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The benefits of a family ofmacroscale reconfigurable unmanned aerial vehicles tomeet distinct flight requirements

are readily evident. The reconfiguration capability of an unmanned-aerial-vehicle family for different aerial tasks

offers a clear cost advantage to end users over acquiring separate unmanned aerial vehicles dedicated to specific types

of missions. At the same time, it allows the manufacturer the opportunity to capture distinct market segments, while

saving on overhead costs, transportation costs, and after-market services. Such macroscale reconfigurability can be

introduced through effective application of modular product-platform-planning concepts. This paper advances and

implements the Comprehensive Product Platform Planning framework to design a family of three reconfigurable

twin-boom unmanned aerial vehicles with different mission requirements. The original Comprehensive Product

PlatformPlanningmethodwas suitable for scale-based product-family design. In this paper, importantmodifications

to the commonality matrix and the commonality constraint formulation in Comprehensive Product Platform

Planning are performed. These advancements enable the Comprehensive Product Platform Planning to design an

optimum set of distinct unmanned-aerial-vehicle modules, different groups of which could be assembled to configure

twin-boom unmanned aerial vehicles that provide three different combinations of payload capacity and endurance.

The six keymodules that participate in the platformplanning are 1) the fuselage/pod, 2) the wing, 3) the booms, 4) the

vertical tails, 5) the horizontal tail, and 6) the fuel tank. The performance of each unmannedaerial vehicle is defined in

termsof its rangeperunit fuel consumption (miles/gallon). It is found that,when the averageunmanned-aerial-vehicle

performance (miles/gallon) and the commonality among the unmanned-aerial-vehicle variants are simultaneously

maximized, a one-third reduction in the number of unique modules is accomplished at a 66% compromise in

performance. On the other hand, when simultaneously maximizing performance and minimizing costs, the best

tradeoff unmanned-aerial-vehicle-family designs provide a remarkable 26% reduction in cost for a 6% compromise

in performance. In this case, the cost savings are attributed to bothmaterial reduction and increasedmodule sharing

across the three unmanned-aerial-vehicle variants. It is also observed that, among the best tradeoff unmanned-aerial-

vehicle families, the individual unmanned aerial vehicles are most likely to share the horizontal tail and tail booms,

and are least likely to share the wing.

Nomenclature

CF = fuselage module cost
CFT = fuel-tank module cost
CHT = wing horizontal-tail cost
Cr = unmanned-aerial-vehicle reference cost
CTB = tail-boom module cost
CUAV = unmanned-aerial-vehicle configuration cost
CVT = vertical-tail module cost
CW = wing module cost
dF = fuselage maximum diameter

E = endurance
F = fuel-tank size
fcoml = interproduct-commonality objective
fcost = unmanned-aerial-vehicle-family-cost objective
fperf = unmanned-aerial-vehicle-family-performance objective
gj = inequality constraints
hcc = commonality constraint
hj = equality constraints
LB = tail-boom length
L∕D = lift-to-drag ratio
LF = fuselage length

Mfuel = fuel mass fraction
N = number of product variants
nk = number of parts in the kth product
R = range
Rλ = rank of commonality matrix λ
SHT = horizontal-tail planform area

SVT = vertical-tail planform area
SW = wing planform area
U∞ = cruise speed
u = number of unique parts in product family
Vfuel = volume of fuel consumed
ηp = propeller efficiency
λ = commonality matrix
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I. Introduction

S OPHISTICATED and expensive systems, such as unmanned
aerial vehicles (UAVs), which are also required to perform

different types of operations (missions), can uniquely benefit from
the flexibility to be readily reconfigurable. Modular product-
platform-planning concepts provide a unique opportunity to design
such reconfigurable systems — as a more streamlined and less
expensive alternative to having multiple dedicated systems for
diverse missions or operations. Such a design strategy (that allows
functional flexibility) thereby provides additional cost savings to the
manufacturer and the user, on top of the typical overhead savings
generally attributed to product-family design (PFD). In this context,
macroscale reconfiguration refers to the reassembly of a set of
modules before a mission. This reassembly creates a system that is
optimally suited to the mission at hand, in which the mapping
between mission categories and optimal configurations is defined by
the PFD process.
In this paper, a modular product-platform-planning approach is

developed and applied to design a family of three “twin-boom”UAVs
that offer three distinct combinations of payload capacity and endur-
ance (targeted toward civilian applications). Examples of industries
in which such a UAV family could provide unique benefits are the
offshore petroleum industry and the offshore wind-energy industry,
specifically deepwater platforms. The modular UAV platform-
planning process is performed by advancing the Comprehensive
Product Platform Planning (CP3) method, from designing typical
scale-based families to designing both scale-based and modular
families. The overall goal of this process is to design a set of
modules, some of which can be shared by three different UAV
configurations — thereby requiring a significantly smaller set of
modules to execute three different missions than that required by
three dedicated UAVs. The optimized platform designs are derived
from a baseline "twin-boom" UAV design. In doing so, the following
important question is also explored: What are the cost and mission
benefits (or tradeoffs) of a macroscale reconfigurable UAV family
compared to a set of dedicated UAVs suited to different applications?
In the next paragraphs, a survey of product-family concepts in

aircraft design (from literature and industry) is provided, followed by
a brief introduction to modular PFD.
Product-family concepts are utilized by aircraft manufacturers in

order to design a series of multimission-capable aircraft with superior
performance at a lower cost. Unlike the conventional application of
design-optimization techniques to optimize a single aircraft for a
specific mission, in this case, a family of aircraft designs is optimized
with a certain degree of commonality among them, while
interchanging key components to satisfy a wide range of mission
requirements. Historically, this has been accomplished though
derivatives or variants of the baseline aircraft. For example, the original
Boeing 737-100, which first flew in 1967, has evolved (through 11
major design variants in 39 years) to increase passenger capacity, fuel
efficiency, and flight range. However, despite the steady increase in
performance, the Boeing 737 series continues to operate primarily
domestic routes. The goal of modern product-family methods is to
design aircraft with a significant variation in performance to serve
multiple market segments (i.e., domestic and transatlantic routes).
Such amotivation is discussed in the study by [1] to design a family of
two blended-wing–body aircraft with a capacity of 272 and 475
passengers with built-in commonality. Other noteworthy inves-
tigations include the use of decomposition-based methods [2] and
genetic-algorithm techniques [3] for aircraft family design.
In recent years, the academic community has seen an explosive

growth in research toward UAVs fueled by sharp sales projections
from a nascent civilian UAV market. The industry now seeks to
develop unmanned aircraft for a wide range of applications and
mission profiles. This presents a unique opportunity to use product-
family methods to design amodular UAV family that simultaneously
meets the needs of diverse customer requirements, while reducing
design and fabrication costs to the manufacturer. A methodology for
the design of a two-UAV family operating under aerial firefighting in
the vicinity of the Greek islands and maritime surveillance off the

coast of Norway is described by Cabral and Paglione [4]. However,
although the applications are different, both missions require long
endurance monitoring with similar camera payloads. Limited
research has been done in leveraging modular or module-based
product-family concepts to allow reconfiguration of macroscale
aircraft features. One unique example is the work by Pate et al. [5], in
which a family of reconfigurable aircraft was designed through
interchangeable wings and engines. In the current paper, a family of
three UAVs is considered, which is designed to fulfill missions with
distinct endurance and payload/weight requirements. Moreover, it
becomesmore profitable to both themanufacturer and the consumers
(or end users) when the UAV family is designed for industries in
which the same end user can take advantage of the modular design
and use all three UAV configurations.
PFD methods can be broadly classified into scale-based methods

and module-based methods. In scale-based or scaling product fami-
lies, all the product variants are composed of the same set ofmodules/
components, and product variation is attributed to the scaling of the
nonplatform design variables that define the product modules (or the
overall product configuration). In a module-based product family,
distinct modules are added or substituted (to a common platform)
to develop different products [6,7]. A popular example of a modular
product family is the series of Sony Walkman [8,9], whereas a
standard example of a scalable product family isBoeing’s 777 aircraft
series [10]. Owing to the distinct mathematical characteristics of a
modular product family and a scaling product family, a majority of
the scale-based PFD methods do not readily apply to designing
modular families.
One of the popular approaches tomodule-based PFD conceptually

divides the process into the following three levels: 1) architectural
level: to establish a system structure and its variations; 2) configu-
ration level: to establish standard configuration(s), and its variations
of products and modules; and 3) instantiation level: to develop a
practical product family through variable quantification and combi-
natorial selection of the modules. In this paper, the instantiation level
of modular PFD has been particularly addressed. The instantiation
task level is composed of the following two phases: 1) variable
quantification: to develop modules across product prototypes by
quantifying design variables, and 2) combinatorial selection: to
develop product prototypes by selecting desirable combinations
from the feasible ones. Based on these phases, approaches to the
instantiation task level can be divided into the following three classes:
1) optimization of module attributes under a fixed module combi-
nation, 2) optimization of module combinations using predefined
module candidates, and 3) simultaneous optimization of module
attributes and module combinations. The majority of the existing
modular PFD approaches require specifying the platform (fixed
module combination, i.e., class 1) before optimization, to reduce the
design space and render the problem computationally more tractable.
Most other modular PFD approaches are geared toward class 2
optimization problems (e.g., [11]). The assumptions involved in
these two classes may lead to suboptimal module-based product
families. Very few optimization approaches exist to solve class
3-type optimization problems, such as developed by Fujita and
Yoshida [12,13].
Several other well-known methods exist in modular PFD, such as

those presented by Stone et al. [14], Dahmus et al. [15], Guo and
Gershenson [16], Jose and Tollenaere [17], Kalligeros et al. [18],
Sharon et al. [19], Yu et al. [20], and Lewis [21]. In this paper,
fundamental advancements are made to a powerful scaling PFD
method, called the CP3 framework [22,23], to enable it to design
modular product families. A brief description of the original CP3

method and of the major modifications made to this method (in this
paper) is provided later.
Before delving further into the PFD method that is considered,

modified, and implemented in this paper, it is important to precisely
define some of the important PFD-related terms that are frequently
used in this paper. A review of the vast amount of product-family
literature from the past three decades suggests that most of these
terms have been defined diversely [24], and hence, the definitions
provided as follows (some of which quoted from existing literature)
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are such chosen that they most closely reflect the context in which
these terms have been used in this paper:
1) Product platform is “a set of common components, modules, or

parts from which a stream of derivative products can be efficiently
developed and launched” [25].
2) Product architecture is “a) the arrangement of functional

elements, b) the mapping from functional elements to physical
components, and c) the specification of the interfaces among
interacting physical components” [26].
3) Product variants are members of a product family that both

share certain common features among themselves, and comprise
certain unique features that allow them to address different target
markets [e.g., the CL-600, CL-601, and CL-604 in the Bombardier
600 series (family of business jets)].
4) Module is a component or a part of a product, which can be

either unique in each product variant or shared across multiple
product variants (e.g., the GE CF34 turbofan that is shared across
different members of the Bombardier CRJ series).
5)Module combination refers to a unique collection or a unique set

of modules that together comprise a functional product.
The CP3 framework, introduced by Chowdhury et al. [22] and

Messac et al. [27], seeks to coherently address a wide range of PFD
scenarios. The CP3 framework presents a generalized mathematical
model of the platform-planning process based on the formulation of a
commonality matrix. This model yields a mixed-integer nonlinear
programming (MINLP) problem with a large number of binary
variables. Originally, Chowdhury et al. [22] developed and imple-
mented a platform-segregating-mapping-function method to convert
the MINLP problem into a less expensive continuous optimization
problem, and the approximated problem was solved using conven-
tional particle swarm optimization (PSO). A reduction of the high-
dimensional MINLP problem into a more tractable MINLP problem
was later performed [23], and the reduced problemwas solved using a
mixed-discrete PSO algorithm [28].
The commonality matrix in the original CP3 method, as well as

other similar commonality formulations [29], does not readily repre-
sent the platform plan for modular products, in which each
module comprises multiple design variables. This paper modifies the
commonality-matrix definition for application to modular families.
Subsequently, the commonality constraint, which ensures feasible
product-platformplans, is alsomodified to enable effective sharing of
multivariate modules among product variants. More importantly, the
scaling attributes of the original CP3 model are also favorably
retained, which is unique in the PFD literature. The important
features of this new modular CP3 model include:
1) This modular platform-planning model facilitates sharing of

entire multivariate modules among product variants.
2) Modules are allowed to be included or excluded, based on

allowed physical product configurations.
3) If necessary (from a practical manufacturing standpoint),

individual design variables within particular modules are allowed to
be independently shared or scaled (without necessitating the entire
module to be shared or scaled correspondingly).
4) This model enables the simultaneous identification of plat-

forming modules and the determination of the optimal module
attributes (design-variable quantification) during the product-family-
optimization process.
In this paper, the allowed physical combinations of modules are,

however, assumed to be known, based on a preconceived product
architecture. In this context, the product architecture defines com-
bination(s) of modules that are physically required for the basic
structural and functional feasibility of the product. Developing
strategies to investigate the product architecture, and explore product-
structure options in that context, are important components of product
family and product design research [30–32]. It can be said that
allowing the product structure itself to be decidedwithin the process of
modular product-platform planning can ideally provide an increased
level of flexibility in PFD. However, if the steps of 1) deciding/varying
the basic product structure, 2) deciding the module-sharing scheme
among product variants, and 3) deciding the individual module
configurations are combined, it increases the complexity of the

problem formulation andoptimization process, andmakes the product-
platform-planning model dependent on the specific application.
Hence, product-platform-planningmethods that implement these three
steps simultaneously are rare. Deciding the product structure, which
might lead to a combination of physically different numbers/types of
modules, is allowed in the platform-planning model developed in this
paper; however, in situ optimization of the product structure is not
within the scope of the optimizationmethod implemented and the case
study performed in this paper. This paper particularly focuses on
deciding the module-sharing scheme and the design of the individual
modules (steps 2 and 3, as stated previously).
The modular CP3 method developed in this paper is applied to

design a family of three fixed-wing (twin-boom type) UAVs that are
required to satisfy different endurance and payload specifications.
Optimization of the platform-planning process in the new modular
CP3 method is performed using the powerful mixed-discrete PSO
algorithm. The following section describes the important advance-
ments made to the CP3 method to introduce modular PFD capabi-
lities, including the generalized problem formulation for optimizing a
modular product family. Section III presents the application of the
newmodularCP3 method to design the family of UAVs, starting with
brief descriptions of the UAV performance and cost models, and
ending with the discussion of the results obtained from the optimal
PFD of UAVs.

II. Advancing CP3 for Modular Products

A. Modification of the CP3 Model

The originalCP3 framework [22] introduced a compactmathemat-
ical model of the PFDproblem. The key features of the original scale-
based CP3 model are the following:
1) This model presents a generalized and compact mathematical

representation of the platform-planning process, which is indepen-
dent of any optimization strategy.
2) This model avoids the “all or none” restriction [33]; thereby,

allowing any subset of all product variants to share parts (plat-
form parts).
3) This model facilitates simultaneous a) selection of platform/

scaling design variables, and b) quantification of the optimal design-
variable values.
In the original CP3 model, commonality was defined strictly in

terms of the product design variables (as in most other scale-based
PFD methods), which is not directly applicable in the context of
designing reconfigurable products. To allow product variants to be
readily reconfigured from one another, it is required to design an
encompassing set of modules, the subsets of which can be combined
to create each product variant. In this case, one product can be
reconfigured into another by swapping out some (not all) of the parts/
modules, in which the remaining modules are ones that are shared
across these two products. Therefore, a product-platform-planning
process in this context should seek to increase the proportion of parts/
modules that do not need to be swapped out during reconfiguration
(common modules); increasing commonality, however, must be
accompaniedwith preserving ormaximizing the performance of each
product, and meeting individual product specifications.
The configuration of a part or module of a product can be (and

is more often than not) defined in terms of multiple design variables
for example, the fuselage or pod of a UAV is defined in terms of
diameter/cross section and length. Now, in seeking to increase
commonality, scale-based PFD methods could lead to two UAV
variants having the same fuselage length, but different fuselage
diameters; from a reconfiguration perspective, such a design platform
is not beneficial, because the fuselage is not shared in totality between
the two UAVs, and will still need to be swapped out when converting
oneUAV to another. To summarize, scale-based PFDmethods are not
cognizant of the connection or correlation among design variables in
how they physically define module configurations. In contrast,
module-based PFDmethods directly encourage commonality across
sets of designvariables that comprise differentmodules.Hence, in the
process of increasing commonality, a modular PFD approach is
expected to drive the values of both the fuselage variables (length and
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diameter) of eachUAV toward commonvalues— potentially leading
to both UAVs sharing the same fuselage that does not need to be
swapped out during reconfiguration.
In this paper, flexibility is provided in defining commonality

among products, in terms of both individual design variables and
modules (in which each module can be a collection of variables). “A
product platform is said to be created when more than one product
variant in a family shares a particular part.” In this case, a part can be
both a module and an individual design variable. Based on this
concept, the commonality among modular products is concisely
represented using the generalizedmatrix, called commonalitymatrix,
represented by λ. The commonality matrix provides a compact
representation of the product-platform plan (i.e., the module- or
attribute-sharing scheme), and allows the construction of a tractable
constraint that readily guides the creation of feasible platform plans
during the optimization process. In addition, the CP3 commonality
matrix provides the flexibility to include both scaling and modular
features in the product platform. It is important to note that, although
the original CP3 method [22] made novel advancements to the
definition and usage of the commonality matrix, the commonality-
matrix concept has also been proposed and used by others [29] in the
PFD literature.
For ease of illustration, the commonality matrix is represented

in terms of module sharing/variation. The commonality matrix for
a family of N products, comprising a maximum of m modules, is
given by

λ�

2
66666666666666666666666666666664

λ111 · · · λ1N1 0 0 0 0 0 0 0 0

..

. ..
. ..

.
0 0 0 0 0 0 0 0

λN11 · · · λNN1 0 0 0 0 0 0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
.

λ11i · · · λ1Ni
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 ..
.

λN1i · · · λNNi
..
.

0 0 0

0 0 0 ..
. ..

. ..
. ..

. ..
.

0 0 0

0 0 0 0 0 0 0 0 λ11m · · · λ1Nm

0 0 0 0 0 0 0 0 ..
. ..

. ..
.

0 0 0 0 0 0 0 0 λN1m · · · λNNm

3
77777777777777777777777777777775

λkli �
(
1; if λkki � λlli � 1 and Xki � Xli
0; othrwise

)
∀ k ≠ l

λkki �
�
1; if the ithmodule is included in product k

0; if the ithmodule is not included in product k

i� 1; 2; : : : ;m; k; l� 1;2; : : : ; N (1)

In this matrix definition, the generic vector Xki represents the ith
module in product k (i.e., the vector of variables comprising the ith
module in product k). The commonality matrix is a symmetric block
diagonalmatrix, inwhich the ith block corresponds to the ithmodule.
The binary variables (λkki ) are called module-inclusion variables. In
the case of the originalCP3 model, all the diagonal elements (λkki ) are
fixed at one — because all product variants were composed of the
same set of physical design variables. However, in this new com-
monality matrix, the diagonal elements (λkki ) can be allowed to vary
during optimization, depending on the product architecture.
In the original CP3 commonality matrix, each off-diagonal ele-

ment is a binary variable (scalar values) that denoteswhether a design
variable is shared or varied across the product variants. In this new
commonality matrix, each off-diagonal element can be both a scalar

binary variable and a vector of binary variables. In this case, the off-
diagonal elements of the commonality matrix, (λklj ), determine
whether the ithmodule is shared by product k and product l, in which
λkli � 1 if shared, and λkl0 � 0 if not shared. If certain physical design
variables comprising the modules need to be shared or scaled
independently (for an application), the corresponding module-based
commonality blocks can be readily expanded into subblocks to
account for such a scenario. In that case, the generic λkli is a vector, in

which λklij determines whether the jth variable in the ith module is

shared by product k and product l. Thus, by treating λkli or λklij as
variables during the product-family optimization, the new CP3

method uniquely allows both modular and scaling attributes to be
incorporated into the product platforms being designed. In the
context of optimization, these binary variables (or variable vectors)
are termed as commonality variables, to distinguish them from the
physical design variables that define the product configurations.
Using the modified commonality-matrix definition, the new

commonality constraint for modular products is formulated. The
commonality constraint ensures compatibility between the product-
platform plan and the physical design of each product. In the original
(scale-based)CP3 method, the commonality constraint would tend to
penalize a candidate product family onlywhen the designvariables are
not shared across product variants. Here, the commonality constraint is
required to be such formulated that it tends to penalize a candidate
family of reconfigurable products, anytime the entire modules are not
shared across product variants (irrespective of whether individual
variables are shared or not). The new commonality constraint is thus
given by

Xm
i�1

X
∀ k≠l

μkli � 0

in which

μkli �
�
λkli jXki − Xlij2; if λkki � λlli � 1

0; otherwise
k; l � 1; 2; : : : ; N

(2)

In this equation, jXki − Xlij2 � �Xki − Xli�T�Xki − Xli�. The param-
eterm represents the maximum number of physical modules that can
forma single product variant. It is evident fromEq. (2) that each term in
the commonality constraint,μkli , becomes zero only if 1) the ithmodule
is not included in one or both products— in which case sharing is not
possible; 2) the ith module is shared by product k and product l; or
3) the commonality variable is equal to zero (i.e., λkli � 0).
The first case shows that, when the module itself is not present in

one or both of the products being compared, the commonality matrix
does not penalize the platformplan. In the third case, the ithmodule is
generally not shared by product k and product l.
The process of testing whether a product family, comprising N

products and a maximum of m modules, satisfies this commonality
constraint is explained by the flowchart in Fig. 1. In this figure, the
black arrows represent the process direction and the gray arrows
represent the flow of information (on an as-needed basis). In Fig. 1,
the parameterM is equal toN�N − 1�∕2; the tolerance parameter ϵ is
used to relax the equality criterion into an inequality criterion — to
allow manufacturing tolerances and/or to ease the optimization
process. In Fig. 1, the generic parameter Xk represents the overall
design vector of product k.
The provision of the module-inclusion variables (λkki ) and the

formulation of the commonality constraint [Eq. (2)] uniquely allow
for the consideration of different product structures within the
product-platform-planning process. In that case, feasible module
combinations (product structure) will be guided by the product archi-
tecture that defines the module interactions, that is, the structural/
functional interdependencies among modules for example, 1) if
module A is included, module B cannot be included; or 2) module A
can be included only when modules B and C are included. Such
dependencies can be implemented as constraints in the optimal
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search process. If the products’ structure is so allowed to vary during
CP3, candidate PFDs might include products that comprise differing
numbers of modules and/or physically different modules (e.g., UAVs
with different on-board sensor systems)— the design vectors repre-
senting candidate designs cannot be readily compared in that case. It
is therefore important to note that adopting such a product-platform-
planning strategy (although ideal in theory) would severely increase
the challenges encountered in the optimization process, and would
very likely require constructing and solving a complex decomposed
problem. Therefore, for the optimization-problem formulation pre-
sented (Sec. II.C), the optimization method adopted, and the case
study performed (Sec. III) in this paper, the structure of the product
(fixed-wing UAVs) is assumed to be known/fixed.

B. Commonality Objectives

In the PFD literature, the minimization of the overhead costs
(through product-platform planning) is often substituted by themaxi-
mization of a commonality measure/metric that represents the net
degree of commonality. This substitution is especially helpful in the
absence of reliable application-specific cost models or cost data.
Among the several proposed metrics that provide a measure of
tooling cost savings attributed to component sharing, the com-
monality index (CI) developed by Martin and Ishii [34] has been
reported to be an effective metric [29]. This CI is essentially based on
the ratio of the number of unique parts to the total number of parts in
the product family. For a family of N product variants, the CI can be
mathematically defined as

CI � 1 −
u −max�nk�P
N
k�1 nk −max�nk�

(3)

in which u represents the actual number of unique parts in the whole
product family, and nk represents the number of parts in the kth
product. The −max�nk� term is included in the definition to ensure
that theCIvaries between 0 and 1. The total number of unique parts in
a product family is equal to the rank of the commonalitymatrix inCP3

[35]. Hence, a more generalized definition of the CI is given by

CI � 1 −
Rλ −mP
N
k�1 nk −m

(4)

in whichRλ is the rank of the commonality matrix λ; nk is the number
of modules in the kth product; and nk � m, ∀ k, when all the product

variants are composed of the same set of physical modules. During
optimal PFD, the commonality objective is defined to be equal to the
CI (i.e., fcom1 � CI).

C. Optimization-Problem Formulation

Every candidate product-platform plan (in CP3) involves a large
number of binary integer variables— the commonality variables and
the module-inclusion variables. Each block of the commonality
matrix λi, corresponding to a module, is composed of 1) at least
N�N − 1�∕2 commonality variables: λkli (∀ k ≠ l), and 2) at most, N
module-inclusion variables: λkki .
In practice, the number of module-inclusion variables will be less

thanN, due to likely prior knowledge that certain modules cannot be
included/excluded from certain product variants (depending on the
product architecture).
Owing to the transitivity constraints [29,35], the commonality

variables (λkli ) are, however, not necessarily independent of each
other. The set of feasible commonality matrices can be readily
identified by applying the transitivity constraints to all the possible
commonality-matrix variations, as reported by Chowdhury et al.
[23]. In the case of a module-based family, the possibility of module
inclusion/exclusion/substitution poses additional constraints on the
commonality variables, which can be intuitively defined as

λkli ≤ λkki λ
ll
i ; ∀ i � 1; 2; : : : ; m; k; l � 1; 2; : : : ; N (5)

This constraint, to be called the module-inclusion constraint,
ensures that a module-sharing scheme (λkli � 1) is possible between
any two products, if and only if the concerned module is included in
both products (i.e., λkki � λlli � 1).
In a scale-based family, the diagonal elements of the commonality

matrix are all equal to 1. With this consideration, Chowdhury et al.
[35] aggregated the N�N − 1�∕2 binary commonality variables (in
each commonality-matrix block) into a single binary string of length,
L � N�N − 1�∕2; this string was subsequently converted into an
integer variable. Therefore, the original CP3 method yielded one
integer variable (defining the platform plan) for each part that partic-
ipated in the platform planning. For a modular family, some of the
diagonal elements of the commonality matrix (module-inclusion
variables) could be unknown. Secondly, in a scale-based family, each
product variant is assumed to be composed of the same set of design
variables or parts (i.e., Ni � N for any ith part). This condition does
not hold in the case of a generalized modular family, in which instead

Fig. 1 Process of applying the commonality constraint to yield feasible product-platform plans.
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Ni ≤ N. Subsequently, the ranges of the integer variables associated
with different modules could be significantly different, leading to
differing rates of evolution during the optimization search process.
Hence, a new aggregation of the binary variables is defined as follows:

zi � si1 × 2Li−1 � si2 × 2Li−2 � : : : � siLi × 20 (6)

in which

Li � Ni � Ni�Ni − 1�∕2; si ∈ f0; 1g; i � 1; 2; : : : ; Li

In the preceding equation, sij is the jth element of the binary string
that first includes the unknown module-inclusion variables (λkki ),
followed by the unknown commonality variables (λkli ) for the ith
module.
Therefore, for a product family comprising a maximum of m

modules, the commonality matrix is replaced by a tractable set of m
integer variables, to be known as integer commonality variables.
Each of these integer commonality variables (zi) is allowed to take
integer values in the range �0; Li�. The integer values (in this range)
that correspond to infeasible combinations of the binary variables can
be eliminated from the allowed set before optimization, thereby
easing the optimization process significantly. Infeasible combina-
tions of the binary variables (i.e., infeasible commonality matrices)
are attributed to violation of 1) the transitivity constraints, 2) the
module-inclusion constraints, or 3) any known intermodule depen-
dencies. The creation of the set of allowed integer values before
optimization relieves the application of these constraints during the
optimization process, and reduces the optimization complexity — a
unique attribute of the CP3 method. It is important to note that, when
intermodule relationships are considered, the allowed integer values
can become combinatorial in nature.
The generalized objectives of product-family optimization can be

stated as 1) maximization of the product performances, and 2) maxi-
mization of the net interproduct commonality (or cost minimization),
while ensuring that the individual products satisfy their specified
design requirements— essentially a constrained multiobjective opti-
mization problem. The performance objective depends on the class of
products and the user/designer standpoint, and is usually reflective of
the product quality. The second objective in this case is given by the
CI defined in Eq. (4). The specified design requirements can be
generally modeled as constraints in the optimization problem. The
generalized MINLP problem for a modular family of N products,
derived from the new CP3 model, can be expressed as

Max fp�X;Y�
Max fc�Z�

subject to

gj�X;Y� ≤ 0; j � 1; 2; : : : ; p

hj�X;Y� � 0; j � 1; 2; : : : ; q

hcc�X;Z� � 0 (7)

in which

X� �X1
1 : : : XN1 : : : X1

i : : : XNi : : : X1
m : : : XNm �T

Z� �z1 : : : zi : : : zm �
k; l� 1;2; : : : ;N; i� 1;2; : : : ;m

In Eq. (7), fp and fc are the objective functions that represent the
performance and the interproduct commonality [given by Eq. (4)]
of the product family, respectively; the generic terms gj and hj,
respectively, represent the inequality and the equality constraints
related to the physical design of the products; and the equality
constrainthcc represents the commonality constraint given byEq. (2).
In Eq. (7), the generic vector Xki represents the design vector for the

ith module in the kth product, which considers this module to
participate in platform planning and allows it to be defined in terms of
multiple design variables; and Y represents the vector of physical
design variables that do not participate in platform planning. The
vector Z in Eq. (7) comprises the m integer commonality variables
that define the platform plan.

III. Designing a Family of Multimission-Capable UAVs

A. Civilian UAV Applications

A NASA report summarized the key barriers that need to be
overcome for UAVs to become viable, cost-effective, and regulated
alternatives to current technologies [36] in civilian or nonmilitary
applications. Some of these barriers are 1) affordability (price and
customization), 2) capacity for payload flexibility, and 3) multi-
mission capability. The development of robust platforms for modular
and/or reconfigurable UAVs can offer a powerful solution to these
challenges.With this vision, we pursue the design of a family of three
modular UAVs with the following potential applications and mission
classes: 1) transportation of commercial goods (low endurance: 3–
5 h, high payload: 20 lb), 2) environmental survey (high endurance:
22–26 h, medium payload: 7 lb), and 3) search/surveillance (medium
endurance: 14–18 h, low payload: 3 lb).
An example of an industry inwhich suchmacroscale reconfigurable

UAVs are pragmatic is the petroleum industry, specifically the extrac-
tion of oil and natural gas from offshore platforms. In such platforms
located tens of miles from shore, the supply of goods during the plan-
ning and operational stages is a regular occurrence. Although normally
supplied by ships, UAVs may be able to rapidly and cost-effectively
transport small cargo during routine and emergency situations. Envi-
ronmental surveying is an important factor to consider before and after
securing oil platforms on-site. In this capacity, UAVs can aid in
studying the ecological effects (such as the population of fish andwater
chemistry) surrounding the platform utilizing video cameras and
hyperspectral image sensors. Finally, safety is of prime concern and a
topic that came to the national spotlight following the explosion of the
BPDeepwater Horizon platform off the coast of Louisiana on 21 April
2010. Subsequently, it became theworst oil spill inU.S. history. Tohelp
prevent such accidents from happening again, medium-endurance
UAVsare envisioned tobedeployed as preventative safetymeasures for
surveillance and remote detection of oil leaks in the platform infra-
structure. Alternatively, the same UAV can be used for postdisaster
relief efforts by searching for survivors and assessing the damage.

B. Twin-Boom UAV Design

The family of fixed-wing UAVs considered in this paper is based
on a popular design for UAVs referred to as a twin-boom configu-
ration. Its most distinctive feature is the installation of the engine in
the rear of the fuselage/pod, allowing sensitive sensors to bemounted
near the nose and away from engine obstruction. The baseline UAV
design used to develop the UAV family in this paper is derived from a
“twin-boom” UAV configuration. An illustration the conceptual
designs (with different payload and endurance capabilities) is shown
in Fig. 2.

Fig. 2 Scale-based family of twin-boom UAVs.
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For given payload and endurance specifications, greater flight
range and lower fuel consumption are generally the desirable perfor-
mance attributes (in UAV design). As such, the net range per unit fuel
consumption [in miles/gallon (MPG)] is considered as the primary
performance objective (to be maximized) in this paper. The design
formulation of the UAV performance relied on accurate approxi-
mations of the aircraft’s initial and final cruise weight based on the
size of the carbon-fiber airframe, four-stroke internal combustion
engine, fuel, landing gear and wheels, and typical control avionics.
The expression for endurance E governing the efficient flight of the
aircraft is commonly known as the Breguet endurance equation [37]
for reciprocating engines, which is defined as follows:

E �
�L∕D�ηp
U∞SFC

ln
�

1

1 −Mfuel

�
(8)

In this equation, (L∕D) is the combined lift-to-drag ratio of the
entire aircraft (wing, fuselage, and vertical- and horizontal-tail sur-
faces), ηp is the propeller efficiency, U∞ is the cruise speed of the
aircraft, SFC is the brake specific fuel consumption of the aircraft
engine, and Mfuel is the fuel mass fraction. Subsequently, the maxi-
mum range of the aircraft in miles (R) and the range per unit fuel
consumption in MPG are given by

R � E × U∞ MPG � R∕Vfuel (9)

in which Vfuel is the net volume of fuel consumed (expressed in
gallons). The performance of the UAV is estimated using a series of
analytical and empirical expressions [38,39]. The detailed formula-
tion of the UAV performance and constraints is, however, not within
the scope of this paper.
The performance objective fperf is given by the scaled average of

the range per unit fuel consumption of the three UAVs:

fperf �
1

3 ×MPGAS

X3
k�1

MPGk (10)

in whichMPGAS is the approximate range per unit fuel consumption
of the Aerosonde UAV, which is equal to 1350MPG [40], andMPGk
is the range per unit fuel consumption of the kth UAV. TheAerosonde
UAVis used as a benchmark in this case, because it is one of the most
well-known UAVs with a twin-boom design.
It is important to note that, here,we have assumed all threeUAVs to

be of equal importance. In other words, the performance of the three
UAVs is equally weighted, assuming they will be subject to com-
parable number of flying hours over their lifetime. Although practi-
cally feasible in the case of small low-altitude UAVs as considered in
this paper, this assumption may not necessarily hold for other classes
of UAVs or other non-UAV reconfigurable products. However, the
formulation of the performance objective is not an integral com-
ponent of the generalized product-platform-planning model; the
performance objective can thus be perceived as a black box in the
context of CP3.
A block diagram, illustrating the modules, the module attributes

(physical variables), the operational variables, the constants/ or spec-
ifications, and the performance outputs of the UAV performance
model, is shown in Fig. 3.
It can be seen from Fig. 3 that each UAV is composed of six

modules: 1) wing, 2) fuselage or pod, 3) vertical tails, 4) horizontal
tail, 5) booms, and 6) fuel tank. The modules comprise a total of 14
physical design variables (or module attributes), as seen from Fig. 3.
In addition, the aircraft cruise velocity is treated as an operational
variable, which does not participate in platform planning. It is
important to note that, although payload is a performance attribute in
practice, it is treated as an input to theUAVperformancemodel— the
payload specification is used to calculate the initial and final weights
of the UAV. The bounds of the 16 design variables are given in
Table 1. In this table, LE sweep angle denotes the leading-edge
sweep angle.
The variable bounds are determined based on the baseline UAV

designs (Fig. 2). These bounds are expected to allow sufficient
flexibility without introducing structural or fabrication issues, which
are otherwise not explicitly addressed in the current aerodynamic
performance model. The allowed airfoil types are integer coded, and
characterized in terms of their maximum thickness and its location,

Fig. 3 Block diagram of the UAV module attributes, design constants, and performance criteria.
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lift-curve slope, zero-lift angle of attack, and maximum lift
coefficient. Thewing is allowed to use seven different nonsymmetric
airfoils, namely, 1) Eppler 393, 2) NACA 4412, 3) NACA 4415,
4) NACA 2212, 5) Eppler 176, 6) Eppler 393modified, and 7) Eppler
422. The tail sections are allowed to use two different symmetric
NACA airfoils, typical of small- to medium-sized unmanned aircraft,
namely 1) NACA 0008 and 2) NACA 0010.

C. UAV-Family Cost Model

The purpose of cost modeling is to estimate the cost of a UAV
development program or the cost of an individual UAV. Typically, a
life-cycle cost-modeling approach is employed, which consists of
development, manufacturing, and operations costs. However, at the
platform-planning stage, UAV cost models are based on simplified
system parameters known within the conceptual-design framework.
This includes variables, such as the UAV’s structure weight, engine
thrust, intended mission, and payload.
In this investigation, we wish to quantify the cost of optimized

UAV configurations with varying degrees of commonality relative to
individual UAVs with no shared modules. The cost model developed
here considers the weight of the module attributed to the manufac-
turing material and the hardware associated with each module (i.e.,
landing gear for the fuselage and linkages). The fabrication material
considered is the aerospace grade 12 K biaxial carbon fiber with a
weight of 0.0778 lb∕ft2. The hardware weight component is
approximated as relatively low fraction (10–20%) of the composite
material weight of each module, which is a reasonable assumption.
Finally, the module cost is estimated by applying an empty weight
cost metric of $1500 per pound, as suggested by the Office of the
Secretary of Defense UAV Roadmap [41] for modern UAVs. This
estimate includes the electronics, communications, and propulsion
subsystems that are integrated into the modules and make up the
empty weight of the UAV. Expressions for the cost of each module are
given as follows, in terms of original aircraft-design parameters:
1) wing:CW � 1500�0.317SW � 0.15�0.317SW��, in which SW is the

wing area; 2) fuselage: CF�1500�0.176LFd2F�0.2�0.176LFd2F��, in
which LF and dF are the fuselage length and fuselage maximum
diameter, respectively; 3) vertical tails: CVT � 1500�0.317SVT�
0.10�0.317SVT��, inwhichSVT is thevertical-tail area; 4) horizontal tail:
CHT � 1500�0.158SHT � 0.10�0.158SHT��, in which SHT is the
horizontal-tail area; 5) tail booms: CTB � 1500�0.0916LB�, in which
LB is the tail-boom length; and 6) fuel tank:CFT � 90F, in whichF is
the fuel-tank size in liters.
The cost of each UAV configuration is an aggregate sum of the six

module costs (i.e., CUAV � CW �CF�CVT�CHT�CTB�CFT).
It is important to note that thismodel does not account for the payload
or sensor costs, which depends on themission and user requirements,
and furthermore cannot be correlated to any degree of accuracy to the
UAV weight. The net cost of the three UAV variants when solely
optimized for individual performance [42] is treated as the reference

cost. The cost objective to be used in UAV-family optimization, fcost,
is expressed in this normalized form:

fcost �
P

m
i�1 C

i
mod

�C�UAV1 � C�UAV2 � C�UAV3�
(11)

inwhich the genericCimod represents the cost of the ith uniquemodule
in a candidate UAV family, in which the total number of unique
modules in the family (m) could be less than three times the number
of modules in each individual UAV, andC�UAVk represents the cost of
the kth UAV when individually optimized for maximum perfor-
mance. The aggregate cost of the three UAVs when they are individ-
ually optimized for MPG performance is $3224.0.

D. Application of CP3: Family of UAVs

In this paper,CP3 is applied to design a family of three UAVs with
different endurance and payload-capacity specifications. These
specifications, which are summarized in Table 2, are derived for the
three different civilian applications discussed in Sec. III.A.
In terms of optimization objectives, the following two different paths

are pursued toward designing the family of macroscale reconfig-
urable UAVs:
1) Case 1: Maximize the average range/fuel consumption (MPG)

of the three UAVs, and maximize the net commonality (CI) among
the three UAVs.
2) Case 2: Maximize the average range/fuel consumption (MPG)

of the three UAVs, and minimize the net cost of the three UAVs.
Although maximizing a measure of commonality (e.g., CI) is a

popular choice of objective in PFD, in this application, it was realized
that the CI objective by itself (without any cost considerations) might
lead to economically undesirable designs— a significant portion of
the designs could be driven toward relatively large UAV configu-
rations (with wide wingspans) that fulfill both the maximum endur-
ance and maximum payload-capacity specifications (among those
listed in Table 2). The fabrication cost of such large UAV configu-
rations, evenwithmore commonality among the three variants, could
be significantly high; in other words, the substantial increase in
material cost attributed to greater size could very well dominate the
cost savings attributed to commonality. By pursuing the two different
optimization pathways (defined previously), we therefore get the
opportunity to compare and contrast the impact of commonality and
cost objectives on the UAV-family design process.
For this application, all the UAV variants comprise the same phys-

ical set of modules (Fig. 3). Hence, the module-inclusion variables
are known a priori (i.e., λkki � 1, ∀ i, k). The two optimization
problems thus formulated are given by
Case1:

Max �f � �fperf�X; Y�; fcoml�Z��

Case2:

Max �f � �fperf�X; Y�;−fcost�X; Z��

subject to

gj�X; Y� ≤ 0; j � 1; 2; : : : ; p hcc�X;Z� � 0 (12)

in which

Table 1 Design-variable bounds of the twin-boom UAVs

Module Variable Upper limit Lower limit

Wing Aspect ratio 12.0 4.0
Taper ratio 1.0 0.3

LE sweep angle, deg 30.0 0.0
Airfoil type 7 1

Fuselage Diameter, ft 1.5 0.25
Length, ft 6.0 1.5

Vertical tails Aspect ratio 2.0 1.0
Taper ratio 1.0 0.3

LE sweep angle, deg 60.0 0.0
Airfoil type 9 8

Horizontal tail Aspect ratio 7.0 2.0
Airfoil type 9 8

Booms Length, ft 8.0 2.5
Fuel tank Maximum fuel volume, L 20 0.5
Operational
variable

Cruise velocity, ft∕s 146.0 58

Table 2 Design requirements of the UAVs

UAV Application Endurance, h Payload, lb

1 Environmental survey 24 7
2 Search/surveillance 16 3
3 Cargo transportation 4 20
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X� �X1
1 : : : X3

1 : : : X1
i : : : X3

i : : : X1
6 : : : X3

6 �T

Y � U∞

Z � � z1 : : : zi : : : z6 �; zi ∈ f0; 1; 2; 4; 7g
k; l� 1;2; 3; i� 1; 2; : : : ;6

In Eq. (12), the design vectorX includes the 14 module attributes/
variables in the same order as listed in Fig. 3. In this case, all six
modules are included in all three UAVs (i.e., all λkki � 1); the ensuing
allowed values for the integer commonality variables (zi) for this
three-UAV family are shown in Eq. (12). The inequality constraints
(gj) include four primary physical design constraints that address
1) conflicts between fuel volume and fuselage size, 2) conflicts
between wing root chord and fuselage size, 3) satisfaction of the
required endurance, and 4) avoidance of aircraft stalling. Thevariable
bounds (Table 1) are also formulated as inequality constraints.
It is important to note that the UAV-family design problem is

expected to be fairly complex relative to other standard test examples
used in the product-family literature (e.g., the universal electricmotor
[43] and the general-aviation aircraft [44]). In this case, complexity is
attributed to the appreciable design dimension (per product),
functional nonlinearities, consideration of intermodule relationships,
and the number of design constraints. Together with the presence of
themultimodal commonality constraint and the integer commonality
variables yielded by CP3, the UAV design complexities present ap-
preciable challenges to the optimization effort. The current product-
family-optimization problem involves a total of 45 physical design
variables (36 continuous and 9 discrete variables) and 6 integer
commonality variables. In this paper, amultiobjective variation of the
powerful mixed-discrete particle swarm optimization (MDPSO)
algorithm [28] is adopted to solve the challenging optimization prob-
lem. The single-objective MDPSO has been previously (success-
fully) applied to design families of universal electricmotors [35]. The
nondominated sorting genetic algorithm (NSGA-II) is also applied to
solve both MINLP problems. The MDPSO yielded better solutions
for case 1 and the NSGA-II yielded better solutions for case 2. The
case 1 and case 2 results (from the MDPSO and NSGA-II, respec-
tively) are discussed next.

1. Case 1 (Maximizing Commonality): Results and Discussion

Apopulation size of 200 particles is used in this case study, and the
optimization is allowed to run for amaximumof 200,000 function (or
system) evaluations, with additional termination criteria similar to
that reported by Chowdhury et al. [35]. The values of the prescribed
MDPSO parameters and the detailed description of these parameters
can be found in the original paper on MDPSO [28]. The equality
constrainthcc (commonality constraint) in the optimization [Eq. (12)]
is relaxed by a tolerance of ϵ � 1.0e-06, and converted to an inequal-
ity constraint (i.e., gcc � hcc − ϵ ≤ 0).
The MDPSO is run multiple times, yielding solutions acceptably

close to each other. The Pareto solutions obtained by one of the repre-
sentative runs of MDPSO are shown in Fig. 4. In this case, the
principle of strict dominance is used to compare solutions and create
the Pareto front — depicted by the blue circle symbols. As a result,
solutions with the same value of the CI and different values of
performance are included in the Pareto front. The Pareto solutions
derived from theweak-dominance principle are retagged by the redX
symbol in this figure.
It is seen from Fig. 4 that 29 Pareto points (circles) are yielded by

strict dominance, among which seven points (X symbol) form the
Pareto front based on weak dominance. The simultaneous exhibition
of the weak-dominance and strict-dominance Pareto solutions helps
illustrate the discontinuous/discrete nature of the commonality
objective (CI). In addition, the weakly dominated solutions (that
provide lower performance at the same CI) might provide alternative
module-sharing options, which can have advantages from a practical
manufacturing perspective.
Theoretically, each module can be shared in five different schemes

(five different platform configurations) among the three UAVs. The
Pareto designs in this case involved platforming of a maximum of

four modules, that is, nomore than four modules were ever shared by
the UAVs in any scheme among the best tradeoff families. In the best
tradeoff family designs, it was found that 1) the fourth module or the
horizontal tail is shared the most among any two or all three UAV
variants, and 2) the first module or the wing is shared the least. The
latter observation is expected, because the aircraft aerodynamic
performance is strongly influenced by the wing design; conversely,
the wing design is most sensitive to the variations in the specified
endurance and payload requirements.
The maximumCI obtained by optimization is equal to 0.5 (leftmost

Pareto points in Fig. 4), which corresponds to a UAV family compris-
ing 12 unique modules. This maximum commonality is accomplished
at the cost of almost a two-thirds (66%) reduction in the average UAV
performance (i.e., average UAV range/fuel consumption). The maxi-
mum performance accomplished is 1.16 MPGAS, which corresponds
to an average range/fuel consumption of 1566 MPG for the three
UAVs. In the case of the maximum-performance design, the common-
ality is zero, that is, the UAV family is composed of (the maximum
possible) 18 uniquemodules. The individualUAVperformances given
by the Pareto solutions with the maximum commonality and the
maximum performance are compared in Table 3. In this table, max
CI represents the Pareto solution with the maximum commonality
(among three UAVs), and max MPG represents the Pareto solution
with the best UAV-family performance based on average range/fuel
consumption or MPG.
It is readily evident from Table 3 that a significant compromise in

the individual UAV range/fuel consumption is necessary to accom-
plish greater commonality among the UAVs. The second UAV, with
medium endurance and payload, experienced the maximum relative
compromise in range/fuel consumption. On the other hand, the third
UAV, with specified low endurance and high payload, accomplished
the lowest range/fuel consumption in both cases (high CI and high-
performance cases). This observation shows that, in general, high
payloads are expected to result in low range/fuel consumption. Inter-
estingly, although the endurance was specified to be 24, 16, and 4 h,
respectively, for the three UAVs, all of them ended up with relatively
high endurance values of 29–36 h for the optimized family with
maximum commonality— attributed to large-sized wingspans (and
longer tails for corresponding stability). It is also interesting to note
that, even though the performances of the individual UAVs are
equally weighted, higher commonality demanded a greater perfor-
mance compromise from UAV 2 compared to that from UAV 3.
Further exploration of how commonality and the importance of each
product impacts the tolerance of each product variant toward
performance compromise is an important topic of future research in
reconfigurable PFD.
The observation discussed previously corroborates the hypothesis

(presented in Sec. III.D) that maximizing commonality could drive
the UAV variants toward high-endurance designs with larger wing-
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Fig. 4 Best tradeoff UAV families for case 1 (maximizing commonality).
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spans; this design trend, thus in spite of lower operational efficiency
(lower MPG), is still able to satisfy the mission requirements.
However, such larger wingspans could also lead to greater product
fabrication costs. Hence, solely maximizing commonality might not
yield a cost benefit on the whole. This issue is often ignored in the
product-family literature, in which a bulk of the reported methods
only pursues maximization of a commonality metric (along with

performance maximization). It is to further explore the potential for
practical economic benefit attributed to commonality, that we per-
form case 2, in which the commonality maximization is replaced by a
cost-minimization objective.
The platform configuration corresponding to the Pareto solution

with maximum commonality is shown in Table 4. In this table, each
uppercase letter represents a unique module. The fully shared
modules are marked in italics, and the partially shared modules are
marked in bold font.
As seen from Table 4, two modules (horizontal tail and fuel tank)

are fully shared, and two other modules (fuselage and booms) are
partially shared in the max-commonality Pareto solution. The wing
and the vertical tails are each composed of four design variables,
under the current formulation. Hence, the sharing of these two
moduleswould require greater number of physical designvariables to
be shared among the three UAVs [Eq. (2)], compared to that required
by the sharing of the other lower-dimensional modules. This mathe-
matical attribute is likely to have partially promoted uniquewing and
vertical-tail designs among the three UAVs.

2. Case 2 (Minimizing Cost): Results and Discussion

The NSGA-II is used in case 2 with a population size of 200
candidate solutions. The optimization is allowed to run for a maxi-
mum of 200,000 function evaluations. The equality constraint hcc is
converted to an inequality constraint, as in the previous case. The
Pareto solutions obtained, based on the weak-dominance principle,
are shown in Fig. 5.
In Fig. 5, both objective functions appear in their normalized form,

that is, the value of 1 for performance corresponds to the MPG of the
Aerosonde UAV, and the value of 1 for cost corresponds to the net
cost of the three UAVs individually optimized for performance. It
is thus observed from Fig. 5 that the best tradeoff UAV families
(Pareto solutions) have a lower cost than that of the three individually
performance-optimized UAV variants. At the same time, the best
tradeoff UAV families also provide better performance (fuel econo-
my) than the Aerosonde UAV (subject to the assumptions made in
this paper). The overall Pareto becomes nonconvex, thereby
justifying the use of a powerful heuristic multiobjective optimization
solver. Across the Pareto, the UAV-family performance changes from
1.07 to 1.13, a 6% increase; in contrast, the UAV-family cost changes
from 0.70 to 0.44, a 26% decrease with respect to the reference cost.

Table 3 Comparing Pareto solutions with maximum commonality and maximum performance

Endurance, h Payload, lb Range/fuel, MPG

UAV Maximum CI Maximum MPG Maximum CI Maximum MPG Maximum CI Maximum MPG

1 36.0 24.0 7.0 7.0 553.5 1323.0
2 32.9 16.0 3.0 3.0 621.0 2470.5
3 29.4 4.0 20.0 20.0 445.5 904.5

Table 4 UAV platform plan for the
best tradeoff family with maximum

commonality

Module UAV 1 UAV 2 UAV 3

Wing A B C
Fuselage/pod D D E
Vertical tails F G H
Horizontal tail I I I
Booms J J K
Fuel tank L L L

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14
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Fig. 5 Best tradeoff UAV families for case 2 (minimizing cost).
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Fig. 6 Commonality indices of the best tradeoff UAV families from case 2.
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Chowdhury et al. [42] estimated the maximum aggregate
performance of the individually optimized UAVs to be 1.16 times
of that of the Aerosonde. Therefore, CP3 offers promising cost
savings for a relatively small compromise of the UAV performances.
It is important to note that the cost savings in this case are mainly

attributed to 1) material reductions and 2) reconfigurability or
reduction in the overall number of parts required to create the three
different UAVs (lower than 3 × 6 parts). In practice, additional
commonality-based cost savings are expected owing to 1) reduced
manufacturing overhead, 2) reduced costs of transportation and
aftermarket services, and 3) more streamlined design evolution

(based on standard platforms). These Pareto results thus highlight the
immense potential of applying product-platform-planning concepts
to design efficient, affordable, and multimission-capable families of
civilian UAVs.
To better understand how commonality plays an important role in

enabling cost savings through platform planning, the levels of
commonality (CI) in the case 2 Pareto solutions are illustrated with
respect to performance and cost (respectively, in Figs. 6a and 6b). It is
observed from these figures that the best tradeoff UAV families fall
into two levels of commonality:CI � 0.33 and 0.42.When the UAV-
family performance and CI were maximized by Chowdhury et al.
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Fig. 7 Number of Pareto solutions under different possible platform plans for each module.
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[42] (without any cost considerations), the CI varied from 0 to 0.5
across the Pareto solutions. The greater-than-zero values of CI for the
Pareto solutions of case 2 show that the best tradeoffUAV families are
pushed toward a higher degree of commonality — thereby estab-
lishing the impact of commonality (and hence reconfigurability) in
enabling cost savings. In contrast, the occurrence of multiple Pareto
solutions with different cost values at the same CI value shows that
commonality is not the sole factor regulating potential cost reduction
(in reconfigurable or product-family systems). Additionally, the
highest value of commonality reached in case 1 (i.e.,CI � 0.5) is not
reached in case 2, again indicating that solely optimizing com-
monality might not yield desirable cost savings on the whole.
Figure 6b shows that the top-leftmost Pareto solution (with CI �
0.42 and cost � 0.57 × 3224) could be practically themost desirable
UAV-family design from a cost/commonality perspective.
To provide further insights into the degree of commonality or

module sharing adopted by the 12 best tradeoff UAV families, we
illustrate how many of the Pareto solutions fall into the different
platform schemes with respect to each module. The histograms in
Figs. 7a–7f provide these illustrations, with respect to each of the six
UAV modules. The five different platform plans or module-sharing
schemes possible in this case are the module is 1) not shared by any
UAV, 2) shared by UAVs 2 and 3, 3) shared by UAVs 1 and 3,
4) shared by UAVs 1 and 2, and 5) shared by all three UAVs. The
platform plans in Figs. 7a–7f appear in this same order. It is observed
that the wing is the least likely module to be shared (Fig. 7a), and the
horizontal tail and booms are the most likely modules to be shared
(Figs. 7d and 7e). It is also observed that UAVs 2 and 3 are, in general,
more likely to share the different modules compared to other possible
pairs of UAVs.
This research provides a unique foundation for leveraging

modular product-platform-planning methodologies to develop
UAV families, comprising reconfigurable variants suited for differ-
ent missions. In the current version, the overall product architecture
is assumed to be known. Further advancement of the CP3 frame-
work is therefore necessary if the product architecture is to be
planned within the optimization process; for example, when
different sets of sensors and avionics could be incorporated into the
UAVs, and the individual UAVs might not be composed of the same
sets of modules. In the current form, the performance aspect of the
aircraft-family design is mainly driven by aerodynamics (estimated
from simplified analytical formulas); more comprehensive design
would demand consideration of stability issues and structural per-
formance. In that case, optimal platform planning would involve a
significantly greater number of constraints; the increased complexity
might necessitate the application of collaborative/distributed optimiza-
tion methods [45], instead of a straightforward single heuristic
optimization (as used in this paper).

IV. Conclusions

In this paper, modular product-family design (PFD) concepts were
applied to design a family of unmanned aerial vehicles (UAVs), in
which modules are allowed to be developed around common plat-
forms. This design approach allows individual UAVs with unique
mission capabilities to be configured/assembled from a set of available
modules, immediately before a mission. However, this design effort
necessitates certain attributes that are typically provided by state-of-
the-art scale-based PFD methods (generally lacking in conventional
module-based PFD methods), such as 1) allowing modules to be
shared across a subset of the product variants in the family, and 2) the
simultaneous identification and quantification of platform design
variables; and at the same time, demands design attributes that are
beyond the capabilities of most scale-based PFD methods (e.g., the
provision for sharing entire multivariable modules).
Hence, in this paper, important advancements were made to a

scale-based PFD method called CP3. More specifically, the binary
variables in the commonality matrix are now defined to represent the
scheme of module sharing, as opposed to representing the design-
variable sharing scheme as in the original CP3. The commonality
constraint is now formulated to consider the combination of these

commonality variables and the entire design vector for each module
(across all product variants). These modifications now allow a
module to be shared across product variants (if platform derived), or
to be substituted (if scaling) by a module of another configuration
when one product variant is being reconfigured into another product
variant — thereby allowing different product variants to be con-
figured from one another by swapping out a fewmodules (that are not
shared). Subsequently, in the process of reducing the platform-
planning model from a high-dimensional binary problem into a more
tractable integer problem, both module-inclusion variables and
commonality variables are now considered, whereas only the latter
was considered in the originalCP3 method. This formulation nownot
only allows the filtering of module combinations that are known a
priori to be infeasible, but also (in principle) allows varying the
product structure itself during optimization (which is helpful at a
conceptual-design stage). The present formulation, however, yields
an mixed-integer nonlinear programming (MINLP) problem that
involves a multimodal commonality constraint, which, to an extent
limits the optimization-algorithm choices (to heuristic algorithms).
Further decomposition of the commonality constraint can be pursued
in the future, to exploit powerful gradient-based MINLP solvers for
(CP3) optimization.
The modified CP3 method is applied to design a family of three

twin-boom UAVs with different endurance and payload-capacity
specifications. The optimization of the UAV family is first performed
to maximize the average range/fuel consumption, while maximizing
the commonality among the three UAVs; to this end, a multiobjective
variation of the mixed-discrete particle swarm optimization is
implemented. The Pareto solutions obtained span from a maximum
CI of 0.5 at a range/fuel consumption of 541miles/gallon (MPG) to a
maximum range/fuel consumption of 1566 MPG at no commonality
among the three UAVs. In the Pareto-optimal family of UAVs with
maximumcommonality, UAV1 could be reconfigured intoUAV2by
only swapping out the wing and vertical-tail-section modules— the
newmodularCP3method thus provides reconfigurability capabilities
that significantly enhance user convenience and reduce cost to user/
manufacturer, compared to the current commercial UAVplatforms. It
was found that, among the best tradeoff UAV families, the horizontal
tail is the most likely to be shared, whereas thewing is the least likely
to be shared. Further examination of the maximum-commonality
designs showed that purely maximizing commonality was pushing
the individual UAVs toward likely expensive designs (more material
cost attributed to a larger wingspan that satisfies the performance
constraints of each UAV variant). Hence, as a second case study,
commonality maximization was replaced by cost minimization, in
which the UAV costs were based on carbon-fiber-based fabrication
and costs of off-the-shelf components. In this case, it was observed
that the best tradeoff UAV families offered an attractive 26%
reduction in cost for a 6% compromise in performance; this cost
reduction was partially attributed to commonality, thereby further
establishing the benefits of reconfigurable UAV families. In addition
to providing manufacturing cost savings (as is expected from PFD
concepts), the development of such modular UAVs with preflight
reconfigurability provides greater affordability to the end user in a
potentially emerging civilian market.
Although the present formulation in CP3 does not necessarily

require a priori modularization, the current optimization method
allowed consideration of only a known fixed product structure; for
example, each UAVis assumed to specifically comprise thewing, the
tail sections, fuselage, fuel tank, and boom modules. Further flexi-
bility in product-platform planning could be achieved by simulta-
neously optimizing the product structure, along with the platform
plan and module configuration; this would in turn call for the
exploration of more advanced methods, most likely a decomposed
approach, to optimizing the modular product platform. In addition,
the reconfigurability concepts presented here can further benefit
through the consideration/exploration of premission assembly tech-
niques and the formulation of the fabrication constraints (e.g.,
module interfaces) — both of which are important directions for
further research in this area.
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