Plug-in Developer’s Tool Kit

v 1.1

Electric Image, Inc.

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Canfidantial Pana 1

Index

General Introduction

Overview of the Plug-in Tool Kit
Software Licensing

Plug-in Hosts

Plug-in Operations

Interfacing with Electric Image
Terminology

Abstract

The Communication Process

Memory Allocation and Initialization
Memory
Initialization
Dynamic Memory Allocation
Frame to Frame Data Storage

The Model Plug-in Interface
Data Structure for Model Objects
Static and Dynamic Model Types
Matrix Operations

The Project Channel Interface
The Setup Phase
The Generate Phase

Animation Channels

User Interface

Exception Handling

Software Protection

Pana 2

Flartrirlmana™ Dhiin-in Nawvalnnar’e Tnnl Kit

Reference
The Communication Process
Calls from the Host to the Plug-in
theCommand
theCommandRec
theCommandRecSize
Calls from the Plug-in to the Host
Initialize the command record
Use CallPluginRoutine to send the command to the Host
Extract the data which the Host has returned in the record, if any
Summary
Memory Allocation and Initialization
The Plug-in Info Record
Calls from the Host to the Plug-in
Plugininitialize
PluginFinish
Calls from the Plug-in to the Host
HostAllocate
HostFree
The Model Plug-in Interface
Calls from the Host to the Plug-in
PluginModelSetup
PluginModelGINF
PluginModelGATR
PluginModelGBLR
PluginModelTMAP
PluginModelTATR
PluginModelBMAP
PluginModelBATR
PluginModelRMAP
PluginModelGenerate
Calls from the Plug-in to the Host
HostModelReset
HostModelGetGroup
HostModelSetGroup
HostModelAddGroup
HostModelDeleteGroup
HostModelGetVertex
HostModelAddVertex
HostModelGetFacet
HostModelAddFacet
HostModelGINF
HostModelGATR
HostModelGBLR
HostModel TMAP
HostModelTATR
HostModelBMAP
HostModelBATR
HostModelRMAP
The Lens Flare Plug-in Interface
Calls from the Host to the Plug-in
PluginFlareSetup
PluginFlareGenerate
The FlareBuffer Record

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Pana

Appendix
Electriclmage Calling Sequence

The Project Channel Interface
Calls from the Host to the Plug-in

PluginlnitializeChannel
PluginFinishChannel
PluginUpdateChannel
PluginLoadChannel

Calls from the Plug-in to the Host

HostResetChannel
HostlnsertChannel

HostAddChannel
HostDeleteChannel
HostGetChannel
HostSetChannel
HostGetChannellnfo

HostGetTiminglnfo

HostAddChannelKey

HostDeleteChannelKey

HostGetChannelKey

HostSetChannelKey

User Interface
Calls from the Host to the Plug-in

Plugininformation
PluginAbout
Plugininterface

Calls from the Plug-in to the Host

HostStatus
HostOpenResource
HostCloseResource

Exception Handling
Calls from the Host to the Plug-in

PluginDescribe

Software Protection
Calls from the Plug-in to the Host

HostChallenge

Pana A

Flartrirlmana™ Dhiin-in Nawvalnnar’e Tnnl Kit

General Introduction

Overview of the Plug-in Tool Kit

In version 2.0 of the Electriclmage™ Animation System (El), two classes of plug-ins were
implemented for internal and 3rd party developers. The purpose of plug-ins is to allow
for expansion of El's feature set between major updates of the software. Since a plug-in
may be developed by 3rd party companies and individuals, features which are needed for
specific purposes can be added whenever they are needed. The two classes are model
generator and light flare effects. The following plug-ins are shipped with El 2.1.2:

StandardShapes

Mesh

Particle

Mr. Nitro™

Mesher

Mr. Blobby™

LensFlare

This model plug-in creates planes, cubes, cylinders, cones and
spheres.

This model plug-in creates a flat mesh and animated sine wave,
breathing cylinder, screw thread and sphere wrap meshes.

This model plug-in generates an animated particle system with
motion-blurred points. This plug-in can create a variety of
effects including a fountain, water stream, bomb burst and a
shower of sparks.

This model plug-in explodes the groups which are linked to it in
Electricimage. It can generate one or two pass explosions
which rip apart the groups into fragments. The fragments’
motion can be affected by gravity, air resistance and
turbulence. Each fragment can be motion blurred.

This model plug-in converts all polygons in attached groups
into evenly sized meshes. This allows any model to be animated
with Electriclmage's deformation tools.

This model plug-in uses an implicit surface algorithm to
generate spherical blobs from attached groups, facets or
vertices. It demonstrates how to allocate memory and pre-
generate data during the setup plug-in command.

This light flare plug-in generates standard lens flare effects.
There are two lens flare effects built into the plug-in. The
plug-in uses data tables in its resource fork to store the ring
and spike elements of each lens flare. The plug-in itself can be
expanded in the future to provide additional lens-flare types.
This plug-in creates animation channels in Electriclmage for
each of its ring elements.

The Mesh, Particle and Mr. Blobby™ plug-ins are provided in the developer kit as source
code examples. In addition, two more sample plug-ins are provided as source code:

Morph

Glow

This model plug-in uses two or more groups which are linked to
it in Electriclmage and generates an in-between morphed
group. It has the limitation that it only works with groups
which have the same number of vertices.

This light flare plug-in generates a simple circular shaped
flare at the location of the light source. It uses the light
source's color and size to control the appearance of the flare.

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Canfidantial Pana R

General Introduction

Software Licensing

The sample source code plug-ins may be used and modified by plug-in developers. A
developer may release modified versions of these plug-ins in the Electric Image forum
on America Online as freeware but must obtain a license from Electric Image, Inc. for
any code they wish to use from the body of these plug-ins in their own commercial
products. The plug-in libraries and headers may be used without a license. The plug-in
developer kit will have two folders for source code to clearly separate the unlicensed
plug-in libraries from the licensed plug-in sample code.

Pana A Flartrirlmana™ Dhiin-in Nawvalnnar’e Tnnl Kit

General Introduction

Plug-in Hosts

The Electricimage™ Animation System version 2.0 and 2.1 consists of three main
applications:

Electriclmage This is the main user interface application. Electriclmage
allows users to design animations by adding objects to a project
list and animating a wide range of values for each object.

Camera This application renders control files it receives from
Electriclmage. It has almost no user interface of its own. It
creates animations in El's own multi-frame image file format.

Projector This application provides several image and animation utilities.
It can display images and animations. It can convert
animations into FastLoad files which can be played back in real
time. It can convert other file formats to and from El's own
image file format.

El plug-ins can be "hosted" by both Electricimage and Camera. Electriclmage adds plug-
ins to its project list and allows users to interact with the plug-in's user interface and to
preview the results before rendering. Electricimage also keeps track of any animation
channels which are created by the plug-ins. Camera calls each plug-in at every
rendered frame in the animation in order to generate model data or light flare effects.

The plug-in host must perform two functions. It must send commands to the plug-in and
it must provide services by receiving commands the plug-in sends to it. In addition to
Electriclmage and Camera, there are test applications provided with the El plug-in
developers kit which will act as hosts to El plug-ins. It is possible that other companies
or individuals may write their own host applications which could accept El plug-ins in
the future.

In addition, each of the sample code plug-ins comes with a simple test shell which calls
the plug-in directly as a function. The test shell acts as a very simple host application
and can be used by developers to debug their plug-ins. The utility applications
ModelHost and FlareHost are provided in the El Plug-in Developers Kit. These
applications are used to both test the plug-ins in a host application environment, to
setup default plug-in values and to copy a plug-in's PowerPC shared library code into the
plug-in's resource fork.

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Pana 7

General Introduction

Plug-in Operations

Model plug-ins can create vertex and facet geometry either algorithmically or by
referencing groups which have been linked to them in Electriclmage. Particle is an
example of a model plug-in which generates geometry algorithmically. It creates a
series of particles. For each particle it computes its position at the current frame by
taking into consideration the time the particle was created, the particle's initial
direction and velocity, the force of gravity and the life span of the particle. It then
generates a vertex and a facet for the particle and sends them to the host where they are
displayed or rendered.

Mr. Nitro is an example of a plug-in which generates geometry by referencing the
groups which were linked to it in Electricimage. A linked group is referred to as a child
group. Mr. Nitro computes the radius of a simulated explosion at the current frame in
the animation. It then determines which facets of its child groups are inside the radius.
Facets which are outside the blast radius are simply copied and sent back to the host
without modification. Facets which are partially or completely inside the blast radius
are broken up into smaller fragments. Each fragment's position and rotation is
calculated based upon the force and speed of the shock wave, rotation speed, gravity, air
resistance and turbulence. Each fragment is then sent to the host be displayed or
rendered. It is possible that hundreds of fragments or more may be generated by a
single facet in a child group. If instead of rendering the fragments, the host wrote each
fragment to a data file, even a short animation could generate hundreds of millions of
fragment facets which would occupy many gigabytes of disk storage. This demonstrates
how model plug-ins can save time and disk space by generating geometry as it is being
displayed or rendered.

The light flare plug-in allows special visual effects to be added to an image after it has
been rendered. The LensFlare plug-in contains a database of ring and spike elements.
Each ring element has a record which describes its size, location and an array of color
values. LensFlare uses the ring element record to generate a circular image of the ring
which is then added to the flare plug-in's frame buffer. By creating a series of these
rings in different colors along the diagonal line between a light source and the center
of the image, a lens flare effect is created. The spike elements are just thin lines drawn
radially from the light source's position. Each spike element also has a record in
LensFlare's resource file which contains the spikes length, direction, position and color
table. In addition to sending the LensFlare plug-in the information it needs to draw the
effect, Camera can also determine the visibility of the flare's light source and will turn
off the flare plug-in if it is obscured by another object in the frame.

Pana R Flartrirlmana™ Dhiin-in Nawvalnnar’e Tnnl Kit

General Introduction

Interfacing with Electricimage

El plug-ins are compiled as code resources. The plug-ins contain separate code
resources for 68K and PowerPC code. The 68K version of ElI can only communicate with
the plug-in's 68K code and the PowerPC version of ElI can only communicate with the
plug-in's PowerPC code. The plug-in's PowerPC code resource is compiled as a shared
library and is then copied to a resource by the ModelHost or FlareHost test applications.
The test applications also display the plug-in's user interface dialog box and save the
plug-in's default control parameters in the plug-in's resource file. ModelHost creates a
sample model for the plug-in which can be used to examine the geometry the plug-in is
creating by opening it in Electricimage as a model file instead of adding it as a plug-in.

The finished plug-in is placed into the "El Sockets" folder which is in the same folder as
Electriclmage. Electricimage will allow the user to add model and flare plug-ins located
in the "El Sockets" folder to their animation project. The user can create several copies
of a plug-in and then use the ModelHost and FlareHost applications to set different
default control values for each copy. Every model plug-in in the "El Sockets" folder will
appear as a pop-up menu item in the add model dialog and as an icon in the model
palette. Flare plug-ins appear in a pop-up menu in the light information dialog box.

Each plug-in has a single mai n routine which the host calls to send it commands. The
plug-in may send commands back to the host by calling a function which is provided as
part of the plug-in's command record.

Plug-ins may access Macintosh toolbox functions but this should be done as little as
possible to allow the plug-in to be easily ported to the SGI and other computer platforms.
Toolbox routines are commonly used when the plug-in is displaying its user interface or
about box. Since the interface and about box commands are never sent to the plug-in by
Camera, a portable version of the plug-in can be compiled for use with the SGI Slave
Camera which does not use any of the Macintosh toolbox routines.

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Pana Q

General Introduction

Terminology
The text and source code will use Pascal types. This is done to provide consistency
between the original C and Pascal headers. These types are as follows:
Integer 2 byte short integer
Ulnteger 2 byte short unsigned integer
Longlint 4 byte long integer
ULonglint 4 byte unsigned long integer
Real 4 byte single precision float
Double 8 byte double precision float
Extended 8 byte float on PowerPC and SGI; 12 byte float on 68K Macintosh

All string types conform to Pascal string conventions with a length byte followed by
characters.

The term ‘record’ is used to refer to a 'struct’ in C.

The term 'Host" will refer to the application which is hosting the plug-in. The host
applications are Electriclmage, Camera, TestModel and TestFlare. It is possible that other
applications may also host Electricimage plug-ins in the future.

Pana 1N Flartrirlmana™ Dhiin-in Nawvalnnar’e Tnnl Kit

General Introduction

What's New

Version 1.1 adds new capabilities to the animation channel control. Now, all plug-in
types can create and maintain their own animation channel hierarchy. A previous
limitation on the number of hierarchy levels have been lifted with the release of
Electric Image version 2.7.5. Two new animation channel data types have been added:
Unsigned floats and 3D coordinates. Also, an additional data type has been added to allow
modification of existing values using string type operators (see host Set Channel Key
command). There are new commands added to allow the plug-in greater control on key
frame creation and maintenance.

In addition to the host AddChannel command there is a new host | nsert Channel command which
allows the developer to insert a new animation channel without rebuilding the
animation channel structure.

Animation channel can be gueried using the host Get Channel | nfo. This command provides
valuable information about the type and state of an animation channel.

The system's animation track can be queried using the host Get Ti ni ngl nf o command. This
allows the plug-in a "peek" at the current length and number of frames of the project's
animation.

Greater key frame control is allowed using host AddChannel Key, host Del et eChannel Key,
host Get Channel Key, and host Set Channel Key.

Flartriclmana™ Dhiin-in Nawvalnnar’e Tnnl Kit Pana 11

Abstract
The Communication Process

An Electriclmage plug-in can be thought of as a simple program. The host application
can be thought of as a mini operating system for the plug-ins. The plug-in is
"launched" every time the host sends it a command. The plug-in code continues to
execute until the plug-in is finished processing the command and exits to the host
application. While the plug-in is executing a command, it may send its own commands to
the host application to request various services. The host application provides a
function pointer to its plug-in service routine as part of the plug-ins command record.
The host will never send another command to the plug-in while it is processing a plug-
in service command.

The structure of a plug-in command or a host service command is identical. Each
command consists of a four character command identifier, a command record size and a
command record pointer. Each command identifier is defined as a unique constant in
the file EIPlugin.h. The command record size is used by the plug-in and host to verify
the contents of the command record.

The first command sent to a plug-in, for example, is called plugininitialize. Its record is
defined in EIPlugin.h as Pl ugininitializeRec. The command record size for this command
would be si zeof (Plugi nlnitializeRec). When the plug-in is called by the host, it will
examine the plug-in command and then call the appropriate function to process it. In
this case, it would call a routine to process the pl ugi nl ni ti al i ze command.

While it is processing the command, the plug-in may need to request services from the
host. If the plug-in needed to allocate memory, for example, it would send it a host Al | ocat e
command. The record for this command is defined as Host Al | ocat eRec in EIPlugin.h. The
command record size for this command would be si zeof (Host Al | ocat eRec) . The host's plug-
in service routine would then call the appropriate function to process the memory
allocation request. After processing the plug-in service command, the host would

return to the plug-in which would then complete its initialization and return to the host.

Both the plug-in and host return result codes. The result codes are defined in
EIPlugin.h. If the plug-in detects an error in a command record or cannot process a
command for some reason, it should return an appropriate result code to the host. The
host's plug-in service function may also return an error result code when it cannot
process a plug-in request. When the plug-in receives an error result code from the
host, it should immediately stop processing the current command and return the same
result code back to the host. The host will act upon the returned result code. It may
display the result code in an error message to the user. If the result code is not defined
in EIPlugin.h, it will send a pl ugi nDescri be to the plug-in. The plug-in will then return a
description string to the host if it recognizes one of its own custom result codes.

Electricilmage™ Plug-in Developer’s Tool Kit Confidential Page 12

Abstract

Memory Allocation and Initialization

Memory

Since a plug-in acts as a mini program which is launched every time the host sends it a
command, the plug-in needs a way to keep track of its information between commands.
Two data records have been created to solve this problem. The data records are
maintained by the host application. This allows the host to load and unload plug-ins
from memory, and to send commands to a plug-in at any time. The plug-in may use the
data records to keep track of the information the host sent to it during previous
commands and to maintain its own variables and user editable parameters.

Even though the host is responsible for maintaining the data records, the plug-in
defines their contents. The host application cannot directly modify the contents of the
data records. The plug-in is responsible for allocating memory for the data records by
sending host Al | ocat e service commands to the host. The host will respond by allocating
the requested memory size and returning new pointers to the data records to the plug-
in. In some cases, a plug-in may not know how much memory it will need before it
begins to process data. A plug-in can allocate all available memory by sending a host Free
command to the host. It can then process its information and return the unused memory
to the host by sending it another host Al | ocate command.

Due to the requirements of Camera, the host Al l ocate command may only be sent during
certain plug-in commands. If the host Al ocate command is sent during other plug-in
commands, the host will return an error result code to the plug-in.

The two data records are described as follows:

The ControlData Record This record is used to store information which must be
saved with the project file for use the next time it is opened. It
is also used to pass plug-in information from one host to
another. Most commonly, the information stored in the
control data record was entered by the user in the plug-in's
interface dialog box. In the case of the Mesh plug-in, for
example, the mesh type and density is entered by the user in
the plug-in's interface dialog and then stored in the control
data record. This control data record is saved with the project
to which the plug-in has been added. When Camera is
launched to render an image or animation, the control data
record is written to Camera's control file. The same control
record will be read by Camera and passed to the plug-in
during the rendering process so that the correct mesh is
generated at each frame of the animation. To keep the size of
the project and Camera control files to a minimum, the control
data record should be made as small as possible.

The PluginData Record This record is used to store information which the plug-
in only needs during a series of commands within a single
host application. Most commonly, the information stored in
the plug-in data record is pre-computed values and
information which the plug-in received in earlier commands
for use in later commands. In the case of the Mesh plug-in,
for example, the current frame index, and time is received in
the pl ugi nMdel Set up command and stored in the plug-in data
record for later use during the pl ugi nMdel Gener at e command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 13

Abstract

Initialization

Every plug-in command contains a plug-in information record. The host uses this
record to send the size and pointer for the ControlData and PluginData records to the

plug-in.
typedef struct {

Ptr theControl Dat a; /* Pointer to the plug-in's Control Data record */
Longl nt theControl Dat aSi ze; /* Size of the plug-in's Control Data record */
Ptr thePl ugi nDat a; /* Pointer to the plug-in's PluginData record */
Longl nt thePl ugi nDat aSi ze; /* Size of the plug-in's PluginData record */

El Pl ugi nRout i ne theHost Proc; /* The host application's command routine */

Ptr theHost Ref er ence; /* The host application's reference */

} Pluginl nfoRec, *PluginlnfoPtr;

When a plug-in receives a command which will require it to access one or both of its
data records, it should check to make sure that the data records have been correctly
allocated and initialized. The first command a plug-in will receive from a host is the
Initialize command. At this time, the PluginData record will not yet have been allocated
so its size will be zero and its pointer will be NULL. If the plug-in has just been added to
a new project file in Electricimage, the ControlData record will also have a zero size and
a NULL pointer. The plug-in should determine the correct size for the PluginData
and/or the ControlData records and then request that the host allocate the records by
sending a host Al | ocate command. After the records are allocated, the plug-in should
initialize their contents. When the next command is sent to the plug-in, the data records
will have the same size and contents as they did when the plug-in completed the
previous command. The pointers to the records may be different if the host has moved
them in memory since the last plug-in command. The last command the plug-in will
receive from the host is the Finish command. After the plug-in returns from this
command, Electriclmage will save the contents of the ControlData record in the project
file. It will have the same size and contents the next time the project file is opened and
the Initialize command is sent to the plug-in.

Dynamic Memory Allocation

A plug-in should only attempt to allocate or change the size of its ControlData and
PluginData records during the Initialize, Interface and Setup commands. If it sends a
host Al | ocat e command to the host during any other commands, it should expect the
command to fail with an error code. Some plug-ins may not know how much memory
will be required to process data during the Generate command until it has received a
Setup command. Most plug-ins should allocate temporary memory storage in their
PluginData record. During the Initialize command, they will allocate a minimum sized
PluginData record and initialize its contents. When the Setup command is received, the
plug-in will determine the correct size for the PluginData record and send a host Al | ocat e
command to the host.

Some plug-ins may not know what their memory requirements will be ahead of time. In
this case, during the Setup command a plug-in should determine how much free memory
their is by sending a host Free command to the host. The plug-in can then send a

host Al | ocat e command to request all free memory from the host, process the data and then
send another host Al l ocate command to return the unused memory. During the Generate
command, the plug-in will use the contents of its PluginData record to generate its model
or effect.

Page 14 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

Frame to Frame Data Storage

Plug-ins which create complex simulations may need to keep state information from past
frames in order to generate data during later frames. An example of this is a particle
simulator plug-in which can leave trails of particles behind itself as its location is
animated. There are no commands which allow a plug-in to determine its position at an
earlier point in time. Even if such commands were provided, a plug-in may need to base
its operation upon the position of its child groups which could have been created by
other plug-ins. If the particle generator plug-in used the positions and motion of facets
in its child groups to create new particles, it would be possible to link one copy of the
plug-in to itself. This would allow the particles to emit new particles as they moved.
There would be no way for the plug-in to know where the particles in its child group
were located at an earlier frame without keeping some form of data storage from frame
to frame. In Electriclmage, this can be done by simply keeping the state data in the
PluginData record since it is kept for each plug-in while the project file is open.

Camera opens and closes each plug-in at each frame so the contents of the PluginData
record are lost after every frame is rendered. In order for the plug-in to keep state data
from frame to frame, it must create a temporary data file. The plug-in should create this
file if it does not already exist. After each Setup command, the plug-in should write the
contents of the PluginData record to the temporary file. During the next Setup
command, the plug-in should open the temporary file and read the PluginData record
back into memory. Camera will delete the temporary file automatically before it quits if
the file's creator is "EIAR", its type is "EIDT", the file's name ends in ".temp" and it is
located in the Temporary Items folder on the system disk.

Electricilmage™ Plug-in Developer’s Tool Kit Page 15

Abstract

The Model Plug-in Interface

Data Structure for Model Objects

The purpose of a model plug-in is to create new model data and/or to modify model data
in its child groups. The model data is comprised of one or more groups. Each group
contains a list of vertices, a list of facets and several information, shading, texture
mapping and reflection mapping records. A facet is a structure containing between one
and four vertices, and a color. A facet may represent a point, line, triangle or convex
quadrangle. The facet vertices index the group’s vertex list. All vertex indices are one
based.
typedef struct {
AREB theCol or;
I nteger theNumVerti ces;

Longl nt theVertices[4];
} Facet;

A vertex always contains a three dimensional position and may also contain a color,
surface normal, texture position and motion blur position. Each group has a flag for
each optional value to determine if it is to be computed and stored at each vertex.
typedef struct {
AR@B t heCol or;
DCoor di nat e t heNor nmal ;
DCoor di nat e t hePosi ti on;
DCoor di nat e t heBl ur Posi tion;
DCoor di nat e t heText urePosi ti on;
} Vertex;

Colors are represented by a union containing a 32 bit integer and four byte channel
values for alpha, red, green and blue.
typedef union {
ULongl nt col or Val ue;
struct {
Byte a, r, g, b; /* alpha, red, green, and blue */
} argb;
} ARGB;

Positions and normals are represented as 64 bit double precision X, Y and Z coordinates.

typedef struct {
Doubl e x, vy, z; /* x, y and z coordi nates */
} DCoor di nat e;

During the Generate command, a simple plug-in, such as Particle, can create model data
by sending a series of host Mbdel AddVertex commands and then sending a series of

host Model AddFacet commands. A more complex plug-in, such as Mr. Nitro™, will loop for
each of its child groups creating a new group with the host Mdel Add@ oup command,
copying and modifying the vertex and facet data with the host Model Get Vert ex and

host Model Get Facet commands, and then deleting the original child group with the

host Mbdel Del et eG oup command. A plug-in can find out how many vertices and facets a
child group contains by sending a host Mdel Get @ oup command. This command also gets
the group's reference pointer, vertex flags, transformation matrix, rotation matrix and
motion blur matrix.

Page 16 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

Morph is an example of a model plug-in which generates new model data by referencing
the model data in its child groups. Morph blends the vertex values of two child groups
together by performing the following algorithm:

send host Mbdel Get G oup for group 1
send host Mbdel Get G oup for group 2

for i =1 to (nunber of vertices) {
send host Mbdel Get Vertex for vertex i in group 1
send host Mbdel Get Vertex for vertex i in group 2

calculate a new vertex by interpolating the group 1 and group 2 vertex val ues
Send host Mbdel AddVertex to add the new vertex to the plug-in group
}
for i =1 to (nunber of facets) {
send host Mbdel Get Facet for facet i in group 1
send host Model AddFacet to copy the facet to the plug-in group

}
send host Mbdel Del eteG oup for group 1
send host Model Del eteG oup for group 2

This algorithm works by first calculating and copying the vertex list and then copying
the facet list.

The following algorithm would allow for a differing number of vertices in each group as
long as the facet list was the same:

send host Mbdel Get G oup for group 1
send host Mbdel Get G oup for group 2

for i =1 to (nunber of facets) {

send host Mbdel Get Facet for facet i in group 1

send host Mbdel Get Facet for facet i in group 2

create a new facet record based upon the group 1 facet

for j =1 to (nunber of vertices of facet i) {
get vertex j of facet i in group 1
get vertex j of facet i in group 2
calculate a new vertex by interpolating the group 1 and group 2 vertex val ues
Send host Mbdel AddVertex to add the new vertex to the plug-in group
Store the new vertex index in the new facet record

send host Mbdel AddFacet to add the new facet record to the plug-in group

}
send host Model Del eteGoup for group 1
send host Mbdel Del et eG oup for group 2

This algorithm creates a larger number of vertices in the final model but is more robust
when applied to models imported into Electricimage.

Electricilmage™ Plug-in Developer’s Tool Kit Page 17

Abstract

Static and Dynamic Model Types

A model plug-in may generate either static or dynamic models. A static model is one
which never changes. The Standard Shapes plug-in, for example, creates several types
of basic three dimensional primitives whose shape never changes unless the user picks
a new shape from the plug-in's user interface. A dynamic model may change over time
or may change in relation to changes in its own plug-in group or one of its child
groups. The Particle plug-in, for example, creates a stream of particles which changes
at every frame.

When a model plug-in receives a pl ugi nl nterface command and determines that it must re-
generate its model data due to changes the user has made in its user interface dialog, it
should send a host Mdel Reset command to the host. When the host receives this command,
it will send a pl ugi nMbdel Set up command and a pl ugi nMbdel Gener at e command to the plug-in.

A model plug-in should set the appropriate sensitivity flags in the t hePl ugi nPer ni ssi on
field of the pl ugi nl nfor mati on command record. The sensitivity flags cause the host to send
a pl ugi nMdel Set up command to the plug-in whenever the time, plug-in parent group or a
plug-in child group changes. When a dynamic model plug-in receives a pl ugi nMbdel Set up
command, it will either send a host Mbdel Reset command every time or only when it detects
a change which will force it to re-generate its model data. A static model plug-in should
disable its sensitivity flags and should not send a host Mdel Reset when it receives

pl ugi nMbdel Set up command.

Both static and dynamic plug-ins should always re-generate their model data when they
receive a pl ugi nMdel Gener at e command.

Page 18 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

Matrix Operations

Model data is created and stored in camera space coordinates. Depending upon the needs
of a plug-in, these coordinates may need to be converted into child group, plug-in
parent group or world space coordinates. This can be done by using the matrices which
are provided in the pl ugi nMbdel Set up, and host Mbdel Get @ oup commands. The pl ugi nMbdel Set up
commands provides the plug-in parent group and camera matrices. The host Mdel Get G oup
command supplies the child group matrices. The following chart shows the different
spaces and how the different matrices are used to get from one to another:

Camera SPacCe s e o e e e oo
| | Canera Matrix|
Wrld Space

Pl ug-in Parent G oup Space

Child Goup Space ~ mmemmmmemmmeemoa oo

Since all vertex positions are in camera space coordinates, a plug-in must perform
matrix operations if it wishes to compute vertex positions in world, plug-in parent group
or child spaces. If a plug-in needs to work in child group space, for example, it must
first get a coordinate in camera space coordinates using host Mbdel Get Vertex. It should then
apply the inverse of the child group matrix to the vertex position. A new vertex position
is computed and then the child group matrix is applied to it to bring it back into camera
space coordinates. The vertex can then be added to the new group using the

host Mbdel AddVertex command. Since the inverse of the child group matrix is not supplied
as part of the host Model Get G oup command, the plug-in is responsible for inverting the
child group matrix. A matrix inversion routine is provided in PluginMatrix.c which is
included with the El Plug-in Developer Kit.

There is a set of three matrices provided with the camera, plug-in parent group and
child group matrices. These are the position, rotation and motion blur matrices. The
position matrices work as described above. The rotation matrices contain only the
rotation components of the position matrices and are used to compute vertex normals.
The motion blur matrices contain the position matrices from the previous frame and are
used to compute vertex motion blur positions.

Electricilmage™ Plug-in Developer’s Tool Kit Page 19

Abstract

The Lens Flare Plug-in Interface

The Lens Flare Plug-in Interface was designed to allow a developer to generate and
superimpose 2D graphical images over an image as it is being rendered. This allows the
simulation of the interaction of light sources with the camera’s lens elements. Lens
flare plug-ins also have access to the host channel commands in Electricimage. The
plug-in can create animation channels for any of its user interface values. This gives
the user the ability to apply Electricimage's advanced animation features to the plug-
in's editable values.

The Setup Phase

The pl ugi nFl areSet up command contains the information a lens flare plug-in needs to draw
its lens flare effect during the pl ugi nFl areGenerate command. This information includes
the image buffer resolution, light source location in space and in screen coordinates,
and the current time and frame number. The plug-in should store this information in
its PluginData record for use during the pl ugi nFl areGener at e command.

The Generate Phase

The pl ugi nFl areGenerate command contains information about the buffer into which the
flare plug-in is to draw its effect. The host may choose to send the plug-in a
pl ugi nFl areGenerate command for each scanline in the buffer or it may send the plug-in a
single pl ugi nFl areGenerat e command to generate the entire buffer. A flare plug-in should
be developed to allow it to efficiently generate its effect on a scanline by scanline basis.
This will enable the plug-in to work well regardless of how the host chooses to generate
the flare buffer. Camera currently generates the lens flares on a scanline basis.
Electriclmage currently generates the entire buffer in a single pass. The following
structures are used to define the flare buffer:

typedef struct {

Longlnt top, left, bottom right;
Longl nt wi dth, height;

} L_Rect;
typedef struct { /* The flare buffer contains pixels of type FlareColor (0..16384) */
Ptr bufferBase; /* The buffer's base address */
Longl nt buffer RowBytes;/* The nunber of bytes in a single scanline of the buffer */
L_Rect bufferRect; /* The enclosing rectangl e of the buffer */
I nt eger buf f er Dept h; /* The bits per pixel of the flare buffer (8 or 48) */
Longl nt buf ferl ndex; /* The index color of flare rings for 8 bit wire frame buffers */

} FlareBuffer;

The FlareBuffer's buffer Dept h value can be either 8 or 48 bits. Other bit depths may be

added in the future but for now these are the only ones a flare plug-in needs to be able

to draw into. When the buffer is 48 bits deep, each pixel contains 16 bit red, green and

blue channels. The following record defines the structure of a 48 bit flare buffer pixel:
typedef struct {

U nteger red, green, bl ue; /* 0..16384 */
} FlareColor, *FlareCol orPtr;

Page 20 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

The host program begins by initializing the buffer to zero (black) and then sends a

pl ugi nFl ar eGener ate command to each of its flare plug-ins. Each flare plug-in should
calculate a color value and sum it with the contents of the flare buffer at every pixel.
The values in the 16 bit channels range from 0 (black) to 16384 (white). The plug-in
should limit each channel's value to 16384 to prevent overflow. After calling each flare
plug-in, the host will sum the buffer's contents with the rendered image.

When the buffer is 8 bits per pixel, the flare plug-in should draw an outline of its effect
into the buffer. The plug-in should draw the outline with the bufferlndex specified in the
FlareBuffer record. In this mode, the host simply initializes the flare buffer to zero and
the flare plug-in replaces the pixel values in the buffer with the bufferlndex value as it
draws its outline. 8 bit flare buffers are only used in Electriclmage to provide a quick
preview for the size and position of the flare effect. The LensFlare plug-in generates a
circle with the radius and location of each of its flare elements. The Glow plug-in
generates a square with the size and location of its glow circle.

Electricilmage™ Plug-in Developer’s Tool Kit Page 21

Abstract

The Project Channel Interface

Plug-ins may have their own animation channels.

Plug-in channels are displayed in Electricimage's project window following the parent
light source's channels. A plug-in may create channels to animate the following data

types:

#defi ne channel Label ' LABL' /* A container |abel (contains other channels) */
#def i ne channel End " LEND /* The end of a container |abel */

#def i ne channel Real " REAL' /* Real (floating point) data (8 byte Double) */
#def i ne channel CRE3B 'CRB /* REB 16 bit color data (6 byte R&@BCol or) */

#def i ne channel AREB ' ARB /* AR®B 16 bit color data (8 byte AR@BCol or) */
#def i ne channel CHSV ' CHsv /* HSV 16 bit col or data (6 byte HSVCol or) */

#def i ne channel AHSV " AHSV /* AHSV 16 bit color data (8 byte AHSVCol or) */
#def i ne channel I nt eger " SINT /* Signed integer count data (4 byte Longlint) */
#def i ne channel Unsi gned "UNT /* Unsigned integer count data (4 byte Wonglnt) */
#def i ne channel Bool ean ' BOAL! /* Bool ean flag data (2 byte Bool ean) */

#defi ne channel Unsi gnedReal ' UREL' /* Unsigned Real (floating point) data (8 byte Double) */
#defi ne channel Goordi nate ' CCRD /* 3 Axis Coordinate data (3 * 8 byte Double) */

The channel Label and channel End types are used to define container channels. The Plug-in
creates a channel container for each of its sub elements. This helps to visually organize
the channel data when a large number of animation channels is required. All of the
animation channels created between the channel Label and channel End types are nested
inside a hierarchical block. The user can open this block to display the sub-channels by
clicking on the channel Label hame in the project window.

The plug-in creates its channels when the host sends it a pl ugi nl nitial i zeChannel
command. The plug-in sends a host AddChannel for each of its animation channels. The
plug-in sends the host the name, type and default value of the animation channel. The
host returns a channel reference to the plug-in. The plug-in saves this reference
number in its PluginData record and uses it to later retrieve data values from the
animation channel. The plug-in can delete some or all of its animation channels with
the host Del et eChannel and add new ones if the user changes parameters during the

pl ugi ninterface command. If a plug-in determines that its animation channels have
become invalid for some reason, it can send a host Reset Channel command to cause the host
to delete all of the plug-in's animation channels and send the plug-in another

pl ugi nl nitiali zeChannel command.

The plug-in can send either a host AddChannel Or a host | nsert Channel command to add
animation channels. The command host AddChannel is used to during a complete

rebuild of the animation channel hierarchy after the host calls pl ugi nini ti al i zeChannel

or the plug-in calls host Reset Channel .

The host I nsert Channel command can be used to insert a new animation channel into an
already exisiting channel hierarchy without rebuilding a completely new list. The main
addition to the host | nsert Channel command is the parent reference which must be know in
order to add a child to the list.

When the plug-in receives a pl ugi nLoadChannel command, it should load its ControlData
values at the specified frame number from each of its animation channels with the

host Get Channel command. Electriclmage sends a pl ugi nLoadChannel command for every frame
to be rendered and then writes the plug-in's ControlData record to Camera's control file.
This makes the information contained in the plug-in's animation channels available to
the plug-in when it is called from Camera.

Page 22 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

After the host sends a pl ugi nl nterface command, it will send a pl ugi nUpdat eChannel command
to the plug-in. The plug-in should respond by sending a host Set Channel command for each
of its animation channels (other than the channel Label and channel End channels). The host
will create a new key frame if the project window is set to time or key frame mode and
the new value does not match the value in the animation channel at the current frame.

In frame mode, Electricimage will create a custom frame when a difference is detected
in the channel value.

The host will send a pl ugi nFi ni shchannel command to the plug-in if its animation channels
have been removed. The plug-in should reset its channel reference numbers to indicate
that the channels are no longer valid.

Electricilmage™ Plug-in Developer’s Tool Kit Page 23

Abstract

User Interface

The host will send a pl ugi nl nterface command to the plug-in when the user wishes to edit
the plug-in's parameters. This command is sent by Electriclmage but not by Camera.
Electriclmage sends this command when the plug-in is first added to the project or when
the user clicks the Options button in the plug-in group or light source information
window. The plug-in should respond to this command by displaying a standard
Macintosh dialog box and accepting user input. If the plug-in needs to access its own
resources, it should send a host QqpenResour ce command to the host. After this command is
sent, it can access its dialog box template by calling the system's GetNewDialog command.
The plug-in should only send a host d oseResour ce command if it needs to open another
file's resource fork.

The host may send a pl ugi nAbout command to the plug-in in response to a request by the
user for information about a plug-in. This command is not currently used by either
Electriclmage or Camera. Electriclmage currently sends a pl ugi nl nf or mati on command to
get information strings from the plug-in when the user requests information.

During time consuming processing, a plug-in should send host St at us commands at least
four times a second. This command allows the host to display the plug-in's current task
and progress. It also allows the user to abort the plug-in at any time.

Page 24 Electricimage™ Plug-in Developer’s Tool Kit

Abstract

Exception Handling

Each plug-in and host command returns an error result code. Several result codes are
defined in EIPlugin.h as follows:

#def i ne pl ugi nNoEr r noErr/* Zero result means no error */

#defi ne pl ugi nMenor yErr 1 /* Cannot al |l ocate enough nerory */

#defi ne pl ugi nComrandEr r 2 /* Unknown command recei ved */

#defi ne pl ugi nParaneterErr 3 /* Error discovered in passed paraneter record */
#defi ne pl ugi nCancel Err 4 /* The user cancel ed or aborted the operation */
#defi ne pl ugi nSequenceErr 5 /* The command was received in the wong sequence */
#def i ne pl ugi nResourceErr 6 /* A required resource could not be found */
#define plugi nProtectionErr 7 /* The copy protection could not be verified*/
#defi ne pl ugi nFeat ureErr 8 /* Arequested feature or node is not supported */

If a host command returns a non-zero error code to the plug-in, the plug-in should
return the same error code back to the host. The host should report any errors to the
user. The host will call the function Descri bePl ugi nResul t to convert a result code into a
description string. A plug-in can have its own custom error codes. If the code is not
recognized by DescribeP ugi nResul t , it will be sent back to the plug-in in a pl ugi nDescri be
command. The plug-in should call the function Descri bePl ugi nError to convert the pre-
defined result codes into a description string. The functions Descri bePl ugi nResul t and
Descri bePl ugi nError are defined in EIPlugin.c.

Electricilmage™ Plug-in Developer’s Tool Kit Page 25

Abstract

Software Protection

A plug-in can get the host application’s serial number string by sending a host Chal | enge
command. The serial number is stored as a seven character Pascal string and begins
with two ASCII characters followed by 5 numeric digits. It is up to the plug-in author to
develop their own copy protection scheme based upon the host serial number. One
method is to create an authorization string which is coded with the contents of the serial
number string. In order to activate the plug-in the user must enter this string in a
modal dialog box. The plug-in then stores the authorization string in its resource file
and validates it during every generate command.

Page 26 Electricimage™ Plug-in Developer’s Tool Kit

Reference

The Communication Process

Calls from the Host to the Plug-in

All calls made by the host to a plug-in are done through a single function of the plug-in.
The function's declaration is as follows:

pascal Longlnt Plug-in (OSType theCommand, Longlnt theConmmandRecSi ze, voi d* t heCommandRec);
theCommand

The first parameter, t heConmand, allows the plug-in to determine which operation the host
is expecting it to perform. This parameter is a four character token. There is a unique
token for each command the plug-in may accept from the host. Upon entry to the plug-
in's main routine, the command token is examined and a sub function is then called
based upon its value. The following sample code shows how a simple plug-in would
handle an incoming command token:

pascal Longlnt Plug-in (OSType theCommand, Longlnt theConmandRecSi ze, voi d* t heCommandRec)
Longlnt theError = noErr;

if (theCommand == pluginlnitialize)

theError = Initialize(theCommandRecSi ze, t heCommandRec)
else if (theComrand == pl ugi nl nterface)

theError = thelnterface(theCommandRecS ze, theComrandRec)
el se if (theCommand == pl ugi nMbdel Set up)

theError = Mbdel Set up(t heCommandRecSi ze, t heCommandRec)
else if (theComrand == pl ugi nMbdel Gener at e)

theError = Mbdel Gener at e(t heCommandRecSi ze, theCommandRec) ;
el se

theError = pl ugi nCoomandErr;
return theError;

} /* Main */

The plug-in command constants such as pluginlnitialize are defined in the file
EIPlugin.h.

When a command is passed to the plug-in which the plug-in does not support, the plug-
in should return the result code pl ugi nCommandErr to tell the host that the command could
not be accepted by the plug-in. The host software should not report an error to the user
in this case unless the requested command was essential to the operation of the host. The
required command set may change in the future but for now only the Initialize and
Generate commands are considered essential for correct plug-in operation. A plug-in
author should try to support as many commands as possible for future compatibility and
smooth plug-in operation.

Electricilmage™ Plug-in Developer’s Tool Kit Confidential Page 27

Reference

theCommandRec

The t heCommandRec is a generic pointer to a plug-in command record. Each command has
its own record. A plug-in must examine the command token before it is able to examine
the contents of the command's record. For example, here are two typical plug-in
commands that the host will make to a plug-in along with their respective records:

(An entire listing of all the command and record types available, including these, can be
found in ‘EIPlugin.h’)

#def i ne pl ugi nCheck ' GHEK

typedef struct {
Pl ugi nl nf oRec t hel nf o;
CsType t heCommand,;
} Plugi nCheckRec, *Pl ugi nCheckPtr;

#defi ne pl ugi nModel Setup ' SETM

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt t heFr arrel ndex;
Doubl e t heFr aneTi ne;
Doubl e t heFrameTi nelel t a;
Dvatri x4 theCanerahMatri Xx;
DVvat ri x4 t heCarrer aRot Matri x;
Dvat ri x4 t heCaneraBl urMatri x;
Dvat ri x4 theG ouphMatri x;
Dvatri x4 t he@ oupRot Matri Xx;
Dvat ri x4 theG oupBl ur Matri x;
} Pl ugi nMdel Set upRec, *Pl ugi nModel Set upPtr;

Page 28 Electricimage™ Plug-in Developer’s Tool Kit

Reference

theCommandRecSize

This parameter is a long integer which contains the size of the record that t heConmandRec
points to. It is used to help validate the command's parameter record. The following
sample shows how a plug-in would validate the parameters for a model setup command:

static Longlnt DoMddel Setup (Longlnt theComrandRecSi ze, voi d* t heConmandRec)

{
Longlnt theError = noErr;

Pl ugi nMbdel Set upPtr theParaneters = (Pl ugi nMbdel Set upPt r)t heCommandRec;

i f (theCommandRecSi ze< si zeof (Pl ugi nModel Set upRec)) {
theError = plugi nParaneterErr;

el se {
/* Setup the model plug-in */

return theError;
} /* DoModel Setup */

By comparing the paraneterS ze against the size of P ugi nMbdel Set upRec, the plug-in can
determine if enough data was sent for the pl ugi nMdel Set up command.

The incoming record size is only checked to see if it is smaller than the size of the
expected type. This means the Plug-in would allow records of a larger size than
expected. In future versions of the host software, record definitions may be expanded to
include other parameters and information. Since all parameters which are expected to
return information are initialized to their defaults by the host, earlier version plug-ins
should remain compatible with later versions of the host software.

Electricilmage™ Plug-in Developer’s Tool Kit Page 29

Reference

Calls from the Plug-in to the Host

When the plug-in processes a command, it may need to request services from the host.
These requests consist of commands to the host, just as the host sends commands to the
Plug-in. These services cover a multitude of activities which include allocating memory,
creating or deleting groups, adding vertex or facet data, and others. Most services
typically require three steps to successfully complete a call to the host application.

(1) |Initialize the command record
(2) Use Call Pl uginRoutine to send the command to the Host

(3) Extract the data which the Host has returned in the record, if any

Page 30 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Initialize the command record

The first thing a Plug-in must do before sending a command to the host is to initialize
the command's data record. For example, say a Plug-in would like to have a block of
memory for storing data that survives in between calls from the host. This would
require sending a host Al l ocate command to the host, since only the host application can
allocate memory. A record of the type Host Al | ocat eRec must be passed along with this
command. The record's fields must be initialized before sending the command to the
host. Take a look at the record definition below:

#define host All ocate ' ALCC

typedef struct {

Ptr theRef erence; /* Sends: the private data used by host call backs */

Ptr theControl Dat a; /* Returns: the new control paraneter data |ocation */

Longl nt theControl DataSi ze; /* Sends: the requested new control paraneter data size */
Ptr thePl ugi nDat a; /* Returns:the new plug-in private data |ocation */

Longl nt thePl ugi nDat aSi ze; /* Sends: the requested new plug-in private data size */

} Host Al l ocat eRec, *Host All ocatePtr;

The comments contained in the type definitions (found in ‘EIPlugin.h’ and the
Reference section of this manual), describe the purpose of each field in the record.

The first field in this structure is theReference. This field is found in every host command
record. It is a pointer defined by the host and passed to the plug-in in the plug-in
command’s t hel nfo record.

The fields theCont rol Dat a and t hePl ugi nbat a will return information to the plug-in. They
should be initialized to their current values from the plug-in command's t hel nfo record.
This way, should the host fail and return an error code, these fields will still contain
valid information.

The fields t heCont r ol Dat aSi ze and t hePl ugi nDat aSi ze send information to the host. They
should be initialized to the desired memory sizes of the control and plug-in data records
respectively. The host will use this information to allocate, increase or decrease the size
of the plug-in's permanent and temporary data records.

Electricilmage™ Plug-in Developer’s Tool Kit Page 31

Reference

Use Cal | Pl ugi nRout i ne_to send the command to the Host

All host command calls are of the form:

pascal Longlnt Host (CSType theCommand, Longlnt theCommandRecSi ze, voi d* theCommandRec);

In this example, the call would look like this:

theError = thelnfo.theHost Proc(host All ocate, sizeof (HostAll ocateRec), & heHostAllocate);

The first parameter is the host command token. The second is the size of the host
command record. The third is the address of the host command record.

The host's command function pointer is passed to the plug-in in the plug-in's thelnfo
record.

If the host returns an error code to the plug-in, the plug-in should abort its current
command and return the error code back to the host. If plugi nNoErr is returned (0), the
plug-in can use the records referenced by theControl Data and t hePl ugi nData. Error codes
are defined in ‘EIPlugin.h’. See section ‘Exception Handling’ for more information.

Extract the data which the Host has returned in the record, if any

If the call to the host returns pl ugi nNoErr, the plug-in can use the fields in the command
record which return information. In the case of the memory allocation example, the
values in the theControl Data and t hePl ugi nDat a fields would be stored in t hel nfo record and
used by the plug-in during the current and later commands from the host. See section
‘Memory Allocation and Initialization’ for more information.

Page 32 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Summary

What follows is a procedure called Mdel Generate which summarizes and demonstrates the
three steps described in this section. This procedure really does nothing useful since
the pointer to the new group isn’t used for anything, but it does illustrate the process. It
would be called by the Plug-in’s main routine whenever t heCommand token it received was
pl ugi nModel Generate. In the example below, the record of type Host Mbdel AddG oupRec is
initialized, the host Mbdel Add@G oup command is sent to the host, and the pointer to this new
group is retrieved from the record if pl ugi nNoErr is returned.

static Longlnt Mbdel Generate (Longlnt theCommandRecSi ze, voi d* theConmandRec)

{

}

Ptr theNewQ@ oup;

Pl ugi nMbdel Gener at ePtr thePl ugi nMbdel Generat ePtr = (Host Mbdel Gener at ePt r) t heCommandRec;
Host Model AddQ oupRec t heHost Model AddG oup;

Longlnt theError = pl ugi nNoErr; /* Initialize theError variable */

/* Check to see that plug-in comand record is of the expected size */

i f (theCommandRecSi ze < si zeof (Pl ugi nMbdel Gener at eRec))
theError = pluginParaneterErr; /* If it’s not the right size, return an error */
el se {

/* Initialize the host command record's fields */

t heHost Model AddG oup. t heRef erence =
t hePl ugi nMbdel Gener at ePt r - >t hel nf 0. t heHost Ref er ence;
t heHost Model AddQ oup. t heG oupTenpl ate = nil;
t heHost Model AAdG oup. t he@ oupVert exFl ags = 0;
t heHost Mbdel AddG oup. theG oup = nil;

/* Make the call to the host */

theError = thePl ugi nMbdel Gener at ePt r - >t hel nf 0. t heHost Pr oc(host Model ADddGr oup,
si zeof (Host Mbdel ADdG oupRec), &t heHost Model AddG oup) ;

/* If no errors occurred, extract the information that the Host ‘returns’ */

if (theError == pl ugi nNoErr)
t heNew@ oup = t heHost Mbdel AddG oup. t heG oup;

return theError;
/* AddG oup */

Electricilmage™ Plug-in Developer’s Tool Kit Page 33

Reference

Page 34 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Memory Allocation and Initialization

The Plug-in Info Record

This record is included in every plug-in command record as thel nfo. The host uses this
record to pass the temporary plug-in data and permanent control data records to the
plug-in. This record also includes the host's command function pointer and plug-in
reference pointer. These values are used by the plug-in to send commands back to the
host.

typedef struct {
Ptr theControl Dat a;
Longl nt theControl Dat aS ze;
Ptr thePl ugi nDat a;
Longl nt thePl ugi nDat aSi ze;
El Pl ugi nRout i ne t heHost Pr oc;
Ptr t heHost Ref er ence;

} PluginlnfoRec, *PluginlnfoPtr;

theControlData Sends a pointer to the control data record, or nil if it has not yet
been allocated.

theControl DataSize Sends the size of the control data record if it has already been
allocated. It sends zero if it has not yet been allocated.

thePluginData Sends a pointer to the plug-in data record, or nil if it has not yet
been allocated.

thePl ugi nDat aSi ze Sends the size of the plug-in data record if it has already been
allocated. It sends zero if it has not yet been allocated.

t heHost Pr oc Sends a pointer to the host's command function. This function
is called by the plug-in to send commands to the host.

theHost Reference Sends a reference value which is used by the host to identify
the plug-in. This reference is passed back to the host when the
plug-in sends it commands. The plug-in's reference is a private
value defined by the host.

Electricilmage™ Plug-in Developer’s Tool Kit Page 35

Reference

Calls from the Host to the Plug-in

Pluginlnitialize

This is the first command in the plug-in command sequence. A plug-in's activation is
bounded by pl ugi ninitialize and pl ugi nFi ni sh commands. While a plug-in is active, the host
will maintain its control data and plug-in-data records.

The Electriclmage will also maintain the plug-in's control data record between
activations. Electriclmage keeps each instance of a plug-in active while the project it
has been added to is open.

Camera will activate each instance of a plug-in once for every frame (or sub-frame) it
renders. If a Particle plug-in is rendered in an animation with shadows for example, it
will be activated twice per frame: once for the shadow and once for the final shaded
frame. Camera does not currently save the contents of a plug-in's control data record
between activations. If a plug-in needs to be able to "remember"” what occurred on an
earlier frame, it must create its own temporary storage file on the computer's hard disk
and access that file at every frame.

#define plugininitialize "INT

typedef struct {
Pl ugi nl nf oRec t hel nf o;
} PluginlnitializeRec, *PlugininitializePtr;

thelnfo Sends the PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Typical Activities
Memory Allocation

The control data and plug-in data records should be allocated during this call. The
sizes of these records may need to be adjusted in later plug-commands but they
should be at least allocated to size zero during the pl ugininitialize command. The
control data record will usually already be allocated with its contents from the
plug-in’'s last activation or from the plug-in's default values. The plug-in must be
able to handle the case when this record is empty (size zero). The plug-in should
also have a way of examining the contents of the control data record to determine
if it contains the correct information and belongs to the correct version of the
plug-in.

Default Control Data Values and Resources

After allocating the control data and plug-in data records, the plug-in should
initialize their contents with default values. During this initialization, the plug-
in may need to access its own resources. To do this, the plug-in should send a
host QpenResour ce command to the host.

The plug-in may not know how much memory it needs to allocate during the
plugininitialize call. In this case, a plug-in should just validate and/or initialize the
contents of the control data record and set the size of the plug-in data record to zero.

Page 36 Electricimage™ Plug-in Developer’s Tool Kit

Reference
PluginFinish

This is the last command in the plug-in command sequence. It tells the plug-in that it is
about to become deactivated.

#define pluginFinish 'FIN'

typedef struct {
Pl ugi nl nf oRec t hel nf o;
} Plugi nFi ni shRec, *Pl ugi nFini shPtr;

thelnfo Sends the PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Typical Activities

The plug-in should release any resources and close any files it has opened during the
earlier commands. It is not necessary for the plug-in to dispose of its control data and
plug-in data records since they will be taken care of by the host. Electriclmage will save
the contents of the control data record and dispose of the plug-in data record. Camera
disposes of both records. Most plug-ins will not need to do anything during the

pl ugi nFi ni sh command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 37

Reference

Calls from the Plug-in to the Host

HostAllocate

This command is used by the plug-in to increase or decrease the size of the control data
and plug-in data records.

#define hostAl |l ocate ' ALOC

typedef struct {
Ptr theReference;
Ptr theControl Dat a;
Longl nt theCont rol Dat aSi ze;
Ptr thePl ugi nDat a;
Longl nt thePl ugi nDat aSi ze;
} Host Al l ocateRec, *HostAll ocatePtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theControlData Sends and returns pointers to memory allocated for the
ControlData record. This field should always be initialized with
its corresponding field in thel nfo record (found in whatever
record was passed to the plug-in during the current call from
the host).

theControl DataSize Sends the amount of memory needed for the ControlData record.
This value is typically si zeof (Cont r ol Dat aRec) .

thePluginData Sends and returns pointers to memory allocated for the
PluginData record. This field should always be initialized with
its corresponding field in thelnfo record (found in whatever
record was passed to the plug-in during the current call from
the host).

thePl ugi nDataSi ze Sends the amount of memory needed for the PluginData record.
This value is typically si zeof (Pl ugi nDat aRec) , but may vary if the
plug-in’s memory needs need to fluctuate.

Usage

A plug-in may allocate memory during the initialize, setup or interface commands. A
plug-in may not allocate memory during the generate and other commands. A

host Al | ocat e command will return an error code if called at the wrong time in the plug-in
command sequence.

A plug-in may decide to send more than one host Al | ocate command to the host during a
single plug-in command. If the plug-in is unsure how much memory it will need to
process a resource or data file, it may decide to allocate all of available memory (see the
host Free command) for the plug-in data record. It can then process the data and call
host Al | ocat e again when it is done to set the plug-in data record to the size which was
actually required. A plug-in should not allocate all available memory and then return to
the host without giving some of it back. If it does, the host may have to quit if it runs out
of memory.

Page 38 Electricimage™ Plug-in Developer’s Tool Kit

Reference
HostFree

This command will return the largest block of free memory available to the plug-in. The
plug-in can use this information when allocating the control data and plug-in data
records. If the plug-in attempts to allocate more than the free memory, the host Al | ocat e
command may fail and return an error code to the plug-in.

#defi ne host Free ' FREE

typedef struct {
Ptr theRef erence;
Longl nt t heFreeS ze;
} Host FreeRec, *HostFreePtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

t heFr eeSi ze Returns the largest block of free memory available to the plug-
in.

Usage

This call should be used when the plug-in needs to allocate all or most of free memory.
This should only be done if the plug-in is about to read in a data file or setup some data
whose size is unknown ahead of time. The plug-in must give back the unused memory to
the host before returning from the current plug-in command. If this is not done, the
host may run out of memory and quit.

The free plug-in memory should not be confused with free application heap memory. In
Camera, there may be many megabytes of free plug-in memory but only a few hundred
kilobytes of heap memory. This is why allocation of memory in the host's application
heap by the plug-in is strongly discouraged.

Electricilmage™ Plug-in Developer’s Tool Kit Page 39

Reference

The Model Plug-in Interface

Calls from the Host to the Plug-in

PluginModelSetup

This command is sent to the model plug-in to allow it to prepare for a pl ugi nMdel Gener at e

command.

#def i ne pl ugi nMbdel Setup ' SETM

typedef struct {

Pl ugi nl nf oRec t hel nf o;
Longl nt t heFr arrel ndex;

Doubl e t heFr aneTi ne;

Doubl e t heFr aneTi neDel t a;
DMatri x4 theCaneraMatri x;
Dvatri x4 t heCaner aRot Matri Xx;
DMVatri x4 t heCarner aBl ur Matri x;
Dvat ri x4 theQ ouphMatri Xx;
Divat ri x4 theQ oupRot Mat ri x;
Dvatri x4 theQ@ oupBl ur Matri x;

} Pl ugi nMdel Set upRec,

thelnfo

t heFr anmel ndex

t heFr anmeTi ne

t heFr anmeTi neDel t a

t heCaner aMat ri x
t heCarrer aRot Mat ri x

t heCaner aBl ur Mat ri x

t heQ oupMat ri x
t he@ oupRot Mat ri x

t he@ oupBl ur Mat ri x

*Pl ugi nModel Set upPtr;

Sends the PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Sends the frame number of the current frame in the animation.
This number is usually in the range of frames in the animation.
Most animations start at frame index zero and count upwards by
one.

Sends the time in seconds of the current frame in the
animation. Most animations start at time zero and count
upwards in 1/30 of a second increments.

Sends the duration in seconds of each frame of the animation.
A 30 frames per second animation would have a frame duration
of 1/30 of a second or 0.033333.

Sends the camera’s transformation matrix.
Sends the camera’s rotation only matrix.

Sends the camera’s motion blur transformation matrix (at the
time of the previous frame).

Sends the group’s transformation matrix.
Sends the group’s rotation only matrix.

Sends the group’s motion blur transformation matrix (at the
time of the previous frame).

Page 40

Electricimage™ Plug-in Developer’s Tool Kit

Reference

Typical Activities

If a plug-in requires any information from the pl ugi nMbdel Setup command record during
the following pl ugi nMbdel Gener at e call, it must save it in its plug-in data record.

Simple dynamic model plug-ins should send a host Mdel Reset command when they receive
a pl ugi nMdel Set up command. More advanced dynamic model plug-ins may attempt to
determine if a change has been made which will force them to re-generate their data
before sending a host Model Reset command. Static model plug-ins should not send a

host Model Reset command.

Some model plug-ins do not know how much memory they will need before generating
their model data. These plug-ins should pre-generate their data during the

pl ugi nMdel Set up command in order to avoid allocating memory during the

pl ugi nMbdel Generat e command. To do this, a plug-in can allocate all of available memory
for its PluginData record, generate data based upon time or its child groups and then re-
allocate the its PluginData record to the amount it actually used. During the

pl ugi nMdel Gener at e command it can create model data based upon the contents of its
PluginData record.

Electricilmage™ Plug-in Developer’s Tool Kit Page 41

Reference
PluginModelGINF
PluginModelGATR
PluginModelGBLR
PluginModel TMAP
PluginModelTATR
PluginModelBMAP
PluginModelBATR
PluginModelRMAP

These commands are sent by Camera to the model-plug-in before the pl ugi nMbdel Gener at e
command. These commands give model plug-ins the opportunity to access and modify
the contents of various attribute records for the plug-in group before generation of any
model data. These commands have become obsolete because the plug-in can now access
these records by sending commands to the host during the pl ugi nMdel Gener at e command.
They are described here because they are sent to the plug-in in the current version of
Camera. Future versions of Camera will not send these commands so it is recommended
that a plug-in simply return with a noErr error code when it receives one of them and
not to rely upon receiving them for future compatibility.

#define plugi nModel @ NF AN /* Set the values of the group's G NF record */

#def i ne pl ugi nMbdel GATR GATR /* Set the values of the group's GATR record */

#defi ne pl ugi nMdel BBLR GBLR /* Set the values of the group's GBLR record */

#defi ne pl ugi nModel TVAP TMAP' /* Set the val ues of the group's TMAP record */

#def i ne pl ugi nMbdel TATR TATR /* Set the values of the group's TATR record */

#def i ne pl ugi nMbdel BVAP BVAP' /* Set the val ues of the group's BVAP record (second TNAP) */

#defi ne pl ugi nModel BATR BATR /* Set the val ues of the group's BATR record (second TATR) */

#def i ne pl ugi nMbdel RVAP' RVAP' /* Set the val ues of the group's RVAP record */

All of these commands have the same record structure. The record for pl ugi nMdel G NF is
as follows:
typedef struct {
Pl ugi nl nf oRec t hel nf o;
A NFPtr thed NF;
Bool ean t heChangeFl ag;
} Pl ugi nModel G NFRec, * Pl ugi nModel G NFPtT;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

the@ NF Sends a pointer to the appropriate group attribute record.

t heChangeFl ag Returns a Boolean flag. The plug-in should set this flag to True
if it has changed any values in the group attribute record.

Typical Activities

A plug-in should ignore these commands and return noErr to the host without accessing
their contents. A plug-in should not rely upon receiving these commands because they
will be removed from future versions of the Electricimage™ Animation System.

Page 42 Electricimage™ Plug-in Developer’s Tool Kit

Reference

PluginModelGenerate

This command is sent to the model plug-in following a pl ugi nMdel Set up command. It tells
the plug-in to begin generating a new model using the settings in the model setup
record.

#def i ne pl ugi nMbdel Generate ' GENM

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt theChi | d& oups;
ULongl nt theVert exFl ags;
} Pl ugi nModel Gener at eRec, *P ugi nMbdel Generat ePtr;

thelnfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

t heChi | d@ oups Sends the number of child groups linked to the plug-in's group.
The plug-in may access its child groups to generate new model
data.

t heVer t exFl ags Sends the vertex interpolation flags for the plug-in's group.
These flags tell the plug-in that it should generate color, texture
and/or normal vertex information. For more information of
mapping flags, see Appendix B.

Typical Activities

When a model plug-in receives a generate command, it should generate model data based
upon the settings in the model setup record. The plug-in can add groups, vertices and
facets to the host to accomplish this. It can either produce the data algorithmically, or it
may extract the information from its child groups if any were linked to it.

Model data generated by the plug-in during the previous generate command is
automatically deleted by the host before it sends the new generate command to the plug-
in. The plug-in simply generates new model data from scratch every time it receives a
generate command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 43

Reference

Calls from the Plug-in to the Host

HostModelReset

This command tells the host to send a pl ugi nMbdel Gener at e command to the plug-in so that a
new model is generated for the current frame. It is sent by the plug-in in response to a
pl ugi nMdel Set up command or a change in the plug-in's user interface during a

pl ugi nl nt erf ace command.

#def i ne host Model Reset ' RSET'

typedef struct {
Ptr theReference;
} Host Mbdel Reset Rec, *Host Model Reset Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command’s t hel nfo record.

Usage

Electricimage will respond to a pl ugi nMdel Reset command by sending a pl ugi nMbdel Gener at e
command to the plug-in. See the section 'Static and Dynamic Model Types' for details
about when a model plug-in should send a pl ugi nMbdel Reset command.

Page 44 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostModelGetGroup

The get group command is used to get information about a child group of a model plug-
in. This command may only be sent to the host during a model generate command.

#def i ne host Mbdel Get G oup ' CGETG

typedef struct {
Ptr theReference;
Longl nt t he@ oupl ndex;
Ptr theG oup;
ULongl nt theQ@ oupVert exFl ags;
Longl nt theG oupVerti ces;
Longl nt theQ& oupFacets;
Dvat ri x4 theQ oupMatri Xx;
Divat ri x4 theQ oupRot Mat ri x;
Dvat ri x4 theG oupBl ur Matri x;
} Host Mbdel Get @ oupRec, *Host Model Get G oupPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

t he@ oupl ndex Sends the index value of the desired child group. This value is
in the range from 1 to the number of child groups linked to the
model plug-in. The number of child groups is found in the
t heChi | d@ oups field of the Pl ugi nMbdel Gener at eRec.

t he@ oup Returns a reference for the requested child group. Once this
group reference is retrieved, it can be used in other commands
such as host Mbdel Get Vert ex and host Mdel Get Facet to get more
information about the child group. The group's reference is a
private value defined by the host.

t he@ oupVert exFl ags Returns the vertex mapping flags for the requested child.
These flags tell the plug-in if the child group contains color,
texture and/or normal vertex information. For more
information of mapping flags, see Appendix B.

t he@ oupVerti ces Returns the number of vertices of the child group.
t he@ oupFacet s Returns the number of facets of the child group.
t he@ oupMat ri x Returns the child group's transformation matrix.
t he@ oupRot Mat ri x Returns the child group’s rotation only matrix.

t he@ oupBl ur Mat ri x Returns the child group's motion blur transformation matrix
(at the time of the previous frame).

Usage

To begin retrieving data from a child group, a group pointer must be retrieved using
this command. The children are indexed from 1 to the number of child groups linked to
the plug-in. The number of children is found in the theChil d@ oups field of the

pl ugi nModel Gener ateRec. A model plug-in such as Mr. Nitro will loop for each child group
which is attached to it. The pointer to each child is retrieved with the host Mdel Get G oup
command and then each vertex and facet is accessed with host Mdel Get Vert ex and

host Model Get Facet respectively. Mr. Nitro uses the vertex and facet information to create
explosion fragments which are sent back to the host with host Mdel AddVertex and

host Model AddFacet commands.

Electricilmage™ Plug-in Developer’s Tool Kit Page 45

Reference

HostModelSetGroup

This command is used to copy a group's position, shading and texture attribute records
into the current group. This command may only be sent to the host during a model
generate command.

#def i ne host Mbdel Set G oup ' CPYG

typedef struct {
Ptr theReference;
Ptr theQ oupTenpl at e;
Longl nt theQ@ oupVert exFl ags;
} Host Mbdel Set G oupRec, *Host Model Set G oupPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theGoupTenplate Sends a reference to the group which will be used as a template.
All of the texture and shading information will be copied from
the template group to the current group.

t he@ oupVert exFl ags Sends the mapping flags for the current group. For more
information of mapping flags, see Appendix B.

Usage

When a model generate command is sent to a plug-in, the host has already created a
work group for the plug-in to add vertex and facet information to. The position, shading
and texture attributes of the default work group are copied from the plug-in's group
which the user setup in Electriclmage. If the plug-in wishes instead to assign attributes
from one of the plug-in's child groups, it may send a host Set G oup command to the host
passing the pointer to the child group in the@ oupTenpl ate. The plug-in will usually pass
the value it received from the pl ugi nMdel Generate command record in t he@ oupVert exFl ags.

If the plug-in cannot process one or more of the vertex options, it may choose to disable
their flags in this field.

Page 46 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostModelAddGroup

This command is used to add a new work group to the model plug-in. This command may
only be sent to the host during a model generate command.

#def i ne host Mbdel AddG oup ' ADDG

typedef struct {
Ptr theReference;
Ptr theQ oupTenpl at e;
Longl nt theQ@ oupVert exFl ags;
Ptr theG oup;
} Host Mbdel Add@ oupRec, *Host Mbdel AddQG oupPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theGoupTenpl ate Sends a pointer to a group which will be used as the template.
All of the texture and shading information will be copied from
this group to the new group. A pointer value of null will cause
the plug-in's own attributes to be copied to the new group.

t he@ oupVert exFl ags Sends the mapping flags for the new group. For more
information of mapping flags, see Appendix B.

theGoup Returns a reference to the new group. The group's reference is
a private value defined by the host.

Usage

All data added to the host by the model plug-in with the host Mdel AddVert ex and

host Model AddFacet commands will be placed into the current work group. Most plug-ins
which generate their own model geometry and are not dependent upon the geometry in
their child groups will not need to use this command. They can use the default work
group which was created by the host before the Pl ugi nMdel Gener at e command was sent.
Plug-ins which do depend upon the geometry in their child groups may wish to
generate one new work group for each of their child groups. This will allow the
shading and texture information in the child groups to be preserved in the new work
groups. Mr. Nitro, for example, uses the host Mdel AddG oup command before fragmenting
each of its child groups. The fragments keep the texture and shading information
which was applied to the child groups.

Electricilmage™ Plug-in Developer’s Tool Kit Page 47

Reference

HostModelDeleteGroup

This command is used to tell the host to hide a child group linked to the plug-in. This
command may only be sent to the host during a model generate command.

#def i ne host Mbdel Del et eG-oup ' DELG

typedef struct {
Ptr theReference;
Ptr theG oup;
} Host Model Del et eGr oupRec, *Host Model Del et eG oupPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theGoup Sends the reference of the plug-in's child group which should
be hidden and not rendered in Camera or displayed in
Electriclmage's drawing windows.

Usage

Child groups linked to a plug-in are usually rendered in Camera and displayed in the
drawing windows of Electric Image. If a plug-in wishes to use the child groups to
generate its own model data, it may wish to hide their original model data. In the case of
Mr. Nitro, for example, the child groups are fragmented with a simulated explosion. If
Mr. Nitro did not hide its child groups, both the original model data and the exploded
fragments would be rendered and displayed. Instead, Mr. Nitro sends a

host Mbdel Del et eG oup command for each child group so that they do not appear in the
display or rendered animation. The child groups are not actually deleted. They will still
be linked to the plug-in and will show up again during the next pl ugi nMbdel Gener at e
command.

Page 48 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostModelGetVertex

This command is used to get vertex information from a child group of the model plug-in.
This command may only be sent to the host during a model generate command.

#defi ne host Model Get Vertex ' CETV

typedef struct {
Ptr theReference;
Ptr theG oup;
Longl nt theVert exl ndex;
ARGEB t heCol or;
DCoor di nat e t heNor nal ;
DCoor di nat e thePosi tion;
DCoor di nat e t heBl ur Posi ti on;
DCoor di nat e t heText ur ePosi ti on;
} Host Mbdel Get Vert exRec, *Host Model Get VertexPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theQoup Sends the reference of the plug-in's child group from which
the vertex is to be retrieved. The group reference is found by
using the host Get @ oup command.

t heVert exl ndex Sends the index number of the desired vertex. The vertices are
ordered from 1 to the number of vertices. The number of
vertices in a plug-in child group is found by using the
host Get @ oup command.

t heCol or Returns the ARGB vertex color. The color value is only valid if
the reference group's color vertex flag is enabled. (For more
on the relationship of the color attributes at the facet, vertex, or
group level, see Appendix B.)

t heNor nal Returns the 3D vertex normal in camera space. The normal
value is only valid if the reference group's normal vertex flag
is enabled.

t hePosi ti on Returns the 3D vertex position in camera space. The position
value is always valid.

t heBl ur Posi ti on Returns the 3D vertex motion blur position in camera space (at
the time of the previous frame). The blur position value is only
valid if the reference group’s blur position vertex flag is
enabled.

t heText ur ePosi ti on Returns the 3D vertex texture position. The texture position
value is only valid if the reference group's texture vertex flag
is enabled.

Usage

Model plug-ins which need to access the model data of their child groups can get
information about a vertex by using the host Mdel Get Vertex command. The plug-in must
put the index number of the desired vertex into theVertexl ndex field of the

Host Mbdel Get VertexRec. The number of vertices in a child group is found in theQ oupVerti ces
field of the Host Model Get G oupRec. A plug-in can loop from 1 to theQoupVertices sending a
host Mbdel Get Vert ex and a host Mbdel AddVert ex command to copy all of the vertices from the
child group to the current work group. In Mr. Nitro, the vertices are accessed one facet
at a time by using the contents of theVertices in the Host Get Facet Rec.

Electricilmage™ Plug-in Developer’s Tool Kit Page 49

Reference

Page 50 Electricimage™ Plug-in Developer’s Tool Kit

HostModelAddVertex

Reference

This command is used to add a new vertex to the plug-in's current work group. This
command may only be sent to the host during a model generate command.

#def i ne host Model AddVertex ' ADDV

typedef struct {
Ptr theReference;

DCoor di nat e t hePosi ti on;

AR®B t heCol or;

DCoor di nat e t heNor nal ;

DCoor di nat e t heBl ur Posi ti on;
DCoor di nat e t heText ur ePosi ti on;

Longl nt t hel ndex;

} Host Mbdel AddVert exRec, *Host Model AddVertexPtr;

t heRef er ence

thePosi tion

t heCol or

t heNor nal

t heBl ur Posi tion

t heText ur ePosi ti on

t hel ndex

Usage

Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command’s t hel nfo record

Sends the 3D vertex position in camera space. The position
value is always used by the host.

Sends the ARGB vertex color. The color value is only used by
the host if the current work group’s color vertex flag is
enabled. (For more on the relationship of the color attributes at
the facet, vertex, or group level, see Appendix B.)

Sends the 3D vertex normal in camera space. The normal value
is only used by the host if the current work group's normal
vertex flag is enabled.

Sends the 3D vertex motion blur position in camera space (at the
time of the previous frame). The blur position value is only
used by the host if the current work group's blur position
vertex flag is enabled.

Sends the 3D vertex texture position. The texture position value
is only used by the host if the current work group's texture
vertex flag is enabled.

Returns the index of the newly created vertex.

The model-plug-in is responsible for setting all of vertex information fields which are
enabled in the current work group's vertex flags. The host uses the vertex information
to create a new vertex and returns its index to the plug-in in thel ndex. The new vertex
index is passed back to the host in the host AddFacet command. Because the vertex indexes
used in the host AddFacet command reference vertices which have already been created,
the plug-in must add the vertices before it adds the facets which reference them.

Electricilmage™ Plug-in Developer’s Tool Kit Page 51

Reference

HostModelGetFacet

This command is used to get information about a facet in a child group of a model plug-
in. This command may only be sent to the host during a model generate command.

#def i ne host Model Get Facet ' CETF

typedef struct {
Ptr theReference;
Ptr theG oup;
Longl nt t heFacet | ndex;
ARGEB t heCol or;
I nteger theNunmVerti ces;
Vertices theVertices;
} Host Mbdel Get Facet Rec, *Host Model Get Facet Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theGoup Sends the reference of the plug-in's child group from which
the facet is to be retrieved. The group reference is found by
using the host Get @ oup command.

t heFacet | ndex Sends the index number of the desired facet. The facets are
ordered from 1 to the number of facets. The number of facets in
a plug-in child group is found by using the host Get G oup
command.

t heCol or Returns the color of the facet. (For more on the relationship of
the color attributes at the facet, vertex, or group level, see
Appendix B.)

t heNumVerti ces Returns the number of vertices contained in this facet. This
number is in the range of 1 to 4 and represent a point, line,
triangle or quadrangle respectively.

theVertices Returns an array which contains the indexes to the vertices
which define the facet. These indexes can be used to retrieve
the vertices themselves. Only the array elements in the range
of O to theNunVertices - 1 contain valid information.

Usage

Model plug-ins which need to access the model data of their child groups can get
information about a facet by using the host Mdel Get Facet command. The pug-in must put
the index number of the desired vertex into theFacet | ndex field of the Host Mdel Get Facet Rec.
The number of facets in a child group is found in theG oupFacets field of the

Host Mbdel Get G oupRec. A plug-in can loop from 1 to t he@ oupFacets sending a host Mdel Get Facet
and a host Mdel AddFacet command to copy all of the facets from the child group to the
current work group. To get information about the vertices of a facet, a plug-in send a
host Mbdel Get Vert ex command for each vertex index in the facet's theVertices array. Mr.
Nitro does this for each facet before breaking up a facet into smaller fragments.

Page 52 Electricimage™ Plug-in Developer’s Tool Kit

HostModelAddFacet

Reference

This command is used to add a new facet to the current work group. This command may
only be sent to the host during a model generate command.

#def i ne host Model AddFacet

typedef struct {
Ptr theReference;
AR®B t heCol or;

I nteger theNumVerti ces;
Vertices thelVertices;

' ADDF'

} Host Mbdel AddFacet Rec, *Host Mbdel AddFacet Ptr;

Usage

t heRef er ence

t heCol or

t heNumverti ces

theVertices

Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

Sends the color of the new facet. (For more on the relationship
of the color attributes at the facet, vertex, or group level, see
Appendix B.)

Sends the number of vertices contained in this facet. This
number is in the range of 1 to 4 and represent a point, line,
triangle or quadrangle respectively.

Sends an array which contains the indexes to the vertices
which define the facet. These indexes were returned by the
host in the host Model AddVertex command when the vertices were
added to the current work group. The host only sets the array
elements in the range of O to theNunVertices - 1.

In order to add new model data to a plug-in's current work group, host Mdel AddVert ex and
host Model AddFacet commands must be sent to the host. The host Mdel AddVert ex adds a new
vertex to the current work group and returns an index value which the plug-in should
put into the facet's theVertices array. After each of the facet's vertices (1 for a point, 2
for a line, 3 for a triangle and 4 for a quadrangle) have been created, the facet itself can
then be added to the current work group with the host Mbdel AddFacet command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 53

Reference
HostModelGINF
HostModelGATR
HostModelGBLR
HostModelTMAP
HostModel TATR
HostModelBMAP
HostModelBATR
HostModelRMAP

These commands allow a plug-in to access and modify the contents of various group
attribute records.
#define hostMdel GNF'ANF /* Set the values of the group’'s G NF record */
#def i ne host Mbodel GATR' GATR /* Set the values of the group's GATR record */
#defi ne host Model BLR' BLR /* Set the values of the group's GBLR record */
#def i ne host Model TMAP' TMAP /* Set the val ues of the group's TNVAP record */
#def i ne host Model TATR' TATR /* Set the values of the group's TATR record */
#def i ne host Model BMAP' BMAP /* Set the val ues of the group's BVAP record (second TMAP) */
#def i ne host Mbdel BATR' BATR /* Set the val ues of the group's BATR record (second TATR */
#def i ne host Model RVAP' RVAP' /* Set the values of the group's RVAP record */

All of these commands have the same record structure. The record for host Mbdel G NF is as
follows:
typedef struct {
Ptr theReference;
Ptr theG oup;
A NFPtr thed NF;
} Host Mbdel A NFRec, *Host Mbdel G NFPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theGoup Sends the reference of the plug-in's child group from which
the requested attribute record is to be retrieved. The group
reference is found by using the host Get G oup command.

QA NFPtr Sends a pointer to the requested group attribute record.

Typical Activities

A model plug-in can send these commands to get attribute records from any of its child
groups, its own plug-in group or any of the groups it has created. The plug-in may
change the contents of its own groups or any of its created groups but should not
attempt to change the contents of one of its child groups. This command should only be
sent for the purpose of modifying the contents of plug-in group attribute records
during the pl ugi nMbdel Gener at e command and only before the first vertex is added to
requested group. The contents of the groups GINF, GATR, GBLR, TMAP, TATR, BMAP,
BATR and RMAP records are described in FACTStuff.h.

It is rare that a model plug-in will need to call one of these commands since it is usually
left up to the user to apply textures and shading attributes to a group in Electricimage.
Most model plug-ins allow the group attribute records to be set automatically when
creating new groups by supplying a group template reference. With access to these
commands, a model plug-in could modify the contents of these records over time. One
example would be a plug-in which rotated the position of a reflection map over time.

Page 54 Electricimage™ Plug-in Developer’s Tool Kit

Reference

The Lens Flare Plug-in Interface

Calls from the Host to the Plug-in

PluginFlareSetup

This call is sent to the flare plug-in to allow it to prepare for a flare generate command.

#defi ne pl ugi nFl areSet up

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt t heFr arel ndex;
Doubl e t heFr aneTi ne;

' SETF

Doubl e t heFr aneTi nelel t a;

L_Rect theFraneRect;
Doubl e t heFr ameXScal e;
Doubl e t heFr aneYScal e;
Doubl e t heFr ameXCent er;
Doubl e t heFrameYCenter;
Doubl e t heBl ur Shutter;

DMVatri x4 theCaneraMatri x;

Dwvat ri x4 t heCarrer aRot Mat ri Xx;

Dvatri x4 theCaner aBl ur Matri x;

DCoor di nat e t heLi ght Wr | dPosi ti on;
DCoor di nat e t heLi ght Bl ur Vr | dPosi ti on;
DCoor di nat e t heLi ght FranePosi ti on;
DCoor di nat e t heLi ght Bl ur FranePosi ti on;
DCoor di nat e t heLi ghtDirection;

DCoor di nat e theLightBl urD rection;

ARGB t heLi ght Col or;

Doubl e theLightlntensity;

Doubl e t heLi ght Dr opof f;

Doubl e theLi ght Wr | dRadi us;
Doubl e t heLi ght Fr aneRadi us;
Doubl e t heLi ght Qut er Angl e;
Doubl e t heLi ght | nner Angl e;
Doubl e t heLi ght Sof t Exponent ;
} Plugi nFl areSet upRec, *Pl ugi nFl areSet upPtr;

thelnfo

t heFr armel ndex

t heFr aneTi ne

t heFr ameTi neDel t a

t heFr ameRect

t heFr aneXScal e

Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Sends the frame number of the current frame in the animation.
This number is usually in the range of frames in the animation.
Most animations start at frame index zero and count upwards by
one.

Sends the time in seconds of the current frame in the
animation. Most animations start at time zero and count
upwards in 1/30 of a second increments.

Sends the duration in seconds of each frame of the animation.
A 30 frames per second animation would have a frame duration
of 1/30 of a second or 0.033333.

Sends the frame’s rectangle. The rectangle's units are in pixels.
The lens flare will be expected to generate its effects into sub-
rectangles of the frame's rectangle.

Sends the frame’s X scale value. This value is usually equal to
the width of the frame's rectangle.

Electricilmage™ Plug-in Developer’s Tool Kit Page 55

Reference

t heFr anmeYScal e

t heFr ameXCent er

t heFr ameYCent er

t heBl ur Shut t er

t heCaner aMat ri x
t heCarrer aRot Mat ri x

t heCarer aBl ur Mat ri x

t heLi ght Wor | dPosi ti on

t heLi ght Bl ur Wr | dPosi ti on

t heLi ght Fr amePosi ti on

t heLi ght Bl ur FranePosi ti on

theLightDirection

theLightBlurDirection

t heLi ght Col or

theLightlintensity

Sends the frame’s Y scale value. This value is usually equal to
the height of the frame's rectangle unless the frame was
rendered with a non-square pixel aspect ratio.

Sends the frame’s X center location. This value is usually equal
to the horizontal center of the frame's rectangle. If the flare
plug-in generates a lens flare, the flare's elements would be
calculated by the plug-in to pivot around the frame's center
point.

Sends the frame’s Y center location. This value is usually equal
to the vertical center of the frame's rectangle. If the flare
plug-in generates a lens flare, the flare's elements would be
calculated by the plug-in to pivot around the frame's center
point.

Sends the motion blur shutter angle. This value is usually a
number between 0 and 1. The default shutter angle is 0.5. The
shutter angle is the percentage of time which the camera’s
shutter is open for each frame. A moving object would appear
to travel half of its distance from the previous frame to the
current frame in the rendered image with a 0.5 shutter angle.

Sends the camera’s transformation matrix.
Sends the camera’s rotation only matrix.

Sends the camera’s motion blur transformation matrix (at the
time of the previous frame).

Sends the light's 3D position in the world space coordinates. The
camera’'s transformation matrix would have to be applied to this
position to find the light's position in camera space coordinates.

Sends the light's motion blur position in world space
coordinates (at the time of the previous frame).

Sends the light's position in frame coordinates. The host
computes this point by applying perspective, scale and offsets
to the light's position in camera space coordinates. The result is
a 2D frame position. Only the X and Y coordinates are used by
the flare plug-in when generating its effects into the frame
buffer. The Z is computed by Camera as the distance from the
camera to the light source in camera space coordinates.

Sends the light's motion blur position in frame coordinates (at
the time of the previous frame).

Sends the light's direction normal in camera space.

Sends the light's motion blur direction normal in camera space
(at the time of the previous frame).

Sends the light's color. Only the R, G and B components should
be used by the flare plug-in to generate its effects.

Sends the light's intensity. This value is 1.0 by default. The
light intensity can be used with the light's drop-off distance to
simulate more realistic lighting effects.

Page 56

Electricimage™ Plug-in Developer’s Tool Kit

Reference

t heLi ght Dr opof f Sends the light's drop-off distance. This is the distance over
which the light's should diminish towards black.

t heLi ght Wr | dRadi us Sends the light's radius in world units.
t heLi ght Fr ameRadi us Sends the light's radius in frame pixels.

theLight QuterAngle Sends the spotlight outer cone angle. Both the inner and outer
spotlight cone angles are 0.0 for non-spotlights.

theLightlnnerAngle Sends the spotlight inner cone angle. Both the inner and outer
spotlight cone angles are 0.0 for non-spotlights.

t heLi ght Sof t Exponent Sends the spotlight transition exponent. This controls how fast
the spotlight drops off between the inner and outer cones.

Typical Activities

When the flare plug-in receives a setup command, it should store any information it
needs into its plug-in data record, allocate memory and setup its lookup tables. The
LensFlare plug-in, for example, will read in its flare element resources and generate
look-up tables based upon the frame X and Y scales. When it receives the flare generate
command, it will use the lookup tables to rapidly calculate element colors. Flare plug-ins
must be able to draw into any sub-rectangle of the frame's rectangle from individual
scanlines up to the entire rectangle. Camera is currently designed to draw individual
scanlines from the top of the frame (low Y value) to the bottom of the frame (high Y
value).

Electricilmage™ Plug-in Developer’s Tool Kit Page 57

Reference

PluginFlareGenerate

This command is sent to the flare plug-in following a pl ugi nFl areSet up command. It tells
the plug-in to begin generating its effect into a flare pixel buffer using the settings in
the flare setup record.

#defi ne pl ugi nFl areGenerate ' GENF

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Fl areBuf fer theFl areBuffer;
} Pl ugi nFl areGener at eRec, *Pl ugi nFl areGener at ePtr;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

t heFl ar eBuf f er Sends the flare pixel buffer. The flare plug-in will generate its
effect into this buffer.

Typical Activities

The host will send one or more pl ugi nFl areGenerat e commands to the flare plug-in
following a pl ugi nFl areSetup command. Camera will send a generate command for each
scanline in the frame rectangle. Flare plug-ins must be written to generate scanline
effects efficiently. The use of look-up tables is a good way to do this. These tables can be
pre computed from resolution independent data in the plug-ins resources during the
flare setup command.

Page 58 Electricimage™ Plug-in Developer’s Tool Kit

Reference

The FlareBuffer Record

typedef struct {
Ptr buf f er Base;
Longl nt buf f er RowByt es;
L _Rect bufferRect;
I nt eger buf f er Dept h;
Longl nt buf f er| ndex;
} FlareBuffer, *FlareBufferPtr;

bufferBase = The flare pixel buffer's base address.
buf ferRowBytes The flare pixel buffer's scanline byte offset.

buf f er Rect The flare pixel buffer's rectangle. This will always be a sub-
rectangle of the frame's rectangle in the flare setup record.

buf f er Dept h The flare pixel buffer's bit depth. Only 8 and 48 bit buffers are
currently supported.

buf f er | ndex The flare pixel buffer's drawing color index. This is only used
to draw flare previews into 8 bit flare pixel buffers.

The Fl areBuf fer record's bufferDepth field can support any bit depth buffer, however only 8
and 48 bit buffers are currently implemented by Electriclmage and Camera.

When a flare plug-in is told to draw into an 8 bit buffer, it should only draw a preview
sketch of its effect. In the case of LensFlare, the rings are drawn as circles with the
requested buf ferl ndex color. Support of the 8 bit flare buffer is optional but recommend.
The flare plug-in should try to draw some fast and simple representation of its effect
such as its outline. Electriclmage will copy the 8 bit buffer into its camera window
which will help users to place light sources to achieve their desired result.

Camera will only use 48 bit buffers. The buffer is composed of 16 bit red, green and blue
component pixels. Camera begins by initializing the buffer to black (0, O, 0) and then
calls each flare plug-in for each scanline of the buffer. The flare plug-ins are
responsible for generating pixel data for their effect and adding it into the
accumulation buffer. The pixel values for white are (16383, 16383, 16383). The plug-in
must clip the pixel components to 16383 to prevent overflow.

Electricilmage™ Plug-in Developer’s Tool Kit Page 59

Reference

Page 60 Electricimage™ Plug-in Developer’s Tool Kit

Reference

The Project Channel Interface

The project command interface provides a set of commands for the host and plug-in to
allow plug-ins to add channels to Electricimage's project window. These commands are
not available in Camera.

Calls from the Host to the Plug-in

PluginlnitializeChannel

The host sends this command to the plug-in to tell it to add animation channels to its
object the project window.

#define pluginlnitializeChannel '1CHN

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt theStart Frare;
Longl nt t heEndFr ane;
Doubl e theStart Ti ne;
Doubl e t heFr aneTi ne;
} PluginlnitializeChannel Rec, *PluginlnitializeChannel Ptr;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

theStartFrame Sends the animation's starting frame index.
theEndFrane Sends the animation's ending frame index.

theStartTime Sends the time in seconds of the animation's starting frame.
Most animations start at time zero and count upwards in 1/30 of
a second increments.

t heFr ameTi ne Sends the duration in seconds of each frame of the animation.
A 30 frames per second animation would have a frame duration
of 1/30 of a second or 0.033333.

Typical Activities

Electricimage will send this command to a plug-in after it has been added to a project or
when the project is opened. When a plug-in receives this command, it should throw
away any channel information it currently has and send a host Addchannel command for
each variable it wishes to make available for user animation. When a plug-in is first
added to the project, Electricimage will create new channels when it receives

host AddChannel commands. When a project is opened, it will use the host AddChannel
commands to validate the channels which were stored in the project file. This makes it
possible to update a plug-in to a newer version without loosing animation information
in existing project files. The LensFlare plug-in creates channels for each flare element.
These channels control the flare element's visibility, size, color and intensity.

Electricilmage™ Plug-in Developer’s Tool Kit Page 61

Reference

PluginFinishChannel

This command tells a plug-in that its channels are no longer valid and should no longer
be accessed.

#defi ne pl ugi nFi ni shChannel ' FCHN

typedef struct {
Pl ugi nl nf oRec t hel nf o;
} Pl ugi nFi ni shChannel Rec, *Pl ugi nFi ni shChannel Ptr;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Typical Activities

Most plug-ins do not need to do anything when they receive this command. This
command was provided for later expansion of the channel command set. Electriclmage
currently initiates all channel activity so the plug-in should not be accessing its
animation channels unless it is told to do so by the host.

Page 62 Electricimage™ Plug-in Developer’s Tool Kit

Reference

PluginUpdateChannel

This command tells a plug-in to update the values in a range of frames of its animation
channels.

#def i ne pl ugi nUpdat eChannel ' UCHN

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt theStart Frarne;
Longl nt t heEndFr arre;
Doubl e t heStart Ti ne;
Doubl e t heFr aneTi ne;
} Pl ugi nUpdat eChannel Rec, *P ugi nUpdat eChannel Ptr;

thelnfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

theStartFrame Sends the animation's starting frame index.
theEndFrane Sends the animation’'s ending frame index.

theStartTine Sends the time in seconds of the animation's starting frame.
Most animations start at time zero and count upwards in 1/30 of
a second increments.

t heFr aneTi ne Sends the duration in seconds of each frame of the animation.
A 30 frames per second animation would have a frame duration
of 1/30 of a second or 0.033333.

Typical Activities

This command is currently used by Electricimage to update the contents of the plug-in's
animation channels after the user has accessed the plug-in's interface dialog box. The
plug-in should respond by sending a host Set channel command for each of its animation
channels. The host compares each plug-in channel value to the one stored in the
project at the current frame. If the values are different, either a key frame or custom
frame is created at the current frame with the new value depending upon whether the
project window is in key frame or frame mode.

When LensFlare receives this command it will update its channels with the variables
stored in its control data record. The same control data record variables can be edited in
the user interface dialog and loaded with the pl ugi nLoadChannel command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 63

Reference

PluginLoadChannel

This command tells a plug-in to load the current frame's plug-in channel values into the
plug-in's control data record.

#defi ne pl ugi nLoadChannel ' LCHN

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt theStart Frarre;
Longl nt t heEndFr ang;
Doubl e theStart Ti ne;
Doubl e t heFr aneTi ne;
Longl nt t heFr arre;
} Pl ugi nLoadChannel Rec, *Pl ugi nLoadChannel Ptr;

thelnfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

theStartFrame Sends the animation's starting frame index.
theEndFrane Sends the animation’s ending frame index.

theStartTine Sends the time in seconds of the animation's starting frame.
Most animations start at time zero and count upwards in 1/30 of
a second increments.

t heFr aneTi ne Sends the duration in seconds of each frame of the animation.
A 30 frames per second animation would have a frame duration
of 1/30 of a second or 0.033333.

t heFr ane Sends the current frame index.

Typical Activities

When the plug-in receives this command, it should send a host Get Channel command to the
host for each of its animation channels. This will update the values in the plug-in's
control data record to match those in the animation channels at the current frame.
Electriclmage sends this command to the plug-in before sending a pl ugi nl nterface
command. It also sends this command to the plug-in as each frame is sent to Camera in
the control file. Because the contents of the plug-in's control data record are written to
the control file at each frame, the plug-in is able to have access to the animated values
before rendering.

Page 64 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Calls from the Plug-in to the Host

HostResetChannel

This command tells the host to delete all of the plug-in's animation channels.
#def i ne host Reset Channel ' RCHN

typedef struct {
Ptr theReference;
} Host Reset Channel Rec, *Host Reset Channel Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

Usage

If a plug-in determines that its channel data is no-longer valid for some reason (the
control data record contained invalid data, for example) it should send a host Reset Channel
command to the host. After the current plug-in command returns to the host, the host
should send a pl uginlnitializethannel to the plug-in so that new channels can be created.
A plug-in should not attempt to access its animation channels after it has sent a

host Reset Channel command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 65

Reference

HostAddChannel

This command tells the host to add a new plug-in animation channel.

#defi ne host AddChannel

typedef struct {
Ptr theReference;

Longl nt theChannel | D,

CsType t heChannel Type;
Str 255 t heChannel Narrg;
Ptr theChannel Defaul t;
Ptr t heChannel M ni num
Ptr theChannel Maxi num
Pt r theChannel Bef or e;

" ACHN

Ptr t heChannel Ref er ence;
} Host AddChannel Rec, *Host AddChannel Ptr;

t heRef er ence

t heChannel | D

t heChannel Type

t heChannel Nane

t heChannel Def aul t

t heChannel M ni num

t heChannel Maxi num

t heChannel Bef or e

t heChannel Ref er ence

Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

Sends the animation channel's unique ID. The ID is defined by
the plug-in and will help to validate the channel in later
commands.

Sends the animation channel's four character type. The
channel types are defined in ‘EIPlugin.h’. The channel type is
used by the host to display and animate the channel values and
also to validate the channel in later commands.

Sends the animation channel's name. The name is used by
Electricimage when displaying the channel in the project
window.

Sends the pointer to the animation channel's default value.
This value will be used by the host to initialize the contents of
the animation channel. Initialize to ‘nil’ if the channel does
not contain an animated value.

Sends a pointer to the animation channel's minimum allowable
value. The host should prevent the animated value from
dropping below the minimum value. Initialize to ‘nil’ if the
channel does not contain an animated value or if there is no
minimum value for the channel (the host will automatically
limit channel values to the largest possible ranges for their
numeric type).

Sends a pointer to the animation channel's maximum allowable
value. The host should prevent the animated value from rising
above the maximum value. Initialize to ‘nil’ if the channel does
not contain an animated value or if there is no maximum value
for the channel (the host will automatically limit channel
values to the largest possible ranges for their numeric type).

Sends a reference to a previously added channel. The channel
being added will appear immediately following the referenced
channel. Sending null in this parameter will cause the new
channel to be added to the end of the list.

Returns a reference to the added channel. This reference
should be stored for use in later commands.

Page 66

Electricimage™ Plug-in Developer’s Tool Kit

Reference

Usage

This command is sent to the host to add each of the plug-in's animation channels when a
plug-in receives a pl uginl ni ti ali zeChannel command. When Electriclmage adds a plug-in to
the project, it will add the plug-in's animation channels following the plug-in's object
in the project list. When a project is opened, Electricimage will send the

pl ugi ninitiali zeCchannel command to the plug-in and then validate the ID, and data type of
each channel it receives against the channels which were stored in the project file. If
the channels all match, it will keep the original channels. If the channels do not match,
it will use the newly created channels and their default values. This will allow plug-in
versions to be updated while still maintaining compatibility with older project files.

Animation channels may be added to either store data values or to form containers of
other animation channels. This allows the plug-in to create a more structured display of
its animation channels in Electriclmage’'s project window. Animation channels can
contain a variety of data types:

/* Channel data types Description Type Size */
#def i ne channel Label " LABL' /* A channel container | abel none 0 */
#defi ne channel End ' LEND /* The end of a container | abel none 0 */
#def i ne channel Real " REAL' /* Real (floating point) data Doubl e 8 */
#def i ne channel CREB ' CR&B /* R@B 16 bit color data R@&BCol or 6 */
#def i ne channel AREB " ARGB /* ARG 16 bit color data AR@BCol or 8 */
#def i ne channel CHSV " CHsV /* HSV 16 bit color data HSVCol or 6 */
#def i ne channel AHSV " AHSV /* AHSV 16 bit color data AHSVCol or 8 */
#def i ne channel | nt eger " SINT /* Signed integer count data Longint 4 */
#def i ne channel Unsi gned "UNT /* Unsigned integer count data Longlnt 4 */

#def i ne channel Bool ean ' BOAL' /* Bool ean flag data Boolean 2 */
#defi ne channel Unsi gnedReal ' UREL' /* Unsigned Real (float) data Doubl e 8 */
#defi ne channel Coordi nate ' CCORD /* Coordinate (float) data 3*Double 24 */

Each channel is added with a default value. The default is used to initialize the value of
all of the frames in the channel when it is first added to the project. A channel may
optionally have minimum and maximum value limits. The host will prevent the
animated channel's values from exceeding these limits when they are provided by the

plug-in.

Every channel should have a unique ID number. The plug-in is responsible for creating
and maintaining the channel IDs. Both the plug-in and the host can use the channel ID
to validate the contents of a particular animation channel.

Electricilmage™ Plug-in Developer’s Tool Kit Page 67

Reference

HostlnsertChannel

This command tells the host to insert a new plug-in animation channel into an already

existing channel hierarchy.

#def i ne _host | nsert Channel

typedef struct {
Ptr theReference;

Longl nt t heChannel |

CsType t heChannel Type;

St r 255 t heChannel Nane;

Ptr theChannel Def aul t;

Pt r t heChannel M ni num

Pt r t heChannel Maxi num

Pt r t heChannel Bef or €;

Pt r t heChannel Parent ;

Pt r t heChannel Ref er ence;

1} Host | nsert Channel Rec, *Host | nsert Channel Ptr;

t heRef er ence

Sends the plug-in's reference. This reference can be found in

t heChannel | D

t heHost Ref er ence of the plug-in command's thel nf o record.

Sends the animation channel’'s unique ID. The ID is defined by

t heChannel Type

the plug-in and will help to validate the channel in later
commands.

Sends the animation channel's four character type. The

t heChannel Nane

channel types are defined in ‘EIPlugin.h’. The channel type is
used by the host to display and animate the channel values and
also to validate the channel in later commands.

Sends the animation channel's name. The name is used by

t heChannel Def aul t

Electriclmage when displaying the channel in the project
window.

Sends the pointer to the animation channel's default value.

t heChannel M ni num

This value will be used by the host to initialize the contents of
the animation channel. Initialize to ‘nil’ if the channel does
not contain an animated value.

Sends a pointer to the animation channel's minimum allowable

value. The host should prevent the animated value from
dropping below the minimum value. Initialize to ‘nil’ if the
channel does not contain an animated value or if there is no

minimum value for the channel (the host will automatically

limit channel values to the largest possible ranges for their

numeric type).

Page 68

Electricimage™ Plug-in Developer’s Tool Kit

Reference

t heChannel Maxi 'um __ Sends a pointer to the animation channel's maximum allowable

value. The host should prevent the animated value from rising
above the maximum value. Initialize to ‘nil’ if the channel does
not contain an animated value or if there is no maximum value
for the channel (the host will automatically limit channel
values to the largest possible ranges for their numeric type).

t heChannel Bef ore Sends a reference to a existing sibling channel. The channel

being added will appear immediately following the referenced
channel. Sending null in this parameter will cause the new
channel to be added to the end of the list of siblings.

t heChannel Par ent Sends the reference to an existing parent channel. Sending

null in this parameter will cause the new channel to be added at

the end of the complete hierarchy listing without any parents.

Usage

This command is sent to the host to insert a new animation channel into an already
existing channel hierarchy. This command should be called during the pl ugi nl nterface
command when the plug-in has determined that a new channel is needed. An existing
animation channel hierarchy must exist. To build a new animation channel hierarchy,
use host AddChannel commands in response to aplugininitialize channel.

See HostAddChannel command for additional information.

Electricilmage™ Plug-in Developer’s Tool Kit Page 69

Reference

HostDeleteChannel

This command tells the host to delete one of the plug-in's animation channels.
#def i ne host Del et eChannel ' DCHN

typedef struct {
Ptr theReference;
Ptr theChannel Ref er ence;
Longl nt theChannel I D,
} Host Del et eChannel Rec, *Host Del et eChannel Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

t heChannel Ref er ence Sends the animation channel's reference for validation This
reference was returned to the plug-in in the host AddChannel
command.

theChannel ID Sends the animation channel’s unique ID for validation.

Usage

If the plug-in needs to make changes in its animation channel list, it must first delete
the unwanted channels. The plug-in does this by sending a host Del et eChannel command
for each animation channel to be deleted. The plug-in must pass the channel reference
it received from the host in the Host AddChannel Rec record. It must also send the channel's
unique ID number for channel validation. When the hostDeleteChannel is called on an
animation channel which is just a container (no animation values) then all of its
offspring animation channels are deleted as well.

The LensFlare plug-in deletes all of its flare element channels when the user changes
the lens flare type in the plug-in's user interface. It then adds the animation channels
for the new flare type's elements to the project list. The LensFlare plug-in does not
delete the animation channels which control the overall lens flare effects because they
do not change by lens flare type.

Page 70 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostGetChannel

This command tells the host to get the value for a plug-in animation channel at a
particular frame number.

#defi ne host Get Channel ' GCHN

typedef struct {
Ptr theReference;
Pt r theChannel Ref er ence;
Longl nt theChannel | D
CSType t heChannel Type;
Longl nt t heChannel Fr ang;
Pt r t heChannel Dat a;
} Host Get Channel Rec, *Host Get Channel Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

t heChannel Ref er ence Sends the animation channel's reference for validation. This
reference was returned to the plug-in in the host AddChannel
command.

theChannel ID Returns the animation channel’s unique ID for validation.
t heChannel Type Returns the animation channel's data type for validation.

theChannel Frane Sends the requested frame number. The host will return the
animation channel's value at this frame.

theChannel Data Returns a pointer to the requested animation channel's value at
the requested frame number.

Description

This message is passed to the host to extract the value of a particular frame in an
animation channel. Although a pointer to this value is returned, it is not a pointer to
the actual frame’s value. It is a pointer to a copy of this value. The plug-in must use a
host Set Channel command to actually change the frame value’s contents.

Usage

The plug-in should send a host Get Channel command for each of its animation channels in
response to a pl ugi nLoadChannel command. The plug-in should validate the channel's ID
and data type and then copy the channel data into its control data record. The plug-in
must not attempt to change the contents of t heChannel Data. To change the value of an
animation channel, the plug-in should use the host Set Channel command.

Electricilmage™ Plug-in Developer’s Tool Kit Page 71

Reference

HostSetChannel

This command tells the host to change the value of a plug-in animation channel at a
particular frame.

#def i ne host Set Channel ' SCHN

typedef struct {
Ptr theReference;
Ptr theChannel Ref er ence;
Longl nt theChannel I D,
CsType t heChannel Type;
Longl nt t heChannel Fr ane;
Pt r theChannel Dat a;
} Host Set Channel Rec, *Host Set Channel Ptr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

t heChannel Ref er ence Sends the animation channel's reference for validation. This
reference was returned to the plug-in in the host AddChannel
command.

theChannel ID Sends the animation channel’s unique ID for validation.
theChannel Type Sends the animation channel's data type for validation.

theChannel Frane Sends the requested frame number. The host will set the
animation channel's value at this frame.

theChannel Data Sends a pointer to the new channel frame value for the
requested frame number.

Usage

When the host sends a pl ugi nUpdat eCchannel command to the plug-in, the plug-in should
respond by sending a host Set Channel command for each of its animation channels and for
each frame in the specified range. Electriclmage validates the channel's ID and data
type and then compares the new channel value to the current channel value. If the two
values are different a new key frame is created if the project is set to time or key frame
mode. A custom frame is created if the project is in frame mode. Electricimage sends a
pl ugi nUpdat eChannel for the current frame to the plug-in following a pl ugi nl nterface
command.

Page 72 Electricimage™ Plug-in Developer’s Tool Kit

HostGetTiminglnfo

Reference

This command tells the host to return the most recent animatiom timing information.

#defi ne host Get Ti m ngl nfo

' TINF

typedef struct {
Ptr theReference;

doubl e theTimngStart;

doubl e TheTi m ngQurrent;

doubl e t heTi m ngFPS;

Longl nt theTi m ngl nterl ace;

Longl nt t heTi m ngTot al ;

Longl nt _t heTi m ngSki p;

Longl nt t heRender FraneStart ;

Longl nt t heRender Fr aneSt op;

Host Get Ti m ngl nf oRec, *Host Get Ti m ngl nf oPtr;

t heRef er ence

Sends the plug-in's reference. This reference can be found in

theTi m ngSt art

t heHost Ref er ence of the plugin-in command’s_thel nfo record.

Send the system's start time of the animation. The default is 0.0.

t heTi m ngQurr ent

But the user may change it by dragging the start time icon in
the time bar.

Sends the system's current time.

t heTi m ngFPS

Sends the system's frame-per-second factor. Video rates is

t heTi m ngl nterl ace

usually 30 frames-per-second, or 60 fields-per-second (fields
are treated as frames in El). Film rates are 24 frames-per-
second. The host may have a different FPS count, so the plug-in
should call this command as frequently as possible.

Sends the system's interlace option. O is no interlace,

while 1 specifieds interlacing.

t heTi m ngTot al

Sends the system's total number of frames. The stop time of an

animation is computed as follows

stopTime = theTimingStart + (theTimingTotal * theTimingFPS)

t heTi m ngSki p

Sends the system's skip frames of an animation. The user may

instruct the animation to skip frames during rendering. This is
O if all frames are rendered, or positive if frames need to be
skipped. For example, a value of 3 only renders every fourth
frame.

Electricilmage™ Plug-in Developer’s Tool Kit Page 73

Reference

t heRender Fr aneSt ar t Sends the system's frame start of a rendering. A value of O

means that the animation starts at theTiningStart.

t heRender Fr aneSt op Sends the system's frame stop of a rendering. A value of

theTi m ngTot al_means that the animation stops at the end of the
animation.

NOTE: If t heRender FraneSt art_and t heRender Fr aneSt op are the same

value, look at t heTi m ngQurrent for the current time to be rendered
(single frame only).

Usage

This command is valuable to inform the plugin about the current state of the system's
animation timing track. Usually, the plug-in might want to use this command before
generating any model data to check how much needs to be done.

Page 74 Electricimage™ Plug-in Developer’s Tool Kit

HostGetChannellnfo

Reference

This command tells the host to return information about a animation channel

#def i ne_host Get Channel | nf o

"QH

typedef struct {

Pt r t heRef er ence;

Pt r t heChannel Oaner ;

Pt r t heChannel Ref er ence;

Longl nt t heChannel Type;

Longl nt theChannel Filter;

Longl nt t heChannel Vel oci ty;

Longl nt _t heChannel KeyTot al ;

Longl nt t heChannel Fl ag;

Ptr t heChannel M ni num

Ptr t heChannel Maxi num

} Host Get Channel | nf oRec,

*Host Get Channel | nf oPtr;

t heRef er ence

Sends the plug-in's reference. This reference can be found in

t heChannel Oaner

t heHost Ref er ence of the plugin-in command's thel nf o record.

Sends the pointer to the owner of the animation channel. A

null represents the plug-in's reference.
Reserved for future expansion.

t heChannel Ref er ence

Sends a reference to specify the channel.

t heChannel Type

Returns the type of channel. See host AddChannel and

theChannelFilter

host | nsert Channel for more information about the types.

Returns the type of channel value filter. This will tell you

theChannelVelocity

about the range of the values this channel can handle.

Returns O if no velocity computation are performed on this

theChannelKeyTotal

channel.

Returns the number of key frames available in the channel.

theChannelFlag

Returns a flags field for the animation channel.

Reserved for future expansion.

theChannelMinimum

Returns the a pointer to the animation channel's minimum

theChannelMaximum

allowable value. A null is returned if all possible values for this
type (returned in t heChannel Type) are allowed.

Returns the a pointer to the animation channel's maximum

allowable value. A null is returned if all possible values for this
type (returned in t heChannel Type) are allowed.

Electricilmage™ Plug-in Developer’s Tool Kit Page 75

Reference

Usage

This command is send to the host to return important information about an animation

channel.

Remember that the host has the same privileges of modifing an animation

channel than the plug-in.

The host as well as the plug-in can add, delete, or modify the channel's keys and state.

Before the plug-in attemps to issue the more advanced channel commands, it should send

this command to update its information about a key channel.

The filter type returns the following values:

#defi ne PLUJ N CHANNEL FI LTER NONE 0

#defi ne PLUJ N CHANNEL FI LTER BYTE SI G\ED 1

#defi ne PLUJ N CHANNEL FI LTER BYTE UNSI GNED2

#defi ne PLUG N CHANNEL FI LTER | NTEGER SI G\NED 3

#define PLUG N CHANNEL FI LTER | NTEGER UNSI G\ED 4

#defi ne PLUJ N CHANNEL FI LTER FLOAT Sl G\ED 5

#defi ne PLUJ N CHANNEL FI LTER FLOAT UNSI GNED 6

#defi ne PLUJ N CHANNEL FI LTER BOCLEAN 7
PLUG N CHANNEL FI LTER NONE allows all key values
PLUG N CHANNEL FI LTER BYTE SI G\ED allows key values between -127 and +128
PLUG N CHANNEL FI LTER BYTE UNSI G\ED allows key values between O and 255
PLUG N CHANNEL FI LTER | NTEGER S| G\ED allows key values between -2,147,483,648

and +2,147,483,647

PLUG N CHANNEL

FI LTER | NTEGER UNSI G\ED allows key values between 0 and

+2,147,483,647
PLUG N CHANNEL FI LTER FLOAT S| G\ED allows key values between -infinity and
+infinity
PLUG N CHANNEL FI LTER FLOAT UNSI G\NED allows key values between 0 and +infinity
PLUG N CHANNEL FI LTER BOOLEAN allows key values of O (true) and 1 (false)

Page 76

Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostAddChannelKey

This command tells the host to add a key frame to an existing animation channel

_#defi ne host AddChannel Key " ACHK

typedef struct {
Ptr theReference;
Pt r t heChannel Omner ;
Pt r t heChannel Ref er ence;
Longl nt t heChannel | D,
CSType t heDat aType;
Ptr theDat a;
doubl e t heKeyTi ne;
} Host AddChannel KeyRec, *Host AddChannel KeyPtr ;

t heRef er ence Sends the plug-in's reference. This reference can be found in

t heHost Ref er ence of the plugin-in command'’s t hel nfo record.

theChannelOwner Sends the pointer to the owner of the animation channel. A

null represents the plug-in's reference.
Reserved for future expansion.

theChannelReference Sends a reference to specify the channel.

theChannellD Sends a plug-in maintained ID for the channel.

theDataType Sends the type of data. Along with theDat a, this represents the

default value for that key.

theData Sends the pointer to the default data.

theKeyTime Sends the time of the key. When creating keys, care should be

taken so that the plug-in does not create keys at the same time.
The host will return an error if this happens.

Usage

This command allows the plug-in to maintain the key frames of an existing channel.
The plug-in should send the same default data type as the channel can accept. Use the
host Get Channel | nfo command to inquire about the channel's capabilities. If the plug-in
tries to create a key frame with the same time as an existing one, the host will return an
error.

Electricilmage™ Plug-in Developer’s Tool Kit Page 77

Reference

HostDeleteChannelKey

This command tells the host to delete a key frame from an existing animation channel.

_#defi ne host Del et eChannel Key ' DCHK

typedef struct {
Ptr theReference;
Pt r t heChannel Oaner ;
Pt r t heChannel Ref er ence;
Longl nt t heChannel | D,
Longl nt _t heKeyl ndex;
1 Host Del Channel KeyRec, *Host Del Channel KeyPtr ;

t heRef er ence Sends the plug-in's reference. This reference can be found in

t heHost Ref er ence of the plugin-in command's t hel nfo record.

t heChannel Oaner Sends the pointer to the owner of the animation channel. A nul |

represents the plug-in's reference.
Reserved for future expansion.

theChannelReference Sends a reference to specify the channel.

theChannellD Sends a plug-in maintained ID for the channel.

theKeylndex Sends the index or types of keyframes to be deleted. A non-zero

positive index indicates which key frame is to be deleted. The
first key frame starts with 1 (one). A zero index indicates ALL
key frames are to be deleted. A value of -1 for index indicates
only SELECTED key frames are to be deleted.

Usage

This command allows the plug-in to maintain the key frames of an existing channel.
When specifying a key frame you can use the following constants to delete more than
one key frame at a time.

#define PLUG N CHANNEL SPEC FY ALL 0
#define PLUG N CHANNEL SPEC FY SELECTED -1

PLUG N CHANNEL SPEQ FY ALL allows the plugin to delete all key frames in a channel.

PLUG N CHANNEL SPEQ FY SELECTED allows the plugin to delete only selected key frames
in a channel.

Any positive number indicates the indexed key frame to be deleted.
The first key frame always starts with 1.
Use the host Get Channel | nf o to get the total number of key frames in an animation channel.

Page 78 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostGetChannelKey

This command tells the host to get a value from the specified key frame(s) of an
existing animation channel

_#defi ne host Get Channel Key ' K

typedef struct {
Ptr theReference;
Pt r t heChannel Oaner ;
Pt r t heChannel Ref er ence;
Longl nt _t heChannel | G,
CSType t heDat aType;
Ptr theData;
Longl nt t heKeyPart ;
Longl nt _t heKeyl ndex;
} Host Get Channel KeyRec, *Host Get Channel KeyPtr;

t heRef er ence Sends the plug-in's reference. This reference can be found in

t heHost Ref er ence of the plugin-in command'’s t hel nfo record.

t heChannel Oaner Sends the pointer to the owner of the animation channel. A null

represents the plug-in's reference.
Reserved for future expansion.

t heChannel Ref er ence Sends a reference to specify the channel.

theChannel ID Sends a plug-in maintained ID for the channel.

t heDat aType Returns the type of data.

t heDat a Returns a pointer to the data. Make sure the plug-in checks the

data type to extract the data with the correct structure.

t heKeyPar t Sends the part of the key frame to be evaluated.

t heKeyI ndex Sends the index of the key frame to be inquired. A non-zero

positive index indicates the key frame. The first key frame
starts with 1 (one).

Electricilmage™ Plug-in Developer’s Tool Kit Page 79

Reference
Usage
This command is send to the host to get the value of the specified key frame

of an existing animation channel. By using the following constants, the
plug-in can extract different information:

#defi ne PLUG N CHANNEL MCDE PROCESS VALUE 10
#defi ne PLUJ N CHANNEL MCDE PROCESS Tl ME 11
PLUG N CHANNEL MCDE PROCESS VALUE extracts the value of the key frame. Check the

data type returned for the correct type.

PLUG N CHANNEL MODE PROCESS TI ME extracts the time of the key frame. The value is
always a signed double (channelReal).

Before attempting to extract the key value, call the hostGetChannellnfo command to get
the total number of key frames. If the plug-in attemps to extract information of a non-
existing key frame, an error will be returned.

Page 80 Electricimage™ Plug-in Developer’s Tool Kit

HostSetChannelKey

Reference

This command tells the host to modify a value of specified key frame(s) of an

existing animation channel.

_#defi ne host Set Channel Key

typedef struct {
Pt r t heRef er ence;

Pt r _t heChannel Oaner ;

Pt r t heChannel Ref er ence;

Longl nt t heChannel | D,

CSType t hebDat aType;

Ptr theDat a;

Longl nt theKeyPart ;

Longl nt t heKeySubPart ;

Longl nt _t heKeyl ndex;

} Host Set Channel KeyRec,

*Host Set Channel KeyPtr;

t heRef er ence

Sends the plug-in's reference. This reference can be found in

t heChannel Oaner

t heHost Ref er ence of the plugin-in command'’s t hel nfo record.

Sends the pointer to the owner of the animation channel. A null

represents the plug-in's reference.
Reserved for future expansion.

t heChannel Ref er ence

Sends a reference to specify the channel.

t heChannel | D

Sends a plug-in maintained ID for the channel.

t heDat aType

Returns the type of data.

t heDat a

Returns a pointer to the data. Make sure the plug-in checks the

t heKeyPar t

data type to extract the data with the correct structure.

Sends the part of the key frame to be evaluated.

t heKeySubPar t

Sends the component ID of the key frame value to be processed

t heKeyl ndex

by an operator type.
Sends the index of the key frame to be modified. A non-zero

positive index indicates the key frame. The first key frame
starts with 1 (one).

Electricilmage™ Plug-in Developer’s Tool Kit Page 81

Reference

Usage

This command allows the plug-in to modify the key frame values. There are several
modes in which the plug-in can modify a value of a key.

#defi ne PLUJ N CHANNEL MODE ADD SYSTEM 1
#defi ne PLUJ N CHANNEL MCDE ADD KEY 2
#defi ne PLUJ N CHANNEL MCDE ADD FRAME 3
PLUG N CHANNEL MCDE ADD SYSTEM Adds a key frame value at the current time by

using the system's mode. This means that key
frames will either be modified or created, or that
custom frames will either be modified or created,
which mode the system is currently in.

t heKeyl ndex is ignored in this case.

PLUG N CHANNEL MCDE ADD KEY Adds a key frame value by either modifying an
existing key frame at the current time, or
creating a new key frame with this value
at the current time. thekeyl ndex is ignored in this
case.

PLUG N CHANNEL MCDE ADD FRAME Adds a key frame value by either modifying an
existing custom frame at the current time, or
creating a new custom frame with this
value at the current time. theKeyl ndex is ignored
in this case.

#defi ne PLUJ N CHANNEL MCDE PROCESS VALUE 10
#defi ne PLUJ N CHANNEL MCDE PROCESS Tl ME 11
PLUG N CHANNEL MCDE PROCESS VALUE modifies the value of the key frame. Check the

data type returned for the correct type.

PLUG N CHANNEL MIDE PROCESS TI ME modifers the time of the key frame. The value
specified is always a signed double
(channelReal).

In addition, the plug-in call specifies which key frames are to be modified by using the
following commands.

#defi ne PLUG N CHANNEL SPECQ FY ALL 0
#defi ne PLUQ N CHANNEL SPEQ FY SELECTED -1
PLUG N CHANNEL SPEC FY ALL allows the plugin to modify all key frames in a
channel.
PLUG N CHANNEL SPEQ FY SELECTED allows the plugin to modify only selected key

frames in a channel.

Any positive number indicates the indexed key frame to be modified.
The first key frame always starts with 1.

Page 82 Electricimage™ Plug-in Developer’s Tool Kit

Reference

In addition to the standard data types, the following type can be used to
modify existing values:

#def i ne channel Pascal String ' PSTR

This is a pascal string type with which the user can use relative operators on existing
values. These are:

@ Current value.

@ <number> Multiply the current value by a factor (implied).
@* <number> Multiply the current value by a factor.

@+ <number> Add a number to the current value.

@- <number> Subtract a number from the current value.

@/ <number> Divide the current value by a divisor.

(@ <number> Apply a power to the current value.

Adding a percent sign (%) after the number indicates a
percentage of that number (<number> / 100.0).

@# Compute the absolute of the current value ([value]).
@! Negate the current value (-value).
@3 Reciprocal of the current value (1 7 value).

All operators can be pipelined with the use of semi-colons (;). For example,

@*2:0+12:@!

will take the current value, multiply by 2, add 12 to the result, and, finally, negate the
previous result.

Modifying the key times can lead two or more key frames to share the same time, which
is impossible. You cannot exist in two places at once. Some of the modes allow more than
one key frame to be modified. Care should be taken to make sure that this will not
happen. In case it does happen, an error will be returned and the operation will not be
performed. To extract all key frame times, use hostGetChannelKey and
hostGetChannellnformation.

Electricilmage™ Plug-in Developer’s Tool Kit Page 83

Reference

User Interface

Calls from the Host to the Plug-in

Plugininformation

This command is used by the host to get information about the plug-in.
#defi ne pl ugi ninformation ' 1 NFO

typedef struct {

Pl ugi nl nf oRec t hel nf o;
CSType t hePl ugi nType;

Longl nt thePl ugi nVersi on;

Str255 t hePl ugi nNane;

Str255 t hePl ugi nCopyri ght ;

Str255 t hePl ugi nAut hor;

Str255 t hePl ugi nDescri pti on;
Longl nt t hePl ugi nPer m ssi on;
} Pl uginlnformati onRec, *PluginlnfornationPtr;

thel nfo

t hePl ugi nType

t hePl ugi nVer si on

t hePl ugi nNane

t hePl ugi nCopyri ght

t hePl ugi nAut hor

t hePl ugi nDecri ption

t hePl ugi nPer m ssi on

Typical Activities

Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Returns the plug-in’s unique type.
Returns the plug-in’s version number.
Returns the plug-in’s name.

Returns the plug-in’s copyright notice.

Returns the plug-in’s author name, address, phone or any other
desired data.

Returns a string which describes the plug-in’s capabilities.

Returns a flag which determines whether El has permission to
automatically copy this plug-in to slave machines for
rendering.

If the host needs to get information about a plug-in in response to request by the user or
for other purposes, it should send a pl ugi nl nformati on command to the plug-in. The plug-
in should simply fill in all of the fields in the Pl ugi nl nf or mati onRec and return to the host.
The "|" character is used to delineate a new line in the information strings. The host is
responsible for displaying the information strings correctly to the user.

Page 84

Electricimage™ Plug-in Developer’s Tool Kit

Reference

The t hePl ugi nPer m ssi on field is used to tell the host if it has permission to copy the plug-in
to another machine for network rendering. This flag was provided to allow plug-in
authors to decide if they wish to grant users a single or multi-machine license. This
field also contains flags which indicate whether the plug-in is sensitive to changes in
time, the plug-in's parent group or any of the plug-in's child groups. These flags are
defined as follows:

#def i ne pl ugi nSensi tivityFl ag 0 /* The plug-in supports the sensitivity flags */

#define plugi nTineSensitivityFlag 1 /* Sensitive to changes in tine */

#define plugi nParent SensitivityFlag 2 /* Sensitive to changes to its own group */

#define pl ugi nChil dSensitivityFl ag3 /* Sensitive to changes to its child groups */
#defi ne pl ugi nPerm ssi onCopyFlag 31 /* Do not copy the plug-in to another system*/

If the pl ugi nSensitivityFl ag for a model plug-in is set, the host will use the plug-in
sensitivity flags to determine when to sent a pl ugi nMdel Set uyp command to the plug-in. If
the pl ugi nTi neSensi tivityF ag is set, the plug-in will receive a pl ugi nMbdel Set up command
whenever the current time changes. If the pl ugi nParent Sensi tivityFl ag is set, the plug-in
will receive a pl ugi nMdel Setup command when any change is made to the plug-in‘s own
group. If the plugi nChil dSensitivityFlag is set, the plug-in will receive a pl ugi nMdel Set up
command whenever any change is made to one of the plug-in's child groups. These
changes can occur either by user interaction (such as dragging the time thumb or a
group) or as part of an animated sequence (such as during a shaded preview).

When the plug-in receives a pl ugi nMdel Set up command, it must send the host a

host Model Reset command in order to receive a pl ugi nMdel Generate command. Most model
plug-ins should send a host Mbdel Reset command every time they receive a pl ugi nModel Set up
command. More advanced plugins could try to determine what has changed since the
last pl ugi nMbdel Set up command before deciding if it is necessary to re-generate their
model data.

Electriclmage sends a pl ugi nl nf ormati on command when the user requests information
about a plug-in (by holding down the command key and clicking on the plug-in's icon
in the object palette) and before rendering to a remote Camera.

Electricilmage™ Plug-in Developer’s Tool Kit Page 85

Reference

PluginAbout

This command is sent to the plug-in to tell it to display its about box.
#defi ne pl ugi nAbout ' ABQU
typedef struct {

Pl ugi nl nf oRec t hel nf o;
} Pl ugi nAbout Rec, *Pl ugi nAbout Ptr;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Typical Activities
If the plug-in has an about box, it should display it in a modal dialog until the user clicks

the OK button. This command is not currently supported by Electriclmage but is
provided for future expansion.

Page 86 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Pluginlnterface

This command tells the plug-in to display its user interface dialog box and accept user
input.
#define pluginlnterface ' | NTF

typedef struct {
Pl ugi nl nf oRec t hel nf o;
} PlugininterfaceRec, *PluginlnterfacePtr;

thel nfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

Typical Activities

Most plug-ins have user editable values. These values are presented to the user for
editing with a user interface dialog box. When the plug-in receives a pl ugi nl nt erf ace
command, it should first send a host QpenResour ce command to the host in order to gain
access to its resource file. The plug-in should then display its user interface dialog box
and allow the user to edit control values until the user hits the OK or Cancel button. If
the user hit the OK button, the plug-in should store the edited control values into its
control data record. It is not necessary to send a host A oseResource command because the
host does this automatically after calling the plug-in.

A model plug-in should send a host Mdel Reset command to the host if the new control
values will cause the generated model data to change. The host should respond by
sending the pl ugi nMdel Set up and pl ugi nMdel Gener at e commands to the plug-in.

Electricimage sends the pl ugi nl nterface command to the plug-in when it is first added to
the project or when the user clicks on the Options button for a model plug-in's group or
a flare plug-in's light source. Electricimage will send a pl ugi nUpdat eChannel command to a
flare plug-in following the pl ugi ninterface command. This allows the plug-in to update its
animation channel values at the current frame.

Electricilmage™ Plug-in Developer’s Tool Kit Page 87

Reference

Calls from the Plug-in to the Host

HostStatus

This command tells the host to display or update the status box and to handle background
events or allow the user to abort the current plug-in command.

#defi ne host Status ' STAT

typedef struct {
Ptr theReference;
Real theStatusPos; Real;
Str255 theStatusbnit;
Str255 t heSt at usl nf o;
Longl nt theStatusM n;
Longl nt t heSt at usMax;
Longl nt theStat usVal ue;
Longl nt theStat usTi ck;
} Host StatusRec, *Host StatusPtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command’s t hel nfo record.

t heSt at usPos Sends the status box's completion percentage. This represents
the percentage of the current plug-in operation which has
been completed. The value can range between 0.0 and 1.0.

t heSt at usni t Sends the status box's unit name.

theStatusinfo Sends the status box's information string. This will tell the user
what operation the plug-in is currently performing. The plug-
in may need to perform several operations in order to complete
a single command.

theStatusM n Sends the status box's minimum value. This value is displayed at
the left side of the status bar.

t heSt at usMax Sends the status box's maximum value. This value is displayed at
the right side of the status bar.

t heSt at usVal ue Sends the status box's current value. This value should be
between the status box's minimum and maximum values. It is
used as a display value only and to calculate the status bar’'s
position.

t heSt at usTi ck Sends zero to change the status box's contents. Returns the
next status update tick. The plug-in should send another
host St at us command after Ti ckCount () is greater than theSt at usTi ck.

Usage

When a plug-in must process data for more than 1/3rd of a second, it should call the
host St at us command. This command tells the host to display a status dialog box to tell the
user how much of the current operation is complete. It also allows background events to
occur and gives the user a chance to abort the current plug-in command. When the
plug-in first calls the host Status command or when it wishes to change the status strings,
it should set theStat usTi ck to zero. The host returns the next status event tick in

theStatusTi ck. The plug-in should send another hostStatus command after this tick. If the
plug-in does not send any hostStatus commands and processes information for a long
time, the user may believe that the plug-in has crashed.

Page 88 Electricimage™ Plug-in Developer’s Tool Kit

Reference

HostOpenResource

This command tells the host to open the plug-ins resource fork so that the plug-in can
access its own resources.

#def i ne host (penResour ce ' CRES

typedef struct {
Ptr theReference;
} Host OpenResour ceRec, *Host QpenResour cePtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

Usage

If a plug-in needs to access one or more of its resources, it should send a host GpenResour ce
command to the host to tell it to open the plug-in's resource file. When a plug-in
receives a pl ugi nl nterface command, for example, it will need to get its dialog box
resources. The plug-in should respond by sending a host QpenResour ce command to the host
and then call the Get NewD al og function to open the dialog box. A plug-in should always
assume that its resource fork is not open when it receives a command from the host.

Electricilmage™ Plug-in Developer’s Tool Kit Page 89

Reference

HostCloseResource

This command tells the host to close the plug-in's resource file.
#def i ne host d oseResour ce ' CRES

typedef struct {
Ptr theReference;
} Host A oseResour ceRec, *Host A oseResourcePtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

Usage

Most plug-ins will not need to call the host A oseResource command because the host will
automatically close the plug-in's resource file after it has finished sending it commands.
This command is provided to allow a plug-in to close its resource file in order to open
another resource file. Currently none of our plug-ins need to do this but this command

was provided for possible future plug-ins.

Page 90 Electricimage™ Plug-in Developer’s Tool Kit

Reference

Exception Handling

Calls from the Host to the Plug-in

PluginDescribe

This command tells the plug-in to describe one of its error codes.
#defi ne pl ugi nDescri be ' DESC

typedef struct {
Pl ugi nl nf oRec t hel nf o;
Longl nt theResult;
Str255 theDescription;
} Plugi nDescri beRec, *Plugi nDescribePtr;

thelnfo Sends a PlugininfoRec. See ‘PlugininfoRec’ in ‘Memory
Allocation and Initialization.’

t heResul t Sends the plug-in error code which should be described.

t heDescri ption Returns the plug-in error code's description as a string.

Typical Activities

Most result codes returned by plug-ins are defined in the 'EIPlugin.h’ file. If a plug-in
returns its own custom result code, the host will send a pl ugi nDescri be command to the
plug-in. The plug-in should return a brief description of theResult in theDescri ption.

Error code descriptions have been designed to cascade from the host to the plug-in. If
the host receives a non-zero result code from the plug-in, it should call the

Descri bePl ugi nResult function which is provided in 'EIPlugin.c'. This function will return
a description string for all of the plug-in result codes defined in 'EIPlugin.h’. If this
function does not recognize the result code, it will send a pl ugi nDescri be command to the
plug-in.

Electricilmage™ Plug-in Developer’s Tool Kit Page 91

Reference

Software Protection

Calls from the Plug-in to the Host

HostChallenge

This command tells the host to respond to a plug-in's copy protection challenge.
#defi ne host Chal | enge ' CHAL'

typedef struct {
Ptr theReference;
CBType t heChal | enge;
Chal | engeDat aRec t heChal | engeDat a;
} Host Chal | engeRec, *Host Chal | engePtr;

theReference Sends the plug-in's reference. This reference can be found in
t heHost Ref er ence of the plug-in command's t hel nfo record.

theChal lenge Sends the challenge type. Send 'SERL' in this field to access the
rightmost 7 characters of the host's serial string.

theChal l engeData Sends the challenge data record and receives the challenge
response.

The challenge data record contains an 8 byte challenge or response and is defined as
follows:
typedef union {
UChar b[8];
struct {
UChar b0, bl, b2, b3, b4, b5, b6, b7;
} bO;
struct {
Integer i0, i1, i2, i3
J I
UChar s[8]; /* Pascal 7 character string (length + 7 characters) */
struct {
Longlnt 10, I1;

G
} Chal | engeDat aRec, *Chal | engeDat aPtr;

The plug-in's copy protection can be implemented by requesting the host's serial string.
The serial string contains the rightmost seven characters of the host's serial number
string (which is usually only seven characters in length). The plug-in can use this
information to create an authorization code for the copy of the plug-in. Electricimage
and Camera have a unique serial number for each licensed copy of the animation
system. Copies of Slave Camera also have their own unique serial numbers. The plug-in
can request an authorization code from the user the first time it is run and then store
the code into its own resource file. The next time the plug-in is opened, it can simply
check to make sure that the serial string and authorization codes match.

The plug-in can set the thePl ugi nPerni ssi on flag when it receives the pl ugi nl nf or nati on
command to prevent the host from copying it to remote systems running slave cameras.
This will prevent the user from being forced to re-enter the authorization code every
time a job is sent to the Slave Camera on the remote system. Alternatively, the plug-in
could store the authorization code in its own preference file in the System:Preferences
folder. This would allow the plug-in to be copied to remote systems or updated to a new
version without overwriting the old authorization code.

Page 92 Electricimage™ Plug-in Developer’s Tool Kit

Electricimage Calling Sequence
What follows is a list that contains events which trigger Electricimage to call a plug-in,

and the actual sequence of commands it sends to a plug-in in response to these events:

Note: A plugi nCheck command is called by El before each command shown below, but is
not included here for the purpose of clarity.

A model plug-in is first added to a project.
(1) plugininitialize
(2) plugininterface
(3) pl ugi nModel Set up
(4) pl ugi nMbdel Gener at e
A project containing a model plug-in is reopened.
(1) plugininitialize
(2) pl ugi nModel Set up
(3) pl ugi nMbdel Gener at e

The time thumb in the project window is dragged to a new frame for a model plug-in
whose pl ugi nTi neSensi tivityFl ag is set.

(1) pl ugi nModel Set up
(2) pl ugi nMbdel Gener at e (if a host Model Reset command was received)

A preview is called upon for a model plug-in whose pl ugi nTi neSensi ti vi t yFl ag is set
(equivalent to dragging the time thumb frame by frame from start to finish).

For each frame:
(1) pl ugi nModel Set up
(2) pl ugi nMbdel Gener at e (if a host Model Reset command was received)

A change is made to the child group of a model plugin whose pl ugi nChi | dSensi tivityFl ag is
set.

(1) pl ugi nModel Set up
(2) pl ugi nMbdel Gener at e (if a host Model Reset command was received)

The option box in the model plug-in’s ‘group info’ window is clicked.

Electricilmage™ Plug-in Developer’s Tool Kit Confidential Page 93

Appendix
(1) plugininterface

(2) pl ugi nMdel Setup (if a host Model Reset command was received from
pl ugi ni nter f ace)

(3) pl ugi nMbdel Gener at e (if a host Model Reset command was received from
pl ugi nl nt er f ace)

The project is closed or the model plug-in is deleted from a project.

(1) pluginFinish

Page 94 Electricimage™ Plug-in Developer’s Tool Kit

