San Francisco State University ECON 702 Michael Bar Spring 2015

Matlab Basics

- 1. Matlab interface
 - (a) Command window
 - (b) Workspace window
 - (c) Choosing current directory
 - (d) Matlab Toolboxes
 - (e) Matlab Editor
 - (f) Matlab Help
- 2. Basic operations with numbers
- 3. Creating grids and arrays
 - (a) x = 1:2:10 (creates a vector of numbers [1,3,5,7,9])
 - (b) x = [3, 12, 0; 7, 11, 13; 6, 6, 6] (creates a matrix)
 - (c) x = linspace(a,b,n)' (n equally spaced numbers between a and b)
 - (d) ; suppressing display

```
(e) Plotting vectors:
```

```
x = -10:10;
y = x.^2; plot(x,y)
title('Quadratic function f(x) = x^2');
xlabel('x');
ylabel('y')
```

4. Matrices

- (a) Creating special martrices: zeros, ones, rand, randn, eye
- (b) Subscripting

A(i,j) is the element in row i column j of matrix A A(i,end) is the last element in row i of matrix A

- A(end, j) is the last in column j of matrix A
- (c) Vectorizing ":", the colon operation
- (d) Deleting rows or columns
 A(3,:) = [] (Deletes the 3rd row of matrix A)
 A(:,5) = [] (Deletes the 5th column of matrix A)

(e) Matrix arithmetics: transpose, multiplication by constant, matrix multiplication (matrices must conform)., inv, element-by-element multiplication (matrices must be of identical size)

```
A', A*B, A.*B, inv(A)
```

- (f) Important functions for data: min, max, mean, sum, cumsum, cumprod.
- 5. M-files (programming in Matlab)
 - (a) **Scripts.** A script is a program, a series of matlab commands. Here is an example of a program that simulates productivity shocks. The total factor productivity, A_t is assumed to be generated by the following probability model:

$$A_{t+1} = (1+\gamma)^t A_1 e^{z_t}$$

where $z_{t+1} = \rho z_t + \varepsilon_t, \quad \varepsilon_t \sim N(0,\sigma)$

Thus, z_t is an AR(1) process. Notice that

 $\ln(A_{t+1}) = \ln(A_1) + t\ln(1+\gamma) + z_t$

Therefore, this model of TFP is consistent with the data, in that it exhibits a constant growth rate of γ on average, and fluctuates around the trend. For practice, write this program into a matlab file and make sure you understand how it works.

	ditor - C:\Documents and Settings\mbar\Desktop\ECON700spring2008\Matlab\Exercises\Example1.m
File	Edit Text Go Cell Tools Debug Desktop Window Help
D (🚔 📕 🕉 ங 🛍 🖙 🖙 🎒 🚧 🖛 <table-cell-rows> 🗲 🛃 🗐 🏝 🗊 🗐 🏭 Stack Base 🗸</table-cell-rows>
0	*# ⊑
1	<pre>% Example1.m is a script (program written in Matlab language). This program</pre>
2	% simulates a time series of productivity shocks, A, that can be used in
3	% business cycle models. Notice that Matlab does not read the comments that
4	% follow after the % symbol. These comments are for clarity. Use as much of
5	% these explanatory comments as possible
6 -	clear all; %Clearing everything from the memory
7 ·	- close all; %Closing all the figures
8	\$*************************************
9	% Step 1 - Initial values *
10	÷*************************************
11 .	
12 .	
13 .	
14 -	
15	\$*************************************
16	% Step 2 - Simulating time series of productivity * &***********************************
17	•
18 · 19 ·	
19 · 20 ·	
20 21 ·	
22 .	
23	
24	% ************************************
25	% Step 3 - Protting the figures *
26	÷*******
27 -	- years = (1930:1:2000)';
28 ·	- figure(1)
29 ·	- plot(years, A)
30 ·	 title('Simulated Productivity Shocks')
31 -	- xlabel('Years')
32 -	- ylabel('Total Factor Productivity')
33	
34 ·	
35 -	
36.	
37 ·	
38 -	<pre>- ylabel('ln(Total Factor Productivity)')</pre>

Experiment with different simulations when you change the values of ρ and σ .

(b) **Functions.** A function is an m-file that can be used and reused as an intrinsic Matlab function. For example, the next function computes the roots of a quadratic polynomial of the form

$$ax^2 + bx + c = 0$$

We know from math that in general there are two roots (solutions) to this function:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

The general structure of a function is

$$[outputs] = functionname (inputs)$$

In the next example, the inputs are (a, b, c), i.e. 3 numbers, and the output is $[x_1, x_2]$, the roots of the quadratic. For practice, write this function and compute the roots of

$$x^2 - 1577x + 606726 = 0$$

Type in the command window: [x1, x2] = quadraticmichael(1,-1577,606726). It is important that you understand the structure of functions and how they are used.

