

3D Printing of Non-Assembly Articulated Models

Jacques Calì, Dan Andrei Calian, Cristina Amati, Rebecca Kleinberger, Anthony Steed, Jan Kautz, Tim Weyrich

Problem Statement

Challenges with Printing Articulated Models

- Design issues
 - Labour intensive
 - Requires skilled modeller
- 3D printing issues
 - Limited resolution
 - Support material / structure
 - Fusing of interlocking parts

Related Work

- Sculptures

 [Xin et al. 2011]
 [Mitra and Pauly 2009]
- Deformable objects
 [Bickel et al. 2010]
- Joints that form robots
 [Won et al. 2000]
 [Mavroidis et al. 2001]

Concurrent Work [Bächer et al. 2012]

- Joints properties
 - Friction
 - Rotational constraints set from default parameters

- Locations extracted from skinning
- User can select between 1 or 3
 DOF

Contributions

- Derived a directly printable versatile joint template:
 - friction
 - non-assembly
 - controllable rotational constraints

- Interactive joint fitting pipeline
- A set of underlying algorithms to support it

Deriving a Generic Joint Template

Generic Joint Template

- Design criteria
 - Wide range of angular positions
 - No locking configurations
 - Intuitive rotational constraints control
 - Support for friction
 - Non-assembly printing
 - Compact appearance

Joint Exploration

Ball Joint

- Solution builds upon the balland-socket joint, as it:
 - Spans a wide range of angles
 - No locking
 - Customizable rotational constraints

Solution

Cage ball and grooved socket

Solution

Cage ball and grooved socket

Printability

- Support material in Selective Laser Sintering / Polyjet
 - Fills in gaps
 - Blocks moving parts

Printability

- Support material in Selective Laser Sintering / Polyjet
 - Fills in gaps
 - Blocks moving parts
 - External access to it is required
 - Our joint template facilitates access

Rotational Constraints Control

 Socket opening is shaped according to user-specified constraints

Friction

Workflow

- Intuitive rigging:
 - Place connectors at joint locations
 - Connectors with >2 connectivity are not joint locations

- Cast rays from joint centre outwards, filtering-out rays within 45 degrees of the bones
- Fitting sphere using RANSAC to resulting point cloud

Joint Scale - Aesthetics

 Manual scaling of computed sizes allows for control over aesthetic preferences

- Users design joints' rotational constraints by dragging pins
- The pins specify rotational extremes

Joint Shaping

Joint Shaping

Joint Shaping

- Take the generalised cone defined by the rotational constraint pins
- Subtract it from socket using CSG
- We dilate the cone to compensate for the shaft thickness

Rotational Constraints Validity

- Check that ball does not fall out of its socket:
 - Compute convex hull of inside surface of the sculpted socket
 - Verify that the ball's centre is within the hull

Removing Excess Geometry

Removing Excess Geometry

Removing Excess Geometry

 Geometry is rotated along the trajectory of the user's specification

 Excess geometry is removed by CSG subtraction

3D Printing Technologies

Selective Laser Sintering

- Polyjet
- Fused Deposition Modelling

Calibration

- Calibration sets printed to determine printer and material parameters:
 - Width of the friction bands
 - Minimal gap size (tolerance)
 - Minimal joint size (shown below)

Results

Workflow

fe Ed Polygo	dit Medify Create Display Window Assets Select Medi EditMedi Proxy Normalis Color Create UNS EditUNS Bonus Tools Musice Help and T (💁 😋 🖶) : 👦 📆 😓 T 🖆 📚 😂 🐼 🛃 💯 🛃 🖓 (🖓 🙄 🖗 🖏 () 🐄 😒 🌭 📯 () 🕮 🖿 🍓 () 🖓 😒 🖓 () () T 🕿 🖿 🍓 () T 🗠 X. () Y. ()	n ei 4
	General JontFitting Surfaces Polygons Subdivs Deformation Animation Dynamics Rendering PaintEffectis Toon Muscle Fluids Fur Hair inCloth Custom Curves Prep June Cutr	7
	- Wew Shading Lighting Show Renderer Panels 学 Par 副 4 沙 小 1 翻 配 图 图 图 图 1 面 合 🐞 = 4 4 () 面 回 M	
\$		
2		
⊗		
2		
*		
8		
÷.		
4		
G.		
1		▶ ▶ ≫
1.00	1.00 1 24.00 48.00 × No Anim Layer × No Character	set 🖙 😹
Python	Pile read in 0 seconds.	
SHORE	AL ANNO HERKE AL INDIAL	

Example Models

Friction vs. No-Friction

Limitations

Material Strength

• Twist

CSG robustness

Conclusion

- Derived joint template that:
 - Incorporates friction without assembly
 - Controllable rotational constraints
 - Support material drainage
- Calibration sets

Intuitive joint fitting pipeline

(Thank you!

Questions?