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In general, chaotic dynamical systems produce ill-conditioned direct and adjoint sensi-
tivity equations, so these conventional sensitivity analysis methods do not provide useful
derivatives for design optimization of chaotic systems. The least-squares shadowing (LSS)
method is a recently proposed regularization of the sensitivity equations that leads to useful
derivative information; however, the LSS method requires the solution of a second-order
boundary-value problem in time that is prohibitively expensive for large-scale simulations.
The primary contribution of this work is the observation that the LSS primal and dual
solution spaces do not need to be the same, and they can be different dimensions when
discretized. For example, we investigate the approximation of the LSS adjoint using a
Fourier sine series, and we obtain encouraging results on a model problem based on the
Lorenz ordinary differential equation. For the Lorenz problem, the dimensions of the LSS
system are reduced by an order of magnitude.

I. Introduction

Chaotic dynamical systems are ubiquitous in science and engineering. Examples from aerospace engi-
neering include the turbulent combustion in an engine or the aeroelastic response of a helicopter blade. In
the past, simulations of such systems may have eliminated the intrinsic chaotic behavior by introducing
simplifications or closure models; however, as computational power increases, there is a growing interest
in using high-fidelity models that more accurately capture the dynamics. Here we have in mind the trend
towards unsteady Reynolds-averaged Navier-Stokes or large-eddy simulations of turbulence.

This sets the stage for the following question: can we optimize engineering systems that are governed
by chaotic dynamics? Given the success of partial-differential equation (PDE)-governed optimization in
structural,1 aerodynamic,2–8 and aerostructural design,9–12 it is natural to assume that we can apply similar
methods to chaotic systems, albeit at an increased computational cost. Unfortunately, the blind application
of PDE-governed optimization to chaotic systems fails.

In the context of optimization, the difficulty presented by chaotic systems is their sensitive dependence on
parameters. Consider the time-averaged sectional lift coefficient on a thin airfoil at high Reynolds number. If
we run an unsteady flow simulation on the airfoil, over a range of angles of attack (∆α� 1), we will find that
the lift slope is approximately 2π, as expected from thin-airfoil theory; however, the lift data will be scattered
about the line, much like experimental data. The scattering is due to the sensitive dependence between the
flow solution and the angle of attack. Two simulations, run with identical parameters except for a small
difference in their angles of attack, will eventually produce noticeably different flow fields. Consequently,
their time-averaged lifts will differ, and the lift data will appear noisy.

This “noise” leads to the failure of conventional sensitivity analysis methods to produce useful derivatives
of time-averaged quantities. In the case of the lift-slope example, these methods compute derivatives that
are orders of magnitude too large, because they see the highly oscillatory noise rather than the overall slope
of 2π. In short, these methods “cannot see the forest for the trees.”

Sensitivity analysis methods have been proposed to estimate the derivatives of time-averaged outputs
that depend on chaotic states, including the ensemble13–15 and least-squares shadowing16 (LSS) sensitivity
methods. The LSS adjoint, in particular, has shown great promise; however, its computational cost is high,
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as it requires the solution of a second-order boundary-value problem in time. In Liao,17 this cost was partially
addressed by developing a block-based lower-upper factorization of the LSS system. In the present work, we
present a method in which we allow the primal and dual solutions to be of different dimensions. Specifically,
we represent the adjoint solution for our model problem using a Fourier sine series, although this choice is
not unique.

The paper is organized as follows. We begin by introducing the model problem for sensitivity analysis and
reviewing the conventional adjoint in Section II. The LSS adjoint and our proposed Fourier approximation
to it are presented in Section III. Numerical results are presented in Section IV, and conclusions arising from
the results are discussed in Section V.

II. Model problem and review of the conventional adjoint

A. The generic and model problems

Our intent is to find the sensitivity of some objective function, J , to a design variable. The objective function
of interest will be governed by a system of equations that exhibits chaotic behavior. We represent the chaotic
dynamical system with the generic initial-value problem (IVP)

R(u, ν, t) ≡ du

dt
−F(u, ν, t) = 0, ∀t ∈ [0, T ],

u(0) = uIC,
(1)

where R is the nonlinear residual, and the symbol ν ∈ Rn appearing in F denotes a control/design variable.
Thus, one can consider the solution to (1) to be a function of both time and the parameter ν, i.e. u = u(t, ν).

Suppose we are interested in minimizing some functional that depends on the solution u(t, ν). Specifically,
consider the time-integrated quantity

J (u, ν) =

∫ T

0

G(u, ν, t) dt, (2)

where G is a nonlinear function. In the fluid mechanics applications we are interested in, J (u, ν) may be a
time-averaged force or moment.

In order to both demonstrate chaotic behavior and validate our method, we select the Lorenz system for
investigation, which is defined by

F =

 σ(y − x)

x(ρ− z)− y
xy − βz

 ; (3)

the state variables of (3) are u = [x, y, z]T , and the parameters of (3) are ν = [σ, ρ, β]T . The system has
initial conditions x(0) = x0.

The objective function selected for the Lorenz model problem is

J =
1

T

∫ T

0

z dt, (4)

as it is well studied and behaves in a consistent manner — the gradient ∂J /∂ρ remains relatively constant
at a value of 0.96.13 Note that (4) is in the form (2) with G(u, ν, t) = z/T .

The sensitive dependence of chaotic systems to initial conditions is fairly well known. What is less
widely known is that these systems can be sensitive to changes in other parameters. Figure 1 illustrates this
sensitivity. In both runs displayed, the initial conditions and the parameters β and σ were fixed, while the
ρ parameters differ by 10−10. After only 15 units of time, the values of the x state variable are drastically
different.

B. The conventional adjoint

When there are many inputs and few outputs, the de facto sensitivity analysis method in PDE-governed
gradient-based optimization is the standard adjoint method. We are interested in such a scenario — although
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Figure 1. A demonstration of the characteristics of the Lorenz system. Two solutions of the Lorenz system
are shown, with the x state variable plotted against time t. Despite being solved with almost identical values
of the design variable ρ, the trajectories rapidly diverge. β and σ were set to their typical values of 8/3 and 10,
respectively.

our model problem only has three inputs (ρ, σ, and β) — as we seek a method that will work in aerospace
applications that have hundreds or even thousands of design variables. We now review the conventional
adjoint for completeness and demonstrate it on the Lorenz problem.

In order to minimize J (u, ν) with respect to ν using efficient gradient-based methods, we need the gradient
∇νJ , which is a total derivative. In the case of the functional defined above, J may depend directly on ν,
via its appearance in G(·, ν, ·), or indirectly through u(t, ν). In order to account for the indirect dependence,
we introduce the Lagrangian

L(u, ψ, ν) = J (u, ν) +

∫ T

0

ψTR(u, ν, t) dt+
[
ψT (u− uIC)

]
t=0

, (5)

where ψ denotes the adjoint. As long as R(u, ν, t) = 0 and u(0) = uIC, we have that L = J ; however, their
partial derivatives are not necessarily equal.

The gradient we want is given by

∇νJ ≡
∂L
∂ν

=

∫ T

0

∂G
∂ν

dt+

∫ T

0

ψT
∂R
∂ν

dt. (6)

However, we cannot compute this without first solving for ψ. To find an equation for ψ, we take the first
variation of L with respect to u and set the result to zero:

L(δu, ψ, ν) =

∫ T

0

G(δu, ν) dt+

∫ T

0

ψTR(δu, t; ν) dt+
[
ψT δu

]
t=0

=

∫ T

0

∂G
∂u

δu dt+

∫ T

0

ψT
∂R
∂u

δu dt+
[
ψT δu

]
t=0

=

∫ T

0

[
∂G
∂u

T

− dψ

dt
− ∂F
∂u

T

ψ

]T
δu dt+

[
ψT δu

]
t=T

= 0,
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Figure 2. A plot of the objective function J = 1/T
∫ T
0 z versus ρ. The left plot shows the J over a range

of ρ ∈ [0, 100], while the right plot shows J over a range of ρ ∈ [37.9, 38.1]. Overlaid in red is a representative
example of the gradient calculated with the conventional adjoint. Immediately visible is the problematic nature
of these gradients.

where (1) and integration by parts (in time) are used to arrive at the second last line. Since L(δu, ψ, ν) = 0
must be true for all variations δu, we conclude that

−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T

= 0, ∀t ∈ [0, T ],

ψ(T ) = 0.

(7)

The equation (7) is the conventional adjoint differential equation for the objective (2) and IVP (1).
In a chaotic problem, however, the conventional adjoint grows unbounded with time, making the deriva-

tive information unusable. This unbounded growth is related to the sensitive dependence of the state on the
initial condition. Or, restated another way, the time-integrated objective function J looks noisy for finite
T , and the adjoint-based gradient accurately reflects this noise, since the derivative (and the adjoint) of a
noisy function is large.

Returning to our model problem of the Lorenz system (3) and our selected objective function (4), we can
apply the conventional adjoint approach in an attempt to obtain gradient information. Plotted in Figure 2
are discrete solutions of the objective function for a range of values of ρ, along with its gradient with respect
to ρ, calculated using the conventional adjoint method. Clearly the adjoint-based derivative does not capture
the large-scale trend in the objective function and instead reflects the noise.

III. Least-squares shadowing and its Fourier approximation

A. Least-squares shadowing adjoint

To overcome the instability of the conventional adjoint, the least-squares shadowing (LSS) adjoint method
modifies the Lagrangian (5) in a couple ways. In order to describe the LSS adjoint, it is helpful to show how
the conventional adjoint is related to a fully-constrained optimization problem and associated saddle-point
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problem. Taking (5) and linearizing about ū using perturbations u′, we obtain

L(ū, u′, ψ, ν) = J ′(u′) +

∫ T

0

ψTR′(u′, t) dt+ ψTu′, (8)

where R′ is given by

R′(u′, t) ≡
[
d

dt
− ∂F

∂u

∣∣∣∣
ū

]
u′ = 0, (9)

and J ′ is defined as

J ′(u′) =

∫ T

0

G(ū) dt+

∫ T

0

∂G
∂u

u′ dt.

If we take the derivative of L in (8) with respect to u′, we obtain the standard adjoint.
In the above definition, ū is the frozen, or reference, state: it is the state about which we want to evaluate

the gradient. The perturbation to the state is the function u′(t). To simplify notation, the dependence of
various quantities on ν is not shown in the following derivation.

The issue with the conventional adjoint is that the differential equation (DE) associated with R′(u′, t) is
linearly unstable. To regularize this differential equation, the LSS formulation requires the perturbation, u′,
to satisfy the linearized differential equation without the initial condition. However, with the initial condition
removed, the linearized differential equation is also ill-posed; this necessitates the addition of regularization.

The regularization ensures that, of all possible perturbations to the state, u′ is the one that i) satisfies
the linearized differential equation and ii) minimizes the composite objective consisting of the linearized
objective and the L2 norm of u′. Thus, u′ is the solution to the DE-constrained optimization problem

min
u′
J ′(u′) +

1

2
‖u′‖2

s.t. R′(u′, t) ≡
[
d

dt
− ∂F

∂u

∣∣∣∣
ū

]
u′ = 0, ∀t ∈ [0, T ],

(10)

where ‖u′‖2 =
∫ T

0
(u′)2 dt. Based on the optimization problem (10), we can construct the associated La-

grangian:

L′(u′, ψ) = J ′(u′) +
1

2
‖u′‖2 +

∫ T

0

ψTR′(u′, t) dt. (11)

The LSS adjoint equation can be found by taking the first-variation of L′ with respect to u′, which produces
the LSS problem

−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T

+ u′ = 0, ∀t ∈ [0, T ],

ψ(0) = 0, and ψ(T ) = 0.

(12)

This DE is almost identical to the ill-posed one we found earlier, i.e. (7), except for the presence of u′. We
can eliminate u′ from the adjoint DE by recalling that R′(u′, t) = 0, that is, the perturbation is in the null
space of the linearized forward problem. Thus, applying the linear operator corresponding to R′ to the above
equation, we get the differential equation[

d

dt
− ∂F
∂u

] [
−dψ
dt
− ∂F
∂u

T

ψ +
∂G

∂u

T
]

= 0, ∀t ∈ [0, T ],

ψ(0) = 0, and ψ(T ) = 0.

(13)

Equation (13) is a linear boundary-value problem (BVP) in time; therefore, two boundary conditions (in
time) are necessary, and the conditions at t = 0 and t = T are consistent with this requirement.

For completeness, we expand the BVP fully to obtain

−d
2ψ

dt2
− d

dt

[
∂F
∂u

T

ψ

]
+
∂F
∂u

dψ

dt
+
∂F
∂u

∂F
∂u

T

ψ = − ∂2G
∂t∂u

+
∂F
∂u

∂G
∂u

T

.

Thus, we are dealing with a second-order in time linear BVP problem.
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It should also be noted that we are considering a specific form of the LSS sensitivity method without
time dilation and its associated weighting parameters.17 Although this may have an effect on the accuracy
of the LSS adjoint, our proposed methods remain applicable to the LSS method with the time dilation term
included.

B. Discretization of the LSS adjoint

1. Primal-Problem Discretization

The LSS method does not require a particular discretization method, but in order to make our explanation
more concrete, we choose to demonstrate the LSS method using a Crank-Nicolson discretization. We dis-
cretize the IVP (1) using N uniform time steps; thus ∆t = T/N and ti = (i−1)∆t, where i = 1, 2, . . . , N+1.
Including the initial condition, we have to solve

u1 = uIC,

Ri(u, ν, t) =
ui+1 − ui

∆t
− 1

2
[F(ui, ν, ti) + F(ui+1, ν, ti+1)] = 0, ∀i = 1, 2, . . . , N.

(14)

In addition, we discretize the functional J using the midpoint rulea:

J(u) =

N∑
i=1

1

2
[G(ui, ν, ti) + G(ui+1, ν, ti+1)] ∆t, (15)

where u = [u1, u2, . . . , uN+1]T is the discrete solution.

2. Standard Adjoint Discretization

We can also use the midpoint rule for the term
∫ T

0
ψTR dt in the Lagrangian, see (5). Thus, the discretization

of the Lagrangian becomes

L(u, ψ, ν) =

N∑
i=1

1

2
[G(ui, ν, ti) + G(ui+1, ν, ti+1)] ∆t

+

N∑
i=1

ψTi+1

{
ui+1 − ui

∆t
− 1

2
[F(ui, ν, ti) + F(ui+1, ν, ti+1)]

}
∆t+ ψT1 (u1 − uIC).

We obtain the discrete adjoint equation by differentiating L with respect to the ui and setting each partial
derivative to zero. For i = 1 we get

∆t

2

∂G
∂u

∣∣∣∣
1

− (ψT2 − ψT1 )− ψT2
[

∆t

2

∂F
∂u

∣∣∣∣
1

]
= 0.

Transposing and rearranging we have
ψ1 = ψ2 + O(∆t),

which is a first-order accurate extrapolation of ψ1 based on ψ2.
Next, differentiating L with respect to uN+1 we get

∆t

2

∂G
∂u

∣∣∣∣
N+1

+ ψTN+1 − ψTN+1

[
∆t

2

∂F
∂u

∣∣∣∣
N+1

]
= 0.

Transposing and rearranging gives

ψN+1 =
∆t

2

[
ψTN+1

∂F
∂u

∣∣∣∣
N+1

− ∂G
∂u

∣∣∣∣
N+1

]
.

aIt should be noted that when fully expanded, Equation (15) becomes the trapezoid rule.
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As ∆t→ 0, we recover ψN+1 = 0. Thus, the above is a first-order approximation to the terminal condition
in (7).

Finally, differentiating L with respect to ui, where i 6= 1 and i 6= N + 1, we get

∆t
∂G
∂u

∣∣∣∣
i

−
(
ψTi+1 − ψTi

)
−

∆t(ψTi+1 + ψTi )

2

∂F
∂u

∣∣∣∣
i

= 0.

Transposing, dividing by ∆t, and rearranging this equation, we get

−ψi+1 − ψi
∆t

−
[
∂F
∂u

]T
1

(ψi+1 + ψi)

2
+

[
∂G
∂u

]
i

= 0,

which is the Crank-Nicholson discretization of the DE in (7).
Later, when discussing the discretization of the LSS adjoint, it will be helpful to have a compact repre-

sentation of the discretization of the conventional discrete adjoint. To this end we write

ATψ + b = 0,

where

b =

[
∆t

2

[
∂G
∂u

]
1

,∆t

[
∂G
∂u

]
2

, . . . ,∆t

[
∂G
∂u

]
N

,
∆t

2

[
∂G
∂u

]
N+1

]T
,

and for the Jacobian we have

A =



I[
−I− ∆t

2

∂F
∂u

∣∣∣∣
1

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
2

]
[
−I− ∆t

2

∂F
∂u

∣∣∣∣
2

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
3

]
. . .

. . .

[
−I− ∆t

2

∂F
∂u

∣∣∣∣
N

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
N+1

]



.

Once the adjoint ψ is obtained, a discrete version of (6) is used to obtain the gradient:

N∑
i=1

1

2

(
∂G
∂ν

∣∣∣∣
i

+
∂G
∂ν

∣∣∣∣
i+1

)
∆t+

N∑
i=1

ψi+1
∂Ri
∂ν

∣∣∣∣T
i

, (16)

where Ri is defined in (14).

3. Discretization of the LSS Adjoint

Referring to (10), the optimization problem associated with the discretized LSS adjoint method is

min
u′

J(ū) + bTu′ +
1

2
(u′)

T
Hu′

s.t. A′u′ = 0.
(17)

In Equation (17), J(ū) + bTu′ is the discrete version of the linearized objective function; here, ū is the

discretized reference state and u′ is the discretized perturbation. The term 1
2 (u′)

T Hu′ is the discretized
regularization term, where H = ∆t diag (1/2, 1, 1, . . . , 1, 1/2) holds the quadrature weights corresponding to

7 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

un
e 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
44

09
 



the trapezoid rule. Again, since the LSS method removes the initial condition from the linearized problem,
we remove the first block row from A to give A′ in (17). To be explicit, A′ is defined as

A′ =



[
−I− ∆t

2

∂F
∂u

∣∣∣∣
1

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
2

]
[
−I− ∆t

2

∂F
∂u

∣∣∣∣
2

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
3

]
. . .

. . .

[
−I− ∆t

2

∂F
∂u

∣∣∣∣
N

] [
I− ∆t

2

∂F
∂u

∣∣∣∣
N+1

]


The optimization problem (17) is a quadratic optimization problem with a convex objective. The solution

to such an optimization problem is given by the solution of the following saddle-point linear system:[
H (A′)

T

A′ 0

][
u′

ψ

]
=

[
−b
0

]

However, since A′u′ = 0 (the second row of the above), we can multiply the first block row by A′H−1 to get
a single equation for the discrete LSS:

A′H−1 (A′)
T
ψ = −A′H−1b. (18)

This is effectively forming the Schur complement of the block system. With the LSS adjoint found, (16) is
used in the same way as the conventional adjoint to obtain the desired derivative.

C. A Petrov-Galerkin approach to the LSS method: Fourier approximation of the adjoint

Typically the adjoint and the state spaces are the same, which simplifies the mathematical formulation.
This is the case for the standard LSS adjoint, but the computational cost challenges with the LSS problem
remain. Motivated by this, we seek to reduce the dimension of the discretized LSS system.

Our general approach is to use a Petrov-Galerkin approach for the linearized state equation in (10).
That is, we select different solution spaces for the state and LSS adjoint. In particular, and unlike typical
finite-element discretizations, the dimension of the state and adjoint spaces can be different.

To illustrate the more general idea, we approximate the LSS adjoint in the Lorenz system using a
truncated Fourier sine series. In the discrete case, this is done by projecting the LSS Jacobian A′ (which,
again, is A with the first block row removed) onto a series of sine terms. In matrix form, this projection is
defined by:

Asin = FTA′, (19)

where

FT =


sin
(
π t1T
)

sin
(
π t2T
)

. . . sin
(
π tNT

)
sin
(
2π t1T

)
sin
(
2π t2T

)
. . . sin

(
2π tNT

)
...

...
...

sin
(
Mπ t1T

)
sin
(
Mπ t2T

)
. . . sin

(
Mπ tNT

)

 , (20)

where M is the number of Fourier modes. The approximated Jacobian is then used to compute the adjoint
vector in a similar manner to the original LSS method; see (18):(

FTA′
)
H−1

(
FTA′

)T
ψsin = −

(
FTA′

)
H−1b, (21)

which can then be used to obtain values for the gradient. The process of computing the gradient from the
adjoint is similar to that in (16), but involves the basis function values to reconstitute the adjoint using

ψi =

M∑
m=1

ψsin sin (mπti) , (22)
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Figure 3. A plot of the objective function J = 1/T
∫ T
0 z versus ρ. Overlaid in red are some examples of the

LSS-calculated gradient; it is apparent that there is good agreement between the gradient calculation and the
sampled data.

where i is the time step, ti is the simulation time at time step i, and M is the number of modes.
The process of solving Equation (18) for the adjoint is the computationally intensive aspect of the LSS

method, as it requires a matrix solve on the typically quite large A. It is our hypothesis that the Fourier
system will be at least an order of magnitude smaller than the standard system, and thus the computation of
the adjoint using the Fourier-approximated method (21) has the potential to offer significant computational
advantages.

IV. Numerical results

In order to compare the Fourier LSS method with the standard LSS method, both adjoints were computed
and compared for simulations of the Lorenz model problem. In all simulations, the integration period was
T = 16 and the time step was ∆t = 0.004. Additionally, the solution of the Lorenz system was allowed
to undergo a spin-up period of T = 10, to ensure that the gathered statistics better reflect the long-time
behavior of the system. Typical values for the Lorenz system parameters were used: σ = 10, β = 8/3, and
ρ = 28 (except where stated otherwise).

A. The standard LSS applied to the Lorenz problem

There are several factors that must be studied in order to assess the quality of the Fourier approximation.
But first, it is important to quantify the accuracy of the standard LSS method, since this is the benchmark
method. Figure 3 shows a representative set of three LSS-calculated gradients appearing together with a
plot of the actual objective function (2) versus ρ. It is important to reiterate that with a standard adjoint
method, the gradient lines (as can be seen in Figure 2) are nearly vertical, as they become unbounded due
to the aforementioned instability of chaotic adjoint problems.

Figure 4 shows a sample of LSS-based gradients for the objective function with respect to ρ, over a
range of [0, 100]. At each value of ρ, a Lorenz simulation was started with an initial condition of [x, y, z] =
[∆x,∆y, ρ + ∆z], where ∆x, ∆y, and ∆z are normally distributed random variables with a mean of zero
and a standard deviation of 0.05. After setting the initial condition and solving the primal problem, the
LSS adjoint was computed and used to obtain gradient information. An ensemble of twenty simulations was
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Figure 4. A statistical gathering of the gradient of the objective function with respect to ρ, calculated using
the standard LSS adjoint. Each dot represents one simulation of the Lorenz system with T = 16; there are 20
simulations perfomed at each value of ρ, with slight randomness given to the initial conditions. Error bars,
centered about the mean and with half-length one standard deviation, are shown. The locations in which
the error bars appear longer than the dataset contain negative gradients which affect the calculation of the
standard deviation.

conducted at each value of ρ. While the sensitivity to changes in initial conditions can be seen, the figure
clearly shows the clustering of gradient values around dJ /dρ = 0.96, which is the approximate value of the
gradient for the chosen objective.13 Recall that our LSS implementation does not include the time-dilation
term, and we believe this explains the increased spread in the gradient values relative to the literature. The
time-dilation term will be included in future work.

B. Fourier-approximated LSS

With the implementation of the standard LSS adjoint verified, we can begin investigating the quality of our
Fourier approximation method. In all of the following results, the number of Fourier modes was selected as
M = 460, which struck a balance between minimizing the relative gradient error and keeping the dimensions
of the dense matrix suitably small. A qualitative comparison can be seen in Figure 5, in which the LSS-
based adjoint and the Fourier-approximated adjoint are plotted in phase space. It is evident from Figure 5
that the approximation mirrors the standard LSS quite well; this is also observed by the more quantitative
comparison of Figure 6, in which the difference in the x-coordinate of the adjoints over time is shown.

The same aggregate analysis shown in Figure 4 was conducted for the Fourier-approximated LSS, and
these results can be seen in Figure 7. Again, the clustering of gradient values about dJ /dρ = 1.0 is seen. The
dip in the mean gradient at high values of ρ, compared to the standard LSS gradient sampling, is due to an
insufficient number of modes to approximate the dominant dynamics of the problem. It should be noted that
as ρ changes significantly, the number of modes required to drive the relative gradient error down tends to
increase. A separate numerical experiment, using 800 modes instead of the 460 modes in Figure 7, confirmed
that high values of ρ require more modes to approximate the LSS adjoint. Additional work is necessary to
determine an automatic way of selecting the appropriate number of modes in the approximation.

Another verification of the Fourier approximation was conducted by analyzing the relative gradient error
between the standard LSS and the Fourier-approximated LSS, defined in Equation (23), as a function of the

10 of 14

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

un
e 

21
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
44

09
 



Figure 5. The standard LSS adjoint plotted in state space, alongside its Fourier approximation using 460
modes and a solution time of T = 16. Qualitatively, the closeness of the approximation can be seen.

Figure 6. The error between the LSS adjoint and the Fourier-approximated LSS adjoint for the component
of ψx corresponding to the x state variable plotted versus time.
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Figure 7. A statistical gathering of the gradient of the objective function with respect to ρ, calculated
using the Fourier approximation to the LSS adjoint. Each dot represents one simulation of the Lorenz system
with T = 16; there are 20 simulations perfomed at each value of ρ, with slight randomness given to the initial
conditions. Error bars, centered about the mean and with half-length one standard deviation, are shown.

number of sine modes.

εdJ/dρ =

∣∣∣(dJdρ)
LSS
−
(
dJ
dρ

)
Fourier

∣∣∣∣∣∣(dJdρ)
LSS

∣∣∣ . (23)

As can be seen in Figure 8, the relative gradient error decreases significantly once a sufficient number of
modes are used, eventually plateauing on the order of 10−3. This investigation was conducted at a parameter
value of ρ = 28.

One disadvantage of the Fourier approximation is the condition number of the Schur complement matrix
in (21). The condition number of the Schur complement is plotted against the number of modes in Figure 9
for ρ = 28. The condition number becomes quite high as the number of modes is increased, which has a
negative effect on accuracy and preconditioning for iterative methods. Therefore, it is desirable to select a
number of modes that captures desired level of accuracy, but does not overshoot the error plateau too far.
However, some overshoot does not impact the condition number significantly, as the condition number grows
rather slowly after the plateau.

A brief discussion of the ‘plateau’ in Figures 8 and 9 is warranted. At around 460 modes for this selection
of ρ, the relative gradient error of the Fourier approximation stops decreasing. The main reason for this
is that there will be some error inherent to the standard LSS method, due to the choice in discretization,
and that the Fourier approximation is simply trying to capture high-frequency, broadband error. This is
supported by the fact that smaller time step values in the discretization drives downward the resting value
of the plateau that the relative gradient error reaches, visible in Figure 8.

Although this approximation method displays promise when compared to the standard LSS approach, it
must be stated that the Fourier system matrix is dense. This could be a significant drawback, and future
work is needed to investigate strategies to solve this system in the context of large-scale simulations.
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Figure 8. Relative error in gradient in the Fourier approximation of the least-squares shadowing adjoint
matrix as the number of Fourier modes is varied, for differing values of ∆t. Simulation time remains T = 16.

Figure 9. Relative error in gradient (blue) and condition number of the approximation of the least-squares
shadowing adjoint matrix (red) as the number of Fourier modes is varied. Simulation time T = 16, and ρ = 28.
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V. Conclusions

Chaotic problems are prevalent in many engineering disciplines, but their optimization with gradient-
based methods is challenging, because the linear adjoint is unstable and grows without bound. The least-
squares shadowing (LSS) sensitivity method has been proposed to obtain gradient information from chaotic
problems in a stable fashion. While this method provides useful gradient information that is of reasonable
accuracy, it is prohibitively computationally expensive for large-scale simulations. Motivated to reduce this
cost, we have proposed a method of representing the adjoint solution in a discrete space that differs from the
state space. In our model problem, we approximated the adjoint of the LSS method using a Fourier series. We
then conducted several numerical experiments to investigate the quality of our approximation. The relative
gradient error remains bounded, and the condition number of the least-squares adjoint remains tractable.
The idea of using distinct spaces for the state and LSS adjoint appears to merit further investigation and
application to other, more difficult, chaotic problems.
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