
After dealing with various techniques to evaluate limits we now provide proofs of the results on

which these techniques are founded. This material is not difficult but definitely somewhat

abstract and may not be suitable for beginners who are more interested in learning techniques

and solving limit problems. But those who are interested in the justification of these techniques

must pay great attention to what follows.

We provide proofs for some of the rules and let the reader provide proofs for remaining rules

based on similar line of argument. First we start with rule dealing with inequalities:

If  in the neighborhood of  then  provided both these

limits exist.

Let  and we have to prove that . Suppose that 

and let . Then we know that there is a  such that  and

 when . Then we have

and noting that  we see that

which is contrary to the hypotheses . Hence we must have . Note that the

same argument follows even if hypotheses are modified to .

Translating this formal proof into common language we see that values of  are close to 

and those of  are near to  and if  there will be values of  which exceed values

of  contrary to the hypotheses.

Next we establish the following rule of division:

 provided that both the limits  and  exist and

.

Clearly since  there exists a number  such that

whenever  so that  for . Next let

. Then for any  there exist a  such that
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for . Further there is a  such that

whenever . Let  and then for  we have

 so that

and therefore  as .

Going further we establish the Sandwich Theorem (or Squeeze Theorem):

If  in a neighborhood of  and  then

.

Clearly for any  we have a  such that

whenever . This implies that

Therefore

and hence

i.e.  so we get .

Finally we establish the rule of substitution in limits:

If  and  and  in a certain neighborhood of  (except

possibly at ) then .

This I will present in the informal language itself. For  to be equal to  we

must be able to get the values of  arbitrarily close to  by choosing  sufficiently close

to . Now we know that values of function  can be made arbitrarily close to  by choosing its
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argument sufficiently close to  (because ). Here in  the argument of 

is  and hence it follows that  can be made arbitrarily close to  by making 

sufficiently close to  and since  this is possible by choosing  sufficiently close

to . Note that the condition  is needed because the limit  assumes

that we are dealing with values of  when its argument is not equal to . Hence while handling

 it is essential that argument of  namely  should not be equal to .

We first start with the trigonometric limit

We note that  and hence it is sufficient to consider the case when

. Let us then consider the case when .

In the above figure we have a circle with center  and radius .  are two points on the

circle such that  and  is a tangent to the circle at . Radius  extended meets

tangent  at  so that  is a triangle. We can clearly see that  so that area

of triangle  is . We now see that

Taking limits as  and noting  we see that we have (by Sandwich

Theorem) 

Next we focus on the algebraic limit

In case  is positive integer the result follows easily by Binomial theorem as follows:
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If  then clearly the numerator vanishes and limit is  so the formula is true in this case

also. If  is negative integer  so that  is a positive integer, then

To handle the case when  is a fraction we restrict to case when  and  are

positive integers. First we note that

so that the ratio  is bounded but away from zero when  is in certain neighborhood of

 (and since  it follows that  is in a certain neighborhood of ). Replacing  by

 and  by  we note that  is bounded but away from zero if  is in a certain

neighborhood of . It follows that  is also bounded and away from zero when

 so that there is a constant  such that

Thus we have

Taking limits when  and using Sandwich theorem we get

We can now see that

If  is negative rational then the proof follows exactly along the same lines as the case for 

being a negative integer. In the above proof notice that it is absolutely essential that we

establish that  first and it requires a little bit of ingenuity in achieving this.

Another simpler approach to prove this is to consider various possibilities for the limit

 and show that if this limit does not exist then  does not exist. This is

clearly a contradiction and hence the limit  exists and is non-negative. Using

the product rule of limits we can easily see that  and hence .

When  is irrational then the definition of  is dependent on the definitions of exponential
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and logarithm functions and hence we defer this part of the proof after the logarithmic and

exponential limits are established.

To establish the logarithmic and exponential limits it is absolutely essential that we define them

first. A typical easy route to their definition starts by defining  as an integral. If we define

then we can see immediately that  and the derivative  so that its

derivative at  is  and therefore we get

or

Exponential function  or  is defined as inverse of the logarithm function by relation

 if . So if we put  we get  and as  we also

have . Thus  implies that

so that the exponential limit is also established.

We return to the case of algebraic limit when  is irrational. In this case  must be positive

otherwise  is not defined. We have  and . Let 

and  so that  implies . We now have

Next we establish the limit  for . This is based on the definition of

 as an integral. Let  and  then we can see that  for  so

that
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Taking limits as  and noting that  we see that

The above proofs based on definitions of exponential and logarithm functions are not suitable

for a beginner learning limits for the first time because they depend upon the higher level

concepts of integral and derivative. Also these proofs make use of properties of exponential and

logarithmic in an implicit fashion (these can not be proved here because of the constraint to

keep the post to a reasonable length). However when one has got an understanding of

derivative and integral then it is better to revisit these proofs which justify the use of

fundamental logarithmic and exponential limits in solving various limit problems.

Before we proceed to discuss the justification of L'Hospital's Rule and power series expansions

we say a few words on the justification of limits dealing with . Most of the thumb rules given

earlier for dealing with  can be easily proved if one uses the definitions of limits properly. For

example consider the rule which says that if  as  then

 as . This can be easily understood if we follow definitions. Clearly for

any given  we have a neighborhood of  in which  so that

 so that . Readers should try to establish other thumb

rules dealing with . In this connection it is important that  and  do not

give any idea about the values of  and hence there is no thumb rule provided for

dealing with  (or ).

To establish this rule we need to prove a fundamental result called Cauchy's Mean Value

Theorem:

If  are continuous on  and differentiable on  and  never

vanish for the same value of  and  then there is a  such that

This can be proved by using Rolle's theorem. Let

then we have  and hence by Rolle's theorem there is a  for which

 i.e.

Now  otherwise  would also be zero and simultaneous vanishing of  is

not allowed. Hence dividing by  our result follows.

Next we come to L'Hospital's Rule:

If  are differentiable in a certain neighborhood of  (but not necessarily at ),
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 and  then .

We will consider the case of  (case  can be handled similarly). Let us define

 so that  are continuous at . Since  as 

there is a neighborhood of  of type  where . Now  are continuous on

 and differentiable in . Also  otherwise by Rolle's theorem  would

vanish somewhere in . Hence by Cauchy's Mean Value theorem we have

for some . If  then  and hence

and L'Hospital's Rule is established.

There is another version of L'Hospital's Rule which is not so widely known and we state (and

prove) it below:

If  are differentiable in a certain neighborhood of  (but not necessarily at ),

 (equivalently  as ) and  then

.

Thus in order to apply this version of L'Hospital's Rule we need to check that  as

. No check apart from differentiability is needed for the function . We prove this rule

using the  definition of limit. Since  as , it follows that 

is bounded in a certain deleted neighborhood of . Therefore there is a number  and a

number  such that

for all  with . Let  be arbitrary. Then we know that there is a 

such that

for all  with .

Let's consider the ratio

where both  are distinct points lying in deleted neighborhood  of 

and . We can express this ratio as
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and from this equation we obtain

where  is some number between  and . Let  have a fixed value in the deleted neighborhood

 of . Then we know that  as .

Hence there are positive numbers  such that

for all  with  and

for all  with . Let  and let  then we have

It now follows that  as  and the proof of the second version of

L'Hospital's Rule is complete. In both the versions of L'Hospital's Rule it is easy to prove that if

 tends to  (or to ) then so does . Note however that if 

does not tend to a limit (meaning that it oscillates finitely or infinitely) then we can't conclude

anything about the limit of  and in this case the L'Hospital's Rule does not apply.

We will use the L'Hospital's rule to prove a version of Taylor's theorem which forms the basis of

the technique of using series expansions for evaluating certain limits:

If  exists then we have

where  tends to  with .

Clearly this will be established if we show that
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Using L'Hospital's rule repeatedly we see that

It is important to note that in each application of the L'Hospital's rule the conditions for

applicability of the rule are satisfied.

To conclude this series of posts on the techniques of evaluation of limits and their justification I

just want to give a few remarks. Most of the time evaluation of a limit requires manipulation of

the expression under consideration using various algebraic, trigonometric, exponential or

logarithmic identities. The goal of these manipulations is to reduce the expression to a form

which can take advantages of the standard limit formulas and rules. Sometimes one has to take

the route of inequalities and Sandwich theorem to establish a limit (as we have done for the

trigonometric limit).

If the manipulations don't lead to a form which allows us to take advantage of standard limits

then we try to check if the expression meets the conditions of L'Hospital's rule and if so then

this rule is applied in the hope that the new expression after the application of L'Hospital's rule

will be simpler than the original one and will be amenable to evaluation by standard limits. As

a last resort we may have to use the series expansions which are highly powerful but require

some skill in the manipulation of power series. Once the reader has got familiarity with enough

limit problems it is instructive for him to approach theoretical problems (such as this one from

MSE) which require the use of definition of limits in innovative ways.

In this series of posts I have not dealt with the limit of sequences deliberately as they are not

part of introductory calculus and require theoretical tools of different nature. However some

limits of this type can be handled via the following obvious result: if  then

 where  takes integral values only.
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