
Analyzing JavaScript for Security

Risks through Malware Ads

Chris Frisz

Brennon York

Thiago Rebello

Outline

 Introduction

 Identifying ads

◦ Ad block survey

◦ Analysis of ad blocker effectiveness

 Browser implementations

◦ HtmlUnit

◦ Firefox

 Data analysis

 Future work

 Conclusions

Introduction

 Goals

◦ Develop a behavior-based algorithm to

identify advertisements on web pages

◦ Proactively block privacy-violating ads without

the need for black lists.

 Steps taken

◦ Developed ground truth for advertisements

◦ Instrumented two web browsers

ANALYZING ADS

Presented by Thiao Rebello

Related Work

 Automatic Ad Blocking: Improving

AdBlock for the Mozilla Platform

 An Effective Defense against Intrusive

Web Advertising

 Phinding Phish: Evaluating Anti-Phishing

Tools

Adblock Plus

◦ Perhaps the most famous ad blocker out in the

web

◦ Blocks scripts, images, background, stylesheets,

objects, xml-http requests, documents, element

hiding

◦ Works through use of blacklists

◦ Lots of publicly available lists

 EasyPrivacy and Fanboy’s are most famous

 Contain over 10,000 filters

Adblock Plus (Cont.)

◦ Users can choose what content to block

◦ Rules:

 Wild cards (“*”) allow for matching before or
after part of a URL or directory

 “@@” define exception rules to prevent
mismatches with certain filters

 The “|” sign lets users choose where Adblock
should match the expression, being in the
beginning or end of the filter

 Two “||” allow for matching against anything at
the beginning of a domain name

 Other rules include separator characters such as
“^”

Ghostery

◦ Developed in a joint effort by online

advertisement companies

◦ Also uses blacklists to block content

 Content from ad providers is automatically

blocked

 No special rules

 Users have no interaction and cannot choose

to block or hide content

◦ List currently contains 504 subscribers

Ad Muncher

◦ Commercial software available for a fee

◦ Also contains a list of filters, but each filter

contains one of the following set of actions (for

example):

 Remove links to URL

 Remove all popups from URL

 Remove divs/spans with text

 Remove forms with text

Ad Muncher (Cont.)

◦ Provides browser interaction to allow users to

block and hide content

◦ Intercepts winsock calls in memory and

redirects traffic through itself

 No browser configuration needed

 Fast, easy and efficient

IE9 Tracking Protection

◦ Two ways to block content

 Subscribe to lists

 Automatic blocking

◦ Users cannot develop their own filters

◦ Users cannot choose content to block

◦ No implementation of regular expressions

IE9 Tracking Protection (Cont.)

◦ Rules:

 The first line in each list contains a “msFilterList”
header which denotes that the list is for tracking
protection.

 Each rule with a “–d” in front means that the rule
blocks traffic from the domain. Similarly a “-“ sign
also means that traffic from the domain or
directory is blocked.

 Each rule with a “+d” in front means that
requests to the domain are allowed.

 When multiple lists target the same domain, the
“Allow” rule wins and the URL is not blocked.

Ad Blocking Analysis

 Top 1,000 sites and bottom 1,000 sites

from Alexa’s top 1M sites

 HTTP Analyzer to gather URLs from sites

 Used personal profiles for Facebook,

LinkedIn, and Orkut

 Used top 10 keywords from Google

Insights from 2010 for search engines

Results

 Top 10 most common filters accounted

for 31.9% of all ads found

 AdBlock Plus and IE9 filters blocked the

exact same amount of ads with keyword

“.com/ad?”

 Top 5 sites with the most ads matched

accounted for 1.7% of all ads seen

BROWSER
IMPLEMENTATIONS

Presented by Chris Frisz and Brennon York

Goals

 Examine primarily JavaScript-related

functionality to identify advertisements

 Analyze:

◦ JavaScript files and functions loaded

◦ JavaScript functions executed

◦ Function arguments

◦ Modifications to the DOM tree

JavaScript

 How does it work?

◦ JavaScript code is compiled to bytecode

 Typically through a parser

◦ Bytecode gets interpreted into machine code

 Done through jump tables or a JVM

◦ Native machine code can run on the local

machine

HtmlUnit

 Java-based

 Testing framework for web interactions

 GUI-less

 Utilizes Rhino JavaScript engine

◦ A Java compiler

◦ Pushes interpreted code to a locally running

JVM

HtmlUnit (cont.)

 Recorded names of parsed JavaScript

functions

 Instrumented to log all incoming URIs for

a given web page

 Logged referrer fields from response

headers

HtmlUnit (cont.)

HtmlUnit (cont.)

HtmlUnit Limitations

 Lost function invocations inside the JVM

 Obfuscation of image file formats

 Unable to visually verify accuracy of ad

identification

 Prompted move to Firefox

Firefox

 Used source for version 4.0

 Included JägerMonkey JavaScript engine

◦ Updated version of SpiderMonkey

 C/C++-based

◦ Compiles code into a bytecode

 Done in jsparse.cpp

◦ Bytecode interpreted using jump tables to

produce machine language

 Done in jsinterp.cpp

Firefox (cont.)

 Re-implemented URI logging

 Re-implemented parsed function logging

 Added function invocation logging

◦ Developed unique ID

 Used to track between jsparse.cpp and jsinterp.cpp

 Used shared memory for log dumps

Data Collection

 Collected filename, function, and

invocation count per function

JavaScript File

JavaScript Functions

walk

adServe
createBin

$HGHG

/trailers/global/scripts/lib/prototype.js

walk
Invocation Count (e.g. 5)

Data Analysis

 Chose 10 sites with a wide range of

advertisements

◦ E.g. www.salon.com, www.cnn.com

 Compared those sites with the ground

truth established previously to determine

ad-related JS files

Data Analysis (Behavioral)

 For all JS files there exists a rapid decline

in invocations

◦ Typically 3-5 functions account for the vast

majority of invocations

◦ On average 31.1%

 of functions invoked

 on load

Data Analysis (Behavioral)

 Average of ~24 JS files loaded for each

web page observed

 Follows two forms:

◦ Large number of small files loaded

 Typical invocation pattern

◦ Single file with large number of functions

Future Work

 Include client-side interaction into data

 Examine changes in the DOM tree

 Analyze response headers from URIs

 Develop methodology for identifying

obfuscated function names

 Create browser-based tool/plug-in to

proactively block advertisements

QUESTIONS/COMMENTS?

References
[1] Justin Crites and Mathias Ricken. Automatic Ad Blocking: Improving AdBlock for the Mozilla Platform. Rice University. Houston, TX.

[2] Writing Adblock Plus Filters. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[3] Element Hiding Helper. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[4] An Effective Defense against Intrusive Web Advertising. Viktor Krammer, Secure Business Austria, Vienna University of Technology, A-1040 Vienna,

Austria

[5] NoScript. InformAction., n.d. NoScript JavaScript/Java/Flash blocker for a safer Firefox Experience! what is it? InformAction. Web. 2 May 2011.

[6] Privoxy. Privoxy Developers, n.d. Privoxy Home Page. Web. 2 May 2011.

[7] Ad Muncher Ad Muncher Wiki. Admuncher.com. Ad Muncher, n.d. Web. 2 May 2011.

[8] FAQ Adblock Plus internals. Adblockplus.org. Adblock Plus, n.d. Web. 2 May 2011.

[9] IEInspector HTTP Analyzer HTTP Sniffer, HTTP Monitor, HTTP Trace, HTTP Debug. Ieinspector.com. IEInspector Software LLC, n.d. Web 2 May

2011.

[10] Ghostery. Evidon, Inc., n.d. Web. 2 May 2011.

[11] Privacy protection and IE9: who can you trust? Zdnet.com. Ed Bott, ZDNet, 14 Feb. 2011. Web. 2 May 2011

[12] IE9 follows Firefox 4s lead on Do Not Track Computerworld. Computerworld.com. Gregg Keizer, Computerworld, 16 Mar. 2011. Web. 2 May 2011

[13] Zhang, Yue, Serge Egelman, Lorrie Cranor, and Jason Hong. “Phinding Phish: Evaluating

Anti-Phishing Tools.” Carnegie Mellon University. Pittsburg, PA.

[14] Google Insights for Search. Google.com. Google, n.d. Web. 2 May 2011.

[15] Cova, Marco, Christopher Kruegel, and Giovanni Bigna. “Detection and Analysis of Drive-by-Download Attacks and Malicious JavaScript Code.”

Raleigh, North Carolina, 2010.

[16] Curtsinger, Charles, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. “Zozzle: Low-overhead Mostly Static JavaScript Malware Detection.”

Technical Report, Microsoft Research, 2010.

[17] Jang, Dongseok, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. “An Empirical Study of Privacy-Violating Information Flows in JavaScript Web

Applications.” Chicago, Illinois, 2010.

[18] Meyerovich, Leo and Benjamin Livshits. “ConScript: Specifying and Enforcing Fine-Grained Security Policies for JavaScript in the Browser.” Oakland,

California, 2010. 11

