» 5.1 INTRODUCTION

Kinematics is defined as that branch of science which deals with motion o particles withoul

considening the forces causing the motion. The velocity at any poiat in o ilow iield at any time 1S

studied in this branch of fluid mechanics. Once the velocity 1s known, then the pressure distnbution
and hence forces acting on the fluid can be determined. In this ¢hapter, e methods of determining

velocsty and acceleraton are discussed.

velocity, acceleration, density, elc., are
tion, pressure, density etc, are described st a point in flow ficld. The Eulerian method 1s couunonly

used m flimd mechanics.

» 5.3 TYPES OF FLUID FLOW

The fluad flow 1s classitied oy
(i) Steady and unsteadv flows ;
(if) Uniform and non-umiorm flows ;
(iif) Laminar and turbulent flows ;
(iv) Compressible and incompressible flows ;
(v) Rotational and iurrotational flows ; and
(vi) One, two and three-dimensional flows.

5.3.1 Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid
characteristics like velocity, pressure, density, etc., at a point do not change with ume. Thus t

steady flow, mathematically, we have
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Jnitorm and Non-uniform Flows. Uniform flow is defined as that type of flow in
Wity al AN\ iven ame t't\‘S ot ch:mgt* \\'I(h I'l.‘S]‘(‘Cl O SPAace (1e l¢ ngth of Jdin COon ol
Mathematically. for uniform fNlow
o\
1 = 0
' L

o siand
"W = Change of velocity
l a‘i.;lh of tiow 1N the tilll‘fllﬂn S,

mitorm flow 1s that i pe of flow 1in which the \'clmily at any given e -.‘h;mgcs with respect
Dace Thus mathemat:ically. for non untform flow

- _—
o\

03

2 ()

\ - ‘-!'ﬂl

3.3.3 Laminar and Turbulent Flows. Laminar tlow 1§ dedined as that type of flow in which

e tlad particles move along well-defined paths or stream Tine and all the stream-lines are straight and
paralicl Thus the particles move in laminas or layers cuding sivoothly over the adjacent layer. This
vpe of flow 15 also called stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid

Calied the Reynold number.
where D = Diameter of pine
V' = Mean velocity o. Tow i pipe
and V= Kinemat' . . <casity, Of fluid.
i the Reynold numbe. < less than 2000, the flow is called laminar. If the Reynold number 1s more

than 4000, 1t 1s called turbule * flow. If the Reynold number lies between 2000 and 4000, the flow may
be lamanar or turbulent.

3.3.4 Compressible and Incompressible Flows. Compressible flow is that type of flow in

which the density of the fluid changes from point to point or in other words the density (p) 1s not
constanit for the lmd. Thus, mathematically, for compressible flow

P # Constant

Incompressible flow 1s that lype of tlow in which the density is constant for the fluid flow. Liquids
are gemerally incompressible while gascs are compressible. Mathemaucally, for incompressible flow
P = Constant.
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3.3.5 Rotational and lrrotational Flows. Rotatioral flow is that type of flow in which the
(Huid particles while tlowing along stream-lines, also rotate atout their own axis. And if the fluid

particles while Howing along stream-lines, do not rotate abcut their own axis then that type of flow 14

Called trmotational tlow

5.3.6 One-, Two- and Three-Dimensional Flows. Ome-dimensional flow is that type of
(low in which the flow parameter such as velocity 1s a function of time and one space co-ordinate only,

vay « For a steady one-dimensional flow, the velocity 1s a function of one-space-co-ordinate only. The
vanation of velocities in other two llllllllil“y pcrpcndicular directions 1s assumed ncgllglhlc Hence
mathematically, tor one-dimensional flow

u=fix),v=0and w = ()

where u, v and w are velocity components 1n x, y and z directions respectively
' wo-dimensional flow 1s that type of flow 1in which the vedocity 1s a function of tme and two

rectlangular space co-ordinates say x and y. For a steady two-dimensional flow the velocity is a function
of two space co-ordinates only. The vanation of velocity m thz third direction i1s negligible. Thus,

mathematically tor two-dimensional flow

Three-dimensional flow is that type of flow in which the velocity i1s a fuaction of time and three
mutually perpendicular directions. But for a steady three-dimensional flow the flnd parameters are
functions of three space co-ordinates (x, y and z) only. Thus, mathematically, for three-dimensional

{tlow

u=filx,y,2),v=[folx,y, z)and » = {.(x, y, 7).

» 5.4 RATE OF FLOW OR DISCHARGE (Q)

It 1s delined as the quantity of a fluid flowing per second through a section of a pipe or a channel.
For an wncompwessible fliud (or hquid) the rate of flow or discharge is expressed as the volume of fluwd
tlowing across the section per second. For conpressible flisds, the rate of flow 1s usually expressed as
the weight of flnd flowing across the section. Thus
(i) For liquids the units of Q are m'/s or litres/s
(1{) For gases the units of ¢ s kgi/s or Newton/s

Consider a hiquid flowing thiough a pipe in which
A = Cioss-sectional area of pipe
V = \veruy e velocity of fluid across the section

Then discharge () =W -l

LA

» 5.5 CONTINUITY tQUATION

I'he equation based on the principle of conservation of mass is called continuity equation. Thus for
a fluid flowing through the pipe at all the cross-section, the quantity of fluid per second 1s constant.
Consider two cross-sections of a pipe as shown in Fig. 5.1.
Let V, = Average velocity at cross-section 1-1
P, = Densaty at section 1-1
A, = Area of pipe at section |-]
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and Vi, pa, Ay are corresponding values at sechon, 2-.

'hen rate of {low at secthhon |1 DAY,

Rate of tlow at section 2/ DALV, OIRECT ()-4'““1{“

\ccordmg to law ol conservation ol muass OF FILOW

Rate of flow at section |- ] Rate of .ow at secton 2-2 hni
w PV = ALY, ke d) O

Lquation (5.2) 1s apphicable to the compressible as well as incom: Fig. 5.1 Fluid flowing through
pressible thads and 1s called Continuity Equation. If the fluid is in- '

compressible, then p,o= p,y and continuity equation (5.2) reduces to

f"l\fl ‘A,"),‘ .(53)
Problem 5.1 /he diameters of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Find

the discharge through the pipe if the velocity of water flowing throvgn the pipe at section 1 is
/s Deternune also the velocity at section 2.

Solution. Given |

At section |, D= 10em = 0.1 m L, /’(ﬁ—

Al :;-[ (,)l?) :: (l)z == 0()07854 l]az -\ :-—!'Di::)cr" Dz=15cfn
|

V, = 5 nv/s. |

Al section 2, _l)) = Jocm=0.15m
A, =L (15)" = 001767 m’ Fig. 5.2

(1) nscharge through pipe is givea by equation (5.])

OFr Q-Al X V|
= 0.007854 S =< 0.03927 m’/s. Ans.

Using equation (5.3), we have A,V, = A,V,

L AV,  0.007854

(u) .. vV ~L. X o4
= 4 Tooner T emEiieve. Ams.

Problem 5.2 A 30 cm diameior pips. conveying water, branches itto two pipes of diameters
20 cm and 15 cm respectively. If the average velocity in the 30 ecm diameter pipe is 2.5 m/s, find the

discharge in this pipe Al.o detesmine the velozity in 15 em pipe if the average velocity in 20 cm
diameter pipe is 2 m/s.

Solution. Given :
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== (157 =.:_:. x 0.225 = 0.01767 m’
4

Find (i) Discharge in pipe 1 or O,
(ii) Velocity in pipe of dia. 15 ¢m or V;

Let Q,, O, and Q, are discharges in pipe 1, 2 and 3 respectively.
Then according to continuity equation

Q=0+, (1)
(1) The discharge Q, in pipe 1 1s given by

0, =A,V, =0.07068 x 2.5 m’/s = 0.1767 m°/s. Ans.
(1i) Value of V,
Q, = AV, = 0.0314 x 2.0 = 0.0628 m’/s
Substituting the values of ¢, and O, n equatian ()

0.3767 = 0.0628 + (),

Q:=0.1767 - 0.0628 =0.1139 m'/s

Bm 0. =A,x V,=001767xV, or 0.f139=0.01767 x V,
1136
-‘- V — B —‘““
> 0.01767 e

Problem 5.3 Water flows throngh a pipe AR 1.2 m diameter at 3 m/s and then passes through a
pipe BC 1.5 m diameter. At ( the pine brancies. Branch CD is 0.8 m in diameter and carries one-
third of the flow in AP The flo.. velucity in branch CE is 2.5 m/s. Find the volume rate of flow in
AB, the velocity in BC, the vew ! in CD and the diameter of CE.

Solution. Giv‘:en |

Diameter of pipe AB, Dyp=12m
Velocity of flow through AB, V,, = 3.0 m/s
Dia. of pipe BC, Dgr=15m

Dia. of branched pipe CD, D, ,=0.8m
Velocity of flow in pipe CE, V.= 2.5 m/s
Let the flow rate in pipe AB=Qm'ls
Velocity of flow in pipe BC =V, m/s
Velocity of flow in pipe CD =V ., m/s




Flund Mechanics

e e = ——— e ——

Veg= 2.5 m/sec
Fig.5.4
| 1ameter of plpﬂ CE = DCE
Fhen flow rate Lh!Ul.lgh CD . Q/3
.
and flow rate through CE=0Q-00 = _"3._

(1) Now volume flow rate through AB = Q = V,, X Area of AB
= 3.0 x .;5 (Dyp)* = 3.0 x 14‘- (12)* = 3.393 mYs. Ans.

(1) Applying continuity equation to pipe AB and pipe BC,
Vag ¥ Area of pipe AB = V- x Area of pipe BC

o8 3.0 x45 (Dyp) = Vor x; (D)’

30 x (1.2) = V- % (1.5)°

V._--3—XE!L2—: = 192 m/s. Ans.

(111) The flow rate throngh pape
m-m:

3 |

-3 o 1931w

) T
V. ., % Acca of pipe CD xl‘:- (Dep)’

0

p

§ | l;l}‘ = “"CD )(-;- X 0.82 = 0-5026 VCD

L131]
V.. = = 2.25 m/s. .
2 = 05026 Ass

(iv) Flow rate m‘h CE.
0,=0 -0, =3.393 - 1.131 = 2.262 m’/s

0, = V. x Area of pipe CE = VCE; (D)’

o 2263 = 2.5 x-;- % (D)
O D(‘E = 2—2—‘2}—& -—-41.152 = 1.0735 m

25%Xx
I hameter of pipe CE = 1.0735 m. Ans.

. T e ——— R, . e Wy o A A e . L
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Mass density x Q= p X A, x V,
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o SO0 x 0UMD - 0 ks = 132,23 kg/s. Ans.
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Va=y12° =2 981x 4.5 = 144 —8829 = 7.46 m/s
Now applying continuity equation to the outlel of nozzle and at point A,
wWe el
AV, =AYV,
"D xV
AV, 4“1 "N axi0025) X 12
O A, - = e -*—--:--L-(-———-— ) = 0.0007896
V, V, 3 X 7.46
el /), = Diameter of jet at point A.
n ) ~
Then A, == D, or 0.0007896 =~:4’f x D,
0.0007896 x 4
)y =, | = (0.0317 m = 31.7 mm. Ans.
It

> 5.6 CONTINUITY EQUATION IN THREE-DIMENSIONS

Consider a fluid element of lengths dx, dy and dz in the direction of x, yand z. Let u, v and w are the

inlet velocity components in x, y and z directions respectively. Mass of fluid entering the face ABCD
per second

= p X Velocry m x-direction X Area of ABCD
=pXuX(dyxdz)
d
Then mass of flusd leaving the face Mpcrscmnd:pudvdz~+$ (pu dydz) dx
Gain of mass in x-direction

> e (pu) 4x dvdz
Ix

Similarly, the net ;o in oi nass 10 y-direction

= — -—Q— (pl-') dXdVdZ
dy

d
and in >-direction S (pw) dxdvdz

Fig. 5.6

2 (pu)+ 2 (o0)+ 2 ow) | du
}

9z

Net gain of masses = —| —
£ dx

Since the mass is neither created nor destroved in the fluid element, the n_et Increase of mass per unit
tume 1n the fluid element must be equal to the rate cf increase of mass of fluid 1n the element. But mass
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of Nlusd in the element 18 P dx d\ d: and its rate of mcrease with tume lS'é-; (p dx d_\ dz) &

O @.._gp.)+_§-(p;)+—(pu) 0 [Cancelling dx.dy.dz from both sides] ...(5.3A)

o @ ox
Equation (5.3A) is the calmi’ty equation in cartesian co-ordinates in its most general form. This
equabon 15 apphcabile 0
(i) Stcady and unstcady flow,
(1/) Uniform and son-umform flow, and

(11/) Compresuble and incompressible fluids.

meadyﬂo".%=0-dhmcem(sy)m:@.
d d d
hedll S8 R4 ... - 9 e S
&Ip-) &.-"’"*az“’" 0 (5.3B)
If the fluad 15 imcompressible, thea p 1s constant and the ah~ve 2guatii becomes as
du oOv oOw :

“M-m-iﬁm&m tor a two-dimensional flow. the com-

cylindncal polar co-ordamages (o 7. &, ° m-u)uhwedbyﬂrpncndmegwmbelow
Consider 2 two-damensson”{ mo. “ores. e flow field. The
two-damensional polar co  din. s are - and 4 Coasider a flud
clement ABCD beorween th, —adh, -~ and r + dr as shown
Fig S7. The angle . o ““ S clement a2 the centre 1s d9.
The componcots of . velocity V are &, m the radial direction
and ug in the tangeatial o ~ction. The sades of the clement are
having the icagths a5
SdcAB=rdl BC =dr DC=(r+dn)d8, AD = dr.
The tuckness of the clesnent perpendicular to the plane of
the paper 5 assumed 10 be amty.
Comgsider the flow n radial direction
Mass of wd csterng the face AB per unst ume -
= p x Velocaty m r-darection X Area ’

.a_lh_*m uf+ él'__m-
@ ¥

U.‘f‘

or
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\& X | i Area AN X Thickness ) = )
rdt X 1) = P . W rdtd

C { (AN

D X Velocity X Area

Ju '
— dr | X (CD x 1) (‘' Area= CD x 1)

.-

=p Xl u, + —dr | X(r + dr)d® [ CD = (r = dr) d9)

du_ ou, _~
=pXju Xr+udr+r——dr+—=\dr) | d9
dr ar

A

Ju
=plu, Xr+u Xdr+r—=.dr|d®
| ()r

-

(The term containing (dr)” 1s very small and h.s been neglected)

Gain of mass in r-direction per unit ume
= (Mass through AB - Mass through CD) per vait 1ime

<
=P. u,. rd9 - p[u,.r+ u,.dr+r f?—'-{' .er B¢
[ , A
=p.u,.rdo—-p. u,_r. dO- Pl 4. At ;.drjl do
| v
.-:-p{l,.dr-l-rf%;- ar . Jdd
e ] ( ['his 18 written 1 ¢us form becanse
=_p[i+d“], dr. v (r-db. dr. 1) 1s equal (0 volume of
Lr or element]

Now consider the flow n O-directior

Gan in mass in 6-direction 7 °r ur . “me

-~ ‘Mass “oug” BC - Mass through AD) per unit fime -

(.- Area=drx 1)

[Multiplying and dividing by r]

Q_'f_!_ rd® . dr
0 :

~(3.54)
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Bu: mass of fluid element = p X Volume of fluid element

=p X [rd® X dr x 1]

=pXrdO.dr
Rate of increase of fluic mass in the element witt time

d
=é—t-[p.rd9.dr]=%$. rdQ dr .(5.5B)

(" rd® . dr . 1 is the volurme of element and is a constant quantity)
Since the mass i3 neither created nor destroyed in the fluid element, hence net gain of mass per unit

time 12 the fluid element must be equal to the rate of increase of mass of fluid in the element
Hence equating the two expressions given by equations (5.5 A) and (5.5 B), we get

—p[ﬁ+au’jl r.dr.de—pgu—e-rde‘dr __a_P_ rd0 dr

A > R e
or ~ p[f—t—i + o = QR |Cancelling rdr . d® from both sides)]
AR ot
ap u, u
or — +p| —+—= = )
ot p[ r or
Equation (55 C) is the continuity equation in polar co-ordinates for two-dimensional flow.
%, .
For steady flow 59- = 0 and hence equation (5.5 C) reduces to
t

or

AS5.5D)

Equation (5.5 D) represents the continuity equation in polar co-ordinates for two-dimensional steady
incompressible flow.

Problem 5.5A Examin- whether the following veiocity components represent a physically possible

flow ?
u,=rsin0, yg=2r cos 0.
Solution. Given : u, = rsin 0 and uy = 2r cos 6
For physically possible flow, the continuity equation,
-.:(?- (ru,) -r-—a— (i4g) = O should be satisfied.
Ir 00
NoAa u,=rsinb
Muluplying the above equation by r, we get
| ru, = r* sin ©
I i ——
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i nifesentiating the preceding equation w.r.t. r, we get

-

¥y "
-~ (ru,) = — (r° sin 0)
ar aor
. s : .
= 27 sin 6 (.- sm 0 1s constant wrt r)
"o ug = 2r cos 0

i nilerentistmg the above equation w.r.t. 6, we get

J d
ji_; fua):-éé-("rcose)

=2r(—sin 6) i
=-2rsin® |
o d . .
> *m_;*-,_;; {uq) =2Zrsm0O-2rsinf=0
rience the comtineity equation is satisfied. Hence the given velocity comprnents represent a physi-

L
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» 5.7 VELOCITY AND ACCELERATION

L1 V 15 the resultant velocity at anv point in a fluid flow. Let 1. ¥ afid v are 1ts component in x, y and
Grections. The velocity components are functions of space-co-ordinatcs and time. M
TE SOOIy COmPpOREDis are given as -
u=flrvz1) e
.;'ﬁr. > j_“

"f:u-y.z.t)
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the rate of increase of velocity with respect to ime at a given pownt i 2 flov ae.” .

| h :
by (3.6), the c\pn:s.smn%- é}- or 1&— s known as local acceleratior

ot
Convective acceleration 1s defined as the rate of change of v='\ v due . the change of posaon of

fluid partcles in a thnd tow. mwmmé’— -?—b PN i- O gl (D0 ES LawT
o% ™ ._

Problem 5.8 The welacay vecior ia a flw”

.

Fmdﬁevdoav-dmdaﬂprﬂda I 3)atmes= 1L

Solution. The velocity compoaonts . v and « e N =41, ¥=— O ww=2r
Forthepomt (2, .3\ wehavw r=_ v=1landz=3ammer= L
Hence velocity compoge” 's at .
<
3
"
Yelooity veciotal (Y

Resultam =locity =

Acceleration is given by eguation (5.6)
du  Ou

a NPy P

g ax ay

U—+V—+ W

av




—::ll, 0—-—0&11(1——- O
A l a}’ 07 ot

:_)r = - 20xy, — o dieh - 10", ———0?-1-’- 0
X 8y 07 ot

()H aw aw aw
-=0, —=0,—=0 and — = 2.1
t).l a}’ 07 ot

Substituting the values, the acceleration components at (2, 1, 3) at time ¢ = | are
a, = 4x (12x°) + (- 10x%y) (0) + 2t x (0) + 0
= 48x" = 48 x (2)° = 48 x 32 = 1536 units
a. = 4x (- 20xy) + (- 10x%y) (= 10x*) + 2£ (0) + O
= - 80x"y + 100x"y
=~ 80 (2)* (1) + 100 (2)* x 1 = — 1280 + 1600 = 320 units.
a, = 4x (0) + (= 10x%y) (0) + (29 (0) + 2.1 = 2.0 units
Acceleration 1s A=ad+aj+ak=1536i + 3ZOJ +2k. Ans.

=1/(1536) +(320)° + (2)__ units

.,[ + 102400 +4 +4.= 15689 anits. Ans.

Problem 5.7 Theﬁ:ummgcuses rqmmrhe Mavdocaywmdﬁamﬂam
ptwojwtawwndla\mm v the contimuly equation : ROV € TWISORI
(1) u=r+}"+.., .v-::f _ -4-1} b e e
(ii) v=2y, w=2ny A v M
Solution. The continuity equation {or incompressible fluid is given by __ o RIS B
du dv Jw L G

i - | TE 4. - 'l
’ g™ " i k B
TRy s T ol
- — .*__‘ir- o ' L
SR + o T —— — -1' ) : ko y _‘.' I '..L

dx dy 0z ; "‘?"';_'.,..'--:"?-I;?" g
Case L. TN }2 + 7 |

Resoltant

2 .
=X =YXy s

du dv

Substituting the values of — and — in continuity equation.

0x dy

2+x+gi = {)

dz
ow

Or .

dz

2x + 2xy -




or

Substituting the values of 2

du

ox

satisfied.

Integration of both sides gives | dw = J(-—- 3x— 2xy = :z)

W= (-—- 3xz -
-
-

— and

+4v+ v=0

For a case of possible steady incompressible fluid flow. the continuity equation (5.4) | Hos

dz

3
2xyz + :;‘-] + Constant of integration,

where corstant of integration cannot be a function of z. But it can be a function of x and v that is £ (x, ¥).

-
[—31:1- 2xyz + %—-] + (X, ¥ Ans.

av
= 2y* — = 4y
av
= 2Xy2 i = 2xy
. a;: .
ow R .
& In continuity equation, we get

"

w=—2xyz~ ¥y

+ |
L
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.'lt‘l'h L the velooiny [y l - - r
Velocity at (2, 1L ¥

Substituting the yvalacs

and Resultant velocin =J4" 2+ ¥ a -2

\cceleration at (2. 1. 3)
| he acceicrabon cnmp‘rm‘nh g & and a Jor Siain fioe 3%

Acceleration

|
R
+
-

4

-
.

. e
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« J15922 = 126.18 units, Ans,

which converges uni
ety eleration at the middie of a pipe Ormiy
Problem 5.9 /ind the convechive acce

er 2 oth The rate of flow is 20 liv/s. If the rate of flow
from U4 m diamelter 1O (} : m diameler ove r«m h""}.‘h I »

E formly from 20 Vs to 40 Vs in 30 seconds, find the total acceleration al the miuddle of the
CARINCES RgeT I . ' | .

‘Ij‘f 1 f“”f \t i I'”I{

Solution. Cuven ﬁ
| hameter at section 1, “' =004m. D; =02m,L =

0.001m" = 1000 cm’
Find (1) Convective acceleration al middle i.e., at A when Q = 20 /s
(D) Total acceleration at A when Q changes from 20 Us to 40 /s in 1‘() seconds
Case 1. In this case, the rate of flow 1s constant and equal to 0.02 m'/s. The velocity of flow s i

v-direction only. Hence this 1s one-dimensional flow and velocity components ini y and z directions are

seroOrve () 2 =0

2m, Q=200s= 0.02 m'/s as one litre

du
Convective acceleraton = u’é'; only (1)
_. du | :
| et us find the value of u and -:)--- at a distance x from inlet
dx
he diameter (D,) at a distance x from inlet or at section X-X is given by,
0.4-0.2
D, =04- 5 Xx
={04—-0.1 x)m
The arca of cross-section (A ) at section X-X is mivep by
it L
A= —Dr=—id -01 2
A W b
Velocity () at the section X-X m terms o () (Le.. m

R R v N e e a————————
. AL EDz (04 -0.1x)
o

4

1.273Q 4
= 04-0102" 1273 Q (0.4 - 0.1 x) “ m/s
vl 2 .
o find FY we must differentiate equation (i) with respect to x.
oX
J J r
W e (127790 04-01 5"
ox X
=1273 0 (-2) (04 - 0.1 x)"' x (- 0.1)
- 0.2546 Q (0.4 - 0.1 x)™'
Substituting the value of v and %ﬁ in equation (i), we gel {
Convective acceleration = [1.273 Q (0.4 - 0.1 x)?] % [0.2546 Q (0.4 ~ O.I
: = 1273 x02546 x 0* X (0.4 - 0.1 x) =

s ¥
el

N e TR R o R LT T B TR -.-.I—'-—_r-. e s = - 1§




.-:'p-'ql-
‘
-

: y ARY » 04 -0 5

sleration af the mudidle (olene 2 = 1 W

" _:_""' s B 2500 » WA 4 -01 » 15" ms’
| 273 = Q25606 » ARy x 0.3)” mi'
= m -*‘ Aan
When () changes froms 0.00 o'/ to 006 'l a0 30 seconds, find the total accelerstion
" ..: vy onds

| aon = Convective acelieraiion o Lacd asodieration @ 1 = 15 seconds
Me rate of flow at r = |5 seconds & poes ™

w 15 winene O, = D06 m'ls and Q, = 002 m'M

=002 el ¥ 15= 03 m'hs

ou . ‘ .
The velocity (u) and gradient (;; m ferms of Q@ we pver h eguabons (1) an (si ) respectively

A

e

- Convective acceleration = i =
. |
:[[_:7}(2{“[&—*‘13:f""}l’”“‘\-‘hQ‘(JxwOl.l' '

= (I3 =26 Q" «~4- O .

WWQ*Q::&B-‘AM;:: o
=123 x5V : W VA‘ -1 x1y

—divy

—— o H) ol - QI'
= AR B X T — g —
“1 - ﬂ} B

= DS muy
Hence adding equations (v) and (v), we ger oo scosioranon

- Total acceleration = Convernve accefemnon « Locdl acocleration
M - DMNET = 2023 mis. Ame



B O3 mm&n U

> 5.8 VELOCITY POTENTIAL FUNCTION AND STREAM FUNCTION

5.8.1 Velocity Potential Function. 1t is delined s o soalar fumction of space snd e sach

that its negative denvative with respect 1o any direction gives the Nukd vebooity in that direction & &
defined by @ (Fh) Mathematically, the veloosty, potential is defined st ¢ » FLe, . 1) lox weady Do

such that
N
R
dh
V.- :: 59
gty
RE

where &, v and w are the components of velocity in «, v and  directions respectively

The velocity compaoner ts in cylindncal polar co-ardinates in terms of velocits  otential function are
given by

| N

B =
r o8
u, = veloaity component in radial direction (i.e. = o ¢/ ect
iy = veloory component n tangential dureccthion (e - a0 8 Jyecton )

d
-+ -
av

L A
.

A o

If any value of ¢ that satisfies the Laplace equation, will correspond o some case ¢
Properties of the Potential Function. The rott tonal components * B

(1): g *l [_(?l‘ du

2 ().l ()\‘

are given by

M

B e —

S ——— T e N — =

Please, rtfcrfm equation (5.17) on page 192
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Fig. 5.57
(if) 0 =AYy =~ (3% 25=0.176 m'ls
But
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