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ABSTRACT
Missing data are a common occurrence in analyses of multivariate data,
including in multilevel modeling. Bayesian approaches to handling missing
data in multilevel modeling have garnered increasing attention, either on
their own or in service of multiple imputation. However, these applications
are largely confined to specific models or missingness patterns. The current
work provides a coherent account of Bayesian analysis of multilevel models
in the presence of missing data on the outcomes, level-1 predictors, and
level-2 predictors, that covers the main aspects of the models and missing-
ness. In doing so, this work provides a grounding for estimation in fully
Bayesian approaches that employ Gibbs sampling, and provides an
account of how to generate the imputations in the first phase of a
multiple imputation approach.
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Missing data are a common occurrence in analyses of multivariate data, including in multilevel
modeling. In behavioral, social, education, and medical research, and related fields, strategies for
handling missing data in multilevel settings have garnered increasing attention, including
Bayesian and multiple imputation approaches, typically under the assumption that the data are
missing at random (MAR) (Schafer and Yucel 2002; Gelman and Hill 2007; Yucel 2008;
Goldstein, Carpenter, and Browne 2014; van Buuren 2011; Bartlett et al. 2015; Erler et al. 2016;
Grund, L€udtke, and Robitzsch 2016, 2018; L€udtke, Robitzsch, and Grund 2017; Enders, Keller,
and Levy 2018; Speidel, Drechsler, and Sakshaug 2018; Erler et al. 2019; Enders, Du, and Keller
2020). Multiple imputation can be thought of as having three phases: (1) imputation, (2) analysis,
and (3) pooling. The imputation phase of multiple imputation can be framed as an instance of
Bayesian inference for the missing data, yielding completed datasets which are subsequently ana-
lyzed with complete-data analyses, the results of which are then pooled.

Bayes’ theorem may be conceptually expressed as

p Unknown j Knownð Þ / p Known,Unknownð Þ ¼ p Known j Unknownð Þp Unknownð Þ

where p(Unknown j Known) is the posterior distribution of all the unknown entities given known
entities; p(Known, Unknown) is the joint distribution of known and unknown entities; p(Known j
Unknown) is the conditional distribution of known entities given the unknown entities, which
serves as the likelihood function for the unknown entities; and p(Unknown) is the prior distribu-
tion for the unknown entities. In the current work, unknown entities include model parameters
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and also missing data. Known entities include observed data and values of other entities specified
by the analyst.

Bayesian inference supports two broad strategies for modeling the presence of missing data: a
fully Bayesian approach, and a multiple-imputation approach. In a fully Bayesian approach, the
focus is often on the parameters of the analytic model of interest (e.g., a multilevel model relating
predictors at various levels to an outcome). A fully Bayesian analysis yields the joint posterior for
parameters of the analytic model of interest (e.g., the parameters in a multilevel model relating
predictors at various levels to an outcome) and the missing data. In a simulation-based estimation
context, a series of draws from this posterior are obtained for both the model parameters and the
missing data. In a fully Bayesian approach, the focus is often on just the parameters of the ana-
lytic model of interest, and the draws for the missing data are ignored. In a multiple imputation
approach, the draws for the missing data are viewed as the imputations, and the draws for the
model parameters are ignored; the imputations for the missing data yield completed datasets
which are then analyzed in the second phase of multiple imputation.

Bayesian approaches to inference in the presence of missing data and/or imputing values for
missing data in multilevel modeling have garnered increasing attention, but these applications are
largely confined to specific models or missingness patterns. As examples, Schafer and Yucel
(2002) considered multilevel models, but did not consider interactions and missingness was con-
fined to the response variable. Kim, Sugar, and Belin (2015) and L€udtke, Robitzsch, and West
(2020) considered models with interactions, but only at a single level. Goldstein et al. (2009)
treated multilevel models, but do not consider interactions. Erler et al. (2016) considered multi-
level models with interactions, but focus on the relevant distribution for missing values, and do
not provide the form of the relevant distributions for the model parameters.

Practitioners and methodologists alike benefit from treatments that attempt to bring these vari-
ous situations under a single broad umbrella. Following existing efforts pushing toward such gen-
erality (Goldstein, Carpenter, and Browne 2014; Erler et al. 2016), the current work offers a
coherent account of Bayesian analysis of multilevel models in the presence of data that are MAR,
covering the main aspects of the models, allowing for interactions varying missingness patterns.
The current work attempts to provide such an account under the assumption of normally distrib-
uted variables.

More specifically, for a series of models, we set out the posterior distribution under a Bayesian
analysis, and derive the full conditional distributions under the Bayesian model. Let Unknownr
denote the rth component of the collection of unknowns. Let Unknown-r denote the remaining
unknown components, that is, all the unknowns except Unknownr. The full conditional distribu-
tion is then p(Unknownr j Unknown-r, Known).

In doing so, this work contributes to the literature in four principal ways. First, it gives a
coherent account of what goes on in a fully Bayesian analysis that seeks inference regarding the
missing data and the parameters of the model for a larger class of models than has typically been
presented in the literature. Thus, this paper provides a unifying framework that generalizes solu-
tions given for specific models such as those reviewed above.

Second, by providing this account, it provides a grounding for estimation in fully Bayesian
models via Gibbs sampling (Gelfand and Smith 1990), a popular approach to Markov chain
Monte Carlo estimation that iteratively samples from the full conditional distributions. For a dis-
tribution with R components, an iteration for the Gibbs sampler proceeds by drawing from
p(Unknown1 j Unknown-1, Known),… , p(UnknownR j Unknown-R, Known), where, for each full
conditional, the current values in the chain for the unknowns on the right-hand side of the con-
ditioning bar are used as the values for the unknowns. Subsequent iterations proceed in the same
way. The limiting distribution of this sequence of draws converges to the desired posterior distri-
bution of unknowns given knowns. Gibbs sampling is implemented in software such as JAGS
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(Plummer 2017) and BUGS (Spiegelhalter et al. 2007), and has been shown to be advantageous
over popular imputation-based methods in certain contexts (Erler et al. 2016).

Third, for analysts adopting a multiple imputation approach, it provides an account of how to
generate the imputations in accordance with a full Bayesian model. This stands in contrast with
popular multiple imputation approaches which separately specify imputation models as
conditional distributions for the variable with missing values given other variables as following
normal-theory linear regressions. These may suffice in simple models. However, in models with
interaction effects, these approaches can yield imputation models that are incompatible, in the
sense that there may not a joint distribution that corresponds to the set of conditional distribu-
tion (e.g., Liu et al. 2014; Bartlett et al. 2015; Chen and Ip 2015). In the current work, we derive
the full conditional distributions as mentioned above. The Hammersley-Clifford theorem states
that, under mild conditions, the complete set of full conditional distributions fully determine the
joint distribution (Besag 1974; Robert and Casella 2004). This property underlies the use of Gibbs
sampling (Gelfand and Smith 1990; Robert and Casella 2004), and in the current context ensures
compatibility of the imputation models. Put somewhat casually, common imputation approaches
begin with separately-specified conditional models, which may not correspond to the joint (pos-
terior) distribution (i.e., they may not be compatible). In this work, we take the joint (posterior)
distribution as the starting point and derive the full conditional distributions from it; the set of
these uniquely define the full joint (posterior) distribution, and are therefore compatible. As such,
this work provides a grounding for software aimed at producing imputations for subsequent anal-
yses, such as Blimp (Keller and Enders 2019), REALCOM (Carpenter, Goldstein, and Kenward
2011), and the R packages ‘jomo’ (Quartagno and Carpenter 2018) and ‘mdmb’ (Robitzsch and
L€udtke 2021), among others.

When analytical formulations of the full conditional distributions are intractable, a more flex-
ible but more computationally expensive Metropolis sampling step may be employed (Hastings
1970). This is commonly done in single-level and multilevel models with interactions or other
nonlinear terms where there is missingness in the predictors. As examples, Goldstein, Carpenter,
and Browne (2014) considered a single-level model with interactions, and Enders, Du, and Keller
(2020) considered a multilevel model, and both employed Metropolis steps to sample from the
distribution for missing predictors. Similarly, L€udtke, Robitzsch, and West (2020) and Robitzsch
and L€udtke (2021) employed Metropolis-Hastings to sample from the distribution for missing
predictors in single-level and multilevel models. In this work, the analytical forms for the full
conditional distributions are developed for several scenarios in single-level and multilevel models
with missing data, including those with interactions or other nonlinear terms. Thus the fourth
main contribution of this work is to show that, for such models, the more computationally
expensive Metropolis sampling steps are not required, as the full conditional distributions follow
known forms.

This paper is organized as follows. The following section presents foundational results for
Bayesian analyses with normal distributions, which are invoked throughout. In the sections that
follow, we build up from a single-level model with no missingness to models with missingess on
the outcome or the predictors. We start with the single-level model because it is easier to see the
strategies involved in those contexts. These form the building blocks for our ultimate goal, which
is a two-level model with missingness on the outcome, level-1 predictors, and level-2 predictors.
For each model, the model and posterior distribution is expressed, and then the full conditionals
are developed. For completeness and transparency in the full conditionals, we include condition-
ing on the hyperparameters that define the prior distributions. When the hyperparameters are
specified in advance, they are not random variables in the sense of other model parameters and
the data. However, including them serves to highlight that they are involved in the computations.

In a sense, the results presented here may be regarded as an application of the already estab-
lished relationships and properties of Bayesian modeling, reviewed in the next section. However,
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the details of how they play out may not be obvious, particularly when the situation involves
interactions among covariates, missing data, and interactions among covariates with missing data.
Deriving the analytical forms of the full conditional distributions for the model parameters and
missing data, and presenting them in a single, coherent way serves the four principal intended
contributions. A discussion concludes the paper.

1. Foundations

The current work focuses on linear models assuming normal distributions for the outcome and
predictors at each level. Among other advantages, the normality assumption allows us to give
analytic expressions for all Gibbs sampler steps, thus eliminating the need for more computation-
ally expensive Metropolis sampler (Hastings 1970). Models with discrete variables may be viewed
as extensions of these models, through the use of underlying latent variable formulations (Chib
and Greenberg 1998; Carpenter and Kenward 2013). Accordingly, the current work may serve as
a foundation for extensions to multilevel models for such variables (e.g., see Enders, Du, and
Keller 2020; Enders, Keller, and Levy 2018; Goldstein et al. 2009). Many of the specifications
involve normal distributions that afford conditional conjugacy relationships through the applica-
tion of standard Bayesian results for models assuming normality; see Lindley and Smith (1972)
and Rowe (2003) for extensive treatments of these results. As it is central to many of the full con-
ditional distributions developed below, we state some key properties. In what follows, we pur-
posefully employ notation that is in the main different than what we will use in defining the
multilevel models in the sections that follow. We do this because, as we will see, the derivations
involve viewing model parameters as akin to the data. Presenting this in a different notation aids
in avoiding ambiguity or confusion later on.

The first foundational result comes from Lindley and Smith (1972). Let

z $ N Ah,C1ð Þ (1)

denote the conditional distribution of a column vector of observed values z given a vector of
unknown parameters h, which are assigned a prior distribution

h $ N Dg,C2ð Þ,

where g is a known vector and A, D, C1, and C2, are known matrices. The posterior distribution
for h is then

h j A,C1,g,D,C2, y $ N G _b,G
! "

(2)

where

_b ¼ C%1
2 Dgþ A0C%1

1 z and G ¼ C%1
2 þ A0C%1

1 A
! "%1

The next foundational result obtains from a similar setup. Suppose C1 ¼ c1I where I is an iden-
tity matrix. Viewing (1) as a regression structure, this then embodies an assumption of homogen-
eity of variance. Suppose h is known and c1 is unknown and assigned a prior distribution

c1 $ Inverse-Gamma !0=2, !0r2c1=2
# $

where !0 and r2c1 are known scalars. The posterior distribution for c1 is then

c1 j h, !0,r2c1 , z,A $ Inverse-Gamma
!0 þ n

2
,
!0r2c1 þ SS

2

% &
(3)

where n is the number of elements in z and
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SS ¼ ðz –AhÞ0ðz –AhÞ:

The next set of main results comes from Rowe (2003), who extended this situation to that of a
matrix of observations. Rowe situates this in a multivariate regression context where for each sub-
ject i there is a vector of P dependent variables predicted by an intercept and a vector of Q pre-
dictor variables. In the following we slightly expand Rowe’s notation and continue with the
notational scheme introduced above. The regression model may be expressed as

zi ¼ hAi þ ei, for i ¼ 1, :::, n

where

' zi ¼ (zi1,… , ziP)0 denotes an (P( 1) vector of values from case i on P outcome variables.
' Ai ¼ (1, Ai1,… , AiQ)0 denotes a [(Qþ 1) ( 1] vector containing values along Q predictor var-

iables for case i, along with a leading 1. Ai may be thought of as an augmented predictor vec-
tor in that it appends a 1 to the usual vector of Q predictors, treating the regression intercept
as a slope multiplied by a “predictor” that has a value of 1 for each subject.

' h ¼
h011
..
.

h0P

0

B@

1

CA ¼
h10 h11 ) ) ) h1Q
..
. ..

. . .
. ..

.

hP0 hP1 ) ) ) hPQ

2

64

3

75 denotes a [P ( (Qþ 1)] augmented coefficient matrix

which appends the column of regression intercepts to the usual matrix of regression coeffi-
cients. The pth row in h contains the augmented vector of coefficients for predicting the pth

element of z.
' ei ¼ (ei1,… , eiP)0 denotes an (P( 1) vector of errors for case i on P outcome variables.

Collecting all of the data together in matrices, the model may be expressed as

Z j h,A,E ¼ Ah0 þ E,

where in addition to h defined above

' Z ¼
z011
..
.

z0m

0

B@

1

CA ¼
z11 ) ) ) z1P
..
. . .

. ..
.

zn1 ) ) ) znP

2

64

3

75 denotes an (n ( P) matrix containing values from n sub-

jects on P outcome variables.

' A ¼
A0

1

..

.

A0
n

0

B@

1

CA ¼
1 a11 ) ) ) a1Q

1 ..
. . .

. ..
.

1 an1 ) ) ) anQ

2

64

3

75 denotes an [n ( (Qþ 1)] matrix containing values from

n cases along Q predictor variables, along with a leading 1 for every case. A may be thought
of as an augmented predictor matrix in that it appends a column of 1s to the usual matrix of
Q predictors, treating the regression intercept as a slope multiplied by a “predictor” that has a
value of 1 for every subject.

' E ¼
e01
..
.

e0n

0

B@

1

CA ¼
e11 ) ) ) e1P
..
. . .

. ..
.

en1 ) ) ) enP

2

64

3

75 denotes an (n ( P) matrix of errors from n cases on P out-

come variables.

Suppose

ei $ N 0,Reð Þ,
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where 0 is a (P( 1) vector of 0s and Re is a (P(P) covariance matrix. The model may then be
expressed in distributional form as

zi j h,Ai,Re $ N hAi,Reð Þ, for i ¼ 1, :::, n:

Suppose Re is known and h is unknown, where

x ¼ vecðhÞ $ N x0,Tð Þ,

where “vec” is the vectorization operator that stacks that columns of its matrix argument, and x0

and T are a known mean vector and covariance matrix, respectively. The posterior distribution
for x is then

x jRe, z,A,x0,T $ N D _x,Dð Þ (4)

where

D ¼ T%1 þ A0A* R%1
e

' (%1
, _x ¼ T%1x0 þ A0A* R%1

e

! "
x̂,

* is the Kronecker product, and

x̂ ¼vec z0A A0Að Þ%1
! "

:

Suppose instead that h is known and Re is unknown, where

Re $ Inverse-Wishart Q, vð Þ:

The posterior distribution for Re is then

Re j h, z,A,Q, v $ Inverse-Wishart vQþ nS, vþ nð Þ, (5)

where

S ¼ z–Ah0ð Þ0 z–Ah0ð Þ=n:

2. Single-level regression, no missing data

We begin our treatment of different models with a single-level regression, with no missing data,
and shift to a notation that will support natural expansions to multilevel models. Let y ¼ (y1,… ,
yn) denote the collection of outcome variables from n subjects. Let xi ¼ (xi1,… , xiP) be the col-
lection of P predictor variables for subject i. Further, let x be the full collection of P predictors
from all n subjects. The basic linear regression model assuming exchangeability among the sub-
jects specifies the conditional distribution of the outcomes as

p y j b0, b,r2e , x
! "

¼
Yn

i¼1

p yi j b0, b,r2e , xi
! "

,

where

yi j b0, b, r2e , xi $ N b0 þ b1xi1 þ ::: þ bPxiP, r
2
e

! "
:

We expand the model and notation to define an augmented set of predictors, denoted xA, which
includes the original xs and any other deterministically defined elements that will serve as predic-
tors. For example, in the model above xA is the augmented predictor matrix obtained by combin-
ing an (n( 1) column vector of 1s to the predictor matrix x. This notation accommodates
transformations such as interactions. For example, suppose we have a model with two xs (x1, x2)
and their interaction (as captured by the product x1x2) as predictors. We may write the model as
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yi j b0, b, r2e , xi $ N b0 þ b1xi1 þ b2xi2 þ b3xi1xi2, r
2
e

! "
:

Defining the augmented set of predictors for subject i as x0Ai ¼ 1, xi1, xi2, xi1xi2ð Þ, we may com-
pactly write the model as

yi $ N x0AibA, r
2
e

! "

where bA is the augmented vector of coefficients containing the coefficients for xA; in this case
bA ¼ (b0, b1, b2, b3).

We can derive the full conditional distributions more compactly by working with a matrix rep-
resentation of the regression model,

y j bA, r2e , x $ N xAbA, r
2
e I

! "
, (6)

where xA is an augmented predictor matrix (with one row for each subject) and I in this case is
an (n( n) identity matrix.

Note that this actually gives the conditional distribution of some of the data. The data in our
regression situation include the predictors x as well as the outcomes y. A fully Bayesian analysis
that views the data as observed values of random variables includes a distributional specification
for x as well as y. If the values for x are fixed, then it can be viewed as if their probability p(x) is
known (Gelman et al. 2013) or alternatively as though they are not drawn from a density at all
(Jackman 2009). More generally, letting X denote the parameters that govern the distribution for
x, p x jXð Þ, the posterior distribution for the full model is then

p bA,r
2
e ,X j y, x

! "
/ p y, x j bA,r2e ,X

! "
p bA,r

2
e ,X

! "
:

The first term on the right side is the conditional probability of all of the data. The second
term is the prior distribution for all of the parameters. Assuming prior independence of bA, r

2
e

! "

and X allows for the factorization p bA,r
2
e ,X

! "
¼ p bA,r

2
e

! "
p Xð Þ: It can be shown (e.g., Jackman

2009) that the posterior distribution can be then factored as

p bA, r
2
e ,X j y, x

! "
¼ p bA,r

2
e j y, x

! "
p X j xð Þ:

This implies that we can analyze the first term on the right side—the elements of the standard
regression model—by itself with no loss of information. As a consequence, the distinction
between x being fixed or stochastic is irrelevant in the Bayesian analysis of the model (Jackman
2009). Either way, the p(x) and X terms drop out of the model and subsequent analysis. As will
be discussed in later sections, the situation is more complicated when x contains missing data.

Under a conditionally conjugate prior distribution the posterior distribution is given by

p bA, r
2
e j y, x

! "
/
Yn

i¼1

p yi j bA, r2e , xi
! "

p bAð Þp r2e
! "

, (7)

where

yi j bA, r2e , xi $ N x0AibA, r
2
e

! "
for i ¼ 1, :::, n,

bA $ N c, sð Þ, and r2e $ Inv-Gamma !0=2, !0r2e0=2
# $

:

2.1. Full conditional distributions

For the level-1 coefficients the full conditional can be expressed as

p bA j r2e , c, s, y, x
! "

/ p y j bA, r2e , x
! "

p bA j c, sð Þ:
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The first term on the right-hand side is the normal distribution of the outcomes in (6). The
second term is the normal prior distribution in (7). We can apply the results of the standard
Bayesian theory for normal models described above in the Foundations section. Following (2),
the full conditional distribution for the coefficients is

bA j r2e , c, s, y, x $ N lbA j ))),RbA j )))
! "

, (8)

where

lbAj j ))) ¼ s%1 þ x0A r2e I
! "%1

xA
# $%1

s%1cþ x0A r2e I
! "%1

y
# $

, and RbAj j ))) ¼ s%1 þ x0A r2e I
! "%1

xA
# $%1

:

The ellipses in the subscripts in lbAj j ))) and RbAj j ))) are meant as shorthand to indicate condition-
ing on all the relevant terms, namely, those that are expressed in the left-hand side of (8).

Turning to r2e , following (3), the full conditional distribution for r2e is

r2e j bA, !0,r
2
e0 , y, x $ Inv-Gamma

!0 þ n
2

,
!0r2e0 þ SS Eð Þ

2

% &
, (9)

where

SS Eð Þ ¼ y % xAbAÞ
0 y % xAbAð Þ:

!

A Gibbs sampler iteratively draws values from the full conditional distributions. That is, at any
point in a chain, an iteration of the Gibbs sampler would take a draw for bA from (8) using the
current value for r2e , and then take a draw for r2e from (9) using the just-drawn value for bA.The
next iteration would proceed accordingly: take a draw for bA from (8) using the just-drawn value
for r2e , and then take a draw for r2e from (9) using the just-drawn value for bA. And so on.

The following sections describe the full conditional distributions in situations that expand on
this basic regression model, including different types of missingness and multilevel structures.

3. Single-level regression, missingness on the outcome

When some values for the outcome are missing, we may partition the full set of potentially
observable outcomes y into two subsets, y ¼ (yobs, ymis), where yobs are the observed data and
ymis are the missing data. The posterior distribution is given by

p bA,r
2
e , ymis j yobs, x

! "
/
Yn

i¼1

p yi j bA, r2e , xi
! "

p bAð Þp r2e
! "

:

The terms on the right-hand side are just those defined in (7).

Full conditional distributions

The full conditional distributions for the regression parameters bA,r
2
e

! "
are just the same as in

the fully observed data case; they are given in (8) and (9). The key difference is that now y is
comprised of yobs and ymis. In a Gibbs sampler, the values for ymis will change from iteration to
iteration, as draws are taken from its full conditional distribution.

Assuming exchangeability of subjects, the full conditional distribution for ymis is given by

p ymis j bA,r
2
e , yobs, x

! "
¼ p ymis j bA,r

2
e , x

! "
¼
Ynmis

i¼1

p yi, mis j bA,r2e , xi
! "

,

where yi,mis is the value for the outcome for subject i, which is missing, and nmis are the number
of subjects with missing values on y. Following the regression model, the full conditional distribu-
tion for each subject is
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yi, mis j bA,r2e , xi $ N x0AibA, r
2
e

! "
:

4. Single-level regression, missingness on a predictor

A number of previous works describe methods for incomplete covariates in single-level regression
models (e.g., Ibrahim, Chen, and Lipsitz 2002; Bartlett et al. 2015; Kim, Sugar, and Belin 2015;
Zhang and Wang 2017). In our framework, when some values for a predictor are missing we par-
tition the full set of potentially observable predictors x into two subsets, x ¼ (xobs, xmis), where
xobs are the observed data and xmis are the missing data. As xmis are unknown, they will require a
distributional specification, governed by parameters X. Assuming prior independence of bA, r

2
e

! "

and X allows for the factorization p bA, r
2
e ,X

! "
¼ p bA, r

2
e ,r

2
e

! "
p Xð Þ, and the posterior distribu-

tion can be then factored as

p bA, r
2
e ,X, xmis j y, xobs

! "
/ p bA, r

2
e ,X, xmis, y, xobs

! "

¼ p y j bA, r2e , xmis, xobs
! "

p bAð Þp r2e
! "

p xmis jX, xobsð Þp xobs jXð Þp Xð Þ:

The first three terms on the right-hand side are just those defined in (7). The last three terms
on the right-hand side are new, reflecting the need for a distributional specification for x. In
what follows we adopt a multivariate normal distribution for x, in which case assuming exchange-
ability among subjects yields xi $ N lx,Rxð Þ: (Note that x does not refer to the augmented set of
predictors, which could include interactions. Thus, this distributional specification for xi holds
even if the substantive analysis includes interactions, because the product terms are not a part of
xi.) In this case, we have X ¼ lx,Rxð Þ: Employing conditionally conjugate prior distributions for
these parameters defines the last term on the right-hand side:

lx $ N llx ,Rlx
! "

,Rx $ Inv-Wishart Rx0, dð Þ:

For subject i, the distribution for the subject’s observed values is

xiobs jX $ N lxiobs ,Rxiobs
! "

,

and the distribution of the subject’s missing values is

ximis jX, xiobs $ N lxiobs þ RxiobsximisR
%1
xiobs ximis % lxiobsð Þ,Rximis % RximisxiobsR

%1
xiobsRxiobsximis

# $
, (10)

where

lx ¼
lximis

lxiobs

" #

;Rx ¼
Rximis Rximisxiobs

Rxiobsximis Rxiobs

" #

:

Here, lxiobs is the subvector of lx corresponding to the variables for which subject i has
observed values, lximis

is the subvector of lx corresponding to the variables for which subject i
has missing values, Rxiobs is the submatrix of Rx corresponding to the variables for which subject i
has observed values, Rximis is the submatrix of Rx corresponding to the variables for which subject
i has missing values, Rximisxiobs contains the submatrix of Rx containing the covariances between
pairings of variables for which subject i has observed values with variables for which subject i has
missing values.

Note that, in essence, the distribution for the missing data in (10) is what emerges from
regressing the predictors with missingness on the other predictors. Alternatives to this multivari-
ate approach adopted here include a univariate approach and a conditional specification, dis-
cussed later.
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4.1. Full conditional distributions

The full conditional distributions for the regression parameters bA,r
2
e

! "
are just the same as in

the fully observed data case; they are given in (8) and (9). The key difference is that now x is
comprised of xobs and xmis. In a Gibbs sampler, the values for xmis will change from iteration to
iteration, as draws are taken from its full conditional distribution.

4.1.1. Full conditional for the missing values of the predictor
The present description for the full conditional distribution for missing values on a predictor ech-
oes that of Kim, Sugar, and Belin (2015). Assuming exchangeability of subjects, the full condi-
tional distribution for xmis may be factored as

p xmis jX, y, xobs, bA, r
2
e

! "
¼
Ynmis

i¼1

p ximis jX, yi, xiobs, bA,r
2
e

! "
,

where nmis is the number of subjects with missing data on the predictors. The implication is we
have a full conditional distribution for each subject.

We describe the full conditional for the missing values in a univariate fashion, that is, in terms
of each missing value separately. Extensions to multivariate full conditionals are possible, in par-
ticular to accommodate multiple cases with the same pattern of missing data at the same time,
but the univariate approach facilitates later comparisons with alternative univariate and condi-
tional specifications for the distributions of the observed variables. Let xis denote the value for
subject i on predictor s, which is missing, and let xi(-s) denote the values for subject i on the
remaining predictors. The full conditional for the missing value is

p xis j lx,Rx, yi, xi %sð Þ, bA, r
2
e

# $
/ p yi j bA,r2e , xis, xi %sð Þ

# $
p xis j lx,Rx, xi %sð Þ
! "

: (11)

The first term on the right-hand side is the conditional distribution of the outcome, given the
predictors and level-1 model parameters. This can be written to isolate the missing predictor:

yi j bA, r2e , xis, xi %sð Þ $ N x0Ai %sð Þ~bA %sð Þ þ ~bsxis, r
2
e

# $
,

where ~bs is the effective coefficient for xs, obtained by factoring xs out of x0AibA, ~bA %sð Þ are the
remaining coefficients in the model, and x0Ai %sð Þ are the remaining augmented predictors. For
example, let us return to the case of a model with two xs (x1, x2) and their interaction (x1x2) as
predictors. As before, we may write the model as

yi j bA, r2e , xis, xi %sð Þ $ N b0 þ b1xi1 þ b2xi2 þ b3xi1xi2,r
2
e

! "
:

Now suppose there is missingness for subject i on x1. In this case, factoring out x1 yields the
equivalent representation

yi j bA, r2e , xis, xi %sð Þ $ N b0 þ b2xi2 þ b1 þ b3xi2ð Þxi1, r2e
! "

:

In this terms of the more general notation, ~bs ¼ b1 þ b3xi2ð Þ is the effective coefficient for x1,
~bA %sð Þ ¼ b0, b2ð Þ, and x0Ai %sð Þ ¼ 1, xi2ð Þ: In the full conditional for xi1, all other terms are treated
as known. We can therefore rewrite the conditional distribution of yi as

yi % b0 þ b2xi2ð Þ½ , bA, r2e , xis, xi %sð Þ $ N b1 þ b3xi2ð Þxi1, r2e
! "

:
))

Returning to the more general case and notation, we may write the conditional distribution of yi as

yi % x0Ai %sð Þ~bA %sð Þ

h i
bA,r

2
e , xis, xi %sð Þ $ N ~bsxis, r

2
e

# $
:

)))
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We can recognize this form as one that conforms to that laid out above in the Foundations
section as the standard Bayesian analysis for normal distributions, where the mean of the normal
distribution is defined by having the unknown quantity (here, xis) multiplied by a known quantity
(here, ~bs).

The second term on the right-hand side of (11) is the distribution for the missing value condi-
tional on the other predictors, which is a univariate version of that given in (10):

xis j lx,Rx, xi %sð Þ $ N lxs þ Rxsx %sð ÞR
%1
x %sð Þx %sð Þ

xi %sð Þ % lx %sð Þð Þ, r2xs % Rxsx %sð ÞR
%1
x %sð Þx %sð Þ

Rx %sð Þxs

# $

where

lx ¼
lxs
lx %sð Þ

" #

with sizes
1( 1

P % 1ð Þ ( 1

* +
;

Rx ¼
r2xs Rxsx %sð Þ

Rx %sð Þxs Rx %sð Þ

" #

with sizes 1( 1 1( P % 1ð Þ
P % 1ð Þ ( 1 P % 1ð Þ ( P % 1ð Þ

* +
:

Following the standard Bayesian analysis for normal distributions, the full conditional distribution
for the missing value on the predictors in (11) is

xis j lx,Rx, yi, xi %sð Þ, bA, r
2
e $ N lxis j ))), r

2
xis j )))

# $
,

where

lxis j ))) ¼
1

r2xs % Rxsx %sð ÞR
%1
x %sð Þ

Rx %sð Þxs
þ

~b
2
s

r2e

0

@

1

A
%1

lxs þ Rxsx %sð ÞR
%1
x %sð Þ

xAi %sð Þ % lx %sð Þð Þ
r2xs % Rxsx %sð ÞR

%1
x %sð Þ

Rx %sð Þxs
þ

~bs yi % x0Ai %sð Þ~bA %sð Þ

# $

r2e

0

@

1

A

and r2xis j ))) ¼
1

r2xs % Rxsx %sð ÞR
%1
x %sð Þ

Rx %sð Þxs
þ

~b
2
s

r2e

0

@

1

A
%1

:

4.1.2. Full conditional for the parameters that govern the distribution of the predictors
Turning to the parameters that govern the distribution of the predictors, the full conditional for
X may be expressed as

p X j xmis, xobsð Þ / p xmis, xobs jXð Þp Xð Þ ¼ p xmis, xobs j lx,Rx
! "

p lxð Þp Rxð Þ

and we may proceed with the means and the covariance matrix separately.
The full conditional for the means of the predictors is

p lx j x,Rx, llx ,Rlx

! "
/ p x j lx,Rx

! "
p lx j llx ,Rlx

! "
:

The first term is the normal distribution of the predictors. The second term is the normal
prior distribution for the means of the predictors. Following the standard theory, the full condi-
tional distribution is

lx j x,Rx,llx ,Rlx $ N llx j ))),Rlx j )))
! "

,

where
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llx j ))) ¼ R%1
lx

þ nR%1
x

# $%1
R%1
lx
llx þ nR%1

x "x
# $

, Rlx j ))) ¼ R%1
lx

þ nR%1
x

# $%1
,

and "x is the (P( 1) vector of means of the treated-as-known predictors over the n subjects.
The full conditional distribution of the covariance matrix of the predictors is

p Rx j x, lx,Rx0, d
! "

/ p x j lx,Rx
! "

p Rx jRx0, dð Þ:

The first term is the normal distribution of the predictors. The second term is the inverse-
Wishart prior distribution. By the standard Bayesian analyses, the full conditional distribution is

Rx j x, lx,Rx0, d $ Inv-Wishart dRx0 þ nSx, d þ nð Þ,

where

Sx ¼
1
n

X

i

xi % lxð Þ xi % lxÞ
0:

!

5. Two-level regression with varying intercepts and slopes and level-2 covariates

5.1. Core model specification

Here we describe a two-level model with varying group-specific intercepts and slopes for groups
(clusters) with covariates at level 2. An expansion of the notation is necessary. Let yi(j) denote the
outcome for subject i in group j, and let yj denote the vector of the yi(j)s from group j. Similarly,
let xi(j) denote the variables that form the level-1 predictors for subject i in group j, and let xj the
collection of these from the subjects in group j. Let xAj denote the augmented matrix of predic-
tors in group j, including xj and any transformations of them (e.g., a vector of 1 s, an interaction).
Let bAj denote the augmented vector of level-1 regression coefficients for group j, and let bA ¼
(bA1,… , bA1)0 denote the matrix with the full collection of level-1 coefficients.

The level-1 model for group j is then

yj j bAj,r
2
e , xj $ N xAjbAj, r

2
e I

# $
for j ¼ 1, :::, J: (12)

Formulating the model at the individual level, the level-1 model for subject i who is a member
of group j is

yi jð Þ j bAj,r2e , xi jð Þ $ N x0Ai jð ÞbAj,r
2
e

# $
for i ¼ 1, :::, nj, j ¼ 1, :::, J,

where x0Ai jð Þ is row i of xAj containing the augmented set of predictors for subject i in group j.
The second level of the model specifies regression structures for the level-1 coefficients with
level-2 covariates denoted as vs. In the current development we allow the first P level-2 covariates
to be the group-specific means of the level-1 predictors and specify additional level-2 covariates.
v01¼ (lj1,… , ljP, v1(Pþ1),… , v1Q) denotes the level-2 predictors for group j and

v ¼

v01

..

.

v0j

0

BB@

1

CCA ¼

l11

..

.

lJ1

) ) )
. .
.

) ) )

l1P

..

.

lJP

v1 Pþ1ð Þ

..

.

vJ Pþ1ð Þ

) ) )
. .
.

) ) )

v1Q

..

.

vJQ

2

6664

3

7775,

denotes the full collection across all groups, with ljp denoting the mean for level-1 predictor p in
group j. As with the level-1 predictors, we may define an augmented level-2 predictor matrix vA,
with rows v0Aj containing the augmented predictors for group j.

Letting S denote the number of level-1 coefficients in bAj, the second level of the model speci-
fies, for group j:
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bAj jCA, s, v ¼ b0j b1j ) ) ) bSJ
' (0 jCA, s, v $ N CAv0Aj, s

! "
(13)

where, in addition to terms previously defined,

CA ¼ c00 ) ) ) c0s
' (0

is the full collection of augmented level-2 coefficients with each row containing the coefficients
for the level-2 predictors in predicting the level-1 coefficients and s is a covariance matrix for the
augmented level-1 coefficients. Importantly, the means of the level-1 predictors (the ljs) can be
within-group aggregates of the observed level-1 predictors, or they can be modeled as distinct
parameters with distributions, akin to latent variables (L€udtke et al. 2008, 2011; Shin and
Raudenbush 2010). Following the recommendation of Grund, L€udtke, and Robitzsch (2018), we
use latent group means approach because doing so naturally accommodates unequal group sizes.

To accommodate latent means, we specify the distribution for the predictors as a group-
specific multivariate normal distribution. For subject i in group j,

xi jð Þ ¼ xi jð Þ1 ) ) ) xi jð ÞP
' (0 $ N lxj,Rxj

! "
,

where lxj contains the means of the level-1 predictors for group j (which, under the latent means
specification adopted here, also are a part of vj) and Rxj is the covariance matrix for the level-1
predictors in group j.

The group-specific means and covariances require prior distributional specifications. The con-
ditionally conjugate prior distribution for the covariance matrix is:

Rxj $ Inv %Wishart Rx0, dxð Þ: (14)

To specify a distribution for the means for the group, lxj, recall that the means are also used
as predictors at level 2. We accomplish the specification of a distribution for the means via the
distribution for the larger set of elements that form the predictors at level 2. For group j, we spe-
cify the predictors to follow a normal distribution:

vj ¼ lxj1 ) ) ) lxjP vj Pþ1ð Þ ) ) ) vjQ
' (0 $ N lv,Rvð Þ: (15)

Employing conditionally conjugate prior distributions for the parameters that govern the dis-
tribution of the level-2 predictors, we have

lv $ N llv ,Rlv
! "

(16)

Rv $ Inv%Wishart Rv0, dvð Þ: (17)

5.2. Incorporating missingness at level-1

Now suppose the we have missing values among the level-1 predictors. As in the single-level
model, we will need to structure the distribution of the observed data, the missing data, and the
parameters that govern the data. Let X1j ¼ lxj,Rxj

! "
denote the parameters governing the distri-

bution of the level-1 predictors in group j, and let X1 ¼ (X11,… , X1J) denote the full collection
of those parameters. The joint distribution is then

p xmis, xobs,X1ð Þ ¼ p xmis jX1, xobsð Þp xobs jX1ð Þp X1ð Þ

¼
YJ

j¼1

Ynj

j¼1

p xi jð Þmis j lxj,Rxj, xi jð Þobs
! "

p xi jð Þobs j lxj,Rxj
! "

p lxj,Rxj
! "

where the third term has already been specified via the conditionally conjugate priors in (14) and
(15). The remaining terms are the distribution of the subject’s observed values
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xi jð Þobs j lxj,Rxj $ N lxi jð Þobs ,Rxi jð Þobs

# $
,

and the distribution of the subject’s missing values

xi jð Þmis j lxj,Rxj, xi jð Þobs $ N lxi jð Þmis
þ Rxi jð Þmisxi jð ÞobsR

%1
xi jð Þobs

xi jð Þobs % lxi jð Þobsð Þ,
#

Rxi jð Þmis % Rxi jð Þmisxi jð ÞobsR
%1
xi jð Þobs

Rxi jð Þobsxi jð Þmis

$
,

(18)

where

lxj ¼
lxi jð Þmis

lxi jð Þobs

" #

and Rxj ¼
Rxi jð Þmis Rxi jð Þmisxi jð Þobs

Rxi jð Þobsxi jð Þmis Rxi jð Þobs

" #

are the mean vector and covariance matrix for group j, now arranged in terms of the subsets of
the observed and missing data for subject i. Note that, in essence, the distribution for the missing
data in (18) is what emerges from regressing the predictors with missingness on the other predic-
tors, within group j. Alternatives to this multivariate approach adopted here include a univariate
approach and a conditional specification, discussed later.

5.3. Incorporating missingness at level-2

Now suppose the we have missing values among the level-2 predictors. Indeed we necessarily
will, if we view the latent group means as missing values. From this perspective, there will always
be missing values at level 2, but we also allow for the possibility of missingness of the other vs at
level 2. As above, we will need to structure the distribution of the observed data, the missing
data, and the parameters that govern the data. Let X2 ¼ lv,Rvð Þ abstractly denote the parameters
governing the distribution of the level-2 predictors. The joint distribution is then

p vmis, vobs,X2ð Þ ¼ p vmis jX2, vobsð Þp vobs jX2ð Þp X2ð Þ

¼
YJ

j¼1

p vjmis j lv,Rv, vjobs
! "

p vjobs j lv,Rv
! "

p lv,Rvð Þ,

where the third term has already been specified via the conditionally conjugate priors in (16) and
(17). The remaining terms are the distribution of the group’s observed values

vjobs j lv,Rv $ N lvjobs ,Rvjobs
! "

,

and the distribution of the group’s missing values

vjmis j lv,Rv, vjobs $ N lvjmis
þ RvjobsvjmisR

%1
vjobs vjobs % lvjobsð Þ,

#

Rvjmis % RvjmisvjobsR
%1
vjobsRvjobsvjmis

$
,

(19)

where

lv ¼
lvjmis

lvjobs

" #

and Rv ¼
Rvjmis Rvjmisvjobs

Rvjobsvjmis Rvjobs

" #

are the mean vector and covariance matrix, now arranged in terms of the subsets of the observed
and missing data for group j. Note that, in essence, the distribution for the missing data in (19)
is what emerges from regressing the predictors with missingness on the other predictors.
Alternatives to this multivariate approach adopted here include a univariate approach and a con-
ditional specification, discussed later.
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5.4. The complete model and posterior distribution

We have specified all the relevant terms. Pulling them together and restating them all in one
place, the posterior distribution is

p bA,r
2
e ,CA, s,X1,X2, ymis, xmis, vmis j yobs, xobs, vobs

! "
(20)

/
YJ

j¼1

Ynj

i¼1

p yi jð Þ j bAj, r2e , xi jð Þ
# $

p bAj jCA, s, vj
! "

( p xi jð Þmis j lxj,Rxj, xi jð Þobs
! "

p xi jð Þobs j lxj,Rxj
! "

p Rxj
! "

( p vjmis j lv,Rv, vjobs
! "

p vjobs j lv,Rv
! "

p lvð Þp Rvð Þ
( p r2e

! "
p CAð ÞpðsÞ

where, taking each term in turn,

yi jð Þ j bAj,r2e , xi jð Þ $ N x0Ai jð ÞbAj,r
2
e

# $
for i ¼ 1, :::, nj, j ¼ 1, :::, J,

bAj jCA, s, v $ N CAv0Aj, s
! "

for j ¼ 1, :::, J,

xi jð Þmis j lxj,Rxj, xi jð Þobs $ N
#
lxi jð Þmis

þ Rxi jð Þmisxi jð ÞobsR
%1
xi jð Þobs

xi jð Þobs % lxi jð Þobsð Þ,

Rxi jð Þmis % Rxi jð Þmisxi jð ÞobsR
%1
xi jð Þobs

Rxi jð Þobsxi jð Þmis

$

for i ¼ 1, :::, nj, j ¼ 1, :::, J,

xi jð Þobs j lxj,Rxj $ N lxi jð Þobs ,Rxi jð Þobs

# $
for i ¼ 1, :::, nj, j ¼ 1, :::, J,

Rxj $ Inv-Wishart Rx0, dxð Þ for j ¼ 1, :::, J,

vjmis j lv,Rv, vjobs $ N
#
lvjmis

þ RvjobsvjmisR
%1
vjobs vjobs % lvjobsð Þ,

Rvjmis % RvjmisvjobsR
%1
vjobsRvjobsvjmis

$

for j ¼ 1, :::, J,

vjobs j lv,Rv $ N lvjobs ,Rvjobs
! "

for j ¼ 1, :::, J,

lv $ N llv ,Rlv
! "

,

Rv $ Inv-Wishart Rv0, dvð Þ,

r2e $ Inv-Gamma !0=2, !0r2e0=2
# $

,

c ¼ vec CAð Þ $ N lc,Rc
! "

,

and s $ Inv-Wishart s0, dsð Þ:

Several aspects are worth noting. First, we do not have a separate entry for the latent means,
as they are modeled as missing level-2 predictors. Second, different software packages have differ-
ent capabilities of specifying such a model. We defer further discussion until after presenting the
full conditional distributions.

5.5. Full conditional distributions

Full conditional for the level-1 coefficients
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For each group-specific set of level-1 coefficients the full conditional can be expressed as

p bAj j r2e ,CA, s, yj, xj, vj
# $

/ p yj j bAj,r
2
e , xj

# $
p bAj jCA, s, vj
! "

:

The first term on the right-hand side is the normal distribution of the outcomes in (12). The
second term is the normal distribution in (13). Here again we have the potential to apply the
results of the standard Bayesian theory for normal models. The resulting full conditional distribu-
tion for bAj is

bAj j r2e ,CA, s, yj, xj, vj $ N lbAj j ))),RbAj j )))
# $

, (21)

where

lbAj j ))) ¼ s%1 þ x0Aj r2e I
! "%1

xAj
# $%1

s%1CAvAj þ x0Aj r2e I
! "%1

yj
# $

and RbAj j ))) ¼ s%1 þ x0Aj r2e I
! "%1

xAj
# $%1

:

5.5.1. Full conditional for the level-1 error variance
Turning to r2e , the full conditional is analogous to that in the single-level regression, only now
we must compute the sums of squares relative to a group-specific model and then aggregate them

r2e j bA, !0,r
2
e0 , y, x

1ð Þ $ Inv-Gamma
!0 þ n

2
,
!0r2e0 þ SS Eð Þ

2

% &
(22)

where

SS Eð Þ ¼
X

j

yj % xAjbAj
! "0 yj % xAjbAj

! "
:

5.5.2. Full conditional for the level-2 coefficients
Turning to the level-2 coefficients c, the full conditional can be expressed as

p c j bA, s, v,lc,Rc
! "

/ p bA j c, s, vð Þp c j lc,Rc
! "

¼
Y

j

p bAj j c, s, vj
! "

p c j lc,Rc
! "

:

The first term on the right-hand side is the multivariate normal distribution of the level-1
coefficients, and the second term on the right-hand side is the multivariate normal prior for the
level-2 coefficients. We can recognize that we have the potential to apply the results of the stand-
ard Bayesian theory for normal models. Thus, the full conditional distribution for c is

c j bA, s, v, lc,Rc $ N lc j ))),Rc j )))
! "

, (23)

where

lc j ))) ¼ Rc
%1 þ v0AvA * s%1

' (%1 Rc
%1lc þ v0AvA * s%1ð Þĉ

h i

with ĉ ¼ vec b0AvA v0AvAð Þ%1
! "

and Rc j ))) ¼ Rc
%1 þ v0AvA * s%1

' (%1
:

16 R. LEVY AND C. K. ENDERS



5.5.3. Full conditional for the level-2 error covariance
Turning to the level-2 error covariance matrix s, the full conditional can be expressed as

p s j bA,CA, v, s0, dsð Þ / p bA jCA, s, vð Þp s j s0, dsð Þ ¼
Y

j

p bAj jCA, s, v
! "

p s j s0, dsð Þ:

The first term on the right-hand side is the multivariate normal for the level-1 coefficients,
and the second term on the right-hand side is the inverse-Wishart prior for the level-2 error
covariance matrix. We can recognize that we have the potential to apply the results of the stand-
ard Bayesian theory for normal models. The full conditional for s is then

s j bA,CA, x, v, s0, ds $ Inv-Wishart dss0 þ JSbA , ds þ J
! "

(24)

where

SbA ¼ 1
J

X

j

bAj % CAvj
! "0 bAj % CAvj

! "
:

5.5.4. Full conditional for the missing values of the outcome
Assuming exchangeability of subjects within groups, the full conditional distribution for ymis is
given by

p ymis j bA, r
2
e ,CA, s,X1,X2, yobs, x, v

! "
¼
YJ

j¼1

Ynjmis

i¼1

p yi jð Þ, mis j bAj, r2e , xi jð Þ
# $

,

where yi(j),mis is the value for the outcome for subject i in group j, which is missing, and njmis are
the number of subjects with missing values on y in group j. Following the regression model, the
full conditional distribution for each subject is

yi jð Þ,mis j bAj, r2e , xi jð Þ $ N x0Ai jð ÞbAj, r
2
e

# $
: (25)

5.5.5. Full conditional for the missing values of the level-2 predictors
All of the latent means employed as level-2 predictors may be viewed as missing values. We may
also have missing values on the additional level-2 predictors. We treat these two classes of miss-
ing values simultaneously; let vmis denote the missing values along all of these level-2 predictors.

Assuming exchangeability of groups, the full conditional distribution for vmis may be factored
as

p vmis jX2, vobs, bA,CA, sð Þ / p bA jCA, s, vobs, vmisð Þp vmis jX2, vobsð Þ

¼
YJ

j¼1

p bAj jCA, s, vjobs, vjmis
! "

p vjmis jX2, vjobs
! "

:

The implication is that we have a full conditional distribution for each group.
We describe the full conditional for the missing values in a univariate fashion, that is, in terms

of each missing value separately. Extensions to multivariate full conditionals are possible, notably
for cases with the same pattern of missing data, but the univariate approach facilitates later com-
parisons with alternative univariate and conditional specifications for the distributions of the
observed variables. Let vjq denote the value for group j on predictor q, which is missing, and let
vj(-q) denote the values for group j on the remaining predictors.
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The full conditional for the missing value is

p vjq j lv,Rv, bAj, c, s, vj %qð Þ
! "

/ p bAj jCA, s, vjq, vj %qð Þ
! "

p vjq j lv,Rv, vj %qð Þ
! "

: (26)

The first term on the right-hand side is the conditional distribution of the level-1 coefficients
given in (13). As we did in the single-level regression, we can rewrite this isolating the role of the
missing value as

bAj jCA, s, vjq, vj %qð Þ $ N ~CA %qð ÞvAj %qð Þ þ ~cqvjq, s
# $

,

where ~cq refers to the column of effective coefficients obtained by factoring vq out of CAv0Aj and
~CA %qð Þ refers to the remaining coefficients in the model. Recognizing that ~CA %qð ÞvAj %qð Þ is a con-
stant in the full conditional for vjq, we can rewrite the conditional distribution of bAj as

bAj % ~CA %qð ÞvAj %qð Þ

h i
CA, s, vjq, vj %qð Þ $ N ~cqvjq, s

! "
:

)))

We can recognize this form as one that conforms to that laid out above as the standard
Bayesian analysis for normal distributions, where the mean of the normal distribution is defined
by having the unknown quantity (here, vjq) multiplied by a known quantity (here, ~cq).

The second term on the right-hand side of (26) is the distribution for the missing value condi-
tional on the other predictors, which is a univariate version of that given in (19)

vjq $ N lvq þ Rvqv %qð ÞR
%1
v %qð Þ

vj %qð Þ % lv %qð Þ

! ", r2vq % Rvqv %qð ÞR
%1
v %qð Þ

Rv %qð Þvq

# $

where

lv ¼
lvq
lv %qð Þ

" #

with sizes
1( 1

Q% 1ð Þ ( 1

* +
;

Rv ¼
r2vq Rvqv %qð Þ

Rv %qð Þvq Rv %qð Þ

" #

with sizes
1( 1 1( Q% 1ð Þ

Q% 1ð Þ ( 1 Q% 1ð Þ ( Q% 1ð Þ

* +
:

In essence, this prior distribution is what emerges from regressing the predictor with missingness
on the other predictors.

Following the standard Bayesian analysis for normal distributions, the full conditional distribu-
tion for the missing value on the predictor is

vjq j lv,Rv, bAj, c, s, vj %qð Þ $ N lvjq j ))), r
2
vjq j )))

# $
, (27)

where

lvjq j ))) ¼
1

r2vq%Rvqv %qð ÞR
%1
v %qð Þ

Rv %qð Þvq
þ ~c0qs%1~cq

% &%1

lvq þ Rvqv %qð ÞR
%1
v %qð Þ

vj %qð Þ % lv %qð Þ

! "

r2vq % Rvqv %qð ÞR
%1
v %qð Þ

Rv %qð Þvq
þ ~c0qs%1 bAj % ~CA %qð ÞvAj %qð Þ

# $
0

@

1

A

and r2vjq j ))) ¼
1

r2vq%Rvqv %qð ÞR
%1
v %qð Þ

Rv %qð Þvq
þ ~c0qs%1~cq

% &%1
:

5.5.6. Full conditional for the missing values of the level-1 predictors
Assuming exchangeability of groups and conditional exchangeability within groups, the full con-
ditional distribution can be factored as
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p xmis jX1, xobs, y, bA,r
2
e

! "
¼
YJ

j¼1

Ynjmis

i¼1

p xi jð Þmis jX1j, xi jð Þobs, yi jð Þ, bAj, r
2
e

# $
,

where njmis is the number of subjects with missing data on the predictors in group j. The implica-
tion is we have a full conditional distribution for each subject.

We describe the full conditional for the missing values in a univariate fashion, that is, in terms
of each missing value separately. Extensions to multivariate full conditionals are possible, but the
univariate approach facilitates later comparisons with alternative univariate and conditional speci-
fications for the distributions of the observed variables. Let xi(j)s denote the value for subject i (in
group j) on predictor s, which is missing, and let xi(j)(-s) denote the values for subject i on the
remaining predictors. The full conditional for the missing value is

p xi jð Þs jX1j, yi jð Þ, xi jð Þ %sð Þ, bAj, r
2
e

# $
/ p yi jð Þ j bAj, r2e , xi jð Þs, xi jð Þ %sð Þ

# $

( p xi jð Þs jX1j, xi jð Þ %sð Þ
! "

:
(28)

The first term on the right-hand side of is the conditional distribution of the outcome. Again,
we can rewrite this expression to isolate the missing value,

yi jð Þ j bAj,r2e , xi jð Þs, xi jð Þ %sð Þ $ N x0Ai jð Þ %sð Þ~bAj %sð Þ þ ~bsjxi jð Þs, r
2
e

# $
,

where ~bsj is the effective coefficient for xs in group j, obtained by factoring xs out of x0Ai jð ÞbAj,
~bAj %sð Þ are the remaining coefficients for group j, and x0Ai jð Þ %sð Þ are the remaining augmented pre-
dictors. Recall that the model here accommodates interaction terms in a substantive model, as
they appear in the matrix of augmented predictors xA (see the Single-Level Regression,
Missingness on a Predictor section for an example). We can rewrite the conditional distribution
of the outcome as

yi jð Þ % x0Ai jð Þ %sð Þ~bAj %sð Þ

h i
bAj, r

2
e , xi jð Þs, xi jð Þ %sð Þ $ N ~bsjxi jð Þs,r

2
e

# $
:

)))

We can recognize this form as one that conforms to that laid out above as the standard
Bayesian analysis for normal distributions, where the mean of the normal distribution is defined
by having the unknown quantity (here, xi(j)s) multiplied by a known quantity (here, ~bsj).

The second term on the right-hand side of (28) is the prior distribution for the missing value
conditional on the other predictors, which is univariate version of that given in (18):

xiðjÞs $ Nðlxjs þ Rxjsxjð%sÞR
%1
xj %sð Þ

ðxiðjÞ %sð Þ % lxj %sð Þ
Þ, r2xjs % Rxjsxjð%sÞR

%1
xj %sð Þ

Rxj %sð ÞxjsÞ (29)

where

lxj ¼
lxjs
lxj %sð Þ

" #

with sizes
1( 1

P % 1ð Þ ( 1

" #

;

Rxj ¼ r2xjs Rxjsxjð%sÞ Rxj %sð ÞxjsRxj %sð Þ

h i
with sizes

1( 1 1( P % 1ð Þ
P % 1ð Þ ( 1 P % 1ð Þ ( P % 1ð Þ

" #

:

In essence, this prior distribution is what emerges from regressing the predictor with missingness
on the other predictors.

Appling the standard Bayesian analyses for normal distributions, the full conditional distribu-
tion for the missing value for the predictor is

p xi jð Þs jX1j, yi jð Þ, xi jð Þ %sð Þ, bAj, r
2
e

# $
$ N lxi jð Þs j ))), r

2
xi jð Þs j )))

# $
, (30)

where
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lxi jð Þs j ))) ¼
1

r2xjs % Rxjsxj %sð ÞR
%1
xj %sð Þ

Rxj %sð Þxjs
þ

~b
2
sj

r2e

0

@

1

A
%1

lxjs þ Rxjsxj %sð ÞR
%1
xj %sð Þ

xi jð Þ %sð Þ % lxj %sð Þð Þ
r2xjs % Rxjsxj %sð ÞR

%1
xj %sð Þ

Rxj %sð Þxjs
þ

~bsj yi jð Þ % x0Ai jð Þ %sð Þ~bAj %sð Þ

h i

r2e

0

@

1

A

and r2xi jð Þs j ))) ¼
1

r2xjs % Rxjsxj %sð ÞR
%1
xj %sð Þ

Rxj %sð Þxjs
þ

~b
2
sj

r2e

0

@

1

A
%1

:

5.5.7. Full conditional for the parameters that govern the distribution of the level-2 predictors
Turning to the parameters that govern the distribution of the level-2 predictors, the full condi-
tional for X2 may be expressed as

p X2 j vmis, vobsð Þ / p vmis, vobs jX2ð Þp X2ð Þ ¼ p vmis, vobs j lv,Rv
! "

p lvð Þp Rvð Þ,

and we may proceed with the means and the covariance matrix separately.
The full conditional for the means is

p lv j v,Rv, llv ,Rlv

! "
/ p v j lv,Rv

! "
p lv j llv ,Rlv

! "
:

The first term is the normal distribution of the predictors. The second term is the normal
prior distribution for the means of the predictors. Following the standard theory, the full condi-
tional distribution is

lv j v,Rv, llv ,Rlv $ N llv j ))),Rlv j )))
! "

,

where

llv j ))) ¼ R%1
lv

þ JR%1
v

# $%1
R%1
lv
llv þ JR%1

v "v
# $

, Rlv j ))) ¼ R%1
lv

þ JR%1
v

# $%1
,

and "v is the (Q( 1) vector of means of the treated-as-known predictors over the J groups.
The full conditional distribution of the covariance matrix of the predictors is

p Rv j v, lv,Rv0, dv
! "

/ p v j lv,Rv
! "

p Rv jRv0, dvð Þ:

The first term is the normal distribution of the predictors. The second term is the inverse-
Wishart prior distribution. By the standard Bayesian analyses, the full conditional distribution is

Rv j x, lv,Rv0, dv $ Inv-Wishart dvRv0 þ JSv, dv þ Jð Þ,

where

Sv ¼
1
J

X

j

vj % lvð Þ vj % lvÞ
0:

#

5.5.8. Full conditional for the parameters that govern the distribution of the level-1 predictors
Turning to the parameters that govern the distribution of the level-1 predictors, the full condi-
tional for X1 may be expressed as

p X1 j xmis, xobsð Þ / p xmis, xobs jX1ð Þp X1ð Þ ¼ p xjmis, xjobs j lxj,Rxj
! "

p lxjð Þp Rxj
! "

and we may proceed with the means and the covariance matrix separately, for each group.
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The full conditional for the means in each group has already been specified, as the means are
part of the missing level-2 predictors. The relevant full conditional is given in (27). The full con-
ditional distribution of the covariance matrix of the predictors in group j is

p Rxj j x, lxj,Rx0, dx
! "

/ p x j lxj,Rxj
! "

p Rxj jRx0, dx
! "

:

The first term is the normal distribution of the predictors. The second term is the inverse-
Wishart prior distribution. By the standard Bayesian analyses, the full conditional distribution is

Rxj j x,lxj,Rx0, dx $ Inv-Wishart dxRx0 þ njSxj, dx þ nj
! "

,

where

Sxj ¼
1
nj

X

i

ðxiðjÞ % lxjÞðxiðjÞ % lxjÞ
0:

6. Discussion

In this paper we have derived analytical forms for the full conditional distributions for the
parameters and missing data in multilevel models for normally distributed outcomes and predic-
tors. We started with single-level models with no missing data and built up to two-level models
with varying intercepts and slopes, with possibly missing values for the outcomes, level-1 predic-
tors, and level-2 predictors. In doing so, we have sought to provide a coherent, complete account
of the full conditional distributions that form the basis of a fully Bayesian analysis using Gibbs
sampling, where the analyst seeks inference regarding both the missing data and the parameters
of the model, as well as how to generate the imputations in the first phase of a multiple imput-
ation approach. In the Bayesian analysis focusing on inference for model parameters, missing-
data imputation is a means to the end of summarizing the posterior distribution of the substan-
tive model parameters (e.g., the distributions of samples drawn from (21)-(24)). Meanwhile,
invoking a multiple imputation perspective, estimating the model components provides a tool for
generating imputations, which are then used in complete-data analyses to average over uncer-
tainty about the missing values. Our work supports both a fully Bayesian approach and a multiple
imputation approach, and it does so in coherent fashion for a broader set of models than has
appeared in the literature to date. Furthermore, it clarifies that these full conditional distributions
have known analytical forms, which obviates the need for more computationally expensive sam-
pling strategies that previous research has suggested and current software employs (Goldstein,
Carpenter, and Browne 2014; Enders, Du, and Keller 2020).

This work has employed multivariate normal distributions for the predictors. A special case
occurs when using univariate normal distributions for the predictors. For the level-1 predictors,
this could be accomplished in the current framework by specifying the Rxs to be diagonal.
Similarly, this could be accomplished for the level-2 predictors by specifying Rv to be diagonal.
Several useful consequences emerge from this framework. First, the full conditional distributions
for parameters that govern the predictors simplify. Instead of having an inverse-Wishart full con-
ditional for the covariance matrix (in each case), we have a series of univariate inverse-gamma
full conditionals for the variances.

More importantly, the full conditionals for the missing values simplify, such that they no lon-
ger involve the other predictors at this level. This is easiest to see in the simplest context of a sin-
gle-level model with missingness on a predictor. If the prior distribution for the predictor is
univariate normal, the full conditional becomes

xis j lx,Rx, yi, xi %sð Þ, bA, r
2
e $ N lxis j ))), r

2
xis j )))

# $
,
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where

lxis j ))) ¼
1
r2xs

þ
~b
2
s

r2e

 !%1
lxs
r2xs

þ
~bs yi % x0Ai %sð Þ~bA %sð Þ

# $

r2e

0

@

1

A and r2xis j ))) ¼
1
r2xs

þ
~b
2
s

r2e

 !%1

:

The upshot is that, if the analyst wishes to allow the draws for the missing values of a predictor
to involve the other predictors, specifying the missing predictor to have a univariate prior distri-
bution will not suffice. In multiple imputation strategies, it is common to include all the predic-
tors in generating an imputation for a missing value. The current work suggests this could be
accomplished by specifying a fully Bayesian model with a multivariate prior for the predictors,
but not by specifying a univariate prior.

Returning to the context of a multivariate prior, we noted that the full conditional for the
missing value may been as combining a likelihood expression with a prior distribution, where
the prior for the missing value may be seen as resulting from regressing the missing predictor on
the remaining predictors. This could be specified directly by the analyst, by specifying a distribu-
tion for the missing value as conditional on the other predictors through a regression structure.
For example, consider the distribution for the missing values for the level-2 predictors for group
j. Instead of the multivariate normal specifications that induce the expression in (19), we could
directly model the distribution via regression structures as

vjmis jX2, vjobs $ N vjobsgA,Rvjmis j vjobs
! "

, (31)

where gA is a set of augmented regression coefficients and Rvjmis j vjobs is the error covariance matrix
from such a regression. This would more closely mimic that which is typically done in multiple
imputation, where, for each missing predictor, a regression model is built regressing the predictor
on the remaining predictors. We note in passing that that multiple imputation also typically uses
the values of the outcome as another predictor in the regression model for a missing predictor.
In the fully Bayesian framework adopted here, that is not necessary, as the relationship between
the missing predictor and outcome variable is already captured via the likelihood expression
involved in the full conditional.

The multivariate approach described here can be implemented in BUGS (Spiegelhalter et al.
2007) and Blimp (Keller and Enders 2019), but not JAGS (Plummer 2017, p. 15). The conditional
specification may be appealing in situations where a multivariate specification is not available. To
illustrate the so-called “sequential” decomposition, let us consider the simplest case of a single-
level model with three predictors. The model for the predictors could be built with a sequence of
univariate distributions following the partition from Ibrahim, Chen, and Lipsitz (2002). For sub-
ject i, one such partition orders the distributions as follows:

p xi1, xi2, xi3ð Þ ¼ p xi1 j xi2, xi3ð Þp xi2 j xi3ð Þp xi3ð Þ: (32)

Under the normality specifications here, each component of the composite density on the right
follows from an additive linear regression model (with parameters that need prior specifications)
with homoscedastic errors. Although beyond the scope of this work, it is important to note that
the sequential parameterization can accommodate certain non-linearities among the predictors
(e.g., xi2 could be a quadratic function of xi3). Recent work by Erler and colleagues (Erler et al.
2016, 2019) discuss the sequential approach with simple illustrations in JAGS; sequential
approaches are also available in ‘mdmb’ R package (L€udtke, Robitzsch, and West 2020) and
Blimp (Keller and Enders 2019). The current work is limited in that it assumes normality for the
predictors. We believe this is a reasonable place to start because normality is commonly employed
in applied settings, is often an adequate working model for empirical data, and may be seen as a
conservative choice under mild assumptions (McElreath 2020, Ch. 10). Nevertheless, departures
from normality are common (Micceri 1989), and the extent to which normality assumptions are
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robust to departures from normality in this context is deserving of future research, as are exten-
sions to this work that do not involve specifying normality.

As noted previously, another advantage of the multivariate approach is that it readily accom-
modates discrete variables by assuming an underlying normal latent variable distribution (Chib
and Greenberg 1998; Goldstein et al. 2009; Carpenter and Kenward 2013; Enders, Keller, and
Levy 2018; Enders, Du, and Keller 2020). For example, the Blimp application (Keller and Enders
2019) uses cumulative and multinomial probit models to accommodate ordinal and nominal vari-
ables, respectively). The estimation steps described herein apply perfectly to the underlying latent
variables, but a Metropolis sampling step (Hastings 1970) is used to sample latent imputations
that account for the discretized predictor in the substantive analysis model.

Extending the previous points, if multiple variables have missingess, the covariate models can be
constructed through a similar factoring through recursive regression structures (i.e., regressing a
predictor with missingness on a predictor with complete data, and then using both of those as pre-
dictors for yet another predictor with missingness). Again, this algorithmic approach is equivalent
to our predictor if the sequence of models is additive linear regressions (with parameters that need
prior specifications) with homoscedastic errors. In the context of imputation, this method is closely
aligned with the substantive model-compatible approach in the literature (Goldstein, Carpenter, and
Browne 2014; Bartlett et al. 2015). A fruitful direction for future research is to fully explicate the sim-
ilarities and differences among the various parameterizations of the covariate distributions.

Finally, we note that multiple imputation strategies often involve auxiliary variables that are
believed to be useful for imputing missing values of predictors, but not otherwise related to the out-
come (Collins, Schafer, and Kam 2001). The results of this work suggest two possibilities for incorpo-
rating such auxiliary variables. First, they may be folded into the model as covariates, on par with the
other predictors. As has been discussed above, by using the multivariate (or conditional) prior specifi-
cation, the full conditionals for the predictors with missingness would then involve those auxiliary var-
iables. The drawback to this approach is a loss of statistical efficiency in that it would model these
auxiliary variables as related to the outcome variable, which may not concur with the researcher’s the-
ory. A second approach that avoids this limitation would be to adopt a conditional specification for
the predictors with missingness by regressing them on auxiliary variables, which are not also included
in the regression model for the outcome variable. We could view that component of the model as yet
another regression; the full conditional distributions for that component would then follow what has
been derived here. Further research might then extend what is done here to other approaches that
include auxiliary variables in ways that do not change the theoretical model (Graham 2003).
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