Memetic Computing manuscript No.
(will be inserted by the editor)

Integrating memetic search into the BioHEL evolutionary learning

system for large-scale datasets

Dan Andrei Calian - Jaume Bacardit

Received: date / Accepted: date

Abstract Local search methods are widely used to improve
the performance of evolutionary computation algorithms in
all kinds of domains. Employing advanced and efficient ex-
ploration mechanisms becomes crucial in complex and very
large (in terms of search space) problems, such as when em-
ploying evolutionary algorithms to large-scale data mining
tasks. Recently, the GAssist Pittsburgh evolutionary learn-
ing system was extended with memetic operators for dis-
crete representations that use information from the super-
vised learning process to heuristically edit classification rules
and rule sets. In this paper we first adapt some of these op-
erators to BioHEL, a different evolutionary learning system
applying the iterative learning approach, and afterwards pro-
pose versions of these operators designed for continuous at-
tributes and for dealing with noise. The performance of all
these operators and their combination is extensively eval-
uated on a broad range of synthetic large-scale datasets to
identify the settings that present the best balance between
efficiency and accuracy. Finally, the identified best configu-
rations are compared with other classes of machine learn-
ing methods on both synthetic and real-world large-scale
datasets and show very competent performance.

Keywords Memetic Algorithms - Evolutionary Algo-
rithms - Evolutionary Rule Learning

D. A. Calian

Department of Computer Science, University College London, Gower
Street, WCI1E 6BT, London, UK

E-mail: d.calian@cs.ucl.ac.uk

J. Bacardit

Interdisciplinary Computing and Complex Systems (ICOS) research
group, School of Computer Science, University of Nottingham, Jubilee
Campus, Wollaton Road, NG8 1BB, Nottingham, UK

E-mail: jaume.bacardit@nottingham.ac.uk

Thisisthe author's preprint version. The final publication is available at
link.springer.com:
http://link.springer.com/article/10.1007%2Fs12293-013-0108-4

1 Introduction

The creation of advanced/smart exploration mechanisms has
been a very active topic of research for many years in evolu-
tionary computation and other related fields such as swarm
intelligence, with the proposal of several paradigms such
as Memetic algorithms (MA) [27], Estimation of distribu-
tion algorithms (EDA) [28], Ant Colony Optimisation [12],
Particle Swarm Optimisation [25] or Genetic Programming
[26], to name just a few.

In the specific context of evolutionary rule learning, most
of these advances are concentrated in two of these fami-
lies of methods: MA and EDA. EDA techniques estimate a
model for the structure of the problem and guide the evolu-
tionary system towards creating offspring according to this
model. Memetic algorithms are based on integrating local
search mechanisms within global search. Recently, both of
these kinds of advanced exploration have been adopted within
the specific context of evolutionary learning, with examples
of EDA-based exploration mechanisms [9,31] as well as
Memetic methods [6,35].

Previously [6] we have shown that integrating memetic
operators within the GA cycle of the GAssist Pittsburgh style
LCS [1] has positive outcomes, enabling the system to learn
more compact rule sets, in less time, while being more ro-
bust to noise. GAssist was hybridized with local search us-
ing two types of operators: rule-set-wise operators, which
given several sets of rules as input heuristically select the
minimum subset of rules that obtain maximum accuracy and
rule-wise operators for discrete attributes, which edit indi-
vidual rules to improve their accuracy.

BioHEL [2] is an evolutionary learning system which
follows the iterative rule learning approach, whose design
and implementation have been strongly influenced by GAs-
sist. Because both GAssist and BioHEL work with the same
type of individual rules, the rule-wise operators of GAssist

Dan Andrei Calian, Jaume Bacardit

are directly portable to BioHEL. But given that BioHEL
maintains only one rule set (representing the current active
solution) and GAssist’s rule-set-wise operator requires at
least two rule sets as input, this latter operator can not be
directly applied to BioHEL.

This paper continues on this line of research by incor-
porating GAssist’s memetic operators for discrete attributes
into BioHEL and by defining and evaluating new rule-wise

operators for continuous attributes. These continuous-attributes

operators have been tailored to the attribute-list knowledge
representation (ALKR) [2,5] of BioHEL and integrated into

the system. To improve BioHEL’s performance on noisy datasets,

the continuous-attributes operators have been also adapted
to cope with such kind of data.

The new and adapted operators (and their combination)
are extensively evaluated on a broad range of synthetic and
real-world large-scale classification problems using two dif-
ferent criteria: efficiency and accuracy, while also identify-
ing the combination of operators with the best balance be-
tween both criteria. Finally, the performance of the best set-
tings of the Memetic BioHEL is compared to the perfor-
mance of other machine learning methods.

The rest of the paper is structured as follows: section
2 overviews related work, section 3 describes the BioHEL
system in more detail and the existing memetic operators
for discrete representations. Section 4 defines and describes
in detail the six new continuous-attributes rule wise local
search operators integrated within BioHEL. The experimen-
tal design used is described in section 5 while section 6 con-
tains the results obtained and a discussion of these. Finally,
section 7 contains the conclusions and directions for future
work.

2 Related work

Local search, statistical learning techniques and intelligent
recombination are some of the methods used to improve
the efficiency and performance of evolutionary computation
algorithms. The literature provides different types of tech-
niques which are based on these strategies.

Memetic algorithms [27], which also include the research
presented in this paper, encompass all evolutionary algo-
rithms which hybridise global with local search, or in which
individual refinement takes place. These algorithms are in-
spired by models of natural systems, where individuals not
only evolve from a genetic perspective but also evolve by
adopting cultural units of transmission.

An early example of memetic algorithms in Learning

Classifier Systems represents the SAMUEL system [20], which

has used an operator similar to the rule-set-wise (RSW) op-
erator from our earlier work in MPLCS [6]. SAMUEL has
been applied to multi-step domains and its operator pro-
duced offspring composed from high-payoff rules which fired

in sequence. A difference between RSW and this LS opera-
tor is that the former has been designed to use rules from N
parents and creates an ordered rule set, while the latter can
only use rules from 2 parents and generates an unordered
rule set. A more recent work in the LCS literature proposed
a gradient descent method for improving the performance
of XCS [34] on multi-step domains. Another work proposed
a Memetic Learning Classifier System within the Michigan
approach of LCS [35] concerning real-valued representa-
tions; in this study, XCS has been hybridised with Lamar-
ckian Evolution-based memetic operators.

Estimation of distribution algorithms (EDA) are another
family of techniques used for improving evolutionary com-
putation algorithms. These employ machine learning or sta-
tistical techniques to build a model of the structure of the
problem being solved in order to guide the evolutionary search
towards better solutions through the use of informed ex-
ploration operators. In [9] XCS has been extended with a
crossover operator based on two types of estimation of dis-
tribution algorithms: the Extended Compact Genetic Algo-
rithm [22] and the Bayesian Optimisation Algorithm [32].
Both methods use the best rules of the population to derive
global structural information which is later used to inform
the crossover operator.

A recent integration of EDAs within a Pittsburgh LCS
represents the Compact Classifier System (CCS) [30]. CCS
uses the Compact Genetic Algorithm (CGA) [23] which evolves
one rule at a time. So to generate complete solutions, the
CGA is iteratively run to produce different rules. Each CGA
run starts from a different perturbation of the same initial so-
lution, where each CCS individual stores a set of such per-
turbations. The goal of the CCS is to evolve the minimal
set of rules which compose a maximally general solution.
More recently, yeCCS, an extension of CCS was proposed
in [31]. The xeCCS generates a population of rules using the
recombination mechanics and model building techniques of
the extended compact genetic algorithm [22].

3 Background material

In this section we provide a general description of the Bio-
HEL evolutionary system and detail its characteristics that
are relevant to this paper. We also describe GAssist’s local
search operators for discrete attributes as these form the ba-
sis for the new operators for continuous attributes presented
in this paper.

3.1 BioHEL
BioHEL [2] is an evolutionary learning system belonging to

the iterative rule learning approach (IRL), first used in the
field of evolutionary learning in [33]. As mentioned in the

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 3

introduction, this system is a descendant of the GAssist LCS
[1] keeping most of its core modules.

BioHEL generates the solution to a problem as a rule
set structured as a decision list. This list is constructed by
iteratively applying a genetic algorithm (GA) to produce in-
dividual rules which are added to the rule set. When a rule
is added all the examples covered by it are removed from
the training set, to focus the search on different parts of the
search space. The system uses an explicit default rule lo-
cated at the end of the rule set having a predefined class as
default. Hence, the iterative rule learning process finishes
when the GA cannot generate a rule that is better than just
assigning any remaining training examples to the default
class. BioHEL’s fitness function is based on the Minimum
Description Length principle, and it is designed to reward
rules with high accuracy, high coverage and low complex-
ity. For a complete description of the fitness function please
see [2].

Given that in this paper we are proposing memetic oper-
ators to edit rules, it is necessary to describe in detail Bio-
HEL’s knowledge representation: the Attribute List Knowl-

edge Representation (ALKR) [2]. ALKR is a meta-representation

that is designed to automatically identify and represent only
the relevant information of the problem. To this aim, for each
individual in the population this representation will contain
(a) a list of relevant attributes and (b) for each of these at-
tributes, its associated predicate in the rule and (c) its as-
sociated class. Two operators are added to the GA cycle
to probabilistically add (specialize) or remove (generalize)
attributes from an individual’s list. The list of relevant at-
tributes can be different for each individual in the popula-
tion, hence this mechanism is more than just a global feature
selection process.

Depending on the nature of each of the attributes in the
list (discrete or continuous), the associated predicate will
differ. For discrete attributes the GABIL [10] representation
is employed. For continuous ones we employ a simple in-
tervalar representation [29] (where an interval over the do-
mains of each of the relevant attributes is defined, with a
lower and an upper bound).

3.2 Memetic operators for discrete attributes

An in-depth presentation of the design and evaluation of
three rule-wise memetic operators for discrete attributes in-
corporated within the GAssist Pittsburgh system is given in
[6]. These operators have been specifically tailored to the
GABIL knowledge representation [10]. Since these opera-
tors have formed the basis behind the reasoning for the new
continuous operators, it is important that they are described.
The three rule-wise memetic operators for discrete attributes
are:

Rule Cleaning (RC)
The rule cleaning operator edits a rule making it cover
less negative examples (which are the ones misclassified
by the rule). To do so it identifies the terms in the GABIL
representation that only cover negative examples, but no
positive ones, and disables the term which will make the
rule drop the largest number of negative examples.

Rule Splitting (RS)
In many cases the RC operator cannot be successfully
applied because GABIL terms cover both positive and
negative examples. To alleviate this issue RS splits a rule
into two rules (by logically decomposing the rule’s pred-
icate into a disjunction of two predicates) in such a way
that the rule cleaning operator can be successfully ap-
plied to one of the sub-rules. The split point and the sub-
sequent cleaned term are chosen, as for RC, to maximise
the number of dropped negative examples.

Rule Generalizing (RG)

The rule generalizing operator edits a rule to make it

cover more positive examples than what it initially cov-

ered, without classifying any new negative examples. To

do so, all disabled literals in a rule are tested to determine

which is the one that will cover the greatest number of

new positive examples without any misclassifications.

The order in which these operators are applied to a rule
is important. The RS operator has been designed to be ap-
plied to rules which the RC operator cannot fix, and so rule
splitting is applied after rule cleaning. Furthermore, the RG
operator will always be applied after the other two operators.
The idea behind this decision is that the specificity pressure
(by forcing the rule to cover fewer examples) introduced by
RC and RS must be compensated with the generality pres-
sure (by making the rule cover more examples) introduced
by RG. For a full description of these operators, including
examples, pseudo-code and evaluation, please see [6].

4 Memetic extensions of BioHEL

This section is concerned with the design and integration of
memetic operators within the BioHEL evolutionary learning
system. The next subsections overview the integration pro-
cedure, the design of the new three memetic operators for
non-noisy continuous-attributes and the design of the three
noise-tolerant continuous-attributes local search operators.

4.1 Integrating GAssist’s memetic operators within
BioHEL

As mentioned in the introduction, GAssist had two classes
of Memetic operators, the rule-wise ones (described in the
previous section) and a rule set-wise operator, which inte-
grated knowledge from multiple rule sets to create a new,

Dan Andrei Calian, Jaume Bacardit

single, rule set. Given that individuals in BioHEL are rules,
only the former class of operators will be adapted to the new
system. The operators will be applied to each of the individ-
uals in BioHEL’s population with a certain individual-wise
probability after the mutation stage of the GA cycle but be-
fore the elitism stage.

For problems with discrete attributes only, the exact same
RC and RG operators used in GAssist will be employed
here, only adapting them to the usage of the ALKR represen-
tation. For RS, however, we have to do an adaptation. The
application of this operator produces two rules. In GAssist
the two rules were inserted into an individual (a rule set).
Given that in BioHEL each individual is a rule we cannot
follow the same procedure. Instead we will do the follow-
ing: In the local search stage of the GA cycle the selected
memetic operators will be applied iteratively to the popula-
tion given a probability, as described above. For each indi-
vidual that has RS applied to it, one of the resulting rules
will replace the individual, while the other rule will be kept
in a separate list. After the memetic operators have been ap-
plied to the entire population, the rules from this separate
list will replace the worst individuals of the population.

4.2 Memetic operators for continuous attributes

As in the case for the discrete-data operators, the continuous-
attributes operators RC and RS edit the rules to make them
more specific while RG edits the rules to make them more
general. All three memetic operators function by requiring

as input (besides the rule to edit) information about the matched

and unmatched instances of the rule. This information is
generated by two other algorithms. The first algorithm, the
M&U operator, computes arrays of matched and unmatched
instances and sorts them by the domain value of each at-
tribute in the rule, while the second one, the CDS operator,
compiles together these sorted instances based on their class
value and assigns them a label identifying the mix of classes
within the group. Fig. 1 shows how the instances are pre-
processed by the M&U and CDS operators, before being
passed as input to the continuous attributes memetic oper-
ators. Before detailing how the three continuous-attributes
memetic operators improve rules, the mode of operation of
these two preprocessing algorithms is described in detail.

4.2.1 Computing matched and unmatched instances (M&U
operator)

The M&U operator when applied to a rule first computes
the matched or unmatched instances of the rule. Afterwards,
for each expressed attribute of the rule, it builds a list of
these computed instances sorted by the value of the cur-
rent attribute. RC and RS require sorted and clustered ar-
rays of the matched examples, while RG requires sorted and

clustered arrays of unmatched examples. For RG, the sorted
unmatched examples are computed separately for each at-
tribute in such a way to only contain the examples that failed
to be matched only by the attribute in question. Also, for
each attribute, these unmatched examples are split into two
disjoint sets: the instances with the domain value less than
the lower bound of the rule’s attribute interval (also referred
to as left unmatched instances), and the ones with a domain
value greater than the upper bound of the rule’s attribute in-
terval (also referred to as right unmatched instances).

The way in which the matched and unmatched examples
are computed is better illustrated using an example:

— Given the following instances (the domain values of two
attributes separated by a comma, followed by || and the
class):

a:-1.0,1.2 1
b:1.2,2.8]0
c:0.1,0.0|| 0
d:0.1,1.6 1
040,531
1.7,03 || 0
:-2.3,-36 0
:1.3,-32|0
i:34,1.8] 1
ji-3.5,-1.5]|0
k:-3.0,09 || 1
1:-1.0,-5.6 || 0

— And the following rule: [-2.0,2.0],[—2.0,2.0] — 0

— The matched instances are computed and sorted:

on the domain value of the first attribute:

[¢]

=09 b

a:-1.0, 1.2 1
c:0.1,0.0|0
d:0.1,1.6] 1
£:1.7,03 | 0
and on the domain value of the second attribute:
¢:0.1,0.0| 0
£:1.7,03] 0
a:-1.0, 1.2 1
d:0.1, 1.6 1

— Then the unmatched instances which only failed to be
matched by the attribute in question are computed and
sorted:

for the first attribute:
domain value less than the lower bound of the
rule’s attribute interval (< -2.0) or simply left
unmatched instances:
ji-3.5,-1.5]0
k:-3.0,09 || 1
domain value greater than the upper bound of
the rule’s attribute interval (> 2.0) or simply
right unmatched instances:
i:34,1.8] 1
and for the second attribute:

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 5

instances with the
same domain value

correctly classified
instance

rule attribute bound

incorrectly classified

~a instance

/ /
EE

all instances

B =]
(ordered by domain value)

unprocessed
instances

N
B

=]

[+][+]

iM&U operator

m

left unmatch.
instances

g G

g & HE

matched instances

[+]
=] =]
right unmatched

instances

iCDS operator

o 0 @ D6 [

5 5 [

preprocessed
instances

cluster of instances with the
same class as the rule

cluster of instances with mixed
classes (same and other)

cluster of instances
with other classes

Fig. 1: The pre-processing steps

left unmatched instances (< -2.0):
1:-1.0,-5.6 | 0
h: 1.3,-3.2 || 0

right unmatched instances (> 2.0):
b:1.2,2.8 |0

4.2.2 Clustering of domain segments (the CDS operator)

After the arrays of matched and unmatched examples have
been computed by the M&U operator, the CDS operator is
applied to cluster the matches and unmatches. This second
pre-processing step is needed to ensure that in case more
instances have the same domain value but belong to differ-
ent classes, the memetic operators do not mistakenly add
negative examples to or remove positive ones from a rule’s
cover set (which is the set composed of the rule’s matched
instances). Clustering an array of instances refers to group-
ing together all instances with the same domain value for
a given attribute along with assigning them a label which
identifies the mix of classes within the group. The number of
instances and the domain value of each group are also stored
to be able to compare different cleaning or generalizing pos-
sibilities. The labels assigned to the groups of instances are:
same (when all the instances within the group have the same
class as the rule), other (when all the instances within the
group have different classes from the rule) and mixed (when
at least one of the instances within the group has the same
class as the rule).
The following example illustrates this process:

— Given any rule which predicts class 0.

— And the following list of instances sorted on the first at-
tribute:
a:-1.5,1210
b:-1.2,2.8 | 1
c:-12,00] 1
d:2.1,1.6 1
e:44,53]0
f:44,03| 1
244,360
h:5.3,-32 |0
— The result of applying the CDS operator on these in-
stances is:
a:. same
b,c: other
d: other
ef,g: mixed
h: same

All three memetic operators edit rules by modifying the
lower, the upper or both bounds of one attribute interval of
each rule. Fig. 2 graphically depicts the mode of operation
of the three continuous-data memetic operators.

4.2.3 Rule Cleaning

The rule cleaning operator is applied to a rule based on the
sorted matched examples covered by this rule, and heuristi-
cally shrinks the domain interval of the expressed attribute
which removes the largest number of misclassified examples
from the rule’s cover set without changing its correctly clas-

Dan Andrei Calian, Jaume Bacardit

rule attribute
lower bound

unmatched
left instances

matched
instances

rule attribute
upper bound

unmatched right
instances

lo] [s] [o]fo] [s] [m] [o]

shrunk
—_—

shrunk
o

[s] [o]fe] [s] [m]

] [m] [o]

extended

SlicEEinniElcEn

Fig. 2: The mode of operation of the three memetic operators

sified instances. The following example illustrates how the
RC local search operates:

Given the following rule: [-2.0,2.0],[—2.0,2.0] — 0
And the matched instances of the rule sorted on the first
attribute (not also clustered using the CDS operator):

a:-1.0, 1.5 1
b:0.1,0.6 | 0
¢:0.1,0.7 | 1
412,160
e:1.7,04 0

The rule classifies correctly three examples and incor-
rectly two (a and c).
Clustering the sorted matched instances we get:

a: other

b,c: mixed

d: same

e: same
By shifting the lower bound of the first attribute’s inter-
val of the rule from -2 to 0.1 the rule will correctly clas-
sify three examples and incorrectly just one (b). The
0.1 is the domain value of the first group (in this case
b,c) with a mixed or a same label found after the longest
streak of groups with an other label while traversing the
clustered groups from top to bottom.

Thus the rule cleaning procedure finds, for each expressed
attribute, the smallest interval which enables the rule to cover
the same positively matched examples while covering the
lowest number of misclassified examples. It does this by it-
erating through the clustered sorted matches from top to bot-
tom (for the attribute interval’s lower bound and in reverse
for the upper bound) and stopping when the label of the cur-

rent group is either same or mixed; meaning that all of the
previously checked groups had an other label and thus con-
tained only misclassified examples. Then, new lower and/or
upper bounds are built using the domain values of the last
visited groups. All the different possibilities for cleaning
a rule are enumerated, but only the pair of bounds which
would remove the highest number of misclassifications from
the cover set of the rule are actually substituted with their
respective counterparts; meaning that only one clean opera-
tion is performed. Fig. 3 contains the pseudo-code for this
operator.

4.2.4 Rule Splitting

The rule splitting operator is applied to a rule based on the
sorted matched examples covered by this rule, and heuris-
tically splits a rule into two on the attribute interval which
allows the two subrules, when taken together, to misclassify
a lower number of instances as compared to the initial rule.
The motivation and rationale of this operator are better illus-
trated through an example:

- Given the following rule: [—2.0,2.0],[—2.0,2.0] — 0
— And the matched instances of the rule sorted on the first
attribute (not also clustered using the CDS operator):

a:-0.7,02 || 1
b:0.5,1.80
c 1,121
d:1.1,0.0 | 1
e:1.8,0.3 1
£2.0, 1.5 0

— The rule classifies correctly two examples and incor-
rectly four (a, ¢, d and e).

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 7

Procedure Rule Cleaning operator
Input: rule, matchedExamplesPerAttribute

maxNumberOfNegativeMatches = 0

Foreach att in numAttributes
bothLeftAndRight = 0
tempPosLeft = tempPosRight = -1

pos=0
While pos < getNumClusteredMatchesOfAtt(att) and
getClusteredMatchOfAtt(att, pos).label == other
pos ++
bothLeftAndRight += getClusteredMatchOfAtt(att, pos).length
EndWhile
If pos >0
tempPosLeft = pos
EndIf

pos = getNumClusteredMatchesOfAtt(att) - 1
While pos > -1 and getClusteredMatchOfAtt(att, pos).label == other
pos ——
bothLeftAndRight += getClusteredMatchOfAtt(att, pos).length
EndWhile
If getNumClusteredMatchesOfAttr(att) - 1 - pos > 0
tempPosRight = pos
EndIf

If bothLeftAndRight > maxNumberOfNegativeMatches and
clean boundaries are not in reverse
maxNumberOfNegativeMatches = bothLeftAndRight
Remember tempPosLeft, tempPosRight and att in
leftCPos, rightCPos and toClean
EndIf
EndForeach

If maxNumberOfNegativeMatches > 0
If can clean left
rule.lowerBound = getClusteredMatchOfAtt(toClean, leftCPos).domVal
EndIf
If can clean right
rule.upperBound = getClusteredMatchOfAtt(toClean, rightCPos).domVal
EndIf
EndIf

Output: rule

Fig. 3: Pseudo-code of the RC operator

— Clustering the sorted matched instances we get:
a: other
b: same
c,d: other
e: other
f: same
— To eliminate the adjacent misclassified examples we could
construct two subrules from the original rule by splitting
it into two on the interval of the first attribute and sim-
ply omitting the (0.5, 2.0) section of the interval which
covers the misclassified examples ¢, d and e. Then, one
of the rules would cover the examples a and b, having
the interval of the first attribute set to [-2.0, 0.5], while
the other would cover example f with the interval of the
first attribute set to [2.0, 2.0]. Now, when taken together,
these two subrules correctly classify the same number of
instances (2) but missclassify only one example, instead
of four.

When RS is applied to a rule it selects one attribute and
generates two identical rules, except for the domain intervals
of a selected attribute. For this selected attribute one subrule

has the same lower bound as the initial rule but a lower up-
per bound while the other subrule has the same upper bound
but a higher lower bound. The rule is split into two so that
the section not covered by the union of the subrules’ inter-
vals would match only negative examples. This means that
in order to apply the RS operator to a certain attribute, the
sorted and clustered matched instances on that attribute must
contain at least one group with an other label surrounded by
at least two groups with different labels than other.

RS works by identifying, for each expressed attribute of
the rule, the longest streak of adjacent groups with an other
label from the list of sorted and clustered matched instances
on the current attribute. Afterwards, the domain value of the
first group located before the whole streak in the list be-
comes the first subrule’s new upper bound and the domain
value of the first group located after the whole streak be-
comes the second subrule’s new lower bound. All possible
splits are enumerated but only the split application which re-
moves the greatest number of misclassified examples from
the rule’s cover set is actually applied. Fig. 4 contains the
pseudo-code for this operator.

Procedure Rule Splitting operator
Input: rule, matchedExamplesPerAttribute

maxNumberOfNegativeMatches = 0

Foreach att in numAttributes
tempMaxNumOfNegMs = 0
tempStart = tempEnd = -1

For pos =0, pos < getNumClusteredMatchesOfAttr(att), pos ++
If getClusteredMatchOfAtt(att,pos).label == other
tempMaxNumOfNegMs+=getClusteredMatchOfAtt(att,pos).length
tempEnd = pos
If tempMaxNumOfNegMs ==
tempStart = pos
EndIf
Else (label is either mixed or same)
If tempMaxNumOfNegMs > maxNumberOfNegativeMatches and
tempStart > 0 and
tempEnd <= getNumClusteredMatchesOfAttr(att) - 2
maxNumberOfNegativeMatches = tempMaxNumOfNegMs
Remember tempStart, tempEnd and att in
startCleanPos, endCleanPos and toSplit
EndIf
tempStart = tempEnd = -1
tempMaxNumOfNegMs =0
EndIf
EndFor
EndForeach

If maxNumberOfNegativeMatches > 0
Create two subrules as copies of rule: rl, r2
rl.upperBound = getClusteredMatchOfAtt(toSplit, startCleanPos - 1).domVal
r2.lowerBound = getClusteredMatchOfAtt(toSplit, endCleanPos + 1).domVal
Output: r/, r2

Else
Output: rule

EndIf

Fig. 4: Pseudo-code of the RS operator

Dan Andrei Calian, Jaume Bacardit

4.2.5 Rule Generalizing

The rule generalizing operator is applied to a rule based on
the sorted unmatched examples covered by the rule, and
heuristically enlarges one of the rule’s expressed attribute
interval which makes the rule cover the maximal number of
new positive examples without covering any new negative
examples.

How RG operates is best shown using an example:

- Given the following rule: [—2.0,2.0],[—2.0,2.0] — 0
— The unmatched instances which only failed to be matched
by the first attribute are computed and sorted, for exam-

ple:

left ones (< -2.0):
a:-3.5,09 1
b:-3.5,-15]0
c:-25,1.2]0

right ones (> 2.0):
d:34,1.8] 1
e:3.4,1.8 |1

— Then clustered:
left ones (< -2.0):
a,b: mixed
C: same
right ones (> 2.0):
d.e: other
— By moving the lower bound of the rule’s first attribute
from -2 to -2.5, the rule would also correctly classify one
more example (¢). The -2.5 corresponds to the domain
value of the last group encountered while going from
bottom to top through the left unmatched instances with
a same label (group c).

RG works by finding, for each attribute, new lower and
upper bounds by looking for the longest streak of clustered
groups with a same label within the left and right unmatched
instances respectively. In the left ones it searches from bot-
tom to top while in the right ones it searches from top to
bottom. The new lower bound becomes the domain value of
the last group with a same label from the search in the left
unmatched instances, while the new upper bound becomes
the domain value of the last group from the search in the
right unmatched instances. Fig. 5 contains the pseudo-code
for this operator.

4.3 Noise-tolerant memetic operators for continuous
attributes

The three continuous-attributes memetic operators have been
adapted to deal with noisy-data by altering the criteria they
use for modifying the attribute bounds of the classifiers. The
noise tolerant operators can edit a rule and make it cover less
positive examples, which the normal continuous memetic

Procedure Rule Generalizing operator
Input: rule, unmatchedExamplesPerAttributeLeft, unmatchedExamplesPerAttribu-
teRight

maxNumberOfPositiveMatches = 0
Foreach att in numAttributes
bothLeftAndRight = countLeft = countRight = 0

pos = getNumClusteredUnmatchesOfAttrLeft(att) - 1
While gerClusteredUnmatchOfAttLeft(att, pos).label == same and pos | = -1
pos ——
countLeft += getClusteredUnmatchOfAttLeft(att,pos).length
EndWhile
If countLeft > 0
bothLeftAndRight = countLeft
tempPosLeft = pos + 1
EndIf

pos=0
While getClusteredUnmatchOfAttRight(att, pos).label == same and
pos < getNumClusteredUnmatchesOfAttrRight(att)
pOs ++
countRight += getClusteredUnmatchOfAttRight(att,pos).length
EndWhile
If countRight > 0
bothLeftAndRight += countRight
tempPosRight = pos - 1
EndIf

If bothLeftAndRight > maxNumberOfPositiveMatches
maxNumberOfPositiveMatches = bothLeftAndRight
Remember tempPosLeft, tempPosRight and att in
leftGenPos, rightGenPos and toGen
EndIf
EndForeach

If maxNumberOfPositiveMatches > 0
If can generalize left
rule lowerBound =
getClusteredUnmatchOfAttLeft(toGen, leftGenPos).domVal
EndIf
If can generalize right
rule.upperBound =
getClusteredUnmatchOfAttRight(toGen, rightGenPos).domVal
EndIf
EndIf

Output: rule

Fig. 5: Pseudo-code of the RG operator

operators can not do. The percentage of positive examples
that can be removed from a rule’s cover-set is however, con-
trolled by a parameter: the amount of expected noise of the
dataset. For example, if a dataset is estimated to contain
10% of noise (attribute-level or class-level), then the noise-
tolerant memetic operators can assume that 10% of the posi-
tive examples are actually negative examples and vice-versa.
Meaning, for example, for the noise-tolerant RC operator,
that it can remove an entire portion of a rule’s cover-set if it
contains a ratio of 9:1 negative to positive examples.

4.3.1 Alterations to the preprocessing steps

These operators, as the standard continuous-attributes ones,
use two preprocessing steps: the M&U operator and the CDS
operator. The M&U operator computes, for each rule, lists
of matched and unmatched instances sorted on the domain
value of each attribute. The mode of operation of this algo-
rithm remains unchanged. However, the CDS operator needed

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 9

to be modified. The original CDS operator clusters the out-
put of the M&U operator building groups of instances with
the same domain value and labelling them according to the
individual instances’ class mixture. For the noise-tolerant
LS operators to build ratios of positive to negative exam-
ples they must be able to count the exact number of positive
and negative matched and unmatched instances of each rule.
The original CDS operator only maintains the total length
for each built group, but not the number of positive and
negative instances within the group. As such, for the noise-
tolerant local search operators to function, the CDS operator
has been updated to keep track of the number of positive
and negative instances within each clustered domain seg-
ment. As before, when local search is applied to an individ-
ual rule, first the M&U operator is applied to the current set
of instances (and implicitly to the current rule) to generate
an intermediary result, which is then sent through the CDS
operator to produce a list of clustered domain segments for
each expressed attribute of the rule, which is finally passed
as input to the active memetic operators (as before, along
with the actual rule to edit).

The mode of operation of the three noise-tolerant continuous-

attributes memetic operators are described in detail next.

4.3.2 Noise-tolerant Rule Cleaning

The noise-tolerant RC operator works in the same way as
the standard RC, that is, by shrinking the interval of one of
the attributes associated to the rule being edited. The only
difference is the acceptance criteria of each of the candidate
shrinking operations, as follows:

A ’clean” operation is characterised by:

— the number of matched positive examples - #positive
— the number of matched negative examples - #negative

And it is considered valid if the following holds:

#negative

— — > 1.0 — expectedNoiseAmount

#positive + #negative

This means that a clean application is only valid when
the percentage of negative examples that will be removed is
at least equal to the percentage of expected non-noisy exam-
ples. As such, when the expected amount of noise param-
eter increases, the number of negatively matched examples
that can be removed also increases. The number of matched
positive and negative examples are computed by counting
the individual number of positive and negative matches con-
tained in the clustered domain segments built by the CDS
operator in the final pre-processing stage.

The following example illustrates how the noise-tolerant
RC local search operates:

- Given the following rule: [-2.0,2.0],[—2.0,2.0] — 0
— In a dataset with an expected noise amount of 33%

And the matched instances of the rule sorted on the first
attribute (not also clustered):

a-1.0, 1.5 1
b:0.1,0.6 || 0
c:0.1,0.7 || 1
d:12,1.6]0
e: 17,040

The rule classifies correctly three examples and incor-
rectly two (a and c).
Clustering (while also counting the number of positive
and negative matches between parentheses) the sorted
matched instances we get:

a: other (0,1)

b,c: mixed (1,1)

d: same (1,0)

e: same (1,0)
By shifting the lower bound of the first attribute’s inter-
val of the rule from -2 to 1.2 the rule will classify cor-
rectly two examples and none incorrectly. The 1.2 is the
domain value of the first group (in this case d) which
represents the valid clean containing the highest number
of examples to be cleaned found by traversing the clus-
tered domain segments from top to bottom. The clean
validity condition in this case would evaluate to true:
2/3>1-0.33 < 0.66 > 0.66.

Thus the noise-tolerant rule cleaning procedure finds, for
each attribute, the smallest interval which enables the rule
to cover the lowest number of misclassified examples while
maintaining a sensitive number of correctly classified exam-
ples within the rule’s cover set. It does this by going through
the clustered sorted matches from the top to the bottom (for
the lower bound and in reverse for the upper bound) and
maintaining two counters for the number of misclassified
and correctly classified examples. It then computes the va-
lidity of each cleaning position, only remembering the valid
clean possibilities with the highest total number of examples
removed. Then new lower and/or upper bounds are built us-
ing the domain values of the best of all these clean possibil-
ities.

The following formula for assigning a score to a clean
possibility has been used to define a comparison relation
between two clean possibilities (to be able to pick the best
clean option over all attributes):

#negative

x \/#negative

This formula is based on the clean validity definition but also
weights-in the number of negative examples preferring rule
clean options which remove greater numbers of negative ex-
amples. The square root of the number of negative examples
is taken to provide a balance between rule clean possibilities
with a high percentage of misclassified examples removed
but which remove a relatively low number of such examples

cleanScore =

#positive +#negative

10

Dan Andrei Calian, Jaume Bacardit

and those with a lower percentage of misclassified examples
removed but which remove a relatively high number of such
examples.

Only the pair of bounds corresponding to the rule clean
options which have the highest score, according to the for-
mula defined above, are actually substituted with their re-
spective counterparts; meaning that only one clean opera-
tion is performed. Fig. 6 contains the pseudo-code for this
operator.

Procedure Noise-tolerant Rule Cleaning operator
Input: rule, matchedExamplesPerAttribute

maxScore =0

Foreach att in numAttributes
bestLToRClean = bestRToLClean = null
numMatches = (0,0)

For pos =0, pos < getNumClusteredMatchesOfAtt(att), pos ++
Maintain numMatches by counting positive and negative examples
If numMatches represents a valid clean
Set bestLToRClean to current clean
EndIf
EndFor

Reset numMatches

For pos = getNumClusteredMatchesOfAtt(att), pos > 1, pos ——
Maintain numMatches by counting positive and negative examples
If numMatches represents a valid clean
Set bestRToLClean to current clean
EndIf
EndFor

bestScoreForThisAttr = compute combination of bestLToRClean and
bestRToLClean with best score

If bestScoreForThisAttr > maxScore and clean boundaries are not in reverse
maxScore = bestScoreForThisAttr
Remember best clean application in leftCPos, rightCPos and toClean
EndIf
EndForeach

If maxScore > 0
If can clean left
rule.lowerBound = getClusteredMatchOfAtt(toClean, leftCPos).domVal
EndIf
If can clean right
rule.upperBound = getClusteredMatchOfAtt(toClean, rightCPos).domVal
EndIf
EndIf

Output: rule

Fig. 6: Pseudo-code of the noise-tolerant RC operator

4.3.3 Noise-tolerant Rule Splitting

The noise-tolerant splitting operator applies the standard RS
to find the optimal domain segment to remove from the rule
to make it drop the maximum number of negative exam-
ples without affecting the positively matched ones. After-
wards, the noise-tolerant RS extends this domain segment
using the same relaxed validity criteria used by the noise-
tolerant RC. Conceptually, this operator simply applies the
noise-tolerant RC to the subrules generated by the standard

RS. The mode of operation of the noise-tolerant RS operator
is shown through the following example:

— Given the following rule: [-2.0,2.0],[—2.0,2.0] — 0

— In a dataset with an expected noise amount of 33%

— And the matched instances of the rule sorted on the first
attribute (not also clustered):

a:-0.7,02 | 1
b:0.5,1.8 (0
c: 11,121
d: 1.1,00 | 1
e 1.8,03 | 1
£:2.0, 1.5 || 0

— The rule classifies correctly two examples and incor-
rectly four (a, ¢, d and e).

— Clustering the sorted matched instances (and maintain-
ing negative and positive matched instances counters)
we get:

a: other (0,1)
b: same (1,0)
c,d: other (0, 2)
e: other (0.1)
f: same (1,0)

— The standard RS operator would eliminate the consecu-
tive misclassified examples by splitting the original rule
into two subrules on the interval of the first attribute and
omitting the (0.5, 2.0) section of the interval which cov-
ers the misclassified instances ¢, d and e. Then, one sub-
rule would cover examples a and b, having the interval
of the first attribute set to [-2.0, 0.5], while the other one
would cover example f with the interval of the first at-
tribute set to [2.0, 2.0]. Collectively, the two subrules
would correctly classify the same number of examples
(2) but misclassify only one example, instead of four.

— The extra step performed by the noise-tolerant RS oper-
ator would be to also extend the interval of only nega-
tive examples from its original (0.5, 2.0) to (-0.7, 2.0).
This interval would remove four negative and one pos-
itive example, constituting a valid extension (applying
the noise-tolerant RC validity condition) since: 4/5 >
1-0.33 < 0.80 > 0.66 < true.

Fig. 7 contains the pseudo-code for this operator.

4.3.4 Noise-tolerant Rule Generalizing

Similarly to the noise-tolerant RC and RS versions, the noise-
tolerant rule generalizing operator works as the standard RG
except for using a relaxed generalize operation validity crite-
ria (based on the ratio between the number of matched pos-
itive examples and the total number of matched examples),
as exemplified below:

- Given the following rule: [—2.0,2.0],[—2.0,2.0] — 0
— In a dataset with an expected noise amount of 33%

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 11

Procedure Noise-tolerant Rule Splitting operator
Input: rule, matchedExamplesPerAttribute

maxScore =0
bestSplitAtt = -1
bestLeftPos = bestRightPos = -1

Foreach att in numAttributes

Run standard RS to try and find longest streak of negative matches for att
Store result in startCleanPos, endCleanPos and attToSplit

If artToSplit == att
numMatches = (0,0)
bestLeftClean = bestRightClean = null

For pos = startCleanPos - 1, pos > 1, pos ——
Maintain numMatches by counting positive and negative examples
If numMatches represents a valid interval extension
Set bestLeftClean to current extension
EndIf
EndFor

Reset numMatches

end = getNumClusteredMatchesOfAttr(att)
For pos = endCleanPos+1, pos < end, pos ++
Maintain numMatches by counting positive and negative examples
If numMatches represents a valid interval extension
Set bestRightClean to current extension
EndIf
EndFor

bestScoreForThisAttr = compute combination of bestLeftClean and
bestRightClean with best score

If bestScoreForThisAttr > maxScore

maxScore = bestScoreForThisAttr

Remember best split in bestLPos, bestRPos and bestSplitAtt
EndIf

EndIf

EndForeach

If maxScore > 0
Create two subrules as copies of rule: rl, r2
rl.upperBound = getClusteredMatchOfAtt(bestSplitAtt, bestLPos - 1).domVal
r2.lowerBound = getClusteredMatchOfAtt(bestSplitAtt, bestRPos + 1).domVal
Output: 1/, r2

Else
Output: rule

EndIf

left ones (< -2.0):
a: same (1,0)
b,c: mixed (1,1)
d: same (1,0)

right ones (> 2.0):
e.f: other (0,2)

— By moving the lower bound of the rule’s first attribute
from -2 to -4.7, the rule would correctly classify 3 more
examples (a, ¢, d) but would also match a new negative
example (b). The -4.7 corresponds to the domain value
of the last group which represents the valid generalize
operation containing the largest number of examples to
be added to the rule’s cover set found by traversing the
left clustered domain segments from bottom to top.

Fig. 8 shows the pseudo-code of this operator.

Fig. 7: Pseudo-code of the noise-tolerant RS operator

— The unmatched instances which only failed to be matched
by the first attribute are computed and sorted, for exam-
ple:

left ones (< -2.0):
a:-4.7,13 10
b:-3.5,09 | 1
c:-35,-1.5]0
d:-25,12 |0

right ones (> 2.0):
e:34,1.8]|1
f:34,1.8]|1

— Then clustered (while also counting positive and nega-
tive examples):

Procedure Noise-tolerant Rule Generalizing operator
Input: rule, unmatchedExamplesPerAttrLeft, unmatchedExamplesPerAttrRight

maxScore =0

Foreach att in numAttributes
bestLToRGen = bestRToLGen = null
numMatches = (0,0)

For pos = getNumClusteredUnmatchesOfAttrLeft(att), pos > 0, pos ——
Maintain numMatches by counting positive and negative unmatches
If numMatches represents a valid generalize
Set bestLToRGen to current generalize operation
EndIf
EndFor

Reset numMatches

For pos =0, pos < getNumClusteredUnmatchesOfAttrRight(att), pos ++
Maintain numMatches by counting positive and negative unmatches
If numMatches represents a valid generalize
Set bestRToLGen to current generalize operation
EndIf
EndFor

bestScoreForThisAttr = compute combination of bestLToRGen and
bestRToLGen with best score

If bestScoreForThisAttr > maxScore
maxScore = bestScoreForThisAttr
Store best generalize operation in leftGenPos, rightGenPos and toGen
EndIf
EndForeach

If maxScore > 0
If can generalize left
rule.lowerBound =
getClusteredUnmatchOfAttLeft(toGen, leftGenPos).domVal
EndIf
If can generalize right
rule.upperBound =
getClusteredUnmatchOfAttRight(toGen, rightGenPos).domVal
EndIf
EndIf
Output: rule

Fig. 8: Pseudo-code of the noise-tolerant RG operator

12

Dan Andrei Calian, Jaume Bacardit

5 Experimental design

This section presents the experimental protocol we have fol-
lowed to evaluate the memetic extensions of BioHEL pre-
sented in this paper. Four stages of experiments have been
performed. The abbreviation ESn, where n is the number of
the stage, has been used throughout the text to refer to in-
dividual experiments stages. The first three stages use syn-
thetic datasets, where the structure of each problem is known
and can be used when analysing the experiments’ results.
The fourth, validation, stage uses a combination of synthetic
and real-world datasets. For each experiment ten repetitions
with different random seeds have been performed for each
configuration. All experiments have been run on uniform
hardware, namely the High Performance Computing Facil-
ity of the University of Nottingham, using Intel Xeon E5472
processors running at 3.0GHz and the Linux operating sys-
tem. To analyse the results of the experiments we have used
the Friedman test for multiple comparisons. Specifically, we
have used this test to determine if there are significant per-
formance differences (using various metrics depending on
the experiment: accuracy, run-time or rule-set size) between
the tested methods, followed by the Holm post-hoc test to
assess the differences between the top method and the rest
of the tested configurations, as suggested in [11,19].

5.1 Datasets

A broad range of datasets (synthetic discrete datasets, syn-
thetic continuous datasets and real-world datasets) have been
used in the paper, where each of the different evaluation
stages of the paper uses a subset of them chosen for specific
reasons. As the test suites of the evaluation stages overlap,
we describe all of them here. Table 1 shows an overview
of the features of the datasets used in the experiments of
this paper. All datasets can be downloaded from http://

cruncher.cs.nott.ac.uk/datasetsMemeticBioHEL. tar.

bz2 (19.5GB).

5.1.1 Synthetic datasets with discrete attributes

— 20-bit multiplexer: An n-bit multiplexer dataset is built
by enumerating all possible inputs for the multiplexer
function and computing their associated class values. The
multiplexer function is defined on bit strings of length
2% + k and its output is given by computing the deci-
mal interpretation of the first 2 bits and then indexing
into the remaining & bits (counting from 0 onwards). The
number of instances of each n-bit multiplexer dataset is
equal to the number of all possible bit strings of length
n which is: 2". The 20-bit multiplexer datasets corre-
sponds to a k value of 4. In the results tables this dataset’s

name is abbreviated as MX20.

— Hybrid multiplexer-parity dataset: The hybrid multiplexer-
parity dataset [9] used here is an encoding of the 6-bit
multiplexer dataset using a 3-parity function. For brevity
it is referred to as the ParMX dataset. To obtain the orig-
inal multiplexer dataset from this dataset, the 3-parity
function must be applied to the entire bit string of each
encoded instance. The 3-parity function takes as input 3
bits and outputs O if their sum is even and 1 otherwise.
The dataset is composed from 2'® instances and can be
optimally classified by 256 rules, excluding the default
rule which covers the remaining instances.

— Discrete k-DNF datasets: These parametrised datasets
have been widely used within the Computational Learn-
ing Theory field [24]. A k-DNF dataset instance consists
of the pairs of all possible inputs and computed outputs
of a boolean function defined as a disjunctive normal
form (DNF) predicate. The predicate is formed from n
disjunctive terms, corresponding to the rules that need to
be learned. Each term is the conjunction of a randomly
chosen subset k out of the d possible attributes of the
domain. All instances that make the DNF predicate true
will have class 1, and all others class 0.

5.1.2 Synthetic datasets with continuous attributes

— Continuous k-DNF datasets: The equivalent continuous
k-DNF datasets have been devised by using attributes
with continuous domains, where each term of each rule
is a set membership condition defined on a continuous
half of the [0.0, 1.0] interval. The bounds of each inter-
val are constructed by selecting a value in [0.0,0.5] with
uniform probability for the lower bound and then creat-
ing the upper bound by adding 0.5 to the lower one. An
example of a full rule of a continuous k-DNF is shown
below:

Rule :x1 €[0.34,0.8] Ax3 € [0.03,0.53] Ax0 € [0.4,0.54] —
class 1

To generate a complete dataset, n rules are constructed.
For each rule, k attributes are sampled without replace-
ment from the d possible ones and the bounds for the ex-
pressed attributes are generated using the method speci-
fied above. To generate the examples of the dataset, val-
ues for all d attributes are randomly picked with uniform
probability from [0.0, 1.0] and then matched against each
rule. The class of the instance is set to 1 (corresponding
to the true logical value) if the instance is matched by
at least one rule in the k-DNF and to 0 (corresponding
to the false logical value) otherwise. The number of in-
stances in the continuous k-DNF is not determined by
the (k,d,n) parametrisation tuple and can be set at de-

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 13

sired values to influence the size and difficulty of the
problem. For this paper we have generated as many in-
stances for each continuous k-DNF dataset as its equiv-
alent discrete problem has. In the results tables these
datasets are abbreviated as ckDNF20-k< N >-d20, where
< N > indicates the number of attributes sampled from
the 20 possible ones, where each such dataset is com-
prises from 20 rules.

— Checkerboard datasets: The Checkerboard dataset is a
simple 2D 4x4 pattern of alternating black and white
tiles where each tile ocupies 25% of the attribute’s do-
main. Moreover, up to 18 extra irrelevant attributes are
added to the problem producing a family of 19 datasets.
For each dataset 1000 instances are sampled (with uni-
form probability for the two attributes that define the
checkerboard pattern, and with a gaussian distribution
centered at 50% of the attribute’s domain for the irrel-
evant features). The class of each instance corresponds
to the colour of the tile sampled by the instance’s two
relevant attributes.

5.1.3 Real-world datasets

Real-world datasets are used in the final validation stage of
the paper. We have used ten datasets of medium/large size.
Five of them (Adult, connect-4, pen-based character recog-
nition (pen), waveform (wav) and kddcup99) come from the
University of California at Irvine (UCI) repository [18]. The
other five (SS1 and CN-W1, CN-W2, CN-W3 and CN-W4)
come from our own repository of bioinformatics datasets,
and we have employed them in the past to evaluate our de-

velopments in evolutionary learning methods [6, 14, 16]. Specif-

ically, CN-W1, CN-W2, CN-W3 and CN-W4 are four dif-
ferent versions of the same dataset: All datasets are trying to
learn the same problem, but each version using a different
degree of resolution in its representation which corresponds
to a number of attributes ranging from 60 (in W1) to 180
(in W4). With these four versions of the same dataset we are
aiming to test the scalability of our method in relation to the
number of attributes in the problem.

5.2 Experiments Stage 1: Checkerboard variants

The first stage of experiments consists of a large-scale evalu-
ation of 35 configurations of memetic search on the 19 vari-
ants of the Checkerboard dataset. The objective of this stage
is to identify which configurations of operators improve Bio-
HEL’s learning capacity and which only add useless compu-
tational effort in a small dataset. Furthermore, because in
the Checkerboard only two attributes of the domain are rel-
evant, this stage also evaluates how the memetic operators
influence BioHEL’s ability to identify the correct attributes

Table 1 Features of the datasets used in this paper. #Inst. = Number
of Instances, #Attr. = Number of attributes, #Disc. = Number of dis-
crete attributes, #Cont. = Number of continuous attributes, Dev.cla. =
Standard deviation of the set of class counts

Name #Inst. #Attr. #Disc. #Cont. Dev.cla.
Synthetic datasets with discrete attributes
ParMX 262144 18 18 0 0.00%
MX20 1048576 20 20 0 0.00%
kDNF20-k5-120 1048576 20 20 0 4.42%
kDNF20-k6-120 1048576 20 20 0 33.08%
kDNF20-k7-r20 1048576 20 20 0 50.05%
kDNF20-k8-r20 1048576 20 20 0 59.96%
kDNF20-k9-r20 1048576 20 20 0 65.27%
kDNF20-k10-120 1048576 20 20 0 67.97%
Synthetic datasets with continuous attributes
ckDNF20-k5-r20 1048576 20 0 20 10.14%
ckDNF20-k6-r20 1048576 20 0 20 35.57%
ckDNF20-k7-r20 1048576 20 0 20 50.99%
ckDNF20-k8-r20 1048576 20 0 20 60.56%
ckDNF20-k9-r20 1048576 20 0 20 65.36%
ckDNF20-k10-r20 1048576 20 0 20 67.94%
Checkerboard datasets 1000 2..20 0 2.20 0.00%
Real-world datasets
wav 5000 40 0 40 0.4%
pen 10992 16 0 16 0.4%
Adult 48842 14 8 6 26.1%
connect-4 67557 42 42 0 23.8%
SS1 83823 300 0 300 8.3%
CN-wl 257560 60 0 60 0.0%
CN-w2 257560 100 0 100 0.0%
CN-w3 257560 140 0 140 0.0%
CN-w4 257560 180 0 180 0.0%
kddcup 494020 41 15 26 12.6%

for each dataset and avoid overfitting the problem, especially
in the dataset variants with a large number of irrelevant at-
tributes.

The 35 different memetic search configurations result
from five separate individual-wise probabilities of applying
the memetic operators along with seven modes of combining
the three rule-wise memetic operators. The tested individual-
wise probabilities are: 5%, 10%, 15%, 20% and 25%, while
the combinations of the memetic operators used consist of
testing each operator individually, then all the groups of two
different operators and finally applying all three operators.
Enumerated, the seven combinations of memetic operators
are: {RC}, {RS}, {RG}, {RC,RS}, {RC,RG}, {RS,RG} and
{RC,RS,RG}. Besides the 35 LS configurations, a baseline
configuration consisting of the basic BioHEL system has
been included. In this stage of experiments ten-fold cross-
validation has been used to assess the generalisation poten-
tial of BioHEL’s memetic extensions. In ES1 accuracy and
runtime are used as performance metrics.

5.3 Experiments Stage 2: Local comparison

The second stage of experiments is targeted on the same set
of 35 local search configurations, but tackling a more di-
verse group of datasets, with both continuous and discrete
attributes. The purpose of this stage is to carry out an ini-
tial assessment of the performance of the memetic configu-
rations in terms of accuracy and runtime on large datasets.

14

Dan Andrei Calian, Jaume Bacardit

Due to the potentially high computational cost of these ex-
periments and the fact that all datasets are synthetic and we
know the optimal solution for each problem we will not eval-
uate the accuracy of these methods based on ten-fold cross-
validation. Instead, we will follow the same procedure we
employed in [6] and just use training accuracy and run the
system for as many GA iterations as necessary to obtain the
perfect solution to the problem. In this way we can assess
the exact amount of computational effort that each of the 36
tested settings (35 memetic operators and the basic BioHEL)
requires to generate the optimal solution.

Given that BioHEL evolves rules and not rule sets we
cannot know throughout the GA iterations if the full solu-
tion to the problem has been generated, but we can know if
we have obtained any of the optimal rules that form such
solution. To do so we draft what we call the specificity-
based GA iteration stop condition as follows: the GA cycle
will stop when (a) a rule with 100% accuracy has been ob-
tained and (b) for discrete problems that rule has a number
of specified attributes that correspond to the optimal rules
of the tested problem, for continuous problems, the volume
v, specified by the rule’s hyperrectangle is approximately
equal to the volume of one of the optimal rules v,, where
Ve RV & Ve — vo|/max(vy,v,) < 0.05. The datasets em-
ployed for evaluation are the following: MX20, ParMX and
the discrete and continuous k-DNF datasets with d = 20,
n =20 and k € {5,6,7,8,9,10}. In this stage, runtime and
accuracy rankings, average accuracy on the training set, av-
erage runtime and average number of rules in the final solu-
tion have been used as performance metrics.

5.4 Experiments Stage 3: Noise-tolerant operators

The third stage applies the top memetic configurations iden-
tifed in the two previous stages to 9 noisy variants of the
ckDNF20-k5-r20 dataset. These nine variants have been pro-
duced by adding three types of noise with three different
probabilities to the original dataset. The three types of noise
that have been used are: instance class flipping, instance do-
main value alteration and applying both types of noise at
once. The three probabilities of applying noise used are:
5%, 15% and 25%. In the case of flipping the class, a 5%
noise level simply means that ~5% of all instances in the
dataset have had their class value flipped from a 0 to a 1
or in reverse. In the case of modifying the domain values
of instances, a 15% noise level means that ~15% of all do-
main values in all instances in the dataset have had uniform
noise in [—0.1,0.1] added. In ES3 ten-fold cross-validation
is used.

One purpose of ES3 is to show that BioHEL’s perfor-
mance on noisy datasets is improved when using the noise-
tolerant memetic extensions when compared to the base-
line system. Another goal is to quantify the difference be-

tween the noise-tolerant and the standard memetic operators
in terms of runtime complexity and/or solution accuracy, and
to identify an applicability criteria for both the noise-tolerant
and the standard LS operators based on the noise level and
type of a dataset. In ES3 the average accuracy, average run-
time and average number of rules in the final solution have
been used as performance metrics.

5.5 Experiments Stage 4: Global comparison

The fourth and final stage of experiments consists of a com-
parison of BioHEL’s memetic operators with other machine
learning algorithms. We have selected four different algo-
rithms that have rule/tree-based knowledge representations,
which are essentially equivalent in expressive power to Bio-
HEL’s representation, in order to have a maximally fair com-
parison. The chosen algorithms are the GAssist [1] evolu-
tionary learning algorithm (using our own C++ implemen-
tation) and the WEKA [21] implementations of C4.5, Ran-
domForest (RF) and PART. There are many evolutionary
learning algorithms reported in the literature that have re-
ported competent performance against other machine learn-
ing methods [13]. However, given that the test suite of this
paper mostly includes datasets with large sets of instances,
we have selected only GAssist because its code base is adapted
to handle such large training set sizes.

From BioHEL we are including its basic version and the
three best memetic configurations identified in ES1 and ES2.
For this final stage of experiments we are employing strat-
ified ten-fold cross-validation and test accuracy instead of
the specificity-based stop condition and training accuracy
employed in ES2. Default settings have been used for all
machine learning methods in the comparison (specifically,
the default parameters in WEKA 3.6.6 have been used) ex-
cept for GAssist, where two parameters have been altered
from its default values [1]: the number of GA iterations has
been set up to 10000 and the number of strata in ILAS! has
been set up to 50.

The datasets chosen for this final stage of experiments
are a mix of synthetic and real-world datasets. The included
synthetic datasets are MX20, ParMX, all discrete k-DNF
datasets and the continuous k-DNF datasets with k € {5,6,7}.
All real-world datasets described in the previous section have
been included. The goal of this stage is to compare the re-
sults, in terms of accuracy and rule set size of the solutions,
obtained by BioHEL’s memetic extensions with the results
of other state-of-the-art machine learning methods. Given
that both BioHEL and GAssist are implemented in C++ and
WEKA is implemented in Java, a runtime comparison is not
included as this would only be approximate at most.

! briefly described in the next subsection

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 15

5.6 BioHEL configuration

The basic BioHEL configuration is shown in table 2 while
the dataset-specific parameters are shown in table 3. The
specificity parameter of table 3 shows the parameter to be
passed to the specificity-based GA iteration stop condition;
for the continuous-attributes datasets it shows the optimal
classifier hyper-volume and for the discrete-attributes datasets
it presents the optimal number of expressed attributes in a
GABIL rule. Three parameters of BioHEL have been ad-
justed for each dataset: the default class policy, the coverage
breakpoint and the number of windows in the ILAS win-
dowing scheme.

The default class policy has been changed from its de-
fault value (choosing the majority class as default) on the
k-DNF datasets so it always maps to the O class. The rea-
son is that in these problems the rules in the solution only
map to class 1 so the problem already has an implicit de-
fault class. With a wrong default rule we would not be able
to employ the specificity-based stop condition and hence we
would not be able to assess the performance of the tested
memetic operators with the same level of certainty. More-
over, the coverage breakpoint is the parameter from Bio-
HEL’s fitness function that regulates the balance between
accuracy and coverage in the evolved rules. We have set it
up to the optimal value for each dataset in order to avoid
adding an extra layer of difficulty to the learning process, as
in this study we are only concerned with observing the effect
of the memetic extensions. A thorough study of the impact
of both the default class and the coverage breakpoint param-
eter in kDNF datasets is available elsewhere [15]. Finally,
ILAS is an efficiency enhancement mechanism [3] that par-
titions the training set into strata, and uses a different stratum
in each GA iteration in a round-robin fashion. The number
of strata employed has been set up to the maximum value
possible that does not create an impact in the learning ca-
pacity of BioHEL. On the real-world datasets, the perfor-
mance of GAssist and BioHEL has been enhanced by us-
ing a simple consensus ensemble mechanism [4], in which
the predictions for each test set are performed by a major-
ity vote of an ensemble of rule sets learnt from the repeti-
tions with different random seeds of the rule learning pro-
cess from the corresponding training set. This mechanism
has shown to improve the accuracy of GAssist and BioHEL
in a broad range of scenarios [8,17,7]. Finally, for all the
experiments with real-world datasets we have employed the
noise-tolerant versions of the memetic operators.

For the full explanation of BioHEL’s configuration pa-
rameters please see [2].

Table 2 BioHEL baseline parameters

Parameter Value
General parameters
Iterations 50
Crossover probability 0.6
Selection algorithm tournament
Tournament size 4
Population size 500
Individual wise mutation probability 0.6
Repetitions of rule learning process 2
MDL-based fitness function
Iteration of activation 10
Initial theory length ratio 0.25
Weight relax factor 0.90
Coverage ratio 0.90
Representation parameters
Probability of 1 in GABIL representation ~ 0.75

Expected value of #expressed att. in init. 15

Probability of generalize in ALKR 0.10
Probability of specialize in ALKR 0.10
Table 3 Dataset specific parameters
Dataset Def. class Specificity #strata
MX20 major 5 2500
ParMX major 9 40
All Checkerboards major 0.0625 8
Discrete k-DNFs 0 k 50
Continuous k-DNFs 0 0.5 50
Real-world datasets major 0.005 50

6 Results and analysis

Next we present the results obtained in the four evaluation
stages.

6.1 Results for Experiments Stage 1: Checkerboard variants

In this subsection we show a summary of the results of eval-
uating 35 memetic configurations on all 19 variants of the
Checkerboard dataset.

First, we will analyse the accuracy and runtime perfor-
mance of the different combinations of local search opera-
tors and probabilties of application. In figure 9 and table 4
the results of the Friedman tests and the post-hoc Holm tests
are shown. Both visualisations show the accuracy and run-
time ranks of all methods tested, averaged across all datasets.
The full details of the results are reported in the appendix of
the paper, in tables 16 and 17.

The Friedman tests have been run separately on both
testing accuracy and runtime data from all 19 datasets, with
the returned p-values of both tests being less than 2.2e¢ — 16,
indicating significant performance differences. The post-hoc
Holm tests have been performed by comparing the accuracy
and runtime ranking of the top method with all other Bio-

16

Dan Andrei Calian, Jaume Bacardit

HEL configurations. The significant differences at 99% and
95% significance levels are shown using dotted horizontal
lines in table 4. All configurations listed below the first line
have a significantly worse performance (at 95% significance
level) than that of the top ranked method.

From this table we can observe that in terms of runtime,
the Basic configuration and the top eight memetic configu-
rations are similar in performance. However, RG alone ap-
pears to not be beneficial in reducing the runtime require-
ments for the Checkerboard variants as it does not appear in
the top eight runtime rankings. On the other hand, RS, ei-
ther alone or in groups with RC or RG, appears to have the
most impact in reducing BioHEL’s runtime in these small
datasets, as it appears in the majority of the top runtime rank-
ings. We can also observe that, in general, higher individual-
wise probabilities of applying the memetic operators result
in longer runtimes.

Table 4 ES1: Results of Friedman-Holm statistical tests on ES1 run-
time and accuracy data. Avg.R. = Average rank of runtime or accuracy
respectively

Runtime Test Accuracy
Config. AvgR. Config. Avg.R.
0.05-RS 1.16 0.15-RS-RG 8.00
0.05-RS-RG 3.16 0.10-RS-RG 8.84
0.05-RC-RS 4.79 0.05-RS-RG 9.11
0.05-RC-RS-RG 5.00 0.20-RS-RG 9.47
0.10-RS 5.13 0.25-RS-RG 9.68
Basic 8.21 0.10-RS 10.26
0.05-RC 8.79 0.20-RS 12.58
0.05-RC-RG 8.89 0.20-RC-RS-RG 12.58
0.10-RC-RS 9.32 0.05-RS 12.89
C0I5-RST 1079 0.15-RS 12.89
“0.10-RC 1242 0.05-RC-RS-RG 14.53
0.10-RS-RG 12.42 0.10-RC-RS-RG 15.32
0.10-RC-RS-RG 14.21 0.15-RC-RS-RG 15.32
0.15-RC-RS 14.42 0.25-RS 15.68
0.05-RG 14.97 0.20-RC-RG 15.84
0.15-RC 16.26 0.25-RC-RG 16.00
0.10-RC-RG 16.53 0.15-RC-RS 17.00
0.20-RS 16.63 0.25-RC-RS-RG '17.63
0.20-RC 19.11 0.10-RC-RS 17.95
0.20-RC-RS 20.53 0.15-RC-RG 18.11
0.15-RS-RG 21.16 0.05-RC-RS 18.26
0.25-RC 2174 0.10-RC-RG 1953
0.15-RC-RS-RG 22.32 0.20-RC-RS 20.16
0.10-RG 22.79 0.25-RC-RS 21.58
0.25-RS 22.89 0.25-RG 21.74
0.15-RC-RG 24.42 0.25-RC 22.95
0.25-RC-RS 25.89 0.20-RC 23.84
0.20-RS-RG 28.16 0.20-RG 23.84
0.20-RC-RS-RG 28.47 0.05-RC-RG 24.00
0.20-RC-RG 29.00 0.15-RC 25.58
0.15-RG 29.47 0.10-RC 26.16
0.25-RC-RG 32.58 0.10-RG 27.11
0.20-RG 32.63 0.15-RG 28.26
0.25-RC-RS-RG 33.05 0.05-RC 28.32
0.25-RS-RG 33.42 0.05-RG 30.53
0.25-RG 35.26 Basic 34.47

In terms of testing accuracy, all memetic operators have
a better mean rank than the Basic configuration. Moreover,
RS alone or in groups with the other operators also appears
to be beneficial for improving the accuracy of the system,
as it appears in all the top 15 best ranking configurations;
among these, the RS-RG combination seems to provide the
optimal level of specificity and generality pressures for Bio-
HEL to evolve the best rule-sets. A similar performance is
also obtained by the individual RS operator and the com-
bination of all three operators. The lowest ranking configu-
rations involve the individual RC and RG operators; this is
expected since separately these two operators provide only
specificity and generality pressures respectively, while a per-
fect balance of both types of pressures is required for evolv-
ing maximally general and accurate rules.

To be able to better observe the relation between the ac-
curacy and runtime performance of the different memetic
configurations tested figure 9 shows the accuracy rankings
plotted against the runtime rankings for each configuration.
We can observe that the 0.05-RS-RG configuration repre-
sents the best trade-off between accuracy and runtime per-
formance. Other good trade-offs include 0.15-RS, 0.10-RS
and 0.10-RS-RG. It can also be seen that in terms of both
runtime and accuracy rankings the following configurations
are all superior to the Basic setting: 0.10-RS, 0.05-RC-RS-
RG, 0.05-RC-RS, 0.05-RS-RG and 0.05-RS. As such, the
RS and RG local search configurations with a low individual-
wise probability comprise the optimal BioHEL settings for
tackling these datasets.

361 J025-RG 7
L 0.25-RS-RG 1
34 . ’O_ﬁﬁé:EE'RS'Tﬁzo-RG
32+ i
wl .. 0.15-RG g
0.20—&@@@:':*‘9'&%'%% e :
28 * i
oo | ,0.25-RC-RS i
,0.15-RC-RG
24 |
‘9%&? 0.10-RG
"5 RC-RS-RG R
<ol . R 0.25-RC 4
5 LO-15-RS-RG ,0.20-AC-RS
520 0.20-RC }
E *
= 18 i
£ J020-RS J0-10-RC-RG .15.RC
Z 16l * 0.05-RG 7
0.1PA6-RE-RE i
14 - * |
0.10-RS-RG 0.10-RC
12 | - * -
J0.15-RS
10 - WO T0-RC-RS ¢ 05.RC-R@5-RC |
il - . .Basm i
6L J0.10-RS ‘0.0S—RC‘@&R@RS i
4l ,0.05-RS-RG 1
oL 0.05-RS b
*
0 Y Y S R

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Test accuracy rank

Fig. 9: ES1: Runtime rankings vs. test accuracy rankings of
all configurations on all Checkerboard variants

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 17

Next, we will investigate the capacity of the LS settings
to identify the relevant attributes of a domain. Figure 10
shows the evolution of the test set accuracy plotted against
the number of attributes of each Checkerboard variant for
the top five memetic configurations and the Basic one. We
can notice that all configurations manage to identify the cor-
rect attributes of the problem with up to 6 added irrelevant
features. Afterwards, the performance of the Basic system
starts to degrade while the other methods still obtain good
performance up to 13 added irrelevant features. The best ac-
curacy in the last dataset of was obtained by the 0.10-RS-RG
combination, with the worst one obtained by the Basic set-
ting.

Test accuracy

08[-6~ Basic

-4 0.15-RS-RG
—+ 0.10-RS-RG
o7l < 0.05-RS-RG
—- 0.20-RS-RG
- 0.25-RS-RG

2 3 4 5 6 7 8 10 1 12
#Attributes

Fig. 10: ES1: Evolution of test accuracy over the number of
attributes for the Checkerboard variants showing the top five
memetic configurations and the Basic one

6.2 Results for Experiments Stage 2: Local comparison

This subsection presents the results of a comprehensive eval-
uation of the 35 memetic configurations on the MX20, ParMX
and six variants of the continuous and of the discrete k-DNF
problems. First we will analyse the runtime and train set ac-
curacy rankings of the LS settings which have been com-
puted using Friedman statistical tests and post-hoc Holm
tests on data from all datasets. Table 5 shows the average
rankings for runtime (Friedman p-value of 3.97¢ — 05) and
train accuracy (Friedman p-value of 1.351e — 05). The re-
sults of the Holm test, with 95% and 99% significance lev-
els are shown through the use of dotted horizontal lines, as
in section 6.1. The full details of the results are reported in
the appendix of the paper, in tables 18 and 19.

For the accuracy category, the post-hoc Holm test did
not discover any significant differences, while for runtime
almost all BioHEL configurations were significantly better
than the worst setting (0.20-RG) including the Basic one.
The reason for these results is that for the majority of datasets
all configurations achieved perfect accuracy resulting in many
tied rankings. However, if we simply observe the distribu-
tion of the memetic operators within the runtime rankings

we notice that the configurations where all three operators
are acting in unison are in the top part of the table, while RC
and RG applied individually are at the bottom of the table,
with combinations of RC and RG with RS scattered towards
the top part. This would suggest that RS, on its own, but es-
pecially when coupled with the other two operators, is ben-
eficial for reducing the overall system runtime. Keeping in
mind that the specificity condition is enabled, and because
RS generates two accurate sub-rules with a small coverage,
these rules with perfect accuracy on the training set most
likely stop the GA process early thus causing the runtime
reduction.

When compared to the Basic system, the majority of
the memetic extensions tested perform better runtime-wise.
Performing a similar distribution analysis of the rankings,
but now for accuracy, we observe that the superior config-
urations include the group RC-RG alone and coupled with
RS, while the inferior ones mainly consist of applying RS
and RC individually. This indicates that the three operators,
when applied in unison or without RS, increase BioHEL’s
training accuracy. We can also observe that higher individual-
wise application probabilities generally yield higher train-
ing accuracies. Even though the Holm test did not discover
significant differences within the accuracy rankings, we can
still observe that all except for two LS configurations are
superior to the Basic one.

Figure 11 shows the two rankings plotted against each
other. From this figure we can clearly identify the Pareto
front amongst the tested extensions, which includes: 0.20-
RC-RS-RG, 0.25-RC-RS-RG, 0.10-RC-RS-RG and 0.25-RC-
RG. As such, the best two configurations of these (0.25-RC-
RS-RG, 0.10-RC-RS-RG) will be further evaluated in the
next two experimental stages. This stage did not evaluate
generalisation capacity by not employing cross-validation
due to physical time considerations. Cross-validation per-
formance of the best memetic settings is assessed in the fol-
lowing evaluation stages.

Now we will look at individual per-dataset results and
perform an analysis in terms of train set accuracy, runtime
and final rule-set (solution) size. Each such results table con-
tains average accuracy, runtime and rule set size data for the
Basic system’s performance and the top five memetic con-
figurations. This top is computed by stable-sorting the con-
figurations on three levels, first on accuracy, then on runtime
and finally on rule set size. Each table also contains a plot of
accuracy over runtime for the Basic and the top three LS set-
tings, which were averaged across all runs for each dataset
and configuration. For the 20-bit multiplexer case, with re-
sults shown in table 6 we can see that there are no accuracy
differences visible, but the top local search configurations
converge faster to solutions with more compact sizes than
the ones evolved by the Basic system. The shown LS com-
binations manage to obtain rulesets which are close in size

18

Dan Andrei Calian, Jaume Bacardit

Table 5 ES2: Results of Friedman-Holm statistical test on ES2 run-
time and accuracy data. Avg.R. = Average rank of runtime or accuracy

28

26 -

24 |-

22 .O.ZO—RC—RG

20 -

Runtime rank

0.25-RG
.

0.10-RG
.

0.20-RC
-

0.25-RC
.

0.25-RS-RG

L0.10RCRG

JQ005RERRG

.O.ZO—RC—RS—RG
.O.WSVRC—RS—RG

14 + ’0.25-RC-RS-RG

0.20-RC-RS
. ‘O.ZS—HC—R

.0.10—RC—RS—RG

0.10-RC
-

0,05-RC
,0.05-REFLPFO-RG

SR

-RS

0.15-RC-RS

-

S

0.15-RS
.

16 18 20 22
Train accuracy rank

24 26

28

Fig. 11: ES2: Runtime rankings vs. accuracy rankings of all

configurations computed across all ES2 datasets

Table 6 ES2: MX20 results

Configuration Train Accuracy Runtime (s) #Rules

Basic 100.00%+0.0% 33.78+5.2 29.00+4.2
0.20-RC-RS-RG 100.00%+0.0% 24.74+3.0 21.90+1.7
0.25-RC-RS-RG 100.00%+0.0% 24.99+£3.0 21.50£1.9
0.15-RC-RS-RG 100.00%+0.0% 25.00+5.4 22.3043.5
0.25-RC-RS 100.00%+0.0% 25.02+3.0 22.80+1.2
0.20-RS-RG 100.00%+0.0% 25.0442.2 22.80+1.9

respectively

Runtime Accuracy on training set

Config. Avg.R. Config. Avg.R.
0.10-RC-RS-RG 11.79 0.20-RC-RG 12.39
0.25-RC-RS 12.79 0.25-RC-RG 12.50
0.20-RC-RS 13.14 0.25-RC-RS-RG 13.25
0.25-RC-RS-RG 13.71 0.20-RC-RS-RG 13.32
0.15-RC-RS-RG 14.50 0.15-RC-RS-RG 14.82
0.15-RC-RS 14.86 0.15-RC-RG 14.96
0.20-RC-RS-RG 15.07 0.10-RC-RS-RG 15.32
0.25-RS 16.07 0.10-RC-RG 15.93
0.10-RC-RS 16.29 0.20-RC-RS 16.32
0.10-RS-RG 16.29 0.20-RG 17.00
0.25-RC-RG 16.36 0.25-RS-RG 17.39
0.20-RS-RG 16.43 0.25-RG 17.39
0.15-RC-RG 16.43 0.25-RC-RS 17.68
0.05-RC-RS-RG 16.50 0.05-RC-RS-RG 17.75
0.05-RC-RS 16.64 0.20-RS-RG 17.82
0.20-RS 16.93 0.15-RS-RG 18.25
0.15-RS 17.57 0.05-RC-RG 18.50
0.05-RC-RG 17.79 0.10-RS-RG 18.96
0.15-RS-RG 17.86 0.05-RC-RS 19.11
0.10-RS 18.29 0.25-RC 19.21
0.15-RC 18.57 0.10-RC-RS 19.25
0.10-RC-RG 18.64 0.25-RS 19.39
0.05-RS 18.71 0.15-RG 19.93
0.05-RS-RG 19.14 0.15-RC-RS 20.04
0.05-RG 19.29 0.10-RG 20.39
0.25-RS-RG 19.29 0.05-RS-RG 20.46
Basic 19.36 0.20-RC 20.46
0.05-RC 19.64 0.20-RS 20.68
0.25-RC 21.43 0.15-RC 21.36
0.20-RC-RG 21.71 0.05-RS 21.46
0.20-RC 22.14 0.10-RS 21.61
0.10-RC 22.36 0.15-RS 22.11
T0.00-RG T 2493 0.05-RC 22.21
"025-RG 25.64 Basic 22.50
0.15-RG 28.57 0.05-RG 22.89
0.20-RG 31.29 0.10-RC 23.36

to the optimal number of 17 rules for the MX20 dataset (16
rules to classify one class and one default rule for the other
class). The plot shows the difference in convergence rate as
all memetic configurations shown possess a steeper accuracy
increase curve than the Basic system.

The results on the ParMX dataset are presented in table
7. Similarly to MX20, the differences appear at the runtime
level, these being more pronounced than in the MX20 case.
Morever, the LS settings also produced more compact so-
lutions than the Basic configuration, but even these are too
large when compared to the optimal number of 257 rules of
this domain.

For all the KDNF datasets tested, the optimal rule set size
is composed from 21 rules (20 to cover the instances with
class value 1 and one default rule to cover the remaining in-
stances) by their definition (» = 20). Tables 8 to 9 show the
results on the five discrete kKDNF datasets. All 36 configu-

17

0.94

Train accuracy

—&— Basic 1
—4— 0.20-RC-RS-RG

—+ 0.25-RC-RS-RG |
—— 0.15-RC-RS-RG

0 7 14 21 28 35 42
Runtime (s)

rations of BioHEL were able to evolve the optimal rule set
with full training accuracy, with the only differencing factor
being the runtime. As k increases, the difference between the
runtime of the best LS configurations and the runtime of the
Basic system also increases, suggesting that the harder the
dataset becomes the more the LS operators can contribute to
the efficiency of the learning process. This is also shown in
the plots, as the learning curve of the Basic system is consis-
tently below the curves of the best memetic configurations.
In the most difficult of these datasets, with higher k values,

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets

Table 7 ES2: ParMX results

Table 8 ES2: kDNF20-k{5,6,7}-r20 results

Configuration ~ Train Accuracy Runtime (s) #Rules
Basic 99.99%=+0.0% 2066.93+£351.1 478.20£13.6
0.25-RC-RS 100.00%+0.0% 923.58+105.6 326.20£10.6
0.25-RS 100.00%+0.0% 937.91+£146.8 335.60£10.5
0.20-RS 100.00%+0.0% 970.20+130.7 341.70£11.7
0.20-RS-RG 100.00%+0.0% 973.37+73.1 340.80+£10.4
0.15-RS 100.00%+0.0% 988.64+43.2 354.10+7.3
=
0.94
0.88 1
. 082fF
]
3 o076
3
é 0.69
=
0.631
0571 —&— Basic i
—— 0.25-RC-RS
0.51 —— 0.25-RS
—=— 0.20-RS
045 - - - - -
0 462 924 1386 1848 2310 2772
Runtime (s)

the RC-RS settings consistently appear among the best set-
tings.

The results on the continuous kDNF problems are pre-
sented in tables 10-11. For k = {5,6} we can immediately
see that the memetic configurations manage to evolve so-
lutions with a near-optimal size, of around 22, while also
achieving a low standard deviation on the final rule-set size.
The same does not hold for higher values of k as these datasets
become increasingly more difficult when the attributes which
compose their defining DNF rules increase in number. This
increase in domain difficulty translates into an increase in
the size of the rule-sets evolved by BioHEL’s configura-
tions, however the solutions sizes evolved by the LS settings
still remain considerably lower than the ones generated by
the Basic system. The increasing difficulty of the datasets

can also be observed from the increase in the runtimes of

the Basic configuration. For these datasets, the percentage
of instances with class 0 also increases with k. And since
the default rule of BioHEL always predicts class O for the
kDNF datasets, for higher k values the search space consists
of predominantly instances with class 0 with few isolated in-
stances with class 1. This is why, for the continuous kDNF
datasets with k = {8,9,10} the average training accuracies
start at very high values of over: 92%, 96% and 98% respec-
tively. For these cases, there are no noticeable differences in
final accuracies, but the plots reveal the extra search effort
of the memetic configurations.

For k = 5 we can see that the best memetic configu-
rations achieve better training accuracy than the Basic one
while having similar runtime requirements. We can also ob-
serve that the Basic configuration has evolved a larger num-
ber of less general rules, which even exceeded the accu-
racy of the memetic configurations for a large portion of the
runtime interval. However, towards the end of the learning

D. Configuration Train Accuracy Runtime (s) #Rules
Basic 100.00%+0.0% 692.31+£232.8 21.00+0.0
0.05-RS-RG 100.00%=+0.0% 663.15+£262.4 21.00+0.0
0.25-RC-RG 100.00%=+0.0% 668.04+£223.1 21.00+0.0
0.05-RC-RG 100.00%=+0.0% 677.96+301.6 21.00+0.0
0.15-RC 100.00%+0.0% 691.39+£275.3 21.00+0.0
0.25-RS 100.00%+0.0% 692.15+238.8 21.00+0.0

o T

)

St

"y 093

=%

g 0.86

B

E 3 078

= % 071

&
£ 064
©
=
057
0.49F —©- Basic 1
—&— 0.05-RS-RG
ol —— 0.25-RC-RG |
—< 0.05-RC-RG
035 . . : : .
0 174 348 522 696 870 1044
Runtime (s)
Basic 100.00%+0.0% 840.14+127.1 21.00+0.0
0.05-RC 100.00%+0.0% 679.38+318.3 21.00+0.0
0.05-RG 100.00%+0.0% 709.49+323.3 21.00+0.0
0.15-RC 100.00%+0.0% 780.03+269.8 21.00+0.0
0.05-RS 100.00%=+0.0% 787.79+£278.4 21.00+0.0
0.05-RC-RG 100.00%+0.0% 816.601+264.0 21.00+0.0
=3 1r

Q

I

) 095

=

] 09t

B

é 3 0%

= % 08t

8
é 075
=
o7t
0.65 —©- Basic 4
—— 0.05-RC
061 —— 0.05-RG]
—— 0.15-RC
055
0 203 406 609 812 1015 1218
Runtime (s)
Basic 100.00%40.0% 868.67+190.5 21.00+0.0
0.15-RC-RS 100.00%=+0.0% 650.82£179.0 21.00+0.0
0.10-RS 100.00%+0.0% 850.454+229.1 21.00+0.0
0.25-RC-RS 100.00%+0.0% 883.914+263.3 21.00+0.0
0.20-RC-RS-RG 100.00%+0.0% 919.52+251.4 21.00+0.0
0.20-RS-RG 100.00%+0.0% 935.59+302.6 21.00+0.0

e i

Q

o

~ 097

=

g 0.93

=

Z 09t

a

=<

Train accuracy

—©— Basic 1
—4— 0.15-RC-RS
—

——

073 0.10-RS 1
0.25-RC-RS
07—
0 220 440 660 880 1100 1320
Runtime (s)

process, the Basic system becomes stuck and is not able to
evolve any new accurate rules while the memetic configura-
tions continued exploration. Compared to the dataset variant
with k = 5, for the one with £ = 6 the differences between

20

Dan Andrei Calian, Jaume Bacardit

Table 9 ES2: kDNF20-k{8,9,10}-r20 results

Table 10 ES2: ckDNF20-k{5,6,7}-r20 results

D. Configuration Train Accuracy Runtime (s) #Rules D. Configuration Train Accuracy Runtime (10°s) #Rules
Basic 100.00%+0.0% 832.91+110.4 21.00+0.0 Basic 94.00%+0.3% 10.71+1.8 63.00+7.1
0.25-RC-RS 100.00%+0.0% 550.25+52.2 21.00+0.0 0.25-RC-RS-RG 99.86%=+0.0% 12.21£2.7 21.30+0.7
0.25-RC-RS-RG 100.00%+0.0% 644.54+£114.2 21.00+0.0 0.25-RS-RG 99.83%+0.0% 11.69+1.3 21.40+1.3
0.25-RS 100.00%+0.0% 645.55+161.0 21.00+0.0 0.20-RC-RS-RG 99.81%=+0.0% 9.94+1.8 21.20+0.4
0.25-RS-RG 100.00%+0.0% 649.33+72.7 21.00+£0.0 0.20-RS-RG 99.80%+0.0% 10.47+£2.9 21.20+0.4
0.20-RC-RS-RG 100.00%+0.0% 727.60+230.6 21.00+0.0 0.25-RC-RG 99.80%+0.0% 10.20+1.8 21.40+0.7

17 S

g B ‘

% 098 2. 0.93

> 096 S

s S 0.86

Z o, 0931 Z . 078

g g 2 g

< 3 o9lf B 3 on

& &
£ o089 £ 064
s s
= =
087 0.57
0.84] —©— Basic 0.49] -©- Basic
] —&— 0.25-RC-RS | —&— 0.25-RC-RS-RG
g2l —— 0.25-RC-RS-RG 042 —— 0.25-RS-RG
—< 0.25-RS —— 0.20-RC-RS-RG
08—t . . - - . 0.35
0 163 326 489 652 815 978) 3084 6168 9252 12336 15420 18504
Runtime (s) Runtime (s)
Basic 100.00%+0.0% 966.87+160.8 21.00+0.0 Basic 93.64%+0.2% 47.46£13.0 169.70£15.2
0.10-RC-RS 100.00%+0.0% 566.66+130.2 21.00+£0.0 0.25-RC-RS-RG 99.69%=+0.1% 17.90+4.8 22.10+£1.4
0.15-RC-RS 100.00%+0.0% 569.76+64.9 21.00+0.0 0.20-RC-RS-RG 99.61%+0.1% 16.01+7.6 23.80+2.8
0.05-RC-RS-RG 100.00%+0.0% 575.41+57.1 21.00+0.0 0.25-RC-RG 99.59%=+0.1% 11.45£1.9 22.50+1.8
0.10-RC-RS-RG 100.00%+0.0% 589.05+66.7 21.00+0.0 0.25-RS-RG 99.58%+0.1% 15.814+6.3 23.50+2.8
0.20-RS 100.00%+0.0% 615.68+94.6 21.00+0.0 0.20-RS-RG 99.49%+0.1% 11.43+5.3 24.50+2.8

i 0.98 - \;

§ 0.97 §

Z .. 095- 4 -

g Z

S 0.93 < 8
8 8
£ 092 c
s s
= =
09
0.88 —©— Basic 077 —©— Basic
—— 0.10-RC-RS —— 0.25-RC-RS-RG
o087k —+— 0.15-RC-RS 073 —+— 0.20-RC-RS-RG
—% 0.05-RC-RS-RG —— 0.25-RC-RG
0.85 L L L L L L 0.7 L L L L L
0 213 426 639 852 1065 1278 0 11793 23586 35379 47172 58965 70758
Runtime (s) Runtime (s)
Basic 100.00%+0.0% 1530.82+£544.3 21.00+0.0 Basic 91.11%+0.4% 120.27+33.6 459.20+£52.8
0.15-RC-RS 100.00%+0.0% 943.37£265.7 21.00£0.0 0.25-RC-RS-RG 98.75%=+0.4% 78.96+43.8 113.10+54.8
0.10-RC-RS 100.00%=+0.0% 1042.72+259.6 21.0040.0 0.25-RC-RG 98.54%+0.2% 32.15+14.1 62.10£15.4
0.20-RC-RS 100.00%+0.0% 1046.89+£319.5 21.00+£0.0 0.20-RC-RS-RG 98.19%=+0.5% 70.98+43.3 106.90+36.7
0.20-RC-RS-RG 100.00%+0.0% 1051.75£361.2 21.00+0.0 0.20-RC-RG 97.67%+0.6% 41.35£19.9 87.30+16.4
0.15-RC-RS-RG 100.00%+0.0% 1080.84+325.8 21.00+0.0 0.15-RC-RS-RG 97.59%=+0.5% 57.81£16.2 126.40+23.9

o = = 1

g g

= 0996 EI 0.98

i 0.991 ﬁl 0.97

N =

% 50987} Z L. 085

8 Z

2 30983t < 5 09

& 8
< o978} < 092
s g
= =
0074 09
097 ~©- Basic 0.88 -6~ Basic
—&— 0.15-RC-RS —&— 0.25-RC-RS-RG
ogssh —+— 0.10-RC-RS 087 —+— 0.25-RC-RG
—— 0.20-RC-RS —— 0.20-RC-RS-RG
0.961 0.85 . : . . .
0 360 720 1080 1440 1800 2160 0 29001 58002 87003 116004 145005 17400¢
Runtime (s) Runtime (s)

the Basic system and the best LS setting remain at approx-
imately 6% for accuracy but increase for runtime complex-
ity, with the best memetic configuration taking 2.65 times on
average less seconds than the Basic system to converge to a

final solution. The plot shows that the accuracy evolution of
the Basic setting is inferior to the ones of the top five LS
configurations - throughout the entire runtime interval. For
this continuous kDNF dataset and for the one with a k =5

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 21

Table 11 ES2: ckDNF20-k{8,9, 10}-r20 results

D. Configuration Train Accuracy Runtime (10°s) #Rules
Basic 93.84%+0.1% 170.48+6.4 499.50+63.6
0.25-RC-RG 98.18%+0.5% 157.73+29.8 312.20+£122.0
0.25-RC-RS-RG 97.99%+0.3% 155.74+8.9 208.10+30.3
0.20-RC-RG 97.51%+0.4% 157.63+£21.0 326.10+81.8
0.20-RC-RS-RG 97.44%+0.5% 169.06+2.3 242.80+78.2
0.15-RC-RS-RG 96.98%+0.4% 166.90+7.5 331.70+57.9

< 0982

Q

Bt

® 0.975

=

g 0.968

=

Z 0961

a z

A g

o 309541

8
£ 0.947F
[
=
0.94 1
0932} A ‘_========°"=='
Z SRS - 0.25-RC-RG
0.925 —— 0.25-RC-RS-RG |
—%— 0.20-RC-RG
0.918 L L L L L
0 29362 58724 88086 117448 146810 176172
Runtime (s)
Basic 96.53%+0.1% 160.06+26.1 602.80+£120.6
0.25-RC-RG 96.87%=+0.3% 169.87+3.6 360.00£68.8
0.20-RC-RG 96.83%+0.2% 168.54+3.9 398.40+84.0
0.25-RG 96.60%=+0.1% 169.86+3.5 394.20+70.1
0.20-RC-RS-RG 96.56%+0.1% 169.17+£2.9 324.60+74.9
0.15-RC-RG 96.56%+0.1% 151.65+18.5 288.50+29.0

= 0.9688

Q

oy

a 0968}

=

g 0.9673

B

Z 0.9665 -

a 3

=< I

B 509658

&
£ 09651
©
=
09643
0.9635 —-©- Basic B
—&— 0.25-RC-RG
0.9628 —— 0.20-RC-RG |
—— 0.25-RG
0962
0 29298 58596 87894 117192 146490 17578¢
Runtime (s)
Basic 98.08%+0.0% 902.15+357.3 216.90+73.3
0.20-RC-RG 98.13%+0.0% 1722.21+6.4 381.70+93.5
0.05-RC-RG 98.10%+0.0% 1701.27+19.1 471.50£157.6
0.05-RC 98.10%+0.0% 1710.88+28.1 508.00+92.4
0.05-RC-RS 98.10%=+0.0% 1690.84+55.7 562.00+£106.2
0.10-RC-RG 98.09%+0.0% 1641.17+£83.9 310.60+54.6

& 0.9813

I

= 098121

—

=

= 09811

Q

=

Z L oo81f

2 g

% 309509

8
< 09807
8
=
0.9806 -
0.9805 —6— Basic 4
—— 0.20-RC-RG
0.9804 — 0.05-RC-RG |
—— 0.05-RC

0.9803

29352 58704

88056 117408

Runtime (s)

146760 176112

the best memetic configurations achieved almost perfect ac-
curacy on the train set. The best LS combinations for these
two datasets consist of all three operators applied together,
RC-RG and RC-RS, with relatively high application proba-

bilities. For k =7, a large discrepancy in all three metrics can
be seen between the Basic system and the 0.25-RC-RG con-
figuration which achieves almost full accuracy, in a quarter
of the runtime of the Basic system while producing seven
times less rules. From the plot we can see that the learn-
ing rates of the top LS configurations have been superior
to the one of the Basic system. For k = 8 the curves of the
learning rates of the memetic configurations ascend slower
than in the previous datasets, which is expected as datasets
increase in difficulty. However, the evolution of the Basic
system’s accuracy remains almost stagnant throughout the
runtime interval, while the accuracies of the best memetic
configurations monotonically increase. As observed in the
previous datasets, the memetic configurations evolved more
compact rule sets with higher accuracy, but in this case with
similar runtime requirements as the Basic configuration.

In the final two continuous kDNF datasets, with k =
{9, 10} the differences in accuracy become insignificant, this
being due to the very small portion of the problem space be-
ing occupied instances with class 1, where the coverage of
each rule contributes very little to the overall training ac-
curacy of the system. However, from the plots, we can ob-
serve that there was a noticeable difference in learning rate
for the Basic and memetic configurations; and as expected,
the slope of the evolution of accuracy of the best memetic
configuration exceeded the one of the Basic configuration.
For k =9 the presence of the 0.25-RG in the top five con-
figurations is due to the fact that it was able to stop learn-
ing quickly, but still achieve an accuracy comparable with
the one obtained by the more equally balanced (in terms
of specificity-generality ratio) configurations. In this case,
the Basic system evolved more bloated solutions, while the
memetic combinations generated rule sets of almost halved
size but with better accuracy. For the last dataset with k = 10,
the memetic configurations were able to learn more rules
and run for more time than the Basic configuration. This
is due to the Basic system’s difficulty in evolving rules with
very high specificity, caused by the MDL-based fitness func-
tion, which are needed to learn rules for this domain, thus
ending the Basic system’s runs sooner.

In the last four continuous kKDNF datasets, with a k rang-
ing from 7 to 10, the best memetic configurations slowly
shift from the combination of all three operators to just using
RC-RG (both with 25% individual-wise application prob-
ability). This suggests that as problems increase in diffi-
culty, BioHEL has less need for added specificity pressure,
so RS becomes superfluous. While this stage did not eval-
uate BioHEL’s extensions’ capabilities of avoiding overfit-
ting, it showed that the best memetic configurations can pro-
duce more compact solutions and in less time than the Basic
system.

22

Dan Andrei Calian, Jaume Bacardit

Table 12 ES3: Performance metrics on the noisy variants of the ckDNF20-k5-r20 dataset. Best configurations are shown in bold. Abbreviations

used: N. for noise type, (nt) for the noise-tolerant version of the operators and (std) for their standard version.

N. Configuration Test accuracy #Rules Runtime (107 s)
Basic 92.82%+0.4% 115.16+£10.9 263.45+99.1
_ 0.05-RS-RG (nt) 95.28%+0.4% 115.70+14.6 285.29+84.7
2. 0.05-RS-RG (std) 95.16%+0.4% 122.26+14.9 249.94+59.7
£ 0.10-RC-RS-RG (nt) 96.02%+0.3% 63.48+6.1 126.29+34.8
§ 0.10-RC-RS-RG (std) 95.60%+0.3% 128.63+13.0 441.00+117.2
0.25-RC-RS-RG (nt) 96.71%+0.4% 59.17+7.4 210.03+62.3
0.25-RC-RS-RG (std) 95.23%+0.3% 129.61+12.1 569.57+143.1
Basic 91.75%+0.4% 156.55+9.8 379.54496.7
= 0.05-RS-RG (nt) 93.69%+0.4% 169.59+13.1 604.364+126.0
& 0.05-RS-RG (std) 93.56%+0.4% 178.47+14.2 348.18+91.0
§ 0.10-RC-RS-RG (nt) 93.52%+0.4% 127.2249.1 313.64+89.0
© 0.10-RC-RS-RG (std) 93.90%+0.5% 187.32+15.2 561.47+165.6
0.25-RC-RS-RG (nt) 93.33%+0.4% 102.33+7.9 305.78+95.1
0.25-RC-RS-RG (std) 93.17%=+0.5% 182.89+16.1 954.43+317.2
Basic 90.93%+0.3% 180.57+10.1 322.29+79.0
~ 0.05-RS-RG (nt) 91.90%+0.5% 173.67+11.3 356.97+89.3
é« 0.05-RS-RG (std) 92.32%+0.4% 199.90+15.7 405.48+116.4
§ 0.10-RC-RS-RG (nt) 91.51%+0.4% 153.15+8.2 348.05+118.1
e 0.10-RC-RS-RG (std) 92.65%+0.4% 206.98+16.2 657.164+170.0
0.25-RC-RS-RG (nt) 90.39%+0.4% 119.22+7.4 473.46+139.1
0.25-RC-RS-RG (std) 91.94%=+0.5% 199.03+15.9 887.34+251.5
Basic 88.23%+0.4% 106.95+8.3 341.31+124.5
= 0.05-RS-RG (nt) 90.44%+0.5% 86.70+10.4 383.434+34.0
8 0.05-RS-RG (std) 90.99%+0.4% 130.83+10.8 463.94+33.4
5 0.10-RC-RS-RG (nt) 91.65%+0.4% 48.90+4.6 188.924+22.9
§ 0.10-RC-RS-RG (std) 91.43%+0.3% 154.96+12.7 671.98+134.8
0.25-RC-RS-RG (nt) 92.75%+0.3% 43.48+4.4 240.10+25.8
0.25-RC-RS-RG (std) 91.02%+0.3% 224.86+14.7 1398.25+191.3
Basic 78.04%+0.4% 96.69+7.4 388.15+80.5
= 0.05-RS-RG (nt) 80.25%+0.4% 94.70+7.2 295.85+113.5
% 0.05-RS-RG (std) 79.74%+0.5% 113.11£9.2 241.91+69.6
O 0.10-RC-RS-RG (nt) 80.86%+0.4% 72.144+7.5 171.944+51.7
§ 0.10-RC-RS-RG (std) 80.04%+0.5% 125.92+48.5 414.05+111.2
— 0.25-RC-RS-RG (nt) 81.39%+04% 61.86+6.8 309.61+88.0
0.25-RC-RS-RG (std) 79.83%=+0.7% 159.48+9.7 949.76+261.2
Basic 68.00%+0.4% 70.02+5.9 242.45+61.4
5 0.05-RS-RG (nt) 69.82%+0.4% 78.3446.6 302.47+107.2
g* 0.05-RS-RG (std) 69.06%+0.4% 81.69+6.6 238.18+66.2
O 0.10-RC-RS-RG (nt) 69.97%+0.4% 75.78+6.1 255.18+70.9
§ 0.10-RC-RS-RG (std) 69.20%+0.4% 86.76+7.0 469.33+77.7
&' 0.25-RC-RS-RG (nt) 69.65%+0.5% 75.114+7.1 489.97+84.6
0.25-RC-RS-RG (std) 68.97%=+0.5% 99.75+7.8 620.90+118.3
Basic 87.53%+0.4% 132.83+8.6 252.93+64.2
0.05-RS-RG (nt) 89.05%+0.5% 113.89+10.3 395.87+161.1
% 0.05-RS-RG (std) 89.87%+0.4% 160.61+£10.0 346.11+130.7
‘f 0.10-RC-RS-RG (nt) 89.94%+0.4% 75.83+7.1 175.85+60.1
S 0.10-RC-RS-RG (std) 90.14%=+0.4% 185.56+12.3 573.45+176.2
0.25-RC-RS-RG (nt) 90.64%+0.4% 63.18+6.0 201.55+59.9
0.25-RC-RS-RG (std) 89.54%40.6% 233.27+16.1 1104.31+293.1
Basic 76.97%=0.4% 115.01+£7.4 276.77+122.8
< 0.05-RS-RG (nt) 78.67%+0.4% 117.70+8.0 284.20+71.3
S 0.05-RS-RG (std) 78.32%40.4% 130.22+8.3 324.69+78.3
g 0.10-RC-RS-RG (nt) 78.89%+0.4% 100.19+7.0 299.39+101.4
vo 0.10-RC-RS-RG (std) 78.44%+0.4% 140.91+8.1 654.28+209.7
0.25-RC-RS-RG (nt) 78.79%+0.4% 87.46+7.2 420.97+101.2
0.25-RC-RS-RG (std) 78.11%=+0.5% 161.01+7.8 1078.96£273.2
Basic 67.10%+0.3% 82.60+5.7 282.10+73.9
= 0.05-RS-RG (nt) 68.31%+0.4% 91.75+6.1 382.13+98.3
S 0.05-RS-RG (std) 67.80%+0.4% 92.934+6.0 282.91+77.3
:; 0.10-RC-RS-RG (nt) 68.45%+0.4% 90.73+7.4 333.974+92.2
vy 0.10-RC-RS-RG (std) ~ 67.88%=+0.4% 96.48+6.6 478.83+111.9
0.25-RC-RS-RG (nt) 67.83%+0.5% 86.97+6.2 488.80+128.1
0.25-RC-RS-RG (std) 67.50%+0.4% 104.91+7.1 623.23+138.9

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 23

6.3 Results for Experiments Stage 3: Noise-tolerant
operators

This evaluation stage sought to determine if the noise-tolerant
operators improve BioHEL’s performance when compared
to using the standard LS operators. Next, we present our
findings in terms of accuracy, rule-set size and runtime over
the nine different types of noise embedded into the ckDNF20-
k5-120 problem. The evaluated configurations are the noise-
tolerant and standard variants of the best overall configura-
tions of ES2 and ES1. The results of this stage are shown
in table 12. Moreover, the statistical analysis of this result is
reported in table 13.

Table 13 Statistical analysis of the results of ES3. Best configurations
for each metric are reported in bold. Configurations with performance
significantly worse than the best method are underlined (Holm test 95%
confidence)

Metric Accuracy #rules Run-time
Friedman p-value 3.06e-05 7.79e-09 2.227e-06
Configuration Average ranks

Basic 6.88 3.00 2.66
0.05-RS-RG (nt) 3.55 3.55 4.00
0.05-RS-RG (std) 4.55 5.11 3.11
0.10-RC-RS-RG (nt) 2.33 222 1.88
0.10-RC-RS-RG (std) 2.77 6.22 5.66
0.25-RC-RS-RG (nt) 2.77 1.22 3.66
0.25-RC-RS-RG (std) 5.11 6.66 7.00

As expected, test accuracy decreases when the probabil-
ity of adding noise increases. This effect is more pronounced
for the Output and Both types of noise, as randomly flipping
the class of instances has a stronger distorting effect on the
hyperspace of a problem than adding noise to attribute val-
ues. A consequence of the inherent difficulty of this dataset
can be seen through the existing small range of differences
between the Basic and the best memetic settings for all types
of noise. Overall all noise types of noise, the majority of
configurations having the best accuracy have been noise-
tolerant memetic opereators combinations. Overall, the best
accuracy has been obtained by the 0.10-RC-RS-RG noise-
tolerant configuration, which is significantly better than the
basic BioHEL and the standard 0.25-RC-RS-RG setting.

For the majority of types of noise (7/9) the most compact
rule-sets are evolved by noise-tolerant LS operators, while in
the other two cases, the Basic configuration stops its learn-
ing process early, producing solutions with even fewer rules.
The best setting is 0.25-RC-RS-RG, which also had the sec-
ond best accuracy rank. This setting manages to significantly
outperform the three memetic settings on their standard con-
figuration and also 0.05-RS-RG on its noise-tolerant ver-
sion.

The noise-tolerant operators generally achieve much faster

runtimes than their standard variants, which is most evi-

dent in the noise types with 5% and 15% probability. The
dataset variants with 25% noise levels are difficult for Bio-
HEL to learn, and this is reflected in the low testing accura-
cies and small solution sizes of all configurations especially
for the Output and Both types of noise. Because of this, the
differences in runtime between the different configurations
are less prounounced in the datasets with 25% noise lev-
els. Overall, the noise-tolerant 0.10-RC-RS-RG configura-
tion has the lowest average rank, significantly outperforming
0.10-RC-RS-RG (std) and 0.25-RC-RS-RG (std).

This evaluation stage has shown that the noise-tolerant
operators are very effective in terms of generalisation poten-
tial, as they generate compact rule set sizes with high accu-
racies, in noisy datasets. As the standard operator variants
do not consider the existence of noise when editing rules,
they should only be applied for completely noiseless do-
mains, while the noise-tolerant variants are highly equipped
for dealing with noisy data, as our results have shown. The
statistical tests indicate that 0.10-RC-RS-RG (nt) is the over-
all best setting, as it was the best configuration for accuracy
and run-time and the second best for solution size.

6.4 Results for Experiments Stage 4: Global comparison

This subsection presents the results of evaluating the best
memetic configurations of the first and second experimental
stages {0.05-RS-RG, 0.10-RC-RS-RG, 0.25-RC-RS-RG},
the basic BioHEL system and four alternative machine learn-
ing algorithms on a broad collection of both synthetic and
real-world large-scale datasets. Ten-fold cross-validation has
been employed in this stage of experiments, and we are re-
porting cross-validation accuracy in table 14 and average
rule set/tree size in table 15. Random Forest is not included
in the solution size comparison as all of its trees have the
same size due to the functioning of the method.

The Friedman test rejected for both accuracy (with a
p-value of 3.597e-12) and rule set size (with a p-value of
9.096e-16) that all methods had the same performance. The
best method in terms of accuracy was the 0.10-RC-RS-RG
memetic BioHEL configuration, while GAssist had the best
rank for rule set size. The 0.10-RC-RS-RG configuration
had a performance significantly better than all non-BioHEL

methods, while GAssist generated rule sets significantly smaller

than any other method.

The comparison between the memetic settings and the
basic BioHEL should take into account both performance
indicators together, as we can see that there is a trade-off
between them: There is a clear relation between the load of
memetic search (the probability of activating the memetic
operators) and the rule set size. The more memetic search,
the smaller the rule sets. However, this increase, especially
in the real-world datasets, is followed by a decrease in ac-
curacy, which especially affects the 0.25-RC-RS-RG con-

24 Dan Andrei Calian, Jaume Bacardit

Table 14 ES4: Average test-set accuracy and standard deviation in %. Best configurations shown in bold. Underlined methods had a performance
significantly worse than the best method at 95% confidence

Dataset . BioHEL ' Other ML methods

Basic 0.05-RS-RG 0.10-RC-RS-RG 0.25-RC-RS-RG GAssist C4.5 RF PART
mx20 100.0+£0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0£0.0 100.0+0.0
ParMX 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 75.5+4.1 68.5+15.3 81.5+1.4 49.9+0.2
kDNF20_k5 100.0+£0.0 100.0+0.0 100.0+0.0 100.0+£0.0 100.0+0.0 99.8+0.0 99.9+0.0 100.0+0.0
kDNF20_k6 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.1 99.9+0.0 99.94+0.0 100.0+0.0
kDNF20_k7 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 99.24+0.5 99.84+0.0 99.9+0.0 100.0+0.0
kDNF20_k8 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 98.2+0.5 99.9+0.0 99.940.0 100.0+0.0
kDNF20_k9 100.0+£0.0 100.0+£0.0 100.0+£0.0 100.0+£0.0 97.8+0.4 99.94+0.0 99.9+0.0 100.0+0.0
kDNF20 k10 100.0+0.0 100.0+0.0 100.0+0.0 100.0+0.0 98.5+0.2 99.9+0.0 99.94+0.0 100.0+0.0
ckDNF20_k5 94.1+0.4 99.24+0.1 99.6+0.1 99.8+0.0 87.0+2.2 80.0+0.1 80.84+0.2 94.5+0.4
ckDNF20_k6 93.01+0.5 97.3+£0.4 99.040.1 99.6+0.1 86.3+1.7 83.540.1 83.4+0.1 88.8+0.5
ckDNF20_k7 90.4+0.4 92.1+0.7 95.7+0.9 98.3+0.3 88.3+1.0 90.3+0.1 89.84+0.1 90.4+0.4
wav 84.6+1.6 83.8+1.6 83.0+1.6 83.54+0.8 80.7+1.6 75.0+2.3 82.0+1.8 78.0+2.0
pen 98.9+0.2 99.0+0.3 99.0+0.3 98.7+0.3 89.4+1.7 96.6+0.3 98.6+0.2 96.9+0.5
Adult 86.0+0.4 85.940.6 86.0+0.6 86.0+0.5 85.9+0.4 86.0+0.4 84.1+0.4 85.64+0.5
connect-4 77.840.5 77.9+0.2 78.0+0.4 77.6+0.4 78.0+0.4 80.9+0.5 79.9+0.4 79.2+0.5
SS1 71.0+0.8 71.0+0.9 70.6+0.9 69.8+0.9 66.3+1.1 55.1+0.7 63.8+0.8 58.94+0.7
CN-WI1 75.740.3 75.8+0.4 75.8+0.4 75.7+0.4 74.8+0.4 68.6+0.4 74.1+0.5 70.9+0.6
CN-W2 76.0+0.4 76.0+0.4 76.0+0.4 75.9+0.4 74.7+0.5 68.4+0.5 74.44+0.5 69.5+0.3
CN-W3 76.3+0.5 76.4+0.4 76.3+0.5 76.2+0.4 74.6+0.5 68.1+0.4 74.7+0.5 69.9+0.3
CN-W4 76.5+0.4 76.5+0.4 76.4+0.4 76.3+0.3 74.8+0.4 68.2+0.3 74.5+0.4 70.0+0.5
kddcup 99.9+0.0 99.94+0.0 100.0+0.0 100.0+0.0 99.24+0.1 100.0+0.0 100.0+0.0 100.0+0.0
Ave rank 3.36 3.13 2.84 3.27 6.16 6.40 5.70 5.14

Table 15 ES4: Average rule-set size/number of tree leaves. Best configurations shown in bold. Underlined methods had a performance significantly
worse than the best method at 95% confidence

Dataset . BioHEL . Other ML methods

Basic 0.05-RS-RG 0.10-RC-RS-RG 0.25-RC-RS-RG GAssist C4.5 PART
mx20 25.6+2.2 26.0+2.0 25.842.0 26.14+2.3 17.0+0.0 486.44+47.2 43.549.0
ParMX 382.0+15.9 333.4+15.9 320.6+16.1 297.4+15.1 80.4+18.5 4308.6+3920.0 23+1.1
kDNF20-k5 21.0+0.0 21.0+0.0 21.0+0.0 21.0+0.0 21.0+0.0 8145.3+69.0 124.1£11.6
kDNF20-k6 21.0+0.0 21.0+0.0 21.0+0.0 21.0+0.0 21.0+0.1 6566.64+19.7 232.1+15.0
kDNF20-k7 21.0+0.0 21.04+0.0 21.04+0.0 21.04+0.0 20.6+2.6 6071.1+156.8 334.7+17.2
kDNF20-k8 21.0+0.0 21.04+0.0 21.04+0.0 21.0+0.0 17.9+4.1 3501.6+122.5 304.7+14.2
kDNF20-k9 20.8+2.1 20.8+2.1 21.04+0.0 21.04+0.0 10.8+2.9 2751.04+47.4 343.64+21.7
kDNF20-k10 21.0+0.0 21.04+0.0 21.04+0.0 21.04+0.0 6.0+1.2 1785.4458.7 289.94+11.2
ckDNF20-k5 66.8+8.9 35.9+6.1 23.6+2.1 21.24+0.5 31.4411.6 42082.64+305.9 2964.1+117.2
ckDNF20-k6 160.9+26.9 57.04+12.0 354475 229423 18.3+9.5 33168.94+230.7 2841.2+84.3
ckDNF20-k7 276.0£220.2 334.7+95.2 164.1+60.4 118.9+62.2 6.7+3.4 18630.7+257.0 1892.8+73.2
Adult 33.14+2.5 33.842.2 35.04+2.3 35.0+2.4 9.1+1.9 622.9479.7 1031.3+33.6
connect-4 48.0+4.1 49.1+3.6 48.8+3.5 46.61+5.5 36.4+4.1 4075.8+£145.8 3683.14+45.8
pen 267.1+£16.2 238.6+16.4 244.84+17.8 223.14+17.5 11.3+5.1 188.24+4.0 81.1+4.8
SS1 108.2+3.9 104.8+3.9 102.4+4.5 93.6+4.0 33.0+4.9 9142.3+98.6 3589.44+64.5
wav 219.5+15.8 252.2+14.3 257.5+19.0 247.04+19.8 6.41+0.9 290.749.3 88.4+7.1
CN-W1 115.5+£34 110.0£6.1 105.7£7.0 92.9+8.1 40.2+7.0 22662.1+154.8 6271.94+271.4
CN-W2 116.6+3.6 110.9+6.4 106.0+7.7 94.5+7.7 36.5+8.2 22144341552 7889.54+263.4
CN-W3 117.3£3.7 113.0+4.9 106.946.6 95.24+8.7 354494 21342.74+123.2 7450.8+51.0
CN-W4 118.6+3.1 113.6+6.0 107.6+7.1 92.6+8.3 36.5+9.0 20671.1+122.4 7006.0+47.1
kddcup 94.8+7.8 90.4+7.2 98.5+6.9 99.0+7.6 9.74+3.9 713.94+106.5 88.0+7.0

Ave rank 4.05 3.90 3.64 3.07 1.33 6.76 5.24

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets 25

figuration. This setting would obtain the best accuracy rank
when considering the synthetic datasets only, but becomes
the worst of the three memetic settings when considering
all datasets overall. The cause of this decrease in test accu-
racy is not due to overlearning, because this memetic setting
presents lower training accuracy as well (not reported). The
noise-tolerant memetic operators prefer to sacrifice a bit of
training accuracy in order to create much more general rules,
as it can be seen in the rule-set size results.

GAssist generates the smallest rule sets, but it never ob-
tains accuracy levels that are better than any of the BioHEL
variants. This was expected in both fronts. GAssist was de-
signed to generate very compact rule sets, including in its
fitness function a very strong generalisation pressure. How-
ever, in large-scale datasets that require very complex so-
lutions it is expected to struggle because of its nature as a
Pittsburgh system (trying to evolve a complete rule set at
once), as it creates very long individuals which are very dif-
ficult to evolve. Finally, the other three machine learning
algorithms (C4.5, RandomForest and PART) present a pe-
formance worse than any BioHEL variant on most datasets,
only managing to outperform them in very few datasets, all
of them being among the smaller of the real-world datasets.
Both C4.5 and PART generate solutions that are much larger
than any of the evolutionary rule learning methods in most
problems.

It is also interesting to observe the performance on the
CN datasets across methods. As described before, all datasets
try to solve the same problem, but with varying degrees
of precision (attributes) in the representation. CN-W1 has
60 attributes, CN-W2 has 100, CN-W3 has 140 and finally
CN-W4 has 180 attributes. The peformance of the machine
learning methods across the different versions of the dataset
is hence a reflection of their scalability capacity. The Bio-
HEL variants (all of them) are the only methods able to in-
crease their accuracy from one version of the dataset to the
next (in increasing number of attributes), showing that this
method is not constrained in this domain by the number of
attributes of the problem.

7 Conclusions and further work

This paper studied the applicability of integrating memetic
extensions into the BioHEL evolutionary learning system,
by adapting three of GAssist’s discrete-attributes memetic
operators to BioHEL and by defining and integrating six new
continuous-data memetic operators tailored to the attribute
list knowledge representation into BioHEL. The large scale
evaluation of these operators revealed that they guide Bio-
HEL into evolving more compact solutions, with improved
test set accuracies and by using less runtime. On small con-
tinuous domains we have determined that the LS operators

enable BioHEL with an increased capacity of avoiding ir-
relevant features of the domain. We have also showed that
the noise-tolerant variants of the continuous memetic oper-
ators produce more compact rule-sets in less time compared
to their standard variants, but with similar accuracies. Fi-
nally, when compared to the performance of other machine
learning methods, Memetic BioHEL showed very compe-
tent performance.

In future work we would like to study the possibility
of integrating an upper limit on the amount of computa-
tional resources to be used by the memetic operators in each
GA iteration. This approach would possess the potential of
maximising the generalisation potential of each memetic op-
erator while reducing its runtime. Moreover, it would be
interesting to optimise further the parameter that controls
the trade-off between accuracy and generality in the noise-
tolerant memetic operators, as the results have shown that
in real-world problems there is still some room for improve-
ment.

Acknowledgements

We acknowledge the support of the UK Engineering and
Physical Sciences Research Council (EPSRC) under grant
EP/H016597/1. We are grateful for the use of the University
of Nottingham’s High Performance Computing Facility.

References

1. Jaume Bacardit. Pittsburgh Genetics-Based Machine Learning in
the Data Mining era: Representations, generalization, and run-
time. PhD thesis, Ramon Llull University, Barcelona, Spain, 2004.

2. Jaume Bacardit, Edmund K. Burke, and Natalio Krasnogor.
Improving the scalability of rule-based evolutionary learning.
Memetic Computing, 1(1):55-67, 2009.

3. Jaume Bacardit, David E. Goldberg, Martin V. Butz, Xaveir Llora,
and Josep Maria Garrell. Speeding-up pittsburgh learning classi-
fier systems: Modeling time and accuracy. In Parallel Problem
Solving from Nature - PPSN 2004, pages 1021-1031. Springer-
Verlag, LNCS 3242, 2004.

4. Jaume Bacardit and Natalio Krasnogor. Empirical evaluation of
ensemble techniques for a pittsburgh learning classifier system.
In Learning Classifier Systems, volume 4998 of Lecture Notes in
Computer Science, pages 255-268. Springer Berlin Heidelberg,
2008.

5. Jaume Bacardit and Natalio Krasnogor. A mixed discrete-
continuous attribute list representation for large scale classifica-
tion domains. In GECCO ’09: Proceedings of the 11th An-
nual Conference on Genetic and Evolutionary Computation, pages
1155-1162. ACM, 2009.

6. Jaume Bacardit and Natalio Krasnogor. Performance and effi-
ciency of memetic pittsburgh learning classifier systems. Evolu-
tionary Computation Journal, 17(3):307-342, 2009.

7. Jaume Bacardit, Pawel Widera, Alfonso Marquez-Chamorro, Fed-
erico Divina, Jests S. Aguilar-Ruiz, and Natalio Krasnogor. Con-
tact map prediction using a large-scale ensemble of rule sets and
the fusion of multiple predicted structural features. Bioinformat-
ics, 2012.

26

Dan Andrei Calian, Jaume Bacardit

e}

10.

11.

12.

13.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

George W. Bassel, Enrico Glaab, Julietta Marquez, Michael J.
Holdsworth, and Jaume Bacardit. Functional network construc-
tion in arabidopsis using rule-based machine learning on large-
scale data sets. THE PLANT CELL ONLINE, 23(9):3101-3116,
September 2011.

Martin V. Butz. Rule-based evolutionary online learning sys-
tems: learning bounds, classification, and prediction. PhD thesis,
Champaign, IL, USA, 2004. AAI3153259.

Kenneth A. De Jong and William M. Spears. Learning concept
classification rules using genetic algorithms. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages
651-656. Morgan Kaufmann, 1991.

Janez Demsar. Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7:1-30, 2006.
Marco Dorigo and Thomas Stiitzle. And Colony Optimization.
The MIT Press, Cambridge, Massachusetts, 2004.

Alberto Fernandez, Salvador Garcia, Julian Luengo, Ester
Bernadé-Mansilla, and Francisco Herrera. Genetics-based ma-
chine learning for rule induction: State of the art and taxonomy
and comparative study. /EEE Transactions on Evolutionary Com-
putation, 14(6):913-941, 2010.

. Maria A. Franco, Natalio Krasnogor, and Jaume Bacardit. Speed-

ing up the evaluation of evolutionary learning systems using gpg-
pus. In Proceedings of the 12th annual conference on Genetic and
evolutionary computation, GECCO 10, pages 1039-1046, New
York, NY, USA, 2010. ACM.

Maria A. Franco, Natalio Krasnogor, and Jaume Bacardit.
Analysing biohel using challenging boolean functions. Evolution-
ary Intelligence, 5(2):87-102, June 2012.

. Maria A. Franco, Natalio Krasnogor, and Jaume Bacardit. Post-

processing operators for decision lists. In Proceedings of the four-
teenth international conference on Genetic and evolutionary com-
putation conference, GECCO ’12, pages 847-854, New York, NY,
USA, 2012. ACM.

Maria A. Franco, Natalio Krasnogor, and Jaume Bacardit. Post-
processing operators for decision lists. In Proceedings of the four-
teenth international conference on Genetic and evolutionary com-
putation conference - GECCO 12, page 847, Philadelphia, Penn-
sylvania, USA, 2012.

A. Frank and A. Asuncion.
2010.

Salvador Garcia and Francisco Herrera. An Extension on Statis-
tical Comparisons of Classifiers over Multiple Data Sets” for all
Pairwise Comparisons. Journal of Machine Learning Research,
9:2677-2694, December 2008.

John J. Grefenstette. Lamarckian learning in multi-agent environ-
ments. In Rick Belew and Lashon Booker, editors, Proceedings of
the Fourth International Conference on Genetic Algorithms, pages
303-310, San Mateo, CA, 1991. Morgan Kaufman.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer,
Peter Reutemann, and Ian H. Witten. The WEKA data mining
software: an update. SIGKDD Explorations, 11(1):10-18, 2009.
George Harik. Linkage learning via probabilistic modeling in the
ecga. Technical Report 99010, Illinois Genetic Algorithms Lab,
University of Illinois at Urbana-Champaign, 1999.

George Harik, Fernando G. Lobo, and David E. Goldberg. The
compact genetic algorithm. /EEE-EC, 3(4):287, November 1999.
Michael J. Kearns and Umesh V. Vazirani. An introduction to com-
putational learning theory. MIT Press, Cambridge, MA, USA,
1994.

James Kennedy and Russell Eberhart. Particle swarm optimiza-
tion. In Neural Networks, 1995. Proceedings., IEEE International
Conference on, volume 4, pages 1942 —1948 vol.4, nov/dec 1995.
John R. Koza. Genetic Programming. The MIT Press, Cambridge,
Massachusetts, 1992.

Natalio Krasnogor and James Smith. A tutorial for competent
memetic algorithms: model, taxonomy, and design issues. [EEE
Trans. Evolutionary Computation, 9(5):474—488, 2005.

UCI machine learning repository,

28.

29.

30.

31.

32.

33.

34.

35.

Pedro Larrafiaga and Jose Antonio Lozano. Estimation of Distri-
bution Algorithms. Kluwer Academic, 2002.

Xavier Llora, Anusha Priya, and Rohit Bhargava. Observer-
invariant histopathology using genetics-based machine learning.
Natural Computing, 8:101-120, 2009. 10.1007/s11047-007-
9056-6.

Xavier Llora, Kumara Sastry, and David E. Goldberg. The com-
pact classifier system: Scalability analysis and first results. In Pro-
ceedings of the Congress on Evolutionary Computation 2005, vol-
ume 1, pages 596-603. IEEE Press, 2005.

Xavier Llora, Kumara Sastry, Claudio F. Lima, Fernando G. Lobo,
and David E. Goldberg. Linkage learning, rule representation, and
the x-ary extended compact classifier system. In Learning Classi-
fier Systems, Revised Selected Papers of IWLCS 2006-2007, pages
189-205. LNAI 4998, Springer-Verlag, 2008.

Martin Pelikan, David E. Goldberg, and Erick Canti-Paz. BOA:
The Bayesian optimization algorithm. In Proceedings of the Ge-
netic and Evolutionary Computation Conference GECCO-99, vol-
ume I, pages 525-532. Morgan Kaufmann, 1999.

Gilles Venturini. SIA: A supervised inductive algorithm with ge-
netic search for learning attributes based concepts. In P. B. Brazdil,
editor, Machine Learning: ECML-93 - Proc. of the European Con-
ference on Machine Learning, pages 280-296. Springer-Verlag,
1993.

Steward W. Wilson. Classifier fitness based on accuracy. Evolu-
tionary Computation, 3(2):149-175, 1995.

David Wyatt and Larry Bull. A memetic learning classifier sys-
tem for describing continuous-valued problem spaces. In Recent
Advances in Memetic Algorithms, pages 355-396. Springer, 2004.

Appendix

27

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets

sults on the Checkerboard datasets

Full cross-validation accuracy re:

Table 16 ES1

VLIF8OL T'SIFYo6L TSIFO'I8 STIFTS8 00IF688 SPFIT6 SE€F6'S6 TEF6'S6 STFI96 8IFEL6 6'1FEL6 9IFSL6 STF086 STF8LO LIF8L6 61FLL6 STFSLO LTFVL6 LTIFIL6 DI+SY+IA-ST0
TEIFLTI8 €VIF8€E8 6TIF898 6 TIF998 BLFLO6 OVFIS6 9CFIL6 LTFVI6 VTFCTL6 0TFIL6 9TFSL6 8I1FSL6 VIFIB6 €I1F6'L6 81F6'L6 61F8L6 STF8L6 STFIL6 LIFTLO DYI+SI-ST0
STIF098 S6FI188 98FL06 S9FS06 LYFTTU6 6€F6T6 VeEFO6E6 SEFLEO LTFUS6 6TF6'S6 TTFCI6 9TFSI6 0TFLL6 STF8LO LIF9L6 OTFLL6 TIFSL6 91F¥L6e 81FEL6 DI+II-STO
S'8IF689 88IFO6TL LSIFO8L TSIFI6L €CIFIER 09FSTO 1'9F0€6 I'VFIV6 LTFVI6 ¥TF6'96 8TFIL6 O0TFI'L6 9TFI86 STFLLO 8TFIL6 9TIF8L6 STFLL6 0TFELO 61FCLO SY+IA-CTO
CTIIFEY8 v'6FC88 167988 ¥LFI06 +LF988 OLFFL8 T9FI68 TIF606 9€¢FEeo 8TF8S6 STF096 STF8I6 6TFLLO 9TFSLO 61FSLO 6TFLLO V'IFIL6 9TFEL6 6TFTLO DA-ST0
99IFESL 89IF6'LL V'SIFEI8 6CIFV P8 8TIFCER BEFEC6 8EF8C6 ['€FC96 8TFI96 8TCFCLO 8TFCTL6 LIFSL6 STF086 STFLLO LIFLL6 8T1F6L6 STFLL6 9TFIL6 LIFVL6 S4-6T0
LEIFST8 9CIFTP8 68F088 TO6FCL8 V' SF6'68 9VFL06 6'€FLTO O0VFITO 8TFSV6 LTFY'S6 ¥IFLS6 9TFLS6 1'TFSLO STFLL6 8TF9L6 O0TFLL6 VIFLLO VIFVL6 LIFIL6 ODU-ST0
OLIFELL OPVIFIOV8 TEIFRSY €TIFIC8 68FI'N6 9CFVS6 LTFLI6 STFLI6 8TFCTLO BIFVLO LIFVL6 LIFSL6 €I1FI86 €IFLL6 6TFLL6 61F8L6 CIFLLO VIFSLO 61FTL6 DI+SYTOA-0T0
PTIF8E8 0CIFEE8 ¥ TIF898 CTIF888 6LFIT16 6TF6S6 VTFELO STFLI6 VIFSLO 61FSL6 LIFVL6 0TFCLO LTFI86 STF6'L6 8TF8LO LTF8L6 9TFIL6 LIFSL6 8TFTLO DY+SY-0T0
Y6FIL8 LTIF098 99FS06 T8FOI6 [9F¥ce LEFSTO 9€F9E6 8EFEE6 8TFLYO6 8TF8SO 9TFES6 STFEI6 LITF8L6 STFLL6 O0TFVL6 6'1F8L6 STFSL6 STFIL6 8TFEL6 DI+DI-0T0
OLIFOVL 691FSYL 091F96L €CIF6'€8 STIFELY €VFEP6 €€F096 6TF8S6 9TFS96 8TFOL6 T'CFULO 8TFEL6 STFO6L6 €I1FLL6 6'1F9L6 0CFLO VIFIL6 9TFTUL6 8TFVLO SY+DY-0T°0
0CIFT98 00IF698 T6FSL8 TLF88E VOFO6L8 SOFLLE TLFC88 0CFS06 TEF8E6 SEFSHTO 8TFSS6 STFS6 8IFLLO LTF8L6 0TFEL6 T'CFLLO €1FSL6 LITFEL6 LTFIL6 DI-0T0
SYIFEBL T'CIFVE8 ¥ SIFSP8 vTIFEC8 LLFE06 T'VFI'S6 6TFEI6 8TFY96 LIFVL6 LI1FSL6 6'1FIL6 L1F9L6 91F086 91F9L6 61F8L6 81F6L6 CIFLL6 LTIFSL6 9T1FSLO S¥-0T0
TTIFET8 9TIFIP8 BOIF6T8 €0IFCTI8 19F6'68 9VF606 I'VFCT6 9€F0C6 0CFrvo 6TFES6 LTFSS6 6TF8SO 6'1FSL6 STFO6L6 8TFIL6 O0TFLLO STFIL6 STFEL6 LTFTLO 24-0C0
ECIFL08 TVIFTE8 8O0IF6L8 €6FE68 SBFECT6 8TCFLS6 0€F996 9TFS96 6'1FCL6 1CFSLO 8T1FEL6 STFSLO 9TF6'L6 STFLO 0TFSLO6 0TFIL6 STFSLO LIFTLO 8T1FEL6 DI+SI+IA-SI0
PCIFPe8 v 11F988 SEIF8SY8 [8FF06 €9FLT6 0€¢F6S6 1'CFTLO 8TFV96 SIF8L6 0TFYLO 8TFEL6 9T1FEL6 9TIFIB6 VIF8LO 8TFLL6 LIF6L6 9TFIL6 9TFSL6 8TFTLO DY+SI-C1°0
OTCIFLY8 STIFO0L8 88FS68 SLF868 CSFSI6 TYF8I6 9EFSE6 9€F9E6 0CFLY6 8TF8S6 STF096 9TFI9%6 6 1F9L6 STF8L6 61FSL6 61FLL6 VIFLLO 9TFSL6 8TFIL6 DI+II-C1°0
SOIFLBL OCIF08 0CIFI'S8 TOIFCI8 TLFST6 I'vFCY6 v EFSS6 STFE6 91FCTL6 TTFTULO LIFIL6 81FVLe LIF086 STF9L6 81F9L6 8IFLL6 STFIL6 STF¥VL6 8T1FEL6 SY+IA-C1°0
PTIFOS8 TvIFYP8 06FCL8 T6F0L8 LIFSL8 9LF6S8 SOFT88 ¥ SFI06 9CFICo 9EFIS6 LTFIS6 9TFE6 T'TFTLO 8TFVL6 LTFSLO 8TFVL6 STFIL6 LT1F696 LTFI'LO DY-ST°0
6'CIF008 8CIFVI8 O0TIFSS8 O0CIFELS 98FET6 €C€FVS6 6CFI9 PTF896 81FCL6 LTFIL6 8TFCTL6 LIFSL6 €1FI86 VIFIL6 8TFLL6 61FLL6 9TF8L6 LTFVL6 61FEL6 SE-S1°0
9€IFLT8 9TIFTE8 SOIF6'S8 SOIF098 S SCF868 SPFE06 TYFLI6 OVFETO 6TFVE6 ['€FSV6 STFYS6 9TF6'S6 81FSL6 STFIL6 0TFSL6 O0TFSLO VIFYLO LTFEL6 LIFELO DU-ST°0
TTIFLS8 OCIFEY8 TOIFYLY [1'8F806 V' SFTEO 1'€FTS6 6TF6'S6 LTFTI6 0TFOL6 OTFI'L6 OCTFIL6 LIFEL6 STF086 91F8L6 6'1FVL6 0TFILO 9IFSLO 9TFTUL6 LIFVL6 ODI+SY+II-01'0
STIFYLY ¥TIFLLE TOIFI'68 09FCTT6 THYFSY6 LTFOS6 9TF696 VTFLI6 LTFVL6 91F9Le 9TFTL6 81F9Le STF086 91F9L6 STF8L6 8IF8L6 LIFSL6 LIF¥VL6 61FCL6 DY+SI-01°0
8'0IF898 T'T1F8L8 T8F6'68 6LFE06 09F906 6VFCI6 €¥FIT6 LEFEE6 6TFIV6 €EFO6T6 8TFS6 I'TFFI6 LTF8L6 STFSLO BTFIL6 6T1F9L6 V'IFIL6 ¥VIFELo 8TFELO DY+OY-01°0
LEIFTI8 8CIFPe8 T'IIFS98 06F868 +9F606 6¢F6€6 TEF6V6 8TFSSO TTFLO6 LIFVL6 9TFIL6 LIFEL6 LTF6L6 STFLL6 6'1FVL6 8TFLL6 €1FIL6 VIFVL6 61FCTL6 SY+OY-01°0
PTIFES8 90IFLS8 L6FSL8 T'8FCL8 6'8F8S8 €LF0C8 99FL88 6SF968 €€F6T6 0CFLY6 8TFES6 LTFO6S6 61FLLO LTFSL6 0CTFYL6 61FLL6 STFYLO 8TFIL6 9TFTL6O DY-01'0
OVIFEE8 €TIFO698 98FE68 €6FL06 TSFIEo CCFIS6 €TFF96 6TFS96 61FEL6 IIFVLO 6'1FEL6 LIFEL6 STFOLO 9TFIL6 61TFLL6 8T1F8L6 VIFIL6 9TFVL6 9T1FE L6 S¥-01°0
6CIFYT8 TTIF8Y8 TOIF098 C8F8LY 89FI88 CSF6'88 8C¢F0T6 SEFITO 1'€FTE6 0CFST6 6TF0S6 ¥TFOS6 T'TFELO LTFIL6 6'1FTLO6 0TFIL6 9TFVL6 STFVL6 9TFELO 24010
ICIFV'S8 6'6FC68 LLFLT6 TLFOT 9SFIT6 TEFIV6 veEF616 €E€FST6 6CF096 0TFOL6 0TFOL6 8TF0L6 STF6L6 STFLL6O 9TFIL6 6TFLL6 LIF¥L6e STFSL6 9TFEL6 DI+SI+OI-S00
O'TIF6'S8 TOIFL88 0LF806 LLFV6 8¥F9¢€6 9€FoV6 1'€FCS6 0€FSS6 I'CFLI6 LI1F¥L6 STFCL6 LTIFVL6 STFI86 9TFLL6 TFLL6 8TF6'L6 STF9L6 STFIL6 8TFTL6 DY+SI-S0°0
6 CIFY Y8 LOIFSS8 LOIF898 6LF968 9LFT68 9CFE68 TSFLO6 9VFIT6 0CFCTHo SEFIS6 0€FI'S6 STFI96 TTFVLO 9TFLL6 O0CTFVL6 61FSL6 STFVLO LIFVL6 91FVL6 DI+DI-S0°0
6'CIF9C8 O CIFLI8 T0IFL8Y €8FC06 SSFLI6 BEFLTO 6'€FOV6 €EFrv6 TTF8S6 0TFLI6 6'1F896 0TF8I6 SIFLLO STFLO 6'1FVL6 61F9L6 VIFIL6 9TFEL6 LIFELO SY+DY-S0°0
TEIFTT8 00IFI'S8 TIFOP8 C8FCS8 TOF0S8 98FYT SOF6'L8 8SFI8Y LEFVTo T'E€FEV6 6TF8YV6 8TFLSO QIF¥ L6 LTIFSL6 6'1F9L6 61F9L6 VIFVL6 STFIL6 LTFTLO DY-S0°0
T'0IFT88 TOIF8LE 8LFS06 S9OFIT6 LYFSTO6 0¢F6E6 0CFO66 1'€FES6 TTF696 0CTFTLO 9TFIL6 6'1FCL6 8TFLLE6 STFIL6 9TFSL6 61F8L6 STFLL6 9TFEL6 9TFSLO S¥-S0°0
ICIFTe8 STIFSY8 1'01F9C8 To6F¥L8 ¥ 8F898 POFLLE 1'6F968 0CF806 I'€F9€6 €E€FOV6 8TF616 €TF8S6 TTFCTLO 9TFSLO TFSL6 €TFSLO STFSL6 9TFTUL6 8TFELO DY-S0°0
ECIFSI8 €TIF6C8 VEIFTT8 06Fv P8 66FCI8 99FVI8 69FEV8 €9FCL8 v PF9'06 9€¢F8T6 TEFOV6 TEFO6V6 €TFS96 1TFTLO 0TFELO TTFTLO VIFIL6 LIFIL6 8IFI'L6 oiseq

0T 61 81 L1 91 SI 4! €l ! I ol 6 8 L 9 S 14 € [4 POWISIN

S9INQLIIE JO JOqUINN

Dan Andrei Calian, Jaume Bacardit

28

Table 17 ES1: Full run-time (in s) results on the Checkerboard datasets

8CFYL 9TFSL LTFEL €TFOL LIFS9 TI'IF09 01F9S 80FI'S 90FSY vOFCry vOFI'Y ¥0F6'€ €0FLE TOFIE TOFSE €0FSE €0Fre TOFCe TOFOE DI+SY+OI-ST0
I'tF6'9 TTF6'9 1'TFY9 6'1FL9 €IFI9 OIFI9 80FES LOFI'S ¥OF9Y ¥OFEY v0FCy €0F0Y €0F6'€ €0FLE €0F9E €0F9¢ TOFVE CTOFEE TOFCE DYI+SY-ST0
I'TFY9 L1F¥9 €IF8S STIFE9 01FT9 v'IF69 T'IFE9 60F8S 80FVS LOFOS LOFIY 90FIY S0F6'E TOFYE €0Fee €0Fee €0FTe €0FI'E TOFLT DI+II-STO
I'TFL9 TTF99 0CTFCT9 6'1FC9 LTIF09 O01FSS 60F0¢ 80FFYy SO0F8E S0F9E ¥0FEE ¥OFI'e €0F6CT €0F8C €0FLT €0F9T €0FST TOFVT TOFCT SY+DA-CTO
ECFYL 6'1FCL TTFYL 0CFSL 9TFV8 STFL6 1'CFr8 6'1FvL O1FI9 60FFS 80F8Y 90FEY S0F6'c v'0F9¢ vO0Fre ¥OFee ¥OF¥re vO0FTe €0FLT DA-STO
0CF09 8'1F6'S 61FLS LTFSS 9IFLS 80F8Y 80FEYy SO0FOY SO0F9E SO0FSE S0FEE €0F0€ €0F6'C €0F8C TOFIT €0F9C TOFST CTOF¥C TOFCT S¥-6T0
SIF8Y vIFOS T'IF8Y OIFI'S 60FVS OIFI9 60FCS LOF6Y LOFEY LOF8E LOFIE 90FCTE SO0F6'C v'0FST €0FET €0FET €0FCT €0F0T TOFLI OY-ST0
9CF6'9 0TF09 0TFO9 I'TFY9 LIFS O1FES 80F8Y 90FrY 90F0F SOF8E €0F9¢ €0Fve €0Fee €0FTe €0FI'e €0FI'E €0F0E €0F6'C TOFLT DI+SI+IA-0T0
8TFLS TTFV9 8T1F8S 6'1F6C CIFSS 60FCTS LOFLY 90FFY v0FOY +0F6C ¥OFLE SO0F9E €O0Fye TOFEe TOFCE TOFTE TOFOE TOFOE TOF8T DY+SY-0T°0
SIFSS &IF6'S T'IFv'S T'IFLS TIFLS T'IFC9 60FL'S LOFI'S LOFLY 90FrYy 90FI'Y 90F8E ¥OF¥re v0FI'e €0F0¢ €0F6C £€0F6C €0FLT TOFVT DI+DI-0T0
6'1F6°SC 8IFI'9 QIFSS SIFES SIFTS 80F61 LOFrY 90F6'€ SOFSE v0FTe vOFI'E ¥O0F6'C €0FLT €0F9T €0FST €0FST €0F¥T €0FCT TOF0T SY+DY-0C°0
0CFE9 6'1F89 81F99 0CFOL 0CTF6'L TTFL TTFO6L STFLY OIFVS OIFIS 80FrT S0F6c SOFSE ¥oFee €0FI'e v0F0E ¥0F0E ¥0F8T €0FST DA-0T0
SIFIS VIFOS SIFLY vIFoY 01F9Y LO0Fry SO0FOV 90FL'E v0Fee vOFI'E ¥0FOE €0F8C €0F9CT €0F9C €0F¥T €O0FY'C TOFET TOFCT TOFIC S¥-0T0
VIF8Y vIF8Y €I1F67 CTIFTS 60F67 60F8S 01F0C 90FFYy LOFOY 90F9¢ 90Fye SOFI'E SO0F8T ¥OF¥T ¥0FeT €0FCT ¥0FCT €0F0T TOFLI 24-0C0
I'tF6'Ss 6'1FLS STIFOS vIFTS €1F0C 80F9Y 80FEY 90FCYy SO0FSE €0FEE vOFeEe vOFI'E €0F6'C TOFC €0FLT €0FLT €0F9C €0FST TOFET DI+SI+II-S10
IFI'S VIFIS LIFTS T'IF8Y 01F8Y LOFOY LOFCHY S0F8E €0FSE €0Fee €0Fce €0FI'e TOF6'C TOF6'C TOF8T TOFLT €0FLT TOFIT TOFYT DY+SI-C1°0
81FECS 9IFTS €IF6y CIFI'S 01FTS 01F9S 80FI'S 60FLY LOFEY LOF6E 90F9¢ SOFFE ¥0F0€ €0F8T €0F9C €0F9C €0F¥T v'0F¥T TOFIT DI+DI-S1°0
8IF0S LIFIS ¥VIF9Y TIFLY 60FSY LO0FSY 90FI'v S0F9C v0Fee v0F0€ ¥0F8T vO0FLT €0FST €0FST €0FET TOFCT €0FCT TOFIT TOF6'I SY+IA-C1'0
TFLS TTFT9 LTF09 6'1F99 8I1F69 0TF08 LTIF89 ST1F09 OIF8Y 80FCT LO0F6'E SO0FSE SOFTE ¥0F6T €0FLT €0F9CT ¥O0FLT ¥0F9T TOFTT DY-ST°0
IFLY 9IF8Y CTIFEY €IFEy 01FTy 90F0v 90FLE SO0FCE ¥0F0E ¥OF8C €0FLT v0F9T €0FvC TOFET €0FET TOFCT TOFI'C TOFOCT TOF6'1 SY-S1°0
CIFrYy vIF8Y 01Fvy TIF6v 60F6v 60FES 80F6Y 80Fry LOF8E LOFIE SO0FTE ¥VOF8CT SOFLT v'0FET €0FI'T €O0FIT ¥OFIC v0F6'1 TOFII OU-S1°0
CIFSY L1F0S €IFSY 'IFvy 80FCTY 80FET LOF6'E 90F9E ¥OFIE v0FOE €0FLT €0F9C €0FST €0FPT €0FV'T €0FvT €0FET TOFCT TOFOT DI+SY+OA-01'0
TIFEY SIFOY TIFCY 80FCy LOF6'C LOFI'Y 90F8E SO0FSE ¥0FOEC €0F8C €0F8T €0FLT €0FST TOFY'T TOFYT TOFET TOFET TOFTT 1'0F0C DY+SI-01°0
CIFEY CIFSTY OIFIY U'IFSY TUIFLYy €1FCS 80FSY LOFIY LOFLE SO0FSE SOFI'E SO0F0EC ¥OFLT €0FPT €0FET €0FET ¥0FCC €0FIT TOF6'L DY+OY-01°0
VIFSY SIFSY 01F0v 60FI'y 80FCTy 80FCY 90F8€ vOFve ¥OFI't ¥OF8C €0F9T €0FvT €0F€T €0FCC €0FIT €0FIT TOFOCT CTOF6'T TOFLI SY+OY-01°0
SIF6v SIF0S €IFI'S 9IFVS LIFI9 LIFIL VIFO9 ¥VIFYS 80FCr 90FLE S0FEE SO0F0E ¥VOFLT €0FPT €0FE€T €0FTT €0FE€T €0FCT TOF6'L DY-01'0
CIF0Y TIF6E 80F9E OIF8E LOFIE 90F8E S0FEE ¥O0FTE ¥YOFLT vOFST €0FYT ¥0FET €0FCTT TOFIT TOFOCT TOFOCT TOF6'T TOF8T TOFLI S4-01°0
TIFCY CIFvY O1FIY 60FEY 60FLY 60FCS 90FrYy LOFIT SO0F9E 90F¢€e 90F0¢ S0FICT v'O0F¥T SO0FCT ¥O0FICT vOFIT €0F6'T €0F8T TOFI'L 2¥-01°0
TIF6'E O1FLE 80FSE 80F9C 90FLE 90F8E 90FSE 90FCE SO0F8T ¥0F9C €0FyT €0FET €0FI'T €0F0C €0F0CT €0F0CT €0F0C €0F6'T TOFLT DI+SI+DII-S0'0
I'IFL'E 6'0F9¢ 80FSE 80FSE LOFSE 90F9¢ 90Fye S0F0C SOFLT ¥OF¥T v0FE€T €0FCT €0FI'C TOFOCT TOF6'1T TOF6'T €0F6'T CTOF8T TOFLI DI+SY-S0°0
I'iF6'c €I1FCy I'IF0Y OIFI'Y 60FEY O1F8Y O1FCY 80F8¢ SOFTE SOF0E SOFLT vO0FST €0FTC €0FIT €0F6'1 v'0FOT ¥0F0CT €0F6'1 TOFI'I DY+DI-S0°0
IIFLE TIF8E LOFI9E 80FLE LOF8E 90F6€ 90F9¢ ¥0FeEe ¥0F6C v'0F8T vO0FYT €0FCTT €0FIT €0FIT TOF6'T ¥0F0T €0F6'1T €0F8T TOFII SY+DY-S0°0
CIFvy T'IFYy ¥VIFLY TIF6V TIFCS 91FI9 TIFOS T'IF9Y L0F9E 90FEE 90F6T SO0FIT €0FET €0FIT €0F0T €0F0CT €0F0CT TOFOT TOFLT DY-50°0
60FCE 60FSE LOFYE LOFEE 90F¥e S0FSE SO0FTE ¥0F6'C ¥0F9C vOF¥T +v0FCT €0FIC €0F6'1 €0F6'1 TOFET €O0F8T TOFLT TOFIT T0FST S¥-S0°0
0'1F0Y 6'0F0Y 60F6€ OIFI'V OIFvy ['IF6v LOF¥Y LOF8E 90Fre 90FCTE S0F8T SO0FST ¥0FTT €0F0C €0F0T v'0F6'l ¥0F6'T €0F8T TOFSIT 2Y-S0°0
60F8¢ 60F6€¢ 01F0F 60FIY 01F0S 60FCS 60F9Y 60F0Y LOFSE 90FI'€ SO0FLT SOFET €0FIT v0F6 1 €0FLT TOFLT €0F8T TOF9T TOFYI oiseq

0T 61 81 L1 91 SI 14! €l cl I ol 6 8 L 9 S 14 € 4 POWIaIN

SOINQLIIE JO JoqUINN

29

Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets

Table 18 ES2: Full training accuracy results on the large-scale synthetic datasets

0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F596 £0+0'86 ¥'0FL'86 1'0FL'66 00F6'66 ODI+SIY+II-ST0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F+'96 9'0F0'v6 TIFV96 1'0F9°66 0'0F866 DY+SY-STO
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 £0F6'96 S'0FC'86 T0FS86 1'0F9'66 0'0F866 DY+DY-STO
0°0F0°00I 0'0F0°00I 0°0F0°00T 00F000I 00F000I 00F000L 00F000I 00F000I 0'0F1'86 0'0F¥'96 S'0F8Y6 6'0F816 T0FS86 1'0F¢ 66 SY+DIY-ST0
0F6'66 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F996 7'0F0v6 8'0FLS6 0F6'86 1'0FL'66 DY-CTO
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F¢€96 £0FY'e6 £1F6C6 £0F¥'86 1'0F566 S¥-ST0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F596 7'0F6'76 SOFI'€Eo £0F¥'96 CTOFI'L6 O¥-6T0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 ['0F9'96 SOF¥'L6 S'0FT'86 1'0F9'66 00F866 ODI+SY+II-0T0
0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F¥'96 ¥'0F9°¢6 9'1F196 T'0F$°66 0'0F8'66 DY+SI-0C0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 C0F896 7'0FSL6 90FLL6 1'0FS66 0'0FL'66 DY+DI-0T0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F596 9°0F0°S6 6'0F1°S6 £0F1'86 1'0FT66 SY+OY-0C°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F596 ¥'0F0v6 9 1FSV6 T0F¥'86 ['0FS'66 DY-0CT0
0'0F0°00L 0°0F000L 0°0F0°00I 00F000L 00F000L 00F000L 00F000L 00F000I 0'0F1'86 '0F+'96 TOFS€Eo 8'0FSCo TOFY'86 1'0F¢66 SY-0T0
0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F$96 T0F9Y6 L'0FSTo S0F¥'96 €0F0°L6 249-0C0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F596 7'0F0°L6 S0F9°L6 1'0Fv'66 00F866 DI+SIY+II-S1'0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F¢€96 9'0FTY6 'TFLY6 T0FT66 1'0FL'66 DY+SI-C1°0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 ['0F9'96 8'0F0°L6 LOFTL6 ['0FE£'66 0'0FL'66 DY+DI-S1°0
0'0F0°00L 0°0F0°00I 0°0F0°00T 00F000I 00F000I 00F000L 00F000L 00F000I 0'0F1'86 0'0F¥'96 ¥'0F6'v6 LOFSV6 T0F6'L6 '0F1°66 SY+DA-C1°0
'0F6'66 00F000T 00F000I 00F000T 00F000T 00F000I 00F000I 00F0001 0'0F1'86 0'0F+'96 €0FIv6 'TFLT6 ¥'0F6°L6 T'0F¥'66 DY-ST°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F¢€96 T0FSEo6 TIFIC6 £0F8'L6 1'0FT66 SY-S1°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 £0FTY6 L'OFIC6 £0F096 '0F996 OY-S1°0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 ['0FS96 S'0F6'S6 9'0F196 ['0FC'66 00FL66 DI+SY+II-01'0
0°0F0°00I 0°0F0°00I 0°0F0°00T 00F0°00I 00F000I 00F000L 00F000I 00F000I 0'0F1'86 0'0F¥'96 T0F9¢o TIF8Y6 T0F886 1'0F966 DY+SI-01'0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F596 7'0F1°66 LOF¥ 16 0F066 1'0F9'66 DY+OY-01'0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0Fv'96 S0FST6 9°0F9°¢6 Y'0FEL6 1'0F6'86 SY+OY-01°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0F596 TOFLE6 I'TF€C6 £0FY'LO COFI'66 DY-01°0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 TOFSE6 €0FICo TOFTLO ['0F6'86 S¥-01°0
'0F6'66 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 00F0001 0'0F1'86 1'0F$96 T0F6'co ¥'0F9'16 Y'0FLS6 £0F¥'96 2¥-01'0
0°0F0°00T 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0Fv'96 £0FET6 90FIv6 ¥'0FCT86 1'0FS66 DI+SI+IY-S00
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 7'0F8¢6 S0FICo £0F9°L6 1'0F1'66 DY+SY-S0°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 YO0FV'v6 9°0F0'€6 £0F9°L6 1'0F¢€66 DY+DY-S0°0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 SOFET6 90F8C6 £0FE96 T0FT86 SY+OY-S0°0
0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F¥'96 €0FLEO 90FLT16 L'0F6'S6 £0F<86 DY-S0°0
0°0F0°00I 0°0F0°00I 0°0F000I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 1'0Fv'96 £0FS€6 8'0F¢’16 ¥'0F6°56 T0FE86 S¥-S0°0
0°0F0°00I 0°0F0°00I 0°0F0°00I 00F000I 00F000I 00F000I 00F000I 00F000I 0'0F1'86 0'0F+'96 £0F016 YOFv'16 S0F6'16 7'0F6'S6 2¥-S0°0
0°0F0°00I _0°0F0°00I __0°0F0°00I __0°0F0°00I _0'0F0°00I _0°0F0°00I _0°0F0°00I _0°0F0001 0'0F1'86 ['0FS'96 ['0F8'¢6 YOFI'16 0F9°¢€6 £0F0¥6 Jiseq
XINTed ogxw 0[N 0CANAY 6T 0CTINAY 8N 0CANAN LA OTINAN 9N 0CANAA S OTANAN O OCANANO 6 0CANAANO 8¥ OTANCN® LA OTANAN® 9 OTANAN® S OTINAD

POURIA

jaseleq

Dan Andrei Calian, Jaume Bacardit

30

Table 19 ES2: Full run-time (in s) results on the large-scale synthetic datasets

TTEIFTOIIT 6TFL6OT L6SFLIIET TI9IFYSOL THIIFSHH9 6L9TFSIBIT 6'091F0196 €681F8869 1'OLEFIOI6FIT SOLTEIFITYISIl STLBYTFOGELSST 8'BOLEFTFHI968L 6 T6LPFSE06LT +H99TF890CTI DY+SY+DA-ST 0
UIVIFOTWOL FEFPIE €09€FTO8YT 0°€0IFO9LL LTLFE6Y9 8'86CF06CCI €SSTFYSE0I TO6FCTION 8'8TEPIFYIILLET OFPOCIFOOLLEIT TLEI9FLILLIIL THO60EFI'L8SI0T 9 SEEOFIVIRST SECEIFOLRITT DY+SA-ST0
CLOSFIOLIT LEFSLE 9BEPFTCLYL VLTIFOSI8 €6E1FF0T8 +TOEFCBITI SHSTFITPIL I'€TTFO899 8'BOESIFLTOVTIL 8'68SEFELIBOEIL THIROTTFH EELLST 6'9TIVIFTIPITE 8'EO8IFSIPPIT 9°96LIFT00TOI DY+IA-ST0
€001FE8T6 0€F96T 8ITCFEOIL €TOIFLOTY TTSFEO0SS €E9TF6E88 CPSIFSLTIL SO8IF06T8 96TLSIFOTRIIIL 6'6TETTFEOI6691 €9SHOFITTPSIL 8'9LBOTFTITTO9 TTSESFIvrPrl S69ITFS LEETL SY+DA-ST0
OLIIFIPSLT €SFI0r 960PFSLOST T'6EIFECIIT €CETFOGIIL €LIEFLIPST 9EPIFIO0TL 6VPTFLSTL 0 €9E8FPFSBITLIT 8LOVEFTE€I8691 TO9EOFTTRSION 8 PEIIEFLLIISIT 8'808FFE90SHI +'8I91F896111 DI-STO
L6EIFIeEr6 8TFS0E 0€0EFOPCEL L'L6FS0€9 OI9IFSSHY +IITFI6SIT 9PEFLOITI 'BETFITO9 €986CFIFBIOLL 9'9EPSIFI9EISOT 8TIL6FESTBSIL S'ILYOIFH¥80S6 9'8LLTIFSTOLIT TSLEIFL6LS6 SY-ST0
66SIFI1060C 8vF06E LOIPFEO60TI LILIFSES6 ¥O8TFY8F6 9'8TEFOITIT L'T8FOOSIT L'EPTFRTI8 9'T0ITFI T0FOLT 1'STOEFELIZIT €BIOPIF6'989COT 0€8SEIFSITLOL CTOTISFLEOTTT — 8'0819F9°9T66 D4-ST0
Y6OIFLTLOT OEFE6T TIIEFSISOI 8'S6FET69 90ETFILIL FISTFS6I6 L'9TTFTTHIT T'0LTFYE68 S'S688FE98LEIT O'ITO6CFOOLIGOT 0'8LITFL09069T TTOTEFFOFBOE0L €PFILFOCION OFERTFLSE66 DY+SI+DIA-0T0
9°69FS8L6 TTFS6T 6VLFTBSOL LTBIFI66L L'TOTFESHS 9TOEFICE6 OCETFOLOIT 0°0LTFLSI8 TOO8TIFLOVIVOT 1'996TIFETSLEOT T'I9EPIFO'SI06ST 8'86PPEFSLIGITT 8'9LTSFISTKIT 8'T98TFO0'SOV0T DA+SA-0T0
6VITFTYITT 9EFE0r LTI0PFE60FT TSOTFO6'0£6 €TTEFOIPIT L'BIEFOTITI S6TEF6S86 0°66TFE 998 L'EVOFLOTTTLI L'6E6EFLIPS8IT € 1TOITFI9TILST 60P661FE6FEIY P TIOITFI06101 L' €L6TFTISSOT DY+DA-0T0
SLLFULIOL TEFYOE S6IEF6OP01 I'LOIFEIR9 THITFT066 O TEIFOYR0I 809TFS8BOI +'99TFITYL 6TI60IFL68SSIT 9'LSEEIFSTLRIIL 868 ITFTERIN9I 6'ECTOSTFO IVOSL 8'LVOPFHTSEYT SSI6IFHSITO SI+DA-0T0
08PTFOEIST CEFETr OT6IFFPEET PHEIFIOSIT SOLIFIOSIT CLETFHSLIT €08TFSTETL 8'ESTFIV06 S66V6ETFLESHITI 6'9V6IFITTPILL OISTEFHYILIIL TILTTTFETSO8ET H'8FY88FICSLYT 9'SSOEFI6I8IT DI-0T0
OVTIFYSL6 OLFLEE TETEFROSET 9V6FLSI9 9ILTFYTE6 LYITFOESIT ¥8TEFICS6 8 CITFETSO SLTPEIFOLSREIL ST6SHEFSTIIONL I'TIL6FIOSPION I'LSIITFLBEGYET v 6E89FLLLITT L'TERFFETHITL SI-0T0
8PSIFROLOT LTFIOF OVEEFELOEL 6TIIFIE68 9COEFBTSOI 6 1SFO6CHT SLECFTHPOI I'8PTFLBL €080SF6EEE69] ST6SO6STFH900€91 SLSL6FO'BILTIL L'PSLSTFHTIBLL 0°0689FSH8T0E 1'9811F69958 24070
ELEFST00I €SFP6T 8STEFR0801 0TSIFTOI9 0061FF9T8 FLIIFOSSTI TOIIFIOLITI TSTCTFIPLY SOTTFLBIP6IL €'8I061F0°80TSST L'6SYLFSTO699T 6°0VTIIFL608LS ¥ LL6VFF LTOPL 8'691IF8OP8L DI+SI+IA-SI0
LOLIFSEPOl TYFLTE I'8SEF8VIVI ¥ SPIFE96L ¥H8IFEP06 THIEFOOPOl O'ILFTEECL L'LTTFYTO9 ['9088EFE6CI08] €OLTYFOEELION FPITOFTEIIIL 9961STFEVO6E0l 8 I9THFSISTST €6IEIFTEPIB DY+SA-S1'0
TOITFC68IT 6v+88E 8BPTFIESHI 9 CIIFR068 1'0TTFLSTIT 6°08TFF'9901 TOITFIEEIT TOLTFIOP8 S'LLESFTHISSII €61S8IFO6YIIST €TLEBIFH IVSLST L'OE8LFEBESOHE 8'619¢F1'82901 9LIETFO06¥L DI+IA-ST'0
SOITFCECIT FTFI0E L' SITFFEP6 679F869S 988IFS 0001 06LIFEO0S9 SOELIFTOIIT SOSTFLI68 9FTSREFEITRIBT STTOFOIFH'8S6SST 996S0TF6'OVIEST O'PTSOEF6TOLITT ¥ TISTFSEEIST L'S8BIFSFOITI SY+DA-ST'0
1'S6EF8'SSST 9LFOSy ¥LOTFEE6TT ¥LTIFOTI6 6TTYFSIFCL L'6LFLOTIT O'LTFY'L8TI 6LETFY V8L OPLBOGYPFSFTHITL L'SI6SFL6SOYIT 6'€96LFETITSOT 9°900STFHTIEIST TOTIEFO'9TPET O'OTIEFE08ITI DA-ST'0
OTPF8E66 9PF6TE 666CTFELSIT 6€9FISEY 68ITFYTS6 O IPCFRIVIT F'8ITFYLYIT 8EPTFIEE] ¥'8TEEFHLBLBIT S0SE9FOT68091 1'88TOTFILITO9T 1'68TOTFO'90THYT STLTEFI'ELOST 6'SO9TFSBSHTT SA-C1°0
YE8IFSHRTIT L' EFRLE TSHFTRIEL HO0TFLIER 9FOIFHI06 960TFISITI 869TFO08L €SLTFFI69 S68LLIFOTHE09T STIOITFETERTST T'006LFIVILLIT +'896TEFEHSITTI 6'T0SSTFO'8TO661 €°80LTFSIITIT 2d-€1°0
€6LFIE801 6'€F66C 89ETFRYTII L99FI68S +OS8IFOTH OTHTFOLOTI +E€6IFIE0I +'69TFITL LOEHITFLILTILI 9'8SOITFSEI6EST H'SIINIFITIOST €HSSITFILOIL6 STIITFITITEL 6°S6FIFLSOI6 DI+SI+IA010
T9IIFRILIT 8EFI0E 69LEFSTITL O'LTIFIHPTL S98IFEB08 L6IEFIBO0I TISTFE6E] ['SLTFTBS8 1'6€T6FC008991 0'61€SF08E609T ['STISTFOOL8YIT TOSLEEFO608FCTI 1I'€EETTFOSISO61 T'LBLIFIELES DY+SIY-01°0
PEPIFS8B0T 6'EFO0r 1'9SEFI6IST 89EIFIV8L $'88TFCIPOI TSETFO'60TI 1'TSFOTTTL 6'9STFOLIL TO6EFHLITFIL T8O8ETFO060VST L'LTOVIFO68TLEIT LPOLOTFCHTRIOL L'PTOIFOLIER ['8T91F6'€66L DY+DY-01'0
OETIFIOEIL QEFYEE 96STFLTHOL TOLIFLIIS 6'LYTFT888 ¥'€0TFTEEIl I'I9FTTSIT 08STFOVIL I'ISIIFILLYOLL 8'SBLSFSLIGSST ['SL99F1'8L8SIL +'PLTOCFYBSIIIT L'OPTSFI8HOPI 8 ISSIFI IS8T SY+DI-01°0
YOPCFOOLET SOIFIPY €TOSFO688L 9CITFLLO6 SESEFOLOYI I'PETFEOLTL 6°'09FTTHCL 6'VETFIGLL 6'LIV8YFHHTIE6 0°6L6LF8TOS8ST L'EVS6F60LYOST ¥ TLOVFI69VIOL L'POILF1HERET 9'9€8+9°6169 Y010
98TIFI'EBIL 6'CFYIE SBITFYCLIL LISFETLY PTTCFICO6 I'6TTFF0OS8 6'TEFSBOIT €6VTFO6VL S69S6FS68L991 6'SHTPFEELT9l OPIESFIBISHIL I'8EBIIFTSIOLST TOLIEFO9SS8T TLYEYFLLT60T SY-01°0
OTLIFTIOTT S9FE€Tr L'99EFI'ESST 9TITFROP8 €L9TFI8601 8LS8TFLYI6 06VFCSOIL ¥6ETFIVIL 8'699TFSTEI69T 9TESLFTROI6ST 9 FI0LF6'6L8TIT 8'STESIFLSSOTST 8'LICEFL E€88TT P I8SFTEV99 24-01°0
6LTIF6EEEl 9EFISE 6FITF09801 LSFY'SLS 9'991FL0€8 B6TFLGOGPCI #'881F8CEOl 8TLIFF 998 8BOCIFIVIBEOT OTLILIFIOIONST 8'0166F1°601€91 €' 90FSTFYLTO0OVI 8PSEEFYBTION L'9LIFTOI69 DY+SY+DA-S0'0
TTOFIT6TI BEFS0E 96LEFLCIET O9LIFIIIL T6IEFSTO0I SSEFITSTI OVTFYLS8 ¥ TOTFIEY9 L'OGTISFITPCOS6T 0'SOLSTFOLTTLST TLSSHFL68069T L'T80FIFE0L00ST TSSIPFITCO9T L'OLBIFHIIVL DA+SA-S0'0
TI6IF8LI6I F'SFI6E 68IEFECSRST GOCIFITIR 06LEFTLSOL TLIFOEOIET OF9TFI9I8 9T0EF08LY 8606IFI'LTIOLL I'TPLLTFO08LIST 6'LLSTIFIEI09 6'SPLLTFLITSO0T L'IHTHFRCLTET S8POEF6'8898 DY+DU-S0'0
TIRFRBYTI SHFSOE O CLTFICEIT 9CTIFI9E9 L'60TFITPL I'STTFOESSOl ¥ IFTFI6P8 LOVCFISOL L'LISSFSH80691 +I9ELIFSHEYSST 8 EILEFE 699691 0°€990€FES8LO0T 6'6S6SFLLLEIT — 6'EEEHTFERTRIL SY+DI-S0°0
O TY9FS60ST 6FF99r L'ERTFHOP6I 9ILF6TIS SCITFILOOI €LO6FOTYTI €ETEFSO60L ['ESTFPTPL 9°€006TFLETHOL S'S608EF609L8ET €LILOTFITOTHII 6'9SLTTTFO'LERTET 9'SOPSTFTLIGOT — SSETTTFELITL DI-S00
LLRIFSESEl SHFECE SLIIFLOPEL LLSIFLTRY #'961F6°S66 T'OIIFH6PIT $'8LTFYLSL LTSTFYLOL ¥ YITEYFLIPOLST € LELTIFSTERYIL T'6LITFIISLIIL 0'OP6YEFOLLOYET +'68TOFSOESLI L'S99TIFR9THOL SY-S00
TLIIFITBIT 9LF6O0F 6L8PFOBLEL I'LVIFOI8L TS6TFTIION 0 COEFOEY6 €BIETFFOLY 9 IETFTEEL 6'B08TFTBVOILI 998S8FET]ILIL '9S9ETFI+SITST 8'00ELEFVO8LOVI O'LIEYFOEPPST € OELIFOELLL 0¥-¢0'0
SSPEFOTOIT OSFFBE €PPSFBOEST 8091F6996 FOIIF6TE8 SO6IFLBIS ['LTIFIOP8 8TECFETO9 €6TLSEFLYITO6 ¥ HI09TF0'8S009T #'SIYIFITRYOLL L'SHILEFTBITOTI TSSOTIFO'SSYLY 6'8081FT80LOI diseq
XINTed oTxw 6X0TANAY S OTINAA LY 0TANGY 9¥OTINAY SYOTANAY 01N OTINGY 61 0TINAY? 8 OTANAN LY O0TINAY? O 0TAINAN? ST OTAINAY 01 OTINGY oo
19881RQ

