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INTRODUCTION 

It is a pleasure to edit the second volume of papers presented at the Mathema­
tical Finance Seminar of New York University. These articles, written by some of 
the leading experts in financial modeling cover a variety of topics in this field. The 
volume is divided into three parts: (I) Estimation and Data-Driven Models, (II) 
Model Calibration and Option Volatility and (III) Pricing and Hedging. 

The papers in the section on "Estimation and Data-Driven Models" develop 
new econometric techniques for finance and, in some cases, apply them to deriva­
tives. They showcase several ways in which mathematical models can interact with 
data. Andrew Lo and his collaborators study the problem of dynamic hedging of 
contingent claims in incomplete markets. They explore techniques of minimum-
variance hedging and apply them to real data, taking into account transaction costs 
and discrete portfolio rebalancing. These dynamic hedging techniques are called 
"epsilon-arbitrage" strategies. The contribution of Yacine Ait-Sahalia describes 
the estimation of stochastic processes for financial time-series in the presence of 
missing data. Andreas Weigend and Shanming Shi describe recent advances in non-
parametric estimation based on Neural Networks. They propose new techniques for 
characterizing time-series in terms of Hidden Markov Experts. In their contribution 
on the statistics of prices, Geman, Madan and Yor argue that asset price processes 
arising from market clearing conditions should be modeled as pure jump processes, 
with no continuous martingale component. However, they show that continuity 
and normality can always be obtained after a time change. Kaushik Ronnie Sircar 
studies dynamic hedging in markets with stochastic volatility. He presents a set of 
strategies that are robust with respect to the specification of the volatility process. 
The paper tests his theoretical results on market data. 

The second section deals with the calibration of asset-pricing models. The 
authors develop different approaches to model the so-called "volatility skew" or 
"volatility smile" observed in most option markets. In many cases, the techniques 
can be applied to fitting prices of more general instruments. Peter Carr and Dilip 
Madan develop a model for pricing options based on the observation of the im­
plied volatilities of a series of options with the same expiration date. Using their 
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model, they obtain closed-form solutions for pricing plain-vanilla and exotic options 
in markets with a volatility skew. Thomas Coleman and collaborators attack the 
problem of the volatility smile in a different way. Their method combines the use of 
numerical optimization, spline approximations, and automatic differentiation. They 
illustrate the effectiveness of their approach on both synthetic and real data for op­
tion pricing and hedging. Leisen and Laurent consider a discrete model for option 
pricing based on Markov chains. Their approach is based on finding a probability 
measure on the Markov chain which satisfies an optimality criterion. Avellaneda, 
Buff, Friedman, Kruk and Newman develop a methodology for calibrating Monte 
Carlo models. They show how their method can be used to calibrate models to the 
prices of traded options in equity and FX markets and to calibrate models of the 
term-structure of interest rates. 

In the section entitled "Pricing and Risk-Management". Alexander Levin dis­
cusses a lattice-based methodology for pricing mortgage-backed securities. Peter 
Carr and Guang Yang consider the problem of pricing Bermudan-style interest rate 
options using Monte Carlo simulation. Alexander Lipton studies the symmetries 
and scaling relations that exist in the Black-Scholes equation and applies them 
to the valuation of path-dependent options. Cardenas and Picron, from Summit 
Systems, describe accelerated methods for computing the Value-at-Risk of large 
portfolios using Monte Carlo simulation. The closing paper, by Katherine Wyatt, 
discusses algorithms for portfolio optimization under structural requirements, such 
as trade amount limits, restrictions on industry sector, or regulatory requirements. 
Under such restrictions, the optimization problem often leads to a "disjunctive pro­
gram" . An example of a disjunctive program is the problem to select a portfolio 
that optimally tracks a benchmark, subject to trading amount requirements. 

I hope that you will find this collection of papers interesting and intellectually 
stimulating, as I did. 

Marco Avellaneda 
New York, October 1999 
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TRANSITION DENSITIES FOR INTEREST RATE 
A N D OTHER NONLINEAR DIFFUSIONS 

YACINE AIT-SAHALIA* 

Department of Economics, Princeton University, 
Princeton, NJ 08544-1021, USA 

E-mail: yacine@princeton.edu 

This paper applies to interest rate models the theoretical method developed in 
Ai't-Sahalia (1998) to generate accurate closed form approximations to the transition 
function of an arbitrary diffusion. While the main focus of this paper is on the maximum-
likelihood estimation of interest rate models with otherwise unknown transition func­
tions, applications to the valuation of derivative securities are also briefly discussed. 

Continuous-time modeling in finance, though introduced by Louis Bachelier's 
1900 thesis on the theory of speculation, really started with Merton's seminal 
work in the 1970s. Since then, the continuous-time paradigm has proved to be an 
immensely useful tool in finance and more generally economics. Continuous-time 
models are widely used to study issues that include the decision to optimally con­
sume, save, and invest, portfolio choice under a variety of constraints, contingent 
claim pricing, capital accumulation, resource extraction, game theory, and more 
recently contract theory. Many refinements and extensions are possible, the basic 
dynamic model for the variable(s) of interest Xt is a stochastic differential equation, 

dXt = fi{Xt; 6)dt + a{Xt\ 6)dWt, (1) 

where Wt a standard Brownian motion, the drift /x and diffusion a2 are known 
functions except for an unknown parameter3, vector 6 in a bounded set 0 C Rd. 

One major impediment to both theoretical modeling and empirical work with 
continuous-time models of this type is the fact that in most cases little can be 
said about the implications of the dynamics in Eq. (1) for longer time intervals. 
Though Eq. (1) fully describes the evolution of the variable X over each infinitesimal 

* Mathematica code to implement this method can be found at http://www.princeton.edu/ yacine. 
I am grateful to David Bates, Rene Carmona, Freddy Delbaen, Ron Gallant, Lars Hansen, Per 
Mykland, Peter C. B. Phillips, Peter Robinson, Angel Serrat, Suresh Sundaresan and George 
Tauchen for helpful comments. Robert Kimmel provided excellent research assistance. This re­
search was conducted during the author's tenure as an Alfred P. Sloan Research Fellow. Financial 
support from the NSF (Grant SBR-9996023) is gratefully acknowledged. 
aNon- and semiparametric approaches, which do not constrain the functional form of the functions 
fj, and/or <x2 to be within a parametric class, have been developed (see Ai't-Sahalia, 1996a, 1996b 
and Stanton, 1997). 

1 

mailto:yacine@princeton.edu
http://www.princeton.edu/


2 Quantitative Analysis in Financial Markets 

instant, one cannot in general characterize in closed-form an object as simple (and 
fundamental for everything from prediction to estimation and derivative pricing) 
as the conditional density of Xt+A given the current value Xt. For a list of the 
rare exceptions, see Wong (1964). In finance, the well-known models of Black 
and Scholes (1973), Vasicek (1977) and Cox, Ingersoll and Ross (1985) rely on 
these existing closed-form expressions. In this paper, I will describe and implement 
empirically a method developed in a companion paper (Ait-Sahalia, 1998) which 
produces very accurate approximations in closed-form to the unknown transition 
function px(A, x\xo; 0), the conditional density of Xt+& = x given Xt = XQ implied 
by the model in Eq. (1). 

These closed-form expressions can be useful for at least two purposes. First, they 
let us estimate the parameter vector 0 by maximum-likelihood.b In most cases, we 
observe the process at dates {t = iA\i = 0, . . . , n } , where A > 0 is generally 
small, but fixed as n increases. For instance, the series could be weekly or monthly. 
Collecting more observations means lengthening the time period over which data are 
recorded, not shortening the time interval between successive existing observations.0 

Because a continuous-time diffusion is a Markov process, and that property carries 
over to any discrete subsample from the continuous-time path, the log-likelihood 
function has the simple form 

n 

inW^n-^foMAMx^^e)}. (2) 

With a given A, two methods are available in the literature to compute px 
numerically. They involve either solving numerically the Kolmogorov partial differ­
ential equation known to be satisfied by px (see, e.g., Lo, 1988), or simulating a 
large number of sample paths along which the process is sampled very finely (see 
Pedersen, 1995; Honore, 1997 and Santa-Clara, 1995). Neither method however 
produces a closed-form expression to be maximized over 6, and the calculations for 
all the pairs (x, XQ) must be repeated separately every time the value of 9 changes. 
By contrast, the closed-form expressions in this paper make it possible to maximize 
the expression in Eq. (2) with px replaced by its closed-form approximation. 

b A large number of new approaches have been developed in recent years. Some theoretical es­
timation methods are based on the generalized method of moments (Hansen and Scheinkman, 
1995, Bibby and S0rensen, 1995) and on nonparametric density-matching (Ait-Sahalia, 1996a, 
1996b), others on nonparametric approximate moments (Stanton, 1997), simulations (Duffle and 
Singleton, 1993; Gourieroux, Monfort and Renault, 1993; Gallant and Tauchen, 1998, Pedersen, 
1995), the spectral decomposition of the infinitesimal generator (Hansen, Scheinkman and Touzi, 
1998; and Florens, Renault and Touzi, 1995), random sampling of the process to generate moment 
conditions (Duffle and Glynn, 1997), or finally Bayesian approaches (Eraker, 1997; Jones, 1997 
and Elerian, Chib and Shephard, 1998). 
cDiscrete approximations to the stochastic differential Eq. (1) could be employed (see Kloeden and 
Platen, 1992): see Chan et al. (1992) for an example. As discussed by Merton (1980), Lo (1988), 
and Melino (1994), ignoring the difference generally results in inconsistent estimators, unless the 
discretization happens to be an exact one, which is tantamount to saying that px would have to 
be known in closed-form. 
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Derivative pricing provides a second natural outlet for applications of this 
methodology. Suppose that we are interested in pricing at date zero a derivative 
security written on an asset with price process {Xt\t > 0}, and with payoff function 
\&(.X"A) at some future date A. For simplicity, assume that the underlying asset is 
traded, so that its risk-neutral dynamics have the form 

dXt/Xt = {r- 8}dt + a(Xt; 6)dWt, (3) 

where r is the riskfree rate and 5 the dividend rate paid by the asset — both constant 
again for simplicity. 

It is well-known that when markets are dynamically complete, the only price of 
the derivative security that is compatible with the absence of arbitrage opportunities 
is 

r+oo 
P0 = e-rAE[V(XA)\X0 = x0] = e~rA / V(x)px(A, x\xQ; 9) dx, (4) 

Jo 
where px is the transition function (or risk-neutral density, or state-price density) 
induced by the dynamics in Eq. (3). 

The Black-Scholes option pricing formula is the prime example of Eq. (4), when 
o(Xt;9) = a is constant. The corresponding px is known in closed-form (as a 
lognormal density) and so the integral in Eq. (4) can be evaluated explicitly for 
specific payoff functions (see also Cox and Ross, 1976). In general, of course, no 
known expression for px is available and one must rely on numerical methods such 
as solving numerically the PDE satisfied by the derivative price, or Monte Carlo 
integration of Eq. (3). These methods are the exact parallels to the two existing 
approaches to maximum-likelihood estimation that I described earlier. 

Here, given the sequence {px '\K > 0} of approximations to px, the valuation 
of the derivative security would be based on the explicit formula 

r+oo 
pW = e-rA I t ( ^ ) ( A ) a c j a i o ; 9 ) dx. (5) 

Jo 

Formulas of the type given in Eq. (4) where the unknown px is replaced by another 
density have been proposed in the finance literature (see, e.g., Jarrow and Rudd, 
1982). There is an important difference, however, between what I propose and the 
existing formulae: the latter are based on calculating the integral in Eq. (4) with 
an ad hoc density px — typically adding free skewness and kurtosis parameters 
to the lognormal density, so as to allow for departures from the Black-Scholes 
formula. In doing so, these formulas ignore the underlying dynamic model specified 
in Eq. (3) for the asset price, whereas my method gives in closed-form the option 
pricing formula (of order of precision corresponding to that of the approximation 
used) which corresponds to the given dynamic model in Eq. (3). Then one can, for 
instance, explore how changes in the specification of the volatility function a(x; 9) 
affect the derivative price, which is obviously impossible when the specification of 
the density px to be used in Eq. (4) in lieu of px is unrelated to Eq. (3). 
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The paper is organized as follows. In Section 1, I briefly describe the approach 
used in Ait-Sahalia (1998) to derive a closed-form sequence of approximations to 
px, give the expressions for the approximation and describe its properties. I then 
study in Section 2 a number of interest rate models, some with unknown transition 
functions, and give the closed-form expressions of the corresponding approxima­
tions. Section 3 reports maximum-likelihood estimates for these models, using the 
Federal Funds rate, sampled monthly between 1963 and 1998. Section 4 concludes, 
while a statement of the technical assumptions is in the appendix. 

1. Closed-Form Approximations to the Transition Function 

1.1. Tail standardization via transformation to unit diffusion 

The first step towards constructing the sequence of approximations to px con­
sists in standardizing the diffusion function of X — that is, transforming X into 
another diffusion Y defined as 

Yt=1{Xt-6) = j * du/o(u;0), (6) 

where any primitive of the function 1/cr may be selected. 
Let Dx = (x,x) denote the domain of the diffusion X. I will consider two 

cases where Dx = (—co,+oo) or Dx = (0,+oo). The latter case is often rele­
vant in finance, when considering models for asset prices or nominal interest rates. 
Moreover, the function a is often specified in financial models in such a way that 
er(0; 6) = 0 and p, and/or a violate the linear growth conditions near the boundaries. 
The assumptions in the appendix allow for this behavior. 

Because a > 0 on the interior of the domain Dx, the function 7 in Eq. (6) is 
increasing and thus invertible. It maps Dx into Dx = {y_, y), the domain of Y. 
For a given model under consideration, I will assume that the parameter space 0 
is restricted in such a way that Dx is independent of 9 in 0 . This restriction on 0 
is inessential, but it helps keep the notation simple. Again, in finance, most, if not 
all cases, will have Dx and Dy be either the whole real line (—00, +00) or the half 
line (0,+oo). 

By applying Ito's Lemma, Y has unit diffusion as desired: 

dYt = pY(Yf,0)dt + dWt, (7) 

where 

"<"*-S£W-5S™>*>- <8) 

Finally, note that it can be convenient to define Yt instead as minus the integral 
in Eq. (6) if that makes Yt > 0, for instance if a{x;9) = xp and p > 1. For 
example, if Dx = (0, +00) and a(x; 9) = xp, then Yt = (l- p)Xl~p if 0 < p < 1 (so 
DY = (0, +00), Yt = ln{Xt) Up = 1 (so DY = (-00, +00)), and Yt = ( p - l ) X t

_ ( / , _ 1 ) 

if p > 1 (so Dy = (0, +00) again). In all cases, Y has unit diffusion; that is, 
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0y(2/;0) = 1. When the transformation Yt = j(Xt;9) = - J ' du/a(u;9) is used, 
the drift /J,y(y; 9) in dYi = £ty(Yt; 9)dt - dWt is, instead of Eq. (8), 

The point of making the transformation from X to V is that it is possible to 
construct an expansion for the transition density of Y. Of course, this would be 
of little interest since we only observe X, not the artificially introduced Y, and 
the transformation depends upon the unknown parameter vector 9. However, the 
transformation is useful because one can obtain the transition density px from py 
through the Jacobian formula 

px(A,x\x0;9) = — Prob(X t + A < x\Xt = x0;0) 

= ^ P r o b ( r t + A < 7(x;9)\Yt =1(x0;6);9) 

d_ 

dx 
I pY(A,y\j(yo;9);9)dy 

Jy 

pY{An{x-9)\l{xo;9)-9) 
a(-y(x-ey,9) • { } 

Therefore, there is never any need to actually transform the data {-XJA, i = 0,... ,n} 
into observations on Y (which depends on 9 anyway). Instead, the transformation 
from X to Y is simply a device to obtain an approximation for px from the ap­
proximation of py. Practically speaking, once the approximation for px has been 
derived once and for all as the Jacobian transform of that of Y, the process Y no 
longer plays any role. 

1.2. Explicit expressions for the approximation 

As shown in Ait-Sahalia (1998), one can derive an explicit expansion for the 
transition density of the variable Y based on a Hermite expansion of its density 
V h-> PY(&,y\yo',9) around a Normal density function. The analytic part of the 
expansion of py up to order K is given by 

P ^ W I I A , ; * ) = A - 1 / 2 ^ (j^ff) exp (j\y(w;9)dv 

K A f c 

xJ2ck(y\yo;9)—, (n) 
fc=o K-

where <j>(z) = e _ z
 I2/^/^K denotes the N(0,1) density function, co(y|yo; 9) = 1 and 

for all j > 1, 
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_. fV 
Cj(y\yo;0) =j(y-y0)

 J (w-yo) 
Vo 

x {Xyiw^j^iwlyoie) + (d2cj-1(w\y0;6)/dw2)/2}dw, (12) 

where Xy(y; 6) = -(fiY{y; 0) + d(iy(y; 0)/8y)/2. 
Tables 1 through 5 give the explicit expression of these coefficients for popular 

models in finance, which I discuss in detail in Section 2. Before turning over to 
these examples, a few general remarks are in order. The general structure of the 
expansion in Eq. (11) is as follows: the leading term in the expansion is Gaus­
sian, A~1^2(f>(y — y0)/A1 / /2), followed by a correction for the presence of the drift, 
exp( P (j,y(w; 0)dw), and then additional correction terms which depend upon the 
specification of the function Ay (y; 6) and its successive derivatives. These correction 
terms play two roles: first, they account for the nonnormality of py and second they 
correct for the discretization bias implicit in starting the expansion with a Gaussian 
term with no mean adjustment and variance A (instead of Var[lt+A|^t], which is 
equal to A only in the first order). 

In general, the function py is not analytic in time. Therefore Eq. (11) must be 
interpreted strictly as the analytic part, or Taylor, series. In particular, for given 

Table 1. Explicit sequence for the Vasicek model. This table contains the coefficients of the density 
approximation for py corresponding to the Vasicek model in Example 1, dXt = n{a—Xt)dt+<rdWt • 
The terms in the expansion are evaluated by applying the formulas in Eq. (12). From Eq. (11), 
the K = 0 term in this expansion is pY (A,y\yo',Q), the K = 1 term is 

pW(A,y\yo;e)=p<£)(A,y\yo;e){l + c1{y\yo;0)A}, 

and the K = 2 term is 

piY)(A,y\yo;e)=p(°)(A,y\yo;e){l + c1(y\yo;e)A + c2(y\yo;0)A2/2}. 

Additional terms can be obtained in the same manner by applying Eq. (12) further. These com­
putations and those of Tables 2 to 5 were all carried out in Mathematica. 

p{°) (A, y\y0, 9) = exp 
VAV27T 

(y-yo)2 y2* , VQK i/a« yoa/c 
2A 2 2 a a 

ci(y\yo, 0) = - — - ( / c ( 3 a 2 K - 3(?/ + yo)ctK(T + ( - 3 + y2K + yy0K + y2K.)<J2)). 

C2{y\yo,0) = j (K 2 (9a 4 K 2 - 18ya3K2a + 3 a 2 K ( - 6 + 5y2n)<r2 

- 6yotK(-3 + y2K.)a3 + (3 - 6y2K + J/4K2)CT4 

+ 2KCT(-3C* + 3/<T)(3C-2K - 3yatKcr) + ( - 3 + y4K.)a2)y0 

+ 3K,<r2(ba2K - lyana + ( - 2 + y2K.)yl + 2K 2cr 3(-3a + y<r)yl 

+ K2<r4y4)). 
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(y,yo,8), it will generally have a finite convergence radius in A. As we will see 
below, however, the series in Eq. (11) with K = 1 or 2 at most is very accurate for 
the values of A that one encounters in empirical work in finance. 

The sequence of explicit functions pY in Eq. (11) is designed to approximate 
py. AS discussed above, one can then approximate px (the object of interest) by 
using the Jacobian formula for the inverted change of variable Y —>• X: 

px
K)(A,x\x0;e)=a(x;e)-1pY

K\A,7(x;e)\1(x0;ey,9). (13) 

The main objective of the transformation X —» Y was to provide a method of 
controlling the size of the tails of the transition density. As shown in A'it-Sahalia 
(1998), the fact that Y has unit diffusion makes the tails of the density py, in the 
limit where A goes to zero, similar in magnitude to those of a Gaussian variable. 
That is, the tails of py behave like exp[—y2/2A] as is apparent from Eq. (11). 
However, the tails of the density px are proportional to exp[—7(2;; #)2/2A]. So for 
instance, if a(x; 6) = lyfx then 7(1; 6) = \fx and the right tail of px becomes 
proportional to exp[—x2/2A]\ this is verified by Eq. (13). Not surprisingly, this 
is the tail behavior for Feller's transition density in the Cox, Ingersoll and Ross 
model. If now a{x; 6) = x, then 7(2; 6) — ln(x) and the tails of px are proportional 
to exp[—ln(x)2/2A]: this is what happens in the log-Normal case (see the Black-
Scholes model). In other words, while the leading term of the expansion in Eq. (11) 
for py is Gaussian, the expansion for px will start with a deformed or "stretched" 
Gaussian term, with the specific form of the deformation given by the function 
7 ( 1 ; 0). 

The sequence of functions in Eq. (11) solves the forward and backward Kol-
mogorov equations up to order A ^ ; that is, 

^-^Jg-Zg-om ' (14> 

The boundary behavior of the transition density pY ' is similar to that of py; under 
the assumptions made, MvOy^y or yPY = 0- The expansion is designed to deliver 
an approximation of the density function y i-> py(A,y\yo',&) for a fixed value of 
conditioning variable j/o- Therefore, except in the limit where A becomes infinitely 
small, it is not designed to reproduce the limiting behavior of py in the limit where 
yo tends to the boundaries. 

Finally, note that the form of the expansion is compatible with the expression 
that arises out of Girsanov's Theorem in the following sense. Under the assumptions 
made, the process Y can be transformed by Girsanov's Theorem into a Brownian 
motion if Dy = (—00, +00), or into a Bessel process in dimension 3 if Dy = (0,+oo). 
This gives rise to a formulation of py in a form that involves the conditional 
expectation of the exponential of the integral of function of a Brownian Bridge 
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(see Gihman and Skorohod, 1972, chapter 3) for the case where Dy = (—oo, +oo), 
or a Bessel Bridge if Dy = (0, +oo). This conditional expectation term can either 
be expressed in terms of the conditional densities of the Brownian Bridge when 
Dy = (—oo, +oo) (see Dacunha-Castelle and Florens-Zmirou, 1986), or integrated 
by Monte Carlo simulation. Further discussion of these and other theoretical prop­
erties of the expansion is contained in A'ft-Sahalia (1998). 

2. Examples 

2.1. Comparison of the approximation to the closed-form densities 
for specific models 

In this section, I study the size of the approximation made when replacing px 
by px ', in the case of typical examples in finance where px is known in closed-
form and sampling is at the monthly frequency. Since the performance of the 
approximation improves as A gets smaller, monthly sampling is taken to represent 
a worst-case scenario as the upper bound to the sampling interval relevant for 
finance. In practice, most continuous-time models in finance are estimated with 
monthly, weekly, daily or higher frequency observations. The examples studied 
below reveal that including the term C2(y, yo\ 6) generally provides an approximation 
to px which is better by a factor of at least ten than what one obtains when only the 
term ci(y,yo;9) is included. Further calculations show that each additional order 
produces additional improvements by an additional factor of at least ten. 

I will often compare the expansion in this paper to the Euler approximation; 
the latter corresponds to a simple discretization of the continuous-time stochastic 
differential equation, where the differential Eq. (1) is replaced by the difference 
equation 

Xt+A -Xt = n{Xt; 8) A + a(Xt; 9)VAet+A (15) 

with et+A ~ N(0,1), so that 

Px
ule\A,x\x0;6) = (27rAa2(x0;e))-1/2 

x exp{-(a; - x0 - /x(x0; 9)A)2/2Aa2(x0; 6)} . (16) 

Example 1 (Vasicek's Model) . Consider the Ornstein-Uhlenbeck specifica­
tion proposed by Vasicek (1977) for the short term interest rate: 

dXt = K(a - Xt)dt + adWt. (17) 

X is distributed on Dx = (-co, +oo) and has the Gaussian transition density 

px(A, x\x0; 6) = ( T T 7
2 / « ) - 1 / 2 exp{-(z - a - (x0 - a ) e - K A ) 2 / c / 7

2 } , (18) 

where 8 = (a, K, <T) and 7
2 = (1 - e _ 2 / t A ) . In this case, we have that Yt = -y(Xt; 6) = 

a-xXt and /xy (y; 9) = naa~x - ny, so that Ay (y; 6) = /c/2 - K?(a - ay)2/2a2. 
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Table 1 reports the first two terms in the expansion for this model, obtained 
from applying the general formula in Eq. (11). More terms can be calculated in 
Eq. (12) one after the other: once c2(y|2/o; 0) has been obtained, calculate C3(y|yo! #), 
etc. Starting from the closed-form expression, one can show directly that these 
expressions indeed represent a Taylor series expansion for the closed-form density 
px(A,x\x0;6). 

Figure 1(a) plots the density px BS a. function of the interest rate value x for a 
monthly sampling frequency (A = 1/12), evaluated at #o = 0-10 and for the pa­
rameter values corresponding to the maximum-likelihood estimator from the Federal 
Funds data (see Table 4 in Section 4). Figure 1(b) plots the uniform approxima-
tion error \px — Px I f° r -K- = 1) 2 and 3, in log-scale. The error is calculated as 
the maximum absolute deviation between px and px ' over the range ±4 standard 
deviations around the mean of the density, and is also compared to the uniform 
error for the Euler approximation. The striking feature of the results is the speed of 
convergence to zero of the approximation error as K goes from one to two and from 
two to three. In effect, one can approximate px (which is of order 10+1) within 
1 0 - 3 with the first term alone (K = 1) and within 1 0 - 7 with K = 3, even though 
the interest rate process is only sampled once a month. Similar calculations for a 
weekly sampling frequency (A = 1/52) reveal that the approximation error gets 
smaller even faster for this lower value of A. 

In other words, small values of K already produce extremely precise approxi­
mations to the true density, px, and the approximation is even more precise if A 
is smaller. Of course, the exact density being Gaussian, in this case the expansion, 
whose leading term is Gaussian, has fairly little "work" to do to approximate the 
true density. In the Ornstein-Uhlenbeck case, the expansion involves no correc­
tion for nonnormality, which is normally achieved through the change of variable 
X to Y; it reduces here to a linear transformation and therefore does not change 
the nature of the leading term in the expansion. Comparing the performance of 
the expansion to that of the Euler approximation in this model (where both have 
the correct Gaussian form for the density) reveals that the expansion is capable of 
correcting for the discretization bias involved in a discrete approximation, whereas 
the Euler approximation is limited to a first order bias correction. In this case, the 
Euler approximation can be refined by increasing the precision of the conditional 
mean and variance approximations (see Huggins, 1997). Of course, discrete ap­
proximations to Eq. (1) of an order higher than Eq. (15) are available, but they do 
not lead to explicit density approximations since, compared to the Euler Eq. (15), 
they involve combinations of multiple powers of €f+A (see e.g., Kloeden and Platen, 
1992). 

Example 2 (The CIR Model) . Consider Feller's (1952) square-root specifi­
cation 

dXt = K(a-Xt)dt + ay/xldWt, (19) 
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proposed as a model for the short term interest rate by Cox et al. (1985). X is 
distributed on Dx = (0, +oo) provided that q = 2KO./(J2 — 1 > 0. Its transition 
density is given by: 

PX(A, x\x0; 6) = ce-u-v(v/uyl2Iq{2{uvyi2), (20) 

with 8 = (a, K, a) all positive, c = 2n/(a2{l — e~KA}), u = cx0e~KA, v = ex, and 
Iq is the modified Bessel function of the first kind of order q. Here Yt/= j(Xt; 0) = 
2^/Tt/a and nY(y, 0) = {q + 1/2)/y - ny/2. 

The first two terms in the explicit expansion are given in Table 2. When eval­
uated at the maximum-likelihood estimates from Federal Funds data, the results 
reported in Fig. 2 are very similar to those of Fig. 1, again with an extremely fast 
convergence even for a monthly sampling frequency. The uniform approximation 
error is reduced to 10~5 with the first two terms, and 1 0 - 8 with the first three terms 
included. 

Table 2. Explicit sequence for the Cox-Ingersoll-Ross model. This table contains the coefficients of 
the density approximation for py corresponding to the Cox, Ingersoll and Ross model in Example 2, 
dXt = K.(a — Xt)dt + <Ty/XtdWt. The expansion for py in this table applies also to the model 
proposed by Ahn and Gao (1998) (see Example 3). The terms in the expansion are evaluated 
by applying the formulae in Eq. (12). Prom Eq. (11), the K = 0 term in this expansion is 
pi, (A,y\y;9), the K = 1 term is 

# > ( A , y\y0]9) = p<?>(A, y\y0; «){1 + d(y\y0; 9)A} , 

and the K = 2 term is 

P™(A,ylvo;9) = pf (A,y\y0;9){1 + Cl(y\y0; 0)A + c2(y\y0;9)A2/2} . 

Additional terms can be obtained in the same manner by applying Eq. (12) further. 

p(°\A,y\yo,9) = -7±=exP 
< - yo)2 _ j r « _ f 2 / | 

2A 4 4 
, r ( l / 2 ) + ( 2 a , c / < r 2 ) ( l / 2 ) - (2a« /<r 2 ) 

ciiylyo, 9) = - (48a 2 K2 - 48aK<r2 + 9<r4 + yr?a2(-2Aa + y2<r2)y0 

24yy0(T
i 

+ / K V J / 2 + y^a^yl) . 

C2(y\yo, 9) = c - 7 g 2 2 8(9(256a4<c4 - 512a 3 K 3 a 2 + 224a2K2<r4 + 32aK<r6 - 15<r8) 
576y^y2<7s 

+ 6yK2<72(-24a + y2<r2)(16a2/c2 - 16aKcr2 + 3<r4)y0 

+ j/2K2o-4(672a2K2 - 48a/c(2 + y2K)<r2 + ( - 6 + y4K2)ff4)yo 

+ 2yK2<r4(48a2K2 - 24a«(2 + y2K)c2 + (9 + y4K2)<T4)3/o 

+ 3 y 2 K 4 a 6 ( - 1 6 a + y2cr2)y$ + 2y3^a8y5
0 + y2K*cxsy6

0) . 
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Fig. 1. Exact conditional density and approximation errors for the Vasicek model. Figure 1(a) 
plots for the Vasicek (1997) model (see Example 1 and Table 1) the closed-form conditional density 
x i-» px{&,x\xo,0) as a function of x, with xo = 10%, monthly sampling (A = 1/12) and 9 replaced 
by the MLE reported in Table 6. Figure 1(b) plots the uniform approximation errors \px ~PX I 
for K = 1, 2, and 3, in log-scale, so that each unit on the y-axis corresponds to a reduction of the 
error by a multiplicative factor of ten. The error is calculated as the maximum absolute deviation 
between px and px \ over the range ± 4 standard deviations around the mean of the density. 
Both the value of the exact conditional density at its peak and the uniform error for the Euler 
approximation px

uler are also reported for comparison purposes. This figure illustrates the speed 
of convergence of the approximation. A lower sampling interval than monthly would provide an 
even faster convergence of the density approximation sequence. 
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Fig. 2. Exact conditional density and approximation errors for the Cox-Ingersoll-Ross model. 
Figure 2(a) plots for the CIR (1985) model (see Example 2 and Table 2) the closed-form conditional 
density x i-t px(A,x\xo,0) as a function of x, with XQ = 6%, monthly sampling (A = 1/12) and 
6 replaced by the MLE reported in Table 6. Figure 2(b) plots the uniform approximation error 
\px — px | for K = 1, 2, and 3, in log-scale, so that each unit on the y-axis corresponds to a 
reduction of the error by a multiplicative factor of ten. The error is calculated as the maximum 
absolute deviation between px and px ' | over the range ±4 standard deviations around the mean 
of the density. Both the value of the exact conditional density at its peak and the uniform error for 
the Euler approximation px

uleT are also reported for comparison purposes. This figure illustrates 
the speed of convergence of the approximation. 
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Example 3 (Inverse of Feller's Square Root Model) . In this example, I 
generate densities for Ahn and Gao's (1998) specification of the interest rate process 
as one over an auxiliary process which follows a Cox-Ingersoll-Ross specification. 
As a result of Ito's Lemma, the model's specification is 

dXt = Xt{K - {a2 - Ka)Xt)dt + aXf/2dWt, (21) 

with closed-form transition density given by 

PX(A, x\x0; 9) = ( l /z2)p£ I R(A, l/x\l/x0; 9), (22) 

where px
m is the density function given in Eq. (20). The expansion in Eq. (11) for 

py is identical to that for the CIR model given in Table 2 (because the Y process 
is the same with the same transformed drift \iy and unit diffusion). To get back to 
an expansion for X, the change of variable Y —> X however is different, and is now 
given by Yt = j(Xt;9) = 2/(<ry/X~t); hence the expansion for px will naturally be 
different than that of the CIR model (it will now approximate the left-hand side of 
Eq. (22) rather than Eq. (20)). 

Figure 3(a) reports the drift for this model, evaluated at the maximum-likelihood 
estimates from Table 6 below. This model generates, in an environment where 
closed-form solutions are available, some of the effects documented empirically by 
A'it-Sahalia (1996b): almost no drift while the interest rate is in the middle of its 
range, strong mean-reversion when the interest rate gets large. Figure 3(b) plots 
the unconditional or marginal density, which is also the stationary density n(x, 9) 
for this process when the initial data point XQ has n as its distribution. 7r is given 

by 

Tr(y;9)=expi2 fxy(u; 9) du\ I I exp \ 2 / fj,Y(u;9)du\ dv . (23) 

Figure 3(c) compares the exact conditional density in Eq. (22), its Euler approxi­
mation and the expansion with K = 1 for the conditioning interest rate #o = 0.10. 
It is apparent from the figure that including the first term alone is sufficient to make 
the exact and approximate densities fall on top of one another, whereas the Euler 
approximation is distinct. Finally, Fig. 3(d) reports the uniform approximation er­
ror between the Euler approximation and the exact density on the one hand, and 
between the first three terms in the expansion and the exact density on the other. 
As can be seen from these figures, the expansion in Eq. (11) provides again a very 
accurate approximation to the exact density. 

2.2. Density approximation for models with no closed-form density 

Of course, the usefulness of the method introduced in A'it-Sahalia (1998) lies 
largely in its ability to deliver explicit density approximations for models which 
do not have closed-form transition densities. The next two examples correspond 
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Panel B 
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0.15 0.2 

Fig. 3. Drift, density and approximation errors for the inverse of Feller's process. Results for the 
model proposed by Ahn and Gao (1998) model (see Example 3 and Table 2) are reported: the 
drift fj.(Xt,0) = Xt(K - (<j2 - Ka)Xt) in Fig. 3(a), the marginal density n(Xt,0) in Fig. 3(b), 
the exact and conditional density approximation, pxtP^lev a n d p\' as functions of the forward 
variable x, for xo = 0.10 in Fig. 3(c). The sampling frequency is monthly (A = 1/12) and the 
parameter vector 6 is evaluated at the the MLE reported in Table 6. Figure 3(d) reports the 
uniform approximation error \px — Px I for K = 1, 2, and 3, in log-scale, as in Figs. 1(b) and 
2(b). 
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Fig. 3. (continued) 

to models recently proposed in the literature to describe the time series properties 
of the short-term interest rate, and the final example illustrates the applicability of 
the method to a double-well model where the stationary density is bimodal. 

Example 4 (Linear Drift, CEV Diffusion). Chan et al. (1992) have pro­
posed the specification 

dXt = K(a-Xt)dt + aXp
t dWt, (24) 



16 Quantitative Analysis in Financial Markets 

with 9 = (a, K, cr,p). X is distributed on (0, +oo) when a > 0, K > 0 and p > 1/2 
(if p = 1/2; see Example 2 for an additional constraint). This model does not admit 
a closed-form density unless a = 0 (see Cox, 1996), which then makes it unrealistic 
for interest rates. I will concentrate on the case where p > 1, which corresponds to 

Panel A 
H(x> 

0.15 0.2 

(a) 

Panel B 

71(X) 

0 . 0 5 0 . 1 0.2 

(b) 

Fig. 4. Conditional density approximations for the linear drift, CEV diffusion model. These figures 
plot for the linear drift, CEV diffusion model of Chan et al. (1992) (see Example 4 and Table 3) 
the drift function, n(Xt,9) = K.(a — Xt) (Fig. 4(a)), the marginal density 7r(Xt,#) (Fig. 4(b)), 
and the conditional density approximations, p ^ u l e r and frx' as functions of the forward variable 
x, for two values of the conditional variable XQ in Figs. 4(c) and 4(d) respectively. The sampling 
frequency is monthly (A = 1/12) and the parameter vector 9 is evaluated at the MLE reported in 
Table 6. 
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Fig. 4. [continued) 

the empirically plausible estimate for U.S. interest rate data. The transformation 
from X to Y is given by Yt = j(Xt; 6) = X^~"/{a(p - 1)} and 

^Y(V,0) - n(p - l)y + aK(71'^-l\p - i ) p / ( p - i y / ( ? - i ) . (25) 
2 ( p - l ) j / 

The first term in the expansion is given in Table 3. The corresponding formulas 
can be derived analogously for the transformation Yt = "f{Xt; 9) — Xt ~p'/{cr(l — 
p)}, which is appropriate if 1/2 < p < 1. I plot in Fig. 4(a) the drift function 
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Table 3. Explicit sequence for the linear drift, CEV diffusion model. This table contains the 
coefficients of the density approximation for p y corresponding to the Chan et al. (1992) model in 
Example 4, dXt = K,(a — Xt)dt + cXf dWt- The terms in the expansion are evaluated by applying 

the formulae in Eq. (12). Prom Eq. (11), the K = 0 term in this expansion is p^'(A,3/ | i /o;0), the 
K = 1 term is 

# > (A, y|iu; 0) = Py 0 (A, y\y0; 9){1 + Cx(y\y0; 6)A} . 

Additional terms can be obtained by applying Eq. (12) further. 

Py^A.I/li/o.fl) = _ /—-exp 
V AV27T 

(y-yo)2 . , .... 
2A 

x y2(2p - 1) - 2y 1 +(" / ( " - 1 »a (p - I ) P / ( P - D C T I / ( P - I ) 

+ 3/o(3/o - 2py0 + 2a(p - l ) " / ^ - 1 ) 0 - 1 / ( " - 1 > ^ / ( ' , - 1 ) ) ) / ( 4 p - 2) 

x ^ ^ ( - 2 + 2 ^ ) ^ / ( 2 - 2 ^ ) 

ci(y|l/o,») for y^yo = (-4y4K2(p - 1)4(2 - 9p + 9p2)i/o + 3p(4 + 20p + 27p2 - 9p3) 

x 3/0 - 12j/2/<(p - l )2(13p - 27p2 + 18p3 - 2) 

x y0 - 24y3+W(>>-1»aK2(p-l)4+(>>tt>>-1»(3p - l ) f f V(P-D 

x 3/0 - 24 2 /
1 +( ' 5 / ( '>- 1»aK(p - 1 ) 3 + ( P / ( P - ! ) ) ( 2 - 9p + g p V 1 / ^ - ! ) 

x 3/0 - 12y 2 + 2 ( " / ( " - 1 »a 2 K 2 (p - l ) "+(a / (P- i ) ) (3 p _ 2 ) a 2 / ( ' - 1 > 

x j/o + 3/(3p(20p - 27p + 9p3 - 4) 

+ 12/c(p - l)2(13p - 27p2 + 18p3 - 2)3/2 

+ 4 / c 2 ( p - l ) 4 ( 2 - 9 p + 9 p 2 ) ^ 

- 24a*(p - I ) 3 + ( I / ( P - D ) (2 - 9p + 9p2)<r1/(p-DyJ+(/>/(p-D) 

- 24cuc2(p - l ) 4 +("/ ("- 1 ) ) (3p - i j ^ i / t P - D ^ + C ^ C P - D ) 

- 12a2/c2(p - l)5+(2/(P-D) ( 3 p _ 2 ) < T 2 / ( " - 1 ) 

x y 2 + ( 2 p / ( " - 1 ) ) ) ) / (243 / (p - l )2(3p - 2)(3p - l)(j/ - 3/0)3/0) . 

cifolw,, tf) for 3/ = 3/0 = g , * 2 ( (P - 2)p - 4/c(p - l ) 2 (2p - l ) j / 2 - 4K
2(p - 1)43/4 

8(p - l)23/5 

+ 8aK(p - i )3+( i / (P- i V i / ( - i + P ) y J + < / > / < P - i » 

+ 8a« 2 (p - I ) 3 + ( P / C P - I > V / C P - D ^ + W ' - D ) 

- 4a2/c2(p - i)4+(2/(p-i))C T2/(P-i)3 /2+(2P /(p-i)) ) 

corresponding to maximum-likelihood estimates (based on the expansion with K = 
1, see Table 6 below), in Fig. 4(b) the unconditional density and in Figs. 4(c) and 
4(d) the conditional density approximations for monthly sampling at x0 = 0.05 and 
0.20, respectively. 
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Example 5 (Nonlinear Mean Reversion). The following model was de­

signed to produce very little mean reversion while interest rate values remain in the 

middle part of their domain, and strong nonlinear mean reversion at either end of 

the domain (see Ait-Sahalia, 1996b): 

dXt = (a-iX^1 +a0 + aiXt + a2X?) dt + aXp
t dWt, (26) 

with 9 = (a-i,ao,ai,a2,o;p). This model has been estimated empirically by 

Ai't-Sahalia (1996b), Conley et al. (1997), and Gallant and Tauchen (1998) using a 

variety of empirical techniques. The new method in this paper makes it possible to 

Table 4. Explicit sequence for the nonlinear drift model. This table contains the coefficients 
of the density approximation for py corresponding to the model in Ai't-Sahalia (1996b), Conley 
et al. (1997), and Tauchen (1997) given in Example 5, dXt = ( a _ i - X t

- 1 ) + a0 + <*iXt + 
aiX2)dt + crX^dWt with p = 3/2. The terms in the expansion are evaluated by applying the 
formulas in Eq. (12). From Eq. (11), the K = 0 term in this expansion i s p x (A,y\yo;0), the K = 1 
term is 

pY-)(A,y\yo;e)=p{°){A,y\y0;e){l + c1(y\y0;e)A}. 

Additional terms can be obtained by applying Eq. (12) further. 

#J.(A,„|»„,»)--7s?i=«p fcza£ + £<..<-•+„•)«_, 

- 6(y2 - yl){o2{y2 + y2)a0 + 8ai)) 

x y (3 /2 ) - (2„ 2 /<r 2 ) J / - (3 /2 )+(2 e , 2 / .T 2 ) 

ci(y\yo, 9) = - _ * _ 4 (3l5y<T12y0(y
10 + ygyo + y8y2 + y7Vo + v6Vo + y5Vo + y4Vo 

7096320y<r4yo 

+ ysy7
0 + y2Vo + mil + Vo0)"2-! + 88y<76y0a_i 

x (35a4(y8 + y7y0 + y6y2 + y5y% + y^y4 + y3yl + y2yt + yy7
0 + yg) 

x a 0 + 36(-56j/4<72 - 56y3<r2y0 - 56y2o-2y2. - mya
2yl 

- 56<r2y4 + 5?/6<T2ai + 5y5a2y0a1 + 5y4<T2y2ai 

+ 5y3o-2y3
ai + 5y2<r2y4a1 + 5yo-2y%ai 

+ 5<T22/gai + 28y 4a 2 + 28y 3 y 0 a 2 + 28y2y2a2 + 28yy3
)a2 + 28y 4 a 2 ) ) 

+ 528(i5y<r8y0(y
6 + y5yo + y4y2 + y3y3

0 + y2yt + yyl + i/S) 

x a2 + 56yo-4yoao(-30y2cr2 - 30ya2yo - 30cr2yg + 3y4<r2ai + 3y3<T2y0ai 

+ 3y2<j2y§ai + 3y<r2ygai + 3<r2y4ai + 20y 2a 2 + 20yy0a2 + 20y2,a2) 

+ 560(9<74 - 24y<r4y0ai + y3a4y0a
2 + y2o-4y2a\ 

+ y<r4yga2 - 48<r2a2 + 24y<T2y0aia2 + 48a?.))). 
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Fig. 5. Drift and density and approximations for the nonlinear drift model. These figures report 
for the nonlinear drift model of Ait Sahalia (1996b) (also estimated by Conley et al, 1997 and 
Gallant and Tauchen, 1998) described in Example 5 and Table 4. Figure 5(a) plots the drift 
function, n(Xt, 6) = a _ i X t

_ 1 +aoaiXt + aiXl and Fig. 5(b) the marginal density n(Xt,9). This 
model does not have a closed-form solution for px- Figures 5(c) and 5(d) plot the conditional 
density approximations, px

uleT and px as functions of the forward variable x, for two different 
values of the conditional variable XQ. The sampling frequency is monthly (A = 1/12) and the 
parameter vector 8 is evaluated at the the MLE reported in Table 6. 
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Fig. 5. (continued) 

0.24 0.26 

estimate it using maximum-likelihood. I will again concentrate on the case where 
p > 1, and to save space evaluate the formulas in Table 4 for p = 3/2. This process 
has Dx = (0,+oo), Yt = 7(Xt;6>) = 2/ay/Tt), and 

3/2 — 2c*2C2 aiy ao<r2y3 a_i<74y5 

2 8 VY{y,0) = (27) 
y 2 8 32 

Figure 5(a) plots the drift evaluated at the maximum-likelihood parameter es­
timates (corresponding to K = 1). Figure 5(b) plots the unconditional or marginal 
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density of the process: in the specification test in Ai't-Sahalia (1996b), this density 
is matched against a nonparametric kernel estimator. Figures 5(c) and 5(d) con­
tain the conditional density approximations for K = 1, compared with the Euler 
approximation, for the two values xo = 0.025 and 0.20, respectively. As before, 
sampling is at the monthly frequency. 

Example 6 (Double-Well Potential) . In this example, I generate a bimodal 
stationary density through the specification 

dXt = (Xt - X?) dt + dWt. (28) 

This model is distributed on Dx = (—oo,+oo). Since the model is already set in 
unit diffusion, no transformation is needed (Y = X). 

Table 5 contains the first two terms of the expansion; Fig. 6(a) plots its drift, 
Fig. 6(b) its marginal density and Figs. 6(c) and 6(d) the transition density for 

Table 5. Explicit sequence for the double-well model. This table contains the coefficients of the 
density approximation for py corresponding to the model in Example 6, dXt = (Xt — X^)dt+dWt. 
The terms in the expansion are evaluated by applying the formulas in Eq. (12). From Eq. (11), 
the K = 0 term in this expansion is pY'(A,y\yo;9), the K = 1 term is 

p£)(A,y\yo;9)=pY>\A,y\yo;e){l + c1(y\yo;0)A}, 

and the K = 2 term is 

P?}(A. v\vo; 0) = P^0)(A, y\y0; e){l + Cl(y\y0; e)A + c2{y\yo-6)A2/2} . 

Additional terms can be obtained in the same manner by applying Eq. (12) further. 

p(°\A,y\y°,0) = VKj=exP 
(y-yo)2 y2 y4 vl Vp 

2A 2 4 2 4 

a(y\yo,0) = ^ ( - 1 0 5 + 7°y2 + 4 22/4 - 15*/6 + (7°y + 42y3 ~ i5y5)yo 

+ (70 + 42y2 - 15y4)yg + (42y - 15y3)y% + (42 - 15y2)y* - 15yy^ - 15yg). 

C2(y\yo,9) = (25725 + 11760y2 - 19670y4 + 9030y6 - 336ys - 1260y8 - 1260j/10 

44100 

+ 225y12 + 2y(10290 - 12110j/2 + 7455j/4 - 336y6 - 1260y8 + 225y10)yo 

+ 3(3920 - 7490y2 + 6930i/4 - 3 3 6 / - 1260y8 + 225y10)y
2 

+ 2y(-12110 + 10395y2 + 378y4 - 2520j/6 + 450ys)y% 

+ 5(-3934 + 4158y2 + 504y4 - 1260y6 + 225y8)y4 

+ 6y(2485 + 126y2 - 1050y4 + 225y6)yg 

+ 21(430 - 48y2 - 300y4 + 75y6)y° + 6y(-U2 - 840y2 + 225y4)y% 

+ 3(-112 - 1260y2 + 375y4)y8, + 180y(-14 + 5y2)yg 

+ 45 ( -28 + 15y2)yl° + 450yyJ1 + 225y£2). 



Panel A 

Transition Densities for Interest Rate and Other Nonlinear Diffusions 23 

u(x) 

\ 1.5 -

\ 1 " 

\ 0 . 5 -

T2 - 1 \ ^ / _ l \ 2 

- 0 . 5 - \ 

- 1 - \ 

- 1 . 5 - \ 

(a) 

Panel B 

(b) 

Fig. 6. Drift and density for the double-well model. Results for the double-well model of Example 6 
and Table 5 are reported. The drift function, /j,(x) = x — x3 (Fig. 6(a)) is such that the process 
avoids staying near 0 and is attracted to either —1 or + 1 , a fact reflected by the bimodality of 
the marginal density 7r(x) in Fig. 6(b). This model does not have closed-form solutions for px-
Figures 6(c) and 6(d) plot the conditional density approximations, px

ulel and px' as functions 
of the forward variable i , for two different values of the conditional variable with A = 1/2. As 
is clear from these figures, the Euler approximation cannot reflect the substantial nonnormality 
captured by the density approximation of this paper. Figure 6(e) plots the conditional density 
surface, (x, i o ) •-> px (A, x\xo, 9) for (A = 1/2), and 6 replaced by the MLE. 
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Table 6. Maximum-likelihood estimates for the monthly federal funds data, 1963-1998. This tab 
interest rate models estimated using the Federal funds data, monthly from January 1963 through 
using the Euler approximation, the density approximation of this paper with K = 1 and when th 
(Examples 1, 2 and 3), the expansion with K = 2 and the true density. In the table, "In L" refer 
The formulas for the density expansion can be found in the respective tables indicated in the third 
last column are computed from Eq. (30), with Fisher's Information Matrix in Eq. (31) replaced b 
derivative of the log-likelihood expansion with K = 1, and confirmed with the average of the first d 

Model 

Example 

Number 

1 

2 

3 

4 

Density 

Expansion 

Table 

I 

II 

II 

III 

Figure 

1 

2 

3 

4 

Parameter 

Estimates: 

Euler 

a = 0.0717 

K = 0.258 

o- = 0.02213 

lnL = 3.634 

a = 0.0732 

K. = 0.145 

<x = 0.06521 

lnL = 3.917 

<7 = 15.019 

K = 0.177 

o- = 0.8059 

lnL = 4.171 

a = 0.0808 

K. = 0.0972 

a = 0.7224 

p = 1.46 

lnL = 4.172 

Parameter 

Estimates: 

Expansion 

K = l 

a = 0.0719 

K = 0.257 

a = 0.02237 

lnL = 3.634 

a = 0.0742 

a = 0.189 

o- = 0.06658 

l nL = 3.918 

a = 15.157 

K = 0.181 

a = 0.8211 

lnL = 4.158 

a = 0.0844 

K = 0.0876 

a = 0.7791 

p = 1.48 

lnL = 4.159 

dXt = K(Q - Xt)dt + adWt 

dXt = K(a - Xt)dt + ayfXtdWt 2 

dXt = Xt(K - (o-2 - Ka)Xt)dt 

+ aX3
t
/2dWt 

dXt = K,(a - Xt)dt + o-X^dWt 



Table 6 (continued) 

Model 

Density Parameter 

Example Expansion Estimates: 

Number Table Figure Euler 

Parame 

Estimat 

Expans 

K = 1 

dXt = ( a _ i X t
- 1 +a0+ Q I Xt + a2Xf)dt 

+ o-X\l2dWt 

IV a _ i = 0.00107 a _ i = 

a 0 = -0.0517 a 0 = -

a i = 0.877 a = 0.6 

a2 = -4.604 a 2 = -

(7 = 0.8047 a = 0.8 

lnL = 4.173 lnL = 4 
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K = 2, monthly sampling and XQ = 0.0 and 0.5, respectively, with A = 1/2. As is 
apparent from the figures, the densities in this model exhibit strong nonnormality, 
which obviously cannot be captured by the Euler approximation of Eq. (16). 

3. The Estimation of Interest Rate Diffusions 

3.1. The data and maximum-likelihood estimates 

To calculate approximate maximum-likelihood estimates, I maximize the ap­
proximate log-likelihood function 

^ ) ( £ » ) = n - 1 2 l n { p ^ ) ( A , X i A | ^ ( i _ i ) A ; < ? ) } (29) 
i = l 

(with the convention that ln(a) = —oo if a < 0) over 9 in ©. This results in an 
estimator 0„ ' , which, as shown in Ai't-Sahalia (1998), is close to the exact (but 
uncomputable in practice) maximum-likelihood estimator 6n. 

The data consist of monthly sampling of the Federal Funds rate between January 
1963 and December 1998 (see Fig. 7). The source for the data is the H-15 Federal 
Reserve Statistical Release (Selected Interest Rate Series). Though the Fed Funds 
rate series exhibits strong microstructure effects at the daily frequency (due for 
instance to the second Wednesday settlement effect; see Hamilton, 1996), these 
effects are largely mitigated at the monthly frequency. On the other hand, this rate 
represents one of the closest possible proxies for what is meant by an "instantaneous" 

•a a 
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CD 
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0) 

•a a 
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Fig. 7. Federal funds rate, monthly frequency, 1963-1998. This figure plots the time series of the 
Federal funds data used for the estimation of the parameters in Table 6. 



28 Quantitative Analysis in Financial Markets 

short rate in theoretical models. Since the method in this paper does not rely on 
the sampling interval being small, the trade-off between a larger sampling interval 
and the virtual absence of microstructure effects seems worthwhile. Of course, the 
implicit (unrealistic) assumption is made that a single diffusion specification can 
represent the evolution of the short rate for the entire period. Naturally, nothing 
prevents the estimation to be conducted on a shorter time period at the expense of 
reducing the sample size. One advantage of the long time series used here is that it 
contains different episodes of U.S. interest rate history, such as the Volcker period, 
as well as the low interest rate environments that preceded it and followed it. It is 
therefore interesting to see how different models would accommodate these different 
regimes. 

The results for the five models of Examples 1 to 5, compared to the Euler 
approximation and, when available (Examples 1 to 3), the true log-likelihood, are 
reported in Table 6. The last column of the table reports the asymptotic standard 
deviations for the estimated parameters, derived as explained below. 

The results in Table 6 confirm those of Section 2: the expansion used with 
K = 1 or 2 produces estimates 8n that are very close to 0n. It is interesting to 
note that because the model evaluated at the true parameter values often display 
very little drift (hence their near unit root behavior), and because interest rates 
are not particularly volatile, the fitted densities over a one-month interval are often 
fairly close to a Gaussian density. In other words, for these data, A = one month 
is a "small" time interval. Hence the Euler approximation performs relatively well 
in this specific context (except in the nonlinear drift model of Example 5, where 
the estimated parameters can be off by as much as 30% (although the standard 
deviation in this case is large), in the inverse Feller process of Example 3 where 
they are off by 5% to 10%, and in the Chan et al. (1992) specification of Example 4 
where the drift parameters are off by 10%). 

3.2. Estimation of the asymptotic variance and how many 
terms to include 

I consider here only the situation where the process admits a stationary distri­
bution. For the more general case, see Ai't-Sahalia (1998). The asymptotic variance 
of the maximum-likelihood estimator is given by the inverse of Fisher's Informa­
tion Matrix, which is the lowest possible achievable variance among the competing 
estimators discussed in the introduction. 

Define L(6) = ln (p^(A,XAI^O;^) ) , the d x 1 vector L{6) = dL(6)/d0, and the 
d x d matrix L{6) = d2L{6)/d6d6T where T denotes transposition. We have that 

n ^ n - ^ - ^ ^ O . t ^ o ) - 1 ) , (30) 

where Fisher's Information Matrix is 

i{9) = E[L(0)L(e)T] = -E[L(9)]. (31) 
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Note that it is necessary that the transition function px not be uniformly 
flat in the direction of any one of the parameters 9m, m = 1, . . . , d , otherwise 
dpx(A,x\xo;Q)/d6m = 0 for all (x,x0) and the model cannot be identified. In 
other words, no parameter entering the likelihood function can be redundant. The 
asymptotic standard deviations from Eq. (30) are reported in the last column of 
Table 6 for the interest rate models estimated above, with the expected values in 
Eq. (31) replaced by the sample averages evaluated at the parameter MLE. 

Test statistics can be derived. Suppose that the model is given by Eq. (1) and 
that we wish to test HQ\9 = 9Q against the two-sided alternative Ha:9 ^ 9Q. The 
likelihood ratio test statistic evaluated behaves under HQ as: 

2{*„(fl„)-*„(0o)}-^x2- (32) 

Distributional results can be also be obtained for tests of a nested model which 
only allows for d free parameters from the d parameters in 9, and one can also con­
sider Rao's efficient score statistic, which depends only on the restricted estimator 
9n, and Wald's test statistic, which depends only on the unrestricted estimator 9n. 

In all the results below, one can then replace 9n (respectively 9n) by 9\ (re­
spectively §n '). As the examples above have shown, it is not necessary to go much 
beyond K = 2 in the relevant financial examples to estimate the true density with 
a high degree of precision. More generally, to select an appropriate K at which to 
stop adding terms to the expansion, the following approach can be adopted: take 
K large enough so that the approximation error made in replacing px by px ' is 
smaller than the sampling error due to the random character of the data, by a 
predetermined factor. 

That is, in 

\\^)-90\\<\\9^)-9Q\\ + \\9n-90\\ (33) 

we can estimate the asymptotic standard variance of 9n about 9Q by Eq. (30). By 
Chebyshev's Inequality, one can then bound the second term on the right-hand-side 
of Eq. (33). We can then stop considering higher order approximations at an order 
K such that the distance between the two successive estimates #„ ' and 9n is 
an order of magnitude smaller than the distance between 9n and 90. In practice, 
this is unlikely to make much of a difference and in most cases one can safely restrict 
attention to the first two terms, K = 1 and K = 2. 

4. Conclusion 

This paper has demonstrated how to obtain very accurate closed-form approx­
imations to the respective transition densities of a variety of models commonly 
used to represent the dynamics of the short term interest rate. Applications to 
derivative pricing, consisting in obtaining pricing formulas for any underlying price 
process, have been briefly outlined and will be developed in future work. Finally, 
an extension of these results to multivariate diffusions will be investigated. 
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Appendix A. Regularity Conditions 

Assumption 1 (Smoothness of the Coefficients). The functions fJ,(x;&) 
and cr{x;8) are infinitely differentiate in x in Dx, and twice continuously differ-
entiable in 9 in the parameter space 0 C Rd. 

Assumption 2 (Nondegeneracy of the Diffusion). 

1. If Dx = {—oo, +oo), there exists a constant c such that o~(x;6) > c > 0 for 
all x G Dx and 9 € 0 . 

2. If Dx — (0, +oo), I allow for the possible local degeneracy of a at x = 0: If 
<r(0; 8) = 0, then there exist constants £o, w > 0, p > 0 such that a(x; 8) > UJXP 

for all 0 < x < £o and 8 e 0 . Away from 0, a is nondegenerate; that is, for 
each £ > 0, there exists a constant ĉ  such that a(x;8) > c^ > 0 for all 
x e [f + oo) and 9 £ 0 . 

Assumption 3 below restricts the behavior of the function \xy and its derivatives 
near the boundaries of Dy. It is formulated in terms of the function [iy for reasons 
of convenience, but the equivalent formulation directly in terms of the original 
functions fi and a can be obtained from Eq. (8). Recall that Xy(y; 9) = —(Hy(y; 9) + 
dfiy(y;9)/dy)/2. 

Assumption 3 (Boundary Behavior). For all 9 € 0 , fiy(y,9), dfj,y(y;9)/ 
dy, and d2fiy(y; 9)/dy2 have at most exponential growth near the infinity boundaries 
and \imy-+y or g Ay(y; 8) < +/oo. 

1. Left Boundary: 

i. Ify = 0+, there exist constants eo, K, a such that for all 0 < y < eo and 
9 € Q,fj,y(y;9) > ny~a where either a > 1 and K > 0, or a = 1 and 
K> 1. 

ii. If y = —oo, there exist constants Eo > 0 and K > 0 such that for all 
y < -EQ and 9 £ 0 , fj,y(y; 9) > Ky. 

2. Right Boundary: If y = +oo, there exist constants Eo > 0 and if > 0 such 
that for all y > Eo and 8 e 0 , /j,y(y; 8) < Ky. 

The following remarks can help demonstrate the generality of these assumptions: 

1. The upper bound l i m ^ y or g Ay(i/; 8) < +oo does not restrict Xy from going 
to — oo near the boundaries. 

2. Similarly, Assumption 3 does not preclude fiy from going to — oo very fast 
near y, and similarly, from going to +oo very fast near y. Assumption 3 only 
restricts how large fiy can grow if it has the "wrong" sign; that is, if it is posi­
tive near y and negative near y then linear growth is at the maximum possible 
growth rate. If \xy has the "right" sign then the process is being pulled back 
away from the boundary and I do not restrict how fast mean reversion occurs 
(up to an exponential rate for technical reasons). The admissible behavior of 
the drift function /iy under these assumptions is summarized in Fig. Al. 
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(no restriction) 
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Fig. Al . Growth conditions for the drift / zy(y ;0) . This figure translates graphically the assump­
tions made in the appendix regarding the shape of the function HY • The admissible shape of the 
function is substantially less restricted than under the standard growth conditions. In particular, 
I only restrict the growth of /zy when it has the "wrong" sign (positive near +00, negative near 
- 0 0 ) . 

The constraints on the behavior of the function fly are essentially the best 
possible. For example, if fly has the "wrong" sign near an infinity boundary, 
and grows faster than linearly, then Y explodes in finite time. Near a zero 
boundary at 0+, if there exists K > 0 and a < 1 such that /xy(y;0) < ky~a 

in a neighborhood of 0 + then 0 and negative values become attainable. 
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4. I can now fully characterize the boundary behavior of the diffusion Y implied 
by the assumptions made: if +00 is a boundary then it is natural if, near +00, 
IMKG/! 0)1 < Ky a n d entrance if p,y(y; 9) < —KyP for some /? > 1. If —00 is 
a boundary then it is natural if, near —00, \p,y(y; 9)\ < K\y\ and entrance if 
^Y{V\ 0) > K\y\P for some /? > 1. If 0+ is a boundary, then it is entrance. 
Both entrance and natural boundaries are unattainable (see Feller, 1952 or 
Karlin and Taylor, 1981, Section 15.6 for the definition of boundaries). Nat­
ural boundaries can neither be reached in finite time, nor can the diffusion 
be started from there. Entrance boundaries, such as 0 + , cannot be reached 
starting from an interior point in Dy = (0, +00), but it is possible for Y 
to begin there. In that case, the process moves quickly away from zero and 
never returns there. Typically, economic intuition says little about how the 
process would behave if it were to start at the boundary, or whether that 
is even possible, and hence it is sensible to allow both types of boundary 
behavior. 

5. Assumption 3 neither requires nor implies that the process is stationary. 
When both boundaries of the domain Dy are entrance boundaries then the 
process is necessarily stationary with unconditional (marginal) density, 

ir(y;9) = exp < 2 / p,y(u;8)du> J I exp < 2 / p,y(u;9)du > dv, 

(A.1) 
provided that the initial random variable YQ is itself distributed with the 
same density TT. When at least one of the boundaries is natural, stationarity 
is neither precluded nor implied. For instance, both an Ornstein-Uhlenbeck 
process, where p.y{y; 9) = n(a — y), and a standard Brownian motion, where 
Aty(2/!0) = 0) satisfy the assumptions made, and both have natural bound­
aries at —00 and +00. Yet the former process is stationary, due to mean 
reversion, while the latter (null recurrent) is not. 

Finally, the following assumption is needed for the purpose of maximizing the 
log-likelihood function only, not for the purpose of constructing the density expan­
sion in Eq. (11). 

Assumption 4 (Strengthening of Assumption 2 in the limiting case where a = 1 
and the diffusion is degenerate at 0): Recall the constant p in Assumption 2(2), and 
the constants a and K in Assumption 3(l.i). If a = 1, then either p > 1 with no 
restriction on K, or K> 2p/(l — p) ifO<p<l.Ifa>l, no restriction is required. 
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Most approaches in forecasting merely try to predict the next value of the time series. In 
contrast, this paper presents a framework to predict the full probability distribution. It 
is expressed as a mixture model: the dynamics of the individual states is modeled with 
so-called "experts" (potentially non-linear neural networks), and the dynamics between 
the states is modeled using a hidden Markov approach. The full density predictions are 
obtained by a weighted superposition of the individual densities of each expert. This 
model class is called "hidden Markov experts". 

Results are presented for daily S&P500 data. While the predictive accuracy of the 
mean does not improve over simpler models, evaluating the prediction of the full density 
shows a clear out-of-sample improvement both over a simple GARCH(1,1) model (which 
assumes Gaussian distributed returns) and over a "gated experts" model (which expresses 
the weighting for each state non-recursively as a function of external inputs). Several 
interpretations are given: the blending of supervised and unsupervised learning, the 
discovery of hidden states, the combination of forecasts, the specialization of experts, 
the removal of outliers, and the persistence of volatility. 

Keywords: Forecasting, density prediction, conditional distribution, mixture models, 
time series analysis, hidden Markov models, gated experts, hidden Markov experts, 
model comparison, density evaluation, computational finance, risk management. 

Data: Daily S&P500 (January 1977 to December 1997). 

Code: Please contact the first author for the MATLAB implementation. 

1. Introduction 

The introduction reviews several approaches to density forecasting in time series, 
informally introduces the model class of "hidden Markov experts" (HME), discusses 
methods for density evaluation, and relates HME to previous work. A brief overview 
of the sections of the paper are given at the end of the introduction. 

1.1. Tasks in time series prediction 

A time series is a sequence of observations yT = {yt\t = 1 , . . . , T}. t enumerates 
the elements of the sequence, and T is the total number of the observations. Our 
methodology is to split the entire set of available data into at least two sets. The 
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first part is used to estimate the parameters of the model and is called the training 
set. The second part of the data is only used at the very end of the entire modeling 
process to compute performance measures and referred to as the test set.a The test 
set thus serves as the out-of-sample set, since waiting for genuinely new observations 
would just take too long for daily data. 

Many forecasting methods (in particular almost all non-linear forecasting meth­
ods) focus on predicting the next value or point of the time series. Such point 
predictions are appropriate on problems where the signal is only distorted with a 
small amount of noise, as typically the case in non-linear dynamics.15 However, in 
financial time series, the noise is often larger than the signal itself, requiring meth­
ods that predict not just a point but a density. This paper focuses on such density 
prediction, addresses the problems of a small signal to noise ratio, and includes 
non-Gaussian density forecasts. 

We start by briefly discussing a path through various tasks for prediction. 

(1) Model (1) uses the mean of the training set as point prediction. However, 
with sufficiently precise experimental resolution, the exact value of the pre­
diction is almost always wrong: probability densities are needed. 

(2) An interpretation of Model (1) is that of a single Gaussian (instead of a 
sharp point) whose constant variance is that of the training set. We call this 
density implicit in the point forecast Model (2) and use it as the baseline 
model in the empirical evaluations. 

The two possible next steps are (a) to allow the mean to vary, or (b) to allow 
the variance to vary. 

(3a) The predicted mean varies (i.e., it is a function of some inputs, a;) but 
the variance remains constant. The input variables can be other time se­
ries (exogenous variables), or they can be lagged values of the series to 
be predicted (autoregression). The functional mapping from these vari­
ables to the output (expected mean) is, in the simplest case, linear. Our 
framework allows for general non-linear functions, typically be expressed 
as neural networks. The parameters of the model can be estimated by 
minimizing the squared error between the prediction and the observed 
value. In machine learning, the observed value is called the "target", and 
an input-output pair is called a "pattern". 

(3b) Rather than varying the mean and keeping the variance constant, Model 
(3b) fixes the mean (to the mean of the training set) but allows for con­
ditional variance. Estimating the parameters becomes more complicated 

a Additional sets can be set aside from periods earlier than the test set if there are meta-parameters, 
such as the number of experts. 

This is not a coincidence. Many non-linear systems can generate so-called chaotic behavior where 
the time series continues in an "interesting" way forever. This is an important difference to linear 
systems that die out if they are not driven by noise. 
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than minimizing a squared error since, in contrast to Model (3a), we here 
do not have a desired value or target for each pattern. In order to estimate 
the parameters of the model, a more complicated statistical framework is 
needed. We use a maximum likelihood approach: the predicted condi­
tional variance is written as a function of the inputs. The coefficients of 
this function are estimated such that the likelihood of the observed data 
given the model and the inputs is maximized. 
Model (3b) — mean fixed, variance varying — has important applications 
in finance. While it is very difficult to predict the once-differenced time 
series of prices (i.e., returns) better than a constant Model (1), more 
accurate predictions of the variance than a constant are often possible. 
This reflects the well-known property of many financial time series called 
volatility clustering or volatility persistence: there are time periods with 
large (positive and negative) returns, which should be predicted with a 
larger variance, and there are time periods where the market is quiet and 
the predicted variance should be smaller. 

(4) The fourth level of complexity predicts Gaussian densities with conditional 
means and conditional variances, combining the two degrees of freedom 
from Models (3a) and (3b). 

So far, the form of the density in all the models has been Gaussian. Now we 
want to generate density predictions that are non-Gaussian. To achieve this goal, 
there are two philosophies: using expansions (e.g., Edgeworth expansion), and using 
mixture distributions. The expansion approach has the advantage of orthogonality. 
The computation of increasing orders of approximation is sequential; the term of 
order (n + 1) is not effected by terms of order n and below. The corresponding 
weakness is that the term of order (n + 1) can only patch up problems the lower 
orders have left for it, rather than all (n + 1) terms joining together and trying to 
find a better overall solution. Another aspect of the relationship between mixture 
models and moments is discussed in Timmermann (1993).c 

The mixture approach expresses the density P(yt+l) as a sum of M distributions: 

P(yt+ | information set at time t, model parameters) 

M 
t + 1 ( » ) P ( y t + 1 | x t + 1 , . . . , model parameters). 

In the context of non-linear sub-models for the mixture components, the sub-models 
are called "experts". This follows the notation introduced for mixture models to 

CA parallel can be drawn between the two philosophies for modeling densities (expansions vs. 
mixtures), and the two philosophies for function approximation (polynomials vs. neural networks). 
Expansions and polynomials are computationally cheap, have incremental updates, and are often 
amenable for an analytical treatment of convergence properties. Mixtures and neural networks are 
computationally expensive, since the entire model needs to be re-estimated when the number of 
components changes. 
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the neural network community by Jacobs, Jordan, Nowlan and Hinton (1991) who 
applied it to a classification problem, see also Jordan and Jacobs (1994). Their 
choice of the term expert does^iot imply any connotations to human experts. In 
the economics literature, the experts are called "states". 

Several choices need to be made: 

• How many experts should the model have? Hansen (1992) has developed a 
pseudo-likelihood ratio criterion to determine this nuisance parameter, and 
Baxter (1996) has developed an alternative based on the Minimum Message 
Length principle (Wallace and Boultor, 1968). This paper takes a more prag­
matic approach: since the ultimate goal is to predict densities of financial time 
series, we evaluate the quality of the model on out-of-sample predictions. 
We typically choose between three and ten mixture experts, estimate the 
model, convince ourselves of its performance, and finally analyze the resulting 
experts. Their interpretation is part of the creativity of the modeling process 
and is hard to do automatically. 

• What is the functional form of the individual densities each expert generates? 
It can be any member of the exponential family, and this article keeps the 
theoretical derivations general. However, when a specific distribution needs to 
be chosen (in the computer implementation and the comparisons), we assume 
these individual distributions to be Gaussian.d 

• 7^+1 is the weight given to Gaussian j for the prediction for time (t +1), with 

5Z,-=i 7j = 1- What should j(») depend on? 

Three possible answers to the last question form the basis for the remaining 
three model classes. 

(5) In the simplest case of an unconditional density, the TJ'S do not depend on 
anything: a mixture of Gaussians is fitted to the training set and all pa­
rameters are constants. The parameters (the mixture weights 7,-, and the 
means and variances of the individual Gaussians) are estimated in a maxi­
mum likelihood framework using the EM algorithm (explained in Sec. 2.5). 
This unconditional mixture will be one model in empirical comparisons. 

(6) The mixture weights jj depend on a set of external variables. Based on 
the performance of all the experts on each pattern of the training set, a 
"gate" learns the mapping from its inputs, the exogenous variables, to the 
7j-'s. This model class is called gated experts (GE) (Weigend, Mangeas 
and Srivastava, 1995) and represents a regression model. When used in 
forecasting, the temporal structure of the time series enters only through 

d T h e idea of a mixture model can be traced back to Pearson (1894) who "mined" a da ta set 
consisting of measurements of the forehead size of crabs with a mixture of two Gaussians, thus 
"discovering" two sub-populations. 
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the construction of the patterns (the input-output pairs). Note that once 
these patterns have been generated from the raw data, randomizing the order 
of the training data has no effect on the resulting model. In the real world, 
there are time series problems where a regression approach is appropriate. 
A successful application of this architecture is energy demand forecasting 
where the inputs into the gate represent cloud coverage, temperature, special 
tariff days, and other exogenous variables (Weigend et al., 1995). However, 
there are other time series problems where the nature of the problem requires 
time to be taken into account in a more fundamental way. One such example 
is given by the model class of HME. 

(7) This model class is called hidden Markov experts (HME). It is best 
described by its underlying assumptions: 

• There are several discrete states. Their corresponding functional input-
output mapping can be expressed as feedforward networks. These sub­
models are called experts. 

• At each time step, a single expert is responsible for generating the cor­
responding observation. We do not know which of the experts actually 
generated the observation — the probabilities of the experts for each time 
step need to be estimated from the data. 

• Modeling the sequence of the hidden states, we assume that the dynamics 
of the hidden states can be described by a first-order Markov process, i.e., 
the next state depends only on the current state. This is expressed as a 
matrix of transition probabilities between the hidden states. We do not 
know these transition probabilities either; they also must be estimated 
from the data. 

Fortunately, the statistically solid framework of hidden Markov models 
(Baum and Eagon, 1963; Hamilton, 1989) provides algorithms to estimate 
the unknown quantities. We combine this framework with connectionist 
techniques. We show how we can learn the potentially non-linear functions 
of each expert, the parameters of the transition matrix, and the probability 
vector across the states at each time step. 

The distinction made above emphasizes that GE and HME model time in a fun­
damentally different way. We now focus on the common aspects and consequences 
thereof. Both model classes share the goal to generate non-Gaussian density fore­
casts, and both are based on mixture models. The implications that hold for both 
cases include: 

• Discovering hidden states. Conventional data analysis, data mining, and 
knowledge discovery often do not have a clearly defined concept of what 
it means to "discover hidden knowledge". This paper clearly defines hid­
den states as the components of the mixture density. The solid statistical 
basis allows for a principled interpretation in terms of probabilities, enabling 
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the discovery of interesting relations. In the case of predicting financial re­
turns, the hidden states can be related to volatilities. Methodologically, it 
is important to clarify that the HME approach does not insert knowledge 
that volatilities are important for characterizing regimes, but it does make 
statistical assumptions that in turn yield this knowledge. 

• Blending supervised with unsupervised learning. Approaches to learn­
ing from data and computational intelligence are traditionally dichotomized 
into supervised learning (regression and classification where the desired out­
come is known for the training data) and unsupervised learning (clustering 
where no target is available and the goal is to discover the underlying struc­
ture). Both GE and HME combine the strengths of supervised learning with 
those of unsupervised learning: They build on the advantage of supervised 
learning that allows for performance evaluation, while providing the flexibility 
of unsupervised learning that has the advantage of discovering and interpret­
ing hidden states. 

• Combining forecasts. The idea of combining forecasts, going back to (Bates 
and Granger, 1969), has become increasingly important in areas ranging from 
applied forecasting (Clemen, Murphy and Winkler, 1995) to computational 
learning theory (Cesa-Bianchi, Freund, Helmbold, Haussler, Schapire and 
Warmuth, 1997). Both GE and HME softly combine the forecasts of the 
experts. Also, the relative weights for each expert vary at each time step. 
These weights are the estimates of the posterior probabilities. They reflect 
the training set performance for similar situations. For GE, the similarity 
is given through the gate, and for HME through the previous state and the 
transition matrix. 

• Becoming experts through competition. In most approaches to fore­
cast combination, the individual models give equal weight to all their training 
points. GE and HME use competitive learning. For each training pattern, 
all experts compete. If one expert's prediction is better than the predictions 
of the other experts, it receives a larger share of the data point to update 
its parameters than the others. It thus learns to improve its predictions in 
areas where it is already quite good, and learns to ignore areas where some of 
its competitors are better. For both GE and HME, the experts become true 
experts and the algorithm learns about their area of applicability. Since we 
use unconditional variances for each expert, one delineation of the experts is 
according to the local noise level. Weigend et al. (1995) show that the adap­
tation of each expert to its (overall) local noise level helps to avoid overfitting. 
The standard assumption of constant variance often leads to local underfitting 
in some regions, and to local overfitting in others. When predicting financial 
returns, the different noise levels correspond to different volatility regimes. 
Given volatility clustering, this pulls the solution in the same direction as the 
Markov assumption of staying in a regime rather than switching to another 
one. In general, the grouping depends both on similar noise levels and on 
similar functional forms of the experts. 
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• Modeling outliers. Many practical problems in data mining use some 
heuristic to remove outliers. Given the strong effect outliers have on the 
model, the specific heuristic can determine the resulting model. As an al­
ternative to removing outliers, robust statistics uses an influence function 
that downweighs patterns where the observation and prediction are far apart. 
This practice can be dangerous in risk management, a new area of increas­
ing importance for financial firms. Risk management focuses on rare events 
and on tails of distributions. Removing outliers or reducing their influence 
leads to an underestimation of risk that can be detrimental. In contrast, GE 
and HME model outliers naturally. In our experience, one expert has a rel­
atively large variance compared to the others. Its role is thus to become the 
"garbage-collector", effectively removing the outliers and "explaining" them 
much better than all of the other experts whose likelihoods vanish at that 
point. In turn, the remaining experts have cleaner data which often allows 
the models to be interpreted more easily. 

• Saving inputs. When learning from data, one can never be sure that one has 
the "best" set of inputs. In many cases there is no shortcut to the creative 
process of arguing for several sets of inputs, building the model, and then 
evaluating the out-of-sample performance to learn which inputs are important. 
This paper does not address the problem of input selection. However, once a 
set of inputs has been decided on, it is often possible to have different experts 
look at different subsets of the full set of inputs. When linear experts suffice, 
standard linear theory helps determine the significance of the inputs, which 
often leads to further reduction. Individual experts can end up with only a 
fraction of the union of the inputs. This simpler structure also lends clearer 
interpretations of the individual models. Note that the formalism matches 
the noise level of each expert to the noise level of its corresponding data. This 
has been shown to be an important aspect against overfitting of GE. 

This part of the introduction showed several angles on the proposed architecture 
that complement the rigorous evaluation of out-of-sample performance that any data 
driven modeling has to follow. 

1.2. Evaluating predictions 

In the model comparison, GE Model (6) and HME Model (7) are chosen to have 
identical assumptions whenever possible. They have the same number of experts, 
the same inputs, the same functional form for the experts (e.g., linear or neural 
network), and, on the output side, the same noise model and degrees of freedom 
(i.e., expert-specific variances, and expert and input-dependent means). The only 
difference is the gate. Since many financial time series exhibit volatility clustering, 
the gate inputs should include some volatility proxy such as exponentially smoothed 
square returns. 
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In addition to the comparison between the mixture architectures HME and GE, 
we also compare them with several simpler architectures: unconditional Gaussian 
Model (1), unconditional mixture of Gaussians Model (5), and a simple GARCH(1,1) 
model (constant mean but varying variance, Model (3b)). The main two questions 
the empirical evaluation tries to answer are: 

• HME vs. GE: are there hidden states in the market that cannot be observed 
directly? The answer is positive if the assumption of an underlying hidden 
Markov process improves predictive accuracy compared to conditioning on 
exogenous variables. Of course, any model contains assumptions! Of particu­
lar importance here is the specific choice for the input variables. It is always 
possible that there is yet another model with more suited inputs that gives 
better out-of-sample performance. In our empirical study, however, we try to 
be as fair as possible in comparing the two cases on the S&P500 returns. 

• HME vs. GARCH: do HME predicting non-Gaussian densities generate better 
forecasts than a GARCH model predicting Gaussian densities? 

To answer these questions, we compare the out-of-sample performance on a test 
set, i.e., data from a time period after the end of the training period. No single 
measure suffices: we use several measures that capture different aspects of the 
density prediction. 

• The first measure focuses on the predicted probability density function (pdf) 
and computes the average log-likelihood of the test data given the model. 
This measure, evaluated on test data, allows us to compare the performance 
of different architectures. 

• The second measure focuses on the predicted cumulative density function 
(cdf). This integral transform method was suggested by Diebold, Gunther 
and Tay (1998). 

• In addition, we also provide the normalized mean squared error. Note that 
it only evaluates the quality of the point forecast, but does not measure the 
quality of the density forecast, thus missing the central goal of this paper. 

While point forecasting is predominant in the forecasting literature, some studies 
discuss interval forecasts (Chatfield, 1993; Christoffersen, 1997) and probability 
forecasts (Murphy and Winkler, 1992; Clemen et al, 1995). As Diebold et al. (1998) 
point out, the reasons for the relative neglect of density forecasting and evaluation 
include: uncertainty about the specific distribution, difficulty in evaluation, and 
the lack of demands from practice. This has changed in the recent past: risk 
management has become central for financial firms, and trading and pricing models 
increasingly depend on good density estimates. 

1.3. Related work 

A hidden Markov model is a parametric stochastic probability model with which 
a time series can be generated or analyzed. A hidden Markov model has two 
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interrelated processes: a finite-state Markov chain that cannot be observed, and 
an emission model associated with each state. The Markov chain is characterized 
by the matrix of transition probabilities between states. The output probability 
densities given by the emission model can be characterized along two axes: 

1. The output probability densities can be represented non-parametrically or 
parametrically. 

2. The output probability densities may depend on an input (conditional) or 
they may be a constant for each expert (unconditional). 

The mathematical representation that describes the observation probabilities is 
called the emission model. Viewed from the perspective of time series generation, 
the Markov chain generates a sequence of discrete states that we call a path. Based 
on this path, the emission model generates the probability density for each time step. 
The specific realization (the "observation") is then generated from this probability 
density for each time step. 

Viewed from the perspective of time series analysis, the output probabilities 
impose a "veil" between the states and the observer of the time series (Ferguson, 
1980). The task is to lift that veil. The term hidden is used because these states 
cannot be seen directly from the observed data. It is called Markov since it as­
sumes that the probability of the next state depends only on the current state and 
the transition probabilities between the states. Both the states and the observed 
process can be either discrete or continuous. In state space models, the states and 
the observations are both continuous (Harvey, 1989; Timmer and Weigend, 1997). 
HME use discrete states (corresponding to the experts) and continuous variables 
(corresponding to the observed time series). 

Next, we need to address the question of how to estimate the parameters of 
the model from the observed sequence. Baum and Eagon (1963) solved this prob­
lem for hidden Markov models with discrete observation densities. Baum, Petrie, 
Soules and Weiss (1970) extend the algorithm to many of the classical distributions. 
Hidden Markov models have been widely used in speech recognition. In the neu­
ral network community, Bengio and Frasconi (1996) proposed the "Input-Output 
Markov model" which allows for non-constant transition probabilities in addition 
to non-linear emission models. The concept of the transition among states can also 
be used to model the time dependency of regime switching. Poritz (1982) first com­
bined hidden Markov models with linear prediction. Hamilton (1989) introduced 
switching models to economics and econometrics, spawning a large body of research 
(Engel and Hamilton, 1990; Hamilton, 1990; Hansen, 1992; Hamilton, 1994; Lahiri 
and Wang, 1994). 

Most of these applications focus on point predictions but not on densities. Fraser 
and Dimitriadis (1994), predicting one of the data sets of the Santa Fe Competition 
(Weigend and Gershenfeld, 1994), used a hidden Markov model and generated non-
Gaussian through a Monte Carlo approach (generating many continuations and then 
essentially presenting a histogram for each time step.) Hamilton and Susmel (1994) 
proposed an approach to model the conditional variances within Markov switching 
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framework, where they combined the regime switching process with an autoregres-
sive conditional heteroskedasticity (ARCH) model by allowing the parameters of 
the ARCH process to come from different regimes. Gray (1996) proposed a more 
comprehensive method to nest the generalized ARCH (GARCH) model into regime 
switching model. However, these two models are limited to the first and second 
conditional moment of the distribution. 

None of these approaches focused on the prediction and evaluation of more 
general densities. We emphasize the fact that the Markov switching models by 
their nature of being mixture models generate densities, and that these densities 
should be evaluated with appropriate measures. Furthermore, we allow for non­
linear experts. 

This paper is organized as follows: Sec. 2 explains the notation, describes the 
likelihood function, and illustrates the Expectation Maximization (EM) algorithm 
used in HME. Section 3 explains how to generate density predictions using HME 
and describes methods to evaluate the density. Section 4 shows what can be 
learned from computer generated data for the HME approach to density forecasting. 
Section 5 presents the empirical results on comparing HME with GE, GARCH, an 
unconditional mixture, and an unconditional Gaussian for the daily density fore­
casts of S&P500 returns. Some conclusions are drawn in Sec. 6. 

2. The Assumptions and the Algorithm 

2.1 . Notation 

1. Observations. yT = {y'|t = 1, . . . , T } refers to the observed time series 
data. T is the number of the observations and t is the time index. Similarly, 
XT — {x*\t = 1 , . . . , T} represents the input to the emission model, x* itself 
can be a vector or a scalar. In the example of auto-regression, x* is given by 
the previous d values, x* — { j / t _ 1 , j / t _ 2 , •. • , y* _ d } , where d is the dimension 
of the input, x* can also consist of exogenous variables. 

2. States. <S = {1,2, . . .,j,... ,M} denotes the state. M is the number of 
states in the model and j refers to a specific state. The analysis of the model 
usually provides interpretations for the states in terms of physical significance 
or economic meaning such as relations to market sentiment, growth, recession, 
interest rates or volatility. 

3. Transition probabilities. ay is the transition probability of switching from 
state i to j , 

A = {aij , i,j<M, aij = P(st+1 = j\s* = i)} 

where ay ^ 0, V . ay = 1, and s' describes the state at time t.e 

e This paper assumes that the transition probabilities are constant over time. This assumption can 
be relaxed, allowing the transition probabilities to vary over time (Durland and McCurdy, 1994; 
Filardo, 1994; Shi and Weigend, 1997). 
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4. Emission probabilities. 6j is the probability of observing y* given the state 
and the model. In GE and HME this probability depends on the inputs xl 

into the experts at time t through the conditional mean 

B = {bt
j, j<M, t<T, b] = P(yY = J,^)} • 

5. Initial probabilities of each state. II = {-Ki,i — 1, . . . , M } , where the 
probabilities have to sum to unity, Yli=i ni = 1-

For convenience, 0 = {A,B,II} denotes the entire set of parameters of the 
model. The emission probability can thus be written as P(yt\st, a;*, 6). 

2.2. The likelihood function 

To define the likelihood function, we impose the constraint that the probability 
of the current state depends only on the previous state: 

P(« V - 1 > s*~2, • • •, s1, A""1, y - 1 ) = P ( s V _ 1 ) • (1) 

With qT denoting a specific sequence or path of states from t = 1 to T, this 
first-order Markov assumption enables us to write the probability of path qT = 
(sl,s2,... ,sT) as 

P(q
T)=P(sT,sT-\...,s\...,si) 

= P(sl)f[P(st\S
t-1). (2) 

t=2 

Given the current input xl and the previous state s*_1, earlier values of s and y are 
irrelevant, 

P{y\ a V " 1 , X*-\ y - 1 ) = P{y\ s t ^ 1 , x*). (3) 

With Eq. (1) this expression can be transformed in the following way: 

P{y\ s V _ 1 , x*) = Ptftf, xt)P{ai\a%-1). (4) 

The central problem of hidden Markov models is to find the entire set of parameters 
of the model. Using Eq. (3) and Eq. (4), the likelihood P(yT\6) is then given as 

p{yT\e) = YJPWT,<ir\o) 

= J2P(VT, sT\qT-\yT-1,9)P{yT-1,qT-1\6) conditional probability 
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= J2P(yT,sT\sT-\xT,e)P(yT-\q
T^\e) using Eq. (3) 

= J2P(yT\sT,xT,9)P(sT\sT-1)P(yT-\q
T-'\e) using Eq. (4) 

T 

= Y,P(y1\s\x\6) Pis1) Y[P(yt\st,xT,e)P(st\st-1). (5) 
9 b1 initial =•>>) = = < H > 

To obtain the probability P(yT\9), two probabilities need to be estimated. First, 
the emission probability given the current state, P(yt\st,xT ,0); it varies at each 
time step. Second, the transition probability P(s*|s t _ 1) ; it is a parameter of the 
model. 

The product 6*ay is at the heart of the hidden Markov framework. If there was 
no Markov assumption, the second term ay was absent, and the observation at time 
t would be attributed to state j with probability bj/ ^ b\. Model based clustering 
is (without Markov assumption, no ay) the unconditional case (no input x). The 
presence of the second term, ay, however introduces the trade-off with the first term 
towards the entire likelihood. In most applications, the main diagonal elements an, 
describing the self-transitions (i.e., the probability of staying in a state) typically 
have values above 0.9, corresponding to an average time of staying in the state of 
above ten steps. Only if the next observation in the sequence can be explained 
much better by a state different from the current state does the model switch to 
the next state. 

2.3. Modeling the conditional emission probabilities: the experts 

• Independence. Given the input of the emission model, the likelihood of ob­
serving y* given the current state and given the current input is &*• = P(yt\st = 
j , x1,6). They are independent for each t. We call each of the specified emission 
models an expert, and each individual expert corresponds to a state. 

• Density Function. We can assume different forms for the distribution of 
the "noise". In the specific example of a Gaussian, the emission probability 
of expert j becomes 

& * = P ( 2 / V = j y , 0 ) 

yj(a;') is the conditional mean, and 0? is the variance of the predicted Gaussian 
density. 

• Architecture. The functional dependence of the conditional mean 2/̂ (2;') 
on its input (a;*) can potentially be non-linear and is expressed through a 
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feedforward neural network with non-linear hidden units and a linear output 
transfer function. Removing the hidden units reduces the functional form 
of each expert to a linear relation. In the autoregressive case with a single 
lag, yf is given by y1 = ko + kix*. We can use linear autoregressive models 
as well as non-linear neural networks as experts. The emission probability, 
B, is determined by the set of parameters, 6j, of expert j , according to the 
architecture of the emission model. 

Different experts can have different sets of inputs. Typically, the number of 
inputs to each expert is a subset of the full set of inputs that would be useful. 
When different dynamics modeled by the different experts "live" on subsets of the 
full set of inputs, this approach can help reduce the "curse of dimensionality". 

2.4. Computing the likelihood: the forward-backward procedure 

Rather than computing P(y\0) directly using Eq. (5), Baum (1972) proposed an 
elegant algorithm called the forward-backward procedure. Dempster, Laird and 
Rubin, (1977) subsequently introduced the so-called "Expectation Maximization" 
or EM algorithm to maximize this probability. 

Let a\ be the entire sequence probability of having observed y from time 1 to 
time t and of being in state i at time t, 

c\=P{y\vi,...,y\st = i\9) 

where 1 < t < T and 0 denotes the model parameters. The probability of the 
entire sequence of observations is given by the sum over the states at the end of the 
sequence (at time T): 

M 

p(y\o) = *£<*!• (6) 

The breakthrough of this idea is the computational complexity. Rather than being 
exponential in T (as one might expect, given the consideration of paths), it is only 
linear in time: af can be computed recursively 

if1. (7) 

At the beginning of the sequence, the a's are initialized with probability a} = TTibj. 
This recursion is called the forward procedure. Given initial estimates of 7Tj and b\, 
Eq. (7) prescribes the computation of the probability P(y\6), and, for t = T, the 
entire likelihood. Similarly, the backward variable j3j is defined as the conditional 
probability of observing y from t + 1 to T given state i at time t (and, as always, 
the parameters): 

-r = M 

^2<4aij 
i = l 
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fi=P{vt+\yt+3,.:,yT\st = i,e). 

The recursive induction for /3 starts at the end of the sequence (t = T) and can be 
written as: 

M 

# = E a ^ + 1 $ + 1 (Vi)- (8) 

With t = T — 1, T — 2 , . . . , 2,1, we obtain the /3's for all t. Combining a and (3, we 
now obtain the important posterior probability of being in state i at time t given 
the entire set of observations and parameters 

P(y,s*=i\9) 
p(y\e) 

E ^ n y , *« = *!*) 

, w ^ (9) 
Ef=i<*^ 

7* is a key quantity that will serve as the estimate for P(sl = i\6). 
Finally, the joint probability of the conjunction, £*'-*+1 = P(st = i, st+1 = 

j\y, 6), is also computed from a and /?: 

t,t+l = P ( a « = i > J « + 1 = j , y | g ) 

(10) 

We have defined the important variable jj, the probability of being in state J at 
time t, and showed how it can be computed from a\ and /3* capturing the likelihoods 
of the beginning of the sequence through t, and from t to the end of the sequence, 
respectively. The variable £ will serve as an auxiliary quantity in the computation 
of the transition probabilities, discussed in the next section that discusses how the 
parameters of the model are estimated. 

2.5. The Baum-Welch algorithm: EM algorithm for hidden 
Markov models 

The likelihood as given by Eq. (5) cannot be maximized directly since the hidden 
states are not known. The solution of this problem goes back to Baum et al. (1970), 
see Liporace (1982) and Juang (1984). Excellent tutorial expositions are Poritz 
(1988), Rabiner (1989) and the corresponding chapter in the book Rabiner and 
Juang (1993). 
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Their main result is a re-estimation algorithm, called the Baum-Welch algo­
rithm. Its key idea is to go back and forth between two steps, the E-step and the 
M-step. 

• The E-step ("Expectation Step") assumes that the parameters of the model 
are known, and computes for each time step t the likelihoods a\ and /3|, and 
in turn, the posterior probabilities 7 ' and £̂ -

• The M-step ("Maximization Step") takes the variables computed in the E-
step and updates the parameters of the model under the constraints 5^i=17r, = 
1 and ^2j=1aij = 1. 

The new transition probabilities are given by: 

expected number of transitions from state i to state j _ X t̂ €ij 
lJ expected number of transitions from state i (to anywhere) ^ t 7* 

The new initial probabilities of state i are 7Tj = 7/. 
While the original work by Baum et al. (1970) estimated only the unconditional 

density for each state, this paper allows for conditional densities. The formulae 
for the re-estimation of the emission parameters depend both on the specific noise 
model and the specific functional form for the parameters of the noise model (e.g., 
linear dependence, neural network) of the experts. For each expert, the following 
function G is maximized (cf., Fraser and Dimitriadis, 1994): 

T M 

G = Y,^>sP(yt\xt,st = j,ej). (11) 
t=i j=i 

9j represents the parameters of the emission model of state j . Equation (11) can 
be interpreted as the negative of a cost function for the emission model. The 
estimation of the parameter 6j depends on the specific form of the emission model. 
To be able to write down specific formulae for updating the parameters, the errors 
are assumed to be Gaussian. We first discuss the update for the variance of expert 
j , crj. Assuming that a? depends only depends only on the expert and not on any 
inputs, the likelihood is maximized when 

dG_ = ^ 1 flP(yV, ««=,;, fl,-) 
d(j2i ti^PWWi'^M da] 

takes the value of zero, yielding 

aj = ^r—; (12) 
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This is the 7J-weighted squared error between observation yl and prediction $. It 
describes the "local" noise level for expert j . f 

The mean of expert j , 2/j(a:*-) is a function of the inputs into the expert, a^. This 
(linear or non-linear) dependence is parameterized with 9j. To maximize Eq. (11), 
its partial derivative with respect to the parameters Oj has to vanish: 

where the mean of the Gaussian of the j t h expert is given by yj = yj(xj,9j). In the 
special case where this functional form is linear, the parameters for expert j can be 
estimated directly by regressing \ nfflj onto A/JJXJ- In the general non-linear case, 
each pattern still has the importance 7J, but the parameters are to be estimated 
iteratively, as an additional inner loop within each M-step.g Interpreting it as a cost 
function for a neural network, each expert minimizes the weighted squared error 

E7J(y'-#(4^-))2-
t=i 

The parameters 9j can be estimated through weighted error backpropagation (local 
linearization around 9j and taking a small step towards a better solution). This 
justifies viewing 7J as an effective learning rate. 

3. Predicting and Evaluating Densities 

The previous section emphasized the underlying assumptions and algorithms for 
estimating the model. This section discusses how density predictions are generated 
and evaluated. 

3.1. Generating the density forecasts 

To generate a predictive density from a given HME model, one might be tempted 
to use the state as estimated by Eq. (9). This, however, is cheating: 7J is estimated 

The corresponding formulae for the case of vector-valued predictions are the 7J-weighted covari-
ances for dimension m and n: 

j ^ f o ' M - ^(n»))(i/*(n) - y){n)). 

In many applications it is reasonable to consider only a diagonal covariance matrix. This implies 
that the noise is drawn independently for the different outputs, and can often be interpreted more 
easily than the general case that allows for a rotation. 
g T h e non-linear case is sometimes called the generalized EM (or GEM) algorithm. 
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using the entire sequence of observations, including future information. However, 
given the sequence of observations through time t, we can estimate the predictive 
probability of a state in terms of the transition probabilities a^ and the joint a\ 
probability of state s = j at time t + 1 and the observations through time t, as 

. t + i _ , l v t ^ _ n y v + 1 = j | 0 ) p(st+i = j\y,9) 
p{y\9) 
^M E M t 

<=i aiCLij = • nt+1 (14) 
EM /\^M t \ i 

, - = i ( £ f c i "<«*«) 

Using the same notation for HME as for GE (Weigend et al, 1995), we use g^+1 

as an abbreviation for P(st+1 = 3^,0). Note that g is a causal version of the 7 
— it is based only on past information (through a) but does not use any future 
information (that enters 7 through /3). 

The density for yt+1 is the linear ^-weighted superposition of the densities of 
the individual experts: 

M 

P{yt+1\x\y\e) = Y,P{yt+l\x\st+1=3\0j)P{st+1\y\Q) 

M 

Xt summarizes the set of exogenous variables that are available at time t. For the 
specific case of Gaussian distributions for the individual noise models, the individual 
densities are described by their conditional means y^+1 and the variances cr? This 
completes the discussion of the ingredients needed to generate the full distribution 
for yt+1. 

Should one be interested in the overall mean of the predicted density at time 
t+1, due to its linearity, it is the (^-weighted superposition of each individual mean: 

M 

yt+1 = Esf^f1 • (16) 
J ' = l 

However, recall that the key goal is to generate a forecast of the density, and not 
just its mean. The emphasis on densities requires special care in evaluating the 
forecasts. The next subsection presents different evaluation methods. 

3.2. Evaluating the density forecasts 

We use two different methods to evaluate density forecasts that complement each 
other well. While the first method is based on the probability density function itself 
(pdf), the second method is based on the integral of the pdf, i.e., the cumulative 
distribution function (cdf). 
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For each time step in the test set, the pdf-based evaluation records log 
P(yt+1)Xt,yt,6), the value of the logarithm of the predicted density at the 
corresponding observation yt+1. The average of these logP over the test set 
is used as measure for evaluation.11 This average (or "per-pattern") likelihood 
of out-of-sample data given the density predictions of the model allows direct 
comparison between different model classes. Since the value on a specific test 
set is only an estimate for the true value, it is important to use identical 
training and test sets in the comparisons.1 

The cdf-based evaluation computes for each time step the cumulative prob­
ability distribution from the predicted density and records the value of the 
cdf at the observed data point for each day. This probability integral trans­
form was recently used by Diebold et al. (1998) and goes back at least to 
Rosenblatt (1952). Zt+l denotes the value that the predicted cdf takes at the 
observation yt+1: 

ryt+1 

Zt+1= / P(77t+1|A",y,6»)d77 
J — oo 

r\ is the integration variable. The key idea is that these values of Z should 
be uniformly distributed. Diebold et al. (1998) point out that standard 
procedures (e.g., Kolmogorov-Smirnov) test jointly for uniformity and inde­
pendence. If the test is rejected, it is not clear what conclusions should be 
drawn. We follow their suggestion and first evaluate unconditional uniformity 
using a simple histogram. Second, to evaluate whether Z is iid, we show the 
correlogram of the centered (Z — Z), where Z is the mean of Z. To explore 
dependencies beyond linearity, we also show the correlogram of the powers of 
(Z-Z). 

For completeness, we also give the normalized mean squared error defined as 

E = E t (observation* - prediction*)2
 = Etfa* - V*)2 / 1 7 ) 

E t (observation* - meantrain)2 Et (v' _ rneantrain)2 

where t usually enumerates the points in the withheld test set. -ENMS compares 
the model's point predictions to simply predicting the mean of the training set. 

To avoid possible confusion, it might be worth pointing out that there are two very different 
likelihood functions in estimation and in evaluation. The likelihood function maximized in the 
model estimation or search, Eq. (6), considers the likelihood of the sequence — this includes the 
trade-off between staying in a regime and allowing for somewhat worse predictions vs. changing 
regimes and obtaining better predictions. Note that this likelihood includes the transition matrix 
Eq. (7). In contrast, the likelihood function used for evaluation does not take transitions into 
account but only measures for each time step how well the observation was predicted by the pdf. 
It is important that this likelihood does not contain aspects of the sequence or the transition prob­
abilities, but only the predicted densities. This allows for clean comparisons between approaches 
to density prediction. 

•We thank Art Owen for pointing out that average log-likelihood can be very sensitive to a few 
extreme values. We computed trimmed means, but it turns out that outliers in log-likelihood are 
not a problem in the experiments reported here. 
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Note, however, that the normalized mean squared error only evaluates the point 
prediction and thus requires that we collapse the density prediction for each time 
step onto its mean. When predicting financial returns, many people do not expect 
a significant improvement over predicting the mean of past data. When the mean 
of the time series shifts, .ENMS can actually be larger than unity. This is also the 
case when the daily S&P500 forecasts are reduced to the mean and evaluated with 
•ENMS- However, the first two methods, using the pdf and the cdf, both evaluating 
the density, exhibit strong differences between the model classes. 

4. Example 1: Computer Generated Data 

For complicated model classes, it is important to understand the behavior of 
the model and to build up some intuitions about what happens when the model 
assumptions deviate from those of the generating process. Since mixture models 
contain an unsupervised part in learning, this section investigates whether the states 
found by the model actually correspond to the true hidden states.-" We generate data 
from a hidden Markov model with two states, and analyze these data with HME, 
GE and, as a naive sanity check, an unconditional Gaussian. 

4.1. Generation and recognition models 

The data generation consists of two distinct and different processes: the 
Markov chain of the hidden states, and the dynamics of the individual experts. 

• Dynamics of the Markov model. The transition probabilities are given 
by the matrix 

_ /0.98 0.02 \ 

~ \^0.03 0.97J ' 

This allows us to generate a realization for the time series of the hidden states. 
• Dynamics of the individual experts. With financial processes in mind, we 

pick the first process as trending, and the second process as mean reverting: 

f 0.51/* + 0.8e t+1 if in state 1 

\ -0.31/* + 0.5Ct+1 if in state 2 

£ and £ are N(0,1) iid. 

We first generated a sequence of length 15,000 of the (eventually hidden) states. 
This sequence determined which of the two processes was used for each time step to 

J In the real world, such as when modeling S&P500 densities (Sec. 5), we do not know the true 
model. This problem is particularly serious in finance for two reasons. First, while in the sciences 
experiments are usually carried out under carefully controlled conditions, finance does not allow for 
carefully controlled experiments. Second, the high amount of noise tends to mask subtle differences 
between competing models. This is again quite different to, say, physics, where some predictions 
are made with incredible accuracy and the data can distinguish between two models that make 
almost the same predictions. 
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generate an "observation". From the generated data, we use the first 10,000 points 
as the training set, and the remaining 5,000 points as the test set. 

The recognition models are HME, GE and the unconditional Gaussian, de­
fined by the mean and variance of the training set. In the case of HME, it is possible 
to choose the recognition process to perfectly match the data generating process by 
using two experts that are linear autoregressive models with one lag, AR(1). 

The GE model used for the comparison also has two linear AR(1) experts, chosen 
to be as similar to the HME model as possible. The difference is that the probability 
of being in state j at time t in the GE model is learned as a feed-forward function 
of some variables, as opposed to recursively from the series itself using the hidden 
Markov assumption. One of the two gate inputs is the input that is also used in 
the experts, i.e., the current value of the time series, y*. The other gate-input is an 
exponential moving average of the squared values of the observations (?/')2 

e = A^'-1 + (1 - A ) ^ ) 2 (18) 

with a decay constant A = 0.95. The gate is implemented as a non-linear neural 
network with three hidden units (tanh transfer function) and two outputs. The 
outputs are constrained to be positive and to sum to unity, using the "softmax" 
architecture as discussed in Weigend et al. (1995). 

4.2. Results and interpretation 

We present selected results on the computer generated data for several purposes: 

• Illustrate to what degree HME recover the hidden regimes on these fairly noisy 
time series. Note that true regimes are known in the computer generated 
example, but not in real world examples. 

• Show how the partitioning of the gate-input space performed by the GE differs 
from the segmentation of the HME. For real applications, it is important to 
recognize signatures that indicate the wrong model class. 

• Build up some intuitions for interpreting results of the analysis based on the 
probability integral evaluation proposed by Diebold et al. (1997). 

Figures 1 and 2 show in the time domain the same 1,000 points of the test set 
for HME and for GE, respectively. In both figures, the top panel shows the true 
data. The bottom panel shows the probability that the model predicts for one of 
the two experts. The probability of the other expert is not shown but corresponds 
to the difference between unity and the probability shown. The dash-dotted line 
indicates the true regimes used in the generation of the test data. Despite the high 
noise level in both training and test data, HME discover the regimes adequately. 

The corresponding results for GE are shown in Fig. 2. The training and test 
data are identical to those used for the HME. The GE architecture is chosen to be 
as similar to the HME architecture as possible, as discussed in Sec. 4.1. The main 
difference is in the segmentation. Comparing the bottom panels of Figs. 1 and 2, 
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Time Series Generated from HMEs 
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Fig. 1. Time series of the computer generated data modeled with HME. From top to bottom, the 
panels display 1,000 true values of the out-of-sample data, the point forecasts, and the probability 
of one expert, g\. It sums with the other expert (not shown) to unity for each time step. The true 
regime used in the generation of the test data is indicated in the bottom panel as dash-dotted line. 

Time Series Generated from HMEs 
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Segmentation from GEs 

Fig. 2. Time series of the computer generated data modeled with GE. The top panel shows 1,000 
points of the test set, the middle panel the one-step-ahead point predictions of the GE for the same 
period, and the bottom panel the probability g\. These probabilities are not as clean as those 
found by HME since GE ignore the difference between adjacent and distant patterns in time. 
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note that the regime assignments are cleaner for HME than for GE. This can be 
explained by the different likelihood functions: while GE represent a feedforward 
architecture that necessarily produces solutions that are invariant under re-shuffling 
of the input-output patterns, HME "know" about the sequence of the patterns 
through the assumption of the hidden Markov structure. HME can be said to 
trade-off the switching with the likelihood of the observation. 

Although this paper focuses on density prediction, we included the mean of 
each one-step-ahead prediction as the middle panels. For these point predictions, 
the normalized mean squared errors (denned in Eq. (17)) on a 5,000 point test set 
are for the two model classes £ N M S ( H M E ) = 0.826 and ^ N M S ( G E ) = 0.886 with 
the ratio (squared error (HME))/(squared error(GE)) = 0.93. 

We now turn to the evaluation of the densities, first using the predicted prob­
ability densities directly. On the same test set as above, the log-likelihood ratios 
are: 

log-likelihood(HME) 
log-likelihood(GE) 

= 0.96 and 
log-likelihood(HME) 

log-likelihood(Gaussian) 
0.57. 
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Fig. 3. Evaluation using the integral transform, Z, of the probability density predictions generated 
by HME. The histogram of Z indicates that the distribution of Z is uniformly distributed between 
0 and 1, indicating good density predictions. The absence of autocorrelations indicates that there 
is no residual time structure in the mean corrected Z and its powers. The horizontal lines indicate 
two standard deviations. 
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While there is a clear improvement of the conditional mixtures over the uncondi­
tional Gaussian, the difference between the mixtures is not significant. 

This second approach uses the cdf-based integral transform (Diebold et al., 
1998). This analysis focuses on Z*, the area of the pdf to the left of the obser­
vation, i.e., the probability that a value below the observation was predicted. The 
qualitative aspects of the density forecasts are exposed in Figs. 3, 4, and 5 for HME, 
GE and the naive unconditional Gaussian, respectively. In these figures, the top 
panels give the histogram of Z on the test set. As discussed in Sec. 3.2, Z should 
be uniformly distributed between 0 and 1. The remaining four panels in each figure 
show the correlograms of powers of the mean-subtracted Z-series, i.e., the empirical 
autocorrelations of (Z - 2), (Z - Zf, [Z - Z)3, and (Z - Z)4. 

Analyzing the density predictions obtained with HME, Fig. 3 indicates that the 
histogram of the Z series is consistent with a uniform distribution. Furthermore, 
there are no significant autocorrelations in the powers of the Z-series after substract-
ing the mean. These good density forecasts are reassuring — but not surprising 
since the structure of the HME recognition model was chosen to be identical to that 
of the generating process. 
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Fig. 4. Evaluation of density predictions using GE on the computer generated data. Note the 
appearance of significant autocorrelations for the odd powers of (Z — 2) compared to the correctly 
specified HME. 
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Figure 4 shows the effect of a misspecified model. While the structure of the 
emission models (the experts) is still identical to the data generating process, GE 
cannot model correctly the underlying Markov structure of the sequence. In com­
parison to HME (Fig. 3), the histogram for GE is less uniform, and there are some 
short but significant autocorrelations in {Z — Z) and (Z — Z)3. 

To put the qualitative aspects of the HME and GE predictions into perspective, 
Fig. 5 presents the histogram and the correlograms of Z when the model is a single 
unconditional Gaussian. In this model, more observations occur than were predicted 
in the central region of the histogram of about one standard deviation, and fewer 
observations in the areas around the 10 and 90 percentiles.11 Furthermore, there 
are long autocorrelation dependencies in the Z-series. The non-uniformity of the 
histogram and the ^-autocorrelations are consistent with the poor performance on 
the quantitative measures of squared errors and of the log-likelihood. 
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Fig. 5. Evaluation of density predictions using an unconditional Gaussian on the computer gen­
erated data. The model mismatch is indicated by both the non-uniformity of the histogram and 
the significant autocorrelations in the correlograms. 

' 'The histogram focuses on the central part of the distribution since each bin has roughly the same 
number of points. The histogram can be viewed as expanding the center and compressing the tails. 
To focus on the tails of the distribution, a quantile-quantile plot (qq-plot) is more appropriate. It 
shows that there are too many observations in the extreme tails. 
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Table 1. Estimated parameters for HME and GE along with the true values 
used in the data generating process, an denotes the self-transition probabilities 
of staying in regime i; the off-diagonal terms are the complements to unity, ki 
denotes the autoregressive coefficients of the individual experts, and Ui the 
noise levels of the individual experts. 

a n 

true value 

HME 

GE 

0.11 

0.980 

0.976 

N / A 

fci 

0.970 

0.969 

N / A 

fc2 

0.500 

0.507 

0.466 

d 

-0.300 

-0 .269 

0.003 

ai 

0.800 

0.808 

0.867 

0.500 

0.492 

0.528 

Knowing the true model in this first example of computer generated data allows 
us to compare the estimated parameters with the true parameters: the diagonal 
elements of transition probability matrix A, the autoregressive coefficients ki, and 
the noise level a^. Table 1 gives the true values of the parameter and the estimates of 
the models. The correctly specified HME found the correct parameters. In contrast, 
the estimation of the corresponding GE experts is significantly worse than that of 
HME. In this specific run, the second expert does not even learn the mean-reverting 
dynamics but predicts an essentially unconditional Gaussian. 

5. Example 2: S&P500 returns 

This section applies HME to the real-world problem of forecasting the density 
of daily S&P500 returns. To provide a perspective and a deeper understanding of 
HME, comparisons are carried out to several other model classes: an unconditional 
Gaussian, an unconditional mixture of Gaussians, a generalized autoregressive con­
ditional heteroskedastic GARCH(1,1) model, and the GE model that is as similar 
as possible to the HME model. 

We first describe the data and models and analyze the estimated HME model. 
We then present the segmentation obtained by HME and by GE and explain the 
difference. Among the performance comparisons, the most important metric is the 
direct evaluation of the out-of-sample likelihood of the test data given each of the 
models. We also include the graphs of the probability integral transform evaluation 
of the density forecasts. 

5.1. Data and model classes 

For the data, we start with 21 years of daily S&P500 prices, pl, and compute 
the series we try to predict, y*, by taking the difference between the logarithms of 
the prices at adjacent days 

y* = logp* - logp'-1 = log £- „ P-Zg± . 
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The Taylor expansion used in the last step, log(l + e) « e, gives the interpretation of 
y* as the relative price change, i.e., as the difference between today's and yesterday's 
price with respect to yesterday's price. This series corresponds to continuously 
compounded returns. 

We use the first ten years (from 3 January 1977 to 31 December 1986) of the 
data as the training set, and the last ten years (from 2 March 1988 to 31 December 
1997) as the test set. To avoid possible artifacts of the Oct 1987 crash, we do not 
use the data from 3 January 1987 to 1 March 1988 in this study. 

Both HME and GE have four experts. We chose that number based on the 
predictive performance of the resulting model and the interpretability. The experts 
are simple linear autoregressive models that predict the mean based on the values 
of the previous seven lagged returns. (In other studies, not reported here, different 
sets of inputs, and different neural networks architectures are chosen.) 

For GE, we need to also specify the structure of the gate: we use a non-linear 
neural network with five tanh hidden units and four "softmax" outputs. The inputs 
into the gate include the seven lagged values of the returns given to the experts, in 
addition to seven lagged values of the exponential moving average of the squared 
returns Eq. (18). 

5.2. Results 

After discussing the data and the models, we now turn to the results. We first 
inspect the segmentation obtained with HME and GE, then discuss the estimated 
parameters and their meaning, and finally turn to the evaluation of the densities, 
using the pdf and the cdf methods. 

5.2.1. Segmentation of the S&P500 series 

Figures 6 and 7 respectively show HME and GE models for daily S&P500 re­
turns. Training and test periods are indicated by the arrows in the center of the 
figure. The lower half characterizes the importance of the individual experts for 
each day. The top panel shows the time series y*, the daily S&P500 returns for the 
period from 1977 through 1997. The bottom four panels give the probability g\ for 
each expert i(i = 1 , . . . , 4). The experts are ordered in terms of decreasing o^. The 
expert with the lowest noise level corresponds to the lowest panel. 

Figure 7 indicates that GE cannot generate clear regimes. Note, for example, 
that the probability of the expert with the second smallest variance (the second plot 
from the bottom) hardly ever leaves the range between 0.1 and 0.4. One reason for 
this poor segmentation is that the smoothed squared returns Eq. (18) as gate-inputs 
do not characterize volatility as well as the recursively computed HME variances, 
a?. Another interpretation for the very noisy nature of the regimes is the absence 
of regime information from the neighboring pattern for GE, in contrast to HME. 
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Returns of SP500 (from 01/02/77 to 12/31/97) 
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Fig. 6. Time series of S&P500 returns modeled with HMB. The returns (top panel) have been 
normalized to zero mean and unit variance. The four plots at the bottom show the probabilities 
of the experts for each time step. The experts are arranged by decreasing noise level: the expert 
with the lowest noise level is at the bottom of the figure. (For completeness, the mean of each 
day's density is shown in the remaining panel, labeled "Predictions".) 
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Returns of SP500 (from 01/02/77 to 12/31/97) 
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Fig. 7. Time series of S&P500 returns modeled with GE. The description of the panels is the same 
as in the preceding figure. Note the poorer and more noisy segmentation in comparison with the 
previous figure. 
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5.2.2. Estimated parameters and interpretation 

The dynamics of the hidden Markov process is characterized by the matrix of 
transition probabilities between the states. For the four states assumed in our model 
of the S&P returns, we obtain 

0.042 \ 

0.007 

0.007 

0.983/ 

The elements of this matrix are averages over 200 runs with different initializations. 
To make the averaging meaningful, we sort in each run the states by decreasing CTJ, 
i.e., the first state becomes the one with the largest noise level, etc., and the fourth 
state the one with the smallest noise level. For example, a n = 0.904 is the average 
of the self-transitions of the expert with the largest noise level. Note that a n is 
the smallest of all the self-transitions (the elements on the diagonal): on average, 
the system stays uses expert 1 for only ten days. Looking back to Fig. 6, we can 
see that this expert takes responsibility for some of the large returns in the training 
set, as well as for the region of high volatility in late 1982. 

Table 2 lists the noise levels of the experts for both HME and GE. For each 
run, the experts were ordered in terms of decreasing noise levels, and means and 
standard deviations of the square roots of the variances of the Gaussians are shown. 

Table 2. The average noise levels <Ji of the individual experts for HME and 
GE for the S&P500 density predictions. In each run, i.e., for each set of 
initial conditions, the expert with the largest variance is assigned the label 
"Expert 1", etc. The table gives the means of the square roots of the variances 
of the Gaussians. The standard deviations are indicated in parentheses. High-
noise experts have more relative variation in the noise levels than the low-
noise experts than in those of high-noise experts. Furthermore, GEs are more 
sensitive to initial conditions than HMEs. 

<Tj 

HME 

GE 

Expert 1 

1.37 

(0.05) 

2.18 

(1.10) 

Expert 2 

0.92 

(0.12) 

0.98 

(0.44) 

Expert 3 

0.74 

(0.04) 

0.52 

(0.16) 

Expert 4 

0.61 

(0.01) 

0.33 

(0.07) 

5.2.3. Evaluation of the S&P500 density predictions 

The function optimized in training is significantly different for HME and GE 
— we have emphasized that HMEs include the transitions between states, whereas 
GEs do not. For prediction, we are ultimately interested in how well the next day's 
density is predicted. This function can indeed be different from the one optimized in 

/ 0.904 

0.014 

0.011 

\0.011 

0.031 

0.950 

0.014 

0.002 

0.023 

0.029 

0.969 

0.004 

file:///0.011
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the estimation of the model. We compare all architectures with the same measure: 
the likelihood of the observations of the test set given the predicted densities. In 
our comparison, we do not take any uncertainty of the observed values into account, 
i.e., we assume a delta distribution whose integral is unity on infinitesimally small 
support. For each pattern in the test set, we compute the log-likelihood, and show 
in Fig. 8 the average over the test set. 

On the bottom of Fig. 8 three benchmark log-likelihoods are shown: (i) of a 
single Gaussian, (ii) of an unconditional mixture of four Gaussians, and (iii) of a 
GARCH(1,1) model. All models are estimated on the same training set as HME and 
GE, and averaged over the same test set as HME and GE. The figure shows that the 
single Gaussian, representing the hypothesis of a random walk with fixed variance, 
is worst. The unconditional mixture is better, and the GARCH(1,1) model is again 
slightly better. 

For HME and GE, any specific solution depends on the initialization. Rather 
than only showing the "typical" performance of one run, Fig. 8 gives the individual 

Out-of-sample log-likelihood of daily S&P 500 density forecasts 

— cdf of Hidden Markov Experts (HMEs) | ./ 
cdf of Gated Experts (GEs) J.--" 

A GARCH(1,1) 1/ 
v Mixture of 4 Gaussians (unconditional) j 
° Single Gaussian (unconditional) .-•] 

GEs/ , 

J HMEs 

/ " GARCH 
Single Gaussian ,,--'* Mixturel J 

-1.22 -1.2 -1.18 -1.16 -1.14 -1.12 
log-likelihood (average over test set) 

Fig. 8. S&P500 density forecasts evaluated for several models based on the predicted pdf. The 
horizontal axis gives the log-likelihood averaged over the test set. For HME and GE the empirical 
cumulative distribution of 200 runs each is plotted. For comparison, we also indicate the log-
likelihood averaged over the same test set for a single Gaussian, an unconditional mixture of four 
Gaussians, and a GARCH(1,1) model. Note that the GEs do not give an acceptable solution for 
this hard learning problem since the resulting models show a large variance in performance. In 
contrast, the distribution of quality of the HME is relatively sharp, indicated by a relatively steep 
curve. Considering only the uncertainty stemming from the initialization, about 98% percent of the 
HME have a better out-of-sample likelihood than the GARCH model and than the unconditional 
mixture model. This indicates that all of HME's aspects (conditional model and mixture model 
and hidden Markov model) are needed for the improvement. 
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results of 200 runs for HME and GE each. For both architectures, it displays the 
cumulative probability distribution of the 200 runs. The medians correspond to 
the locations where the dashed line (GEs) and solid line (HMEs) intersect with the 
horizontal line. Note that GEs have an unacceptable large range of performance 
variation, ranging from worse than a single Gaussian to better than the best model. 
In contrast, the log-likelihood of HME is better behaved. Only about 2% of the 
runs are worse than the unconditional mixture or the GARCH(1,1) model, and 
the mean and median performance is clearly above the benchmark models. This 
indicates that the combination of the conditional variance and the mixture aspect 
is needed for the improvement of the quality of the density predictions. 

To rule out the possibility that the results are due to a few outliers, we analyzed 
the trimmed means of the log-likelihood. The ranking of the different methods 
remains the same when the means are trimmed; we removed up to 2% on each 
side. This establishes that HME give better predictions than the alternatives we 
considered when comparing the out-of-sample likelihood of new data. 

We now turn from the analysis based on the predicted probability distributions 
to an analysis based on the predicted cumulative distributions. Figures 9, 10 and 
11 show the results for HME, GE, and unconditional Gaussian, respectively. In 
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Fig. 9. Evaluating the probability density predictions of HME for S&P500 returns. The top panel 
plots the histogram of the probability integral transform on S&P500: the Z series is reasonably 
close to uniform. The four bottom panels show the correlograms: there are not many significant 
auto-correlations in the Z series and its powers. The dashed lines correspond to two standard 
deviations. 
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Fig. 10. Evaluating the probability density predictions of GE for S&P500 returns. The Z series is 
less uniformly distributed as in the previous figure (HME), and auto-correlations remain in the Z 
series. 
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Fig. 11. Evaluating the probability density predictions of an unconditional Gaussian for S&P500 
returns. The Z series is far from uniformly distributed, and the auto-correlations are large. 
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all cases, the top panel shows the histogram of the probability integral transform 
Z, and the four bottom panels the correlograms of the Z series and its powers. The 
results are acceptable for HME, slightly worse for GE and, as expected, a lot worse 
for the unconditional Gaussian. 

For completeness, we close by reporting the normalized mean squared errors 
that can be computed by collapsing the daily density predictions to their means: 
•ENMS(HME) = 1.014 (standard deviation for 200 runs with different initial emission 
probabilities is 0.002); .ENMS(GE) — 1.043 (standard deviation for 200 runs with 
different initial weights is 0.083). Values larger than unity indicate a drift in the 
mean. 

6. Conclusions 

This paper started out by discussing different tasks for prediction, and pro­
ceeded by presenting hidden Markov experts (HME) in detail. The main focus is 
the prediction of the full conditional density distribution. This is in contrast to the 
literature on Markov switching models that focuses on point predictions and seg­
mentation, and on the literature on stochastic volatility and GARCH models that 
focuses on conditional variances. The density predictions we obtained as mixture 
models were evaluated in comparison to these standard approaches using several 
methods, including Diebold et al. (1998). 

The approach was illustrated with two time series. Section 4 showed the results 
of a computer generated example where the true regimes are known. This helped 
us obtain intuitions for model misspecification, e.g., by revealing the signature of 
misapplying GE to data generated by HME. When the right model class is used 
(HME), the parameters are estimated correctly and the density is predicted well. 

Section 5 applied the approach to the density of daily S&P500. On the test 
set, about 98% of the HMEs estimated (they differed by their initial conditions) 
outperformed a GARCH(1,1) model. While HME found a solution rather reliably, 
GE showed a large dispersion for two reasons: (i) in any task with very high noise 
levels it is very difficult for the gate to learn a mapping from some exogenous 
variables to the expected probabilities of the experts, and (ii) in the specific case of 
financial returns, volatility is often estimated better recursively (as in GARCH and 
stochastic volatility models) than with a feedforward architecture without memory, 
such as GE, see Timmer Weigend (1997). 

This paper focused on introducing hidden Markov experts. The examples were 
chosen to communicate some intuitions and illustrate several methods to evaluate 
the performance of density predictions. An identical set of inputs, consisting of 
lags of the time series, was used to facilitate the comparisons between the methods. 
When using this architecture in trading, we find that carefully selected exogenous 
inputs lead to better predictions than autoregressive models. In addition to trading 
applications, we have also used HME in risk measurement to capture non-Gaussian 
tails and compute Value-at-Risk. 
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Continuous-time stochastic processes have become central to many disciplines, yet the 
fact that they are approximations to physically realizable phenomena is often overlooked. 
We quantify one aspect of the approximation errors of continuous-time models by in­
vestigating the replication errors that arise from delta hedging derivative securities in 
discrete time. We characterize the asymptotic distribution of these replication errors 
and their joint distribution with other assets as the number of discrete time periods in­
creases. We introduce the notion of temporal granularity for continuous-time stochastic 
processes, which allows us to quantify the extent to which discrete-time implementations 
of continuous-time models can track the payoff of a derivative security. We show that 
granularity is a function of the contract specifications of the derivative security, and of 
the degree of market completeness. We derive closed form expressions for the granularity 
of geometric Brownian motion and of an Ornstein-Uhlenbeck process for call and put 
options, and perform Monte Carlo simulations that illustrate the practical relevance of 
granularity. 

Keywords: Derivatives, delta hedging, continuous-time models. 

JEL classification codes: G13. 

1. Introduction 

Since Wiener's (1923) pioneering construction of Brownian motion and Ito's 
(1951) theory of stochastic integrals, continuous-time stochastic processes have be­
come indispensible to many disciplines ranging from chemistry and physics to en­
gineering to biology to financial economics. In fact, the application of Brownian 
motion to financial markets pre-dates Wiener's contribution by almost a quarter 
century (see Bachelier [1900]), and Merton's (1973) seminal derivation of the Black 
and Scholes (1973) option-pricing formula in continuous time and, more impor­
tantly, his notion of delta hedging and dynamic replication is often cited as the 
foundation of today's multi-trillion dollar derivatives industry. 

Indeed, the mathematics and statistics of Brownian motion have become so inter­
twined with so many scientific theories that we often forget the fact that continuous-
time processes are only approximations to physically realizable phenomena. In fact, 
for the more theoretically inclined, Brownian motion may seem more "real" than 
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discrete-time discrete-valued processes. Of course, whether time is continuous or 
discrete is a theological question best left for philosophers. But a more practical 
question remains: under what conditions are continuous-time models good approx­
imations to specific physical phenomena, i.e., when does time seem "continuous" 
and when does it seem "discrete"? 

In this paper, we provide a concrete answer to this question in the context of 
continuous-time derivative-pricing models, e.g., Merton (1973), by characterizing 
the replication errors that arise from delta hedging derivatives in discrete time. 

Delta-hedging strategies play a central role in the theory of derivatives and 
in our understanding of dynamic notions of spanning and market completeness. In 
particular, delta-hedging strategies are recipes for replicating the payoff of a complex 
security by sophisticated dynamic trading of simpler securities. When markets are 
dynamically complete (see, for example, Harrison and Kreps [1979] and Duffie and 
Huang [1985]) and continuous trading is feasible, it is possible to replicate certain 
derivative securities perfectly. However, when markets are not complete or when 
continuous trading is not feasible, e.g., trading frictions or periodic market closings, 
perfect replication is not possible and the usual delta-hedging strategies exhibit 
tracking errors. These tracking errors comprise the focus of our attention. 

Specifically, we characterize the asymptotic distribution of the tracking errors 
of delta-hedging strategies using continuous-record asymptotics, i.e., we implement 
these strategies in discrete time and let the number of time periods increase while 
holding the time span fixed. Since the delta-hedging strategies we consider are 
those implied by continuous-time models like Merton (1973), it is not surprising 
that tracking errors arise when such strategies are implemented in discrete time, 
nor is it surprising that these errors disappear in the limit of continuous time. 
However, by focusing on the continuous-record asymptotics of the tracking error, 
we can quantify the discrepancy between the discrete-time hedging strategy and its 
continuous-time limit, answering the question "When is time continuous?" in the 
context of replicating derivative securities. 

We show that the normalized tracking error converges weakly to a particular 
stochastic integral and that the root-mean-squared tracking error is of order iV - 1 / 2 

where N is the number of discrete time periods over which the delta hedging is 
performed. This provides a natural definition for temporal granularity: it is the 
coefficient that corresponds to the 0 ( iV - 1 / 2 ) term. We derive a closed-form ex­
pression for the temporal granularity of a diffusion process paired with a derivative 
security, and propose this as a measure of the "continuity" of time. The fact that 
granularity is defined with respect to a derivative-security/price-process pair under­
scores the obvious: a need for specificity in quantifying the approximation errors 
of continuous-time processes. It is impossible to tell how good an approximation 
a continuous-time process is to a physical process without specifying the nature of 
the physical process. 

In addition to the general usefulness of a measure of temporal granularity for 
continuous-time stochastic processes, our results have other, more immediate 
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applications. For example, for a broad class of derivative securities and price pro­
cesses, our measure of granularity provides a simple method for determining the 
approximate number of hedging intervals N* needed to achieve a target root-mean-
squared-error 6: N* = g2/S2 where g is the granularity coefficient of the derivative-
security/price-process pair. This expression shows that to halve the root-mean-
squared-error of a typical delta-hedging strategy, the number of hedging intervals 
must be increased approximately fourfold. 

Moreover, for some special cases, e.g., the Black-Scholes case, the granularity 
coefficient can be obtained in closed form, and these cases shed considerable light 
on several aspects of derivatives replication. For example, in the Black-Scholes 
case, does an increase in volatility make it easier or more difficult to replicate a 
simple call option? Common intuition suggests that the tracking error increases 
with volatility, but the closed-form expression for granularity (3.2) shows that the 
granularity achieves a maximum as a function of a and that beyond this point, it 
becomes a decreasing function of a. The correct intuition is that at lower levels of 
volatility, tracking error is an increasing function of volatility because an increase in 
volatility implies more price movements and a greater likelihood of hedging errors 
in each hedging interval. But at higher levels of volatility, price movements are so 
extreme that an increase in volatility in this case implies that prices are less likely 
to fluctuate near the strike price where delta-hedging errors are the largest, hence 
granularity is a decreasing function of a. In other words, at sufficiently high levels 
of volatility, the nonlinear payoff function of a call option "looks" approximately 
linear and is therefore easier to hedge. Similar insights can be gleaned from other 
closed-form expressions of granularity (see, for example, Sec. 3.2). 

In Sec. 2, we provide a complete characterization of the asymptotic behavior of 
the tracking error for delta hedging an arbitrary derivative security, and formally in­
troduce the notion of granularity. To illustrate the practical relevance of granularity, 
in Sec. 3 we obtain closed-form expressions for granularity in two specific cases: call 
options under geometric Brownian motion, and under a mean-reverting process. In 
Sec. 4 we check the accuracy of our continuous-record asymptotic approximations by 
presenting Monte Carlo simulation experiments for the two examples of Sec. 3 and 
comparing them to the corresponding analytical expressions. We present other ex­
tensions and generalizations in Sec. 5 such as a characterization of the sample-path 
properties of tracking errors, the joint distributions of tracking errors and prices, a 
PDE characterization of the tracking error, and more general loss functions than 
root-mean-squared tracking error. We conclude in Sec. 6. 

2. Defining Temporal Granularity 

The relationship between continuous-time and discrete-time models in economics 
and finance has been explored in a number of studies. One of the earliest examples 
is Merton (1969), in which the continuous-time limit of the budget equation of a dy­
namic portfolio choice problem is carefully derived from discrete-time considerations 
(see also Merton [1975, 1982b]). Foley's (1975) analyis of "beginning-of-period" 
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versus "end-of-period" models in macroeconomics is similar in spirit, though quite 
different in substance. 

More recent interest in this issue stems primarily from two sources. On one 
hand, it is widely recognized that continuous-time models are useful and tractable 
approximations to more realistic discrete-time models. Therefore, it is important to 
establish that key economic characteristics of discrete-time models converge prop­
erly to the characteristics of their continuous-time counterparts. A review of recent 
research along these lines can be found in Duffie and Protter (1992). 

On the other hand, while discrete-time and discrete-state models such as those 
based on binomial and multinomial trees, e.g., Cox, Ross, and Rubinstein (1979), He 
(1990, 1991), and Rubinstein (1994), may not be realistic models of actual markets, 
nevertheless they are convenient computational devices for analyzing continuous-
time models. Willinger and Taqqu (1991) formalize this notion and provide a review 
of this literature. 

For derivative-pricing applications, the distinction between discrete-time and 
continuous-time models is a more serious one. For all practical purposes, trading 
takes place at discrete intervals, and a discrete-time implementation of Merton's 
(1973) continuous-time delta-hedging strategy cannot perfectly replicate an option's 
payoff. The tracking error that arises from implementing a continuous-time hedging 
strategy in discrete time has been studied by several authors. 

One of the first studies was conducted by Boyle and Emanuel (1980), who con­
sider the statistical properties of "local" tracking errors. At the beginning of a 
sufficiently small time interval, they form a hedging portfolio comprised of options 
and stock according to the continuous-time Black-Scholes/Merton delta-hedging 
formula. The composition of this hedging portfolio is held fixed during this time 
interval, which gives rise to a tracking error (in continuous time, the composition of 
this portfolio would be adjusted continuously to keep its dollar value equal to zero). 
The dollar-value of this portfolio at the end of the interval is then used to quantify 
the tracking error. 

More recently, Toft (1996) shows that a closed-form expression for the variance 
of the cash flow from a discrete-time delta-hedging strategy can be obtained for a 
call or put option in the special case of geometric Brownian motion. However, he 
observes that this expression is likely to span several pages and is therefore quite 
difficult to analyze. 

But perhaps the most relevant literature for our purposes is Leland's (1985) 
investigation of discrete-time delta-hedging strategies motivated by the presence of 
transactions costs, an obvious but important motivation (why else would one trade 
discretely?) that spurred a series of studies on option pricing with transactions 
costs, e.g., Figlewski (1989), Hodges and Neuberger (1989), Bensaid et al. (1992), 
Boyle and Vorst (1992), Edirisinghe, Naik, and Uppal (1993), Henrotte (1993), 
Avellaneda and Paras (1994), Neuberger (1994), and Grannan and Swindle (1996). 
This strand of the literature provides compelling economic motivation for discrete 
delta-hedging: trading continuously would generate infinite transactions costs. 



76 Quantitative Analysis in Financial Markets 

However, the focus of these studies is primarily the tradeoff between the magnitude 
of tracking errors and the cost of replication. Since we focus on only one of these 
two issues — the approximation errors that arise from applying continuous-time 
models discretely — we are able to characterize the statistical behavior of tracking 
errors much more generally, i.e., for large classes of price processes, payoff functions, 
and state variables. 

Specifically, we investigate the discrete-time implementation of continuous-time 
delta-hedging strategies and derive the asymptotic distribution of the tracking er­
ror in considerable generality by appealing to continuous-record asymptotics. We 
introduce the notion of temporal granularity which is central to the issue of when 
time may be considered continuous, i.e., when continuous-time models are good ap­
proximations to discrete-time phenomena. In Sec. 2.1, we describe the framework in 
which our delta-hedging strategy will be implemented and define the tracking error 
and related quantities. In Sec. 2.2, we characterize the continuous-record asymp­
totic behavior of the tracking error and define the notion of temporal granularity. 
We provide an interpretation of granularity in Sec. 2.3 and discuss its implications. 

2.1. Delta-hedging in complete markets 

We begin by specifying the market environment. For simplicity, we assume that 
there are only two traded securities: a riskless asset (bond) and a risky asset (stock). 
Time t is normalized to the unit interval so that trding takes place from t = 0 to 
t = 1. In addition, we assume 

( A l ) Markets are frictionless, i.e., there are no taxes, transactions costs, short-
sales restrictions, or borrowing restrictions. 

(A2) The riskless borrowing and lending rate is 0.a 

(A3) The price Pt of the risky asset follows a diffusion process 

dP 
-± = li{t,Pt)dt + o-{t,Pt)dWt, o-(t,Pt)>cro>0 (2.1) 

"t 

where the coefficients \x and a satisfy standard regularity conditions that 
guarantee existence and uniqueness of the strong solution of (2.1) and 
market completeness (see DufRe [1996]). 

We now introduce a European derivative security on the stock that pays F(P\) 
dollars at time t = 1. We will call F(-) the payoff function of the derivative. The 
equilibrium price of the derivative, H(t, Pt), satisfies the following partial differential 
equation (PDE) (see, for example, Cox, Ingersoll, and Ross [1985]): 

«£«>+^(,,,y *§££>-„ (2.2) 
a This entails little loss of generality since we can always renormalize all prices by the price of a 
zero-coupon bond with maturity at time 1 (see, for example, Harrison and Kreps [1979]). However, 
this assumption does rule out the case of a stochastic interest rate. 
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with the boundary condition 

H{l,x) = F(x). (2.3) 

This is a generalization of the standard Black-Scholes model which can be obtained 
as a special case when the coefficients of the diffusion process (2.1) are constant, i.e., 
/j,(t, Pt) = fJ., cr(t, Pt) = <r, and the payoff function F(Pi) is given by max[Pi — K, 0] 
or min[Pi,.K"]. 

The delta-hedging strategy was introduced by Black and Scholes (1973) and 
Merton (1973) and when implemented continuously on t S [0,1], the payoff of 
the derivative at expiration can be replicated perfectly by a portfolio of stocks and 
riskless bonds. This strategy consists of forming a portfolio at time t = 0 containing 
only stocks and bonds with an initial investment of H(0,PQ), and rebalancing it 
continuously in a self-financing manner — all long positions are financed by short 
positions and no money is withdrawn or added to the portfolio — so that at all 
times t € [0,1] the portfolio contains dH(t, Pt)/dPt shares of the stock. The value 
of such a portfolio at time t = 1 is exactly equal to the payoff, F(Pi), of the 
derivative. Therefore, the price, H(t,Pt), of the derivative can also be considered 
the production cost of replicating the derivative's payoff F(Pi) starting at time t. 

Such an interpretation becomes important when continuous-time trading is not 
feasible. In this case, H(t,Pt) can no longer be viewed as the equilibrium price of 
the derivative. However, the function H(t,Pt), defined formally as a solution of 
(2.2)-(2.3), can still be viewed as the production cost H(0, Po) of an approximate 
replication of the derivative's payoff, and may be used to define the production 
process itself (we formally define a discrete-time delta-hedging strategy below).b 

Therefore, when we refer to H(t,Pt) as the derivative's "price" below, we shall 
have in mind this more robust interpretation of production cost and approximate 
replication strategy.0 

More formally, we assume: 

(A4) Trading takes place only at N regularly spaced times U, i = 1 , . . . , N, where 

J 1 _2_ N-l\ 
i e \ 0 ' A T ' i V ' - ' N J' 

Under (A4), the difference between the payoff of the derivative and the end-of-period 
dollar-value of the replicating portfolio — the tracking erroi will be non-zero. 

°The term "approximate replication" indicates the fact that when continuous trading is not fea­
sible, the difference between the payoff of the derivative and the end-of-period dollar-value of the 
replicating portfolio will be non-zero. See Bertsimas, Kogan, and Lo (1997) for a discussion of 
derivative replication in discrete time and the distinction between production cost and equilibrium 
price. 
cAlternatively, we can conduct the following equivalent thought experiment: while some market 
participants can trade costlessly and continuously in time and thus ensure that the price of the 
derivative is given by the solution of (2.2)-(2.3), we will focus our attention on other market 
participants who can trade only a finite number of times. 
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Following Hutchinson, Lo, and Poggio (1994), let V^' be the value of the 
replicating portfolio at time U. Since the replicating portfolio consists of shares of 
the stock and the bond, we can express V^ ' as 

^=^?+« (2-4) 

where V^ tj and VJj ^ denote the dollar amount invested in the stock and the bond, 
respectively, in the replicating portfolio at time ti. At time t = 0 the total value of 
the replicating portfolio is equal to the price (production cost) of the derivative 

V0
iN)=H(0,P0) (2.5) 

and its composition is given by 

w _ dH(t,Pt) 
VS,0 - gp 

ro, VB,o - vo -ys,o ' \2-b) 
t=0 

hence the portfolio contains dH(t,Pt)/dPt\t=o shares of stock. The replicating 
portfolio is rebalanced at time periods U so that 

(N) _ dH(t,Pt) vs,u ~ dp Pu> V£>=V^]-V£?. (2.7) 
t=u 

Between time periods ti and £j+i, the portfolio composition remains unchanged. 
This gives rise to non-zero tracking errors e\. : 

4P=H(ti,Pti)-VtW. (2.8) 

The value of the replicating portfolio at time t = 1 is denoted by V^ ' and the 
end-of-period tracking error is denoted by e\ '. 

The sequence of tracking errors contains a great deal of information about the 
approximation errors of implementing a continuous-time hedging strategy in dis­
crete time, and in Sees. 2.2 and 5 we provide a complete characterization of the 
continuous-time limiting distribution of ê  ' and {e^}. However, because track­
ing errors also contain noise, we also investigate the properties of the root-mean-
squared-error (RMSE) of the end-of-period tracking error t\ (see Hutchinson, Lo, 
and Poggio [1994] for other alternatives): 

RMSEW = ^0[{e[N)Y] (2.9) 

where Eo[-] denotes the conditional expectation, conditional on information avail­
able at time t — 0. Whenever exact replication of the derivative's payoff is impos­
sible, RMSEW is positive. 

Of course, root-mean-squared-error is only one of many possible summary statis­
tics of the tracking error. A more general specification is the expected loss of the 
tracking error 

E, U(e<P) 
where U(-) is a general loss function, and we consider this case explicitly in Sec. 5.4. 
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2.2. Asymptotic behavior of the tracking error and RMSE 

We characterize analytically the asymptotic behavior of the tracking error and 
RMSE by appealing to continuous-record asymptotics, i.e., by letting the number of 
trading periods N increase without bound while holding the time span fixed. This 
characterization provides several important insights into the behavior of the tracking 
error of general European derivative securities that previous studies have only hinted 
at indirectly (and only for simple put and call options).d A by-product of this 
characterization is a useful definition for the temporal granularity of a continuous-
time stochastic process (relative to a specific derivative security). 

We begin with the case of smooth payoff functions F(Pi): 

Theorem 1. Let the derivative's payoff function F(x) in (2.3) be six times 
continuously differentiable and all of its derivatives be bounded, and suppose there 
exists a positive constant K such that functions /X(T, X) and a(r, x) in (2.1) satisfy 

Q0+1 a/3+7 
-cr(r, x) dr^dx-r + ch{xa{T'x)) < K (2.10) 

where (T,X) € [0,1] x [0, oo), l < a < 6 , 0 < / 3 < l , 0 < 7 < 3, and all partial 
derivatives are continuous. Then under Assumptions (Al)-(A4): 

(a) The RMSE of the discrete-time delta-hedging strategy (2.7) satisfies 

RMSEW = O ( - U ) • (2-11) 

(b) The normalized tracking error satisfies: 

where 

G s 71 Si ̂  ^ ^ P T 1 dWi' (2'12) 
Wt is a Wiener process independent of Wt, and "=>" denotes convergence 
in distribution. 

(c) The RMSE of the discrete-time delta-hedging strategy (2.7) satisfies 

RMSEW = - ^ + o ( i ) (2.13) 

where 

g = VEoM, (2.14) 

n=\fo{a\t,Pt)pf^^-\dt. (2.15) 
dP? 

Proof. See the Appendix. 

See, for example, Boyle and Emanuel (1980) Hutchinson, Lo, and Poggio (1994), Leland (1985), 
and Toft (1996). 
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Theorem 1 shows that the tracking error is asymptotically equal in distribution 
to G/T/N (up to 0(N~1) terms), where G is a random variable given by (2.12). 
The expected value of G is zero by the martingale property of stochastic integrals. 
Moreover, the independence of the Wiener processes W{ and Wt implies that the 
asymptotic distribution of the normalized tracking error is symmetric, i.e., in the 
limit of frequent trading, positive values of the normalized tracking error are just 
as likely as negative values of the same magnitude. 

This result might seem somewhat counterintuitive at first, especially in light of 
Boyle and Emanuel's (1980) finding that in the Black-Scholes framework the distri­
bution of the local tracking error over a short trading interval is significantly skewed. 
However, Theorem 1(b) describes the asymptotic distribution of the tracking error 
over the entire life of the derivative, not over short intervals. Such an aggregation of 
local errors leads to a symmetric asymptotic distribution, just as a normalized sum 
of random variables will have a Gaussian distribution asymptotically under certain 
conditions, e.g., the conditions for a functional central limit theorem to hold. 

Note that Theorem 1 applies to a wide class of diffusion processes (2.1) and to a 
variety of derivative payoff functions F{P{). In particular, it holds when the stock 
price follows a diffusion process with constant coefficients, as in Black and Scholes 
(1973).e However, the requirement that the payoff function F(P\) is smooth — six 
times differentiable with bounded derivatives — is violated by the most common 
derivatives of all: simple puts and calls. In the next theorem, we extend our results 
to cover this most basic set of payoff functions. 

Theorem 2. Let the payoff function F{P{) be continuous and piecewise linear, 
and suppose (2.10) holds. In addition, let 

x2d
aa(r,x) 

dxa < K2 (2.16) 

for (T,X) £ [0,1] x [0,oo), 2 < a < 6, and some positive constant K^- Then under 
Assumptions (Al)-(A4): 

(a) The RMSE of the discrete-time delta-hedging strategy (2.7) satisfies 

RMSEW = - | = + 0 ^ - 1 = 1 

where g is given by (2.14)-(2.15). 
(b) The normalized tracking error satisfies 

W *±£ a\t, PtWf^P1 dWl (2.17) 

eFor the Black-Scholes case, the formula for the RMSE (2.14)-(2.15) was first derived by Grannan 
and Swindle (1996). Our results provide a more complete characterization of the tracking error 
in their framework — we derive the asymptotic distribution — and our analysis applies to more 
general trading strategies than theirs, e.g., they consider strategies obtained by deterministic time 
deformations; our framework can accommodate deterministic and stochastic time deformations. 



When Is Time Continuous? 81 

where W[ is a Wiener process independent ofWt. 

Proof. See Bertsimas, Kogan, and Lo (1998). By imposing an additional 
smoothness condition (2.16) on the diffusion coefficient a(r, x), Theorem 2 assures 
us that the conclusions of Theorem 1 also hold for the most common types of 
derivatives, those with piecewise linear payoff functions. 

Theorems 1 and 2 allows us to define the coefficient of temporal granularity g 
for any combination of continuous-time process {Pt} and derivative payoff func­
tion F(Pi) — it is the constant associated with the leading term of the RMSE's 
continuous-record asymptotic expansion: 

9 = 

\ 

oEo r^-wT)'' (2.18) 

where H(t,Pt) satisfies (2.2) and (2.3). 

2.3. Interpretation of granularity 

The interpretation for temporal granularity is clear: it is a measure of the ap­
proximation errors that arise from implementing a continuous-time delta-hedging 
strategy in discrete time. A derivative-pricing model — recall that this is comprised 
of a payoff function F(Pi) and a continuous-time stochastic process for Pt — with 
high granularity requires a larger number of trading periods to achieve the same 
level of tracking error as a derivative-pricing model with low granularity. In the 
former case, time is "grainier", calling for more frequent hedging activity than the 
latter case. More formally, according to Theorems 1 and 2, to a first-order approx­
imation the RMSE of an iV-trade delta-hedging strategy is g/y/N. Therefore, if we 
desire the RMSE to be within some small value S, we require 

NK9-

trades in the unit interval. For a fixed error S, the number of trades needed to reduce 
the RMSE to within S grows quadratically with granularity. If one derivative-pricing 
model has twice the granularity of another, it would require four times as many 
delta-hedging transactions to achieve the same RMSE tracking error. 

From (2.18) it is clear that granularity depends on the derivative-pricing formula 
H(t, Pt) and the price dynamics Pt in natural ways. Equation (2.18) formalizes the 
intuition that derivatives with higher volatility and higher "gamma" risk (large 
second derivative with respect to stock price) are more difficult to hedge, since 
these cases imply larger values for the integrand in (2.18). Accordingly, derivatives 
on less volatile stocks are easier to hedge. Consider a stock price process which 

fIt is easy to show, using Holder's inequality, that g < oo and this implies that the stochastic 
integral in (2.17) is well defined. See Bertsimas, Kogan, and Lo (1998) for further details. 
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is almost deterministic, i.e., a(t,Pt) is very small. This implies a very small value 
for g, hence derivatives on such a stock can be replicated almost perfectly, even if 
continuous trading is not feasible. Alternatively, such derivatives require relatively 
few rebalancing periods N to maintain small tracking errors. 

Also, a derivative with a particularly simple payoff function should be easier 
to hedge than derivatives on the same stock with more complicated payoffs. For 
example, consider a derivative with the payoff function F(Pi) — Pi. This derivative 
is identical to the underlying stock, and can always be replicated perfectly by buying 
a unit of the underlying stock at time t = 0 and holding it until expiration. The 
tracking error for this derivative is always equal to zero, no matter how volatile the 
underlying stock is. This intuition is made precise by Theorem 1, which describes 
exactly how the error depends on the properties of the stock price process and the 
payoff function of the derivative: it is determined by the behavior of the integral 
1Z, which tends to be large when stock prices "spend more time" in regions of the 
domain that imply high volatility and high convexity or gamma of the derivative. 

We will investigate the sensitivity of g to the specification of the stock price 
process in Sees. 3 and 4. 

3. Applications 

To develop further intuition for our measure of temporal granularity, in this 
section we derive closed-form expressions for g in two important special cases: 
the Black-Scholes option pricing model with geometric Brownian motion, and the 
Black-Scholes model with a mean-reverting (Ornstein-Uhlenbeck) process. 

3.1. Granularity of geometric Brownian motion 

Suppose that stock price dynamics are given by: 

dP 
—t=Hdt + adWt. (3.1) 
Pt 

where /x and a are constants. Under this assumption we obtain the following explicit 
characterization of the granularity g. 

Theorem 3. Under Assumptions (Al)-(A4), stock price dynamics (3.1), and 
the payoff function of simple call and put options, the granularity g in (2.13) is 
given by 

( L feaj^j V 

V / 
where K is the option's strike price. 

Proof. See Bertsimas, Kogan, and Lo (1998). 
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It is easy to see that g = 0 if a = 0 and g increases with a in the neighborhood 
of zero. When a increases without bound, the granularity g decays to zero, which 
means that it has at least one local maximum as a function of a. The granularity g 
also decays to zero when PQ/K approaches zero or infinity. In the important special 
case of fi — 0, we conclude by direct computation that g is a unimodal function of 
Po/K, that achieves its maximum at PQ/K = exp(er2/2). 

The fact that granularity is not monotone increasing in a may seem counterin­
tuitive at first — after all, how can delta-hedging errors become smaller for larger 
values of a! The intuition follows from the fact that at small levels of cr, an increase 
in a leads to larger granularity because there is a greater chance that the stock price 
will fluctuate around regions of high gamma (where d2H(t,Pt)/dP2 is large, i.e., 
near the money), leading to greater tracking errors. However, at very high levels of 
cr, prices fluctuate so wildly that an increase in a will decrease the probability that 
the stock price stays in regions of high gamma for very long — in these extreme 
cases, the payoff function "looks" approximately linear hence granularity becomes 
a decreasing function of a. 

Also, we show below that g is not very sensitive to changes in fi when a is 
sufficiently large. This implies that, for an empirically relevant range of parameter 
values, g, as a function of the initial stock price, achieves its maximum close to the 
strike price, i.e., at Po/K « 1. These observations are consistent with the behavior 
of the tracking error for finite values of N that we see in the Monte Carlo simulations 
of Sec. 4. 

When stock prices follow a geometric Brownian motion, expressions similar to 
(3.2) can be obtained for derivatives other than simple puts and calls. For example, 
for a straddle, consisting of one put and one call option with the same strike price 
K, the constant g is twice as large as for the put or call option alone. 

3.2. Granularity of a mean-reverting process 

Let pt = ln(Pf) and suppose 

dpt = f -7(p t - (« + pt)) +p\dt + a dWt (3.3) 

where (3 = /J, — a2/2 and a is a constant. This is an Ornstein-Uhlenbeck process 
with a linear time trend, and the solution of (3.3) is given by 

pt = (po - a)e-T< + (a + [3t)+cr [ e'^-^ dWa . (3.4) 
./o 

Under these price dynamics, we have: 

Theorem 4. Under Assumptions (A1)-(A4), stock price dynamics (3.3), and 
the payoff function of simple call and put options, the granularity g in (2.13) is 
given by 
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g = Ka 
I ^ e x p 

/ ' 
Jo 

7 [ a + ^ t + ( l n ( ^ ) - g ) e x p ( - T t ) - 0 - 2 / 2 ] 2 

<72[7(l-t) + l - exp ( -2 7 t ) ] 
, . dt 

4 7 r v / r ^ - v / 7 ^ r t ) + l - e x p P 2 7 t ) 
V / 

(3.5) 

where K is the option's strike price. 

Proof. See Bertsimas, Kogan, and Lo (1998). 

Expression (3.5) is a direct generalization of (3.2): when the mean-reversion 
parameter 7 is set to zero, the process (3.3) becomes a geometric Brownian motion 
and (3.5) reduces to (3.2). Theorem 4 has some interesting qualitative implications 
for the behavior of the tracking error in presence of mean-reversion. We will discuss 
them in detail in the next section. 

4. Monte Carlo Analysis 

Since our analysis of granularity is based entirely on continuous-record asymp-
totics, we must check the quality of these approximations by performing Monte 
Carlo simulation experiments for various values of JV. The results of these Monte 
Carlo simulations are reported in Sec. 4.1. We also use Monte Carlo simulations to 
explore the qualitative behavior of the RMSE for various parameter values of the 
stock price process, and these simulations are reported in Sec. 4.2. 

4.1. Accuracy of the asymptotics 

We begin by investigating the distribution of the tracking error e ^ for various 
values of JV. We do this by simulating the hedging strategy of Sec. 2.2 for call 
and put options,8 assuming that price dynamics are given by a geometric Brownian 
motion (3.1).h We set the parameters of the stock price process to /x = 0.1, a = 0.3, 
P0 = 1.0 and let the strike price be K = 1. We consider JV = 10, 20, 50, 100, and 
simulate the hedging process 250,000 times for each value of JV. 

Figure 1(a) shows the empirical probability density function (PDF) of e[ for 
each JV. As expected, the distribution of the tracking error becomes tighter as 
the trading frequency increases. It is also apparent that the tracking error can 
be significant even for JV = 100. Figure 1(b) contains the empirical PDFs of the 
normalized tracking error, VNe[N), for the same values of JV. These PDFs are 
compared to the PDF of the asymptotic distribution (2.17), which is estimated by 
approximating the integral in (2.17) using a first-order Euler scheme. The functions 

8According to Theorem 1, the asymptotic expressions for the tracking error and the RMSE are 
the same for put and call options since these options have the same second partial derivative of 
the option price with respect to the current stock price. Moreover, it is easy to verify, using the 
put-call parity relation, that these options give rise to identical tracking errors. 
h When the stock price process Pt follows a geometric Brownian motion, the stock price at time 
tj+i is distributed (conditional on the stock price at time U) as Pt{ exp((/i — <r2/2)At + o-v/Atr?), 
where n ~ A/"(0,1). We use this relation to simulate the delta-hedging strategy. 
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100 

Tracking Error 

(a) 

0 0.5 
Normalized Tracking Error 

(b) 

Fig. 1. Empirical probability density functions of (a) the tracking error and (b) the normalized 
tracking error (dashed line), are plotted for different values of the trading frequency N. Figure 1(b) 
also shows the empirical probability density function of the asymptotic distribution (2.17) (solid 
line). The stock price process is given by (3.1) with parameters fj, = 0.1, <r = 0.3, PQ = 1.0. The 
option is a European call (put) option with strike price K = 1. 

in Figure 1(b) are practically identical and indistinguishable, which suggests that 
the asymptotic expression for the distribution of VNe\ ' in Theorem 1(b) is an 
excellent approximation to the finite-sample PDF for values of N as small as 10. 

To evaluate the accuracy of the asymptotic expression g/y/N for finite values 
of N, we compare g/VN to the actual RMSE from Monte Carlo simulations of 
the delta-hedging strategy of Sec. 2.2. Specifically, we simulate the delta-hedging 
strategy for a set of European put and call options with strike price K = 1 un­
der geometric Brownian motion (3.1) with different sets of parameter values for 
(a, /i, Po). The tracking error is tabulated as a function of these parameters and 
the results are summarized in Tables 1,2, and 3. 

Tables 1-3 show that g/VN is an excellent approximation to the RMSE across 
a wide range of parameter values for (/x, a, Po), even for as few as N = 10 delta-
hedging periods. 

4.2. Qualitative behavior of the RMSE 

The Monte Carlo simulations of Sec. 4.1 show that RMSE increases with the 
diffusion coefficient a in an empirically relevant range of parameter values (see 
Table 2), and that the RMSE is not very sensitive to the drift rate /x of the stock price 
process when a is sufficiently large (see Table 3). These properties are illustrated 
in Figs. 2(a) and 3. In Fig. 2(a), the logarithm of RMSE is plotted against the 
logarithm of trading periods N for a = 0.1, 0.2, 0.3 — as a increases, the locus of 
points shifts upward. Figure 3 shows that granularity g is not a monotone function 
of a and goes to zero as a increases without bound. 
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Table 1. The sensitivity of the RMSE as a function of the initial price Po- The RMSE is estimated 
using Monte Carlo simulation. Options are European calls and puts with strike price K = 1. 
250,000 simulations are performed for every set of parameter values. The stock price follows a 
geometric Brownian motion (3.1). The drift and diffusion coefficients of the stock price process 
are ^ = 0.1 and <r = 0.3. RMSE(W ' is compared to the asymptotic approximation g i V - 1 / 2 in 
(2.13)-(3.2). The relative error (RE) of the asymptotic approximation is defined as | g iV - 1 / 2 — 
R M S E W l / R M S E W x 100%. 

Parameters 

N 

10 

20 

50 

100 

10 

20 

50 

100 

10 

20 

50 

100 

10 

20 

50 

100 

10 

20 

50 

100 

Po 

0.50 

0.50 

0.50 

0.50 

0.75 

0.75 

0.75 

0.75 

1.00 

1.00 

1.00 

1.00 

1.25 

1.25 

1.25 

1.25 

1.50 

1.50 

1.50 

1.50 

S i V - i / 2 

0.0078 

0.0055 

0.0035 

0.0025 

0.0259 

0.0183 

0.0116 

0.0082 

0.0334 

0.0236 

0.0149 

0.0106 

0.0275 

0.0194 

0.0123 

0.0087 

0.0181 

0.0128 

0.0081 

0.0057 

RMSEW 

0.0071 

0.0052 

0.0033 

0.0024 

0.0248 

0.0177 

0.0113 

0.0082 

0.0327 

0.0227 

0.0145 

0.0104 

0.0263 

0.0187 

0.0120 

0.0087 

0.0169 

0.0122 

0.0076 

0.0056 

RE 

8.9% 

7.9% 

5.9% 

3.1% 

3.8% 

2.9% 

2.6% 

2.3% 

4.1% 

3.4% 

2.3% 

1.9% 

5.8% 

3.9% 

2.7% 

1.8% 

7.7% 

5.3% 

2.9% 

3.0% 

Call 

H(Q,P0) 

7E-4 

7E-4 

7E-4 

7E-4 

0.023 

0.023 

0.023 

0.023 

0.119 

0.119 

0.119 

0.119 

0.294 

0.294 

0.294 

0.294 

0.515 

0.515 

0.515 

0.515 

Option 

R M S E W 
H 

9.64 

6.88 

4.43 

3.22 

1.08 

0.760 

0.490 

0.345 

0.269 

0.192 

0.122 

0.087 

0.088 

0.064 

0.041 

0.029 

0.033 

0.024 

0.015 

0.011 

Put 

H(0,Po) 

0.501 

0.501 

0.501 

0.501 

0.273 

0.273 

0.273 

0.273 

0.119 

0.119 

0.119 

0.119 

0.044 

0.044 

0.044 

0.044 

0.015 

0.015 

0.015 

0.015 

Option 

R M S E W 
H 

0.014 

0.010 

0.007 

0.005 

0.091 

0.065 

0.041 

0.029 

0.269 

0.192 

0.122 

0.087 

0.588 

0.423 

0.271 

0.195 

1.130 

0.816 

0.528 

0.373 
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Table 2. The sensitivity of the RMSE as a function of volatility cr. The RMSE is estimated 
using Monte Carlo simulation. Options are European calls and puts with strike price K = 1. 
250, 000 simulations are performed for every set of parameter values. The stock price follows a 
geometric Brownian motion (3.1). The drift coefficient of the stock price process is fj, = 0.1, 
and the initial stock price is PQ = 1.0. R M S E W is compared to the asymptotic approximation 
p j V - 1 / 2 in (2.13)-(3.2). The relative error (RE) of the asymptotic approximation is defined as 
IgiV-1 /2 - R M S E ( N ) | / R M S E W X 100%. 

Parameters 

N 

10 

20 

50 

100 

10 

20 

50 

100 

10 

20 

50 

100 

a 

0.3 

0.3 

0.3 

0.3 

0.2 

0.2 

0.2 

0.2 

0.1 

0.1 

0.1 

0.1 

gN-1'2 

0.0334 

0.0236 

0.0149 

0.0106 

0.0219 

0.0155 

0.0098 

0.0069 

0.0100 

0.0071 

0.0045 

0.0032 

R M S E W 

0.0327 

0.0227 

0.0145 

0.0104 

0.0212 

0.0151 

0.0096 

0.0068 

0.0102 

0.0071 

0.0044 

0.0031 

Call and Put Options 

RE 

4 .1% 

3.4% 

2.3% 

1.9% 

3.4% 

3.0% 

2.1% 

1.7% 

1.6% 

0.04% 

1.1% 

0.9% 

H(0,P0) 

0.119 

0.119 

0.119 

0.119 

0.080 

0.080 

0.080 

0.080 

0.040 

0.040 

0.040 

0.040 

RMSE<N> 
H 

0.269 

0.192 

0.122 

0.087 

0.266 

0.189 

0.121 

0.086 

0.255 

0.177 

0.111 

0.078 

Table 3. The sensitivity of the RMSE as a function of the drift fi. The RMSE 
is estimated using Monte Carlo simulation. Options are European calls and 
puts with strike price K = 1. 250,000 simulations are performed for every 
set of parameter values. The stock price follows a geometric Brownian motion 
(3.1). The diffusion coefficient of the stock price process is cr = 0.3, and the 
initial stock price is Po = 1.0, the number of trading periods is N = 20. 
R M S E C ) is compared to the asymptotic approximation gN~x/2 in (2.13)-
(3.2). The relative error (RE) of the asymptotic approximation is defined as 
| 9 JV-i /2 _ R M S E W | / R M S E W x 100%. 

Parameters 

M 

0.0 

0.1 

0.2 

0.3 

gN-1/2 

0.0235 

0.0236 

0.0230 

0.0218 

RMSE<N) 

0.0226 

0.0229 

0.0226 

0.0220 

Call and Put Options 

RE 

4.3% 

3.4% 

1.7% 

1.0% 

H(0,P0) 

0.119 

0.119 

0.119 

0.119 

RMSEC") 
H 

0.189 

0.192 

0.190 

0.184 
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Fig. 2. (a) The logarithm of the root-mean-squared error log1 0(RMSE( i v ' ) is plotted as a function 
of the logarithm of the trading frequency log10(N). The option is a European call (put) option with 
the strike price K = 1. The stock price process is given by (3.1) with parameters fi = 0.1, Po = 1.0. 
The diffusion coefficient of the stock price process takes values a = 0.3 (x's), c = 0.2 (o's) and 
a = 0.1 (+ 's) . (b) The root-mean-squared error RMSE is plotted as a function of the initial stock 
price Po. The option is a European put option with the strike price K = 1. Parameters of the 
stock price process are fi = 0.1, a = 0.3. 

Fig. 3. The granularity g is plotted as a function of a and fi. The option is a European call (put) 
option with strike price K = 1. The stock price process is geometric Brownian motion and initial 
stock price Po = 1. 
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Figure 2(b) plots the RMSE as a function of the initial stock price Po- RMSE is a 
unimodal function of Po/K (recall that the strike price has been normalized to K = 
1 in all our calculations), achieving its maximum around 1 and decaying to zero as 
PQ/K approaches zero or infinity (see Table 1). This confirms the common intuition 
that close-to-the-money options are the most difficult to hedge—they exhibit the 
largest RMSE. 

Finally, the relative importance of the RMSE can be measured by the ratio of the 
RMSE to the option price: RMSE^/H(0,Po). This quantity is the root-mean-
squared error per dollar invested in the option. Table 1 shows that this ratio is 
highest for out-of-the-money options, despite the fact that the RMSE is highest for 
close-to-the-money options. This is due to the fact that the option price decreases 
faster than the RMSE as the stock moves away from the strike. 

Now consider the case of mean-reverting stock price dynamics (3.3). Recall 
that under these dynamics, the Black-Scholes formula still holds.1 Nevertheless, the 
behavior of granularity and RMSE is quite different in this case. Figure 4 plots the 
granularity g of call and put options for the Ornstein-Uhlenbeck process (3.3) as 
a function of a and Po- Figure 4(a) assumes a value of 0.1 for the mean-reversion 
parameter 7 and Fig. 4(b) assumes a value of 3.0. It is clear from these two plots that 
the degree of mean reversion 7 has an enormous impact on granularity. When 7 is 

0.K 

(a) (b) 

Fig. 4. Granularity g is plotted as a function of Po and a. The option is a European call (put) 
option with the strike price K = 1. Parameters of the stock price process are a = 0.2, /x = 0.05. 
The stock price process is given by (3.4). Mean-reversion parameter 7 takes two values: (a) 7 = 0.1 
and (b) 7 = 3.0. 

'However, the numerical value for a may be different than that of a geometric Brownian motion 
because the presence of mean-reversion can affect conditional volatility, holding unconditional 
volatility fixed. See Lo and Wang (1995) for further discussion. 
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small, Fig. 4(a) shows that the RMSE is highest when P0 is close to the strike price 
and is not sensitive to a. But when 7 is large, Fig. 4(b) suggests that the RMSE is 
highest when exp(a) is close to the strike price and is not sensitive to P0. 

The influence of 7 on the granularity can be understood by recalling that gran­
ularity is closely related to the option's gamma (see Sec. 2.3). When 7 is small, 
the stock price is more likely to spend time in the neighborhood of the strike price 
— the region with the highest "gamma" or d2H(t, Pt)/dP? — when PQ is close to 
K. However, when 7 is large, the stock price is more likely to spend time in a the 
neighborhood of exp(a), thus g is highest when exp(a) is close to K. 

5. Extensions and Generalizations 

The analysis of Sec. 2 can be extended in a number of directions, and we briefly 
outline four of the most important of these extensions here. In Sec. 5.1, we show 
that the normalized tracking error converges in a much stronger sense than sim­
ply in distribution, and that this stronger "sample-path" notion of convergence — 
called, ironically, "weak" convergence — can be used to analyze the tracking error 
of American-style derivative securities. In Sec. 5.2, we characterize the asymptotic 
joint distributions of the normalized tracking error and asset prices, a particularly 
important extension for investigating the tracking error of delta hedging a portfo­
lio of derivatives. In Sec. 5.3, we provide another characterization of the tracking 
error, one that relies on PDE's, that offers important computational advantages. 
In Sec. 5.4, we consider alternatives to mean-squared-error loss functions and show 
that for quite general loss functions, the behavior of the expected loss of the tracking 
error is characterized by the same stochastic integral (2.17) as in the mean-squared-
error case. 

5.1. Sample-path properties of tracking errors 

Recall that the normalized tracking error process is defined as: 

VNe[N) = VN(H(t, Pt) - Vt
{N)), t e [0,1]. 

It can be shown that y/Ne^ ' converges weakly to the stochastic process Gt, char­
acterized by the stochastic integral in (2.12) as a function of its upper limit:j 

JThe proof of this result consists of two steps. The first step is to establish that the sequence of 
measures induced by \/JVe\ is tight (relatively compact). This can be done by verifying local 
inequalities for the moments of processes y/N e.t ' using the machinery developed in the proof of 
Theorem 2 (we must use Burkholder's inequality instead of the isometric property and Holder's 
inequality instead of Schwarz's inequality throughout — see Bertsimas, Kogan, and Lo [1998] for 
further details). The second step is to characterize the limiting process. Such a characterization 
follows from the proof in Appendix A.2 and the fact that the results in Duffie and Protter (1992) 
guarantee weak convergence of stochastic processes, not just convergence of their one-dimensional 
marginal distributions. 
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This stronger notion of convergence yields stronger versions of Theorem 1 and 2 
that can be used to analyze a number of sample-path properties of the tracking 
error by appealing to the Continuous Mapping Theorem (see Billingsley [1968]). 
This well-known result shows that the asymptotic distribution of any continuous 
functional £(•) of the normalized tracking error is given by £,{Gt). For example, 
the maximum of the normalized tracking error over the entire life of the derivative 
security, maxt VNet , is distributed as max t Gt asymptotically. 

These results can be applied to the normalized tracking errors of American-style 
derivatives in a straightforward manner. Such derivatives differ from European 
derivatives in one respect: they can be exercised prematurely. Therefore, the valu­
ation of these derivatives consists of both computing the derivative price function 
Hit, Pt) and the optimal exercise schedule, which can be represented as a stopping 
time r. Then the tracking error at the moment when the derivative is exercised be­
haves asymptotically as GT/^/N.k The tracking error, conditional on the derivative 
not being exercised prematurely, is distributed asymptotically as {Gi/\fN \ r = 1). 

5.2. Joint distributions of tracking errors and prices 

Theorems 1 and 2 provide a complete characterization of the tracking error and 
RMSE for individual derivatives, but what is often of more practical interest is the 
behavior of a portfolio of derivatives. Delta-hedging a portfolio of derivatives is 
typically easier because of the effects of diversification — as long as tracking errors 
are not perfectly correlated across derivatives, the portfolio tracking error will be 
less volatile than the tracking error of individual derivatives. 

To address portfolio issues, we require the joint distribution of tracking errors 
for multiple stocks, as well as the joint distribution of tracking errors and prices. 
Consider another stock with price P} ' governed by the diffusion equation 

dP* „<»>(*, p W ) dt + ,<»>(«, Pt
(2)) dWP (5.1) t 

Pt 
(2) 

where Wj ' can be correlated with Wt. According to the proof of Theorem 1(b) (see 

Appendix A.2), since the random variables (Wti+l — Wti)
2 — (U+i — U) and W^x — 

W}.' are uncorrected,1 the Wiener processes W( and W} ' are independent. There­

fore, as N increases without bound the pair of random variables (vWe^ ,P\ ) 

converges in distribution to: 

(VNeW , i f > ) =* (-L jf1 a*(t, Pt)pf^f±dWi P(?>) (5.2) 

where W[ is independent of Wt and W^ . 

' 'Some technical regularity conditions, e.g., the smoothness of the exercise boundary, are required 
to ensure convergence. See, for example, Kushner and Dupuis (1992). 
'This follows from the fact that , for every pair of standard normal random variables X and Y with 

correlation p, X = pY + -y/l + p2 Z, where Z is a standard normal random variable, independent 

of Y. Thus X and Y2 — 1 are uncorrelated. 
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An immediate corollary of this result is that the normalized tracking error is 
uncorrelated with any asset in the economy. This follows easily from (5.2) since, 
conditional on the realization of Pt and PJ ', t £ [0,1], the normalized tracking 
error has zero expected value asymptotically. However, this does not imply that 
the asymptotic joint distribution of (T/N e[ , Pj ') does not depend on the corre­
lation between Wt and — it does, since this correlation determines the joint 
distribution of Pt and Pt

( '. 

The above argument applies without change when the price of the second stock 
follows a diffusion process different from (5.1), and can also easily be extended to 
the case of multiple stocks. 

To derive the joint distribution of the normalized tracking errors for multiple 
stocks, we consider the case of two stocks since the generalization to multiple stocks 
is obvious. Let Wt and W{ ' have mutual variation dWtdW} ' = p(t,Pt,P}2')dt, 
where />(•) is a continuously differentiable function with bounded first-order partial 
derivatives. We have already established that the asymptotic distribution of the 
tracking error is characterized by the stochastic integral (2.12). To describe the 
asymptotic joint distribution of two normalized tracking errors, it is sufficient to 
find the mutual variation of the Wiener processes in the corresponding stochastic 
integrals. According to the proof of Theorem 1(b) (Appendix A.2), this amounts 
to computing the expected value of the product 

(wti+1 - wuf - (ti+1 -1<)) ((w£\ - w^f - (ti+1 -*<)) . 

Using Ito's formula, it is easy to show that the expected value of the above expression 
is equal to 

En ,o[2p2(t,Pti,pM)](At)2 + o((At)i) 

This implies that p2(t, Pt, P£ ') is the mutual variation of the two Wiener processes 
in the stochastic integrals (2.12) that describe the asymptotic distributions of the 
normalized tracking errors of the two stocks. Together with Theorem 1(b), this com­
pletely determines the asymptotic joint distribution of the two normalized tracking 
errors.™ 

Note that the correlation of two Wiener processes describing the asymptotic 
behavior of two normalized tracking errors is always nonnegative, regardless of 

(2) 

the sign of the mutual variation of the original Wiener processes Wt and W£ . 
In particular, when two derivatives have convex price functions, this means that 
even if the returns on the two stocks are negatively correlated, the tracking errors 
resulting from delta hedging derivatives on these stocks are asymptotically positively 
correlated. 

This result generalizes the findings of Boyle and Emanuel (1980). 
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5.3. A PDE characterization of the tracking error 

It is possible to derive an alternative characterization of the tracking error using 
the intimate relationship between diffusion processes and PDE's. Although this may 
seem superfluous given the analytical results of Theorems 1 and 2, the numerical 
implementation of a PDE representation is often computationally more efficient. 

To illustrate our approach, we begin with the RMSE. According to Theorem 1(c), 
the RMSE can be completely characterized asymptotically if g is known (see (2.14)). 
Using the Feynman-Kac representation of the solutions of PDE's (see Karatzas and 
Shreve [1991, Proposition 4.2.]), we conclude that g2 = u(0, Po), where u(t, x) solves 
the following: 

a d , . d 1 o, N Q 9 -+„{t,x)X- + r(t,x)x—2 
1 / 2 . . 2d

2H(t,x) 
u(t,x) + - I a (t,x)x 

2 V dx2 

(5.3) 

u(l,a;) = 0 , Vz . (5.4) 

The PDE (5.3)-(5.4) is of the same degree of difficulty as the fundamental PDE 
(2.2)-(2.3) that must be solved to obtain the derivative-pricing function H(t,Pt). 
This new representation of the RMSE can be used to implement an efficient numer­
ical procedure for calculating RMSE without resorting to Monte Carlo simulation." 

Summary measures of the tracking error with general loss functions can also 
be computed numerically along the same lines, using the Kolmogorov backward 
equation. The probability density function of the normalized tracking error y/Ne\ ' 
can be determined numerically as a solution of the Kolmogorov forward equation 
(see, for example, Karatzas and Shreve [1991, pp. 368-369]). 

5.4. Alternative measures of the tracking error 

As we observed in Sec. 2.2, the root-mean-squared error is only one of many 
possible summary measures of the tracking error. An obvious alternative is the 
Lp-norm: 

En AN) 
e l 

(5.5) 

where p is chosen so that the expectation is finite (otherwise the measure will not 
be particularly informative). More generally, the tracking error can be summarized 
by 

E0 [u(e{N))} (5.6) 

where {/(•) is an arbitrary loss function. 

"Results of some preliminary numerical experiments provide encouraging evidence of the practical 
value of this new representation. 
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Consider the set of measures (5.5) first and assume for simplicity that p £ [1,2]. 
From (2.17), it follows that 

E Q _W • J V - ^ E n JiJ!**" 
>.d2H(t,Pt) ^ , . K„pt)pr^:':iJdw: dp? 

(5.7) 

Hence the moments of the stochastic integral in (2.17) describe the asymptotic be­
havior of the moments of the tracking error. Conditional on the realization of {Pt}, 
t G [0,1], the stochastic integral on the right side of (5.7) is normally distributed 
with zero mean and variance 

/ ' ( 
°\t,Pt)P; a&H{t,Pt) 

dP? 
dt 

which follows from Hull and White (1987). The intuition is that, conditional on 
the realization of the integrand, the stochastic integral behaves as an integral of a 
deterministic function with respect to the Wiener process which is a normal random 
variable. Now let mp denote an Lp-norm of the standard normal random variable.0 

Then (5.7) can be rewritten as: 

En XN) Pi mp En ni (5.8) 

where TZ is given by (2.15). 
As in the case of a quadratic loss function, TZ plays a fundamental role here in 

describing the behavior of the tracking error. When p = 2, TZ enters (5.8) linearly 
and closed-form expressions can be derived for special cases. However, even when 
p 7̂  2, the qualitative impact of TZ on the tracking error is the same as for p = 2 
and our discussion of the qualitative behavior of the tracking error applies to this 
case as well. 

For general loss functions U(-) that satisfy certain growth conditions and are 
sufficiently smooth near the origin, the delta-method can be applied and we obtain: 

E, o [U (< f}) ±\U"(0)\gi = ±\U"(0)\Eo[TZ}. (5.9) 

When {/(•) is not differentiable at 0, the delta method cannot be used. However, 
we can use the same strategy as in our analysis of Lp-norms to tackle this case. 
Suppose that U(-) is dominated by a quadratic function. Then 

En U (e<»») En U 
V\/2JVio 

Pt)Pi 
,d2H(t,Pt) 

dP? 
dWi (5.10) 

Now let 
mu{x) = E [U{xrj)] , r, ~ 7v"(0,1). 

°If X is a standard normal random variable, then mp = E [ |X | p ] 1 / , p . 
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Then 
E 0 [U (e[N))] « E 0 [mu (y/n/N)] • (5.11) 

When the loss function U(-) is convex, mu(-) is an increasing function (by second-
order stochastic dominance). Therefore, the qualitative behavior of the measure 
(5.6) is also determined by 1Z and is the same as that of the RMSE. 

6. Conclusions 

We have argued that continuous-time models are meant to be approximations to 
physical phenomena, and as such, their approximation errors should be better un­
derstood. In the specific context of continuous-time models of derivative securities, 
we have quantified the approximation error through our definition of temporal gran­
ularity. The combination of a specific derivative security and a stochastic process 
for the underlying asset's price dynamics can be associated with a measure of how 
"grainy" the passage of time is. This measure is related to the ability to replicate 
the derivative security through a delta-hedging strategy implemented in discrete 
time. Time is said to be very granular if the replication strategy does not work well 
— in such cases, time is not continuous. If, however, the replication strategy is very 
effective, time is said to be very smooth or continuous. 

Under the assumption of general Markov diffusion price dynamics, we show that 
the tracking errors for derivatives with sufficiently smooth or continuous piecewise 
linear payoff functions behave asymptotically (in distribution) as G/y/N. We char­
acterize the distribution of the random variable G as a stochastic integral, and also 
obtain the joint distribution of G with prices of other assets and with other tracking 
errors. We demonstrate that the root-mean-squared error behaves asymptotically 
as g/VN, where the constant g is what we call the coefficient of temporal granu­
larity. For two special cases — call or put options on geometric Brownian motion 
and on an Ornstein-Uhlenbeck process — we are able to evaluate the coefficient of 
granularity explicitly. 

We also consider a number of extensions of our analysis, including an extension to 
alternative loss functions, a demonstration of the weak convergence of the tracking 
error process, a derivation of the joint distribution of tracking errors and prices, and 
an alternative characterization of the tracking error in terms of PDE's that can be 
used for efficient numerical implementation. 

Because these results depend so heavily on continuous-record asymptotics, we 
perform Monte Carlo simulations to check the quality of our asymptotics. For the 
case of European puts and calls with geometric Brownian motion price dynamics, 
our asymptotic approximations are excellent, providing extremely accurate infer­
ences over the range of empirically relevant parameter values, even with a small 
number of trading periods. 

Of course, our definition of granularity is not invariant to the derivative security, 
the underlying asset's price dynamics, and other variables. But we regard this as a 
positive feature of our approach, not a drawback. After all, any plausible definition 
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of granularity must be a relative one, balancing the coarseness of changes in the time 
domain against the coarseness of changes in the "space" or price domain. Although 
the title of this paper suggests that time is the main focus of our analysis, it is really 
the relation between time and price that determines whether or not continuous-time 
models are good approximations to physical phenomena. It is our hope that the 
definition of granularity proposed in this paper is one useful way of tackling this 
very complex issue. 

Appendix A 

The essence of these proofs involves the relation between the delta-hedging strat­
egy and mean-square approximations of solutions of systems of stochastic differential 
equations described in Milstein (1974, 1987, 1995). Readers interested in additional 
details and intuition should consult these references directly. We present the proof 
of Theorem 1 only, and refer readers to Bertsimas, Kogan, and Lo (1998) for the 
others. 

A . l . Proof of Theorem 1(a) 

First we observe that the regularity conditions (2.10) imply the existence of a 
positive constant K\ such that 

-H{r,x) 
drPdz-r 

< Kx (A.l) 

for (T, X) £ [0,1] x [0, oo), 0 < / 3 < l , l < 7 < 4 , and all partial derivatives are 
continuous.p Next, by Ito's formula, 

*<!.«> - *(o, A) + jf ( « + \.^P,)P?^P-) * 
rldH(t,Pt) I 

Jo 
dPt 

• dPt. (A.2) 

According to (2.2), the first integral on the right-hand side of (A.2) is equal to zero. 
Thus, 

if(l,P0 = H(0,Po) + J^W^dPt (A.3) 

pSince the price of the derivative H(T,X) is defined as a solution of (2.2), it is equal to the 
expectation of F(P\) with respect to the equivalent martingale measure (see Duffle [1996]), i.e., 

ff(r,x) = E ( t = T ,p t . = x ) [F(P 1 *)] 

where 

^-=a(t,Pt)dW:. 

and Wt* is a Brownian motion under the equivalent martingale measure. Equation (A.l) now 
follows from Friedman (1975; Theorems 5.4 and 5.5, p. 122). The same line of reasoning is 
followed in He (1989, p. 68). Of course, one could derive (A.l) using purely analytic methods, e.g., 
Friedman (1964; Theorem 10, p . 72, Theorem 11, p . 24; and Theorem 12, p. 25). 
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which implies that H(t, Pt) can be characterized as a solution of the system of 
stochastic differential equations 

dXt = * * £ * > „ ( , , Pt)Pt dt + ? ^ < , { t , Pt)Pt dWt 
dPt dPt (A.4) 

. dPt = n(t, Pt)Pt dt + a{t, Pt)Pt dWt 

W 5 = At the same time, Vf ' is given by 

J V - l 

Vr = H(0,fl,) + t , dm
df

t=U (Pu+, - K), (A.5) 
i=0 

which can be interpreted as a solution of the following approximation scheme of 
(A.4) (as defined in Milstein [1987]): 

dH(t,Pt)t=u 
(A.6) 

Xti+1 - Xti 

Pti+1 - Pu 

dPt 

Pti+1 - Pu , 

<Pti+1~Pu) 

where X and P denote approximations to X and P, respectively. We now compare 
(A.6) to the Euler approximation scheme in Milstein (1995) 

Xti+1 - Xti = 
dH(t,Pt)t=ti 

dPt 
li(ti,Ptt)Pu(U+i-U) 

+ dH{t£)t=U°(ti,Pu)Pu(Wti+1-Wu) (A.7) 

Pti+1-Pu =Kti,Pu)(ti+i-ti) 

+ a(ti,Pti)(Wti+1-Wti) 

Regularity conditions (2.10) and (A.l) allow us to conclude (see Milstein [1995, 
Theorem 2.1]) that a one-step version of the approximation scheme (A.7) has order-
of-accuracy 2 in expected deviation and order-of-accuracy 1 in mean-square devia­
tion (see Milstein (1987), Milstein (1995) for definitions and discussion). It is easy 
to check that the approximation scheme (A.6) exhibits this same property. Milstein 
(1995, Theorem 1.1) relates the one-step order-of-accuracy of the approximation 
scheme to its order-of-accuracy on the whole interval (see also Milstein [1987]). We 
use this theorem to conclude that (A.6) has mean-square order-of-accuracy 1/2, i.e., 

EQ (X(l,P1)-X(l,P1)f 

We now recall that X(t,Pt) = H(t,Pt) and X(l,P{) = V{ ' and conclude that - .T /W 

(A.8) 

En (H(i,Pl)-vry 
which completes the proof. 

(A.9) 

• 
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A.2. Proof of Theorem 1(b) 

We follow the same line of reasoning as in the proof of Theorem 1(a), but we 
use the Milstein approximation scheme for (A.4) instead of the Euler scheme: 

*u+i - Xtt =
 9H{tf^t=u »{U,Pti)Pti(ti+1 - u) 

+ dH{t
d^

t=U^Pu)Pu(Wu+1-Wti) 

i [92H(t,Pt)t=ur(. . dH(t,Pt)t=tid(a(t,Pt)Pt)t=ti\ 
+ \ dP} °VMpu + Qpt gpt ) 

x \°{tuPu)Pu ( W + 1 - Wtif - (ti+1 - t o ) (A.10) 

Pti+1 -Pu =Kti,Pti)Pti(ti+i -U) + a{U,Pti)Pti{Wti+1-Wti) 

+ \«U, Pu)Pu W W * * * ( ( W i l + 1 - Wuf - ( t i + 1 - u)) • 

According to Milstein (1974) (see also Milstein [1995, Theorem 2.1]), this one-
step scheme has order-of-accuracy 2 in expected deviation and 1.5 in mean-square 
deviation. It is easy to check by comparison that the scheme 

r dH(t,pt)t=t i d*H(t,pt)t=ti 

Mi+1 ~ ̂ u -Qp U V i -Pu) + ̂ oytuPu) Pti -Qpi, 

x ( w i + 1 - W i , ) 2 - ( * i + i - * o ) ( A ' U ) 

, Pti+1 - Pti = Pti+1 - Pti 

has the same property. We now use Milstein (1995, Theorem 1.1) to conclude that 

HM) - vr = E \^Pu)2pfm^t=u 

i=0 

x ((Wi4+1 - Wtif - (ti+1 - t o ) + O ( 1 ) (A.12) 

where / = 0( -^) means that limjv->oo N^/Et=o[f2] < °°. By Slutsky's theorem, 
we can ignore the 0(-^) term in considering the convergence in distribution of 

y/N(H(l,Pi) — Vi ), since y/NO(jj) converges to zero in mean-squared and, 
therefore, also in probability. Observe now that, since Wti+1 — Wti and Wtj+1 — 
Wtj are independent for i ^ j , (Wti+1 — Wti)

2 and Wti+1 — Wti are uncorrelated, 
Eo[(Wtl+1 - Wuf - (ti+1 - U)] = 0 and E0[((WU+1 - Wuf - (ti+1 - tO)2] = 
2/(ti+i — ti)2, by the functional central limit theorem (see Ethier and Kurtz [1986]), 
a piecewise constant martingale 
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[Nt]-l 

VN/2 £ (Wfc+i - ^ ) 2 - (**+i - *0 (A'13) 
i=0 ^ ' 

converges weakly on [0,1] to a s tandard Brownian motion W/, which is independent 

of Wt.
q We complete the proof by applying Duffie and Pro t te r (1992, Lemma 5.1 

and Corollary 5.1). • 

A . 3 . Proof of Theorem 1(c) 

Equat ion (2.13) follows immediately from Theorem 1(a) and the proof of 

Theorem l (b ) . r Combined with Theorem 1(b), (2.13) implies tha t 

9 = N 2
E° [j\*{t,Pt)P? ap? dWt 

t 
(A.14) 

Equat ion (2.14) follows from (A.14) using the isometric property of stochastic 

integrals. • 
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This paper argues that asset price processes arising from market clearing conditions 
should be modeled as pure jump processes, with no continuous martingale component. 
However, we show that continuity and normality can always be obtained after a time 
change. We study various examples of time changes and show that in all cases they are 
related to measures of economic activity. For the most general class of processes, the 
time change is a size-weighted sum of order arrivals. The paper provides a number of 
new processes for modeling prices. Characteristic functions for these processes are also 
given in closed form. 
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1. Introduction 

Continuity of price processes has served economic theory as a convenient and 
powerful assumption, delivering market completeness and unique pricing of contin­
gent claims by arbitrage. Such assumptions are critical to the validity of the Black 
and Scholes (1973) and Merton (1973) option pricing theories and their associated 
dynamic hedging strategies, and they are also fundamental to the Cox and Huang 
(1989) approach to solving the Merton (1971) intertemporal consumption and in­
vestment allocation problem. The assumption of continuity justifies the Cox, Ross 
and Rubinstein (1979) binomial approximation of the process, using up and down 
price shocks tending to zero with the size of the time grid. We grant that such 
price processes can accurately represent market prices in economies that instanta­
neously and continuously equilibrate to information flows driven by diffusions or Ito 

"This paper was completed during the time Dilip Madan was visiting the Centre de Recherches 
pour l'Enseignement de la Gestion, at the University of Paris IX Dauphine. 
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processes. Examples of such equilibrium models in the literature include Duffie and 
Huang (1985), Dumas (1989), He and Leland (1993), and Detemple and Murthy 
(1994). 

We question the validity of diffusions as an appropriate model for the underly­
ing uncertainties. Instead, we represent the price process as instantaneously and 
continuously adjusting to exogenous demand and supply shocks. We view the un­
derlying uncertainties (represented by cumulated shocks) as consisting of increasing 
random processes. As such, our price processes turn out to be the difference of two 
increasing random processes, representing respectively the up and down moves of 
the market. In contrast with Brownian motion, such processes are of finite varia­
tion. Furthermore, we demonstrate that in the presence of local uncertainty such 
processes are generally purely discontinuous.* 

The implications of our theory for economic analysis and risk management are 
profound. At variance with the Black-Scholes-Merton setting, options can no longer 
be replicated by trading in the stock and money market account. In fact, the pri­
mary motivation for the use of continuous processes as representing price movements 
was not its accuracy, but rather the dynamic hedging argument, valid in this con­
text, that made options redundant assets and led to the Hakansson (1979) paradox. 
In our economy, not only do we obtain potentially greater accuracy in describing 
stock price changes, but options become primary market completing assets useful 
in hedging jump risks while option prices constitute a rich source of information to 
be employed in designing optimal risk exposures. 

The possibility of discontinuities or jumps in asset prices has a long history in the 
economics literature. Merton (1976) considered the addition of a jump component to 
the classical geometric Brownian motion model for the pricing of options on stocks. 
In explaining the distribution of returns such models were used as early as Press 
(1965). A number of authors have since considered the issue of market completeness 
in this context (see for instance Jones (1984), Jarrow and Madan (1995)), while 
others have assessed and argued for their necessity in explaining implied volatility 
smiles in low maturity options (see for instance Bates (1996), Bakshi, Cao and Chen 
(1997)). However, these models all contain a diffusion component in addition to a 
low or finite activity jump part: the diffusion component accounts for high activity 
in price fluctuations while the jump component is used to account for rare and 
extreme movements. 

By contrast, we account for the small, high activity and rare large moves of 
the price process in both a unified and connected manner. For the processes we 
consider, price jumps are the rule and all motion occurs via jumps. High activity is 
accounted for by a large (in fact infinite) number of small jumps. The activity at 
various jump sizes is analytically connected by the requirement that smaller jumps 
occur at a higher rate than larger jumps. 

The property of an infinite number of small moves is shared with the diffusion-
based models, with the additionally attractive feature that the sum of absolute 

a A n exception is provided by the local times of Brownian motion. 



Asset Prices are Brownian Motion 105 

changes in price is finite for our processes while for diffusions this is infinite (for 
diffusions, the price changes must be squared before they sum to a finite value). This 
makes it possible for us to create and price contracts based on the instantaneous 
upward, downward or total variability (positive, negative, or absolute price jump 
size) of underlying asset prices, in addition to the more traditional contracts with 
payoffs that are functionally related to the level of the underlying price. Processes 
similar to ours have recently been used in option pricing models by Heston (1993), 
Madan and Milne (1991), and include the a-stable increments for a < 1 that were 
studied by Mandelbrot (1963) and McCulloch (1978). 

Though the processes we advocate are pure jump processes and of finite total 
variation, we generalize the results of Clark (1973) and show that they may always 
be viewed as continuous processes in an economic measure of time. Clark (1973) 
considered subordinated processes where prices were represented by a geometric 
Brownian motion and time was given by another independent geometric Brownian 
motion. The processes we propose can also be written as Brownian motion evaluated 
at a random time change (or a stochastic clock), but in general the process of the 
clock need not be independent of the price process. We study the relationship 
between the stochastic clock and the demand and supply shocks driving the price 
process. As in Ane and Geman (1997) who show empirically that a quasi-perfect 
normality of returns on a high frequency data base of FTSE100 futures prices can be 
recovered using a stochastic clock driven by the number of trades, the time change 
we consider in our different examples is related to a measure of economic activity. 
We observe that price continuity does arise, but in an activity-based measure of 
time, as opposed to calendar time directly; hence the title of the paper. 

The literature relating price changes to measures of activity (see for examples, 
Tauchen and Pitts (1983), Karpoff (1987), Gallant, Rossi and Tauchen (1992), and 
Jones, Kaul and Lipson (1994)) has considered as relevant measures of activity either 
the number of trades or the volume. Our analytical results on the nature of the 
time change show that both the number and size of orders enter the time calculation 
in specific ways. The precise time changes relevant for various example economies 
suggests a measure of time based on a size weighted total orders. Furthermore, the 
time change generally belongs to the same class of processes as the process for the 
underlying activity. 

The analysis of our paper provides a useful reduced form synthesis of continu­
ous price equilibrium processes. First we note that equilibrium processes are free 
of arbitrage opportunities. A rich literature has studied the consequences of the 
no arbitrage assumption (Harrison and Kreps(1979), Kreps (1981), Harrison and 
Pliska (1981)) and has concluded that such processes are semimartingales (Delbaen 
and Schachermayer (1994)). Monroe (1978) characterized all semimartingales and 
showed that every semimartingale may be represented as a time-changed Brownian 
motion. A consequence of these results taken jointly is that equilibrium price pro­
cesses may be identified by focusing attention on the Brownian motion and its time 
change. We note that time changes are increasing processes and argue that when 
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they are locally uncertain, they must be pure jump processes. We relate the time 
change to the information provided by demand and supply shocks in the market.b 

We first consider examples where the time change is independent of the Brow­
nian motion (which was the assumption made in Clark (1973)). The identification 
of the time change in this context is easier. However, we also study more generally, 
examples where this independence assumption is relaxed (we note that the theo­
rem of Monroe (1978) does not involve this property). In the case where there is 
dependence in our example economies, we show that the time change is cumulated 
volatility, where the latter depends on the Brownian motion. For a large class of 
processes both representations are valid: they can be written as a Brownian motion 
evaluated at an independent time, and also as another Brownian motion evaluated 
at another, now dependent time. We consider both representations as they provide 
a richer source of interesting and tractable models. 

The two formulations are similar, in that in both price changes are related to 
excess demand. In the examples involving independence, excess demand coincides 
with orders as we assume no coincidence of demand and supply, and the price change 
is linearly related to the excess demand. In the second situation excess demand is 
modeled by a Brownian motion and the price response may be non-linear in the 
excess demand. The model primitives for the first formulation are the arrival rates 
of buy and sell orders, while for the second formulation it is the function relating 
price responses to excess demand. 

In many cases we derive closed-form expressions for the characteristic function of 
the log price relative. It is well-known how one may then extract the density or the 
distribution function via Fourier inversion from this characteristic function. Bakshi 
and Madan (1997) show how one may use this characteristic function to obtain 
option prices.0 Hence, our analysis provides a wide class of operational models for 
continuous-time price processes in economics. With the advent of price discovery 
in many previously regulated markets, and the opening of derivative markets for 
a much greater range of underlying processes, it is imperative that we expand the 
class of processes for which estimation and derivative pricing are feasible. This 
paper makes substantial contributions in this direction. 

The outline of the paper is as follows: Sec. 2 presents a general economic model 
for the process of price discovery in market economies. It is observed that this 
process is purely discontinuous and of finite variation. Section 3 shows how in 
general one may recover continuity of prices in a time given by a stochastic clock. 

"The resulting jump process need not be one of bounded variation and it may not be capable of 
being decomposed into the difference of two increasing processes if the infinite activity of small 
changes is too large; however, we view the hypothesis of infinite variation as unrealistic and consider 
mainly processes of bounded variation as good pricing models. In any case, the infinite variation 
jump processes can always be approximated by the difference of two increasing processes, even if 
they are not identical to it. 
c T h e difficulty addressed in Bakshi and Madan (1997), is that of deriving the characteristic function 
of a probability element constructed to correspond to the term N(di) in the Black-Scholes formula. 
For many cases this probability element is not in the same parametric class as the equivalent of 
N(d2). 
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Section 4 considers specific examples, where we relate the stochastic time to the 
uncertainties driving the price process and observe that this time is as an activity 
based measure. In Sec. 5 we consider some time changes that have been proposed 
in the literature, and are not related to the process of price discovery described in 
Sec. 2, but can be approximated by such processes. Section 6 concludes. 

2. The Price Discovery Process 

Consider an economy over the time interval [0, T] in which a single commod­
ity is traded continuously in time and has a price process, denoted p(t), 0 < t < 
T. The uncertainties driving the price process are identified as exogenous events 
representing demand or supply shocks respectively. Let U(t) be the process of 
cumulated demand shocks, given by an increasing pure jump process. At any 
time t, 

ut = AU(t) = U(t) - U(t.) > 0 , 

represents the number of units of the asset that are demanded by agents in the 
economy consequent upon the occurrence of a liquidity or information based event. 
The quantity ut is the amount demanded at the prevailing price of p(i-) and in the 
absence of any price response to the processing of the demand order. We think 
of Ut as the amount some economic agent would like to buy at the price p(t-). 
The considerations determining ut are either liquidity considerations, wealth or 
cash balance accumulations of individuals or information considerations reflecting 
beliefs of individuals that the asset is underpriced at p(tJ). U(t) is the cumulated 
level of such demand shocks that are motivated by liquidity or information shocks. 
Similarly, let V(t) be the cumulated level of such supply shocks or amounts that 
agents would like to sell at the price p(tJ). The supply shock is 

vt = AV(t) = V(t) - V(t.). 

Assumption 1. Non-coincidence of demand and supply shocks in continuous 
time. 

We suppose that cumulated demand shocks, U(t), and cumulated supply shocks, 
V(t), are increasing pure jump processes with no coincidence of jumps in continuous 
time. 

The primary sources for these shocks are the arrival of information in the econ­
omy that is transformed into market buy and sell orders and we view these primary 
sources of uncertainty as exogenous. We recognize that differences in beliefs among 
market participants can lead to simultaneous buy and sell orders triggered by a sin­
gle information event, but suppose that there are sufficient differences in the access 
to the information, and the subsequent execution decisions, for the actual orders 
to materialize at different instants of continuous time. Under this assumption the 
markets are dealing, at all instants, with either one or the other type of order. 
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2.1. Modeling the price increases 

All market participants realize that orders won't be executed at the price p(tJ) 
and expect a price response to the execution of orders.d We suppose that the actual 
quantity demanded in response to a demand shock ut, qdu at time t, is given by a 
demand function 

qdu=qdu(p(t)/p(t_),ut,t) (1) 

that reflects a falling off of demand in the face of a price response. The quantity ut 

is, as stated earlier, the amount an economic agent would like to buy at the price 
p(t-), and (1) gives the agent's demand response to price increases. We suppose 
that 

g du 

Furthermore, we have that ut is the demand at no price response or that: 

qdu(l,ut,t) = ut. 

In addition to the demand function, there is a supply function with suppliers 
being aware of the liquidity or information event and the extent of this exogenous 
demand shock. The supply is given by 

qr=qsu(p(t)/p(t.),UUt) (2) 

where we suppose that 
dqsu 

and furthermore we assume no supply at a zero price response or that: 

q3U(l,ut,t)=0. 

Under these conditions all supply occurs at a price response.6 Equation (2) may also 
be viewed as reflecting the price response in a limit order sell book on the market, 
though more generally it is the supply function of the economy that is relevant. 

The market price p(t) and quantity transacted g" are simultaneously determined 
in equilibrium by the market clearing condition 

q? = qfu = q?u- (3) 

d W e recognize that small orders are not likely to experience an adverse price impact and accomo­
date this by elasticity assumptions on demand and supply for low quantities. We also recognize 
that incentives for order splitting in the presence of low price responses to small orders can lead to 
strategies of submitting an infinite number of infinitesimal orders to complete finite transactions, 
but rely on the exogeneous costs associated with such splitting, to rule out these possibilities. 
e T h e supply curve q3U represents supply at prices higher than p(t-). Supply at p(t.) comes forth 
as a market sell order, at instants that differ from those at which buy orders are coming to market. 
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We suppose that the market clearing condition (3) may be solved to determine 
simultaneously the price response 

l n ( io) = $ > t ' i ) > 0 (4) 

and the quantity transacted 

# = * > t , i ) > 0 . (5) 

We may accommodate very small price responses to small shocks by supposing that 
the supply elasticity is high for small quantities. 

It is useful to contrast this formulation with the more standard general equilib­
rium formulation where at each instant, all markets are simultaneously cleared to 
determine all asset prices. In our partial equilibrium model, the market clearing 
takes place in one market at a time. Our demand and supply curves are contingent 
on the arrival of a demand order for this asset at time t, in the quantity ut if the 
price stays at p(t.). 

2.2. Modeling the price decreases 

For price decreases we follow a symmetric approach to that taken in modeling 
price increases. In the presence of a supply shock vt at time t , to sell vt if the price 
stays at p(t-), the supply function 

qstv = qsv(p(t)/p(t-),vt,t) (6) 

reflects the curtailment of supply in the presence of a downward price response and 
we suppose that 

dqsv
 n 

5w>0 

while the supply is vt at no price response, or that: 

qsv(l,vt,t) = vt. 

The demand function in the face of an exogenous supply shock is given by 

qtv = qdv(p(t)/p(t.),vt,t) (7) 

and reflects the limit order buy book and more generally the economy wide demand 
response. We suppose that 

dqdv 

W)<0 

and furthermore that there is no demand at a zero price response, 

qdv(l,vt,t) = 0. 
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Once again, the partial equilibrium condition in the presence of a supply shock 
determines the quantity supplied q\ and the condition is 

tf = «T = 4V • (s) 

We suppose that the market clearing conditions may be solved for the price res­
ponses and the quantity transacted to yield 

ln{^j)=-^M<° (9) 

and 

qv
t=W(vut). (10) 

Note that $v(vt,t) is the absolute value of the log price response and will later 
be used to cumulate the total price decreases. We may accommodate small price 
responses for small shocks by supposing that the economy wide demand elasticity 
is high for small quantities. 

2.3. The price process 

In this section, we put together the results for the price increases and decreases 
and derive the complete price process. Under Assumption 1, the demand and supply 
shocks never arise at the same instance of time and hence the price process is given 

by 

ln(p(i)) = ln(p(0)) + J2 ®U(&U(s), a) - £ *v(AV{s), s) (11) 
s<t s<t 

while the process for the total quantity transacted to time t, is given by Q(t), where 

Q(t) = £ *u(AU(s), s) + J2 *v(W{s), s). (12) 
s<t s<t 

We observe from Eq. (12) that the process for the volume of transactions to time t 
is the sum of two increasing pure jump processes 

Y1(t) = J2^U(^U(s),s) (13) 
s<t 

and 

y2(t) = 5 > ° ( A V ( « ) , * ) - (14) 

It follows that Q(t) is a pure jump process of finite variation and the volume 
transacted between two time points ii < t^, V(t\,t2) may be recovered as 

v(h,t2) = Q(t2)-Q(ti). 
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Similarly, we observe from Eq. (11) that the price process is the difference of 
two increasing pure jump processes 

A-!(t)=5>"(Atf (*),*) (15) 
s<t 

and 
X2(t) = ^2^(AV(s),s). (16) 

s<t 

It follows that ln(p(t)) is a pure jump process of finite variation.1 

This formulation of the price process is in sharp contrast to traditional assump­
tions about such processes in the finance literature. Typically it is assumed that 
asset prices follow a diffusion process, and as a result, are continuous processes of 
infinite variation. Duffle and Huang (1985) provide a general existence theorem 
for economies in which equilibrium price processes are diffusions. He and Leland 
(1993) consider conditions on price processes in the diffusion context, that ensure 
their consistency with an economic equilibrium. 

The motivation for our departure from these more traditional formulations lies in 
the modeling of the underlying uncertainties. We view the underlying uncertainties 
as consisting of increasing random processes. These could be processes for total 
prevailing price buy orders, and total prevailing price sell orders, viewed separately. 
Net orders, being the difference, are then by construction a process of bounded 
variation and cannot be accurately modeled by a continuous diffusion, which is 
of infinite variation. Many authors assume that the underlying uncertainty is a 
continuous diffusion and this then implies the same for the price process via the 
market equilibrium conditions. 

2.4. Parameterizing the price process 

We now introduce specific functional forms for the demand and supply functions 
that permit a closed form parametrization of the price process. 

Assumpt ion 2. Parametric responses to demand shocks 
Suppose that the demand function qfu is given by 

* — ' - * t a ( $ | ) (17» 

while the supply function in the face of a demand shock is 

reflecting a lower supply if the demand shock is large for positive 7 t . 

'A process x(t) is said to be of finite variation over the interval [0, T\ if for any path, there exists 
a constant A, such that for all partitions 0 = to < h < • • • < tn = T we have ^2"Zn \%(U+i) — 
x(ti)\ < A. A process of finite variation can be written as the difference of two increasing processes. 
The converse is also true. 
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Note that the response functions (17) and (18) meet the requirements that at 
p(t) = p(t-), demand is ut while supply is 0, as is required by the interpretation 
of ttt. 

Assumption 3. Parametric responses to supply shocks 
We suppose that in the presence of a supply shock we have 

*=*+**(m) (19) 

while 

^-^'"•(m) (20) 

and the demand is curtailed for large supply shocks for positive At. 

Solving for the equilibrium using Eqs. (17) and (18) we obtain that 

^ K * ) = * -lt (21) 
6t + atut

 n 

while 

* > * , * ) = *fr-lt- (22) 
6t + atut " 

Similarly, the equilibrium solutions using Eqs. (19) and (20) are 

*"{vt,t)= Vt _Xt (23) 
Vt + btvt

 At 

and 

Vt + hvtM 

Under these parametric assumptions one may write the price process as 

* > t , * ) = tu* _ A . (24) 

lnp(t) = lnp(0) + V ^ ^ V *V[s) (25) 

s<t ° ° x v " s<t 

and the process for cumulated transactions is 

V W j ^ as + 6s(AU(s)p* j£bs+ Vs(AV(s))^ " ^ 

Assumption 4. Stationary limit order books 
The special case of stationary limit order books occurs when the supply responses 

to market order demand shocks and the demand responses to market sell shocks 
are not responsive to the size of these shocks. In this case 7S,AS are zero and 
the coefficients of the demand and supply functions are constant through time, 
St = 6,at = a, r]t = 77, and bt = b. 
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Under Assumptions 1 through 4, we may write the price process as 

lnp(i) = j^-U(t) - -^-rV(t) + lnp(O) (27) 
o + a 7] + b 

while 

W = shm + iTbV®- (28) 

Under these assumptions, the price process is the difference of two increasing 
pure jump processes while the transacted quantity is related to the sum of these 
processes. Furthermore, we have linearity of the price response in the order flow. 
Later we do consider models that allow for non-linearities in the price response to 
excess demand. 

3. Stochastic Time Changes and Prices 

It was argued in Sec. 2 that in general the process for the price of an asset is the 
difference of two increasing pure jump processes and is a process of finite variation. 
In this section, we observe interestingly, that continuity of the price process can 
always be recovered by the use of a stochastic time change. In effect, there is 
always a sense of economic time, related to market activity, such that prices are 
continuous when time is measured in units of business activity. In the next section, 
we begin our study of the relationship between this time change and the original 
price process. 

The price process of Sec. 2, by virtue of being of bounded variation, is a semi-
martingale. It is also known that every price process that is consistent with the ab­
sence of arbitrage opportunities, must be a semimartingale (Delbaen and Schacher-
mayer (1994)). Hence all equilibrium price processes meet this condition, whether 
they are diffusions or not. The next question is, "What semimartingales are most 
appropriate as models for price processes?" For this we turn to Monroe (1978). 

A remarkable result of Monroe (1978)g shows that every semimartingale can be 
written as a Brownian motion (possibly defined on some adequately extended prob­
ability space) evaluated at a random time.h By this result there exists a Brownian 

g We wish to thank Joe Horowitz for bringing this result to our attention. 
It is instructive to note that one may even write calendar time as time changed Brownian motion, 

whereby 
t = W(T(t)) 

where T(t) is defined by 
T(t) = inf{s|W(s) > i) . 

One clearly observes the dependence between the time change and Brownian motion in this case. 
We also observe that for any increasing process A(t) 

A(t) = W(T(A(t))) = W(T(t)), 

where T* (t) is another time change. 
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motion W(t) and a random time change T(t), where T(t) is an increasing stochastic 
process,1 such that 

\n{p{t))=\n(p(0)) + W(T(t)). (29) 

Equation (29) implies that the study of price processes for market economies may 
be reduced to the study of time changes for Brownian motion. This is a powerful 
reduced form representation of a complex phenomenon involving multi-dimensional 
considerations — those of modeling demand, supply and their interaction through 
market clearing — to a single entity: the correct unit of time for the economy, with 
respect to which we have a Brownian motion. 

We note that the price process will be continuous in calendar time only if the 
time change is continuous. This observation has some restrictive implications. If the 
time change is continuous it must essentially be a stochastic integral with respect 
to Brownian motion (Revuz and Yor (1994), page 190 Theorem 3.9) J For a time 
change, it follows that the diffusion component must be zero: otherwise it will not 
be an increasing process and so cannot be a time change. We therefore have the 
implication that continuous time changes are locally deterministic. We summarize 
this discussion in the following proposition. 

Proposition 1. In the absence of arbitrage opportunities, continuous-time 
price processes of market economies are time-changed Brownian motions. Further­
more, if there is local uncertainty in the time change then the price process is not a 
continuous process in any interval of time. 

In addition, Proposition 1 suggests that return distributions should be normal, 
not when measured in calendar time, but when measured per unit of what may 
be termed, economic time. The search for such a formulation began in earnest 
with Clark (1973), and has been pursued more recently by Ane and Geman (1997) 
and Madan and Chang (1998). In fact, it is shown in Ane and Geman (1997) 
that one minute, FTSE100, calendar time returns are highly non-normal, while 
returns measured per unit trade are normally distributed. Madan and Chang (1998) 
show that Brownian motion, when time changed by a gamma process, provides 
a significantly better description of historical asset returns and the risk neutral 
return distribution embedded in option prices. Our investigations here will focus 
on theoretically identifying and interpreting T(t) from a knowledge of the process 
ln(p(t)) as a process of bounded variation.k In particular we wish to explore the 
relationship between time changes and general measures of economic activity. 

'More formally, it is required that there exists a filtration with respect to which the process W(t) 
is adapted, and that T(t) is an increasing sequence of stopping times adapted to this filtration. 
JThe qualification required is that its quadratic characteristic is absolutely continuous with respect 
to Lebesgue measure or equivalently that it has a well-defined sense of a variance rate. As noted 
earlier, the local time of Brownian motion is an example of a continuous increasing random process 
which has intervals of time when the clock does not move at all, and is hence not appropriate for 
our consideration. We restrict attention to processes with a well-defined sense of a realized variance 
rate. 
kWe recognize that semimartingales may be of infinite variation and so the price process may not 
be of bounded variation, but note that even in this case, an approximation by bounded variation 
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We first consider representations of the type given by Eq. (29) in which the 
Brownian motion is independent of the time change. Furthermore, to allow for 
additional generality we consider stochastic time changes applied to continuous Ito 
processes. From this perspective, let x(t) be an Ito process of the general form 

x(t) = x(0) + / 6{u)du + [ a{u)dW(u). (30) 
Jo Jo 

We consider the representation of the price process as x(t) evaluated at a random 
time T(t) or 

ln(p(t))=ln(p(0)) + x(T(t)) (31) 

where T(t) is independent of (x(u),u > 0). 
Some general properties of the time change T(t) are inherited from the price 

process. Firstly, as already noted, since the price process is pure jump, and x{t) 
is continuous, it follows that T(t) is a pure jump process. Second, we say that the 
price process represents a high level of activity if there is no interval of time in 
which prices are constant throughout the time interval. Processes of high activity 
levels have an infinite arrival rate of demand and supply shocks, though of necessity 
the arrival rate is finite for all shocks with a magnitude strictly bounded away from 
zero. If the price process is such a high activity process, then this property is also 
inherited by the time change. In the next section, we explore examples where the 
time change, as a process, reflects quite exactly the two processes for the demand 
and supply shocks. 

4. Time Changes Related to Demand and Supply Shocks 

This section studies the relationship of stochastic time changes to the process of 
demand and supply shocks, in some simple and tractable contexts. We begin with 
processes that have a finite arrival rate and then consider high activity processes 
with infinite arrival rates. We study these relationships between time changes and 
demand and supply shocks in the context of various examples for the price process. 

We first consider two pure jump cases with finite jump arrival rates and jump 
sizes distributed as (i) a reflected normal distribution, as is the case with the Merton 
(1976) jump diffusion model, and (ii) for exponentially distributed jump sizes arriv­
ing at Poisson times, as this class of processes is a base model for the construction of 
a wide class of increasing random processes and time changes. In the latter case, we 
have jump arrival rates exponentially related to the jump size. For these cases we 
show that in (i) the number of arrivals, independent of the size, constitutes the time 
change, but in (ii) arrivals of different sizes have differing impacts on the stochastic 
clock. We show that the relevant time measure is a size weighted cumulation of 
order arrivals. 

processes is admissible. Note for example that the usual Binomial approximation to Brownian 
motion is a process of bounded variation. 
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Our next example considers the case of the gamma process that turns out to 
be a fundamental building block for a wide class of infinite arrival rate candidate 
processes. We show that for the gamma process a proxy for the time change over 
an interval is related interestingly to the level of excess demand. This is reasonable 
as demand matched by supply does not contribute to price pressure. 

The result for gamma processes is next generalized to a wide class of increasing 
random processes that have a desirable structure on the arrival rate of jump sizes, 
which is that larger jumps have a smaller arrival rate. The relationship between 
the level of economic activity and the time change generalizes the result obtained 
for the compound Poisson process with exponentially distributed jump sizes. 

We next investigate the similarity of the time change and the order arrival 
processes. In particular we observe that when the order arrival processes are in 
a given subclass of processes, the time change also belongs to the same subclass. 
An important example of a subclass is given by processes for which larger jump, 
size weighted arrival rates, are smaller. This is the class of processes that can be 
generated from the gamma process by convolution, termed the class of generalized 
gamma convolutions. Once again, the time change is also a generalized gamma 
convolution. A useful generalization of the variance gamma model in the generalized 
gamma convolution family of processes is also provided. 

The next subsection considers this question of similarity of order arrival and 
time change for the case of the stable processes. It is observed that for a-stable 
arrival rate processes the time change is a stable process with index a /2 . We 
then ask when the time change is a simple adjustment of scale and speed of the 
process for the arrival of shocks. This class consists of the gamma process and 
processes constructed from the gamma process by integrating the tail of the gamma 
arrival rates, as is made precise later. Interestingly, the gamma process itself is 
a consequence of applying this procedure to the compound Poisson process with 
exponentially distributed jump sizes. 

For processes with completely monotone arrival rates as a function of the jump 
size,1 we present an alternative economic representation of the process. We model 
excess demand by a Brownian motion and define a force function that expresses 
the derivative of prices as a function of this excess demand. The equilibrium price 
process is given by restricting attention to the zero excess demand situations or eval­
uating prices at the inverse local time of Brownian motion, where by construction 
Brownian motion is zero and we have equilibrium. We establish the connections be­
tween the force function and the arrival rates of price moves, providing in addition 
various examples relating these two constructs. 

All the processes for the log price relative X(t) = ln(p(t)/p(0)) considered in 
this section are pure jump processes with independent and identically distributed 

'A real valued function of one variable is monotone if its derivative does not change sign. It is 
completely monotone, if all its derivatives have this property. With respect to arrival rates we 
require that their derivatives with respect to the jump size alternate in sign, begining with negative 
for positive jumps and positive for negative jumps. 
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increments over non-overlapping intervals of regular length. We recognize the con­
siderable econometric evidence in support of time inhomogeneity in both the sta­
tistical and risk neutral price processes, but focus attention here primarily on the 
correct characterization of the local motion. For this purpose, time homogeneous 
processes, like Brownian motion itself, are an appropriate starting point for the dis­
cussion. Generalizations incorporating time inhomogeneity can be accommodated 
later as appropriate for the application at hand. The processes we consider are 
completely characterized by their Levy densities A;(a;)— defining the arrival rates 
of price jumps of size x— that are identified by the unique decomposition of their 
characteristic functions provided by the Levy Khintchine theorem that asserts that"1 

E[esxp(iuX(t))] = exp (t f (eiux - l)k(x)dx\ . (32) 

In each case we seek to rewrite the process X(t) as a time-changed Brownian 
motion. If we consider Brownian motion with drift 

B(t) =0t + aW(t) (33) 

and evaluate this at an independent random time T(t), with characteristic function 
given by the Levy measure k(x), where 

E[exp(iuT(t))] = exp it f (eiux - l)k(x)dx\ . (34) 

We seek to discover the relationship between k and k under the condition that X(t) 
may be written as Brownian motion time changed by T(t), or that 

X{t) = B{T{t)). 

From the independence of the Brownian motion and the time change one may 
infer that 

E[exp(iuB(T(t)))] = E[exp(iu9T(t) + aW(T(t)))} 

= E[exp((iu6 - CT V / 2 ) T ( t ) ) ] 

= exp (t / • ° ° ( e (^ - 2 - 2 /2 )x _ i ) ^ ) ^ 

= exp (t f (eiux - l)k(x)dx) . (35) 

The final equality in (35) follows from (32) on noting that B(T(t)) is also X(t). In 
each case of independence of the Brownian motion and the time change, the Levy 

m W e suppose both the absence of a continuous martingale component and a deterministic drift 
rate. A deterministic drift rate may easily be added in applications, we are here concerned with 
just the stochastic component. 
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measure for the time change k is discovered given the arrival rate Levy measure 
by solving for k in the last equality of (35). In the absence of independence the 
construction is more complicated and we consider this in subsection 4.8. 

4.1. Compound Poisson demand and supply shocks 

This subsection considers two finite arrival rate processes with arrivals occurring 
at Poisson times. The first case is one that mirrors the Merton (1976) jump diffusion 
model and considers a reflected normal distribution for the jump sizes. In the second 
case, we consider exponentially distributed jump sizes. We shall note later that the 
first case is not completely monotone, while the second is the building block for this 
family of processes. 

4.1.1. Reflected normal prevailing price order sizes 

Let the prevailing price buy and sell orders be given by independent copies of 
the increasing compound Poisson process 

N(t) 

X(t) = Y,Yi (36) 
i = l 

where N(t) is a Poisson process with arrival rate Xt and the sequence of the magni­
tude of demand and supply shocks Yi are independently and identically distributed 
with a reflected normal density, 

V2exp ' 
2<72 

f(y) = )= '-, f o r y > 0 . (37) 

In this example, the time change to be applied to Brownian motion to recover 
the price process turns out to be the total number of prevailing price orders, buy 
or sell. 

Suppose that ln(p(t)) is given by Eq. (27) with (6 + a ) " 1 = (77 + 6 ) _ 1 = 7. In 
this case, we may write 

l n (p ( t ) / p (0 ) )=7(* i (* ) -*2 ( t ) ) (38) 

where Xi(t),X2(t) are two independent copies of the process satisfying (36). 
Let $y (u) be the characteristic function of Y, so that 

!exp y/2e^r,(—V—] 
, 0 0 v - ~ ^ i 2 a 2 i 

(J)Y(U)= / exp(iuy) ±= —dy. (39) 
Jo oV71" 

Since the order size is positive or negative with equal probability, the characteristic 
function of the order size is given by 

Re($y(u)) = exp I — 
a2u2 
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It follows by direct computation of characteristic functions for compound Poisson 
processes (see for example, Karlin and Taylor (1981)) that 

</>in(p(t)/P(o))(u) = exp \2Xt ( exp (-" ^ j - 1J J . (40) 

Equation (40), however, is also the characteristic function of a^W{N\{t) + N2(t)), 
where W(t) is a standard Brownian motion and Ni(t),N2(t) are two independent 
copies of a Poisson process with arrival rate Xt. 

In this example, the time change just counts the number of all the demand and 
supply shocks, ignoring the magnitude of the shocks, which are accounted for by 
the distribution of the Brownian motion between successive arrivals. The volatility 
is of course scaled by 7 to reflect the price sensitivity of the shocks. It is interesting 
to note that the time change of this example is akin to the number of trades, the 
time change observed to be relevant by Ane and Geman (1997) in their empirical 
study of high frequency returns on the FTSE100 futures index. 

4.1.2. Exponential jump sizes 

Suppose now that the prevailing price order sizes have an exponential density 

f(y) = a exp ( -ay ) , for y > 0 (41) 

with mean order size given by 1/a. Further suppose that the Poisson arrival rate 
of jumps is 1/a, so that the Levy measure for the buy or sell orders is just the 
exponential function 

k(x) = exp(-aa;). (42) 

Let Xi(t) and .X^i) be two independent copies of this exponential compound Pois­
son process and suppose that log prices evolve in accordance with (38). The char­
acteristic function for the log price relative is now easily computed as 

0in(p(t)/P(o))(«) = exp (^ ( Q 2 °U2^2 - 1J J • (43) 

To observe this process as a time-changed Brownian motion consider the time 
change given by T(t), an increasing process with Levy measure 

k(y) = 2a exp(-a2y), for y > 0. (44) 

Now consider the process 7\/2W(T(t)) and evaluate its characteristic function 
using (34) as 



120 Quantitative Analysis in Financial Markets 

E[exp(iu-yV2W(T(t)))} = E[exp(—y2u2T(t))} 

= exp (t f (e-T2"2" - l)2ae-a2ydy j 

= e X P ( 2 t o ( ^ ^ _ ^ ) ) 

We now investigate and comment on the relationship obtained in (45) between 
the time change and the order arrival process. An order of size y, be it buy or 
sell, arrives at the rate 2exp(—ay). To construct the time change we have to 
weight the orders of different sizes differently; in fact, orders of size y amount to 
aexp(—a(a — l)y) units of time change. For a = 1 each order amounts to a unit 
of time change, as in the case of the reflected normal process, but for a > 1 (when 
most of the orders are small), the small orders count for a greater time change. The 
opposite holds for a < 1, in which case large orders count for greater time changes. 
The break even point of order sizes that count for a unit time change is given in 
both cases by ln(a)/(a(a — 1)). 

Our next example considers two high activity processes for the prevailing price 
buy and sell order processes. In particular, we consider for U(t) and V(t), two 
independent gamma processes with a common coefficient of variation. 

4.2. Gamma process demand and supply shocks 

Suppose that the prevailing price buy order process, U(t), is a gamma process 
with mean and variance rates fix, v\, respectively, while the prevailing price sell 
order process, V(t), is also an independent gamma process of mean and variance 
rates fj,2> I>2 respectively. It is useful to write these processes in terms of the standard 
gamma process with unit mean and variance rates. 

Let 7(f) denote the standard gamma process of unit mean and variance rate. 
The standard gamma process is a pure jump increasing random process with char­
acteristic function 

^ ( t t ) = (rrto)' (46) 

and Levy measure 

K^{x)dx = e X p (~^<fo for x > 0 (47) 

that integrates to infinity, and hence we have a process that jumps infinitely of­
ten in any interval (or a high activity process), in sharp contrast to the processes 
considered in the last subsection. 

One may write the prevailing price buy and sell order processes, U(t) and V(t), 
in terms of the standard gamma process by 
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m ) = i l 7 (dt) , while V(t) = ^ 7 (&t 

Ml V^l / A*2 \^2 
We suppose, as in Madan and Chang (1998), that the two processes for the 

2 

prevailing price buy and sell orders share the same coefficient of variation K= „ = 
2 

^ . Under this assumption the price process of Eq. (27) may now be written, letting 
ai = (6 + a)_1^i//L(i and a2 = (r) + b)~1v2/fi2, as 

ln(p( t ) /p(0))=7i( t ) -7a(*) = «i7(K*)-«27(«*)- (48) 

The characteristic function of ln(p(f)/p(0)) is then easily evaluated, using (46) as 

1 \ K t ( 1 
<Aln(p(t)/p(0))(w) . - • . i i , , • 

\r\iiv\n \ \ — ia.\UJ \l+ia2U 

1 \Kt 

; =x 5 I • (49) 
1 — l ( Q i — Oi2)U + a i O ! 2 u / 

To represent this process as a time-changed Brownian motion, consider a Brown­
ian motion with drift 9 and volatility a evaluated at the gamma time, 73(f) = 7(«f). 
Hence, let 

Y(t) = 9l3(t) + aW(l3(t)) 

where W(t) is a standard Brownian motion. The characteristic function of Y con­
ditional on the gamma time is 

/ 0-2^2 \ 

4>Y(t)|73(t)(u) = e x P ( ^ 7 3 (i) — 73(f)J (50) 

and the characteristic function of Y is 

M « ) = I ~ r r I • (51) 

A comparison of (51) and (49) shows that with 9 = a\ — a2 and a = ^2otia2, 
the price process may be expressed in probability law as a Brownian motion with 
drift evaluated at the gamma time, 7(«f). 

The time change 73(f) is easily related to the individual gamma processes that 
were differenced and we observe that 

73(f) = (l/c*i)7i(f), for » = 1,2 . (52) 

which is a simple change of scale of the original order arrival rate processes. Later 
we inquire (in subsection 4.5) as to when we may expect the time change to be 
related to the original order arrival time by a simple change of scale and speed. 

file:///r/iiv/n
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A different view of the relationship between the prevailing price buy and sell 
order arrival processes and the time change may be obtained by focusing attention 
on the prices at time t = ( 2 K ) _ 1 , in which case 

In 
p(0) 

v y 
a l 7 ( l / 2 ) - 027(1/2) • (53) 

It is easily verified that the probability law of 27(1/2) is that of the square of a 
standard normal variate and hence that 

2 In I'M) 
p(0) 

\ J 

= aiB - a2S (54) 

where B = iVj, S = Nf, and Nj, Ns are two independent normal random variables 
of zero mean and unit variance. It is shown in the appendix that the time change 
at this same point is 

73(1/2) =(yB-y/sy. (55) 

We thus observe that the time change is related to the level of excess demand. This 
is a reasonable property in that buy orders matched by supply orders do not result 
in price pressures. 

4.3. Demand and supply shocks as monotone Levy processes 

An important structural property of Levy densities is that of monotonicity. One 
expects that jumps of larger sizes have lower arrival rates than jumps of smaller sizes. 
This property amounts to asserting for differentiable densities that the derivative is 
negative for positive jump sizes and positive for negative jump sizes. Modeling the 
negative jumps symmetrically with the positive ones, we restrict the discussion to 
the Levy density for the positive jumps. 

The property of monotonicity may be strengthened to complete monotonicity 
by requiring derivatives of the same order to have the same sign. The mathemat­
ical definition, however, further requires the signs to be alternating. A completely 
monotone Levy density is decreasing and convex, its derivative is increasing and 
concave and so on. Structural restrictions of this sort are useful in modeling discon­
tinuous phenomena, given the wide class of choices that are otherwise available to 
model the Levy density, which basically is any positive function that integrates the 
minimum of x2 and 1. Complete monotonicity also has the interesting property of 
linking analytically the arrival rates of large jumps to that of small ones by requiring 
the latter to be larger than the former. The presence of such links makes it possible 
to learn about larger jumps from observing smaller ones. 
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In this regard, we note that the jump diffusion model based on the reflected 
normal distribution for the jump sizes is not completely monotone as is easily ob­
served by noting that the normal density shifts from being a concave function near 
zero to a convex function near infinity. On the other hand, the exponentially dis­
tributed jump size is the foundation for all completely monotone Levy densities. 
By Bernstein's theorem all completely monotone Levy densities are given by the 
Laplace transforms of positive measures on the positive half line, or that there exists 
a measure p(da) such that 

/ • O O 

k(y) = / e-ayp(da). (56) 
Jo 

Such Levy densities have the useful interpretation that the economy is populated 
by individuals who submit prevailing price buy or sell orders with an exponential 
distribution with mean order rate (1/a): the measure p(da) is a measure of the 
number of orders per unit time of this mean level, with exponential size distribution. 
All completely monotone Levy densities come from such an economy. 

We consider now prevailing price buy orders given by a strictly increasing pure 
jump random process with completely monotone Levy density k(x), satisfying (56). 
The gamma process of the Sec. 4.2 is the special case when k(x) = e~x/x as defined 
in Eq. (47), and this is a completely monotone density. As in the gamma process 
case, we suppose the prevailing price sell orders V(t) are given by an independent 
copy of the same Levy process. The log price process of Eq. (27) now has the form 

ln(p(i)/p(0)) = aiU(t) - a2V(t) (57) 

with c*i = (6 + a)~1,<X2 = (r] + b)~x. It is shown in the appendix, following 
the analysis of Leblanc (1997), Knight (1981), Kotani and Watanabe (1982), for 
the special case of a\ = a 2 = a, that the Levy measure of the time change is 
k(y) = fc3(o:y), where &3 is given by 

h(y)= / p(da)2ae~a2v. (58) 
Jo 

The time change Levy density given explicitly by Eq. (58) generalizes to the 
completely monotone class of densities the result we demonstrated earlier for the 
exponential Levy measure. We observe interestingly that the time change aggregates 
the counting of the arrival of orders with the same weighting function to provide 
the time change. An order by an individual with a mean order arrival rate of (1/a) 
of size y amounts to aexp(—a(a — l)y) ticks of the stochastic clock. 

The literature relating price changes to economic activity (Tauchen and Pitts 
(1983), Karpoff (1987), Gallant, Rossi and Tauchen (1992), and Jones, Kaul and 
Lipson (1994)) has focused on volume and the number of trades as the relevant 
measure of economic activity. The analysis of this section indicates that the time 
measure incorporates both the number and size of orders. For a < 1, the time or 
activity measure is positively and exponentially related to the size of orders. 
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We now consider two important subclasses of the class of completely monotone 
Levy densities, and these are the class of generalized gamma convolution densities, 
and the stable processes with index a < 1, and show in each case that the time 
change lies in the same subclass as well. 

4.4. Demand and supply shocks as generalized gamma convolutions 

An important subclass of completely monotone Levy measures is the class of 
generalized gamma convolutions (Bondesson (1992)). A Levy measure k(x) is in 
the generalized gamma convolution class if the size weighted Levy density xk(x), 
is completely monotone. When we weight the arrival rate or probability by size, 
we get the expected impact on the process and this hypothesis requires that large 
jumps have a sufficiently small arrival rate so that their impact is below the impact 
of smaller jump sizes. Under this hypothesis, small moves dominate large moves in 
impact and in this section we ask that if the arrival of orders has this property of 
completely monotone impact, then is this property inherited by the time change. 
Do large clock ticks also have a lower expected impact on the passage of time than 
the smaller clock ticks? We show here that indeed this is the case. 

For Levy densities in the class of generalized gamma convolutions, the process 
is a mixture of gamma processes with the characteristic function for the cumulated 
prevailing price buy orders U(t) now having the explicit form 

4>U(t) (u) = exp f iatu + t log ( _ , J K(dc) J (59) 

where K{dc) is a non-negative measure on the positive half line." 

When K is the Dirac delta measure at c = 1, U{t) is the standard gamma 
process y(t) discussed in Sec. 4.2. The generalized gamma convolution class is very 
wide and includes as special cases the stable processes and the inverse Gaussian 
processes. It is an infinite parameter class, effectively being parameterized by the 
measures K(dc). Clearly, the gamma process is the fundamental building block for 
processes in this class. 

Suppose now that U(t) and V{t) are two independent copies of a generalized 
gamma convolution class of processes with drift a and mixing measure K. Consider 
the general symmetric price process of Eq. (57), and evaluate the characteristic 
function of the log price relative as 

"I t is required that K(dc) satisfy the integrability conditions: 

/ | log(c) | K(dc) < oo and / -K{dc) < oo. 
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/ 

<£in(P(t)/p(o))(u) = e x p 

V 
•f 

log 

log 

c — met 

c 

\ \ 

K(dc) 

= exp I t / l o 6 ( 

c + iua J I 

.2 

/ 

& + U* 
K{dc) (60) 

We wish to determine whether this process can be written as Brownian motion 
evaluated at a generalized gamma convolution. Suppose for this purpose that T(t) 
is an increasing process that is a generalized gamma convolution time change with 
zero drift and mixing measure K. The characteristic function for T{t) has the form 

<l>T{t)(«) = exp It / log ( c _ i J K(dc) j (61) 

Consider now the characteristic function of Brownian motion evaluated at this 
generalized gamma convolution time, W(T(t)). This is simply obtained by evalu­
ating (61) at —u2/(2i) and is 

<t>w(T(t)){v) = exp I t /iogM 
J \c + u 

72 
2,n,K{d0)). (62) 

The two characteristic functions (60) and (62) are equated on making the change 
of variable 2c — c2 in (62) and denning 

K(dc) = -K(dc). 
c 

(63) 

Specifically we have, in the case K(dc) = g(c)dc, that the characteristic function 
for the time change is 

4>T{t){u) = e x p It / log 
IU 

l(V2~c) 

V2c 
dc (64) 

Equation (64) provides the exact representation of the time change as a gener­
alized gamma convolution.0 

The weighting that was given to the gamma process with mean (1/V2c) in the 
prevailing price order arrival process is given in the time change to the gamma 

°In this case, the function g must meet the following four integrability conditions: 

/ I 'og(c) I 9(c)dc < oo; / 
Jo Jo 

g(V2c) 

log(c) | »fcg) dc < oo 
V2i 

r i M J r i -
/ -g(c)dc < oo; / - = 

Ji c A c 
V2c 

-dc < oo. 
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process with mean (1/c) after multiplication by (L/\/2c). We now present a useful 
generalization of the variance gamma model within the generalized gamma convo­
lution family of processes. 

4.4.1. Generalizing the variance gamma model to control arrival rates 
of different sizes and signs 

A potentially useful generalization of the variance gamma model studied in 
Madan and Chang (1998), within the class of generalized gamma convolutions is 
given by the Levy measure, kcGYAi(x),p for an increasing process (the log price 
process being obtained by differencing two such processes with possibly different 
parameters) where 

exp(—Mx) 
kCGYM(x) = CxY+1{l + x)G. (65) 

The special case G = 0, Y = 0, gives the symmetric variance gamma process when 
we difference two identical but independent copies of this process. When we take 
just G = 0, we get the Levy measure studied by Vershik and Yor (1995), for the 
purpose of combining the gamma and stable laws. We note that the setting Y = 1 
constitutes the boundary between processes of finite and infinite variation. Further, 
from the perspective of financial modeling, this Levy measure, unlike the variance 
gamma model, allows one to control for the behavior near zero and at infinity 
separately via the parameters Y and G respectively, and this too separately, for the 
positive and negative moves, by differentiating these parameters on the two sides. 
We have here a fairly robust eight parameter stochastic process. It is amenable to 
statistical work as the characteristic function is available in closed form in terms 
of the special functions of mathematics. It is shown in the appendix that for the 
increasing process XcGYM(t), 

p r ,. v m] ( t ^ P - [MY+GU(G, Y + G + 1,M) 
E[exp(iuXCGYM{t)} = exp CY 

\-(M- iu)Y+GU(G, Y + G+1,M- *«): 
(66) 

where U(a, b, z) = ^ ° F o ( a , 1 + a-b, -l/z), and 2-̂ 0 is one of the confluent hyper-
geometric functions. 

4.5. Stable processes as time-changed Brownian motion 

The class of increasing stable processes of index a < 1 could also be considered 
as a candidate model for the prevailing price buy and sell order processes. The 
difference of two independent stable processes of index a < 1 is also a time-changed 

PWe name this Levy measure after Peter Carr and ourselves, in recognition of Peter Carr's request 
to develop an extension of the variance gamma model in this direction. 
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Brownian motion and we enquire into the nature of the time change. For an in­
creasing stable process of index a the Levy measure is 

v(dx) = ——^dx for x > 0, (67) 

and the difference, X(t), of two independent copies of such a process is the sym­
metric stable process of index a with characteristic function 

E[exp(iuX(t))] = exp(-*c |u | a) , (68) 

for a positive constant c. We derive from the characteristic functions that the time 
change is not an increasing stable a-process. 

The characteristic function of an independent Brownian motion evaluated at an 
independent increasing stable process of index a, T(t) is given by 

E[exp(iuW(T(t)))] = E[exp(-u2T(t)/2)] 

= exp(-t(c/2)\u\2a), 

or a symmetric stable process of index 2a. 
It follows from this observation that the difference of two increasing stable a 

processes for a < 1, is Brownian motion evaluated at an increasing stable a/2 
process. 

4.6. Scale and speed adjusted time changes 

We now consider, within the class of completely monotone Levy densities when 
the time change Levy process is simply related to the original order arrival process, 
in that it may involve speeding up or slowing down accompanied by a scaling of 
the original process. Specifically, we ask when 73(t) has the form 071(6*) for scaling 
and speed adjustment coefficients a and 6. For example, when we relate the time 
change to the volume of transactions, then we are in the case 6 = 1 and a = 2. For 
the scale and speed adjustment to be valid, one must have 

E[exp(iuj3(t))] = E[exp(iua7i(6t))] 

= exp (bt fe°{eivax - \)k(x)dx\ (69) 

or that 

exp (t J (eiuy - l)h(y)dy\ = exp (t / "V"" - 1)* (J) ^dy\ . (70) 

It follows that we must have 

W = ^ ) . (7i) 
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Suppose that k(y) = J f(a)e-ayda and that k3(y) = / f3(a)e-ayda then (71) 
implies that 

f h{u)e-uydu = - f f{u)e~uy/adu 

= Jbf(av)e~vydv. 

It follows that one must have the equality 

f3(u) = bf(au) (72) 

among the transforms. 
But by Eq. (58) on changing variables and writing p(da) = f(a)da we note 

that we must have f3(x) = f{y/x). It follows that for a simple scale and speed 
adjustment in the time change we must have 

fW2)=bf{ax). (73) 

We know the gamma process has this property, and for the gamma process we have 

roo e x p (- x ) = f e—du. 
x Vi 

Hence for this case f(u) = l u >i . Equation (73) may be expressed as f(x) = bf(ax2) 
and for f(x) = l x >i , this condition is satisfied for a = b = 1. 

More generally, if we define f(x) = f(cx), then we must have 

f(x) = f(cx) = bf(ac2x2) = bf(x2), 

if we choose a = 1/c. Hence all possible solutions require f(x) to be proportional 
to f(x2). A wide class of solutions is given by 

f{x) = d l l n ^ r i p , ! ] ^ ) +c 2 [ ln( : r )n [ 1 , o o ) (x) . (74) 

We note that the wider class of processes for which a scale and speed adjust­
ment is valid contains the gamma Levy measure and somewhat more generally, the 
solutions of (74) associated with a, 0 < a < 1 for c\ = 0, c2 = l.q An interesting 
special case occurs when we consider the case c\ = 0, c2 = 1 and a = 1 in (74). 

q We must have ci = 0 for even if a = 0, and C2 = 0 we have 

k(y) = / e-tvd£ = 
Jo y 

but then J (1 A y)k(y)dy = oo. 
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This yieldsr 

/

oo 

HOe-^dC (75) 

t 

-du. (76) If 
VJy 

oo e - u 

Equation (76) represents the tail of the Levy measure of the gamma process 
divided by the lower limit of integration. This is an interesting operation on Levy 
measures. In fact if p(dx) is a Levy measure, then defining 

p(dx) = - ^ p{dy) . (77) 
x Jx 

we also obtain a Levy measure since J0°°(l A x)p{dx) < oo holds.s For many Levy 
measures, and certainly for the gamma process, Eq. (77) gives new Levy measures. 
We also observe that applying (77) twice amounts to taking c\ = 0, c-i — 1, and 
a = 2 in (74).* 

'Substituting £ = x/y we have 

k(y) = - / (ln(x) - ln(y))e-xdx 

e xdx 

= - f (ln(x) -
yJy 

yJy h U 

= — J J dxdu 
" Jy Ju 

= — I du 
yjy « 

s To verify this, we observe 

poo fl /»oo /»oo /»oo 

/ (1A x)p{dx) = I dx p(dy) + I - I p(dy)dx 
Jo Jo Jx Ji x Jx 

f°° f°° fu dx 
= / (XAu)p(du)+ / / — p(du) 

/

oo /*oo 

(1 A u)p(du) + / \n{u)p{du). 
The first integral on the right hand side is finite as p is a Levy measure, and the second is finite 
provided p is sufficiently damped at infinity. 
To see this, consider 

/
oo 

ln(02e-4wd£. 
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4.7. Brownian excursions and equilibrium 

We now consider another and equivalent representation of the asset price pro­
cess that is valid for price processes with completely monotone Levy densities, a 
consequence of Krein's theory (Kotani and Watanabe (1982)). In this equivalent 
formulation, excess demand is modeled as a Brownian motion and price changes 
are related to the excess demand by a possibly non-linear response function that we 
term the force function. We show by examples that simple force functions are asso­
ciated with fairly complex Levy densities, while the force function for the gamma 
process is at this writing, to our knowledge, still unknown. Hence the two ap­
proaches complement each other and provide a wider class of interesting models 
than would be possible if we restricted attention to just one of these two equivalent 
formulations. 

Unlike the examples of the earlier sections, the time change and the Brownian 
motion are no longer independent in the examples of this section. Here the time 
change represents cumulated volatility, where the latter depends on the Brownian 
motion itself. 

We view the Brownian motion W(t) as a measure of market departure from 
equilibrium, and view positive values of W(t) as an excess demand in the market 
driving prices up, while negative values of W(t) are indicative of excess supply 
driving prices downward. The extent of the price response to the disequilibrium is 
given by the force function f(x). The price process is 

S(u)= fUf(W(s))ds. (78) 
Jo 

The process S(u) is a continuous process that increases when Brownian motion 
is positive at rate f(W(s))ds and decreases when W(s) is negative. Hence if a 
trader takes a long position during a positive excursion of Brownian motion and 

We may again set £ = x/y and write that 

1 f°° 
k(y) = - / (ln(x) - \n(y))2e-*dx 

yJy 

yJyJy U Jy V 

" J y J v J v. 

V Jy V JV
 U 

which is the application of (77) twice to the gamma Levy measure. 
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successfully reverses his position before a return to zero, there is a pure arbitrage 
profit to be made. The same holds true for short positions in negative excursions 
of Brownian motion. 

We avoid arbitrage opportunities by restricting trading to occur in equilibrium, 
i.e., on the zero set of Brownian motion. The period of the Brownian excursion is 
then akin to a tatonnement period during which the discovery of the equilibrium 
price takes place. The time domain of Eq. (78) includes disequilibrium situations 
when W(s) ^ 0 and the market is in the phase of equilibration. We now restrict the 
price process to equilibrium states when Brownian motion is zero. To perform this 
restriction to the equilibrium domain, we define a(t) to be the inverse local time of 
Brownian motion at zero. Our price process is the bounded variation process (see 
the integrability condition (80) below) 

,<r(t) 

ln(p(i)/p(0)) = / dsf(W(s)). (79) 
Jo 

This is a pure jump process as it is S(a(t)) and it inherits the jump properties from 
the inverse local time. 

Inverse local time is a Levy process with Levy measure L(x), 

L{X) = 7^'X>0-
Hence, this is a high activity jump process that jumps at a zero of Brownian motion 
to another zero of Brownian motion, with the size of the jump being the length of 
the Brownian excursion. Each jump time of inverse local time is an equilibrium 
trading time and there are infinitely many trading opportunities in any interval of 
time. 

The price process (79) includes Levy processes of infinite variation but finite 
quadratic variation. To obtain processes of bounded variation one must restrict the 
class of force functions to those that meet the integrability condition 

fK 

/ dx | f(x) |< oo (80) 
J-K 

for all K. Under this integrability condition (that essentially prevents an infinite 
force at zero), the two components of positive and negative moves may be con­
structed as separate processes. One may write the price process as 

/•<r(t) pa(t) 

ln(p(t)/p(0)) = / dsf+(W(s)) - / dsf-(W(s)) (81) 
Jo Jo 
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where f+(x) = f(x)l^x^0y, f (x) = f(x)l^0y
u We now model the term (6 + 

a^Uit) of Eq. (27) by f°(t) dsf+(W(s)) while (rj+b^Vit) is given by /Q
CT(t) dsf~ 

(W(s)). 
It is interesting to note that during an excursion of the Brownian motion away 

from 0, the market is equilibrating and the clock a(t) stops and does not count 
time. The only times we count and the only firm trading prices we permit are those 
when we have equilibrium, and W(a(t)) = 0. We measure time by time spent in 
equilibrium and we note that a(i) is strictly increasing in t. 

Some interesting facts about the Levy measure for the price process may be 
inferred directly from the structure of the force function. For example, one may 
show that if the force function is zero in an interval around zero, then only excursions 
of a certain significant departure from zero contribute to a price movement, and one 
may infer that the arrival rate of the process is finite/ Similarly one may show that 
if the force function is strictly positive in absolute value in an open interval around 
zero then the arrival rate of the Levy measure is infinite. Hence, we can conclude 
that economies that are dormant around the equilibrium point in that they have 
no force, have finite arrival rate Levy measures. Furthermore, if the force function 
of one economy dominates the force function of another, then the tail of the Levy 
measure of the economy with the dominating force function is heavier. Greater 
force generally means greater activity in terms of the arrival rate of price changes. 

The price process of Eq. (79) may once again be expressed as time-changed 
Brownian motion. Define ip(y) by ip'(y) = f(y) and ip(0) = 0, let 

F(x)= f i>{y)dy. (82) 
JO 

Ito's lemma may now be applied to F(W(t)) in the following way: 

Q = F(W(a(t))) = J iP(W(s))dW(s) + - J f(W(s))ds. (83) 

It follows from Eq. (79) substituted in (83) that 

,a( t ) 
ln(p(i)/p(0)) = - 2 / 4>{W{s))dW{s). (84) 

Jo 

Hence the probability law of ln(p(t)/p(0)) is that of Brownian motion evaluated at 

4/„ ip2(W(s))ds. However, here the Brownian motion and the time change are 

u I t is interesting to note that when the integrability condition is not met and there is an infinite 
activity near the origin that only sums up when we square the moves, one may approximate the 
process by considering the difference of increasing processes that truncate the force function at 
values of x below e in absolute value and obtain the infinite variation process as the limit as we let 
e tend to zero, provided as a sufficient condition that J xaf(x)dx < oo for some value a < 1/2. 
For the cases we consider this condition is met. In this sense our decomposition into the difference 
of two increasing processes is quite fundamental. 
v This property can be formally proved by integrating the force functions with respect to the Ito 
measure for the height m of the excursion (see Yor (1995) page 68) which is (l/m2)dm. 
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not independent processes. The time change is in fact constructed from the original 
Brownian motion as:w 

,<r(t) 

T(t) =4 ip(W{s))2ds. 
Jo 

We note that the time change cumulates the instantaneous volatility of the price 
process, and observe that this volatility depends on the Brownian motion. 

An interesting special case of such equilibrium processes derived from Brownian 
excursions is obtained by considering the case of 

f{x)=a(x+)m + b(x-)m. (85) 

For a > 0 and b = —a, the log price process (79) is a symmetric stable process of 
index a = (m + 1/2) -1 . This process can be written as Brownian motion evaluated 
at a dependent time constructed from the price process using (84) as the quadratic 
variation of the price process. The Brownian motion may also be constructed out 
of the price process, as the price process evaluated at the inverse of the quadratic 
variation. We have here an alternative representation of stable a, a < 1, processes 
as time-changed Brownian motions (as opposed to the representation of Sec. 4.5), 
that do not invoke independence between the Brownian and the time change. 

It is instructive to consider the relationship between the Levy measures of the 
stable processes and the force functions of the representations (79). We observe 
that when m is large, the force is high at large values of x and the Levy measure 
is accordingly lower at these high values of x. Similarly, for low values of x, the 
force is higher for low values of m, and once again these low values of m have the 
lower Levy measure. It therefore appears that tails for the Levy measure that are 
less heavy than the stable laws would require a force function that dominates the 
polynomials. 

4.8. Characteristic functions for price processes based on 
Brownian excursions 

For the econometric evaluation and identification of price processes from data on 
financial prices, the characteristic function of the log price relative is a very useful 
and fundamental construct. For all the cases considered in Sees. 4.1 through 4.6, 
we have explicit characteristic functions for the log price relative. In this section, 
we present an algorithm to evaluate the characteristic function for the Brownian 
excursion model presented in Sec. 4.7, based on the results of Revuz and Yor (1994). 

w I t is possible for a continuous martingale to be written as a Brownian motion evaluated at an 
independent time change given by its quadratic characteristic. However, as shown by Ocone (1993), 
Dubins, Emery, Yor (1993), a necessary and sufficient condition for this to be possible is that the 
probability law of stochastic integrals with respect to the martingale coincide for all integrands 
that have absolute value unity. For the force functions / , and the associated function tp, this is 
unlikely to be the case. 
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We are interested in the characteristic function 

</>ln(p(t)/p(0))(u) = E exp I IU / f(W(s))ds 
Jo 

(86) 

where cr(t) is the inverse local time of the Brownian motion W(t). Writing the 
function / = / + — / ~ , noting that / is positive for positive arguments and negative 
for negative arguments, we may rewrite (86) as 

*ln(p(t)/p(0))(w) =E 
I fit) f(t) 

exp iu / f+(W(s))ds - iu f~(W{. s))ds 

(87) 

By the Ray-Knight theorem, the two components are independent and the result 
follows on multiplication of the two expectations. Hence, 

</>ln(p(t)/p(0))(w) =E 
( fW 

exp liu / f+(W(s))ds 

xE exp 
r ( t ) > 

-iu / f-(W(s))ds 
Jo , 

(88) 

The result follows on evaluating each of the expectations. It is shown in Revuz and 
Yor (1994), that the Laplace transform is given by 

E 
( rtt) 

exp -A / f+{W(s))ds = exp(<V'(0+)/2) (89) 

where x)}{x) is the unique positive, decreasing solution to the Sturm-Liouville equa­
tion 

^"(x)=Xf+(x)i>(x) 

subject to the boundary conditions V(0) = 1, ^>(oo) = 0, when the function / 
meets the condition /„ xf+(x)dx = oo. Here we present an analysis based on the 
Ray-Knight theorem that uses methods more commonly employed in the economics 
literature, and initiated by Cox, Ingersoll and Ross (1985). 

By the Ray-Knight theorem one may write the process for the price increases 
as 

/ f+(W(s))ds= dxf+{x)LZ{t)(W), (90) 
Jo Jo 

where L*(t) (W) = Z(x) is the local time of the Brownian motion W at x between 0 
and a(t), the inverse local time at zero of W. The process Z(x) viewed as a process 
in the space variable, for fixed t, is a Feller diffusion and is in fact a squared Bessel 
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process of dimension 0, starting at t, or in finance terms a CIR process (see Geman 
and Yor 1993), that satisfies the stochastic differential equation 

dZ(x) = 2^fZ(^)dB{x) • Z(0) = t (91) 

for a standard Brownian motion B(x) in the space variable. We are therefore 
equivalently interested in the Laplace transform of /0°° dxf+(x)Z(x). We proceed 
by considering this problem in the familiar way of analyzing term structure models 
and define 

G{y,Z) = E exp (-X f°° f+(x)Z(x)dx) | Z(y) = Z (92) 

The partial differential equation for G may be derived as 

Gv + 2ZGZZ - M{y)Z = 0, (93) 

which must be solved for the boundary conditions G(y, 0) = 1, and G(oo, Z) = 0.x 

It is well known (see e.g., Revuz and Yor (1994) page 424 Theorem 4.7) that the 
solution in Z is of the form 

G(y,Z) = exV(b(y)Z) (94) 

where the function b satisfies the Ricatti differential equation (also classically ob­
tained in finance for CIR type models of interest rates or stochastic volatility) 

b' + 2b2 = Xf+ . 

The Sturm-Liouville equation follows on making the substitution b = | ^-, and the 
result follows on evaluating G(0,Z(0)) = G(0,i). We now consider some explicit 
examples where the characteristic function of the log price relative may be explicitly 
evaluated, beyond the polynomial case for the force function / for which we have 
already observed that we obtain a stable law for the price process. 

We consider two further cases, one with a decreasing force function, and the 
other with an exponentially increasing force function. The second example has a 
force function that dominates the polynomials yielding the stable laws that we have 
already reported on. 

4.8.1. Example with diminishing force function 

Suppose that 

f+(x) = 1 

(kx + iy 
x T h e condition at infinity is related to the requirement that f+(x)x integrates to infinity. When 
this is finite, the condition at infinity is different, but we shall only be concerned with cases where 
this condition is met. 
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Let Zx be the Feller diffusion associated with the local times at x evaluated at the 
inverse local time at t. As noted earlier, dZx = 2\fZ^dB(x) for a standard Brownian 
motion B, and ZQ = t. Define (p(x) — (kx + Z)_1 and consider Yx = <p(x)Zx. By 
construction YQ — t/l, and an application of Ito's lemma shows that 

& 
dYx = - Zxdx + 2>p(x)^ZxdB(x). 

Writing the martingale f* 2ip(y)y/ZydB(y) in its Dubins-Schwarz form: w(Ax), 
where (w(u),u > 0) is a Brownian motion, and Ax = A J* dytp2(y)Zy, we may 
represent {Yx} as: 7(AX), where 

t k 
7(u) = - - -u + w(u). 

It follows that 7(4 J*0 dy(ky + l)~2Zy) is Yoo, which by construction is zero. Hence, 

4 / f+(W(s))ds = 4 / dx(kx + l)~2Zx = T0(7) 
Jo Jo 

the time at which the Brownian motion 7 with drift — k/A and initial value t/l 
reaches zero. This is the same as the first passage time distribution of Brownian 
motion starting at zero and with drift k/A reaching t/l. The density of To(7) is 
given by 

The Laplace transform is given by 

£[exp(-ATo(7))] = exp l - \ U ^ + 2\-± 

and the Levy measure is 
k2 

k(x) = -
ieXP\-32X 

I y/2nx3 

We observe in this example that the force function and the Levy measure are 
both inversely related to the parameters k and I, and hence are positively related 
to each other. 

4.8.2. Example with exponentially increasing force function 

Suppose that 

/ + (a;) = 9 exp(az), a, 9 > 0. (95) 
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For this case, following Jeanblanc, Pitman and Yor (1997), Example 6, we observe 
that the solution to the Sturm-Liouville equation with the boundary condition 
^(0) = 1 and ip(oo) = 0, is 

K0 

V>(z) 

2V2A0 

a 
• e x p 

K0 
2V2A0 

where KQ is the modified Bessel function of second kind of order zero. It follows on 
differentiation, noting that K\ = —K0 and substituting into (89) that 

E 
( Mt) \ " 

exp -A / f+(W(s))ds •• e x p 

/ 

V 

^(^y 
K0 

2\/2A0 
(96) 

/ 

For the Levy measure associated with this Laplace transform we note from Donati-
Martin and Yor (1997) page 1055 that 

^ w | =tl°°eM-ty)H-i(y)dy = - j H ( l - e x p ( - f r ) | ^ - i ( y ) d y . 

Substituting 2V2X6/a for y/£ and making the change of variable 89y/a2 = z w e 
obtain that the Levy measure for this process is 

k(x) 
~ l6e*2Jo 

dzexp 
a*x 

se J j0
2(Vi) + y0

2(Vi) 

where we have differentiated H-i using the definition provided in Donati-Martin 
and Yor (1997) Eq. (6.6). 

5. Time Changes Related to Demand and Supply Shocks in the Limit 

Recently, Barndorff-Nielsen (1997) has proposed the normal inverse Gaussian 
distribution as a possible model for the stock price process. This process may also 
be represented as a time-changed Brownian motion, where the time change T(t) is 
the first passage time of another independent Brownian motion with drift to the level 
t. The time change is therefore an inverse Gaussian process and as one evaluates 
a Brownian motion at this time, this suggests the nomenclature normal inverse 
Gaussian. An interesting question from the perspective of this paper is whether 
such a process may be represented as the difference of two increasing processes that 
constitute the price responses to demand and supply shocks, respectively. However, 
this is not possible as the normal inverse Gaussian process is one of infinite variation. 
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We note that the inverse Gaussian process is a homogeneous Levy process that 
is in fact a stable process of index a = 1/2. We observed in Sec. 4.5, that if 2a < 1, 
then time changing Brownian motion with such a process leads to the symmetric 
stable process of index a < 1. For a = 1/2, we observe below that the process is of 
infinite variation. 

In general, for W(T(t)) to be a process of bounded variation we must have that 

/ 
(1 A \x\)v(dx) < oo, (97) 

where v is the Levy measure of the time-changed Brownian motion. We may relate 
v to the Levy measure v, of the time change by 

v{dx) = dx 
f 

J "(dy)-

e x P -7T 

rhxy 
(98) 

The time changed process is of bounded variation just if (see the Appendix for a 
proof), 

v(dy)y/y < oo . (99) I-
For the inverse Gaussian time change, we see from (67) for a = 1/2 that (99) 

is infinite. It follows that the normal inverse Gaussian process is a time-changed 
Brownian motion of infinite variation and therefore it cannot be expressed as the 
difference of two increasing processes. It may, however, be approximated by such 
processes by ignoring jumps of absolute size below e and then letting e tend to zero. 

From the perspective of Brownian excursions, we offer the example of a force 
function that diverges to infinity at 0, and results in an infinite variation Levy 
process. The specific force function is studied in Donati-Martin and Yor (1997) and 
is given by 

/ ( x ) = S i g n ( a ; ) e x P ( 2 ^ M ) - l -
It is shown in Donati-Martin and Yor (1997), that the Laplace transform of the 
positive moves 

E exp f+(W(s))ds )1 = exp 

/ 

tx 

\ 
(100) 

where 7 is Euler's constant and ^(x) = i""(a;)/r(a:). It is shown in the Appendix 
that the characteristic function of the log price process is given by 

t 
<t>\n(P(t)/P{0){u) = exp - ^ Yl 

4u2n 

n = l y 

(101) 
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and the Levy measure is 

h(x)- ^ e xP(~ 4 a ; ) 
dx2 1 - exp(—4x) 

6. Conclusion 

We argue in this paper that price processes, representing market responses to 
underlying uncertainties given by the increasing random processes of cumulated 
demand and supply shocks are bounded variation semimartingales. Furthermore, 
being semimartingales (an implication of the no arbitrage condition) they are time-
changed Brownian motions-as shown by Monroe (1978). The focus of attention 
in modeling the price process then shifts to modeling the time change. We show, 
by various examples, that one may generally relate this time change to a measure 
of economic activity and hence deduce that it is an increasing process with local 
uncertainty. This has the implication that the time change is a pure jump process 
and hence, so is the price process. Specifically, we conclude that the process for the 
price of a traded asset should not be modeled as possessing a continuous martingale 
or diffusion component. This result is contrary to the fundamental paradigm of 
modern pricing theory and the dominant practice of the past 25 years. So far our 
investigation has concentrated on homogeneous time changes that are independent 
of the price path, and we recognize that it may be necessary to develop methodolo­
gies that allow for time inhomogeneous and price path dependent stochastic time 
changes. We anticipate that future research will address these issues. 

The specific time changes considered in this paper are compound Poisson pro­
cesses, gamma processes, general Levy processes with completely monotone Levy 
densities, generalized gamma convolutions and the inverse local time of Brownian 
motion at zero. In each case we exhibit the price process as a finite variation process 
that is the difference of two increasing processes, one recording the price increases 
and the other the price decreases. In each case we show how the price process may 
be viewed as Brownian motion evaluated at a random time that is related to the 
sum of the processes being differenced to get the price process. We interpret the 
time change in all cases as a measure of economic activity. For the widest class 
of processes considered, we show that time is to be measured as a size weighted 
cumulation of orders. In this sense, the correct analytical measure turns out to 
be a combination of the number of trades and volume proxies often considered in 
the empirical literature. In addition we provide a wide class of operational mod­
els, with associated test procedures, for the price processes of market economies in 
continuous time. * 

Appendix 

Derivation of Eq. (55). 

We may write the right hand side of (54) as 

(102) 
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otiNJ - a2N
2 = (^Nd - y/ajNa)(y/cZNd + y/^Ns) 

y/ai + a2M{^/a[Nd + s/a^Ns) (A.l) 

where M = {y/a{Nd — y/o2~Ns)/V'ai + a2 ls another standard normal variate. Now 
project y/aiNd + ^/a2Ns on M and write 

^Nd + V^NS = ̂ ^LM+^^M (A.2) 

where M is a standard normal variate independent of M. Substitution of (A.2) into 
(A.l) shows that one may write 

aiNj - a2N
2 = (Q l - a2)M

2 + 2^^\M\M. (A.3) 

If we define by 73(1/2), by the relation M2 = 273(1/2), one may then write (A3) 
as 

aiJVj - a2N
2 = (aj - a2)2lz{l/2) + 2^^^2j3(l/2)M (A.4) 

and division of (A.4) by 2, noting (54) yields 

In ( ^ ± J = (ai - a 2 ) 7 3 ( l /2 ) + y/2^yfa(l/2)M (A.5) 

or the result that the log price process is Brownian motion with drift (ai — a2) and 
volatility ^2a\a2 evaluated at 73(f). 

We see from (A.5) that the price process is basically the difference of squares of 
normals. The non-negative prevailing price buy and sell orders are essentially the 
squares of Gaussian variates, Nd, and Ns, respectively. The time change, M, is the 
square of the excess demand, (\/l? — VS)2, which is the activity measure in this 
case. 

Derivation of Eq. (58). 

First note that the characteristic function of ln(p(t)/p(0)) may be written as 

<f>in(P(t)/p(o))(u) = exp (-2t / (1 - cos{uax))k{x)dx\ . 

On the other hand the characteristic function of aW(t) = Y(t) evaluated at a time 
change 73(f) conditional on the time change is 

a2u2
l3(ty 

^ ( 7 3 ( * ) ) l 7 3 ( t ) ( U ) = e X p f - -

Suppose that 73(f) is a Levy process with Levy measure k3(x)dx, then the charac­
teristic function of Y{^3{t)) is given by 

^y(73(*))(u) = e x P f-f / (x ~ e-s^x)k3(x)dx) . 
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For the log price process to be a time-changed Brownian motion, using the Levy 
process 73(4) for the time change, one must have 

r°° f°° 2 2 
2 / (1 - cos(uax))k(x)dx = / (1 - e-^^x)ks{x)dx. (A.6) 

Jo Jo 

We may let cr2/2 = a, k(y) = k(y/a), ks(y) = k3(2y/cr2) and then write (A.6) as 
/•OO POO 

2 / (I - cos(ux))k(x)dx = (1 - e-u2x)k3(x)dx. (A.7) 
Jo Jo 

Differentiating (A.7) with respect to u yields 

[°° Sm(UXKk(x)dx = f°° e-u2xxk3(x)dx. (A.8) 

Jo u Jo 

We now recall that 

^ = \ ^ lM<xe^dy (A.9) 

and 

/

°° 1 2 

^ = = 6 - ^ 6 ™ ^ . (A.10) 
•00 V47ra ; 

Substituting (A.10) and (A.9) into (A.8) and using the uniqueness of Fourier trans­
forms, we deduce that for each y 

f°° - 1 f°° ~ 1 1 _£ 
/ xk(x)-l\y\<xdx = / xk3(x)—-j=—^e **dx. (A.ll) 

Jo 2 JO 2yjTT y/X 
Differenting (A.ll) with respect to y > 0 yields 

2 y0 v^^ 
e-fcda;. (A.12) 

Equation (A.12) may be solved for £3(3;) satisfying (58) when k{y) is given as the 
Laplace Eq. (56). To observe this, we recall that 

/•OO 2 o 

e-ay= / e - V e - ¥ ( l ( . (A.13) 

Jo V2rf? 

Employing (A.13) we may write 

jp(da)Jo 
00 dt 

ae 2 e 2 t 

V27rt3 

Making the change of variable t = ^ we obtain 

% ) = / P(da) / ^ = e 

It follows that defining fc3 by Eq. (58) satisfies (A.ll) as was to be shown. 

V 2 

-.ae-^e-ax. 
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Derivation of Eq. (66). 

We wish to evaluate the integral 

For this we first consider the general form for 5 < 1 (the case of finite variation) 

/•OO fx I 

/ (ei"X - V-s+ifc = --x~5{e-^-iu> - e-T™)|S° 

+ / -zx~s (^e-<x - (7 - tuje-fr-™)*) dx 

= ^ ^ (T* - ( 7 - in)*) . (A.15) 

Coming now to the integration of (A. 14) we first note that 

Substitution of (A.16) into (A.14) and reversing the order of integration yields 
that 

/•oo n-lp-y foo [M+y)x A=L - m c l . < e""-1 )-?rr-' t ' <A17» 
We now employ (A.15) in (A.17) to obtain that 

r(l-!/) J™ yG-ie-y^M + yy_(M_iu + yy)dy (103) 
Jo 

A = 
CY{G)y 

The result follows on noting that 
/>00 

/ yG-^e-y{M + y)Ydy = MY+GT(G)U(G, Y + G + l, 
Jo 

M) 

from the integral representation of the U function (Abramowitz and Stegun (1972) 
page 505, 13.2.5). 

Proof of condition (99). 

The condition for obtaining a process of bounded variation on time changing 
Brownian motion may be expressed in terms of v by 

r , h/^ ( x A i )* , p(-s)< o 0- <AI8) 

Partitioning the integration in (A. 18) over x into the intervals below and above 
unity we require that 

rM{i!dxxexp{-x^)+rdxexp{'i)}<o°-



< oo. 
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Changing the variable of integration from x to t — xj' ̂ /y we write that 

f z ^ p r f1/vv
ydt t e x p ( _ i 2 / 2 ) + r ^dt exp(_^/2) 

J V27r2/ [Jo hl^/y 

Performing the first inner integration we may write 

Consider first the second integral in (A. 19). This may be rewritten as 

f„expHV2) /« l ( ^ < t ) =f^xpHV2) /« l ( . < y ) 

= /°°dtexp(-i2 /2)^2, Jo V^ 
where P(x) = J v(dy). This integral is always finite. For the first integral we 
observe that as 

^( 1 - e X PH))=° ( 1 ) ' 
as y tends to infinity, this integral is finite near oo. The condition follows from the 
behavior of the first integral for y near zero. • 

Proof of Eqs. (101) and (102). 

We use the representation of the \& function given by (see Abramowitz and 
Stegun, page 259, 6.3.22) 

'OO „ — 2 — ZX /•oo e - z _ 
dz 

to evaluate the Laplace transform (100) at A = — iu and X = iu and multiply the 
results to obtain that 

/ tu 

<kn(p(t)/P(o))(u) =exp 
e J0 i - e-* V 2 / 

e x p f ^ z j - e x p f — ^ z ) ) d z 

\ 

/ 

The result follows on writing (1 - e~z)~l as a power series and integrating each 
term separately and simplifying. 

For the Levy measure we note that 

u2 + 

a f°° 
— = / dxa2e-ax(l - e-"2x) 
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so taking a = An, and summing over n we obtain: 

oo 

^ ( 4 n ) 2 e x p ( - 4 n a : ) = $"(a;) 

n=l 

where 

^^^-H^:^ , ) . n 
n = l 
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We present a family of hedging strategies for a European derivative security in a stochas­
tic volatility environment. The strategies are robust to specification of the volatility 
process and do not need a parametric description of it or estimation of the volatility risk 
premium. They allow the hedger to control the probability of hedging success according 
to risk aversion. The formula exploits the separation between the time-scale of asset 
price fluctuation (ticks) and the longer time-scale over which volatility fluctuates, that 
is, the observed "persistence" of volatility. We run simulations that demonstrate the 
effectiveness of the strategies over the classical Black—Scholes strategy. 

1. In t roduc t ion 

In this article, we present a family of hedging strategies for a European derivative 
security that super-replicate the claim with a controllable success probability, in a 
stochastic volatility environment. The strategy has the following features: 

• It is an approximate (asymptotic) solution to the problem, but as such, it is 
computable (we give an explicit formula). 

• It is based on a nonparametric description of the random volatility process of 
the underlying asset. Thus it is robust to specific modelling of the volatility 
(under technical restrictions). 

• It requires estimates of certain simple statistics of the volatility process that 
are easily obtained from historical asset price data. 

• It does not need identification (or estimation) of the volatility risk premium 
or the market's (equivalent martingale) pricing measure. 

The strategy is selected as follows: choose a minimum acceptable probability 
Po with which the strategy should dominate the perfect hedging strategy. Then, 
find the number of standard deviations p of a standard normal distribution whose 
confidence interval has this probability 

'Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, 
sircanSumich.edu. The author is grateful for conversations on the subject with George Papanico­
laou, to Hans Follmer for suggesting the particular hedging problem considered here, and partici­
pants of the Courant Finance Seminar for helpful questions and comments. 

147 

http://sircanSumich.edu


148 Quantitative Analysis in Financial Markets 

This is easily found in tables (for example, p = 1 corresponds to po = 67%, p = 2 to 
95%). Then the hedging strategy is given by formulas (15) and (20). Note that po 
is not the probability that the hedge is successful, but increasing po increases that 
probability. 

That the randomness of the volatility process (whose distribution is unspecified) 
translates into a family of hedging strategies that are distinguished simply by a 
normally distributed random variable comes from an application of the central limit 
theorem for Markov processes to the Black-Scholes derivative pricing PDE with 
a random volatility coefficient. That such a convenient characterization is a good 
approximation is due to the persistent nature (or burstiness) of volatility (in at least 
equity and F/X markets). 

The next section briefly sketches the background and motivation for stochastic 
volatility models. In Sec.3, we explain how volatility persistence is modelled here 
and how uncertainty in volatility translates into uncertainty in derivative prices and 
hedging strategies. Section 4 presents the main result which is illustrated by the 
simulations of Sec. 5. The issue of estimation, crucial for the theory to be applicable, 
is explained in Sec. 6, followed by conclusions. 

2. Why Stochastic Volatility? 

Several excellent survey articles, for example, Ref. 7 outline the main features 
of stochastic volatility modelling for derivative pricing, starting from the work of 
Hull and White8 in 1987. The stock price (or exchange rate) process {Xt,t > 0} 
satisfies 

dXt = itXtdt + atXtdWt, 

where {o-t,t > 0} is the stochastic volatility process. An overview of the usual 
approach as it relates to the work here is given in Ref. 13, and the important points 
are: 

• Empirical studies of stock price data strongly suggest volatility is not constant 
(as assumed by the Black-Scholes theory), but has a random component. 
ARCH/GARCH models, whose continuous-time diffusion limits are stochastic 
volatility models, provide much better descriptions of the data. See Ref. 2 for 
details. 

• Empirical studies of implied volatility data, for example, Ref. 12 report fre­
quent observation of the smile curve, a U-shaped variation of implied volatility 
with strike price for options with the same time-to-maturity. The minimum 
is at or near the current stock price. 

• Any stochastic volatility model in which the volatility process is independent 
of the Brownian motion Wt results in predicted European option prices whose 
implied volatility curve smiles, with minimum at today's stock price adjusted 
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by compound interest earned from today to expiration. See Ref. 11 or Ref. 13 
for a proof. 

• Most analysis and estimation is parametric: at is modelled as the solution to 
a particular Ito SDE. 

• A stochastic volatility environment is a simple example of an incomplete mar­
ket. As such there is no unique pricing (or equivalent martingale) measure 
and this indeterminacy can be characterized by an unknown process, labelled 
the volatility risk premium, playing a part in derivative pricing and hedging. 
Most usually this process is taken to be zero, sometimes a constant or a de­
terministic function of present volatility, the main reasons being feasibility of 
estimation or to preserve the Markovian structure. Here we shall not need to 
make such a choice, as explained in Sec. 3. 

We mention briefly some recent work related to the hedging problem considered 
here. The problem of almost sure super-replication is considered by Cvitanic et al.3 

(and authors referenced therein) by stochastic control methods. Such strategies 
that guarantee a successful hedge are usually expensive, which motivates Follmer 
and Leukert4 (and others cited there) to allow some risk of shortfall and look for 
a strategy that maximizes the probability of a successful hedge given some initial 
cash input that the hedger is willing to spend. This is explicitly computed in the 
constant volatility framework, and when volatility can jump by a random amount at 
a known time. Avellaneda et al.1 construct worst-case super-replicating strategies 
for complex portfolios of options given that volatility lies in a known band. 

3. Separation of Time-Scales 

Figure 1 shows two simulated realizations of possible volatility paths over the 
course of a year. In the first, volatility is low (4-8%) for a large part of that year 
(roughly t = 0.1 till t — 0.8 — over eight months) and then for the rest of the year 
it is at a higher level. In the second path, volatility fluctuates between periods of 
high and periods of low far more often — it seems to be low for a few weeks and 
then high for a few weeks, then low again, and so on. That is, often, when it is low, 
it stays low for a period, and similarly when it is high. 

Empirical studies suggest that the latter realization is a much more typical 
yearly volatility pattern than the former — it exhibits volatility clustering, or the 
tendency of high volatility to come in bursts. 

In fact, the sample paths of the second process can be obtained by simulating the 
first process for a much longer time (50 years) and squeezing the realization into one 
year. That is, the second process comes from speeding-up the first. Mathematically, 
if we call the first process {a(t),t > 0}, it is convenient to denote the second 
process {cr(|),t > 0}, where e > 0 is a dimensionless parameter that represents 
the speeding-up. Because volatility clustering is really a distinguishable feature, we 
shall think of £ as being small. 
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a = l 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time (years) 

Fig. 1. The top figure shows a simulated path of at = eYt, Yt a mean-reverting Ornstein-Uhlenbeck 
process defined by Eq. (2), with a = 1, and the bottom one shows a path with a = 50. Note how 
volatility "clusters" in the latter case. 

3.1 . Examples 

1. Suppose a(t) is a two-state Markov chain representing a crude model of 
volatility taking a high or a low state: a(t) € {cr i ,^}- Then if the generator 
matrix Q of the process has elements that are 0{1) in size (neither big nor small), 
for example, 

Q-(-l I). 

then a typical six-month sample path might look like the first graph of Fig. 2. 
However, if we consider such a process with a generator having large entries, for 
example, 

/ - 2 0 0 200 \ 

^ 800 -800 J ' 

then a typical path, shown in the bottom graph, gives a much better description of 
high volatility coming in bursts of a few days or weeks, rather than months. 

But notice that Q' = ^ Q , and that if a'(t) := <T(|) , with e = 0.01, then the 
generator of a'{t) is exactly this Q' = \Q. Thus the speeding-up notation cr(j) is a 
concise description of the fact that such a parametric model of volatility (and indeed 
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Fig. 2. The top figure shows a simulated path of <x(t) a two-state Markov chain, and the bottom 
one shows a path of a ( - ) , with e = 0.05. 

any Markovian model) contains some parameters that are small, if the model is to 
reflect clustering periods of lengths that are usually observed. In this representation, 
the "smallness" is controlled by the e. 

2. Suppose a{t) = f(Yt), where /(•) is a positive increasing function and Yt is a 
mean-reverting Ornstein-Uhlenbeck process: it satisfies 

dYt = a{m - Yt)dt + /3dZt. (2) 

The top graph of Fig. 1 shows a{t) for f(y) = ev (the expOU model), with pa­
rameters a = 1, 01 = 0.5 and m chosen so that the RMS volatility (or long-run 
mean level) is 10%. With these 0(1) values, we do not see significant volatility 
persistence. 

Now consider the speeded-up process (j( |) = f(Yt/£). The generator of the 
original Yt is 

dy d2y 
while the generator of Yt/e is 

re l
r
 ai L = - £ = — (m 

e e 
V'dy + 2 e d2y 

From this, we see that speeding-up Yt (and hence <?(£)) is analogous to replacing a 
by a/e and /3 by (3/y/e. That is, the rate of mean-reversion a is scaled by l/e with 
the noise factor j3 scaled correspondingly to keep fl2/2a constant. For example, if 
e = 1/50, we can simulate CT(|) by using a = 50 and 01 = 25 in (2). A realization 
of this process is shown in the bottom graph of Fig. 1, and again, it better captures 
volatility clustering. 
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In this context, it is then convenient to think of speeding-up as simply the 
presence of a large mean-reversion rate: there are always Ito fluctuations in the 
volatility from the Brownian motion Zt and it reverts slowly to its mean-level when 
looked at relative to this time-scale. But it reverts fast to the mean when looked at 
over the time-scale of a year. In the path shown, it crosses the mean-level over 30 
times during the year. This class of models is analyzed and estimated from market 
data in Refs. 5 and 6. 

3.2. Characterization in terms of time~scales 

In summary, there are three distinct time-scales in the modelling of the under­
lying asset price (or exchange rate) {X%,t > 0}, which satisfies 

dXl = iiXe
tdt + a (-) Xe

tdWt. (3) 

Firstly, there is the "infinitely small" scale of the "infinitely fast" fluctuations of 
the Brownian motion Wt. These model the tick-by-tick fluctuations of the price. 
The volatility process might also have a component fluctuating on this scale (for 
example, the Zt in the second example above). However there is a longer time-
scale representing volatility persistence which might be on the order of a few days 
or weeks (for example, the average mean-reversion time in the second example). 
These variations are slow in comparison to the tick-tick scale, but still fast when 
looked at over the lifetime of a derivative contract (many months) which is the long 
time-scale of our pricing or hedging problems. 

Brownian Volatility Option 

fluctuations <C fluctuations -C [0, T] 

~ minutes ~ days ~ months. 

Such a separation of scales is utilized by the asymptotic analysis of the next section. 

4. Hedging 

Suppose at time t = 0, we wish to hedge the risk of having written a European 
call option with strike price K and expiration date T on a stock by buying and 
selling only the underlying stock. The problem is to find a hedging strategy H(t, x) 
that gives the number of units of the underlying held at time t (when its price is 
x) so that at time T, when we might have to sell the stock to the option holder for 
price K, we break even or make a profit with high probability. 

In the complete market constant volatility case, a perfect (probability 1) break 
even hedging scheme is to hold CBS{t,x) units of stock (the delta), where CBS 

denotes the Black-Scholes formula. In the stochastic volatility case, the additional 
source of randomness cannot be exactly hedged by trading in just the stock, and so 
we look for strategies with a high probability of success. 
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4.1. Illustration of method 

To explain how we find such a strategy, consider first the simplified scenario in 
which the stock price has a deterministic volatility o\ (t) 

dXt = nXtdt + ai{t)XtdWt, 

but we hedge with the wrong deterministic volatility function ^ ( i ) . That is, we 
solve the (generalized) Black-Scholes PDE 

Q + -< r 2 ( i )VCU = 0, ... 
I _ (4) 

C(T,x) = (x-K)+, 

whose solution we denote C(t, x; [02]), and hold Cx(t, Xt; [CT2]) of the stock at time t. 
We take the interest rate r = 0 here, but our final formulas are given for the general 
case. At time t = 0, we put up the amount (5(0, Xo] [02]), the cost of the hedge. 
The value of the hedging portfolio Vt is 

Vt = C(0,X0; H ) + f Cx(s,Xs; [*2})dXs. 
Jo 

When the wrong volatility cr2(-) is used, the strategy is not self-financing and Vt 

may be negative at certain times. We assume we are willing to put up extra cash 
after t = 0 if the strategy demands it, but our profit/loss bookkeeping is with 
respect to the initial cost of the hedge. The question of interest is how close is VT 
to (XT ~ K)+, the payoff of the written claim? 

Following Ref. 9, we know that 

C(t,Xt; [<r2]) = C(0,Xo; [a2]) + f Cx(s,Xs; [a2})dXs 

Jo 

+ jT (ct{s, Xs; [«72]) + ^{sfXlC^s, Xs; [<r2])) ds, 

by Ito's lemma, and the last integral can be re-written as 
\ I M * ) 2 - <*2{s)2)X2

aCxx{s,Xs; [a2})ds, (5) 

using (4). This gives 

VT = (XT -K)+ + ±j (a2(s)2 - ffi(«)a)X.2Cxx(a> Xs] [a2})ds. 

Clearly, taking CT2 = ci hedges the claim perfectly. When oi(£) is a random 
process, we want to find a <r2(-) so that VT > (XT — K)+ with a high probability. 
This reduces to finding er2(-) such that 

i j f <J2(sfX2
sCxx(s,Xs-[o2])ds>± J <7i(*)2X.2exx(«,X.;H)da (6) 
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in some "best" way. This is a stochastic control type problem to find a volatility 
path that maximizes a probability and this is the approach of Refs. 3 and 4. To 
our knowledge, the exact solution is not easily computable, so we will look for a 
dominating solution: find o^O) such that (6) holds with high probability. 

The remaining ingredient is to characterize possible hedging strategies in a con­
venient way that translates uncertainty in the volatility into uncertainty in the 
final value VT- This is achieved by an asymptotic approximation that exploits the 
separation of time-scales. 

4.2. Asymptotic approximation 

We define the stochastic option price Ce(t,x) as the solution to the Black-
Scholes PDE with the random speeded-up volatility coefficient CT(|) from (3): 

c? + |«a(|)«ac^ = o, 
2 \sj xx (7) 

Ce(T,x) = (x-K)+. 

This can be thought of as a conditional Black-Scholes PDE with each realization 
of the process {C£(t,x),0 < t < T} a call option pricing function given the path 
of the volatility. As a(^) and Wt are independent, the derivation of this equation 
exactly follows the derivation of the classical Black-Scholes PDE. 

We are interested in the asymptotic behaviour of Ce as e \. 0: this approximation 
will tell us how to deal with the risk from the randomness of the volatility. We shall 
make the following assumptions on the process {a(t),t > 0} (which also hold after 
speeding-up): 

1. {cr2(t),t > 0} is wide-sense stationary: it has time-independent mean a2 := 
E{a2(t)} and its autocorrelation E{(a2(t) — <r2){a2(s) — a2)} is a function of 
\t — s\ only. 

2. It is ergodic and Markov. 

As e becomes smaller and smaller, the distinction between the time-scales dis­
appears and Ce(t,x) looks more and more like the Black-Scholes formula with a 
constant averaged volatility. This is a standard averaging principle result follow­
ing from the ergodic theorem. It says that Ce(t,x) converges in probability to 
CBS(t,x; Va2), the Black-Scholes formula with volatility v V , which satisfies the 
(averaged) PDE 

CBS + \a2x2CB
x
s =0, 

' 2 (8) 
CBS(T,x) = (x-K)+. 

That is, 

C£(t,x)-CBS(t,x;V<72) 

as e \. 0, for any 5 > 0. A proof is given in Ref. 13. 

P I sup sup 
\0<t<Tx>0 

>s 
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So far we have a crude approximation to possible prices under stochastic volatil­
ity by the Black-Scholes formula. What is of use is the next correction term, valid 
for small e > 0, that quantifies volatility risk. 

Let us write 
CE{t, x) = CBS(t, x; \[J2) + ViZ£{t, x), 

which defines the error term Ze(t,x). Then subtracting (8) from (7), we find that 
Ze(t,x) satisfies 

Ze(T,x)=0. 

We shall use two convergence results: the first is weak averaging for stochas­
tic differential equations which says that as s i 0, the solution to (3) with initial 
condition XQ = x converges weakly to the solution of the analogous SDE with the 
averaged volatility coefficient Vc 2 : 

dXt = nXtdt + V^XtdWt, (10) 

with the same starting value XQ == x, where {Wt,t > 0} is a standard Brownian 
motion. See, for example, Ref. 14 for a proof. 

This weak approximation of Xe by X can then be combined with the central 
limit theorem for Markov processes to show that the scaled fluctuation of the 
volatility process behaves weakly like the increment of a Brownian motion {Bt, t > 
0}: 

V(i)-*\ rMPr-*-'/ 7 / g(s,Xs)dB3, (11) 

for bounded non-anticipating functions g; see Ref. 10, for example. The Brownian 
motion Bt is standard and 7 contains the remaining trace of the original volatility 
process through the integral of its correlation function: 

/•OO 

7 2 = 2 / E{(a2(s) - a2)(<J2(0) - a2)}ds. (12) 
Jo 

It is shown in Ref. 13 that Ze(t,x) converges weakly to the Gaussian process 
Z(t, x) that satisfies the linear stochastic PDE 

dZt + \a2x2Zxxdt = - \1X
2C^dBt, (13) 

the limit equation of (9), with Z(T,x) = 0. Thus we have the approximation 

Ce(t, x) = CBS(t, x; V^2) + V^Z(t, x) + 0{e), (14) 
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for small e > 0: possible option prices are decomposed as the sum of a Black-
Scholes price and a normally distributed random function Z(t, x) no matter what 
the original volatility distribution. All that is left is 7 2 (known as the power spectral 
density at zero frequency of the volatility), a statistic whose estimation from data 
is considered in Sec. 6. 

Similar approximations are derived in Ref. 13 in the more general situation that 
volatility is of the form a(t, x), a function-space-valued random process. 

4.3. Hedging strategy 

How now does this representation help with the hedging problem? Motivated 
by the simple form of (14), let us look for a strategy H(t, x) that is the delta of a 
correction to the Black-Scholes delta with the averaged volatility coefficient: 

•<BS H(t, x) = C°s{t, x; Va2) + y/eFx(t, x). (15) 

To measure the performance of such strategies, it is convenient to define the 
effective volatility function Es(t, x). We want to write CBS(t, x; Va2) + ^/eF{t, x) 
as C(t, x; [Ee]), the solution to (4) with Ee(t, x) instead of a^it). Expanding E£(t, x) 
in the form v a2 plus correction, substituting into (4) and comparing powers of e 
gives 

E*(t,x) = J72- y/l C™F&X) + 0(e), 
x2Vc^CBS(t,x) 

where 
nBS d 1 - , 2 92 

L • m+ 2 dx2 • 

Now H(t,x) = Cx(t,x; [Ee]) and, given an initial cash input V^ (to be deter­
mined), the value of our hedging portfolio is 

Vt = V0+ fCx(s,X!;lE*})dXI 
Jo 

= V0- C(0, X0
E; [&]) + C(t, X$; [E£]) 

~\Sl (^ (^ " ̂ (S' **)2) ™ 2 a * ( s ' *•; [E£])ds' 
analogous to (5). Therefore, the final value is 

VT = V0- (CBS(0,XZ; y[J2) + VtF(0,X^)) + (X} - K)+ 

l(T(„2(S\ ^ • 2 r- ^BSF(s,XI) 

x(X!)2Cxx(s,X!)ds + 0(e). 
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So the replication error, which determines whether the strategy yields a profit or a 
loss is weakly approximated by 

VT - {Xe
T - K)+ = V0- (cBS(0, x; Va*) + ^F(0, z)) 

- v ^ ( £ CBSF(s,Xs)ds + pj\xs)
2C*x

s(s,Xs)dBs] 

+ 0(s), (16) 

where x = XQ, the observed current stock price, and we have used (11) and the weak 
approximation of Xe by X, the solution of (10), and that Cxx = C ^ f + 0 ( v

/ i ) within 
our region of asymptoticity. 

Let us choose V0 = CBS(0,x;\^) + y/eF(0,x), defined to be the cost of 
the hedge, and find an F that, with respect to the probability measure defined 
by the Brownian motion {Bt,t > 0} (on some abstract space to which we do not 
make specific reference) makes the combined last two terms positive, given the path 
otX. 

Suppose we knew the path of the average (Black-Scholes) stock price Xs,0 < 
s <T. Since 

J CBSF{s,Xs)ds + \ 1 j (Xs)
2CB

x
s(s,Xs)dBs 

is, given this path, a Gaussian random variable with mean M:=f0
1CBSF(s,Xs)ds 

and variance 

S2:=l2jo \{XtYCB
x
s{s,Xt?ds, 

our choice of F is based on a quantity that makes M negative (so that the average 
profit in (16) is positive). We also want — M to be a number p times the standard 
deviation S. We can then choose p > 0 depending on how much risk we are 
prepared to allow of the normal random variable exceeding that number of its 
standard deviations. 

First we solve 

cBSat,x) = -\<yx2c?x
s(t,x) 

C(T,i) = 0, 

and then taking (at time t = 0), 

F(t,x) = -£=C{t,x) (18) 

for some p > 0 (the number of standard deviations we want), we have 

Jo
TCBSF(s,Xs)ds ^^TJo

TX2CB
x
s(s,Xs)ds 

>pS. (19) 
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The last inequality follows from the Cauchy-Schwarz inequality 

for non-negative functions /(•) . 
Note that from (17) and (18), CBSF < 0 so that M < 0 and the average repli­

cation error is positive. Thus, with this choice of F, the replication error is weakly 
approximated by a random variable that, conditional on the path Xs,0 < s < T, 
is normal with mean p times the standard deviation. Because the convergence is 
weak, this cannot be translated into a result along almost all paths of the Brownian 
motion {Wt,t > 0}. Thus we can say the chosen hedging strategy dominates the 
perfect hedging strategy with B-probability (probability with respect to the limiting 
volatility fluctuation measure defined by Bt) along almost all paths of the average 
stock price X, but as the individual paths of X may not be close to the paths of 
Xe, we cannot make a precise quantification in terms of the joint law of Xs. The 
simulations of the next section will demonstrate the effectiveness of the strategy. 

In practice, p controls the lower bound on the risk: taking more standard de­
viations increases the probability of a successful hedge. Choosing p = 2 means the 
hedging strategy dominates the perfect strategy with 5-probability 95%. Again, 
we stress that this is probability on the space of paths of the limiting Brownian 
motion Bt. We expect that the hedge success probability will also be high although 
we cannot quantify it exactly. A higher p also increases the cost of the hedge, as 
seen from the choice of Vo above. 

It remains to compute F{t,x) by solving (17). Using the Green's function for 
the Black-Scholes PDE (see, for example, Ref. 13 and Appendix C), we find 

where L = log(x/K),r = T-t,a = r/a2 —1/2. This is the formula incorporating a 
non-zero interest rate r which was omitted from the equations so far for simplicity 
of presentation. 

The hedging strategy is given by (15), where 

ft- " ^ / ^ I?)" 7 M + 3 - \ ] »P I -»r -2TT(T2T\XJ \ <J2T a2 2) r \ 2a2T, 

(20) 

5. Simulat ions 

In this section, we demonstrate the effectiveness of the hedging strategy derived 
above by simulating many stock price paths in a stochastic volatility environment, 
and presenting profit/loss histograms with respect to these realizations. We simulate 



Hedging Under Stochastic Volatility 159 

(3) in which cr(t/e) is a rapidly fluctuating two-state Markov chain volatility process. 
This is not proposed as a realistic model of volatility, but we use it here to illustrate 
the performance of the asymptotic theory. 

We compare two alternative hedging strategies in the underlying stock, the first 
with the Black-Scholes strategy using the averaged volatility vcr2, in which the 
option writer holds CBS(t, X%) units of the stock at time t. The cost of the strategy 
is CBS(0, x), where x is the observed stock price at t = 0. 

The second strategy incorporates the asymptotic correction for the randomly 
fluctuating volatility: it involves holding H(t, X*) of the stock, where H is defined 
by (15), and we choose p = 1 in (18). That is, the strategy dominates the perfect 
hedging strategy with ^-probability 67%. The cost of this hedge is larger than the 
Black-Scholes hedge: it is CBS(0,x) + y/eF(0,x). 

In Fig. 3, we show the stock, volatility and hedging processes along a typical 
realization, and in Fig. 4 the profit-loss histograms from 3000 runs implementing 
the two strategies over the length of a 12-month (T = 1) contract with 200 equally 
spaced re-hedgings. The profits/losses are with respect to the different costs of each 
strategy. 

We see that the conservative second strategy yields profits much more often. On 
average, the profit is $3.19 with respect to the initial cost of $16.38. The Black-
Scholes strategy produces an average profit of $0.28 with respect to the lower cost 
of the strategy of $13.32. An even more successful strategy would be to take p = 2, 
for example, though of course the cost will be much higher. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.2 0.3 0.4 0.5 0.6 0.7 
TIME (years) 

Fig. 3. Stock price X\, volatility a(t/e) and hedging ratios along one path. The parameter values 
are e = 0.0005, p = \,K = 100, T = 1. Volatility is a two-state Markov chain with values 0.1 or 
0.4 and 7 = 1. In the bottom graph, the dotted line shows the asymptotics-adjusted hedging ratio 
H(t, X%) and the solid line is the Black-Scholes strategy C&s(t, Xt). 
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Black-Scholes Hedge 

Fig. 4. Profit/loss statistics of the two strategies from 3000 simulations using the parameter values 
listed in Fig. 3. The adjusted hedge is sucessful more often. Note that this does not imply an 
arbitrage as the cost of the second hedge is greater. 

6. Es t imat ion of Pa rame te r s 

We now present a simple algorithm to estimate a2 and e^2 using long-run histor­
ical stock price data. The method exploits the conditional lognormal distribution 
of Xf in the model (3). These are the only parameters needed in the asymptotic 
theory. 

Suppose we have discrete observations Xe(tn) of the stock price at evenly-spaced 
times tn = nAt, n = 0,...,N. Then, as Y£(t) := \ogX£(t) satisfies 

dY£(t) =L- \o2 (i\\dt + a (±\ dWt, 

the discrete increments of the logs of the observations satisfy 

Dn := Yn - yn_x = a ( ^ ) AWn + (/x - \o* (±J) 

where AW„ is a Af(0, At) random variable. 
Then the quantities 

1 N-k 
Mk:=^r—-Y,(Dn-Dn+kf, 

At, 

N-k 
7 1 = 1 

for k = 1 , . . . , N — 1, can be used to estimate a2 because 

E{Mk} = 2a2At + O (At3/2) , 

where we have used the stationarity of CT2(-). 
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Similarly, the quantities 

N-k 
Tk : = N-k ^ D^Dn+k 

7 1 = 1 

can be used to estimate the (non-centred) autocorrelation of a because 

E{Tk} = E L2 (^\ a2(0)\ At2 + O (At 5 / 2 ) , 

where we have used the fact that E{a2(t+h)a2(t)} depends only on h (second-order 
stationarity). 

From our observations, we calculate the empirical autocorrelation 

1 
Rk'-Afi »-;(£*)' 

The expected value of each Rk approximates the autocorrelation: 

E{Rk) = E { a 2 ( ^ ) <x2(0)} - (a 2 ) 2 + O ( A * 1 / 2 ) 

= E | [a2 ( ^ ) - A (*2(0) - a"2) X + O (A^2) . 

Then as 

1 *{(.'G)-*)(<' ,(o)-*)}<• 
= £ / E {(a2(s) - a2) (<r2(0) - a 2 )} ds 

Jo 

by a change of variable, it follows that twice the area under the curve obtained by 
interpolating the empirical autocorrelation {Rk} is an estimate of ej2. 

This procedure is tested on simulated data in Ref. 13 and practical issues (such 
as adaptation to non-evenly-spaced high-frequency data) are addressed there. We 
are presently working with real market data. 

7. Conclusions 

The hedging strategies computed here (distinguished by the number p(po)) dom­
inate the perfect hedging strategy (which depends on the realized volatility path) 
with -B-probability po- This approximate bound comes from two modelling features: 
separation of time-scales and the generality of studying the Black-Scholes pricing 
PDE with a random volatility coefficient, allowing the results to apply for a large 
class of possible stochastic volatility processes, with unspecified distribution. The 
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result is restricted to uncor rec ted volatility (no skew or leverage effect) which is 

realistic in F / X and some equity markets . The simulations demonstra te the effec­

tiveness of the p = 1 strategy, although a precise analytical quantification of the 

success probability is not possible because the asymptotic approximations converge 

weakly and not pathwise. 

Greater precision in the quantification of the risk of an unsuccessful hedge would 

require a more detailed (parametric) description of volatility and the market pricing 

measure. This is studied in Ref. 6. The separation of scales analysis then aids esti­

mat ion of the parameters of the model from S&P 500 index data . 

The major benefit of the asymptotic analysis is computability, and it is a topic 

of future work to apply it to the stochastic control problems tha t arise when one 

wants to maximize a probability over possible hedging strategies. 
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Using only the implied volatility smile of a single maturity T and an assumption of 
path-independence, we analytically determine the risk-neutral stock price process and 
the local volatility surface up to an arbitrary horizon T ' > T. Our path-independence 
assumption requires that each positive future stock price St is a function of only time 
t and the level Wt of the driving standard Brownian motion (SBM) for all t € (0,T"). 
Using the T-maturity option prices, we identify this stock pricing function and thereby 
analytically determine the risk-neutral process for stock prices. Our path-independence 
assumption also implies that local volatility is a function of the stock price and time which 
can be explicitly represented in terms of the known stock pricing function. Finally, we 
derive analytic valuation formulae for standard and exotic options which are consistent 
with the observed T-maturity smile. 

Keywords: Option pricing, implied volatility arbitrage pricing theory, path-indepen­
dence. 

1. Introduction 

The Black-Scholes model can be described as an ambitious attempt to explain 
the prices of all standard and exotic options using only a single parameter for each 
underlying. It is well-known that this volatility parameter can either be estimated 
from historical spot prices or implied from the price of a single option. In general, 
the latter approach is preferred in practice since it is "forward-looking" and at least 
partially captures model error, albeit crudely. When an option price is used to 
imply volatility, all standard and exotic options on the same underlying are valued 
using a risk-neutral probability measure consistent with the price of this option, as 
well as with the prices of the primitive assets. 

The persistence of a volatility smile in options markets has lead to several pro­
posed alternatives to the standard Black-Scholes model. For example, modeling the 
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price of the underlying as a CEV process,3 a displaced diffusion,6 or as a call price 
itself,9 have all been proposed as parsimonious generalizations of the Black-Scholes 
model which retain the model's analytic flavor. All of these approaches introduce 
an additional parameter and thus require at least two options for calibration. 

Continuing the trend of expanding the set of basis options, Rubinstein17 intro­
duced the implied tree approach which values claims relative to standard options 
with strikes at every terminal node in a binomial tree. In his framework, standard 
options of any nearer maturity and exotic options are valued using a risk-neutral 
measure consistent with the prices of the primitive assets and of all options of 
the terminal maturity. Further continuing the trend of expanding the set of basis 
options, Derman and Kani6 use standard options with strikes and maturities cor­
responding to every node in their implied tree. Similarly, working in a continuous 
setting, Dupire8 requires a continuum of strikes and maturities. Since all standard 
option prices are used in the specification of the risk-neutral process, these last two 
approaches can only be used to determine the values of exotic options. 

The expansion of the set of assets used to determine the risk-neutral measure 
has the important theoretical advantage of generating consistency with a wider set 
of assets and allowing weaker assumptions on the stochastic process governing the 
underlying spot prices. When all strikes and maturities are used as in Dupire, the 
diffusion coefficient can be any reasonable function of the contemporaneous spot 
price and time. Furthermore, this diffusion coefficient, which is termed the local 
volatility, need not be specified ex ante, since it can be analytically determined from 
the double continuum of European option prices. 

One obvious drawback of these more recent developments is the requirement of 
an option strike and maturity for every price and time at which dynamic trading 
is possible. For listed stock options, the minimum distance between strikes and 
maturities is $5 and one month respectively. Consequently, interpolation is required 
to implement these approaches in the equity case. Furthermore, extrapolation is 
always required both from the last maturity out to perpetuity and from the nearest 
maturity in to the initial time. When implemented naively, these interpolations or 
extrapolations can engender option price quotes which are not arbitrage-free. 

A second drawback associated with the expansion of the set of basis options is 
the comparative silence of these models regarding mis-pricings of standard options. 
Although the models require that the input option prices be arbitrage-free, these 
models blithely accept option prices inconsistent with any reasonable equilibrium 
framework. Since options markets are often illiquid and options' prices have wide bid 
ask spreads, the expansion of the set of basis options to all strikes and maturities 
can often induce model mis-specification. To illustrate this point, note that all 
of the above models embed the Black-Scholes model as a special case. Thus, in 
the unlikely event that the spot price actually does follow geometric Brownian 
motion, the incorporation of noisy option prices into the determination of the risk-
neutral measure will lead to incorrect valuations of any remaining options. In 
fact, empirical evidence supporting this observation in the case of Dupire's local 
volatility model has been recently promulgated by Dumas, Fleming, and Whaley.7 
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Even if the spot price follows a more complicated stochastic process than geometric 
Brownian motion, certain models may not permit independent specification of initial 
option prices at every strike and maturity. For example, if Rubinstein's implied tree 
describes the actual underlying spot price, then intermediate maturity option values 
are determined by the model. If the market prices of these options differ from the 
implied tree value for any reason, then incorporating these option prices into the 
determination of the risk-neutral process will result in mis-pricing, both for these 
options and exotic options. 

In general, the quantity and quality of the options data should determine the 
appropriate tension between ex-ante process specification on the one hand and cal­
ibration to market prices on the other. The purpose of this paper is to propose an 
analytic and arbitrage-free approach to option valuation when only one maturity is 
liquid. Working in a continuous setting, we assume as in Rubinstein that one can 
observe option prices of all strikes maturing at some common expiration T. 

In order to determine the entire local volatility surface out to an arbitrarily 
distant date, we further assume that each positive future spot price St depends 
only on the contemporaneous level Wt of the driving standard Brownian motion 
(SBM) and not on its path. This path-independence property was also assumed by 
Black and Scholes, who further assumed that St is an exponential function of Wt? 
In contrast to Black-Scholes, we infer this spot pricing function as a consequence of 
our three primary assumptions, namely path-independence, no arbitrage, and the 
liquidity of the T-maturity options. 

In contrast to the primary assumption of the Black-Scholes model, stock prices 
sometimes hit zero in reality. To allow for this contingency, we allow for the possibil­
ity of an absorbing lower barrier on the standard Brownian motion (SBM) and as­
sume that the stock pricing function evaluates to zero along this boundary.13 For ana­
lytic tractability, we restrict attention to boundaries for the SBM which are constant 
over time.c Given our path-independence assumption, both the stock pricing func­
tion and the constant absorbing boundary can be inferred from the option prices. 
For underlyings such as commodities and currencies, future spot prices of zero are 
generally considered impossible and in this case, the option prices will imply that 
the absorbing barrier for the SBM is negative infinity. Whether or not bankruptcy 
can occur, we characterize the entire class of risk-neutral path-independent stock 
price processes, which vanish when the driving SBM hits a constant lower boundary 
(possibly negative infinity) and which can be supported over an arbitrarily long time 
horizon. We also identify the unique member of this class consistent with the option 
prices observed at maturity T. Once the stock price becomes a known function of the 
driving SBM, the stock price process inherits the analytical tractability of this SBM. 

a I n a second model, they instead assumed that the spot is a call on the assets of the firm, and 
thus a different function of the SBM. 

Our model can be generalized to allow for the possibility that option prices imply a positive 
liquidation value in bankruptcy. 
c I t would be straightforward to consider linear boundaries. 
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For example, the probability density function (PDF) for the first passage time (if 
any) of the stock price to the origin is just the known PDF for the first passage 
time of SBM to its absorbing barrier. 

Our path-independence assumption also implies that local volatility is a function 
of stock price and time which can be explicitly represented in terms of the known 
stock pricing function. Consequently, we can generate the entire local volatility 
surface from the observation time out to an arbitrary date occuring after the last 
maturity. We also show that our path-independence assumption implies that local 
volatility satisfies a new non-linear partial differential equation (PDE). Conversely, 
we show that if the local volatility function satisfies this PDE, then spot prices are 
path-independent and we provide the map transforming spot prices into the SBM. 

Given that spot prices are path-independent, or equivalently that local volatility 
has the required form, we derive analytic formulas relating the values of standard 
and exotic options to the contemporaneous spot price and time. These analytic 
formulas exist for a wide range of volatility surfaces and as in Rubinstein, the 
values are fully consistent with the liquid option prices at maturity T. In fact, 
our results may be characterized as analytically extending Rubinstein's results to 
continuous-time diffusion processes, and to the valuation of options maturing both 
after and before T. 

The outline for this paper is as follows. The next section shows how the twin 
assumptions of path-independence (PI) and no arbitrage (NA) lead to a simple linear 
PDE governing the spot pricing function and how the T-maturity option prices 
determine the spot pricing function at time T. We present the general solution 
to this problem and illustrate it with a simple example. The next section shows 
how PI and NA also determine the volatility function in terms of the known stock 
pricing function. We show that our volatility function satisfies a fully non-linear 
PDE. We also present a converse result showing that the non-linear PDE is both a 
necessary and sufficient condition for prices to be path-independent. Assuming that 
spot prices are path-independent, or equivalently that local volatility solves the non­
linear PDE, the penultimate section shows how to analytically determine the pricing 
functions for path-independent standard and exotic options of any maturity. A final 
section summarizes and discusses extensions. Tedious derivations are banished to 
the appendices. 

2. The Stock Pricing Function 

2.1 . Assumptions and PDE 

We assume that European options of a fixed maturity T > 0 and their underlying 
asset (termed the stock) trade in a frictionless market with no arbitrage (NA). We 
assume that the initial stock price is positive and also assume that the limited 
liability of the stock induces absorption of the stock price at the origin. We let T 
denote the first passage time of the stock price to the origin, if any.d To determine 

dIf the stock price never hits the origin as in the Black-Scholes model, then we set T = oo. 
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volatility surfaces and option values out to some arbitrary fixed horizon T" G [T, oo), 
we assume that the stock price process is path-independent (PI). More specifically, 
we assume that over the horizon [0 ,T 'Ar] , each future spot price St is related to 
the contemporaneous level Bt of the driving standard Brownian motion (SBM) and 
time t by a non-negativee C2 '1 function s(x,t),x € 5ft, t € [0,T'] 

St = s(Bt,t), tG[0,T'AT}. (1) 

Our assumption of a positive initial stock price implies s(0,0) = SoO. We will later 
show that NA and PI imply that s(x, t) is increasing in x £ 3? for each t £ [0,T"]. 
Thus, for each t, there exists at most one root Lt S (—oo, 0) of the stock pricing 
function 

s(Lt,t)=0, t e [ 0 , T ' ] . 

For analytic tractability, we restrict attention to the class of stock pricing functions 
such that the lower liquidation boundary* Lt is constant at L over time. 

By Ito's lemma, the spot price dynamics can be written as: 

dSt 

ds 1 d2s ds 
dt + —(Bt,t)dBt, t€[0,TAT'). (2) 

Since we can invert (1) for Bt, (2) implies that both the drift and diffusion coef­
ficients are functions b(S, t) and u(S, t) of only the spot price S and the calendar 
time t. Thus, over the time interval ( 0 , T A T"), the stock price process is Markov 
in the pair (Bt,t) or in the pair (St,t). 

For simplicity, we assume a constant riskless rate r > 0 and a constant divi­
dend yield q > 0 from the stock. Under these assumptions, it is well-known that 
there exists a unique "risk-neutral" probability measure Q, which is defined by the 
following spot price dynamics 

dSt = (r - q)Stdt + a(St,t)StdWt, i £ [ 0 , T A f ] , (3) 

where W is a Q-SBM. Letting W£ denote SBM absorbing at a fixed L < 0, (1) and 
(2) may be re-written as 

St = s{W?,t), tG[0,T'}, (4) 

and 

dSt = |w.') + i£w,«) ds 
dt+—(Wt

a,t)dWt
a, tG[0,T'}. (5) 

Equating coefficients on dt in (3) and (5) and using (4) gives a partial differential 
equation (PDE) for s(x, t) 

ds 1 d2s 
di{x,t) + 2d~x^{x,t) = ( r ' " - ' W * ' * ) ' *S[0 ,T ' ] , x > L , (6) 

eFor options on underlyings which can go negative (e.g., spread options), this assumption can be 
dropped. 
If there is no root, we set the liquidation boundary L = — oo. 
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subject to the boundary conditions 

and 

l i m s ( x , i ) = 0 , te[0,T'], 
x\.L 

lira s(x,t) = o(ex), te[0,T']. 
a;foo 

(7) 

(8) 

The last boundary condition ensures that the payoff is integrable. 

2.2. Implied stock payoff function 

This subsection show how our assumption of path-independence can be com­
bined with the implied volatility smile at maturity T to determine the stock pric­
ing function at T, s(x,T) = f(x). Using the Black-Scholes formula, the implied 
volatility smile can be converted to the strike structure of T-maturity option prices. 
Ross15 and Breeden and Litzenberger2 have pointed out that differentiating this 
strike structure twice and future-valuing yields the "risk-neutral" probability den­
sity for the future stock price. Interpreting this density as arising from a change 
of variables of the known density describing future levels of an absorbing SBM will 
yield the desired stock payoff function f(x). 

To operationalize these observations in our continuous context, we assume that 
a continuum of T-maturity put prices {Po(K), K > 0}, are observable. We further 
assume that these prices are given by a C2 function, which by the absence of 
arbitrage must be positive, upward sloping, and convex. Let Pk(K) = limAKio 
-*"— Air — denote the observed slope in strike at K, which is also the value 
of an infinitesimal vertical spread struck at K. Given our path-independence as­
sumption, the following relationship exists between this vertical spread and the 
inverse of the implied spot payoff, f~x{K) 

„rTi 

•{K)=L 
r\K) 1 

V2TTT 
exp • - ( — 

2 \VT 

exp dz, K > 0, (9) 
1 (z-2LY 

n VT ) 
since the integrand is the risk-neutral probability density for SBM absorbing at L. 
Solving the LHS for K gives the implied payoff function 

/ ( * ) 

= Pk1<* 

-N 

-rT N 

V2TTT 
exp 

N 

nvr) 

Vf 

— exp 
1 I z 
2 

2V 

VT J 
• dz 

;-2L 
•N ( 7 f ) ] } ' X>L> 

(10) 

-*-72 where N(d) = J_ e
 /— dz is the standard normal distribution function. 
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Since Pk is a positive increasing function of K, P^1 is a positive increasing 
function of its argument. Since the argument of P^1 is increasing in x for x > L, 
it follows that f(x) is a positive increasing function on this domain. If f(x) = 0 for 
x less than some point, then we identify this point as the lower liquidation level L. 

2.3. Solving for the stock pricing function 

If one is interested in obtaining the stock pricing function on the time interval 
[0,T), then the Feynman-Kac theorem can be used to find the continuous solution 
to the BVP consisting of the PDE (6) with t £ [0,T), the boundary conditions (7) 
and (8), and the terminal condition /(•) determined in (10) 

s{x,t) = e-^-^T^E%[f{WT)l{r > T)], x > L, t e [0,T A T ] , (11) 

where {Wu;ti £ [t, T]} is a Q-SBM starting at x. Since /(•) is a positive increasing 
function of x, so is s(x, t) for each t. 

We now consider the determination of the stock pricing function on the time 
interval [0, T"), where T' >T can be arbitrarily large. If we can obtain the horizon 
payoff at T" from /(•) , then we can again use the Feynman-Kac theorem to represent 
the solution on [0, T"). It is tempting to write 

i" 

L ^2n(T> - T) exp 2 \y/T'-T 

exp 
1 ( z — x • 

2 V y/T~-
2L 

• g(z)dz,x > L (12) 

as an implicit definition for the horizon payoff g(-) arising at T"'. Since f(x) 

ei.
r-i)(T -T) j s a convolution of the transition density of absorbing SBM with g(z) 

l(z > L), Fourier transforms can be used to explicitly express g(-) in terms of /(•) . 
However, this formulation may be ill-posed in that there is no result on the exis­
tence of g(-). To appreciate that this is not merely a technical concern, suppose 
that f(x) described the value at T of a call on the SBM paying (WM — K)+ at 
some date M fixed strictly between T and T"'. Then it will be impossible to ob­
tain the stock pricing function for any time after M. On the other hand, in the 
Black-Scholes model, an implied payoff/(x) = S0e^r~q~2T^T+'rWT would generate 
a horizon payoff g(z) = 5 0 e ( r - « - ^ ) T ' + C T ^ ' for any V >T without difficulty. 

Thus, the question arises as to whether there exist other processes besides geo­
metric Brownian motion which are sustainable over an arbitrarily long horizon. 
Fortunately, an extension of a result of Robbins and Siegmund14 (see Karatzas and 
Shreve,12 p. 262) proves that the entire set of non-negative functions (f>(z,t) which 
satisfy the backward diffusion equation -^(z,t) + \^-{z,i) = 0 on the half plane 
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(0, oo) x 3ft subject to: 

lim<£(0,*) = l , lim (f>(0, t) = 0 , and lim Mz, t) = 0 , 
tlO tfoo zl—oo 

lim 4>(z, t) = oo, 0 < t < oo, 
zfoo 

are given by 
/•oo 2 

e^-^dGiO), (13) #*,*) = / 
JO 

where G{6) is a distribution function with G(oo) = 1 and G(0+) = 0. Surprisingly, 
the process cf>(Wt,t),t > 0 is just the familiar geometric Brownian motion for the 
futures price relative jf, where the volatility parameter has been randomized8 by 
a probability measure G defined on 3?+. 

Adapting these results to a stock price process with absorption at zero, Ap­
pendix 1 proves that the entire set of stock pricing functions s(x, t) which vanish 
at x = L, are positive, increasing, and unbounded in x on x > L, and which satisfy 
the PDE (6) for x > L and t € (0, oo) are given by 

s(x,t) = Soe™£ " ^ ^ ^ e - * d G V ) , x > L, t e (0,3*), (14) 

where sinh(a;) = S-J=j—. Assuming that G(-) is the distribution function of a 
continuous random variable with a probability density fuction G'{6), evaluation of 
(14) at t = T relates the implied stock payoff / (#) to the density function G'(6): 

s(x, T) = f(x) = S t e w f° ^ " 7-f K-^&^dB, x > L. (15) 
J0 sinn[-0L] 

Appendix 1 proves that for any function f(x) such that f(x)e~x is L1, a unique 
density function G'(0) exists which satisfies (15). Appendix 1 also shows how to 
invert (15) to obtain this density function G'(8) from the known implied payoff/(x) 

G'(6) = < 

VT sinh(-flL) r ~ iueVT+£ p p 

Soeir-W 7 r v ^ F _ / _ J_ 

OO 
ILJZ— -

-OO 

x f(L + zVT)dzdu) if 6 > 0 ; ^16^ 

0 if 6 < 0. 

Thus, the stock pricing function s{x,t) is given by substituting (16) in (14): 

s Thi s randomized process would describe the futures price relative in a filtering context if the 
futures price process were assumed to be geometric Brownian motion with an unknown positive 
volatility. 
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e-(r-q)(T-t) foo f 
JO 

sinh[#(a; - L)]e 2 7 
j—< 

-iueVT+^T-

TTy/2lT/T 

/

OO 2 

eiuz-^f{L + zVf)dzdujde 
-OO 

27T J . , , , , V-oo 

x e * " - V / ( L + zVf)[N(yt) - N(-yt)]dzcLj , (17) 

for x > L,t e (0,T'), where j / t = x~L^fv^ and T' > T is finite but can be 
arbitrarily large. For certain specifications of the implied payoff function /(•) , both 
integrals in (17) can be done analytically, as the next subsection demonstrates. 
It can be shown that s(x, t) is a positive increasing function of x on x > L and 
t € (0,T"). The horizon payoff is obtained by evaluating s(x, t) at t = T" 

g(x) = s(x,T') = ^ " ^ J e~^~ j ^ e ^ " 

x f(L + zVT)[N(yT>) - N{-yT>)]dzduj . (18) 

Furthermore, the risk-neutral process is given by St = s(W^,t),t > (0,T"), where 
recall that W4

a is SBM absorbing at a fixed L < 0. 

2.4. Example 

We now illustrate our result with a simple example. Suppose that the initial 
T-maturity option prices are such that vertical spreads have the form 

erTPk 

* * = ! 
< * > = / , 

Hf)+L 

— exp 

V2TTT 

\fz-2L 
2 

exp 2 \VT 

Then from (9) 

Inverting this function 

m = 

' sinh"1 / 5 \ 
< a {/3j 

•dz, K > 0. (19) 

+ L if S > 0; 

if S < 0. 

/3 sinh[a(a; — L)] if x > L; 

v 0 if x < L. 

Figure 1 graphs the implied payoff function and its inverse. 

(20) 

file:///fz-2L
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Tht Stack Payoff Function, L»-4,a..1,S0-100.T. 

Standard Brownian Motion 

Fig. 1. The implied stock payoff function and its inverse. 

Using (16), we obtain that 

G'(6)=5(9-a), (21) 

where S(-) is Dirac's delta function. Substituting (21) into (18) implies that 

s(x, T') = g(x) = 0 sinh[a(a; - L)]. (22) 

The solution of (6) subject to (7), (8), and (22) is 

s(x, t) = ffer*W-f) s i n h [ a ( x _ i ) ] f te[0,T'}, x>L, (23) 

where fi = r — q — a2/2. Setting s(0,0) = So implies 

0 = S0eMT' csch(-aL) , (24) 

where csch(a;) = gi wa\ • Hence from (23) 

s(x, t) = 50c"* csch(-aL) sinh[a(a; -L)], t € [0, T'}. (25) 

Figure 2 graphs this stock pricing function against the driving SBM and time. For 
each time, the stock price is an increasing convex function of the SBM, although 
the slope and convexity are larger than in the Black-Scholes model. The volatility 
surface corresponding to the risk-neutral process St = S'oeA'tcsch(—aL) smh.[a(W£ — 
L)],t 6 [0, T"] is determined in the next section. 

3. Local Volatility 

The next subsection shows how the local volatility can be represented in terms 
of the known stock pricing function derived in the last section from the given im­
plied volatility smile. The following subsection illustrates our results with the same 
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Spot Price vs SBM and Time 
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Fig. 2. The stock pricing function. 

example developed in the last section. The last subsection shows that our volatility 
function <r(S, t) satisfies a certain non-linear PDE. Conversely, it shows that if the 
local volatility function satisfies the non-linear PDE, then the stock price process is 
path-independent and the stock pricing function can be determined. 

3.1. The local volatility surface 

Since the stock pricing function s(x,t) is increasing in x on x > L, it can be 
inverted for x = s _ 1 (5 , t). Equating coefficients on dW" in (2) and (3) determines 
local volatility a(S,t) in terms of this inverse and §§(#, t): 

1 Bt 
a(S,t)^- — {s-1(S,t),t), tG[0,T'},xGR. (26) 

Since s(-,t) is increasing in x for each t, cr(S,t) is positive. Local volatility is an 
explicit function of S and t if sx(x, t), and s~1(S,t) can both be written explicitly 
in terms of their arguments. We have thus shown that the path-independence 
assumption combined with the T-maturity implied smile fully determines the local 
volatility surface. By evaluating the function cr(S, t) at historical spot prices and 
times, the theory can be tested using historical local volatilities. 
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3.2. Example 

To illustrate our results, again suppose that T-maturity option prices satisfy 
(19), so that the stock pricing function is given in (23). Differentiating (23) w.r.t. x 
implies that 

sx(x,t) = ape^1"^ cosh[a(a; - L)}, 

where cosh(a;) = ^—^—. Multiplying and dividing by sinh[a(a; — L)] gives 

sx(x,t) = aS coth[a(z - L)}, t£ (0, T1), 

from (23), where coth(x) = f^wft- Inverting (23) w.r.t. x implies that 

a \f3' 

Substituting (28) and (29) in (26) determines the local volatility surface 

a(S, t) = a coth 3 i n h - ! ( | e , ( T < - , ) 
t 6 ( 0 , 1 " ) , 

where /?' is given in (24). Figure 3 graphs this local volatility surface. 
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Fig. 3. The local volatility surface. 
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To understand the behavior of this local volatility as a function of the stock 
price, note that the stock pricing function is proportional to sinh[a(a; — L)], which 
behaves linearly in x for x near L and exponentially in ax for x large. Thus at 
each future date, the volatility smile is approximately hyperbolic in S ("normal 
volatility") for S near zero, while it is asymptoting to the constant a ("lognormal 
volatility") for S high. Mathematically, as SI 0 in (30), sinh_1(-) I 0, coth(-) t °°, 
as does volatility. Conversely, as 5 t oo in (30), sinh_1(-) f oo,coth(-) | 1, and 
volatility asymptotes to a. As S increases from 0 to oo, the volatility smile slopes 
downward in a convex fashion. 

To understand the behavior of this local volatility as a function of the future 
time t, substitute /3' given in (24) into (30) 

a(S, t) = a coth sinh-1 (S(jJT,_t) s inh( -aL) ) , t e [0,T'). (31) 

Thus, along the path S — Soe^T ~*\ volatility is constant at acoth(—aL). Thus, 
just as a controls the asymptotic height of the volatility smile, the parameter L 
controls this "at-the-money" volatility. For fixed So, as L J, —oo, coth(-) f 1 and 
at-the-money volatility approaches a. Conversely, as L t 0, coth(-) f oo as does 
volatility. Thus, in our model, the more likely is bankruptcy, the greater is the 
relative volatility perhaps due to shareholders' greater willingness to gamble. 

As the terminal time T' approaches infinity, then for any fixed level of S, the 
terminal volatility smile <r(S, T') asymptotes down to a if // < 0 and becomes 
unbounded above if // > 0. Since fi = r — q — a2/2 is increasing in the risk-neutral 
drift r — q, it appears counter-intuitive that raising /J, from a negative value to a 
positive one would raise asymptotic volatility from a to infinity. The explanation 
is that along a fixed stock price path, shifting fi from a negative value to a positive 
value lowers the corresponding path of the driving SBM, making bankruptcy more 
likely. 

3.3. PDE and converse 

Using (26) as a change of variables in (6), Appendix 2 proves that cr(S,t) obeys 
the following non-linear PDEh 

(T2(S,t)S2 d2a(S,t) , - N1 

xS^(S,t) + ^(S,t) = 0, S>0,t£(0,T'). (32) 

Setting t = T" in (26), the T'-maturity (local) volatility smile is 

a(S, T') = g , ( g
5

( 5 ) ) = v(S), 5 > 0, (33) 

"If the local volatility of the spot price S is modeled as a function of the T'—maturity forward 
price F instead of 5 , then PDE (32) is altered by replacing F with S and setting r = q = 0. 
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where g'(x) and g^1(S) are determined by respectively differentiating and inverting 
g{x), determined in (18). Since ^(a:) is an increasing function for x > L, g~1(S) is 
well-defined for S > 0 and cr(S, T') is positive. Equation (26) represents a class of 
solutions of the non-linear PDE (32) subject to (33). 

We have seen that the assumptions of path-independence and no arbitrage imply 
that the volatility function satisfies a fully non-linear PDE with a known solution 
class. Conversely, Appendix 3 proves that if a given local volatility function cr(S, t) 
satisfies the non-linear PDE (33), then the stock price is path-independent. The 
stock pricing function s(x,t) is given by (12), where the horizon payoff g(S) is still 
given by (18). Alternatively, Appendix 4 proves that the implied payoff can be 
determined from the T-maturity local volatility smile v(S) = a(S, T) 

f{x)=I-\x + c0), x€&, 

where 

- ff X 
dS, / > 0 , 

and Co and c\ are constants. Finally, Appendix 3 shows that the inverse of the stock 
pricing function is given by 

i-S i t-t 

'M- lw*+ l id_ 
2 8S 

[a(S,u)S] ( r - g ) 
S=So a(S0,u) 

du. 

5 > 0 , t€[0,T']-

4. Pricing Path-Independent Options 

The next subsection derives explicit valuation formulas for standard options 
and risk-neutral densities of any maturity under a wide class of volatility functions 
consistent with the given smile and path-independence. The following subsection 
illustrates our results with our running example. The final section shows how the 
driving Brownian motion and the local volatility can each be interpreted as a path-
independent exotic option written on the stock price. 

4.1. Standard options 

To value European calls of some intermediate maturity M £ [0, T"] in terms of 
the contemporaneous spot price, we first determine the function 7(2;, t) relating the 
call value to the SBM Wt and time t. By Ito's lemma, this pricing function solves 

l d 2 7 , <?7 
--^(x,t) + -^(x,t) = n(x,t), x>L, te(o,M), (34) 

subject to the boundary conditions 

lim7(o;, t) = 0, lim 7 ( z , t) = s(x, t)e~^M-^ - Ke~^M-^ , t € [0, T ] , 
x\.L ajfoo 

(35) 
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where K > 0 is the call strike, and subject to the terminal condition 

l(x,M) = [s(x,M)-K}+, x>L. (36) 

By the Feynman-Kac theorem, the continuous solution to this BVP is 

1{x,t) = e-<M-VE%[s(WM,M)-K\+, x > L, t G [0,M A T ) , (37) 

where {Wu,u G [*,M]} is a Q-SBM starting at x at time t. Equation (37) relates 
the call value to the SBM Wt and time t. To instead relate the call value to the 
stock price and time, let c(S,t) = i{x,t) in (37), where x = s~1(S,t) 

c(S,t) -r(M-t) L [s{zM)-KY 
L y/27T(M - t) 

exp 
1 (z-s-l(S,t) 

exp - 5 

1 (z + s-1(S,t)-2L 

y/W^t 
dz, (38) 

for S > 0,t £ [0, M A T) . This solution will be an explicit function of S and t if 
s~1(S, t) can be written explicitly in terms of its arguments. 

Differentiating (38) twice w.r.t. strike gives the implied risk neutral probability 
that the stock price is at K at time M, given that the stock is at S at time t. 
Alternatively, the change of variables S = s(x, t) for the absorbing SBM transition 
density expresses this probability as 

q(Z,M;S,t) 
yj2-K{M - t) exp' 

s-1(Z,M)-s-1(S,t) 

VM=t 

exp - -
s-1{Z,M) + s-1(S,t) 

yfEjr-i 

ds-

ds 
(Z,M), 

S>0, t G [0, M). (39) 

The density will be positive only if s~1(S, M) is increasing in S and it will be explicit 
in Z only if s~x{Z, M) is explicit in Z. 

An alternative derivation of the call pricing function C(S, t), S > 0, t G [0, MAr) 
is obtained by integrating its payoff (S — K)+ against this density, and discounting 
at the riskfree rate 

C(S,t;K,M) 

/•oc 
-r(M-t) I 

JK 

Z-K 
= e 

y/2-K(M - t) e x p < - ; 

s-1{Z,M)-s-1(S,t) 

y/W^t 

- e x p - -
1 \s-1(Z,M) + s-1(S,t) 

yfW=l 
ds-

ds 
•{Z,M)dZ. (40) 
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To the extent that markets for intermediate maturity calls exist, our theory can be 
tested in the usual manner by comparing market prices with model values, obtained 
from either (38) or (40). To obtain an initial implied volatility surface, one must 
numerically solve cBs(S0,0, Oi(K, M); K, M) = c(S0,0; K, M) for cn(K, M) at each 
K > 0 and M G (0,T'), where cBs(S,t,(Ti;K,M) is the Black-Scholes call pricing 
formula. 

4.2. Example 

To illustrate our results, suppose again that T-maturity option prices satisfy 
(19), so that the stock pricing function is given by (23) and the inverse of this 
function is given in (29). Evaluating this inverse at (S,t) = (Z,M) yields 

s-\Z,M) = L+ ^ ^ (~e^T'-M) 

a \(3' 

Differentiating w.r.t the first argument yields 

(41) 

ds-
8S 

•(Z,M) = 
Cty/Z2 + (/?')2e-2M(T'-M) ' 

(42) 

Substituting (41), (29), and (42) in (39) implies that the risk-neutral stock pricing 
density is 

q(Z,M;S,t) = 
^2ir(M - 1 ) 

x < exp < 

sinh" 
/3' 

e M ( T ' - M ) 1 | _ s i n h - l f | . e M ( T ' - t ) 

a^/M-t 

-> 2 

— exp < 

sinh"1 ( ^ T ' - M A + s i n h - 1 ( J ^ T ' - < ) 

a^M-t 

2\ 

a^Z2 + (/3')2e-2^(T'-M) ' 
(43) 

for S > 0, t G [0, M A T) . Figure 4 graphs this density (termed the arcsinhnormal) 
against the future spot price and time. The downward sloping volatility surface 
graphed in Fig. 3 cancels much of the positive skewness of the lognormal density 
leading to a close approximation of a Gaussian density. 
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Arcsinlinormal Density vs Future Spot and Time, S=100,t=25 

150 0.5 
Future Time 

Future Soot Price 

Fig. 4. The arcsinhnormal probability density function. 

Integrating the call's payoff against this density yields the following pricing 
formula 

e-q(M-t) . 
C(S, t) = ^ — (S + VS2+f32e-MT-t)\ 

x [N{d+ + ay/M^i) + N(d- - ay/W^t)] 

02e-q{M-t) J 

where 

d4 

x [N(d+ - ay/W^t) + iV(d_ + ay/W^t)] 

- Ke-r(-M-V[N(d+) - N(d-)}, 

i s i n h - 1 ( f e"(T-*)) - sinh-1 f^e^r-M)^ 

ay/M-t 
Figure 5 graphs the call value and time values of this model against the corre­
sponding values in the Black-Scholes model with the same at-the-money implied 
volatility. The negative skewness apparent in the volatility surface and arcsinhnor­
mal density function is manifested in higher out-of-the-money put prices and lower 
out-of-the-money call prices. 
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Col Value va Stock Prica |SC-S-100>.2$,M»;75) Tim* VahM w Slock Pifoe (SO-S-10OJ^25^.75) 

arcsinhnoimal(L=-4,alpha=.' )• 
logno[mal(sigma=.2675) 

94 96 86 100 102 104 106 106 110 90 92 94 96 9B 100 102 104 106 108 110 
StoekPrfce SlockPrice 

Fig. 5. The arcsinhnormal call value and time value vs. Black-Scholes. 

Arcsinhnormal Call Value vs Stock Price and Time (S0=S=100,L=-4,a=.1 ,M=.75) 

0 SO 
Calendar Time Stock Price 

Fig. 6. The arcsinhnormal call valuation function. 
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Figure 6 plots the arcsinhnormal call value against the current stock price and 
time. 

4.3. Path-independent exotic options 

The SBM Wt is the forward price of a path-independent exotic option with the 
payoff g~1(Sr') at T", where <?_1(-) is the inverse of g(x) determined in Appendix 1 
from /(•) . This follows from the observation that deferring the payment of this 
exotic's premium to T' induces zero drift under Q and the payoff induces unit 
volatility. Thus, s(x, t) is properly called the spot pricing function, since it relates 
the spot price of the underlying to the (forward) value of an asset. Similarly, 
s~1(St,t) is a standard pricing function relating the time t forward price of the 
Brownian exotic paying g~1(ST>) at T" to the time t spot price and time. 

The local volatility a(St,t) can also be interpreted as the price process for an 
exotic equity derivative. To determine the payoff, note from (33) that the Im­
maturity absolute volatility a(S,T') = a(S,T')S is the following function of the 
time T" spot price ST> 

a(ST>,T') = 9'{W%,) = - ^ = lim — — ^ — - T . 

The T'-maturity (relative) volatility smile v{S) arises from quantoing this dollar 
payoff into shares i.e., the payoff in shares is 

" W - n -«(*-) - «%jtl - ^ f e r K f r - + **-»-(*•) • 
If we also assume that the premium on this exotic is specified in shares and paid at 
T', then this share-denominated forward price matches the local volatility a(St,t) 
at all times up to T'. The appearance of a2(S,t) in the middle term of the PDE 
(33) is now easily interpreted as a quanto correction. The absence of the usual 
discounting term in (33) is due to the deferral of the premium payment to maturity. 

5. Summary and Future Research 

By interpreting the stock as essentially a path-independent derivative on the-
driving Brownian motion (or conversely), we were able to develop a PDE for the 
stock pricing function. Adding the information from a complete strike structure 
of option prices and the economic restrictions implied by no arbitrage and limited 
liability allowed us to uniquely determine this stock pricing function. Similarly, by 
interpreting local volatility as an exotic derivative on the stock, we were able to 
develop a non-linear PDE for the volatility function, which we solved analytically 
using the known stock pricing function. Conversely, if local volatilities are assumed 
to satisfy the non-linear PDE, then stock prices are path-independent and the func­
tion linking the SBM to the stock price can be determined analytically. Finally, we 
derived closed form formulas for option prices and risk-neutral densities consistent 
with a wide class of local volatility functions. 
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In principle, this work can be extended to valuing American and other path-
dependent options. For standard American and standard barrier options, the PDE's 
developed in this paper apply on restricted domains. Similarly, for exotic options 
with mild path-dependence such as compound, chooser and discretely sampled bar­
rier options, the PDE's developed in this paper would be solved recursively. For 
options with stronger path-dependence such as Asian, lookback and passport op­
tions, additional state variables would be required. Since numerical solutions may 
be required in any case, the question of the optimal discretization of the PDE's 
should be considered. 

If we relax the assumption of this work that the T-maturity implied volatility 
smile is given, then a second extension would involve calibrating the smile to a 
matrix of initial option prices. Evaluating (38) at (5, t) = (5o,0) determines initial 
call values of any maturity M and strike K in terms of the functions s(S, M) and 
s-1(So> 0), which can both be expressed in terms of f(S) via (17). Thus, the inverse 
problem of finding /(•) from a matrix of initial option prices can be posed once we 
select an objective function such as minimizing squared distance from a prior or 
maximizing smoothness. Under the assumptions of this paper, the identification of 
/(•) is tantamount to the determination of the risk-neutral process and volatility 
surface for all times. Given that /(•) relates the stock price at T to normally 
distributed SBM, a natural basis representation of /(•) arises in the form of Hermite 
polynomials. As these techniques are fairly involved, this extension is best left for 
future research. 

A minor extension of these results which would generate a wider class of analytic 
volatility surfaces is to assume path-independence after a deterministic time change. 
To illustrate, suppose that the stock price is an Ornstein-Uhlenbeck process absorb­
ing at the origin as in Cox and Ross.5 Then the stock price depends on the path of 
the driving SBM, and as a consequence does not fit the path-independence property 
described in this paper. However, it is well known (see e.g., Cox and Miller,4 p. 229) 
that such a stock price process is proportional to a standard Brownian motion run 
on a deterministically different clock. 

A major extension of these results which would generate a much wider class 
of analytic volatility surfaces would involve replacing the one-dimensional SBM 
with an alternative process (e.g., Bessel squared) or even a d-dimensional diffusion 
process whose solution is known. One can also add jumps in order to generate the 
casual empirical observation that implied volatilities at low spot prices tend to be 
higher at short maturities than long ones. One way to generate jumps is to do a 
stochastic time change1 on the standard Brownian motion driving all assets. For 
example, if a gamma time change was used, then the fundamental driver becomes a 
symmetric VG process (see Madan, Carr and Chang13), while the spot price process 
would be a generalized VG process. As in the continuous case, a generalized VG 
Levy measure when written as a function of jumps in the spot price would revert to 

'In fact, a stochastic time change on a GBM is an alternative to the scale change performed in this 
paper. Both approaches can generate a volatility smile. 
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the standard symmetric VG Levy measure when written in terms of jumps of the 
driving variable. In the interest of brevity, such extensions are best left for future 
research. 
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Appendix 1. Characterizing Stock Pricing Functions 

In this appendix, we characterize the entire set of stock pricing functions s(x,t) 
which vanish at x = L, are positive, increasing, and unbounded in x for x > L, 
and are consistent with no arbitrage on the time interval (0, T'), where T" can 
be arbitrarily large. Robbins and Siegmund14 have shown that the entire class of 
positive martingale functions m(y, u) which satisfy the backward diffusion equation 
t ? + \ l ^ r = 0 on the region 9t+ x (0, U) are given by 

mM=L — 7 m = ^ ) — " W . y-7m^wiH{v)-
(44) 

for some measures G on (0, oo) and H on (0, U). The kernel of the first integral is 
recognized as the transition density for SBM absorbing at the origin. The kernel of 
the second integral is recognized as the density for the first passage time of SBM 
to the origin. If we set H = 0, then (44) describes the set of all non-negative 
martingale functions satisfying the backward diffusion equation on 5ft+ x (0, U) and 
vanishing at the origin. 

To extend this class of functions to the entire time axis (0, oo), let 

v(z,t) = -f^, 45 
n(y,u) 

where z = p L , t = JJ^, and 

n(y, u) 
y/2n(U - u) 

is a normal density function. Then for any solution m to the backward diffusion 
equation, it is straightforward to verify that v(z, t) also solves the backward diffusion 
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equation ^ + ̂ fpf = 0 on the region Sft+ x (^,00). Letting U approach infinity 
in the original problem implies that v(z, t) is defined on the open quarter plane 
SR+ x 3J+. When m is given by (44) with H(-) = 0, then (45) implies that 

/•OO 

v(z, t) = 2 s\nh(9z)e-i02tdG(0), 
Jo 

which vanishes at z = 0. 
To obtain (46), we let x = z + L so that the vanishing arises at x = L < 0 and 

we also account for the stock's initial value So and risk-neutral drift r — q 

s(x, t) = S 0 e ^ r s i ^ - ^ e - ^ G ( f l ) , x > L, t e (0, T). (46) 
Jo sinh[-0LJ 

We next show how to determine the distribution function G(0) from the known 
implied payoff f(x). We assume that the distribution function is that of a continuous 
random variable, so that dG(&) = G'(6)d6. Evaluating (46) at t = T and re­
arranging implies 

where Fo = Soe^r~q^T is the T-maturity forward price. Letting z = ^j=- and 

y = Oy/T yields 

V f f c ^ = rsinHyz)e-t G ' ^ ^ d y . 
Fo Jo K ' smh(-Ly/VT) " 

Substituting in the definition of sinh(-) 

2VTf(L + zVT)= r > - 4 G'iy/^)dy 

Fo Jo Smh(-Ly/VT) 
rOO 

.Z G'(y/VT) 
e _ 2 y _ v vg / , d 

0 sinh(-Ly/VT) 

Multiplying by e 2" and changing variables as y = —y in the second integral yields 

Hz)s2Vfl^^le-4=iy^Hy)ds, (47) 

where 

*w 
f_^WvfL „„>„. 

s m M - L j , / ^ ) " 

I sinh(Ly/VT) 
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Equation (47) expresses /(•) as a linear combination of translates of a standard 
normal density function. Wiener proved that the span of all such translates is L\ (see 
Goldberg,10 p. 33). Thus, so long as f(x)e~x2 is Li, there exists a </>(•) generating it. 
To identify this <j>, note that the right hand side of (47) is a convolution. Assuming 
that e~ z 2W ^>(y) is a square-integrable function of z for all y G 9ft, taking Fourier 
transforms of both sides yields 

/

OO /"DO 

eiuzf{z)dz = / e™v<l>{y)dyV2^e-u I2 , 
-OO J —OO 

since e~" /2 is the Fourier transform of e ^ - . Re-arranging this expression yields 

e**y<Ky)dy = - = e*"f{z)dz. 
-oo V^TT J_oo 

Inverting for ^>(y) yields 

1 f°° 2 r0 0 

4,(y) = —— e-*-v+«%- / e*"'f{z)dzdu. 
V(27T) 3 7 - o o . / -oo 

Solving (48) for G'(-) when y > 0 yields 

C(0) = sinh(-I,6>)c£(0v/T) 

-TO 7rV27T J-oo 7 - o o 

(49) 

for # > 0 and we set G'{6) = 0 otherwise. We are thus able to identify the risk-
neutral stock price process consistent with the T-maturity option prices 

* = ,(Wi,t) = Sbee-«>' r ^ ^ - V K - ^ G ' W d e , * G ( 0 , r A T ' ) , 
Jo smn[—uL\ 

(50) 

where G'(6) is given in (49). 

Appendix 2. The P D E for Local Volatility as a Consequence 
of Path-Independence 

Recall the PDE (6) describing the spot pricing function s(x, t) 

ds 1 d2s 

atM + 2a^ ( : M ) = (r~<7)s(:M) ' *e[o,T'], xesft. (51) 

Let sx(x, t) = ^(x,t). Differentiating (51) w.r.t. x implies 

ds 1 d2s 
~£M + 2-^t{x,t) = (r - q)sx{x,t), t 6 [ 0 , f ] , , 6 » . (52) 
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Consider the change of variables derived in (26) 

a(S,t) = - | | ^ ( M ) = S 3 f r ? , where S = s(x,t), t G [0,T'], x € R. (53) 

Thus 

sx(a;, t) = o-(s(a;, i), t)s(x, t). (54) 

9s x , . da,„ . ds , . , . , _ . 9s . . 

+ 2 l^ i )(£ (^ t )) 2 + a ( 5 , i )£ ( a : ' i )-
^ ( s , * ) = | | ( S , * ) ^ ( M M M ) + ^ ( S , *)*(*,*) + a(S,t)^(x,t). (55) 

Substituting (55) to (55) in (52) 

-^(S,t)^(x,t)s(x,t) + -£s(x,t)+a(S,t)-£(x,t) 

, ld2a(S,t) fds. V , + ^ d a . Q ^ 
2 dS2 (£ ( M )) s(M) + %^t)^x,t)8{-x,t) 

= (r - ^ ( S , *)s(z, t), i e [ 0 , T ] , i e » . (56) 

Substituting (51) in (56) 

daICi .da, . , . da . . ld2a(S,t) (ds, \ 2 

+d^{S't)^{x't)s{x't)+2d^{s't){d^{x't)) =0> *e[o,n*e». 
(57) 

Now, multiply (51) by a(S, t) 

a(S, t) yt (x, t) + ^ M 0 (x> t) = (r - g)a(5, *)*(*, i ) , t G [0, T'], x € R. 

(58) 
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Also multiply (51) by ^(S,t)s(x,t) 

^(5,*)|(«,*)-(*,*) + |g(5,*)0(*,t)-(«,*) 

= (r-q)^(S,t)s\x,t), te[0,T'\, X€R. 

Substituting (58) and (59) in (57) 

ld2a{S,t) fds(x,t) 

2 dS2 ( ^ & r ) <x>t) + (r-<l)S^(S>t)s2^t) 

+ 
da(S,t) fds(x,t)y da 

dS ( ^ ) + |W*M>-°. 
for S > 0,t € [0,T'). Dividing by s(x,t) 

1 fds{x,t) 1 
2 \ 9a; s(a;,t) 

2(M) 
d2a(S,t) 

dS2 + r -q + 
ds(x,t) 1 

9a; s(a;, t) 

xs(x,t)^(S,t) + ^(S,t) = 0, 

(59) 

(60) 

(61) 

for S > 0,t e [0,T')- Substituting in <r(5,t) = d s ^ a ( ^ t ) gives the following 
non-linear PDE for a(S, t) 

a2{S,t)S2 d2a(S,t) 

dS2 

Y6v da. 
+ [r-q + a2(S,t)}S--{S,t) + — (S,t)=0, S>0, t £ \0,T') • 

as dt 
(62) 

Appendix 3. The P D E for Local Volatility as a Sufficient Condition 
for Path-Independence 

This appendix proves that if a positive function a(S, t) satisfies the non-linear 
PDE (33), then the stock price is path-independent. More specifically, there exists 
a function s~1(S,t) increasing in S, such that the process 

Bt^s-^Sut), t e [ 0 , r A T ' j , (63) 

is the driving SBM, i.e., Bt = Wt for all t£ [0,r A T"]. This function is given by 

'w-I^f8 

+ / ' 
Jo 

\~nS,u)S) (r-q) 
s=s0

 <T(so,u) 
du, S>0, t£ [0,T'], 

(64) 
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dt 

To prove this result, Ito's lemma applied to (63) implies that for t G [0, r A T'] 

dBt _ p!M^l(5„,) + (r - ,)5,^(S„«) + «£<*,,, 

+ -^-(St,t)a(St,t)StdWt. 

For 5 to be SBM, we need to show that its drift is zero 

a2(S,t)S2 d2s~1 

(65) 

dS2 -(S,t) 

ds~l ds~l 

+ (r-q)S—(S,t) + —(S,t) = 0, S>0,t£[0,TAT'}, (66) 

that its volatility is unity 

ds'1 

dS 
(S,t)a{S,t)S = l, 5 > 0 , te[0,T/\T'], 

and that its initial level is zero 

Bo = s(So,0)=0. 

Differentiating (64) w.r.t. S 

5 > 0 , «G [ 0 , T A f ] , 

(67) 

(68) 

(69) 
3S v w a(S,t)S 

so (67) holds. Furthermore, since a(S,t) is assumed positive, the function s _ 1 is 
increasing in 5. Evaluating (64) at (5, t) = (SQ,0) implies (68) also holds. To show 
that (66) also holds, divide (33) by a2(S,t)S 

Sd2a(S,t) da (r-g)Sda 
2 dS2 + dS[,) + a2(S,t)S dS['> 

+ 
1 da 

a2(S,t)S~di 
(S,t) = 0, S>0, t e [0,TAT'). (70) 

Noting that 

and 

jg[Str(S,t)]=<T(S,t) + S^(S,t), S>0,te[0,TAT'}, 

-^[Sa(S,t)]=2^(S,t) + S^(S,t), S>0,te[0,TAT'}, 

(70) can be re-written as 

1 d2 

iss^'M+^Sf^sg'***"!-;^ 

+ 
da 

a2(S,t)S dt 
(S,t)=0, S>0, te [ O . T A T ' ) . (71) 
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Integrating both sides w.r.t. S implies 

2dZ 
[<r(Z,t)Z] 

z=s (r-q)Z 

+ 
r 1 

Js0 «2(Z., 

z=So cr(Z, t)Z 

da 

z=s 

z=s0 

t)Z dt 
{Z,t)dZ = 0, S>0, te [ 0 , r A f ) : (72) 

where the constant of integration has been set to zero. Multiplying through by —1 
implies that for S > 0, t e [0, r A T') 

d 
a2{S,t)S2 dgKS,* )S] 

2 a2{S,t)S2 + (r - q)S~7^ + ^W{S,t)S] 
a(S,t)S 2dS 

aJS^j- ISo^ibjz%iZ^dZ = 0-

S=S0 

(73) 

Differentiating (69) w.r.t. S 

d2s~ 
-(S,t) = 

jJg[°(S,t)S\ 

dS2 

Differentiating (64) w.r.t. t 

[cr(S,t)S]2 , S>0, te [ 0 , T A f ] (74) 

(r-q) 

T « " - 5 ^ ' W L «*.<> 

L da 

Soa
2(Z,t)Zdt 

{Z,t)dZ, S>0,t£[0,TAT'}. (75) 

Substituting (69),(74), and (75) in (73) gives (66). 

Appendix 4. Implying the Stock Payoff From the Volatility Smile 

When the local volatility surface a(S,t) is given for all t £ [0,T"], then the 
time T" volatility smile v(S) ~ a(S,T') is also given. Consequently, the implied 
payoff #(5) must solve the first-order non-linear differential Eq. (33). Under certain 
conditions on «(•), an implicit solution for <?(•) is given by 

where 

Iv(g) = x + co , x e Sft, 

dS, g>0, h{9) = l ^ ) s 
and Co and C\ are constants. Since g can be less than ci, we define f? v(s\s^ 

(76) 

(77). 

la ^rhsdS for b > a-
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In order that the implied payoff g(x) be well-defined by the solution (77), the 
volatility smile v(S) must be restricted such that Iv(g) is invertible. To obtain these 
restrictions, note that as x 4- — oo, the volatility smile should permit the implied 
stock payoff g to approach zero 

/ . ( O l - j f ' ^ S - o o , V C l > 0 . (78) 

This condition holds so long as v(S) is bounded as 5 | 0 or at least does not 
approach infinity so fast that the integral of v/g\s is bounded. 

Differentiating the definition of Iv in (77) w.r.t. g implies that I'v(g) = VA , 
which is strictly positive for g > 0. In order that g(x) be well-defined by (77) 
for all real x, we further require that there exist a positive constant c\ such that 
v(S), S > 0 satisfies 

,oo 1 

^°°)si ^sjsds=°°- (79) 

This condition holds so long as v(-) is bounded above as S 1 oo, or at least does 
not approach infinity so fast that the integral of v(g\s over the positive half line is 
bounded. 

To summarize, if the given positive volatility smile v(S) satisfies (78), and (79), 
then Iv(0) = —oo, I'v{g) > 0 for g > 0, and lu(oo) = oo. Consequently, the inverse 
of Iv exists, and from (77), the stock payoff g(x) is given by 

s(x,T)=g(x)=I-1(x + c0), x £ » . (80) 

Since Iv is an increasing function defined on 9?+ with range R, I'1 is an increasing 
function defined on 3? with range 5R+. By (80), g is also an increasing function 
defined on 5? with range Sft+. 

References 

[1] F. Black and M. Scholes, "The pricing of options and corporate liabilities", The Jour­
nal of Political Economy 81 (1973) 637-659. 

[2] D. Breeden and R. Litzenberger, "Prices of state contingent claims implicit in option 
prices", Journal of Business 51 (1978) 621-651. 

[3] J. Cox, "Notes on Option Pricing I: Constant Elasticity of Variance Diffusions", 
Stanford University Working Paper, 1975. 

[4] D. R. Cox and H. D. Miller, The Theory of Stochastic Processes, Chapman and Hall, 
London, 1965. 

[5] J. C. Cox and S. A. Ross, "The valuation of options for alternative stochastic 
processes", Journal of Financial Economics 3(1-2) (1976) 145-166. 

[6] E. Derman and I. Kani, "Riding on a smile", Risk 7(2) (1994) 32-39. 
[7] B. Dumas, J. Fleming and R. Whaley, "Implied volatility functions: Empirical tests", 

Journal of Finance 53 (1998) 2059-2106. 
[8] B. Dupire, "Pricing with a smile", Risk 7(1) (1994) 18-20. 
[9] R. Geske, "The valuation of compound options", Journal of Financial Economics 7 

(1979) 63-81. 



Determining Volatility Surfaces and Option Values 191 

[10] R. Goldberg, Fourier Transforms, Cambridge University Press, Cambridge, UK, 1965. 
[11] I. Hirschman and D. Widder, The Convolution Transform, Princeton University Press, 

Princeton, NJ, 1955. 
[12] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 

NY, 1988. 
[13] D. Madan, P. Carr and D. Chang, "The variance gamma process and option pricing", 

European Finance Review 2 (1998) 79-105. 
[14] H. Robbins and D. Siegmund, "Statistical tests of power one and the integral repre­

sentation of solutions of certain partial differential equations", Bulletin of the Institute 
of Mathematics Academia Sinica 1(1) (1973) 93-120. 

[15] S. Ross, "Options and efficiency", Quarterly Journal of Economics 90 (1976) 75-89. 
[16] M. Rubinstein, "Displaced diffusion option pricing", Journal of Finance 38(1) (1983) 

213-217. 
[17] M. Rubinstein, "Implied binomial trees", Journal of Finance 49(3) (1994) 771-818. 



Reprinted from The Journal of Computational Finance 
2(3) (1999) 77-100 

RECONSTRUCTING THE U N K N O W N LOCAL 
VOLATILITY FUNCTION 

THOMAS F. COLEMAN*, YUYING LI* and ARUN VERMA* 

Using market European option prices, a method for computing a smooth local volatility 
function in a 1-factor continuous diffusion model is proposed. Smoothness is introduced 
to facilitate accurate approximation of the local volatility function from a finite set of 
observation data. Assuming that the underlying indeed follows a 1-factor model, it is 
emphasized that accurately approximating the local volatility function prescribing the 
1-factor model is crucial in hedging even simple European options, and pricing exotic 
options. A spline functional approach is used: the local volatility function is repre­
sented by a spline whose values at chosen knots are determined by solving a constrained 
nonlinear optimization problem. The optimization formulation is amenable to various 
option evaluation methods; a partial differential equation implementation is discussed. 
Using a synthetic European call option example, we illustrate the capability of the 
proposed method in reconstructing the unknown local volatility function. Accuracy of 
pricing and hedging is also illustrated. Moreover, it is demonstrated that , using different 
implied volatilities for options with different strikes/maturities can produce erroneous 
hedge factors if the underlying follows a 1-factor model. In addition, real market Euro­
pean call option data on the S&P 500 stock index is used to compute the local volatility 
function; stability of the approach is demonstrated. 

Keywords: Local volatility function, implied volatility, option pricing model, 1-factor 
continuous diffusion. 

1. Introduction 

An option pricing model establishes a relationship between the traded deriva­
tives, the underlying asset and the market variables, e.g., volatility of the underlying 
asset [4, 25]. Option pricing models are used in practice to price derivative securities 
given knowledge of the volatility and other market variables. 

The celebrated constant-volatility Black-Scholes model [4, 25] is the most often 
used option pricing model in financial practice. This classical model assumes con­
stant volatility; however, much recent evidence suggests that a constant volatility 
model is not adequate [27, 28]. Indeed, numerically inverting the Black-Scholes 
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formula on real data sets supports the notion of asymmetry with stock price 
(volatility skew), as well as dependence on time to expiration (volatility term struc­
ture). Collectively this dependence is often referred to as the volatility smile. The 
challenge is to accurately (and efficiently) model this volatility smile. 

In practice, the constant-volatility Black-Scholes model is often applied by sim­
ply using different volatility values for options with different strikes and maturities. 
In this paper, we refer to this approach as the constant implied volatility approach. 
Although this method works well for pricing European options, it is unsuitable for 
more complicated exotic options and options with early exercise features. More­
over, as will be illustrated in Sec. 4, this approach can produce incorrect hedge 
factors even for simple European options, assuming that the underlying follows a 
1-factor model. 

A few different approaches have been proposed for modeling the volatility smile. 
One class of methods (Merton [26]) assumes a Poisson jump diffusion process for 
the underlying asset. Stochastic volatility models (Hull and White [20]) have also 
been used. Das and Sundaram [10] indicate that neither of these types of models 
sufficiently explains the implied volatility structure. 

Finally, there is the 1-factor continuous diffusion approach: an underlying asset 
with the initial value 5jnit is assumed to satisfy: 

^ = n(St,t)dt + a*(St,t)dWt, t G [0,r], r > 0, (1) 

where Wt is a standard Brownian motion, r is a fixed trading horizon, and fi, a*: 
5t+ x [0,T] —>• 9? are deterministic functions. The function a*(s,t) is called the local 
volatility function. The advantages of the 1-factor continuous diffusion model, com­
pared to the jump or stochastic model, include that no non-traded source of risk 
such as the jump or stochastic volatility is introduced [17]. Consequently, the com­
pleteness of the model, i.e., the ability to hedge options with the underlying asset, 
is maintained. Completeness is ultimately important since it allows for arbitrage 
pricing and hedging [17]. 

There may be dispute regarding whether a 1-factor model (1) is the best way 
to model an underlying process. Our research will not shed light to this dispute. 
Instead, we demonstrate the importance of accurately approximating the local 
volatility function in pricing and hedging derivatives when the underlying follows a 
1-factor model (1). 

In order to price complex exotic options using a 1-factor diffusion model (1), 
the volatility function a*(s,t) needs to be approximated. Volatility is the only vari­
able in this 1-factor model which is not directly observable in the market. Similar 
to the implied volatility in the constant volatility model, one possible idea is to 
imply this local volatility function from the market option price data. Indeed, it 
is established [1, 17] that the local volatility function can be uniquely determined 
from the European call options of all strikes and maturities, under the no arbi­
trage assumption of the observable European call option prices. Unfortunately, the 
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market European option prices are typically limited to a relatively few different 
strikes and maturities. Therefore the problem of determining the local volatility 
function can be regarded as a function approximation problem from a finite data 
set with a nonlinear observation functional. Due to insufficient market option price 
data, this is a well-known ill-posed problem. 

Computational methods have been proposed to solve this ill-posed problem [1, 
2, 5, 13, 14, 17, 22, 23, 27]. Most of these methods [1, 5, 13, 14, 17, 22, 27] overcome 
the illposedness of the problem by assuming the existence of a complete spanning 
set of European call option prices, which, in practice, requires use of extrapolation 
and interpolation of the available market option prices [5, 13, 22, 27]. This can be 
problematic because potentially erroneous non-market information are introduced 
into the data. Rubinstein proposes to compute the implied probability without any 
exogenous assumption on the model for the local volatility function [22, 27]. In 
[1] the local volatility is computed at each discretization nodal point with a PDE 
approach. The methods [2, 23] use a regularization approach to the ill-posed local 
volatility approximation problem. The closeness of the local volatility to a prior is 
used in [2] and smoothness is used in [23]. 

The local volatility function approximation problem is ill-posed: there are typ­
ically an infinite number of solutions to the problem. It is not difficult to find a 
local volatility function <r(s, i) that matches the market option price data. However, 
for accurately pricing exotic options, we are not merely concerned with matching 
the market option prices but would like to reconstruct as accurately as possible the 
volatility function a*(s,t) in the diffusion model (1). Accurately approximating 
this volatility function is especially important for computing hedge factors, even for 
simple European call/put options, see Sec. 4. 

Smoothness of the function has long been used as a regularization criterion for 
function approximation with a finite observation data [29, 30, 31]. Splines have 
known to possess good approximation theoretical properties for a model both when 
the function is fixed and smooth and when it is a sample function from a stochastic 
process [31]. However, approximating the local volatility function from a finite set 
of option prices is more complex, compared to a standard function approximation 
problem, since the (observation) option price functional is nonlinear. Nevertheless, 
it is intuitive that smoothness regularization will play a similar role here. 

In [23] the lack of sufficient market option price data is overcome by regularizing 
with smoothness of the local volatility function. The local volatility is computed 
at each discretization point to match the given option prices with an additional 
objective of minimizing the change of the derivative Va(s,t). Unfortunately, this 
approach requires the solution of a very large-scale nonlinear optimization problem: 
the dimension is equal to the total number of discretization points. In addition, it 
requires determination of a regularization parameter. 

In this paper, we propose a spline functional approach: a local volatility function 
er(s, t) is explicitly represented by a spline with a fixed set of spline knots and end 
condition. The volatilities at the spline knots uniquely determine a local volatility 
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function. We choose the number of spline knots to be no greater than the number 
of option prices and they are placed with respect to the given data. The spline 
is determined by solving a constrained nonlinear optimization problem to match 
the market option prices as closely as possible. The dimension of the optimization 
problem is typically small, depending on the number of option prices available. The 
approximation properties of the spline allow an accurate and smooth approximation 
of the local volatility function prescribing the 1-factor model in a region within which 
the volatility values are significant for pricing available options. 

We start with the motivation for our proposed inverse spline approximation 
formulation for the local volatility in Sec. 2. Computational issues for solving the 
proposed optimization problem are discussed in Sec. 3. Numerical examples illus­
trating the reconstructed local volatility surfaces from the European call option 
prices are described in Sec. 4. Using a European call option example with the un­
derlying following the known absolute diffusion process, we illustrate the capability 
of the proposed method for accurately reconstructing the local volatility function. 
A S&P 500 European index call option example with the real market data is also 
used to illustrate the smoothness of the local volatility function and the stability of 
the proposed approach. In Sec. 5, concluding remarks are given. 

2. Local Volatility Function Approximation with Splines 

Assume that the underlying asset follows a continuous 1-factor diffusion process 
with the initial value 5jnit: 

^ = ii(St,t)dt + cr*(St,t)dWt, t£ [0,r] , 
&t 

for some fixed time horizon [0,r], Wt is a Brownian motion, and n(s,t), a*(s,t): 
5R+ x [0, r] -> 3? are deterministic functions sufficiently well behaved to guarantee 
that (1) has a unique solution [24]. Note that in this notation a*(s, t) can be negative 
as well as positive. (The conventional notion of positive volatility corresponds to 
y/<T*(s,t)2 in our notation.) For simplicity, we assume that the instantaneous in­
terest rate is a constant r > 0 and the dividend rate is a constant q > 0 (a general 
stochastic interest derivative pricing can be priced, e.g., [19]). Given 5init, r and 
q, and under the no arbitrage assumption [25], an option with the volatility a(s,t), 
strike price K, and maturity T has a unique price v(a(s, t), K, T). 

Assume that we are given m market option (bid, ask)-pairs, {(bidj,ask_7)}^=1, 
corresponding to strike prices/expiration times {{Ki,Tj)}rJLl. Let 

Vj(a(a,«)) =f v(a(s,t),KhTj), j = l m . 

We want to approximate, as accurately as possible, the local volatility function 
cr*(s,t) : 9?+ x [0,T] - • Sft from the requirement that 

bidj < vj (CT(S, t)) < ask.,-, j = 1 , . . . , m . (2) 
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Since the observation data {(bidj,askj,Kj,Tj)}'jL1 is finite and the restriction is 
on the option values {vj(o,(s,t))}'jt=1, problem (2) can be considered an inverse 
function approximation problem from a finite observation data. Let H denote the 
space of measurable functions in the region [0,+oo) x [0,r]. The inverse function 
approximation problem (2) can be written as an optimization problem: 

m m 

/ ^ Et b i d i - vMs,t)))}+ + 2 > X M ) ) - askJ-)]
+ , (3) 

*(«.t)ett j=1 j=1 

where x+ = max(a;,0). This is a nonlinear piecewise differentiable optimization 
problem: to overcome nondifferentiability in (3), one can alternatively solve a vari­
ational least squares problem: 

m 

,"&„ Z^'(CT(S> *)) - ^ ) 2 ' (4) 
<r(s,t)eu r-* 

where Vj = **** '. Since the observation data is finite, problems (2, 3, 4) 
are severely underdetermined: there are typically an infinite number of solutions. 
It is easy to find a function cr(s,t) that matches the market option price data 
[2, 5, 13, 14, 17, 22, 23, 27]. 

The local volatility reconstruction problem (2, 3, 4) is a complicated nonstandard 
function approximation problem. The option price functional v(o-(s,t), K, T) is 
nonlinear in the local volatility function a(s, t). It is a nonlinear inverse function 
approximation problem. 

In most of the proposed methods [1, 2, 5,13, 14,17, 22, 27] matching the market 
option price data has been emphasized; it is often the only objective. However, a 
function o-(s,t) which matches the finite set of market option prices can be very 
different from the local volatility CT*(S, t) which prescribes the 1-factor model for the 
underlying, see Sec. 4 for an example. Moreover, the price Vj generally has error 
(for example, when a bid-ask spread exists). In addition, the option value Vj(o~(s, t)) 
can only be computed numerically using a tree method or a PDE approach (there 
is no closed form solution for a general 1-factor model (1)). Hence, it may not be 
desirable to insist that Vj(a(s,t)) match exactly the observed market price Vj for 
j = 1 , . . . , TO. For pricing and hedging of exotic options, it is more important to 
compute a local volatility function a(s, t) which is as close as possible to the local 
volatility function a*(s,t). In other words, in addition to calibrating the market 
option price data sufficiently accurately, we would like to reconstruct, as accurately 
as possible, the local volatility function a*(s,t) of the diffusion model (1). 

Smoothness has long been used [29, 30, 31] as a regularization condition for 
a function approximation problem with a limited observation data. In addition, 
smoothness of the local volatility function can be important in computational option 
valuation schemes. Convergence of a PDE finite difference method, for example, 
depends on the smoothness of the function a(s, t). 



Reconstructing the Unknown Local Volatility Function 197 

In [23] it is proposed to use smoothness as a regularization condition to approx­
imate the local volatility function. The regularized optimization problem 

m 

min 5 » ( M ) ) ) - Vj? + A||V<r(M)||2 (5) 
3=1 

is used in [23] where A is a positive constant and || • ||2 denotes the L2 norm. The 
change of the first-order derivative is minimized depending on the regularization 
parameter A for which determining a suitable value may not be easy. In addition, 
computational implementation of this method requires solving a large-scale dis-
cretized optimization problem: for a PDE implementation, the dimension is NM 
where N is the number of discretization points in s and M is the number of dis­
cretization points in t. A simple gradient descent algorithm is used in [23]. Since 
the optimization problem is (5) highly nonlinear, with such a method, the com­
puted solution is typically inaccurate. To use a more sophisticated optimization 
algorithm, the Jacobian matrix of the vector function (vi,...,vm) needs to be eval­
uated but this becomes extremely costly due to the large dimension of the discretized 
problem. 

Splines have long been used in approximating smooth curves and surfaces (see, 
e.g., [16]). They have also been used as a tool for regularizing ill-posedness of func­
tion approximations from finite observation data [31]. In a typical one-dimensional 
spline interpolation setting, assuming values fi, i = 1 , . . . , m, of the dependent vari­
able f(x) corresponding to values Xi,i = 1 , . . . ,m, are given, a spline is chosen to 
fit the data (fi, Xi), i = 1 , . . . , m. Given the number of knots p and their locations, 
the freedom of the spline is the coefficient of each spline segment. The cubic spline 
has long been used by craftsman and engineers as the mechanic spline. It is the 
smoothest twice continuously differentiable function that matches the observations; 
the minimizer of 

,6 

,F\ ino / (f"(x))2dx> subject to f(xi) = fi, i = l,...,m, 

is a natural cubic spline, where <S is the Sobolev space of functions whose first-
order derivatives are continuously differentiable and the second-order derivatives 
are square integrable (assuming m > 2). For mechanical splines, this corresponds to 
minimize the elastic strain energy. For two-dimensional surface fitting, the bicubic 
spline defined on a regular grid is twice continuously differentiable [3, 16]. The 
bicubic spline has a similar variational minimization property. Advantages of spline 
interpolation include its fast convergence on many types of meshes, computational 
efficiency, and insensitivity to roundoff errors [3], 

Approximating the local volatility function by a spline is particularly reason­
able if the local volatility function is smooth. Is this a reasonable expectation for 
the local volatility function? Assume that the underlying follows the 1-factor dif­
fusion process (1). Let there be given observable arbitrage-free market European 
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call prices v(K,T) for all strikes K G [0, oo) and all maturities T € (0, r ] . From 
Proposition 1 in [1], the local volatility function a*(s,t) of the diffusion process (1) 
that is consistent with the market is given uniquely by 

^L+qv(K,T) + K(r-q)^-
(a*(K,T))2 = 2 ^ w S * . (6) 

K2—— 
OK2 

This formula suggests that, assuming v(K, T) is sufficiently smooth (note that J ^ -
and pp already exist) and J ^ ^ 0, (a*(K, T))2 is sufficiently smooth in the region 
(0, oo) x (0, T] as well. 

In this paper, we use a two-dimensional spline functional to directly approximate 
a local volatility function.* Let the number of spline knots p <m. We choose a set of 
fixed spline knots {(SJ, tj)}?=1 in the region [0, oo) x [0, r ] . Given {(si, U)}^—i spline 

knots with corresponding local volatility values <TJ = a(si,U), an interpolating cu­
bic spline c(s, t) with a fixed end condition (in our computation the natural spline 
end condition is used) is uniquely defined by setting c(s~i,ii) = &i,i = l , . . . , p . 
We then determine the local volatility values &i (hence the spline) by calibrat­
ing the market observable option prices. The freedom in this problem is repre­
sented by the volatility values {<7j} at the given knots {(si,fj)}. If a is a p-vector, 
a = (<7i,..., <7P)

T, then we denote the corresponding interpolating spline with the 
specified end condition as c(s,t;a). 

Let 

Vj(c(s,t;a)) = v^s^a)^^^), j = l,...,m. 

To allow the possibility of incorporating additional a priori information, I and u are 
lower and upper bounds that can be imposed on the local volatilities at the knots. 
Thus, we define the inverse spline local volatility approximation problem: Given p 
spline knots, (si, ? i ) , . . . , (sp, ip), solve for the p-vector a 

1 m 

min f(a) = - S~]vjj[vj(c(s,t;cr)) — Vj]2 subject to l<a<u, (7) 

where positive constants {vjj}'jL1 are weights, allowing account to be taken of differ­
ent accuracies of Vj or computed Vj. The determination of an approximation in the 
h or Zoo norm instead may be a valuable alternative although the problem becomes 
even more difficult to solve computationally. Note also that the formulation (7) is 
quite general: European call/put or even more complicated option prices can be 
used to compute the spline approximation to the local volatility function cr*(s, t). 

The inverse spline local volatility problem (7) is a minimization problem with 
respect to the local volatility a at the spline knots. The computed volatility func­
tion has some dependence on the number of knots p and the location of the knots 

aIf it is known that CT(S, t) is a function of 4 or t only, then one can use one-dimensional spline. 
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Fig. 1. The local volatility in the shaded region "Dj is significant in pricing and hedging. 

{(si,ij)}f=1. The choice of the number of knots and their placement in spline 
approximation is generally a complicated issue [16, 31]. The situation here is not 
typical for spline approximation due to the fact that the dependent option price 
function is not the function to be approximated. Rather, it depends on the values of 
the unknown volatility function in the region R+ x [0, T] . Moreover, the dependence 
on the unknown volatility values is not uniform in the region R+ x [0, r ] . The option 
premium depends little on the volatility values with small t and s far from Sinn. 
It is convenient to view this as follows [1]: there exists a region centered around 
5jnit within which the volatility values are significant in pricing and hedging: we 
denote this region as Vj for the option Vj, see Fig. 1 for illustration of its typical 
shape. We can at most expect to approximate well the local volatilities in the region 

def 

V — U'pLi'Dj from the market option data. In our experiments, we often choose 
the number of knots equal to the number of observations. In order to construct and 
evaluate a spline efficiently, the spline knots can be placed in a rectangular mesh 
covering the region V and bicubic spline interpolation [3] can be used. 

If the number of spline knots are chosen to be no more than the number of obser­
vation data points, the degrees of freedom, compared to that of a (discretized) for­
mulation of (3), is significantly decreased (several orders of magnitude). In addition 
to gaining smoothness of the local volatility function, formulation (7) significantly 
decreases the computational cost compared to that of the (discretized) formulations 
(3, 5) due to reduction of the dimension of the optimization problem. 

It is not appropriate to choose p much larger than m since (7) may become 
under determined. If one decides to use more spline knots, additional regularization, 
e.g., 

1 771 

. 7 = 1 

subject to I < a < u, (8) 
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is more appropriate: here A > 0 is a regularization parameter and T)(<J(S, t; a)) is a 
smoothing norm for the tensor product splines [15]. (A referee has pointed out that 
this has recently been considered in [21].) 

In this paper, we focus on the formulation (7) and assume p is not greater than 
m. In order to solve the inverse local volatility problem (7), an optimization method 
will be needed to evaluate the values of options Vj(c(s, t; a)) for any spline c(s, t; a); 
the derivatives may also be computed. We discuss this next. 

3. The Computational Procedure 

Our proposal is to approximate the local volatility surface, <r*(s, t), with a cubic 
spline c(s,t;a) by solving (7) for the vector a — {a\,... ,ap)

T. Problem (7), when 
p < m, is defined once the p knots (si, £ i ) , . . . , (sp, tp) have been chosen appropri­
ately. To express (7) more succinctly, define a vector-valued function F : W —> SR"1 

where component j of F is given by Wj[vj(c(s,t;a)) — Vj], for j = l , . . . , m . 
Therefore (7) can be rewritten: 

min f{a) =f ^ | | F (CT) | | | subject to I < j < « . (9) 

Problem (9) is a box-constrained nonlinear least-squares problem in a; there are 
a variety of optimization methods available to enable its solution. In our imple­
mentation we use a trust region/interior point method [6, 7], in which a sequence 
of strictly feasible points are generated: {a^} £ int{J-}, where J- = {a £ 9ftp : 
I < a < u}. Moreover, the sequence corresponds to a monotonically decreasing 
sequence of function values, i.e., f(k+1*> < f(k\k = 1 , . . . , oo, where f^ = f(a^). 
Under mild assumptions this approach guarantees convergence, i.e., a^ —> a*, 
where a* is a local minimizer for problem (9). 

The Jacobian of F with respect to a is required: J {a) = VF{a). Note that J 
is an m x p matrix. In the square case when p = m, it is possible to use a standard 
secant update to approximate J , e.g., [12], which can significantly reduce the cost. 
Under reasonable assumptions a superlinear rate of convergence can be achieved. 
We note that there are optimization approaches that do not require the calculation 
(or approximation) of the Jacobian matrix J; however, they typically converge very 
slowly — we have not investigated those methods in this work. 

In this paper we explore two possibilities in the framework of our optimization 
approach: 

1. Use of automatic differentiation [8] and/or finite-differencing to compute 

j W t f J ( S W ) ; 
2. Use of a secant update to approximate J^ when p = m. 
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3.1. The problem structure 

The evaluation of f(a) requires the evaluation of each component of F, i.e., 
wj [VJ(C(S, t); a) - Vj], for j = 1 , . . . , m. These are generalized Black-Scholes com­
putations. There are several ways to approach this — we choose, as an example, to 
use a standard PDE-discretization technique. 

Given Sinit, r, q, and a(s, t), let V(s, t) denote the option value of an underlying 
asset with strike price K and expiry date T at (s,t), t € [0,T\. Under the no 
arbitrage assumption, the option value satisfies the following generalized Black-
Scholes equation [25] 

dV , . dV 1 , M.2 2d
2V _, / i n . 

_ + ( r _ , ) , _ + _ , ( , , * ) V ^ - = r V . (10) 

The boundary conditions for the European call option are: 

lim ^ M = e - * ( r - t ) , te[0,T], 
s—>+oo OS 

V(o,t) = o, te[o,T\, 

V(s,T)=max(s~K,0). 

We use a Crank-Nicholson finite difference solution strategy for solving (10), 
based on discretization on a uniform grid. Given a two-dimensional grid the nu­
merical solution of (10) is standard and discussed in several texts. Zvan et al. [32] 
have a good discussion of complexity issues. It is possible to increase efficiency by 
employing a number of computing techniques such as vectorization and pipelining 
— description of these implementation aspects goes beyond the scope of this paper. 

3.2. Computing the Jacobian and the gradient 

The Jacobian matrix J{a) satisfies 

dv dc 
J{(T)=d-cXK' 

where ^ is an m-by-MN matrix, J | is an MN-by-p matrix. 

It is useful to note that matrix C = J | is constant and therefore needs to be 
computed just once for the entire problem (given a fixed discretization and spline 
knot placement). The product | x C can be computed directly using automatic 
differentiation (forward mode) or approximately using finite differences (differencing 
v along the columns of C). In either case the work involved is 0(p • u>(F)) where 
ai(-F) is the work (flops) required to evaluate F. (In the finite-differencing case 
this is a tight bound whereas this bound can be undercut considerably if automatic 
differentiation is used [18].) 

The gradient of / , with respect to <?, is simply J T F . Therefore if the function 
F and its Jacobian J have been computed as described above the gradient is given 
by a matrix-vector multiplication. 
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If the secant method is used in the square case, i.e., p = m, then the gradient is 
approximated b y A x F where A is the secant approximation to the Jacobian. The 
Jacobian is not computed (except, possibly, for secant method restarts) with this 
approach. 

4. Computational Examples 

We now describe some computational experience with our proposed method for 
reconstructing the local volatility function a*(s,t) from limited observation data. 
We illustrate how European call options can be used to approximate the local 
volatility function. 

We have implemented the proposed method in Matlab using a trust region op­
timization algorithm with a PDE approach for function and Jacobian evaluation. 
Without precise knowledge of accuracy of the market data, the weights in the in­
verse spline local volatility approximation problem (7) are simply set to unity: 

def 

Wj = l,j = 1 , . . . ,m. The generalized Black-Scholes PDE (10) is solved with a 
Crank-Nicolson finite difference method. Given any a, the bicubic spline c(s, t; a) 
with the variational end condition (the second-order derivative at the end is zero) 
is computed and evaluated using the functions in the Matlab spline toolbox [11]. 
We use a simple discretization scheme: a uniformly spaced mesh with N x M grid 
points in the region [0,25jnjt] x [0, r] where r is the maximum maturity in the market 
option data: 

. 2<5injt 
*i = » j y 7 j , i = 0,...,N-l, 

• • T , j = 0,...,M-l. (11) 
M - l 

For simplicity, we have chosen the spline knots to be on a uniform rectangular 
mesh covering the region V in which the volatility values are significant in pricing 
the market options. Given a European option, we do not have an explicit knowledge 
of the region T>. In our experiments, we have used [71 Sunt,72-Sinit] x [0, T] as an 
estimate of V with 71 € [.6, .8] and 72 S [1.4,1.6] depending on the magnitude 
of S'init- The number of spline knots p typically equals the number of observation 
m. In the event that the option prices are calibrated to high precision, we have 
experimented with p < m. 

4.1. Reconstructing local volatility, pricing and hedging 

In order to demonstrate the effectiveness of the proposed method in reconstruct­
ing the local volatility surface and its accuracy in pricing and hedging, we consider a 
synthetic European call option example used in [23]. In this example, the underlying 
is assumed to follow an absolute diffusion process: 

C^ = »(St,t)dt + a*(St,t)dWt, (12) 
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where the local volatility function a*(s, t) is a function of the underlying only, 

a (s,t) = - , 
s 

with a — 15, and Wt representing a standard Brownian motion. We use the same 
parameter setting as in [1]: Let the initial stock index be 5jnjt = 100, the risk free 
interest rate r = 0.05 and the dividend rate q = 0.02. 

We consider, as market option data, 22 European call options on the underlying 
following the absolute diffusion process (12). Eleven options have half year maturity 
with strike prices [90 : 2 :110] and another eleven options have one year maturity 
with the same strikes. Thus the option strike and maturity vectors are given below 

K = [90; 92 ; . . . ; 110; 90; 92 ; . . . ; 110] <= ft22 , 

T - [0.5; 0 .5; . . . ; 0.5; 1; 1 ; . . . ; 1] S K22 . 

For the absolute diffusion process (12), the analytic formula for pricing European 
options exists [9] and we set the market European option call price Vj equal to 
this analytic value. The discretization parameters in (11) are set a s M = 101 and 
AT = 51. 

For this example the lower and upper bounds for the local volatility at the knot 
5-j are k = — 1 and u» = 1 respectively (though no variable is at the bound at the 
computed solution in this case). First, we let p = m and place the spline knots on 
the grid [0 : 20 : 200] x [0,1]. The initial volatility values at knots are specified as 
&\ ' = 0.15, i = 1 , . . . , 22. The resulting optimization problem is relatively easy to 
solve. The optimization method requires seven iterations (six Jacobian evaluations) 
and the computed optimal objective function value /(<r*) is 10~6. 

RBccn3mjciMJLocalVDlailliywH)i22 0toMvailons#Jeval=6 Trua Local VotaHiiy 

Fig. 2. The reconstructed and true local volatility. 

Figure 2 demonstrates the accuracy of this local volatility reconstruction: the 
reconstructed spline surface c(s,t;a*) very accurately approximates the actual 
volatility surface cr*(s,t) in the neighborhood of the region [75,125] x [0,1]. To 
better observe accuracy of reconstruction, the three plots on the left in Fig. 3 
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knots = 0: . 2S i n i t : 25 i n t] x [0,1], right: knots = [.45 i n i t : . 4 S i n i t : 1.6Sinit] x [0,1]. 

display the local volatility curves for t = 0, 0.58 and t = 1 respectively. Since 
the calibration error is very small and the reconstructed volatility surface is nearly 
linear, we experimented with choosing the number of spline knots less than m. The 
three plots on the right of Fig. 3 display the local volatility curves reconstructed 
with eight spline knots placed on the mesh [.45init : ̂ Smit : l-6Sjnit] x [0,1]. We 
observe that the local volatility reconstruction remains excellent, with a slightly 
larger deviation when t is small and s is far from Smit-
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To illustrate the accuracy of pricing using the reconstructed local volatility 
c(s, t; a*) rather than the true local volatility a*(s, t), we compare prices and hedge 
factors of a number of European call options using both the true local volatility 
and the reconstructed volatility surfaces. The hedge factors vega (sensitivity to the 
change in the volatility), delta (sensitivity to the change in the underlying), gamma 
(sensitivity of delta to the change in the underlying), rho (sensitivity to change in 
the interest rate) and theta (sensitivity to change in the maturity) are computed 
using a finite difference approximation. A constant shift in both volatility surfaces 
is used to calculate the vega hedge factor. For European call options with strikes 
and maturities over the grid [85:5:110] x [.4: . 1 : .7], the results are shown in Ta­
ble 1. These results indicate that fairly accurate prices as well as hedge factors are 
obtained using the reconstructed volatility surface c(s,t;a*). Note that the PDE 
option evaluation with the chosen discretization can generate errors of at least these 
magnitudes. 

Table 1. Accuracy of pricing and hedging. 

Max. relative error Average relative error 

Price 7.8e~3 2.1e~3 

Vega 9.8e~3 6 .1e - 3 

Delta 4.8e~2 1.3e-2 

Gamma 9 .5e - 2 5.9e~2 

Rho 4 .5e - 3 2 . 0 e - 3 

Theta 6.9e~3 2.2e~3 

We emphasize that the formulation (7) is appropriate when the number of spline 
knots p is not greater than the number of observations m. If p is much larger 
than m, then formulation (7) can become severely underdetermined. To illus­
trate the potential pitfalls of allowing too much freedom in approximating cr*(s, t), 
we simulate the more realistic market situation when there is a bid-ask spread in 
the given option prices by setting 

Vj = exact price of option j + .02 rand 

where rand is a Matlab generated random number. We compare the local volatility 
reconstructions using the spline knots on the rectangular meshes [.45injt : .45 i ni t: 
1.6Si„it] x [0,1] (p = 8) and [0:.0lS i n i t:25 i n i t] x [0,1] (p = 202 < MN). The plots 
on the left in Fig. 4 illustrate the reconstructed local volatility curves using the 
rectangular mesh [.45i„it: . 4 5 ^ : 1.65init] x [0,1] for knots. The plots on the right in 
Fig. 4 illustrate the reconstructed local volatility curves using the rectangular mesh 
[0:2:2S'init] x [0,1] for knots. Although the available option prices are matched with 
very high accuracy (error about 10~6) using p — 202, the computed local volatility 
surface does not resemble the true local volatility surface cr*(s, t). Using eight knots 
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Fig. 4. Left: knots = . 4 5 i n i t : . 4S i n i t : 1.6Sinit] x [0,1], right: knots = [0: .01S i n i t : 2S in it] x [0,1]. 

on the rectangular mesh [.4Si„it: .45init: l^-Smit] x [0,1], on the other hand, yields 
a much more accurate volatility surface, even though the calibration error of the 
available options is larger (about 10 - 4) . 

Next we illustrate that, assuming the underlying follows a continuous 1-factor 
model (1), a constant implied volatility approach can produce erroneous hedge 
factors even though the option prices may be computed accurately. We use the 
same absolute diffusion model (12) but with greater volatility: the constant a = 75 
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True Vol. 
Reconstructed Vol. 
Implied Vol. 

Fig. 5. Comparison between using the true, reconstructed and constant implied volatility functions. 

is used instead of a = 15. The same initial underlying Ŝ nit = 100 and the risk free 
interest rate r = 0.05 are used but the dividend rate q is set to zero. We consider 
European call options with strikes and maturities at the grid [80:4:120] x [.25, .5,1]. 
The spline knots are at the grid [0:20:25init] x [0, .5,1]. Figure 5 displays the price 
and hedge factors of options with maturity .25 year using the true local volatility, 
reconstructed volatility, and constant implied volatility. From these plots, we see 
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that the price and all the hedge factors computed using the reconstructed local 
volatility function are fairly accurate approximation to the true values. Using the 
constant implied volatility method, however, large errors exist in hedge factors 
(mostly noticeably in theta, delta, gamma and vega). 

In addition to choosing the number of spline knots p, the placement of the knots 
requires some care as well. The spline knots should be placed to cover the region V 
within which the values of the local volatility are significant in the option values. We 
have used the uniform spacing in the interval [0,25init] and [.45init, 1.65init] in this 
synthetic example but an alternative is to place them nonuniformly with a more 
refined placement around s = S\nn. Moreover, one need to avoid placing spline 
knots too closely together since this can lead to ill conditioning of the Jacobian 
matrix VF. 

Table 2. Implied volatilities for S&P 500 index options. 

Maturity (in years) Strike (% of spot) 

85% 90% 95% 100% 105% 110% 115% 120% 130% 140% 

.175 

.425 

.695 

.94 

1 

1.5 

2 

3 

4 

5 
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.171 
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.169 
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.168 

.168 

.168 

.155 
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.159 

.160 

.161 

.161 

.162 

.164 
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.144 
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.151 

.153 

.155 

.157 
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.113 

.125 
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.137 

.138 

.142 

.145 
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.154 
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.127 
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.133 

.137 
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.148 
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.097 
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.104 

.113 

.115 

.124 

.130 

.137 

.143 

.148 

.120 

.100 

.100 

.106 

.107 

.119 

.126 
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.139 

.144 

.142 

.114 

.101 

.103 

.103 

.113 
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.128 

.135 

.140 

.169 

.130 

.108 
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.099 

.107 

.115 

.124 

.130 

.136 

.200 

.150 

.124 

.110 

.108 

.102 

.111 

.123 

.128 

.132 

4.2. A S&P 500 example illustrating smoothness and stability 

We consider now a more realistic example of approximating the local volatility 
function a*(s,t) from the European S&P 500 index European call options. We use 
the same European option data of October 1995 given in [1]. The market option 
price data (in the implied Black-Scholes constant volatility) is given in Table 2. 
Similar to [1], we use only the options with no more than two years maturity in our 
computation. The initial index, interest rate and dividend rate are set as in [1], 

5 i n i t = $590, r = 0.06, and q = 0.0262. 

The discretization parameters in (11) are set as, 

N = 101, and M = 101. 

In order to solve the proposed inverse spline volatility problem (7), we compute 
the market European call option prices with given strikes and maturities using the 
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constant volatility Black-Scholes formula with the corresponding implied volatility. 
The Matlab function blsprice is used. 

For this example, the number of spline knots p equals the number of observations 
m and the spline knots are placed on a rectangular mesh [.8Sinit: .0665 in i t: 1.4Sinjt] x 
[0 : .33 : 2]. Using all the call option prices with maturity T < 2 in Table 2, the 
reconstructed local volatility surface is given in Fig. 6. This optimization problem 
seems to be more nonlinear and difficult to solve. After 28 iterations, the average 
error of Vj(c(s,t;a)) — Vj using the reconstructed local volatility is 0.0076. The 
average error using the constant implied volatility via the PDE implementation 
with this discretization, compared to the Black-Scholes analytic formula, is 0.0510. 

Reconstructed Volatility in the Subregion 

Fig. 6. Spline knot placement is the rectangular mesh [.8Sinit: .066Sini t: l-45ini t] x [0: 0.33: 2]. 

Reconstructed Volatility in the Subreglot 

Fig. 7. Spline knot placement is the rectangular mesh K x [0: 0.33: 2]. 
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The reconstructed local volatility surfaces can be slightly different if different 

spline knots are chosen. In order to show tha t the local volatility surface recon­

struction, pricing and hedging are relatively robust, we consider the second spline 

knots placement using the rectangular mesh K x [0 : .33 : 2]. T h e average price 

calibrating error for the market call options in this case is .0027. The reconstructed 

volatility surface using this knot placement is shown in Fig. 7. Comparing Fig. 6 

with Fig. 7, the reconstructed volatility surfaces are quite similar in the region 

D, noting the shape of T>. For options with strikes and maturi t ies over the grid 

[.85 : .1 : 1.15]Sinjt x [.85 : .1 : 1.15], the relative difference of pricing and hedging 

factor with the two spline knot placements are shown in Table 3. We observe tha t 

indeed they are acceptably close. 

Table 3. Differences between using two rectangular meshes for knots. 

Max. relative difference Average relative difference 

Price 6.8e-3 1.4e~3 

Vega 1.3e-2 2.7e~3 

Delta 4.3e~2 1.6e-2 

Gamma 8.8e-2 4.1e -2 

Rho 5.3e -3 2.0e -3 

Theta 4.9e -2 9.2e -3 

For pricing simple European cal l /put options, different implied volatilities are 

often used in practice to price options of different s t r ikes/maturi t ies in order to 

accommodate volatility smile. For pricing an exotic option such as a knock-out 

option, a constant volatility model is inappropriate since the price of this option 

depends on volatilities of different strikes and maturit ies. In order to illustrate the 

potential error in using a constant volatility in pricing exotic options, we examine 

here the price and hedge factors differences between using a constant volatility 

model and the 1-factor model with the reconstructed volatility function. We use 

the same S&P 500 index option example and choose the the ar i thmetic average 

(which is 0.1319) of the implied volatilities with T < 2 as the constant volatility. 

Table 4. Relative difference in pricing and hedging using constant volatility. 

Max. relative difference Average relative difference 

Price 11% 6% 
Vega 15% 9% 
Delta 19% 11% 
Gamma 27% 17% 
Rho 12% 7% 
Theta 29% 16% 
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We compare the prices at a grid [.85: .1:1.15]5init x [.85: .1:1.15] of strike prices and 
maturity dates (different from given market data). The results are in Table 4. These 
two methods give significantly different prices: we notice as much as 11% relative 
difference. Similarly all the hedge factors computed using the constant volatility 
have a large relative difference, we document the results in Table 4. To visualize 
the difference in detail, we plot the price and hedge factor curves for options with 
1-year maturity in Fig. 8. 

Reconstructed Vol. 
Constant Vol. 

600 

\ 

650 
Strike Price 

DELTA 

"-

N s ;•-,, 

700 750 

Reconst ruc ted Vo l . 
Cons tan t Vol. 

600 500 

0.01 

0.009 

0.006 

0.007 

0.006 

0.006 

0.004 

0.003 

0.002 

0.001 

Reconstructed Vol. 
Constant Vol. 

Reconstructed Vol. 
Constant Vol. 

250 r 

200 

150 

100 

50 

• -

~ ~ - v 

*\ 

y 

'i. 
v. 
t 
V. 

RHO 

— Reconstructed Vo l . 
Constant Vo l . 

Fig. 8. Comparison using the reconstructed versus constant (average) volatility. 
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4.3. Incorporate additional information 

Using market option data to imply the local volatility function in a diffusion 
model is a look-ahead technique. Frequently, historical data has been used to es­
timate a constant volatility. The latter is a look-back technique. An interesting 
question is whether it is possible to combine both techniques to generate better 
approximation to the local volatility function. 

In the proposed spline volatility formulation (7), there are two potential ways 
that a priori information can be incorporated. The first is to use the simple bounds 
to limit the range of the local volatilities at knots. The second possibility is to specify 
fixed local volatilities at some chosen knots. 

We have experimented with setting tighter bounds on the volatility a for the 
S&P 500 index European call option example. We observe that, as long as the 
bounds are not too small (I < —.3,u > .3 in the S&P 500 example), they can 
influence volatility values of small t and s far from £injt but do not have much 
impact in the region V within which the volatility function is significant in market 
option prices. However, setting bounds too tight can impede calibrating the market 
option prices. Therefore, unless one has reliable knowledge on the bounds of the 
volatilities, they should be sufficiently large to ensure that the calibrating error is 
sufficiently small. Similar remarks can be made if one wishes to set the volatilities 
at certain knots to some fixed values. 

Finally, we would like to illustrate the potential computational saving by using 
the quasi-Newton updates. In Table 5, we present Matlab computational results 
using the finite difference and quasi-Newton update for Jacibian for the S&P 500 
index option example with different termination tolerances for optimization. We 
observe significant total speedup using a quasi-Newton approach. The quasi-Newton 
approach takes more iterations to converge but requires fewer Jacobian evaluations. 

Table 5. Quasi-Newton results. 

Tolerance 

l e - 2 

l e - 3 

l e - 4 

l e - 5 

Finite Difference 

Iterations 

7 

10 

19 

25 

Time 

321.29 

401.43 

651.89 

795.45 

quasi 

Iterations 

11 

18 

28 

36 

i-Newton Update 

Time 

131.85 

193.91 

286.78 

332.13 

J evaluations 

3 

4 

5 

6 

5. Concluding Remarks 

Assuming that the underlying asset of options follows a continuous 1-factor dif­
fusion model, we propose a method of accurately approximating the local volatility 
function a*(s,i) using a finite set of option prices. We emphasize that accurate 
approximation of the local volatility function in the 1-factor model is crucial in 
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hedging all options (including simple European options) and pricing exotic options. 
Moreover, since the market option data typically has bid-ask spreads, exact cali­
bration of the option data (the average of the bid-ask spreads) is not necessary and 
can be harmful. 

Based on the formula (6) established in [1, 17], the local volatility function 
a* (K, T)2 is smooth if the European call option value function v(K, T) is sufficiently 
smooth. We use a spline functional approach to reconstruct this local volatility func­
tion. After choosing the number of spline knots and their placement, we represent 
a local volatility function a(s, t) by an interpolating spline with a fixed end con­
dition. The volatility values at knots are determined by solving a small nonlinear 
optimization problem subject to simple bounds. The number of variables in the 
optimization (7) is no greater than the number of option observations. 

We solve the proposed inverse spline approximation optimization problem us­
ing a trust region method, with the function and Jacobian evaluated using a PDE 
approach. Computational efficiency through structure exploitation within the 
framework of finite difference and automatic differentiation is discussed. 

We consider two European call options examples illustrating the capability of 
the proposed method. In the first example, we consider synthetic European call 
options for which the underlying follows a known absolute diffusion model. Option 
observation data is simulated by evaluating a set of European call options using the 
analytic formula. The reconstructed local volatility is compared to the true local 
volatility, indicating a fairly accurate reconstruction in the region within which the 
local volatility values are significant for option evaluations. 

With the same example, we illustrate that the constant implied volatility ap­
proach can produce erroneous hedge factors, compared to that from the 1-factor 
model, even for simple European options. Moreover, when the observable option 
prices have bid-ask spreads, calibrating market data exactly by using too many 
spline knots can lead to poor reconstruction of the true local volatility function. In 
the second example, S&P 500 index European call options with market option data 
of October 1995 are considered. We illustrate the smoothness of the reconstructed 
local volatility and stability of the proposed method in pricing and hedging. 

We have demonstrated the potential of the proposed spline volatility approach 
in discovering, from a finite set of option prices, the local volatility function in the 
1-factor process followed by the underlying. We plan to further investigate auto­
matic techniques for the optimal selection of the number of knots p <m and their 
placement. The importance of the proposed local volatility function reconstruction 
in pricing exotic options or American options will also be explored. 
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the now classical Black-Scholes setup become more and more sophisticated, and 
allow for time/state dependent and stochastic volatility or even for stock price 
jumps. These address "model risk" in the presence of "crashes", "smiles", "volatility 
surfaces" and other empirical shortcomings in the data (Bakshi, Cao and Chen, 
1997). 

In this paper, we are interested in choosing the correct model from a second-level 
perspective. Such an approach is known by practitioners as "reverse engineering" or 
as "inverse problems" (Chriss, 1997). Today's actively traded plain vanilla options 
can be seen as "correctly" priced. We take them as inputs to infer how the market 
prices risk. Here, we are interested in a model which explains the observed plain 
vanilla option prices in the market and is immediately implementable in practice 
to price other derivatives. Instead of estimating a continuous time model that will 
be further discretized to price complex derivatives, we think of a direct estimation 
of discrete models and restrict ourselves to those where time and asset space are 
discrete. 

Here, we suppose that discounted asset prices can be modeled by a discrete 
Markov chain. This approach first appeared in a paper by Zipkin (1993) for the 
valuation of mortgage-backed securities. It has recently been used in a series of 
papers related to credit rating instruments (Jarrrow, Lando and Turnbull, 1997 
and Duffle and Singleton, 1998). A Markov chain approach is sufficiently flexible 
to handle a wide class of different models; it is a natural approximation of models 
with time and state dependent volatility and jumps (Kushner and Dupuis, 1992). 
It is also a generalization of binomial and trinomial trees. 

Breeden and Litzenberger (1978) were the first to infer information from option 
prices: the risk-neutral marginal density in terms of the second derivative of option 
prices with respect to the strike. Jackwerth and Rubinstein (1996), Dumas, Flem­
ing and Whaley, (1998), Buchen and Kelly (1996), and Melick and Thomas (1997), 
among others, were interested in the practical implementation of this approach. 
More recently, the problem to infer the dynamics of the underlying has been ad­
dressed: Dupire (1996) and Derman and Kani (1995) relate the local volatility of 
the risky asset price to partial derivatives of the option prices; Rubinstein (1994) 
constructed a binomial process consistent with observed prices at one date; Carr 
and Madan (1998) addressed this problem in a model with time and state dependent 
volatility. 

Derman and Kani (1995) consider consistent binomial trees and determine both 
nodes and probabilities implicitly. Unfortunately, their algorithm leads to negative 
probabilities. They claim this deficiency is due to arbitrage opportunities present 
in the data and override them by some artificial value (see Barle and Cakici, 1995 
for a discussion). In Derman, Kani and Chriss (1996) a grid for a trinomial grid 
is ad hoc specified. However, even in this case, it may be impossible to fit all 
market prices, no matter what choice of state space is made, (see Derman, Kani 
and Chriss, 1996, p. 18). This is due to the fact, that binomial and trinomial 
models are approximations to diffusion processes and will therefore have difficulties 
to handle option prices in the presence of jumps or a large volatility. 
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The assumption of all these approaches is that call option prices are available, 
whatever strike and exercise date. In practice, a continuous data set is usually ob­
tained by numerical interpolation from a discrete set of observed option prices. As 
Shimko (1993) pointed out, special care must be taken in order to get proper prob­
ability densities. Also, these approaches rely heavily on the choice of the smoothing 
technique. 

In line with our view, Avellaneda, Friedman, Holmes and Samperi (1997) assume 
only a discrete data set. However, their assumption of the underlying model in the 
form of a continuous one-dimensional diffusion seems to be too restrictive (Dumas, 
Fleming and Whaley, 1998). Also, in the diffusion setup of Avellaneda, Friedman, 
Holmes and Samperi (1997) jumps are not included. Moreover, their empirical works 
show that the local volatility often hits minimal and maximal levels which are set 
ad hoc. The local discrepencies of the volatility show the difficulties of a continuous 
sample path setting. Our major criticism is that all previous approaches assume 
that the risky security price can be modeled through a scalar diffusion process, 
excluding jumps. 

We assume, as did the previous authors, that markets are information efficient 
in the sense that there are no riskless profits for free, and use this "no-arbitrage" 
principle to price derivatives. However, we have to guarantee that this assumption 
actually holds in the data. It is a well-known and necessary condition for absence 
of arbitrage that the option prices are decreasing and convex in the exercise price 
and are non-decreasing with the exercise date. A contribution of this paper is to 
prove the converse implication. This is a simple check for the presence of arbitrage 
opportunities in data sets. 

We extend the notion of Arrow-Debreu securities to our dynamic case and show 
that the dynamic market can be transformed to a static one by introducing ex­
tra assets that correspond to the martingale restriction. This allows us to relate 
the "no-arbitrage" principle to the feasibility of our approach. Together with our 
characterization for the absence of arbitrage opportunities, this can be easily used 
to check that our approach is valid. Our analysis extensively uses superreplication 
ideas. Taking into account the consistency constraints with observed option prices 
narrows the bid-ask spread in our case compared to Cvitanic and Karatzas (1993), 
El Karoui and Quenez (1995), and Cvitanic, Pham and Touzi (1998). Moreover, 
our direct examination of the underlying probability structure allows for a thor­
ough analysis of arbitrage violations and explicitly prevents the arbitrage problems, 
resulting from a simple implementation of the approach of Dupire (1996). 

Finally, we address in detail the implementation of our approach. Once the 
feasibility of our approach has been ensured, we apply Bayesian estimation to infer 
a unique Markov Chain. We prove that standard results in the static case (see, 
e.g., Buchen and Kelly, 1996) still apply in our discrete framework. This leads to 
a simple expression of the risk-neutral probabilities and makes the implementation 
straightforward. 

In FX markets, using a parametric approach, Bates (1996a), and Bates (1996b) 
find a jump-component whose intensity is small and does not depend on the 
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exchange rate level. McCauley and Melick (1996) and Campa, Chang and Reider 
(1997) document that in these markets, skewness is strongly correlated with the 
spot rate. Looking at the data set of Avellaneda, Friedman, Holmes and Samperi 
(1997), we find a U-shaped form for the "local volatility" and evidence that jumps 
are necessary to explain the data appropriately. 

The paper is organized as follows. Section 2 introduces our setup and basic nota­
tion: it discusses joint, conditional and marginal probabilities, risk-neutral Markov 
chains, and their consistency with the set of observed option prices. Section 3 
studies tests for arbitrage opportunities, risk-neutral measure, and consistent su-
perreplication prices in the static market case. Section 4 shows how the dynamic 
market can be transformed to a static one and discusses the set of attainable assets, 
dynamic arbitrage opportunities and their relation to superreplication. Section 5 
presents a tractable way to test for the absence of arbitrage opportunities in the 
observed set of option prices. Section 6 considers the choice of a martingale measure 
consistent with option prices in a dynamic market and its implementation using the 
data set of Avellaneda, Friedman, Holmes and Samperi (1997). The paper concludes 
with Sec. 7. Proofs are postponed to the appendix. 

2. T h e Marke t Mode l 

The basis of the paper is today's observation of the future contract and a set 
V — {(TI,KI,CI)\1 = 1,...,L} of observed option contracts written on asset S. 
Here Q is the price of the call option with maturity T;; i.e., the contract paying 
(Sn — K{)+ at time TJ if S is the the price of the asset at that time.a We assume 
that the law of one price holds: for each K there is at most one (t, K, C) S T>. 
We will also denote by Kt = {K\(t,K,C) e V} the set of strikes at date t; by 
T>t = {(K,C)\(f,K,C) € V, f = t} the set of contracts with maturity t; and by 
VK

 d= {(£, C) e V\(f, K,C) eV,K = K} the set of contracts with strike K. We 
assume that all observed prices are discounted, taking a bond as numeraire. This 
sets apart interest rates in the analysis. 

Definition 1. Assume there is a finite alphabet CI = {si,..., s^}, a discrete 
set of dates T = { 0 , 1 , . . . , T}, as well as sequences II = (Ht)teT\T> ^ = (St)tgr-
We further assume for date t, that St C fi denotes the set of nodes at t and that 
lit is a, stochastic matrix on Et x £t+i , i.e. a |Et| x |S ( + i | matrix where elements 
are non-negative and rows sum to one. We call such a triplet (T, S, II) o Markov 
Chain Market Model (MCMM). The asset grid will be denoted A d= <g ) t € r £ t . A 
derivative asset X is a random variable on A. 

In practice So = {So}, since today's asset price is observed, and Ho is a de­
generated stochastic matrix. Nevertheless we introduce it for simplicity. Any time 

a We could allow for put options. However by put-call parity all put options in the data set could 
be replaced by their corresponding call prices. So we adopt this assumption further without loss 
of generality. 
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t G T, nodes are ordered, and we index them either by their corresponding number 
or directly by their corresponding node. 

The set of all derivative assets is a linear state space that can be identified 
with Rl-̂ l, where its dimension is the number of linearly independent paths. The 
Euclidean basis of the state space can be seen as the set of Arrow-Debreu securities, 
i.e., the securities paying one unit of numeraire conditionally on the realization of 
some path. 

An MCMM describes the dynamics of the risky asset process S = (St)teT °n A 
through the probability measure P n defined by 

Pn[St+1=s\St = s'}d^Ut(s,s'). 

Pricing measures which are risk-neutral give rise to viable pricing models (in the 
Harrison-Kreps sense). They are characterized by the fact that the discounted asset 
price (St)t is a martingale under Pn. Therefore, we adopt the following: 

Definition 2. A Markov Chain Pricing Model (or MCPM) (T, E,IT) is an 
MCMM with 

En[St>\St =s] = s for all s S S t and t,t' £T,t>t'. (1) 

For any MCPM with Tlt = {U.t(s, s ' )} s es t i S / 6s t + 1 , we can introduce the proba­
bility P n over sample paths by 

T - l 

pn(Si = s1,...,sT = 8T) = Yl nt(st, st+i) 
t=0 

for any ( s i , . . . , ST) € A, with so = So- For t, t' € T, a stochastic matrix Ht,r that 
describes the transition between dates t and t' can be defined by 

t ' - i 

n t , t<=n n« 
u=t 

These probabilities have a simple financial interpretation, which will be useful in the 
sequel: Pn(S\ = si,..., St — ST) can be viewed as the price of an Arrow-Debreu 
security paying one unit of numeraire conditionally on the realization of the path 
( s i , . . . , ST)- Similarly, entry Ilt,t'(i,j) c a n D e viewed as the price at time t in state 
i of an asset paying one unit of numeraire at time t' in state j or as the transition 
matrix between t and t'. In particular, we will further denote by Xt = Uott(So, •)' 
the marginal distribution at date t. The ith. component of Xt can be interpreted as 
the price of an asset paying one unit of numeraire if, and only if, the discounted 
price S is equal to Sj at time t (i.e., a path-independent Arrow-Debreu security). 

Please note that any P-MCPM can be embedded into a continuous framework 
by setting St = 5^ j . The jump times of St are known and occur at the exercise 
dates T £ T. Meanwhile, St remains constant. The transition matrices are such 
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that II(r,i) = Id Vi € [T,T + 1[. 5 t is a continuous time Markov chain, and a 
martingale and generates option prices consistent with observed option prices. 

Definition 3. For a given set V of call options, let us first define T = {t\ 
(t,K,C) e V}. A P-MCPM is a tuple (S,II) where (T ,£ , I I ) is an MCPM with 
Kt C E t and which fulfills for all (t, K, C) £ V: 

En[(St - K)+\ = C. 

A P-MCPM summarizes our approach in that we take the observed set V as an 
input. Condition Kt C E t reflects our choice for the states of the Markov chain. 
Here, we require that for any observed strike at t there is a node which is identical 
to it. There are certainly many different ways to choose the nodes in relation to 
strikes. This does, however, not affect the results in this paper. Our choice is just a 
very simple one to keep track of them in the exposition. Unless otherwise explicitly 
noted, Kt = S t holds. In general, we omit St when referring to a P-MCPM, in 
order to focus on the problem of inferring n . 

The following extension of the set of nodes is necessary. A call (put) option 
with strike equal to the highest (lowest) node sjj"ax (s™ln) has zero payoff. Thus 
in the absence of arbitrage, their price must be equal to zero. This cannot be the 
consistent outcome of a D-MCPM. Therefore we introduce two dummy nodes, s™m 

and s?**, with corresponding prices, C(t,s?*x) = 0 and Cfas?**) = s?** - 5 0 . b 

Later in Sec. 6, we explain in detail how to choose the additional strikes s™ax, s™1" 
in relation those already existing one's. 

3. The Static Market 

This section studies both the transition between today and a fixed date t S T 
and then the market with V = T>t and T = {0,t}. We call this the static market, 
as there is no conditional dynamics in the future. Many of the results here are 
well-known. However, we recall them here to introduce the main concepts useful in 
the dynamic case in an easy framework. 

A 2VMCPM in this market is completely defined by a probability measure At 

on St (i.e., At(s) > 0 and XlseE -Ms) = 1) t n a * i s consistent with the prices of 
traded assets. 

Property 4. The observed option prices are decreasing and convex, i.e., for 
any (C, K), (C',K'), (C", K") € Vt with K" > K' > K: 

C-C C-C 

K-K' < K'-K"' ^' 

These prices are such that put-call parity holds, since the interest rate was supposed to equal 
zero. For a time-homogeneous grid, the two extreme states s™ln and s™ax need to be absorbing 
for the process to be risk-neutral, i.e., Pn[St, = sfln\St = sfin] = Pn[St, = s™ a x |S t = s™ax] = 1 
(see also Sondermann, 1987 and Sondermann, 1988). In practical applications, however, the grid 
will spread out and the extreme states are not absorbing. 
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Please note that the property of decreasing call prices ensures positive option 
prices, since the call price at the highest nodes s™** was set equal to zero. For an 
inner node K £ St \ {sjnin,s™ax}, let us consider a so-called butterfly spread with 
payoff B(-) based on the three adjacent traded strikes K- < K < K+ (K- = 
max(fc,c)ei>t,fc<A: k, K+ = mm^C)evt,k>K k) and a payoff equal to one at K, i.e., 
B(K) = 1 and 0, otherwise. For K = s™m and K = s™ax, we consider call spreads. 
The positive payoff of the butterflies at inner nodes has the price 

Y^Kl°- ~ \K^KZ ~ Y^K) C + K^KC+ • 

This translates directly into Property 4. If there is a complete set of observed option 
prices, i.e., St = Kt, these butterflies form a basis of the payoff space: it is then 
straightforward to prove the following Lemma 5. Otherwise, there will be nodes 
for which no option contract can be observed. Then we can introduce dummy call 
options for the missing strikes, with a price equal to the linear interpolation of the 
adjacent ones. 

Lemma 5.c There exists a risk-neutral marginal density Xt at date t if, and only 
if, Property 4 is fulfilled. Moreover, in a complete market with Property 4, the prices 
Xt(s),s £ £t of path-independent Arrow-Debreu securities with payment date t are 
uniquely determined. For any s £ St \ {s™"\ s™ax}, we have 

C+-C C-C-
Ms) = 

K+-K K-K-

At"m and A™^ have a more complicated form due to boundary effects which we 
do not exhibit here. So Property 4 allows us to check for arbitrage opportunities 
and for the existence of a risk-neutral measure At in this static market. 

When there are fewer traded strikes than nodes, there is not a unique price at 
which a call option with strike K £ St \ICt can be consistently priced without intro­
ducing arbitrage opportunities. Similarly At is not uniquely determined. However, 
it is straightforward to prove the following linear interpolation bounds 

Lemma 6. In the static case, the superreplication price of a call option with 
strike K € S and maturity t £ T is given by the linear interpolation 

K+-K 'K-K-
K+-K_C- + K+-K_C+-

The associated probability puts non-zero probability weights only on traded strikes 
and zero elsewhere. 

c This is a discrete analog of the results of Breeden and Litzenberger (1978), since the difference 
of the fractions is a natural approximation to the second derivative of call options with respect to 
the strike. 
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This superreplication price is very different from that obtained in a standard 
stochastic volatility model, where it is equal to the trivial price S0- The departure 
is due to the use of traded options; consistency with these option prices restricts 
the set of risk-neutral measures and, thus, the no-arbitrage bounds on calls are 
narrowed. 

Remark 7. In the case of a call option payoff, we have an explicit character­
ization of the superreplicating portfolio and price. This can be extended to the case 
of any concave payoff X. The superreplicating portfolio is obtained as the linear 
interpolation of points {(K,C)\(C,t,K) € V}. 

4. The Dynamic Market and Arbitrage Opportunities 

This section transforms the dynamic market into a static one. The martingale 
condition corresponds to constraints on assets we introduce. We also describe the 
linear subspace of all path dependent payoffs made of attainable claims by static 
or dynamic strategies. We restrict ourselves here to the case of a market with 
T = { 0 , 1 , 2 } . 

4.1. Transforming to a fictitious static market 

Let us now introduce our path-dependent static market. It is a fictitious market 
in which the states are Ex x £2. The payoff in state (s, s') € £1 x £2 depends on 
the joint occurrence of state s at date 1 and state s' at date 2.The payoff structure 
of all assets is then a matrix. The basic securities are the following: for a pair 
(s,s') € Ei x £2, let us consider the path-dependent Arrow-Debreu security 8s

e£, 
paying 1 unit of numeraire at date 2 if the asset is in state i at date 1 and in state 
j at date 2, and 0 otherwise. Their price will be denoted by Ps,s>. This can be 
interpreted as the probability of occurrence for that specific path. 

In the fictitious market, the (standard) path-dependent Arrow-Debreu security 
6] at date 1, paying 1 unit in state s is described by the payoff matrix 

\i- - f l if §1 = s 
1 0 otherwise 

i.e., has l's in row s and O's in all other rows. Similarly the (standard) path-
dependent Arrow-Debreu security 6%, at date 2, paying 1 unit in state s' is described 
by the payoff-matrix l's in column s' and O's in all other columns. 

Let us further introduce for any s € Ei the contract as between two parties: if 
the asset price is in state s at date 1, both exchange a bond with face value s and an 
asset, where it is specified that the "holder" receives the bond. At date 2 the option 
seller buys the asset back from the holder at the then prevailing market price. This 
contract can be interpreted as a trading strategy where the bond is used to transfer 
the payments such that there are neither initial nor intermediate payments. So in 
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the absence of arbitrage, the price of the contract must be 0. This introduces | £ i | 
new assets. 

These conditions on the price of assets as are actually sufficient for a probability 
measure to be a martingale measure. This can be seen as follows: the payoff at date 
2 of contract <rs is (52 — s)ls1=s- Its price can be rewritten as 

Y,Ps,s--(s'-s)=0, (3) 
s€S2 

which is precisely the martingale condition (1). 

Definition 8. The set of investment strategies is 1 = RlS2l x RlEll x MlSlL 
For any strategy (a, (3,7) £ I, the claim paying as> + @s + jss' in state (s,s') will 
be denoted by X{a, j3,7) and its price at date 0 by V(a,j3,ry). 

Proposition 9. Let us assume that we observe a set of options with £1 = K\ 
and £2 = ^-2- The set of attainable claims through investment in calls, puts, and 
the asset and numeraire is the linear subspace 

{X(a,f3,-r)\(a,/3n) el} CRV^ , 

i.e., equivalent to investments in Ss
e£, Si and 5^, ((s,s') G £1 x £ 2 / In the absence 

of arbitrage opportunities, the price of the claim X(a, j3,7) is uniquely determined 
by 

V(a,P,j)= ^ ( / 3 s + 7 s s ) A 1 ( S ) + ^ a , A 2 ( s ) . 

This characterizes the claims attainable through static investments in traded 
options in more detail: any attainable claim can be replicated by buying as> units 
of the path-independent Arrow-Debreu security s' at date 2, /?s units of the path-
independent Arrow-Debreu security s at date 1, and 7$ units of stocks conditional 
on being in state i at date 1. The set of attainable claims in the dynamic market is 
thus equal to the set of attainable claims in the static market where the extra assets 
have been introduced. In the sequel, we will always adopt the static viewpoint to 
the dynamic problems. 

Above we explained that the martingale condition translates into a consistency 
condition on the prices of these extra assets. It is well-known that the existence 
of a state price density in the fictitious market consistent with V and additional 
assets is equivalent to the absence of arbitrage opportunities in the static market. 
This is a standard result in financial theory which can be found in any textbook 
(see, e.g., Duffie, 1992, Chapter 1). We have used this approach in the case of 
static markets. In the two-period case studied in this section, all probabilities in 
the fictitious market can be associated with a Markov chain: dependence on a path 
is exactly the dependence on the state at date 1. This implies the following: 

Proposition 10. Existence of a V-MCPM is equivalent to no-arbitrage in the 
fictitious static market. 
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4.2. a-arbitrage opportunities 

The absence of arbitrage opportunities is equivalent to the positivity of the linear 
operator V, i.e., the optimization problem 

min V(a,/3,~f) 
a,/3,7€l 

s.t. #(a, /3,7) > 0 

has a non-negative minimum. Since we have excluded straightforward static arbi­
trage opportunities a priori, the only way an arbitrage opportunity can occur comes 
from a dynamic trade between 1 and 2. We split up this problem. First, we fix an 
arbitrary payoff a £ RlS2l at date 2, and then we study the superreplication of a 
(i.e., we consider only strategies of the form (0, f3,7) which dominate a). (0, j3,7) is 
a self-financed dynamic strategy which corresponds to investing at date 1 through 
path-independent Arrow-Debreu securities and reinvest the proceeds between date 
1 and date 2, conditional on the realized state at time 1 in the risky asset and the 
bond. This leads to the following: 

Definition 11. The set of a-investment strategies is 

T* d= {(/3,7) G M |Sl1 x RlS l l |*(0,/3,7) > X(a,0,0)}. 

An a-arbitrage opportunity is an investment ((3,7) € Xa such that V(0,f3,7) < 
V(a,0,0). 

The "no a-arbitrage" condition can then be interpreted in the sense that any 
dynamic strategy (0, /3,7) synthesizes the (a, 0,0) payoff at a higher price than 
the static strategy in Arrow-Debreu securities of date 2. The relation to the no-
arbitrage condition is then expressed by 

Proposition 12. There are no arbitrage opportunities in the fictitious static 
market if, and only if, there are no a-arbitrage opportunities for any payoff a £ 
RlE»l. 

5. Testing for the Existence of a D-MCPM 

This section studies a condition on data set V to find an easy way to check for 
dynamic arbitrage opportunities. Clearly this can only hold if there are no static 
ones. Therefore, we always assume that Property 4 holds. We take as a starting 
point a homogeneous grid and study the general case only later in this section. 

Assumption 13. The option grid is time-homogeneous, i.e., Vi € T, K,\ = Kt-

Assumption 14. The node grid is time-homogeneous, i.e., Vi g T, Si = St. 

Similar to Property 4, the following characterizes the absence of arbitrage 
opportunities. 
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Property 15. Option prices are non-decreasing with the exercise date; i.e., 
for any time t e T, K £ JCt and (t, Ct), (t + 1, Ct+i) £VK:Ct< C t+i-

Merton (1973) states that in the absence of arbitrage opportunities, Property 15 
holds. It is straightforward to construct the arbitrage strategy if Ct > Ct+i'. we 
sell the call with maturity t and buy the call with maturity t + 1, a strategy known 
as selling a calendar spread. This generates a strictly positive inflow at date 0. At 
date t if the observed asset price is less than K, we do nothing. Otherwise, the 
short call will be exercised; in order to self-finance that transaction, we hold the 
asset short and put the received amount K into the bank account. At date t + 1, 
this generates the payoff {St+i — K)+ — (St+i — K)lst>K > 0. 

The striking fact is that Property 15 is also sufficient for the absence of arbitrage 
opportunities, and ensuring existence of a X>-MCPM. We will prove this in several 
steps. First, we prove it between two dates t, t+1 for t € T. Our aim will be to prove 
that increasing call option prices imply that there are no a-arbitrage opportunities; 
i.e., 

V a e K | S t + l 1 : inf V(0,p,~f)>V(a,0,0). 

The proof is given in the appendix and uses the following lemma. It proves that 
there are no a-arbitrage opportunities, when a represents the payoff of a short call 
with strike K and maturity t + 1. 

Lemma 16. For any date, t € T if Kt — S t , Kt = S t+i, and under 
Assumptions 13 and 14, and Properties 4 and 15, there are no "a-arbitrage" op­
portunities in the dynamic market consisting of trading dates {t, t + 1} for a = 
(-(s - K)+)sext+ltK€Kt+1. 

Any concave payoff is a linear combination with non-negative coefficients of short 
calls for all positive strikes. Using Proposition 12, it is then a small step to prove: 

Theorem 17. For any date, t e T, if Kt = S t , Kt = £t+i , under Assump­
tions 13 and 14, the existence of a P-MCPM in the dynamic market consisting of 
trading dates {t, t + 1} is equivalent to the following two conditions: 

(1) Observed call option prices for a given arbitrary exercise date are positive, 
decreasing and convex in strike (Property 4). 

(2) For a given arbitrary exercise price, call option prices are increasing in 
exercise date (Property 15). 

This also gives an equivalent characterization of the presence of arbitrage op­
portunities in the data set. We will now generalize the previous theorem to the case 
Kt C St, /Q+1 C S t + i . This will allow us to cover the case of the non-homogeneous 
node grid later, too. Furthermore, we now study the original market consisting of 
all dates in T at the same time. We first show the following: 
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Proposition 18. Under Assumption 14 there exists a V-MCPM if, and only 
if, there exists a set of option prices V which is complete (i.e., ICt = St for anV 
t G T), fulfills Properties 4 and 15 such that V C V. 

Proposition 18 states that there exists a 'D-MCPM if, and only if, we are able 
to "complete" the set of observed option prices while keeping the conditions that 
prices are decreasing and convex in the exercise price and monotone in the exercise 
date. Our remaining problem is then, to find an easy procedure to check whether 
such an extension exists. We will address this in the remainder of this section and 
consider all observed options for all maturity dates in 7". 

Definition 19. For any strike K > 0 and any date t G 7", the convex envelope 
£t{K) of the discrete set of points in D is defined by 

St = {{\n) G K2 |Vr > i , r G T, (K',C) eVT:X + fiK'< C'} , 

St(K) = sup{A + fiK\(X, n) G 5 t } . 

Please note that £t(K) is convex and fulfills Property 15, the latter since St C 
<St+i for any t. It is therefore a "first choice" for an extension of V. 

Proposition 20. In the absence of arbitrage opportunities, the superreplication 
price Ct(K) of an option is less or equal than the convex envelope; i.e., 

VteTVKe [0,oo[ : Ct{K) < St(K), 

and V(t, K,C)eV: Ct(K) = C = €t(K). 

In the absence of arbitrage opportunities, according to Proposition 20, the con­
vex envelope £t(K) interpolates the observed option prices with maturity t. More­
over, the superreplication price of an option is equal to the convex envelope. The 
following theorem proposes a simple and tractable way to check for the existence of 
a D-MCPM in the general case. 

Theorem 21. There exists a P-MCPM if, and only if, the convex envelope 
£t{K) interpolates the observed option prices, i.e., V(t,K,C) G V : St{K) = C. 

This is a tractable way to test for arbitrage opportunities. The convex envelopes 
of observed option prices are easy to compute. In most standard cases in real 
applications, they are simply the linear interpolations of observed option prices of 
a given maturity. Then the simplest construction, where no further nodes have to 
be introduced is possible. 

For example, we can consider the data set of exchange rate option prices used by 
Avellaneda, Friedman, Holmes and Samperi (1997) (see Table 1 and Fig. 1). Here, 
straight lines connecting the different option prices do not intersect, so they are the 
convex envelope; and we deduce that there are no arbitrage opportunities in this 
specific dataset. 
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Table 1. 

maturity 

USD/DEM 

type 

OTC market data set of Avellaneda 

strike bid 

et al. 

ask 

August 23 

impl. 

1995. 

volat. 

30 days 

Call 

Call 

Call 

Put 

Put 

1.5421 

1.5310 

1.4872 

1.4479 

1.4371 

0.0064 

0.0086 

0.0230 

0.0085 

0.0063 

0.0076 

0.0100 

0.0238 

0.0098 

0.0074 

14.9 

14.8 

14.0 

14.2 

14.4 

60 days 

90 days 

180 days 

270 days 

Call 

Call 

Call 

Put 

Put 

Call 

Call 

Call 

Put 

Put 

Call 

Call 

Call 

Pu t 

Put 

Call 

Call 

Call 

Put 

Put 

1.5621 

1.5469 

1.4866 

1.4312 

1.4178 

1.5764 

1.5580 

1.4856 

1.4197 

1.4038 

1.6025 

1.5779 

1.4823 

1.3902 

1.3682 

1.6297 

1.5988 

1.4793 

1.3710 

1.3455 

0.0086 

0.0116 

0.0313 

0.0118 

0.0087 

0.0101 

0.0137 

0.0370 

0.0141 

0.0104 

0.0129 

0.0175 

0.0494 

0.0200 

0.0147 

0.0156 

0.0211 

0.0586 

0.0234 

0.0173 

0.0102 

0.0135 

0.0325 

0.0137 

0.0113 

0.0122 

0.0160 

0.0385 

0.0164 

0.0124 

0.0152 

0.0207 

0.0515 

0.0232 

0.0176 

0.0190 

0.0250 

0.0609 

0.0273 

0.0206 

14.4 

14.5 

13.8 

14.0 

14.2 

14.1 

14.1 

13.5 

13.6 

13.6 

13.1 

13.1 

13.1 

13.7 

13.7 

13.3 

13.2 

13.0 

13.2 

13.2 

CD 
O 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 (-

0 

30 days —-
60 days -+-
90 days -«-

180 days -*-
270 days -*-

1.3 1.35 1.4 1.45 1.5 1.55 1.6 
strike 

Fig. 1. Prices depending on the strike for different maturities. 

1.65 
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Remark 22. Theorem 21 guarantees that once Properties 4 and 15 are satis­
fied, it is possible to calibrate option prices with a scalar Markov chain. In particular, 
stochastic volatility or extra static variables are not required. Of course, one may 
think that stochastic volatility is a desirable feature and may consider processes 
consistent with an observed data set based on a larger state space provided that the 
properties on the call option prices are fulfilled. 

6. Characterization of the P - M C P M 

Once the existence of a 2?-MCPM has been ensured, there is typically a multi­
plicity of consistent MCPM's.d There are various ways to choose one. According 
to our equivalence between a static and dynamic market, we can treat it as an 
incomplete two-dimensional market. The superreplication prices studied in Sec. 3 
correspond to that D-MCPM that yield the highest price for all non-traded assets. 

The Bayesian approach takes a prior, e.g., the Black-Scholes setup, and looks for 
the minimal departure from this model consistent with the observed option prices. 
In the finacial literature, L2-criteria have been used by Rubinstein (1994) and Jack­
werth and Rubinstein (1996) among others for pricing options. On the statistical 
side, these criteria appear in Hansen and Jagannathan (1997) and Luttmer (1997). 
The cross-entropy criterion has been used by Buchen and Kelly (1996), Jackwerth 
and Rubinstein (1996), and Avellaneda, Friedman, Holmes and Samperi (1997). 
Also known as the information optimization criterion, it is well-established in prob­
ability theory and the statistical literature for its superiority in filling in missing 
information. We will therefore adopt it here. 

We study the case of all dates by looking at each path over time as a different 
state. We assume that they are in some linear order and index them by i, i € 
{ 1 , . . . , n t 6 r | S t | = A. Let us denote by M. the set of all probability measures 
on the state space A associated with an MCMM and by Mv, the subset of those 
probability measures associated with a X>-MCPM. We are given a prior probability 
measure P £ M, allowing explicitly for the fact that P might not be consistent 
with the observed option price. 

The cross-entropy of a probability measure Q € M. is defined by 

dQ, dQ 
dPl°gdP 

H{Q) = E* 

Here we are interested in the cross-entropy problem 

which corresponds to the optimization problem under the constraint to reproduce 
the calls in the observed data set. 

"Let us consider T dates, N states and observed options prices for all nodes. Apart from the 
positivity constraints, there are usually N(2T — 1) linear constraints and N + (T - 1)(JV2 - N) 
unknowns. 
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Proposition 23. Let us assume that M.x> ^ 0 and that there is QQ S M.t>, 
Qo ~ P; then the minimal cross-entropy D-MCPM exists, and the associated prob­
ability measure Q* is equivalent to P and is uniquely characterized by 

dQ* j ^ 
— = exp I /i0 + X, dP 

\t(St)(St+1 -St)+ J2 ^K{St - K)+ 
t€T (t,K,C)<ZV 

where the parameters /io, IH,K {for (t,K,C) £ T>) and the functions Aj : St —> K 
(for t £ T\T) are determined by 

EQ'[1} = 1, 

EQ'[St+1-St\St}=0 \/t<=T\T, 

and EQ" [(St - Kijt)
+] = C for any (t, K,C)&V. 

Existence of such a positive Qo follows: e.g., if all marginal distributions are 
strictly positive and the conditions of the previous section are fulfilled, we can 
simply redistribute part of the transition probability mass appropriately for and Q 
to ensure its strict positivity. 

We now explain the implementation of our approach using the dataset of Avel­
laneda, Friedman, Holmes and Samperi (1997) — introduced in Sec. 5 — in detail. 
We will draw some interesting conclusions from our implementation and compare 
them with the results obtained by Avellaneda, Friedman, Holmes and Samperi 
(1997). We deduced from Fig. 1, together with Theorem 21, that there are no 
arbitrage opportunities and that a X>-MCPM exists. 

Besides the fact that we chose nodes identical to strikes, as explained in Sec. 2, 
a full specification of our approach requires introducing "dummy"-nodes at each 
data above the highest node sf1** and below the lowest node s™in of the grid. To 
do so, we first choose a constant factor \i. Then we study the difference between 
the highest ones and introduce the new node above the highest one so that the 
difference is exactly /z times the difference before. If s(s') denotes highest (second 
highest), then the new one is at s + fj,(s — s'). We proceed similarly for the new one 
below. It then remains to specify fi. The highest (lowest) node has to carry the 
probability weight for all possible higher (lower) movements. It should therefore not 
be chosen too small. We tested several factors, but only those with /i > 5 worked 
well, producing adequate results in the marginal distribution. We therefore adopted 
/x = 5 in this analysis. 

The second choice is the prior. We adopt a trinomial prior where for inner nodes 
1 < i < vt 

1 . . 
- ; 1=3 
3 ' J 

1 
3 

P • 10(vt - 3) 

1 

I 10(i/t - 3) ' 

j = i ± 1. 

otherwise 



Building a Consistent Pricing Model from Observed Option Prices 231 

(For the outer most-nodes adjust by adding the probability of the missing node to 
the starting node.) Here vt = |£t | denotes the number of nodes at date t. This 
prior will, in general, not be consistent with the observed option prices. However, it 
supports good the fact that we would like a departure as small as possible from the 
Black-Scholes setup to make it compatible with the observed option prices. Fur­
thermore, it is similar to a trinomial model which represents the fact that it is only 
a discrete approximation to some continuous time model. We nevertheless increased 
the probabilities slightly (to 1/(10(^-3))) to allow for non-zero probability weights 
also in non-adjoint nodes. A lognormal prior — the Black-Scholes model — yields 
similar results in the following implementation. 

We then proceeded exactly as described in the previous subsection. Tables 2 to 
5 contain the transition matrices in the form found throughout the paper. To make 
them easily accessible, however, we index them directly by the nodes. In parentheses 
we have put the corresponding probabilities resulting from a Black-Scholes model 
with constant volatility of 0.15 pa. The last column contains the local volatility of 
the risk-adjusted process. 

Except for the column furthest to the left, we see that the lower left hand 
part is always different from the Black-Scholes case, where it is zero. The market 
anticipates a strictly positive probability for large downward movements. The fear 

Table 2. Transition between dates 1 and 2. 

1.2673 1.4178 1.4312 1.4866 1.5469 1.5621 1.6381 aloc 

1.3831 0.38 (0.01) 0.43 (0.98) 0.04 (0.01) 0.06 (0.00) 0.03 (0.00) 0.02 (0.00) 0.04 (0.00) 0.36 

1.4371 0.10 (0.00) 0.35 (0.30) 0.37 (0.62) 0.05 (0.08) 0.04 (0.00) 0.03 (0.00) 0.07 (0.00) 0.29 

1.4479 0.02 (0.00) 0.28 (0.13) 0.34 (0.65) 0.34 (0.21) 0.01 (0.00) 0.00 (0.00) 0.01 (0.00) 0.15 

1.4872 0.00 (0.00) 0.01 (0.00) 0.23 (0.09) 0.60 (0.87) 0.12 (0.04) 0.00 (0.00) 0.03 (0.00) 0.16 

1.531 0.00 (0.00) 0.01 (0.00) 0.02 (0.00) 0.38 (0.29) 0.33 (0.63) 0.20 (0.08) 0.07 (0.00) 0.16 

1.5421 0.06 (0.00) 0.05 (0.00) 0.06 (0.00) 0.05 (0.13) 0.31 (0.67) 0.21 (0.20) 0.26 (0.00) 0.33 

1.5976 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.04 (0.00) 0.02 (0.02) 0.33 (0.60) 0.57 (0.38) 0.21 

Table 3. Transition between dates 2 and 3. 

1.1833 1.4038 1.4197 1.4856 1.558 1.5764 1.6684 <7ioc 

1.2673 0.65 (0.97) 0.30 (0.03) 0.02 (0.00) 0.02 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.40 

1.4178 0.03 (0.00) 0.55 (0.44) 0.32 (0.55) 0.05 (0.02) 0.02 (0.00) 0.01 (0.00) 0.02 (0.00) 0.22 

1.4312 0.01 (0.00) 0.46 (0.18) 0.25 (0.73) 0.27 (0.08) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 

1.4866 0.00 (0.00) 0.03 (0.00) 0.15 (0.05) 0.68 (0.93) 0.13 (0.02) 0.00 (0.00) 0.01 (0.00) 0.15 

1.5469 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.32 (0.13) 0.37 (0.76) 0.22 (0.11) 0.08 (0.00) 0.19 

1.5621 0.02 (0.00) 0.07 (0.00) 0.05 (0.00) 0.06 (0.03) 0.34 (0.64) 0.22 (0.33) 0.25 (0.00) 0.33 

1.6381 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.02 (0.00) 0.02 (0.00) 0.27 (0.28) 0.68 (0.72) 0.18 
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Table 4. Transition between dates 3 and 4. 

0.9697 1.3682 1.3902 1.4823 1.5779 1.6025 1.7255 <rloc 

1.1833 0.53 (0.44) 0.36 (0.56) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.46 

1.4038 0.03 (0.00) 0.56 (0.39) 0.24 (0.40) 0.06 (0.21) 0.03 (0.01) 0.01 (0.00) 0.06 (0.00) 0.24 

1.4197 0.02 (0.00) 0.39 (0.28) 0.22 (0.41) 0.34 (0.30) 0.01 (0.01) 0.01 (0.00) 0.01 (0.00) 0.17 

1.4856 0.00 (0.00) 0.04 (0.04) 0.15 (0.20) 0.64 (0.60) 0.15 (0.14) 0.00 (0.02) 0.01 (0.00) 0.14 

1.558 0.00 (0.00) 0.02 (0.00) 0.01 (0.02) 0.35 (0.36) 0.36 (0.38) 0.20 (0.21) 0.06 (0.03) 0.15 

1.5764 0.05 (0.00) 0.05 (0.00) 0.04 (0.01) 0.04 (0.26) 0.33 (0.39) 0.22 (0.29) 0.27 (0.05) 0.34 

1.6684 0.00 (0.00) 0.02 (0.00) 0.01 (0.00) 0.03 (0.02) 0.02 (0.12) 0.35 (0.41) 0.57 (0.45) 0.17 

Table 5. Transition between dates 4 and 5. 

0.8335 1.3455 1.371 1.4793 1.5988 1.6297 1.7842 <7ioc 

0.9697 0.75 (1.00) 0.21 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.47 

1.3682 0.01 (0.00) 0.63 (0.50) 0.28 (0.40) 0.05 (0.10) 0.02 (0.00) 0.00 (0.00) 0.01 (0.00) 0.16 

1.3902 0.02 (0.00) 0.43 (0.33) 0.27 (0.47) 0.28 (0.20) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.19 

1.4823 0.00 (0.00) 0.04 (0.02) 0.16 (0.18) 0.66 (0.69) 0.14 (0.11) 0.00 (0.01) 0.01 (0.00) 0.14 

1.5779 0.00 (0.00) 0.01 (0.00) 0.01 (0.01) 0.35 (0.31) 0.43 (0.47) 0.12 (0.20) 0.08 (0.01) 0.18 

1.6025 0.02 (0.00) 0.07 (0.00) 0.05 (0.00) 0.06 (0.18) 0.40 (0.46) 0.16 (0.32) 0.24 (0.03) 0.34 

1.7255 0.00 (0.00) 0.01 (0.00) 0.01 (0.00) 0.03 (0.00) 0.03 (0.05) 0.25 (0.40) 0.66 (0.54) 0.21 

of "crashes" seems to be present in the observed option prices or, differently, an 
appropriate model should allow for jumps in the underlying prices. We observe 
a similar pattern in the upper right-hand part, indicating that there is a strictly 
higher probability for large upward movements. Although this effect seems to be 
similar to "fat tails," however, here it is much more pronounced since it attributes 
"high" probability (between 0.01 and 0.07) on zero events, and we see it in the 
conditional evolution in the future. The observation that the first column is zero 
might be, attributable to the fact that \i is too large. With the exception of the 
last row, we find a U-shaped form for the "local volatility". 

7. Conclusion 

We calibrated a risk-neutral asset process to observe call option prices under 
the assumption that the discounted asset prices follow a Markov chain. We proved 
that existence of such a Markov chain is equivalent to the condition that call option 
prices are decreasing and convex in the strike price and increasing in the exercise 
date. An important technique we used throughout was to reduce our dynamic 
market to a static one with extra constraints due to the possibility of dynamically 
trading in the bond and the risky asset. We characterized the superreplication price 
of a call in both a static and dynamic framework. The bid-ask spread was shown 



Building a Consistent Pricing Model from Observed Option Prices 233 

to be reduced due to the trade-ability of other options. We applied the Bayesian 
approach to infer the "optimal" measure and revealed surprising results. 

A Proofs 

Proof of Proposition 9. The set of attainable claims is clearly {7(5i)(52 — 
si) + E(tKCeV) atMSt ~ K)+\a G RlE l ' x RlE*l,7 G R^}. For a payoff V2 = 
j{S1)(S2 - Si) + E s € S l a-(Si - s)+ + £ s € s 2 MS» - s)+, the term - 7 ( S i ) S i + 
2 « e s a s (^ i — s)+ c a n ^ e written on the basis of path-independent Arrow-Debreu 
securities as S ses1/3 slsi=s,/3 G E'S l l ; similary, there exist some as G RlS2l such 
that SsgSibs(S2 — s)+ = S s e s 2 / 9 s l s 2 = 5 . This proves that an investment through 
calls, puts, and the asset and numberaire can be achieved as an investment in 
S^,,dl, and Jg,((s,s') 6 Ei x £2). The converse follows in a similar way. Using 
Eq. (3), it is straightforward to prove the form for the price functional V. 

Proof of Proposition 12. If there exists an arbitrage opportunity 5, ft 7 
such that X(a, ft 7) > 0 and V(a,f3,j) < 0, then by linearity of X and V we 
get X(p,(3,j) > X(-a,0,0) and P(0,j3,j) < ' P ( -a ,0 ,0 ) , which means that the 
superreplication price is strictly below the replication price. 

Conversely, any a-arbitrage opportunity is obviously an arbitrage opportunity 
in the strict sense. 

Proof of Lemma 16. Let us first fix a call with strike K £ ICt+i and maturity 
date t + 1 e 7" and denote by Ct,Ct+i the two call prices and by in the node 
corresponding to the strike. We address the problem by backward induction and 
consider in state 1 at data t the minimum amount of numeraire to be held in order 
to superreplicate the short call payoff at date t + 1: 

Vt = inf A + 7 ts4 
A ,7. 

s.t. Vs G Et+i : A + l%s > -(a - K)+ . 

The optimal superreplication strategy splits up into two cases: 

(1) For 1 < iK: From ft + 7,5, > - ( 5 , - K)+ = 0, we deduce that Vt > 0. 
Since ft = 7, = 0 satisfies the constraint ft + jts = 0 > — (s — K)+ for and 
s £ S t+i, we deduce that the optimum is attained at V% = 0. 

(2) For i > IK'- Similar to the previous case, we deduce from ft + 7,5, > 
— (sj — K)+ — K — Sj, For ft = +K,,yl = —1 the constraint ft + ^%s — 
K — s > —(s — K)+(s G £2) is satisfied and so the optimum Vt = K — Sz is 
attained. 

In both cases, the inflow Vt ~ — (s, — K)+ for the superreplication strategy 
at time t is simply a short call payoff with strike K. By the dynamic program­
ming principle, infQ3i7)€x<» V(0,/3,7) corresponds to the superreplication price of 



234 Quantitative Analysis in Financial Markets 

Vt = — [Sl — K)+, and so, by Property 4, it is equal to the replication price of the 
short call with maturity date one i.e., — Ct. So for as = —(s — K)+, we have 

inf V(0,/3,j) = -Ct. 

By assumption, the price of the short call with strike K and maturity t is larger 
than — Ct+i = V(a,0,0); this proves the assertion. 

Proof of Theorem 17. Merton (1973), cited at the beginning of Sec. 5, proved 
necessity; therefore we only need to prove sufficiency. First, let us assume that a 
is concave. Short calls form a basis of the space of (path-independent) payoffs, 
so there exists d; 6 M s.t. as = &os — ^2tcxi(s — K{)+. We quickly check that 
on — {on — ai-i) — (ai+i — OL{) > 0. Thus the superreplication price of #(01,0,0) 
can be written as 

«oSo - J2 5'C*.' >&So~Yl ai°t+hi = ?>> °> 0) • 
; i 

Together with Property 15, this proves that there are no a-arbitrage opportunities 
for any concave payoff. 

In the case of a general payoff a at date t + 1, we will denote by a the con­
cave envelope of a. Similar to Lemma 16, we test for a-arbitrage and study the 
optimization problem in every state i at time t: 

V% =1 inf /?, + 7JSJ 
fit,it 

s.t. V j : j3xSj > oij . 

The concave envelope a is by definition the solution of this optimization problem. 
Thus, we have Vz = at and so 

inf V(0,13,7) = inf V(0, /3,7). 
(/3,7)€2> (fi,l)€l" 

In other words, the superreplication price of a is equal to the superreplication price 
of its concave envelope. The absence of arbitrage opportunities in the static market 
at time t + 1 and a > a imply V(a, 0,0) > V(a, 0,0). By the preceding study of 
concave payoffs, we get 

inf _V(0,/3n)>V(a,0,0), 
03,7)€X°< 

which guarantees the result. The proof now follows with Proposition 12 and 
Proposition 10. 

Proof of Proposition 18. Necessity is the result of Merton (1973) stated at 
the beginning of Sec. 5. 

In the case of only two exercise dates, sufficiency follows directly from 
Theorem 17 since a X>-MCPM is also a X>-MCPM. With several exercise dates, 



Building a Consistent Pricing Model from Observed Option Prices 235 

let us first note that the marginal densities of St, Xt are uniquely determined from 
the option prices (t, K, C(t, K)) £ V. From the above argument, looking at only two 
dates, follows the existence of a set of joint probabilities P[St = x, St+\ — y], (x, y) £ 
E t x St+i such that: V(z, y) £ E t x E t + i : P[St = x] = Xt(x), P[St+1 = y] = \t+i{y) 
and Va; € E t : XLgs, P[&t — x,St+i = y}(y - x) = 0. We can define a stochastic 
matrix lit by 

P[St = x, St+i = y] D r c , | c , 
nt(a;,2/) = —̂  r - r ^ = P[St+i = y\St = x\. 

Now, for t G T, the MCMM defined by n t has marginal densities equal to \ t and is 
thus both consistent with the option prices C(t, K),K GE ( and with the smaller set 
of observed option prices C(t, K), t £ T, K G /Ct. Moreover, it fulfills the martingale 
restriction and so it is a P-MCPM. 

Proof of Proposition 20. Absence of arbitrage opportunities implies there is 
an arbitrage-free option pricing model which we represent here by P n . We denote 
by Cn(i, K), K £ [0, oo[i £ T the corresponding option prices. These arbitrage-free 
option prices are convex and fulfill: 

Vr >t,\/K£KT: Cn(t,K) < C n ( r ,K) = C(T,K). 

The superreplication price C(t, K) is the supremum of Cj\ taken over all possible 
Pn. Thus, 

Vr > t, VK £ KT : C(t, K) < C{T, K). 

Moreover, C(t, K) inherits the convexity from Cn(t, K). By definition of the convex 
enveloppe, this implies, Vt £ T,VK £ [0, oo[: C(t,K) < £t{K). This proves directly 
the first part of the assertion. 

Whatever P n , we have VK £ K.t : Cn(t,K) = C(t,K). Thus VK £ Kt, 
C(t,K) = C(t,K). From the first part follows that C(t,K) = C(t,K) < £t[K). 
On the other hand, £t(K) < C(t,K); this implies C = Et(K). 

By Proposition 18, there exists a 2?-MCPM which then has, by definition, C = 
C. This proves the second assertion. 

Proof of Theorem 21. To prove the theorem, we apply Proposition 10. First 
we prove the theorem in the homogeneous case of Assumption 13. By Proposi­
tion 20, we need only to study sufficiency: the convex envelope {£t(K)\t £T,K £ 
2 } provides a set of option prices consistent with observed option prices: 

Wt£T,K£i:t:St(K) = C(t,K). 

By definition £t(K) is convex in K and is also clearly increasing in t. Thus, we can 
Proposition 18 and prove the absence of arbitrage opportunities. 

Now we address the general inhomogeneous case. First, we prove necessity by 
contradiction: assume the condition would not hold. Then, by definition of the 
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convex envelope, there exists a (C,i,K) G V such that Et(K) < Ct(K), where 
Ct(K) is the linearly interpolated value corresponding to the next traded strike to 
the left and right. However this constitutes an arbitrage opportunity as in Merton 
(1973), cited at the beginning of Sec. 5. This contradiction proves the first part. 

To finish we prove sufficiency and study a fictitious model with the thinnest 
grid corresponding to all nodes in which we set the call option prices corresponding 
to the additional strikes equal to their price resulting from from interpolating the 
option prices of the next two options strikes. This will result in the same £. The 
above argument for the homogeneous case ensures existence. By construction of 
this fictitious model, the additional nodes have zero probability weight. Therefore, 
we can translate the fictitious model directly back into our original model. 

Proof of Proposition 23. Let us for the moment consider an arbitrary finite 
set of couples V — {(Xj,Cj), 1 < j < J } , where Xj is a derivative asset and Cj, 
its price. We denote by M. the set of probability measures on the state space 
A = <8>te7-St consistent with T>; they do not necessarily have to be associated to 
MCMM. We have M.v C M. C M.. Then we study the following optimization over 
the set of probability measures absolutely continuous w.r.t. to P and consistent 
with V: 

min E 
dQ, dQ 
dPl°gdP 

We identify the elements of M. C V with the elements of the simplex of Rl"4! and, 
similarly, Xj with an element in R'-4'. The set of absolutely continuous measure 
w.r.t P and consistent with V is a closed bounded set of R'-4' and the optimization 
criterion is continuous; since Mv ^ $> there exists an optimal probability measure 
Q* absolutely continuous w.r.t. P. 

Let us assume that Q* is not equivalent to P. We denote by q* the probability 
being in state i under Q*. For any e > 0, we define a (signed) measure Q(e) by 
gi(e) = q* + e(qoti — qt), where qo,i denotes the state probability i under Q<$. This 
measure satisfies all equality constraints. Furthermore, with q^n — infq»>o<7*,<5 = 
supi |5o,» — 9*|) we can check that we have qi(e) < 0 for all e G [0, q^in/S[ and i £ A. 

Now, let us consider for any such e G [0, q^in/S[: 

H{Q{e)) - H{Q*) = y ^ qj(e) log ft(e)/^ - g? log qUPi + y- . { ego.i 

The first term admits a limit when e —> 0, while the second term tends to —oo. Thus 
there exists some e such that H(Q(e)) < H(Q*) which contradicts the assumption 
and proves that Q* is an equivalent measure to P. 

Therefore there exists an interior solution Q* > 0; i.e., the inequality constraints 
are not binding. Applying Theorem 28.2 and 28.3 of Rockafellar (1970), we find 
that there exists Xj G R, j = 1 , . . . , J such that 
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which proves the desired result. 
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WEIGHTED MONTE CARLO: A N E W TECHNIQUE 
FOR CALIBRATING ASSET-PRICING MODELS 

MARCO AVELLANEDA, ROBERT BUFF, CRAIG FRIEDMAN 

NICOLAS GRANDECHAMP, LUKASZ KRUK and JOSHUA NEWMAN* 

A general approach for calibrating Monte Carlo models to the market prices of benchmark 
securities is presented. Starting from a given model for market dynamics (price diffusion, 
rate diffusion, etc.), the algorithm corrects for price-misspecifications and finite-sample 
effects in the simulation by assigning "probability weights" to the simulated paths. The 
choice of weights is done by minimizing the Kullback-Leibler relative entropy distance of 
the posterior measure to the empirical measure. The resulting ensemble prices the given 
set of benchmark instruments exactly or in the sense of least-squares. We discuss pricing 
and hedging in the context of these weighted Monte Carlo models. A significant reduction 
of variance is demonstrated theoretically as well as numerically. Concrete applications 
to the calibration of stochastic volatility models and term-structure models with up to 
40 benchmark instruments are presented. The construction of implied volatility surfaces 
and forward-rate curves and the pricing and hedging of exotic options are investigated 
through several examples. 

1. Introduction 

According to Asset-Pricing Theory, security prices should be equal to the expec­
tations of their discounted cash-flows under a suitable probability measure. This 
"risk-neutral" measure represents the economic value of consuming one unit of ac­
count on a given future date and state of the economy. A risk-neutral probability 
implemented in the context of a specific market is often called a pricing model. 
It is natural to require that a pricing model reproduce correctly the prices of liquid 
instruments which are actively traded. This ensures that "off-market", less liquid, 
instruments are realistically priced by the model.3 

Here, we consider pricing models based on Monte Carlo (MC) simulations of 
future market scenarios ("paths").b Prices are computed by averaging discounted 

•Address: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, 
New York, NY, 10012. We are grateful to Graciela Chichilnisky, Freddy Delbaen, Raphael Douady, 
Darrell Duffle, Nicole El Karoui, David Faucon, Olivier Floris, Helyette Geman, Jonathan Good­
man, Robert Kohn, Jean-Pierre Laurent, Jean-Michel Lasry, Jerome Lebuchoux, Marek Musiela, 
Jens Nonnemacher, and Frank Zhang for their enlightening comments and suggestions. We ac­
knowledge the hospitality and generous support of Banque Paribas, Ecole Polytechnique, Ecole 
Normale Superieure de Cachan, ETH-Zurich and the Center for Financial Studies (Frankfurt). 
This work was partially supported by the US National Science Foundation (DMS-9973226). 
aThroughout this paper, a pricing model refers to a model for pricing less liquid instruments 
relatively to more liquid ones (the benchmarks) in the context of a particular market. This type 
of financial model is used by most large investment banks to manage their positions. 
"See Dupire (1998) for an up-to-date collection of papers by academics and practitioners on Monte 
Carlo methods in finance. 
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cashflows over the different paths. We shall be concerned with the calibration of 
such models, i.e., with specifying the statistics of the sample paths in such a way 
that the model matches the prices of benchmark instruments traded in the market. 

Most calibration procedures rely on the existence of explicit formulas for the 
prices of the benchmark instruments. The unknown parameters of the underlying 
stochastic process are found by inverting such pricing formulas, either exactly or in 
the sense of least-squares. Unfortunately, in Monte Carlo simulations, this method 
may not be sufficiently accurate enough due to sampling errors (the finite sample 
effect). Furthermore, closed-form solutions for prices may not always be available or 
easy to code. In the latter case, fitting the model to market prices implies search­
ing the parameter space through direct simulation, a computationally expensive 
proposition. 

This paper consisders an alternative, non-parametric, approach for calibrating 
Monte Carlo models and applies it to several practical situations. The main idea 
behind our method is to put the emphasis on determining directly the risk-neutral 
probabilities of the future states of the market, as opposed to finding the parameters 
of the differential equations used to generate the paths for the state-variables. 

One way to motivate our algorithm is to observe that Monte Carlo simulations 
can be divided (somewhat arbitrarily) into two categories: those that are uniformly 
weighted and those that are non-uniformly weighted. To wit, consider a set of sample 
paths, denoted by ui,... ,OJV, generated according to some simulation procedure. 
By definition, a uniformy weighted simulation is such that all sample paths are 
assigned the same probability. Thus, a contingent claim that pays the holder ht 

dollars if the path u>i ocurrs, has model value 

A non-uniformly weighted simulation is one in which the probabilities are not nec­
essarily equal. Suppose that we assign, respectively, probabilities pi,... ,pv to the 
different paths. The value of the contingent claim according to the corresponding 
"non-uniformly weighted" simulation is 

V 

Ilh = J2hiPi. (2) 

Our approach is based on non-uniformly weighted simulations. First, we simulate a 
large number of paths of a stochastic process followed by the state-variables (prices, 
rates, etc.) under a prior distribution. Second — and here we depart from the 
conventional Monte Carlo method — we assign a different probability to each path. 
Probabilities are determined in such a way that (i) the expected values of the 
discounted cash-flows of benchmark instruments coincide exactly or within tolerance 
with the market prices of these securities and (ii) they are as close as possible to 
uniform probabilities (pi = 1/v) coresponding to the simulated prior. 
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This method allows us to incorporate market information in two stages. The 
first step gives a prior probability measure that corresponds to our best guess for the 
risk-neutral measure given the information available. This guess may involve real 
statistics, such as estimates of rates of return, historical volatilities, correlations. It 
may also use parameters which are implied from market prices (implied volatilities, 
cost-of-carry, etc). In other words, the path simulation is used to construct a 
"backbone" or "prior" for the model which incorporates econometric or market-
implied data. The second step has two purposes: it reconciles the econometric/prior 
information with the prices observed at any given time and also corrects finite-
sample errors on the prices. 

We denote the mid-market prices of the N benchmark instruments by C\,..., Cjv 
and represent the present values of the cashflows of the jth benchmark along the 
different paths by 

9ij,92j,---,gvj j = l,...,N. (3) 

The price relations for the benchmark instruments can then be written in the form 

V 

Y^Pidij = Cj , j = l,...,N, (4) 
*=i 

where (pi,... ,pu) are the probabilitites that we need to determine. Generically, this 
(linear) system of equations admits infinitely many solutions because the number 
of paths v is greater than the number of constraints.0 The criterion that we propose 
for finding the calibrated probability measure is to minimize the Kullback-Leibler 
relative entropy of the non-uniformly sampled simulation with respect to the prior. 
Recall that if p i , . . . ,pv and qi,...,qv are probability vectors on a probability space 
with v states, the relative entropy of p with respect to q is defined as 

D(p\q) = Y,Pi lQg ( - ) • (5) 
» = l V 9 i ' 

In the case of Monte Carlo simulation with qi = 1/v = Ui we haved 

V 

D (p\u) = log v + Y^ Pi log pi. (6) 
i = l 

We minimize this function under the linear constraints implied by (4). To this effect, 
we implement a dual, or Lagrangian, formulation which transforms the problem into 
an unconstrained minimization over N variables. Minimization of the dual objective 
function is made with L-BFGS (Byrd et al. (1994)), a gradient-based quasi-Newton 
optimization routine. 

c I t is also possible that the system of equations admits no solutions if the prior is inadequate or if 
the prices give rise to an arbitrage opportunity. We shall not dwell on this here. 
We shall denote the uniform probability vector by u, i.e., u = (1/v,..., 1/v). 
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The use of minimization of relative entropy as a tool for computing Arrow-
Debreu probabilities was introduced by Buchen and Kelly (1996) and Gulko (1995, 
1996) for single-period models. Other calibration methods based on minimizing a 
least-squares penalization function were proposed earlier by Rubinstein (1994) and 
Jackwerth and Rubinstein (1995). Samperi (1997), Avellaneda et al. (1997) and 
Avellaneda (1998) generalized the minimum-entropy method to intertemporal lat­
tice models and diffusions. More recently, Laurent and Leisen (1999) considered 
the case of Markov chains. These studies suggest that this is a computationally 
feasible approach that works in several classical settings, such as generalizations of 
the Black-Scholes model with volatility skew or for one-factor interest rate models. 

The use of minimum relative entropy for selecting Arrow-Debreu probabilitites 
has also been justified on economic grounds. Samperi (1997) shows that there ex­
ists a one-to-one correspondence between the calibration of a model starting with 
a prior probability measure and using a "penalization function" on the space of 
probabilities and the calculation of state-prices via utility maximization. More pre­
cisely, the Arrow-Debreu prices coincide with the marginal utilities for consumption 
obtained by maximizing the expectation of the utility function U(x) = — exp(—ax) 
by investing in a portfolio of benchmark instruments. This correspondence is quite 
general. It implies, most notably, that other "distances" or "penalization functions" 
for Arrow-Debreu probabilities of the form 

D(p\q) = ^2ip( — )qi, t/>(x) convex (7) 

can be used instead of relative entropy (which corresponds to the special case ip(x) = 
a; log a;). For each such penalization function, there exists a corresponding concave 
utility U(x), obtained via a Legendre transformation, such that the Arrow-Debreu 
probabilities are consistent with an agent maximizing his/her expected utility for 
terminal wealth by investing in a portfolio of benchmarks.6 

The use of relative entropy also has consequences in terms of price-sensitivity 
analysis and hedging. Avellaneda (1998) shows that the sensitivities of model values 
with respect to changes in the benchmark prices are equal to the linear regression 
coefficients of the payoff of contingent claim under consideration on the linear span 
of the cashflows of the benchmark instruments. In particular, the price-sensitivities 
can be computed directly using a single Monte Carlo simulation, i.e., without having 
to perturb the N input prices and to repeat the calibration procedure each time. 

eWhile the particular choice of the mathematical distances D(p\q) remains to be justified, the 
different distances between probabilites which result are, roughly speaking, economically equiva­
lent — except possibly for the particular choice of smooth, increasing, convex utility that might 
represent the agent's preferences. The Kullback-Leibler distance is convenient because it leads to 
particularly simple mathematical computations, as we shall see hereafter. Another important fea­
ture of relative entropy is that it is invariant under changes of variables and therefore independent 
of the choice parameterization used to describe the system (Cover and Thomas (1991)). We refer 
the reader to Samperi (1999) for an in-depth discussion of this correspondence principle. 
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Thus, we hope that this method may provide an efficient approach for computing 
hedge-ratios as well. 

Practical considerations in terms of model implementation are studied in the 
last four sections. We show that calibration of Monte Carlo models to the prices of 
benchmark instruments results in a strong reduction of variance, or simulation noise. 
This is due to the fact that the model effectively only needs to estimate the resid­
ual cash-flows (modulo the linear space spanned by the benchmarks). Therefore, 
instruments which are well-approximated by benchmarks have very small Monte 
Carlo variance. In particular, the interpolation of implied volatilities and prices of 
option between strikes and maturities is numerically efficient. 

In practice, the success of any calibration method will depend on the charac­
teristics of the market where it is applied. To evaluate the algorithm, we consider 
a few concrete examples. We study option-pricing models in the foreign-exchange 
and equity markets, using forwards and liquidly traded options as benchmarks. The 
models that we use incorporate stochastic volatility and are calibrated to the ob­
served volatility skew. We also discuss the calibration of fixed-income models, and 
apply the algorithm to the construction of forward-rate curves based on the prices 
of on-the-run US Treasury securities. 

2. Relative Entropy Distance and the Support of 
the Risk-Neutral Measure 

Relative entropy measures the deviation of the calibrated model from the prior. 
Intiutively, if the relative entropy is small, the model is "close" to the prior and 
thus is "more desirable" than a model that has large distance from the prior. Let 
us make this statement more precise in the context of Monte Carlo simulations. 
The relative entropy distance, 

V 

D{p\u) = log v + ^2Pi io£Pi > (8) 
i= l 

takes values in the interval [0, logz/]. The value zero corresponds to p; = l / i / (the 
prior) whereas a value of log v is obtained when all the probability is concentrated on 
a single path. More generally, consider a probability distribution which is supported 
on a subset of paths of size \x and is uniformly distributed on these paths. If we 
take /i = va, with 0 < a < 1, and substitute the corresponding probabilities in (8), 
we find that 

D(p |«)=logi / + logf — J = ( l - a ) l o g i / . (9) 

Within this class of measures, the relative entropy distance counts the number of 
paths in the support on a logarithmic scale. If ^ " ' <C 1 the support of the 

calibrated measure is of size v, whereas ^ " ' « 1 corresponds to a measure with a 
"thin support". Thin supports are inefficient from a computational viewpoint. They 
imply that the calibration algorithm "discards" a large number of simulated paths. 
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In this case, the a priori support of the distribution constructed by simulation will 
be very different from the the a posteriori support. This confirms the intuition 
whereby calibrations with small relative entropy are desirable. 

D(p|u) 

p=u P 

Fig. 1. Schematic graph of the relative entropy function. A probability with D(p\u) = (1 — a) log v 
is supported essentially on a subset of paths of cardinality i/*. Probabilities with small D(p\u) have 
large support whereas probabilities supported on a single path have the highest Kullback-Leibler 
distance, logi/. 

This analysis can be applied to more general probability distributions. Let us 
write 

Pi = —, i = l , 2 , . . . , i / . 
i/Q» 

Let Na represent the number of paths with a, = a, so that we have 

a a 

Substituting (10) into (8), we find that 

(10) 

(11) 

^(p|«) = J08"(l + E S L k « ( ^ ) ) 

= log v I 1 — >^ ——a 

= logv(l-Ep(a)), (12) 

which shows that the relative entropy increases if the expected value of a is large. 
Due to the constraints implied by (11), this is possible only if there is a wide range of 
exponents a*. Since probabilities are measured on a logarithmic scale, the measure 
will be concentrated on those paths which correspond to small values of a. A 
wide mismatching of probabilities between the calibrated measure and the prior is 
undesirable because this means that certain state-contingent claims will have very 
different values under the prior and the posterior measures. 
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3. Calibration Algorithm 

We describe the algorithm for calibrating Monte Carlo simulations under market 
price constraints. It is a simple adaptation of the classical dual program used for 
entropy optimization (see Cover and Thomas (1991)). The new idea proposed here 
is to apply the algorithm to the state-space which consists of a collection of sample 
paths generated by Monte Carlo simulation of the prior. 

To fix ideas, we shall consider a model in which paths are generated as solutions 
of the stochastic difference equations 

Xn+1=Xn + a(Xn,n)-Zn+1s/AT + n(Xn,n)AT, n = l , 2 , . . . , M (13) 

where MAT = Tm a x is the horizon time. Here Xn G Rrf is a vector of state 
variables and as a multi-dimensional process with values and £n € R d is as a 
vector of independent Gaussian shocks (d, d! are positive integers). The variance-
covariance structure is represented by the vxv' matrix a(X, t) and the drift is the 
v-vector fJ,(X, t).{ 

Using a pseudo-random number generator, we construct a set of sample paths 
of (13) of size u, which we denote by 

w « = ( * ! ( « « ) , . . . , X M (w ( i ) ) ) i = l,2,...,v. (14) 

We assume throughout this paper that the benchmark instruments are such 
that their cashflows along each path w are completely determined by the path it­
self. In the case of equities, where the components of the state-vector X generally 
represent stock prices, instruments satisfying this assumption include forwards, fu­
tures and standard European options. It is also possible to use barrier options or 
average-rate options. American-style derivatives do not satisfy this assumption be­
cause the early-exercise premium depends on the value of the option (and hence on 
the full pricing measure denned on the paths) as well as on the current state of the 
world. For fixed-income securites, benchmark instruments can include interest rate 
forwards, futures contracts, bonds, swaps, caps and European swaptions.6 Under 
these circumnstances, the price relations can be written in the form (4) where gij 
is the present value of the cash-flows of the j t h instrument along the ith path. The 
mathematical problem is to minimize the convex function of p 

V 

D(p\u) = log v + ^2,Pi logpi (15) 

under linear constraints. This problem has been well-studied (Cover and Thomas, 
1991). Introducing Lagrange multipliers (Ai , . . . , Ajv), we can reformulate it as a 

This formulation extends trivially to the case of jump-diffusions or more general Markov processes 
and the MRE algorithm applies to these more general stochastic processes. 
8 American-style securities, such as Bermudan swaptions or callable bonds do not satisfy this 
assumption. 
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mini-max program (the "dual" formulation of the constrained problem) 

N 

rninmax < -D(p\u) + YXAYPi 9ii ~Ci) ( (16) 

A straighforward argument shows that probability vector that realizes the supre-
mum for each A has the Boltzmann-Gibbs form 

Pi = p(wW) = — exp J29ij^i I • (17) 

To determine the Lagrange multipliers, define the "partition function", or nor­
malization factor, 

^A) = jEexp(E^^) • (18) 
*=i y = i / 

and consider the function 

W(A) = log(Z(A))-53A J -C i 

1 = 1 

= log | i £ e x p I £ > , • \j J I - JT Xj Cj . (19) 

We shall denote by gj (CJ) the present value of the caashflows of the j t h instru­
ment along the path to. (Thus, gj(cJi) = gij). At a critical point of W(X), we 
have 

n l d Z r 0=zWk-
Ck 

-pT^. YL 3ik e x p I Y L 9ii xj)_ Ck 

= W{gk(cj)}-Ck. (20) 

Hence, if A is a critical point of W(X), the probability vector defined by Eq. (17) 
is calibrated to the benchmark instruments. 

Notice that the function W(X) is convex: differentiating both sides of Eq. (19) 
with respect to A yields 

^ ^ • = Cav"{gj(u)gk(cj)}, (21) 

which is a non-negative definite matrix. In particular, the critical point, if it exists, 
should correspond to a minimum of W(X). 

Based on this, we have the following algorithm: 
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(i) Construct a set of sample paths using the difference equations (1) and a 
pseudo-random-number generator. 

(ii) Compute the cashflow matrix {g%j,i = 1 , . . . , u, j = 1,2,. . . , N,}. 
(iii) Using a gradient-based optimization routine, minimize the function W(A) 

in (19).h 

(iv) Compute the risk-neutral probabilities pi, i = 1,2,. . . , v for each path using 
Eq. (17) and the optimal values of A i , . . . , Ajy. 

4. Implementation Using Weighted Least-Squares: 
An Alternative to Exact Fitting 

It may not always be desirable to match model values to the price data exactly 
due to bid-ask spreads, asynchronous data, and liquidity considerations. Alterna­
tively, we can minimize the sum of the weighted least-squares residuals and the 
relative entropy. We define the sum of the weighted least-squares residuals as 

X« = |£^{S>)}-^)2. (22) 
3=1 3 

where the w = (w\,..., w^) is a vector of positive weights. 
The proposal is to minimize the quantity 

X2
w+D(p\u) (23) 

over all probability vectors p = (p\,... ,pv). Notice that the limit w; < 1 corre­
sponds to exact matching of the constraints. The discrepancy between the model 
value and market price with a weight Wi is typically of order —j=. 

We indicate how to modify the previous algorithm to compute the probabilities 
(p i , . . . ,p„) that minimize xt + D(p\u). Using the inequality 

ab < \a2 +l-b\ (24) 

we find that, for all p, 

Xl > - 5>(E*{fc(W)} - Cj) - \ JTwrf . (25) 
3=1 3=1 

It follows that 

inf[£>(p|Tx)+x2,] (26) 
p 

N 

D(p\u)-Y,*3(EP{93(")}-Cj) 
3=1 

- |E-A2 

3 = 1 

In our implementation, we use the L-BFGS algorithm. 
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- i n f 
A 

inf 
A 

N 1 N 

l og (Z (A) ) - ^A i C , + - ^ U ; J A : 

N 

i = i 

^(A) + ^ E ^ A 2 

i = i 

(27) 

Here, W(X) = log(Z(A) — ^ • Aj Cj is the function used in the case of exact fitting. 

The inequality expressed in (27) is in fact an equality. To see this, observe that the 
function D(p\u) + Xw is convex in p and grows quadratically for p^> 1. Therefore, a 
probability vector realizing the infimum exists and is characterized by the vanishing 
of the first variation in p. A straightforward calculation shows that if p is a minirnuni 
of this function, we have 

N 

with 

Pi 

* i 

Z(X*) exp YlX*i9ij 
i i = i 

w. 
•fjsr'faM}-Q). 

(28) 

(29) 

In particular, notice that this value of A is such that (25) is an equality. Furthermore, 
the probability (28) is of exponential type, so we have 

D(p*\u) + xl= D(p*\u) - JT \*(W'{9j(u,)} - Cj) - J f > ( A * ) 2 

3=1 3 = 1 

inf 
p 

N 

D{p\u)~Y,X*3iW{9j^)}-Cj) 
3=1 

N 1 N 

= -log(Z(A*)) + £ AJC,- - - 5> iA? 
3=1 

( 1 N 

<_inflw(A) + - £ > i A : 

1 N 

3=1 

3=1 

(30) 

so equality must hold. This calculation shows that the pair (A*,p*) is a saddlepoint 
of the min-max problem and that there is no "duality gap" in (27) and (30). 

The algorithm for finding the probabilities that mimimise xt under the entropy 
penalization consists in minimizing 

N 1 N 

iog(Z(A)) - 5 > ( E " * { 3 » } - Cj) + - ^ V ; (31) 
j = i 3=1 
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among candidate vectors A. This algorithm represents a small modification of the 
one corresponding to the exact fitting of prices and can be implemented in the same 
way, using L-BFGS.1 

5. Price Sensitivities and Hedge-Ratios 

The MRE setting provides a simple method for computing portfolio price-
sensitivities, under the additional assumption that the prior measure remains fixed 
as we perturb the benchmark prices and recalibrate.-* We show, under this as­
sumption, that sensitivities can be related to regression coefficients of the target 
contingent claim on the cashflows of the benchmarks. For simplicity, we discuss 
only the case of exact fitting, but the analysis carries over to the case of least-
squares residuals with minor modifications. 

Let F(uj^),i = l , . . . , i / represent the discounted cash-flows of a portfolio or 
contingent claim. To compute the price-sensitivities of the model value of the 
portfolio we utilize the "chain rule", differentiating first with respect to the Lagrange 
multipliers. More precisely, 

dW(F(u;)) = ^ dW(F(u;)) dX, 
ack 4< dXj dck-

 y ' 

J = l 

We note, using Eq. (17) for the probability pi, that 

dW(F(u>)) d\j 
= C o v p { F ( u , ) , 5 » } . (33) 

In particular, 

Moreover, we have, on account of Eq. (21), 

£™>>>^(^) 
= C o v p { g » , gk{u;)} (34) 

^=Cc<v*{Sj(u,)gk(u,)}. (35) 

Substitution of the expressions in (34) and (35) into Eq. (32) gives 

VcEP{F(o,)} = Covp{F(u)g.(u>)} • [Covp{g.^g^co)}]-1, (36) 

'More generally, we can consider the minimization of W(\) + ^ . Wjip{\j), where i/> is a convex 
function. An argument entirely similar to the one presented above shows that this program 
corresponds to minimizing the quantity ^ -i7i/i*(E!p {rVj(oj)} — Cj), where rj)* is the Legendre 

dual of ip. The case ip(x) = \x\ can be used to model proportional bid-ask spreads in the prices of 
the benchmark instruments, for example. 
••This assumes, implicitly, that the prior probability represents information that "varies slowly" 
with respect to the observed market prices. For example, the assumption is consistent with 
interpreting the prior as a historical probability. 
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with the obvious matrix notation.k This implies, in turn, that the sensitivities of the 
portfolio value with respect to the input prices are the linear regression coefficients 
of F(u>) with respect to gj(u>). Namely, if we solve 

min < Varp 

/ 

we obtain, from (36), 

dCk 

N 

3=1 

(37) 

^^m k = l,.,N (38) 

and1 

N 

A, = W{F(w)) - £ & • £ % » ) • (39) 
3 = 1 

We conclude that a sensitivity analysis with respect to variations of the input 
prices can be done without the need to perform additional Monte Carlo runs and 
to perturb the input prices one by one. Instead, the MRE framework allows us to 
compute prices and hedges with a single Monte Carlo simulation, which is much 
less costly."1 

Notice that the characterization of the hedge-ratios as regression coefficients 
shows that they are "stable" in the sense that they vary continuously with input 
prices. In practice, the significance of this hedging technique depends on details of 
the implementation procedure, such as the number of paths used in the simulation. 
The main issue is whether the support of the probability measure induced by the 
prior — the basic scenarios of the simulation — is sufficiently "rich in scenarios", 
for example. 

6. Variance Reduction 

The calibration of Monte Carlo simulations can significantly reduce pricing er­
rors. Claims that are "well-replicated" by the benchmarks — in the sense that the 
variance in (37) is small compared to the variance of F(u))n — will benefit from a 
significant noise reduction in comparison with standard MC evaluation. 

k The invertibility of the covariance matrix presupposes that the cashflow vectors of the bench­
mark instruments, gj(u)j = 1 , . . . , N, are linearly independent. This assumption is discussed, for 
example, in Avellaneda (1998). 
'This result can be interpreted as follows. Assume that an agent hedges the initial portfolio by 
shorting /3j units of the j t h benchmark instrument for j = 1 , . . . , N. In this case, the model value 
of the net holdings (initial portfolio + hedge) is J3Q. It represents the expected cost of dynamic 
replication of the residual. 
m I n contrast, a perturbation analysis that uses centered differences to approximate the partial 
derivatives with respect to input instruments requires 2N + 1 Monte Carlo simulations. 
"The ratio of the variances is the statistic 1 — R2 in the risk-neutral measure. 
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In fact, given any vector ( — ( £1 , . . . , £JV), we have 

{ N "I N 

F(W) - Y, <*» >+E <& • (4°) 
Since the second term on the right-hand is constant, the variance of the Monte 
Carlo method for pricing the cash-flow F is the same as the one associated with 
F—C,-g. This statement is true for any value of the vector £ and so, in particular, for 
the regression coefficients (/3i,..., /3jv). Since, by definition, F — f3 • g has the least 
possible true variance among all choices of £, the cash-flow f3-T is an "optimal control 
variate" for the simulation. Our method implicitly uses such control variates. 

To measure this variance reduction experimentally in a simple framework, we 
considered the problem of calibrating a Monte Carlo simulation to the prices of 
European stock options, assuming a lognormal price with constant volatility. 

We considered European options on a stock with a spot price of 100 with no 
dividends. The interest rate was taken to be zero. Taking a "maximum horizon" for 
the model of 120 days, we used as benchmarks all European options with maturities 
of 30, 60 and 90 days and strikes of 90,100 and 110, as well as forward contracts with 
maturities of 30, 60 and 90 days. We assumed that the prices of the benchmarks 
were given by the Black-Scholes formula with a volatility of 25%. The prior was 
taken to be a geometric Brownian motion with drift zero and volatility 25%.° 

The test consisted of pricing various options (target options) with strike/ 
maturity distributed along a regular grid (maturities from 20 days to 120 days 
with 1-day intervals; all integer strikes lying between two standard deviations from 
the mean of the distribution). For each option, we compared the variances resulting 
from pricing with the simulated lognormal process with and without calibrating to 
the "benchmarks". As a matter of general principle, when pricing an option con­
tract, we also include the forward contract corresponding to the option's expiration 
date in the set of calibration instruments.p 

All Monte Carlo runs were made with 2000 paths. Each run took roughly half a 
second of CPU time on a SunOS 5.6. This includes the time required to search for 
the optimal lambdas. We verified the correctness of the scheme by checking that 
all model prices fell within three (theoretical) standard deviations of the true price, 
both with and without the min-entropy adjustment. 

We found that there was significant variance reduction for all cases, with the 
exception of options having strikes far from the money and maturities which did not 
match the benchmark maturities. As expected, the best results were observed for 
those options with strikes and maturities near to those of the benchmark options. 
In particular, options with the "benchmark maturities" (30, 60 and 90 days) yielded 
°We assumed that all benchmark options were correctly priced with the prior to separate the issues 
of calibration and variance reduction, focussing on the latter. 
PDoing so guarantees that the mean of the distribution of the asset price at the expiration date is 
fitted exactly. 
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some of the best results for most strikes which were not too far away from the money. 
We also obtained some of the best results of options with strikes at or close to the 
forward values. The following table gives the factor by which the entropy method 
improved the variance for selected strikes and maturity dates. Note that the table 
below includes the benchmark instruments which yield an infinite improvement 
since the entropy method always prices them correctly (indicated by INF on Fig. 2). 
Benchmark strikes and maturities are shown in boldface. 

The variance reduction from the entropy method translated into some excellent 
data for the computed standard errors. The figure below contains this information. 
The data is given in terms of Black-Scholes implied volatility and is obtained by 
taking the standard error of the option price and dividing by the Black-Scholes 
value of vega. 

Finally, we examined the R2 statistic given by the entropy method. We found 
that R2 was greatest for values with benchmark maturity dates and strikes whose 
values are close to that of the forward. The results are given in the table below. 

Maturity 
(Days) 

20 
30 
45 
60 
75 
90 
120 

80 
N / A 
N / A 
N / A 
N / A 
1.54 
2.47 
1.96 

85 
N/A 
N / A 
1.25 
5.63 
3.04 
8.79 
2.77 

90 
1.03 
INF 
2.38 
INF 
6.25 
INF 
4.09 

95 
2.22 
13.66 
5.21 

49.83 
10.61 
92.40 
6.08 

Strike 
100 
8.24 
INF 
14.83 
INF 

25.71 
INF 
13.57 

105 
2.78 
19.11 
6.63 
73.98 
14.08 

150.36 
8.34 

110 
1.54 
INF 
3.75 
INF 
9.12 
INF 
5.77 

115 
N / A 
3.09 
2.25 
10.83 
5.45 

22.96 
4.15 

120 
N / A 
N / A 
N / A 
3.03 
3.05 
5.77 
3.03 

Fig. 2. Variance improvement ratio. 

Maturity 
(Days) 

20 
30 
45 
60 
75 
90 
120 

80 
N / A 
N / A 
N/A 
N / A 
0.50 
0.38 
0.40 

85 
N / A 
N / A 
0.47 
0.25 
0.32 
0.19 
0.33 

90 
0.56 

0 
0.35 

0 
0.23 

0 
0.30 

95 
0.37 
0.16 
0.28 
0.10 
0.21 
0.07 
0.29 

Strike 
100 
0.32 

0 
0.26 

0 
0.21 

0 
0.29 

105 
0.37 
0.15 
0.28 
0.09 
0.22 
0.07 
0.29 

110 
0.51 

0 
0.34 

0 
0.24 

0 
0.31 

115 
N / A 
0.38 
0.47 
0.21 
0.30 
0.15 
0.35 

120 
N / A 
N / A 
N / A 
0.45 
0.42 
0.32 
0.40 

Fig. 3. Standard errors from the entropy method (in percentage of implied volatility). 

Maturity 
(Days) 

20 
30 
45 
60 
75 
90 
120 

80 
N / A 
N / A 
N / A 
N / A 
0.41 
0.62 
0.51 

85 
N / A 
N/A 
0.40 
0.83 
0.68 
0.89 
0.63 

90 
0.25 

1 
0.63 

1 
0.83 

1 
0.73 

95 
0.57 
0.93 
0.80 
0.97 
0.89 
0.99 
0.79 

Strike 
100 
0.85 

1 
0.91 

1 
0.95 

1 
0.90 

105 
0.65 
0.95 
0.83 
0.98 
0.92 
0.99 
0.85 

110 
0.44 

1 
0.72 

1 
0.88 

1 
0.80 

115 
N / A 
0.75 
0.55 
0.91 
0.81 
0.95 
0.73 

120 
N / A 
N / A 
N / A 
0.68 
0.67 
0.80 
0.64 

Fig. 4. R2 statistic from the entropy method. 
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Our interpretation is that the options with benchmark dates or near-the-money 
strikes have only a small component of their cashflows which is orthogonal to the 
benchmark instruments, and conversely. One would expect both greater variance re­
duction and dependence on the values of the benchmark instruments in these cases. 
Note that the variance reduction data given in Fig. 2 confirms this interpretation. 

exp(days) type strike price 

30 call 1.5421 0.007 
30 call 1.531 0.0093 
30 call 1.4872 0.0234 
30 put 1.4479 0.0092 
30 put 1.4371 0.0069 

60 call 1.5621 0.0094 
60 call 1.5469 0.0126 
60 call 1.4866 0.0319 
60 put 1.4312 0.0128 
60 put 1.4178 0.01 

90 call 1,5764 0.0112 
90 call 1.558 0.0149 
90 call 1.4856 0.0378 
90 put 1.4197 0.0153 
90 put 1.4038 0.0114 

exp(days) type strike price 

180 call 1.6025 0.0141 
180 call 1.5779 0.0191 
180 call 1.4823 0.0505 
180 put 1.3902 0.0216 
180 put 1.3682 0.0162 

270 call 1.6297 0.0173 
270 call 1.5988 0.0226 
270 call 1.4793 0.0598 
270 put 1.371 0.0254 
270 put 1.3455 0.019 

30 Iwd 0 1.486695 
60 Iwd 0 1.484692 
90 Iwd 0 1.482692 

180 Iwd 0 1.476708 
270 fold 0 1.470749 

Fig. 5. Data used for fitting the implied volatilities of options. The implied volatilities, displayed 

on the left-hand side of the graph, range from 13% to 14.5%. From Avellaneda and Paras (1996). 

7. Example: Fitting a Volatility Skew 

We apply the algorithm to calibrate a model using forwards and the prices 
of European options with different strikes and maturities. This example is take 
from the interbank foreign exchange market. It is well-known that options with 
different strikes/maturities trade with different implied volatilities. The goal is to 
construct a pricing model that incorporates this effect. Notice that such problem has 
been addressed by many authors in the context of the so-called "volatility surface" 
(Dupire (1994), Derman and Kani (1994), Rubinstein (1994), Chriss (1996); see 
Avellaneda et al. (1997) for references on this problem up to 1997). The method 
presented here is completely different since we do not iterpolate option prices or use 
a parameterization of the local volatility function cr(S,t). 

We considered a dataset consisting of 25 contemporaneous USD/DEM option 
prices obtained from a major dealer in the interbank market on August 25, 1995. 
The maturities are 30, 60, 90, 180 and 270 days. Strikes (quoted in DEM) cor­
respond to 50-, 20- and 25-delta puts and calls. Aside from these options, we 
introduced five additional "zero-strike options" which correspond to the present 
value of a dollar in DEM for delivery at the different expiration dates (see Table 5) 
— the forward prices implied by the interest rates and the spot price. Including 
these forward prices in the set of benchmark instruments ensures that the model is 
calibrated to the forward rates and hence that there is no net bias in the forward 
prices. 
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As a prior, we considered the system of stochastic differential equations: 

dSt 
-=- = at dZt + p. at 
&t 

dat 
(41) 

= KdWt + vtdt, 

where Zt and Wt are Brownian motions such that E(dZt dWt) = p dt . In Eq. (41), 
St represents the value of one US Dollar in DM. The instantaneous volatility is 
denoted by at. The additional parameters are: /z, the cost-of-carry (interest rate 
differential), K, the volatility of volatility, and vt is the drift of the volatility. There­
fore, we are calibrating a two-factor stochastic volatility model. We assume the 
following numerical values for the parameters that define the prior dynamics: 

1. S0= midmarket USD/DEM spot exchange rate = 1.4887 
2. US rate=5.91% 
3. DM rate=4.27% 
4. /x = —1.64% (for convenience, we take p, = DM rate — US rate in the prior, 

i.e., we adjust the model to the standard risk-neutral drift). 
5. (Jo = Initial value of the prior volatility of USD/DEM = 14%. (This is 

essentially the average of the observed implied volatilities.) 
6. K = 50% 
7. p = - 50% 

We simulated 5000 paths of Eq. (41), consisting of 2500 paths and their antithetics. 
The gradient tolerance in the BFGS routine was set to 1 0 - 7 and we used equal 
weights Wi = 10 - 5 for the least-squares approximation. We found that the difference 
between model prices and market prices was typically on the order of 1 0 - 4 - 1 0 - 5 

a p (cfay^ type strite error larrttfe 

30c 
30c 
30c 
30p 
30p 

60c 
60c 
60c 
60p 
60p 

90c 
93c 
90c 
90p 
90p 

1.5421 -0000019 -2231451 
1.531 0.000045 437139E 

1.4872-O.000042 -27.971S 
1.4479 0.000004 -53003c 
1.4371 QOOC016 1282587 

1.5621 -QO0OQ25 -2309551 
1.5469 Q000033 3423321 
1.4836 -O.O000O3 -7.354315 
1.4312 -O.000Q29 -31.52781 
1.4178 Q000041 3231679 

1.57B4-Q00C019 -189966 
1.553 Q000034 29955* 

1.4966 0000004-183*796 
1.4197 Q000Q29 3327566 
1.40B8 -Q00005 -365D49E 

ep(<±fys) type strite error larrbda 

180 c 
180 c 
180 c 
180 p 
180 p 

270c 
270c 
270c 
270p 
270p 

30 f 
60f 
90f 

iaof 
270f 

1.6025 -0000015 -21.810B6 
1.5779 0000032 2407216 
1.4823 -O.0000OS -106186-
1.3902 0.000018 19.90037 
1.3682 -Q000016 -1564954 

1.6297 -QO000O1 6951896 
1.5988 -O000CO7 -365326 
1.4793 Q000009-3421416 

1.371 0000019 1023301 
1.3455 -O.000O12 -139678E 

0 QC0002 8834CW 
0 QO00O18-1.028236 
0 QO0OQ27 7.661006 
0 Q000O17 5521524 
0 QO00O13 Q7163E 

Fig. 6. Fitting errors and lambdas for the 30 instruments using 5000 paths. The relative entropy 
is D PS 0.07. 
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DM, representing relative errors of 1% in the deep-out-of-the money short-term 
options and much less 0.1% for at the money options (see Fig. 6). 

The algorithm initiated with A; = 0, i = 1 , . . . , 30 converges after approximately 
20 iterations of the BGFS routine. The entire calibration procedure takes about 
four seconds on a desktop PC with a Pentium II 330 Mhz processor. In practice, 
computation times are much faster because the values of lambdas from the previous 
runs can be stored and used as better initial guesses. 

The relative entropy of the calibrated risk-neutral measure was found to be 
D(p\u) = 7.39 x 10~3. We can interpret this result in terms of the parameter a of 
Section 2. We find a value of a = 1 - D$J = 0.99913, which would correspond to 
an "effective number of paths" va « 4963 according to the heuristics of Section 2. 
This represents an excellent fit in terms of the support of the calibrated measure. 
In Fig. 7, we present descriptive statistics for the calibrated probabilities, in Fig. 8, 
we plot the probabilities, which appear to be randomly distributed with a small 
mean about the uniform value 1/5000 = 0.0002. Figure 9 displays a histogram of 
the logarithms of the probabilities. These results indicate a relatively small scatter 
about the mean and a large set of paths which support the posterior measure. 

The values of the lambdas were between —0.84 and 0.79, which correspond to 
moderate variations of the probabilities about their mean. In Fig. 9, we present a 
histogram of the 5000 probabilities obtained The distibution of probabilites — or, 
equivalently, the distribution of state-price deflators — is unimodal and strongly 
peaked about its mean 1/5000 = 0.0002. This confirms that the risk-neutral 
measure is supported on the full set of paths generated using the prior. 

p 

Mean 
Standard Error 
Med an 

Mode 
Standard Deviation 

Sample Variance 
Kurtosis 
Skev\ness 
Range 

Minimum 
Maximum 

0.0002 
1.12E-06 
0.000188 

0.000162 

7.95E-05 
6.32E-09 
1.046163 
0.896427 
0.00059 

0.000039 
0.000629 

Fig. 7. Descriptive statistics for the vector of calibrated probabilities ( p i , . . . ,psooo). 
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Fig. 8. Snapshot of the 5000 probabilities obtained by the method. The values oscillate about 
1/5000 = 0.0002. 
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Fig. 9. Histogram of the logarithms of the calibrated probabilities multiplied by 5000. The 
distribution is unimodal and strongly peaked about log(l/5000) = —8.517. Observe that there are 
some outliers corresponding to small probabilities. 

To gain insight into the calibrated model, we generated an implied volatility 
surface, by repricing a set of options on a fine grid in strike/maturity space. We 
determined the highest and lowest strikes in the input option, which are, respec­
tively, 1.67 DEM and 1.34 DEM, corresponding to the 20-delta options with the 
longest maturity (270 days). We then considered strike increments going from the 
maximum to the minimum value according to the rule 
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"-max — 1.67 — KQ , Ki — 
kj-l 

1.01 
i = l , 2 , . . . , 20 

and maturities 

30 = to, * i = t i _ i + 10, i = l , 2 , . . . , 24. 

(42) 

(43) 

14.0<X 

Implied Volatility 13.5°/ 

^ «2 o 
2 ° 

Expiration (days) gj g STRIKE (DEM) 

Fig. 10. Implied volatility surface for the USD/DEM options market based on the data in Fig. 5. 
The prior volatility is 14%. 
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Fig. 11. Call prices associated with the implied volatility surface of Fig. 10. 



258 Quantitative Analysis in Financial Markets 

We repriced these 480 options with the weighted Monte Carlo and generated a 
surface by interpolating the implied volatilities linearly between strikes and dates. 
The interpolation was done graphically using the Excel 5.0 graphics package. The 
results are exhibited in Figs. 10 and 11. 

Finally we tested the model by pricing a barrier option with the following char­
acteristics: 

1. Option type: USD put, DM call 
2. Notional amount: 1 USD 
3. Maturity: 180 days 
4. Strike: 1.48 DM 
5. Knockout barrier: 1.38 DM 

and comparing the results with the price and delta hedge obtained using the Black-
Scholes lognormal model. 

Closed-form solutions for the price of barrier options in the lognormal setting 
were computed by Reiner and Rubinstein (1991). To compare with our model, we 
used a Black-Scholes constant volatility of 14% — which corresponds to the implied 
volatilities of short-maturity options - as well as with a constant volatility of 13%. 
The latter corresponds to the implied volatility of the ATM forward call expiring 
in 180 days. The differences in the Black-Scholes prices and deltas by changing the 
volatilities from 13% to 14% are quite small. In Fig. 12, we compare the results of 

6 X p . tV p B 
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60 c 
60 c 
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60 p * 
90 c 
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90 p • 
90 p • 

str ike 
1 .5421 

1.531 
1 .4872 
1 .4479 
1 .4371 
1 .5621 
1 .5469 
1 .4866 
1 ,4312 
1 .4178 
1 .5764 

1.558 
1 .4856 
1 .4197 
1 .4038 

h e d q e 
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4 , 0 0 % 
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4 . 4 1 % 

-5 .89% 
2 .30% 

- 1 7 . 2 1 % 
1 7 . 6 6 % 
-3 .50% 
1 . 6 1 % 
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- 1 5 . 5 9 % 
2 1 . 9 6 % 
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270 c 
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30 f 
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s t r ike 
1 .6025 
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1 .4823 
1 .3902 
1 . 3 6 8 2 
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1 .5988 
1 .4793 

1 .371 
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h e d q e 
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Fig. 12. Price and hedge report for the reverse-knockout barrier option. Notice that the calibrated 
model computes exposures to all the options and forwards entered as reference instruments. In­
struments that have an exposure (in notional terms) of more than 10% of the notional amount of 
the exotic option are labeled with asterisks. We observe significant exposure (1) at 60 and 90 days 
near the knockout barrier and (2) at the expiration date in ATM and low-strike options. Hedges 
at th barrier involve a spread in contracts with neighboring strikes, as expected. 
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applying the closed-form solution with 14% volatility are compared with the Monte 
Carlo simulation model described above. The values obtained with both models 
agree to three significant digits. 

To evaluate the quality of the hedges, we computed the "net delta" of the exotic 
option given by the model and compared it with the Black-Scholes delta. For this, 
we assumed that the input options have the same deltas under BS than under our 
model. Of course, this a simplification, since the deltas of the individual options may 
be affected globally by the differences in implied volatilities. However, experience 
shows that such approximation is reasonable, in the sense that we do not expect 
the volatility skew in this market to distort significantly the deltas of the plain-
vanilla options. The total amount of forward dollars needed to hedge the knockout 
is obtained by converting each option hedge into an equivalent forward position and 
summing over all contracts with the same maturity. To this amount, we also add 
the corresponding sensitivity to the forward contract (modeled here as a call with 
strike 0). 

Adding the "forward deltas" associated with the different maturities, we find a 
total of 1.57% which is near the Black-Scholes value of 1.80 The results obtained 
in this example appear reasonable, despite the fact that the computation was done 
using Monte Carlo simulation with only 5000 paths. We believe that this is due in 
part to the reduction of variance which results from calibration process. 

8. Example 2: Fitting the Smile for America Online 
Options on May 1999 

We calibrated another stochastic volatility model to the mid-market prices of 35 
America Online call prices recorded on May 10, 1999 at the close. 

To ensure sufficient liquidity of the benchmarks, we took only options with 
traded volume above 100 for shorter maturities and above 50 for the maturity 
longer than half a year. It can be seen from the table that the implied volatilities 
of the benchmark calls vary in the range 78.33-88.52%. These extreme volatilities 
correspond to deeply in- or out-of-the money short term options. We also included 
forward prices for the stock at the different delivery dates, namely 12, 40, 68, 159 
and 257 days. Thus, we calibrated the simulation to 40 benchmark prices. 

We simulated v = 10000 Monte Carlo paths from this distribution on the time-
horizon of 258 days with one time-step per day. We used the following parameters: 
S0 = 128.375 (the America Online closing price on May 10, 1999), <T0 = 0.86, 
p = —0.5, r = 5% and K = 0.5. Then, we applied the MRE method described in 
Subsection 3.2 to calibrate the uniform distribution on the obtained sample paths 
to the set of 35 European call prices on America Online given in Fig. 13. 

The program matched all the given 40 benchmark prices with the predefined ac­
curacy to four decimal places using 181 iterations starting from A = 0. The obtained 
entropy of the calibrated measure on the path space was 0.66 with the maximum 
possible entropy being log 10000 = 9.21, indicating that the prior distribution its 
not far in the entropy distance from the calibrated one. 
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Maturity 
12 
12 
12 
12 
12 
40 
40 
40 
40 
40 
40 
68 
68 
68 
68 
68 
68 
68 

Strike 
120 
130 
135 
140 
145 
115 
120 
125 
135 
140 
160 
100 
110 
115 
120 
125 
135 
145 

Price 
12.125 
7.125 
5.125 
3.625 
2.625 
21.75 
18.875 
16.25 
12.25 

10.625 
5.5 

35.625 
29 

25.875 
23.25 
20.875 
17.125 
13.625 

IVOL 
78.33 
83.73 
83.29 
83.40 
85.16 
85.34 
85.27 
84.96 
86.86 
87.80 
87.65 
88.52 
86.98 
85.55 
85.61 
85.78 
87.80 
87.54 

Maturity 
68 
68 
68 
68 
68 
159 
159 
159 
159 
257 
257 
257 
257 
257 
257 
257 
257 

Strike 
150 
170 
175 
180 
200 
120 
125 
150 
160 
100 
110 
120 
130 
150 
160 
170 
200 

Price 
12.25 
7.625 
6.625 

6 
3.75 

32.625 
30.25 
21.5 
19 

48.375 
43.375 
38.75 
35.125 
28.125 
25.375 

23 
16.625 

IVOL 
87.99 
87.60 
86.80 
87.54 
87.84 
83.90 
83.19 
83.43 
84.19 
81.21 
80.80 
80.07 
80.76 
79.73 
79.77 
79.98 
78.93 

Fig. 13. America Online call (mid-market) prices on May 10, 1999. 

Figure 14 displays the implied volatility surface associated with the calibrated 
model. This surface was obtained by pricing a dense grid of plain-vanilla options 
with the calibrated Monte Carlo. Figure 15 represents the surface of corresponding 
call option prices. Notice that the shapes of the implied volatility surfaces in both 
examples are quite different Of course, the call price surfaces appear to be more 
similar: from well-know no-arbitrage relations, they are both convex and decreasing 
in the strike direction and monote-increasing with expiration. 
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Fig. 14. Implied volatility surface for AOL option closing prices, calibrated to the prices of Fig. 13. 
The additional parameters are spot price=128.312, a0 = 86%, r = 5%, K = 50% and p = - 5 0 % . 
The relative entropy distance to the prior is D = 0.66. 
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Fig. 15. Surface of call prices corresponding to the implied volatility surface of Fig. 14. 

9. Example 3: Constructing a US Treasury Yield Curve 

We considered the following calibration problem: given the current prices of on-
the-run treasury securities, construct a smooth forward rate curve consistent with 
these prices. 

Figure 16 shows the on-the-run instruments and the prices observed in the morn­
ing of Thursday, April 15, 1999. 

A stochastic short-rate model was used to discount future cash flows. As a prior, 
we considered the modified Vasicek model 

dr = a(m(t) - r)dt + a dW. (44) 

Here, m(t) is the possibly time-dependent level of mean reversion, and the constant 
a controls the rate of mean reversion. We experimented with two types of mean-
reversion levels: constant levels and time-dependent levels, where the latter were 
taken to be m{t) = the piecewise-constant (bootstrapped) instantaneous forward-
rate curve.q 

Figure 17 shows several prior instantiations of the coefficients of (44). 
We calibrated the modified Vasicek model with 15000 Monte Carlo paths and 

24 time steps per year. Figure 18 shows the calibrated forward-rate curve and 

qThese are arbitrary modeling choices. For example, we could start with an econometrically 
calibrated forward rate curve or with a level of mean-reversion that corresponds to an estimate of 
forward rates for long maturities. Bootstrapping is standard method for building a forward rate 
curve: it works by assembling forward rates instrument by instrument, earlier maturities first. 
Rates are constant between maturities and jump at maturities. 
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Maturity 

07/15/99 

10/14/99 

03/30/00 

03/31/01 

02/15/04 

11/15/08 

02/15/29 

Coupon 

-
-
-

4.875 

4.75 

4.75 

5.25 

Price 

98.955 

97.823 

95.725 

99.875 

98.812 

97.219 

96.250 

Fig. 16. Seven benchmark US-treasury bills and bonds. Prices are as quoted on 04/15/99 and not 
adjusted for accrued interest. The alignment of prices reflects the direction of the sensitivities listed 
below in Fig. 20: left alignment indicates positive sensitivity, right alignment negative sensitivity. 

Scenario 

I 

II 

III 

IV 

a 

0.25 

0.25 

0.25 

0.25 

m(t) 

0.0426035 

0.0426035 

bootstrap 

bootstrap 

a 

0.01 

0.05 

0.01 

0.05 

Fig. 17. Various prior instantiations of the coefficients of (44). 0.0426035 is the rate of the first 
leg of the piecewise constant bootstrapped forward rate curve. 

forward-rate curve (a = 0.01) forward-rate curve (cr = 0.05) 

2029 Apr 99 2029 

zero yield-curve (<J = 0.01) zero yield-curve (<r = 0.05) 

2029 Apr 99 2029 

Fig. 18. Forward-rate curve and zero-coupon-bond yield curve for scenario I (cr = 0.01) on the left 
side, and scenario II (<r = 0.05) on the right side. 
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forward-rate curve (cr = 0.01) 
6.5 

6 

5.5 

5 

4.5 

4 
Apr 99 

forward-rate curve (cr = 0.05) 

III 1 

ii i i 

y 
in i 

•I i i 

2029 Apr 99 2029 

zero yield-curve (cr = 0.01) zero yield-curve (cr = 0.05) 

2029 Apr 99 2029 

Fig. 19. Forward-rate curve and zero-coupon-bond yield curve for scenario III (cr = 0.01) on the 
left side, and scenario IV (cr = 0.05) on the right side. Both scenarios revert to the piecewise 
constant bootstrapped prior m(t) superimposed in the top row. 

zero-coupon-bond yield curve for scenarios I and II, with constant level of mean 
reversion. Figure 19 shows the calibrated forward-rate curve and zero-coupon-bond 
yield curve for scenarios III and IV. In these scenarios, the level of mean reversion 
m(t) is set to the piecewise constant bootstrapped forward rate curve consistent 
with the data in Fig. 16. 

In accordance with the work of Samperi (1997) and others, the optimal Lagrange 
multipliers Â  can be interpreted in terms of an optimal investment portfolio. Specif­
ically, consider an expected CARA utility function defined on the space of static 
portfolios (0i,...,0JV) as follows: 

C(«) = -£• 
v , 

• £ L « ; ( s i i - C i ) (45) 

Since A* minimizes log(Z(X)) - A C , it follows from the analysis of Section 3 
that the vector of Lagrange multipliers and the optimal portfolio are in simple 
correspondence: we have 

A; = . -9i l,...,N. (46) 

Sensitivities are the opposites of the optimal portfolio weights for (45). A 
negative lambda corresponds to a "cheap" instrument (hence 9 > 0) and a pos­
itive lambda to a "rich" instrument (hence 9 < 0). The Lagrange multipliers, or 
sensitivities, X[,...,\j for all four scenarios are summarized in Fig. 20. Making 
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Maturity 

07/15/99 

10/14/99 

03/30/00 

03/31/01 

02/15/04 

11/15/08 

02/15/29 

Sensitivities for scenario. 

I 

32.507 

- 1 7 . 6 3 8 

5.359 

- 1 . 6 6 7 

0.085 

0.340 

-0.356 

II 

0.582 

-0.242 

0.114 

-0.056 

0.009 

0.013 

-0 .021 

III 

29.421 

- 1 5 . 3 0 7 

4.607 

- 1 . 6 9 2 

0.211 

0.013 

-0.050 

IV 

0.569 

-0 .298 

0.123 

-0 .055 

0.010 

0.005 

-0 .011 

Fig. 20. The sensitivities for the seven benchmark instruments in Fig. 16, in each of the four prior 
scenarios. Sensitivities with absolute value greater than 1 are typeset in boldface. 

m{t time-dependend does not change the sensitivities significantly (scenario I versus 
III and II versus IV). The Lagrange multipliers corresponding to short-term instru­
ments, however, are very high if the prior volatility is low (a = 0.01 in scenarios I 
and III). 

This last application of the MRE algorithm has also been implemented by one 
of the authors (R. Buff) as a prototype software operating remotely via the In­
ternet. The software, which uses periodically updated Treasury securities prices 
and/or bond prices entered by the users, is accessible in the Courant Finance Server 
(http://www.courantfinance.cims.nyu.edu). 

10. Conclusions 

We have presented a simple approach for calibrating Monte Carlo simulations 
to the price of benchmark instruments. This approach is based on minimizing the 
Kullback-Leibler relative entropy between the posterior measure and a prior mea­
sure. In this context, the prior corresponds to the uniform measure over simulated 
paths (hence to the "classical" Monte Carlo simulation). This approach is known 
to be equivalent to finding the Arrow-Debreu prices which are consistent with an 
investor which maximizes an expected utility of exponential type. The advantage 
of the minimum-entropy algorithm is that (i) it is non-parametric (and thus not 
market or model specific) and (ii) it allows the modeler to incorporate econometric 
information and a-priori information on the market dynamics, effectively separating 
the specification of the dynamics from the issue of price-fitting. 

We showed that the algorithm can be implemented as an exact fit to prices or 
in the sense of least-squares. The notion of entropy distance can be interpreted 
as a measure of the logarithm of effective number of paths which are active in the 
posterior measure. Large entropy distances correspond therefore to "thin" supports 
and thus to an ortogonality (in the measure-theoretic sense) between the prior and 
posterior measures. 

The sensitivities produced by the model can be computed via regression, without 
the need to simulate the market dynamics and to recalibrate each time that we 
perturb the price of a benchmark instrument. Another interesting feature of the 

http://www.courantfinance.cims.nyu.edu


Weighted Monte Carlo: A New Technique 265 

weighted Monte Carlo algorithm is the reduction of variance which results from 

the exact pricing of benchmark instruments. In fact, the simulation effectively 

evaluates the "residual risk" obtained after projecting the payoff of interest onto the 

space of portfolios spanned by the benchmark instruments. Numerical experiments 

indicate tha t the reduction of variance can be significant. 

We discussed concrete implementations of the algorithm for the case of foreign-

exchange and equity options, calibrated the underlying dynamics to two-factor 

stochastic volatility models. We have exhibited numerical evidence tha t shows tha t 

such an algorithm can be implemented in practice on desktop computers. 
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A new valuation method is proposed that can be mathematically viewed as a numerical 
shortcut to approximately solve the partial differential equation written for Expected 
Instantaneous Return. The method derives OAS as "static spread plus cost of convexity" 
and is based on some simplified parametric assumption about the static spread's time 
behavior. The modeling and numerical procedure details are disclaimed with proven 
accuracy and time efficiency in option-adjusted valuation. 

The method is especially effective for multi-scenario pricing, portfolio pricing, risk 
management and reporting, and for quantifying the impact of "non-traded" factors on 
reward and risk of holding mortgages. A systematic methodology for comprehensive 
multi-factor analysis is covered. 

1. Introduction to Computational Problems of Mortgage Pricing 

Pricing, managing and hedging portfolios of mortgages and mortgage-backed 
securities present several serious problems. Mortgages bear the prepayment option, 
which, unlike most known interest-rate options, is not exercised efficiently. Mort­
gages often pay an adjustable rate indexed to some market indicators that have 
no established term structure and need to be modeled themselves (11th District 
Cost of Funds, for example). Therefore, even generating mortgage cashflows is an 
issue itself that can only be solved approximately, using a fair amount of "practical 
intuition". 

Secondly, mortgages are path-dependent instruments. Mathematically, it means 
that, aside from the interest rate factors, the value may depend on a set of additional 
state variables. This list includes coupon (for ARMs with periodic reset caps and 
lookbacks), current ARM index (if not Treasury or LIBOR), current burnout factor 
(if prepayments are modeled with a burnout), current collateral factor (for modeling 
sequential CMOs), or even current balances on every CMO tranche. 

Thirdly, mortgages are multi-factor instruments as their values depend on inac­
curate modeling parameters, which, in turn, appeared to be volatile pricing factors. 
For example, prepayment speeds can be modeled with certain accuracy and tend 

266 

mailto:LevinA@Dime.com


One- and Multi-Factor Valuation of Mortgages 267 

to deviate from the model. This modeling error can be treated as a factor that is 
not correlated to the interest rates (otherwise, we could enhance the explanatory 
power of the prepayment model), and has measurable volatility and transient char­
acteristics. Many non-interest-rate-related factors are not efficiently traded by the 
mortgage market but bear a hidden source of additional systematic risk and return, 
see [10,7]. 

The existence of additional state variables (path-dependenc) and factors consti­
tutes a very serious obstacle when the most time-efficient pricing structures, trees 
and grids, are considered. It is not surprising that it has become a common and 
trivial argument and that the mortgage pricing necessitates time-consuming Monte 
Carlo simulations. We see the major shortcoming of the Monte Carlo method not 
in its speed itself, but in the fact that it is not structurally tailored for the goals 
of one- and multi-factor risk measurement and management. Indeed, all (possibly 
thousands) simulations are solely intended to compute one value. This may satisfy 
the needs of a trader seeking one accurate price, but is reasonably deemed a waste 
of time by risk managers who need many (possibly, approximate) prices to assess, 
hedge and report on each of the risk dimensions. The entire Monte Carlo scheme 
has to be rerun for each new pricing point (such as a yield curve shock) — in a 
sharp contrast to the finite difference methods where all prices are sought simulta­
neously. In addition, securities are typically traded one-at-a-time whereas the risk 
is routinely assessed for large portfolios with the total number of mortgage loans 
and securities counting in thousands. The pricing speed will certainly rank higher 
than the "accuracy" (restricted anyway due to the input approximations made). 

The other problem arising in the practical use of Monte Carlo is that such sys­
tems are deemed black boxes as they implement purely numeric procedures, require 
a complete cashflow dynamic model enabled along an arbitrary (random) interest 
rate path and do not "communicate" in the language of practitioners. To clarify this 
problem, let us imagine a typical bank's portfolio manager who can easily gener­
ate and even download cashflows for any static shock (non-random) scenario using 
Bloomberg, Oracle Financial Services, Wall Street Analytics, etc. but can never 
perform option-adjusted valuation (OAV) using those cashflows. Nor can he use a 
market-based prepayment consensus (normally formulated for deterministic scenar­
ios) or adjust them having some collateral-specific information. A typical Monte 
Carlo-based OAV system will not allow him to achieve this goal since a random 
generator produces no shock scenarios. This is not to say that the risk manager is 
deficient — quite the opposite, his intuitive assumptions deliver almost complete 
information for option-adjusted valuation, should an appropriate mathematical ap­
proach exists. 

In this paper, we introduce a new finite difference valuation method that can 
be mathematically viewed as a numerical shortcut to approximately solve the par­
tial differential equation written for Expected Instantaneous Return (EIR). OAS 
is easily derived from this equation as EIR spread to a benchmark (EIRS, hence 
the name of the method) and sought concurrently with pricing the instrument on a 
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grid of interest rate factor values. The only interest rate paths used by the method 
are those few induced by deterministic initial "shocks" of the factors. It explains 
the method's computational speed and, at the same time, sets up a natural bridge 
between the strict and rigorous mathematics of option-adjusted valuation and more 
traditional (static) practical tests for reward and risk of holding dynamic assets 
in a volatile environment. The method is ideally tailored for risk, asset/liability 
and portfolio management, it confidently handles many path-dependencies, can be 
adapted for the existence of additional early redemption provisions such as a clean­
up call or an explicit American call schedule. Complemented with a control variate 
technique, the EIRS method yields a "very accurate" (yet quick) solution, especially 
for pass-through MBS including ARMs. 

Although the deterministic interest rate paths used by the method are derived 
from an arbitrage-free model (they therefore differ from those normally used for the 
static valuation), they still can be understood and assessed by practitioners. Cash­
flows required for those scenarios can be generated using a prepayment model, or 
scenario-specific PSA or CPR assumptions, or even downloaded from a vendor's sys­
tem. This feature allows us to use the method when pricing CMOs approximately, 
without having a dynamic access to their cashflow generators. 

2. The Instantaneous Return P D E and the Problem of 
Path-Dependency 

Let us consider a hypothetical dynamic asset market price of which P(t,x) 
depends on time t and one generalized market factor x. The latter can formally 
be anything and does not necessarily have to be the short market rate or the yield 
on the security analyzed. We treat x(t) as a random process having a (generally, 
variable) drift rate fj, and a volatility rate a, and being disturbed by a standard 
Brownian motion z(t), i.e., 

dx = fj,dt + adz . (2.1) 

Instantaneous Return (IR) is a random return measured over an infinitesimal 
investment horizon and annualized. The key statement in the Instantaneous Return 
concept is a partial differential equation that is traditionally derived applying the 
following mathematical operations: 

• The Ito's Lemma (a stochastic differential equation) written for the random 
dynamics of price P(t, x) given process (1) for x(t); 

• Collecting all the cashflow-related components of IR; 
• Finding the mathematical expectation and (if needed) variance of the both 

sides; 
• Equating thus obtained expectation to the risk-free rate r(t, x) prevailing on 

the market plus a return spread (OAS) that investors expect from this type 
of risky financial instruments. 
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We assume that the asset continuously pays the c(t, x) coupon rate and its 
balance B gets amortized at the A(t, a;) rate. We formulate the known result in a 
form convenient for understanding of our approach: 

Proposition 2.1 (single-factor case). The Expected Instantaneous Return 
(EIR) and the Variance of Instantaneous Return (VIR) equal to 

EIR = r + OAS = IRo- DxfJ, + ^Cxa
2 (2.2) 

VIR = D2
xa

2 (2.3) 

where Dx = —-p^f- is the "'factor-Duration", and Cx = j s ^ r is the "factor-
Convexity" , and IRQ is Instantaneous Return along the "base scenario": 

IRo = j i ^ + ji{c + \ ) - \ . (2.4) 

Note that the expression (4) for IRQ can be derived following the above listed 
steps for the total market value, i.e., P times B, and computing all needed partial 
derivatives. In particular, ^ = —XB, due to the definition of A, whereas ^ and 
^ j r are replaced by zeros because the balance is not an "immediate" function of 
the factor. Another way to arrive to the formulae (2.2), (2.4) is demonstrated in 
[6,9] where the expected present value of the principal cashflow is integrated by parts 
and thus obtained pricing formula is mapped onto the PDE using the "inverse" 
Feynman-Kac theorem. The square root of the VIR measure presents nothing 
else than the famed Value-at-Risk (VAR), assessed for the infinitesimal investment 
horizon at an 84% confidence and annualized. We will use the notions of VIR and 
VAR interchangeably. 

A notable feature of the above written PDE is it does not contain the balance 
variable, B. The entire effect of possibly random prepayment is represented by the 
amortization rate function, X(t, x). Although the total cashflow observed for each 
accrual period does depend on the beginning-period balance, construction of a finite 
difference scheme and the backward induction will require the knowledge of X(t, x), 
not the balance. This observation agrees with a trivial practical rule stating that 
the relative price is generally independent of the investment size. 

Another important observation comes as follows. If we transform the economy 
having shifted all the rates, r(t, x) and c(t, x), by amortization rate X(t, x), formulae 
(2.2), (2.4) will be reduced to the constant-par asset's pricing formula. It means that 
a finite difference pricing grid built in the "A-shifted" economy should, in principle, 
have as many dimensions as the total number of factors or state variables that affect 
r, c, and A. In particular, even if r(t, x) and c(t, x) are functions of time and one 
factor x, but X(t, x,£) depends upon an additional state variable, £, the grid will 
necessarily have all 3 dimensions, for t, x, and £. 

This "discount-rate-like" role of the A-variable is in contrast to some other 
state variables that may affect the asset's value. We have already mentioned that 
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the balance variable drops from the PDE and therefore does not cause any path-
dependency. Another class of financial instruments includes "linear" assets where 
additional state variables linearly affect the coupon rate only (for example, reg­
ular floaters without caps and floors). For such instruments, a finite difference 
scheme can sometimes be built without additional axes. For example, if coupon 
rate c(t, x, £) is linear in £, and all the variables, x, r, c, A, and £ follow a system 
of linear SDEs and ODEs, then price P(t, x, £) is also going to be linear in £, and 
the diffusion term in the PDE can be computed correctly even without a £-axis.a 

Unfortunately, mortgage instruments are prepayable, and the redemption rate A is 
a nonlinear function of coupon rate c, the burnout factor and possibly other path-
dependent variables. It is therefore not feasible to price mortgages using a "true" 
low-dimensional finite difference grid. This problem encourages us to look for a de­
scent approximation that would satisfactorily value dynamic assets while retaining 
all attractiveness of the finite difference methods, from the risk management view. 

3. The EIRS Computational Scheme 

Let us return to the one-factor setting and, without any loss of generality, define 
a; as a deviation counted off the averaged scenario implied by the model, for which 
x(t) = 0. Indeed, if x was defined in some other way, we could always introduce a 
new factor by simply subtracting the mean values. This transformation eliminates 
drift fi from our analysis. We then write Eq. (2.2) twice, for the security in question, 
and for a benchmark that is expected to earn the risk-free rate, r, and subtract them: 

OAS = EIR - EIRb = IRv-IRb
0 + l(Cx - C*)a2 (3.1) 

where superscript "6" refers to the benchmark. We can simply state that "OAS 
equals the static return spread plus the relative convexity cost" where both compo­
nents are clearly specified. 

3 .1 . The main hypothesis of the EIRS method 

Equation (3.1) above has almost exclusively economical meaning and represents 
a concept but does not allow for computing OAS itself. Indeed, both terms in 
the right-hand side of this equation remain unknown because the time- and factor-
sensitivity of price P(t, x) have not been determined yet. Note that the only time 
instance when the path-dependent problem does not exist is the initial moment, 
t = 0. Therefore, if one could approximate the static return spread term, IRO — IRQ, 
in Eq. (3.1) for t = 0 only, it would allow, in principle, to build an efficient com­
putational pricing scheme for path-dependent dynamic assets. Such a simplifying 
assumption originally proposed by the author concerns with the time behavior of 
the static discount spread (s) over the forward curve, for the cashflows computed 

aAll these conditions are listed for illustration only; some of them could be relaxed. 
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along the corresponding average-rate path. We note as a reminder that the static 
discount spread is defined from the standard "static" pricing formula: 

£ , - i , . CFL. , .„ (3-2) 
n:-io(i+/;/i2+*/i2) 

where CFi denotes the ith month cashflow, and fj is the 1-month benchmark rate, 
j months forward. Note that the average path for the entire term structure is 
conditioned upon the observed forward curve.b 

The simplest ("lst-order") hypothesis has a form of ds/dt = 0, therefore, s is 
simply an unknown constant. This assumption is equivalent to the statement that, 
for the average-rate scenario, static return spread remains unchanged from t = 0 to 
t = S. This is to say that the same average-rate scenario's cashflow will be priced 
at the same static discount spread in the nearest future.c It is easy to show that, 
under the lst-order assumption, IRo — IRQ = s and the relationship (3.1) yields 
the following approximate ordinary differential equation: 

OAS « s{x) + ^ 
*rid*P(0,x) ^ s t a t i c , 

dx2 - Cf atIC(x) = EIRS (3.3) 

where CJ t a t l c is the static (benchmark) convexity of the average-rate scenario cash­
flow measured with respect to the same factor x. The OAS approximated according 
to formula (3.3) was called EIR spread and denoted EIRS. We therefore have trans­
formed the instantaneous return PDE (3.1) to a nonlinear second-order ODE, in 
which s{x) is a known function of price P(0, x) uniquely defined by the average-rate 
scenario cashflow conditioned upon the initial value of the factor, a;(0). The time 
variable has disappeared from the model, therefore, the pricing grid need not be 
propagated along the i-axis. 

Equation (3.3) can be viewed as an equation for P(0, x) as well as equation for 
s(x). To solve it, one needs to know either the base scenario price, P(0,0), or EIRS, 
and specify two boundary conditions. This step depends on the specific security and 
an additional information about its behavior. For an MBS, for example, one can 
consider two extreme scenarios for which the cashflow is practically insensitive to x. 
The interest rate sensitivity of the prepayment speed is typically ranged between the 
minimum turnover rate and refinancing credit limitations; in addition, the ARM's 
coupon is bound by caps and floors. For these boundary scenarios, the convexity 
costs are assumed to be zero, i.e., Cx = C£ tatIc. 

"Strictly speaking, discount rates do not necessarily have to be the forward rates. Nor does the 
benchmark have to be "the same-cashflow-Treasury". When pricing ARMs, it sometimes makes 
sense to use a "perfect floater" as a benchmark. In such a case, the discount rates in formula (6) 
will be equal to the forward rates till the next coupon reset, and the floating rates thereafter. 
c As we explain later, in Section 8, the short-rate forward curve will change over time, but the 
static return spread is still equal to the (unchanged) static discount spread. 



272 Quantitative Analysis in Financial Markets 

3.2. The finite difference grid 

To solve pricing Eq. (3.3) we apply a finite difference method. Namely, along 
with the currently observed forward curve ("base case") we consider a grid of scenar­
ios induced by initial shocks of the factor x(0) = — iVdnA,..., —A, 0, A , . . . , NupA 
for sufficiently small step A and sufficiently large number of "down" shocks Ndn and 
"up" shocks Nup. Then, we replace —0$ by its finite difference approximation, 
rewrite Eq. (3.3) for every scenario, employ boundary conditions, and solve thus ob­
tained system of N = Ndn+Nup + 1 algebraic equations using the multi-dimensional 
Newton-Raphson iterations as shown in Appendix A. After the numerical process 
has converged, prices, effective durations and convexities, static spreads, convexity 
costs are found for the all "up" and "down" scenarios — along with EIRS (given 
current price) or current price (given EIRS). Thus, the proposed option-adjusted 
valuation method delivers a complete set of risk/reward measures that is typically 
required for portfolio risk management, hedging and reporting. We would like to 
emphasize the fact that the scenario grid is solely intended to compute components 
of the differential Eq. (3.3): convexity, static convexity, static discount spread. This 
equation assumes continuous diffusion of the factor, not the immediate shocks used 
to construct the pricing grid. 

It is worth noting that, unlike the Monte Carlo method or a true finite-difference 
scheme, Eq. (3.3) yields absolutely accurate prices for option-free claims regardless 
the number of scenarios composing the pricing grid and the grid's step. 

3.3. The EIRS equation for the 2nd-order hypothesis 

The 2nd-order assumption such as ^ | = 0 leads to a more accurate, but more 
time-consuming analysis. First, formula (3.3) has to be modified in order to include 
an additional instantaneous return component, -Dsff where Ds denotes the "static 
spread duration", i.e., Ds — —d(LnP)/ds. Thus, 

EIRS = s(x) + — 
1 d2P(0, x) 

dx2 CI c(*) Ds{x)^{x). (3.4) 

Let us equate the time derivatives of the both sides of (3.4) keeping in mind 
that ~W 0: 

as 
dt 

(x) 
dt 

Ds{x) 
2 dt 

1 92P(0, x) astatic 
dx2 (x) (3.5) 

Systems (3.4) and (3.5) contains two unknown functions, s(x) and | f (x). Indeed, 
given a cashflow, price is uniquely determined by static spread s(x), therefore ^ 
can be expressed via s{x) and | f (x). We use the same grid and the same numerical 
approach as in Appendix A involving now 2 differential equations and 2 unknown 
functions. 
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4. The Method's Implementation for the Hull-White 
Term Structure 

Having introduced the EIRS method let us turn our attention to the interest 
rate process. Although the model's choice is certainly up to the user's taste, one 
ultimately has to construct the scenario grid, i.e., to find the base and the shocked 
paths for all points of the yield curve that are needed for MBS cashflow generation 
and discounting. For example, mortgage prepayments are typically driven by a 
long Treasury rate whereas ARM's coupon can be indexed to a relatively short or 
intermediate point of the curve. 

The averaged paths and the relationships between different rates are determined 
by an z-factor stochastic model. In a general case, one cannot derive closed-form 
analytics, but for a linear model, we can. The Hull-White model for the short rate 
r(t) is as follows: 

dr(t) = a[6(t) - r(t)]dr + adz(t) (4.1) 

where 6{t) is the long-term equilibrium rate, dz(t) is a standard Brownian motion, 
a is the mean reversion, a is volatility. It can be shownd that model (4.1) is made 
arbitrage-free [i.e., consistent with the observed short-rate forward curve, f(t)] if 
"(*) =/(*) + laft + ^ r ( l - e - 2 a t ) . 

4.1. Mean rate paths 

The above given choice of the long-term equilibrium leads to the following mean 
path equations for the short spot rate r(t), the long T-maturity spot rate rr(£), and 
the short forward rate f(t, T) that is in effect for instance t + T as seen at instance 
t (called sometimes "forward forward rate"): 

E[r(t)]=f(t) + ^{l-e-atf (4.2) 

E[rT(t)} = fT(t) + ^B(T)[2(1 - e~atf + (1 - e - ° T ) ( l - e~2at)] (4.3) 

2 

E[f(t,T)] = f(t + T) + ^ e - ° T [ ( l - e-atf +aTB(T)(l - e~2at)} (4.4) 

where / T ( £ ) is the rate for a T-maturity zero, t years forward, and B(T) = (1 — 
e-aT)/aT. 

One can notice that, in the presence of volatility, the mean rate paths are not 
centered around the currently observed forward curves. The spread between the 
mean rates and the forward rates is volatility-dependent and always positive as it 
is caused by the nonlinear, positively convex nature of discounting. That is why, 
curves (4.2)-(4.4) define what is often called "convexity-adjusted forward rates". 
For a relatively small mean reversion and a limited time horizon, these adjustments 

Most derivations for the 1- and 2-factor term structure models can be found in [6] and [9]. 
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can be approximated by \TcrH for the spot rates, and by Ta2t for the "forward 
forward rates". 

4.2. Volatility term structure and adjusted duration 
and convexity 

We can think of the yield curve diffusion in the 1-factor Hull-White model as 
a set of continuous, perfectly correlated deviations of each rate from its base (i.e., 
mean) path. At any time t, a deviation of the short rate x(t) = r(t) — Er(t) 
from its base path causes proportional, S(T)-reduced deviations of all other spot 
rates: xT(t) = rT(t) - ErT = B{T)x(t). That is why, function B(T) < 1 uniquely 
determines the volatility term structure in the Hull-White model. Each point of the 
curve has a 5(T)-reduced volatility, therefore, for a T-maturity zero-coupon bond, 
the traditional duration and convexity measured with respect to the bond's own 
yield have to be adjusted in order to get factor-specific measures: Dx = TB(T), 
Cx = Dl 

4.3. "Shocked" paths 

We have already established a term structure feature: each deviation x of 
the short rate (counted from its base path) immediately causes a B(T)x devi­
ation of the T-maturity spot rate (also counted from its base path). This im­
plies an immediate change in the entire spot curve shape for any initial shock 
x{0) = A / 0 . After the shock occurred, the spot, the forward, and the mean 
curves are shifted and these shifts are implied by the term structure model and 
generally are non-parallel. It is easy to prove that the shocked path for the short 

12% -i 1 , 1 1 1 1 , 1 — i 1 1 1 1 1 1 
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Fig. 1. The base path (bold) and the shocked paths of the short rate under 1-factor Hull-White 
term structure. 
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rate will differ from its mean path by Ae~at. Due to the term structure paradigm, 
the shocked path for the T-maturity rate will differ from its mean path by Ae~at 

B(T). For the short rate, Fig. 1 illustrates the base path along with 4 "up" and 4 
"down" scenarios using a 2% mean reversion. We clearly see a non-parallel pattern 
of the shocks, the size of which diminishes over time with a 1/a = 50-year time 
constant. 

4.4. Effectiveness and accuracy of the EIRS method 

For 10 actively traded agency pass-throughs and 2 unstable CMO tranches, 
Fig. 2 demonstrates that even the lst-order hypothesis EIRS method provides a 
reasonable accuracy in computing grid prices, OAS (within 5 basis points), duration, 
convexity, and option cost. The processing time is significantly smaller than that of 
the antithetic Monte Carlo algorithm if the latter is set up to reach just the same 
accuracy when pricing the same set of 9 term structures. 

Considering a broad range of MBS (fixed rates vs. ARMs, premium-priced 
vs. discount-priced, pass-throughs vs. CMOs) we observe that the EIRS method 
tends to understate OAS slightly, on average. As an MBS rolls to maturity, the 
convexity cost ultimately vanishes forcing the market to reduce the static discount 
spread — according to the underlying Eq. (3.3). Therefore, the MBS will get 
an additional price return component ignored by the lst-order hypothesis. For 
some MBS, however, convexity cost may temporarily rise, along the mean path. 
Thus, the refinancing rate for high-premium fixed-rate MBS (FNCL 8.5 in the 
example) is likely to be saturated by credit and other limitations. As we follow 
the convexity-adjusted forward curve (sloped positively), "refinancing spread" is 
tightening thereby inducing prepayment variability and increasing convexity cost. 
The lst-order hypothesis EIRS method will not quantify this future loss as the 
same static discount spread is applied over time, and, for such an MBS, the OAS 
is overstated. 

5. The Multi-Factor Case: A Theoretical Excerpt 

If n factors disturb the market conditions and security's cashflow, x(t) should 
be interpreted as an n-dimensional Brownian motion (hereinafter, vectors and ma­
trices are bolded). Duration (Dx) becomes an n-dimensional vector (Di = - p ^ ) 

whereas convexity (Cx) becomes a symmetric matrix with Cy = -p gx.gx.- The 
"base case" refers to a scenario in which all factors remain unchanged (i.e., x = 
Const). We assume that vector x of Brownian motions has a drift vector m = 
[fii,..., fin]T and a volatility (covariance) matrix V : Vij = pij<Ji<7j; pij denotes 
correlation between dxt and dxj(pu = 1), o-j is the ith. factor's volatility. We can 
reformulate Proposition 1.1 for the multi-factor case. 

Proposition 5.1 (multi-factor case). The Expected Instantaneous Return 
(EIR) and the Variance of Instantaneous Return (VIR) equal: 
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1 ™ 1 " 
EIR = Ji?o - Dim + - tr (VC. ) = Jflo - ] T D ^ + j E caPnaiai (5-1) 

i = l i j = l 

n 

VIR = D%VDX = J2 DiDjPijCTiaj (5.2) 

where the time return IRo is still determined by formula (2.4). 

Formula (5.1) involves the drift vector m. To exclude one, we assume again that 
the factors are counted off their mean paths. Subtracting both sides of formula 
(5.1) written for the benchmark from the ones written for the asset in question we 
derive the arbitrage-free OAS measure: 

OAS = EIR - EIRb = IRo -IR%> + tr [V(CX - Cb
x)] 

= IRo ~ IR$ + \ £ (C* - C&PijWi • (5-3) 
i,j=l 

Formula (5.3) clearly states that OAS consists of the static return spread and 
generally n(n + l ) /2 "convexity" costs including the mixed term costs. Selecting 
independent factors (pij = 0, i ^ j) would certainly be beneficial from the numerical 
point of view; only n convexities, not the mixed terms, need to be estimated in this 
case. 

We would like to address the problem of creating a benchmark portfolio to de­
termine the mean path for each factor. To clarify this issue, we first start with 
the interest-only factors (say, Treasury rates). Since all market participants are 
well versed on their values, the mean paths for these rates are immediately derived 
from an appropriate arbitrage-free rate model. Let us consider another factor, a 
prepayment uncertainty, that is a noise in the prepayment model that would oth­
erwise perfectly explain prepayment rates via interest rates changes. Any Treasury 
portfolio has no exposure to this factor and therefore should be complemented by a 
"benchmark" MBS. Then, a security in question can be formally priced relative to 
such a defined benchmark, but the latter does not fit our standard understanding 
of the option-adjusted valuation. Indeed, a "benchmark" MBS usually needs to be 
priced itself, and there may exists no price that perfectly reflects the prepayment 
uncertainty of mortgages. 

If a benchmark does not exist or is not suitable for us, we can simplify the 
problem by making some assumption about the drifts of "inconvenient" factors. 
Thus, a zero drift is not a frivolous choice for the prepayment factor if the pre­
payment model is built as an unconstrained mean-least-squared regression. The 
noise of such a model (i.e., the prepayment error) is centered and tincorrelated with 
the other ("explanatory") factors. This is a very convenient decomposition of OAS 
into "off-Treasury" (traded) OAS and "hidden" convexity costs of "non-Treasury" 
(non-traded) factors. We will list some non-traded factors further in Section 7 and 
discuss their impact on the total valuation process. 
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6. Introducing a Second Factor into the Gaussian 
Interest Rate Model 

Although a mean-reverting one-factor model implies a certain change in the 
yield curve shape (Fig. 1), this change is perfectly correlated with the short rate, 
the only factor of the model. The other limitation of the one-factor model (3.5) is 
that its volatility term structure always declines from the short end to the long end. 
As observed historically, the curve can twist independently from its vertical move 
and a long volatility can exceed the short volatility. 

6.1. A two-factor Gaussian term structure 

A two-factor Gaussian term structure model closest to our specification was first 
proposed by Hull and White [3]. Levin [6,9] developed a universal procedure for 
constructing any 2-factor Gaussian model (with real eigen-values) as the following 
four-step mathematical derivation: 

• Present the short rate process in the form of r(t) = Xi(t) + X2(t) where x\ 
and X2 are two Gaussian variables satisfying first-order stochastic differential 
equations similar to (3.4): 

dxi(t) = ai{6(t) - xi(t)]dt + aidzx(t) 
(6.1) 

dx2{t) = -a2X2(t)dt + a2dx2(t) 

where two Brownian motion increments dzi(t) and dz2(t) have a correlation 
of p; 

• Find 6(t) such to insure arbitrage-free conditions, i.e., correct pricing of all 
default-free and option-free claims (Treasury bills, notes, and bonds, or LI­
BOR contracts). Find the average and the shocked paths for the short rate. 

• At any point of time t and any maturity T, establish the linear relationships 
between long spot rates rx(t) and the factors x\{t) and X2{t). Find the average 
and the shocked paths for rxii)-

• Fit the 5 model's parameters (2 mean reversions, 2 volatilities, and the corre­
lation) in order to approximate the observed volatility term structure by that 
implied by the model. 

Factors xi and X2 have no financial meaning. In fact, the transient solution 
of any second-order system with real eigen-values can be presented as a linear 
combination of exponents, i.e., the transient solutions of model (6.1). Therefore, 
r(t) = xi(t) + X2(t) is a generic mathematical statement that holds true for any 
2-factor Gaussian term structure with real eigen-values, — a\ and —a2, regardless 
the form it is written in. In addition, volatilities for long-rates can exceed the 
short-rate volatility only if p < 0. Then, the model can be rewritten in a unique 
equivalent "(r, u)-form" introducing a new "slope" variable v — x\ + (3x2 with 
P = — <Ti(cri + pcr2)/a2(pai + 02) 7̂  1- In the transformed model, factors r and 



One- and Multi-Factor Valuation of Mortgages 279 

v are independent, for an infinitesimal time horizon. Factor v determines a term 
structure move net of that propagated by the short rate r. Thus, an immediate 
change in the initial value v(0) causes a change in the entire term structure, except 
for its short end driven by r(0). 

All needed formulae for the (r,t>)-model are listed in Appendix B. A method of 
finding the 5 model parameters, a's, a's and p that would fit the observed volatility 
term structure is introduced in [8,9]. We suggest selecting 2 long-rate maturity 
points and equating their volatilities and correlations with the short rate to those 
values implied by the model. Many different volatility term structures can be fit­
ted including "humped" and rising, but not all. An alternative to fitting a's, a's, 
and p would be using the best approximations of historical day-to-day yield curve 
diffusion. Parameters are selected to minimize a norm of errors (measured across 
maturities) between the actual daily increments and those simulated by the 2-factor 
term structure. 

6.2. EIRS method for the 2-factor model 

The EIRS Eq. (3.3) is generalized for the 2-factor (r, v)-model as: 

EIRS = s { r , v ) +
a f \ 1 ^ 0 ^ 

+ 2 

dr2 

*?.tld*P(0,r,v)_c^tic{rv) 

"(r,v) 

dv2 (6.2) 

where the last 2 terms are convexity costs associated with the r-factor and the 
•u-factor, correspondingly. In the derivation of (6.2), we have employed again the 
lst-order assumption and replaced the static return spread IRQ — IRQ by the static 
discount spread, s. This approximation automatically eliminates the time variable 
and converts (6.2) into a 2-factor PDE. 

Let us consider constructing the two-dimensional (r, u)-grid of scenarios required 
by the EIRS method. We start building the grid from its base path using Eqs. (B.2), 
(B.4) listed in Appendix B. Immediate changes ("shocks") in initial conditions, 
Aro or Avo, are then considered as the "shocked" trajectories for our factors and 
for the long rates will be counted off their mean paths, see formulae (B.9). One 
can construct some 11-15 "r-scenarios" (Aro's are equally spaced, A^o = 0) and, 
independently, 11-15 "v-scenarios" (Avo's are equally spaced, Ar0 = 0) keeping the 
total number of paths (and therefore unknown prices) within some reasonable range 
(up to 150-200). For example, possible basic "i—" and uv—" scenarios are plotted 
in Fig. 3; all others are proportional. Each scenario sets up a unique price-static 
discount spread relationship. The rest of our technique generally repeats that of 
the one-factor case. 

If our goal was to find only OAS, the time required to solve Eq. (6.2) would 
approach that of the 2-factor Monte Carlo method as doubling the number of factors 
will only slightly delay the Monte Carlo runs. The relative effectiveness of the EIRS 
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Fig. 3. The short rate mean paths in the 2-factor term structure. 

method increases as the risk management task involves deriving price sensitivity 
measures for different "up", "down", "slope-up", and "slope-down" scenarios. The 
EIRS method generates these measures concurrently whereas Monte Carlo runs 
have to be repeated every time the initial yield curve is shocked. Thus, if all the 
grid points we use to solve Eq. (6.2) are indeed "points of pricing interest", the 
relative performance of the Monte Carlo approach will be even worse than that for 
the one-factor model. 

6.3. MBS valuation under the 2-factor model 

The full-scale analysis "2-factor model vs. 1-factor model" could be quite a vast 
research, results of which essentially depend on 5 parameters used for the 2-factor 
term structure. Accordingly, we restrict our presentation to the major (sometimes, 
trivial) practical observations assuming that the short rate volatility is given; the 
major conclusions follow below: 

• Given correlations with the short rate, increments in the intermediate- and 
long-rate volatilities magnify the total price volatility (VAR). They also cause 
higher convexity costs and typically reduce OAS. 

• Given volatilities of all the rates, a reduction of correlations (i.e., "activating" 
the v-factor) gradually reduces the prepayment option costs, as well as sensi­
tivity to the short rate factor (Dr and C r) and increases OAS, until certain 
point. Then, the reverse becomes true. 



Security 

G2AR 5.5 
G2AR 6.0 
G2AR 6.5 
G2AR 7.0 
TBA COFI 
FNCL 6.5 
FNCL 7.0 
FNCL 7.5 
FNCL 8.0 
FNCL 8.5 
8% A-Class 
7% B-Class 

One-factor model 
Duration 

2.63 
2.26 
1.94 
1.62 
1.39 
5.63 
5.18 
4.61 
3.94 
3.18 
1.13 
6.73 

VAR 
2.10% 
1.81% 
1.55% 
1.30% 
1.11% 
4.50% 
4.14% 
3.69% 
3.15% 
2.54% 
0.90% 
5.38% 

OAS added 
1.4 
0.2 
-0.4 
-0.7 
-3.6 
5.5 
5.4 
5.2 
4.1 
2.5 
-3.6 
10.9 

r-Duratlon 
0.83 
0.79 
0.74 
0.70 
0.40 
1.12 
1.08 
1.03 
0.96 
0.90 
0.68 
1.26 

Two-factor model 
r-VAR 
0.66% 
0.63% 
0.59% 
0.56% 
0.32% 
0.89% 
0.86% 
0.83% 
0.77% 
0.72% 
0.54% 
1.00% 

v-Duration 
1.36 
1.16 
0.97 
0.79 
0.82 
2.86 
2.66 
2.34 
1.96 
1.53 
0.48 
3.17 

v-
1 
1 
1 
1 
1 
4 
3 
3 
2 
2 
0 
5 

Assumed 
Maturity 

1-mo 

2-yr 

10-yr 

Volatility Term Structure 
Volatility Correlation 

16.0% 100.0% 

12.4% 43.4% 

10.8% 16.5% 

Bid) 

1.000 

0.909 

0.641 

B2(T) 

1.000 

0.352 

0.076 

Implied 
Br(T) 

1.000 

0.425 

0.150 

B 

0 

0 
0 

Fig. 4. 1-factor model vs. same-volatility 2-factor model: Risk/Rew 
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• For the same volatility of all the rates, the total interest-rate-related VAR for 
fixed-rate MBS will be lower under the 2-factor model. This is not necessarily 
true for ARMs. 

Results presented in Fig. 4 are obtained for a 2-factor term structure that has 
the same short (1-mo), intermediate (2-yr), and long (10-yr) rate volatilities as 
those implied by the 1-factor Hull-White model. The intermediate rate and the 
long rate were assumed to have 43.4% and 16.5% correlations with the short rate, 
correspondingly. Although the total VAR may look comparable for both models, 
the 2-factor term structure substantially "re-distributes" risk between the factors 
reducing the r-component and introducing the v-component. The perfect 2-factor 
A-hedges for each MBS are non-trivial and also listed in Fig. 4. Note that a trivial 
1-factor A-hedge may even induce an additional risk when used in the 2-factor 
economy. 

7. Non-Traded Factors: A Systematic Methodology and 
Practical Results 

If a factor is not traded in the sense introduced in the Section 5 above, compu­
tations of the corresponding convexity cost and the contribution to VIR are rather 
simple. "Traded OAS" is first found for the model that involves traded factors only. 
The non-traded factor is then shocked "up" and "down" and new prices are com­
puted. Since the factor is non-traded, the market would not change "traded OAS". 
Using thus calculated 3 prices we estimate factor-Duration and factor-Convexity. 
The product of factor-Duration and factor-Volatility geometrically contributes to 
VIR whereas the product of a half of factor-Convexity and factor-Volatility squared 
is Convexity Cost (a positive number reduces the total OAS). Generally, no "static 
convexity" exists since no benchmark sensitive to the factor is considered. The only 
exception to this rule is a benchmark-related factor (therefore, a traded factor) that, 
for the sake of simplicity, is treated as a non-traded one. This means that, while 
computing "traded OAS", we ignore this factor, but while computing its Convex­
ity Cost, we should subtract the corresponding static convexity (the interest rate 
volatility is an example considered below). In this section, we list the major non-
traded factors, and, for each one, a brief commentary is presented on how the factor 
effects risk and reward of holding mortgages. For a more comprehensive coverage 
of this subject we refer the reader to paper [7]. The results are summarized and 
combined in Fig. 5. 

7.1. Prepayment model error 

There exists no ideal prepayment model. The deviations of actual prepayment 
speeds from those computed by a model can be treated as a factor.6 The prepayment 

e A . Sparks and F. Feiken Sung [10] conclude that a positive (negative) "prepayment convexity" 
will increase (decrease) OAS if this factor is included in the OAS model, but, they do not provide 
any analytical tools to quantify this OAS addition. 
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A. Prepayment speed multiplier 

Security 

G2AR 5.5 
G2AR 6.0 
G2AR 6.5 
G2AR 7.0 
TBA COFI 
FNCL 6.5 
FNCL 7.0 
FNCL 7.5 
FNCL 8.0 
FNCL 8.5 
A-Class 
B-Class 

Base path 
AvgPSA 

361 
315 
348 
391 
250 
106 
120 
142 
182 
280 
216 
118 

Volatility'' 
% of speed/yr 

20% 
20% 
24% 
26% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 
20% 

B. Index model error 

Security 

TBA COFI 

C. Interest rate volatility 

Volatility 
bp/yr 

15 

Duration 
yr/bp 
-0.034 

VAR 
% 

-0.51% 

Convexity 
(yr/bp)2 

-0.020 

Convexity Cost 
bp 
2.2 

Security 

G2AR 5.5 
G2AR 6.0 
G2AR 6.5 
G2AR 7.0 
TBA COFI 
FNCL 6.5 
FNCL 7.0 
FNCL 7.5 
FNCL 8.0 
FNCL 8.5 
A-Class 
B-Class 

Volatility 
%ofVol/yr 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

Duration 
yr/%ofVol 

0.014 
0.012 
0.009 
0.006 
0.002 
0.033 
0.034 
0.034 
0.031 
0.025 
0.006 
0.059 

VAR 

% 
0.22% 
0.18% 
0.13% 
0.09% 
0.03% 
0.50% 
0.51% 
0.51% 
0.46% 
0.38% 
0.09% 
0.88% 

Convexity 
(yr/% of Vol)2 

-0.110 
-0.008 
-0.005 
-0.004 
0.000 
-0.010 
-0.008 
-0.003 
-0.003 
-0.005 
-0.002 
-0.012 

Convexity 
bp 
1.3 
0.9 
0.6 
0.4 
0.0 
1.2 
0.9 
0.4 
0.3 
0.5 
0.2 
1.4 

D. Discount spread 

Security 

G2AR 5.5 
G2AR 6.0 
G2AR 6.5 
G2AR 7.0 
TBA COFI 
FNCL 6.5 
FNCL 7.0 
FNCL 7.5 
FNCL 8.0 
FNCL 8.5 
A-Class 
B-Class 

Volatility 
bp/yr 

15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 
15 

Duration 
yr 

3.89 
3.62 
3.37 
3.13 
4.27 
6.03 
5.66 
5.21 
4.67 
4.08 
1.49 
7.18 

E. Cumulative effect of non-traded factors 

Security 

G2AR 5.5 
G2AR 6.0 
G2AR 6.5 
G2AR 7.0 
TBA COFI 
FNCL 6.5 
FNCL 7.0 
FNCL 7.5 
FNCL 8.0 
FNCL 8.5 
A-Class 
B-Class 

Traded VAR 

% 
2.10% 
1.81% 
1.55% 
1.30% 
1.11% 
4.50% 
4.14% 
3.69% 
3.15% 
2.54% 
0.91% 
5.39% 

Non-traded addition 

% 
0.68% 
0.65% 
0.68% 
0.73% 
0.82% 
1.12% 
1.02% 
0.94% 
0.85% 
0.79% 
0.25% 
1.56% 

Total VAR 

% 
2.21% 
1.92% 
1.69% 
1.49% 
1.38% 
4.64% 
4.27% 
3.81% 
3.26% 
2.66% 
0.94% 
5.61% 

VAR increase 

% 
5.1% 
6.3% 
9.2% 
14.8% 
24.2% 
3.0% 
3.0% 
3.2% 
3.6% 
4.7% 
3.3% 
4.1% 

Convexity Cost 
bp 
-4.1 
-5.1 
-9.2 

-12.4 
2.4 
1.4 
-0.1 
-2.3 
-4.3 
-6.9 

Volatility assumptions are illustrative and averaged for specific models used 
1 All VARs are at 84% confidence 

Fig. 5. Multi-factor analysis. 

Duration 
yr /% of speed 

0.016 
0.015 
0.018 
0.021 
-0.002 
-0.012 
-0.012 
-0.003 
0.006 
0.017 
0.002 
-0.035 

VAR1 

% 
0.31% 
0.30% 
0.44% 
0.55% 
-0.04% 
-0.43% 
-0.25% 
-0.07% 
0.13% 
0.34% 
0.05% 
-0.07% 

Convexity 
(yr/% of speed)2 

0.029 
0.029 
0.033 
0.037 
-0.003 
-0.005 
0.002 
0.011 
0.021 
0.035 
0.002 
-0.006 

Convexity Cost 
bp 

-5.9 
-5.7 
-9.6 

-12.6 
0.5 
1.0 
-0.4 
-2.1 
-4.2 
-7.1 
-0.5 
1.2 

VAR 

% 
0.58% 
0.54% 
0.50% 
0.47% 
0.64% 
0.90% 
0.85% 
0.78% 
0.70% 
0.61% 
0.22% 
1.08% 

Convexity/100 
(yr)2 

0.25 
0.24 
0.21 
0.19 
0.32 
0.63 
0.54 
0.48 
0.39 
0.35 
0.03 
0.67 

Convexity 
bp 

-0.3 
-0.3 
-0.2 
-0.2 
-0.4 
0.7 
-0.6 
-0.5 
-0.4 
-0.4 
0.0 
-0.8 
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errors are strongly serially negatively correlated, and one should find a "filter" (a 
system of differential equations) that is disturbed by a Wiener "white" process (i.e., 
a factor) and generates the observable colorful noise/ We assume that the prepay­
ment error factor can be isolated as a "speed multiplier" satisfying the strongly 
mean reverting diffusion model but uncorrelated with other factors. The reason 
why we suggest using the speed multiplier instead of, say, an additive speed error, 
is that prepayment uncertainties usually grow when prepayment speed grows itself 
[7]. A prepayment model can be built much more accurately for discount MBS' 
than for premium ones (the same is generally true about brokers' prepayment fore­
casts) . Using the speed multiplier we smooth out the difference in prepayment error 
volatilities. 

It is a simple but notable finding that both prepayment duration and prepayment 
convexity grow as one moves from discount mortgages to premium ones. In a very 
simplified form, this conclusion can be explained by the generalized Gordon's stock 
pricing formula: 

P=(c + A)/(r + A) 

in which parameters c, r, and A have the same meanings as above. A simple exercise 
in calculus proves that both sensitivity measures are proportional to (c — r). Since 
contributions to VIR from independent factors are always positive, both discount 
and premium assets are riskier than par-priced ones. However, convexity cost has 
sign and a premium (discount) fixed-rate asset will have a positive (negative) pre­
payment convexity. For actual mortgages, this relationship is more complicated 
since prepayment speeds affect the cost of prepayment option itself as well as the 
interest income and the values of life and periodic caps and floors, for ARMs. 

7.2. ARM index model error 

If an ARM is indexed to a non-Treasury and non-LIBOR index (COFI, NMCR, 
Prime, etc.) that has no established term structure, it needs to be modeled. An 
error arising in such a model can be treated as an additional factor. For the sake 
of demonstration, we will assume that a lst-order autoregressive model provides 
suitable accuracy, and the residual is directly proportional to a standard Wiener 
process 7 res: 

I = Iie& + aiFes (7.1) 

dlres = a!{a + (3rT - Feg)dt (7.2) 

where I is an ARM index's value, TT is a T-maturity market rate, a/ is the mean 
reversion, 07 is the error's volatility, a and /3 are the "long-term" regression co­
efficients. If the best model is sought as the least-mean-squared model, then the 

The filter is formally constructed using factorization of the spectral density function F(CJ) = 
W(iu>)W(—iw) of the noise. Then, W(s) is the transfer function of the filter, where s is the 
Laplace operator provided that all poles of W(s) belong to the left half-plane. 
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residual is uncorrected with the explanatory variable (rr), centered, and its volatil­
ity can be naturally estimated. Following the standard technique described in the 
beginning of this section, we can compute factor-Duration (therefore, the appropri­
ate VIR contribution) and factor-Convexity (therefore, cost of convexity). Due to 
the nature of the prepayment option, Convexity Cost with respect to the ARM in­
dex model error is always positive. Indeed, should the index be above the modeled 
values, potential interest income benefits for investors will be limited by a rising 
prepayment activity. If the index is below the model's projections, the loss of in­
terest will be extended. In the above example (see Fig. 5), the investor loses 2.2 
basis points due to this "hidden", non-traded factor. At the same time, he takes an 
additional risk (0.51% of VAR, compare to 1.08% of the "traded VAR"). 

7.3. Interest rate volatility 

Practically all parameters in interest rate, prepayment rate, and ARM index 
models considered in this paper are known with certain accuracy and could be 
treated as factors themselves. From this wide universe of potential factors we should 
distinguish those having the major impact on the OAV. Interest rate volatility is 
an obvious candidate as "volatility of volatility" is a known market phenomenon. 
This is to say that process (2.1) has to be heteroskedastic with a being described by 
some stochastic differential equation which would be comprised of an "explanatory" 
part complemented by a residual term: 

da = \iadt + oadza . (7.3) 

We assume that na and aa may depend on time and all other factors; however, the 
standard Wiener process za(t) is assumed to be uncorrelated with those factors. 

Formally, interest rate volatility is a traded factor since there exists an estab­
lished market for interest rate options. As we could see above, the introduction of 
an additional traded factor makes the finite difference grid much more complicated. 
This observation, and our aversion to having options in the benchmark portfolio, 
necessitate the use of a simpler approach. In fact, we propose to treat the interest 
rate volatility as a non-traded factor and employ our general method to find the 
required sensitivity measures. As one can see from Fig. 5, "volatility of volatility" 
results in some positive convexity cost not exceeding 1 basis points. Contributions 
to VAR can reach as much as 15% of the traded VAR. 

7.4. "Spread" factor 

Loans and mortgage-backed securities are traded at an option-adjusted spread 
above the Treasury market or LIBOR market. This spread can vary over time thus 
becoming a pricing factor, its volatility is easily observed. It might seem that the 
spread factor is one of the easiest to analyze because spread-Duration and spread-
Convexity are, in essence, the well-known (positive) static measures. However, this 
straightforward approach can serve as an approximation only. Indeed, any change 
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in the static discount spread is not evenly propagated across the interest rate "up" 
and "down" scenarios (the reason is the difference in the scenarios' cashflows and 
therefore their price sensitivities to the discount spread). In order to find the correct 
price-to-OAS sensitivity, one needs to re-run the entire traded OAS model. In 
addition, the OAS is a highly mean-reverting variable, and a stable filter has to be 
constructed first similarly to that discussed for the prepayment model error. 

For most mortgages, spread-related cost of convexity is found within 1 basis 
point range. Contributions to VAR can be more significant, comparable to the 
traded VAR, for COFI ARMs. 

7.5. Summary 

Undoubtedly, prepayment error volatility represents the major source of non-
traded ("hidden") convexity cost for all MBS' considered, except for the COFI 
ARM. Our analysis shows that an additional expected return grows as the price 
rises. The only exception is the COFI ARM having a positive convexity cost related 
to the COFI modeling error. Thus, an investor should expect a higher traded OAS 
for COFI ARMs just to compensate for this difference. 

Total VAR contributions by non-traded factors are within 0.62% to 1.12% range, 
but have different dominant components, for different securities. The total resultant 
VAR is certainly larger than just traded VAR. This "risk increment" is 3%-4% for 
fixed-rate MBS', 5%-15% for CMT ARMs, and 26% for the COFI ARM. Thus, the 
overall risk of holding fixed-rate MBS' seems to be almost the same as the interest 
rate risk whereas ARMs suffer from more substantial additional exposure. However, 
it is important to keep in mind that we have been considering unhedged mortgages. 
Should these instruments be Delta-hedged, the traded VAR will be eliminated, and 
the remaining risk is entirely driven by the non-traded factors. 

8. EIRS Method Under Additional Early Termination Provisions 

In addition to the prepayment option, many MBS are subject to early calls 
according to some schedule or to a cleanup condition. Even if an asset does not 
have any legal early termination provision, it may have to be modeled that way. For 
example, unlike residential loans, high-balance commercial mortgages are usually 
managed by financial experts. The prepayment option is exercised very efficiently 
forcing us to view such assets as amortizing (possibly, adjustable-rate) loans with 
an embedded American call scheduled 

Valuation of such securities becomes a real challenge, as neither Monte Carlo 
approach (cannot price American options), nor finite difference schemes or trees 
(do not handle path-dependency) may be used. We show below that at the cost of 
accuracy and processing time, the EIRS method can be adapted to pricing MBS 
with additional American options. Although this can be viewed as a significant 
achievement itself, the adjustments we have to make in the EIRS algorithm are 

g T h e author thanks Kenneth Schmidt for pointing this out. 
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rather simple and straightforward. First, we assume that the prepayment activity 
of mortgagors (if any) is totally independent from the additional embedded options. 
This natural assumption enables the cashflow generation along all scenarios of the 
grid under the assumption that no early termination is possible. 

From the option pricing theory, we know that the optimal exercise of an Ameri­
can option maximizes its value [5]. This theoretical fact justifies the following prac­
tical valuation rule: when working backward along a tree or a grid, the obtained 
prices have to be capped by call prices and floored by put prices. In application to 
the EIRS scheme it means that the method has to be complemented by a backward 
induction procedure that would correct the cashflow under appropriate economic 
conditions. 

To implement this idea, we consider the same grid of scenarios as was used in 
the regular EIRS method, but, in addition, introduce a time grid (i.e., a discrete 
time sequence 0,6,26,... ,M6) that covers, at least, the interval of possible early 
redemption. For each scenario, we first use the MBS cashflow that ignores early 
termination. Starting from the maturity date or balloon date we derive prices at all 
previous time instances that belong to the grid. An important technical detail one 
has to take into account is changing the entire forward curve when moving from 
one pricing node to another. Indeed, along a chosen scenario, each rate follows 
its mean curve (convexity-adjusted forward curve), not the original forward curve. 
For example, under the Hull-White term structure, formula (4.4) for the "forward 
forward rates" has to be applied when assessing price at time t and discounting 
the value from t + T + 6 back to t + T. Because the EIRS scheme is iterative, 
it makes sense to pre-compute the convexity adjustment term for all t and T and 
store it in a 2-dimensional array. As in the regular EIRS, the same static spread 
s (different for different scenarios) is added to all forward discount rates. If, for 
any scenario, the assessed price for time t appears to exceed the applicable call 
price (of falls below the put price), the prices are capped (or floored) and the cash­
flow "tail" is cut. The early-terminated cashflow is then used to compute price at 
t — 6, etc. 

When a previous approximation for static spreads SNd n , . . . , s o , . . . ,SJVU is 
known, we do not rush with computing the Newton-Raphson's corrections as in 
the regular EIRS method. Rather we test if the cashflows can be early termi­
nated and modify them if so. For thus modified cashflows, we compute all needed 
static measures: static factor convexity C£ tat ic (required by the EIRS equation), and 
spread static duration Ds (used by the Newton-Raphson algorithm, Appendix A). 
Only then, the Newton-Raphson correction is applied again to find the next static 
spreads approximation. 

The processing time for this algorithm is substantially longer than that for the 
regular EIRS scheme because the cashflow can vary from iteration to iteration, and 
future prices have to be computed. On the other hand, the constancy of the static 
spread over time may appear to be a too rough assumption for estimating the future 
prices. However, the problem we address here cannot be solved by the traditional 
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methods at all, and it is almost impossible to find a pricing benchmark, as we 
were able to do for the regular EIRS version. For non-amortizing callable corporate 
bonds, our numerical experiments reveal an OAS error ranging from moderate 5-7 
basis points for out-of-the-money case to 10-12 basis points for in-the-money case.h 

The errors for amortizing MBS are, on average, certainly smaller. 

9. Possible Accuracy Enhancements of the EIRS 
Computational Scheme 

The EIRS scheme is ideally suited for asset-liability, portfolio, and risk manage­
ment computational tasks and has a considerable speed advantage over the more 
traditional Monte Carlo method. It can be used for pricing many path-dependent 
assets, assets with additional (American) termination provisions, assets for which 
dynamic cashflow generation mechanism is not even known. But, the EIRS method 
is an approximation and its accuracy cannot be substantially enhanced by simply 
constructing a finer scenario grid. In fact, the method draws the main error from 
the PDE transformation into ODE, not from the discretization. 

Accounting for quickness of the EIRS scheme one can consider the use of a con­
trol variate technique, i.e., to employ the method twice, for the asset in question 
and for an auxiliary asset ("control variate"), for which the exact or very accurate 
price can be computed. For some mortgage products the closed-form solution can 
be derived as shown in [9]. In order to implement this approach, the principal 
amortization rate has to be a Gaussian variable. Since most prepayment mod­
els are essentially nonlinear, we suggest using a more traditional finite-difference 
scheme rather than the closed-form solution in order to price the control variate. 
The latter, therefore, should bear no path-dependency. An obvious advantage of 
such an approach is that both the EIRS method and a traditional finite-difference 
method solve the same problem of finding prices for the same set of initial term 
structures. 

Thus, when pricing mortgage instruments with a burnout, it is reasonable to 
create a control variate without a burnout. In order to have the control variate to 
be as close to the original MBS as possible, one can first model the burnout factors 
for the base scenario and then apply them for each scenario of the pricing grid. 
Such a transformation will eliminate the existing path-dependency, but replicate 
prepayment speeds for the base scenario. Using the EIRS scheme for the control 
variate, and comparing it to the solution achieved via a true finite difference method, 
we find the price corrections for all the scenarios concurrently. As seen from Fig. 6, 
there is a considerable accuracy improvement for the agency MBS. The base case 
error is remarkably corrected whereas the grid pricing errors are generally smoothed 
out among scenarios. 

hA standard backward inducting Crank-Nicholson finite difference scheme was used for com­
parison. 
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10. Conclusions 

The EIRS method we have presented in the paper combines mathematical rigor 
(starting from the partial differential equation of instantaneous return) with an "ad-
hoc" practical assumption regarding the behavior of static discount spread along 
relatively few deterministic scenarios. This approximation removes the time grid 
from the numerical procedure and explains the time efficiency of the method. OAS, 
duration, convexity and option cost are found concurrently with pricing an asset 
on the grid of interest rate scenarios. The method "communicates" with users in 
practical terms of "up" and "down" scenarios and retains a traditional ("static­
like") level of control over prepayment assumptions and cashflow generation that 
most practitioners love to have. These features make the method especially valuable 
for: 

• multi-scenario option-adjusted valuation of mortgage securities and portfolios, 
an essential task in risk, asset/liability, and portfolio management; 

• historical OAS analysis; methodological consistency and computational speed 
provided by the EIRS method throughout historical observations rank higher 
than finding "true" OAS; 

• pricing complex securities (such as CMOs) while having limited ability to 
generate their cashflows dynamically; 

• advanced research (such as a multi-factor or sensitivity analysis) which in­
cludes OAS pricing as a routine sub-task to be done quickly and consistently. 

The method's drawback is that it is an approximation that does not converge 
to the exact solution via simply using more scenarios (i.e., constructing a "finer 
grid"). Any improvements should either involve a relatively universal control variate 
technique, or will interfere with the method's major assumptions. In addition, the 
method will successfully work only for those path-dependent embedded provisions 
that are well reflected in the grid scenarios. 

Our approach to the multi-factor analysis distinguishes "traded" and "non-
traded" factors. We suggest using the underlying EIRS numerical loop for arbitrage-
free pricing on a grid of very few (one or two) interest rate traded factors. Then, one 
measures the exposure (duration and convexity) to uncorrelated non-traded factors 
such as prepayment model error, ARM index model error, pricing spread, or inter­
est rate volatility. This step immediately quantifies additional convexity costs and 
VAR contributions creating a comprehensive picture of reward and risk of investing 
in a mortgage loan or MBS. 

Acknowledgments 

The author is grateful to the participants of NYU/Courant Institute Mathemat­
ical Finance Seminar led by Marco Avellaneda. The paper benefits from a long-term 
collaboration with James Daras and Kenneth Schmidt. Arthur Beaudoin, Ibrahim 
Sadiq, and Michael Di Brienza helped significantly with the information system 



One- and Multi-Factor Valuation of Mortgages 291 

design, and Diahann Rothstein, Krystn Paternostro, Robert Wyle, and Paul Barrett 
have been excellent users who stimulated development enhancements. Comments 
made at various stages of this work by Robert Jarrow, John Hull, Andrew Davidson, 
Yung Lim, Michael Purvis, Kevin Berger, and Douglas Love are greatly appreciated. 

Appendix A. A Newton-Raphson Scheme for the EIRS Equation 

We consider here a numerical Newton-Raphson scheme intended to solve the 
pricing Eq. (3.3). First we assume that one knows an initial approximation for 
the static spread as a function of the factor x, let us denote it s(x). Thus, to 
start iterations, one can set, for example, s{x) = s(0) = Const if price P(0) is 
known, or s(x) = EIRS = Const if EIRS is known. The corresponding price, spread 
duration, and static convexity will be denoted P(x), Ds(x), and Cltatlc{x). If the 
next approximation, s(x), is close to the previous one, we can write down: 

six) « 5(x) + ^ ' / . ^ = <x) - b(x)P(x) (A.1) 
P(x)Ds(x) 

where a(x) = s(x) + 1/Ds(x),b(x) = l/P(x)Ds(x). 
Substituting (A.l) into Eq. (3.3) and multiplying it by 2P(x)/a2 we get the 

following linearized equation for P(x) and EIRS: 

P{x)f3(x) + ^ - 6(x)EIRS = 7(x) (A.2) 

where 0(x) = -2/Ds(x)a2,j(x) = P(x)[C?*tic{x) - 2a(x)/a2}, and S(x) = 
2P(x)/a2. We have to complement Eq. (A.2) with 2 boundary conditions. For 
example, we may require a zero convexity cost as factor x approaches some extreme 
values, X\ and xpf. 

P(a:i)/J(a:i) - J ^ ^ E I R S = - ^ J a f a i ) 

P(xN)/3(xN) - 6(xN)EIRS = -6(xN)a(xN). ^ ' ' 

We then use the difference approximation for the second derivative in Eq. (A.2) 
arriving at a sparse system of linear algebraic equations: 

A*P + B*EIRS = T (A.4) 

where P = [PI,...,PN], A is an N by N matrix, B and Y are iV-dimensional 
columns; only non-zero elements of A, B, and C are listed below for the case of 
uniform grid, X). — Xk-i = A: 

Ai,i = pi?*) - 2/A2 , Ai.i-1 = Aiti+1 = 1/A2, Ti = 7 (x i ) , i = 2 , . . . , AT - 1; 

•^l.i = /?(xi), AN,N = (3(xN), Tx = -a(a;i)J(a;i), TN = -a(xN)5(xN); 

Bi = -5(xi)\ i = l,...,N. 

Since either EIRS or the base price is known, system (A.4) has exactly N un­
knowns. The algorithm can be formulated as follows. 
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Step 1. Select the iV-point z-factor grid, build N scenarios and generate N 
cashflows. 

Step 2. Take an initial guess about s(x), i.e., assume some known s(x\),..., 
S(XN) (if there exists no specific preference, use the suggestion above). 

Step 3. Compute the required coefficients at the grid points, a(xi), b(xi), /3(xi), 
S(xi), and j(xi),i = 1,...,N. Then build matrix A and vectors B and Y 
for linear system (A.4). 

Step 4- Solve linear system (A.4) for all prices and EIRS (if unknown) using 
factorization technique.1 Compute static spreads s(xi),..., S(XN) again. 

Step 5. If the norm \\s(x) — s(x)\\ exceeds tolerance, denote s(x) = s(x) and 
GOTO Step 3. Otherwise, the solution is found. 

This procedure converges surely and quickly for all loans and MBS' the author 
analyzed. 

Appendix B. Mathematics of the 2-Factor Gaussian Term Structure 

The author has derived all statistics for linear system (6.1), along with the 
arbitrage-free choice of 6(t) function: 

m__m+^+i^a+j_, | / ( t ) + s o +1«} m 

where dy(t) = -r(t)dt and L{t) = -x i (0 ) ( l - e - a i t ) / a i - z2(0)(l - e-°2*)/a2. 
Note that the first two statistical moments, including the variance, can be explicitly 
derived for y(t), see [6,9]. 

The short rate's mean path will be defined by the following formula: 

E[r(t)} = f{t) + \ £ 4 ( 1 - e-^f + p ^ ( l - e~^)(l - c - » * ) . (B.2) 
z •—• a_- aia,2 

i = i * 

Any T-maturity long rate is a linear function of the factors: 

rT(t) = B1(T)x1(t) + B2(T)x2(t) - A{t, T), (B.3) 

where Bi(T) = (1 - e-° i T ) /a iT, i = 1,2; 

A(t,T) = Bi(T)/ ( t ) - fT{t) - x2(0)e^t[B1(T) - B2(T)} 

2 2 

+ J2 ^ 2 iBi(T)(1 ~ e~ait)2 ~ 25<(T)(1 - e~ait) + Bi{2T)(l - e~2ait)} 

i = l * 

+ / 9 ^ l Z 2 { _ 5 l ( T ) ( 1 _ e-ait^e-a2t _ B2(T)(1 ~ e~a2t) 

a\a2 

+ 5 E ( T ) [ l - e - ( a i + a 2 ) t ] } . 
'If EIRS is given, then system (A.4) is already tri-diagonal. If the price is given, then we first 
solve (A.4) for two arbitrarily chosen, distinct values of EIRS. Using the apparent linearity we 
then recover the true solution connecting thus found two base prices with a straight line until it 
crosses the given value, P(0) . 
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The expected long rates and "forward forward" short rates are computed as 

E[rT(t)] = fT(t) + -J2 %[2Bi(T)(l - e'^) - Bi(2T)(l - e"2-'*)] 
4 = 1 l 

(J\(Jl + p^^{B1{T)(l - e-Q l t) + B2(T)(1 - e- a 2 t) 
a\a2 

- J B E (T ) [ l - e - ( ° 1 + a 2 > t ]} 

1 2 ? 
£[/(*, T)] = f(t + T) + ^J2^1 i^-aiT(l - e~ait) - e'2aiT(l - e"2"'*)] 

(B.4) 

2 " a : 

+ P- ( l - e - a i t ) + e - a 2 j ( l - a 2 t \ 

a\a2 

_ e - ( a i + ° 2 ) T r j _ e - ( a i + a 2 ) t i i (B.5) 

where BS(T) = [1 - e - ( a i + 0 2 ) T ] / ( a i + a2)T. 
Once again, the mean paths always evolve above the corresponding forward 

curves. Since function A(t, T) is deterministic, the first two terms in the right-hand 
side of formula (B.3) defines the volatility term structure: 

a2 = a\ + o\ + 2p<Ti<j2 

a2 = B2(T)a2 + B2(T)<r2 + 2B1(T)B2(T)pa1a2 

Cov[r,rT] = £ i ( 2 > 2 + B2(T)a2 + [Bi(T) + B2(T)]pa1(T2 . 

(B.6) 

The underlying 2-factor model (6.1) is transformed to its "(r — v)-form" as 
follows: 

dr(t) = ai9(t) + 1_ r(t) - 1 _ v(t) 

ai — a2 dv(t) = [ai0(t) + ~-fzfPr{t) + ^r^v(t) 

dt + adzr 

dt + <Jvdzv 

(B.7) 

where the short rate volatility, a, is defined in formula (B.6) above, a2 = a2+(32cr2 + 
2p/3ai(T2, and two Brownian motion increments, dzr and dzv are uncorrected, as 
are the factors r and v at t = 0 (i.e., corr[r(i), v(t)] -> 0 as t -> 0). 

Factor v(t) determines the term structure move net of that propagated by the 
short rate shock; any long rate is linear in factors: 

rr{t) = B2(T) VBl{T)r{t) + Bl{T) B(T)v{t) _ _ 

1- /3 1- /3 
(B.8) 

The "shocked" trajectories for the factors and the long rates will be counted off 
their mean paths as follows: 
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Ar(t) = [(A«0 - / 3 A r 0 ) e - a i t + (Ar 0 - AvQ)e-a*]/{l - P) 

Av{t) = [(Av0 - / ? A r 0 ) e - a i t + /3(Ar0 - Av0)e-a2t]/(l - P) (B.9) 

A r T ( t ) = {[B2(T) - pBi(T)]*r{t) + [ £ i (T ) - B2(T)}Av{t)} / (1 - (3). 

Note tha t the average pa th for v(t) is not essential for constructing the grid. 
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We use simulation to develop a Markov chain approximation for the value of caplets and 
Bermudan interest rate derivatives in the Market Model developed by Brace, Gatarek, 
and Musiela (1995) and Jamshidian (1996a, b). One and two factor versions of the Mar­
ket Model were numerically studied. Our approach yields numerical values for caplets 
which are in close agreement with analytical solutions. We also provide numerical solu­
tions for several Bermudan swaptions. 

1. Introduction 

Term structure modeling is one of the most challenging problems in asset pric­
ing theory. The modern approach has focused on the restrictions imposed by the 
absence of arbitrage and emanates from the seminal paper of Merton (1973). Sig­
nificant contributions to the valuation and hedging of interest rate derivatives such 
as bond options were made by Black (1976), Vasicek (1977), Brennan and Schwartz 
(1982), Courtadon (1982), Ball and Torous (1983), Cox, Ingersoll, and Ross (CIR, 
1985), Ho and Lee (1986), Schaefer and Schwartz (1987), Black, Derman, and Toy 
(BDT, 1990), Black and Karasinski (BK, 1991), Heath, Jarrow, and Morton (HJM, 
1988), Jamshidian (1989), Hull and White (1990), and more recently by Brace, 
Gatarek, and Musiela (BGM, 1995), Jamshidian (1996a, b), and Flesaker and Hugh-
ston (1996). 

The papers by Black (1976), Ball and Torous (1983) and by Schaefer and 
Schwartz (1987) all mimicked the original Black-Scholes stock option theory in 
specifying the underlying bond price dynamics directly. The other papers prior to 
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Ho and Lee took off from Merton (1973) and instead specified the dynamics of the 
spot rate and possibly another factor such as the long-term rate. In these models, 
the bond price dynamics arise as a consequence of the absence of arbitrage and a 
specification of the market price of interest rate risk. While these models provide 
valuable insights into the determinants of bond prices and into the relationship 
between bond prices of different maturities, they have difficulty in matching the 
initial term structure exactly. An "inversion of the term structure" is required to 
eliminate the market prices of risk from interest rate derivative values. 

Ho and Lee (1986) pioneered a new approach to term structure modeling. They 
took the initial discount curve as given and modelled the arbitrage-free movement 
of the entire discount curve in a binomial setting. Inspired by the work of Ho and 
Lee (1986) and the martingale methods of Harrison and Pliska (1981), Heath, Jar-
row, and Morton (1988) developed an elegant mathematical framework for the term 
structure of interest rates. The HJM approach takes the initial forward rate curve 
as given and develops a drift restriction for the stochastic evolution of the forward 
rate curve under the equivalent martingale measure. In common with Ho and Lee, 
this approach has the advantage of providing arbitrage-free interest rate derivative 
prices that do not explicitly depend on the "market price of risk". The HJM frame­
work is very general and most of the work before 1988 can be viewed as special cases 
of it. Research on interest rate derivatives pricing after HJM has focused on spe­
cializing the framework to tractable models so that it can be efficiently calibrated 
to market prices of observable instruments and can efficiently price other interest 
rate derivatives. 

Despite the efforts of many academics and practitioners, there is still no uni­
versal model for pricing interest rate derivatives. The challenges of interest rate 
derivative pricing are more computational than methodological. In order to obtain 
tractable sub-cases of the HJM model, the volatility structure has to be restricted. 
For realistic volatility structures, the HJM model is very expensive to calibrate. 
Furthermore, the valuation of Bermudan and American interest rate derivatives is 
computationally intensive. For such options, the computation time for even a single 
factor model is too slow to meet industry requirements. Although there are pub­
lished results on certain versions of HJM, the issues of convergence, accuracy and 
efficiency have never been precisely documented. Realizing the theoretical advan­
tages of the HJM approach, researchers have looked for an "ideal" special case of 
the general HJM model that possesses the following properties: 

a. Arbitrage-free: 

There must be no arbitrage in the price dynamics of bonds and other interest rate 
derivatives. This is the most fundamental requirement for any term structure model. 
As mentioned before, the HJM model solves the above problem and most of the 
current term structure models do enforce the no arbitrage condition in the above 
sense. 
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b. Versatility: 

A good model should be consistent with a broad range of possible term structure 
shapes, volatility profiles, and correlations among yields of different maturity. The 
empirical studies of Canabarro (1995) demonstrate the inability of certain one-factor 
models to account for observed yield correlations. In contrast, multifactor models 
such as HJM are consistent with arbitrary yield correlations. 

c. Positive Interest Rates: 

Although rare cases may require negative interest rates, it is widely accepted that 
a model that guarantees positive interest rates will be preferred over ones that do 
not, ceteris paribus. Despite the claims that the likelihood of negative interest rates 
is small by Gaussian modelers, Rogers (1995a, b) demonstrated that under certain 
circumstances, large negative interests can arise and cause non-negligible distortions 
of derivative prices. The positive term structure models in wide use are CIR, BDT, 
BK, nearly proportional HJM, BGM, and Flesaker and Hughston. 

d. Computational Efficiency: 

Whether for model calibration, deal pricing, book revaluation, dynamic hedging, or 
firmwide risk management, the pricing model will be used many times during the 
day. Consequently, it is very critical that a model be able to evaluate derivatives 
efficiently. Closed form solutions for realistic problems are highly desired, although 
extremely rare in practice. Consequently, efficient numerical schemes are necessary 
for a valuation model to make the transition from theory to practice. In particular, 
one of the most computationally demanding problems is the pricing of Bermudan 
interest rate derivatives in a non-Markovian multi-factor model. 

In general, the goal of term structure modeling is to find an "ideal" model that 
possesses the four features above. Recently, a special case of the HJM framework 
has emerged which satisfies most of the above criteria. This approach, termed 
the Market Model by its developers BGM (1995) and Jamshidian (1996a, b), is 
arbitrage-free, provides strictly positive interest rates, and generates closed form 
solutions for caps or European swaptions. Since models are usually calibrated to 
these instruments, this feature speeds up the calibration process considerably. Un­
fortunately, for Bermudan derivatives, extant applications of the Market Model are 
computationally demanding. 

In this paper, we use simulation to develop a Markov Chain Approximation 
(MCA) to value Bermudan derivatives in the Market Model. We show that this 
approach allows such derivatives to be evaluated more efficiently than existing ap­
proaches such as non-recombining trees. The structure of this paper is as follows. 
The next section reviews the Market Model, while the following section reviews 
our MCA approach. The fourth section applies MCA to the Market Model, while 
the following section presents our numerical implementation. The final section 
concludes. 
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2. The Market Model 

A significant advance in the search for an "ideal" term structure model was 
made by Brace, Gatarek, and Musiela (1995) and Jamshidian(1996a, b). Conscious 
of structures trading in the market, they developed the so-called Market Model, 
which takes forward Libor rates or swap rates as inputs and directly models their 
evolution. Although the Market Model can be viewed as a special case of the HJM 
model, it differs from traditional approaches in its use of the so-called "numeraire 
induced measure", instead of the conventional risk-neutral measure. Assuming a 
deterministic forward rate volatility, the Market Model prices cap or European 
swaptions by the standard Black formula. Besides being consistent with the industry 
standard, the assumption of deterministic volatility guarantees positive interest 
rates. 

Since we will price Bermudan derivatives using the Market Model, we now give 
a brief introduction to the model following Jamshidian's (1996a) approach. We will 
not go into technical details such as how to change measure etc. but instead refer 
the reader to Jamshidian (1996a, b) for the mathematical foundations of the Market 
Model. 

We denote the sequence of Libor payment dates by and the sequence of spot 
Libor reset dates by Tn. Assuming that the reset dates match the payment dates 
(tn = Tn), we have a tenor structure: 

0 < Ti < T2 < • • • < TN+1 = T* . 

The day count factors are defined as: 

5n = Tn+1 -Tn, (<n<N). 

For later use, we define n(t) as one plus the number of payments as of date t: 

n(t) = {m : Tm+1 <t<Tm}. 

Let Bn(t) be the price at of a zero-coupon bond maturing at Tn for n > 1 and 
0 <t < Tn. Let Ln(t) be the forward Libor rate for accrual period [Tn,T„+i] and 
let SntN(t) the forward swap rate for a swap starting at Tn and maturing at T/v+i-
Then we have: 

Bn+1(t)=Bn{t)(t) n 1+s.Li{ty 



Sn,N(t) = 
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Bn(t) - BN+1(t) 

Bn,N(t) 

N 

(*) = ^2 SiBi+1(t), (t < Tn+i). 

The Market Model can be generically represented by: 

L 

dKn(t) = Dnum(t, Kn(t))dt + £ Vt(t, Kn(t))dzl
num(t). 

Here, Kn(t) can be either the Libor rate Ln{t) or the swap rate Sn,w, Dnum(t, Kn(t)) 
is the drift term, Vl(t,Kn(t)) is the absolute volatility, and z^um is the Brownian 
motion associated with the measure induced by the numeraire Bnum(t). By spec­
ifying the rate Kn(t) and the numeraire Bnum(t), we can get the following three 
versions of the Market Model: 

(1) Libor market model in spot Libor measure: 

Introducing a "rolling zero-coupon bond" 

B (t) " O - 1 "W -I 
B® = W n (^SMTn)) = Bn(t){t)UWrT) 

and taking Kn(t) = Ln(t) and Bnum(t) = B(t), we have the following general 
equations governing the stochastic evolution of the forward Libor rate: 

dLn(t)= £ Sff]fWdt + f3n(t)dzB(t). 

The value of any Libor rate derivative satisfies: 

•C{T) 
C{t) = B{t)El

t 
[B{T)\ 

(t<T). 

Here, EB is the expectation under the measure PB induced by B(t) (the spot Libor 
measure), and zs(t) is the associated Brownian motion (the spot Libor Brownian 
motion). 

IfA„(t) = | ^ ̂  is a bounded deterministic function, then the general equation 
reduces to the following "Libor market model in spot Libor measure": 

dLn{t) ^ 5Mt)K{t)U{t) 

T3Q = 2i 1 + SiLi(t) * + *»(*)**(*)• 

There exists a unique positive solution for Ln(t) and caplets are priced by the Black 
formula. 
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(2) Libor market model in terminal measure: 

Taking Kn(t) = Ln(t) and Bnum(t) = Bn(t), we have: 

dLn(t) = (3n(t)dzn+1(t) (t < Tn) 

and 

C(t) = Bn(t)E? 

Fixing z*(t) = z^+i{t), we have 

C(T) 
Bn{T) 

(t<T<Tn). 

N SipiWfrity 

i=n+l 

and 

dLn{t)= £ «™*Wdt + fln{t)dz.{t) 

C{T) 
C{t)=BS)E*t 

B*(T) 
(t < T < T»). 

Under the lognormal volatility assumption, we have 

dLn(t) 

Ln(t) 

N 

= -£ 
i=n+l 

1 + 6iLi(t) 
dt + \n(t)dz*(t). 

This is the Libor market model in terminal measure which BMG (1995) developed. 
There exists a unique positive solution and caplets are priced by the Black formula. 

(3) Swap market model: 

Taking Kn(t) = 5n>jv(*) and Bnum(t) = 5n,jv(*), we have: 

dSn,N(t) = <t>n{t)dzn,N{t) (t<Tn) and 

»,JV r c(T) C{t) = Bn,N(t)E'i 
Bn,N(T) 

ion, we ] 

= 6n(t)dzn,N(t) (t<Tn). 

(t<T<Tn). 

Under the lognormal volatility assumption, we have the following swap market 
model: 

dSniN(t) 
Sn,N(t) 

There exists a unique positive solution and now European swaptions are priced by 
the Black formula. 

As with the general HJM model, the numeraire (the money market account in 
HJM) plays a very important role. Jamshidian (1996b) demonstrates that under 
appropriate measurability assumptions, payoffs which are a function of the path 
of Libor rates or swap rates can be attained by a self-financing trading strategy 
involving only the finite number of zero-coupon bonds that define the rates, even 
when the market is incomplete. This means: 

C(t) = E?»m ( S Nu(T)Bi(T) Bnum{T) j Bnum(t). 
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Here Bnxim(t) is the numeraire, which can be either the spot Libor numeraire B(t) 
or any of the zero-coupon bonds Bi(t), or the forward swap rate numeraire Bn^(t). 

In the special case of the pure discount bond, we get: 

Bi{T) = ^ u m ( l / 5 n u m ( T i ) ) 5 n u m ( T ) . 

Thus the numeraire value is the only state variable that appears explicitly in 
the above formula, if one knows the dynamics of the numeraire Bnum(T) in the 
appropriate measure, then the value of the derivative, C(t), is determined. It is 
important to note that the dynamics of the numeraire Bnum(T) can depend on sev­
eral state variables. This dependency shows up implicitly through the transitional 
probability of the numeraire processes. In the Market Model, one needs to know 
the dynamics of the numeraire only at reset dates. This is fortunate because in the 
Market Model, the dynamics of the numeraire are not known inbetween reset dates. 

The above property of the numeraire demonstrates a very general principle: the 
dynamics of the numeraire in the appropriate measure are all we need to price 
interest rate derivatives whose payoff can be attained by a self-financing trading 
strategy in the appropriate bonds. The focus on the risk-neutral dynamics of the 
spot rate when the money market account is the numeraire can be attributed to the 
above principle. We will see that this principle is the key to pricing Libor derivatives 
efficiently. 

As mentioned previously, the Market Model is efficient in pricing caps or swap-
tions. There also exist other closed form solutions for some simple derivatives. 
However, for Bermudan derivatives, the market models face the same difficulties 
as the general HJM model. Although Bermudan derivatives can be evaluated by 
a non-recombining tree, the computational inefficiency of the method makes it al­
most useless in practice. For this reason, the next section discusses Markov Chain 
Approximation which will be used to efficiently price Bermudan derivatives. 

3. Markov Chain Approximation (MCA) 

MCA is a method for approximating a continuous time stochastic process. 
A graphical representation of the MCA used in this paper is given in Fig. 1. 
MCA includes, recombining (binomial, trinomial, and multinomial) lattices, non-
recombining (binomial, trinomial, and multinomial) trees and the finite difference 
(explicit and implicit) schemes, spectral methods, and finite elements as special 
cases. Derivatives are valued in a MCA by the usual backward induction method. 

A MCA can be fully described by the node values of the underlying and the 
transition probability matrix. For t G {0,£i,i2, • • • ,tn-i,tn = T}, we represent the 
values of the underlying variable by 

ri(*) (*) (o r m o r e briefly rj(i)) 
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Fig. 1. A Markov Chain Approximation (MCA). 

and the transition probability matrix by 

i(t+i) 

Pi(t),j(t+i)(t) (or more briefly Pi,j(t)) with ^ Phji1) = 1 > 
j=o 

where i(t) = 0 , 1 , . . . , I(t), j{t + 1) = 0 , 1 , . . . , I{t + 1), I(t) > 0, 

Ti(t) = (r\{t) eR), I = 0,1,...,L(i,t), L(i,t) < 0 and&&) > 0 . 

In its most general form, a MCA with n steps has S = 1 Ei=o ^(Mit) + 
2fc=o(-^(k) + 1) * (I(k + 1)) degrees of freedom and the degrees of freedom go to 
infinity as n goes to infinity. In practice, we usually set I(t) and L(i, t) to constant 
or simple linear functions. 

The conditional expectation of a function, f(t,r), in terms of a MCA is repre­
sented by: 

I(t+At) 

E{f{t + At , r ( i + At))|r = n(t)) = ^ f(t + At,v3)Pitj{t) 
3=0 

Traditional numerical methods such as non-recombining trees have the problem of 
exponential growth in the number of nodes. The advantage of our MCA method 
lies in the fact that by having a transition matrix which is not sparse, we can control 
the growth of the number of nodes. The ability to control the growth of the number 
of nodes results in significant savings in computation time. While MCA also has a 
cost in terms of the extra computational effort required to get the transition matrix, 
this cost is very small compared to the resulting reduction in computational effort. 

4. Approximating Market Model Values by MCA 

In this section, we show how Monte Carlo simulation can be used to generate 
a MCA of derivative security values in the Market Model. Our focus will be on 
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Bermudan derivatives since these are not efficiently valued by other techniques. 
The main difficulty in implementing the Market Model for Bermudan derivatives is 
that the model has a very high dimension, which is equal to the number of rates 
being modeled. In order to compute Bermudan prices efficiently, we collapse the 
dimensionality of the state space down to a single variable plus time. The single 
variable chosen is the numeraire, since as mentioned in Sec. 2, one only needs 
the dynamics of this variable in the appropriate measure to price any interest rate 
derivative and the numeraire is the only state variable that shows up explicitly in the 
derivative pricing formula. In collapsing the dimensionality, the joint distribution 
of the rates and the numeraire is replaced with just the marginal distribution of just 
the numeraire. This marginal distribution is obtained by Monte Carlo simulation 
as detailed below. Since the exercise strategy is only allowed to depend on the 
level of the numeraire, our method is an approximation for the true value of the 
Bermudan derivative. Thus, our approach is similar in spirit to the approach taken 
by Barraquand and Martineau (1995) for the valuation of multivariate American 
equity derivatives. 

We first approximate the (forward or swap) rate diffusions using an explicit 
Euler scheme: 

L 

AKn(t) = Dnum(t, Kn(t))At + 2 Vi(t, Kn(t))A4um(t) 
i=l 

with 

AKn(t) = Kn(t + At) - Kn(t), A4um(t) = 4»m(* + At) - z*um(t) 

and 

V t € { 0 , A t , . . . , T } . 

Next, we discretize the numeraire space. More specifically, Vt € {0 , t i , . . . , T/v+i} 
choose a finite partition, R(t) = (Ri(t),... ,Rk(t)(t)), of the numeraire state space 
R, i.e. a set of k(t) subsets of R satisfying: 

( J = R and V (t, j) e [1, k{t)}2, i ^ j , Ri(t) n Rj(t) = 0 . 
ie[i,fc(t)] 

The time grid for the MCA differs from that for the simulated rate equations since 
for Bermudan derivatives, we only need a MCA at the reset dates. We assume that 
the partition R(0) has only two cells: 

-Ri(O) = {B„um(0)}, and i?2(0) = i?\{Bnum(0)} . 

Once the sample paths fcx(t),..., kM(t) are computed, ai(t), the number of samples 
entering Ri(t), bij(t), the number of samples moving from Ri(t) to Rj(t + At), 
and B^^(t), the sums of sample numeraire values within the cell Ri(t) are easily 
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computed. The entries in the transition probability matrix can be calculated as: 

p. .(t) -
 bi>j® 

a,i{t) 

the average value of the numeraire within Ri(t), -B*um(i), is 

-EnumW a,i(t) 

With the calculated values of Pij(t) and Bn u m(i) , a well-defined MCA is generated. 
The conditional expectation in terms of a MCA is represented by: 

I(t+At) 

E™m(X(t + At,Baum(t-At))\Bnum = Binm(t))= £ X(t + At,Biam)PiJ(t). 
j=0 

Contingent claims can be evaluated from the following formula: 

'C{t + At,Bnum(t + At)) 
C(t,B*num(t)) = Bawa(tyE" 

K Bnum(t + At) 

for European securities, and 

C(t,B*num(t)) = max(C(t)ex,Bnum(t)* 

'C(t + At,Bnum(t + At)) 

Bnum = Blnm(t) 

x E" 
Bnum(t + At) 

•Dnum — Bnum(t) 

for American securities, where C(t)ex is the exercise value of the American security. 
We use one of two approaches for valuing a derivative depending on the nature 

of the claim. If the derivative security's payoff is insensitive to the variation in term 
structures, then we obtain the average yield curve conditional on the numeraire 
being in a specified cell by averaging over all term structures that happen to have 
the numeraire value in the given cell. The yield curve corresponding to -Bnum (0 c a n 

be obtained by: 

fn(+\ — Jsuml^i -"num W J 
h {) ~ am 

where /s™ m(t; Sn u m(i)) is the sum of all term structures with the numeraire in cell 

•SnumW-
The above method for constructing the yield curve is efficient in obtaining the 

average yield curve and in pricing several derivatives using one simulation. However, 
for derivatives that are sensitive to variation in the term structure, the above method 
can cause errors. For one-factor models and for derivatives on rates which are 
highly correlated with the numeraire, our numerical results show that averaging 
over term structures is very accurate. However, for claims whose payoff is tied 
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to a specified rate quite different from those which drive the numeraire, we use a 
different approach. Specifically, for each cell describing a small range in value of the 
numeraire, we average the payoff of the security over all the term structures whose 
corresponding numeraire was in the specified cell. We benchmarked our numerical 
results by comparing them with the traditional Monte Carlo method for European 
derivatives which are sensitive to variation in the shape of the term structure, e.g., 
swaptions and caps in a two-factor model. 

5. Numerical Results 

We applied our MCA method to price caps and swaptions in both a one-factor 
and a two-factor settings. The payer swaptions we value are (1) European swaptions, 
(2) Bermudan swaptions, (3) Fixed tail Bermudan swaptions, (4) Constant maturity 
Bermudan swaptions, and (5) Bermudan forward swaptions. Since the terminology 
in (2) to (5) may not be standard, we now give a precise definition of each swaption. 

Bermudan swaptions: 

A Bermudan swaption is an option on a swap that can be exercised on every reset 
date of the underlying swap up to and including the option maturity. When exer­
cised, the swap one gets is one that starts at the exercise date and matures at a 
fixed date which is independent of the time of exercise. A Bermudan swaption is 
equivalent to a Bermudan option on a coupon bond with strike that is the par value 
of the bond. As an option on a coupon bond, a Bermudan swaption has positive 
probability of early exercise. 

Fixed tail Bermudan swaptions: 

A fixed tail Bermudan swaption is a Bermudan swaption with a maturity date equal 
to the last reset date of the underlying swap and which has an initial lockout period 
during which exercise is prohibited. A fixed tail Bermudan swaption is equivalent 
to a Bermudan option on a coupon bond with strike that is the par value of the 
bond. As an option on a coupon bond, a Bermudan fixed tail swaption has positive 
probability of early exercise. 

Constant maturity Bermudan swaptions: 

A constant maturity swaption is an option on a swap that can be exercised on every 
reset date from now up to and including the swaption maturity. When exercised, the 
swap one gets is one that starts at the exercise date and has a time to maturity which 
is independent of the time of exercise. A constant maturity Bermudan swaption is 
equivalent to a Bermudan option on a constant maturity coupon bond with a strike 
that is the par value of the bond. Since the underlying bond pays coupons, there 
is positive probability of early exercise. 

Bermudan forward swaptions: 

A Bermudan forward swaption is an option on a swap that can be exercised on every 
reset date up to and including the swaption maturity. When exercised, the swap 
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which one gets is a forward swap that starts at the swaption maturity date and ends 
at a specified period of time later. A Bermudan forward swaption is equivalent to an 
option to exchange a forward floating rate bond for a forward fixed rate bond. Since 
the underlying pays no cash flows between initiation and the swaption maturity, a 
Bermudan forward swaption should not be exercised before maturity. 

The confidence intervals of our results are calculated using the central limit 
theorem. Based on the theorem, the error must be less than four times the observed 
standard deviation in order to obtain a 99.95% confidence interval. The observed 
standard deviations are obtained by doing 100 runs of the option price calculations 
with each run having a sample size of 100,000. 

Our numerical results for caps are compared with closed-form solutions. For 
European swaptions, our results are very close to the Black formula and to BMG's 
approximation formula in the one-factor case. For the two-factor model, we can only 
compare our European swaption values to those obtained by traditional Monte Carlo 
simulation. For Bermudan swaptions, even traditional Monte Carlo simulation can­
not be used to check the validity of our calculations. However, we compared our 
results with traditional Monte Carlo simulation of European swaption valuations 
and found that Bermudan swaption valuations are never smaller than European 
values as expected. 

The first test is for a one-factor model. The initial term structure is flat at 10%. 
The volatility structure is also flat at Aj(f) = 20%. This is the same one-factor 
model used by BMG (1995) to test their approximation formula. The numerical 
results for caps are shown in Table 1. As we can see, our MCA results agree with 
the closed form solution to 4-5 digits depending on the cap maturity. This close 
agreement with the closed form solution is a strong indication that the MCA can 
approximate the Market Model accurately. 

Table 2 shows our results for European swaptions. As shown in BMG (1995), 
the Black formula is a very accurate approximation for European swaptions in this 
one-factor model. Our MCA results are in good agreement with both the Black 
formula and the BMG (1995) approximation formula. 

The results for Bermudan forward swaptions are given in Table 3. As we stated 
in the description of Bermudan forward swaptions, the value of a Bermudan forward 
swaption should be the same as that of the corresponding European swaption. Our 
numerical results confirmed this prediction. The differences between values of the 
European swaptions and Bermudan forward swaptions are within the Monte Carlo 
simulation errors. 

The Bermudan constant maturity swaption calculations are listed in Table 4. 
As we expected, constant maturity Bermudan swaptions have larger value than 
European swaptions. The early exercise premium for constant maturity Bermudan 
swaptions increases with the swaption maturity, but decreases with the strike rate. 
For the values tested, the maturity of the underlying swap does not seem to have a 
significant effect on the exercise premium. 
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Table 1. Cap price. 

Option maturity 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Cap 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

Price (one-factor) 

MC 

value 

0.004684 

0.001762 

0.000473 

0.004625 

0.002253 

0.000967 

0.004506 

0.002497 

0.001297 

0.004342 

0.002609 

0.001512 

0.004149 

0.002640 

0.001345 

0.003941 

0.002618 

0.001721 

0.003726 

0.002562 

0.001753 

0.003510 

0.002482 

0.001755 

0.003297 

0.002388 

0.001734 

price 

4* st. dv. 

0.000002 

0.000008 

0.000004 

0.000004 

0.000009 

0.000004 

0.000006 

0.000011 

0.000005 

0.000009 

0.000012 

0.000007 

0.000010 

0.000014 

0.000009 

0.000012 

0.000015 

0.000011 

0.000011 

0.000015 

0.000012 

0.000010 

0.000014 

0.000015 

0.000012 

0.000015 

0.000014 

Black price 

0.004681 

0.001760 

0.000474 

0.004621 

0.002251 

0.000967 

0.004501 

0.002494 

0.001296 

0.004336 

0.002604 

0.001510 

0.004142 

0.002634 

0.001641 

0.003930 

0.002609 

0.001714 

0.003711 

0.002549 

0.001743 

0.003490 

0.002465 

0.001740 

0.003271 

0.002365 

0.001714 

The Bermudan swaption calculations are given in Table 5. As we expected, 
Bermudan swaptions have larger value than European swaptions. The early exer­
cise premium for Bermudan swaptions increases with the swaption maturity and 
decreases with the strike rate and with the maturity of the underlying swap. The 
early exercise premium is about 55% of the corresponding European swaption for 
a three-year at-the-money Bermudan swaption on a three-year swap. For the val­
ues tested, we found that a Bermudan swaption always has greater value than a 
constant maturity Bermudan swaption with the same swaption maturity date. 

Table 6 shows our results for Bermudan fixed tail swaptions. As expected, 
Bermudan fixed tail swaptions have greater value than European swaptions ma­
turing at the end of the lockout period. We term this difference the later exercise 
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Table 2. European swaption price. 

Option maturity 

x Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

European Swaption Price (one-factor) 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

MC 

value 

0.018391 

0.003660 

0.000131 

0.034426 

0.012946 

0.003477 

0.074844 

0.028138 

0.007553 

0.120499 

0.045258 

0.012120 

0.047377 

0.026246 

0.013629 

price 

4* st. dv. 

0.000004 

0.000017 

0.000009 

0.000018 

0.000062 

0.000029 

0.000043 

0.000140 

0.000058 

0.000078 

0.000227 

0.000085 

0.000073 

0.000130 

0.000075 

Black price 

0.018388 

0.003659 

0.000135 

0.034405 

0.012936 

0.003487 

0.074802 

0.028124 

0.007582 

0.120452 

0.045288 

0.012208 

0.047329 

0.026220 

0.013627 

BMG price 

0.018388 

0.003659 

0.000135 

0.034405 

0.012935 

0.003487 

0.074797 

0.028114 

0.007573 

0.120419 

0.045220 

0.012160 

0.047321 

0.026209 

0.013617 

Table 3. Bermudan forward swaption price. 

Bermudan Forward Swaption Price (one-factor) 

Option maturity Strike Bermudan forward price 

x Swap length value normalized value 4* st. dv. 

European price 

value 4* st. dv. 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

0.018391 

0.003660 

0.000131 

0.034631 

0.013033 

0.003509 

0.075274 

0.028319 

0.007619 

0.121158 

0.045536 

0.012218 

0.047786 

0.026513 

0.013797 

1.000000 

1.000000 

1.000000 

1.005963 

1.006699 

1.009205 

1.005742 

1.006439 

1.008696 

1.005474 

1.006142 

1.008107 

1.008631 

1.010182 

1.012311 

0.000004 

0.000017 

0.000009 

0.000080 

0.000085 

0.000035 

0.000172 

0.000183 

0.000074 

0.000276 

0.000283 

0.000113 

0.000098 

0.000166 

0.000117 

0.018391 

0.003660 

0.000131 

0.034426 

0.012946 

0.003477 

0.074844 

0.028138 

0.007553 

0.120499 

0.045258 

0.012120 

0.047377 

0.026246 

0.013629 

0.000004 

0.000017 

0.000009 

0.000018 

0.000062 

0.000029 

0.000043 

0.000140 

0.000058 

0.000078 

0.000227 

0.000085 

0.000073 

0.000130 

0.000075 
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Table 4. Constant maturity Bermudan swaption. 

Bermudan Constant Maturity Swaption Price (one-factor) 

Option maturity Strike Bermudan constant maturity price European price 

x Swap length value normalized value 4* st. dv. value 4* st. dv. 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

0.018810 

0.003660 

0.000131 

0.036330 

0.013291 

0.003542 

0.079003 

0.028893 

0.007691 

0.127244 

0.046491 

0.012337 

0.056640 

0.029765 

0.015022 

1.022767 

1.000000 

1.000000 

1.055312 

1.026647 

1.018631 

1.055572 

1.026856 

1.018296 

1.055982 

1.027234 

1.017953 

1.195515 

1.134058 

1.102187 

0.000000 

0.000017 

0.000009 

0.000093 

0.000094 

0.000039 

0.000198 

0.000198 

0.000084 

0.000306 

0.000301 

0.000132 

0.000137 

0.000172 

0.000164 

0.018391 

0.003660 

0.000131 

0.034426 

0.012946 

0.003477 

0.074844 

0.028138 

0.007553 

0.120499 

0.045258 

0.012120 

0.047377 

0.026246 

0.013629 

0.000004 

0.000017 

0.000009 

0.000018 

0.000062 

0.000029 

0.000043 

0.000140 

0.000058 

0.000078 

0.000227 

0.000085 

0.000073 

0.000130 

0.000075 

Table 5. Bermudan swaption. 

Bermudan Swaption Price (one-factor) 

Option maturity Strike Bermudan price European price 

x Swap length value normalized value 4* st. dv. value 4* st. dv. 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

0.023229 

0.003660 

0.000131 

0.051289 

0.015257 

0.003753 

0.089425 

0.030104 

0.007812 

0.132519 

0.047133 

0.012399 

0.089425 

0.040717 

0.018742 

1.263061 

1.000000 

1.000000 

1.489841 

1.178543 

1.079286 

1.194818 

1.069877 

1.034346 

1.099758 

1.041425 

1.023020 

1.887509 

1.551336 

1.375147 

0.000000 

0.000017 

0.000009 

0.000000 

0.000088 

0.000049 

0.000000 

0.000189 

0.000095 

0.000000 

0.000297 

0.000139 

0.000000 

0.000186 

0.000174 

0.018391 

0.003660 

0.000131 

0.034426 

0.012946 

0.003477 

0.074844 

0.028138 

0.007553 

0.120499 

0.045258 

0.012120 

0.047377 

0.026246 

0.013629 

0.000004 

0.000017 

0.000009 

0.000018 

0.000062 

0.000029 

0.000043 

0.000140 

0.000058 

0.000078 

0.000227 

0.000085 

0.000073 

0.000130 

0.000075 

.25 X 1 

1 x 2 

1 x 5 

1 x 10 
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Table 6. Bermudan fixed tail swaption. 

Lockout Period 

x Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

Fixed Tail Bermudan Swaption Price 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

i (one-factor) 

Bermudan fixed tail price 

value 

0.018471 

0.004918 

0.000874 

0.035589 

0.015750 

0.006181 

0.081121 

0.041987 

0.021581 

0.139524 

0.083011 

0.051185 

0.049547 

0.029514 

0.017110 

normalized value 

1.004364 

1.343553 

6.657649 

1.033785 

1.216607 

1.777506 

1.083870 

1.492176 

2.857282 

1.157886 

1.834168 

4.223304 

1.045802 

1.124512 

1.255417 

4* st. dv. 

0.000008 

0.000019 

0.000012 

0.000043 

0.000055 

0.000062 

0.000185 

0.000170 

0.000187 

0.000325 

0.000285 

0.000358 

0.000106 

0.000100 

0.000106 

European price 

value 

0.018391 

0.003660 

0.000131 

0.034426 

0.012946 

0.003477 

0.074844 

0.028138 

0.007553 

0.120499 

0.045258 

0.012120 

0.047377 

0.026246 

0.013629 

4* st. dv. 

0.000004 

0.000017 

0.000009 

0.000018 

0.000062 

0.000029 

0.000043 

0.000140 

0.000058 

0.000078 

0.000227 

0.000085 

0.000073 

0.000130 

0.000075 

premium of a Bermudan fixed tail swaption. This premium increases with the strike 
rate and the underlying swap maturity. This is in contrast to a Bermudan swaption 
whose early exercise premium decreases with the strike rate and swap maturity. The 
later exercise premium for a one-year Bermudan fixed tail swaption on a ten-year 
swap struck at 12% is about 325% of the corresponding European swaption value. 

As we have seen, our numerical results for cap and European swaptions are very 
accurate. For Bermudan type swaptions, we have no data to compare with, but 
our calculations are consistent with known bounds. These results indicate that our 
MCA is a viable technique in the one-factor Market Model. 

Having successfully simulated the one-factor case, we now extend our MCA 
method to the two-factor Market Model. The initial term structure is still flat at 
10%. The two-factor volatility structure we tested is defined by: 

Ai(t) = .15 

A2(t) = .15 
.3 

7ib~ VT-t, T>t 

The first factor is a constant shock for all maturities, while the second factor adds 
a twist to the yield term structure. 

The numerical results for caps are shown in Table 7. As in the one-factor case, 
our MCA results agree with the Black formula to 4-5 digits. This close agreement 
with the closed-form solution in the two-factor case is another indication that the 
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Table 7. Cap price (two-factor case). 

Cap Price (two-factor) 

Option maturity Strike MC price Black price 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

value 

0.004588 

0.001529 

0.000311 

0.004385 

0.001853 

0.000622 

0.004168 

0.002000 

0.000836 

0.003950 

0.002069 

0.000990 

0.003736 

0.002096 

0.001107 

0.003531 

0.002096 

0.001195 

0.003336 

0.002078 

0.001261 

0.003150 

0.002047 

0.001309 

0.002974 

0.002005 

0.001341 

4* st. dv. 

0.000002 

0.000006 

0.000003 

0.000003 

0.000008 

0.000004 

0.000003 

0.000010 

0.000004 

0.000005 

0.000009 

0.000005 

0.000005 

0.000010 

0.000005 

0.000007 

0.000010 

0.000007 

0.000007 

0.000011 

0.000007 

0.000008 

0.000012 

0.000008 

0.000009 

0.000013 

0.000010 

0.004584 

0.001538 

0.000323 

0.004379 

0.001857 

0.000631 

0.004160 

0.002000 

0.000841 

0.003940 

0.002066 

0.000993 

0.003727 

0.002092 

0.001107 

0.003524 

0.002092 

0.001194 

0.003331 

0.002075 

0.001260 

0.003149 

0.002046 

0.001309 

0.002977 

0.002007 

0.001343 

MCA can approximate the Market Model accurately. The values of caps in the 
two-factor case are all smaller than that of the one-factor case. This indicates that 
the overall volatility of the two-factor case is smaller. 

Table 8 shows our results for European swaptions. Unlike the one-factor case, 
the Black formula is not a good approximation for European swaptions. This is 
consistent with Jamshidian's conclusion that we cannot generally have a lognormal 
Libor rate and a lognormal swap rate at the same time. The Black formula can be 
made more accurate by adjusting the volatility accordingly as shown by Andersen 
and Andreasen (1998). Our numerical results for European swaptions show that 
the Black formula overprices European swaptions. As a consistency check, we found 
that our MCA results for European swaptions are the same as the traditional Monte 
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Table 8. European swaption price (two-factor case). 

European Swaption Price (two-factor) 

Option maturity Strike MC price 

x Swap length value 4* st. dv. 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

0.018370 

0.003157 

0.000046 

0.033313 

0.010146 

0.001652 

0.072140 

0.021185 

0.003121 

0.116589 

0.035351 

0.005584 

0.043184 

0.020065 

0.007957 

0.000002 

0.000014 

0.000005 

0.000016 

0.000049 

0.000025 

0.000040 

0.000111 

0.000053 

0.000066 

0.000179 

0.000070 

0.000030 

0.000097 

0.000033 

Black price 

0.018377 

0.003502 

0.000105 

0.033688 

0.011305 

0.002376 

0.073245 

0.024579 

0.005166 

0.117944 

0.039579 

0.008319 

0.043744 

0.021029 

0.008843 

Table 9. Bermudan forward swaption price (two-factor case). 

Option maturity 

x Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

Bermudan Forward Swaption Price 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

(two-factor) 

Bermudan forward price 

value 

0.018370 

0.003157 

0.000046 

0.033510 

0.010206 

0.001665 

0.072411 

0.021249 

0.003135 

0.116909 

0.035400 

0.005598 

0.043512 

0.020245 

0.008051 

normalized value 

1.000000 

1.000000 

1.000000 

1.005908 

1.005974 

1.007784 

1.003764 

1.003004 

1.004647 

1.002739 

1.001371 

1.002565 

1.007606 

1.008935 

1.011753 

4 ' st. dv. 

0.000002 

0.000014 

0.000005 

0.000065 

0.000067 

0.000026 

0.000128 

0.000131 

0.000055 

0.000196 

0.000192 

0.000075 

0.000096 

0.000126 

0.000066 

European price 

value 

0.018370 

0.003157 

0.000046 

0.033313 

0.010146 

0.001652 

0.072140 

0.021185 

0.003121 

0.116589 

0.035351 

0.005584 

0.043184 

0.020065 

0.007957 

4* st. dv. 

0.000002 

0.000014 

0.000005 

0.000016 

0.000049 

0.000025 

0.000040 

0.000111 

0.000053 

0.000066 

0.000179 

0.000070 

0.000030 

0.000097 

0.000033 
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Table 10. Bermudan constant maturity swaption (two-factor case). 

Option maturity 

X Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

Bermudan Constant Maturity Swaption 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

Price (two-factor) 

Bermudan constant maturity price 

value 

0.018810 

0.003157 

0.000046 

0.036027 

0.010792 

0.001719 

0.077946 

0.021865 

0.003169 

0.125514 

0.035715 

0.005615 

0.054716 

0.024056 

0.009135 

normalized value 

1.023971 

1.000000 

1.000000 

1.081476 

1.063704 

1.040550 

1.080483 

1.032077 

1.015335 

1.076546 

1.010297 

1.005531 

1.267052 

1.198881 

1.147994 

4* st. dv. 

0.000000 

0.000014 

0.000005 

0.000076 

0.000070 

0.000032 

0.000000 

0.000150 

0.000058 

0.000000 

0.000223 

0.000079 

0.000119 

0.000133 

0.000101 

European price 

value 

0.018370 

0.003157 

0.000046 

0.033313 

0.010146 

0.001652 

0.072140 

0.021185 

0.003121 

0.116589 

0.035351 

0.005584 

0.043184 

0.020065 

0.007957 

4* st. dv. 

0.000002 

0.000014 

0.000005 

0.000016 

0.000049 

0.000025 

0.000040 

0.000111 

0.000053 

0.000066 

0.000179 

0.000070 

0.000030 

0.000097 

0.000033 

Carlo results (not reported here). As was true for caps, European swaption values 
in the two-factor case are all smaller than in the one-factor case. 

The Bermudan forward swaption results are given in Table 9. As in the one-
factor case, the value of Bermudan forward swaptions should be the same as that of 
the European swaptions. Our numerical results confirmed this result. The differ­
ences between values of the European swaptions and Bermudan forward swaptions 
are within the Monte Carlo simulation errors. 

Constant maturity Bermudan swaption calculations are listed in Table 10. As 
expected, the values of constant maturity Bermudan swaptions are larger than 
that of European swaptions. The early exercise premium for constant maturity 
Bermudan swaptions increases with the option maturity but decreases with the 
strike rate. The early exercise premium in the two-factor case is more sensitive to 
the strike rate than in the one-factor case and is generally larger especially when 
the option maturity is longer. 

Bermudan swaption calculations are given in Table 11. As in the one-factor 
case, Bermudan swaptions have larger values than European swaptions. The early 
exercise premium for Bermudan swaptions increases with the option maturity and 
decreases with the strike rate and the swap maturity. The early exercise premium 
is about 51% of the corresponding European swaption value for a three-year at-the-
money Bermudan swaption on three-year swap. A Bermudan swaption has greater 
value than a constant maturity Bermudan swaption. Again, the early exercise 
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Table 11. Bermudan swaption (two-factor case). 

Option maturity 

x Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

Bermudan Swaption Price 

value 

0.023229 

0.003157 

0.000046 

0.051289 

0.012079 

0.001767 

0.089425 

0.022315 

0.003174 

0.132519 

0.035788 

0.005615 

0.089425 

0.030301 

0.010303 

(two-factor) 

Bermudan price 

normalized value 

1.234547 

1.000000 

1.000000 

1.539600 

1.190541 

1.069185 

1.239606 

1.053328 

1.017086 

1.136632 

1.012356 

1.005595 

2.070799 

1.510138 

1.294841 

4* st. dv. 

0.000000 

0.000014 

0.000005 

0.000000 

0.000079 

0.000036 

0.000000 

0.000154 

0.000060 

0.000000 

0.000223 

0.000079 

0.000000 

0.000171 

0.000135 

European price 

value 

0.018370 

0.003157 

0.000046 

0.033313 

0.010146 

0.001652 

0.072140 

0.021185 

0.003121 

0.116589 

0.035351 

0.005584 

0.043184 

0.020065 

0.007957 

4* st. dv. 

0.000002 

0.000014 

0.000005 

0.000016 

0.000049 

0.000025 

0.000040 

0.000111 

0.000053 

0.000066 

0.000179 

0.000070 

0.000030 

0.000097 

0.000033 

Table 12. Bermudan fixed tail swaption price (two-factor case). 

Lockout period 

x Swap length 

.25 x 1 

1 x 2 

1 x 5 

1 x 10 

3 x 3 

Fixed Tail Bermudan Swaption Price 

Strike 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

8% 

10% 

12% 

(two-factor) 

Bermudan fixed tail price 

value 

0.018416 

0.004327 

0.000550 

0.034097 

0.012695 

0.003710 

0.075004 

0.031667 

0.012792 

0.122095 

0.060220 

0.032336 

0.044723 

0.022819 

0.010765 

normalized value 

1.002517 

1.370468 

11.930164 

1.023539 

1.251323 

2.245603 

1.039703 

1.494727 

4.098874 

1.047221 

1.703479 

5.791074 

1.035652 

1.137231 

1.352899 

4* st. dv. 

0.000007 

0.000019 

0.000010 

0.000036 

0.000053 

0.000045 

0.000115 

0.000144 

0.000117 

0.000330 

0.000377 

0.000305 

0.000074 

0.000098 

0.000081 

European price 

value 

0.018370 

0.003157 

0.000046 

0.033313 

0.010146 

0.001652 

0.072140 

0.021185 

0.003121 

0.116589 

0.035351 

0.005584 

0.043184 

0.020065 

0.007957 

4* st. dv. 

0.000002 

0.000014 

0.000005 

0.000016 

0.000049 

0.000025 

0.000040 

0.000111 

0.000053 

0.000066 

0.000179 

0.000070 

0.000030 

0.000097 

0.000033 



Simulating Bermudan Interest Rate Derivatives 315 

premium in the two-factor case is more sensitive to the strike rate. For our values, 
Bermudan swaptions were all exercised at a strike rate of 8% or more in both the 
one- and two-factor cases. 

Table 12 shows the results for Bermudan fixed tail swaptions. As expected, 
Bermudan fixed tail swaptions have greater value than European swaptions ma­
turing at the lockout date. The later exercise premium of Bermudan fixed tail 
swaptions increases with the strike rate and swap maturity. This is in contrast to 
Bermudan swaptions whose early exercise premium decreases with the strike rate. 
The later exercise premium for a one-year Bermudan fixed tail swaption on a ten-
year swap struck at 12% is about 170.3% of the corresponding European swaption. 
As with other Bermudan type swaptions, Bermudan fixed tail swaptions in the two-
factor case are also more sensitive to the strike rate than in the one-factor case. 
The later exercise premium in the two-factor case can be more than twice as big as 
in the one-factor case for a strike rate of 12%. 

6. Summary 

The Market Model by BMG and Jamshidian is a widely used model in inter­
est rate derivative markets. However, its application to Bermudan derivatives has 
been problematic due to the explosive growth in computation time and memory 
of non-recombining trees. In this paper, we applied the MCA method for pricing 
Bermudan interest rate derivatives using Monte Carlo simulation. One- and two-
factor volatility structures were studied numerically. Numerical data for several 
types of Bermudan swaptions were presented as a benchmark for comparison with 
alternative implementations of the Market model. In particular, the efficacy of the 
MCA method for long maturity derivatives was demonstrated. 
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It is well-known that self-similarity is a powerful concept which reveals the fundamental 
laws of physic. This concept has important financial applications as well. It allows 
one to study the properties of derivatives from a unified prospective and significantly 
simplifies their mathematical modelling and hedging. In the present paper, I show how 
the concept of self-similarity can be used in order to find similarities between various 
types of path-dependent options and price them in the unified framework. Specifically, I 
consider lookback, passport, Asian, and imperfectly hedged European options. I present 
some new important valuation formulas and rederive a few known ones by elementary 
means. 

1. Introduction 

It is customary to begin papers on mathematical finance with a reference to 
the celebrated work of Black-Scholes (1973) and Merton (1973) on rational pricing 
of options. Even though I cannot break this rule, as a point of departure for 
the present paper I use the equally celebrated paper by Taylor (1950) in which 
he analyzes the nuclear explosion of 1945. After processing data from a series 
of the (unclassified) photographs of the expansion of a fireball Taylor concludes 
that the (highly classified) energy of the explosion is approximately 1021 erg. The 
main tool Taylor uses to arrive at his remarkable results is the concept of self-
similarity. In this and many other cases a skillful use of this concept allows one 
to reveal the fundamental properties of physical phenomena and to simplify their 
mathematical treatment. The standard source of information on self-similarities 
and their physical applications in the well-known book by Barenblatt (1996) to 
which I refer the interested reader. 

In the opinion of the present author, the concept of self-similarity is very im­
portant for the purposes of financial engineering. Merton successfully used self-
similarity (specifically, homogeneity) early on in order to price derivatives in the 
markets without risk-free instruments and for other purposes. Subsequently, this 
concept (in various disguises) has been used by many financial engineers, including 
Margrabe, Ingersol, Wilmott et a/., Rogers and Shi, and Derman. In this paper, 
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I use self-similarity in order to develop a unified description of various path-
dependent options frequently occurring in practice. The concept itself can be used 
in many other situations. It can be used in order to establish relations between 
different instruments such as put-call symmetry, and to value a variety of financial 
products stretching from outperformance options, to options on assets constrained 
to a band, to basket options. 

In order to fix the notation (and to reflect my current area of responsibility), 
below I consider options on foreign exchange within the Garman-Kohlhagen frame­
work even though my results are equally applicable for equity markets. The main 
results are as follows. (A) Self-similarities are used in order to find the relations 
between lookback, Asian, passport, and imperfectly hedged European options and 
to establish the fact that the valuation formulas for all these options are remarkably 
similar in nature. (B) It is shown that in the case when the foreign interest rate is 
small compared to the squared volatility (which is approximately the case for the 
USD/JPY and EUR/JPY currency pairs) the price of a passport option on FX can 
be found by elementary means which are much simpler than any of the methods 
used for this purpose so far (including the original method of Green's functions 
developed by the present author). Moreover, if the domestic interest rate is small 
as well, then this price is equal to one-half the price of a lookback put (this special 
relation was noted by Lipton, 1999 and, independently, by Henderson and Hobson, 
1999). (C) An elementary derivation of the valuation formula for Asian options via 
a partial differential equation (PDE) method is given (this formula was originally 
derived by Geman and Yor, 1993 by a complicated probabilistic method). (D) The 
same idea is used in order to obtain a new valuation formula for the passport option 
in the case when the foreign interest rate is non-zero. (E) Some unexpected rela­
tions between Asian and imperfectly hedged European options are described and 
the so-called stop-loss start-gain hedge is analyzed in some detail. 

The structure of the paper is as follows. In Sec. 2, I show how to use the 
concept of self-similarity in the standard Black-Scholes framework. In Sec. 3, I 
price lookback puts by using self-similarity and the Laplace transform. In Sec. 4,1 
give a PDE based derivation of the standard valuation formula for Asian calls. This 
derivation combines self-similarity, splitting, and Laplace transform. In Sec. 5, I 
present a new valuation formula for passport options. In Sec. 6,1 establish a useful 
relation between lookback puts and passport options when the foreign interest rate 
is zero. In Sec. 7, I describe relations between passport, Asian and imperfectly 
hedged European options. Finally, in Sec. 7,1 draw some conclusions. 

A short version of this paper will soon appear in The Risk Magazine (Lipton, 
1999). After this short version was submitted for publication, I became aware of an 
interesting paper by Delbaen and Yor (1999) in which the authors establish certain 
relations between Asian and passport options via probabilistic methods. In general, 
there is an interesting duality between the PDE approach which uses the concept 
of self-similarity and the probabilistic approach which uses the idea of the Levy's 
local time. 
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2. Valuation of Call Options Via Self-Similarity 

Consider call options on foreign exchange (FX). Denote the FX rate, i.e., the 
number of units of domestic currency (DC) per unit of foreign currency (FC) by S , 
the domestic and foreign interest rates by rj and ry, respectively, and the volatility 
of S by a. The European call option (EC) gives the buyer the right to exchange 
M units of foreign currency for MK units of domestic currency at maturity T. Its 
payoff at maturity is M(S — K). 

The pricing problem for this option has the standard form 

V&C) + {rd _ rf)SV(EC) + ^S2y(EC) _ rdV(EC) = 0 ^ 

V(EC)(S,T) = M(S-K)+, (1) 

plus boundary conditions at S = 0, S — oo. Without going into its detailed analysis, 
I want to show what information about the price of this option can be obtained by 
virtue of self-similarity. It is clear that the dimensional price as a function of seven-
dimensional variables 

y(EC) = V(EC){Si ^ M ) j, _ tj ^ r<j) r / ) ^ ( 2 ) 

where the dimensions of V,S,K,M,T - t,cr,rd,rf are DC, DC/FC, DC/FC, FC, 
time, 1/vtime, 1/time, 1/time, respectively. Without loss of generality one can 
assume that variables K, M, a2 have independent dimensions, and express dimen­
sions T — t,rd,rf as products of powers of the dimensions of K, M, a . 
Thus, by virtue of the well-known II-theorem (see, e.g., Barenblatt, 1996) one can 
represent the price y ( B C ) in the form 

V(EC)=MK&EC\Z,T,rd,rf), (3) 

where £ = S/K is the non-dimensional moneyness, r = o2(T — t) is the non-
dimensional time to maturity, and rd = rd/cr2, r / = rj/a2 are the non-dimensional 
interest rates. In other words, the "non-trivial" information contained in the price is 
a function of four variables. This observation allows one to reduce the computational 
effort to a very large degree. 

The non-dimensional pricing problem has the form 

*?C) - ifd - rf)&fC) - \ e ^ C ) + rd^
EC> = 0, 0 < { < oo , 

S<BC>tf,0) = ( £ - l ) + > 

$ ( £ C ) ( 0 , T ) = 0, $ [ E C ) ( £ , T ) -+ e-*fT when £ ->• oo. (4) 

It is easy to show that <j>(ec) has the form 

*(*C) = e - ^ i V [ m ( 0 + U + T ] - e-^N ^ ~V~T] , (5) 
- V t J u V . 
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where v± = 1/2 ± (fd — ff), and N(.) is the cumulative normal distribution. The 
corresponding dimensional solution is 

V(EC) = e-rf(T-t)MSN 
ln(S/K) + (rd-rf + ±a*)(T-t) 

_ e-
rd{-T-^MKN 

(Ty/T^t 

ln(S/K) + (rd-rf + ^)(T-t) 
(6) 

Expression (5) is much simpler than the dimensional expression (6). 

I will show below that self-similar reductions significantly simplify most of the 
valuation problems for path-dependent options as well. 

3. Valuation of Lookback Options Via Self-Similarity 

In this section, I show how to value lookback puts (LBP) by virtue of self-
similarity. The valuation formula is well-known but is discussed here nonetheless 
in order to facilitate subsequent developments. Consider the evolution of the ex­
change rate S between times t (today) and T (maturity) and denote by J the 
maximum value of S over this period, J = maxt<t'<T S(t). The LPB has the 
payoff M(J — S) at maturity which is (almost) always positive, so that, strictly 
speaking, it is not an option since it is always exercised. The LPB gives the buyer 
the right to sell the foreign currency at the best exchange rate occurring between 
inception of the put and its maturity. It is not difficult to obtain the valuation 
formula for LPBs (and calls) via probabilistic methods which are based on the 
fact that the joint distribution of (5, J ) is readily available, see Goldman et al. 
(1979) and Garman (1989). However, below I need a derivation based on PDE 
methods. 

It is clear that the dimensional price of the put which is denoted by V ( i B P ) 
depends on both S and J . In view of the previous discussion, one can treat J as a 
moving strike and represent this price in the form 

V(LBP\S, J,M,T- t,a,rd,r}) = Mj¥LBP\lr, fd, f f ) , (7) 

where £ = S/J, 0 < ̂  < 1, is the corresponding moneyness. For the purposes of 
the present paper, it is more convenient to consider the LBP as a call option on J 
struck at S and write the price in the form 

V(LBP\S, J,M,T- t,a,rd,rf) = MS&LBP\t,r, fd, f f ) , (8) 

where £ = J/S, 1 < £ < oo, is the inverse moneyness. The pricing problem for 
Q(LBP) c a n bg w r i t ten as 
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QfBP) _ {ff _ fd)^
LBP) - le*iLsBP) + ?f$(LBP) = 0 , 1 < * < 00 , 

Li 

$ f B P ) ( l , r ) = 0 , ^ L B P ) K I T ) - ^ e - f * T when£->-oo. (9) 

The above derivation is similar in spirit to the one given by Wilmott et al. (1993). 
It is clear that problems (4) and (9) are analogous. The biggest distinction 

between them is in the boundary conditions. One can consider the LPB as a bar­
rier option with a (financially) non-standard Neumann boundary condition at the 
barrier £ = 1. The solution of the valuation problem can be found by virtue of 
the generalized method of images due to Sommerfeld (see, e.g., Wilmott et al, 
1993, and Lipton, 1999). Here I present an alternative derivation based on the 
Laplace transform technique which, to my knowledge, is new. (I hope it will help 
the reader to appreciate the future developments.) The Laplace transform in time 
&LBP\t,r) -> &LPB\£, A) = /0°° e~XT&LBP\Z,T)dT yields 

(A + *,)*<"»•> - (ff - rd)&\LBV _ i e ^ B P ) = * - 1, 1 < { < oo , 

¥ < L f l p ) ( l , A ) = 0 , ^ B P > ( £ , A ) ^ — ^ w h e n £ - > o o . (10) 

I represent \t in the form 

* < " * > & A) = s c " " ^ , A) + j ^ - 7 I - ^ r T , ( i i ) 

(A + rd) (A + r / ) 

and obtain the following problem for ^.LBP) 

(A + *,)&** - (ff - fd)£=f BP> - le^BP) = 0, 1 < f < oo, 

H f B P ) ( l , A ) = - ^ _ L - y , = f B P ) ( £ , A ) ^ O w h e n ^ o o . (12) 

Since S satisfies a homogeneous Euler equation, it can be chosen in the form 

S(LBP>(£,A) = A ( i B P > r a , (13) 
where 

a = ^ / ( l /2 + fd- ff)
2 + 2(A + ff) - (1/2 + fd- rf), (14) 

A ( ^ ) = * . (15) 
(A + fd)a

 K ' 

In order to compute the inverse Laplace transform of S I represent this function in 
the form 
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+ 
(v+ - w_)(V/I - v+) v_(i/]l + v-) 

(16) 
v-(y+- v-)(rfl - v.) ' 

where 

H = 2(\ + ff)+vl. (17) 

By using the standard inversion formulas for the Laplace transform (see, 
Abramowitz and Stegun, 1972, Eqs. 29.2.14, 29.3.88), I obtain 

C-I[E(LBP^ A)] = p£2LN (Ht)-y+T\ 
(v+-v-) \ VT J 

fdrATf l n ( 0 + « - T 
- £e-rdTN 

^ 

&+-_^e-*NfHO-?-T\ ( l g ) 

(u+-u_) V V^ 

Accordingly, 

*<L B P>(£,T) = -C-1 |~(LBP)(£,A) + — L 
(A + rd) (A + ff) 

= C-^W^faX)] + e~fdT£ - e~f'T 

rZ 

0 - r / T 
f (HO-v+r\ _ 1 / _ l n ( 0 - i ; + r 
. V 0 1 / 2 ( r d - r / ) V V^ 

(19) 

It is easy to check that this formula is equivalent to the standard one. In the special 
case when fd = r; = r the above formula assumes the form 

where n(.) is the standard normal distribution. 
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4. Valuation of Asian Options Via Self-Similarity and Splitting 

In the previous section, I showed how to value LPBs by combining self-
similarities and Laplace transforms. It turns out that the same technique can be 
used in order to value a number of other options. To illustrate this point, in this 
section I study Asian calls (ACs) while in the next section I consider POs. 

The AC gives the buyer the right to purchase the foreign currency at the aver­
age rate prevailing between the inception of the option and its maturity. For my 
purposes, it is convenient to introduce the cumulative FX rate I(t) = JQ S(£)d£, (its 
dimension is (DC/FC) x time). In terms of I the payoff of an AC can be written 
as M(I/T - K)+. The pair S(t), I(t) is governed by the system of SDEs, 

dS = (rd - rf)Sdt + crSdW, dl = Sdt, (21) 

so that the corresponding pricing problem is the degenerate two-factor parabolic 
problem of the form 

VM + (rd - rf)SV{
s
AC) + SVj(AC) + -a2S2V{

s
AC) - rdV^°^ = 0, 

y(AC) (£. T ; j ) = M(ljT _ J Q + } (22) 

where V"(^c) is the price of the AC. As before, one can use the self-similarity 
reduction and represent this price in the form 

V^(5,1,M,T- t,a,rd,rf) = MS&AC\t r, fd,rf), (23) 

where £ = (I/T — K)/S (this non-dimensional variable is used by Rogers and Shi, 
1995; slightly different variables have been used by other researchers). The pricing 
problem for $ (^ c ) has the form 

*iAC) + [fa - ff)t - 1/T]^AC) - \ e ^ C ) + ?f*{AC) = 0 , - c o < £ < oo , 

* ( A C ) (£ ,0 )=£ + , 

$(AC) (£ T) _• o when £ -> - o o , $(AC) (£, T) -> e~f"T when £ ->• oo, (24) 

where T — a2T is the non-dimensional maturity of the option. This problem 
is difficult to handle directly because it has to be considered on the whole axis 
including the origin where the diffusion coefficient vanishes. Fortunately, the pricing 
problem can be split into two weakly dependent problems. Namely, it can be shown 
that due to a singularity at £ = 0, one can study the pricing problem separately 
for £ > 0 and £ < 0 as long as the corresponding solutions $± ' match at £ = 0. 
(Derivatives of these solutions need not match.) For £ > 0 the solution can be chosen 
in the affine form (this ansatz is similar in nature to the one used by Vasicek, Cox 
et al, and others), 

^{AC) (£, r) = e-^i + e— ±-^- . (25) 
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Unfortunately, for negative £ the corresponding $L has a much more complicated 

form. The pricing problem for $_ ' has the forma 

* ( - £ ° + [fa - ff)t - l/m{-Ar - \ e ^ + rf^_AC) = 0 , - o o < £ < 0 , 

siAC), <J>^o;(£,o) = o, 

$LAC) (£, r ) ->• 0 when £ -> - o o , $ 1 A C ) (0, r ) 
e - r r -T&T 

(rd - rf)T 
(26) 

As before, the Laplace transform in time $ i (£,r) —» \ti . (£,A) makes this 
problem analytically tractable (up to a point). The transformed problem has the 
form 

(A + f / ) ^ C ) + (fd - ff)£ • fc^f-W^O, -oo<£<0, 

* (AC) (£, A) -> 0 when £ -> - o o , * r ; ( 0 , A ) = (AC), 

(A + fd)(A + r / ) T 
(27) 

I claim that the pricing equation is a general confluent equation (see, Abramowitz 
and Stegun, 1972, Eq. 13.1.35). Recall that general confluent equation has the form 

*« + 

+ 

2A 4-9f +bhS h ft« 

T+2/, + T - - ^ - — 
* * 

A + h 

A(A-l) 2AU 2 ah* 

+ —^— + -j- + /« + /« - ~Y 
* = o, (28) 

where / , h are functions of £, and A, a, b are constants. In order to represent Eq. (27) 
in the form (28) one has to rewrite this equation as 

*-A3 + 
2 2{fd - ff) 

fi2 £ 
^(AC) _ 2(\ + ff) {AC) (29) 

and choose the corresponding parameters as follows 

2 
/ = 0, h 

T£ 
A = a = a , 

b = /3 = 2(a + l+fd-ff), (30) 

a There is an interesting similarity between the above pricing problem and Merton's pricing problem 
for call options on stocks paying constant dividend which will be discussed elsewhere. 
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where a is given by expression (14). Accordingly, the regular solution of problem 
(27) has the form 

M^C )(£, A) = A ^ c > ( - 0 ~ a M (a,P, ^ Q , (31) 

where M is Kummer's function, 

A ( - ) = 2<XV^-a) , (32) 

(A + rd)(A + f/)T«+ir( /9) 

and T is Gamma function. One can check that this expression is equivalent to the 
one given by Geman and Yor (1993). The complete solution has the form 

( e- fdT£ + (e~ffT - e-f"T)/(fd - ff)f when £ > 0 
$iAC)(t,r) = \ ' " , (33) 

i C-^-^iZA)] when £<0 

where £ _ 1 is the inverse Laplace transform. The numerical implementation of the 
inverse Laplace transform is relatively difficult to achieve. Details are given by 
Geman and Eydeland (1995); the reader should be warned, however, that their im­
portant paper contains a typographical error in the key formula (3). (Unfortunately, 
this error has been reproduced in several textbooks.) 

5. Valuation of Passport Options Via Self-Similarity and Splitting 

In this section, I consider POs originally introduced by Hyer, Lipton and 
Pugachevsky (1997). Recall that the PO allows the buyer to select a strategy 
of her choice (within certain limits) and gives her the right to keep all the gains 
generated by this strategy while obligating the seller to absorb all the losses. By 
now the literature on POs is rather extensive; the reader is referred to the papers 
by Ahn et al, Anderson et al., Delbaen and Yor, Henderson and Hobson, Hyer 
et al, Nagayama, Shreve and Vecef, and others for details. Let Q(t), \Q(t)\ < M, 
be the strategy function chosen by the buyer; it shows the amount of foreign cur­
rency which she buys or sells at time t, and let 11(f) be the value of the corresponding 
trading account. It is cleat that one can think of a PO as a EC on n with zero 
strike. 

In principle, Q(t) can depend on all the information available at time t, but 
without loss of generality one can assume that it is a function of S(t), H(t). The pair 
S(t), H(t) is governed by the following system of stochastic differential equations 
(SDEs), 

dS = (rd - rf) Sdt + aSdW, dU = rdUdt + qaSdW, (34) 

the corresponding degenerate two-factor pricing problem is 
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Vt^
Q) + (17, - rt)SVJF>*» + rdmriPO'Q) 

+ \°2S2 ( v g ° i Q ) + W&°'Q) + < Z 2 < ° ; Q ) ) - uVlPO*) = 0 f 

V(po^(S,T,U) = U+, (35) 

where V^PO;^ denotes the instantaneous value of the option for a given strategy 
Q. As before, this value can be represented in the form 

V(po'Q\S,U,M,T-t,a,rd,rf) = MS&PO«\t,T,rd,rf), (36) 

where £ = H/MS, —oo < £ < oo, is the relative value of the trading account, and 
q = Q/M is the fraction of the notional amount which the option holder buys or 
sells at any given time. 

Problem (35) explicitly depends on the choice of strategy. There are plenty of 
reasons for the buyer to choose a sub-optimal strategy (see, e.g., Garbade, 1999). 
However, the seller of the option has to price it assuming that the buyer chooses 
the optimal strategy. This strategy has the form 

q = - s g n ( 0 . (37) 

The corresponding reduced Hamilton-Jacobi-Bellman pricing problem for $ ( p o ) = 
maxg[<&(p0;9)] can be written as 

&PO) _ ?f&f°) - i ( | e | + l )**<f» + r,&p°) = 0 , - o o < £ < oo, 

3< P O >(* ,0 )=£ + , 

$ ( P O ) (£, T) ->• 0 when £ -> - o o , $f0) (£, T) -* 1 when £ -> oo. (38) 

I emphasize that $ ( p o ) is independent of fd. Once again, the pricing problem is 
difficult to solve because the domain of £ covers the entire axis. The corresponding 
diffusion coefficient does not vanish so that the naive splitting of the previous section 
cannot be used. Fortunately, the following observation comes to the rescue. The 
pricing equation is invariant with respect to the transformation £ —> — £, i.e., it 
preserves parity. Accordingly, the split of the initial data into the odd and even 
components, 

f+ = ^ + ^ l , (39) 

is preserved for all T > 0. Thus, the pricing equation supplied with the initial 
data £/2 and |£|/2 can be solved separately. I denote the corresponding solutions 
by $(o0) and $ ^ ° \ respectively. It is clear that $[ f 0 ) = £/2. For £ > 0 it is 
convenient to deal with the adjusted even solution <&(

E = $ g — £/2, rather 
than with 3>L ' itself. The function $ ^ ' solves the problem 
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C 0 ) - *t&£? - | t t + D 2 C ? + ?!*{E0) = 0, 0 < £ < oo, 

*LP O )«,o) = o, 

* £ f ) ( 0 , T ) = - | , ^ O ) « , T ) - > 0 w h e n e - > o o . (40) 

As before, I use the Laplace transform in time $ £ ' (£, r ) —> ^ ^ ' (£, A) and obtain 

the following problem for # ^ ' 

(A + #,)*cf°) - tf&™ - i « + i)2f £ ? = ° • o < ^ < - -

* L T ( ° > A ) = - ^ , f< P ° ) (£ ,A)-+0when£-><x>. (41) 

The shift £ —> £ = £ + 1 yields the pricing problem of the form 

(A + f ,)*LPO) + M i - 0*£cO) - ^ 2 * K ? = o, i < C < oo, 

* L T ( 1 ' A ) = " ^ ' ^ f 0 ) ( C , A) ^ 0 when C ^ o o , (42) 

which is analogous to problem (27). Its regular solution can be written as 

8*%°\C,\) = A < « » r a M ( « . A - ^ ) • (43) 

where 

A ( P O ) = ^ [ / 3 M ( a , / 3 , - 2 f / ) - 2ffM(a + 1 , / ? + 1, - 2 f / ) ] " 1 , 

a, /3 are given by expressions (15), (30) with r~d = 0. Thus, 

f r ( ( , A ) = A C ° ) ( ? + l)-«M(ai|3,-^), 

*if0)&T) = m/2 + C-^i0\\^\,X)]. (46) 

Finally, $ ( p o ) can be represented as 

*{PO)(LT) = £ + + £ - 1 [ ^ P O ) ( | £ | , A ) ] . (47) 

When ff = 0 the function <&(po)can be found explicitly, 

¥PO) _ ^ q r i e - i n ( g + i ) ^ 
W B « ' A , - 0 * - I / 4 ) ( ^ - I / 2 ) 

_ ViqrTe-1"^1)^ v?TTe-|n«+1)^ 
(VF+l/2) (VM-1/2) 

+ (VP-l/2)' ' (48) 

(44) 

(45) 
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where \x = 2A + 1/4. A tedious calculation yields 

_N(Mi(i+j)-r,iylHm + 1)_T/2] 

x N ^ ' ^ - ^ + V m ^ ' ^ - ^ ) } . (49) 

It can be checked that expression (47) tends to expression (49) when rj —> 0. 

6. Similarities Between Lookback and Passport Options 

In this section, I discuss relations between LBPs and POs in the special case 
when fd = ff= 0. Specifically, I use the splitting technique to show that there is 
a close relation between pricing problems (9) and (38) and hence their solutions. 
Indeed, when f<i — ff=Q the corresponding pricing problems are 

$ p P ) _ ^ 2 $ ( L B P ) = 0 j 1 < ^ < 0 0 ) 

$ f S P ) ( l , r ) = 0, $ f S P ) ( £ , r ) - s - l w h e n £ ^ o o , (50) 

HPO)-\m + l)2^O)=0, - o o < £ < o o , 

* (PO)(£,0)=£+, 

$ ( P O ) (£, T) ->• 0 when £ ->• - o o , $ [ P O ) (£, r ) -> 1 when £ ->• oo. (51) 

Splitting of this problem into even and odd parts yields 

^ T - ^ + l M T ^ O , 0<e<oo, 

4 T ( ° ' r ) = 0 ' ^ 0 ) ( ^ T ) ^ i w h e n | ^ o o . (52) 

It is clear that problem (52), can be transformed into problem (50) by virtue of a 
simple shift and scaling, so that for positive £ one can write 

*LPO,«,'") = i* ( M ^t t + l,r). (53) 

(The reader of the old school who prefers representation (21) to representation (22) 
has to use the shifted Kelvin transform to find the relation between 3>g and 
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4>(LBP). Recall that the definition of the Kelvin transform which is frequently used 
in hydrodynamics and electrodynamics is as follows: (Kf)(x) = xf(l/x).) Thus, 
the relation between $ ( L B P ) and <j>(po) can be written as 

*(PO)&T) = \[t + &LBPH\£\ + l,r)]. (54) 

In particular, 

&P°){0,T) = \&LBP\1,T). (55) 

Relation (54) can also be established via direct comparison of formulas (20), (49). 

The corresponding dimensional relations are 

y ( p ° ) ( S , n , M , T - t,a,0,0) = i n + WL B P> (s, ^j- + S,M,T-t,a,0,o) 

(56) 

W p o > ( 5 , 0 , M , T - t,a,0,0) = lvlLBP>(5,5,M,T-t,<r,0,0), (57) 

so that at inception the price of the PO is equal to one-half the price of the ATM 
LPB. I emphasize that V^po^ is independent of the value of r<i, so that relation (56) 
can be generalized as follows 

V(po\S,n,M,T-t,a,rd,0) 

n + WLBp) (s, l^+S,M,T-t,a,0,o) (58) 

It is useful to keep in mind a simple pictorial explanation of the connection 
between LBPs and POs. Consider a certain scenario of the FX rate evolution. For 
example, assume that this rate has a single maximum at t = t». At time t = to the 
investor has a choice of strategy. For the sake of the argument, assume that she 
buys the foreign currency at t = 0. Since initially the rate increases at a later time 
t = tx her trading account becomes positive, so that her optimal strategy is to sell 
the currency. Sooner or later her trading account becomes negative and she has to 
go buy the currency. This oscillatory pattern of buying and selling will repeat itself 
until t = i». Depending on the value of the trading account (which hovers near zero) 
two outcomes are possible. If II(t*) > 0 then between t = t* and t — t^ the investor 
has to sell the currency thus accumulating profit Il(tjv) ~ M(St, — StN). IfII(t») < 0 
then she has to go buy the currency which produces a loss Il(tjv) ~ —M{St, — StN) 
(which has to be absorbed by the seller of the option). It is clear the value of 
II(i») depends on the initial choice of strategy and fine details of the rate evolution 
between to and t». Accordingly, it can be both positive and negative with equal 
probability, so that the price of the PO should be equal to one-half the price of the 
corresponding LBP. 
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7. Connections Between Imperfectly Hedged European Options 
and Passport and Asian Options 

Finally, I want to discuss the relation between imperfectly hedged ECs, POs 
and ACs. I study this relation from the viewpoint of a seller of a EC who chooses 
a certain imperfect hedging strategy q. For simplicity I assume that both domestic 
and foreign interest rates are zero. I also assume that the hedging strategy is 
Markovian and depends only on S, t, although it is not difficult to consider a more 
general case. There are many reasons for not hedging according to the Black-Scholes 
strategy. The seller can deviate from this strategy either by choice (for example, 
because she follows efficient mean-variance or utility maximizing hedging strategies), 
or by chance (because continuous hedging is impossible, or the actual volatility of 
S is not known, or for many other reasons). Deviations from the Black-Scholes 
strategy result in the P&L x (equal to the difference between the final value of the 
trading account HT and the final value of the European call M[ST — K]+) which 
is random. Accordingly, it is necessary to study the probability density function 
(PDF) for the random variable x = [IIT — M(ST — K)+]. The original discussion 
of this problem is given in a recent paper by Esipov and Vaysburd (1999), here I 
present an alternative discussion. 

I start with the coupled system of SDEs describing the evolution of S, II, 

dS = fiSdt + aSdW, dll = q(S,t)dS, (59) 

which is similar to system (34), except for the fact that the drift \i of S is not 
necessarily equal to r^ — rf. The transitional PDF ®(St, Ht, t;ST, I I T , T) for system 
(59) is governed by the standard forward Fokker-Plank equation. In terms of 0 one 
can represent the PDF 0(St,Tlt:t',X) f° r the random variable \ as 

e{St,Ut,t;X) = / e(SuIlt,t;ST,UT,T) 
J0 J-oo 

x S[UT - M(ST - K)+ - x]dSTdUT , 

= V^(St,Ut-X,t), (60) 

where V^ (S, II, t) solves the backward Kolmogoroff problem 

VtM + nSV^ + MSV«> + \*2S\V^ + 2qVM + q2V$) = 0 , 

V^\S,n,T) = S[U-M(S-K)+], (61) 

and S is the Dirac delta function. Equation (61) is practically identical to the 
unoptimized pricing problem (35) for the PO, as can be expected. 

To see the relation between imperfectly hedged ECs and ACs it is convenient 
to represent the trading strategy in the form q(S,t) = Rs(S,t), where R(S,t) 
is the corresponding potential function, introduce the adjusted trading account 
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ft = II - R(S,t) and represent the P&L as X = A T + Q{ST,T) - M(ST - K)+. 
(Esipov and Vaysburd 1999 also use this transformation but for a different purpose.) 
The evolution of the pair S, fi is governed by the system of SDEs of the form 

dS = iiSdt + aSdW, dtl = x(S, t)dt, (62) 

where 

x(S,t) Rt(S,t) + ±a2S2Rss(S,t) (63) 

Note that for the standard Black-Scholes trading strategy x(S,t) = 0 and 
R(ST,T) = M(ST - K)+, so that both UT and x a r e non-random and the cor­
responding P&L is identically equal to zero, or, in other words, the PDF for x ls 

* ( * ) • 

It is easy to show that 9(St,TLt,t;x) = V^(St,Ut - X,*), where V^{S,U,t) 
solves the backward Kolmogoroff problem 

V}<» + jiSVJd + x(5, t)VJ«> + \<r2S2V^ = 0, 

V"(«> (5, ft, T) = 6[fl + Q(S, T) - M(S -K)+]. (64) 

which strongly resembles the valuation problem (22) for ACs. Unfortunately, for 
this problem a simple self-similar reduction is not possible, so that it has to be 
treated as a degenerate two-factor parabolic problem. Fortunately, several estab­
lished numerical schemes can be used in order to solve it. A viable alternative is to 
exploit the technique developed by Landau (in order to solve the Vlasov equation) 
and apply the Fourier transform in II, 

/

oo 
e-iKnV^(S,U,t)dil, (65) 

•oo 

in order to replace the original two-factor problem by a family of one-factor problems 

Wt
{q) + nSW^q) + inx(S, t)WM + \cr2S2W{^ = 0, 

WM (S, K, T) = ei*WS,T)-M(S-K)+] f ( 6 6 ) 

parametrized by K. Once W^ (K) is found, one can construct V"(«)(fi) by virtue of 
the inverse Fourier transform. 

In order to illustrate the ideas outlined above, I revisit the stop-loss start-gain 
(SLSG) strategy studied by Carr and Jarrow, Hull, and others. For this strategy 
q{S, t) = M9(S-K), R{S, t) = M(S-K)+, where 9 is the Heaviside function. The 
hedger who follows this strategy buys M units of the FC every time the FX rate 
hits the strike level K from below, and sells the same amount of the FC whenever 
this level is hit from above. Intuitively this looks like a perfect hedge; however, 
a more careful analysis shows that the SLSG strategy results in a random P&L 
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with a non-trivial PDF (which nonetheless does have a ̂ -function component). 
Broadly speaking, the hedger who follows the SLSG strategy assumes (whether she 
appreciates it or not) that for hedging purposes the volatility of the FX rate is zero. 
In the case in question problem (64) has the form 

VISLS^ + M5yjSLSG> - \a*MKH{S - KMSLSG> + \o*S*v£LSV = 0 , 
Li Li 

V(SLSG)(S,U,T) = S(tl). (67) 

The first two moments of the solution V"(SLSG) are numerically evaluated by Esipov 
and Vaysburd (1999), while the exact analytical expression for \i = 0 is given by 
the present author in Appendix C of their paper. Here I show how to find the 
analytical solution for \x ̂  0. By now my methodology should be clear. First, I use 
the dimensional reduction and rewrite the pricing problem as follows 

^SLSG) _ m{SLSG) + 1 ̂  _ 1)$(SLSG) _ ^f^SLSG) = Q ^ 

&SLSG){t,W,T)=6{w), (68) 

where 

$(SLSG) = MKy(SLSG) ^ £ = g/K > w = fl/MK f 

r = a2(T -t), A = Vie2 • (69) 

Next, I combine the Laplace transform in time and the Fourier transform in space 
and represent the pricing problem in the form 

X^LSG)_^(SLSG) + i^_1)¥SLSG)_K2^SLSG) = ^ _ < x j < ^ < ^ ^ 

Li Li 

(70) 
where 

&SLSG)faKtx)= / &SLSG\Z,w,T)e-(XT+iK^dTdw. (71) 
J0 J-oo 

This equation is similar in nature to Eq. (31) of Hyer, Lipton and Pugachevsky 
(1997) and can be solved by virtue of the technique developed in their paper and 
extended by the present author is his study of the special case \i = 0. Omitting the 
corresponding algebra for the sake of brevity, I simply present the final solution of 
the original problem 

V(SLSG\S,fl,T-t) = l - - ^ = | l n ^ 1 - W / 2 7 n t 1 
MK 

^ " " • " - S l - <"» 
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where 

Int\ = / exp 
Jo 

Int2 = I exp 
Jo 

(InO2 ( 1 - / ^ 1 , - 3 / ^ , 

10 

X 

2?7 8 

(llnJj + 2^)2 (1-A)2^? 
277 8 

rj-^drj. (73) -(|lne|+2CT)2
 1 

1 

It is clear that this P D F contains both localized and delocalized components. 

8. C o n c l u s i o n s 

In this paper, I consider several seemingly unrelated path-dependent options, 

develop a unified technique for their valuation, and find useful relations between 

them. My technique combines the self-similarity reduction, splitting and Laplace 

transform in t ime (and, if necessary, the Fourier transform is space) in order to 

make the valuation problem analytically tractable. Even though I restrict myself 

to the s tandard Black-Scholes-Garman-Kohlhagen framework, the central idea has 

a much broader domain of applicability. I will discuss other analytically solvable 

problems elsewhere. 
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MONTE CARLO WITHIN A DAY 

JUAN D. CARDENAS, EMMANUEL FRUCHARD, JEAN-FRANQOIS PICRON, 
CECILIA REYES, KRISTEN WALTERS and WEIMING YANG 

This article presents an innovative approach to measuring intra-day VaR that combines 
the use of a robust parametric technique, Gamma VaR,3 with Monte Carlo simulation 
to capitalize on the respective strengths of these models. The simulation is optimized by 
using parametric VaR results to limit the required number of portfolio revaluations to 
those random scenarios that are statistically relevant given the greek-estimated profit and 
loss distribution, and as a variance reduction tool to minimize the standard Monte Carlo 
error term. As the results presented here will show, these techniques, combined with 
portfolio and market risk factor compression, significantly enhance the performance and 
precision of the Monte Carlo engine. Although VaR alone, no matter how sophisticated 
the model, is not sufficient to effectively capture all possible market moves, it is an 
invaluable intra-day tool for risk managers. 

1. Estimating the Loss Tail of Monte Carlo 

A naive or "brute force" Monte Carlo simulation for VaR performs full trade 
revaluations of an entire portfolio under thousands of random scenarios to approxi­
mate the profit and loss distribution. The trade revaluation process is computation­
ally intensive, thereby preventing Monte Carlo from being a viable tool to measure 
risk during the trading day. Given that the goal in VaR is to obtain the "loss tail" 
(e.g., 5% loss tail for a 95% confidence level) of the distribution, it is reasonable 
to only perform full trade revaluations for those scenarios that will result in large 
losses for a portfolio. Our approach uses the Gamma VaR distribution as a tool for 
determining which scenarios will result in losses in the tail of the Monte Carlo distri­
bution and discarding irrelevant scenarios using the following step-by-step process: 

• Parametric VaR Calculation. First, our model calculates the first- and 
second-order derivatives with respect to all relevant portfolio risk factors which 
will result in a vector of deltas and vegas and a matrix of gammas. Next, instead 
of approximating the profit and loss function (e.g., by using partial simulations or 
its first few moments), the characteristic function is determined analytically and 
the full profit and loss distribution is recovered using a fast Fourier Transform 
(FFT). 

aCo-authored by two authors of this article and detailed in the following Risk article: VAR: One 
Step Beyond (Juan Cardenas, Emmanuel Fruchard, et al.), Volume 10, No. 10, October 1997. 
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• Random Rate Path Generation. The next step involves generating pseudo­
random scenarios for the portfolio risk factors (interest rates, bond & equity 
prices, FX rates, volatilities, etc.). Risk factors may either represent individ­
ual market rates or statistically based shift scenarios1* calculated using principal 
component analysis (PCA). Employing PC A to compress the universe of market 
risk factors into their salient principal components enhances performance. The 
definition of the risk factors is a critical input to the analysis. Recognizing that 
during crises historical measures of volatilities and correlations break down, it is 
very important to supplement VaR with event risk analysis. 

• Modelling of Error Distribution. For each random scenario, the change in 
portfolio mark-to-market (MTM) is approximated using the greeks. The true 
profit and loss based on full revaluation is calculated for those scenarios where 
the greek-based profit and loss falls below a user-specified upper bound (see graph 
below). The specified upper bound will logically reside to the right of the para­
metric loss tail to reflect possible error in the parametric VaR model. Next, the 
distribution of the error between the greek-based and full revaluation for the sce­
narios whose greek-based profit and loss falls below the upper bound is modelled. 

• Upper Bound Adjustment. Based on the calculated error distribution, the 
upper bound may be adjusted further to prevent any relevant scenarios from 
being inappropriately discarded in the Monte Carlo process. The graph below 
depicts the error distribution and the adjusted upper bound used to determine 
relevant random scenarios. In addition, a minimum number of tail scenarios may 
be specified to ensure sufficient sampling in the tail region. 

Loss tail optimization 

Profit/Loss Distribution from 
Parametric Method 
Error Distribution 

Upper Bound for 1 
Full Valuations 1 

/ ^ \ ^ 

V / f l Pr— r̂ A 
1*111 w ' t h 9 r e e k s in this region ^ k 

•1,000,000 -750,000 -500,000 / -250,000 
Parametric 95% 
VaR Estimate 

250,000 500,000 

Profit/Loss 

Monte Carlo VaR Calculation. Finally, the full valuation profits and losses 
for the scenarios that fall below the adjusted upper bound are ordered and the 

For example, rather than modelling the processes of a set of zero-coupon rates that comprise a 
yield curve, it is possible to concisely represent its process using statistically relevant shift scenarios 
without significantly losing information, e.g., parallel, steepening and curvature shifts. 
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Monte Carlo VaR is obtained by assessing the a-percentile based on the original 
number of scenarios generated, where (1 — a) is the confidence level. 

2. Variance Reduction 

Monte Carlo results explicitly include a calculated error term. Besides determin­
ing which randomly generated scenarios should be valued, the greek approximation 
of the profit and loss distribution can also be used to reduce the variance of the esti­
mators. Our method employs two variance reduction techniques, "control variate" 
and "stratified sampling", both of which are based on the Gamma VaR distribution, 
to reduce the Monte Carlo error term. By reducing the error term, risk managers 
may obtain a higher degree of precision with Monte Carlo based on the same number 
of random scenarios or improved performance by reducing the number of required 
scenarios and obtaining the same specified error. 

3. Control Variate Case 

Given that, in most cases, the Gamma VaR distribution will be highly correlated 
with the true distribution being estimated via Monte Carlo simulation, it may be 
used as a control for the true profit and loss distribution as shown in the diagram 
below. 

tBoojoo.oo; 1(500,000 00) 

Monte Carlo cdf of 
greek P&L 

Monte Carlo cdf of 
actual P&L 

1. In the first quadrant (I), the greek VaR is obtained using the analytical approx­
imation (i.e., Gamma VaR) of the profit and loss distribution. 

2. In the second quadrant (II), the Monte Carlo estimate of the greek VaR's per­
centile is obtained by performing a partial simulation (i.e., computing the greek 
profit and loss for randomly-generated scenarios). 
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3. In the third quadrant (III), the true profit and loss corresponding to the per­
centile found above is calculated. 

4. The actual profit and loss results are subsequently mapped in the fourth quadrant 
(IV) as corresponding to the VaR percentile. 

By using a control, the variance of the estimator is reduced by a factor, 2(1 — p) 
where p is the correlation. For most test cases, using the full Gamma matrix for 
the computation of the parametric VaR results in a correlation above 90%, making 
the simulation more than five times faster. 

One of the most attractive features of the control variate is that it can be easily 
applied to the full distribution, yielding a much smoother curve than brute force 
(i.e., full) Monte Carlo. The figure below shows a comparison of brute force Monte 
Carlo and control variate for 100 scenarios and a correlation of 95%. The curve 
labeled "exact" was obtained by running 50,000 scenarios and using the control 
variate. 

Brute Force Monte Carlo vs. Control Variate 

* Control Variate 

•Brute Force 

•Exact 

20% 

15% 

10% 

5% 

0% 
$(500,000.00) $(400,000.00) $(300,000.00) 

Actual P&L 

$(200,000.00) 

4. Stratified Sampling 

Stratified sampling can be viewed as a "divide and conquer" variance reduction 
technique in which the following steps are performed (as shown in the figure below): 

The pseudo-randomly generated scenarios are divided into two independent sets: 
one containing the scenarios that result in greek-approximated profit and losss 
falling below the parametric VaR, and the other set containing those scenarios 
that yield greek-approximated profits and losses falling above the parametric 
VaR. 
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2. Each subset is sampled proportionally to its probability measure. For example, 
if a 95% VaR is desired, 5% of the scenarios should be below the parametric VaR 
and 95% should be above it. The true profit and loss distribution is computed 
for each set separately using full valuation. 

3. Since the two sets are independent by construction, the overall Monte Carlo 
distribution is simply a weighted sum of the two sub-distributions. 

Cumulative distribution function (cdf) using stratified sampling 

5. Portfolio Mapping 

Mapping a portfolio into fewer equivalent trades is an additional feature incor­
porated in the design of our Monte Carlo engine. Equivalence, in this sense, means 
that the sensitivities of the mapped trades and the original portfolio to all the risk 
factors are equal. This technique can yield significant improvements in performance 
and may be employed for linear (e.g., interest rate swaps) as well as non-linear prod­
ucts (e.g., plain vanilla caps and floors). A large swap portfolio of 20,000 trades, 
for example, can be mapped to less than 100 trades. 

For option portfolios, the logic is similar with the addition of a second dimension 
to the mapping process. In any given cap and floor portfolio, for example, there 
are usually a few major currencies in which many plain vanilla caplets share the 
same tenor and have similar expiry dates and/or strikes. These trades can be 
readily mapped to a smaller subset of caplets that depict similar two-dimensional 
expiry/strike and risk behavior. The mapping method calculates the vega by expiry 
and strike and determines the equivalent quantity of bucketed caplets. Once the 
vega hedge has been determined, the differential between the real portfolio and 
the vega hedge is delta hedged and the resulting additional linear trades are included 
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in the mapping portfolio. This method is effective as long as the number of plain 
vanilla caplets in the portfolio significantly exceeds the number of expiry dates 
multiplied by the representative strikes. While a similar approach may be used for 
swaptions and bond options, the underlying structures to be populated for these 
instruments are three-dimensional and there are generally no concentrations on any 
dominant underlying swap tenor or bond maturity. Thus, our experience has shown 
that mapping these products is only useful for extremely large portfolios. 

6. Parametric VaR in Monte Carlo 

Market practitioners frequently cite the need for a full Monte Carlo simulation 
based on the assumption that parametric VaR models give inaccurate results for 
short-dated at-the-money options whose greeks are rather unstable and hence un­
reliable to use to predict profit and loss. While this is true when using analytic 
greeks, the error is often of a significantly smaller magnitude when the greeks are 
calculated empirically using reasonably sized perturbations of the risk factors. This 
key observation formed the basis of our development of a parametric Monte Carlo 
approach and is illustrated below by a "worst case" example of a bond option with 
one day to expiry date. For this example, the VaR is calculated for various strikes 
and with greeks obtained locally (i.e., equivalent to the analytic greeks) and globally 
with step sizes equaling 1/2, 1, and 2 standard deviations (i.e., 3, 6, and 12 basis 
points shifts, respectively).0 The results show that the parametric VaR is inaccurate 

Parametric vs. Monte Carlo VaR 

25,000 • 
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17,500 

VaR 15,000 •• 

12,500 

10,00011 

7,500 

5,000 
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cFor this example, greeks were calculated using finite difference methods. Local and global greek 
calculations refer to the respective amplitude of the market shift employed to calculate the greeks. 
It is well known that using minute "local" shifts in market rates can yield gammas that approach 
infinity for at-the-money options at expiry. Thus, it is reasonable to increase the magnitude of the 
shift to reflect expected market moves which will yield more reliable gammas. In this case, the 
option MTM was recalculated based on the specified # of standard deviation change in market 
rates - i.e., a 1/2 standard deviation move represents a 3 basis point shift in market rates. 

^ ^ " M o n t e Carlo 

73.5 74 74.5 75 

Option Strike 



Monte Carlo Within a Day 341 

when the shift is small, because the gamma surges to an artificially high level. 
On the other hand when the shift size is set to a number of standard deviations 
consistent with the confidence interval used in the VaR calculation, the gap narrows 
to a small fraction of the correct result. Therefore the few close-to-the-money 
options that are in every large portfolio will not reduce the effectiveness of the 
parametric VaR optimization. 

7. Monte Carlo Results 

To illustrate the beneficial effects on performance and precision of VaR estimate 
provided by our Monte Carlo approach, VaR results for a 97.5% confidence level and 
one day time horizon are generated for a representative portfolio of a multi-national 
dealer with 500 trades in 24 currencies (see results in tables below). Including 
numerous currencies and risk factors is relevant for any performance benchmark 
given that the size of the variance/covariance matrix and corresponding processing 
time for Monte Carlo expand with the number of relevant risk factors. This portfolio 
contains 100 risk factors with options comprising 40% of the trades (including FX 
barriers, Asian options and 100 American bond options). 

The fact that this sample portfolio contains exotic options with nonmonotonic 
payoffs and exhibits significant convexity is key to demonstrating the power of the 
parametric Monte Carlo method given that, for these instrument types, parametric 
methods used in isolation are not sufficient VaR estimators. As the tables show, 
our Monte Carlo method handles these trades (as well as instruments priced with 
lattices) remarkably well with intermediate events (e.g., barrier crossings) incorpo­
rated into the modeling process.*1 The same performance is observed after mapping 
for portfolios of any size (e.g. 50,000 swaps) with the same number of options. 

VaR was generated on a single Sparc Ultra-10 workstation with a 512-megabyte 
memory. Performance times could be substantially reduced in a distributed pro­
cessing environment with multiple servers, which is the desired configuration for 
generating global VaR. Our Monte Carlo engine was designed based on an object 
model to support this technology structure. 

Table 1 shows the processing time of our Monte Carlo engine for the sample 
portfolio given differing VaR precisions (and associated required scenarios). Our 
experience indicates that 5% precision, which is considered more than adequate, 
will generally result in less than 1,000 random scenarios. As shown, the effect on 
performance of employing the parametric Monte Carlo VaR technique instead of 
brute force Monte Carlo is quite dramatic. 

Table 2 shows the results of VaR and estimated error before and after applying 
variance reduction techniques. The computation time for variance reduction is 

As an alternative to aging barrier trades on several dates from the initial date to the horizon 
date, a one step simulation is performed where the simulated MtM value of the barrier option on 
the final date takes into account the probability that the underlying asset has crossed the barrier 
over the simulation period for each scenario. Thus correlations across barrier crossing events are 
taken into consideration. 
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Table 1. Performance run time of Monte Carlo engine. 

VaR Precision 5% 3% 

Total Number of Scenarios 700 1900 

Brute Force Monte Carlo Engine - No Optimization 1 hr, 44 min 4 hrs, 31 min 

Optimized M o n t e Carlo VaR 13 min. 24 min. 

Table 2. Monte Carlo VaR results with variance reduction. 

Total Number 

of Scenarios 

Results 

No Variance Reduction 

Stratified Sampling 

Gamma VaR Control 

Variate 

VaR 

65,122,890 

66,200,240 

66,371,881 

700 

Standard Error 

1,543,517 

695,671 

628,933 

VaR 

64,931,509 

65,754,475 

66,085,661 

1900 

Standard Error 

1,221,515 

484,224 

362,389 

negligible compared with total time of Monte Carlo engine and, as shown, the 
variance reduction is substantial. For most cases, the reductions are more than 
55% which may be interpreted as a more than five times performance advantage 
after applying the variance reduction technique. 

The exact VaR for the portfolio shown in the example above was calculated by 
generating 50,000 pseudo-random rate paths with variance reduction; the resulting 
VaR was 66,075,770. The figure below compares the exact VaR results with the 
Gamma VaR estimate as well as our optimized Monte Carlo VaR, with and without 
employing variance reduction. These results readily demonstrate the improvement 
in precision of results obtained by generating VaR using our Monte Carlo method. 
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, . . r 30 
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8. Conclusion and Implementation Issues 

The results displayed above clearly validate the use of parametric VaR with 
Monte Carlo simulation and demonstrate the performance gains obtained associated 
with the combined approach. The parametric Monte Carlo VaR alone provides a 
tenfold increase in performance over brute force Monte Carlo. With the variance 
reduction, an additional (five) to 20 times boost in performance is obtained. There 
will be instances (i.e., when the greeks are highly unstable) where the parametric 
approximation is not reasonable to use together with the Monte Carlo simulation. 
Key to the design and practical implementation of the parametric Monte Carlo 
method is the ability to configure the VaR calculation process based on portfolio risk 
profiles and current market conditions. With our methodology, risk managers have 
complete flexibility to determine the extent to which performance optimizations are 
used when generating VaR results. 

Intra-day, risk managers may take advantage of all applicable optimizations to 
generate VaR in real time and/or determine the "marginal" VaR of certain trades. 
At close of business day, if the full distribution of profit and loss is required (i.e., 
not just the tail region) the Monte Carlo engine may be run in "brute force" mode 
involving full revaluations of the portfolio for all randomly generated rate paths. 
If the full distribution is not required, then the combined parametric method and 
Monte Carlo provides a very efficient way to estimate VaR. VaR obtained using 
the optimized Monte Carlo may be back-tested against brute force Monte Carlo, 
providing risk managers with an empirical view on the accuracy of intra-day VaR 
measures and the resulting ability to allocate capital and risk limits confidently and 
optimally during the trading day. 

Appendix. Variance Reduction 

A . l Brute force Monte Carlo 

For a given level xa of actual profit and loss, the percentile is estimated using a 
sum of indicator function: 

Ta{Xa) = S E i l f r ^ a ) 

where Oj is the actual profit and loss of scenario i. For a sufficiently large number 
of scenarios, this estimator will be approximately normally distributed with a mean 
equal to the true percentile and a variance approximately equal to: 

~^{Ta{xa)) = A ' f r ' O f l - f l ' f o ) ) . ( A .2) 

Note that in order to find a confidence interval for the VaR, we need to map the 
confidence interval on the percentile back to the profit and loss space using the cdf. 

(A.1) 
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A.2 Control variate 

For given levels xg of greek profit and loss and xa of actual profit and loss, the 
following is an unbiased estimator of the percentile of xa: 

Fcv{xa) = Fa(xa) - (Fg(xg) - Fg(xg)) (A.3) 

where a bar denotes a Monte Carlo approximation, as opposed to an analytical 
result, and the index indicates whether the percentiles and profit and loss refer to 
the greek approximation (g) or the actual valuation (a). Since we are looking for 
the i/th percentile, we can replace xg by VaRg in Eq. (A.3) to obtain: 

— 1 , v% = Fa{VaRa) - {Fg(VaRg) - v%) =• VaRa = Fa \Fg(VaRg)). 

The standard error on this estimator is simply: 

< d = 0%+tf- 1P°a<Tg => <j\v = 2<7*(l - p) . 

In order to compute the above variance, one can simply realize that the estimator 
(3) is a difference of indicator functions that has an average of zero: 

N 

53( / (o i < VaRa) - Ifa < VaRg)) 

Fcu{VaRa) = v% + i = l 

N 

N 

J2(I("i < V^Ra~) - I(gi < VaRg))* 
o i = l 

at. = N-l 

N 

i = l 

I(ai < VaRa) - I{9i < VaRg) 

N-l 
(A.4) 

Equation (A.4) indicates that the variance of the estimator is asymptotically equal 
to the "disagreement probability": the probability that the greek profit and loss of 
a random scenario will be above the greek VaR and its actual profit and loss below 
the actual VaR or vice-versa. 

A.3 Stratified sampling 

For stratified sampling, we have a weighted sum of percentile estimates: 

FTs(xa) = vTx{xa) + (1 - v)T2{xa). (A.5) 

The indices refer to the sub-space in which the sampling is done: 1 for the scenarios 
that fall below the greek VaR and 2 for the scenarios above the greek VaR. The 
standard error of the estimator is equal to: 



Monte Carlo Within a Day 345 

2^2 v2a\ + (1 - vfal 

2F1(xa)(l-F1(xa)) 2F2(xa)(l - F2(xa)) 
V Nx-1 { ' N2-l 

If we use biased estimates (i.e., dividing by N instead of N-1) then the proportional 
sampling allows use to rewrite the above equation as: 

^ F i ( » . ) ( ! - F i C a , ) ) _ u)Fi(xa){l ~ F2(xa)) 
N N 

(A-6) 

Comparing Eqs. (A.5) and (A.6) to Eqs. (A.l) and (A.2), we see that the variance 
of the stratified sampling estimator is a convex combination of the variance of two 
brute force Monte Carlo estimators, as illustrated below. 

Stratified Sampling Variance Reduction 
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In the figure above, the parabola represents the variance of brute force Monte 
Carlo as a function of the target percentile, as defined by Eq. (A.2). Point 1 
represents the variance for a 95% confidence level VaR, while the two points labeled 
are the two individual terms of the stratified sampling variance. According to 
Eqs. (A.5) and (A.6), the variance will be located on the line joining those two 
points. The exact stratified sampling variance 3 will be located on that line, right 
below the brute force Monte Carlo variance, as indicated by Eq. (A.5). 
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1. Introduction 

There are many problems in financial portfolio selection in which the primary 
objective of maximizing return and minimizing risk must be pursued subject to 
various constraints. Some examples of these portfolio selection problems are analysis 
of different types of portfoios vis a vis benchmarks in historical simulations or 
stress tests; designing portfolios with particular characteristics that track an index 
across different scenarios; and making an optimal hedging designation for items and 
derivatives under SFAS 133 requirements.1'2 

These problems can be formulated as disjunctive programs, where the desired 
portfolio is described by means of logical disjunctions. For example, some portfolio 
requirements that can be modeled with logical disjunctions are that the number of 
securities is an integer, or bounded by an integer; securities have to be purchased 
in set denominations; securities have to have certain credit ratings; or there is a 
minimum investment requirement for a portfolio. In many portfolio selection prob­
lems, the function to be optimized can be expressed in terms of the absolute value 
of the difference between a portfolio's return and the return of some known collec­
tion of securities. Using the L\ distance instead of variance produces disjunctive 
linear programs. Finally, because analysis takes place across many scenarios, these 
disjunctive linear programs can be very large. 

This paper presents a disjunctive formulation for a portfolio selection problem 
and an algorithm for decomposing the large linear programs that result with this 
model.20 A main feature of the algorithm is that variable decomposition of the 
linear programs is combined with branch and bound search among the disjunctive 
sets that describe the desired portfolio. 

2. Background 

Markowitz3'17 pioneered portfolio analysis using variance of returns as the defi­
nition of risk. In mean variance portfolio analysis, the ratio of expected return 
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to variance is maximized, usually as a quadratic programming problem. Recently, 
Konno4,5 advocated using mean absolute deviation of returns in portfolio selection, 
since mean absolute deviation can be represented by a piecewise linear risk function. 
One method of portfolio optimization involves picking the best "tracking" portfolio, 
i.e., one whose returns are closest to those of a benchmark portfolio or index. Worzel 
et al. minimized the mean absolute deviation of portfolio and benchmark returns.6 

The absolute deviation trade-off model we present uses mean absolute deviation 
from a benchmark on interest rate scenarios as the measure of risk, and has as 
objective maximizing the difference between expected return and expected risk. 
Optimizing mean absolute deviation can be modeled with linear constraints and a 
linear objective function, thus selecting the optimal portfolio is now a large linear 
problem. 

The choice of an optimal portfolio is often subject to structural constraints. 
There may be integral trading amount requirements for certain instruments, e.g., 
Treasury bills have to be purchased in increments of $5,000, after an initial in­
vestment of $10,000. Investors may demand a certain level of diversification or a 
certain credit grade for their portfolios. Dedicated bond portfolios often have sec­
tor specifications that have to be satisfied. All these are logical requirements; they 
can be modeled with disjunctions that describe allowable choices. The complexity 
of quadratic programming makes adding disjunctive requirements to a traditional 
mean-variance model computationally prohibitive. However, if absolute deviation 
is used to measure dispersion of returns instead of variance,18,19 then structural 
requirements can be added to a portfolio selection model with linear constraints 
and a linear objective function. The portfolio selection problem can then be repre­
sented as a disjunctive linear program. An additional advantage of this formulation 
is that optimal portfolios for LP-based models have fewer nonzero holdings than 
do portfolios found optimal for quadratic models,4'7 thereby reducing transaction 
costs. 

3. Model Formulation 

The absolute deviation trade-off model is an extension of earlier mean abso­
lute deviation models.4,5'8 We use the L\ distance from a given benchmark as the 
measure of risk and maximize the trade-off between the expected present value of 
reinvested cash flows and this L\ distance. The objective function is similar in 
spirit to one utilized by Hiller and Eckstein;9 they used downside deviation from 
a liability stream as the measure of risk. In this context, let Rij be the sample 
returns for asset j on scenario i; let benchi be the known returns for the benchmark 
on scenario i. Then minimizing the risk for the absolute deviation trade-off model 
is equivalent to minimizing the function 

s N 

f(x) = 2_] benchi —2_.RiJxi • 
i=l j=l 
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As an example of this technique, we present a solution to the problem of selecting 
a portfolio from a universe of N securities that maximizes the trade-off between 
expected return over a set of scenarios and expected L\ distance from a benchmark's 
return over the scenarios, with the additional requirement that investment be at 
least v. 

The objective function for this problem is to maximize Expected portfolio returns 
- | Expected difference of portfolio and benchmark returns \. 

This can be expressed as a linear function if we introduce variables for the differ­
ence between benchmark and portfolio returns on each scenario, and add constraints 
to force these variables to the absolute value of the difference. We can then decom­
pose the set of variables into the variables for securities, which may have disjunctive 
requirements, and the variables for the L\ distance on each scenario. 

3.1. The absolute deviation trade-off model for fixed-income 
portfolio selection 

We first present the linear model without logical requirements. For our model 
we assume that we have a fixed universe of available instruments and that there 
is a cashflow model available to calculate the present value of each security's cash 
payments and embedded options. Further, we have fixed a benchmark with known 
returns on the set of scenarios. We assume that the only constraints are that all 
asset holdings are non-negative, i.e., there is no short selling, and there is a set 
budget for the investment. If there are N available assets and the holding period 
for the portfolio comprises M dates on which cash flows are collected, then there are 
2 M 

scenarios. If the number of scenarios becomes too large, sampling techniques or 
Monte Carlo simulation methods can be used in conjunction with the basic model. 
In this research, we have used a discrete model of the future evolution of spot 
rates.10 

For every asset, the present value of investing the cash flows at the current spot 
rate over the holding period of the portfolio is calculated. A feasible portfolio is 
a linear combination of the assets for which the price does not exceed the budget. 
A variable yi is introduced for every scenario i to model the absolute value of the 
difference between a portfolio and the benchmark yielded by this scenario. Two 
constraints are added to the constraint set for every scenario: 

yi < benchmarks 

V% < —benchmark^ • 

The objective function then is the difference between expected return and ex­
pected risk: 

N 

Vi J ^ r y j 
u"=i 

^ 
Vi [ -^njXj ) -
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S N S 

max ̂ 2 Pi Yl Tiixi ~ Pi ^ Vi 

where pi is the probability associated with scenario i. 
At optimality, since the yi are non-negative, subtracting the expected yi is equiv­

alent to minimizing the yi, or forcing yi to the absolute value of the difference be­
tween benchmark and portfolio on each scenario. We now have a linear problem 
with linear constraints instead of a piecewise linear problem. The definitions and 
constraints for the model are as follows: 

Definitions. 

5 = number of scenarios 
N = number of securities available 
M = maximum to be invested 
Bi = expected return of benchmark on scenario i 
rij = expected return from security j on scenario i 
Pj = current price of security j 
Xj = amount of security j held in portfolio 
yi = absolute value of the difference between expected portfolio and benchmark 

returns on scenario i 
v = minimum trade amount 
w = minimum investment amount 
Pi = probability associated with scenario i. • 

The linear program that models the problem of selecting the best tracking portfolio 
is: 

{ S N S "J 

^2 Pi X] Tiixi ~ Y2 PM \ =ZP 
i=l j '=l i=l J 

s.t. pixi -\ +PN%N<M 
— XI — • • • — XN < — W 

Vj 

Vi rnxi + • 

Vi -rnxi — • 

Vi 

(P) can be written formally as: 

(P) max 

s.t. 

-Xj < 0 

• • + riNxN - j/i < Bi 

nN%N -y%< -Bi 

-Vi<0 

{ex + dy} = zP 

A\x + A\y < t 

A\x + A\y < b 

Mx + A\y < 0 
or, in full detail, 
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A\= p1 ••• pN A\ = 0 • • • 0 t = M 

- 1 - 1 - 1 0 ••• 0 -w 

-1 ••• 0 0 ••• 0 0 

: -1 : : 0 : : 

0 ••• -1 0 ••• 0 0 

A\= rn ••• r1N A% = -1 ••• 0 b = Bx 

: : : : - 1 : : 

r s i ••• rSN 0 . . . - l Bs 

- r u ••• r1N -1 -Bi 

: : : 0 - 1 0 : 

-rsi ••• -rSN 0 ••• - 1 -Bs 

A\ = 0 • • • 0 A\ = - 1 • • • 0 0 

: 0 : : - 1 : : 

0 ••• 0 0 ••• - 1 0. 

Among standard structural requirements for a fixed-income portfolio are that 
asset holdings satisfy minimum trade requirements and that specified levels of di­
versification be maintained. We can model these requirements with the following 
constraints: 

x e nt Ufc Fik 

Vj 

Vi 

Xj > djV 

0 < 4, < 1 
N 

^ d j ^ m 

3 = 1 

de nros Drs 

where m is the desired level of diversification and we have x G Plj Ufc Fik if for all j , 
Xj = 0 V Xj > v and d € n r Ua Drs if for all j , dj = 0 V dj = 1. 

3.2. Step-shaped programs 

The programs that correspond to the absolute deviation models share several 
family characteristics. First, auxiliary variables are introduced to represent the 
absolute value of the difference between portfolio and benchmark returns; second, 
there are constraints on the primary variables in which the auxiliary variables don't 
appear; third, the constraints in which both the primary and auxiliary variables 
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appear do not further constrain the primary variables; and, finally, the only con­
straints on the auxiliary variables alone are bounding constraints restricting their 
values to the non-negative orthant. We will call the primary variables portfolio 
variables and the auxiliary variables risk variables. 

These characteristics motivate the following definitions. 

Definition. Let R = {x € 5ftn : Ax < b} and let Dx + Ey < / be a system of 
linear inequalities. Then Dx + Ey < / is free for x € R if for every x € R3y >0 
such that (a;, y) satisfies Dx + Ey < / . D 

Let x e 5K+ and y 6 SR+. Consider the following linear program (P): 

(P) max {ex + dy} = zp 

s.t. A\x + A\y < t 

A\x + A\y < b 

A\x + Aly < 0. 

Definition. Let R = {x € 5ft+ : A\x < i). A program (P) is a step-shaped 
program if the coefficient matrix for (P) can be written as above and if, in this 
formulation for (P), (1) A\ and A\ are zero submatrices, and (2) the constraints 
A\x + A\y < b are free for x € R. D 

3.3. Decomposition for step-shaped programs 

The absolute deviation trade-off model produces large programs with two kinds 
of variables, portfolio variables and risk variables, so it seems useful to explore 
variable decomposition methods for these programs. Benders11 used a partition of 
the variable set to solve mixed integer problems. Van Slyke and Wets12 reported on 
a method called L-shaped decomposition, which is akin to Benders decomposition, 
for large-scale and stochastic linear problems. 

The form of the coefficient matrix for step-shaped programs is close to the Van 
Slyke and Wets description of L-shaped programs. The shape of the non-zero sub-
matrices we are considering differs from the L-shaped form, however, in that we 
need to explicitly consider the bounding constraints on y since we will be interested 
in dual multipliers for the constraints. In fact, our definition of free makes pre­
cise an informal property.12 We will first outline variable decomposition of linear 
step-shaped programs. 

3.4. Variable decomposition for linear step-shaped programs 

Let (P) be a linear step-shaped program: 

(P) max {ex + dy} = zp 

s.t. A\x + A\y < t 

A\x + A\y<b 

A\x + A%y < 0. 
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Let x £ U+ and y £ 5?+. Let mi denote the number of rows in ( A\ A \ ), let m2 

denote the number of rows in ( A\ A\), and let m3 denote the number of rows in 
( A \ A%). Then A\ is an mi x 5 zero submatrix, and A\ is an m3 x N zero submatrix. 

Let M = mi + m2 + m3, let u £ Sft̂ f and let 7r be a projection operator. Then 
tfi(u) = ui € »£», TT2(U) = u2 G K+2, and 7T3(u) = u 3 € 5ft^3. 

To carry out variable decomposition, we rearrange the constraints for (P), and 
write the program as 

max {ex + maxdy} 
{x>o}1 s/eG J 

G = {y£^s
+:A\y<t- A\x, A\y<b- A\x, A\y < 0} . 

Then by LP-duality, we can write (P) as 

max {ex + min{ui(i - A\x) + 112(6 - A\x) + U3O}} 
{x>o}1 ueJ1 v y ' v l ' " 

J={u£^ :MXA\+ xx2A\ + u3A% = d} . 

Notice that since A\ is a zero matrix, Ui = 7Ti (U) is unconstrained in the description 
of J. Since the constraints A\x + A\y < t are free for x € %tN, then if x is feasible 
for the constraints A\x < t, we can work in J', which is the projection of J, where 
J' = {u2, u 3 : u2A% + u3Al = d}. 

Therefore, since by weak duality dy < u2(6 — A\x) for all feasible x,y, and u2 , 
a program equivalent to (P) is the following one, where one continuous variable A 
is substituted for dy and is bound by the dual objective function value at extreme 
points of J'. Let H be an a priori bound for y. 

(MP) max {ex + A} = ZMP 

s.t. A\x < t 

|A| < dH 

A < ul(b - A\x) 

Vu* = ( u | , u 3 ) . 

Here u* is an extreme point of {u 6 3?™2+m3
 : u 2 A | + u 3 A | = d}. 

(MP) is the master problem for the variable decomposition reformulation of 
(P). The variable decomposition method for solving (MP) is (briefly) as follows. 
Assume R = {x € 3?+ : A\x < t} ^ 0. At the first iteration, solve the relaxation 
(MP0) of (MP) by dropping the constraints A < u2(6 — A\x) for all extreme points 
of J' from (MP). Let (a;0, A0) be the optimal solution. If we have 

(1) min{u2(6 - A\x) : VL2A% + u3Al = d, (u2, u3) > 0} > A0 
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then A0 = dy° is the optimal solution of the program 

(2) max{dy :Ajy>b- A\x°, A\y > 0} 

and (x°,y°) is optimal for (P). If 

A0 > min{u2(6 - A\x°) : u2AJ + u 3 A | = d, (u2, u3) > 0} 

then (a;0, A0) is not feasible for (MP) and we have a valid inequality (or cut) that 
can be added to (MP0) 

A < min{u2(6 - A\x) : \x2A\ + \13AI = d} 

to produce the relaxed master problem at stage 1, (MP1). 
At each iteration, this method either proves a point optimal or generates a cut to 

be added to the current relaxed master problem. (1) is called the dual subproblem 
(DSP(x)) and (2) is called the primal subproblem (SP(x)). 

Using this method, we replace (P) with a series of relaxations of (MP) and 
easier subproblems. Solving (P) is carried out by first solving a relaxation of the 
master problem (MPk) at stage k and then solving a subproblem (DSP(xk)) to 
obtain the extreme point that will figure in the test for optimality, and if this fails, 
in an inequality that is added for stage k + 1. In this way the relaxations of (MP) 
are progressively tightened. 

3.5. Decomposition for disjunctive step-shaped programs 

3.5.1. Disjunctive linear programs 

We give a precise definition of programs with disjunctive constraints. 

Definitions. A polyhedral set is the solution set for a finite system of linear 
inequalities, and a finite union of polyhedral sets is called a disjunctive set. A 
disjunctive set is defined by a disjunctive constraint and a disjunctive (linear) pro­
gram is the problem of maximizing (or minimizing) a linear functional over the 
intersection of a family of disjunctive sets. • 

Let UkFik be a disjunctive set for each i,i = l , . . . , n . Then the intersection 
of the disjunctive sets UkFik can be described by a logical formula in disjunctive 
normal form (DNF): Vh€Q(x € Kh), where \Q\ = JT^i Mi. If M{ = M, = M for 
i,j < n, then \Q\ = Mn. We shall call Kh,Vh € Q, a disjunctive feasible region, 
since Kh <~ n, U^ Fik V / i g Q . The set of vectors Uh^QKh is a disjunctive set. 
See Refs. 13 and 14 for a discussion of disjunctive linear programming. Benders 
decomposition11 was developed for mixed integer programs and involves decompo­
sition with respect to a set of "complicating" variables, that is, ones required to 
take on integer values. Linear subproblems are solved for a fixed integer-valued 
variable, and the optimal solution over all feasible integer values is found. An ac­
count of Benders decomposition can be found in Ref. 15. Hooker16 used Benders 

file:///13AI
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decomposition after expressing a problem with logical requirements as a 0-1 pro­
gram. Here, we will generalize Benders decomposition to disjunctive programs; i.e., 
we will solve linear problems with respect to variables required to take on values 
in certain disjunctive sets. Since each disjunctive set is denned by a "large" linear 
step-shaped program, we can then apply variable decomposition to solving each of 
these linear programs. Note that step-shaped programs are hereditary in the sense 
that adding constraints on x yields another step-shaped program. 

Assume we have a problem with the constraint set of the step-shaped linear 
problem (P), but with additional logical requirements for x. Assume also that 
these requirements can be represented by the condition x € fij Uj Fij where Fij is a 
polyhedral set for all i and j . Then the program below is a step-shaped disjunctive 
program. 

(L) max ex + dy 

s.t. A\x < t 

A\x + A\y < b 

A2
3y<0 

xGDi Uj Fij . 

Proposition 1. Let {(x, y) : (x,y) isfeasiblefor (L)} ^ 0. Then the program 
(L) is equivalent to the following formulation for Benders decomposition: 

(1) max {cx + mm{\ii(r — A\x) +112(6 - A\x) +U3O}} 
xZniUjFij u£j 

where 
J = {UG 5R35+W+2 . UiA2 + U 2 J 4 2 + u^2 = rf} 

Proof. We can write (1) as 

max G(x) 
xeriiUjFij 

where 
G(x) = cx + min{ui(i - A\x) + u2(6 - A\x) + u30} . 

u£ J 

For each fixed x, the linear program with G(x) as its objective function and con­
straint set {u € J } is dual to 

max ex + dy 

s.t. A\y <t — A\x 

A\y <b- A\x 

A2
3y<0. 

The result follows from LP duality. • 
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We shall express the linear program corresponding to each disjunctive region of 
(L) separately. For each Kh, we have a linear step-shaped program (Lh)-

(Lh) max ex + dy 

s.t. A\x < t 

A\x + A\y<b 

Ajy<0 

XG Kh-

We can combine the constraints A\x < t with the requirement x e Kh and rewrite 
the constraint set as Ehx < eh. Then we have 

(Lh) max ex + dy 

s.t. Ehx < eh 

A\x + A\y<b 

A2
3y<0. 

Since this is a linear step-shaped program, the previous discussion applies, and the 
full master problem for Benders decomposition of (Lh) is: 

(MLh) max ex + A 

s.t. Ehx < eh 

A < u2(b - A\x) 

for u2 = 7r(w*), where u* = (112,113) is an extreme point of the set {u £ sftm2+m3 : 

U2A2 + U3A3 = d}. The dual and primal subproblems are 

(DSPhx) min u2(b — A\x) + ex 

s.t. VL2A2, + U3A3 = d 

u>0 

(SPhx) max ex + dy 

s.t. A\x + A\y < b 

A2
3y<0-

Notice that the feasible region for the dual subproblem (DSPhx) is the same for 
every (Lh) and is in fact identical to the feasible region for the dual subproblem 
for the linear problem (P) which is a relaxation of (L). Let U be the collection 
of all inequalities of the form A < u2(6 — A\x) where (112,113) is an extreme point 
of (DSP). Relaxations of the full master problem (MP) contain a subset of the 
inequalities from U and relaxations'of (MLh) contain a subset of inequalities from 
U in addition to a subset of the inequalities that define the requirement x £ Kh-
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So the master problem at node n, where n is an ancestor of leaf h, is a relaxation of 
(MLh) and of (MP). We can test for optimality for any x 6 U^eQ-^/i both for some 
Lh and for (P). We also can use the fact that if a point x satisfies x € UheQKh 
and tests optimal for a master problem without disjunctive constraints at a node 
and therefore for (P), then this point must be optimal for (L). 

3.5.2. Combined depth-first search and decomposition 

The constraint set for each polyhedral set Kh has a linear step-shaped coefficient 
matrix and if i e { 1 , . . . , N} and j 6 { l M} there are MN linear step-shaped 
programs to solve in any exhaustive search of this problem. Since the number of 
programs is exponential in the number of variables with disjunctive requirements, it 
is necessary computationally to shorten this search. We will use a depth-first search 
among the disjunctive regions and interleave the steps of the search with the cut 
generation steps of Benders (variable) decomposition. The point of this interleaving 
is to use the decomposition algorithm to direct the search for the maximal objective 
function among the disjunctive sets, and to use the maximum objective function 
value of any disjunctive feasible set as a lower bound to eliminate branches of the 
search tree. 

Combined Depth-first Search and Decompositon 

Solve iteration of MLkCi)-> zk®, xk(i) 

a zvi) < lower bound? 
Yes 

Prune subtree at 
node. Backtrack to 
last unexplored node. 

-+\ Set k = k+l. If all 
nodes explored, done. 

/ G( Go to leftmost 
I unexplored child 

of node. Set; = 
1 j+1. If all nodes 
\ explored, done. 

No 

Solve ML k(i) to 

(Lower bound 
Backtrack to last 
unexplored node. Set 
t=it+J.IfaU nodes 
explored, done. J 
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In combined depth-first-search and variable decomposition, a solution is found 
at a node and then tested for disjunctive feasibility. If the solution is in one of 
the disjunctive regions, then it is tested for optimality at a node. If it does not 
satisfy the disjunctive constraints, then a new disjunctive set is branched on. If a 
point x satisfies the disjunctive constraints, there is some Kh such that x G Kh\ 
and whether this point is optimal for (MLh) or not, its objective function value 
can be used as a lower bound. Further, a problem at node n, (ML^) at stage k 
is a relaxation of (ML^+1) and all nodes descendent from it. So if a disjunctive 
feasible point is optimal for (ML^) then all children of (ML*) can be pruned; if 
the initial objective function value for (ML*) is less than the current lower bound, 
(MLn) and its children can be pruned. Further, if the candidate solution satisfies 
the disjunctive constraints, we can test it for local and global optimality at the 
same time, by checking if it is a solution to the global master problem without the 
disjunctive constraints. 

In carrying out combined decomposition and depth-first search, all of the dis­
junctive requirements are satisfied at a leaf; only some of them may be satisfied at 
a node. The algorithm is as follows: 

Stage 0: 

Let n = 0 , . . . , T index the nodes of the search tree. Set k := 0. Select the root 
node as the first node to examine. Set lower bound equal to —oo. Let (MLQ) be 
the full master problem at the root node. 

(ML°) max ex + X 

s.t. A\x < r 

A < u 2 ( 6 - ^ x ) . 

Solve MLQ(= P) to optimality, obtaining x* and z*. If x* is disjunctive feasible, 
then x* is optimal solution to disjunctive problem L. If x* is not disjunctive 
feasible, continue. 

Stage k (k > 0): 

(1) Solve the relaxed master problem (ML^) at node n to get (x£, A*) and the 
relaxed objective function value z*. If z£ > lower bound, go to (2). If z* < 
lower bound, go to (3). If (ML^) is infeasible, go to (3). 

(2) Solve MLn to optimality, obtaining z**,^*. 

(a) If z** < lower bound, then go to (3). 
(b) If z** > lower bound, then test if x%* is disjunctive feasible. 

(i) If a;** is disjunctive feasible, then if z£* = z*, the optimal solution 
to M L Q , then x%* is optimal and we're done. If z£* < z*, then z** 
is new lower bound. Go to (3). 
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(ii) If x%* is not disjunctive feasible then go to leftmost unexplored 

child of node. Set n = n + 1. If all nodes have been explored, stop; 

current lower bound is optimal. Else, go to (1). 

(3) P rune subtree a t node m. Set k := k +1. Backtrack to last unexplored node 

m. If all nodes have been explored, stop. The lower bound is optimal. Else, 

go to (1). 

P r o p o s i t i o n 2. Assume that the linear relaxation (P) of the disjunctive pro­

gram (L) is feasible. If (L) is feasible, then the algorithm combining variable de­

composition and depth-first search will terminate with the optimal solution. If (L) 

is infeasible, then the algorithm will end with no solution. 

Proof . If no nodes are pruned in the search for the optimal solution to (L), 

then all MN leaves in the search tree will be explored and the optimal objective 

function value will be found for each disjunctive feasible set. In this case, the 

algorithm clearly terminates and the optimal solution is the best objective function 

value found at a leaf. Since any nodes pruned by this algorithm achieved relaxed 

objective function values strictly less than the current lower bound, and since any 

parent node is a relaxation of its descendents, leaves which contain opt imal solutions 

are not removed. Therefore, the algorithm will terminate with the optimal value. 

However, if there is no feasible solution to (L), then every master problem at 
a leaf is infeasible. This infeasibility may be detected a t a node higher up in the 
search tree, in which case the descendents of this node will not be explored. But 
since every disjunctive region is considered, the algorithm will te rminate with no 
solution. • 
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