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I build a dynamic search model of bond and CDS markets and show
that allowing short positions through CDS contracts increases liquidity
of the underlying bond market. This result contrasts with existing
theories on derivatives, which show that derivatives fragment traders
across the derivative and underlying markets and thereby decrease
liquidity in the underlying cash market. I reach the opposite conclusion
by endogenizing the aggregate number of investors. My results help
explain how sovereign bond markets reacted to a naked CDS ban.

During the last European debt crisis, the controversy surrounding credit
default swaps (CDS) culminated in bans on “naked” purchases of CDS. A
credit default swap is a financial derivative instrument that resembles an in-
surance protection against a firm or a government default. It allows investors
to trade the credit risk of the bond issuer without trading the bonds them-
selves. A naked CDS purchase refers to a CDS purchase where the protection
buyer does not own the underlying bonds. As they are a short and, possi-
bly, a speculative position against the bond issuer, regulators blamed them
for exacerbating the European debt crisis. Ultimately, in October 2011, the
European Union voted to permanently ban naked CDS contracts referencing
EU sovereigns. What is interesting about the ban is how the underlying
bond market reacted. Following the ban, liquidity in the underlying bond
market decreased (as measured by bond bid-ask spreads). This pattern is
documented in Sambalaibat (2014).
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This bond market reaction challenges existing theories. Models on the
interaction between the derivative and the underlying markets show that
introducing derivatives fragments traders across the derivative and the un-
derlying markets and thereby attracts liquidity away from the underlying
market.1 Since this result implies that banning derivatives reverses the frag-
mentation and improves liquidity in the underlying, it does not line up with
the observed decrease in liquidity. Existing results on short-selling also do
not help rationalize the observed decrease in liquidity. They are specific
to short-selling and do not generalize to shorting through CDS contracts.2

Thus, we still need to understand how CDS positions that do not require
trading the underlying bonds affect liquidity of the underlying bonds.

In this paper, I build a dynamic search model of bond and CDS mar-
kets and show that relaxing a key assumption present in a variety of models
reconciles the fact. The assumption is fixed aggregate number of traders. Ex-
isting theories keep the aggregate number of investors fixed, and, as a result,
introducing derivatives, by construction, fragments traders across multiple
markets and attracts liquidity away from the underlying market.3 I show
that when the aggregate number of investors is instead endogenous, the ef-
fect is the opposite: Introducing CDS increases liquidity in the bond market.

I refer to this effect as a liquidity spillover effect, and it works as fol-
lows. Introducing short positions through CDS contracts attracts into credit
markets not only investors who want to short the underlying credit risk and
buy CDS but also investors who want to take the opposite side and long the
underlying credit risk. In turn, long investors—for whom buying bonds and
selling CDS are economically similar positions—search and trade at the same
time as bond buyers. They do this to increase their trading opportunities

1Subrahmanyam (1991) and Gorton and Pennacchi (1993) using Kyle (1985) framework
show that stock index futures market and security baskets, respectively, lower liquidity
in the underlying stock market as some traders migrate to the derivative markets. John,
Koticha, Subrahmanyam, and Narayanan (2003) show a similar effect of options on stock
market liquidity using Glosten and Milgrom (1985) framework.

2For example, Vayanos and Weill (2008) show that an asset with short-selling activity
has a higher spot market liquidity. They show this is because short-selling requires trading
in the spot market (first as a seller to establish the short position, then as a buyer to
unwind the position). Duffie, Garleanu, and Pedersen (2002) show that asset prices are
higher in the presence of short-sales. They show this is because bond holders earn an
additional cash flow from lending their asset to those who want to borrow and short-sell.
Both mechanisms are thus specific to short-selling and do not generalize to shorting via
naked CDS purchases. In a CDS contract, neither the seller nor the buyer has to trade the
underlying the asset to achieve a long or a short position with respect to the underlying.
Thus, a priori, whether similar results would arise with CDS is not obvious.

3The fragmentation arises not only in models of an underlying and derivative markets
but also in any model with multiple markets and a fixed total number of investors. For ex-
ample, results in information-based frameworks of Admati and Pfleiderer (1988), Pagano
(1989), and Chowdhry and Nanda (1991) and search-theoretic frameworks of Vayanos and
Wang (2007), Vayanos and Weill (2008), and Weill (2008) imply that traders endoge-
nously concentrate in one market and trading in the other market either deteriorates or
disappears.

2



and alleviate their search frictions. The result is an increase in bond market
liquidity: a greater number of bond buyers, a shorter expected search time
for bond sellers, a larger bond turn over, and a larger volume of trade. The
bond price increases also. This is the spillover effect and is the main insight
of the paper.

The spillover effect works in reverse also: Banning naked CDS positions
decreases bond market liquidity. Investors can no longer sell CDS because
their counterparties, the naked CDS buyers, are banned from buying CDS.
Long investors exit the CDS market, but by exiting the CDS market they
pull out from the bond market also. The result is a decrease in bond market
liquidity, consistent with the bond market reaction after the EU ban. Thus,
preventing investors from shorting ultimately ends up banning investors who
want to take the opposite side and long the asset.

I show the liquidity spillover effect with a model that builds on Duffie,
Garleanu, and Pedersen (2005, 2007) and, in particular, on Vayanos and
Weill (2008). A fraction of bond owners, upon a liquidity shock, try to sell
their bonds. Finding a buyer, however, involves search. When a seller finds
a buyer, the difficulty of finding another buyer forces the seller to accept a
discounted price. Search frictions thus create an illiquidity discount in the
bond price. The illiquidity discount, the length of the search process, and
the volume of trade all depend on the relative number of sellers and buyers.
The number of buyers and sellers are, in turn, endogenous.

I add to this environment, first, CDS contracts. CDSs pay when the
underlying bond defaults. A CDS buyer—who stands to benefit if the bond
defaults—has a short exposure to the underlying credit risk. The CDS seller
has the opposite long exposure. CDS are in zero net supply; bonds are
in fixed supply. CDS and bonds are effectively inside and outside money,
respectively.4 Trading CDS contracts, as with trading bonds, involves search
and bilateral bargaining.

Second, I endogenize entry and, consequently, the aggregate number of
4Outside money refers to assets that are in positive fixed supply within a specific sector

of the economy and that serve as money (e.g. circulate as a medium of exchange or serve
as store of value, etc.). Inside money refers to claims that are created within that sector
(hence, are in zero net supply) and that serve as money. The credit market economy in
my model is the relevant private sector of the economy. Bonds and CDSs are outside and
inside money in the sense that bonds are in fixed supply, while CDSs are created within
the economy and are in zero net supply. Both are money in the sense that they serve
as store of value and expand the set of feasible allocations. For discussion on financial
innovation as inside money see, for example, Gennaioli, Shleifer, and Vishny (2012) and
Brunnermeier and Sannikov (2016). For discussion on inside money (particularly, as a
medium of exchange) see, for example, Cavalcanti and Wallace (1999a), Cavalcanti and
Wallace (1999b), and references in Lagos (2010). The latter literature addresses, for
example, when inside and outside money co-exist and whether they are complements
versus substitutes. I instead shed light on how the creation of inside money (CDS) affects
liquidity of outside money (bonds).
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investors.5 The total mass of long investors has a natural interpretation as
funding liquidity because long investors, in practice, take the capital intensive
side of bond and CDS trades and, as a result, supply capital into credit
markets. The model thereby features distinct notions of funding liquidity
and market liquidity as in Brunnermeier and Pedersen (2009), and both are
endogenous.

With this environment, the paper offers three contributions. First, I show
the spillover effect and thereby a novel insight on how financial derivatives
affects the market for the underlying asset. This insight applies to any new
financial innovation (be it a tradable instrument, a trading mechanism, or a
market place).

Second, I provide, to my knowledge, the first theoretical framework of
OTC trading in both the underlying and derivative markets. In existing
microstructure models of derivatives, illiquidity arises from asymmetric in-
formation.6 We thus lack models of derivatives where illiquidity arises from
a key friction in trading assets over-the-counter: search costs. In the context
of OTC traded assets, search models are the current workhorse environment
of endogenous liquidity frictions and asset prices. But, so far, they feature ei-
ther a single asset or multiple assets with identical cash flows.7 In contrast, I
model the endogenous interaction between multiple OTC traded assets where
one asset is a derivative of the other. I thereby shed light on agents’ incentive
to search and trade the underlying versus the derivative asset, the amount
of long and short interest in both assets, market liquidity of both assets, and
terms of trade negotiated between counterparties in an environment where
these variables are interdependent.

5Afonso (2011) and Lagos and Rocheteau (2009) also endogenize entry and the aggre-
gate number of investors in a search framework but do so in a single market setting.

6They include Subrahmanyam (1991), Gorton and Pennacchi (1993), and John,
Koticha, Subrahmanyam, and Narayanan (2003) that I mentioned previously. Addi-
tionally, Back (1993) develops a framework based on Kyle (1985) to study the effect
of options on price volatility. Biais and Hillion (1994) provide another information-based
model of options and study their effect on price informativeness of the underlying asset.
For information-based frameworks dealing with themes of complementarity versus sub-
stitutability, see Goldstein, Li, and Yang (2013) in the context of multiple markets and
Goldstein and Yang (2015) in the context of multiple dimensions of information. Similar
themes are present in my paper because we can interpret my results as: Bonds and CDS
are complements when investors face entry costs and adjust their participation rate but
are substitutes when they do not.

7Single asset frameworks include Duffie, Garleanu, and Pedersen (2005, 2007), Lagos
and Rocheteau (2009), Neklyudov (2012), Hugonnier, Lester, and Weill (2014), Shen,
Wei, and Yan (2015), Sambalaibat and Neklyudov (2016), and Uslu (2016). Feldhütter
(2012) provides a quantitive treatment of search models. Multiple asset frameworks include
Vayanos and Wang (2007), Vayanos and Weill (2008), and Weill (2008). Atkeson, Eisfeldt,
and Weill (2015) model using a static search framework how a bank’s CDS exposure
depends on the size of the bank and the bank’s ex-ante exposure to the underlying credit
risk. They focus on CDS trading and abstract from bond trading. I instead allow trade
in both the bond and the CDS market and thereby shed light on the endogenous feedback
from the CDS market into the underlying bond market.
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Third, I shed light on naked CDS purchases and thereby fill a gap in the
CDS literature that focuses on covered CDS purchases (where investors buy
CDS protection on bonds they own).8 Allowing investors to trade the issuer’s
credit risk without trading or owning the bonds is what defines CDS, why
they proliferated, and why they were controversial.

The paper is organized as follows. Section 1 presents the model envi-
ronment, Section 2 characterizes the equilibrium, prices, and measures of
liquidity, and Section 3 derives the main result. Section 4 provides addi-
tional results: First, I model short-selling and contrast its effect to that of
CDS; second, I show how the main result changes when investors can also
short-sell; and, third, I endogenize investors’ search intensities. An Appendix
contains some of the proofs, while an online Appendix contains the longer
proofs and the proofs to results in Section 4.

1 Model Environment

Time is continuous and goes from zero to infinity. Agents are risk-averse, live
infinitely, have idiosyncratic stochastic endowments, and can invest in a risk-
free asset with return r > 0. They hold and trade bilaterally a risky bond
and a derivative “CDS” contract with a cash flow based on the risky bond.
Finding someone to trade with involves search. Agents enter the economy if
it makes them better off than their outside option. This is the model in a
nutshell; the rest of this section elaborates.

Assets

The bond is a perpetual asset that occasionally comes short of its promised
cash flow. I define such occasions as default. In particular, the bond has
supply S, trades at price pb, and has a cumulative cash flow process Db,t

satisfying:
dDb,t = δdt− JdNt, (1)

where δ > 0 is the promised rate of the coupon flow, {Nt, t ≥ 0} is a Poisson
counting process with intensity parameter η > 0, and J > 0 is a constant
and is the default size.9 The process Nt counts the number of defaults in

8Oehmke and Zawadowski (2015) explore how CDS trading (both covered or naked)
affects bond prices in Amihud and Mendelson (1986) type framework with exogenous
trading frictions. In contrast, my model features endogenous trading costs and, thereby,
an endogenous interaction and spillover between the underlying and derivative markets.
For models on issues surrounding covered CDS purchases specifically, see, for example,
Thompson (2007), Arping (2014), Bolton and Oehmke (2011), Sambalaibat (2012), and
Parlour and Winton (2013).

9Default risk in the model is exogenous; I focus, instead, on changes in asset prices
through changes in asset liquidity. See He and Milbradt (2014), for example, for a model
of endogenous feedback loop between credit risk and liquidity.
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[0, t], and its increment, dNt, is 0 or 1. Thus, (1) says, in a small interval
[t, t+dt], with probability ηdt, the bond defaults, and its cash flow decreases
by J . Otherwise, it pays the coupon at the promised rate. I restrict agents’
bond position to θb ∈ {0, 1} units and assume, for now, that agents cannot
short bonds. In Section 4, I relax this assumption.

In a CDS contract, the buyer of the contract pays a premium flow pc to
the seller of the contract; the seller, in turn, pays the buyer J if the bond
defaults. The CDS buyer’s cumulative cash flow Dc,t, as a result, follows:

dDc,t = JdNt. (2)

Comparing (2) with (1), Dc,t and Db,t are perfectly negatively correlated.
The CDS buyer thus has a short exposure to the underlying credit risk.
Conversely, the CDS seller has a cash flow that is positively correlated with
the bond (−JdNt) and is thus long credit risk. From hereon, when I refer
to a long or a short position, I will mean with respect to the underlying
credit risk.10 I denote an agent’s CDS position with θc ∈ {−1, 0, 1}, where
each denotes a short, a neutral, and a long position, respectively. I rule out
simultaneous long positions in both assets.

An investor terminates a CDS contract by paying the other party a fee.
The fee is endogenous and makes the nonterminating party indifferent be-
tween (a) continuing the contract and (b) accepting the fee, searching for a
new counterparty, and, upon a match, entering a new position. I assume that
when the non-terminating side is indifferent, she accepts the fee and starts
the process again. I denote with Ts and Tb the fees the seller and the buyer
pay their counterparty, respectively.

Agents

Agents have time preference rate β and CARA utility preferences with risk
aversion parameter α: u(C) = −e−αC . Agent i’s cumulative endowment
process ei,t follows:

dei,t = µeρi,tdt+ ρi,tσe(−dNt) +
√

1− ρ2
i,tσedZt, (3)

where µe > 0 and σe > 0 are constants, Zt is a standard Brownian motion,
and ρi,t is the instantaneous correlation process between the bond cash flow
and the agent’s endowment process. The processes {Zt, ρi,t, Nt} are pairwise
independent. The correlation process ρi,t is independent across agents and is
a three-state Markov chain with states ρi,t ∈ {−ρ, 0, ρ} where ρ > 0. Agents
switch from negative and positive correlation states to an uncorrelated state

10Thus, a long position through the CDS market, for example, does not mean an in-
vestor has bought CDS but means she has sold CDS and, hence, is (long-) exposed to the
underlying default risk.
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with Poisson intensities γd and γu, respectively. The intensity of switching
from the uncorrelated state to either the positive or negative correlation state
is zero (the uncorrelated state is thus an absorbing state).11

The different correlation realizations across agents generate heterogenous
private valuations for the underlying credit risk. As I show later, an investor
whose endowment is currently negatively correlated with the bond (ρi,t = −ρ)
has the highest private valuation for the bond (hence, the most willing to buy
it), those with an uncorrelated endowment (ρi,t = 0) have an intermediate
valuation, and those with a positively correlated endowment (ρi,t = ρ) have
the lowest valuation. This difference in valuations introduces a motive for
trade. In particular, a random change in an agent’s valuation (due to a
random change in her correlation) generates a need to trade and rebalance
her portfolio. From hereon, I refer to an agent with ρi,t = −ρ as a high-
valuation type or “h” for short, with ρi,t = 0 as an average-valuation (“a”)
type, and with ρi,t = ρ as a low-valuation (“l”) type. Where necessary,
I will denote the valuation types in subscripts with i where i ∈ {h, a, l}.
Referring to agents according to their valuations is simpler than referring to
their correlations.

Agents’ Decisions

Agents make two sets of decisions. First, they decide whether to enter the
economy. At any point, fixed flows of agents Fh and Fl are born as high-
and low-valuation agents, respectively. An agent i ∈ {h, l} enters if the
value of entering, Vi[0,0], is at least greater than her exogenous entry cost,
Oi, where Vi[0,0] denotes her continuation value upon entry and the subscript
[0, 0] captures the fact that investors enter without an existing position. An
endogenous fraction νi of i-valuation investors, as a result, enter according
to:

νi =


1 Vi[0,0] > Oi

[0, 1] if Vi[0,0] = Oi

0 Vi[0,0] < Oi

(4)

for i ∈ {h, l}, the flows of high and low-type entrants are νhFh and νlFl, and
their steady state measures are νhFh

γd
and νlFl

γu
, respectively.12 The entry cost

11In Section 2, as I describe how different agents trade in equilibrium, I explain why I
model three types where one of them is an absorbing type. In short, I do so to model both
short positions and entry and exit.

12We can ignore the entry decision of average type agents because, in equilibrium as a
result of an additional parameter condition, the expected utility of participating in the
economy as an average type agent is zero: Va[0,0] = 0. Thus, for any positive outside
option (Oa > 0 even if it is small), their entry rate is zero. Moreover, the results in the
paper depend not on the absolute levels of Oh and Ol but on their magnitudes relative to
Oa (i.e. the model can be recast in terms of Oh − Oa and Ol − Oa). Thus, without loss
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of high type investors, Oh, in particular, can be interpreted as funding cost
because, in practice, long investors take the capital intensive side of bond
and CDS trades.

Second, once in the economy, agents choose their consumption, C, and
their bond and CDS portfolio [θb, θc]. The feasible asset positions are: [θb, θc] ∈
{[1, 0], [0, 1], [0, 0], [0, -1], [1, -1]}.13 An agent’s optimal asset position depends
only on her current valuation type (high, average, or low) and her current
asset position. So I categorize agents into types τ ∈ T—where a type
τ = i[θb, θc] specifies the agent’s valuation i ∈ {h, a, l} and asset position
[θb, θc]—and recast their choice over asset positions as choice over types.
Moreover, the positions feasible to an agent depend on, for example, whether
the agent finds a counterparty. So I summarize the events affecting a type
τt agent with a counting process N̂t(τt) and denote its dimension with K(τt)

and the intensity associated with dimension k with γ(k, τt).14 Then, when an
event associated with dimension k arrives, the agent chooses between types
τ
′
t ∈ T (τt, k) ⊂ T .

The agent’s optimization problem is thus:

U(W0, τ0) = max
{Ct∈R,τ

′
t∈T (τt,k)}

E
[∫ ∞

0

e−βtu(Ct)dt

]
(5)

where U(Wt, τt) denotes the indirect utility of type τt agent with wealth Wt

at time t. The agent optimizes subject to her wealth process, Wt:

dWt = (rWt − Ct) dt+ det + dDb
tθb,t − pbdθb,t + (pcdt− dDc

t )θc,t, (6)

and the transversality condition lim
T→∞

E[e−βT e−αrWT ] = 0.

The Bond and the CDS Market

Establishing new asset positions or rebalancing existing ones involves search.
A market prescribes which asset an investor can trade given a match with a
counterparty. In market m ∈ {b, c}, where b stands for the bond market and
c for the CDS market, buyers and sellers meet at a total rate

Mm ≡ λmµm,bµm,s, (7)

of generality, I set Oa = 0. As for the outside options of high and low types, my main
results hold for any Oh and Ol including for the special case where Oh = Ol. I denote
them separately to be general and to later show where the effects come from.

13The position where investors buy bonds and buy CDS ([θb, θc] = [1, -1] ) can be referred
to as a covered CDS position. Eventhough it is feasible, I show in online Appendix L that
it does not arise in equiliribrium.

14Appendix A explains the counting process in detail. It is simply a notation that helps
characterize agents’ optimization problem. Later, as I characterize the equilibrium via a
conjecture-and-verify method, I incorporate the events affecting an agent and, hence, this
process directly into the equilibrium conditions.
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where λm is the exogenous matching efficiency of market m ∈ {b, c}, and
µm,b and µm,s are the masses of b–uyers and s-ellers in market m ∈ {b, c},
respectively.15 Given the total meeting rate, buyers find a seller with intensity
Mm

µm,b
= λmµm,s, and sellers find a buyer with intensity Mm

µm,s
= λmµm,b. For

now, the matching efficiencies λb and λc are exogenous, but I endogenize
them in Section 4.3.

2 Equilibrium, Prices, and Liquidity

2.1 Characterization of Equilibrium

In this section, I start by characterizing the equilibrium objects—agents’ con-
tinuation values, the distribution of agent types, prices, and entry rates—and
the equilibrium conditions they satisfy. I then define the steady state equi-
librium and prove its existence in Proposition 2.

(i) Value Functions

The first equilibrium object is value functions, Vτ , defined by (8).16 As
Proposition 1 shows, they arise from agents’ optimization problem (5).

Proposition 1. Solutions for U(W, τ) are of the form:

U(W, τ) = −e−rα(W+Vτ+ā) (8)

where ā is:
ā ≡ 1

r

(
log (r)

α
− r − β

rα
− 1

2
rασ2

e

)
. (9)

The term Vτ is given by

rVτ = (δ − ηJ − xτ ) θb − y|θb|+ (pc − ηJ − xτ ) θc − y|θc| (10)

+

K(τ)∑
k=1

γ(k, τ) max
τ ′∈T (τ,k)

1

rα

(
1− e−rα(Vτ ′−Vτ+P (τ,τ ′))

)
where xτ = −x for high, xτ = 0 for average, and xτ = x for low-valuation
investors,

x ≡ rαρσeηJ, (11)
15I denote the search efficiencies in the bond and the CDS market, λb and λc, separately

to be general. The distinction allows for, in a reduced form, potential institutional and
regulatory differences between trading bonds vs. CDS contracts (e.g. unlike bonds, CDS
trading involves setting up ISDA agreements between counterparties). The main results
do not depend on their difference but hold for any λb and λc including for the special case
where λc = λb. Later, the distinction helps me to shut down frictions in the bond and the
CDS market one by one and to tease out various effects.

16As (8) shows, the indirect utilities U(W, τ) are monotone transformations of Vτ ’s. So
I will work directly with Vτ ’s and refer to Vτ ’s as value functions.
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y ≡ rα

2
ηJ2, (12)

and P (τ, τ ′), given in (B8), is the instantaneous payoff of switching from τ

to τ ′.

From (10), private valuations are endogenously heterogenous as follows.
The flow utility of a long position through the bond market (i.e. for a bond
owner: [θb, θc] = [1, 0]) is δ − ηJ + x − y for a high type, δ − ηJ − y for
an average type, and δ − ηJ − x − y for a low type. Thus, the high type
derives an additional utility of x and 2x compared to the average and the
low type, respectively. It is analogous for a long position through CDS. The
flow utility from a short position (i.e. for a CDS buyer, [θb, θc] = [0,−1]) is
−pc + ηJ − x − y for a high type, −pc + ηJ − y for an average type, and
−pc + ηJ + x− y for a low type. Thus, the low type derives the most utility
from a short position; the high type derives the least.

The difference in valuations, x = rαρσeηJ , captures the benefit of shar-
ing endowment risk. It increases with agents’ risk aversion, the correlation
between the agents’ endowment and the bond, the volatility of agents’ en-
dowment, σe, and the bond default risk (both the default intensity, η, and
the size of the default, J).

The term y = rα
2
ηJ2 affects both long and short exposures and in the

same direction; thus, it captures a holding cost. It increases with agents’ risk
aversion and default risk (again, both the default intensity and the size of
default).

To simplify derivations and to work with linearized versions of (10), I
assume the risk aversion parameter α is small. See Duffie, Garleanu, Pedersen
(2007) and Vayanos and Weill (2008) for similar approximations.

(ii) The Distribution of Agents and Inflow-Outflow Equations

Next, I characterize the population masses of the different agent types. I
start by conjecturing the equilibrium agent types and their optimal trading
strategies.17 See Figure 1 to follow along the next discussion.

For high-valuation investors, the optimal exposure is long credit risk.
Since an investor goes long by either buying a bond or selling CDS, at any
point, a high-valuation investor is one of three asset positions: (1) owns
a bond: [θb, θc] = [1, 0], (2) sold CDS: [θb, θc] = [0, 1], or (3) without a
position: [θb, θc] = [0, 0]. High-valuation investors with the first two positions
are inactive: They have reached their terminal optimal position. The ones
without a position, on the other hand, seek a long exposure and do so by
searching for a counterparty in both the bond and the CDS market at the

17The proof of the equilibrium existence then shows that the conjectured strategies are
indeed optimal.
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same time. They, as a result, make up the mass of bond buyers and CDS
sellers: µb,b = µh[0,0] and µc,s = µh[0,0], where µτ denotes the mass of type τ
agents.

Low-valuation investors short credit risk. Since they achieve this by buy-
ing CDS, they are the naked CDS buyers in the model. At any point, they
are one of two asset positions: (1) bought CDS: [θb, θc] = [0, -1] or (2) looking
to buy CDS: [θb, θc] = [0, 0]. The latter make up the mass of CDS buyers:
µc,b = µl[0,0].

Average-valuation investors in equilibrium prefer to remain out of the
markets and exist in the model to provide an exit point for high and low types
when they get a valuation shock.18 See Vayanos and Wang (2007), Vayanos
and Weill (2008), Rocheteau and Weill (2011), and Afonso (2011) for similar
setups. To ensure that exiting is optimal, first, the optimal position for an
average type has to be no position: [θb, θc] = [0, 0] (investors cannot exit with
an existing position).19 Assumption 1 ensures this in equilibrium.20 Second,
the valuation type has to be an absorbing state to rule out any incentive to
wait to switch to a different valuation type. Hence, this assumption earlier.
An investor with a CDS position can unwind her position immediately upon
reverting to an average type. So, in equilibrium, the only average types
seeking to rebalance their portfolio are bond owners, and they are the bond
sellers in the economy: µb,s = µa[1,0].

Assumption 1. 2y > x− (r + γd)Oh > − (x− 2y − (r + γu)Ol) > 0.

Put together, the equilibrium agent types are T ≡ {h[0, 0], h[1, 0], h[0, 1],

a[1, 0], l[0, 0], l[0, -1]}.
Given the above trading strategies, the steady state masses are such that

the flow of agents switching into a type equals the flow of agents switching
out of that type. For example, the mass of h[0, 0] agents evolves as:

∂µh[0,0]

∂t
=

inflow︷ ︸︸ ︷
νhFh + γuµh[0,1]−

outflow︷ ︸︸ ︷(
γdµh[0,0] +

(
λbµa[1,0] + λcµl[0,0]

)
µh[0,0]

)
. (13)

In (13), the flow of agents turning into h[0, 0]-type are (1) new high-valuation
entrants, νhFh, and (2) long investors who had previously sold CDS, but are

18In Appendix C, I elaborate further why I need three types.
19This also means, as I show in online Appendix L, that covered CDS positions do not

arise in equilibrium.
20Appendix D discusses Assumption 1 in detail and provides more intuition. In short,

what the assumption implies about the underlying parameters is as follows. If Oh and Ol
are small, for example, then the assumption bounds the default size, J , between 1 and 2
units of ρσe, which is the part of the endowment risk that can be hedged by trading bond
or CDS. Otherwise, if default risk is too small, then even average types also want to hold
CDS positions; but if it is too large, then none of the investors want to trade CDS with
each other. General values of Oh and Ol, however, (especially, if they differ) help relax
this parameter space restriction.
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searching again because their counterparty terminated the contract, γuµh[0,1].
The agents switching out of type h[0, 0] are those (1) hit by a valuation shock,
γdµh[0,0], and (2) matched with either a bond seller or a CDS buyer. The
steady state mass is characterized by ∂µh[0,0]

∂t
= 0; that is, µh[0,0] is constant,

and the inflow equals the outflow. The inflow-outflow equations for the other
agent types are analogous and are in Appendix B.

(iii) Market Clearing

For the bond market to clear, the total mass of bond owners has to equal the
bond supply:

µh[1,0] + µa[1,0] = S. (14)

For CDS market clearing, the number of CDSs sold has to equal the number
of CDSs purchased:

µh[0,1] = µl[0,-1]. (15)

(iv) Prices and Premiums

The bond price arises from Nash-bargaining between buyers and sellers. The
marginal benefit of buying a bond (i.e. the buyer’s reservation value) is
the difference in the expected utility of owning vs. not owning the bond:
Vh[1,0] − Vh[0,0]. The buyer’s gains from trade is thus Vh[1,0] − Vh[0,0] − pb.
Similarly, the seller’s reservation value is Va[1,0], and her gains from trade is
pb− Va[1,0]. A buyer and a seller bargain over the price so that each gets half
of the total surplus: Vh[1,0] − Vh[0,0] − Va[1,0]. The bond price, as a result, is
the average between the buyer and seller’s reservation values:

pb =
1

2
Va[1,0] +

1

2
(Vh[1,0] − Vh[0,0]). (16)

I characterize the CDS premium (or, equivalently, the CDS spread), pc,
analogously. A CDS buyer’s surplus is Vl[0,-1] − Vl[0,0], while the seller’s is
Vh[0,1] − Vh[0,0]. Thus, the CDS premium is implicitly defined by

Vh[0,1] − Vh[0,0] =
1

2

(
Vl[0,-1] − Vl[0,0] + Vh[0,1] − Vh[0,0]

)
. (17)

CDS termination fees are characterized similarly in Appendix B, and the
entry conditions were given earlier.

Put together, the bond price and the CDS spread depend on value func-
tions. Value functions depend on the expected search times that, in turn,
depend on the masses of buyers and sellers in each market. The masses of
buyers and sellers and the entire distribution of agents types depend on high
and low types’ entry rates. Entry rates, in turn, depend on value functions.
I focus my analysis on the steady state equilibrium defined as follows:
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Definition 1. A steady state equilibrium is value functions {Vτ}τ∈T , popu-
lation measures {µτ}τ∈T , prices {pb, pc}, termination fees {Tb, Ts}, and en-
try rates {νh, νl} such that (i) agents’ value functions {Vτ}τ∈T solve their
optimization problem (5), (ii) population masses equate the flow of agents
switching into type τ ∈ T to the flow of agents switching out of τand solve
(B9)-(B14), (iii) market clearing conditions (14) and (15) hold, (iv) bond
and CDS prices {pb, pc} arise from bargaining and solve (16) and (17), (v)
entry decisions {νh, νl} solve (4), and (vi) termination fees {Tb, Ts} solve
(B15) and (B16).

Proposition 2. Under conditions (E5) and (E8), a steady state equilibrium
exists where the entry rates are given by an interior solution: νh ∈ (0, 1) and
νl ∈ (0, 1).

I outline the proof in Appendix E and provide the full proof in online
Appendix F. Condition (E8) ensures the existence of an interior solution for
νl. Whenever an interior solution for νl exists, two corner solutions (νl = 0

and νl = 1) exist also. Thus, multiple equilibria exist each with a different
entry rate of low-valuation investors: a unique interior solution νl ∈ (0, 1)

and two corner solutions (νl = 0, νl = 1). For any νl, the solution for the
entry rate of high-type investors, however, is unique. Condition (E5) ensures
that it is, in particular, an interior solution. The fact that νl = 0 is one of the
solutions shows that even if CDS trading is feasible, investors may not trade
CDS in equilibrium. Since the paper is about the effect of CDS, I contrast
the equilibria with CDS (i.e. νl > 0 be it an interior or a corner solution) to
the environment in which I shut down the CDS market (or, equivalently, to
the equilibrium with νl = 0). The marginal effect of CDS I highlight below
is qualitatively the same for both the interior, νl ∈ (0, 1), and the corner,
νl = 1, levels of the entry rate. So the equilibrium multiplicity due to the
different entry rates of low types is unimportant.

2.2 Characterization of Liquidity and Prices

I measure bond market liquidity, first, with the trading volume defined in (7)
and, second, with the illiquidity discount in the bond price. The latter arises
from search frictions and is the difference between the bond price with bond
market search frictions (Proposition 4) versus without (Proposition 3).

Proposition 3. Absent bond market search frictions (λb → ∞), the bond
price is

pb =
(δ − ηJ) + x− y

r
− (r + γd)Oh

r
. (18)

Eq. (18) shows that the bond is priced by high-valuation agents. The
absence of search frictions allows a bond owner to sell her bond to another
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high-valuation trader the moment she gets a valuation shock. Only high-
valuation agents, as a result, own the bond.21 Since the bond price is the
average between the marginal valuations of different bond owners, and high-
valuation investors are the only bond owners, the bond price depends on their
valuation only. In particular, δ − ηJ is the expected cash flow of the bond,
and δ − ηJ + x− y is long investors’ utility valuation of this cash flow. The
additional discount in the bond price, (r + γd)Oh, arises as a compensation
for a long investor for her entry cost (or, equivalently, her funding cost).

Proposition 4. With bond market search frictions (λb <∞), the bond price
is given by

pb =
(δ − ηJ) + x− y

r
− (r + γd)Oh

r︸ ︷︷ ︸
discount due to
funding cost

− (r + 2γd)

r

1

2

(x− (r + γd)Oh)

r + γd + λbµh[0,0]
1
2︸ ︷︷ ︸

illiquidity discount

, (19)

Comparing Propositions 3 and 4, search costs depress the bond price be-
low the frictionless price in (18). Upon a sudden decrease in her valuation, a
bond owner tries to sell her bond but because of search frictions is unsuccess-
ful for some time. When she does find a buyer, she sells it at a discounted
price accounting for the difficulty of locating another buyer. Similarly, a
potential buyer anticipating the difficulty of reversing positions negotiates a
discounted price. Thus, search costs create an illiquidity discount in the bond
price: the difference between the price with frictions (19) versus without (18).

Definition 2. The illiquidity discount, db, in the bond price is :

db ≡
(r + 2γd)

r

1

2

(x− (r + γd)Oh)

r + γd + λbµh[0,0]
1
2

. (20)

Proposition 5. The CDS premium (or, equivalently, the CDS spread) can
be characterized as:

pc = (ηJ − x+ y)+ (r + γd)Oh︸ ︷︷ ︸
premium due to
funding cost

+ (r + 2γd)
1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

.︸ ︷︷ ︸
premium due to CDS market illiquidity

(21)

Eq. (21) expresses the CDS spread from the perspective of a CDS seller,
who is a high type investor. It reflects the cost of selling CDS.22 It increases in
default risk—both the default intensity, η, and the size of the default, J—and,
hence, with the expected default payment. The entire term ηJ−x+y is a long

21In a frictionless environment and in the absence of the CDS market, the steady state
mass of long investors ( νhFhγd

)—which captures the total demand for credit risk—converges
to the bond supply, S. In an environment with CDS where the CDS market is also
frictionless, it converges to the bond supply plus the total short interest, S + νlFl

γu
.

22It can expressed symmetrically as the value of buying CDS from the perspective of
CDS buyers.
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investor’s utility valuation of the expected payment. The second term, (r +

γd)Oh, shows that long investors’ entry cost (or, equivalently, their funding
cost) gets passed on to buyers as a higher CDS premium. The third term is
zero if the CDS market is frictionless (λc →∞) but is positive otherwise. It
thus captures CDS market illiquidity, and it increases the premium.

3 The Main Result

The next proposition gives the main result of the paper. It shows that short-
ing bonds through naked CDS purchases increases bond market liquidity.

Proposition 6 (The Spillover Effect). Suppose λb <∞ and λc <∞. In the
equilibria of Proposition 2 in which investors trade CDS, the bond market has
fewer sellers (µa[1,0]) and more buyers (µh[0,0]), the illiquidity discount (db)
is smaller, the bond price (pb) is higher, the volume of trade (Mb) is larger,
and high-valuation investors enter at a higher rate than in the environment
without the CDS market.

I give the intuition in the next paragraphs. With the introduction of CDS,
long investors have additional counterparties that they can search for as they
search for bond sellers. Searching for both counterparties at the same time
benefits a long investor in two ways. First, by expanding the investor’s pool of
potential counterparties, searching for both shortens the investor’s expected
search time. She values this because she is impatient: She (a) discounts and
(b) risks getting hit by a valuation shock (in which case, she loses altogether
future trading opportunities and the gains they yield). Second, the ease of
finding a counterparty improves the investor’s bargaining power. So when
she does find a counterparty, she extracts a larger surplus.23 Put together,
the introduction of CDS increases a long investor’s continuation value.24

The additional and simultaneous trading opportunity relaxes long in-
vestors’ participation constraint: The benefit of entering and trading as a
long investor, Vh[0,0], now exceeds the cost: Vh[0,0] > Oh. Long investors re-
spond by entering at a higher rate and do so until the increase in Vh[0,0] is

23Recall that search frictions preclude competition and that once a match is found, each
side has a bargaining power against the other side. If an investor lets a counterparty go
without trading with him, she (a) postpones hedging benefits a trade would have yielded
and (b) while waiting for another one, risks getting hit by a valuation shock and losing
altogether all future trading opportunities and the gains they yield. But if she trades,
she foregoes other counterparties she could have potentially traded with. The price the
two sides negotiate—and hence the gains from trade each side realizes—balances these
incentives to reach a deal.

24In the main setup, I took as given that long investors search in both markets. However,
as Lemma 2 in online Appendix H formalizes, searching in both markets at the same time
is indeed the optimal thing to do if long investors have an explicit choice between searching
in just the bond market, just the CDS market, or in both markets at the same time.
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reversed and the marginal entrant is again indifferent: Vh[0,0] = Oh.25 The
result is an increase in the aggregate number of long investors in the economy.

The increase in the number of long investors, importantly, increases the
mass of bond buyers and, thereby, bond market liquidity. After they enter,
the additional long investors spend time searching for a counterparty and, as
a result, expand the mass of long investors looking for a counterparty, h[0, 0].
Since they search for both bond sellers and CDS buyers, for bond sellers,
a larger mass of long investors searching for a counterparty means a larger
number of potential counterparties. The result is an increase in bond market
liquidity: a shorter search time for bond sellers, fewer bond sellers (hence,
less misallocation), a larger bond turn over, and a larger volume of trade. If
the model had dealers, the increase in liquidity would manifest as a decrease
in the bond bid-ask spread also.

The increase in bond market liquidity increases the bond price. Sellers’
reservation value for the bond increases because they can find a buyer quickly.
Buyers are also willing to pay a higher price because they know reversing
positions has become easier. Put together, they negotiate and trade at a
higher price.

The spillover effect works also in reverse: Banning CDS decreases bond
market liquidity.26 Investors can no longer sell CDS because their counterpar-
ties, the naked CDS buyers, are banned from buying CDS. Long investors
exit the CDS market, but by exiting the CDS market they pull out from
the bond market also. The result is a decrease in bond market liquidity,
consistent with the reaction after the permanent ban. This suggests that in-
vestors respond to a permanent CDS ban by scaling back their credit market
operations: They fire their CDS and bond traders, shut down their credit
trading desks, and switch into equity or currency markets. Thus, preventing
investors from shorting ultimately ends up banning investors who want to
take the opposite side and long the asset.

3.1 Key Ingredients

The liquidity spillover effect relies on four key ingredients. The first is en-
dogenous entry. Suppose the entry rate (hence, the mass) of long investors is
fixed. Then, naked CDS buyers attract investors who would have otherwise

25The increase in the number of long investors reverses the two effects that increased long
investors’ utility in the first place. First, the number of counterparties for long investors
decreases as more of them match up with other long investors. Second, long investors lose
their bargaining power when there is more of them.

26A CDS ban is equivalent to either setting the CDS matching efficiency (λc) to zero
or decreasing the flow of low-valuation investors (Fl) to zero because, except for bond
owners, the ban made entering and buying CDS infinitely costly. Moreover, the actual
ban prevented CDS purchases used to both speculate and to hedge long positions correlated
with the sovereign. In the model, consistent with the actual ban, both would be considered
naked CDS purchases because the CDS buyer does not hold the underlying bonds.

16



bought bonds away from the bond market. Naked CDS buyers, as a result,
reduce the number of counterparties for bond sellers and worsen their search
costs. Thus, introducing CDS but keeping the entry rate of long investors
fixed reverses the spillover effect: Bond market liquidity deteriorates.

The second ingredient is condition (E5). It is related to the first ingre-
dient. Recall that it ensures the existence of an interior solution for the
entry rate of high type investors, νh, before and after CDS is introduced.27

It thereby ensures that a sufficient number of long investors exist on the
sideline that can then enter and absorb the short interest. Otherwise, the
demand for short positions (captured by the total mass of low types, νlFl

γu
)

is too large relative to the supply of long capital (which is at most Fh
γd
), and

introducing short positions crowds out bond sellers.28 In turn, the demand
for short positions is large if either short investors have poor outside option,
Ol, the holding cost y is small, the intensity of getting a valuation shock, or
if γu, is small.29

Proposition 7. Let hats denote the counterfactual environment without CDS,
and their absence the environment with CDS. If either the bond or the CDS
market is frictionless (λb → ∞ or λc → ∞), then db = d̂b, pb = p̂b, and
Mb = M̂b.

As Proposition 7 shows, the third ingredient for the spillover effect is
search frictions in both the CDS and the bond market. If the CDS market is
frictionless (λc →∞), CDS attracts additional long investors as before, but
the increase in the aggregate mass of long investors does not translate to an
increase in the mass of bond buyers, h[0, 0]. This is because the additional
entrants sell CDS immediately upon entry.30 CDS contracts, as a result, do
not affect bond market liquidity and are thus redundant. Similarly, CDS is
redundant if the bond market is frictionless (λb → ∞). In this case, even

27Condition (E5) simplifies the proof of the main result. It is, however, stronger than I
need, and I elaborate why in Appendix E.

28This occurs if an interior solution for νh does not exist (hence, the entry rate is given
by a corner solution, νh = 1), and the entry rate at which the bond price would have
started to exceed the price without CDS is larger than this corner value. That is, if the
equilibrium entry rate of high type investors hits the corner value νh = 1 before a sufficient
number of long investors can enter and absorb the short interest.

29The intuition is as follows. If Ol is small, the value of entering as a short investor,
captured by Vl[0,0], is more likely to exceed the outside option implying a larger entry of
short investors. A small holding cost implies a large gains from CDS trade and, hence, a
larger flow of short investors. If γu is small, short investors expect to hold their position
longer, derive a larger gains from trade, and, hence, enter at a higher rate. A larger flow
of short investors, in turn, means that it is more likely for νh to hit the corner value before
a sufficient number of long investors can enter to take the opposite side.

30In particular, the increase in the equilibrium number of high-valuation investors,
(νh − ν̂h) Fhγd , equals the total demand for CDS (the measure of all low-valuation investors,
including those who have purchased CDS: νlFlγu

= µl[0,0] + µl[0,-1]). That is, the new high-
valuation entrants replace one-to-one the bond buyers that migrate to the CDS market
and sell CDS instead.
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without the CDS market, the illiquidity discount is zero, and the bond volume
is the maximum possible.

Proposition 8. Let hats denote the counterfactual environment without CDS,
and their absence the environment with CDS. If long investors cannot search
at the same time in bond and CDS markets but, upon entering, have to choose
one of them to search in (i.e. direct their search effort to), then db = d̂b,
pb = p̂b, and Mb = M̂b.

The last ingredient is investors’ ability to search in both markets at the
same time. Proposition 8 shows that if we segment bond and CDS markets
by shutting down the ability to search in both markets, the introduction of
CDS is again redundant. Recall that the ability to also trade with short
investors increased the probability of trade and the bargaining power of long
investors. Removing the ability to search simultaneously—by removing the
substitutability between bond and CDS trades—cancels these effects and,
with them, the reasons long investors increased their entry rate in the first
place. The same number of long investors enter the bond market as without
the CDS market, and the spillover effect does not arise.

4 Additional Results

To qualify the spillover effect of CDS and to understand it further, I consider
three extensions in this section. First, in Section 4.1, I model short-selling
and compare its effect with that of shorting through CDS contracts. I also
contrast the spillover effect with existing results on short-sales. In Section
4.2, I relax the assumption that investors cannot short-sell directly and an-
alyze how the main result changes. Finally, in Section 4.3, I endogenize the
intensities with which investors search in the two markets and show that the
spillover effect remains intact.

4.1 Short Selling Directly

I model bond shorting following Vayanos and Weill (2008). The model works
as follows. After purchasing the bond, long investors now lend the bond in
a repo (i.e. a lending) market and, as a result, earn a lending fee. On the
other side of the repo transaction, short investors (l[0, 0]) borrow the bond
to sell it in the spot market. Meetings in both the spot and repo markets
occur through search. I denote with λr the exogenous search intensity in
the repo market. Parties negotiate over the bond price in spot transactions
and over the lending fee in repo transactions. An investor unwinds a short
position by first buying the bond in the spot market and then delivering it
back to the bond lender. To unwind a bond loan, if her counterparty has
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not yet (short-) sold the bond, the lender recalls the bond, sells it, and exits.
If the counterparty has already sold the bond, the lender walks away with
the collateral that the short seller has put aside. The full model is in online
Appendix I.

Below results on how short selling affects bond market liquidity are new
relative to Vayanos and Well (2008). First, they keep the entry of high and
low-valuation investors fixed, while I endogenize them. Second, they compare
bond market liquidity in the cross section across multiple bonds. In contrast,
I focus on how liquidity of a single bond differs with versus without short
selling.

Proposition 9. The bond price in the presence of short-sales is given by:

pb =
(δ − ηJ) + x− y − (r + γd)Oh

r
− (r + 2γd)

r

1

2

(x− (r + γd)Oh)

r + γd + λbµb,b
1
2︸ ︷︷ ︸

illiquidity discount

. (22)

+
(r + λbµb,b)

r

1

2

λrµl[0,0]
1
2
ωr

r + γd + λbµb,b
1
2︸ ︷︷ ︸

lending fee effect

,

where ωr, defined by (I23), is the total gains from trade from a repo contract.

Short-selling has two effects on the bond. The first is a lending fee effect
and is captured by the third term in (22). Bond owners by lending their
bond to short investors and charging them for the loan earn an extra cash
flow. The prospect of an additional cash flow raises long investors’ reservation
value for the bond and, as a result, the price negotiated between bond buyers
and sellers. Proposition 10 (a) formalizes this effect by shutting down spot
market search frictions and, thereby, any confounding effects of short selling
on the bond price through its effect on bond market liquidity.31

Proposition 10. Let hats denote the counterfactual environment without
short-selling, and their absence the environment with short-selling. (a) Sup-
pose the spot market is frictionless (λb →∞). Then, pb > p̂b and Mb > M̂b.
(b) Suppose the repo market is Walrasian (λr → ∞). Then, pb > p̂b,
db = d̂b = 0, and Mb > M̂b.

The second effect is a liquidity effect. It is the analogue of the spillover
effect of CDS. Allowing short positions introduces into the spot market an

31In particular, in the limit as λb →∞, the second term in (22) is zero with or without
short-selling; thus, short-selling affects the bond price only through the third term. Short-
selling also increases the volume of bond trade by increasing both the number of sellers (due
to short-sellers who are first establishing the short position and selling) and the number
of buyers (due to short-sellers who are looking to back the bond in the bond market). But
when the bond market is Walrasian, this increase in volume has no effect on the illiquidity
component of the bond price.
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additional mass of sellers—the short sellers. These short sellers have the same
effect on the bond that naked CDS buyers had. They attract additional long
investors into the economy who, in turn, trade with both types of bond
sellers. The result is a decrease in the illiquidity discount, the second term
in (22), and an increase in the bond trading volume.32 The only difference
is short and long investors meet in the spot market, whereas, in the CDS
environment, they met in the CDS market. As in the case of CDS, this effect
relies on bond market search frictions. Proposition 10 (b) formalizes this
effect by shutting down search frictions in the repo market and, thereby, the
lending fee effect.33

The above results highlight three differences between the lending fee and
the spillover effects. First, even though both effects increase the bond price,
the lending fee effect does so by changing the cash flow the bond yields its
holders, while the spillover effect does so by improving its liquidity. Second,
the lending fee effect is specific to direct short selling and does not generalize
to shorting via derivatives. The spillover effect is, instead, general: It arises
with both short-selling and shorting through CDS contracts. Lastly, while
the lending fee effect has been shown before, for example, by Duffie, Garleanu,
and Pedersen (2002), the spillover effect is a novel channel on how shorting
affects the underlying asset.

The spillover effect also contrasts with a related result by Vayanos and
Weill (2008). They show that an asset with short-selling activity has a higher
spot market liquidity. They show this is because short-selling requires trading
in the spot market (first as a bond seller to establish the short position, then
as a bond buyer to unwind the position). This mechanism is therefore specific
to short-selling and does not generalize to derivatives. In the mechanism I
show, in contrast, CDS increases bond market liquidity even though it does
not require trading the underlying bond to achieve a long or a short exposure
to the underlying bond. Thus, relative to Vayanos and Weill (2008), the
channel I show in the paper is both novel and general (it applies to shorting
both directly and through CDS contracts).

The spillover effect even differs across the two contexts of shorting, di-
rectly and via CDS. Recall that long investors, h[0, 0], search for two sets
of counterparties: the regular bond sellers and the low type short investors.
In the context of CDS, the latter are the CDS buyers, and, in the context

32Above with the lending fee effect, bond borrowers in the repo market attract additional
long investors into the economy (since they eventually trade as bond lenders). Although
similar, here it is instead additional bond sellers in the spot market (the short sellers) that
attract long investors as bond buyers.

33Repo market search frictions (λr <∞) preclude competition and result in bond lenders
charging a lending fee. As λr →∞ and competition on both sides of the market intensify,
the lending fee converges to zero. As a result, the third term in (22) is zero, and the effect
of short-selling on the bond price is due to its effect on the illiquidity discount (the second
term in (22)).
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of short-selling, they are the low type investors who have borrowed a bond
and are now looking to (short-)sell it in the bond market. For the spillover
effect to arise, meetings with this second set of counterparties have to involve
search frictions. In the case of short-selling, since the long and the short sides
meet directly in the bond market, frictions in the bond market are sufficient
to generate the spillover effect. Repo market frictions are unnecessary. In
turn, the additional trading activity in the spot market due to short-selling
automatically benefits existing bond traders. In the case of CDS, in contrast,
bond market frictions are insufficient. The effect also needs CDS market fric-
tions; otherwise, CDS is redundant. This difference in necessary conditions
illustrates the derivative nature of CDS contracts.

Lastly, the spillover effect contrasts with the larger short-sales litera-
ture. A large strand of the theoretical literature on short-sales shows that
short-sale constraints bias prices up by keeping low-valuation investors out
of the markets (see Miller (1977), Harrison and Kreps (1978), Jarrow (1980),
Chen, Hong, and Stein (2002), Scheinkman and Xiong (2003), and Hong,
Scheinkman, and Xiong (2006)).34 I show that this well known result re-
verses if we allow one side of the market to respond endogenously to the
introduction or ban of the other side. This insight is the novelty of the pa-
per. In particular, I show that preventing short-sales keeps out not only
investors who want to short but also investors who want to take the opposite
side and long the underlying asset. Trading volume decreases as a result,
and, when the bond market is not Walrasian, the decrease in volume lowers
asset prices.

4.2 The Effect of CDS If Investors Can Short Sell

In the previous section, I compared the effects of direct short selling with that
of shorting via CDS. In this section, I relax the assumption that investors
cannot short-sell directly and numerically analyze the marginal effect of CDS
relative to a benchmark environment in which investors already short-sell.35

I present the model in online Appendix J. Figure 2 in online Appendix J
illustrates the results I highlight in this section.

34In these environments, investors agree to disagree about asset fundamentals. Het-
erogenous beliefs, in turn, generate heterogenous private valuations for the asset, and
hence, a motive for trade. Another strand analyzes how short sale constraints affect price
informativeness in Glosten and Milgrom (1985) type environment (see Diamond and Ver-
recchia (1987), Bai, Chang, and Wang (2006), Cornelli and Yılmaz (2013)). They show
that prices are not necessarily biased upwards. Since in my environment investors trade
due to difference in private valuations, my results are more comparable to the results with
heterogeneous beliefs. I thank an anonymous referee for pointing this out.

35The model with both CDS and short-selling is complicated and involves solving, at
minimum, a system of 23 equations and variables (10 value functions, 9 population masses,
2 entry rates, the cds premium, and the lending fee). Analytically showing any results, as
a result, is intractable.
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When investors already short-sell the underlying bond, the introduction
of CDS affects the bond in two ways. First, it creates the liquidity spillover
effect as it did when investors could not short-sell. The intuition is as follows.
Faced with the probability of finding a counterparty in the CDS market, long
investors put more weight on the gains from trading in the CDS market than
on the gains from trading in the bond market.36 The gains from trading
with a CDS counterparty, moreover, is larger than with a bond counterparty.
Put together, the value of entering the economy as a long investor increases,
and long investors enter at a higher rate. Once they enter, they search
simultaneously for a bond seller creating the spillover of long investors and
liquidity into the bond market. The result is an increase in the bond price
and trading volume. This result arises even if the entry rate of low type
investors were to remain fixed. In addition, CDS changes the participation
incentives of low-valuation investors also and, for the same reasons as on the
long side, attracts additional low-valuation investors. The increase in the
mass of low types creates another layer of the spillover effect: Long investors
react to the increase in the mass of low types and enter at an even higher
rate than if the entry rate of low types remained fixed. The result is a further
increase in the bond price and trading volume.

Second, CDS affects the bond price by changing the lending fee cash flow
the bond generates. The direction of the change depends on the matching
efficiency of the CDS market, λc, relative to that of bond and repo markets.
If λc is small, the additional inflow of low types translates to a large increase
in the number of investors looking for a short position, µl[0,0]. Since they
search to borrow a bond at the same time, this means an increase in the
demand to borrow a bond, the lending fee, and, thereby, the bond price.
As λc increases, this result starts to reverse. As investors start to buy CDS
quickly, there are fewer of those who are still searching for a short position
(hence, those searching to also borrow a bond). As a result, there is less
demand to borrow a bond and a greater supply of lendable bonds. This
drives down the lending fee, the cash flow the bond generates through the
lending fee, buyers’ reservation value for the bond, and, hence, the bond
price.

The net impact on the bond price depends on the above two effects. For
a relatively large λc, the lending fee decreases sufficiently that the resulting
downward pressure on the bond price dominates the opposite pressure from
the spillover effect. The net effect is a decrease in the bond price. For a

36Specifically, the expected utility of high type investors, Vh[0,0], is given by (r +

γd)Vh[0,0] = λbµb,s
1
2ωb + λcµc,b

1
2ωc. It is a weighted average between the gains from a

bond transaction, ωb, and the gains from a CDS transaction, ωc, where the weights are
proportional to the masses of potential counterparties in the bond (µb,s) and the CDS
market (µc,b). Without the CDS market, their expected utility depends just on the gains
from trading in the bond market: (r + γd)V̂h[0,0] = λbµ̂b,s

1
2 ω̂b.
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relatively small λc, the lending fee either increases or, if it decreases, the
decrease does not dominate the spillover effect. The net effect is an increase
in the bond price. Thus, when investors can short sell, the net effect of CDS
on the bond price is ambiguous. However, it still creates the liquidity spillover
effect, and the effect of this channel on the bond price is unambiguous.

4.3 Endogenous Search Intensities

In the main environment, search intensities in the bond and the CDS market,
λb and λc, were fixed. In this section, I endogenize them and show that the
liquidity spillover effect arises even if investors react to a CDS introduction
by adjusting their search efforts in the two markets.37

I endogenize investors’ search intensities as follows. A high-valuation
investor, h[0, 0], searches for a counterparty in market m ∈ {c, b} with search
effort λm. As a result, she meets a counterparty from market m at Poisson
arrival times with an intensity equal to her search effort in that market
times the mass of potential counterparties in that market (that is, with total
intensity λbµa[1,0] in the bond market and λcµl[0,0] in the CDS market). Since
a total mass µh[0,0] of long investors does the same thing, the total volumes of
matches are Mb = λbµa[1,0]µh[0,0] in the bond market and Mc = λcµl[0,0]µh[0,0]

in the CDS market. For simplicity, I endogenize the search effort of long
investors only and set the search effort of investors on the opposite side (i.e.
of bond sellers and CDS buyers) to zero.38

Investors incur a flow search cost

c(λb, λc) ≡ c0 (λb)
2 + c0 (λc)

2 (23)

as a function of their search efforts {λb, λc}, where c0 > 0 is a constant.39

37The environment of this section, the environment of Proposition 8, and the main
environment can all be interpreted as environments with endogenous search effort but with
different feasible regions for the search effort. The feasible regions are: {λb, λc}∈[0,∞)×
[0,∞) in the endogenous search environment, {λb, λc}∈{{λ̄b, 0}, {0, λ̄c}} in the segmented
environment for some values λ̄b and λ̄c (that is, the search effort vector {λb, λc} can be
either {λ̄b, 0} or {0, λ̄c}), and {λb, λc} = {λ̄b, λ̄c} in the baseline environment.

38In this section, I focus on the environment with only the long side choosing search
efforts because endogenizing search efforts on both sides of the market makes the model
intractable. However, in online Appendix K, I endogenize search effort of all investors
and characterize the parameter conditions under which the spillover effect still arises. The
additional complication does not yield any additional benefit. Numerically, the results
with one- versus two-sided endogenous search intensities are analogous.

39The convex cost specification implies that if an investor splits her search effort and
searches with, say, 50 and 50 units of effort in each market, her total search cost is smaller
than if she searches in one market with 100 units. I abstract from micro-foundations
that would result in such a functional form. The specification captures, for example,
complementarities of trading in multiple related markets. The complementarity could be
in the form of, for example, information (e.g., resources expended on pricing individual
bonds help an investor price CDS relatively quickly and vice versa). Or it could be in the
form of trading relationships (e.g., networks formed in the bond market help form trading
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Investors therefore internalize the cost of searching in multiple markets at the
same time. If they were to search in just one market m, their total search
cost would be the cost of searching in that market only, c0 (λm)2.

Investors choose {λb, λc} to maximize their expected utility. The first
order condition with respect to the search effort in the bond market, λb, is

rα
∂c(λb, λc)

∂λb
= µa[1,0]

(
1− e−rα(−pb+Vh[1,0]−Vh[0,0])

)
, (24)

while the first order condition with respect to the search effort in the CDS
market, λc, is

rα
∂c(λb, λc)

∂λc
= µl[0,0]

(
1− e−rα(Vh[0,1]−Vh[0,0])

)
. (25)

In (24) and (25), the optimal search effort equates the marginal cost (the left-
hand side) with the marginal benefit (the right-hand side) of an additional
unit of search effort. The marginal benefit is the product of the mass of
potential matches and the gains from trade upon a match. The steady state
equilibrium now includes the optimal search efforts as additional endogenous
variables that satisfy the first order conditions, (24) and (25).

Lemma 1. The characterization of the bond price and the illiquidity discount
are the same as (19) and (20).

Proposition 11. Let hats denote the counterfactual environment without
CDS, and their absence the environment with CDS. With the introduction
of CDS, bond market liquidity increases (db < d̂b and Mb > M̂b), and long
investors lower their search effort in the bond market (λb < λ̂b).

In Proposition (11), the reduced search effort of long investors and greater
bond market liquidity are byproducts of the same underlying change in the
bond market. Long investors search in the bond market with an effort pro-
portional to the rents they expect to extract from trading in it. The rents
they expect to extract, in turn, is proportional to the number of bond sellers
(relative to the number of buyers).40 Naked CDS buyers expand the pool of
long investors in the economy who, in turn, trade in the bond market due

relationships in the CDS market).
We can specify the total search cost more generally as c(λb, λc) = (c0 (λb)

g
+ c0 (λc)

g
)
a

for some constants g and a. Proving the liquidity spillover effect for a general functional
form is impossible, but numerical results suggest that the main effect arises as long as the
cost function is a convex function of λb and λc, and investors can search simultaneously
in both markets.

40Specifically, for small α, (24) simplifies to λb = 1
2c0
µa[1,0]

(
−pb + Vh[1,0] − Vh[0,0]

)
,

where the right-hand-side is the rents a long investor expects to extract. It is the product
of the mass of potential matches (i.e. bond sellers) and the gains from trade upon a match.
The gains from trade itself is an implicit function of market illiquidity: It increases in the
number of sellers, µa[1,0]. Thus, the whole right-hand-side increases in µa[1,0].
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to the substitutability between bond and CDS positions. The result is an
increase in the number of bond buyers and a decrease in the number of sell-
ers. This change in the bond market, on the one hand, means higher bond
market liquidity. On the other hand, the decrease in the number of sellers
(and the resulting decrease in the expected rents) reduces long investors’ in-
centive to search in the bond market. Thus, long investors reallocate some of
their search effort from the bond to the CDS market, but they do so precisely
because the bond market is more liquid.

These results with endogenous search efforts highlight what are the cru-
cial ingredients in the main environment and what are not. In the main
environment, I implicitly assumed that search intensities come for free. This
assumption is not crucial: The spillover effect arises even if investors inter-
nalize the cost of searching in multiple markets and adjust, at the intensive
margin, their search intensities. The crucial ingredients are instead (1) the
substitutability between bond and CDS trades, (2) search frictions, and (3)
costly and endogenous entry. Each ingredient matters because of the other
ingredients. Participating at the same time in the CDS market alleviates
long investors’ search frictions and increases their bargaining power. These
effects on search frictions and bargaining power, in turn, relax long investors’
ex-ante participation constraints and give them more incentive to trade in
the bond market.

5 Conclusion

The point I make in this paper is simple: If we want to model and understand
the effect of new financial instruments on existing instruments, the number
of investors that could potentially trade and use the instruments should be
endogenous.

I make this point in the context of CDS and bond markets. I build a
continuous time, dynamic search model of bond and CDS trading and show
that introducing short positions through CDS contracts attracts into credit
markets not only investors who want to short the underlying credit risk but
also investors who want to take the opposite side and long the underlying.
In turn, long investors—for whom bond and CDS positions are economically
similar positions—search and trade at the same time as buyers in the bond
market because doing so increases their trading opportunities and alleviates
their search frictions. The result is an increase in the number of bond buyers,
bond market liquidity, and the bond price. I refer to this effect as a liquid-
ity spillover effect. This insight applies not just to derivative instruments
but also to any mechanism that expands the set of feasible allocations (e.g.
tradeable securities and contracts, trading mechanisms and venues, private
currencies, etc.).

25



The spillover effect works in reverse also: Shutting down naked CDS
positions decreases bond market liquidity. This suggests that by banning
single-name naked CDS positions referencing sovereign bonds, regulators in
Europe inadvertently decreased bond market liquidity, reduced bond prices,
and, thereby, increased sovereigns’ borrowing cost exactly when they were
trying to achieve the opposite and quell a sovereign debt crisis.

26



Figure 1: A Snapshot of Transitions Between Agent Types
The figure shows the transitions between agent types. Flows of νhFh and νlFl agents enter
the economy as new high- and low-valuation investors. High- and low-valuation agents
switch to an average-valuation with intensities γd and γu, respectively. A trader seeking a
long position (h[0, 0]) finds a counterparty in the bond and CDS markets with intensities
λbµa[1,0] and λcµl[0,0], respectively. A bond seller (a[1, 0]) finds a buyer with intensity
λbµh[0,0]. A trader seeking a short position by buying CDS (l[0, 0]) finds a counterparty
with intensity λcµh[0,0].
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Appendix

A The Counting Process N̂t(τ)

The counting process N̂t(τ) embeds changes in an agent’s type due to both a valuation
shock and an endogenous change in an asset position. Consider, for example, agent type
τ = h[0, 0]. The dimension of N̂t(τ) is K(τ) = 3, where the three possible events are:
(1) the agent’s valuation changes, (2) the agent finds a counterparty in the bond market,
and (3) the agent finds a counterparty in the CDS market. Intensities of these events are
γ(1, τ) = γd, γ(2, τ) = λbµa[1,0], and γ(3, τ) = λcµl[0,0], respectively. Similarly, consider
agent τ = h[0, 1] (an agent who has sold CDS). Then, K(τ) = 2, and the two possible
events are (1) the agent himself gets a valuation shock or (2) his counterparty’s valuation
changes. The intensities are: γ(1, τ) = γd and γ(2, τ) = γu. It is analogous for the other
agent types.

B Value Functions, Population Masses, Termination Fees

Substituting in (16) and (17), the value functions simplify to

rVl[0,0] = γu(0− Vl[0,0]) +
Mc

µl[0,0]

1

2
ωc (B1)

rVh[0,0] = γd(0− Vh[0,0]) +
Mb

µh[0,0]

1

2
ωb +

Mc

µh[0,0]

1

2
ωc (B2)

rVh[1,0] = (δ − ηJ) + x− y + γd(Va[1,0] − Vh[1,0]) (B3)

rVa[1,0] = (δ − ηJ)− y +
Mb

µa[1,0]

1

2
ωb (B4)

rVh[0,1] = pc − (ηJ − x)− y + γd(−Ts − Vh[0,1]) (B5)

rVl[0,-1] = −pc + (ηJ + x)− y + γu
(
−Tb − Vl[0,-1]

)
. (B6)

where ωc is the total gains from a CDS transaction:

ωc ≡
(
Vh[0,1] − Vh[0,0]

)
+
(
Vl[0,-1] − Vl[0,0]

)
. (B7)

and ωb is the total gains from a bond transaction:

ωb ≡ Vh[1,0] − Vh[0,0] − Va[1,0]

The instantaneous payoff from a transition from τ to τ ′ is given by:

P (τ, τ ′) =


−pb if τ = i[0, θc] and τ ′ = i[1, θc]

pb if τ = i[1, θc] and τ ′ = i[0, θc]

0 else.

(B8)

In the steady state equilibrium, the masses of agent types are constant: The flow of
agents turning into a particular type has to equal the flow of agents switching out of that
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type. Thus, the inflow-outflow equations are:

long investor h[0, 0] : νhFh + γuµh[0,1] = γdµh[0,0] +Mb +Mc (B9)

naked CDS buyer l[0, 0] : νlFl + γdµl[0,-1] = γuµl[0,0] +Mc (B10)

bond owner h[1, 0] : Mb = γdµh[1,0] (B11)

bond seller a[1, 0] : γdµh[1,0] = Mb (B12)

sold CDS h[0, 1] : Mc = γdµh[0,1] + γuµh[0,1] (B13)

bought CDS l[0, -1] : Mc = (γu + γd)µl[0,-1] (B14)

Consider fees CDS counterparties pay each other to terminate the contract. If a buyer
terminates, the seller goes from being a h[0, 1] type to h[0, 0], and the seller’s utility
decreases by (Vh[0,1] − Vh[0,0]). To make the seller indifferent then, the buyer has to pay a
fee equal to the decrease in the seller’s utility:

Tb = Vh[0,1] − Vh[0,0], (B15)

Analogously, a CDS seller (the long side) has to pay the short side:

Ts = Vl[0,-1] − Vl[0,0], (B16)

The right-hand sides coincide with the gains from trade to each side; hence, both equal
1
2
ωc.

C Why Three Valuation Types

Here, I explain further why I need three valuation types.
In an environment with just two types (say, high and low types) and no entry and

exit, introducing CDS deteriorates bond market liquidity. In such environment in the
absence of CDS, the optimal position for the low type is no position: Investors buy the
bond as a high type and sell when they switch to a low type. When we introduce CDS,
the optimal position for the low type turns into a short position. They, as a result, go one
asset position further and buy CDS after they sell their bond. But because the number
of investors of each type is fixed, allowing CDS and, hence, short positions deteriorates
bond market liquidity.

The point of the paper is to, instead, show that investors’ participation incentive
changes in response to CDS. I thus need to endogenize the aggregate number of investors
of each type. One way to do that is to endogenize their entry. But to model investors’
entry, I have to model their exit also. Otherwise, entry without any exits results in infinite
masses.

Exiting is optimal under two conditions. First, investors cannot exit with an existing
position. So to ensure that investors unwind their existing positions, their valuation has
to change to a type whose terminal optimal position is no position. Second, once their
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valuation changes, they cannot have an incentive to wait to switch to another valuation
instead of exiting. That is, the valuation they switch to has to be an absorbing type.

A model with just two types but with entry and exit also does not generate the result
I want to show. Suppose investors enter the economy as a high type, switch to a low type,
and, once they switch, remain forever a low type. In the absence of short positions, this
model works fine. Investors buy the bond after they enter; when they switch to a low
type, they sell and exit forever. In the presence of CDS, high types still go long, but low
types now want to short (as their terminal optimal position). This, however, implies that
exiting is not optimal for the low types. They, instead, want to remain in the economy
and short.

Thus, an environment with two types allows short positions in the absence of entry and
exit, allows entry and exit in the absence of short positions, but not both short positions
and entry and exit at the same time.

D Intuition for Assumption 1

The intuition for Assumption 1 is as follows. The gains from CDS trade between high and
average types is proportional to x− 2y − (r + γd)Oh. This is negative by Assumption 1.
Intuitively, the difference in their valuations—hence, the total hedging benefit (x− 0)—is
too small relative to the holding cost both sides incur (2y) and the implicit entry cost,
(r + γd)Oh. The absence of the gains from trade ensures that (a) average types do not
buy CDS from a high type, and (b) once a CDS buyer (initially, a low type) switches
to an average type, she prefers to unwind her short position she has with a high-type
than to remain a CDS buyer.41 The gains from CDS trade exists only between high- and
low-valuation investors: 2x− 2y − (r + γd)Oh − (r + γu)Ol > 0. Their valuations are far
apart enough that the total hedging benefit, 2x = x− (−x), outweighs the holding cost,
2y, and the costs of entry, (r + γd)Oh + (r + γu)Ol.

On the bond side, the gains from trade between high- and average types is proportional
to the difference in valuations, x−0, minus the opportunity cost of entry: x−(r+γd)Oh.42

This is positive by Assumption 1. Thus, a bond owner who switches to an average type
prefers to unwind and sell her bond.

Consider how these parameter conditions relate to the original parameters. To gain
intuition, let us ignore Oh and Ol.43 Then, Assumption 1 simplifies to 2x > 2y > x or
x > y > 1

2
x. Substituting in the definitions of x and y,

2rαρσeηJ > 2
rα

2
ηJ2 > rαρσeηJ

41It is analogous between average and low types. The gains from CDS trade between them is propor-
tional to x− 2y− (r+ γu)Ol, which is negative. This ensures that (a) average types do not sell CDS to a
low type, and (b) once a CDS seller (a high type) switches to an average, she prefers to unwind her long
position than to remain a CDS seller.

42When high and average types trade a bond, the total holding cost does not change because, unlike
CDS transactions, investors do not create new positions. Only the ownership of the bond changes.

43If, for example, x − y > 0, x − 2y < 0, and (x − 2y) + [x− (r + γd)Oh − (r + γu)Ol] > 0, then
Assumption 1 holds.
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Canceling terms:
2ρσe > J > ρσe.

Thus, Assumption 1 bounds the default size, J , between 1 and 2 units of ρσe, which is
the part of the endowment risk that can be hedged via bond or CDS.

E Proofs

Because proofs of Propositions 1 and 2 are long, I relegate them to online Appendix F
and G.

Here, I summarize some of the main steps of Proposition 2 proof. In step 1 of the
proof, I show that the equilibrium conditions narrow down to a set of five equations and
five unknowns {µh[0,0], Vh[0,0], Vl[0,0], νh, νl}:

(r + γd)Vh[0,0] − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Vh[0,0]

r + γd + λbµh[0,0]
1
2

(E1)

− λc
(γd + γu)

νlFl
γu

γd + γu + λcµh[0,0]

1

2

2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

= 0.

Vl[0,0] =
1

r + γu
λcµh[0,0]

1

2

2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

. (E2)

νhFh = γdµh[0,0] + γd
λbµh[0,0]S(

λbµh[0,0] + γd
) + γdλcµh[0,0]

νlFl
γu

γu + γd + λcµh[0,0]
. (E3)

νi =


1 Vi[0,0] > Oi

[0, 1] if Vi[0,0] = Oi

0 Vi[0,0] < Oi.

for i ∈ {h, l} (E4)

In step 2, I show that ∂Vh[0,0](νh,νl)

∂νh
< 0, where Vh[0,0](νh, νl) defines Vh[0,0] as an implicit

function of νh and νl and is given by (E1) and (E3). This and the assumption that

Sxγu (r + γd + γu)λb + 2(x− y) (r + γd)λcνlFl
(r + γd) (γu (r + γd + γu) (2 (r + γd) + Sλb) + (r + γd)λcνlFl)

> Oh for νl ∈ [0, 1] (E5)

ensure that, taking νl as given, the solution for νh is unique, positive, and interior.
Ensuring that the entry rate of high-type investors is given by an interior solution

both before and after CDS is introduced simplifies the analysis. In search models with
exogenous entry, given the conjectured trading strategies, the system of equations charac-
terizing the population masses does not depend on value functions and can be solved on
its own. Then, value functions are a linear system of equations of the population masses.
Thus, the conjecture-and-verify method simplifies the analysis and proofs by decoupling
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the system of equations into two sets. Endogenizing entry, however, reverses this decou-
pling. Population masses depend on the entry rates, but the entry rates depend on value
fuctions, which, in turn, depend on population mases. So all three sets of variables have
to be solved simultaneously. Thus, the model with endogenous entry is significantly more
complicated. Focusing on the interior solution helps simplify the analysis.

In step 3, using the result from step 2 that νh is given by an interior solution, (E1)
and (E2) become:

(r + γd)Oh − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

(E6)

− λc
(γd + γu)

νlFl
γu

γd + γu + λcµh[0,0]

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

= 0.

Vl[0,0] =
1

r + γu
λcµh[0,0]

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

. (E7)

Equations (E6) and (E7) together define Vl[0,0] as an implicit function of νl: Vl[0,0](νl). I
show that Vl[0,0](νl) strictly increases in νl. This and the condition that

0 <

2γu
(
r + γd + γu + 1

2
λcµ

∗
h

)
(γd + γu + λcµ

∗
h)

[
Oh (r + γd)− Sγd(x−Oh(r+γd))λb

(γd+λbµ
∗
h)(2(r+γd)+λbµ

∗
h)

]
Fl (2x− 2y −Oh (r + γd)) (γd + γu)λc

< 1

(E8)
where

µ∗h ≡
2Ol (r + γu) (r + γd + γu)

λc (2x− 2y − (r + γd)Oh − (r + γu)Ol)

ensure that a unique interior solution exists for νl. They also imply that two corner
solutions exist: νl = 0 and νl = 1.

In step 4, I show that—taking the entry rates as given—the rest of the equilibrium
variables are uniquely determined, and the population masses and the gains from trade
are, in addition, positive. Finally, in step 5, I show all the conjectured optimal trading
strategies are indeed optimal.

Proof of Proposition 3. I derive, first, the bond price with frictions. Substituting the
value functions of h[1, 0], h[0, 0] and a[1, 0] into the bond price, (16), and simplifying:

rpb = δ − ηJ +
1

2
x− y − 1

2
γdωb −

1

2

(
λbµa[1,0]

1

2
ωb + λcµl[0,0]

1

2
ωc − λbµh[0,0]

1

2
ωb

)
. (E9)

Combining the value functions for h[0, 0], h[1, 0], and a[1, 0], substituting in Mb and Mc,
using Vh[0,0] = Oh, and simplifying, we get

(r + γd)ωb = x− (r + γd)Oh + λbµh[0,0]
1

2
ωb (E10)
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Using (B2), Vh[0,0] = Oh, and (E10), (E9) becomes

rpb = δ − ηJ +
1

2
x− y − 1

2
γdωb −

1

2
((r + γd)Oh − x+ (r + γd)Oh + (r + γd)ωb)

= δ − ηJ + x− y − (r + γd)Oh −
1

2
(r + 2γd)ωb. (E11)

From (E10),

ωb =
x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

. (E12)

Substituting this into (E11), we get

pb =
δ − ηJ + x− y − (r + γd)Oh

r
− (r + 2γd)

2r

x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

. (E13)

The proof of Proposition 7 in online Appendix H shows that as λb → ∞, ωb → 0.
Hence, the bond price absent search frictions in the bond market is given by the first term
in (E13).

Proof of Proposition 4. The derivation is shown in the proof of Proposition 3.

Proof of Proposition 5. Combining (B2), (B5), and the termination fees, we get:

(r + γd)
(
Vh[0,1] − Vh[0,0]

)
= pc − (ηJ − x)− y − γd

1

2
ωc −

Mb

µh[0,0]

1

2
ωb −

Mc

µh[0,0]

1

2
ωc.

Using the fact that Vh[0,1] − Vh[0,0] = 1
2
ωc, the CDS premium is given by:

pc = (ηJ − x) + y +
1

2
(r + 2γd)ωc +

Mb

µh[0,0]

1

2
ωb +

Mc

µh[0,0]

1

2
ωc

= ηJ − x+ y +
1

2
(r + 2γd)ωc + (r + γd)Oh. (E14)

where the second equality uses (B2) and Vh[0,0] = Oh. Combining value functions,

ωc =
2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

. (E15)

Substituting this into (E14), we get (21).

Proof of Proposition 6. The expected rents a long investor extracts from trading in
the bond market, λbµa[1,0]

1
2
ωb, has to be smaller in the equilibrium with CDS than in the

equilibrium without CDS. To see this, the value function of a long investor is given by

(r + γd)Vh[0,0] = λbµa[1,0]
1

2
ωb + λcµl[0,0]

1

2
ωc. (E16)

The first term is the expected rents a long investor extracts from trading in the bond
market: The probability of finding a counterparty in the bond market times the gains
from trade from a bond transaction. The second term is the analogous expected gains
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from trade in the CDS market. Since high types’ entry rate entry is an interior solution
with and without CDS, (E16) with and without CDS is

(r + γd)Oh = λbµa[1,0]
1

2
ωb + λcµl[0,0]

1

2
ωc

(r + γd)Oh = λbµ̂a[1,0]
1

2
ω̂b,

respectively. Since λcµl[0,0]
1
2
ωc > 0, and the left hand sides are the same, it has to be that:

λbµ̂a[1,0]
1
2
ω̂b > λbµa[1,0]

1
2
ωb.

Combining (14) and (B11), we get

λbµa[1,0]µh[0,0] = γd(S − µa[1,0]) (E17)

Equations (E12) and (E17) define µh[0,0] and ωb as implicit functions of µa[1,0]. Using
(E12) and (E17), µh[0,0] and ωb change with µa[1,0] as:

∂µh[0,0]

∂µa[1,0]

= −
γd + λbµh[0,0]

λbµa[1,0]

,

∂ωb
∂µa[1,0]

=
(γd + λbµh[0,0])

1
2
ωb

µa[1,0](r + γd + λbµh[0,0]
1
2
)
.

Thus, µh[0,0] decreases with µa[1,0], while ωb increases with µa[1,0]. Then, the expected
rents a long investor extracts from trading in the bond market, λbµa[1,0]

1
2
ωb, as an implicit

function of µa[1,0], increases with µa[1,0]. As a result, µa[1,0] has to be smaller in the
equilibrium with CDS than in the equilibrium without CDS: µa[1,0] < µ̂a[1,0]. In turn, this
implies that: ωb < ω̂b and µh[0,0] > µ̂h[0,0]. Since the illiquidity discount db just depends
on µh[0,0], we have: db < d̂b. From (E17), a decrease in µa[1,0] implies an increase in bond
volume: Mb > M̂b. From (E3), an increase in µh[0,0] requires an increase in νh especially
since νl changes from zero to a positive value in the presence of CDS.

This proof relied on condition (E5), which ensured that the entry rate of high type
investors is an interior solution with and without CDS. This condition is sufficient to
show that CDS increases bond market liquidity, but it is not necessary. The effect of
CDS introduction before the entry rate of long investors adjusts is a decrease in the mass
of long investors searching for a counterparty, µh[0,0], and an increase in their expected
utility, Vh[0,0]. Both effects affect the bond price in the same direction: The bond price
decreases. As long investors start to respond to short investors and enter at a higher rate,
these two effects start to reverse: µh[0,0] starts to increase (this drives the bond price up),
and Vh[0,0], in turn, starts to decrease (this also drives the price up). At some point, which
I will denote with ν̃h, enough long investors enter so that (a) µh[0,0] is now higher than
in the environment without CDS, (b) even though the increase in Vh[0,0] is not reversed
yet (and Vh[0,0] is still higher than without CDS), the increase in the bond price from the
increase in µh[0,0] dominates the opposite pressure from the increase in Vh[0,0]. With a
further entry of long investors, µh[0,0] increases so much so that the increase in Vh[0,0] is
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fully reversed, and Vh[0,0] is the same as in the absence of CDS. This is the new equilibrium
entry rate of high-valuation investors. This level of entry rate is higher than necessary
because, even at the lower entry rate, ν̃h, the bond price and volume starts to surpass
their levels in the absence of CDS.
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Online Appendix: A Theory of Liquidity Spillover Between
Bond and CDS Markets

F Proof of Proposition 1

Proof of Proposition 1. I first derive the Hamilton-Jacobi-Bellman (HJB) equations.
Eq. (5) can be written recursively as:44

U(Wt, τt) = max
Ct∈R,τt+∆t∈T (τt,k)

u(Ct)∆t+ (1− β∆t)EU(Wt+∆t, τt+∆t). (F1)

Subtract (1− β∆t)U(Wt, τt) from both sides and divide by ∆t:

βU(Wt, τt) = max
Ct∈R,τt+∆t∈T (τt,k)

u(Ct) + (1− β∆t)E
[
U(Wt+∆t, τt+∆t)− U(Wt, τt)

∆t

]
. (F2)

In the limit as ∆t→ 0, (F2) becomes

βU(Wt, τt) = max
Ct∈R,τt+dt∈T (τt,k)

u(Ct) + E
[
dU(Wt, τt)

dt

]
. (F3)

Consider the expectation of dU(Wt, τt). Applying a Taylor series expansion to U(Wt, τt)

and taking its expectation, we get:45

EdU(Wt, τt) =UW (Wt, τt)E [dWt] +
1

2
UWW (Wt, τt)E

[
dW 2

t

]
(F4)

+
K∑
k=1

γt(τt, k)dt [U(Wt + P (τt, τt+dt), τt+dt)− U(Wt, τt)] .

Consider dWt in the first term. Using (1), (2), (3), and (6) and rearranging, we get:

dWt = (rWt − Ct + µeρt + δθb,t + pcθc,t) dt+ (σeρt + J (θb,t + θc,t)) (−dNt)

+
√

1− ρ2
tσedZt − pbdθb,t.

Using E[dN ] = ηdt,

E[dWt] = (rWt − Ct + [µeρt − σeρtη] + (δ − ηJ)θb,t + (pc − ηJ)θc,t) dt. (F5)
44This comes from observing that over a small time interval [0,∆t], (5) can be written as:

U(W0, τ0) = E
∫∞

0
e−βtu(c∗t )dt = u(c∗0)∆t+ e−β∆tE

[∫∞
∆t
e−β(t−∆t)u(c∗t )dt

]
where {c∗t } is the optimal consumption path. The term inside the expectations operation is U(W∆t, τ∆t),
thus U(W0, τ0) = max

c0
u(c0)∆t+ e−β∆tEU (W∆t, τ∆t). Similarly, if we start at {Wt, τt} and approximate

e−β∆t ≈ 1− β∆t, we get (F1).
45dU(Wt, τt) = UW (Wt, τt)dWt + 1

2UWW (Wt, τt)dW
2
t + Uτ (Wt, τt)dτt + 1

2Uττ (Wt, τt)dτ
2
t .
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Using E[dN2] = ηdt,

E[dW 2
t ] = (σeρt + J (θb,t + θc,t))

2 ηdt+
(
1− ρ2

t

)
σ2
edt (F6)

=
(
J2 (θb,t + θc,t)

2 η + 2σeρtJ (θb,t + θc,t) η +
[
(σeρt)

2 η +
(
1− ρ2

t

)
σ2
e

])
dt.

Thus, substituting (F5) and (F6) back into (F4), we get

EdU(Wt, τt) =

UW (Wt, τt) [(rWt − Ct + [µeρt − σeρtη] + (δ − ηJ)θb,t + (pc − ηJ)θc,t) dt] (F7)

+
1

2
UWW (Wt, τt)

(
(Jθb,t + Jθc,t)

2 η + 2σeρtη (Jθb,t + Jθc,t) +
[
(σeρt)

2 η +
(
1− ρ2

t

)
σ2
e

])
dt

+
K∑
k=1

γt(τt, k)dt [U(Wt + P (τt, τt+dt), τt+dt)− U(Wt, τt)] .

Substituting (F7) back into (F3), the HJB in the steady state is given by

βU(W, τ) =

max
C∈R,τ ′∈T (τ,k)

u(C) + UW (W, τ) [rW − C + [µeρτ − σeρτη] + (δ − ηJ)θb + (pc − ηJ)θc]

(F8)

+
1

2
UWW (W, τ)

[
(Jθb + Jθc)

2 η + 2σeρτη (Jθb + Jθc) +
[
(σeρτ )

2 η +
(
1− ρ2

τ

)
σ2
e

]]
+

K∑
k=1

γ(τ, k) [U(W + P (τ, τ ′), τ ′)− U(W, τ)] .

Using the guessed functional form (8) and the FOC of (F8) with respect to C, the optimal
consumption rate for agent τ is:46

Cτ = − log (r)

α
+ r (W + Vτ + ā) . (F9)

where ā is defined in (9). Inserting (F9) back into (F8) and using (8), UW = rαe−rα(W+Vτ+ā),
and UWW = −r2α2e−rα(W+Vτ+ā), we get:

− βe−rα(Wt+Vτ+ā) = −elog(r)−rα(W+Vτ+ā)+ (F10)

rαe−rα(W+Vτ+ā)

[
log (r)

α
− r (Vτ + ā) + [µeρτ − σeρτη] + (δ − ηJ)θb + (pc − ηJ)θc

]
− 1

2
r2α2e−rα(W+Vτ+ā)

[
(Jθb + Jθc)

2 η + 2σeρτη (Jθb + Jθc) + (σeρτ )
2 η +

(
1− ρ2

τ

)
σ2
e

]
+

K∑
k=1

γ(τ, k) max
τ ′∈T (τ,k)

[U(W + P (τ, τ ′), τ ′)− U(W, τ)] .

46The FOC with respect to C is: 0 = αe−αC − UW (Wt, τt). Using UW = rαe−rα(W+Vτ+ā),
re−rα(W+Vτ+ā) = e−αC . Rewrite it as: elog(r)e−rα(W+Vτ+ā) = e−αC .
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Divide both sides of (F10) by − 1
rα
e−ra(W+Vτ+ā) and rearrange to get:

0 = rVτ − era(W+Vτ+ā) 1

rα

K∑
k=1

γ(τ, k) max
τ ′∈T (τ,k)

[U(W + P (τ, τ ′), τ ′)− U(W, τ)] + rā

− r1

r

[
log (r)

α
− r − β

rα
− 1

2
rασ2

e + [µeρτ − σeρτη]− 1

2
rα
[
(σeρτ )

2 η − σ2
eρ

2
τ

]]
−
[
(δ − ηJ)θb −

1

2
rα
(
(Jθb + Jθc)

2 η + 2σeρτη (Jθb + Jθc)
)

+ (pc − ηJ)θc

]
.

Using ā defined in (9), bτ ≡ µeρτ − σeρτη − 1
2
rα
[
(σeρτ )

2 η − σ2
eρ

2
τ

]
, and θbθc = 0, we get:

rVτ = bτ + [δ − ηJ − rασeρτηJ ] θb −
1

2
rαJ2η

[
(θb)

2 + (θc)
2]+ [pc − (ηJ + rασeρτηJ)] θc

+ era(W+Vτ+ā) 1

rα

K∑
k=1

γ(τ, k) max
τ ′∈T (τ,k)

[U(W + P (τ, τ ′), τ ′)− U(W, τ)] .

I assume that µeρτ − σeρτη − 1
2
rα (σeρτ )

2 (η − 1) = 0 so that bτ = 0. Using xτ and y

defined in (11) and (12) and the guessed functional form for U(W, τ)

rVτ = ((δ − ηJ)− xτ ) θb − y|θb|+ [pc − (ηJ + xτ )] θc − y|θc|. (F11)

+
1

rα

K∑
k=1

γ(τ, k) max
τ ′∈T (τ,k)

[
1− e−rα(P (τ ′,τ)+Vτ ′−Vτ )

]
.

G Equilibrium Existence

Proof of Proposition 2. I prove in five steps. In step 1, I narrow down the equilibrium
conditions into a set of five equations and five unknowns. In step 2, I show the solution
for the entry rate of high type investors is unique and interior. In step 3, I characterize
the solution for the entry rate of low type investors and show that three solutions exist. In
step 4, I show that—taking the entry rates as given—population masses, value functions,
gains from trade, and prices are uniquely determined. Population masses and gains from
trade are also positive. Finally, in step 5, I show that the conjectured optimal trading
strategies are indeed optimal.

Step 1

Proof. From the market clearing conditions, the masses of agents who have reached their
optimal asset position are:

µh[1,0] = S − µa[1,0] (G1)

µl[0,-1] = µh[0,1] (G2)
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µh[0,1] =
1

γd + γu
Mc. (G3)

They depend only on the masses of active searchers.
I simplify the rest of the equilibrium conditions, first, into a set of nine equations of

nine unknowns, µa[1,0], µl[0,0], µh[0,0], ωb, ωc, Vl[0,0], Vh[0,0], νh, and νl:

λbµa[1,0]µh[0,0] = γd(S − µa[1,0]) (G4)

(r + γd)ωb = x− λb
[
µa[1,0] + µh[0,0]

] 1

2
ωb − λcµl[0,0]

1

2
ωc (G5)

(r + γd + γu)ωc = (2x− 2y)− λbµa[1,0]
1

2
ωb − λc

(
µl[0,0] + µh[0,0]

) 1

2
ωc (G6)

νlFl
γu

= µl[0,0] +
1

γd + γu
Mc (G7)

(r + γd)Vh[0,0] = λbµa[1,0]
1

2
ωb + λcµl[0,0]

1

2
ωc (G8)

(r + γu)Vl[0,0] = λcµh[0,0]
1

2
ωc (G9)

νhFh + γu
1

γd + γu
Mc = γdµh[0,0] +Mb +Mc (G10)

νi =


1 Vi[0,0] > Oi

[0, 1] if Vi[0,0] = Oi

0 Vi[0,0] < Oi.

for i ∈ {h, l} (G11)

Eq. (G4) comes from combining (14) and (B11). Eq. (G5) comes from combining the
value functions for h[0, 0], h[1, 0], and a[1, 0], substituting in Mb and Mc, and simplifying.
Combining the value functions for h[0, 0], h[0, 1], l[0, 0], and l[0, -1] and substituting in
Mb and Mc yields (G6). Eq. (G7) comes from (B10). Substituting Mb and Mc into (B2),
we get (G8). Substituting Mb into (B1), we get (G9). Combining (B9) and (G3), we get
(G10). Eq. (G11) is the entry condition for high and low types, given in (4).

Next, I simplify the nine equations further into a set of five equations of five unknowns.
Combining (G5) and (G8),

ωb =
x− (r + γd)Vh[0,0]

r + γd + λbµh[0,0]
1
2

. (G12)

Combining (G6) and (G8),

ωc =
2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

. (G13)
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From (G4), solve for µa[1,0] as

µa[1,0] =
γdS(

λbµh[0,0] + γd
) . (G14)

From (G7), solve for µl[0,0] as

µl[0,0] =

νlFl
γu

1 + 1
γd+γu

λcµh[0,0]

. (G15)

Plugging these expressions back into (G8)-(G11) gives five equations of five unknowns
{µh[0,0], Vh[0,0], Vl[0,0], νh, νl}:

(r + γd)Vh[0,0] − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Vh[0,0]

r + γd + λbµh[0,0]
1
2

(G16)

− λc
(γd + γu)

νlFl
γu

γd + γu + λcµh[0,0]

1

2

2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

= 0.

Vl[0,0] =
1

r + γu
λcµh[0,0]

1

2

2x− 2y − (r + γd)Vh[0,0]

r + γd + γu + λcµh[0,0]
1
2

. (G17)

νhFh = γdµh[0,0] + γd
λbµh[0,0]S(

λbµh[0,0] + γd
) + γdλcµh[0,0]

νlFl
γu

γu + γd + λcµh[0,0]
. (G18)

νi =


1 Vi[0,0] > Oi

[0, 1] if Vi[0,0] = Oi

0 Vi[0,0] < Oi.

for i ∈ {h, l} (G19)

Step 2

Proof. In the second step, I establish that, taking νl as given, a unique positive solution
exists for νh.

I start by showing the sign of µh[0,0]. The right-hand side of (G18) strictly increases
in µh[0,0], is zero at µh[0,0] = 0, and goes to ∞ as µh[0,0] →∞. Thus, from (G18), µh[0,0] is
positive and uniquely determined for any νh > 0 and νl ≥ 0.

Next, consider how Vh[0,0] changes with νh taking as given νl. Equations (G16) and
(G18) together define Vh[0,0] as an implicit function of νh and νl: Vh[0,0](νh, νl). Applying
the Implicit Function Theorem to (G16) and using the fact that µh[0,0] is positive,

∂Vh[0,0]

∂µh[0,0]

evaluated at an interior solution for νh (i.e. at Vh[0,0] = Oh) is negative. Applying the
Implicit Function Theorem to (G18) and using the fact that µh[0,0] is positive, µh[0,0]
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increases in νh for any νl ≥ 0. Put together, for ν∗h such that Vh[0,0] = Oh,

∂Vh[0,0](ν
∗
h, νl)

∂νh
=
∂Vh[0,0]

∂µh[0,0]

∂µh[0,0](ν
∗
h, νl)

∂νh
< 0.

Next, I establish the existence of a solution. From (G18), µh[0,0] = 0 when νh = 0.
Solving for Vh[0,0] from (G16) and evaluating it at µh[0,0] = 0 gives the left-hand-side of
Assumption (E5). Thus, by Assumption (E5), Vh[0,0](0, νl) > Oh for any νl ∈ [0, 1]. I
also assume that Fh is large. Then, for a given level of νl, from (G18) and the earlier
result that µh[0,0] increases in νh, µh[0,0] becomes large as νh → 1. In turn, from (G16),
Vh[0,0] → 0 as µh[0,0] becomes large. Hence, Vh[0,0](1, νl) < Oh, and a positive solution for
νh exists on the interval (0, 1].

Finally, uniqueness of the solution follows from the result that ∂Vh[0,0](νh,νl)

∂νh
< 0 evalu-

ated at ν∗h such that Vh[0,0](ν
∗
h, νl) = Oh.

Step 3

Proof. In this step, I characterize the solution for the entry rate of low types.
First, I establish that Vl[0,0] strictly increases in νl. Using the result in step 2 that the

solution for νh is an interior solution, (G16) and (G17) become

(r + γd)Oh − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

(G20)

− λc
(γd + γu)

νlFl
γu

γd + γu + λcµh[0,0]

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

= 0.

Vl[0,0] =
1

r + γu
λcµh[0,0]

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

. (G21)

Equations (G20) and (G21) define Vl[0,0] as an implicit function of νl: Vl[0,0](νl). Applying
the Implicit Function Theorem to (G20), µh[0,0] strictly increases in νl. The right-hand-side
of (G21) increases with µh[0,0] and, hence, with νl. Put together, Vl[0,0] strictly increases
in νl.

Solving (G20) and (G21) for νl and µh[0,0] and evaluating them at Vl[0,0] = Oh, we
get:

ν∗l =

2γu
(
r + γd + γu + 1

2
λcµ

∗
h

)
(γd + γu + λcµ

∗
h)

[
Oh (r + γd)− Sγd(x−Oh(r+γd))λb

(γd+λbµ
∗
h)(2(r+γd)+λbµ

∗
h)

]
Fl (2x− 2y −Oh (r + γd)) (γd + γu)λc

(G22)
where

µ∗h ≡
2Ol (r + γu) (r + γd + γu)

λc (2x− 2y − (r + γd)Oh − (r + γu)Ol)
.

If 0 < ν∗l ≤ 1 (which is Assumption (E8)), an interior solution exists and is uniquely given
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by (G22). Since Vl[0,0] as an implicit function of νl strictly increases in νl, two corners
solutions (νl = 0 and νl = 1) also exist when 0 < ν∗l < 1.

Table 1 characterizes solutions for νl for all possible parameter conditions, not just
(E8). The last row, for example, says that if low type investors’ outside option is too good,
then in equilibrium none of them enter. By assuming (E8), I rule out such condition to
ensure that the CDS market can exist in equilibrium.

Table 1:
ν∗l is given by (G22).

Parameter condition Solution

ν∗l < 0 νl = 1
ν∗l = 0 νl = 0, νl = 1

0 < ν∗l < 1 νl = 0, νl ∈ (0, 1), νl = 1
ν∗l = 1 νl = 0, νl = 1
ν∗l > 1 νl = 0

Step 4

Proof. Equations (G1)-(G3), (G14), (G15), and (G20) uniquely determine the masses of
agent types. In turn, ωb and ωc are uniquely given by (G12) and (G13) where Vh[0,0] = Oh.
Given the agent masses, (B1)-(B6), (16)-(17), (B15), and (B16) uniquely determine the
value functions, prices, and termination fees.

The solution, moreover, is positive. Using Vh[0,0] = Oh, Assumption 1, and the fact
that µh[0,0] > 0, we have that ωb > 0 and ωc > 0. The result that µh[0,0] > 0 implies that
µa[1,0] > 0 and µl[0,0] > 0. Non-searcher masses are similarly positive.

Step 5

Proof. In this step, I verify that the conjectured trading strategies are in fact optimal.
From step 4, the gains from a bond transaction is positive, ωb > 0. The bond buyer

and seller’s respective trading strategies, as a result, are optimal. This also shows that
an average-valuation investor prefers to not hold a bond.

Analogously, since the total gains from a CDS transaction is positive: ωc > 0, it
is optimal for l[0, 0] type agent to buy CDS, and for h[0, 0] type agent to sell CDS as
conjectured.

Consider a CDS seller’s decision to terminate her contract if she reverts to an average
type. Upon reverting to an average-type, if she pays the termination fee and terminates
the CDS contract, her utility changes by −Ts + 0− Vh[0,1]. If she instead remains a CDS
seller, her utility changes by Va[0,1] − Vh[0,1], where

rVa[0,1] = pc − ηJ − y + γu(Tb + 0− Va[0,1]).
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She prefers to terminate if Va[0,1] < −Ts, that is, if

Va[0,1] + Ts = Va[0,1] +
1

2
ωc

=
pc − ηJ − y + γuTb

(r + γu)
+

1

2
ωc

=
(r + γu + γd)(x− 2y)− (x− (r + γd)Oh)λcµh[0,0]

1
2

(r + γu)
(
r + γd + γu + λcµh[0,0]

1
2

) (G23)

is negative. The third equality uses (21) and (G13). For an interior solution of νl (i.e.
using Vl[0, 0] = Ol and (G21)), the numerator of (G23) simplifies to:

[r + γd + γu] [2x− 2y − (r + γd)Oh] [x− 2y − (r + γu)Ol]

2x− 2y − (r + γd)Oh − (r + γu)Ol

By Assumption 1, the second squared bracket is positive, the third bracket is negative,
and the denominator is positive. The whole term, as a result, is negative. For a corner
solution νl = 1, since µh[0,0] increases in νl and the numerator of (G23) decreases in µh[0,0],
the numerator of (G23) will remain negative. Thus, Va[0,1] < −Ts: once a CDS seller
switches to an average type, she prefers to pay the fee and exit the market than to remain
a CDS seller and wait until her counterparty terminates the contract. This shows that an
average type prefers no position than a long position through the CDS market.

Consider now a CDS buyer’s decision to terminate. Upon reverting to an average
type, if she pays the termination fee and exits, her utility changes by: −Tb + 0− Vl[0,-1].
If she remains a CDS buyer, her utility changes by: Va[0,-1] − Vl[0,-1], where

rVa[0,-1] = −pc + ηJ − y + γd(Ts + 0− Va[0,-1]).

She prefers to pay the fee if
Va[0,-1] < −Tb,

where Tb = 1
2
ωc. The difference is

Va[0,-1] + Tb =
x− 2y − (r + γd)Oh

r + γd
.

The right-hand-side is negative by Assumption 1. Thus, a CDS buyer, upon a valuation
shock, prefers to pay the fee and exit the market than to remain a CDS buyer. That is,
an average type prefers no position than a short position through the CDS market.

H Proofs of Lemma 2 and Propositions 7-8

Lemma 2. Given a choice between searching in just the bond market, just the CDS
market, or in both markets at the same time, long investors, h[0, 0], optimally choose to
search in both markets at the same time.

Proof of Lemma 2. I denote with V m
h[0,0] a long investor’s expected utility associated
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with market choice m ∈ {b, c, bc} and with νmh the fraction of long investors that choose
m, where b, c, and bc stand for entering just the bond market, just the CDS market, and
both markets, respectively. The ability to search simultaneously affects long investors only
because the other investors (bond sellers and CDS buyers) can establish their optimal
positions through only one of the markets. The equilibrium entry rates {νmh }m∈{b,c,bc}
solve:

νmh =


1 V m

h[0,0] >
{
V b
h[0,0], V

c
h[0,0], V

bc
h[0,0], Oh

}
/V m

h[0,0]

[0, 1] if V m
h[0,0] =

{
V b
h[0,0], V

c
h[0,0], V

bc
h[0,0], Oh

}
/V m

h[0,0]

0 V m
h[0,0] <

{
V b
h[0,0], V

c
h[0,0], V

bc
h[0,0], Oh

}
/V m

h[0,0]

(H1)

Where the distinction is necessary, I denote in superscripts the investor’s market choice:
m ∈ {b, c, bc}.

The value functions are:

rVh[1,0] = δ − ηJ + x− y + γd
(
Va[1,0] − Vh[1,0]

)
(H2)

rVa[1,0] = δ − ηJ − y + λbµ
b
h[0,0]

1

2

(
Vh[1,0] − Va[1,0] − V b

h[0,0]

)
(H3)

+ λbµ
bc
h[0,0]

1

2

(
Vh[1,0] − Va[1,0] − V bc

h[0,0]

)
rV b

h[0,0] = γd
(
0− V b

h[0,0]

)
+ λbµa[1,0]

1

2

(
Vh[1,0] − Va[1,0] − V b

h[0,0]

)
(H4)

rV bc
h[0,0] = −γdV bc

h[0,0] + λbµa[1,0]
1

2

(
Vh[1,0] − Va[1,0] − V bc

h[0,0]

)
+ λcµl[0,0]

(
V bc
h[0,1] − V bc

h[0,0]

)
(H5)

rV bc
h[0,1] = pbcc − ηJ + x− y + γd

(
−T bc − V bc

h[0,1]

)
(H6)

rV bc
l[0,-1] = −pbcc + ηJ + x− y + γu

(
−T bc − V bc

l[0,-1]

)
(H7)

rVl[0,0] = γu
(
0− Vl[0,0]

)
+ λcµ

bc
h[0,0]

(
V bc
l[0,-1] − Vl[0,0]

)
+ λcµ

c
h[0,0]

(
V c
l[0,-1] − Vl[0,0]

)
(H8)

rV c
h[0,0] = γd

(
0− V c

h[0,0]

)
+ λcµl[0,0]

(
V c
h[0,1] − V c

h[0,0]

)
(H9)

rV c
h[0,1] = pcc − ηJ + x− y + γd

(
−Tc − V c

h[0,1]

)
(H10)

rV c
l[0,-1] = −pcc + ηJ + x− y + γu

(
−Tc − V c

l[0,-1]

)
(H11)

A CDS buyer and a long investor negotiate a CDS premium characterized by

V bc
h[0,1] − V bc

h[0,0] =
1

2

(
V bc
h[0,1] + V bc

l[0,-1] − V bc
h[0,0] − Vl[0,0]

)
when the long investor searches in both markets and by

V c
h[0,1] − V c

h[0,0] =
1

2

(
V c
h[0,1] + V c

l[0,-1] − V c
h[0,0] − Vl[0,0]

)
when the long investor searches in just the CDS market. Bond prices are given by

pbb =
1

2
(Vh[1,0] − V b

h[0,0]) +
1

2
Va[1,0]
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when the buyer searches in just the bond market and by

pbcb =
1

2
(Vh[1,0] − V bc

h[0,0]) +
1

2
Va[1,0]

when the buyer searches in both markets simultaneously. Termination fees are given by

T bc =
1

2

(
V bc
h[0,1] + V bc

l[0,-1] − V bc
h[0,0] − Vl[0,0]

)
T c =

1

2

(
V c
h[0,1] + V c

l[0,-1] − V c
h[0,0] − Vl[0,0]

)
We can express the value function of a long investor searching in both markets as

V bc
h[0,0] =

(r + γd)

r + γd + λbµa[1,0] + λcµl[0,0]

0 +
λbµa[1,0]

r + γd + λbµa[1,0] + λcµl[0,0]

(
Vh[1,0] − pbcb

)
+

λcµl[0,0]

r + γd + λbµa[1,0] + λcµl[0,0]

V bc
h[0,1]

It is a weighted average between three different outcomes: (1) getting a valuation shock
and exiting in which case her utility is zero, (2) finding a counterparty in the bond market
in which case her utility is the utility of a bond owner minus the cost of becoming a bond
owner, and (3) finding a counterparty in the CDS market in which case her utility is that
of a CDS seller. The weights capture the probabilities of these outcomes.

Consider how V bc
h[0,0] and V

b
h[0,0] relate to each other. Express V bc

h[0,0] as:

V bc
h[0,0] =

(r + γd)

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

0 +
λbµa[1,0]

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

1

2

(
Vh[1,0] − Va[1,0]

)
+

λcµl[0,0]

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

V bc
h[0,1]

Express the value function of a long investor searching in only the bond market as

V b
h[0,0] =

(r + γd)

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

0 +
λbµa[1,0]

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

1

2

(
Vh[1,0] − Va[1,0]

)
Combining the two, we get:

V bc
h[0,0] =

r + γd + 1
2
λbµa[1,0]

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

V b
h[0,0] +

λcµl[0,0]

r + γd + 1
2
λbµa[1,0] + λcµl[0,0]

V bc
h[0,1] (H12)

(r + γd + 1
2
λbµa[1,0] + λcµl[0,0])V

bc
h[0,0] − λcµl[0,0]V

bc
h[0,1]

(r + γd + 1
2
λbµa[1,0])

= V b
h[0,0] (H13)

(r + γd +
1

2
λbµa[1,0] + λcµl[0,0])V

bc
h[0,1] > (r + γd +

1

2
λbµa[1,0] + λcµl[0,0])V

bc
h[0,0]
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From (H12), V bc
h[0,0] is a weighted average between the utility of an investor who searches

in just the bond market and the utility of a CDS seller. The weight on V b
h[0,0] reflects both

the probability of getting a valuation shock and the probability finding a bond seller.
Thus, the utility of a long investor searching in both markets embeds the utility of the
counterfactual market choice of searching in just the bond market, V b

h[0,0]. This is because
the outcomes that affect the investor searching in just the bond market—getting a valu-
ation shock and finding a bond seller—also affect the investor searching simultaneously.

The relationship between V bc
h[0,0] and V

b
h[0,0] narrows down the set of equilibrium entry

rates. From (H12), a long investor prefers to search in both markets than in just the bond
market (i.e. V bc

h[0,0] > V b
h[0,0]) if V bc

h[0,1] > V b
h[0,0]. For V bc

h[0,1] > V b
h[0,0] to hold, using (H12)

it has to be that V bc
h[0,1] > V bc

h[0,0] (to see this solve for V b
h[0,0] from (H12) and substitute it

into the right-hand side of V bc
h[0,1] > V b

h[0,0]). In turn, V bc
h[0,1] > V bc

h[0,0] if there is gains from
trade from selling CDS. The argument is analogous for an investor who searches in just
the CDS market: If there is gains from a bond transaction, she will prefer to search in
both markets, not just the CDS market. Then, in an equilibrium in which some investors
find it optimal to search in both markets νbc > 0, it cannot be the case that others choose
to search in just one of the markets. That is, if νbc > 0, it has to be that νb = 0 and
νc = 0. The possible equilibrium entry rates, as a result, are {νbc > 0, νb = 0, νc = 0}
and {νbc = 0, νb ≥ 0, νc ≥ 0}.

In the rest of the proof, I show that {νbc = 0, νb ≥ 0, νc ≥ 0} cannot be an equilibrium.
I show this by supposing that {νbc = 0, νb ≥ 0, νc ≥ 0} is the equilibrium (i.e. everyone
chooses to search in just one of the markets). I then check whether investors have an
incentive to deviate and become an investor who searches in both markets at the same
time (i.e. whether V bc

h[0,0] > V b
h[0,0] or V bc

h[0,0] > V c
h[0,0]). Per above discussion, checking

V bc
h[0,0] > V b

h[0,0], for example, is equivalent to checking whether there is gains from a CDS
transaction from the perspective of investors who deviate and search in both markets at
the same time.47

If {νbc = 0, νb ≥ 0, νc ≥ 0} is the equilibrium, µbch[0,0] = 0. Moreover, combining
(H2)-(H4), the entry condition V b

h[0,0] = Oh, and Mb = γd(S − µa[1,0]), we get:

ωbb =
(r + γd)Oh (−2r − γd) +

√
E

Sγdλb
(H14)

µa[1,0] =
(r + γd)Oh (2r + γd) +

√
E

2 (x− (r + γd)Oh)λb
(H15)

µbh[0,0] =
−(r + γd)Oh (2r + 3γd) +

√
E

2(r + γd)Ohλb
(H16)

where E ≡ (r + γd)Oh ((r + γd)Oh (2r + γd)
2 + 4S (x− (r + γd)Oh) γdλb). Combining

47In the proof of equilibrium existence, I showed that the gains from trade are positive, but I did so by
assuming νbh and νch are zero. For simplicity, let us focus on the interior solutions for νb and νc so that
V bh[0,0] = Oh and Vl[0,0] = Ol.
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(H8)-(H11), termination fees, and the entry condition V c
h[0,0] = Oh, we get:

ωcc =
2x− 2y − (r + γd)Oh − (r + γu)Ol

r + γd + γu
(H17)

µch[0,0] =
2Ol(r + γu) (r + γd + γu)

λc (2x− 2y − (r + γd)Oh − (r + γu)Ol)
(H18)

µl[0,0] =
2(r + γd)Oh (r + γd + γu)

λc (2x− 2y − (r + γd)Oh − (r + γu)Ol)
(H19)

Consider the gains from a bond transaction if an investor where to deviate and search
in both markets at the same time. Combining (H2), (H3), (H5), and setting µbch[0,0] = 0,
ωbc
b is

ωbc
b =

4x (r + γd + γu)− 2 (r + γd + γu)λbµ
b
h[0,0]ω

b
b + λcµl[0,0]

(
4y − 2x− λbµbh[0,0]ω

b
b + λcµ

c
h[0,0]ω

c
c

)
2 (r + γd + γu)

(
2(r + γd) + λbµa[1,0]

)
+ 2(r + γd)λcµl[0,0]

The sign depends on the sign of the numerator. Substituting in (H14) and (H16)-(H19),
the numerator is:

4 [2x− 2y −Ol(r + γu)] (r + γd) (r + γd + γu)
[
−Oh (r + γd) (2r + γd) +

√
A
]

Sγd (2x− 2y − (r + γd)Oh −Ol(r + γu))λb
(H20)

where A ≡ Ohrd (4Sxγdλb + (r + γd)Oh ((2r + γd)
2 − 4Sγdλb)). The term in the second

square brackets is positive because x − (r + γd)Oh > 0 from Assumption 1 implies that
A > ((r + γd)Oh (2r + γd))

2. The first square bracket term in the numerator and the
denominator are both positive by Assumption 1. Thus, ωbc

b > 0 implying V bc
h[0,0] > V c

h[0,0].
This contradicts that searching in the CDS market only is the optimal choice.

Similarly, consider the gains from a CDS transaction if an investor where to deviate
and search in both markets at the same time. Combine (H5)-(H8) to get:

ωbc
c =

8(r + γd)(x− y) + (2x− 4y)λbµa[1,0] + λ2
bµa[1,0]µ

b
h[0,0]ω

b
b − λc

(
2(r + γd) + λbµa[1,0]

)
µch[0,0]ω

c
c

2 (r + γd + γu)
(
2 (r + γd) + λbµa[1,0]

)
+ 2 (r + γd)λcµl[0,0]

Substituting in (H14)-(H18), the sign of ωbc
c depends on:

(2x− 2y − (r + γd)Oh − (r + γu)Ol)
(

(r + γd) (2 (x− (r + γd)Oh) + x+ (x−Ohγd)) +
√
A
)

x− (r + γd)Oh

By arguments analogous to the above discussion, ωbc
c > 0 implying V bc

h[0,0] > V b
h[0,0]. This

shows that searching in only the bond market is not optimal.
Put together, searching in just one of the markets is not optimal. Everyone wants

search in the other market at the same time. Thus, {νbc = 0, νb ≥ 0, νc ≥ 0} cannot
be an equilibrium. Instead, in equilibrium, all long investors choose to search in both
markets at the same time: {νbc > 0, νb = 0, νc = 0}.

Proof of Proposition 7. Condition (E5)—which ensures that νh is given by an interior
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solution and that Vh[0,0] = Oh—applies for any λb and λc including at∞ limits. I use this
condition for below results.

Consider, first, λb → ∞. I start by analyzing what λbµh[0,0] limits to. First, suppose
νl limits to a corner solution: lim

λb→∞
νl = 0, then (G20) evaluated at νl = 0 is

(r + γd)Oh − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

= 0. (H21)

If lim
λb→∞

λbµh[0,0] <∞, the left-hand side is negative and, hence, a contradiction. It has to

be that lim
λb→∞

λbµh[0,0] =∞. Next, suppose νl limits to either an interior positive solution

or to a positive corner solution. Then, (G21) and (G19) together imply

1

r + γu
λcµh[0,0]

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + λcµh[0,0]
1
2

≥ Ol. (H22)

If µh[0,0] limits to zero, (H22) does not hold for λc < ∞ and, hence, a contradiction. It
has to be that ∞ > lim

λb→∞
µh[0,0] > 0 and, hence, ∞ > lim

λb→∞
λbµh[0,0] > 0. Put together,

regardless of what the entry rate of low types converges to, it has to be that lim
λb→∞

λbµh[0,0] =

∞.
Using (G12) and Vh[0,0] = Oh, lim

λb→∞
λbµh[0,0] = ∞ implies that lim

λb→∞
ωb = 0 and that

introducing CDS market does not affect the bond price. From (G14), µa[1,0] → 0 as
λbµh[0,0] → ∞. Thus, bond volume, given in (G4), approaches γdS and is unaffected by
the introduction of the CDS market.

Next, consider λc →∞. Suppose the limit of νl is given by a positive solution (interior
or corner): νl > 0. If lim

λc→∞
λcµh[0,0] <∞, the left-hand side of (G20) limits to −∞, which

is a contradiction. Thus, it has to be that lim
λc→∞

λcµh[0,0] =∞. Eq. (G20) at this limit is

(r + γd)Oh − λb
γdS(

γd + λbµh[0,0]

) 1

2

x− (r + γd)Oh

r + γd + λbµh[0,0]
1
2

= 0. (H23)

In the absence of CDS, µh[0,0] is characterized by the same equation as (H23). The mass
of long investors, µh[0,0], as a result, is the same with or without CDS. In turn, the trading
surplus (ωb), the bond illiquidity discount (db), the mass of sellers (µa[1,0]), and bond
volume are the same with or without CDS.

If the entry rate of low types limits to zero as λc → ∞, then the environment with
CDS converges to the environment without CDS. Hence, the introduction of CDS again
does not affect the bond market.

Proof of Proposition 8. The value functions of investors participating in the bond mar-
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ket are characterized by:

rV b
h[0,0] = γd(0− V b

h[0,0]) + λµa[1,0]
1

2
ωb (H24)

rVh[1,0] = (δ − ηJ) + x− y + γd(Va[1,0] − Vh[1,0]) (H25)

rVa[1,0] = (δ − ηJ)− y +
Mb

µa[1,0]

1

2
ωb. (H26)

Population masses {µh[1,0], µbh[0,0], µa[1,0]} are given by

νbhFh = γdµ
b
h[0,0] +Mb

Mb = γdµh[1,0] (H27)

µh[1,0] + µa[1,0] = S. (H28)

The entry rate into the bond market, νbh, solves (H1).
The value functions of investors in the CDS market are characterized by:

rV c
h[0,0] = γd(0− V c

h[0,0]) +
Mc

µh[0,0]

1

2
ωc (H29)

rVl[0,0] = γu(0− Vl[0,0]) +
Mc

µl[0,0]

1

2
ωc (H30)

rVh[0,1] = pc − (ηJ − x)− y + γd(−Ts − Vh[0,1]) (H31)

rVl[0,-1] = −pc + (ηJ + x)− y + γu
(
−Tb − Vl[0,-1]

)
. (H32)

Population masses {µh[0,1], µch[0,0], µl[0,-1], µl[0,0]} of investors in the CDS market are char-
acterized by:

νchFh + γuµh[0,1] = γdµ
c
h[0,0] +Mc

νlFl + γdµl[0,-1] = γuµl[0,0] +Mc (H33)

Mc = γdµh[0,1] + γuµh[0,1]

µh[0,1] = µl[0,-1].

The entry rates into the CDS market, νch and νl, solve (H1) and (4), respectively.
Combining the equations characterizing population masses, we get

νbhFh
γd

= µbh[0,0] +
λbµ

b
h[0,0](

λbµ
b
h[0,0] + γd

)S.
Applying the Implicit Function Theorem to it, µbh[0,0] increases with ν

b
h.

I describe next how bond market liquidity depends on the mass and, hence, the entry
rate of high valuation investors. Combining the value functions for h[0, 0], h[1, 0], a[1, 0]

51



, the bond price is

pb =
δ − ηJ − y

r
+

1

r

(r + λbµ
b
h[0,0])

1
2
x

r + γd + λbµbh[0,0]
1
2

+ λbµa[1,0]
1
2

. (H34)

=
δ − ηJ − y

r
+

1

r

x(r + λbµ
b
h[0,0])(γd + λbµ

b
h[0,0])

2γd(r + γd) + γdλbS + (2r + 3γd + λbµh[0,0])λbµh[0,0]

(H35)

where the last equality uses (H27) and (H28). The right-hand side and, thus, the bond
price is increasing in µh[0,0]. Combining the equations characterizing population masses,

Mb = γdµh[1,0] (H36)

= γd(S − µa[1,0]) (H37)

= γd(S −
γdS(

λbµh[0,0] + γd
)) (H38)

= S
λbµh[0,0]γd

λbµh[0,0] + γd
. (H39)

Bond volume, as a result, increases in µh[0,0]. Thus, the bond market is more liquid if
high-valuation investors enter at a higher rate.

Combining the value functions and the population masses of the bond market investors:

(r + γd)V
b
h[0,0] =

λbγdS

λbγdS + 2(r + γd + λbµbh[0,0]
1
2
)
(
λbµbh[0,0] + γd

)x.
Thus, V b

h[0,0] is decreasing in µbh[0,0] and, hence, in ν
b
h. To simplify the analysis I assume

that, prior to CDS introduction, the entry rate into the bond market, νbh, is given by an
interior solution.

When CDS trading is feasible, we can rule out V b
h[0,0] < Oh as an equilibrium outcome.

V b
h[0,0] < Oh implies νbh = 0. But a decrease in νbh due to CDS implies V b

h[0,0] > Oh, not
V b
h[0,0] < Oh. Thus, in equilibrium when CDS is feasible: V b

h[0,0] ≥ Oh.

Table 2:

Combined

1

V b
h[0,0] > Oh

V c
h[0,0] > Oh

V b
h[0,0] > V c

h[0,0] V b
h[0,0] > V c

h[0,0]

2 V b
h[0,0] = V c

h[0,0] V b
h[0,0] = V c

h[0,0] > Oh

3 V c
h[0,0] > V b

h[0,0] V c
h[0,0] > V b

h[0,0] > Oh

4 V c
h[0,0] = Oh V b

h[0,0] > V c
h[0,0] V b

h[0,0] > Oh = V c
h[0,0]

5 V c
h[0,0] < Oh V b

h[0,0] > V c
h[0,0] V b

h[0,0] > Oh > V c
h[0,0]

6
V b
h[0,0] = Oh

V c
h[0,0] > Oh V c

h[0,0] > V b
h[0,0] V c

h[0,0] > V b
h[0,0] = Oh

7 V c
h[0,0] = Oh V c

h[0,0] = V b
h[0,0] V c

h[0,0] = V b
h[0,0] = Oh

8 V c
h[0,0] < Oh V b

h[0,0] > V c
h[0,0] V b

h[0,0] = Oh > V c
h[0,0]
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To figure out the equilibrium outcomes, Table 2 lists possible orderings of V b
h[0,0],

V c
h[0,0], and Oh. The first row cannot be an equilibrium. V b

h[0,0] > V c
h[0,0] would mean

that νbh = 1 and νch = 0. At νch = 0, however, low types do not enter either (νl = 0)
and hence V c

h[0,0] = 0. This contradicts V c
h[0,0] > Oh. The fourth and fifth rows cannot

be an equilibrium. V b
h[0,0] > Oh ≥ V c

h[0,0] implies that νch = 0 and νbh = 1, but since
V b
h[0,0] is decreasing in νbh, V b

h[0,0] evaluated at νbh = 1 should be lower than Oh. Hence,
a contradiction. The sixth row is not an equilibrium. V c

h[0,0] > V b
h[0,0] = Oh implies that

νch = 1 and νbh = 0. However, V b
h[0,0] evaluated at νbh = 0 does not equal Oh.

Four equilibria exist. In two of them, the entry rate into the bond market, νbh, stays
the same as in the environment without CDS. In one of these, the entry into the CDS
market is positive: νch + νbh ≤ 1 and V c

h[0,0] = V b
h[0,0] = Oh, while in the other, none of the

high type investors enter the CDS market, and V b
h[0,0] = Oh > V c

h[0,0] = 0. In the other
two equilibria, the entry rate into the bond market, νbh, decreases. In one of these, shown
in row 3, V c

h[0,0] > V b
h[0,0] > Oh implying that νbh = 0 and νch = 1. This means all high

type investors enter the CDS, and trading activity in the bond market disappears. In the
other, shown in row 2, V b

h[0,0] = V c
h[0,0] > Oh implying that the entry rate into the bond

market decreases (so that V b
h[0,0] is higher).
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Thus, with the introduction of the CDS market, high valuation investors enter the
bond market either at the same or at a lower rate. If the entry rate remains the same,
the illiquidity discount and bond volume also remain unaffected by CDS introduction. If
the entry rate decreases, bond market liquidity deteriorates: Bond volume decreases, and
the illiquidity discount increases.

I Short-Selling

I use the short-selling framework of Vayanos and Weill (2008). In contrast to Vayanos and
Weill (2008), I endogenize the entry rate of long and short investors. To be self-containing,
I describe the main features and mechanism of the Vayanos and Weill (2008) framework,
but for more details I refer the reader to their paper.

Agents’ asset positions, [θb, θr], denoted in subscripts on population masses and value
functions, are: θb = 1 if the investor holds the bond, θb = 0 if the investor does not hold
the bond, θr = 1 if the investor has the lent the bond, and θr = −1 if the investor has
borrowed the bond. Combined, we have five feasible asset positions: [1, 0] is a bond owner,
[0, 1] is an investor who has lent out her bond, [1, -1] is an investor who has borrowed a
bond but has not yet sold it short, [0, -1] is an investor who has borrowed a bond and has
sold it short, and [0, 0] is an investor with no asset position.

The conjectured equilibrium agent types and their optimal trading strategies are as
follows. In equilibrium, a bond owner, [1, 0], can be either a high- or average-valuation
type. The high-valuation type bond owner searches for a bond borrower in the repo
market (i.e. for a short investor) to lend her bond to. The average type bond owner
prefers neither a long nor a short position and, hence, searches for a bond buyer in the

48The entry rate could decrease to another, smaller, rate νbh > 0, or all the way to zero, νbh = 0.
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bond market to sell her bond to. An investor who has lent her bond, [0, 1], is a high type
investor. If she reverts to an average-valuation while her counterparty has not yet sold the
bond, she demands back the bond and becomes a bond seller (a[1, 0]). If she reverts to
an average-valuation after her counterparty has already (short-) sold the bond, she seizes
the collateral her counterparty has put aside and exits the market. An investor who has
borrowed but has not yet sold the bond, [1, -1], is a low type investor. She is the short
seller who searches for a bond buyer in the bond market to sell her bond to. If she reverts
to an average valuation (that is, before she could short sell the bond), she immediately
delivers back the bond and exits the market. An investor with position [0, -1] can be
either a low or an average type. A low type investor with position [0, -1] is the short
investor who has reached her optimal asset position. An average type with position [0, -1]

is an investor who was previously a short investor that reverted to an average valuation.
She searches to buy back the bond to deliver the bond back to the lender and unwind
her short position. Investors with no position can be high or low type: If they are a high
type, they seek a long position by buying a bond. If they are a low type, they seek a
short position by borrowing a bond.

Define the total mass of bond sellers as

µb,s ≡ µl[1,-1] + µa[1,0],

where µl[1,-1] is the mass of short sellers and µa[1,0] is the mass of regular bond sellers (that
is, those with a long position looking to unwind their long position). Analogously, the
total mass of bond buyers is

µb,b ≡ µh[0,0] + µa[0,-1],

where h[0, 0] are the long investors seeking a long position by buying a bond, and a[0, -1]

are the investors looking to buy back the bond in order to deliver it to its repo counterparty
and unwind their short position. In the repo market, the active searchers are the bond
borrowers, l[0, 0], and bond lenders, h[1, 0].

Define with q’s meeting intensities:

qb ≡ λbµb,b,

qs ≡ λbµb,s,

qle ≡ λrµh[1,0],

qbo ≡ λrµl[0,0].

To distinguish the environments with and without short-selling, I denote the environment
without short-selling with hats.

The inflow-outflow equations are:

νhFh = γdµh[0,0] + qsµh[0,0] (I1)
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qsµh[0,0] + γuµl[1,-1] + qsµa[0,-1] = qboµh[1,0] + γdµh[1,0] (I2)

qboµh[1,0] = γdµh[0,1] + γuµl[1,-1] + qsµa[0,-1] (I3)

νlFl + γdµl[1,-1] + γdµl[0,-1] = γuµl[0,0] + qleµl[0,0] (I4)

qleµl[0,0] = γuµl[1,-1] + qbµl[1,-1] + γdµl[1,-1] (I5)

qbµl[1,-1] = (γu + γd)µl[0,-1] (I6)

γuµl[0,-1] = qsµa[0,-1] + γdµa[0,-1] (I7)

γdµh[1,0] + γdµl[1,-1] = qbµa[1,0] (I8)

Market clearing conditions are:

µh[1,0] + µa[1,0] + µl[1,-1] = S (I9)

µh[0,1] = µl[1,-1] + µl[0,-1] + µa[0,-1]. (I10)

To characterize the value functions of agents who have lent their bond, h[0, 1], we have
to keep track of their counterparty. The subscript on the value functions of an h[0, 1]

investor, as a result, denotes both the agent’s own type and the type of her counterparty.
For example, Vh[0,1]l[1,-1] denotes the value function of an investor who has lent her bond
(h[0, 1]) whose counterparty is l[1, -1] type.

The value functions are:

rVh[0,0] = γd
(
0− Vh[0,0]

)
+ qs

(
Vh[1,0] − Vh[0,0] − pb

)
(I11)

rVh[1,0] = δ − ηJ + x− y + qbo
(
Vh[0,1]l[1,-1] − Vh[1,0]

)
+ γd

(
Va[1,0] − Vh[1,0]

)
(I12)

rVh[0,1]l[1,-1] = δ − ηJ + x− y + fee+ γd
(
Va[1,0] − Vh[0,1]l[1,-1]

)
+ γu

(
Vh[1,0] − Vh[0,1]l[1,-1]

)
(I13)

+ qb
(
Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1]

)
rVh[0,1]l[0,-1] = δ−ηJ+x−y+fee+γd

(
z − Vh[0,1]l[0,-1]

)
+γu

(
Vh[0,1]a[0,-1] − Vh[0,1]l[0,-1]

)
(I14)

rVh[0,1]a[0,-1] = δ − ηJ + x− y + fee+ γd
(
z − Vh[0,1]a[0,-1]

)
+ qs

(
Vh[1,0] − Vh[0,1]a[0,-1]

)
(I15)

rVl[0,0] = γu
(
0− Vl[0,0]

)
+ qle

(
Vl[1,-1] − Vl[0,0]

)
(I16)

rVl[1,-1] = −fee+ γu
(
0− Vl[1,-1]

)
+ qb

(
Vl[0,-1] − Vl[1,-1] + pb

)
+ γd

(
Vl[0,0] − Vl[1,-1]

)
(I17)

rVl[0,-1] = −fee− (δ − ηJ − x)− y + γu
(
Va[0,-1] − Vl[0,-1]

)
+ γd

(
Vl[0,0] − z − Vl[0,-1]

)
(I18)

rVa[0,-1] = −fee− (δ − ηJ)− y + qs
(
0− pb − Va[0,-1]

)
+ γd

(
0− z − Va[0,-1]

)
(I19)

rVa[1,0] = δ − ηJ − y + qb
(
pb + 0− Va[1,0]

)
, (I20)

where z is the collateral that the bond lender seizes from the bond borrower if the bond
borrower cannot deliver the bond. Following Vayanos and Weill (2008), I set z = Va[1,0].
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The entry decisions of high and low-type valuation investors are given by (4).
In a bond transaction, the bond buyer h[0, 0] and the seller a[1, 0] bargain over price.

The bond price, as a result, is characterized by:

pb =
1

2

(
Vh[1,0] − Vh[0,0]

)
+

1

2
Va[1,0] (I21)

I assume, following Vayanos and Weill (2008), that the other bond buyer (a[0, -1]) and
seller (l[1, -1]) transact at the same price and verify later it is optimal to do so.

The variable, fee, is the flow security lending fee the bond borrower pays the bond
lender throughout the repo contract. The bond lender and the borrower negotiate over
the fee so that each gets half of the total gains from trade:

Vh[0,1]l[1,-1] − Vh[1,0] =
1

2

(
Vh[0,1]l[1,-1] − Vh[1,0] + Vl[1,-1] − Vl[0,0]

)
. (I22)

Analogous to the environment with CDS trading, define the gains from a bond trans-
action as

ωb ≡ Vh[1,0] − Vh[0,0] − Va[1,0].

and from a repo transaction as:

ωr ≡
(
Vh[0,1]l[1,-1] − Vh[1,0]

)
+ Vl[1,-1] − Vl[0,0]. (I23)

Proof of Proposition 9. Take the difference between (I12) and (I11) and get

r
(
Vh[1,0] − Vh[0,0]

)
= δ − ηJ + x− y + qbo

(
Vh[0,1]l[1,-1] − Vh[1,0]

)
− γdωb − qs

1

2
ωb. (I24)

Combine this with (I20) and solve for ωb as:

ωb =
x+ qbo

1
2
ωr(

r + γd + qs
1
2

+ qb
1
2

) . (I25)

Combine (I20) and (I24) and simplify:

rpb = δ − ηJ − y +
1

2
x+

1

2

(
−γdωb − (r + γd)Vh[0,0] + qb

1

2
ωb

)
+

1

4
qboωr. (I26)

From (I25), qb 1
2
ωb = x+ qbo

1
2
ωr − ωb

(
r + γd + qs

1
2

)
. Substitute this and Vh[0,0] = Oh into

(I26) and simplify to get

rpb = δ − ηJ + x− y − (r + γd)Oh −
(
r + 2γd

2

)
ωb + qbo

1

2
ωr. (I27)

Expressing ωb as

ωb =
x− (r + γd)Oh + qbo

1
2
ωr(

r + γd + qb
1
2

) ,

plugging it into (I27), and simplifying, we get (22).
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The bond price without short-selling is

rp̂b = δ − ηJ + x− y − (r + γd)Oh −
(
r + 2γd

2

)
x− (r + γd)Oh(
r + γd + q̂b

1
2

) . (I28)

Before I prove Proposition 10, I first show some intermediate results in Lemmas 3-5.

Lemma 3. The inflow-outflow and market clearing equations boil down to a set of four
equations of four variables µh[0,0], µl[0,0], µb,s, and µb,b:

νhFh = γdµh[0,0] + qsµh[0,0] (I29)

νlFl =
γu

γu + γd
λr (S − µb,s)µl[0,0] + γuµl[0,0] (I30)

µb,b = µh[0,0] +
γu

λbµb,s + γd

λbµb,b
γu + γd

λrµl[0,0] (S − µb,s)
γu + γd + λbµb,b

(I31)

µb,s =
γdS

γd + λbµb,b
+
λr (S − µb,s)µl[0,0]

γu + γd + λbµb,b
. (I32)

Proof. The first equation (I29) is given by (I1) and characterizes µh[0,0].
The second equation (I30) characterizes µl[0,0]. Substituting qbµl[1,-1] from (I6) into

(I5) and solving for µl[1,-1] + µl[0,-1], we get

µl[1,-1] + µl[0,-1] =
qleµl[0,0]

γu + γd
. (I33)

Substituting it into (I4) and simplifying yields:

νlFl + γd
qleµl[0,0]

γu + γd
= γuµl[0,0] + qleµl[0,0]. (I34)

Then, using qle = λrµh[1,0] and the bond market clearing condition, we get:

νlFl =
γu

γu + γd
λr (S − µb,s)µl[0,0] + γuµl[0,0]. (I35)

The third equation (I31) characterizes µb,b. Solving for µl[1,-1] from (I5) and using
µh[1,0] = S − µb,s:

µl[1,-1] =
λr (S − µb,s)µl[0,0]

γu + γd + λbµb,b
. (I36)

Substituting it into (I6) and using qb = λbµb,b, we get

µl[0,-1] =
λbµb,b
γu + γd

λr (S − µb,s)µl[0,0]

γu + γd + λbµb,b
. (I37)

57



Plugging (I37) into (I7) gives

µa[0,-1] =
γu

qs + γd

λbµb,b
γu + γd

λr (S − µb,s)µl[0,0]

γu + γd + λbµb,b
. (I38)

Plugging (I38) into µb,b = µh[0,0] + µa[0,-1], we get

µb,b = µh[0,0] +
γu

λbµb,s + γd

λbµb,b
γu + γd

λrµl[0,0] (S − µb,s)
γu + γd + λbµb,b

. (I39)

The fourth equation (I32) characterizes µb,s. Solve for µa[1,0] from (I8):

µa[1,0] =
γdS

γd + λbµb,b
. (I40)

Adding µl[1,-1], derived in (I36), to µa[1,0] and using the definition µb,s = µl[1,-1] +µa[1,0], we
get:µb,s

The next lemma shows that, taking the entry rate ν’s as given, the four equations
characterizing µh[0,0], µl[0,0], µb,s, and µb,b have a unique positive solution. In doing so, it
shows that S − µb,s > 0, which I use later for the proof of Proposition 10.

Lemma 4. For any given νh and νl, a unique positive solution exists for µ’s.

Proof. Make the following change of variables: qbo = λrµl[0,0] and qs = λbµb,s, eb = 1
λb
,

and er = 1
λr

in (I29)-(I32) and get:

νhFh = γdµh[0,0] + qsµh[0,0] (I41)

νlFl =
γu

γu + γd
qbo (S − ebqs) + γuerqbo (I42)

µb,b=µh[0,0] +
γu

qs + γd

µb,b
γu + γd

qbo (S − ebqs)
eb (γu + γd) + µb,b

(I43)

qs=
γdS

ebγd + µb,b
+

qbo (S − ebqs)
eb (γu + γd) + µb,b

. (I44)

From (I41), solve for µh[0,0] as a function of qs to get:

µh[0,0] =
νhFh
γd + qs

. (I45)

Thus, µh[0,0] decreases in qs.
Next, I show that µb,b decreases in qs. From (I42),

qbo=
νlFl

γuer + γu
γu+γd

(S − ebqs)
. (I46)
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Plugging it into (I43) and rearranging gives:(
µb,b − µh[0,0]

)
= (I47)

1

(eb (γu + γd) + µb,b) (qs + γd)
µb,b

1

(er (γu + γd) + (S − ebqs))
νlFl (S − ebqs) .

Rearrange it and get:

1=
µh[0,0]

µb,b
+

1

(eb (γu + γd) + µb,b) (γd + qs)

1

(er (γu + γd) + (S − ebqs))
νlFl (S − ebqs) . (I48)

Since µh[0,0] is an implicit function of qs, (I48) characterizes µb,b as an implicit function of
qs. Applying the Implicit Function Theorem to (I48), µb,b decreases in qs.

Next, I simplify (I41)-(I44) into a single equation of one unknown, qs, and show that
qs is uniquely determined and positive. From (I43),

qbo (S − ebqs)
eb (γu + γd) + µb,b

=
(
µb,b − µh[0,0]

) (γu + γd) (qs + γd)

γuµb,b
. (I49)

Plug (I49) into (I44) and multiply both sides by µb,b:

qsµb,b=
γdSµb,b

ebγd + µb,b
+
(
µb,b − µh[0,0]

) (γu + γd) (qs + γd)

γu
.

Add qsµh[0,0] to both sides

qsµb,b + qsµh[0,0] =
γdSµb,b

ebγd + µb,b
+
(
µb,b − µh[0,0]

) (γu + γd) (qs + γd)

γu
+ qsµh[0,0]. (I50)

Subtract qsµb,b from both sides, simplify, and plug the expression for µh[0,0] into the left-
hand side of (I50):

νhFh
γd + qs

qs =
γdSµb,b

ebγd + µb,b
+
(
µb,b − µh[0,0]

) γd
γu

(γu + γd + qs) . (I51)

The left-hand side increases in qs. The first term on the right-hand side, γdSµb,b
ebγd+µb,b

, increases
in µb,b and, hence, decreases in qs. Consider the second term on the right-hand side. From
(I47), (

µb,b − µh[0,0]

)
(γu + γd + qs) = (I52)

1

(eb (γu + γd) + µb,b) (qs + γd)

µb,b (γu + γd + qs)

(er (γu + γd) + (S − ebqs))
νlFl (S − ebqs) .

The right-hand side of (I52) decreases in qs and increases in µb,b. Since µb,b decreases in qs,
the right-hand side of (I52), as a result, decreases in qs. Put together, the left-hand side
minus the right-hand side of (I51) (as a function of one unknown, qs) strictly increases in
qs. At qs = 0, the left-hand side of (I51) is 0, the right-hand side is positive. The left-hand
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side minus the right-hand side, as a result, is negative. At qs = S
eb
, the left-hand side is

S
eb
µh[0,0]. Consider the right-hand side. From (I47), µb,b−µh[0,0] = 0. Thus, the right-hand

side equals γdSµb,b
ebγd+µb,b

, which is less than S
eb
µh[0,0]. Thereby, at qs = S

eb
, the left-hand side

minus the right-hand side is positive. Thus, (I51) has a unique solution in (0, S
eb
).

The other unknowns, µh[0,0], µb,b, and qbo are uniquely given as functions of qs. Thus,
taking as given νh and νl in [0, 1], the system of four equations and four unknowns (I29)-
(I32) has a unique positive solution. This proof for an existence of a unique positive
solution holds for any er including er = 0. Moreover, the solution is such that qs < S

eb

implying that µh[1,0] = S − ebqs > 0.

Lemma 5. The gains from trade from a repo transaction, ωr, is characterized by:(
r + γd + γu + qle

1

2
+ qbo

1

2

(
1 +

qbγu
(r + γd + qb + γu) (r + γd + qs)

))
ωr (I53)

=
qb

(r + γd + γu + qb)
·

·

(
x+

r + γd + γu + qs
r + γd + qs

[
−2y +

r + γd + qb(
r + γd + qs

1
2

+ qb
1
2

) 1

2

(
x+ qbo

1

2
ωr

)])
.

Proof. Take the difference between (I17) and (I16):

rVl[1,-1] − rVl[0,0] = −fee− γu
(
Vl[1,-1] − Vl[0,0]

)
+ qb

(
Vl[0,-1] − Vl[1,-1] + pb

)
(I54)

+ γd
(
Vl[0,0] − Vl[1,-1]

)
− qle

(
Vl[1,-1] − Vl[0,0]

)
.

Take the difference between (I13) and (I12):

rVh[0,1]l[1,-1] − rVh[1,0] = fee+ γd
(
Va[1,0] − Vh[0,1]l[1,-1]

)
− γu

(
Vh[0,1]l[1,-1] − Vh[1,0]

)
(I55)

+ qb
(
Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1]

)
− γd

(
Va[1,0] − Vh[1,0]

)
− qbo

(
Vh[0,1]l[1,-1] − Vh[1,0]

)
.

Then, adding the two differences and simplifying yields:(
r + γd + γu + qbo

1

2
+ qle

1

2

)
ωr = qb

(
Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1] + Vl[0,-1] − Vl[1,-1] + pb

)
.

(I56)
Next, I derive Vh[0,1]l[0,-1]−Vh[0,1]l[1,-1] +Vl[0,-1]−Vl[1,-1] +pb. Take the difference between

(I18) and (I17):

rVl[0,-1] − rVl[1,-1] = − (δ − ηJ − x)− y + γu
(
Va[0,-1] − Vl[0,-1]

)
+ γd

(
−c− Vl[0,-1]

)
−
(
γu
(
0− Vl[1,-1]

)
+ qb

(
Vl[0,-1] − Vl[1,-1] + pb

)
+ γd

(
−Vl[1,-1]

))
.
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Take the difference between (I14) and (I13):

rVh[0,1]l[0,-1] − rVh[0,1]l[1,-1] = −γd
(
Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1]

)
+ γu

(
Vh[0,1]a[0,-1] − Vh[0,1]l[0,-1]

)
− qb

(
Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1]

)
− γu

(
Vh[1,0] − Vh[0,1]l[1,-1]

)
.

Add the two differences and add rpb to both sides:

(r + qb)
(
Vl[0,-1] − Vl[1,-1] + Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1] + pb

)
= rpb − (δ − ηJ − x)− y − γu

(
−Va[0,-1] + Vl[0,-1] − Vl[1,-1] − Vh[0,1]a[0,-1] + Vh[0,1]l[0,-1]

)
− γd

(
c+ Vl[0,-1] − Vl[1,-1] + Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1]

)
− γu

(
Vh[1,0] − Vh[0,1]l[1,-1]

)
.

Add γdpb − γdpb to the right-hand side and simplify to get:

(r + γd + qb + γu)
(
Vl[0,-1] − Vl[1,-1] + Vh[0,1]l[0,-1] − Vh[0,1]l[1,-1] + pb

)
= (I57)

rpb − (δ − ηJ) + x− y + γd (pb − c) + γu
(
Vh[0,1]a[0,-1] + Va[0,-1] + pb − Vh[1,0]

)
.

Next, I derive Vh[0,1]a[0,-1] + Va[0,-1] + pb − Vh[1,0]. Adding together (I15), (I19), and rpb,
subtracting (I12), and using pb − Va[1,0] = 1

2
ωb we get

(r + γd + qs)
(
Vh[0,1]a[0,-1] + Va[0,-1] + pb − Vh[1,0]

)
= rpb − (δ − ηJ)− y + γd

1

2
ωb − qbo

1

2
ωr.

(I58)
Plug (I57) and (I58) back into (I56) and get:(

r + γd + γu + qbo
1

2

(
1 +

qbγu
(r + γd + qb + γu) (r + γd + qs)

)
+ qle

1

2

)
ωr (I59)

=
qb

(r + γd + γu + qb)

(
x+

r + γd + γu + qs
r + γd + qs

(
rpb − (δ − ηJ)− y + γd

1

2
ωb

))
.

The expression characterizes ωr but still has pb and ωb. Thus, I derive now, rpb − (δ −
ηJ)− y+ γd

1
2
ωb. Re-arrange the bond price equation (I27) and use (r+ γd)Vh[0,0] = qs

1
2
ωb

to get

rpb − (δ − ηJ) + y + γd
1

2
ωb =

r + γd + qb(
r + γd + qs

1
2

+ qb
1
2

) 1

2

(
x+ qbo

1

2
ωr

)
. (I60)

Add (-2y) to both sides:

rpb − (δ − ηJ)− y + γd
1

2
ωb = −2y +

r + γd + qb(
r + γd + qs

1
2

+ qb
1
2

) 1

2

(
x+ qbo

1

2
ωr

)
. (I61)

Plugging this back into (I59) gives (I53).

Proof of Proposition 10.a. To simplify derivations, I focus on parameter conditions
such that the entry rate of high type investors is given by an the interior solution. I
prove the result in three steps. First, I derive the limits of qbo, qs, qb, and qle. Second,
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using the limits derived in step 1, I show that lim
λb→∞

ωr → 0. Finally, in step 3, using the

limits of q’s and ωr, I show that the bond price and volume are higher in the presence of
short-selling.

Step 1 In this step, I derive the limits of qbo, qs, qb, and qle.

Proof. Consider the limit of qbo. From (I42), in any equilibrium with CDS trading (i.e.
when νl > 0), 0 < lim

λb→∞
qbo <∞.

Next, I show that lim
λb→∞

qs = ∞. I prove by contradiction. Suppose lim
λb→∞

qb = ∞ and

lim
λb→∞

qs < ∞. Then, Vh[0,0], νh, and µh[0,0] are zero asymptotically. Combine (I43) and

(I44),

µb,b = µh[0,0] +
γu

qs + γd

µb,b
γu + γd

(
qs −

γdS

ebγd + µb,b

)
. (I62)

Using µh[0,0] → 0 in (I62),

µb,b =
γu

qs + γd

µb,b
γu + γd

(
qs −

γdS

ebγd + µb,b

)
.

Using the conjecture that qs <∞, simplifying, and rearranging, we get

γuγd + (qs + γd) γd = −γu
γdS

ebγd + µb,b
.

This is a contradiction as the left-hand size is finite and positive, while the right-hand is
negative when qs <∞. Suppose, instead, lim

λb→∞
qs <∞ and lim

λb→∞
qb <∞. From (I44),

qs =
γdS

ebγd + µb,b
+

qbo (S − ebqs)
eb (γu + γd) + µb,b

.

Setting eb = 0,

qs =
γdS

µb,b
+
qboS

µb,b
.

Since µb,b → 0 (from the conjecture that lim
λb→∞

qb < ∞), qs → ∞. This a contradiction.

Thus, lim
λb→∞

qs < ∞ yields contradictions (whether lim
λb→∞

qb < ∞ or lim
λb→∞

qb = ∞). So it

has to be that qs →∞.
Next, consider the limits of qb and qle. For νh to be given by an interior solution, qb

has to converge to ∞ and, in particular, at a rate such that

qs
1
2

r + γd + qs
1
2

+ qb
1
2

(x+ qbo
1

2
ωr) = (r + γd)Oh. (I63)

Thus, for an interior solution of νh, it has to be that lim
λb→∞

qb →∞. Solving for µb,s from
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(I32),

µb,s =
S
(
γd + qbqbo

qb+qbo+γd+γu

)
qb + γd

.

Taking its limit (in particular, using lim
λb→∞

qbo < ∞ and lim
λb→∞

qb = ∞), we get µb,s → 0.

This implies that µh[1,0] → S and ∞ > lim
λb→∞

qle = λrS > 0.

Step 2

Proof. Now, I derive the limit of ωr. From (I63),

qb =
−(r + γd)Oh

(
r + 1

2
qs + γd

)
+ 1

2
qs
(
x+ 1

2
qboωr

)
1
2
(r + γd)Oh

.

Substitute it into (I53) and subtract the right-hand side of (I53) from the left-hand side.
Then, taking the limit as qs →∞, we get

2y − 2x+ (r + γd)Oh +

(
r + γd + γu +

1

2
qle

)
ωr = 0.

Solving for ωr:

ωr =
2x− 2y − (r + γd)Oh

r + γd + γu + 1
2
qle

. (I64)

This is positive using Assumption 1 and the above result that ∞ > lim
λb→∞

qle.

As an aside, consider the parameter conditions that would ensure an existence of an
equilibrium where νl > 0. Plug (I64) back into the value function of l[0, 0]:

Vl[0,0] =
1

r + γu
qle

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + 1
2
qle

=
1

r + γu
λrS

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + 1
2
λrS

.

Thus, as long as
1

r + γu
λrS

1

2

2x− 2y − (r + γd)Oh

r + γd + γu + 1
2
λrS

≥ Ol,

the entry rate of low-valuation investors is positive: νl > 0.

Step 3

Proof. Using the above limits of q’s and ωr, the bond price in the presence of short-selling
limits to:

lim
λb→∞

pb =
δ − ηJ + x− y − (r + γd)Oh

r
+ qbo

1
2
ωr

r
. (I65)

Without short-selling it limits to,
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lim
λb→∞

p̂b =
δ − ηJ + x− y − (r + γd)Oh

r
. (I66)

Above, I showed that qbo
1
2
ωr
r
> 0. The bond price, as a result, is higher in the presence

of short-selling: lim
λb→∞

pb > lim
λb→∞

p̂b.

Consider now the effect on bond volume. Setting eb = 0 in (I44),

qs =
γdS

µb,b
+
qbo (S − µb,s)

µb,b
.

Multiply both sides by µb,b and use the result that µb,s → 0,

qsµb,b = γdS + qboS. (I67)

In the absence of the repo market, the bond volume converges to the first term γdS. From
step 1, the second term qboS is positive in the presence of short-selling. Short-selling, as
a result, increases the trading volume in the bond market. The second term is the flow
of repo market matches. They add to the bond volume because they capture the flow of
short-sellers who borrow and (short-)sell instantly.

Proof of Proposition 10.b. I assume the parameter conditions are such that as λr →
∞, an equilibrium with short selling exists (i.e. where νl > 0) and that the entry rate
of high-type investors is given by a positive interior solution. The proof of equilibrium
existence is tedious but is available upon request. Then, I prove the result in three steps.
In step 1, I derive the limits of qbo, qle, µb,b, and ωr. In step 2, I show µb,b and µb,s increase
in νl. Finally, in step 3, I use these results in steps 1 and 2 and show that short-selling
increases the bond price and volume.

Step 1

Proof. In this part of the Proposition, I show that lim
λr→∞

qbo <∞, lim
λr→∞

qle =∞, lim
λr→∞

µb,b <

∞, lim
λr→∞

µh[0,0] <∞, lim
λr→∞

ωr = 0 for νl ≥ 0 and taking νl as given.

Consider the limits of qbo and µl[0,0]. From (I42):

qbo =

νlFl
γu

1
γu+γd

(S − ebqs) + er
. (I68)

Lemma 4 showed that S−ebqs > 0. Thus, lim
λr→∞

qbo <∞, and lim
λr→∞

erqbo = lim
λr→∞

µl[0,0] = 0.

Next, consider the limits of µb,b and qs. Setting er = 0 and using lim
λr→∞

erqbo = 0 in

(I41)-(I44), we get:
νhFh = γdµh[0,0] + qsµh[0,0] (I69)

νlFl =
γu

γu + γd
qbo (S − ebqs) (I70)
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µb,b=µh[0,0] +
γu

qs + γd

µb,b
γu + γd

qbo (S − ebqs)
eb (γu + γd) + µb,b

(I71)

qs=
γdS

ebγd + µb,b
+

qbo (S − ebqs)
eb (γu + γd) + µb,b

. (I72)

Solving for qbo and µh[0,0] from the first two and substituting them into the other two, we
get

µb,b=
νhFh
γd + qs

+
µb,b

qs + γd

νlFl
eb (γu + γd) + µb,b

, (I73)

qs=
γdS

ebγd + µb,b
+

νlFl (γu + γd)

γu (eb (γu + γd) + µb,b)
. (I74)

Solving for qs from (I73), we get

qs=
νhFh
µb,b

+
νlFl

eb (γu + γd) + µb,b
− γd. (I75)

Substituting this into (I74) and simplifying, we get

νhFh
γd
− µb,b

(
1 +

S

µb,b + ebγd
+

νlFl
γu (µb,b + eb (γd + γu))

)
= 0. (I76)

For µb,b = 0, the left-hand side is positive, while for a large µb,b, the left-hand side is
negative. The left-hand side strictly decreases in µb,b. Thus, it has a unique, positive,
and finite solution in µb,b. In turn, from (I74), 0 < lim qs <∞.

Finally, consider the limits of qle and ωr.

lim
λr→∞

qle = lim
λr→∞

λrµh[1,0] = lim
λr→∞

λr (S − µb,s) =∞. (I77)

Moreover, lim
λr→∞

qbo <∞ and lim
λr→∞

qle =∞ imply that lim
λr→∞

ωr = 0 from (I53).

Step 2 In this part of the Proposition, I show that µb,b and µb,s strictly increase with
νl for νl ≥ 0.

Proof. Combine the value functions, the definition of ωr, and that Vh[0,0] = Oh to get

(r + γd)Oh = qs
x+ qbo

1
2
ωr(

r + γd + qs
1
2

+ qb
1
2

) . (I78)

Then (I42)-(I44), (I53), and (I78) characterize a set of five equations and five unknowns,
qs, µb,b, µh[0,0], qbo, and ωr as implicit functions of νl. Set er = 0 and the limits of qbo and
ωr in (I42), (I44), and (I78):

νlFl =
γu

γu + γd
qbo (S − ebqs) (I79)

qs=
γdS

ebγd + µb,b
+

qbo (S − ebqs)
eb (γu + γd) + µb,b

(I80)
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(r + γd)Oh = qs
x(

r + γd + qs
1
2

+ qb
1
2

) . (I81)

From (I79):

qbo (S − ebqs) =
νlFl
γu

(γu + γd) .

Substitute it into (I80). Together with (I81), we have two equations that characterize µb,b
and qs as implicit functions of νl:

qs=
γdS

ebγd + µb,b
+

νlFl
γu

(γu + γd)

eb (γu + γd) + µb,b
(I82)

(r + γd)Oh = qs
x(

r + γd + qs
1
2

+ qb
1
2

) . (I83)

Substitute the expression for qs from (I82) into (I83) and get:

(r + γd)Oh

[
r + γd +

(
γdS

ebγd + µb,b
+

νlFl
γu

(γu + γd)

eb (γu + γd) + µb,b

)
1

2
+ qb

1

2

]
(I84)

=

[
γdS

ebγd + µb,b
+

νlFl
γu

(γu + γd)

eb (γu + γd) + µb,b

]
x.

Applying the Implicit Function Theorem,

∂µb,b
∂νl

=

(γd+γu)(r+γd+ 1
2
µb,bλb)

γd+γu+µb,bλb

λb

(
Sγd

γd+λbµb,b

r+γd+ 1
2
γd+λbµb,b

(γd+λbµb,b)
+

νlFl
γu

(γd+γu)

γd+γu+λbµb,b

r+γd+ 1
2
γd+ 1

2
γu+λbµb,b

(γd+γu+λbµb,b)

) .
I showed earlier that population masses are positive for any νh and νl. Thus, the right-
hand side is positive, and µb,b strictly increases in νl. From (I83), qs strictly increases in
µb,b and, hence, in νl. Both µb,s and µb,b, as a result, increase in νl.

Step 3 In this step, I use the results from steps 1 and 2 and show that short-selling
increases the price and the trading volume of the bond.

Proof. As λr → ∞, using the earlier result that lim
λr→∞

µb,b < ∞, lim
λr→∞

ωr = 0, and

lim
λr→∞

qbo = lim
λr→∞

λrµl[0,0] <∞, the bond price with short-selling limits to

lim
λr→∞

pb =
(δ − ηJ) + x− y − (r + γd)Oh

r
− (r + 2γd)

r

1

2

(x− (r + γd)Oh)

r + γd + λbµb,b
1
2

(I85)

The bond price without short-selling is

pb =
(δ − ηJ) + x− y − (r + γd)Oh

r
− (r + 2γd)

r

1

2

(x− (r + γd)Oh)

r + γd + λbµb,b
1
2

(I86)

In the limit then, short-selling affects the bond price only through the second term (the
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illiquidity discount) and, in particular, through µb,b that is in the denominator of the
illiquidity discount term. In step 2, I showed that µb,b and qs are implicit functions of νl
and that they strictly increase in νl for νl ≥ 0. This implies that µb,b and qs are larger in
the presence of short-selling because µb,b and qs evaluated at νl > 0 and νl = 0 correspond
to their levels in the presence and absence of short-selling, respectively. Larger µb,b, in
turn, implies that lim

λr→∞
db < d̂b, and, hence, lim

λr→∞
pb > p̂b. The bond volume also increases

in the presence of short-selling because the trading volume is the product of µb,b and
qs.

J Short-Selling and CDS

In this section, I present the model with both bond short-selling and CDS trading. The
equilibrium variables and conditions are the same as in the previous section with just
short-selling except for few changes. Define the meeting intensities in the CDS market as

qc,b ≡ λcµl[0,0]

qc,s ≡ λcµh[0,0]

I denote the CDS position of an agent on the third position of her portfolio: [θb, θr, θc].
If an agent has no CDS position, I continue to denote her position with just [θb, θr] as in
the previous section. Then, the inflow-outflow equations characterizing µh[0,0] and µl[0,0]

change as:

νhFh + γuµl[0,0,-1] = γdµh[0,0] + (qs + qc,b)µh[0,0] (J87)

νlFl + γdµl[1,-1] + γdµl[0,-1] + γdµl[0,0,-1] = γuµl[0,0] + (qle + qc,s)µl[0,0] (J88)

Two additional inflow-outflow equations characterize the masses of investors who have
sold CDS (µh[0,0,1]) and who have bought CDS (µl[0,0,-1]), respectively:

qc,bµh[0,0] = (γu + γd)µh[0,0,1] (J89)

qc,bµh[0,0] = (γu + γd)µl[0,0,-1] (J90)

The additional market clearing condition is:

µh[0,0,1] = µl[0,0,-1]. (J91)

Similarly, value functions of h[0, 0] and l[0, 0] change as

rVh[0,0] = γd
(
0− Vh[0,0]

)
+ qs

(
Vh[1,0] − Vh[0,0] − pb

)
+ qc,b

(
Vh[0,0,1] − Vh[0,0]

)
(J92)

rVl[0,0] = γu
(
0− Vl[0,0]

)
+ qle

(
Vl[1,-1] − Vl[0,0]

)
+ qcs

(
Vl[0,0,-1] − Vl[0,0]

)
(J93)
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Two additional value functions are

rVh[0,0,1] = pc − ηJ + x− y + γd
(
−Ts − Vh[0,0,1]

)
(J94)

rVl[0,0,-1] = ηJ + x− y − pc + γu
(
−Tb − Vl[0,0,-1]

)
(J95)

As in the main environment, the CDS spread is given by

Vh[0,0,1] − Vh[0,0] =
1

2

(
Vh[0,0,1] − Vh[0,0] + Vl[0,0,-1] − Vl[0,0]

)
. (J96)

I compare the two environments without CDS and with CDS based on what the entry
rates converge to once CDS is introduced. In particular, I use the following algorithm. I,
first, let the entry rate of low types to adjust to CDS introduction but keeping the entry
rate of high types fixed. Next, I allow the entry rate of high types to adjust to both CDS
introduction and the change in the low types’ entry rate that CDS introduction induces
in the first step. I repeat this process until both entry rates are at equilibrium. Whether
low types adjust their entry rate first then high types adjust or vice versa gives the same
result. The result is as follows. CDS introduction increases the value of entering for both
long and short investors. Short investors, as a result, enter at a higher rate (assuming that
their entry rate was given by an interior solution before) until their entry rate converges
to the maximum possible: a corner solution. In response to both CDS introduction itself
and the resulting increase in low types’ entry rate, long investors also enter at a higher
equilibrium rate.

K Endogenous Search Efforts

I setup the environment so that all investors who want to rebalance their asset position
choose their search effort optimally. In particular, in addition to long investors, bond
sellers, a[1, 0], and CDS buyers, l[0, 0], also choose their search effort. As a result, the total
bond volume isMb = (λb,s+λb,b)µb,sµb,b, while the CDS volume isMc = (λc,s+λc,b)µc,sµc,b.
Then, only for the proof of Proposition 11, I set the search efforts of the short size to
zero: λl[0,0] = 0 and λa[1,0] = 0. I assume throughout that the parameter conditions are
such that the entry rate of high type investors is given by an interior solution with and
without CDS.

In the paper, I focus on the simpler environment with only the long side choosing
search efforts because endogenizing search efforts on both sides of the market complicates
derivations significantly. Given the intractability, in Proposition K.1, I only character-
ize the parameter conditions under which introducing CDS still increases bond market
liquidity. Numerically, the results when both sides choose search intensities versus when
only one side chooses are analogous.

The HJB equations are derived analogously as in the environment with exogenous
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Figure 2: The Marginal Effect of CDS When Investors Already Short-Sell
The figures illustrate the results discussed in Section 4.2. The dashed lines plot the masses of actively
searching investors (plots (a)-(e)), the bond price, bond volume, and the repo contract lending fee for
an environment in which investors short-sell but do not trade CDS. The solid lines do the same for an
environment in which investors both short-sell and trade CDS. They are plotted as functions of CDS
market matching efficiency (λc). The relevant model is in online Appendix J. The parameter values
used to generate the plots are r = 0.04, α = 0.05, σe = 540, ρ = 1, δ = 1, η = 0.0009, J = 670,
Fh = 2.5, Fl = 0.18, γd = 0.35, γu = 0.44, λb = 120, λr = 17, Oh = 0.4, and Ol = 0.925. I focus on
parameter conditions such that short-selling exists in equilibrium both before and after CDS introduction.
For example, as λc → 145, the gains from repo contract goes to zero, so for λc > 145, investors stop
short-selling and start using CDS only.
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search intensities. As a result, the value functions are characterized by:

rVτ =− c(λb,τ , λc,τ ) + ((δ − ηJ)− xτ ) θb − y|θb|+ (pc − (ηJ + xτ )) θc − y|θc| (K1)

+

K(τ)∑
k=1

γ(k, τ) max
τ ′∈T (τ,k)

1

rα

(
1− e−rα(Vτ ′−Vτ+P (τ,τ ′))

)
,

where c(λb,τ , λc,τ ) is the agent’s total search cost. Simplifying (K1) further, for the non-
searcher agent types, the value functions are identical to (B3), (B5), and (B6). The value
functions of the searcher agents include the cost of their search efforts:

rVl[0,0] = γu(0− Vl[0,0])− c(0, λl[0,0]) +
Mc

µl[0,0]

1

2
ωc (K2)

rVh[0,0] = γd(0− Vh[0,0])− c(λb,h[0,0], λc,h[0,0]) +
Mb

µh[0,0]

1

2
ωb +

Mc

µh[0,0]

1

2
ωc. (K3)

rVa[1,0] = (δ − ηJ)− y − c(λa[1,0], 0) +
Mb

µa[1,0]

1

2
ωb (K4)

The volume of matches in the bond and the CDS market are

Mb = (λb,h[0,0] + λa[1,0])µa[1,0]µh[0,0]

Mc = (λc,h[0,0] + λl[0,0])µl[0,0]µh[0,0]

The first order conditions with respect to the search efforts are:

2c0λb,h[0,0] = µa[1,0]

(
−pb + Vh[1,0] − Vh[0,0]

)
(K5)

2c0λc,h[0,0] = µl[0,0]

(
Vh[0,1] − Vh[0,0]

)
(K6)

2c0λl[0,0] = µh[0,0]

(
Vl[0,-1] − Vl[0,0]

)
(K7)

2c0λa[1,0] = µh[0,0]

(
pb − Va[1,0]

)
. (K8)

The equilibrium equations are analogous to the baseline environment plus (K5)-(K8) that
pin down the optimal search efforts.

Proof of Lemma 1. Combining (B3) and (K3), the reservation value of the buyer is

r
(
Vh[1,0] − Vh[0,0]

)
= (δ − ηJ + x− y)− γdωb + c(λb,h[0,0], λc,h[0,0])− qbs

1

2
ωb − qcb

1

2
ωc.

where qbs = Mb

µh[0,0]
and qcb = Mc

µh[0,0]
. Using (K3), we can write it as

r
(
Vh[1,0] − Vh[0,0]

)
= (δ − ηJ + x− y)− (r + γd)Vh[0,0] − γdωb.

Next, consider the seller’s reservation value. Combining (B3), (B4), and (K3), we get

(r + γd)ωb = x+ c(λb,h[0,0], λc,h[0,0]) + c(λa[1,0], 0)− qbs
1

2
ωb − qbb

1

2
ωb − qcb

1

2
ωc. (K9)
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where qbb = Mb

µa[1,0]
. Using (K3), this becomes

(r + γd)ωb = x− (r + γd)Vh[0,0] + c(λa[1,0], 0)− qbb
1

2
ωb. (K10)

From (K10),

qbb
1

2
ωb − c(λa[1,0], 0) = x− (r + γd)ωb − (r + γd)Vh[0,0].

Plug it into the reservation value of the seller and get:

rVa[1,0] = δ − ηJ + x− y − (r + γd)Vh[0,0] − (r + γd)ωb.

Combining the reservation values of the bond buyer and the seller and using Vh[0,0] =

Oh,

rpb = δ − ηJ + x− y − (r + γd)Oh −
1

2
(r + 2γd)ωb. (K11)

From (K10) and the fact c(λa[1,0], 0) = 0 when λa[1,0] = 0,

ωb =
x− (r + γd)Oh(
r + γd + qbb

1
2

) . (K12)

Plugging it into (K11), the bond price and the illiquidity discount have the same charac-
terization as in the environment with exogenous search efforts.

The results so far apply to both the environment in which only the long side chooses
their search effort (i.e. λb,h[0,0] and λc,h[0,0] are endogenous, and λa[1,0] = 0 and λl[0,0] = 0)
and the environment in which both sides of the market choose their search effort (i.e.
λb,h[0,0], λc,h[0,0], λa[1,0], and λl[0,0] are endogenous). In Proposition 11, only the long side
chooses its search efforts. Then, Proposition K.1 allows both sides to choose their search
effort and characterizes the parameter conditions under which liquidity spillover effect
arises.

Proof of Proposition 11. Consider the set of three equations and three unknowns
{µa[1,0], µh[0,0], ωb}:

1

4c0

µh[0,0]µ
2
a[1,0]ωb = γd(S − µa[1,0]) (K13)

(r + γd)ωb = x−
µa[1,0]

(
µa[1,0] + 2µh[0,0]

)
ω2
b

16c0

− A (K14)

(r + γd)Oh =

(
µa[1,0]ωb

)
2

16c0

+ A, (K15)

where

A =
Mc

µh[0,0]

1

2
ωc − c0(λc,h[0,0])

2.
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Eq. (K13) comes from combining the inflow-outflow equations with (K5), (K14) comes
from combining (K9) with (K5), and (K15) combines (K3) with (K5)-(K6). With and
without CDS, {µa[1,0], µh[0,0], ωb} is the solution to (K13)–(K15) with A > 0 and A = 0,
respectively.

Applying the Implicit Function Theorem,

∂ωb
∂A

= −
4c
(
4c0γd + µa[1,0]µh[0,0]ωb

)
µ2
a[1,0]ωb

(
2c0 (2r + 3γd) + µa[1,0]µh[0,0]ωb

)
∂µa[1,0]

∂A
= −

4c
(
8c0(r + γd) + µa[1,0]µh[0,0]ωb

)
µa[1,0]ω

2
b

(
2c0 (2r + 3γd) + µa[1,0]µh[0,0]ωb

)
Thus, ωb decreases in the presence of the CDS market. This implies that the bond
illiquidity discount decreases and the bond price increases. The bond volume is given by:
Mb = γd(S−µa[1,0]). Since the mass of bond sellers decreases, the bond volume increases.

Since both ωb and µa[1,0] decrease with the introduction of CDS, a direct corollary is
that, for a long investor, the marginal benefit of searching in the bond market decreases.
A long investor, as a result, lowers its search effort in the bond market.

Proposition K.1. Consider the environment where both sides of the market choose their
search efforts (i.e. λb,h[0,0], λc,h[0,0], λa[1,0], and λl[0,0] are endogenous). Suppose (K19)
holds. Then, db < d̂b, and Mb > M̂b.

Proof. Now the equations equivalent to (K13)–(K15) are

1

4c0

(µa[1,0] + µh[0,0])µa[1,0]µh[0,0]ωb = γd(S − µa[1,0]) (K16)

(r + γd)ωb = x−

((
µa[1,0] + µh[0,0]

)2
+ 2µh[0,0]µa[1,0]

)
ω2
b

16c0

− A (K17)

(r + γd)Oh =
µa[1,0]

(
µa[1,0] + 2µh[0,0]

)
ωb

2

16c0

+ A, (K18)

where
A =

Mc

µh[0,0]

1

2
ωc − c0(λc,h[0,0])

2.

Eq. (K16) comes from combining the inflow-outflow equations with (K5), (K17) comes
from combining (K9) with (K5), and (K18) combines (K3) with (K5)-(K6).

Applying the Implicit Function Theorem:

∂µa[1,0]

∂A
= −

4c0

(
8c0

(
µa[1,0] + 2µh[0,0]

)
(r + γd) + µh[0,0]

(
µ2
a[1,0] + 3µa[1,0]µh[0,0] + µ2

h[0,0]

)
ωb

)
B

∂ωb
∂A

= −
4c0

(
4c0

(
µa[1,0] + µh[0,0]

)
γd + µh[0,0]

(
µ2
a[1,0] + µa[1,0]µh[0,0] + µ2

h[0,0]

)
ωb

)
B

,
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where

B ≡ −16c2
0(r + γd)γdωb + 2c0

(
µ2
a[1,0] + µa[1,0]µh[0,0] + µ2

h[0,0]

)
(2r + 3γd)ω

2
b

+ µh[0,0]

(
µa[1,0] + µh[0,0]

) (
µ2
a[1,0] + µa[1,0]µh[0,0] + µ2

h[0,0]

)
ω3
b

Thus, ∂ωb
∂A

< 0 and ∂µa[1,0]

∂A
< 0 if

B > 0. (K19)

Using arguments analogous to the previous proposition, ∂ωb
∂A

< 0 and ∂µa[1,0]

∂A
< 0 imply

that bond market liquidity and the bond price are higher in the presence of the CDS
market.

L Covered CDS

Covered CDS positions are positions where a bond owner purchases CDS: [θb, θc] = [1, -1].
Lemma 6 shows that such positions do not arise in equilibrium.

Lemma 6. In the equilibrium of Proposition 2, the mass of agents with covered CDS
positions, [θb, θc] = [1, -1], is zero.

Proof of Lemma 6. This is a corollary from Proposition 2 proof (in particular, the last
step).

The intuition is as follows. Between the high- and average-valuation bond owners,
the average type bondholders are the only potential CDS buyers (hence, covered CDS
buyers). If an average-type investor buys CDS from a high-valuation investor, the gains
from trade is proportional to x− 2y − (r+ γd)Oh. But by Assumption 1 this is negative.
That is, when high and average types enter a CDS contract, the holding cost both sides
incur together with the entry cost outweigh the total hedging benefit. Thus, bondholders
do not buy CDS, and only low-valuation investors buy CDS.

Changing the environment so that covered CDS positions do arise would only change
the benchmark environment. Whether bondholders buy CDS or not in the benchmark,
the marginal effect of naked CDS positions relative to the benchmark is likely to be the
same.
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