
Analyzing JavaScript for Security

Risks through Malware Ads

Chris Frisz

Brennon York

Thiago Rebello

Outline

 Introduction

 Identifying ads

◦ Ad block survey

◦ Analysis of ad blocker effectiveness

 Browser implementations

◦ HtmlUnit

◦ Firefox

 Data analysis

 Future work

 Conclusions

Introduction

 Goals

◦ Develop a behavior-based algorithm to

identify advertisements on web pages

◦ Proactively block privacy-violating ads without

the need for black lists.

 Steps taken

◦ Developed ground truth for advertisements

◦ Instrumented two web browsers

ANALYZING ADS

Presented by Thiao Rebello

Related Work

 Automatic Ad Blocking: Improving

AdBlock for the Mozilla Platform

 An Effective Defense against Intrusive

Web Advertising

 Phinding Phish: Evaluating Anti-Phishing

Tools

Adblock Plus

◦ Perhaps the most famous ad blocker out in the

web

◦ Blocks scripts, images, background, stylesheets,

objects, xml-http requests, documents, element

hiding

◦ Works through use of blacklists

◦ Lots of publicly available lists

 EasyPrivacy and Fanboy’s are most famous

 Contain over 10,000 filters

Adblock Plus (Cont.)

◦ Users can choose what content to block

◦ Rules:

 Wild cards (“*”) allow for matching before or
after part of a URL or directory

 “@@” define exception rules to prevent
mismatches with certain filters

 The “|” sign lets users choose where Adblock
should match the expression, being in the
beginning or end of the filter

 Two “||” allow for matching against anything at
the beginning of a domain name

 Other rules include separator characters such as
“^”

Ghostery

◦ Developed in a joint effort by online

advertisement companies

◦ Also uses blacklists to block content

 Content from ad providers is automatically

blocked

 No special rules

 Users have no interaction and cannot choose

to block or hide content

◦ List currently contains 504 subscribers

Ad Muncher

◦ Commercial software available for a fee

◦ Also contains a list of filters, but each filter

contains one of the following set of actions (for

example):

 Remove links to URL

 Remove all popups from URL

 Remove divs/spans with text

 Remove forms with text

Ad Muncher (Cont.)

◦ Provides browser interaction to allow users to

block and hide content

◦ Intercepts winsock calls in memory and

redirects traffic through itself

 No browser configuration needed

 Fast, easy and efficient

IE9 Tracking Protection

◦ Two ways to block content

 Subscribe to lists

 Automatic blocking

◦ Users cannot develop their own filters

◦ Users cannot choose content to block

◦ No implementation of regular expressions

IE9 Tracking Protection (Cont.)

◦ Rules:

 The first line in each list contains a “msFilterList”
header which denotes that the list is for tracking
protection.

 Each rule with a “–d” in front means that the rule
blocks traffic from the domain. Similarly a “-“ sign
also means that traffic from the domain or
directory is blocked.

 Each rule with a “+d” in front means that
requests to the domain are allowed.

 When multiple lists target the same domain, the
“Allow” rule wins and the URL is not blocked.

Ad Blocking Analysis

 Top 1,000 sites and bottom 1,000 sites

from Alexa’s top 1M sites

 HTTP Analyzer to gather URLs from sites

 Used personal profiles for Facebook,

LinkedIn, and Orkut

 Used top 10 keywords from Google

Insights from 2010 for search engines

Results

 Top 10 most common filters accounted

for 31.9% of all ads found

 AdBlock Plus and IE9 filters blocked the

exact same amount of ads with keyword

“.com/ad?”

 Top 5 sites with the most ads matched

accounted for 1.7% of all ads seen

BROWSER
IMPLEMENTATIONS

Presented by Chris Frisz and Brennon York

Goals

 Examine primarily JavaScript-related

functionality to identify advertisements

 Analyze:

◦ JavaScript files and functions loaded

◦ JavaScript functions executed

◦ Function arguments

◦ Modifications to the DOM tree

JavaScript

 How does it work?

◦ JavaScript code is compiled to bytecode

 Typically through a parser

◦ Bytecode gets interpreted into machine code

 Done through jump tables or a JVM

◦ Native machine code can run on the local

machine

HtmlUnit

 Java-based

 Testing framework for web interactions

 GUI-less

 Utilizes Rhino JavaScript engine

◦ A Java compiler

◦ Pushes interpreted code to a locally running

JVM

HtmlUnit (cont.)

 Recorded names of parsed JavaScript

functions

 Instrumented to log all incoming URIs for

a given web page

 Logged referrer fields from response

headers

HtmlUnit (cont.)

HtmlUnit (cont.)

HtmlUnit Limitations

 Lost function invocations inside the JVM

 Obfuscation of image file formats

 Unable to visually verify accuracy of ad

identification

 Prompted move to Firefox

Firefox

 Used source for version 4.0

 Included JägerMonkey JavaScript engine

◦ Updated version of SpiderMonkey

 C/C++-based

◦ Compiles code into a bytecode

 Done in jsparse.cpp

◦ Bytecode interpreted using jump tables to

produce machine language

 Done in jsinterp.cpp

Firefox (cont.)

 Re-implemented URI logging

 Re-implemented parsed function logging

 Added function invocation logging

◦ Developed unique ID

 Used to track between jsparse.cpp and jsinterp.cpp

 Used shared memory for log dumps

Data Collection

 Collected filename, function, and

invocation count per function

JavaScript File

JavaScript Functions

walk

adServe
createBin

$HGHG

/trailers/global/scripts/lib/prototype.js

walk
Invocation Count (e.g. 5)

Data Analysis

 Chose 10 sites with a wide range of

advertisements

◦ E.g. www.salon.com, www.cnn.com

 Compared those sites with the ground

truth established previously to determine

ad-related JS files

Data Analysis (Behavioral)

 For all JS files there exists a rapid decline

in invocations

◦ Typically 3-5 functions account for the vast

majority of invocations

◦ On average 31.1%

 of functions invoked

 on load

Data Analysis (Behavioral)

 Average of ~24 JS files loaded for each

web page observed

 Follows two forms:

◦ Large number of small files loaded

 Typical invocation pattern

◦ Single file with large number of functions

Future Work

 Include client-side interaction into data

 Examine changes in the DOM tree

 Analyze response headers from URIs

 Develop methodology for identifying

obfuscated function names

 Create browser-based tool/plug-in to

proactively block advertisements

QUESTIONS/COMMENTS?

References
[1] Justin Crites and Mathias Ricken. Automatic Ad Blocking: Improving AdBlock for the Mozilla Platform. Rice University. Houston, TX.

[2] Writing Adblock Plus Filters. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[3] Element Hiding Helper. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[4] An Effective Defense against Intrusive Web Advertising. Viktor Krammer, Secure Business Austria, Vienna University of Technology, A-1040 Vienna,

Austria

[5] NoScript. InformAction., n.d. NoScript JavaScript/Java/Flash blocker for a safer Firefox Experience! what is it? InformAction. Web. 2 May 2011.

[6] Privoxy. Privoxy Developers, n.d. Privoxy Home Page. Web. 2 May 2011.

[7] Ad Muncher Ad Muncher Wiki. Admuncher.com. Ad Muncher, n.d. Web. 2 May 2011.

[8] FAQ Adblock Plus internals. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[9] IEInspector HTTP Analyzer HTTP Sniffer, HTTP Monitor, HTTP Trace, HTTP Debug. Ieinspector.com. IEInspector Software LLC, n.d. Web 2 May

2011.

[10] Ghostery. Evidon, Inc., n.d. Web. 2 May 2011.

[11] Privacy protection and IE9: who can you trust? Zdnet.com. Ed Bott, ZDNet, 14 Feb. 2011. Web. 2 May 2011

[12] IE9 follows Firefox 4s lead on Do Not Track Computerworld. Computerworld.com. Gregg Keizer, Computerworld, 16 Mar. 2011. Web. 2 May 2011

[13] Zhang, Yue, Serge Egelman, Lorrie Cranor, and Jason Hong. “Phinding Phish: Evaluating

Anti-Phishing Tools.” Carnegie Mellon University. Pittsburg, PA.

[14] Google Insights for Search. Google.com. Google, n.d. Web. 2 May 2011.

[15] Cova, Marco, Christopher Kruegel, and Giovanni Bigna. “Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code.”

Raleigh, North Carolina, 2010.

[16] Curtsinger, Charles, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. “Zozzle: Low-overhead Mostly Static JavaScript Malware Detection.”

Technical Report, Microsoft Research, 2010.

[17] Jang, Dongseok, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. “An Empirical Study of Privacy-Violating Information Flows in JavaScript Web

Applications.” Chicago, Illinois, 2010.

[18] Meyerovich, Leo and Benjamin Livshits. “ConScript: Specifying and Enforcing Fine-Grained Security Policies for JavaScript in the Browser.” Oakland,

California, 2010. 11

