LAKSHYA (JEE)

Relations and Functions

DPP-02

- 1. Let R_1 and R_2 be equivalence relations on a set A, then $R_1 \cup R_2$ may or may not be (A) Reflexive (B) Symmetric
 - (C) Transitive (D) None of these
- 2. Let A = {a, b, c} and R = {(a, a), (b, b), (c, c), (b, c), (a, b)} be a relation on A, then R is
 (A) Symmetric (B) Transitive

(C) Reflexive (D) None of these

- 3. Let A = {1, 2, 3} and R = {(1, 1), (2, 2), (1, 2), (2, 1), (1, 3)} then R is
 (A) Symmetric (B) Transitive
 (C) Reflexive (D) None of these
- 4. Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?
 (A) {(1, 1), (2, 2), (3, 3)}
 (B) {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
 (C) {(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)}
 (D) {(1, 1), (2, 2), (2, 3)}
- 5. Consider the set A = {3, 4, 5} and the numbers of null relations, identity relationn universal relations, reflexive relations on A are respectively n₁, n₂, n₃ and n₄ then the value of $n_1 + n_2 + n_3 + n_4$ is equal to (A) 8 (B) 7
 - (C) 73 (D) 67
- 6. Let L be the set of all straight line in a plane. *l*₁ and *l*₂ are two lines in the set. R₁, R₂ and R₃ are defined relations.
 (i) *l*₁R₁*l*₂ : *l*₁ is parallel to *l*₂
 (ii) *l* D *l* = *l* is permetively be to *l* = *l*.
 - (ii) $l_1 \mathbf{R}_2 l_2 : l_1$ is perpendicular to l_2
 - (iii) $l_1 \mathbf{R}_3 l_2 : l_1$ is intesects l_2
 - Then which of the following is true?
 - (A) R_1 , R_2 and R_3 are equivalence
 - (B) R_1 is equivalence
 - (C) R_2 and R_3 are reflexive
 - (D) R_1 , R_2 and R_3 are not symmetric

- 7. Let R be a relation on A = {a, b, c} such that. R = {(a, a), (b, b), (c, c)}, then R is
 (A) Reflexive only (B) Symmetric only
 (C) Non-transitive (D) Equivalence
- 8. Let R be the relation on the set of all real numbers defined by xRy iff $|x - y| \le \frac{1}{2}$.

Then R is (A) Reflexive only

- (B) Symmetric only
- (C) Transitive only
- (D) Reflexive and symmetric both
- 9. Let $R = \{(1, 2), (2, 3)\}$ be a relation defined on set $\{1, 2, 3\}$. The minimum number of ordered pairs required to be added in R, such that enlarged relation becomes an equivalence relation is

(A) 3	(B) 5
(C) 7	(D) 9

- 10. Let S be the set of all real numbers. Then, the relation $R = \{(a, b) : 1 + ab > 0\}$ on S is
 - (A) Reflexive and symmetric but not transitive
 - (B) Reflexive and transitive but not symmetric
 - (C) Symmetric and transitive but not reflexive
 - (D) Reflexive, symmetric and transitive
- 11. Let $A = \{1, 2, 3, 4, 5\}$ and let $B = A \times A$. Define the relation R on A as follows (a, b) R (c, d) if and only if ad = cb. Then R is
 - (A) Reflexive only(B) Symmetric only(C) Transitive only(D) Equivalence
- 12. For real numbers x and y, define a relation R, xRy if and only if $x y + \sqrt{2}$ is an irrational number, then the relation R is (A) Reflexive (B) Symmetric (C) Transitive (D) Equivalence

ANSWERS

- 1. (C)
- 2. (C)
- 3. (D)
- 4. (D) 5. (D)
- 6. (B)
- 7. (D)
- 8. (D)
- 9. (C)
- 10. (A)
- 11. (D)
- 12. (A)

Note - If you have any query/issue

Mail us at support@physicswallah.org

