sufficiently small, i.e., provided n(p) < d/8.
From now on we take g such that n(u) < d/8.

Consider all the curves ¢ satisfying (7 2). Each ¢ is defined in an interval
[0, T}, where T may vary from one ¢ to another, However, by Lemma 7.1,
T < Ty where Ty is independent of ¢. Let T = T, + 1. Extend each ¢(s)
(originally defined for 0 < s < T) into T<s < T so that I(¢) < V+
d/4. One can choose, in particular, an extension of ¢(¢) which is the solution
of dx/dt = b(x). Denote by H, the set of all possible extensions of all the
curves satisfying (7.2). Then clearly

H = {¢E¢x, H0D, v7 ); Ip{¢) < V + d/4}.
Define the Markov time
v~ = inf{t; £(r) ey }.
By Lemma 7.1, if T = T(d, p) is sufficiently large (which we may as-
sume), then

P {1~ > T,1°> T} < exp{— V2+2d} (7.3)
€

provided ¢ is sufficiently small.
Define the events

A= Al(x) ={r"< 77,7 > T},

A, = A,(x —{T=< T AT, di{¢5 H )<)\}

Ay = Ay(x) = {7 < T A 77, dp(¢5 H) > A},
where A is a positive number, to be determined later. Then,

—
-1
.
e

e

Px{TE <77 } = Px(Al) + Px(A2) + PX(AS)‘
By (7.3),

P(A) < exp{ S ) (7.5)

Lemma 7.3. For any A > 0 and for any ¢ EH,, denote by s)4,, the first
time p(¢(t), 0D) = A; denote by t,,,, the last tzme p(P(t), BD) A, and
denote by o,,,, the first time when ¢( t)€9dD. Then

sup  sup awe = Sauel—=0  if d—0, p—0, A0, (7.6)
xEyt o€ H,

sup  sup sup  p(o(1), Z)-»0  if d—0, p—0, A-0. (7.7)

TEYT ¢EH, Shdus < IS bduy

Note that we may always take T in the definition of
exists, if A is sufficiently small.

Proof. 1f (7.6) is false, there exist sequences d,,—0, p,,—0, A,,—0, ¢, € H,_
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(with T = T,,) for which

Dodd = Shdunt 2 260 > 0 (€, const). (7.8)

Set a,, = 5\ 4 a0 Bm = a,\_d“,‘_%, Ym = b d e, Consider the curves
\k (t) =o¢_ (t+ B,) for 0<t< T, — B,. We may assume that

- Bn > ¢y Observe that I, 1 (¢,)—>0 if m—oco. Consequently, I, (,,)
->0 Hence there exists a subsequence ¥ (1) (for snmphcny we take m’ = m)
which is umformly convergent to Y(t) (0 < £ < ¢) and I, (44) =0, ie,
dy /dt = b(y). Since (0 ) EAD, the condition (B;) implies that Y(e) ED.
Recalling that xpm(co)—» ¥(e,) and iy . 7,(¢m) = 0, we conclude (since,
by Problem 11, I(§/(eo), 8D) > 0)-that tj/m(t) for t > ¢, does not intersect
any given sufficiently small neighborhood of 0D, provided m is sufficiently
large. Thus, vy, — B, € ¢, if m is sufficiently large. From (7.8) it then
follows that 8, — a,, > «,.

Next,

I, g(¢,)—>0 as mooo, (7.9)

for, otherwise, we can easily exhibit a function ¢(s), in some space C;, with
H0)EK, §(Tp)€0D, ¢(s)ED for 0 < s < T, such that I (¢) < V (and this
contradicts the definition of V).

Consider the functions

Yoult) = o(t + B, — &) for 0<t < e,

Since I, (¥,,) < C, there is a subsequence {y,, } which is convergent to some
¥, uniformly in £E€{0, €]. In view of (7.9), we also have I (¢) = 0, i.e,,

Y b0, (710
Since J(t)eﬁ for 0 < t < ¢, J(eO)ESD,
dy -
e By, D), <0

where » is the outward normal to BD at (e o)- On the other hand, from (7.10)
and (B,) we get

o = —v - bl¥(e) >0,

a contradiction. This proves the assertion (7.6).
To prove (7.7) we first show that

Seup :lelp p((b(amﬂ,p), E)—)O if d->0, p—>0, A->0. (7.11)
xEy

If (7.11) is false, then there exist sequences A, —0, d,,—>0, p,,—0, ¢,,€EH,
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(¢, is a curve in C; ) such that I}, (¢,,)—>V as m—oo, but
o(OmlOn dpe ) Z) > >0  forallm,

But then one can easily construct curves J)m with q?,,,( 0)EK, J)m( JED for
0<s<Th ¢,,(T*) € dD, p(qu( m) 2) > € /2 and Ips (¢,,)— V. This how-
ever contradicts the definition of Z.

Since I;(¢p) < C for all € H,, x&y™, the functions ¢(t) of H, satisfy a
Holder condition with coefficient and exponent which are independent of
d, u, A, x. Hence the assertion (7.7) is a consequence of (7.6), (7.11).

We return to the proof of Theorem 7.2. Clearly,

P(A;) = Pldi{¢ . H,) >\, §°€@, (3D, v~ )}.

x

A IC 1'1 PZ \l!n nan 01’\1\1‘7 'T‘]ﬂnnrnm Q] an A
I B t’l"] A LIATLNLEX ariva

V+d/4—-k
P(A,) < exp{ — 252

Cinro ot
P ALEN AN e

} forany k>0  (7.12)

provided ¢ is sufficiently small.

To estimate P, (A,), let ¢* be a curve in C, such that $*(0) EK, ¢*(s)E
for 0 < s < £, ¢* (tO)EaD and I, (¢*) < V ¥ d/20. Denote by t* the last
time ¢(t) intersects y* . Construct a continuous curve ¢(t) as follows: For
0 < t < ¢, ¢(t) connects x (x €y ™ is given) to x* = ¢*(¢*) by a curve lying
outside &,,,, and I, (¢) < n(p) (its existence is assured by (B,) (iii)). For
t, <t <ty ¢(t)=¢*(t+ t*—t;) where t, + t* — t, = t,. Notice, by
Lemma 7.1, that £, — t* is bounded by a constant depending on d, p.
Without loss of generality we may take the number T = T(d, ) to be such
that T > t,, We now define ¢(¢t) for t, < ¢t < T as a solution of d¢/dt
= b(g).

Notice that ¢ € H,, p(¢(s), &) > pn/4 for 0 < s < T, and

I{¢) < V+ 4 provided  n(p) < d (7.13)

10 20 °

Denote by # the (unique) time that ¢(t) € 9D. We now modify ¢ into ¢ as
follows: ¢(t) = ¢(t) for 0 < t < £. During the interval £ < ¢t < f +h, ¢( t)
traces a line segment from ¢(f) to a point { in R™ \ D satisfying p(¢, 9D) =

p(¢, o(F) = h (if b is qufﬁcxently small, the point { is on the normal to 3D at

o(1)). Durmg the interval f +h < t < # + 2h, $(f) traces back the line
segment from ¢ to ¢(?). Finally, for t+2h <t< T+ 2h, ¢( t) proceeds
along the previous path ¢, ie., ¢(t + 2h) = ¢(#) if § < ¢t < T. Let

~ ~f (T +
\ T /
If h is sufficiently small, then (cf. (3.2), (3.3) in the proof of Theorem 3.1)
L($) < V+ L 4Ch  pde. d) < Ch, (7.14)

10
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where C, is a positive constant. We fix h so that

d A
C1h<10, C1h<—2—.

If py(¢, qz)) < A/2, the p(£%, ) < A. Hence d(¢°, H) < A,
If p(£°, ¢) < min(h, p/4), then also 7¢ < T A 7~. Hence
P,(As) > Pfpql£, ¢) < €*)
where €* = { min(h, p/4, A/2). Using Theorem 2.1, we get
V+d/5+k
2¢*

(7.15)

P(A,) > exp{ — } forany k > 0, (7.16)

provided e is sufficiently small.
Combining (7.16), (7.12), (7.5) with (7.4), we get, after taking k < d/40,
P{re <77} = P{AJN + v(x €,

7.17
0< vy(x,e) < yle), y(e)»0 if e—0. (7.17)

Now, if wEA,then pr(£°( + , w), ¢) < A for some o= H,. If ¢(0,)E9D
then, by part (7.6) of Lemma 7.3, the first time §, when p(¢(s), 0D) = A and
the last time , when p(¢(s), 9D) = X satisfy

<o <t, H-58-0 if d-0, p->0, A0
(and n(p) < d/20) uniformly with respect to ¢EH, and xEy™. Since
£(1°(w)€ID and p(§*(7*(w)), P(7(w))) <A, it follows that & < 7%(w)
< ty. Applying part (7.7) of Lemma 7.3, we conclude that p(¢(7¢(w)), Z)—0

if d-»0, p—0, A—0, uniformly with respect to @ in A,. Hence, if we fix
g = p(d), A such that

we get:

p(€(r (@) Z) < ¢ (§ =(d)
if € is sufficiently small, where { = {(d)—0 if d—0. We have thus proved
that, if xevy™,
Pirs <77 ) = R{re <77, p(8%(r), ) < CHI+ AL},
0 < A (§) < A8
if € is sufficiently small (depending on {), and A({)-—-0 if {—0.
Notice that the set y* =3 &, and { = {(d) both depend on d.
Let 7% =inf{t; t > 77, £()ey™ ).
Now, if 77 < 7%, then 7% < 7% Therefore, by the strong Markov prop-

(7.18)
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erty and (7.18), if x€ y ¥, then
Pip(g(r9), Z) < &} = B{r* < 7, pl§(r9), Z) < §)
P, (¢ > %, plt* (1), ) < £)
= P(r* <77 )1 - A, (8)]
+ E X <ol EeXotge (r0). 3 < ) gmgeor)

where 0 < A, (}) < A@}), A%)—0 if § = {(d), d—0.
Let

v = inf Bpler), 2) < £},

and take, for any n > 0, a particular point x€y™* such that
ve > Plp(§(r), Z) < &} - m.

Then
Y t+tn > P(re< 7™ )1 — K({)] + P(r- < T - ;s
ie.,
Yo+ ——— > 1 - A(QD).
ST P(rt< )

Since P,(7 < 77 ) > p > 0 (pdependson ¢, d) forall y&E y™, and since n is
arbitrary, we get y, > 1 — A($), provided e is sufficiently small. Thus, for
every xEy*,
Plp(t(r9), 2) > ¢) < A(Y)  if e is sufficiently small. (7.19)
Now let x be any point in D. Denote by 7 the first time £(¢) hits
é-neighborhood I'y; of dD. We take § such that KNIy = @&. By the strong
Markov property,

Px{(gc(,re)’ E) < {} = Ex[ExXp(i‘('r‘), 2)(§L-£‘(f)‘ (7'20)

Let 7 be the first time £°(¢) hits y*, given £°(0)ET'sN D. Because of (By) (i)
and the fact that forany T > 0,8, > 0

P{ sup {|&<(¢t) — £°%(¢)| > 50}}—>0 as €0,
0<t<T

we have
P(f<7)=1—Mfe), 0< MJ(e) < M(e)>0 if 0.

Using this inequality and (7.19), we get from (7.20), upon employing the

4 ne Markay nranarty tha
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P:{P(f‘(""), Z) > f} < M(e) + /’i(f) if e is sufficiently small.
This completes the proof of Theorem 7.2 in case | = 1.
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Consider the case of K, . . ., K. Denote by K,( ) the u-neighborhood of
K,, and denote its boundary by 3 &, ,. Let &/, be a finite union of domains
with C? boundary v,” such that &, , ,C 6/ ,C&, , .

Let

1 1
vyt = U1 06,,, v~ = U1 T
i= i=
Define 7, 7% as before, and define H, for x€y* by defining it for
x€3 &b, , using V, K, instead of V, K. The curves ¢(t) of H, do not intersect
U i_l &, for all ¢ < T where ¥ is the first time for which ¢(#) € 3D. The
previous estimates of P (A;) remain valid, and the proof for the present
general case then follows as in the case | = 1.

8. The problem of exit (continued)

In this section we replace the condition (B,) by the weaker condition:
(B1) Any solution of (7.1) with x(0) € D remains in D for all ¢ > 0.

It is then natural to replace the condition (B,) by a weaker condition in
which one of the sets K, is allowed to intersect D (and its V, is then equal to
zero). For simplicity we consider first the case [ = 1 and take K, to consist of
one point, say {, lying on dD. Thus, we assume:

(Bg) (i) The w-limit set of each solution of (7.1) with x(0) € D coincides
with {;
(i) { €D,
(iii) { is an asymptotically stable equilibrium point of the system dx/dt
= b(x) in the sense that b({) = 0 and all the eigenvalues of the matrix
[0b/ 0x], . have negative real parts.

Theorem 8.1. Let (A), (B)), (By) hold. Then, for any 6 > 0,
P{p(£e(r%), $) > 8} >0 if 0. (8.1)

Proof. Yor any p > 0, denote by D, the p D-neighborhood of {. Let
0 < v < u; p and » are small numbers to be determined later. Given x€D
consider the solution £°(¢) of (7.1) with £°(0) = x. By (B}), (B}), £°(t) lies in
D for all £ > 0 and it intersects D, ,, at some first time ¢,.

Now, forany T > 0,8, >0

P{ sup I€(s) = %) > 8,} >0  if €0

0<t<T
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Hence, for any n, > 0,
P {{° (t) remains in D for 0 < t < t,; §°(¢) hits 0D, at some
first time 7, < t,} > 1 — 9, (8.2)

provided e is sufficiently small.
Denoting the exit time from D by 7¢, and using (8.2) and the strong
Markov property, we then have

E{o(€° (1), §) > p} = B 7" <1, p(§°(7%). §) > 1}
+P {7¢ > 7, p(((17%), §) > pu}
<y + E{Xpen | EXoter tr), €) 5] gmiin) |
If we prove that the function

w(x) = E, {Xp@ (r9.6)> 1} (8-3)
satisfies
w(x) < n(», ) (x €0D,ND) where n(r,p)—>0 if »—0, (84)
then we conclude that
P {p(§° (7). §) > n}) <my+ (v, p) <2y

if » is sufficiently small (so that n(», u) < 7,), and the proof of Theorem 8.1
is complete.

To prove (8.4) notice that w(x) satisfies:

Law(x) =0 inD,
w(x) =0 if xe€adD, p(x,§)<up, (8.5)
w(x) =1 if x€09D, p(x,{)> p.

For any p > 0,let I') =3DNoD,, I, = DNAdD,. Suppose u(x) satisfies
Lu<?0 in Dp,

u=>0 on F“, (8.6)
uz=l on 1’;,

and
’
u(x) < m(v,pn) onl. (8.7)
By the maximum principle, w < 1 in D and, in particular, w < 1 on I‘;.
M Amararing 229 writh 22 he moone nf tha mavinism netnninla wao Annnlisda thad
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w(x) < u(x) if xe€dD,ND.
Thus (8.4) would follow from (8.7).
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Set Mu = Za,u, . . If a function u satisfies

Mu<0 in D, (8.8)
b-u, <0 in D, (8.9)
u>0 onT,, wu>1 onl,, u()=0, (8.10)

then u clearly satisfies (8.6), (8.7). Thus it remains to find a solution of
(8.8)—(8.10).

For simplicity we shall now assume that { = 0.

Suppose we perform a nonsingular linear map y = Px. The stochastic
system (1.1) becomes

dn(t) = P d¢<(t) = ePo(£(t)) dw + Ph(£(t)) dt
= ePo(P~(9¥(t))) dw + Pb(P~Y(n(1))) dt
= e5(n°(t)) dw + b (n<()) dt
where
b(y) = PBP™'y + o(lyl), B =[0b/dxl—;—0.
By assumption,
Re A, < 0, where A, are the eigenvalues of B.

Notice that the transformation y = Px does not change the assumptions
and assertions, except for changing I',, T',, D, into I, I',, D,, respectively.
Thus, it suffices to prove_the assertions (8.8)—(8.10) in the y-space with T,
I, D, replaced by I',, I',, D,. For simplicity we take I', =I',, I', =1I",
D, = D,; since we shall take u > 0 away from 0, the general case follows by

minor changes.
We choose P so that P ™ 'BP has the Jordan canonical form. Consider the
function

n

k
D(y) = { > af.y?} (@, are positive constants, k > 0).
j=1

Set B = PBP . We shall take later u(y) = Cf(P(y)) with f(z) such that
f’'(z) > 0 and C a positive constant. Then, (8.9) holds (in the y-space) if

By« ®,<0 when y#0, (8.11)
i.e., if

zail;i,'yiyf <0 when y#0 (ﬁ = (l;iy))

Writing explicitly the EZ,-, one can quickly determine how to choose the g
so that (8.11) is satisfied. Thus, if the first [ X I block is given by b, = A,
b;=11it j =i+ 1, then we take, step by step, a,/a; sufficiently large,
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a5/ ay sufficiently large, . . ., o;/a;_, sufficiently large. If, on the other hand,
the first I X [ block is given by

(A —p 1 0 0
g A 0 1
A —-p 1 0
poA 0 1
A
.0 pooA
then we take a, = ay, a; = a,, ..., a;_; = « and choose, step by step,

a5/ oy sufficiently large, as/ ay sufficiently large, etc.

As mentioned before, we shall take u(y) = Cf(®(y)) with f'(z) > 0. If
£(0) = 0, then (8.10) is satisfied for a suitable C > 0. Thus, it remains then
to verify (8.8), i.e.,

My = f’((I))Ea,f(Dy,y’ + f”(@)za‘fby‘@yf < 0. (8.12)

It is easily seen that (8.12) is a consequence of
Yf (@) + K@) =0, (@) >0, (8.13)

where v is a positive constant depending only on the g,
(8.13) with f(0) = 0 is given by

f(z) = 217K, k> .

Having thus completed the construction of u, the proof of Theorem 8.1 is
complete.

a,. A solution of

We shall now state a result which includes both Theorem 7.1 and
Theorem 8.1. We shall assume that (B}) holds, but replace (B,) and By) by:

(B;) There are disjoint compact subsets K, . . ., K; of D and a point {
on 3D such that the w-limit set of each solution of (7.1) with x(0)
eD\(U 5_1 K,) either coincides with { or it is contained in one of the sets

K,. Further, the conditions (B,) (ii), (iii) hold for the K, and the condition (Bj)
(iii) holds for §.

Set £ = 22U {{}, where Z is defined as in Theorem 7.1.
Theorem 8.2. Let (A), (B)), (Bg) hold. Then, for any 8 > 0,
PAo(t(79),2) > 68}-50 if e>0 (x€D). (8.14)

Proof. The proof follows by combining the proofs of Theorems 7.1 and 8.1.
If x&eDNTy (s is a §-neighborhood of 9D, as in the paragraph following
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(7.19)), 7, is defined as in (8.2), and 7 = first time £*(¢) hits y *, then, for any
n >0,

F {p(§°(m). 2) > m} < M(€) + Ex,, oo p ol EXotet (). £)> 0] smge

+E Xe<rt A T.[Exxp(i‘ (%), 2)>n]x-€'(f) (8'15)
where M(e)—0 if e>0."An estimate of the from (7 19) holds (The curves ¢
defined analogously to (7.2) do not intersect [U & JUD,; v is small
with respect to d, say » < »y(d).) Using (7.19) and (8 4), we find that the
right-hand side of (8.15) is smaller than M(e) + A, for any given A > 0,
provided » is chosen sufficiently small (depending on d, A) and € is
sufficiently small (depending on », d, A). Thus, if x€l';N D,

PAip(t(r%), =) > n} < Ag{m),  Ao{m)—0 if n—0. (8.18)

The proof of (8.14) (for any x € D) now follows from (8.16) as in the case
of Theorem 7.1.

Remark. Suppose in Theorem 8.1 the point { is replaced by a k-
dimensional manifold S contained in 9D and S is asymptotically stable with
respect to the system dx/dt = b(x) in a sense similar to that of (Bj) (iii) (i.e.,
all the eigenvalues of the matrix induced by 0b/dx on the orthogonal
complement of S, at each point of S, have negative real parts). Then we can
extend Theorem 8.1 and its proof. The function ®(y) is now taken to be
linear combination with suitable positive coefficients of the squares of the
n — k variables normal to S. Theorem 8.2 can also be extended to this case.

9. Application to the Dirichlet problem

Let (A) hold and let D be a bounded domain in R” with C? boundary 9D.

Consider the Dirichlet problem
Lu,=0 in D,
(9.1)
u =g on 0D,

where g is a continuous function on dD.
The solution u_ of (9.1) has the form

ulx) = Eg(£4(r%))
where 7¢ is the exit time from D. We shall need the following condition:

(M) Every solution of (7.1) with x(0) = x € D exits D in finite time 7%(x),
and b - v > 0 at the point of exit, where » is the outward normal to dD.
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Theorem 9.1. Let (A) and (M) hold. Then, for any xE€ D,

u(x)—-gE%(r°(x)))  if €0, (9.2)
where £°(t) is the solution of (7.1) with £%0) = x.

Proof. For any small y > 0, £°(t) remains in a compact subset of D for all
0 < t < %x) — v, and it exits a neighborhood of D at some time t in the
interval 7%x) < t < 1%x) + . Since, for any p > 0,

Px{ sup €€ (8) ~ £°%(1)| > ,u,} -0 if €0, (9.3)
0<t<Tox)+y
it follows that

PAlr = x| <vy}->1 if e>0.
Consequently, for any sequence € = ¢, | 0, there is a subsequence ¢ =
€., | 0 such that
9.4)

(
From (9.3) with € = ¢, it follows that there is a subsequence € = ¢,, for
which

7¢>7%x) as. if e=¢ |0

sup  [£(t) — £%(¢)| >0 as. as e= ¢, [ O

0<t<70x)+ v

Together with (9.4) we find that

£ (r9)>t%1%x) as. if e=¢” | 0.
Hence, by the Lebesgue bounded convergence theorem,

u(z) = Eglg<(r))-gt(r°(x))) i e=e 0.
Since the limit is independent of the original sequence ¢, the assertion (9.2)
follows.
Consider now the case where (M) does not hold, and, in fact, 7%x) = oo
for all x€ D. From Theorems 7.2, 8.1, 8.2, we immediately obtain:

Theorem 9.2. (i) If (A), (B,)), (By) hold, and if g(y) =y for all y € Z,
then for all x € D,

u(x)—y if €—0. (9.5)
(ii) If (A), (By), (By) hold, then, for all xE D,
u(x)-g($) if €-0.
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for all x€D.
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10. The principal elgenvalue

Let (A) hold and set

1 < ik : d
=5 20 — + 2 b(x) - (10.1)
'1:= 1 [ fm= f

Let D be a bounded domain in R" with C* boundary 3D. Consider the
eigenvalue problem

— Lu = Au in D,
u=0 on dD.
Ifa, =86, and b = (bl, ..., b,)isa gradient of a function, then L will be

acu—duwml in a suitable space. However, in gcucuu L is not bcu-dujﬁifh
From the general theory of elliptic operators (see Agmon [1] or Friedman [2])
it is known that L has a sequence of eigenvalues, nonreal in general.
However, by the general theory of positive operators (see Krasnoselskii [1]),
there does exist at least one positive eigenvalue. Further, if A, is the smallest
positive eigenvalue, then the corrseponding space of eigenfunctions consists
of multiples of a function ¢4(x) which is positive throughout D. The
eigenvalue A, is called the principal eigenvalue. It is known (see Protter and
Weinberger [1]) that Re A > A, for any eigenvalue A of (10.2).

We shall give in this section a probabilistic characterization of the
principal eigenvalue A, in terms of the exit time r from D of the solution of

d&(t) = o(&(t)) dw(t) + b(£(t)) d. (10.3)

(10.2)

Theorem 10.1. Let (A) hold and define
A= sup{7\ > 0; sup E,ce"T < oo}.

xED

Then Ay, = A.
We shall need the following lemma.

Lemma 10.2. Let u be a solution of the elliptic equation
Lu + cu = f  in a bounded domain N (10.4)
with the boundary condition
u=dao on oN. (10.5)
Suppose aypa® + bia > 1, 0< x; < d for all x=(x,,...,x%,) in N, and
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suppose that maxg c(x) > 0 and

p =(max c)(e* — 1) <L (10.6)

Then
m£x|u| < {n%%x|¢| + (m£x|f|)(é“d - 1)}/ (I — p). (10.7)

Proof. Let ¢~ = min(c, 0) and write
Lu+c u=(c” —c)u+f5f.
The function

=__I A/ pad _ Lax
o = {(max|f])(e* = &™) + max|¢|

satisfies Lo + ¢~ v < —]fl in N, v > |¢| on ON. Hence, by the maximum
principle

max |u| < max ||

N N
ad ad __
< (mﬁ_;;.x[ﬂ)(e 1) +n;%x o] + (m;xc)(e 1)(m1\_arlx|u|),
and (10.7) follows.

By the general theory of elliptic operators (see, for instance, Friedman
[2]), the Fredholm alternative holds. Thus, if L satisfies (A) and ¢ is Holder
continuous, and if there is at most one solution for the Dirichlet problem
(10.4), (10.5), then there does in fact exist a solution (for any continuous ¢
and Holder continuous f).

If ¢ is any given function in D, then the condition (10.6) is satisfied (after
translation of the origin) in any ball N of sufficiently small parameter.
Consequently, the Dirichlet problem (10.4), (10.5) has, in this case, at most
one solution. Appealing to the remarks of the preceding paragraph, we can
assert: -

Corollary 10.3. Let (A) hold. For any p > 0 there exists a unique solution
of the Dirichlet problem

Lu+pu=7f in N  (f Holder continuousin N),
u=¢ on ON (¢ continuous on ON),

for any ball N lying in D, provided the radius of N is sufficiently small,
depending on p.
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Proof of Theorem 10.1. Suppose u < A, and consider the Dirichlet prob-
lem

Lu+pu=f in D  (fHolder continuwousin D),  (10.8)

u=¢ on 3D (¢ continuous on dD). (10.9)
A natural candidate for a solution is

ulx) = ELeole(n) + B, { [ e flels) ds).

Since p < A, this function is well defined. To prove that u(x) is a solution of
(10.8), we resort to the argument used in the proof of Theorem 13.1.1 (in
showing that u(x), given by (13.1.17) is a solution of Lu + cu = 0). Here we
use balls N with radius sufficiently small, as in Corollary 10.3.
To prove that u satisfies (10.9), notice that
Ele"${g(n)'*e < CE "< C

if p(1 + €) < A, where C,, C are constants independent of x. Since every

point y € 9D is a regular point, we can apply Lemma 1.3.6 to conclude that
E e o(¢(1)—o(y) if x—y.

Similarly,

Exff e"fl&(s)) ds—0 if x>y,
0

and (10.9) is proved.
We have thus proved that if p < A, then the Dirichlet problem (10.8),

TN O\ bhog o anlistinm: Faem amer £ A& nmanccznntlsy i i0 At an afannualizs Thas if
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every u € (0, A) is not an eigenvalue, we must have A, > A.
To prove the converse, let g < A;. Then the Dirichlet problem

Lu + pu=0 in D,
u=1 ondD (10.10)
has a solution u. We claim that
u>0 in D. (10.11)

Indeed, denoting by ¢, a positive eigenfunction corresponding to A, we
have

Loy + pdy <0 inD, ¢,>0 inD. (10.12)

Let D; = {x€D; p(x, 9D) > 8}. Since u = 1 on 0D, there is a sufficiently
small 6 such that

u(x) >0 in D\D,. (10.13)
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Next
Lu + pu =0 in D;, u >0 ondD;. (10.14)
Writing ¥ = v¢$, we find that
1 _ 0% ov
¢0(L+pu 2"8 o, Zb,a +év = Lo
where
- 2 Ay ~_ 1
b=-— >a,— +b, c= L +

Since by (10.14), Lv=0in Dg and v > 0 on 9Dy, and since, by (10.12),

¢ < 0, we can apply the maximum principle to deduce that v > 0 in D;.
Therefore # > 0 in D;. Combining this with (10.13), the assertion (10.11)

=y

follows.
Let y be a positive constant such that

u(x) > vy if xeD. (10.15)
By It6’s formula,
E, { (T A E) "("’\‘)} =u(x)<C (C const)
for all x € D. Explomng (10.15), we get
Exeu(r/\t) < C/y.

Taking ¢ 1 co we find that E ¢*” < C/y for all x€D. Consequently, p < A.
We have thus proved that if p < Ay, then g < A. This implies that A, < A.

11. Asymptotic behavior of the principal eigenvalue

Consider the eigenvalue problem
— Lu=2Au in D,
u=20 on dD,
and denote by A, the principal eigenvalue. We shall study the behavior of A,

as €0, under the assumption (A) and the assumptions (B,), (B,) (i), (ii)
(defined in Section 7). Recall that

V, = I(x, 0D) when x€K,.
Set

V* =max{V,..., i}, Ve =min{ V), ..., Vj}.
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Theorem 11.1. Let (A), (B,) and (B,) (i), (ii) hold. Then

i?!(l; {-2¢8log A} < V*, (1L.1)
lim {—2e*log A} > V, (11.2)
€—0

Corollary 11.2. If V* = V, (which is the case when [ = 1), then
lim (-2 log A} = V™,

Proof of (11.1). By Theorem 4.1, for any h > 0
( ~I{t,x,3D) — h ) ([ —I¢

expi o - } <Pt <t} < expi

amn . L\
ks ,U-IJ/ [] re

%¢?

(11.3)

provided e is sufficiently small, say 0 < € < ¢, Here ¢ is the exit time from
D. A careful review of the proof of (11.3) shows that €, can be taken to be
independent of x€D and t€(0, T], for any fixed T > 0; it may however
depend on T.

Set V(x) = I(x, 0D). From the definition of I(t, x, 0D ) we conclude that,
when (B,) holds,

I(t, x, 0D)— V(x) if t—oo (11.4)

for any x €D. Using the facts that V(x) is uniformly continuous in D and
I(t, x, 0D) is continuous in x € D, uniformly with respect to (¢, x) €[1, o0) X
D, we conclude that the convergence in (11.4) is uniform with respect to
x€D.

For any x €D, the w-limit set of the solution of (7.1) with x(0) = x lies in
some set K;. It follows that V(x, z) = 0 for any z €K;. Hence

V(x) € V(x, z) + V(z) = V.

t

Recalling (11.4) and the first inequality in (11.3), we get

Pre< t) > { _V‘_zh}
w7 P 2¢2
if ¢ is sufficiently large, and e is sufficiently small (depending on k, ¢, but
independently of x). Consequently, for some T > O sufficiently large and for
all x €D,
r v -I " N
P AT > T}<1—expl-2—“—2—J, oa=V*+ 2h (11.5)
€
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for all € is sufficiently small (depending on T, h).
By the strong Markov property (see Problem 11, Chapter 2),

P {7 > mT} < {1 wexp[— ﬁ ]}"‘

for any positive integer m. Hence

Ee = fw NP (1¢ € dit)
0

o0
< M+ Y (eMmHIT — NP (¢ > mT)

m=]
fore) m
<M+ ¢ Y e"’”Tl'l — ex (— X ] (c const).
m=1 L N 267

The right-hand side is finite and bounded by a constant independent of x if

4.4
AT + log[l - exp(— '2‘:'2- )] < 0,
ie., if

AT <[exp(- o )](1 +o(l))  (es0).

2¢
Hence, if
— 2¢®logA > a + h=V*+3h
for all € sufficiently small (depending on h), then
EeM < C< oo forall xéD  (C const).
By Theorem 10.1 it then follows that A_ > A. Taking A such that
—2e2log A = V* + 4h
we conclude that
-2 log A, < V* + 4h
if € is sufficiently small. Since h is arbitrary, the assertion (11.1) follows.

Proof of (11.2). Let h > 0 be any positive number. Let N, be a small
neighborhood of K; such that N;C D and

|[V(x) - V| <}¢h if x€EN,
From (11.4) it follows that there exists a T* > 0 sufficiently large such that
[1(t,x,3D) = V| <h if t> T*, =x€N.
Let N= U :=1 N,. Then, from the second inequality in (11.3) we deduce
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that for any T** > T*
P{7* < T**)} <exp[— -:—2] foral xéN (B= V,—2h)
€

(11.6)

provided ¢ is sufficiently small (depending on T**, but independently of x).

For x€R", denote by p(x) the distance from x to D. Denote by D;
(8 > 0) the set of all points x with p(x) < 8. If &, is sufficiently small, then,
for any point x' € D, \D, there is a unique point x on aD such that
|x' — x| = p(x'). Denote by 8D, (8 > 0) the set of all points x° in D;_with
p(x®) = 8. Each point x® is the end point of a unique normal segment of
length § initiating at some point x€9dD, and |x® — x| = p(x®) = 8. The
normal to 3D, at x% is on the same ray as the normal to 3D at x.

Denote by 7(x) the time it takes the solution of (7.1) with x(0) = x to
enter the set N. By (B,), (B,) (i), 7(x) < oo for all x € D. Since Theorem
11.1 depends on properties of b(x) in D only, we may modify the definition
of b(x) outside D so that 7(x) remains finite for all x € D;_ and, moreover,

b(x) - v(x) >0 if xEﬁao\D, (11.7)
b(x) - »(x) >1/n if x€D;\D; s (11.8)

where »(x), for x € dD;, is the inward to 0D;, and 7 is an arbitrarily given
positive number.

Lemma 11.3. For any A > 0, B > 0 there exist positive numbers v =
wl AN o — S AN Tmennan T2 e e A Lot dan s nen Tount f BN casnls it 2E 2o saln
7\[", l" - f'\ﬂ) \memﬂ'l«s Uty L1 Lt ITWPEI'WGL UJ D} LeLrs riuki IJ‘ Wwe WAe
n = n(A) in (11.8), then the following holds for any absolutely continuous
curve ¢(t) with ¢(0) = x € D:

(i) if Ly gy (d) < A, then ¢(t) € Ds forall 0 < t < B + v; and
(i) if¢(t) 2 N forB<t< B+ v, then

Iy 5y (0) > A. (1L.9)

Proof. Consider the differential system

W b =) for t>0, el0)=x  (1L10)

where

fow |f(OFdt < &, xeD (11.11)
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and A = AjA, Ay =2, ; sup |a,|. We claim that if (11.8) holds with n =
8,/ A, then

¢(t)eD;,  forall t> 0. (11.12)
Indeed, otherwise there is an interval (s, t) such that
8,/2 < plo(t)) < 8 if s<t <1,
p(a(s)) = 8o/2,  ple(t) = 8o

In this interval

a contradiction. This completes the proof of (11.12) and, clearly, also the
proof of (i). .
For any x € Dy, 7(x) is finite. Since 7(x) is upper semicontinuous,
{o = max 7(x) < .
IED,SO
Let { = {, + 1. We claim that for any absolutely continuous ¢(¢), p < ¢
< p+ { with ¢(p)ED; and p > 0, the following is true:

if o(t)EN for p<t<p+§  then I ,.d¢)>r>0

(11.13)
where » is a constant independent of p.

Suppose (11.13) is false. By the lower semicontinuity of I, . .(¢) (see
Lemma 3.2) we deduce the existence of a particular ¢ for whlch L ,s¢(d)
= (. But then ¢ is a solution of (7.1), whereas ¢ )EDS, O(H)EN for
p < t < u+ {. This contradicts the definition of {.

Notice that since a,, b, are functions independent of ¢, the constant »
occurring in (11.13) is independent of .

We shall now prove the assertion (ii) of Lemma 11.3 with y = j,{ where
fo is any positive integer such that jo» > A. Suppose ¢(t)ZN for B < ¢
< B + v, ¢(0) = x € D, and suppose that (3.3) is not satisfied, i.e.,

r f N A
lo,p+\P) S A.
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Then, by (i), ¢(p) € D, if 0 < u < B + y. Hence, by (11.13),
Ipij-vemeg(®) > v for j=12...,j,
It follows that
IB,B+~,(¢) = IB,B+10§(¢) > for > A,
a contradiction. '

Completion of the proof of (11.2). Fix
A=V, +1, n=nA)=24§/A
Fix also T so that, by (11.6),

Px{7‘<=}T}<exp[—-2}%} if xeN (B8=V,—2h), (11.14)

and so that the assertions of Lemma 11.3 hold with y = 1 T and with N
replaced by some open set N’ containing U , K; and whose closure lies in

N. Note that (11.14) holds for all € sufﬁc1ently small (independently of x).
Let
8 = inf{|x — y|; xEN', y&N}.
Denote by 7, the first time in the interval T < t <3 T when £¢(¢) hits N if

such a time exists, and set 75 = ST if £°(t) 2 Nforall T < t <3 T.

For any x E D, let ®(x) be the set of all continuous curves ¢(t), 0 < ¢
)

<%T' plU) = X, DUbh that

I, 5T/4(¢) < A.
Then, by Lemma 11.3, each ¢(t) in ®(x) intersects N’ at some time
tE([T, 3 T). Hence
Px{gc(Tﬁ)EN_} < Px{pﬂ,sT//l(ge’ ®(x)) > 8/2}-

By Theorem 3.1, the right-hand side is < exp[— B/2¢*] where B = A — 1,
provided ¢ is sufficiently small. Hence

P{¢(r5)EN} > 1 - e B2  (xeD). (11.15)
7 = 75. Then, by the strong Markov property,
P{r¢ > 2T} = EI,5em

I’E (,,.){T P 1}

x -r)‘r
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Using (11.14), (11.15) we find that
Pr> 2T} > (1 — e B 1 - ¢ F2NEL o0y if xED, (11.16)
Pr > 2T} > (1 — e B/2)(1 — o=#/2¢)’ if xeN (11.17)
Similarly, by induction,
Pir > (m + 1)T} = E L Penit > (m + )T — 7}
> E I ;:Prn{7 > mT)
> (1 - 6—3/2&)’"(1 _ e--119/25”)"‘E’JT>5T/4
if x € D. In particular, if xEN,

m

o f_e ~ /. 3 1\l o /1 ,—,B/Z(,z\ fv _—;B/Z.(,z\ﬂm-‘-lm A
fxlT M T 1)1] » |1 e ] € 4 } = 4,.
It follows that, for x €N,
o
E " > X [N+ — TP {7 5 (m + 1) T}
m=1
o0
>c Y ™A, = (c >0)
m=1
provided
= 1
AT + lim p— log A,, > 0.
Since
— (1 -B/2& - B/2&
lim { = log A, ) > —2(e + e )
if € is sufficiently small, we conclude that
EeM = oo if xEN (11.18)

provided
IAT = ¢~ B/2¢ 4 o=8/2¢,
By Theorem 10.1, A, < A. Hence
— 2e?log A, > —2€%log .
Recalling that B = V, +4, B =V, — 2h, we deduce from (11.18) that
—2e®logA>V, — 2h if h < 1, e0. Consequently,

lim [—2¢2 log Al > Ve —2h

€—0

Since h is arbitrary, the proof of (11.2) is complete.
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PROBLEMS

1. Prove that there exists a solution v of (4.4). [Hint: Let {(¢) be con-
tinuous, {(t) = 0if t < 4, {(t) =1ift > 1, 0< {(¢) <1lif § <t <1, and
consider

du,, L
ot «Om>

0,(x,00)=0 if x€D, o,(xt)=¢(mt) if x€3D, t>0.
By Section 6.3 there exists a unique solution v,,. By Schauder’s estimates
v,, — u, for a subsequence m = m’ — co, and du, /0t = Lu,. If g belongs
to the normal boundary and w, is a barrier, apply the maximum principle to
(Aw, + v,(q) + 8) = v,, to deduce that u, satisfies the desired boundary
conditions. ]

2. The solution of (4.4) is unique. [Hint: If v,, v, are two solutions and
v = v, — v, then |v| < const. For any § > 0,

o(x 6) = [ qlt = 8%, y)o(8, y) dy.

Take 6 | 0.]

3. Prove (4.5). [Hint: Apply It6’s formula to v,, and use the monotone
convergence theorem.]

4. Prove Theorem 3.4.

5. Prove (6.12). [Hint: Use the uniqueness for the first initial-boundary
value problem.]

6. Let (A), (B,) hold and suppose the w-limit set of any solution of (7.1)
with x(0) € D coincides with the origin 0. Let V(y) = I(0, y) where I(x, y) is
defined as in Section 7. Assume that b(x) = — VU(x) + y(x) where U(0)=
0, UE€C?D), y(x) - VU(x) = 0, and that a,(x) = §,. Prove:

i) V(y) > 4U(y) for any y €D,

(i) Ify=y(T)for some T >0 where y =V U{)+ y(y) if 0< ¢
< T,y (0) = 0, then V(y) = 4U(y); '

(iii) If the solution of ¥ =V U(y) + y(¥), ¥{0) = 0 exits D at a point
Yo € 0D and U(y,) < U(y) for any y € 0D, y ¥ y,, then the set £ occurring
in Theorem 7.2 coincides with { y,}.

7. Let (A) hold. Consider the Dirichlet problem

dv, /0t = Lo, + cv, if x€D, t>0,
v (x,0) =0 if xeD, (11.19)
v(x, t) = Y(x) if x€dD, t>0
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where ¥ is continuous on 0D, dD is in C 2 ¢ is Holder comtinuous, and ¢ < 0.
Prove that it has a unique solution, where the concept of solution is the same
as for (4.4).

8. Suppose for some x € D, t > 0, I(¢, x, dD) = inf{L,(¢); ¢ € ¥,} is
actually a minimum, and the minimum is attained for a unique curve ¢ in C,.
Denote by 7¢ the exit time of £*(¢) from D. Let

s={T < (£ 8) <8}, &>0.

Prove that P (A;) = F, (¢ < t)(1 + o(1)), where o(1) — 0 if & — 0. [Hint: If
p,(x,®) > 8/2, x € ¥, then(x) > I (&) + A where A > 0 and is indepen-
dent of x; otherwise <£ is not unique. Let ®,= {x € C,, x(0) = x
ming ., o, p(x(s), D) = 0, L,(x) < L($) + A/2. Then x € @, implies
p,(x, $) < 8/2. Deduce that A; C {£°(s) intersects D for some 0 < s < ¢,
and p,(§¢, ;) » 6/2}. By Theorem 3.1,

P(A;) < exp[(—It($)+ % wk)/2€2] forany k >0,

if € is small. Next modify ¢> mto ¢ which penetrates a distance h into R" \ D
and is such that I(¢) < L(¢) + A/4, p, (¢, ¢) < ch. If p(£", é) < 8* and
8*, h are sufficiently small then p,(§%, &) < & and (if §* < h) £° exits D at
some time s < t. Therefore, {p,(£, ¢) < 8*} C A,. Apply Theorem 2.1.]

9. Let the assumptions of Problems 7, 8 hold. Denote by 7 the time ¢ exits
D. Assume that b - » 5= 0 on 0D, where » is the normal to dD. Prove that, if
w € Ag,

|0 (67)) exp| 7 clo(s) ds| — wlge(=) expl [ cle<(s)) ds || < A8),
l Lo ] ‘LJo J

where )\(8) — 0 if § > 0; A(8) is independent of w. [Hint: If T = t, then

T—-—y<rt°<t=17 where y >0 if § 50, If 7 < ¢ then dqb( )/ ds

= b(¢(s))if s > 7. Sinceb - v#0ondD, 7 —y <1< 7 +C8]

10. Let the assumptions of Problems 7, 8 hold and assume that b - v # 0

along 9D. Denote by 7 the time qb exits D. Prove that

~

W2 e exp [ elbts) s .

paiy u (x, t)

where u, is the solution of (4.4). [Hint: Setting ¢/(£§¢(7 A ) =0 if 7° > ¢,
we have

o ) = B wlet o n o) esp] [ ot o) a5 ).

n
v dJ

Use Problems 7-9.]



PROBLEMS 368

11. Let (A), (B,) hold and let x € D. Prove that I(x, 0D) > 0. [Hint: If
I (¢n) =0, ¢,0) = x, T,-»>0c0, let o, be the last time ¢, enters a
8-neighborhood of 9D before intersecting 9D, § small. Apply Lemma 1.2 to
Y (t) = ot +0,), 0 < ¢t < 1]
12. Extend Theorem 9.1 to Lu + cu = 0, ¢ € 0.
13. Let D, E be bounded domains with C? boundary. Assume also that (A)
holds. Denote by Ap, Ay the principal eigenvalues corresponding to the
domains D and E respectively. Prove that if D CE, then A, > A;.
14. Let D be a bounded domain with C? boundary, and let (A) hold.
Assume that there is a point { in D which is a stable equilibrium point for
% = b(x). Denote by A, the principal eigenvalue of — L, with respect to D.
Prove that there is a positive constant 3 such that A, > exp[— 8/ €% for all €
sufficiently small.
15. Let (A) hold and let D be a bounded domain with C* boundary.
Denote by A, the principal eigenvalue of — L, with respect to D. Suppose
that every solution of x = b(x) with x(0) € D exits D at some finite time.
Prove that lim,_ oA, = . [Hint: Verify that P (¢ > T)—0 if €0, for
some large T, and deduce that E ¢ < C < oo for any A > 0, provided ¢ is
sufficiently small.]
16. Let (A) hold. Let {C, O, 9N, w(t), P} be the Markov process
corresponding to £°(¢), and let @ = C; where C; is the space of all
continuous functions w defined on 0 < ¢ < T with values w(t) in R". Let G
be any open set in . Prove

lim sup [2¢®log Py (G)] > —inf I (w)

€—0, y—>x wEG,
where G, = {w € G; w(0) = x}.
17.  Under the assumptions and notation of the preceding problem, for any
closed set C of £,

lim sup [2€®log P£(C)] < —inf Ij{w)
€0, y—x weC,

where C, = {0 EC; w(0) = x}.
18. We outline a proof of Theorem 7.2 which does not require the
condition (B,)(iii). Some details are left to the reader. Take for simplicity
I = 1. Let N be a neighborhood of X and let S, be a neighborhood of K with
smooth boundary I'; such that

Viz,y) <V + % if zel,, yEZ,

7
V(z,y)>V+?n if z€T, yeN, (N,=oD\N). (11.20)

Choose T* and a neighborhood S, of K with smooth boundary T, and with
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S, C S, such that for any z €T, there is a curve ¢,(t), 0 < t < T, connecting
z to 2 in time T, < T* and

¢, intersects I',UT, at most m, times,
where m, is a positive integer independent of z. If T is sufficiently large,
Iig) > V+ 7 (11.21)

for any 9 €C,, ¢(£)ED\S, if 0 < t < T. Take T > T™* and extend ¢, to
0 < t < T so that

L{g) <V + -2— , (11.22)

and ¢, intersects I'; U T, at most m times; m independent of z. Let
1o = infls; £(s) €T,),
0, = inf[s; s > 7,_,, £(s) €T},
7, = infls; s > o, £(s)ET,),
E,= {1° < ,}, and, for § > 1, E = {6(j—1ym+1 < 7°< ,rfm}’
A; = (£° (t) visits 3D N N between 6(;_ 1), +1 and 1, },

= {¢<(t) visits N, between O(j—1jm+1 and 'rfm}.

Let a{w) = mf{;, w € E.}. Suffices to show Pflw € B, ] — 0 if € > 0. Let
G =%, fxeT,
Px‘( B|%,_,) = conditional probability that in at most

m trips from T'; to Ty the process visits N,

< m sup Py[path visits N, before visiting T',),
yel

Bil--- ]=P;[...,T‘< T]+ B[..., > T}
Use Problem 17 and (11.20), (11.21) to conclude

V+in—h
Pt (Bfl?}'i_l) < exp( ————262

uniformly in x € T'y and in small €. Use Problem 16 and (11.22) to deduce
P; (AlF,_,) > yig% 1 P;[path visits 3D N N before it

) forany h >0,

forany h > 0.
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Hence
P:(Bflgj—l)
——— < 8(¢)>0 if €-»0.
Pi(A)|F,-)

If x €T, use the strong Markov property to deduce

P;[wEBa(,,,)] = ;P;[a(w) = i, B']

< PHE,) + 2 Pia(w) > {, B]

x

r—-MS

< PHEg) + 8(¢) X Pelalw) > j, A

x

= PH(Eo) + 8(€) X Pla(w) = j, A]]

< P(Eg) + 8(e) X Pila(w) =]

< PHE,) + 8(e)—0 if €—0.]

~Ms ~M8 V8

19. If (A) holds, then for any T > 0, § > O there exist positive constants
€0 B such that

P {pr(£58%) > 8) < exP[- —B-E ]

2¢

[Hint: Apply Problem 17 with C = {¢ € Cy; $(0) = x, pr(¢, £%) > 8).]
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Fundamental Solutions for Degenerate
Parabolic Equations

1. Construction of a candidate for a fundamental solution

Consider a partial differential operator

n 9 n
i,j=1

I [

Lu + > by(x) B (g = a;) (L1)

e AGE A ;
and suppose that
n
Gy = > Ok Oj
k=1

for some n X n matrix ¢ = (o). Set b = (b, ..., b,) and introduce the

system of n stochastic differential equations )
d&(t) = o(£(2)) dw(t) + b(E(2)) dt. (1.2)

In Section 6.4 we have introduced the concept of fundamental solution
and asserted the existence, smoothenss, and certain bounds for a funda-
mental solution T'. The underlying assumptions were that (a,(x)) is uniformly
positive definite and a,, b, are bounded and uniformly Holder continuous.
We have also proved that if o,, b, are Lipschitz continuous, uniformly in
compact sets, then, for any Borel set A,

P((t)eA) = fA T(x, t,y)dy (1.3)

where TI'(x, ¢, y) = I'(x, t; y,0). Let L* be the adjoint of L. If the
coefficients of L* are uniformly Hélder continuous, then it was proved that

r, oI, pifr, pr, pl, DT
388
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are continuous and

LI — =— =0 asafunctionin (x,¢),

L*T - =0 as a function in  (y, t).

In this chapter we consider the case where L is a degenerate elliptic
operator. Thus the standard construction of a fundamental solution I' breaks
down. The concept of a fundamental solution T, if taken in the sense of (1.3),
still makes sense, and we shall, in fact, prove that such a fundamental
solution exists for a class of operators which degenerate on obstacles. The
following condition will be needed:

(A) The functions
d

ay\x), = a,lx),
(8, s

a2

oxy dx,

a,(x), Blx), > bx)

0x,,

are uniformly Holder continuous in compact subsets of R".

Let S be a closed subset of R", and assume:

(Bs) The matrix a,(x)) is positive definite for any xS, and positive
semidefinite for any x €S.

In the present section we shall construct a function K(x, ¢, £) as a limit of
fundamental solutions K, (x, ¢, §) for the parabolic equations

du « 9%
Lu— v 0, where L = Lu + 621 Y (e > 0). (14)

In the following sections we shall show, under some conditions on S and on
the coefficients of L, that a fundamental solution, if defined by (1.3),
coincides with K (x, ¢, §), at least away from S.

Let

B, = {x; |x| < m)}, m=12 ...
Denote by G, (x, t, £} the Green function for (1.4) in the cylinder Q, =
B, X (0, o) (see Section 14.4). Thus G, (x, t, §), its first t-derivative and its

second x-derivatives are continuous in (x, t, §) for x € Em, t>0 £ Em,
and as a function of (x, t),

LGCp (668~ 2 Gy (6§ =0 i (50)€Q, (EfixedinB,),

G (2, t, £) 50 if t-0, x#¢& x€B,,
G, x,t,§ =0 if t>0 x€0B,,.



390 15 SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS

Finally, for any continuous function f(£) with support in B,,, the function
U(x, t) =f Gm, ¢(x) tr E)f(s) dg
B,

satisfies:
Lu(x,t)=0 inQ,,
u(x, t)—»f(x) if t-0, x€B,,
u(x,t)=0 if t>0, x €0B,.

Denote by L*, L* the adjoint operators of L, L, respectively. Denote by
Gx (x, t, &) the Green function for the equation

L¥u—9du/ot=0
in Q. It can be shown (see Problem 1) that
G 2, t,8) = Gt (& ¢, x). (1.5)
It follows that as a function of (£, ¢),

LXG,, [(x, t & — -% Gnr.t.§)=0 if ((t)eQ, (xfixedinB,).

Lemma 1.1. Let (A) hold. Then: (i)

0< G, 5, t,8) < Gpyreln t. &) if(x,)€Q,, £€B,, (L86)
m]Enw G, (2, t, &) = K (x, ¢, §) is finite forallx€R", t >0, (ER".
(1.7)
(iiy The functions

K68, ——K(ntd -
c k] b Y E b ] 1) axhax

d
ax)t 3 Kc(x’ t, g), == K((x, t, E)

at

are continuous in (x, t, &) for x € R™, t > 0, £ € R"; for any continuous
function f(§) with compact support, the function

wls, 1) = [ K(x 1 8f(8) d¢ (18)
satisfies
L, —%‘-t‘-=0 if x€R", t>0,

(i) The functions

d 92
3%, K,(xt,¢), 3%, 9%,

are continuous in (x,t, &) for x€ER", t > 0, £§ER"; for any continuous

K(x, ¢t &)



1. CONSTRUCTION OF A CANDIDATE FOR A FUNDAMENTAL SOLUTION 391

function g(x) with compact support, the function

o6, 0) = [ K(x 1, £)glx) dx (1.10)
satisfies
Lro - %'3-...0 if tER", >0,
t (L11)

v(§ t)—>g(§) if t—0.
In view of (1.9), K, (x, ¢, §) is a fundamental solution for (1.4).

Proof. The inequalities in (1.6) are an easy consequence of the maximum
principle. In fact, for any continuous and nonnegative function f;(§) with
support in B, ,

0<me x t, )f(8 d§<f Gy, % 8, E)fil£) d&

by the maximum principle. Taking a sequence { fx} converging to the Dirac
measure at £, the inequalities in (1.6), at § = £, follow.
Again, by the maximum principle,

[ Gadnt ) ds<t. (L12)
B,

Similarly
[ Gadntg) <. (L13)

Now fix a positive integer m. Denote by 0/9T; the inward conormal
derivative to 3B, at ¢, i.e., the derivative in the direction of the vector Za,»,
(1 € i < n) where » is the inward normal. By Green’s formula (see Problem
2), for any positive integer k.k > m,

Gy (% t, &) f (%, 8 G (8t — 5, 8) A
y d_
+f0 faB /T, ™ G (% 0,8) - G (§,t — s+ 0,§) dS; do
(1.14)

for any 0< s < t, xEB,, £EB,. Taking s = t/2 and using the estimates
(see Problem 3)
Gn c(x.t/2,§)<C, (x€B,,£{EB,), (1.15)

KA

57 G (x 0,8 <C, ({€8B,2€K,0< 0 <s) (LI16)
{
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where K is a compact subset of B, (C,, depends on m, ¢, ¢, K), we get
t t
Gk,((x’ t’ g) g Cm mek,¢(§a 2 sg) d§+ Cm .];/2 LBM Gk,((g’ U, g) ngdG

t
<C,+C, f Gy (8, 0, §) dS; do, (L.17)
t/2 ¥ B,

where (1.13) has been used. If we replace the ball B, by a ball B,
(0 < A < 1) with center 0 and radius m + A, and Green’s function G, , by
the corresponding Green function G, ,, ., then the constants C, ,, will
remain bounded, independently of A. In fact, this can be verified as follows:
flx—¢>¢c>0,0<s<T,orif 0 < ¢y € s < T, the inequality

G % 8, §) < C  (Cdependsonc,cye, TbutnotonA) (L.18)

follows from the construction of G, ., .. For fixed x, the function

v(f, S) = Gm+)\, c(x’ s, §)

satisfies
dv
*,, _ YU _ :
Lo — =0 in B,,, % (0, o0), (119)
v({,5)=0 if {€9B,,,, s>0.

By (1.18), if x varies in a compact set K, K CB,,,if 0 < s<T and if { varies
in a B, ,-neighborhood V of 9B, such that KNV = ¢, then v < C.
Using this fact and (1.19), we deduce (see Problem 4)

<C (1.20)

| 3% Grine(® s §)

if x€K, 0< s < T, { €V. From this inequality and (1.18) we see that,
analogously to (1.17), we have

Gr (% t,8) <Chn+C Hf G (§,0,8dS de, C,,, <C*
/2 aBm+)\

(1.21)

where the constant C} is independent of A, provided x€K, §€B,,, t > 0.
The constant C¥ may depend on t. However, as the proof of (1.21) shows, if
to < t < T, where {, > 0, T, > 0, then C} can be taken to depend on ¢,
T, but not on .

Integrating both sides of (1.21) with respect to A, 0 < A < 1, we get

Gy .z, 1, §) < CX + Cx f/'z fD Gy (8. 0, £) & do,

where D, is the shell {x; m < || <m +1} Using (1.13), we conclude
that

G x,t,§ < C** if x€K, ¢€B,, t,<t< T, (122
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where C}* is a constant independent of k. Combining this with (1.6), the
assertion (1.7) follows. '

The inequality (1.22) for m replaced by m + 1 and K = B, shows that
the family (G, (x,¢, £} (for k > m) is uniformly bounded for x€B,,
§€B,, t, < t < Tp. We can employ the Schauder-type interior estimates,
considering the G, , first as functions of (x, ) and then as functions of (£, ¢).
We conclude that there is a subsequence that is uniformly convergent to a
function G,(x, ¢, §) with the corresponding derivatives

d 92 3 9 0*
dx, > I, 0x, 0t 3% 09§,3EL°

in compact subsets of {(x, £, §); xEB,,, t, < t < T,, £EB,,}. Since however
the entire sequence {G, .(x, t, §)} is convergent to K (x, t, §), the same is
true of the entire sequence of each of the partial derivatives of (1.23). It
follows that the function K, (x, t, £) and its derivatives

d 32 d d 9

N e e T X

are continuous in (x, ¢, §) for x, £ in R" and ¢ > 0. Further, as a function of
(x, t).

(1.23)

dx,

K(

LK - &K =0 (§fixed),

and as a function of (£, ¢)
J

A
v

L*K,— —K,=0  (x fixed).

Consequently, the functions u, v defined in (1.8), (1.10) satisfy the
parabolic equations of (1.9), (1.11), respectively. It remains to show that

u(x, t)—f(x) if ¢-0, (1.24)
v(x, t)>glx) if t-0. (1.25)
Note that (1.6), (1.7), (1.12), (1.13) imply that

K(x, t,§)d¢< 1, K(x,t £ dx < 1. (1.26)
R" R

We proceed to prove (1.24). Let the support of f be contained in some
ball B,,. Suppose first that f & C3. For k > m, consider the functions

wln ) = [ G (x4 OfE) dt

The uniform convergence of { G, (x, t, £)} to K, (x, t, £) implies that u,(x, t)
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—u(x, t) for any x€R", t > 0. Notice next that
[z )] < (soplfl) | Gux t,4) dt < suplf,

u (x,0) = flx)  is a C® function.

Hence the Schauder-type boundary estimates for the parabolic operator
L, — 3/ 9t (see Remark 1 at the end of Section 10.1) imply that the sequence
{u,(x, t)} is uniformly convergent (with its second x-derivatives) for x€B,,,
t > 0. It follows that u(x, f) (¢ > 0) has a continuous extension u(x, 0) to
t =0 and

.......... ans
lullbuullb SUUIl Ulal

A
w
+
-

and such that the support of each f, is in B,,. Then
[ Ka 6 OLAE) - A0 g < v [ Klxn @) dg <,

by (1.26). Also, by what we have already proved,
80 = | [ Kl 1. OO dt - £(x)]0

It follows that

if t—-0 (i fixed).

lim lu(x, t} — f(2)] < 2v, + }%Gi(t) = 2v,.

Since y,—0 if i—>o0, the assertion (1.24) follows. The proof of (1.25) is
similar. This completes the proof of Lemma 1.1.

Theorem 1.2. Let (A), (Bg) hold. Then there exists a sequence ¢, | 0 such
that, as m— o0,

K_(x,t, §—K(x, ¢, ¢) (1.27)

together with the first two x-derivatives, the first two §-derivatives, and the
first t-derivative uniformly for all x, £ in E, 8§ < t < 1/8, where E is any
compact set in R" such that ENS = @&, and § is any positive number,
0<d<1.

Proof. Let E, be a compact set that does not intersect S.
Tet R, fn <A< \ he a anl]v of bounded open s sets such that E R if

L AT

AN, Eo C By, B, ﬂ S =g, and such that as A varies from 0 to 1 the
boundary 9B, covers simply a finite disjoint union D of domains, and
dx = pdS* d\, where dS* is the surface element of 3B, and p is a positive
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continuous function. It is assumed that each 3B, consists of a finite number
of C* hypersurfaces.

Taking k-0 in (1.14) and using the monotone convergence theorem, we
obtain the relation (1.14) with G, , replaced by K,. This relation holds also
with B replaced by B, and G, , replaced by Green’s function G, of

€

L, — 3/9t in the cylinder B, X (0, c0). The estimates (cf. (1.18), (1.20))
GAx.t8) <C,  (x€E, {€B, t,<t< T, (128)

G,

l 9 (,x(x,t,§)|<C¢ (x€E, (€dB, 0<t<T) (129

T,
hold, where ¢, > 0, T, < o0. Since (,(x)) is positive definite for x&€ B,, the
constants C, can be taken to be independent of both € and A; the proof is

similar to the proof of (1.18), (1.20). It follows that if xEE, £€E,,
to < t < T,

Kint <o [ K5 g.¢)ae
+C* fo‘/zfaB K (5 £ +0,8)dsp do

< C* + C* f"z faB K (5 L +o,8)dstdo  (130)
0 A

where C* is a constant independent of €, A; (1.26) has been used here.
Integrating with respect to A and using (1.26), we find that

K(x,t, £§) < C  (Cindependent of ¢). (1.31)

This bound is valid x, £ in E, and t€[¢,, T,]; the constant C depends on E,,
te- Ty, but not on e.
From the Schauder-type interior estimates applied to K, (x, t, §) first as a

function of (x, t) and then as a function of (£, t) we conclude, upon using
(1.31), that

K68, ——K(xtf —1 Kt
€ 2 b b axA € x! ? b axA axp. (4 x, H L]
0 ) 92
-'a_t K((xs ta E), ag}\ Kg(xa ta g): a&)t ag" Kg(xs t) g)

satisfy a uniform Hélder condition in (x, ¢, §) when xEE", §EE", t, + § < ¢
< T, — 8 forany & > 0, where E’ is any set in the interior of E; the Holder
constants are independent of € (since (a,(x)) is positive definite for x € E).
Since E,, t,, T, are arbitrary, we conclude, by diagonalization, that there is a
sequence {¢,, }, €,—0 if m—o0, such that

K(x,t,§) = lim K_(x, ¢, §)
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exists, and the convergence is uniform together with the convergence of the
respective first two x-derivatives, first two £-derivatives, and first ¢-
derivative, for all x, § in any compact set E, ENS = ¥, and for all ¢,
8 < t < 1/8, where 8 is any positive number.

Corollary 1.3. The function K(x, t, §) satisfies: (i) as a function of (x, t),
LK(x,t, & —0K(x,t,§/0t =0, and (ii) as a function of (£ 1),
L*K(x,t,§ —0K(x, t,§/0t =0, forall xZS, ££8,t > 0.

2. [Interlor estimates

AR At L 7Y sl o 2 PHIRY
Yve€ aenowe by L/, tne v /Xy, ).

ja)
x O

Q2

ector (8/0x, .. .,
Lemma 2.1. Let (A), (Bg) hold. Let B be a bounded domain with C?
boundary 3B, and let B N S = @. Denote by Gy (x, t, §) the Green function
of L, — 98/3t in the cylinder B X (0, oo). Then, for any compact subset B, of
B and forany e, > 0, T > 0,

Gy (x. t,§) < t,f“;z if (x,8)€(B X B)U(B,x B), 0<t<T,
(2.1)
Gp (x, 8, &) < Ce™" if (x,8§)E(B X B))U(By, X B), |x—§ > ¢,
0<t<T, (2.2)
DGy (x.t,8)| < Ce™ " if (x,§)EB X B, |x— ¢ > €, 0<t<T,
(2.3)
|ID,Gg (%, t, )| < Ce ™/t if (x,§)EB, X B, |x—¢ > ¢, 0<t<T,
(2.4)

where C, ¢ are positive constants depending on B, B, €,, T but independent
of €.

Proof. We write (cf. Section 14.4)

Gp (x. ¢, g =Tlxt¢& + Vixt, ¢ (2.5)
where T (x, ¢, §) is a fundamental solution for L, —9/0t in a cylinder
Q = B’ X (0, e0) and B’ is an open neighborhood of B such that its closure
does not intersect S. Since L is nondegenerate outside S, the construction of
', can be carried out as in Friemdan [1] and (cf. (6.4.12))

IT{x, t, §)l + DT (x, 1, §)l < Ce™*  if |x—§ > ¢ >0,
0< t< T; (2.6)
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the positive constants C, ¢ can be taken to be independent of €. Notice also
that

IT(x, t, §)] < t,gz if 0<t<T. (2.7)

By the methods of Friedman [1] one can actually also prove that
ID2T (x, t, £)] + |[D,T(x, t,§)] < Ce™/* if |x~ & > ¢ >0,
0<t<T (28)
The points (x, §) in (2.6)—(2.8) vary in B’.
The function V_(x, ¢, £), for fixed § in B, satisfies

LV -3 v -0 if x€B, 0<t<T

LV.— 5 V if 0 < t <1
Vix, t,§) = —T(x, t,§) if x€0B, 0<t< T,
V.(x,0,¢§) =0 if xEB.
If £ remains in a compact subset E of B, then, by (2.6) and the maximum
principle,
|V(x, t, &) < Ce*/* (x€B, §(€E, 0<t<T). (2.9)
This inequality together with (2.5)-(2.7) imply (2.1), (2.2) for (x, §) EB X B,
Since similar inequalities hold for Green’s function G} .(x, t, £§) of L¥ — 9/
dt, and since Gy (. t, §) = G5 (£ t, x), the inequalities (2.1), (2.2) follow
also when (x, §) €B, X B.
From (2.6), (2.8) we see that for any § in a compact subset E of B there is
a function f(x, t) that coincides with —T _(x, t, §) forx€9B,0 < t < T, and
which satisfies
| fx, )] + IDflx, )l + [Df(x, )] + |Dflx, t)] < Cre™
(x€B, 0<t<T)

where C* is a constant independent of £, e. We use here the fact that 0B is
in C2. Notice that

Vo -2 p=-rpe L =5
|f(x,t)|<C**e‘ /t (x€B, 0<t<T),
V.— f=0 if x€9dB, 0<t< T orif x€B, t=0;

the constant C** is independent of €. Using this one can show (see Problem

=Yy LL
!JI il

(2.10)

|ID,V(x, t, §)] < C,C**e™%/t if x€B, 0<t< T, (211)

where C, is a constant independent of €. Recalling (2.5), (2.6), the assertion
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(2.3) follows. A similar inequality holds for Green's function G ,; since
Gp, (x, t, §) = G3 (£ t, x), this inequality gives (2.4).

Theorem 2.2. Let (A), (B) hold. Let E be any compact subset in R™ such
that ENS = & and let €, T be any positive numbers. Then

C

K(x, t ¢ < v if x€E, (€E, 0<t<T, (2.12)
K(x,t,§) < Ce™*/* if x€E, §€E, |[x~§ >¢ O0<t<T,
(2.13)

where C, ¢ are positive constants.

Proof. Let B, (0 < A < 1) be an increasing family of bounded open sets
with C? boundary, as in the proof of Theorem 1.2. Let F be a compact
subset of B, Recall that B, N S = @. We proceed as in the proof of
Theorem 1.2 to employ the relation (1.14) with B, replaced by B, and with
G,  replaced by Gg_

Gy x t, &) = fB Gs (558G (&t — s, 8) &

s 9 . B N
+f0 faB,\ a—I}CBM(x, o, ¢) ch(f,t s+ 0, ¢ ds;* do.

(2.14)

From the proof of Lemma 2.1 we see that the estimates (2.1)—(2.4) hold for
Gg, . with constants C, ¢ independent of A, Using (2.1), (2.4) for B = B, in
(2.14), we obtain, after applying the inequality (1.13) for m = k, integrating
with respect to A (0 < A < 1) and applying once more (1.13) with m = k,

Gk,e(x, t, ) < t'gz provided x€F, (€F, 0<t<T

Taking k— o0, we get
C

tﬂ/2

K(x, t, ¢ < if x&F, t€F, 0<t<T  (215)

Taking € = ¢,—> %0, the inequality (2.12) follows.
To prove (2.13), let A, F be disjoint compact domains, (AUF)N S = @,
and let 9F be in C2. Consider the function

o(x, t) = K(x, ¢, §) for x&€F, 0<t<T (¢ fixed in A).

Denote by Gy, .(x, t, £) the Green function of L, —3/9t in F X (0, o). By
Lemma 2.1,

DGy (%, 1, §)| < Ce™*/t  if {€0F, x€F, 0<t<T, (216)
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where F, is any compact subset in the interior of F.
We have the following representation for v (x, t):

)= ' [ gaﬁcp..(x, 5, 8) - o8, s) dSp ds

(x€intF, 0<t<T) (2.17)
Indeed, this formula is valid for v, . (x, t) = G; (x, t, §) since vy (x, 0) = 0.

Taking k — o and using the monotone convergence theorem, (2.17) follows.
Substituting the estimates (2.15), (2.16) into the right-hand side of (2.17),
we obtain

vx, t) < %e"c/' < Ce™/?
where C’, ¢/, C, ¢ are positive constants independent of €. Taking € = ¢,—0,
the assertion (2.13) follows.

3. Boundary estimates

We shall need the condition:

(C) There is a finite number of disjoint sets Gy, . . ., Gy, G5+ - - > Gi
such that each G, (1 < i < k) consists of one point z; and each G,
(ko + 1 < j < k) is a bounded closed domain with C® connected boundary
BG,. Further,

afz) =0, blzg)=0 if 1<I<ky; 1<ij<n (31

n

> aii(x)r,.r,. = () for xEGG,- (kg + 1< j<Kk), (3.2)

if=1

n n 8aﬁ )
PR EACGEED . <0 for x €3G (k+ 1< j<Kk)
fom] 1“1
(3.3)
where v = (v, . o v,) is the outward normal to 3G, at x.

I_.etQ—U Gﬂ R"\QBG—MG {}lfl<1<k0,aﬂ-—
U 8G In t}ns sectlon and in Sectlons 6—10 we shall assume that

S=9Q. (3.4)
Let (N} be a sequence of domains with C® boundary 9N,,, such that
N,cN,,,c® U.N, = §. We take N,, such that N, consists of two

disjoint parts: 0,N,, whxch lies in (1/m)-neighborhocod of 0§ and 9,N,,
which is the sphere |x| = m.

Denote by G, (x, t, §) the Green function for L —9/9¢ in N, X (0, c©).
By arguments similar to those used in the proofs of Lemma 1.1 and Theorem
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2.2, we have:
0 < Gu(x, 8, §) < Gpyylx, 8, 8), (3.5)
G(x, t, §) = lim G,(x, t,§) isfinite
for all x, ¢ in Q t > 0. Further '
C

G.(x, t ¢ < oD if x€E, ¢({€E, 0<t<T, (3.7)

G (x,t ¢ < Ce™ /" if x€E, £(€E, |x—¢ >¢, 0<t<T,
(3.8)

G(x, t, &) < ‘52 if x€E, ¢(€E, 0<t<T, (3.9)

G(x,t,¢) < Ce™®/* if x€E, ¢€E, |x—§ 2 ¢ 0<t<T,
(3.10)
where E is any compact set such that E c®, T, and ¢, are any positive
numbers, and C, ¢ are positive constants depending on E, ¢, T but

independent of m. We also have, by the strong maximum principle, that
G(x, t, 8§ >0if x&f, t >0, £, Finally,

LG(x 8 - L Clx,t,§ =0 if x€Q, t>0 (¢fixedin),

(3.11)

L*G(x,t,g)—%(}(x,t,g)=0 if £€0, t>0 (xfixedin Q).

(3.12)

Notice that in proving (3.5)—(3.12) we do not use the conditions (3.1)-
(3.3). A
Denote by R (x) the distance from x € { to the set . This functlon is in

C? in some - neighborhood of 32 and also up to the boundary W G,

Theorem 3.1. Let (A), (Bg), (C), and (3.4) hold. Let E be any compact
subset of (. Then, for any T > 0 and for any p > 0 sufficiently small, there
are positive constants C, y such that

G(x, t, ¢ < Cexp{
if t€E, x€Q, R(x) < p,0< t < T.

f=kg+1

|~<

(log &(x))* (3.13)

Corollary 3.2. If in Theorem 3.1 the condition (3.3) is replaced by the
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condition
n n Oay(x) o _
‘§1 bi(x) — é ,«gl """é';r v, # 0 fOT" xe 8(., (ko + 1< i< k),
(3.14)
then
G(x,t,¢) < C exp{ ~ % (log H(f))z} (3.15)

ifx€E, teQ RE <p,0<t<T

The point of these results will become obvious when, in Section 6, we

A LR

Kix, t,8) = Gx, t,8) if x€Q, ¢€Q, t>0.

Proof of Theorem 3.1. For any € > 0, denote by M, the set of all points

x € § for which R(x) < ¢, and by T', the set of all points x € Q with
R (x) = €. The number ¢ is such that E N M, = & and R (x) is in C%(M,);
later we shall impose another restriction on the size of € (depending only on
the coefficients of L).
Let M, ,, = M, N N,,. Its boundary oM, _ consists of I, and of 9,N,, (the
“inner” boundary of N,,), provided m is sufficiently large, say m > my(e).
For m 2 myfe), consider the function

o(x, t) = G, (x, t, §) for x€M, ., 0<t<T (¢fixedinE).
" .. — 2 AT anf — Y YL . ™ R S b b, /) ON
XS 0iv,, (X, ) =0 1unxc1,,U<t< 1, tnen, oy (I.9),

Finally, v(x, 0) = 0 if x& M, . We shall compare v(x, t) with a function of
the form

w(x, t) =C exp{ - % (log R(x))z} (v(log e < c) (3.16)

where 7y is a sufficiently small positive constant independent of m. Notice
that w(x,0) =0if x€M, _, w(x,¢) > 0 if x€9,N,, and w(x, t) > Ce™°/*

€, m?

ifxel',, 0 < t < T. Hence, if we can show that
Lw—-w, <0 for x&e M

€, m?

0<t<T, (3.17)
then, by the maximum principle,

P T DU o S L N Y DU

Gix, 8, §) = uix, t) < wix, ).

Taking m~—>c0, the assertion (3.13) follows.
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To prove (3.17), set & = 1/w. Then

_ 1 2y logR
Y“TT9% 7T TR e
1 [ 4v® (log R)® 2y 1 2y logR
XX 6 t2 R2 xiny - _t— R2 inxf t R2 XAy
2y logR
't R R*«*f}’
—w,= - -w-/-(logR)ﬁZ
t q) t2
Hence
[Lw — w]®
2y* (log R)” Yy 1
= t2 R2 zaifo,Rx, ? -ﬁ—z_(]‘ + lOg B )zaif x, x,
Y 2y 1
+3 E(‘Og )zaif R, + Tﬁ(log )Ebﬂx - -(10gR)
(3.18)
Setting
@ = % 2 aifo,Rx,’ % = 2 bin, + % 2 aifR:‘x,’
we find that
4v? (log R)* 2y 1+ log(1/R)
(Lw—w,)d>=—?2— R2 ——t— R2 @
2y log(1/R) y 2
T _—Ii— B - 't; (log R) . (3.19)

By (3.1), (3.2), & = 0 on 9. Since @& > 0 elsewhere, we conclude that

@ < C,R® if 0K R(x)<1 C, positive constant). (3.20
0 po

When & = 0 we have (cf. 9.4.4))
day,

tn
€B < C,R if 0<R(x) <1  (C,positive constant). (3.21)
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Now, if v is sufficiently small, then, by (3.20),

4y* (log R)’
t? R®

1 v
@ < 2 ;l;-(log H)g.

Since also
2y 1+ log(1/R)
- = 3
we conclude from (3.19) that

2y log(1/R) 1Y 2
(Lw—-w,)<b<—t---—ﬁ——--€B —QI--t'z-(logR).
Using (3.21) we see that if € is sufficiently smali, then (3.17) holds.

@ <0 if R(x)<e <1,

Proof of Corollary 3.2. The formal adjoint of Lu is
L*u =+ 2 Gy 8 Ebt

where
~ ~ 1
b=-b+5 2 5, C=§23;;—“—2—- (3.22)

Since

the condition (3.14) implies the condition (3.3) for L*. The proof of (3.17)
remains valid for L* (with a minor change due to the term ¢w). We conclude
that Green's function G*(x,t, §) corresponding to L* —9/0t in N, X
(0, o) satisfies:

Gr(x, t,§ < w(x, t) (xeM,, 0<t<T §€E)

Recalling that G, (x, ¢, §) = GX(§, t, x) and taking m — oo, the assertion
(3.15) follows.
We shall now assume that

@(x) = O(RP*Y) as R = R(x)-0, (3.23)
where p is a positive number, p > 1.

Theorem 3.3. Let (A), (Bs), (C), (3.4), and (3.23) hold. Let E be any
compact subset of 2. Then, for any T > 0 and for any p > O sufficiently



404 15 SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS

small, there are positive constants C, v such that
G, 1,8) < Cexpf - }(R(x))“"} (3.24)

if t€E, x€Q, R(x) < p,0 < t <'T.

Corollary 3.4. If in Theorem 3.3 the condition (3.3) is replaced by the
condition (3.14), then

Glx, t,8) < Cexp{ _ }(R(g))“p} (3.25)
if x€E t€Q R <p, 0< t < T.

Proof of Theorem 3.3. We proceed as in the proof of Theorem 3.1, but
with a different function w(x, t). First we consider the interval 0 < ¢t < 8 (8
is small and will be determined later), and take

w(x 1) = Cexp{ — ¥ (R(x)'). (320
If we prove that, for any y > O sufficiently small and independent of m,
(3.17) holds for x € M, ., 0 < t < 8, then the inequality (3.24), for 0 < ¢
< §, follows as in the proof of Theorem 3.1. To prove (3.17), set ® = 1/w.
Then

_lyp-l
W =g 3 R T
1) _wlp=-1) vip-1 . ]
Wxix’ - () tzﬂgp x0Ty tRp+1 E P + tRP x‘x,j’
SO R
tT P 2 Rp-!
Hence
2p—1)? -1
(Lw_wt)q):v(p S e wlp—l) @
t2 R2p t Rp+1
Yip—1) @ Y
YT R pmers (3:27)

If v is sufficiently small, then, by (3.23),

vip-1 @
t2 R2p

Y 1
2

<l .
3 ¢ Rr!
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By (3.21),

ip-1) 8 17 1
t RP

3 t2 Rp-l

if 0 < t < § and o is sufficiently small. From (3.27) we then conclude that
(3.17) holds if 0 < t < §. As mentioned above, this implies (3.24) for
0 <t < 4. In order to prove (3.24) for § < t < T we introduce another
comparison function, namely,

wO(x, 1) = c‘exp[ - :’ o (R(x))l"'"}

where é, ¥, A are positive numbers. With & = 1/ w®, we have
Pp-1 @ p-1) @
(t + 1)* R? (t+ 1 RP*!
7(p—1 2
N (-1 @ 7 1

- — . 3.28
(¢+ 1) BP ¢+ 1M RP! (328)

(Lw® — w)® =

We choose A (independently of ¥) sufficiently large so that

B 1 A
A>Lo (pmUp <3 Ty
this is possible by (3.21). With A fixed we next choose ¥ sufficiently small so

that

N

A, (3.29)

1

3
It then follows from (3.28) that Luw® — w) < 0 if xeM, . § <t < T.
Notice that if ¥ is sufficiently small and C is sufficiently large (both
independent of m), then, by (3.8),

G, (x ¢t &) < w¥x, 1) (¢ fixed in E) (3.30)

if x&€T_, 0 <t < T. The same inequality clearly holds also if x&d,N,,,
t > 0 and, by what we have already proved above, for x€M, ., t = 6.
Hence, we can apply the maximum principle and conclude that (3.30) holds
for x& M, . 8 < t < T. Taking m—co, the proof of (3.24), for § < t < T,
follows.

The proof of Corollary 3.4 is obtained by applying the proof of Theorem
3.3 to the equation L*u — du/dt = 0; cf. the proof of Corollary 3.2. The
details are left to the reader.
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Remark. Set Q, = int Q. In Theorems 3.1, 3.3 and their; corollaries we were
concerned with Green’s function G(x, t, §) for x, §{ in &. Similarly one can
construct a Green function Gy(x, t, £) for x, £ in &, If (A), (Bg), (C), and (3.4)
hold with » (in (C)) being the inward normal to 9G; at x (ky + 1 < j < k),
then (3.13) holds with G(x, t, §) replaced by Gy(x, ¢, §); §€EE, x€Q,, 0 < ¢
< T, dist(x, 3Q) < p, where E is any compact subset of &, Similarly, if (3.3)
is replaced by (3.14) (v the inward normal), then (3.15) holds with G(x, t, §)
replaced by Gy(x, t, §); xEE, £EQ,, 0 < t < T, dist(§, 92) < p. The asser-
tions of Theorem 3.3 and Corollary 3.4 also extend to Gy(x, ¢, §). Note that
Go(x, t, §) = 0 if xEC,., §€G,, and j # h.

4. Estimates near infinity

In this section we replace the conditions (C), (3.4) by the much weaker
condition:
S is a compact set. (4.1)

Let § = R™\S.

Theorem-4.1. Let (A), (Bg), and (4.1) hold. Assume also that
2 ay(x)xx < Gol1 + |=1*), (4.2)
hi=1

— | 2 xb(x) + % i aﬁ(")] < Co(L + |«f?) (4.3)

f2= ] i=s 1
L™ - N - 4

where C, is a positive constant. Let E be any bounded subset of S. Then, for
any T > 0 and for any p sufficiently large, there are positive constants C, v

h th
such that K(x,t.8) < Cexp{ — T (tog |«)") (4.4)

if §€E, |x] > p, 0 < t < T

Notice that the closure of E may intersect S.

Corollary 4.2. If in Theorem 4.1 the condition (4.3) is replaced by the
conditions

i xb(x) +1 i ay(x) < Cof1 + |x), (4.5)

i=1 i=1

n 3%,(x) 2 bx)

1 __\
i 2 dx, dx; 2

ij=1 =1 Ox

< [log(2 + |x])]%(|l)

(n(r)>0  if r—oo), (4.6)
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K(x, 1,4) < Cexp| - 2 log 0°) (47)
if x€E, || >p,0< ¢t < T

Proof of Theorem 4.1. Consider first the case where EN S = @. For any
p > 0, m a positive integer, let

No,={xp<|xl<m}, A ={x;lxl=p}), A4,={x|x]=m).

The number p is sufficiently large (to be determined later), whereas m > p.
The boundary of N, , then consists of the spheres A, 4,. Proceeding
similarly to the proof of Theorem 3.1, we shall compare the function
o(x, t) = G, .(x, t, §) (§ fixed in E) with a function w(x, ) in the cylinder

N, , X (0, T). We take

w(x, 1) = Cexp{ - 2 (tog |x|)2} (438)

where C, y are positive constants. It is clear that (3.19) holds with R (x) =
|x| L replaced by , @; replaced by a; = g, + €5, where

2|x|2 2 4 (5%,
1 1
® = ‘l;|' [szb.(x) +3 2“::(")] - 2—|;'|§ zai;(x)xixi
By (4.2), (4.3) we have, for all R(x) = |x]| sufficiently large,
@ < C,R?, ~%B < CgR  (C, positive constant).

Now choose y so small that
4y? (logR)’
t? R? 3 ¢
Next choose p such that if R(x) = |x| > p,

2y 1+log(l/R) - 2y logR —1 1Y 2
- = = @_7 e @,<3 tz(logR), (4.10)

2y log(l/R) . 2y logR 1Y 2
T g - - o < SR’ (@)

for all 0 < ¢ < T. It follows that Lw — w, < 0if xEN,, ,, 0 < t < T.
Notice that p was chosen independently of y. Hence with p fixed, we can
further decrease v (if necessary) so that

o(x, t) < wix, t) if x€A, 0<t<T
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for some positive constant C (in 4.8)). The last inequality evidently holds also
if x€4,,0< t< Torif xEN, ,, t = 0. Applying the maximum principle,
we get

Gm’c(x, t, &) = vlx, ) < w(x, t) if xeN 0<t<T

m, p?

From this the assertion (4.4) follows by taking first m — o0 and then
€ =¢, —0.

So far we have proved (4.4) only in case E NS = @. Now let E be any
bounded set disjoint to S. Let = be a sphere whose interior A contains both E
and S. From what we have proved so far we know that if x € N,, , then

m, p?
Cmyf(x, t, &) < wix, t) (4.12)
if £€Z,0 < t < T. Now, as a function of (§, ¢) the function w(x, {) satisfies
a3 ) n Y 2
* _ 9 — _ &
(22 = 2 Jow=] 20 — % ttoghl) Jwlx ) < 0

if p is sufficiently large and £§€A, 0 < ¢t < T. Hence, by the maximum
principle, (4.12) holds also for §€4A, 0 < t < T. Taking m—oc and then
€ = ¢,—0, the inequality (4.4) follows.

Proof of Corollary 4.2. We apply the proof of Theorem 4.1 to the adjoint
L* of L (cf. the proof of Corollary 3.2). Since (4.9)-(4.11) remain valid (with
@ replaced by — % ) with the factor § on the right-hand sides replaced by
L, it remains to show that

. 1 Y 2
&(x) < — (log RY,
x [

where ¢ is defined in (3.22), In view of (4.6), this inequality holds if
0 < t < T, provided p is sufficiently large and R (x) = {x| > p.
Suppose next that (4.2) is replaced by

n
D a(0)xx< Gl + |x*77) (0<p<2). (4.13)
Li=1
Then we can use, for 0 < t < §, the comparison function

wix, t) = C exp{ — % |x|”}. (4.14)

In fact one easily verifies that L.w — w, <0 for x€N, ,, 0 <t < §,
provided y and § are sufficiently small. For § < ¢t < T we use the compari-
son function

w(x, t) = C exp{ - ? _f 7 | x|P } (4.15)
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Lhoosmg first A sufficiently large, and then 7 sufficiently small, we find that
Lw®—03u’/dt <OifxEN, .8 <t<T.
With the aid of these comparison functions we obtain:

Theorem 4.3. Let (A), (Bg), (4.1), (4.13), and (4.3) hold. Let E be any
bounded subset of S. Then, for any T > 0 and for any p sufficiently large,
there are positive constants C, y such that

K(x, t, ¢ < Cexp{ - —.:- |x|p} (4.16)
FECE, |2/ >p0< t < T

Caealla

WA E LFLACE,

ary
conditions (4.5) and

n 9%,(x) n 8b(x) i
3 2 Tmon T2 o < (L Pl
(n(r)—0 if r—>00), (4.17)
then
K(x, t,8) < Cexp{ — L 1glp} (4.18)

if x€EE, [§{ >p,0<t < T.

The proof of the corollary is obtained by applying the proof of Theorem
4.3 (with the same comparison functions w, w® as in (4.14), (4.15)) to L*.

Remark. Denote by § the unbounded component of R"\ S. One can
construct the function G (x, ¢, §), for x, £ in S and ¢ > 0, in the same way
that we have constructed G (x, t, §) for x, £ in Q, t > 0, as a limit of Green’s
functions G,,(x, £, §) (cf. the remark at the end of Section 3). Using the same
comparison functions as in Theorems 4.1, 4.3 and Corollaries 4.2, 4.4, we can
estimate the functions G, (x, t, §) and, consequently, also G (x, t, §). The
estimates on G are the same as for K, except that now E N S is required to
be empty.

5. Reiation between K and a diffusion process

If the symmetric matrix (g,(x)) is nonnegative definite and the a; belong to
C%(R™), then (see Section 6.1) there exists an n X n matrix o(x) = (0;(x))
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which is Lipschitz continuous, uniformly in compact subsets of R", such that
o(x)o*(x) = (a,(x))  [o* = transpose of o]
ie., 2oy (x)op(x) = ay(x). If
2 ) € C(1 + |x%), (5.1)

i=]

then, clearly,
lo(x)] < C(1 + |«t) (52)

with a different constant C. Conversely, (5.2) implies (5.1) and, in fact,
implies

3 la{x)] € C(1 + |x/2).

e 1SR \ P/

ij=1

We shall now assume that (5.1) holds and, in addition,

2 Ib(x)] < C(1 + |«|). (5.3)
i=]
Set b = (b, ..., b,). Since we always assume that (A) holds, the func-

tions o(x), b(x) are uniformly Lipschitz continuous in compact subsets of R".
Consider the system of n stochastic differential equations (1.2), and set

P(t,x, A) = E_(§(t)€A) (54)
for any Borel set A in R™.

Definition. If there is a function I'(x, ¢, £) defined for all x, £ in R" and

1 f

¢ > 0 and Borel measurable in § for fixed (x, ¢), such that
P(t, %, A) = [ T(x, ¢, §) dg (5.5)
A

for any Borel set A in R" and for any xER", ¢t > 0, then we call I'(x, ¢, §)
the fundamental solution of the parabolic equation

Ju
Lu Yo 0. (5.6)

Note that I'(x, ¢, §), if existing, is uniquely determined, for each (x, ),
almost everywhere in §. Note also that for any bounded Borel measurable
function f(§) with compact support,

) = J T(x68f(®dé (5.7)

: oton 1 36/ ifo citiva dafinit dif tha
mentioned in Section i, Ir \u'if\”// is uuuuuul] POsitive Gerinite ana ir uie

ay, b, are locally Lipschitz continuous and uniformly Hélder continuous, then
the fundamental solution as defined here is a fundamental solution as
defined in Section 6.4.
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Theorem 5.1. Let (A), (Bs), and (5.1), (5.3) hold. Then
P;%K‘(x’ t,§)  existsforall x&S, {2S, t>0,  (58)
and the function K(x, t, §) = lim,_,K, (x, t, £) satisfies
Plg()€A) = [ Kix,1,8) dt (5.9)

for any Borel set A with AN S = .

Proof. In Section 1 we have proved that there is a sequence {¢,} converg-
ing to zero such that

K, (x,t, & — K(x,1,§) as m-—» o0 (5.10)

forallx & 8, £ & S, t > 0; the convergence is uniform when x, § vary in any
compact set E, E 0 § = ¢, and ¢ varies in any interval (8, 1/8), 8§ > 0. The
same proof shows that any sequence {¢,} converging to zero has a sub-
sequence {¢, } such that

K,(x,t,§) >M(x,t,§) as m—co

for some function M, and the convergence is uniform in the same sense as
before. If we can show that M (x, ¢, §) = K (x, ¢, £), then the assertion (5.8)
follows,

If we show that

P(§(t) € &) = [ M(x 1, §) dé (5.11)

A
for any bounded Borel set A, A NS = @, then, by applying this to the
particular sequence {¢,} we derive (5.11) with M replaced by K. Con-
sequently, M = K (so that (5.8) is true) and (5.9) holds. Thus, in order to
complete the proof of the theorem it remains to verify (5.11).

For any € > 0, consider the stochastic differential system

g (1) = o°(£° (1)) dw(t) + b(£° (1)) dt
where ¢° is such that ¢¢(0%)* = (a,; + 526,.1.); here (6¢)* = transpose of o°.
For any continuous function f with compact support, the function

J Kelx 6. 9)f(8) d (512)

is a bounded solution of
Lu-— %—l: =0 if x€R", 0<t<T, ux0)=f(x) if x€R"
(5.13)

Indeed, this is true of [G, (x,t, §)f(§) d¢ and, by the boundedness of the
G,  (cf. the proof of Theorem 4.1) and the Schauder estimates, also for the
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function in (5.12). By Theorem 6.5.4, also
Efl&(r) (0<t<T)

is a bounded solution of (5.13). Hence, by the uniqueness of bounded
solutions for the Cauchy problem (Corollary 6.4.4)

EfE40) = [ K(x. t, Of§) ds. (5.14)

Taking a sequence of f’s which converges to the indicator function of a Borel
set A, we obtain

P(()€A) = L K(x, t, &) dt (5.15)

Since (by Section 6.1) o¢(x)—>¢(x) uniformly on compact sets, as e—0, it
follows (for instance, by Theorem 5.5.2) that
E_|£<(t) — £(1)*—0 if €0, (5.16)

Suppose now that A is a ball of radius R and denote by B, (p > 0) the ball of
radius p concentric with A. From (5.16) it follows that if p < R < p/, then

lim P(£(t)€B,) < P(§(1)€A),
lim P,(¢(t) €B,) > P(&(t) € A).
e—0

By (5.15) and Theorem 1.2 we also have

P(§%(¢) EBP,\BP) =fB . K(x, t, ¢ dé < Clp’ — p)

provided p’ is sufficiently close to R (so that B_p NS = ), where C is a
constant independent of €. From the last three relations we deduce that

P(t(t)EA)-PlE(t)EA) if €0, (5.17)

Taking € = ¢, —0, the right-hand side of (5.15) converges to the right-
hand side of (5.11). If A is a ball, then, by (5.17), the left-hand side of (5.15)
converges to the left-hand side of (5.11). We have thus established (5.11) in
case A is a ball with A S = @. But then (5.11) follows also for any Borel set
A withANnS = @.

Theorem 5.2. Let (A), (Bg), (4.1), and (5.1), (5.3) hold. Then, for any x€E€ S5,
K(x, t, &) = 1in(1) K(x,t, ¢ (5.18)

exists for all £Z S, t > 0; the convergence is uniform with respect to (§, t) in
compact subsets of (R"\8) X [0, o0), and (5.9) holds for any Borel set A
with ANS = . Finally, for any disjoint compact sets M, E in R" with
SCM,and forany T > O,

K(x,t, &) < Ce™* forall x€M, ¢€E, 0<t<T (519)
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where C, ¢ are positive constants depending on M, E, T.

Proof. Let E be a compact set, ENS = @, and let M be a bounded
neighborhood of S such that MNE = @. For fixed £ in E, consider the
function
v((x, t) = K (x,t,§ for xeM, 0<t<T.
If x€0M, 0 < t < T, then, by the results of Sections 1, 2,
0< v(x,t) < Ce
where C, c are positive constants independent of £, €. Further
o(x,00=0 if xEM,

do,
LEDE—'E?=O if xeM, t>0.

Hence, by the maximum principle,
0< vlx,t) < Ce " if xéM, 0<t< T,
ie.,
0< K(x,t,8 < Ce™** if x€M, 0<t<T, ¢(€E (520
Fix x in S and consider the function
o (& t) =K(x,t,¢§) for ¢EE, 0<t< T
By (5.20) this function is bounded. Since ¢, (£, 0) = 0 if £EE, and

L;¢g—a%¢§=o f t€E O0<t<T,

and since L* is nondegenerate for {€ E, we can apply the Schauder-type
estimates in order to conclude the following:

For any sequence {¢,} converging to 0, there is a subsequence {¢y} such
that {¢, .} is convergent to some function ¢(£, t) = K(x, ¢, £), together with
the first ¢-derivative and the first two §-derivatives, uniformly for £ in any set
interior to E in ¢ in [0, T']. By diagonalization, there is a subsequence {e,.} of
{e}} for which

K _.(x,t 8> K(xt§ foral §€R"\S, >0

the first ¢-derivatives and the first two §-derivatives also converge, and the
convergence is uniform for (§, t) in compact subsets of (R"\S) X [0, co).

Notice that the sequence {¢, } may depend on the parameter x. Now let
A be a Borel set such that AN § = . Taking, in (5.15), x€ § and € = ¢, -0,
and noting (upon using (5.20)) that the proof of (5.17) remains valid for x € S,
we conclude that

Pt EA) = [ K(x 1,8 dk

A
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Thus, K (x, t, £) is independent of the particular sequence {¢,,} with which
we started. It follows that (5.18) holds. The other assertions of the theorem
now follow immediately; in particular, (5.19) follows from (5.20).

From the above proof we see that, for fixed x in S,

L*K(x,t,&)—%K(x,t,§)=0 if ¢S, t>0.

Theorem 5.3. Let (A), (Bg), (4.1), and (5.1), (5.3) hold. Then for any disjoint
compact sets M, E in R with SCM, and forany T > 0

K(x,t,8§) < Ce /'t forall x€E, teM, 0<t<T, (5
(

21)
K(x,t,£) < Ce™®/*  forall x€E, (€M\S, 0< t< T, (522)

AN~y vy Ny >

where C, c are positive constants depending on M, E, T.

Indeed, we apply the argument which led to (5.20) to L*, KX(x,t, §)
instead of L, K, (x, t, §). We then get

K*(x, t,§) < Ce /"
if xeM, (€E, 0 < t < T. Since K¥(x,t, §) = K (£ t, x), (5.21) follows.

Recalling that K_(§, ¢, x)—>K(£, ¢, x) as €0, provided §Z S, x & S, (5.22) also
follows.

6. The behavior of £(t) near $

In Section 3 we have introduced the condition (C). In this section we shall
need also other similar conditions:

(Cy) The condition (C) holds with one exception, namely, the condition
(3.3) is omitted.

(C) The condition (C) holds with one exception, namely, the inequality
(3.3) is replaced by the inequality (3.14).

(C*) The condition (C) holds with one exception, namely, the inequality
(3.3) is replaced by equality, i.e.,

> b 1S bay %) = f j < k
¢§1 s (x) — 3 El o =0 or x €3G, (kg +1 < j< k)

(6.1)

(C**) There is a finite number of disjoint closed bounded domains G,
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(1 € § < k) with C 3 connected boundary GC,, such that

D ayx)yy, =0 for x€3G (1< j<k), (62

=1
n n o dag(x
> (bi(x) -1 —%)Vi >0 for x€3G (1< j<k (63)
jm] i=1 i
where » = (»;, . . ., #,) is the outward normal to 3G, at x.

We shall also need the following condition:

(Ap) The inequalities (5.2), (5.3) hold and o(x), b(x) are uniformly
Lipschitz continuous in compact subsets of R". Finally, the matrix a = oc*
is continuously differentiable in R”.

Notice that if (A), (Bg), and (5.1), (5.3) hold, then the condition (A,) is
satisfied.

Theorem 6.1. Let (A,), (C*) hold. Then, for any 1 < j < k,

P{4(£)€DG, forallt >0} =1 if x€3G, (6.4)

Thus, each set 9G; is an invariant set. This result was already established
in Section 12.2. We shall give here a somewhat more direct proof.

Proof. Since (6.4) is obvious if x = z, 1 < j < ky, it remains to consider
the case where k, + 1 € j < k.

Let R(x) be a function such that R (x) = dist(x, 3G;) if x is in a small
Q—nelghborhood of 3G; R (x) = —dist(x, 3G)) if x is in a small Q-
nelghborhood of 3G;; R( x) # 0 if x £3G;; R (x) = const if || is sufficiently
large, and R(x) is m C (R™). Then

LR’x) =3 aRR+2R{} 3 aR, +3 biR,q}

=2@ + 2R% < CR2,
since @ = O(R®, |%|=O(R) if R is small, and @ = B =0 if |« is
large. By ItG’s formula,

ER4(1) ~ R¥=) = E, [ LR¥&(s)) ds < CF, [ R¥¢(s)) do.
If x €3G, then R(x) = 0. Setting (1) = E,R(4(t)), we then have
) < Cfotqs(s) ds,  ¢(0)=0.
Hence ¢(t) = 0 for all ¢, i.e., R%(£(¢)) = 0 a.s. This proves (6.4).
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Theorem 6.2. Let (A,), (C**) hold. Then, for any t > 0,
P(()EG) =0 if x€3G (1< j<Kk). (6.5)

This motivates us to call 3Q a strictly one-sided obstacle, from the side {,
when the condition (C**) holds.
Set

p(x) = dist(x, 39Q).
We shall first establish the following lemma.

Lemma 6.3. Let (A,), (C,) hold. Then
Ep%&(t) < c2  if x€0Q, 0<t<1  (Cconst) (6.6)

Proof. Since p(§(t)) =01if x = z (1 < j < ko), it remains to prove (6.6) in
case x € 9,{2, where

k
2= U G,
]=k0+1
Set

po(x) = dist(x, 3,92).
Let M(x) be a C? function in R" such that
polx) i xisin a small Q-neighborhood of 3,2,
M(x) = 1 —py(x) if «isin a small £-neighborhood of 9,2,
HE] if x| is sufficiently large,
and M(x) # 0 if x £9,Q. If x€ 3,2, then, by Itd’s formula,
t t
M(t) =] M, -odw+ | LMds.
(€)= [ m, /
Squaring both sides and taking the expectation, we obtain
t t 2
EM2(&(1) < CE,f M, - of*ds + CE(f |LM| ds). (6.7)
0 0
Near 3,2,
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by (5.2). Next, for |x| large
|LM| < Clx| = CM
by (5.2), (5.3), and for |x| in a bounded set,
ILM| < C.

Using all these estimates in (6.7), and using Schwarz’s inequality, we get
t t
EMYEL) < C f E_M2(&(s)) ds + Ct f EM¥£(s)) ds + CE2.
0 0

By iteration we then obtain
EM*(t) < Ct,
and this implies (6.6).

Proof of Theorem 6.2. For any € > 0, let G, , be the set of points x € G,
with p(x) < €. The boundary 3G, , of G; . consists of 3G, and 3'G, ; the
latter is the set of all points x in G; with p(x) = €. Denote by 7, the hitting
time of 3'G, ..

Let ¢, be a small positive number, so that p € C%in G, ¢ L€t

2 .
-px) if x€CG, _,
¥(x) = { o) i (6.8)
Then D, ¥ is continuous, and D2V is piecewise continuous, with discontinu-

0 if xZG,
ity of the first kind across 9G;.
Define

for x€G, . Then
L¥(x) = —(2@ +2p0%) if z€G .

Hence, by (6.2), (6.3), if ¢, is sufficiently small, then
Be(x) if x€G,, (B positive constant),

L¥(x) > [
0 if xZG,.

One can justify the use of It6’s formula for ¥(§(¢)) (cf. the proof of
Lemma 11.2.1). Recalling (6.8), (6.9) and taking 0 < € < ¢,, we then get

(6.9)

0> E¥(EtAt)) = Exf LY(Es)ds >0  (x€03G).
J
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ie.,
P(r,>t)=1.
Since this is true for any ¢ > 0, P (1, = o) = 1, i.e,
P(¢(r) € G\G, J=0.
Since this is true for any 0 < € < ¢,

P(¢()Eint G) =0  (x€0G,). (6.10)
Thus, in order to complete the proof of Theorem 6.2 it remains to show that
P(((t)€dQ) =0 if x€3Q, t>0. (6.11)

Let ¥(x) be a C? function in Q€99 such that
¥(x) = {p(x) if 0<p(x)<rn,
1 if p(x)>1,

where 0 < r; < 1, and ¥(x) > 0 if p(x) > 0. If r, is sufficiently small, then,
by (6.2), (6.3), L¥(x) » a, > 0 if p(x) < r,. Hence, for all x€QU 3%,

L¥(x) > ay — C;¥(x) (C, positive constant). (6.12)
Notice also that for all xe@ U3,
L¥(x) < a; (e, positive constant), (6.13)

Observe that ¥(x) has a C? extension into an Q-neighborhood of 3. By
(6.10) and the nonattainability of 2,

P{3t > Osuchthat {() QU R} =0 if x€aq.
i f

E¥(E(t)) = [ BIL¥ ()] ds (6.14)
Using (6.12)-(6.14), we find that
E ¥ (&(1) < ayt,
@wm»%w—quﬁmmw.

Hence,
at < E,¥(£(t)) + fo,Cit2
Consequently
tat < Ep(&(r), if 0<t<t* (x€3Q) (6.15)

provided ¢* is sufficiently small and a is any positive constant such that
a¥(x) < agp(x) for all x.
Set

5,(t) = P(&(¢) €09).
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Then, by (6.15) and Lemma 6.3,
dat < E {xenean(d(t)))

< {E,xg(g)eﬁ}l/z{EzPZ(E(‘))}
< C{l-5,(t))".

1/2

It follows that
a/2C < (1 = 8.(1)*
ie,,

2
8x(t)<6=1—4—a(:5<1 if 0<t< e (6.16)

By the Markov property, if ¢ = s + r where s, r are positive numbers
smaller than ¢*,

P (§(t) €09) = E, {xy0) eanPys(é(r) €09)}
+Ex {Xé(s)Eﬁpe(s)(g(r) Eaﬂ)}'

The second term vanishes by the nonattainability of £2. Applying (6.16) to the
first term, we get

P(£(1)€3Q) < 8E {xyeon) = OP(&(s)€0Q) < 82
Similarly,
P(t{t)€0Q) < &™

for any m, if ¢ < t*m. Taking m—co, the assertion (6 11) follows.
1

a1z a walail~ | P ey i SO G R PR o RPN |
11811 a rerauoil UULWCCII e lLl[lbllUllb l\\.k Uy g} dllu

Theorem 8.4. If (A), (Bg), (C'), (3.4), and (5.1), (5.3) hold, then

K(x,t,£) = G(x, 1, &) if =€, t€f, t>o0. (6.17)
If (A), (Bg), (C), (3.4), and (5.1), (5.3) hold, then

K(x, t, &) = Gylx, . &) if x€Q, £¢(€9, t>0. (6.18)

The function G was constructed in Section 2, and the function G, was
defined at the end of Section 3.

Proof. Let f(x) be a continuous nonne

compact Borel set A, A C Q2. Choose m so large that A C N s and cons1der the
function

U, (%, t) = fA Gulx, £, y)f(y) dy. (6.19)
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It satisfies

du,,
Lu ——é-t—=0 if xENm, t >0,

u,(x, 0) = f(x) if xEN,_,
u(x,t)=0 if x€IN,, t>0.
Using Itd’s formula, we get
unl, ) = E{ule(r,), £ = 1)) = E{ flEr)x,, o)

where 7, is the first time the process (s, §(s)) hits the set {9N,,{(0, ]}
U {N,, X {t}}. If (C’) holds, then £ is nonattainable, so that 7, —> ¢ a.s. as
m — 0. Hence

Jim (2 0) = ESE) = [ Kix &, y)fly) dy,

by Theorem 5.1. Since, on the other hand, by (6.19)
dim u,(x, 1) = f G(x, t, y)f(y) dy.
A
the assertion (6.17) holds. The proof of (6.18) is similar.

Theorem 6.5. If (A), (Bg), (C), (3.4), and (5.1), (5.3) hold, then

Kix,t, ) =0 if x€Q, £€Q, (6.20)
If (A), (Bg), (C), (3.4), and (5.1), (5.3) hold, then
K(x, t, ) =0 if x€9, teq. (6.21)
Indeed, this follows from Theorem 5.1 ard the nonattainability of @
(when (C’) holds) or the nonattainability of Q (when (C) holds).

7. Existence of a generallized solution In the case
of a two-sided obstacle

We consider in this section the case where 9 is a two-sided obstacle, i.e.,
(C*) holds. We shall also assume:

(D) Denote by L, the restriction (as defined in Section 13.2) of the
elliptic operator L to the manifold 3G, k, + 1 < i < k. Then, each L, is
elliptic on 3G,

Thus, in local coordinates 8,, . .., 8, _; of 3G,
S al(0) S A
L, = ol +
A1 () 89 80 A 69

and the (n — 1) X (n — 1) matrix (ay,(#)) is positive definite for each 4.
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A fundamental solution for I, —d /3t is a function I(A,(x, t, §) defined for
x, § in BC? and t > 0 and having the following property: For any continuous

function f on 3G, the function
ﬂ@0=6q@mtwﬂwﬁj (7.1)
satisfies
gﬂxﬂ—em§3)=o if x€3G, t>0,

i(x,0) = flx) if x€3JG,

Here dS; is the surface element of BG’..

The existence of K, can be established by the same parametrix method by
which one proves the existence of the fundamental solution of Section 6.4;
for details, see, for instance, S. Ito [1].

For x€9G,, denote by K,(x, t, d§) (ko + 1 < i < k) the measure sup-

~

ported on 3G, with density K,(x, t, ) dS{. For 1 < i < k, let
K,(z, t, d§) = the Dirac measure concentrated at ¢ = z,.
Now define K(x, ¢, §) = 0if x£Z93Q, £€98, t > 0, and set
K(x, t, &) d¢ if x£9Q, t>0,
T(x,t,d§) = {K(x,t,dt) if x€0G, t>0 (ky+1<i<k),
Kz, t,d§) if t>0 (1<i<ky).
(7.2)
In view of Theorems 6.4 and 6.5,
Glx,t, §)dt if x€Q, t€Q, t>0,
L(x,t,d) = { Gy(x, t, &) d¢ if xES}O, £€Q, t>0,
0 if xe®, £€Q, t>0

or x €, §EQ, t> 0.

Theorem 7.1. Let (A), (By), (C*), (3.4), (D), and (5.1), (5.3) hold. Then, for
any Borel set A in R",

P.(E(0) € 4) = [ T(x ¢ dy) (7.3)

Definition. I'(x, ¢, d£) is called the generalized fundamental solution for the
parabolic equation (5.6).

For xZdQ, it is given by K(x, t, §) d§, and for x€3%Q it is a certain
measure supported on 3 2.
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Proof of Theorem 7.1. Consider first the case where xZ9Q. If AN(3%)
= &, then (7.3) is a consequence of Theorem 5.1. If A C 942, then both sides
of (7.3) vanish. The truth of (7.3) for any Borel set A follows from the
preceding special cases, upon writing A = (AN 32)U (A\IQ).

Consider next the case where x€9§. If x€94G; and 1 < j < ko, then
x = z and, by the definition of T,

I if z€A,
'z, ¢t d§) =
L (3, £, ¢) {0 if zZA.

On the other hand, by Lemma 6.1,

1 if =z
F (&) € A) = {0 if z&A.
\ I AR

Thus (7.3) follows. If x €3G, and ky + 1 < j < k, then, by Theorem 6.1,
§(t) remains on 9G; for all ¢ > 0. Extend the function 4(x, ) defined in (7.1)
for x €9G; so that it remains constant along the outward normals to 9G.
Call the extended function u. Then, on ac,., Lu = L,t'i (by the definition of
L;). By It6’s formula applied to u(§(s), t — s) and the fact that {(s) €9G; if
x € BG,., we then have

E.a(t(t), 0) — 4(x, t) = E, fo (L, —8/3s)ilg(s), t — 5) ds = 0,
i.e., @(x, t) = E_(f(&(t)). Comparing this with (7.1), we conclude that
Ef@ED) = [ Kzt y)f(y)ds)

P,(£(t) € B) = j; K (x, 1, y) dS] (7.4)
for any Borel set B in-dG;.
Again, by Theorem 6.1,
P(t(t)€A) = PJE(1) €(AN3G,)]
for any Borel set A in R". Using (7.4) with B = AN 3G, we get
P(&(t)EA) = K(x, t,8) dSf= [ T(x,t,d
nea) = [  Kix e dsi= [ T e df

where the definition of T has been used in the last step. We have thus
completed the proof of the theorem.

»__ __ T 7 Lo o T AR, W NP R NN o IR IR, T WL S (RN U R o B o S
Remark 1. The estimates derived in Section 2 for the functions G, G, are,
by Theorem 6.4, estimates on T

Remark 2. We have assumed in Theorem 7.1 that the I, (k, + 1 < i < k)
are nondegenerate elliptic operators on 3G,. Suppose now that a particular L,
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degenerates along a C* (n — 2)-dimensional manifold A, A ¢ G,, and that A
is a two-sided obstacle. Then we can analyze the generalized fundamental
solution K, on 3G, by the same procedure as in Theorem 7.1. Thus, if the
restriction of L, to A is nondegenerate, then K A(x, £, d§) will be (on 9G,) of
the form K (x,t §) dS{ if x & A; for x € A it is given by some measure
supported on A. (If A consists of one point z, then this measure is the Dirac
measure concentrated at z.) If the restriction of L, to A degenerates on an
(n — 2)-dimensional manifold, then we can further explore the situation by
the method of Theorem 7.1. Thus, in general, the measure K; may consist of
densities distributed on submanifolds of 3G, of any dimension I, 0 < I
<n-—2

8. Existence of a fundamental solution in the case
of a strictly one-slded obstacle

We shall now replace the condition (C*) by the condition (C**). We define
T(x,t, & = K(x, ¢t §) if x€R"” t>0, £l (8.1)

For definiteness we also set I'(x, t, §) = 0if x€R", ¢t > 0, £€ 0{2. Notice, by
Theorem 6.5, that

T(x,t, &) =0 if x€Q, t>0, £€Q,
By Theorem 6.4,
T(x, t, &) = Glx, ¢, £ if xeQ, t>0, 56@.
Thus, the boundary estimates derived in Section 3 apply to T.

Theorem 8.1. Let (A), (Bg), (C**), (34), and (5.1), (5.3) hold. Then I'(x, ¢, §)
is the fundamental solution of the parabolic equation (5.6).

Proof. We have to verify the relation
P (§(t) € A) = [ K(x, t.y)dy (8.2)

for any Borel set A. Consider first the case where x £3Q. For any 8 > 0, let
Vs be the §-neighborhood of 3.
If § is sufficiently small, then x & V. Using Theorem 5.3, we get

([ K@meddi<c[ di<os, | Kt
Janvs Janv, Janv,
Recalling that for each § fixed,
K(v.t,8)di>[ K(mt§dt if e—0,

A\V,

£) de< Co.

A\V;



424 15 SOLUTIONS FOR DEGENERATE PARABOLIC EQUATIONS

we conclude that
[Kxtdi>[ K(xt,§dE i e—0. (8.3)
A A

Using the estimate (5.21) of Theorem 5.3 and the estimate (2.15), we can
argue as in the proof of (5.17) to deduce the relation

P(£(1) EA) > P (§(t) EA)  if €0 (8.4)

provided A is a ball. Taking € — 0 in (5.15) and using (8.3), (8.4), the relation
(8.2) follows in case A is a ball. This relation is therefore valid also for any
Borel set A.
Consider next the case where x € d{2. By Theorem 5.2,
K

[k

K {«»
e (X

vai

Javv, T A,
Suppose A is a ball. By the proof of Theorem 5.2 (cf. (5.20)), K (x, ¢, §) < C
if £ belongs to a small neighborhood of A\ V;. Hence, the argument used to
prove (5.17) can be applied also here to deduce that

P ((5(t) EANVs) > P (§(t) E AN V) if €—>0. (8.6)

x

Taking € — 0 in (5.15) (with A replaced by A \ V) and using (8.5), (8.6), we
get

(v t. &Y dE if e=0
AR YA 1Y < e

——
®
n

"

PN EA/Vs)=[ K(xt§ds (8.7)

A\V;

for any & > 0. Since K(x, ¢ §) > O for all £ the monotone convergence
theorem yields

1. f PP N ¥
lim K (x,t,§) a;—j K
80 JA\ v, A

——
=
S
Uan

p —

[~
an’]

—

Qo
an

——

Using Theorem 6.2 we also have
lim P, (§(t) € A\ V) = B, ((r) € A\3Q) = B (1) € A). (89

Taking 6§ — 0 in (8.7) and using (8.8), (8.9), the assertion (8.2) follows in
case A is a ball. But then (8.2) clearly holds also for any Borel set A.

Remark 1. From Theorem 6.2 and (8.2) it follows that
K(x,t,§=0 if xr€0Q, t>0 ¢€Q. (8.10)
From Theorem 6.2, P (§(t) € @) = 1 if xr €3Q. Hence, by the strong
0if x€3Q, t>0,¢£€ Q. If Ais aclosed
ball in @, and A’ is a closed ball in the interior of A, then (cf. the proof of

Lemma 10.2 below)
lim P, (§(t) € A) > B, (§(t) € &) = [ K(y, t§)de>0
N

x Eﬂ,x—by
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if y €9%. It follows that
P A)>0 if x€Q, dist(x,90) < ¢
for some ¢, small. Applying the strong maximum principle to [, K (x, ¢, §) d§,

as a function of (x, f), we conclude that

[Kixntydae>0 i xeQ ¢>0.
A

Applying once more the strong maximum principle, to K(x, ¢, §) as a
function of (£, £) we conclude that

K(x, £, >0 if x€Q >0, £t (8.11)

Remark 2. Theorem 8.1 extends without difficulty to the case where the
condition (C**) is replaced by the more general condition where the
inequality (6.3) holds for j = 1,...,1 and the reverse inequality holds for
f=101+1,...,k Incase n = 1 we can just assume that each G, consists of
one point z; and either a(z) = 0, b(z) > 0 or a(z) = 0, b(z,) < 0.

Remark 3. One can easily combine cases of strictly one-sided obstacles
with two-sided obstacles.

Remark 4. Theorem 8.1 extends to the case where § is any compact subset
of R" such that

P(it)€S) =0 forall x €R", t>0. (8.12)

Let S be a C! manifold dimension k (0 < k < n — 1), and denote by d (x)
(x € S) the rank of the linear operator (a,(x)) restricted to the linear space
normal to S at x. By Theorem 11.3.1, if

d(x) >3 forall x €S, (8.13)

then (8.12) holds for all x & S. We claim that (8.12) holds also for x € . To
prove it note, by Theorem 12.3.1, that
P{§(t)ES\Vy} =0 if t>0,

for any 8-neighborhood Vj of x. Hence P, (§(¢) € S\{x}) = 0. Thus, it remains
to prove that

P{§(t)=x}=0 if t>0 (x€S). (8.14)
Suppose for simplicity that x = 0. Let p(x) be a function in C%(R™) such that
2 . 1 .
olx) = |x] if |x| is small,

| 1 if |x| is large,
and p(x) > 0, if x #* 0. Since Za,(0) > 0,
Yo — Cop(x) < Lp(x) < v,  (x€R") (8.15)
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where 7v,, CO, Y, are positive constants. By Ité’s formula,

-—Epr ) ds < yit,

—-Epr )ds > vt — coEf ) ds.
Hence
t
vot < Egp(£(2)) + Coj; v18 ds = Egp(&(1)) + 4 Cov, >

It follows that
y't < Egp(£(2)) (y’ positive constant)
if ¢ is sufficiently small, say ¢t < ¢*. Hence
vt < EGlé(0)F  if t< ¢t* (y positive constant). (8.16)
Setting 8, (t) = P,(£(t) = 0), we then have

Yt < Eo{xe(t)aé0|$(t)|2} < {EoX&(t)aeo}lfz{Eolg(t)P}1/2
< C{1- ()}

since Egl(2)|* < Ct®. Hence
Oo(t) <8 <1 if 0<t<t* (8 const).

We can now proceed to establish (8.14) by the argument following (6.16).

The assertion (8.12) can be proved also in cases where d(y) > 2 for all
y € S. For x £ S, one applies Theorems 12.4.1, 12.4.2. If x € S, we cannot
reduce the proof of (8.12) to that of proving (8.14) as before; instead, we
proceed directly to prove (8.12) by the argument used to prove (8.14),
employing a positive function

p(§) = (dist(¢, S ))2 if dist(£, S) is small, p(§) =1 if | islarge,
instead of p(§). Note that also p satisfies the differential inequalities of (8.15).

L,

9. Lower bounds on the fundamental solution
In Theorem 3.1 we have derived the bound
Gzt §) < Cexp| - % (log R(x)*} (C>0, ¢>0) (9)

if £ varies in a compact set E of Q, 0<t<T x€ Q, and R(x) is
sufficiently small. Recall that the condition (C) was assumed in that theorem.



8. LOWER BOUNDS ON THE FUNDAMENTAL SOLUTION a7

We shall now assume that the condition (C’) holds and that

n
2 ay(x)R.R > aR?  (a positive constant) (9.2)
Lj=1

for all x in some Q—neighborhood of 9§2, where R (x) = dist(x, 3 2). We shall
then derive the estimate

Glx.t,§) > N exp{ - 2 (log R} (N>0r>0  (93)

for some positive constants N, », for all £€E, 0 <t < T, xe, provided
R(x) is sufficiently small.
To do this, we compare (for fixed { € E) the function
olx 8 = O o<
OU\X, i) = X, i,

s/
with a function w(x, t) of the form

where e is sufficiently small, N is sufﬁcnently small, and » is sufficiently large.
We fix € such that € < 1, dist (x, §) > ¢, > 0if { € E, xEQandR(x) < g,
and such that R(x) is in C2 if x €, R(x) < €. Fix m so large that N,
(defined in Section 3) contains the set where x € QR (x) = €. By a result of
Aronson [2],
G,(xt.8>wxt) if x€Q, Rx)=¢ 0<t<T
provided N is sufficiently small and » is sufficiently large.
Since G(x, t, §) > G, (x, t, £), we have
o(x,t) > w(x,t) if x€Q, Rx)=¢ 0<t< T
Notice also that
o(x,0) = w(x,0) =0 if x€Q, 0< R(x) <e
lim [v(x, ) — w(x, f)]= lm o(x,£) >0 if 0<t<T.
R(x)—>0 R(x)—0
Hence, if
Lw—w, >0 for xEQ, O<R(x)<e 0<t<T, (94)

then the maximum principle can be applied; it yields the assertion (9.3).
Now, the left-hand side of (9.4) can be expressed by (3.19) with y = ». Since,
by (C), B /R > —C, it is clear that if » is sufficiently large, then the first
term on the right-hand side (with y = ») dominates the negative contribu-
tion of each of the remaining terms. Thus (9.4) holds.
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Similarly one can prove that, when (9.2) and the condition (C) hold,
G(x,t,§) > Nexp{ - Z(log R(®)’} (N>0, »>0) (95)
providledx € E,0< t< T, £ € Q, R (§) < e. We can thus state:

Theorem 9.1. Let (A), (Bs), (C"), (3.4) and (9.2) hold. Let E be any compact
subset of Q. Then, for any T > 0 and for any p > O sufficiently small, there
are positive constants N, v such that (9.3) holds if {EE, x€Q, R(x) < p,
0 < t < T. If the condition (C') is replaced by the condition (C), then (9.5)
holds for x€E, t€Q, R(t) < p,0< t < T.

If the condition (9.2) is replaced by the weaker condition
Ea,.,-(x)inRx' > aRP*! (a >0, p>1) (9.6)
for all x in some {2-neighborhood of 3§, then we can establish, instead of
(9.3), (9.5), the inequalities
G (x4 § > Nexp{ — £ (R(x))'""),

G(x.t.¢ > Nexp{ - Z(R()' 7. (9.7)

respectively (for x, ¢, £ in the same sets as before).

Finally, lower bounds at oo, supplementary to the upper bounds derived
in Section 4, can also be obtained using the above comparison function w(x)
with R (x) = |«].

10. The Cauchy problem

Consider the Cauchy problem
Lu —u, =0 if x€R", t>0,
u(x, 0) = flx) if xER"
where f(x) is a bounded Borel measurable function and L is a degenerate

elliptic operator (1.1). We define the solution of this problem to be the
function

(10.1)

u(x, t) = Ef(§(¢). (10.2)

When the matrix (a a;;(x)) is uniformly positive definite, a,;, b, are bounded
and 11n1fnrm‘|v Héjlder continuous, and f/q-\ is continuous, H\n function u(x, t)
is a classical solutlon of the Cauchy problem (see Sectlon 6.4).

The purpose of this section is to investigate the continuity of u(x, t) when
(a;;(x)) is degenerate and f is continuous or just measurable.
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Theorem 10.1. Let o”, b, be uniformly Lipschitz continuous in compact
subsets of R" and let (5.2), (5.3) hold. If f(x) is a bounded continuous
function, then u(x, t) is continuous in (x, f)ER" X [0, c©) and u(x, 0)

= f(x)

Proof. We shall use the inequality (see Problem 2, Chapter 5)
Ei¢, (1) (s < mllx — y>+ |t — s|) (n(r)=0 if r—0) (10.3)

where £ () is the solution £(f) of (1.2) with £ (0) = z. By the Lebesgue
bounded convergence theorem we then get

Ef( ())u—-)Ef(ﬁ!(s)) it y—>=x, tos.

K \ itin uu,)r ufli(y )at
u(x,0) = E = f(=).
We now consnder the more general case where f(x) is Borel measurable.
When (aif) is uniformly positive definite and a fundamental solution I'(x, ¢, §)
can be constructed as in Section 6.4, the function u(x, £) of (10.2) coincides

with

— RN 4
A~ XL ,0

fan ©) a
(X, )5 X

J Tt 6 £(8) dt:

since one can then show (using continuity properties of I') that this latter
function is continuous in (x, £) in R" X (0, =), the same is then true of
u(x, £). We shall prove there a similar result in case (a;) is degenerate.

Lemma 10.2. Let oy, b; be uniformly Lipschitz continuous in compact
subsets of R" and lpt (5 2\ (5.3) hold. Let A be a bounded domain with C?

boundary and suppose ‘that P ($(s) €9A) = 0 for some x € R", s > 0. Then
the function

(y. t) > P, (&(t) € A)

i8 continuous at the point (y, t) = (x, ).

Proof. From (10.3) it follows that
lim P (£t) € A) < P,(§(s) € Ay) for any 6 > 0,

yox,t—s Y

where A; is a §-neighborhood of A. Taking 80, we get
lim | P& eA) < BE(s)€AUIA) = P(¢(s)€A).

y—rx,t
Similarly,
lim P,(()€A) > Bl&s)€A),
y—x,t—s

and the proof is complete.
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Theorem 10.3. Let f(x) be a bounded Borel measurable function in R", and
let (4.6) and the assumptions of Theorem 8.1 hold. Then the solution u(x, t)
is continuous in (x, t)ER" X (0, o).

Proof. 1f A is a bounded domain with C' boundary, then, by Theorem 8.1,
B(g(€da) = [ Kx,t,§de=0 (£>0)
3A

Thus, by Lemma 10.2, the function
(x, ) > P(&(t) € A) (10.4)

is continuous in R" X (0, o0).Consider now the special case where f has
compact support. For any € > 0, let g(x) be a simple function such that

sup|g| < 1+ sup|f],
g(x) = o, (o, constant)if x€A, (1<i< ), ANA =0 if i+ 1,Ul,_1

contains the support of f, each A is bounded, g(x) = 0 if x & U A and
| f(x) — g(x)] < € almost everywhere Let B; be bounded domams w1th C!?
boundary such that B, D A, and the Lebesgue measure of U (B \A) is
less than e,

Then, for all (x, 1), (x/, t'),

'an(x, t, £ g(¢) def—fR"K(x, L8 F () dg|< .
K (x,t.8gd) i~ [ K(x.1,8f(5)dg|<e

i_manK( ', &) g(8) dE - fRnK(xtg dgl

g
<(1+sup]f|{hmext$ £+f xt$d§}
by (10.4), where E = | :BI(B,. \ A,). From the proof of Lemma 10.2,
lim [ K(,¢,8dé<| K(xt,8)d
m [ K(. 0,8 di< [ Kixt§)dt

where E; is any §-neighborhood of E.
Putting these estimates together, we conclude that if (x, ) — (x, ), ¢ > 0,
then

Tm [u(x’ ¢) ~ u(x, )] < 2¢ + 20 + soplf]) [ K(x, £, §)dE.

Since € and 8 are arbitrary, the left-hand side can be made arbitrarily small.
consequently u is continuous at (x, ).
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Consider now the general case where f is a bounded measurable function,
Let

_[flx if x| <m,
ul) {0 if x| > m.

Denote the solution of the Cauchy problem corresponding to f, by u,. By
what we have already proved, each u, is continuous. By Corollary 4.2,
,, — ¢ uniformly on compact subsets. Consequently, u is continuous.

Consider next the case of two-sided obstacle, where only a generalized
fundamental solution exists. We first take

f(2) = xa(2), (10.5)
the characteristic function of a set A. We assume:

(E) A is a bounded domain with C* boundary, and it intersects precisely
one of the sets 0G,; further, k, + 1 < i < k and the intersection dA N 3G, is
a C! (n — 2)-dimensional hypersurface.

Theorem 104. Let the assumptions of Theorem 7.1 and (10.5), (E) hold.
Then the solution u(x, t) is continuous in(x, t) ER" X (0, ).

Proof. It is enough to prove the continuity of u(y, ¢) at y € 9. In view of
Lemma 10.2, it suffices to prove that

P (§(t)€dA)=0 if y€3G, t>0. (10.6)
In view of Theorem 6.1 the left-hand side of (10.6) vanishes if § % i. If j = i,
then, by Theorems 6.1, 7.1,

P,(£(f) €0A) = P, {£(1) € (34 N G,)} =fmc K, (x, t, £ dS!=0.

Thus the proof is complete.

Corollary 10.5. Let the assumption of Theorem 7.1 hold and let f(x) be any
bounded Borel measurable function, continuous at all the points of 3 Q. Then
u(x, t) is continuous in (x, t) € R" X (0, o0).

The proof is left to the reader (see Problem 8).
Remark. If f is a bounded continuous function in R", then u(x,t) is
continuous (by Theorem 10.1). Let
pl\_['f(x)if x?&z!)

x *
TOZN8  rma (i fa)
for some i,1 < i < k;. Denote by i the solution corresponding to f. Then
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u(x, t) = u(x, t) if x ¥ z, but
4(z, £) = f; # f(z) = u(3, 1).

Consequently, (x, t) is discontinuous at the points (z, ¢), £ > 0. On the
other hand, if § is as in Remark 4 at the end of Section 8, so that (8.12) holds,
then Theorem 10.1 remains valid even if one changes the definition of f(x),
in an arbitrary manner, on the set S. Further, the solution u(x, t) (t > 0)
does not change when one changes the definition of f on S.

PROBLEMS

1. Prove the relation (1.5). [Hint: Use Green’s identity with u(y, o) =
G, {y.0,8, v(y,0) =G (y,0,%) in B, X (e <o <t—¢€ and take
€ — 0; cf. the proof of Theorem 6.4.7.]

2. Prove (1.14). [Hint: Use (6.4.21) with u = G, v = G,
< s <t — ¢ and take € - 0.]

3. Prove (1.15), (1.16). [Hint: Recall that G, =T, + V, where I' is a
fundamental solution, and use the maximum principle to estimate V_,
D V]

4‘, Prove (1.20). [Hint: Let v (x) be a barrier (L, v,(x) < —1). Show that
Covy(f) —v({,s) 2 0if{ € V,and =0at{ = y.]

5. Prove thatif V, — f satisfies (2.10), then (2.11) holds. [Hint: If v (x) is a
barrier, show that

in B, X (e

|Ve(x, 8, &) = f(x t)] < Ce™'n,(x).
Hence |DyVE( y, t, &) < C,e”¢/* for y € 0B. Now use Green’s formula

Von g = [ v~ . wT) i B x(04)]

6. Prove that if in the assumptions of Theorem 9.1 we replace (9.2) by
{9.6), then (9.7) holds.

7. If A contains in its interior the point 2z, but does not intersect the other
sets Gf, j # i, then the assertion of Theorem 10.4 is again valid.

8. Prove Corollary 10.5. [Hint: Approximate f(x) uniformly by simple
functions X¢;x, where A; are bounded closed domains and either A, N
all = ¢, or Ai satisfies the condition (E), or A,- contains in its interior one
point z, and does not intersect any Gy, I # i.]

9. The assertion of Theorem 104 is false if JA N dG; contains a set of

positive surface area, or if A = {z} for some 1 < i < k,.
10. Consider the equation u, = xzuxx + b(x)u, with either b(x) = x or
b(x) = 0. Use the transformation 1’ = log x in order to compute the funda-
mental solution I'y. Verify directly the general properties of T, proved in
this chapter, from the explicit formula for T',,.
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Stopping Time Probiems and
Stochastic Games

Part I. The Stationary Case

1. Statement of the problem

Consider a system of n stochastic differential equations
dx(t) = b(x(t)) dt + o(x(t)) dw(t) (1.1)

whete b = (b,..., b,) and o is an n X n matrix (g;). We assume:

(A ForallxER",
|b(x)| + |o(x)] < C(1 + |x|)  (C const),
and for any R > O there is a constant Cy such that

b(x) — b(y)| + |o(x) — o(y)| < Calx — y|

if x€R", yeR", |x| < R, |y| < R.

For any nonempty closed set ACR", denote by t, the hitting time of the
set A by x(¢), i.e,,

t, =inf{t; t > 0, x(f) €A}

For any set B C R", denote by B° the complement of B in R".

Let Q be a nonempty domain in R". (In particular, one can take 2 = R".)
Denote by 91 the boundary of €, and let £ = 2 U 3.

Let E, F be given closed subsets of £, such that

0QCE, dQCF.
We denote by €, the set of all as. finite-valued stopping times of the

[ Y N
process x{i), given x(uj = x.

We denote by @, the subset of C, consisting of all stopping times o for
433
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which
06 € tg, x(6)EE as.
Similarly we shall denote by % the subset of €, consisting of all stopping
times 7 for which
T < tge x(1) € F as.
In the sequel it is always assumed that the initial point x(0) = x is in Q.
Notice that ¢ = 0 isin @_ if and only if x€EE. If @ = R", thenos €& if
and only if P(0 < o, x(6) €EE)=1 and 7 € B, if and only if P (r <
0,x(1) EF)=1.Incase E=F = Q, then & = %,; also, 0 € &, if and

only if P(0 < 00, 0 < tg) = 1.
Let f(x), ¥;(x), ¥5(x) be given functions defined on ©, and let a be a

nonnegative number We introduce two functionals:

Klo) = E{ [ emtx(t) de + e, (ata) } (12)
]x(a, 1')

= E{ [7 el dt + e ulxloroc, + o~ Valal o
(13

Here x, denotes the indicator function of a set A, 6 A = min(o, 7), o
varies in &, and 7 varies in %_. The nonnegative number a will be called
the discount coefficient.

Definition. The functional (1.2) will be called the cost functional and the
functional (1.3) will be called the payoff functional.

First we introduce the problem corresponding to the cost functional. We
are interested in the quantity

W(x) = inf J (o), (1.4)

oE®,
which we call the optimal cost.

Definition. If there exists a stopping time 6 € @, such that

V(x) = I(6), (15)
then we say that 6 is an optimal stopping time, given x(0) = x (or, for x). If
there exists a closed subset E of E such that #z is an optimal stopping time

for all x €Q, then we say that E is an optimal stopping set and that Q\E is an
optimal domain of continuation.
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The recipe for finding V (x) is then to continue with the stochastic process
x(t) as long as x(#) is in & \E and to stop immediately upon hitting the set E.

The problem of studying the optimal stopping sets will be called the
stopping time problem.

If instead of (1.4) we consider
V(x) = sup I(7),
TEW,

then we call J () the reward functional and V(x) the optimal reward. If we
replace J, by —J,, then the study of this problem reduces to the study of the
preceding problem; we shall therefore not pursue it further.

Next we introduce a problem corresponding to the payoff functional (1.3).

We consider a scheme whereby, for a given x €, a player P, chooses any
stopping time 0 € @_ and a player P, chooses any stopping time € % . The
resulting payoff, that P, pays to P,, is J (o, 7). Thus, the aim of P, is to
minimize J, (o, 1), and the aim of P, is to maximize ] (o, ). We shall call this
scheme the stochastic game associated with (1.1), (1.3) and denote it by G,.
We shall denote the collection {G,; x€8} by G, and call it the stochastic
game associated with (1.1), (1.3) in .

If

g, sup Jlovm) = s ot Lo, 49

then we say that the stochastic game G, has value, and the common number
in (1.6) is called the value of the game G,. We shall denote it by V(x).

Suppose there exist stopping times ¢, 7¥ in @, and ®_, respectively,
such that

I(o¥, 7) < (o}, 1}) < J (o, 7)) (1.7)

foralle € @ ,7 € B,. Then we call (6}, 7}) a saddle point of G_. It is then
clear that the game G_ has value, and

Vix) = I (a*, ). (1.8)

Suppose there exist closed sets E CE and F CF such that the pair
oF = tp, Tr = tp

forms a saddle point of G,, for any x. Then we say that the pair (fp, #p) is
a saddle point for G, and we call the pair (E, F) a saddle point of sets for G.

The study of the stopping time problem is similar to (but simpler than) the
study of stochastic games. We shall adopt the following course: we first
study in detail stochastic games, and then state briefly the corresponding
results for the stopping time problem, leaving the proofs for the reader.

In Part I of this chapter(Sections 1-8), the coefficients of the stochastic
system and the coefficients f, v, {, occurring in the payoff are independent
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of t. We refer to this case as the stationary case. The problem of finding a
saddle point (or optimal stopping set) will be reduced to a problem of solving
an elliptic variational inequality (see Sections 4, 7). In Part II (Sections 9-13)
we shall deal with time-dependent coefficients (i.e., with the nonstationary
case). In that case the stochastic problem reduces to a problem of solving a
parabolic variational inequality.

2. Characterization of saddle points

We shall need the following conditions:

(A;) The sets @ , 9B, are nonempty, for any x €.

(A;) f(x), ¥;(x), and ,(x) are continuous and bounded functions in £,
and

E [ e flx()] de < oo (2.1)
forallx€Q, 0, 7€8,.

Denote by L the elliptic operator corresponding to the diffusion process
(1.1), that is,

B
Lu:§- 2 a,.i(x Bx 8x 2 b(x

i j=1 i=1 X

-

Lemma 2.1. Let (A,) hold. Suppose there exists a function u in C(Q)
N C*Q) such that

Lu< —1 inQ |ul<C, inQ  (C,const).
Then ty. < o0 a.s. and, in fact,
E ty <2C, fordall x€.

Proof. By It6’s formula,
A
Eu(x(\) — u(x) = E f Lu(x(t) dt < —EA
0

X

for A = tge AT, T > 0. Hence
EA < 2C,.

Letting T 1 oo and noting that A 1 ., we obtain the asserted conclusion.

Corollary 2.2. Let (A)) hold, and let Q@ be a domain contained in a strip
—w < B < x; <y < 0. Assume also that a; (x)a® + by(x)a > 1 for all
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x€8Q. Then

Ete < C, < o0  forall x€Q  (C, const).
Consequently, the condition (A,) is satisfied, and (2.1) holds if f is a
bounded function in Q.

Proof. The function
u(x) = —Ae™ (A >0)
satisfies Lu < —1in &, provided A is sufficiently large. Now use Lemma 2.1

to deduce that E tg. < C; < w. Since dRCENF, the classes &,, P
contain at least one element, namely, to.. Finally, if | f| < M,

Ef e ™| f(x(1))] dt < ME_(0 A7) < MC, < co.
Theorem 2.3. Let (A;)—(A;) hold and suppose (E, F) is a saddle point of

sets for the stochastic game G. Then the value function V(x) satisfies the
following properties:

V(x) < ¢(x) if x€ E\F, (2.2)
V(x) > Yp(x) if x € F, (2.3)
V(x) =y (x) if x€E\F, (2.4)
V(x) = Yy(x) if x€F, (2.5)
( )

V(x) < ExUO e~ f (x(t)) dt + e“"‘"V(x(?\))} if A\EC, A<t
(2.6)

) > E, [j;#e“"‘f ) dt + e” ¥V (x (p,))} if ne C, p<t
(2.7)

Proof. From the definition of V(x) we have
I (te, 1) < V(x) < I (o, tg) forany o€ &, r€98,. (28)
If x € E, then 0 = 0 belongs to @, . If, further, fo, then t; > 0 a.s. Hence

o, 1) = ().
The second inequality in (2.8) now yields the assertion (2.2).
Next, let x€F. Then r = 0 belongs to % _. Since 0 < tp a.s.,

L{tg, 7) = do(x).
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Using the first inequality in (2.8), we obtain (2.3).
To prove (2.4), notice that if x € E\F, then
tp =0 < tp as.
Hence
V(x) = J.(te, te) = dy(x).
Next, if x€ F, then tp = 0 < tp as., so that
Vix) = I(tg, t) = ¥u(x),
that is, (2.5) holds.
We proceed to prove (2.6). Set 7, = t5. Then

+e 1(x(°))Xo<ro + e_a'rql’z(x("'o))xfﬂo}

OANTo

= b EE] [ 0) + om0

aEQ&, ,0>A
+e _afo\Pz(x("'o))ero<o} / %

where %, is the o-field generated by the process x(t) for ¢ < A. By the strong
Markov property, the right-hand side is equal to

OATY

inf Ex{f: e " *f(x(t)) dt + E"("){L e~ f(x(t)) dt

sE®,

+e” Y (x(0))Xocr, + e_“"’%(x(fo))xﬂ,(ﬂ} }

Here we have used the fact that 7, > A. Since

jnf Eg{---} = V(z(A)  forany A =A(w)
(where { - - - } stands for the content of the inner braces of the previous

expression), the assertion (2.6) follows. The proof of (2.7) is similar.
Notice that the inequalities (2.2), (2.3) imply that

Yol(x) < Yy(x)  if x€(ENF)\E. (2.9)

Thus, for the existence of a saddle point of sets (E, F), it is necessary that
(2.9) hold.
We shall now prove a converse of Theorem 2.2.

Theorem 2.4. Let (A,)}~(A;) hold. Suppose there exist closed sets ECE and
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F C F and a Borel measurable function V(x) defined on Q such that
tr€@, €D, (2.10)
(2.2)~2.7) hold, and
Yi(x) = Yulx)  if x€ENF. (2.11)

Then (E, F ) is a saddle point of sets for the stochastic game G, and V(x) is
the value of the game.

Remark 1. 1If Q is a bounded domain and (o,.l.\) is nondegenerate in £, then,

by- Corollary 2.2, toc < o0 a.s. Hence, if 9Q € E, 98 Eﬁ, then the assumption
(2.10) is satisfied.

Remark 2. The condition (2.11) means that the game is “fair.” Indeed,
from the form of J (o, 7) we see that the player P, has a “slight” advantage,
for he controls ¢, on the set r = 0. The condltlon (2.11) abolishes this
advantage on the set E N F; in the complement of ENF this advantage is
irrelevant.

Proof. What we have to show is that

I(tg, 7) < V(&) if r€B,, (2.12)
I (o, tg) > V(x) if oe@,. (2.13)
From the formula
I (te, + r:[ ftEM —atfl (1)) ¢
Ix\tEs B U, e “jix\tjyat

g xlte) g + ¢~ Walx(T o
it is clear that if we can prove the inequalities
vi(x(te)) < V(x(ty)), (2.14)

Yo(x(r)) < V(x(7)), (2.15)
then

Tt ) < E{ fo e~ f(x(t) dt + e~ "F""V(x(ty A T))].

Hence; by (2.7) with p = 1o A 7,
T{te, 7) < V(x),

tEAT

that is, (2.12) holds.
To prove (2.14) notice that x(tE)EE Therefore, if x(tE)EF then, by
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(2.4),

(te))-

5), (2.11)
Vlx(tg)),

‘Pl(x( te) = V(x
If, on the other hand, x(tE)Eﬁ, then by (2.
) =

y (
1[/1(x(tg)) = ( tg)
Thus, (2.14) is proved.
To prove (2.15), notice that x(7) € F. Hence (2.15) is a consequence of
(2.3). We have thus completed the proof of (2.12). The proof of (2.13) is
similar,

3. Elliptic varlational Inequalitles In bounded domains

The notation W™ P(Q), Wy'?(Q) introduced in Sections 10.2, 10.3 will now
be used. We shall denote by (, ) the scalar product in L*2). Consider a
partial differential operator

=1 u | 5 4 0u
Lu—2 ) i axiaxi+2 biax'

i,j=1 i=1 i

We shall need the following assumptions:

(B,) 2 is a bounded domain with C? boundary 3. The functions a,(x),
(x) are bounded and measurable in {2, the g, are uniformly continuous in
, and

by(x
0

n

P X afxtg > BlEE  if x€Q, f¢eR™ (B >0).

i,j=1

(B,) The functions ¢,(x) and i;(x) are continuous in € and belong to
2

W=P(Q) for some p > n, and
Ui(x) > dy(a)  in, (3.1)
Y(x) = Yp(x) ondL (3.2)
The function f(x) belongs to W%7(Q),

Let
f=F+(Ly— ady), Y=y, —y,  anonnegative constant. (3.3)

Notice, by (3.1), (3.2), that y > O on & and ¢y = 0 on 9 {2.
Consider the problem of finding a function u satisfying

u€ W23 n We?Q), O0<u<y ae inf,
f(Lu —au+ f)(v—u)de <0, forany veL¥Q), (34)
Q

0<ov<y ae in Q.
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This problem is called an elliptic variational inequality.

Theorem 3.1. Let (B,), (B,) hold. Then there exists a continuous solution in
W2 P(Q) of the variational inequality (3.4). If a,, b, are Lipschitz continuous
in &, then the solution is unique.

Proof. Let A= — L + a. For any € > 0, consider the problem

avt -y -Llusof ae mo uwe whie) 0 W)

€
35
or, equivalently,
Au=<K(mu)+f ae. inQ  u€WA@) N WY (36)
where
A€u==Au+%u and K(x,u)=u—(u—xp)++u—.

It is clear that K (x, u) is measurable in (x, u) €Q X R?, and
0 < K(x, u) < Y(x). (3.7)

Since the coefficient of u in A, is > 0, the maximum principle can be
applied. Consequently (by Theorems 10.3.1, 10.3.2), for any g € L?({2), there
exists a unique solution of the Dirichlet problem

Av=g ae inQ, o€ W Q)n Wy Q) (3.8)
and '
\v\ﬁp < C|g|&p (C const).

Using this result and the Schauder’s fixed point theorem (see Problem 1), one
can derive the existence of a solution 1, of (3.6) which belongs to W27(2).

Denote the solution v of (3.8) by R .g. The maximum principle implies
(see Problem 2) that

if f>g ae on®, then Rf >Rg onQ. (3.9)
Recalling (3.7) we then have

u =R+ ik ue)} < Re[f+ %¢] = R (f+AY) + ¥,
where the relation

SRy =RAY+¥ (v € WH@) 0 WEYQ)
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has been used. It follows that

< (u—¥) < R(f+ay).

€

Hence
1

1 ~
0 < —(u —¥)" < [R(f+Ay)
Since, by Theorem 10.3.2,
1
~I|Rgl, < Clgl, forany ge LP(Q),

where C is a constant independent of €, we conclude that

Ly
(u, — lp)*l < C  (C independent of e).

0, p

m o=

Next,

u, = R,[f+ %K(x, uc)] > Rf
by (3.7), (3.9). Hence

Hence (by Theorem 10.3.2),
|u€1§,},p <C

(3.10)

(3.11)

(3.12)

(3.13)

where C is a constant independent of e. Since p > n, by the Sobolev
inequalities (Section 10.2), u, can be taken to be continuously differentiable

in Q.
Since p > n, the Sobolev inequalities also imply that
no | Qu(x)
|u(x)| + i§1 x < C,
o | dulx)  du(3)
- — |
igi ax ax, < Clx — x

(3.14)

for all x, ¥ in @, where C, p are positive constants independent of ¢. Hence,
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we can choose a sequence (¢, }, decreasing monotonically to 0, such that

e iformly in Q2

u,‘—vu, 'a—x‘ P ?x-: unirormly in g,
. (3.15)

S - 8% weakly in LP(Q).
Ox,0x, ~ dxdx,
We shall next prove that

(u—¢) =0 in @ (3.16)
u” =0 in Q. (3.17)

To prove (3.16), notice that, for any v € L¥(Q),

((u, — W —w-9)", u - v) > 0.

Taking € = ¢,,—0 and using (3.11), we get
— ((v-—xp)+,u— v) > 0.
Substituting v = u — kw (w € L%2), k > 0), we obtain
— ((u =y~ k)", w) >0,
and taking k—0 we find that
+

—((u—y),w) >0

Since w is arbitrary, (3.16) follows.
To prove (3.17), we begin with the inequality

—(u~ — v ,u,—0v) >0 (veEL¥(Q)),

and then proceed as before, making use of (3.12),

The assertions (3.16), (3.17) are equivalent to 0 < u < ¢ in {2. Recall that
u is also continuous (in fact, continuously differentiable) in €, and that it
belongs to W%(f) (so that u =0 on 3f2). We shall now verify the
inequality in (3.4).

Letv € W)%2),0 < v<yae inQ Then (v — )" =0,0v” =0ae.
in . Multiplying both sides of the equation in (3.5) by v — u, and integrat-
ing, we get

(Au, 0~ u) = (f, 0~ u)

= cle=9)

€

+

|
—(u, — x,b)+,v - u,) +[— —€~(v u, , 0= u)|
Each of the two terms on the right is > 0. Hence, taking € = ¢, —0 and
using (3.15), the inequality in (3.4) follows.
To complete the proof of Theorem 3.1 it remains to prove uniqueness, In
the next section we show, under the additional condition (A,), that u is the
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value of the game associated with (1.1), (1.3) when E = F = Q. This of
course implies uniqueness assertion of the theorem.

Corollary 3.2. The solution u established in Theorem 3.1 satisfies:
Lu—oau+f>0 ae  onthesetwhere u >0, (3.18)
Lu — au + f <0 ae. onthe set where u <, (3.19)
Lu—oau + f=0 ae. onthesetwhere 0< u <y, (3.20)

Proof. Let B = {x€%, u(x) > 0). Since u is continuous, B is an open set.
Let w be any nonnegative and bounded function with support in B, and let
v = u — ew. If € is positive and sufficiently small, then 0 € v < ¢ in .

Hence
—f(Lu—au+f)wdx<0.

Since w is arbitrary, (3.18) follows. The proof (3.19) is similar. Finally, (3.20)
is a consequence of (3.18), (3.19).

4, Existence of saddle points In bounded domains

Consider the elliptic variational inequality: Find a function u satisfying
ue W2)yn Wh¥Q), u<y ae onE, >0 ae onPF,
(4.1)

f (Lu — au + f)(v —u)dx <0 forany o€ L%(Q),
Q

v<y ae. onE, ©2>0 aeonF (42)

This is a generalization of the problem (3.4).
Suppose

Y12 Y in ENF, (4.3)
) on 4%,
Suppose also that there is a solution of (4.1), (4.2) satisfying

u is continuous in 2. (4.5)
Let V= u + , and define sets E, F by

},  F={xEF, V(x) = y(x)}. (4.6)

These are closed sets containing 0 £2.
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Theorem 4.1. Let (A,), (B,) hold, and let {,, {,, f be continuous functions
in Q. Let (4.3)-(4.6) hold. Then V(x) is the value function and (E, F) is a
saddle point of sets for the stochastic game associated with (1.1), (1.3).

Proof. First we verify (2.2)-(2.7) and (2.10). Observe that (2.10) follows
from Corollary 2.2, Since u < ¢ on E, u > 0 on F, the inequalities (2.2),
(2.3) follow immediately from the definition of V. The equations (2.4), (2.5)
follow from the definition of E, F. We proceed to prove (2.6).

Notice that

fQ(LV—aV+f)(v— V) dx <0

£ L v~ ) nn ne IY A .......... th o wannf
1 ly U C ‘._l K“ﬂ,, U \ ll/l a.c. on L, v # q/2 L. ull I, gulllg ad lll uie PIUUJ.
f orollary 3.2, we find that
LV~aV+f>0 ae. on O\F (4.7)
LV—aV+f<0 ae. on QE, (4.8)

Let g(x, t) be any bounded measurable function and let 7, 7, be stopping
times, 0 < 7, < 7 < s, where s, is a positive constant. Then

o

E t) dt= )y, t; x, 0)E, (x,. .(t)|x(t) = y) dy dt

fg [ [ elw 0Ty, 5 % 0B, (x,, . (Alx(2) = y) dy

(49)

where x, .(t)=1if 7 < t < 7 and xTo,f(t) = O if either t < 1 0r t > 7,
and I'(y, t; x, 5) is the fundamental solution of L —3/dt.

T'nr]ppﬂ the left-hand side of /A. Q\ is equ 1

B[ elalt) ), 0 <t)) dt.

Using Theorems 6.5.4, 6.4.7, we find that the last expression is equal to
the right-hand side of (4.9).
Let B, be a closed e-neighborhood of F. Let V,, be the mollifier J, /mV of

V, where m is a positive integer, m > 1/e. Since V,, is in C® in a
neighborhood of £ \ B, we can apply It¢’s formula to obtain

E.e ™V (x(A)) = E.e” Aoy (x(Ay))
+Exf)\e""‘(L ~ a)V,(x(t)dt  (x€Q\B) (4.10)

er ny bounded stopping time in C,, A < #;, Ag=AAs, ands
By (4.9), the se cond term on the right- hand side of . 10) is equal to
oo

f(, fR,,e_a’(L - )V, (y) - T(y. 6%, 0h(y, ) dy dt  (4.11)
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where

h(y. t) = Efx,, A(0lx(t) = y).
Noting that h(y,t) =0 if t <s, or if t > § (where § is any positive

number such that A < § a.e.), or if y € Q° U B,, we find (upon recalling
(6.4.12)) that T'(y, ¢; x, 0)h(y, t) belongs to L*[R™ X (0, c0)]. Since

(L — &)V, (y)—(L ~ a)V(y) in L3*A),

where A is any compact subset of £, we conclude that, as m—o0, the
expression in (4.11) converges to

foo f e (L — a)V(y) - T(y, t; x,0)h({y, t) dy dt,

0 n

provided A < t5. By (4.7), the integrand (in the last integral) is
> —e “f(y)T(y, t; x, 0)h(y, t).

Hence

Taking m—»co in (4.10) and using the fact that V,, — V uniformly in compact
subsets of (I, we get

E.e”V(x(A)) > E.e *®V(x(A A 5)) — Efo e “f(x(t)) dt

AAS

Taking s | 0 we obtain the inequality

Vix) < E{ f Y ometlx(d)) dt + e‘“"V(x()\))}. (4.12)

Here A is any bounded stopping time in C, satisfying A < 3. If A is any
stopping time in €, satisfying A < ¢ then (4.12) holds for A replaced by
AN T A tg where 0 <T<w» and e is any positive number. By Corollary
2.2, EA < . Hence, if we take T 1T o, € | 0 and apply the Lebesque
bounded convergence theorem, we arrive at the inequality (4.12) for any
A€ C,, A < tp. We have thus completed the proof of (2.6). The proof of (2.7)
is similar,

In order to complete the proof of Theorem 4.1, we merely have to apply
Theorem 2.4.
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Now let u be the solution of (3.4) constructed in Theorem 3.1 and define

V{x) = u(x) + ¢y(x), (4.13)
E = {x€8; V(x) = 4,(»), (4.14)
F= {x e; V(x) = \pz(x)}. (4.15)

We can then state the following:

Theorem 4.2. Let the conditions (A,), (B,), (By) hold. Then the stochastic
game associated with (1.1), (1.3), when E = F =, has value V(x) and a

saddle point of sets (E, F) given by (4.13)~(4.15). Further. V€ C'(®) and
v _ W Ao 3V _ %

- on L il -
dx,  Ox ’ dx,  Ox

L~ 0 1 < 4 € n)
L) e# (LS 850

on

(4.16)

Proof. Notice that since v, ¥, belong to W7 (Q) where p > n, and since
they are continuous in {, the Sobolev inequalities imply that they are
continuously differentiable in 2. Now, all the assertions of Theorem 4.2,
except for (4.16), follow from Theorems 4.1 and 3.1. To prove (4.16), notice
that

V—y, <0 in® V-—y;=0 onk
This implies that grad (V — ¢,) = 0 on ENe. Similarly, grad (V — ¢,) =0
on FN{Q.
Notice, by Corollary 3.2 (cf. also (4.7), (4.8)),

LV—aV+ f>0 ae on O\F, (4.17)
LV—aV+f<0 ae on Q\E, (4.18)
LV—-aV+f=0 ae. on Q\(EUF). (4.19)

It follows that
(LV—aV+ f)(v — V)<0 ae. if veL¥Q), < o<y ae
(4.20)

5. Elliptic estimates for Increasing domains

In Sections 6, 7 we generalize the results of Section 3, 4 to unbounded
domains €. In this section we establish some estimates that will be needed in
Section 6 in order to study elliptic variational inequalities in unbounded
domains.
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Let © be an unbounded domain in R" with C? boundary 9Q. Suppose
there exists a sequence of bounded domains 2, with C? boundary 3%, such
that:

(1) Qm - 9m+1 - Sz;
i) 20 {x|x]<m)=Q,nN {x|x] <m};
(iii) there exist positive constants 8, C* such that for each m =
1,2,..., and for each y €38, the set 0, N {x;
represented in the form

=0, X Ky X

for some i, 1 € i < n, and

z'acb'

ax,-

3P

< C*,
e ¢

+El

We shall then say that  is in class C2 If further
%p(x)  3%0(%)

*|z x|
T PR < C*x —%| 0<a<1)

for any %, %, then we say that @ is in class %+,

In particular, if £ = R" or if £ is the complement of a closed bounded
domain with C2 (C?*?) boundary, then @ is in € (C2**), for (i)-(iii) hold
with €,, = {x; |x| < m} for all large m.

Let k be a nonnegative integer, let 1 < p < oo, and let x be any
nonnegative number. Given a domain (G, we introduce the space W* P #(Q3)
consisting of all (real-valued) functions u(x) whose first k weak derivatives
exist and belong to LP on compact subsets of G, and for which the norm

1/p
[ul§ , , = { > fle wll Doy (x)|P dx}

la| < &
is finite. When p =0, we denote the space by W*?(G) and the norm of u by
lulc We shall denote by W7 #(() the completion of Cg°(G) in the norm
| Ik When pt 0, we denote this space by Wy?(G). Note that W*?(G)
Wine)=Lr(G).
Con51der a partial differential operator

n
dp= L 3 (B S gy L e B
2‘4 ax.\ll\l ax/ dand t\7/ x. \7/ \ /
i,ji=1 t i i=1 ]
where a is a positive constant and b, = $27_10a,/3x, — b. We shall

assume:
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(A) The functions a;, da,/0x, b, c are measurable in 2, and

da,(x
S lay()+ 2 ;fcf ) |+ S b+l <K (62)
c(x) >0 .in Q. (5.3)

n

> a,;(x)6&> BlIEE  forall x€Q, £¢€ R™ (5.4)

ij=1
for all x, y in {2, where 8 and K are positive constants;
h Ia"-(x) - aﬂ,(y)l < C*(lx — y), C*(r) | O if r}0; (53)

y

~ 2V ap
sup |b;(x)| <
xEIS)Zt ( )] \/H
From now on we fix p > 2. Let f € L?(Q,)) and consider the Dirichlet
problem

(5.6)

Au=f ae inQ, uwe€ W2P(Q,)n Wy3Q,). (5.7)

By Theorem 10.3.1, this problem has a unique solution u = u,,.

Lemma 5.1. Let Q€ C® and let (A) hold. Then there exist a sufficiently

small positive constant p, and a positive constant M, independent of m, such
that

Iulg,mp,y < M(lf‘f)z,mp, u + |f‘(s)z,m2, M.) (5'8)
forany 0 < p < py.

The importance of this lemma lies in the fact that p, and M are
independent of m.

Before proving the lemma, we shall state another lemma regarding the
Dirichlet problem

Au+Au=f ae in{, u e WP (Q,)n Wg(RQ,) (59)
where A > 0. Denote the solution by

m, A’

U r=(A+A)"'f =R, ,\f

and write

Lemma 52. Let € € C® and let (A) hold. Then there exist positive
constants A, M* independent of m, A, such that

M* .
B flopw < 737 1o f A2 A and 0< p< py (510)

where p, is as in Lemma 5.1.
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Proof of Lemma 5.1. Lete = 8§,/3Vn, and introduce a mesh in R” made
up of cubes with sides parallel to the coordinate axes and having length e.
Denote by I'y, . .., T, those cubes whose closure intersects 3{2,,. Denote
the center of T by y;. Let I', I' be cubes with center y; and with sides
parallel to the coordinate axes having lengths 2¢ and 3¢ respectwely Then
I, ..., I, form an open covering of 3%,,. Further, for any y €3, there
isa cube T such that y €T and dist (y, BT > ¢/2.
Let ¢ be a C* function such that

y(x) =1 if |x|<e forall i=12,...,n,
Y(x) =0 if |x]| >3e forsome:i,
0 < Y(x) <1 elsewhere,

and set y;(x) = y(y; + x). Then ¢, = 1 in [T and ¢y =0 in a small neigh-
borhood of 3 I and outside I

Denote by SZ  the set of all points in &, whose distance to 3%,
> €/2. We now "introduce a mesh made up of cubes with sides para]lel to
the coordinate axes and having length ¢, = ¢/8Vn. Let A,,..., 4, be
those cubes whose closure intersects {,, .. Let A;, A7 be the cubes with the
same center z; as A, and with sides pa.rallel to the coordmate axes having
length 2¢, and 3¢, respectively. The cubes 4;, .. ., 4 form an open cover-
ing of @, ., and the cubes A7, . . ., Ay lie entirely in Q,,,.

Let x be the C* function

and let x,(x) = x(% + x). Let

¢ = if 1< < h

E\Pk'*‘EXk
_ X
2%"‘2)&

G =T/, G =T, if 1<j<h,

if 1< < hy

GH,,0 = A’f’, Gf+h,, = A; if 1<j<hy,
and let h = hy + h,. Then {G,, . . ., G, ) form an open covering of ,,, and
{¢. ..., s O} form a partition of umtv subordinate to this covering, such

that:

@ Gy, ..., G, intersect 32, and G, ., ..., G, lie entirely in ,_;
(b) &€ Co*(Gr)s
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(c) each x€Q,, belongs to at most N, sets G,, where N, is a positive
integer independent of m;

(d) & > 1/N,; on the set G, and the sets {G, . .., Gy} form an open
covering of ,,;

(e) there is a constant N, independent of k, m, such that

|ID%¢,| < N, if |a|<2 2x€G, 1<k<h (5.11)
Let
Ckm = Gk n Qm'
Notice now that
2
Ap = — 1 3 a,(x) % __ 3 b(x) @—-Lc(x\u-‘-c'uu
) i‘f(-=‘=1 A/ axi ax’ ifl i x, J

where |b;(x)| < K, |c| < K. Since the a,; satisfy (5.4), (5.5) and are bounded
in Q, it follows (by Theorem 10.3.1 and the remark at the end of Section
10.3) that for any u, € W>P(Q )n W} 23(Q,)

l“m¢k|2, < C{|A u ‘Pk)‘ + |, ¢’k| (5.12)

where ¢ is a constant independent of k, m. Here we use the condition (iii) in
the definition of € € C? and the fact that ¢, has compact support in G,.
Note that
n a¢k
Al m¢k = fo, — 9 2 ay ax, _8}:

i j=
( 1 _,1 aagf' a¢k 1 l S b _"\
U3 2 T on T2, Y oy 2D e |

i,j=1

—.

Hence, by (5.11),

|A(unde)|” < CIfI” + C|Du,|? + Clu,|?  inGy,  (5.13)
where Dy is the gradient of u; the symbol C will be used to denote any one
of various constants independent of k, m, f.

Taking the pth power of both sides of (5.12) and using the triangle
inequality, we get

f (|D2um|¢k)p dx < Cf (|Du,,| | Deyl)” dx + Cf (lw,! |D2¢k|)p dx
G, Grm Gm

km
+ Cc”f |A (1,01 dx +f |t Bil? dx.
Giom Grom

Multiplying both sides by exp(— pp|{,|), where {, is the center of the cube
Gy, and noting that

Ce Pl < 7Pl ¢ Ce~mll i e,
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we obtain, after making use of (5.13) and (5.11),
f (¢ ¥ |D%,,|é,) dx
Ciom
< cf (e ) de + C[ (e |Du,|)" d
&
+C f e [y ) da; (5.14)

here Gy, is the subset of Gy, defined by
Gin =G N GL =G, N Q,,.
Recalling the properties (c), (d) of ¢;, G, Gy and summing the inequali-

ties (5.14) for k = 1, ..., h, we obtain
e D% |\ dx < C —ulsl | Y g +C[ (e ¥ |Du,|) dx
fy (e 1D%l)" dx < G f (e f1f e+ Of o™ D)
+ Cf (e~ u|)° dr. (5.15)
1

We next derive an estimate on the W %Q_) norm of u in terms of the
L3, ) norm of Au. Set L7 #(G) = WP ¥(Q). The space L**(G) is a real
Hilbert space with the scalar product

(1, 0), o= fc e ™2y (x)0(x) d.

When G = Q,,, we write (u, v), ¢ = (4, 0), .. f u€ W>%Q,)n W-%(@,),
then

(Au w) =1 = ”a_a,l dw) oo o2l 5 ﬁ‘iwdx]
VA Bl m T g '.’,.4_:_1 [\ i 9x, dx, }u,m P.fﬂm x| dx, J
n
+ > (b,. gu ,u) + (cu + au, u), m
i=1 f s M
n 2
> 'Bz —2.u|x|(gii) d
i=1 “Q, ai
n 2
—uK > f e‘z”"f'( Ou ) dx — uK | e 2y dy
i=1 Y9 x" 9m
_ LR ~2ulel| Ot )
( sup :b.(xn){ 5 2 J ( ) @
1<i<n
+ 2 u—2nlxiu2dxl+af e "2y ? dy
2v Jﬂm } Jﬂm

dx

n 2
> Y,l;z e—zulxl[z (%;L) + ud
m i=1 i
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for some positive constant v, if sup,eq |B;| < B,0 < g < pg, provided
Bn 208~ K
2(a ~ poK) B ’
that is, provided
B < 4(a — pK)(B — poK)/n;
but this follows from (5.6) if p, is sufficiently small. Notice that y depends on
a, B, n, py, B, but is independent of u, m. We have thus proved that

f e HyAu dx > y(|ulln #)2. (5.16)
Q

m

In particular, when v = u,,

2
‘Y(lum‘%'l& .u) < (f’ um).u, m < Iﬂgmi.’ ul“m'&"‘z, " < lﬂ(sll,m& n|um|¥:"2, ut

Consequently,
1
‘umlg.l,m&p. < ‘; lfl(s)z,m‘.’., ue (517)

In what follows we may assume that p > 2, for (5.8) is an immediate
consequence of (5.15), (5.17) when p = 2.

We shall now use (5.15) in conjunction with (5.17) in order to derive the
inequality (5.8). First we derive a variant of Sobolev’s inequalities in 2,

By Sobolev’s inequalities (see Section 10.2)

1-aY/2

[fn |w|q' dx]llq’ < C[-’;{n iD2w|" dx]a’/f[Llez dx] ’ (5.18)

[Ln Duls dx]l/q < C[L" D% dx]a/r{.l;n ol dx](l-—a)/z 5.19)

for any w e CZ(R"), where

i,=a'(—1;—-2—)+1‘“, 0<a <1, (5.20)
q T n 2

1_1 (l_%) 1—a 1 .

. il el I el 2<a<1, (5.21)

the constant C is independent of w.

Let u € C*Q,,). Then we can extend it to a function w in C¥R™) in such
a way that

i » i E
> [ IDwide<cy [ |Diulde
R" "=0 e,

j=0

for 0 < i <2, g > 1, where C depends on g, but is independent of u, m.
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Indeed, this follows from the proof of Problem 9, Chapter 10, provided we
use the partition of unity {¢,..., ¢, } of a neighborhood of 9%, con-
structed above. Applying (5.18), (5.19), we conclude that

('I;Im Iu[ql dx)l/q’ < C(.];2 [IU| + |Du| + |D2u|r dx)a'/r’(fs; |ul? dx)(l_“')ﬂ’

(5.22)
1/q - a/r (1-a)/2
Du|9 dx < C u| + |Du| + |D%|] dx ul® dx
(f ou ) (fﬂm[ll |Du| + [D%l] dx) (1o )
(5.23)
for any ue C ( m)s W re q q are defined by (5 20) (5.21). Since 3%, is in
M2 5. ion of C 2/03 w2, p/10 ~ JRPEEIREED: PRGNS N nrz PO
oy, e bUll.lPl Ul. ul \Qﬁm, ll.l. VV \b\hm} \p -~ 1., COMICIAcsS wiul vy \Qﬂ ,

(see Friedman [2]). Consequently, the inequalities (5.22), (5.23) hold for all
wu€ W2(Q )N W*%Q,) and weE W2(Q)n WOYQ,)

respectively.
We now substitute, in (5.22),

u = vexp[— (1 + | )1/2] (5.24)

Since, as is easily seen,
|u| + |Du| + |D%| < Cllo| + |Do| + |D%|] exp| — (L + |3)"*]

and since also

1/2
e HIH+D ¢ expl —u(1 + [x?) / } < e il

L L

we obtain
a’ 1-a
[0l < Cllolf, )" (ol ) (5.25)
Next we substitute u from (5.24) into (5.23). Noting that

1Du| > [Do] exp — (1 + |xf2)"*] = ulo] exp[ —u(1 + «P)"*],
we find that
a
|Dol@n , < Cplofgm, , + C(|ovlgn. ) (|oldw, ,)

We shall now use the Sobolev type inequalities (5.25), (5.26) in order to
derive the assertion (5.8) of Lemma 5.1 from (5.15), (5.17).

Notice that (5.15) holds not only for p, but also for any p, in the interval
2 € p, < p. Taking p, = 2 and using (5.17), we get

’Dzuml(s)z,ml,p < C'f[(s)z.m&,u' (5'27)

l—a

(5.26)
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Applying (5.25) to v = u, with ¥ = 2, we then obtain, after using (5.17),
(5.27),

Iuml(‘)],mq',u < lelg,"h. i, (528)
provided
L_og(L-2),1loa :
q,—a(2 - + 3 , 0<ad <1,
that is, provided
: l.,1_2
g > 2, P > 3 0 (5.29)
Applying (5.26) with ' = 2, v = u,, and using (5.17), (5.27), we obtain
|Dum|g,mq,u < C|f|(s)2,m2,y + Cp|um|gmq, nt (530)
provided
11, (1 _2),1-a I
i +a s + 5 5 <a<l,
that is, provided
1 1 1
q>2, 772 (5.31)

If g satisfies (5.31), then ¢’ = g satisfies (5.29). Consequently, the second
term on the right-hand side of (5.30) is bounded by C|flom, .~ Combining
(5.30) with (5.28), we obtain

||t o S Clflom, , (5.32)
for all g satisfying (5.31). Using (5.15) (with p = ¢), we then get
|3 < 1 flom, i + ClLf o (5.33)
for any g, satisfying
1 1 1
2< q, < p, . >3 = (5.34)

If

>

b

2=

1,1
p - 2
then we can take g, = p in (5.33) and thus obtain the asserted inequality
(5.8). Otherwise, we proceed to apply (5.25), (5.26) with

; € arbitrarily small, ¢ > 0.
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We conclude, by the same procedure as before, that

ﬂm Qm m m
Ium|2,q2,,u. < C]f|0,2,p. + lel(s)z,ql,u + lel(s)z, qo, b
where
1.1
9 G4
If the last inequality implies that g, < p, then we repeat the same argument
again. After a finite number [ of steps, we arrive at the inequality

l
Q,
[l < € 2 1£l0%.
1=

1 1 1
a 3 Lte @<gs<p T

where
Go = 2, G <q, <p if 1<i<l—1,
1 1 1 .
qi+1>?i_; 0<i<I-1), and q_,<gq=np

Since (see Problem 4)

|67 < Ul + 1 flo o (5.35)
the assertion (5.8) follows.
Proof of Lemma 5.2. Using the notation of the previous proof, we shall

now employ the inequalities (see Theorem 10.3.2 and the remark at the end
of Section 10.3).

A [ JugPde < cf (A + AD(ug)lP da, (5.36)
vC,;m vam

AP/2 f \D(udy)|? dx < ¢ f (A + AD){udy)|? dx, (5.37)
G Gim

which are valid for any u€ W2P(Q YN W} 2%, ), where A > Ay > 0, and
Ay, ¢ are positive constants independent of k, m; property (iii) in the
definition of @ € C? is used here to deduce that A, and ¢ are independent of
k, m. By (5.13) (with A replaced by A + AI),

(A + AD){ud,)|P < Cl{(A + M)uj? + C|DufP + Clul’  inG,,. (5.38)

Multiplying both sides of (5.36) by exp(— pu|$il), where {; is the center of
G, we obtain, after summing over k and using (5.38) and the properties (c),

(d) of the partition of unity {¢,},
Nulgr, . < CI(A + Auign, , + Clulf=, . (5.39)
Since

p
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(5.37) implies that
A2 [ (Dulee)” d

< Cf (A + AD)(udy)|P dx + CAP/2f luDd¢y|? dx.  (5.40)

Gim
Proceeding in the same way that led to (5.39), we obtain from (5.40) the
inequality

A2 Dufgn, , < Cl{A + ADulg= , + Clufin, , + CXVulg .
Combining this with (5.39) and taking A sufficiently large, say A > A, we get
Nelory, o + N/2IDulgs, , < CIA + M)ulgs, ,. (5.41)

This inequality yields the assertion (5.10) of Lemma 5.2.

8. EMliptic variational inequalitles

Let € C? and let (A) hold. Let ¢,, ¢,, f be functions defined in £ and
satisfying:

(B) ¢, and ¢, belong to WP #(Q)n W22 (Q) for some 0 < p < g,
2 < p <o, and

¢, > ¢, ae. infl, ¢, and ¢, belongto W, 2#(Q).

(C) feLP*Q)nL>*g).
The constant y, is as in Lemma 5.1,

Introduce the set

K,={g€L*(Q);¢,< g < $aein}

where 0 < p < o We consider the following elliptic variational inequality:
Find a function « such that

u € W225(Q) 0 W>#Q) n K, (6.1)
f e~ Ay - (v — u) dx >f e"Hf . (p— u)dx  forany vEK,
Q Q
(6.2)

Theorem 6.1. Let SZ € C? and let (A)~(C) hold. Then there exists a unique

solution u of (6.1), (6.2); further, u belongs to W2P#(Q),
‘l?’- ) s | R Y M
Ve shall need the following lemma.

Lemma 6.2. Let Q€ C? and let (A) hold. If we W22#Q)n WE2HQ),
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where 0 < p < p, then
f e " 2HwAw dx > y(|w|¥ 2, “)2 (6.3)
Q

where y is the constant appearing in (5.16).

Proof. By the proof of (5.16),
f e 2HwAw dx > ylwlfn, , - Cf e | Dw| |w| dS,. (6.4)
S 9%

We shall use the partition of unity {¢,, . . ., ¢y, } of a §” @, -neighborhood of
8, constructed in the proof of Lemma 5.1 (8 = §,/6Vn ). In G; we make
a coordinate transformation x — y which takes 92, into y,, = 0. Then ¢;w,
D (¢;w) are transformed into ¥, D, %. To these functions we apply the
one-dimensional Sobolev inequality

[o(un)l* < €[ [(o(s))* + (v/(s))"] ds.

Going back to the original coordinates, multiplying both sides by
exp(—2p[{;]), where {; = center of G;, and using the properties (a)—(c) of the
partition {¢,, . . ., ¢y, }, we arrive at the inequality

f e "2 (|w|® + |Dwf) dS, < Cf e 2 (|w)? + |Dw|? + |D*w|?) dx
3%, Qg

(6.5)

where Q2 is the 8§’ Q,-neighborhood of 3%,. Since |Dw||w]
< (|Dw|? + |w|?) /2, the last term on the right-hand side of (6.4) is bounded
by the right-hand side of (6.5) (with a different C). But the right-hand side of
(6.5) tends to 0 if m — o (for w € W2 #(Q)). Hence, if we take m — o0 in
(6.4), we obtain the assertion (6.3).

Proof of Theorem 6.1. To prove uniqueness, take u = u,, v = u, in {6.2)
and then u = u,, v = u,, and add the two inequalities. This results in

f e~ 2MAw - wdx <0, where w = u;, — u,.
2

In view of Lemma 6.2, 4, — u, = w = 0.

We proceed to prove existence. Let §_ (x) be C* functions in R" such
that {, (x) = 1if x| <m —2,§,(x)=01if |x| >m ~ 1, 0<{, (x) <1if
m—2 < |x| < m — 1, and |D%, (x)| € Cif |a|] < 2. Let ¢,,, = {_¢,. Then
2

& = W22/0 Vv~ WLZ0 e e\
Yy \uum} [ "0 \num], \U-U,l'

Q .
| dim — ¢ilz, 2, >0 if m— oo, (6.7)

fori =1, 2.



6. ELLIPTIC VARIATIONAL INEQUALITIES 480

Let € > 0, and consider the Dirichlet problem

Au + 21-(” - ¢lm)+ - % (u - ¢2m)_. = f in Qm’ (6'8)
u € W2Q,) n WEYD,). (6.9)

We can write (6.8) in the form
Au = %K(x, u) + f (6.10)

where

Au = Au + %u and K(x,u) =u —(u—¢1m)++(u—¢2m) .
It is clear that K(x, ) is a measurable function and

Pom(x) < K(x, 4) < ypm(a). (6.11)

Since the coefficient of » in A u is positive, the maximumn principle can

be applied. Consequently, for any g € L?({,) there exists a unique solution
of the Dirichlet problem

Av=g¢g ae. inQ, ov& W2 Q)N W3 Q,) (6.12)

m

and
|l < C*lelon
here C* may depend on ¢, m. Using this result and Schauder’s fixed point

theorem (cf. Problem 1), one can derive the existence of a solution u_ of (6.8),
(6.9) which belongs to W27 (Q ).

Denote the solution v of (6.12) by R g. 1t is easily seen that
% d=—-RAYy+y if y€ W22Q)n Wi¥Q,). (6.13)
The maximum principle implies that
iff > gae.inQ, ,thenRf > Rgae in(,. (6.14)
Recalling (6.11) and using (6.13) (we need here the relation (6.6) with i = 1),

we get

uo= B[ f+ ¢ K(mu)| < R(f+ L oum) = Rlf = Adun) + o1
Hence
ug - ¢lm < Rc(f - A(le)’
which implies that

1

¢ (B —d1)" < :1 IR(f = Adya)l (6.15)
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Similarly,

1 -_ 1

= (U = ¢am) < [RAf = Ady,)l. (6.16)
Noting that R, is actually the operator R,, /. appearing in Lemma 5.2,

and using Lemma 5.2, we get

L (R, ~ Ad,) Z';’f c (z’ =1,2€< %) (6.17)
where C is independent of €, m. From (6.15), (6.16), we then conclude that
2 (4 — ‘1>1m)+ N < G, 1 (1, — dop) e < C. (6.18)
€ 0, p, 4 € 0, p. u
The same proof (6.18) works also when p = 2, so that
L —e) ™ <0 [Lau—e)|” <c (19
€ 0.2 1 € 0.2, p
From (6.8) and (6.18}, (6.19) we deduce that
|Au g, , < C, |Aufgm, , < C. (6.20)

Hence, by Lemma 5.1 applied to the general value p and also to the special
case p = 2,
|uc|§,";,,“ < C, |u€|g'"2’# <C (6.21)

where C is independent of €, m.
We now take € = 1/m and define

2 (
Up(x) = r‘ _
v,(x) if x€Q

€

x) if xeQ

where v, is such that
fi,, € W>PH(R™) n W22#(R"),
i,, has compact support, and

|G, |8 . < C, |G,lez, < C (6.22)

2 Py
where C is independent of m. The construction of v, can be performed by
the method of Problem 9, Chapter 10.

By a compact imbedding theorem of Sobolev spaces (Theorem 10.2.6),
there exists a subsequence {1, }, which is convergent to a function u in the
norm of W' ?(K), for any compact subset K of R". Since |i,, |} 5 , < C, the

same |nnnn ]li-w h ]r‘e 'Fnr 1°, Tf 'Fn"num }'haf as m’ — o0

........ qua > 0,
|G, — ulfy,—0 forany » > p.

We now extract from {#,} a subsequence which is weakly convergent in
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W2eryn W22 #(Q). For simplicity, take this subsequence to be the
sequence {,,}. Then

Tim |G,,~ uff 5, =0, (6:23)
u € WhPE(Q) 0 W24 (Q) N Wg > H(Q). (6.24)

(Since for any { € C°(R"), {{u,,) is weakly convergent to {u in W2 *(Q),
{u belongs to W2 #Q). Hence also u€ W3 2#(Q),)
We next show that

+

(u—9¢,) =0 inQ, (6.25)

(u—¢,) =0 inQ (6.26)

Tr\ meava (B O natina that far anw o T 2/0Y with camnant ciinnnrt wa hava

O prove \G.4g) GOUCE ulal 1Of any v« L (sej, Widl COIIpali SUppor We nave
+ +

Letting m—co and using (6.19), (6.23) and the definition ¢, = { ¢,, we get
— ((v = ¢) " u— u)Mz} 0.

By completion, this is true for any ve€ L*?(Q). Taking v = u — kw
(we L27(Q), k > 0), we obtain

((u = ¢ — kw) ™, w), o> 0.
Letting k—0, we find that

+
((u — o)), w)vﬁ) 0
Since w-is arbitrary, (6.25) follows. The proof of {6.26) is similar.
From (6.25), (6.26) we conclude that u €K,. Since (6.24) also holds, it
remains to show that (6.2) is satisfied.

Let pE KM. Then

({mv - ¢1m)+ = (gmv - ¢2m)—_ =0 ae in 9'
Multiplying both sides of (6.8) (with e = 1/m,u =4, by ({,v — &,)
- exp(—2»(x|), where » > p, and integrating over £,,, we get
f eHAG, - ($,0 = B,) dx > [ e - (0 - ,) dr. (627)
Q 2

Since #,~—u weakly in W22#(Q) Adi_ —Au weakly in L>*(Q). Using
also (6.23), and taking m — oo in (6.27), we get

r Pt P R N r —2vxe | (o — 41} dx (6_25“

Noting that both Au and v — u belong to LP#(Q), and letting » | p in
(6.28), we obtain the inequality (6.2).
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Remark. From (6.2) we can deduce (cf. Corollary 3.2) that
Au—f<0 if u> ¢, (6.29)
Au—f >0 if u<o,. (6.30)
Thus, (6.2) is equivalent to
Au-(o—u)>f - (v—wu) ae  forany v€K, (631)

7. Existence of saddle poinis In unbounded domains

We shall need the following conditions:

(P) The functions y,, ¥, belong to W*P*Q)n W22 Q) for some
p > n and to L*(R), and

Y 2> Yy in v, =Y, ondil
(Q) The function f belongs to L? *(Q)n L% #({), and

. f | f(x(1))| dt < o0 (7.1)

forall x€Q, 0 C, .
Let u be the solution of the elliptic variational inequality (6.1), (6.2) with
¢y = Y, — Yy, ¢y = 0 and with f replaced by f = f — Ay,. Set
Vix) = u(x) + yo(x). (7.2)
Since p > n, u and V are continuously differentiable in © (by Sobolev’s
inequality). Define

~

E = {xEﬁ; V(x)
F= {xeﬁ; V(x)

We shall need the condition:
Pltg <oo)=1 Pltp<ow)=1 if x€q. (7.5)

This condition is satisfied, of course, if P (tg. < o) = 1.
Notice that if E to. < oo and f is bounded, then (7.1) holds.

‘Ibl(x)}’ (7.3)
‘1’2(7‘)}- (7-4)

Theorem 7.1. Let Q€ C? and suppose that (A) holds with ¢ = 0, and that
(Ay), (P), (Q), and (7.5} hold. Then the stochastic game associated with (1.1),
(1.3), and E = F = Q has value V(x), and ( E, F) ) form a saddle point of sets.
Further, (4.16) and (4.17)~(4.19) hold.

The proof is similar to the proof of Theorem 4.2 and Corollary 3.2. In
verifying (4.12) for all A < t, we first take A < 3 A, A T where Ag
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= {x; |x| > R}, B, is a closed e-neighborhood of F, and then take R 1 e,
T1o,€l0.

Remark. Let E, F be closed subsets of & such that E CE, F C F, and such
that

V<y, if x€E\F, V >y, if x€F.

Then V is also the value, and (ﬁ, 13) a saddle point, of the stochastic game
with o, 7 restricted by

ceC,, x(o)eE; 1€C,, =x(7)EF.

This follows from Theorem 2.4, since the properties (2.6), (2.7) are already
satisfied.

8. The stopping time problem

Consider the stopping time problem associated with (1.1), (1.2) when o varies
over the set @, of all a.s. finite-valued stopping times o with 0 < tfg-.
We shall assume:

P,) ¢, € W2P Q) W2 #(Q) for some p > n, and
0 1 ) 14
‘lbl(x) > -C

for some positive constant C.
(Q,) f belongs to LP-#(Q)n L>*(Q) and, for all 0 € &, ,

Ef e~ f(x(t)) dt > -C  forsome C > 0.

We now specialize the arguments of the previous sections. Thus, in the
elliptic variational inequality (6.1), (6.2) we take

= {geL*4Q),g < Dae inQ}. (8.1)

Denote by u the solution of (6.1), (6.2) when K, is given by (8.1) and f is
replaced by f = f — Ay, and set

V(x) = u(x) + ¥ (), (8.2)
E= {x€Q; V(x) = yy(x)}. (8.3)

Ptz <w)=1 forall x€EQ. (8.4)

This condition is satisfied, of course, if P, (tg. < o0) = 1.
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Theorem 8.1. Let @ € C? and suppose (A) holds with ¢ = 0, and (A,), (P,),
(Q,), (8.4) hold. Then the function V(x) is the optimal cost and E is an
optimal stopping set for the stopping time problem associated with (1.1),
(1.2). Further, V and V,_ are continuous in Q, and
v _ A .
E=E on ENQ (1<z<n). (85)
The proof is left to the reader (Problems 7-10). If Q is a bounded domain,
then we can replace (A) (in Theorem 8.1) by (B,), (B,).
Notice that the variational inequality for « gives (cf. Corollary 3.2 and
(4.17)-(4.19))

LV—aV+f>0 ae. onf, (8.6)
LV—aV+ f=0 ae. on \E. (8.7)

Part II. The Nonstationary Case

9. Characterization of saddle points

We shall extend the results of Part I to the case where the coefficients
b, o, f ¥, ¢, depend on ¢t. For simplicity we consider only the case

analogous to E = F = {}.
Consider a system of n stochastic differential equations

dx(t) = b(x(t), t) dt + o(x(¢), t) dw(¢) (9.1)
and an initial condition
x(s) = x, (9.2)
where s > 0, x € R". We shall assume:
(C)) o(x, t) and b(x, ¢) are continuous functions in (x, £) € R™ X [0, o),
and
lo(x, t)] + |b(x, t)] < C(1 + |x]) (C const);
further, for any R > 0 there is a constant Cg such that
lo(x, t) — o(y, )| + [b(x, ) = b(y, £)] < Cglx — ¥l
forallt > 0,x € R", y € R", |x| < R, |y| < R.
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Let { be a nonempty domain in R", and let
Q= {(x,t); x€Q, t > 0},
Q° = {(x, t); xER™Q, ¢t > 0}.
For any closed set A in the half-space ¢ > 0, denote by t, = t] the first
time ¢t > s that (x(f), £) hits A. Denote by D__ the set of all a.s. finite-

valued stopping times A for the process x(¢) given by (9.1), (9.2) (the range of
A is in [s, )) such that

A< toe as.

Let f(x, t), Y1(x, t), ¥o(x, t) be functions defined on Q and let a be a
nonnegative number. To any pair of times ¢, 7 from ®)_ ; we correspond the

]x.s(o’ q-) s Ex,s{foAT e_a(t—s)f(x(t)’ t) dt

+e =0y (x(0), O)xoes + €7 yy(x(1), 'r)xf<a}- (9.3)

We call this scheme the stochastic game associated with (9.1)-(9.3), and we
denote it by G, ,. The set G = {G, ; (x, s)E Q} is called the stochastic
game associated with (9.1)-(9.3) in Q. If

inf sup J o,7)= sup inf J, (o, 7) (9.4)
cED, ,reED,, TED, ,aED,,
then we say that G_, has value V(x,s), where V(x,s) is the common
number in (9.4). Suppose there exist closed sets S, T in Q such that ¢, 5
belong to 9, , for all (x, 5) in Q, and
Ix, s(tg’ ’F) < Ix, s(tg’ tf) < ]x,s(a’ tT) (9'5)
foralloc®, ,,1€D, , (x,s)EQ, then we say that (tg, t) is a saddle point
for G and that (S, T} forms a saddle point of sets for G.
We shall assume:

(Co)  flx, t), Yy(x, £), Yolx, t) are continuous functions in Q; ¥, and , are
bounded, and

A
E,. [ e I flx(t), )] dt < oo (9.6)
for all (x, $)EQ, AED, ,.

Theorem 9.1. Let (C,), (C,) hold and suppose ( S, f} is a saddle point of
sets for the stochastic game G. Then the value V(x, s} has the following
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properties:
Vix,s) < Yolx,s)  if (x 5)EQ\S, (9.7)
Vix,s) 2 Yolx,5) if (x,8)E (?, ,. (9.8)
V{x, s) = ¥,(x, s) if (x,8)€ S.\ ) (9.9)
V(x, 5) = Yo(x, 5) if (x,8)€T, (9.10)
A

if h€D,,, p<t (912

The proof is similar to the proof of Theorem 2.3, and it is left to the
reader.

Theorem 9.2. Let (C,), (C,) hold. Suppose V(x, s) is a Borel measurable
function in Q and S, T are closed subsets of Q such that

ts, t belongto D, , (for all (x, s) € Q), (9.13)
and suppose that (9.7)9.12) hold and
Y1=¢ on SnT. (9.14)

Then V(x, s) is the value of the stochastic game associated with (9.1)9.3),
and (S, T) is a saddle point of sets.

The proof is similar to the proof of Theorem 2.4, and it is left to the
reader.

10. Parabolic varlational inequalities

Let © be any unbounded domain in ? and let Q = {(x, t); x€Q, ¢t > 0}.
Consider a partial differential operator
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where « is a positive constant and b - QE,_, da,/3x, — b We shall
assume (cf. the condition (A)):

(A*) (i) The functions a, da,/ 0%, b,, c and their first t-derivatives are
measurable functions in Q for all 1 < i, f, k < n, bounded by a constant K;
() c(x, t) > 0in Q; (iii) there is a positive constant 8 such that

% S afx &L > BlEF  if x€8, t>0, teR”,
i, jm1
finally, (iv)
2V
B= sup |b(x t)| < fﬁ :
(x, )€ Q Vn

For any p > 2, let [i, be a positive number sufficiently small so that
y p Py po y

B* <4(p - la - (p ~ Vu,KKB ~ §K)/n.
In particular, ji, can be taken as p, in Lemma 5.1.

Later on we shall define positive constants y, depending only on
a, B, n, K, p, ji,. Let § be any fixed number satisfying:

0<8<y,
Let f(x, t), ,(x), ¢o(x) be functions defined in Q and satisfying:

(B*) ¢,(x) and ¢,(x) belong to WP #(Q) 0 W>2#(Q) for some 0 < u
< p,, and

>¢, inQ, ¢,¢, belongto Wy 2¥Q).

(C*) f(x, t) is a measurable function in Q, and
e ¥ 0, S C e ¥f(, 82, € L0, ) N LY(0, ),

d ? 9 ?
atf( t)O,p,u Et—f(’t)

Here 9f(-, t)/ ¢ is taken as a strong derivative.
Introduce the set
K, = { gEL*HQ); ¢y(x) < g(x) < ¢,(x) ae.in Q}.

We now consider a parabolic variational inequality: find a function u(x, t)
such that

al~
<L

-8 <C, e eLY(0, ).

0,2, p

> 22 o R (10.2)
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and, fora.a. t > 0,
—2ulxl OU —2ujx
——j;ze Zulx| E(v—u)dx+fge WAy - (v — u) dx
> f e (v — u) dx  for every vEK,, (10.3)
Q

Po(x) < u(x, t) < ¢)(x) ae. inQ. (10.4)

Theorem 10.1. Let Q€ C*** for some 0 < p < 1, and let (A*), (B*), (C*)
hold. Then there exists a unique solution of (10.2)-(10.4), and
du |@

at

-5t

+e ¥ulf, ,<C foraa t>0  (105)
0,p, 1 T

In Section 11 we shall consider the case where ¢,, ¢, depend also on .
We shall prove the existence and uniqueness of a solution that is not as
“smooth” as the solution in Theorem 10.1.

Proof. To prove uniqueness, we suppose that u,, u, are two solutions
and let w — u; — u,. Setting u = ©;, v = t4; and then u = u,, v = 4, in
(10.3) and adding, we obtain (cf. the proof of Theorem 6.1 and Problem 13)
1 d —oulx oyl
3 di Jy e el dx - 48 [ el dr >0 fora.a. t>0.

(10.6)
Hence, the function
Y(t) = e-s&:f e~ 24 |2 dx
. Q
satisfies (t) > 0. This implies that
e“'e_ss“lw(S)lff,z,p < 8_28’|W(t)|g,z,,.

for all 0 < s < t. Letting t—>o0 we get w(s) =0, that is, u; = u,.
To prove existence, let € > 0 and consider the problem: find u(x, t)
satisfying:

u(-,t) € LP(0, T; W27 (Q,)) n L=(0, T; W-3(Q,)),

(10.7)
ou(-, t)
i ELP(O, T; LP(Qm));
for a.a. t€(0, T),
__%_t:__i_A + ;(u—¢1m) _ ;(u"¢2m)——f ae in x€Q_,
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and
u(x, N =0 if x€Q_; (10.9)

here ¢, = {,¢, as in the paragraph containing (6.6), (6.7).

The existence of a solution follows by using Theorem 10.4.2 (see Problem
14). We shall write this solution either as u or as u; ... In the sequel,
various positive constants independent of T, ¢, m will be denoted by the
same symbol C.

We shall derive the following estimates:

e ¥u(t)ign, . < C  forall ¢t€(0,7), (10.10)

LT ™ |u(t)| 2, ,]" dt < (10.11)

e u(f)gm < C fora.a. t€(0, 1), (10.12)

fOT e~ |u'(t)|f, |7 dt < C, (10.13)

e[ |(u—¢) |2, "< G2 fora.a. t€(0,T), (1014)
e P [|(u — ¢g) [§m ] < C&  forall te(0, 7). (10.15)

Proof of (10.10), (10.11). Denote the scalar product in L**(£2,,) by (, ) and
the norm by | |. Denote the norm of W% #(Q,_) by | ||. Notice that since

¢1 2 0 > ¢2)
(4 ~ ¢1m)+u 2 0, —(t — $gp) u > 0.

Hence, if we multiply (10.8) by ue™2** and integrate over ,,, we obtain
(see Problem 13)
1 d :
> & lu®> + (Au, u) < (f, u).
Integrating by parts in (Au, «) and arguing as in the derivation of (5.16), we
find that if § < y/4, y as in (5.16) (y is sufficiently small, depending on
a, B3, n, p,, B) then

1
~ 2 L up + 480l < [(f, w) < 28JuP + CIfP. (106)
Hence
d
= o [ + 48wl < CIfP
or
d

~ 2 (e u(0)) + 28w (DI < Ce [P (10.17)
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Integrating and using (10.9), we get
T T
e 2|u(t)® + 28f e 2% )u(s)|? ds < Cf e~ 2%| f(s)]? ds
2 2
Making use of (C*), the inequalities (10.10), (10.11) follow.

Proof of (10.12), (10.13). Differentiating (10.8) formally with respect to t
and taking the scalar product (in L**(Q,_)) with du/dt, we get

() (e ) (24, )
(8t2’8t)+A a0 at) T\ ™

1/8(u—¢1)+ du \ 1 9(u— ¢ 3u )\ [ au)
+ - —_—— — _— - —— —_— = — —
€ ot T ot e\ dat ’ t) (at’at)’

(10.18)

where 9A /9t is the operator obtained from A by differentiating all the
coefficients of A once with respect to .
Using the fact that

(Tl t + k) = ¢1(0)]" —[u(x 1) = dom(x)]" )
A{ulx,t + h) — u(x, t)} >0,
we get the formal inequality

0 +  O0u
(2o 2) >0 (1019)

Similarly, we get the formal inequality
0 - du )
( £ (= ¢5,) » 5-) 2 0. (10.20)
Thus we find from (10.18) that

(L ) (4l ), (2, ) (X )

92 > ot ot ° 0Ot ot ot ot ot
(10.21)
As in the proof of (5.6),
du Jdu 2
(A at > ot ) g 45| '

We also have

(% %)
at ot

< clul || 5 ||
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2 (2% bu) ou

ox, \ 9 dx |’ ot
occurring in (0A /0t u, 9u/0t) we perform integration by parts prior to
estimating them. Putting these inequalities in (10.21), we get

1

4,
2 dt

in the terms

4 ! a 4 14
W]t + 48| <|3§ || + Cllu| 1w

o

3 2) (10.22)

where u’ =0du/0t. The argument leading from (10.16) to (10.17) clearly
leads from (10.22) to

< 28||u|| + C(||u||2 +

3 2
— _g_t_ (e—zst|uf|2) + 25e—28t||ur”2 < Ce*26¢(||u||2 +‘ -é‘wfi ) (10.23)
From (10.8), (10.9) we have (formally, since u'(t) is not known to be
continuous)
w(T) = fT).
Using (C*) we get
e ¥T|lw(T)| < C. (10.24)
Integrating (10.23) and using (10.24), we find
T
e 2w () + 28[ e~ |u'(s)||% ds
vt
2
T i)
< Cf e_z's"(Hu,(s)H2 +\ _)i(_s_) ! ) ds + C. (10.25)
: ds

Making use of (10.11) and of (C*), the estimates (10.12), (10.13) follow.

In the above derivation of (10.25) we have assumed that the derivatives
0% /3t d(u — ¢y,,)* /9t 3(u — ¢,,,)” /3t exist. In order to prove (10.25)
rigorously, we proceed as follows:

Instead of differentiating (10.8) with respect to ¢, we take finite
differences with respect to ¢, ie., we write the parabolic equation for
(u(t + h) — u(t))/h (h > 0). Then we take the scalar product of this
equation with (u(t + h) — u(t))/h. Using the finite difference analog of
(10.19), (10.20) we get (cf. (10.21))

oy, ) R
— (‘—é‘;‘ , uh) + (Aw, w,) + (A4, w,) < (f,, wy)
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where #(f) = u(t + h), g,(t) = (g(t + h) — g(t))/h and A, is obtained
from A by replacing each coefficient of A by its finite difference. Proceeding
by the considerations following (10.21), we arrive at the inequality

- d% (e |un(t)%) + 28~ ()|* < Ce™**(llu(t + ) + [£i(OF).

Hence, by integration,

e P u,(t)F — e ¥ |y (1)]? + 23f7 e |u,(s)|® ds

cf ®(lu(s + B)E + | f()P)ds  (r<T). (10.26)

Taking h | 0, we get, foraa. 0 <t <7 < T,
e (R — e Hru/(n)P + 2 [ e |uw/(s))? ds
t

< Cf e (o)l + £(5)F) ds. (10.27)

If D,u, D%, D,u are continuous in £, X [0, T], then, taking 7 1 T in (10.8),
we conclude that u,(x, T) = f(x, T). We can then take 7 1 T in (10.27) and
then use (10.24) in order to complete the proof of (10.25); thus (10.12),
(10.13) hold in this case.

In the general case we apprommate b,, c, qblm, ¢ [ by Holder con-
tinuous functions (in €, X [0, T]) bk, c*, ¢k , ¢k, f* with f¥(x, T) = 0 if
x €99Q,. The approximation is in the norm L%*0, T; L%*,)), and the
condition (A*) holds for the approximating coefficients, with constants
independent of k. The method used to prove the existence of a solution of
(10.7)-(10.9) (see Problem 14) was based on Theorem 10.4.2. If instead we
use the result stated in Remark 2 at the end of Section 10.1, then we obtain a
solution u* of (10.8), satisfying

u(x, T) =0 if x € Q,, u(x, ) =0 if xr€9Q,, 0<t<T

and D,u*, D,u¥, D2u* are continuous in 2, X [0, T].

By the estimates of Theorem 10.4.2 and Theorem 10.2.6 we find that
there is a subsequence of u*, call it again u, which is convergent in
L%0, T; L*R,)) to some functlon u. Applying the estimates of Theorem
10.4.3 with p = 2, we find that {u*} is weakly convergent in
L%0, T; W22%(Q,,)), and {du*/dt} is weakly convergent in L?
(0, T; L%%,,)). It follows that u is a solution of (10.7)-(10.9). Finally, since
(10.12), (10.13) hold for each u*, they also hold for « (by Fatou’s lemma).

Proof of (10.14), (10.15). One can show (see Problem 15) that
(Av,v*) >0 if ve W2EH(Q,)n WH2¥Q,). (10.28)
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Hence
(Au, (1 = $1)" ) = (A(4 = 1) (4 = 91m) ") + (A1 (4 = $1) ")
> = Clu~¢1) |
We also have
(= ¢y (4~ 83,) = 0.
Hence, taking the scalar product of (10.8) with (u — ¢,,)*, we obtain

L1 = 0 P (f (= 00T ) # (0 (8 = 93)7) + Cllw = 03,) )

Using Schwarz’s inequality and (10.12), the inequality (10.14) follows. The
proof of (10.15) is obtained similarly, by taking the scalar product of (10.8)
with (v — ¢,,.)".

From (10.12}, (10.14}, (10.15), and (10.8) we deduce that

e "|A(t)lgm, . < C.
Hence, by Lemma 5.1,
e *u(t)lgm, , < C. (10.29)

We now extend « = u, . into the half-space ¢ > 0 so that the bounds
(10.10)—(10.15) and (10.29) remain valid with T replaced by o and @,
replaced by R". Denote these extended functions by iy _ ..

We next take a sequence 4, = ﬁ,,;, ¢ m, with T, 1 0, € | 0, m; T oo which
is convergent to a function u in the following sense:

e %t—e % wealdyin L0, co; W2%H(R")),

e ‘a'ﬁi—w"”u in the weak star topology of L*®(0, co; L% *(R™);

(10.30)
o1, du 2 1,2
e % 1 0 dU weakly in L%(0, oo; WT *(R")),
ot at
s Ot s Ou ' 2
e 5 —e % e in the weak star topology of L*®(0, co; L%*(R")).

(10.31)

It follows that u satisfies (10.2). By the compact imbedding theorem for
Sobolev spaces (Theorem 10.2.6) we also have, for any » > p,
0< ¢t <t <o

[* [ e lile ) - ulx, OF dedes0 i fosco. (1032
t 2
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Using (10.14), (10.15), and (10.32) one can prove (cf. Section 6) that, for any
v € L1, tp; L®*(Q)),

tg N
-—f f e PH(p — ¢,) (u— v)dxdt >0,
ty Q
Taking v = u — kw, k > 0, we L(t,, t,; L>"(R)) we get, after letting k—0,

tg +
f f ey — ¢,) wdxdt> 0.
t Q

Since w is arbitrary,
(u—¢)" =0 ae. (10.33)
Similarly,
(4 —¢y) =0 ae. (10.34)
Now let v € K,. Multiply (10.8) (with u = &) by ({,,v — u) exp(—2»|x])
(v > p) and mtegratmg with respect to (x, ) € § X (), ty); we find, after
takmg j — oo and using (10.30)—(10.34) (cf Section 6), that
—ap|x a —aV|X
—f f 20l au(v—u)dxdt+f fez”A(t)u-(v—u)dxdt

t Q
>f js;e_z"‘xlfv — u) dx dt.
t

Dividing by ¢, — ¢, and letting t,—%, we conclude that (10.3) holds for a.a.
t > 0, with u replaced by ». Letting » | p and recalling that du/0t, A(f)u
and f belong to L% *(R) for a.a. t > 0, the inequality (10.3) follows.

In order to complete the proof of Theorem 10.1, it remains to derive the
estimates (10.5).

Consider first the case where the coefficients of A are independent of ¢
and p = 2k, k a positive integer. If we differentiate (10.8) formally with
respect to ¢ and multiply the resulting equation by

2k—1
*2kn|x|( du )
€ 3t

and integrate with respect to x, x€Q,, we get formally (cf. (10.21))
2k—1

2k—1
-2k O ) % ¢~ Zhula] ( du ) . ( .@_)
f ( e & +f AN e ot dx

of 9 -1
< [ o~2huix U ( u)
js;e » dx

< Ce‘s‘U- 6“2"‘“""( 91) dx] (10.35)
Q

m
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The proof of (5.16) shows that the second integral on the left-hand side of
(10.35) is bounded below by

o [ et 2 o 32 ) o ()]
a. ot \ B¢ at

where v’ is a positive constant; here we use the fact that 0 < p < p,. We
define y, such that 4kyp = y’, and take 0 < § < v,. Thus, ’ > 4ké. It
follows tflat the function

(1) =.I;; e—z,q,q( %1_{ )2k W

. t
satisfies
- g; ®(1) + 8k8®(1) < Cl@(s)[* 1/ He
Hence
~ 42 | 4ksd < CeP (10.36)
dt
Formally, «'(T) = f(T). Hence
O(T) = (| f(T)lo,ax, )" < CeT. (10.37)
Integrating (10.36) and using (10.37), we conclude that ®(t) < Ce®*, that is,
2k
f e—ﬂk#lxl( a—”) dx < Ce® (10.38)
Q ot

The rigorous justification of (10.18) ¢
finite dlfferences instead of taking the
proof of (10.12), (10.13).

Notice that in (10.38) u is the function u; ,. Taking T=T, e = ¢

,'1
m = m, j 1 oo, we arrive at the inequality

ok
f 6“2"“|"|( %—) dx < Ce¥ (10.39)
Q

where u(f) is now the solution of (10.2)—(10.4).
For fixed ¢, we can view u(t) as the solution of the elliptic variational
inequality

f e Ay - (v —u)de > [ e . (v — u) dx (10.40)
Q Q

f=f+0u/at
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By (10.39),

If(t)|0,k,u < Ce®.
Since (10.39) is valid also when 2k = 2,

|f(t)|0,2,p < Ce®.
Hence, by the proof of Theorem 6.1,

|tu(B)lo, o8, < Ce™.

This completes the proof of (10.5) in case p = 2k.

If p is any positive number, we repeat the previous proof with (du/
3t)*~! replaced by |du/ 0t~ du/ ot

Consider now the general case where the coefficients of A depend on ¢. If
we start as in the special case where the coefficients of A are independent of
t, then on the left-hand side of (10.35) there appears

2k—1
~ 2kl BA ) . (G_U)
j;)me ( 3 Y m dx.

Thus we have to handle the terms

2k—1
I= _f -2kl 0% 8% (au) dx,
ﬂm

ot dx, om \ Ot
ob, 3 3y \F !
[ otk O Bu (_2)
d fgme ot 9x; \ Ot =,

K = f e~ 2kl % u( du )2’{"1 dx.

Na
ng ot AN ) 2

Consider the integral I. By integration by parts,

da,; 3 du \*F 7t 3%
= - — 2kl Y _'i(_u)
I=(2k 1)j;zme ot  Ox \ Ot dx, 0t dx

k-1
kN 1|8_) gq_(a_u)g _
+f9m 3%, (e ) wm\a) FELHD

Next, we can write

da k-1 2 k-1
= ~2kpls O Q&(_ag) : au_(ﬁﬂ)
1L j;;me ot dx \ Bt ox, 0t \ 9t dx

< C [ gohn| Bu [ Bu 572

‘chm |8xj||at|_ i

| _ du ) | ou 7%
2kplx] Jw ou
+€j;zme Vx( 2y o dx.
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As for I, J, and K, they do not require any further treatment. Choosing e
sufficiently small, we then get the inequality

2k 2k
d — 2kutx| ou | ’ — 2k x| ou
_ 4 af| oU 2 x| S8
it Qme 5 dx + yj;zme 5 dx
5y 257!
— 2kpx| r cu
< Cj;zm e (lu] + v, ul) 5 dx
5 [PE2
— Zkpfad 2| 0%
+C fg K v.ul| 5 dx
3 [ (2k—1)/2k
—2ku|x|| OU St
+ C{ js;m e 5 dx} e
Using Holder's inequality, we get
2k 2k
_d —2kujsl| QU 2kl Qﬁ‘
it gme dx+2yfﬂme oy dx
1/2k
< C{f e—2kp.|x|(|u|2k + lvxulzk) dx}
2
. ok (2k—1)/2k
. {f P du dx}
Q, ot
Lk 2 [ (2k—2)/2
— 2kylel| g o, |2 . —2kuls|| Ot
+C{j;zme v, ul dx} {js;me 5 dx}
(2k—1)/2k
+CI { _—2ky!x!I_E_)y_“ |2k _1__\ . (10 A1)
1}9 e I at! ax e”. {10.41)

This inequality was proved for k a positive integer. However, if k is any
positive number > 1, and if we differentiate (10.8) with respect to ¢t and

then multiply by
2k ~2 ( du )
ot /°
then we again obtain (10.41).

Recalling (10.29), we deduce from Sobolev’s inequality that

du
ot

P

lulslz,mi’.q,p < C

where 2g > 2, (29)"! > } —n~!. Hence, using (10.41) with 2k = 2q, we
get

29

du dx < C.

o~ 248t f o~ 2aull
2
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From the proof of Theorem 6.1 we deduce that
oDl < C
By Sobolev’s inequality
e *|u(t) Sf,mzqw < C

where 2q, > 24, (2q,)"" > (29)”! — n™1. Now we can apply (10.41) with
2k = 2q, and proceed as before. It is clear that after a finite number of steps
we arrive at the inequality

e—‘s‘t|1,t(1t)|g"‘p,M < C.
Since also e ~%|u'(1)],, o n < C, the assertion (10.5) readily follows.
Remark. In Theorem 10.1 € is an unbounded domain in C2*?. The same

theorem is clearly valid also if € is a bounded domain with C2** boundary;
in this case we take p = 0.

11. Parabolic varlational Inequalities (continued)

In this section we consider the case where ¢,, ¢, are functions of ¢. Set
K,(t) = { gEL>HQ); by(x. t) < glx) < ¢,(x, t) ace.in Q1.

For simplicity we consider the parabolic variational inequality in a finite
t-interval:

o TN T o wWwL2.u/ON ~ T2(0 T W72.2, 8 /ON)
U= L\v, £ W \Nej )T B, 15 WY (84} )
% e L0, T; W *H(Q)); (11.1)

for a.a. t€(0, T),

o ozl Ju ~2ublpy . (p —
-/;26 at(v u)dx+j;ze Au - (v — u) dx

>f9 e 2Eflv — u) dx forevery v€K,(t); (11.2)
do(x, t) < u(x, t) < ¢y(x, t) ae. in (x,6)€Q x (0, 7), (11.3)
u(x, T) =0 ae  inf. (11.4)

The inequalities in (10.5) will be replaced by

w€LP(0, T; WP H(Q)), E;—t‘- eLP0, T, WoPHQ)), (1L5)

where 2 < p < oo,



11. PARABOLIC VARIATIONAL INEQUALITIES (CONTINUED) am0

The conditions (B‘). (C*) will be replaced by:
(B**)
(i) ¢ D94, D2¢,, Di¢ belong to LP(0, T; WP+ Q)N
L*o, T; w* 2"(9)) fori—-l 2
(ii) 9%¢,/0t® belong to L2(0, T, Wo2#(Q)), fori = 1, 2;
(ili) Po(x, £) < 0 € ¢(x, t) a.e., and, for aa. tE(0, T), ¢,(x, t) and
®o(x, t) belong to Wy 2 #(Q),

(C**)
fELP(0, T, WP #(Q)) n L0, T; W% ¥(Q)),

of
= eL30, T, Wo21(Q)).

Notice that (B**) and (C**) imply that
o, €C([0, T; WoPHQ) N WO2H(Q))  (i=1,2)
fec(lo, 1}, wo>#),
Theorem 11.1. Let @ € C*** for some 0 < p < L. If (A*), (B**), (C**)

hold,-then there exists a unique solution of the parabolic variational inequal-
ity (11.1)—(11.4), and the solution satisfies (11.5)

Proof. For simplicity we give the proof only in the special case where
A= ~A= -3 3%/9x]. Introduce functions ¢,, = { ¢, as in (10.8). Con-
sider the problem:

u(-, )€ LP(0, T; W2P(Q,)) n L=(0, T; Wl3Q,)), (11.6)

du(-, t)
ot

e L?(0, T; LP(Q,)) foraa. te(0, T), (11.7)

- %% ~ Au + l( - ¢1m)+_ %(u - ¢2m)_= f ae. in 2, (11.8)

u(x, T) = 0. (11.9)
Set p = exp(— plx|). Multiplying (11.8) by —p?|u|?~2 and integrating over
Q,.. we get

_1 4d PlyulP dx— Plylp—2
p dt nmp|u| dx Lp|u| u Au dx

m

<f [|u|p {|f] + C) + C|ulP + ClulP~?

du
o H dx.
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Since

—f pP|u|P%u Au dx

ou
— — P p—2
f[p Dprlulr=*| 2

we get, for any y > 0,

2 Y,  Ou
l - pupPlulP T = | dx,

_ 1 4d 2_~ _Eﬂﬂ
. dtf p'”""d”f pPlulP” H 2 2)dx
<f p? |+c)|u;r1dx+{ Ipl"lul”’( + £ P g
.. \ 2y Zy /]
p—1 C , pu
P P i LIS
f P(| f| + C) dx+fp[u|( > +C+2y+27)dx.
(11.10)

Choosing v so that

and setting

m

we get from (11.10) that
P N A - A S ]
- @) < 6®(¢) + C,
where 8, C; are positive constants. It follows that ¢(t) < const, ie.,

f pPlu(x, )|P dx < C. (11.11)
o

Since the above analysis applies also for p = 2, we get
f p?|u(x, t)> dx < C. (11.12)
Q

"

Taking p = 2 in (11.10) and integrating with respect to t, we get, after

using (11.12),
IT f )2
0 V9, ox

for some positive constant C. Together with (11.12) this yields

fOT(|u( B ) dt < C. (11.13)

Next we multiply (11.8) by —pP[(u — ¢,,)" ]P”! and integrate with

2
de dt € C
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respect to x, t. Using the relations (with ¢ = ¢, )

[ o Setw-o) war

+

=f0Tf9 P’"%‘%ﬂ“ﬂu - ) 1P ax dt

T (p—1/p
é[j;j;zpﬂkl”dxdt} [ff dxdt}

for k = fand k = A¢ + aqb/at and noting that
' -1 % 9
f f p |—x—| —a;; (u — q5)+ dx dt

(p-1)/p

<j j o?[(u — ¢)7]’ dxdt}

p 1/p
f f pP| o= dxdt} :

(u—¢ )+

481
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we arrive at the inequa]ity

lff 17 dx dt

< C(l +f0TprP du pdxdt)lfp[-]:fgpp[(u —¢)+]pdxdt

Bx
here we have used (B**), (C**). 1t follows that
T P T
dt< C+ C d
. Jacecf )
Similarly, if we multiply (11.8) by —p? ({(u — ¢,,,)” )P ! and integrate, we
get
T % \" T du |
+ Pl 2 . :
fo ( M'ﬁ) dt< C cfo fgmp \ ax' dx dt. (11.15)

From (11.8) and (11.14), (11.15) it follows that

j;Tj;zmpp‘%%+Aulpdxdt< c+chTmepr

By Theorem 10.4.3,

v
b

‘|(P—1)/P

1 L2

s (=9

€

+

dx dt. (11.14)

pl Ou |°
0x

O.p.p

l (u - ¢2m)_

€

ou [P
_a?l dx dt. (11.16)

ff Plluf? + luf? + Ju P + |u l?] dx dt

T
<cf [ oPlu+ duppded+ C[ [ p?(ul + |ulf?P) dudt
Yo Yq,, Jo Y, ’
(11.17)

provided p = 1. The constant C may depend on m. We can show however
that C can be chosen to be independent of m. Indeed, we take a partition of
unity of &,,, say {&;}, as in Section 5, and apply (11.17) (with p = 1) to
ud,; exp(— p|x,|), where x, is a point in the support of ¢,. The constant C can
be taken here to be independent of i, m. Summing the resulting inequalities
over i, we end up with the inequality (11.17) (for p = exp(— pulx|)) with a
constant C that is independent of m.

We shall also need the inequality

J, pPludrdx < v [ pPlugl? de+ Cv) [ pPluldx (1118)
Q. L 2,

for any y > 0, where C () is a constant depending on y but not on m. This
is obtained by using the same partition of unity of £, as before, and
Theorem 10.2.1 (which we apply to u¢, exp(— p|x))).

Estimating the right-hand side of (11.17) by using (1.16) and then (11.18),
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we obtain, after recalling (11.11),
.[f P(lul? + |uP + |u P + |ul?) dxdt < C  (11.19)

where C is a constant independent of ¢, m
If we use (11.19) in (11.14), (1L.15), we get

T 1 nm P
f ( = (u — ¢y ) dt < C, (11.20)
0 € 0.p, 1
T 1 — nm P
f ( = (u ~ ¢p,) ) dt < C. (11.21)
0 € 0,p, 1

We need one more estimate. Differentiate (11.8) with respect to t,
multiply by p*(du/3¢) and integrate with respect to (x, t). Then,

T
J;] p%lu(x, )[* dx *j;l... p?u(x, T)|* dx +j; Lm pZ|u|® dx dt

+ff o? B — d1) du o
ot ot
P a(u_¢2m)“ ou _
—f f — 7 S dedt=G (11.22)
where
|m<qff A|u,2 + | £I?) dx dt < C.
Now

fT ¢'1m) d(u _¢'1m)

T P2 ( ¢1m) CL
+f js; e« ot 5 9% dt

m

+
T p2 a(u - ¢'1m) a¢'1m
?j; j;} P 3t 3t dx dt
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Similarly
_fo Pj a(u_¢2m) Q—"idxdt
¢ € ot ot
p - a(p m
/f ? ¢2m) : dx
p ¢2m
+ f f — (v~ ¢g) dx dt.

Since u,(x, T) = f(x, T), we also have
f pu(x, T)? dx < C.

Using these relations in (11.22) and using (11.20), (11.21), we get

fi Pl e + f ol de de

2
P +a¢lm
e

t=s

2
P - a¢'2m
+'/;2m[?(u—¢'2m) T:ItssdeC.

Integrating with respect to s, we find that

ffp2|u,|2dxdt+f [ff 0?lu lzdxdt] < C. (11.23)

Now, for any > 0, all the functions given in Theorem 11.1 can be
extended to —7n < t < 0 in such a way that the conditions (A*), (B**),
(C**) remain valid in the interval [—mn, T] instead of [0, T]. We can
therefore carry out all the previous analysis in the interval [—u, T]. In
particular, (11.23) yields

fT [fog p2|u,,|2dxdt]ds<c.
.
f° [fOTfQ p2|u,,|2dxdt]ds<c,
-"n m

Hence

ie.,
I'T r~ . = . o
j j p*lu | dedt < C (11.24)
0 YQ,

with a different constant C.
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Denote the solution of (11.6)-(11.9) by u,,. Extend u_, into a function 4,
defined for all (x, t) € R™ X [0, T] such that @, has compact support and

T 2( |~ |q 3 - [ 0 4 [ 0 4 [ d
fy Stk | g ] | B ] ¥ | | dede <€
(g =p.2),

T 2 2 ~ 2 ~ R"
fofmp 5 g Um| dxdt < C, @, ()1, < C.

Using the compact imbedding theorem for Sobolev spaces we obtain a
subsequence of #,, which we again denote by 4,,, that is convergent in
F2/0% vv /N TN £rv oo e 1.1 s Ok L O L. 1 e
L73¢" X (U, 1)), Tor any pounded set 3™, to a tunction u, together with its
first x-derivative. We may further assume that

4, —u in LPO, T; W2P¥R™) N L0, T, W>2*R")) weakly,
i, —u in L*(0, T; W:24R™) in the weak star topology,
o4
Dm0 L0, T, WOPHR™) N L0, T, W2 #(R")) weakly.
at ot y

We can now complete the existence proof of Theorem 11.1 by the same
arguments used in the proof of Theorem 10.1, following (10.32). The preof of
uniqueness is similar to the corresponding proof for Theorem 10.1.

Remark 1. The condition (iv) in (A*) is not needed in Theorem 11.1. Thus,
a can be any nonnegative number.

Remark 2. Theorem 10.1 is concerned with a parabolic variational inequal-
ity for 0 < t < co. One can similarly formulate a parabolic variational
inequality in a bounded interval 0 < ¢ < T, by adding a terminal condition

u(x, ) =0 ae.  inf (11.25)
The existence of a unique solution with
wEL®(0, T; W22#Q) N WP Q) N L=(0, T; W >#(Q))
du \

= eL>(0, T; Wo2#Q) N WP r(Q))

follows by specializing the proof of Theorem 10.1. Note however that in this
case the condition (iv) of (A*) is not needed. Thus, a can be any nonnegative
number. The homogeneous condition (11.25) can also be replaced by a
nonhomogeneous condition wu(x, T) = h(x), with h € W2P#(Q) N
WLy n Wi 2 HQ).
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Remark 3. In Theorem 11.1 and Remarks 1, 2, £ is an unbounded domain
in C**?. The same results are clearly valid if @ is a bounded domain with
boundary in C2**.

12. Existence of a saddie point

Consider the stochastic game associated with (9.1)~(9.3). We shall need the
following conditions:

¥i(x, £), Yo(x, t) are bounded functionsin € X[0, o)  {
Vi(® 1) = Y%, 1) = &(2), (
o(x) > 0 in Q, (12.3)
b€ WEPE(@) 0 WRRK(@) 0 WeEHE), (
(

e~ %y, € L=(0, co; W2P-4(Q) N W22 4(Q)), 12.5)
e” % eL*(0, oo; LP*(Q) N L2#(Q)), (12.6)
i 9
the condition (C*) holds for f = f ~ Ay, + —;:— .2

If & € € and (A*), (12.1)<(12.7) hold, then, by Theorem 10.1 (with
¢, =9, ¢,=0, and f replaced by f), there exists a function solution u
satisfying (10.2) and, for a.a. ¢ > 0,

—f e 2wl @— (v — u) dx + f e~ Ay - (p — 1) dx
Jo dt ’ Jg * !

>j;2 e—2nlxl(f — Ay, + B ) de  forevery veK, (12.8)

ul, t) €K, (12.9)
where
= {geL>*Q); 0 < g(x) < ¢(x) ae.}.

If p > n, then u(x, t) is continuous in (x, t) € Q and u_(x, t) is continuous
in x €4, for any ¢ > 0. Set

Vix, t) = u(x, t) + ¥ylx, 2), (12.10)
A={(x: t)E(__);V='~P1}’ ( )
T={(x,)€Q; V=15}. (12.12)

We shall need the condition
P(t§<ow)=1 Pt} <o)=1. (12.13)
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This condition is satisfied if
P(the < o0) =1,

which is the case, for instance, if Q is a bounded domain, or if  is a domain
contained in a strip —o0 < a; € x; € a; < co.

Theorem 12.1. Let Q& C**° for some 0 < p < 1, and assume that (A*)
(with ¢ = 0) and (12.1)—(12.7) hold with p > n. Assume also that (C,), (9.6),
and (12.13) hold. Then the stochastic game associated with (9.1)~(9.3) has
the value V(x, t), and (S, T) form a saddle point of sets. Further, V(x, t) is
continuous in Q, V,(x, t) is continuous in x€Q for any t > 0, and
v _ ¥y oV _ e

. o~ ~ r:'! o~ N I | - A
_— = —— on SN - = on 1 N 1 51 n)
ax; ox, A% ox,  ox ¥ \ 4

(12.14)

The proof follows from Theorems 10.1, 9.2 by extending the argument
used in the proof of Theorem 4.1. The details are left to the reader.

The variational inequality (12.8) leads to the following inequalities for V
(cf. (4.17)~(4.20))

(%+LV—aV+f)(v—V)<0 a.e. foranyv, ¢, < v < iy,
(12.15)
or

v .

5 tLV—aV+f>0 ae on OQO\T, (12.16)

Ul

oV 2

T +LV—aV+f<0 ae. on Q\S, (12.17)

v

G tLV—aV+f=0 ae. on Q\(§ uT). (1218)
We consider now a stochastic game with finite horizon T. By this we
mean that the stopping times o, T are restricted to vary in D [ : DI is the

subset of °D_  consisting of all stopping times 7 with 7 < T. The concepts of
value and saddle point are defined in the obvious manner. Notice that

V(T, x) = yy(x) forall x€Q. (12.19)

In the parabolic variational inequality for u we now take ¢ only in (0, T),
and impose the terminal condition

ulx, T) =0 a.e. on £. (12.20)

The proof of Theorem 10.1 when specialized to this case again yields a
solution u satisfying properties analogous to (10.2); see Remark 2 at the end
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of Section 11. The proofs of Theorems 9.1, 9.2 also extend, with trivial
changes, to games with finite horizon. Here we define

§S={(x €l x0T} v=y,} u {(x T); xel}, (1221)

T = {(x, 1) €8 x[0, T}; V = y,}. (12.22)
By Remark 2 at the end of Section 11, the condition (iv) of (A*) is not
needed in the finite horizon case. Thus the discount coefficient can be any
nonnegative number.
Consider now the case where the restriction (12.2) is removed. Set
o1(x, 1) = Yy(x, t) — Py(x, t) and assume

the function ¢, satisfies the conditions in (B**), (12.23)

Yo ELP(0, T; W2P#(Q)), a: eLP(0, T; WoPH(Q)), (12.24)
the condition (C**) holds for f =f— Ay, + % , (12.25)
¥y, ¥, f are bounded functions. (12.26)

By Theorem 11.1 there exists a unique solution u of the parabolic
variational inequality (11.1)-(11.4) with ¢, = 0 and f replaced by f. Define
V by (12.10). If p > n, then « and V are continuous in (x, t) € Q. Define 8,
T by (12.21), (1.22). We then have:

Theorem 12.2. Let @ € C**? for some 0 < p < 1, and assume that (A*)
(with ¢ = 0 and without the condition (iv)), (C,) and (12.23)-(12.26) with
p > n hold. Thenthe stochastic game with finite horizon T associated with
(9.1)—(9.3) has the vaiue V(x, t) and a saddle point of sets (S, T) given by
(12.10) and (12.21), (1.22).

The proof follows by combining Theorem 11.1 (and Remark 1 following
it) and an extension of Theorem 9.1 to the finite horizon case, using the
argument appearing in the proof of Theorem 4.1. The details are left to the
reader.

Remark. In Theorems 12.1, 12.2 the domain Q is unbounded and in C2*2,
The same theorems are clearly valid also if { is a bounded domain with
boundary in C2*.

13. The stopping time probiem

Consider the stopping time problem associated with (9.1), (9.2), and the cost

J, (o) = E{ [ e IR0, 0 dt + e (x{o), o)]. (13.1)
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This problem can be handled by specializing the proofs of the results for
stochastic games. Thus, we specialize Theorem 10.1 to the case where

= {geLl>*Q),g <0 ae), (13.2)

and we specialize Theorem 9.2 to the case where (9.3) is replaced by (13.1).
We shall just state the final results, leaving the details for the reader.
We shall need the following conditions:

Yi(x, 8) > —C, (13.3)
Efo ~| flx(e), )| dt > ~C  forany o€D, , (13.4)
0

where C is a constant;

e %y, e L=(0, o0; W2PH(Q) 0 W22K(Q)), (13.5)
et e o0, Worn(@) 0 WORHR),  (136)

the condition (C*) holds for f = f — Ay, + dy,/d¢. (13.7)

If (A*) also holds, then there exists a unique solution of the parabolic
variational inequality (10.2), (10.3) with K, defined by (13.2) and with
u(t) € K, for a.a. ¢ > 0. Set

Vix, t) = ulx, t) + ¢(x, ¢). (13.8)

If p > n, then u and V are continuous in Q and u,, V, are continuous in
x € for any £ > 0. Set

={(x,)EQ; V = y,]. (13.9)
We shall assume
P, (ts<o0)=1 forall (x,s)€EQ. (13.10)

Then we have:

Theorem 13.1. Let Q€ C**? for some 0 < p < 1, and assume that (A*)
(with ¢ = 0), (Cy), and (13.3)-(13.7), (13.10) hold with p > n. Then V(x, f)
is the optimal cost and S is an optimal stopping set for the stopping time
problem associated with (9.1), (9.2), (13.1). Further, V(x, t) is continuous in
(x, ) €Q, V.(x, t) is continuous in xEQ for any t > 0, and
0 N
%}—a—‘i:- om §$0Q (1<i<n) (13.11)
Theorem 13.1 extends to the case of finite horizon. In this case the
condition (iv) in (A*) is not needed, i.e., the discount coefficient a can be
any nonnegative number. Further, the condition (13.10) becomes su-
perfluous.
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Notice finally that, under the conditions of Theorem 13.1,
ov

5 FLV—aV+f>0 ae ingQ, (13.12)
v : 5
B¢ +LV—aV+ f=0 ae. in Q\S. (13.13)

PROBLEMS

1. Prove the existence of a solution of (3.6). [Hint: Schauder’s fixed point
theorem states: Let Y be a closed convex subset of a Banach space X and let
T be an operator from Y into itself such that TY = {Ty; y € Y} is con-
tained in a compact set. Then T has a fixed point, i.e., there is a point
Yo € Y such that Ty, = y,. Take w = Tu if Aw = ¢ 'K(x,u) + f in Q,
we W) N W (@), X=LP(Q), Y={ge X, |g, < M}]

2. Prove (3.9). [Hint: Approximate f, g by smooth f,,, g,.. By the maxi-
mum principle, R.f,, > R.g,,]

3. Generalize Theorems 2.3, 2.4, 3.1, 4.1, 4.2 to the case where a = a(x)
i.e. the function ¢ ~* in (1.3) is replaced by exp[— [{a(x(s)) ds]. :

4. Prove (5.35). [Hint: By Hélder’s inequality (f|f|9)Y/9 <
(”f|2)(p~q)/(p—2)(”flp)(q—2)/(p—2)_]

5. Let Lu = Zauu,, + Zbu, + cu be a uniformly elliptic operator in a
closed ball N, with Holder continuous coefficients (exponent a), and let
c<0inN. LetLu = f € W*P(N),p > n/a, and f < 0 a.e. in N, and let
u € W2P(N), u > 0 on 9N. Prove that u > 0 in N. [Hint: Suppose u €
W?2P in a neighborhood of N and let u,, = J,,,,u be a mollifier of u. Let
fm = Lu,, Show that |f, — fI§/, — 0. Next,

U, = — aa—G u,— | Gf. (G = Green’s function in N ),
oN oV N
and G > 0in N, dG/0r < 0. Take m—cc.]

6. Let the conditions of Theorem 7.1 hold and suppose y; > 5 in £,
E = O\G,, F = Q\G, where G,, G, are open bounded subsets with closure
in 2, and

Ly; —ay; + <0 inGy, Ly — oy + f >0 inG,.

Prove that the V and (E, F) in Theorem 7.1 are the value and saddle point of
sets for the stochastic game associated with (1.1), (1.3) and the sets E, F.
[Hint: By the remark at the end of Section 7, it suffices to prove that V < y,;
in G, V> Yyin Gy Letw = ¢y — V.If2° € G, N F, then V(2% = y;(x%)
< Py(x%). If x° € G\ F, then V(x) > yy(x) in a ball N about x°. Deduce
Lw — aw < 0in N, w > 0in N and use Problem 5]

7. State and prove an analog of Theorem 2.3 for the stopping time

problem (1.1), (1.2).
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8. Do the same for Theorem 24.
9. Do the same for Theorems 3.1, 6.1, [ Hint: In proving the existence of a
solution u, of (3.6), notice that (3.7) does not hold for the new K; K = 1 —
u™*. Since K is Lipschitz, K(u) = k(u)u where k(u) is a functlon of u,
|k )| < 2. Define w = Tu (cf. Problem 1) if A,w = ¢ %(w)w + f in Q,
weE W2%Q) n Wi4Q).]
10. Prove Theorem 8.1.
11. Prove Theorem 9.1.
12. Prove Theorem 9.2.
13. If u, 0u/0t belong to L0, T; L*>*(,)), then

L0 = 2(ult) w(®)  foraa. 10,1

where ( , ) denotes the scalar product in L**(Q,). [Hint: It suffices to
prove

D2 — 2J;T (uls), us)) ds = const,

Approximate «(¢) by mollifiers.]

14. Prove that there exists a solution of (10.7)~(10.9). [Hint: Cf. Problem 1.]
15." Prove (10.28). [Hint: It suffices to take v € C¢°(R). For fixed x,, . . . , x,,
if I is the set {x;; v(x) > 0} then

B (, do (A av)
f_wb axl( o )v dx, j;b 8x1 (a '()xl v dx;

) dx;.]

I U'-‘-l U 1

16. Let G be a bounded domain. If w is a uniformly Lipschitz continuous
function in G, then w belongs to W'?(QG), for any p > 0. [Hint: Show that
the weak derivatives of w exist and are bounded.]

17. Let wy, ..., w, belong to W'?(G), where G is a bounded domain
and 1 < p < o0, and let g(x,, . . ., x,,) be uniformly Lipschitz continuous in
R™. Prove that g(w,, ..., w,) belongs to W"P(G); thus, in particular,
max(wy, . . ., w,), |w,|, wi, w; belong to W1?(G).

18. Prove Theorem 12.1.

19. Prove Theorem 12.2.

20. Prove (12.15)—(12.18).

21. Let the conditions of Theorem 13.1 hold and let Q =0\ S, a8
= boundary of Q. We already know that

%Y- +LV~aV+f=0 in{, (13.14)

V=y, grad, V=grad, ¢y, on 90. (13.15)
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The system (13.14), (13.15) constitutes a free boundary problem. Thus, one
wants to solve (13.14) in a domain whose boundary is not known; however,
on the unknown boundary 9! there are two prescribed conditions. The
conditions (13.15) are called the “smooth fit” conditions. Note that we are
interested only in solutions of (13.14), (13.15) for which V < ; in {.

Now specialize to n = 1, L =} 9%/8x% a = 0, f = 0, and suppose that
the continuation domain £ consists of all points (x, ¢} with s,(¢) < x < s,(¢),
where s,(¢), s,(¢) are continuously differentiable. Suppose also that the third
derivatives of V are continuous in . Prove that w =9 (V — v,)/ 3t satisfies:

ow 1 8%w _  H(xt) .
3% T2 ot at in £,
w(s(e), ) =0 for t>0, i=12 (13.16)
W (1), 0) = 2H(s(0. D3(e)  for >0, i= L2

where H(x, t) =3y, (x, t)/0t + 3 3%y (x, £)/0x° If w >0 and H = —1,
then the system (13.16) is a Stefan problem and represents the standard
model of water at temperature w(x, ), occupying the interval (s;(t), sy(#)) at
time ¢; this interval is surrounded by ice at zero temperature. If w takes also
negative values, then we can think of it as a model with supercooled water.
22. Consider the special case of (13.14), (13.15) wheren = 1, « = 0, f = 0,
Y; =cosx, @ = R'. Show that V(x,t) = —1 and find the domain of
continuation. _

23. Suppose that in Theorem 3.1 y,, {, belong to C* ) and f € L®(Q).
Prove that Au € L*(R). [Hint: Let B,(x, u) = —¢ u — ¢(x))* —€¢ 'u".
At a point x, where B (x, u (x)) takes a positive maximum, u — { takes a
positive maximum, so that A(u — ¢) > 0. Hence B,(x, u(x)) < (f —Ay)
X (xp) < C. Similarly, B, (x, u(x)) > —C|]

24. Let ¢, {,, f be as in the previous problem. Replace (3.5) by

Au+ B(x,u)=f
where B,(x, u) is any C? function satisfying;
Be(x, 0) =0,
Bz, u)» — 0 if uw<0, €0,
B.(x, u)— + o0 if u>y(x), €0,

d
—a; Be(x, U) > 0.

Deduce that |B,(x, u (x))] < C and show that u,—u uniformly as €—0,
where u is the solution of (3.4).
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25. Extend the result of the preceding problem to the setting of Theorem
6.1.

26. Extend the result of the preceding problem to the setting of Theorem
10.1, and deduce, when the coefficients of A are independent of ¢, that

au Q
at 0, 00, p
[Hint: Take the (2k)th root in (10.39), k—.]

-o +e ¥Auff ,, < C foraa. t> 0.




1/

Stochastic Differential Games

1. Auxiliary resuits

In this chapter we shall deal with stochastic differential equations in which
control variables occur in the drift coefficient. The control variables are to
be chosen so as to yield optimal results for a given set of cost functions or
payoffs. We shall also introduce schemes whereby, in addition to control
variables, optimal stopping is allowed.

In order to solve these problems we shall need some results on parabolic
equations not stated earlier in this book.

The following notation will be used: £ is a domain in R™ with boundary
0%,

Qr={(xtsx2x€Q,0<t< T},
Sr={(xt);2€30,0<t< T},
Q= {(x, T),x € 9},
I'y= 8§ u Q.
We shall assume in this section that € is a bounded domain with C?
boundary 32. A function @ defined on I'; is said to belong to C*Y(T,) if
(i) in terms of local C? representation of dQ (say x; = ¥(x, ...,
Xi_p %4p -« -5 X)), the functions ®, 9®/dt, 90/ 0x, 9°®/0x,0% (for all
j # i, k # i) are uniformly continuous on Sp; (ii) ®(T, x), D,¢(T, x),
DZ®(T, x) are uniformly continuous in @, and (iii) ¢ is continuous on 9.
If 9Q belong to C*** (0 < &« < 1), then we say that @ belongs to
C2rel*«Tyif & € C*YT,) and, in addition, the functions occurring in
(i), (ii) are uniformly Holder continuous (exponent «a) in (x, ).
We now take a fixed finite number of local representations of 0§ that
cover 9Q. If @€ C*(T';), then we denote by ||®[)37;, an upper bound on all

the derivatives in (i), (ii) occurring in the given fixed local representations of
9 2. Denote by H,(®) an upper bound on the Holder coefficients of all the

494
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functions in (i), (ii). If ® € C***'*(I',), we define
1Pl a, 140 = [Pl + H, (D).

Definition. A function u(x, #) is said to belong to W2 (Q;) if its weak
derivatives

D,u, Du, D}(u)
belong to L?(Q,). We introduce the norm

< || 9
el weaip) = lwllzrign + 2 —t“;* +‘ %%
=1 i NLr(Qr) LP(Qr)
n
+ > ” aazf‘ H
ide=1{] 9% % || a0, )

Consider a partial differential equation

-a-'i+l i a,(x, t) 8% +é b,(x t)iu—+c(x thu = f(x,t) inQ
ot 24,;‘-1 T oy o o T o | ’ r

11
with the initial and boundary conditions given by )
u=9 on I'}. (1.2)
We shall need the following conditions:
(A,) For all (x, t)€ Qy and for all {ER™,

n

vl < 3 aylx, 58 < vl (13)

bt At S
ij=1

where »,, v, are positive constants.
(Ay) Forall (x, ¢) and %, #) in Qp,
Zlay(n ) —ay(& Dl < w(lx -z + |t - 7)., »()l0 if rlo
(1.4)

(As) The derivatives day(x, ¢)/dx, are uniformly continuous in Qr; let v,
be a constant such that
s da,(x, t)

5 <wp, forall (x,t)EQ,. (1.5)
ij k X

(A, The derivatives da,(x, t)/dt are continuous in Qr; denote by », a
constant for which
da,(x, t)
ot

‘< v, forall (x,t)€ Q. (1.6)
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(B) The functions b,(x, t), c(x, t) are measurable in Qr, and
2b(x, )< vy e(xt)] < vy forall (x,8) € Qp (L7)

We shall need an extension of Theorems 10.4.2, 10.4.3 to the case of the
nonhomogeneous boundary condition (1.2). We state it only for p > n,

Lemma 1.1. Let 32 € C?% ® € C*>Y(T',) and let (A,), (A,), (B) hold. Then,
forany p > n, f € LP(Qy), there exists a unique solution u in W»(Qr) of
(L1), (1.2), and

lullweagn < CIRNZE + [ fllzriop) (1.8)
where C is a constant depending only on vy, v\, v, vy, and Q.

Notice, by the Sobolev inequality, that u(x, t) is continuous in Q. The
condition (1.2) is understood in the classical sense.

Lemma 1.1 can be proved by constructing a function ¥ with continuous
derivatives D, ¥, D_¥, D2V in Q, such that ¥ = ® on I, and then applying
Theorems 10.4.2, 10.4.3, to u — ¥. Solonnikov [1] has proved a stronger
result than Lemma 1.1, requiring less differentiability of &.

For any set Q' in the (x, t)-space, write

lo(x, £) — (%, 1)
lx — &+ [t — #/2
where the Lu.b. is taken with respect to (x, ) EQ’, (%, t) EQ’, (x, t) # (x, 1).

0]y, o = Lu.b.

Lemma 1.2, Let 92 € C?% & € C*YT)), and let (A))—(A;) and (B) hold.
Then there exists an a, 0 < a < 1, such that, for any f € L™(Qy), the
solution u of (1.1), (1.2) satisfies

|D,uly o < C (1.9)

for any set Q' whose closure is contained in Q. Here C is a constant
depending only on vy, v, v, vy, 3, Qy, Q', and l.u.b.rr|<1>|.

This result is due to Ladyzhenskaja et al. [1; Chapter 6] in case u is a
classical solution of (1.1), (1.2). The proof in the general case follows by
approximation; see Friedman [4].

Lemma 1.3. Let 0 < a < 1. Suppose 92 € C***, & € C?*****(T), and
let (A))-(A,) and (B) hold. Then, for any f € L®(Qy), the solution of (1.1),
(1.2) satisfies

Lub. |u|+ |Dul, o < c(n@ugfm,lﬂ +lub.|fl),  (110)
QOr Qr

where C is a constant depending only on vy, vy, vy, ¥3, ¥4, Q.
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This lemma is due to Friedman [1] in case ® = 0 and b, ¢, f are
continuous. The case ® Z 0 can be reduced to the case ® = 0 by consider-
ing u — ®. The case where b, c, f are not continuous follows by approxima-
tion.

We shall deal later on with nonlinear parabolic systems of the form

RN

agt 3 Zla.,x t)-é—a—+ek(xtDu,...,DxuN)=0 in Qr,
11=

=& onT,,

where k = 1,..., N, and the ¢, are nonlinear functions in the variables

D,u'. The solution v = (u?l, ..., u")is taken in the sense that each u* is in

W2 }(Qy), is continuous in Q, and D.u* is continuous in Q.
"We need the following conditions:

C) () filxtyy,. ...t A <i<n)and h(x, t,y,,...,yy) (1 <i
< N) are continuous functions in (x,¢, 4, ..., 4y € R” X [0, T] X
Y, X -+ X Yy, where Y,, ..., Y, are compact subsets in some euclidean
spaces R*, . .., R* respectively;

(if) 9% is in C? and g;(x,t) (1 < i < N) are functions belonging to
C2(Ty).

Consider the functions
H(xty, . odep) =@ty oyy) et i(xtiyn ooy

(1.11)

where f = (f,, ..., f,) and p; is a variable point in R". We shall need the

fgllgwing D‘Pnornhzorf minimax condition:

(D) There exist functions y}(x, ¢, p), ..., y%(x, t, p), where p =
(p1> « + « » Pn), such that:

(i) the y*(x, t, p) are measurable in (x, t) € Q, for every p, and con-
tinuous in p for every (x, t) € Q, with modulus of continuity independent of

(x, £);
(i) for all (x, £)E Gr and for all p,

yf*(x, L, p)EYf (1 <j<N)
(iii) for all (x, t) € Qy and for all p,
yinEiI}ka(x’ Lyt tp). ..., g% top),
Yoo Ylaar(% . p), - y(x 1 ). o)
=H(x t,yXx t,p)....yt(x tp)p) (1<k<N). (L12)

Theorem 1.4. Let (A))—(A;), (C), and (D) hold. Then there exists a solution
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o* = (o}, . . ., ¢%) of the nonlinear parabolic system
o & 3 g .
—f 41 ) - D
57t 2 o) g+t D) Dy

+ h(x, t, y*(x, t, D,$)) = O in Qr, 1< k<N, (113)
¢ =g only, 1<k<N. (1.14)

More precisely, ¢* is continuous in Qp and satisfies (1.14), D¢* is a
bounded function in Qy, uniformly Holder continuous (with some exponent
a) in compact subsets of Qy, the weak derivatives 0°¢} /dx, dx, ¢} /dt
belong to L™(Qy) for any r > 1, and (1.13) holds almost everywhere.

The proof is given in Friedman [4]; it is based on Theorem 7.1 of
Ladyzhenskaja et al. [1] and on Lemmas 1.1, 1.2.
We shall need the following lemma of Filippov:

Lemma 1.5. Let g(t, u) be a function with values in R", defined for
t € [a, b], u € U where U is a compact set in R*. Assume that g(t, u) is
continuous in (t, u) € [a, b] X U. Let y(t) be a measurable function in
la, b] such that

V(1) Eg(t, U) ={g(t u)u €U}
for a.a. t € [a, b]. Then there exists a measurable function u(t) such that
u(t) € U and Y(t) = g(t, u(t)) for a.a. t € [a, b].
F

or the proof, see Filippov [1] or Friedman [3].

Corollary 1.6. Let g(t, u) be as in Lemma 1.5 with n = 1. Then there exist
measurable functions u,(t), uy(t) with values in U such that
t = g(t t i = t
max g(t, u) = g(t, uy(t)),  min g(t, u) = g(t, ug(t))
for a.a. t € [a, b].

Indeed, apply Lemma 1.5 with {(#) = max,c, g(¢, u) and with (t)

= min, <, (¢, u).

2. N-person stochastic differential games with perfect observation

We maintain the notation of Section 1, and take £ to be a bounded domain
in R", Consider a system of n stochastic differential equations

AE(t) = FE(E) toyp - yw) di + 0(E(), ) do(t)  (21)
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for s < t < T, with initial condition

fs)=x (x€2,0< s < 1) (2.2)
Here y,, . . ., yy are parameters to be chosen later on.
Denote by 7 the first time ¢ such that (§(t), t) leaves Qr and t > s.
Let Y,, ..., Yy be compact sets in some euclidean spaces R*, ..., R*

respectively (as in condition (C)). We shall call Y, the control set for the
player y,. A measurable function y,(x, t) defined on R X [0, T) with values
in the control set Y, is called a control function or a pure strategy for the
player y,. When each player y, chooses a pure strategy y,(x, t), then (2.1)
takes the form

dE(t) = FE(E) & a(E(E), O - (00D, 0)) dt + o(8(0), 1) duo(2). (23)

In addition to (2.1), (2.2) we are given cost functionals

I{yy,---s Yn) = Ex,s{f; h(§ 8y, - yy) dE+ gi(&(r), ")} (24)

for 1 < i < N. If there exists a unique solution of (2.3), (2.2), then we can
compute the costs J;(y,, . . ., Yy)-

The above setting of the players choosing pure strategies represents a
model of a game of perfect observation. In this model, the players know the
position £(¢), at any time ¢. Furthermore, they make use of their knowledge
of the present position only, i.e., they do not choose strategies based on the
past observations (i.e., based on knowledge of {(A), s < A < ¢).

The vector y = (y,, ..., yy) will be called a pure strategy if each
component is a pure strategy.

Suppose now that the functions f, o are Lipschitz continuous in x. If the
pure strategy y(x, t) is also Lipschitz continuous in x, then there exists a
unique solution of (2.3), (2.2). The costs J,(y) can then be computed. We
shall presently derive a useful expression for the J.(y).

Set

n
a4y = 2 Oix Ojx
k=1

and let J; be the solution of the parabolic initial-boundary value problem:

O = R i - Wy
Tk L1 Yk Tk
7t 2 et gt B A b 0 (e )
+h(x, t,y(x 1), ...yy(x ) =0  inQy (2.5)
IPk = gk on TT. (26)

If there is a smooth solution of (2.5), (2.6), then by applying It6’s formula
applied to Y, (§(¢), T — t) we find that

J(y) = %l(xs) (1<k<N) 27)
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Now let the conditions (A,), (Ay), (C) hold. Then, by Lemma 1.1, for any
pure strategy ¢(x, ) there exists a unique solution of (2.5), (2.6). The
functional J, (y) defined by (2.7) will henceforth be called the cost functional
corresponding to the pure strategy y(x, t). This definition is a generalization
of the definition (2.4).

Definitions. The system (2.1), (2.2), (2.4) is called an N-person stochastic
differential game with perfect observation. Consider the following scheme:
Each player chooses a pure strategy, and then the costs J, are computed
(from (2.7)). We refer to this scheme as a game of perfect observation played
by pure strategies, or, briefly, a Markovian game.

y*(x ) = (yi(x 0, .. yh (% 1)
is called a Nash equilibrium point in pure strategies of the differential game
if
Byt oo gt o Yen - U8) 2 Iyt s Y Y 0R)
(2.8)
for any pure strategy y,, 1 < k < N.

An equilibrium point is a “reasonable’ solution for noncooperative game
of N players. If N = 2 and J, + J;, = 0, we say that we have a zero sum
two-person game; the equilibrium point is then called a saddle point in pure
strategies.

Theorem 2.1. Let the conditions (A))~(A;), (C), and (D) hold, and write
y*(x, 1) = y'(x, t, Dpt(x, 1), ox(x, 1)) (2.9)
where ¢*(x, t) is the solution asserted in Theorem 1.4. Then
y*(x, 1) = (yi(x. 1), ..., ydlx. 1) (2.10)

is a Nash equilibrium point in pure strategies of the differential game
associated with (2.1), (2.2), (2.4).

Proof. Let y,(x, t) be any pure strategy for the player y,. Denote by ¢, the
unique solution of

3o, n 3¢y
LI
I ,_,,.2,1“'1("’ ) o ox
. £\ far &Y ar e #Y ek [ 2) X fv £YY o DA
TIE B Y % L) > Ye—1\Fs V) Yr\®s B)s Y1\ B - - o5 YN B)) 0 HaTk
+ hk(xa t: yi*(xs t): L yk—l x’ t)’ yk X, t)’ y’:f-l(x’ t)’ ’ y;\.; X, t)) =
in Qp, (2.11)
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Using (1.12) we find that the function ¢ satisfies

dp 2 220
%y S a,(x, t) %

at =1 dx, ax,
+F 6 g ), (5 (5 ), gl - g5 ) - Dt
+ By(x tyr(x g) oo (% 8 e(® 1), Y ), Lyl (2 1) 2 0
a.e. in (J;. Setting
b(x, t) = flx, t, y3(x. 0), .. Loy i(x 8), gilx 8), g (2 0), L yR(an 0)
we see that w = ¢} — ¢, satisfies:
2
a,— + 3 -a Y +b(x,t) - Dw >0 ae. in O,
dt dxf v * !
w=0 on [';. (2.13)

By the maximum principle (see Problem 1), w < 0 in Qy. This gives (2.8).
For a zero-sum two-person game we can prove Theorem 2.1 under a
condition weaker than (D), called the minimax condition:

, ayx, t) -
1 0%,

M

(D’) For any (x, t) € Q, and for any pER",
Jmin, max H,(x, £, 4y, Yo, py) = max min Hy(x, £, 4y, yo. p)- (214)
Note, by Corollary 1.6, that there exist measurable functions y,
= y¥(x, t, p1), Yo = y3(x, t, p;) with values in Y, and Y,, respectively, such
that

max Hl(X, t, y*x, t, pl)_, Yo, pl) = min max H,(x, ¢, y,, 4., »,), (2.15)
yZEYZ ylEYI yzeyz i L JL7 Ly A} /
min H(x, t, y;, y3(x, &, p)), p) = max min Hy(x, t, 4, yp, p,). (2.16)

NneY,; hEY, hEY,

From this we infer the condition (1.12). However we cannot infer, in
general, that the functions y*(x, ¢, p,) are continuous in p,.
The function

H(x, t, p) = yrlne";‘,l ygg‘i‘,zHl(xs t, Y1 Yo P) (2.17)

is called the Hamiltonian function of the (zero-sum two-person) differential
game.

Lemma 2.2. Let N =2, J, = —J, and assume that (A,)—(A;) and (C) hold.

Then there exists a solution ¢* of the parabolic equation

TR G oy

with the initial-boundary conditions
=g  onl, (2.19)

n2,

+H(x,t,D$)=0 inQp (218)
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The solution is taken in the same sense as in Theorem 1.4. In fact, the
proof of the lemma is just slightly different from the proof of Theorem 1.4
when specialized to N = 1.

Theorem 2.3. Let N =2, J, = — ], and assume that (A,)—(A;), (C), and
(DY) hold. Let y}(x, t), y3(x, t) be any control functions satisfying

max H,(x, £, y}(x, 1), yo, D,o*(x, t))= min max H,(x, t, y,, yo, D}o(x, 1)),

Y€, VIEY, €7,
. * * _ . *
i, Hy(x, t, y,, y3(x, t), D,o*(x, t)) max min Hy(x, t, y,, Yo, D¥o(x, 1)),

where ¢* is a solution of (2.18), (2.19) (asserted in Lemma 2.2). Then
(yf(x, t), y3(x, t)) is a saddle point in pure strategies of the differential

e o oot T tal SOIN /OO /O AN L L 1 AT O T r
ga'me assocuited wiin (a.1), ké.é}, (&%) wonen K = 1, Iv = 4, ]2 - _Jl‘

Notice that the existence of y}(x, t), y3(x, t) follows from Corollary 1.6.

Proof. Let y, choose the strategy y¥(x, t), and let y, choose any strategy
yo(x, £). Denote by ¢ the solution of

3y : R
41 — * .
3 T2 i’izgla‘f(x’ t) ox, x, +f{x t, yf (%, t), ys(x, £) * Doy
+ hl(x’ t, y’lk(x: t)’ yz(x’ t)) =0 in QT’
V=g on ..
Since ¢* = 3 on I'; and

0p* . & 0 %p* , . M . D g
i + 3 i,%laii(x, t) W +flx t, yt(x 1), yolx, t) - Do

+ hl(x! t, yf(x’ t)9 y2(x’ t)) <0
almost everywhere in Q,, we conclude (see Problem 1) that ¢* > ¢ in Q.
This gives
Lyt y3) > Lyl o).
Similarly, one proves that

A Y1 y;) < J Y1 y;)

3. Stochastic differential games with stopping time

Consider a stochastic system of n equations
d¢ = fi& t, y, z) dt + o(¢, t) dw,
§(s) = =
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in an interval [0, T)], where 0 < s < T,, We are going to introduce a
concept of a differential gaine with Markov stopping times S, T (with range
in [s, Ty]) associated with (3.1), (3.2) and with a payoff

SAT
P, (y,S;z,T)=E, " e IR (E(D), 8, y, 2) dt
s\ Y o\, Y

+e72579g,(4(5), S)xscr + e Ig(E(T), T)XT<S};

3.3
a is a nonnegative number, called the discount coefficient. (33)

The model will be a generalization of the stochastic game (without
controls y, z) introduced in Chapter 16, and a generalization of the zero sum
two-person stochastic differential game (without stopping times S, T) intro-
duced in Section 2.

Set 0 = (o), f = (fi, - - -, f,) and
Oy = 2 O Ok

We shall need the following conditions:

> ay(x, )6 > v|&P, v >0, (3.4)
Oa; 8%, . bounded i
dy, o%, * 9% ot are continuous and bounded in

(x, ) €R" x[0, T,] (3.5)

d ad d
fi —a{- , —85 , 3]; are continuous and bounded in
1

(z, ) ER™ X[0, T}, (3.6)

d 92
h, h, f. f. g, agxll ax,ggt’ g,  are continuous

and bounded in (x, ) ER" X [0, T,]. (3.7)

Let Y, Z be compact sets in some euclidean spaces.

Recall that a control function for y is a measurable function y(x, t) with
values in Y. Similarly, a control function for z is a measurable function z(x, t)
with values in Z.

Suppose (3.4) holds, (a,) is continuous and bounded, and f(x, ¢,
y(x, t), z(x, t)) is measurable and bounded. According to Stroock and
Varadhan [1] one can construct a Markov process which is unique in law,
and which satisfies (3.1) for suitably constructed Brownian motion. Thus, for
any pair of control functions y = y(x, t), 2 = z(x, t) there is a unique
solution of (3.1), (3.2) in the sense of Stroock and Varadhan.

On the other hand, if we restrict ourselves to control functions that are
Lipschitz continuous in x, then there exists a unique solution of (3.1), (3.2) in
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the usual sense (provided we also assume that f(x, t, y, z) is Lipschitz
continuous in x, y, z).

Remark. For simplicity we shall assume that (3.6) holds. Then we can take
the solution of (3.1), (3.2) in either sense. However the results of this section
remain valid when the condition (3.6) is omitted, provided the solution of
(3.1), (3.2) is taken in the Stroock-Varadhan sense.

The stopping times S, T are taken with respect to the o-algebra &,
generated by §(A), s < A < t. We assume that

s< S5, T<KT,

t), S so as to maximize the payoff, and the

a ac +o minimize the navoff
F 2 ARALASLAALALL.N WAANS t’u; NFL L

7]

The player y tries to choose y(x,
nlavar » triac ¥n schaonca »/+ &1 T
tllu] Wi A LAWY LU WALV O ~\ﬂ, W/’ A LRV

The system made up of (3.1), (3.2), (3.3) and Y, Z will be referred to as a
stochastic differential game with stopping time.

&0

S

Definition. A pair {(y*(x, t), S*), (2*(x, t), T*)} is called a saddle point if,
forall0 < s < Ty, x € R™,

P..(y Sz*T*)<P  (y*S*z*T< P  (y*S*3T) (3.8)

X,

for all controls y, z and stopping times S, T. the number V(x,s) =
P, ,(y*, S*; z*, T*) is called the value of the game.

We shall now assume the minimax condition:

max min {h(x, t,y,2z) + p - flx, t, y, 2)}

yeYzeZ
= ;rgg ;nEaJ)(,{h(x, t,y,z)+p - flx, t,y,2)} = H(x, t,p). (3.9
Define
Lu=33 a, Nk (3.10)
=1 ox, O,

Notice that (3.7) implies the following condition:
(F) The function H(x, ¢, p) is continuous in (x, {, p) € R" X [0, Ty] X
R", Lipschitz continues in (x, p), and a.e.,
[H(x, t, p)| < C(1 +|pl),
|H(x, t, p)l < C(1+|pl),
|H,(x, t.p)l < C
where C is a constant.

We shall write W% #(R") = W"%# and assume:
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(G) (i) The functions g,(x,t) (i = 1, 2) are measurable functions in
(x,t) € R" X [0, T,] and

g € LP(0, Ty WP # ) 1 LE0, T; W22 #) 0 L®(0, Tys Wh2#),

og
o ELP(0, Ty WP ¥ ) 0 L¥(0, Ty W%+ )

for some number p > n;

(i) g > g ae;
(iii) 0%(g, — g)/ 3> L0, Ty; W™ *).

Consider the nonlinear parabolic variational inequality;
VELP(0, Ty; WEPE) "\ LY0, Ty W22 #) 0 L=(0, Ty Wh2#),

~ e

98—‘:- € LP(0, Ty, WOP#) 0 L0, To; W2 #); (3.11)

for a.a. tE€[0, Ty,
Vv

(Et_ +LV + H(x, ¢, Vx))(v - V) <0 ae. forevery o€ W24

g, < v < g ae;

(3.12)
g <V< g ae; (3.13)
VT, 2) = gx T,) ae. (3.14)

This variational inequality has a unique notation. In fact, if g, > 0 = g|,
then the proof is similar to the proof of Theorem 11.1. Thus, we first solve
-@l + Ty — l

€

Flu— Y — )+ 1w +H(x ¢t
at \ L=V ¥} € \77r

u)l=10 a.e.
") ‘

in Q, X (0, T),u(t) € Wp?8,), u(Ty) =0, (3.15)

where £, = {x; |x| < m}. By Problem 2, there exists a solution u = u,, of
(3.15). Next we obtain estimates as in Section 15.11, with just minor changes
in the formulas. With these estimates at hand, we can then complete the
proof of existence of a solution of (3.11)—(3.14). The proof of uniqueness is
also similar to the proof in case H (x, ¢, u.) is linear in u_.

If the condition g,(x) =0 is not satisfied, then we first perform a
transformation u = V — g, and then solve for « as before. Here we need the
conditions that dg, /9x,, 3%z, /9x, 9t are continuous and bounded.

Notice, by Sobolev’s inequality, that V (x, t) is a continuous function in
(x, t) € R" X (0, Ty). Notice also that

v
at

aa—‘t’ +LV+ H(xt,V,) <0 if V<g. (3.17)

+LV+ H(x,t,V,)>0 if V>g (3.16)
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Let y*(x, t), z*(x, t) be any control functions that render the max, and
min, in (3.9) for p = D_V(x, t). By Corollary 1.6, such functions exist.
Define sets

G, = {(x,2); V(x, t) = g)(x, 9}, Gy = {(x, 2); V(x, t) = gylx, 1)}

Denote by S* and T* the first hitting times of the sets G, and G,
respectively. We shall show that {(y*, S*), (2*, T*)} is a saddle point.

Before we do that we wish to point out that if y*(x, ¢), 2*(x, t) are only
known to be measurable functions (and not Lipschitz in x), then we must
take the meaning of (3.1), (3.2) in the sense of Stroock and Varadhan [1]. If
however they are Lipschitz in x, we can take (3.1), (3.2) in the usual sense,
and restrict all control functions to be Lipschitz continuous in x.

Theorem 3.1. Let the conditions (3.4)—(3.7), (3.9), and (F), (G) hold. Then
{(y*, S*), (z*, T*)} is a saddle point of the stochastic differential game with
stopping time (3.1)—(3.3).

Proof. We shall prove the second inequality in (3.8). Let z(x, ¢) be a
control function for z and T a stopping time for the process ¥ determined by
(3.1), (3.2) when z = z(x, t), y = y*(x, t). Denote by x* the process deter-
mined by (3.1), (3.2) when z = 2*(x, t), y = y*(x, #). If we apply Ito’s
formula to the function
V(x, t) exp(— a(t — s))

and the process x, formally, then we get

E,  {V(#S* A T), S* AT) expl—a(S* AT - s)])

I/

*AT
= V(x, s) + E“{j;s exp[— a(t — s)][ i‘f +V, : flx, t, y*, 2)

+ LV](E(t), t) dt}. (3.18)

Notice that if t+ < S* A T < §*, then V(x(%),t) > g,(%(¢t), t); hence, by
(3.18),

[ %—‘; +LV+ Hx, t, Vx)](i(t), t) > 0.
From the definition of y* we then have
|-8=V +LV+ Rle t.a®lz. D20+ UV .« fAx t u*¥x ) z\.‘/:‘zlt\ H>0
| ot W & goAm 0, 2] % Ve A LY, B, 2) |1 )

for every z€ Z, with equality when z = z*(x, ¢).
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Taking z = z(x(¢), t) in (3.19) and using the resulting inequality in (3.18),
we get

E,  {V(&5* A T), $* A T)lexp[—a(S* A T - 5)]])

> V(x, s) — Ex,,{fs.AT {exp[ —a(t — )]

s

X h(%(t), t, y*(Z(¢), t), 2(Z(1), 1))} dt}

with equality when z = z*(x, t), X(¥) = x*(¢).
Noticing that

V(Z(S* AT), S* AT) < Xgoc7Z1(%(S*), §*) + Xpese £2(2(T), T)
with equality when z = z%(x, 1), T = T*
follows.

In order to justify (3.18) rigorously, we use mollifiers as in the proof of

Theorem 16.4.1.

a1 R R R, KT 0 QY
» e second mequalty i (3.0)

Remark 1. In Theorem 3.1 the differential game takes place in whole
x-space R". The same methods apply as well in case the space variable x is
restricted to a domain $. If Q is a bounded domain, one requires that 3 is

in C®**? (0 < p < 1), whereas if Q is an unbounded domain, one requires
that Q€ C2*,

Remark 2. 1f gy(x, t) — g,(x, t) = g(x), then we can use the method of
proof of Theorem 10.1 instead of Theorem 11.1. We then find that
%‘t’i eL=(0, T, WOP#).  (3.20)

VEL®(0, T,; WP #),
Remark 3. Theorem 3.1 extends to the case where there is only one player.

Thus, the variable y does not appear in (3.1), and (3.3) is replaced by the cost
functional

fTe‘“(“‘)h(g(t), t,z) dt + e “T-9g,(&T), T)}

L]

P, (2 T) = E“{
where T is any stopping time with range in [s, T,]. In this case, the value V
satisfies (3.20).

lon i8S mmmondloal smmseama sas 1378 -l
IV UIIGITSIIal yanivo witl

We shall consider a zero-sum two-player stochastic differential game with
partial observation. The dynamical system is given by n stochastic differen-
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tial equations
dé=fl&, t,y,z)dt + ol t)dw  (s<t<T) (4.1)
with initial condition
£&(s) = x. (4.2)

As in Section 2, the control sets Y, Z are compact subsets of some
euclidean spaces R? and RY, respectively. A payoff is given by

Ply.7) = B[ [ hit t,y. ) dt + glél). 7)) 43)

§

where 7 is the exit time of (§(¢), ¢) (¢ > s) from Q. The player y wants to
maximize the payoff, while the player z wants to minimize it.

If y and z make perfect observations, and if they use only pure strategies,
then the existence of a saddle point follows by Theorem 2.3. Suppose now
that y and z, at time ¢, can only observe a quantity 7(¢), and suppose,
further, that the manner by which 7n(t) is related to §(¢) is known to have the

form
dn = f(&m t.y, 2) dt + ol§ 4, 1) did,

where @ is a Brownian motion independent of w. We then consider the pair
§ = (m, &) as defining a diffusion process, governed by stochastic differential
equations. With respect to this system, the players y and z observe a certain
number of components of {, namely the components of #. The above setting
is thus equivalent (with a different notation) to the following one:

The dynamics of the game is given by (4.1), and the players y, z observe
just the first I components §,, ..., §of £ = (§,...,&).

Set

Bl t) =l b),

SO thatnﬁ = (2, é) We define a pure strategy for y as a measurable function
y = y(& t) from R* X [s, T] into Y, and a pure strategy for z as a measur-
able function z = z(£, t) from R' X [s, T] into Z.

As in Section 2, under some assumptions on f, o the payoff (4.3) corres-
ponding to the solution of (4.1), (4.2) with Lipschitz continuous y = y(§, 1),

-~

z = z(, t) can be given as follows: If
2

oy = . .
wth 2 min g, S +F(xty(5 0,2(2,0) - Db
+h(x, t, y(% 1), 2(%£,t) =0 in Qr, (4.4)
y=g only, (45
then
P(y.2) = ¥(x.9) (46)

Here x = (x, ..., x,), £ = (x1, ..., x)).
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From now on we define the payoff by (4.6), for any (measurable) pure
strategies y = y(x, 1), z = z(x, t).

We can define the concept of “a saddle pomt in pure strategies” as in
Section 2. However, there is no simple connection between such saddle
points and solutions of parabolic equations of the type (2.18). This makes it
much more difficult to try to prove the existence of a saddle point in pure
strategies. There is also an intuitive reason why one should not expect, in
general, the existence of a saddle point in pure strategies: In the lack of
perfect observation, it seems likely that each player should make use of all
the past history of the game, not just the present state.

We shall now develop a model based on the partial observation of the
whole past.

Let m be any positive integer, and let § = (T — s5)/m. Denote by L the
interval ¢,_, < t < t;, where t, = s + j§. Denote by Y; (Z) the set of all
measurable funct1ons y;(%, ) (%(% t)) from R" X L into Y(Z). An upper
8-strategy T° for y is a vector

= (..., Tm),
where T'*1 is a map from
Zy XY X XZ (XY, XY

into Y. A lower &-strategy A, for z is a vector

» AB = (AB,I"' .,Aa,m),
where 4; ; is an element of Z;, and 4; . (j > 2) is a map from

Zy X Yy X X Z_ XY,

into Z..

We shall assume:

(C) f(x,t.y,z) and h(x, t, y, z) are continuous functions in R" X
[s, T]1 X Y X Z, 92 € C*** for some a € (0, 1], and g € C2*=1+(T)).

Any pair (A, I'®) defines a unique pair of pure strategies (y’(%, ¢),
z5(%, t)), called the outcome of (A;, I'®). If (A,)), (Ag), and (C’) hold, then
there is a unique solution y° of (4.4), (4.5), when y = y%(%, ), z = z(%, ¢)
and a payoff

Py’ z) = ¢*(x, 3).
We denote this payoff also by P[A;, I®], or
Pla; . T ..., Ay, IO,

The abo Alka AL B R ~ff DIA
neé apove scneme o1 Luucapuuuulg, a Pa)ruu £lag, 1

] ,
(As, T®) is called an upper 8-game, and is denoted by G®. The upper 8-value
V? of this upper 8-game, is defined by
V3 = inf sup - - - inf supP[AB' I &l A
Ap. 4% A, %™
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Similarly, we define lower 6-game G; and lower é-value Vj. Here, y uses
lower 8-strategies 'y and z uses upper &-strategies A%. Thus

Vs =supinf - - - supinf P[T, ,, A%, . . T, A% ™.
Ly, %1 s 4™

One can show that

V8= infsup - infsup P(z,4p...» 2 Ym) (4.8)
ne€EZy, €Y, Zn€EZ,y,EY,
where P(z;, yy, . . ., %, y,,) stands for P(y, z) when y = y,z=zift €I
A similar formula holds for Vj. Using these formulas one can easﬂy verify
Ve > v, (4.9)

V>V V<V, if §=—, 8=

_, s , m divides m’. (4.10)
m m

The pair of sequences

G=({G*). (G})) (8= =2 me12 ...

m

is called the stochastic differential game with partial observation associated
with (4.1)~(4.3). If
V*=1lim V%, V™ =lim Vj
§—-0 80

exist, we call them the upper value and the lower value of the game. If
V* = V7, then we say that the game has value V, where V= V* = V7,

A sequence I' = {T';} is called a strategy for y. Similarly, a sequence

= {A;} is called a strategy for z. Each pair (4, I';) determines an outcome
(ys, z;) and the corresponding solution v, of (4.4), (4.5). Suppose there exists
a subsequence {6’} of{§} such that, as 6’0,

ysA%, t)—>g(£, t) weaklyin  LYR? X(s, T)), (4.11)
z (%, t)—>2(%,t) weaklyin  LYRY X(s, T)), (4.12)
Ys(x, t)—>y(x,t) foreach (x, t)€Qy, (4.13)

where (X, )€Y, z(%, t)€Z almost everywhere, and \I; is the solution of
(4.4), (4.5) corresponding to y = i, z = Z. Then we say that (g, 2), or
(7, % J) is an outcome of (A, T'). The set of all numbers xp(x, s), when
(Y. %, ¢) varies over the set of all outcomes of (A, T'), is called the payoff set
of (A, I'), and is denoted by P[A, T].

Given two sets of real numbers, A and B, we write A < Bifa < b for all

G'.EA, beB. We write A € B also in case A is Ullll.ll.)’ or B is %mpt}".

Suppose the value V exists, and let A*, I'* be strategies such that
P[A*, T] < P[A*, T*] = {V} < P[A, T'*]
for all strategies A, I'. Then we call (A*, T'*) a saddle point.

v
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To every pure strategy §j(%, t) we can correspond a constant strategy I' as
follows: . . . 5 .
F = {FB}’ Fs b (I‘S, 13 -‘ “ ey I‘B,m)’

where f‘m maps the whole space Z; X Y, X - -+ X Z_, X Y;_, into the
point g,(i, t), the restriction of §(x, ¢) to I,.. Using this correspondence, one
can show that the saddle point in pure strategies established in Section 2 for
a zero-sum two-person game, gives a saddle point in constant strategies—in
the context of the present section,

We shall need the following condition:
(E) The controls y, z appear “separately” in f, h, i.e.,

flx, t,y,2) = f{x, t, y) + f3x, t, 2),
h(x, t, y,z) = h'(x, t, y) + h¥(x, ¢, 2).

Theorem 4.1. Let the conditions (A))-(A,), (C), and (E) hold. Then the
differential game with partial observation associated with (4.1)-(4.3) has
value.

Proof. It is sufficient to show that, for any € > 0, there is a §, = §,(¢) such
that

VE-Vs<3e  if 8< 8, (4.14)
Indeed, it then follows that V%' — V,, < 3¢ if 8’ < §,. If § = (T — s)/m,
6" = (T - s)/m', 8" = (T — s)/mm’ then, by (4.9), (4.10),

Vi VY > Vv, > V.

Hence

VP — Vi< VY — v < Be
Similarly V% — V% < ¢, It follows that

V8- V¥ <3¢ if §< 8, & <38,

This implies that V* = limy_, V° exists. Similarly one proves that V~
= lim;_,, V; exists. Finally, from (4.14) it also follows that V* = V7, so
that the value exists.

In order to prove (4.14) we need the following lemma:

Lemma 4.2. For any & there exist an upper 8-strategy I =

/T8, 1 ™,my o3 o ., X8 __ /A8 1 AS,m\ 1 al..2
L5 ..., I”™) and an upper 6-strategy A° = (A™", ..., A% ™) sucn tnat
that

Ve < PA, T8+ e forall A (4.15)
Vs> P[T, A%]— ¢ forall Ty (4.16)



To prove (4.15), one constructs the components of [¥; [&m [&m-1
... step by step, using the formula (4.8). The proof can be found in
Friedman [3].

Fix an element Z in Z,, and consider the following game of G°: z chooses
z, = Z. Then y chooses y; = I*1z, on I,. In general, setting z(%, 1) =
Z (%, t + 6) in I _,, we take

Z(%8) =AYy, 2, Ly gy )&t —8)  for tEI,
y(28) =Tz, 4y, ....2_py_.2)(Et) for tEL (4.17)

Denote by y° (%, 1), z;(%, t) the control functions thus defined. Let Aa be
the constant lower &-strategy for z;(%, ¢). Applying (4.15) with 4; = A3, we
get

VP Py’ %) + c (4.18)

We shall compare the above upper §-game with the following lower

6-game. First~ chooses on I, the restriction y,(%, ¢) of ya(s'r‘, t). Then z
chooses §{; = A® 'y, for t € I,. In general,

y chooses, for ¢ € L, the restriction y(%, t) of y5(%, 1),

A (4.19)
z chooses (%, 8) = A%y, &1Ly §ions )

t
(%, t) for tEI’,.

Denote the control of z thus obtained by 2%(%, ). Let‘\f‘{B be the constant
lower 8-strategy for y°(%, ¢). Applying (4.16) with I'; = T';, we get
Vs > P(y?% 2% — (4.20)

One can easily verify that {(%, t) = z7,,(%, t) for t€ [, where z is the
restriction of z; to L. Consequently,

z5( %, t) = z5%(%,t — &) for s+86<t< T (4.21)
We shall need the following lemma:

Lemma 4.3. Let the assumptions of Theorem 4.1 hold. Let y,(%, t), 2,(%, t)
be control functions for y and z, respectively, for each A from a sequence
A} A, L0 if m 1 oo, Let (%, t) be a control function for z satisfying
Z(%, ) = z(%, t — A) for s+ A< ¢t < T, A € {A,}. Denote by ¢, and {,
the solutions of (4.4), (4.5) corresponding to (y,, z,) and (y,, 3,), respec-
tively. Then there exists a function a(M), independent of the particular
controls y,, z, Z, such that a(\,) —» 0 if m — co and
ax_ [da(x, 8) = da(x 2)| < a(d), A E {A,) (4.22)
(2, ) EOr
If the lemma is valid then, by combining (4.18) with (4.20) and using
(4.21) and the lemma, we obtain the assertion (4.14). Thus, in order to
complete the proof of Theorem 4.1, it remains to prove the lemma.
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Proof of Lemma 4.3. Let G(x, t;y, 1) (t < 1) be Green's function in Q;
for the parabolic operator

du 92
+1 t) ——— .
ot ‘z_ a(x, 1) dx, 0x
/ /
In the subsequent estimates, it is convenient to introduce a Banach space
X = L"(Q), r > n, and the linear unbounded operator
n 82
=1 (x, t) :
2 2;1 Ox; Ox,
The domain of A(t) is D, = W*"(2)n W %) and its range is in X. We
also introduce the operator
U(t’T) = c( Lt ,'T),
which is a bounded operator in X; it is called the fundamental solution of
d/0t + A(t).
We shall denote by || || both the norm in X and the norm of bounded
linear operators in X.
We may assume that the resolvent of A (#) exists for all A with Re A > 0,
for otherwise we first perform a transformation ¢ — ePy, where B is a
suitable constant. But then, by Friedman [2], fors < t < 0 < T,

A8 U(t, o)|| < : ft)" 0<8<1). (4.23)

Next, using the identity
a+A
Ult,to +Nx— U(t,o)x=U(t,o +\) [ AU o)x dé

for x € D, (see Friedman [2, p. 250]) and estimates on U given in Friedman
[2, Section 2.14], we find thatfor s < t < 0 <o +A KT

AP~
p/

(0 —2)

NA!D)[U(t,e + A) — Ult,a)]| < C 0<8<p<p <l

(4.24)

here and in what follows, various different constants are denoted by the
same symbol C.

Set ¢, = ¥ — ¥y Then, with ¢,(t) = &,(-, 1),

_jTA + Aoy = =[x, t, y\(%, 8)) - Do)

— [z, 1, 5(%, 1) - Doy, — fUx, t, (% 1)) + Do)
—[r3(x, £, (%, 1)) — B*(x, t, (% )]
= — B, — B, — B, (4.25)
We shall write B,(t) = B,(-, t).
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Suppose y,(%, t), z\(%, t), Z,(X, t), f, and h are all continuously differen-
tiable, By Lemma 1.3, D,y,, D,y are then uniformly Holder continuous in
Qr- Hence, by Friedman [2, p. 109],

T T T
— (1) = f U(t, 6)B,(0) do + f U(t, 0)B,(0) do + f U(t, 0)By(0) do
t t t
=@, + @, + O,
We shall estimate the ®,. First, for any 0 < ¢ < 1,

1A%(8)@, (1)l < CftTIIA”(t)U(t, o)l 1D (o)l do

X -
< — do. .
-I; (0 — t)o ( )
Since (see Friedman [2, p. 179])
1D dA(0)| € CllA®(0)pp(0)ll if 2< @<, (4.27)
we get
T [|A® (0)¢r(0)]]
1A (8)D, ()] < Cf () "(o) doif 1<60<1 (428)
¢ (0 — 1)
By Lemma 1.3,
le‘P?\la Qr < C’ IDx Ala Qr < Cs (4 29)
1o h 1D (e N 1ok N (r BNl [A A
1L.U.u. IUIVA\J" L}l b S W LaWU. L) |qu/A\/\v, b}l = U \‘1-\)\}}
Or T

To estimate ®,, write

>

<I>3='[_1;TAU(1‘, o)h?(-, 6,2,(-, 6 —A)) do —";T_ U(t, 0)h%(-, 0, 2,(-, 0)) do

£+ T
+f * U(t, 6)h%(:, 0, %(-, 0)) do —f U(t, 0)h*(-, 0, z,(-, 0)) do
¢ T
=L +1,— I, (4.31)
We can write

1, =f” [U(t, o + A) = Ut )12, 0 + A, 2, o)) do

t

+.[;T_1 U(t, o + MR-, 0 + A, 2,(-, 0)) — h%(-, 0, 2,(, 0))] do

= Il]. + 112-
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By (4.24),
T-~A p—8
lafomi < c [ A
t (0 - 2)
if # < p < p’ < 1. We also have
I1A%(DIgll < CeA),  €(A)—0 if A0,

where ¢(\) depends on the modulus of continuity of h*(x, ¢, z) with respect
to t. Hence,

IR*(:, 0 + X, 2(, 0))l| do < CA*~*

A% < CA~% + Ce(A). (4.32)
Next,

do < CAY7Y,

t+A
1A%aL) < | ¢
v (o— 1)

Similarly || A?(8)I;]] < CA'~% We conclude that
|A%(t)®,)| < CA*~% + Ce(\) forany 0< 8 <p <1 (4.33)
Next,

(1)2 = j;T U(ta 0)[f2(x’ g, Z}\(fﬁ 0)) ) Dx‘l’;)\(x’ 0) - f2(x’ g, zh(f’ 0))

P
-4

) Dx‘ﬁh(x’ 0)] do + .[;T U(t, 0)[f2(x, g, z,\(x, 0)) : Dx¢)\(x’ 0)] do

= By + Oy (4.34)
As for &,,, we have, by (4.27),

T C T
1m%@m<£ Gt;ﬂﬁﬁwwk<cﬁ

if 3 <@ <1 Asfor A%(t)d,, it can be estimated in the same manner as
A?(t)®,. Here we make use of (4.29), (4.30). The inequality we get is

|A%(2)®,,0l < CAP~% + Ce(A) + CA“.
We conclude that

|A®(8)®,]| < CA*~® + Ce(A) + CA® + C fT “Aa(")%(:)ll
t (0 — t)

Combining this with (4.33), (4.28), and (4.25), and setting

) = 1A%Ne(A)ll,  BA) = min {e(d), A7, A},
we get

do. (4.35)

n) < BN + ¢ [ (“f"i)a



516 17 STOCHASTIC DIFFERENTIAL GAMES

By iteration we find that
() < B*(A),  B*(A)—0 if A0,
i.e.,

1A% (D)ga(a)ll < B*A). (4.36)
In deriving (4.36) we have assumed that y,, z,, Z,, f, and h are con-
tinuously differentiable. However, the function S*(A) occurring in (4.36)
depends only on the constants which enter into the conditions (A,)~(A,) and
on bounds and moduli of continuity of f, h. Hence, by approximating y,, z,,
%, f, and h by smooth functions and applying (4.36) to each of the
corresponding ¢,, we conclude that (4.36) holds in general.
Since (by Friedman [2], for instance)

loa(x, )] < CIlA (D, 0]  if r>n, $<8<],

the assertion of the lemma follows from (4.36).
We shall now prove the existence of a saddle point under the additional
condition:

(F) f(x, t,y, z) and h(x, t, y, z) are linear functions of y, z, ie.,

flx, t,y,2) = f%x, t) + Fix, )y + F¥(x, 1)z,
hix, t, Y, z) = h'%(x, t) + h'(x, t)- y+ h(x, t)- 2,

and Y, Z are convex sets.

Theorem 4.4. Let the conditions of Theorem 4.1 hold and let (F) hold.
Then there exists a saddle point for the game of partial observation
associated with (4.1)—4.3).

We shall need the following lemma:

Lemma 4.3. Let the assumptions of Theorem 4.4 hold. Then, for any
strategies A, ', the payoff set P[A, I'] is nonempty.

Proof. Suppose first that g = 0.
Let y,, (%, t), z,,(%, t) be pure strategies and let ¢, (x, ) be the correspond-

ing solution of (4.4), (4.5). Since the sets of all pure strategies for y and z are

bounded convex and weakly closed in L'(R? X [s, T]) and L'(RY

X [s, T)), respectively, it follows that

1ipp v

] [e 1]
Fas FaY I.O’

D,
)

for some subsequence {m'}, where 7, z are pure strategies.

i

Yo —§  weaklyin L
Im J o4

T,

{
Zn—>Z  weaklyin LY(RY X[s,

l-i
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By Lemma 1.3, |{,,,(x, t)] < C and
[¥m(x: £) = (', )] + [Ddy(x, ) = Doy, )]
< — |t — |73,

Hence, by the Ascoli-Arzela lemma, there is a subsequence of {m’}, which
we again denote by {m’}, such that

Yo (, )02, ), Doh(x, )>D (2, ¢)

uniformly in Q, for some function . We can write

— Y, t) =J;T U(t, o)[ fx, o) + Fl(x, 0)y,.(%, 6) + FX(x, 0)z,,(%, 0)]

- Dy,(, 0) do + f (t, 0)[1%(x, 0) + h¥(x, 0) - y,. (% o)

+ h¥(x, 0) - z,(%, 0)] de.
Taking m = m’—-0, we find that

— ¥ (xt) =.I;TU(t, o)[ f(x, o) + F'(x, 9) §(3, o) + F¥(x, o)

]|
kst
S
i

-Dxtﬁ(x, o) do + fTU(t, 0)[h°(x, o)

+ hl(x, 6)- j(%, 0) + hz(x, o) - Z(X, o)] do. (4.37)

Now, the solution of (4.4), (4.5) (when g = 0) corresponding to ¥, Z also
satisfies the integral equation (4 37). F urther from the estimates (4 23) 4.27)
we can deduce that there is at most one solution ¢ of (4.37). It follows that ¢
is the solution of (4.4), (4.5) corresponding to 7, Z. Thus the set P[A, I'] is
nonempty, and contains the point y(x, ).

So far we have assumed that g = 0. If g =0, then we apply the
preceding proof to ¥, — &, where § is a smooth extension of g into Q.

Proof of Theorem 4.4. By a variant of Lemma 4.2, for any § there exists a
lower o-strategy A} such that
Ve > PAX, T®]— &  for any I (4.38)

Similarly, there exists a lower §-strategy I'§ such that

7 . plrs A8l AD
Vs < PII'§, %[+ 6 for any A°.

——
EF;
(W]
&

-

Set
Ax = {43}, T*={I}).
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We shall prove that (A*, I'*) is a saddle point.
Let I' = {I'y} be any strategy for y. Denote by ( y;, z;) the outcome of
(A}, T's). Since I'y; may be viewed as an upper 8-strategy, (4.38) gives
P(ys, z) < V® + 8. (4.40)
Let {8’} be any subsequence of {§} such that
Ys»—> Yy  weaklyin LY(RP X[s, T]),
zy — 2  weaklyin L'(RY x[s, T)), (4.41)

1Psr(x, S)'_N'I_j(xa S)a
where ;. and v are the solutions of (4.4), (4.5) corresponding to ( ys., z;) and
(1, z) respectively. Notice that the last relation in (4.41) gives

Py 2)—P(7, 2.
Hence, by (4.40) and Theorem 4.1,
P, 2) < V.

We have thus proved that P[A* '] < V for any I

Similarly one shows that P[A, I'*] > V for any A. Since, by Lemma 4.5,
the payoff set P[A*, I'*] is nonempty, it follows that P[A*, I'*] = {V}. This
completes the proof of Theorem 4.4.

PROBLEMS
If w is a solution of (2.13), then w < 0 in Qy. [Hint: Approximate ay, b,

by smooth a,;‘, bk Apply the maximum principle to the corresponding
1

w = w*, and take k—0.]
2. Prove that there exists a solution of (3.15). [Hint: Write the parabolic
equation as

% +Lu + F(x, t, u, u,) = 0.

Write
F(x,t,u,p) =2 [F(x. t,u, §) — F(x t,u, p_1)]
+[F(x,t,u,0) — F(x,0,0)] + F(x,¢0,0)
where p, = (p1, .+ - Pi_1: P 0, . . ., 0). Then,

Frt,up) = Dbt (x, 8) S +c%(x, u + e(x, 1)

3

where |b*(x, t)] < K, |c*(x, t)] < K, K independent of u. Define w = Tu



¥ VW e b TVYAD

where

% b Lw + Thx 1) 2L 4 otx o+ elr, =0 in 8, X (0. T,
i

w(t)e W iQ,), w(Ty) = 0.

Apply Theorems 10.4.3, 10.4.4 to deduce that T maps a set {u;
|u|W:. oy < M) into itself. Apply Lemma 1.3 to deduce compactness, and
use Schauder’s fixed point theorem.

Prove (4.10).
Let the conditions of Theorem 4.1 hold. Denote the value of the game
4.1)-(4.3) by V(x, s). Prove that V(x, s) is a continuous function in (x, s).

3. Complete the proof that (3.11)—(3.14) has a unique solution.
4. Prove (4.8).

5. Prove (4.9).

6.

7.

—
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shape and smoothness of the free boundary for a class of parabolic varia-
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converges to a limit as € | 0.
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