
Electric Image User Interface API 2/12/2001

1

Table of Contents
Table of Contents.. 1
Introduction .. 2

Conventions .. 2
API Versioning ... 3
Opaque Types ... 3
File I/O ...4
Resources.. 6
User Interface Controls ... 6
Keyboard Focus .. 12
Drawing .. 12

Reference..12
Constants .. 12
Types .. 16
API Version .. 20
Modal Dialog Boxes ... 20
Controls .. 27
Cursors ... 56
Drawing .. 57
Image Buffers ... 68
Disk Images .. 75
Rectangles... 77
File References ... 80
Resource Files... 90
File I/O ... 92
Color Picking .. 99
QuickTime Support... 101
Timers... 104

Index... 108

Electric Image User Interface API 2/12/2001

2

Introduction
The Electric Image User Interface API (hereafter known simply as “the API”)
contains over 200 functions that allow you to create full featured dialog boxes
in a cross-platform environment.

The API was designed to allow plugin developers to manipulate dialog boxes
created using Interface Builder. However, there are limitations. The API does
not, for example, provide support for creating non-modal windows, nor does it
allow modification of the dialog box by creating new controls or destroying
existing ones.

Conventions

Names

All function and type names begin with the prefix “EI_.” All constants are
defined as enumeration constants and begin with the prefix “cEI_.”

Arguments to functions always begin with “i,” “o,” or “io.” The prefix “i” is
for input-only arguments, “o” is for output-only arguments, and the prefix
“io” is for arguments which are both input and output arguments. Usually,
input-only arguments are const.

All macro names begin with “EI_” and all letters are upper case.

Pointers

Many functions take arguments that are of pointer type. Unless otherwise
noted in a function description, passing NULL as a function argument will
cause the function to return without taking any action.

Indices

Many functions deal with indices. For example, you can obtain a list box item
by index. In all cases, the indices in the API are zero-based. That is, the first
item indexed uses the index value 0. Unless otherwise noted, passing invalid
indices to a function (such as a negative index) will cause the function to
return without taking any action.

Electric Image User Interface API 2/12/2001

3

Strings

Throughout the API are functions which take arguments of string type. The
strings used by the API are always C strings: an array of character bytes
terminated by a zero byte. For operations that return a string (such as the
function which retrieves the text from an edit text control), there are two
functions provided: one which returns the size of a character buffer big
enough to hold the string (note that the size returned includes the terminating
zero byte), and another which copies the characters of the string into a buffer
provided by the caller. It is not necessary to call the length function in order to
call the copy function, but doing so will allow you to allocate a buffer large
enough to hold all of the characters in the string.

Boolean Values

Many functions accept arguments of boolean type, and return boolean results.
In all cases, the boolean argument is passed as type “int.” The interpretation of
the int as a boolean is in accordance with the normal C convention: a non-zero
int is considered true, while a zero int is false. Beyond this convention, you
cannot count on any particular value of the int. In particular, in the
relationship between the function EI_StopDialog and the return result of
EI_ExecuteDialog, the exact integer value of the argument iResult of
EI_StopDialog will not be returned from EI_ExecuteDialog. The value of
iResult will be converted to either 1 or 0 before it is returned from
EI_ExecuteDialog.

API Versioning

The API contains one function, EI_GetAPIVersion, which returns the version
of the API that is exported by the host program. As the API evolves, this will
allows your code to determine what features are available through the API.

Opaque Types

Many of the types that the API deals with are opaque. For example, in the API
there is no definition of the data contained in an EI_Dialog. These types are
all defined similarly in the file EI_Types.h. For example, here is how
EI_Dialog is defined:

typedef struct {
int mData;

} EI_Dialog;

Electric Image User Interface API 2/12/2001

4

The only method available to you to manipulate these types is through the
functions of the API. There is no way to directly manipulate the internal data
of an opaque type.

The types of the API are defined this way so that

• each type is unique and provides some type safety (for example, you
cannot accidentally pass an EI_Dialog pointer to a function expecting
an EI_Control)

• your code is prevented from depending on implementation details of
the underlying implementation

All opaque types in the API are passed by pointer.

File I/O

The API provides support for binary endian-correct I/O to files. Endian-
correct means that writing a file on one platform and then reading the file on
another platform will work, even if the platforms use different byte ordering.
By convention, all binary I/O is performed using big-endian data. All of the
details of byte-swapping are handled by the API I/O functions.

You also have the option of using block-level I/O calls to read and write
arbitrary blocks of raw data. However, you should use these functions only
with data that does not use a specific byte ordering, such as text strings, or
data which you know will not be moved to another platform.

You should avoid code that reads and writes data by writing entire structs at a
time. For example

typedef struct {
int mData1;
unsigned char mData2;
float mData3;

} MyStructure;

MyStructure data;
long count;

count = sizeof(MyStructure);
EI_WriteStream(myStream, &data, &count);

This kind of I/O is problematic for at least two reasons:

1) It will not byte-swap the members of the structure.

2) It also writes out any padding bytes the compiler inserts into the
structure MyStructure. This forces anyone who wants to read the data,

Electric Image User Interface API 2/12/2001

5

on any platform, to be aware of these padding bytes and account for
them somehow.

Instead, write out each member of the structure individually, using the byte-
swapping I/O functions.

The file I/O system revolves around three types of objects: directory
references, file references and streams.

A directory reference is a representation of a path name to a directory. The
path name is stored as a sequential list of strings. The directory does not
actually have to exist in the user’s file system for the directory reference to be
valid.

There are three predefined directory references you can access: the home
directory, the preferences directory and the temporary directory. The home
directory is the directory in which your plugin resides. The preferences
directory is a directory you can use to store preference information, if
necessary. The temporary directory is a directory you should use for
temporary files.

A file reference is essentially a directory reference plus a file name which
names a file in the directory. In a manner analogous to directory references,
the file referred to by a file reference does not need to exist in the user’s file
system for the file reference to be valid.

File references also carry a file type and extension with them. A file type is a
4 byte value, expressed as an unsigned integer value, used on the Macintosh to
encode the type of the file, while the extension is a short string used to encode
the type on Microsoft Windows.

N O T E : Changing the file type or extension of a file reference does not
affect the corresponding file in the user’s file system.

N O T E : If you include an extension in the file reference’s name (e.g.,
“SomeFile.txt”), then the file reference’s extension string will
be ignored. If an extension appears in the file reference’s name,
it override’s the extension of the file reference.

Note that file references and directory references do not make use of directory
separator characters; however, you can convert file references and directory
references into strings, which are pathnames which include directory separator
characters between directory names.

A stream is an object that provides I/O services for an open file. Given a file
reference, you can open a stream that you can use to perform I/O to the
corresponding file in the user’s file system.

Many file-related functions return error codes. In all cases, a zero result
indicates successful completion of the function, while non-zero indicates

Electric Image User Interface API 2/12/2001

6

failure. Note that this is the reverse of the boolean convention of zero meaning
false and non-zero meaning true.

Resources

The API makes use of resources. A resource is a piece of data from a file that
is addressed by an unsigned long type and an integer ID. Dialog box
definitions and images are stored in resources. The API provides functions for
reading images and dialog box definitions from resource files, as well as
reading raw resource data of any type.

There is no support for writing resource files in the API. Currently, resource
files can be created and edited only on the Macintosh, using a program such as
ResEdit or Resorcerer.

Resources in the API will be familiar to Macintosh programmers, with one
difference: resources are always returned as a pointer and a size rather than
the ubiquitous “Handle” type.

To read any resource, you must first open the resource file that contains it.
You can open as many resource files as you like, but you must close each file
when you are done with it.

User Interface Controls

The user interface objects inside dialog boxes are called controls. The controls
supported by the API are

• push buttons

• check boxes

• radio button groups

• divider lines

• group boxes

• tab controls

• color sliders

• scrollers

• static text

• edit text fields

• color buttons

Electric Image User Interface API 2/12/2001

7

• scrolling lists

• popup menus

• pictures

• user controls

• OpenGL controls

When users interact with the controls in a dialog box, your code will need to
receive some kind of notification of the interaction. This notification comes
from a callback function called a hit function. Hit functions are called when
the following events occur:

• the user clicks a push button, radio button or check box

• the user drags the thumb of a color slider or scroller (in this case, the
hit function is called every time the thumb moves while the user drags
it)

• the user types a character into an edit text field

• the user clicks a color button and chooses a new color in the color
picker that comes up

• the user clicks on an item in a scrolling list

• the user chooses a new item in a popup menu

• the user clicks on a user control

• the user clicks on an OpenGL control

Controls have attributes. There is a core set of attributes that all controls have,
while some controls contain additional attributes. For example, push buttons
have title strings, but scrollers don’t. All controls have the following
attributes:

• ID number

• a boundary rectangle

• an immediate draw flag

• a visibility flag

• an enabled flag

• a hit function

• an “extra data” pointer

The extra data pointer allows you to define and attach your own attributes to
controls.

Electric Image User Interface API 2/12/2001

8

N O T E : Dialog boxes have an extra data pointer attribute as well.

Other attributes, with the controls that have them, are listed here:

• a title (push button, check box, group box, popup menu, static text,
edit text)

• a value (push buttons that are in “toggle” mode, check box, radio
button control, scroller, color slider, popup menu)

• a maximum value (scroller, color slider)

• an icon ID (push button, picture)

• title/icon layout (push button)

• an edit string (edit text)

• an edit filter type (edit text)

• an edit filter function (edit text)

• a selection range (edit text)

• a color (color button)

• a list of items (list box)

• a set of list flags (list box)

• a list double-click function (list box)

• a list reorder function (list box)

• a user control draw function (user control)

• a user control click function (user control)

• a user control mouse moved function (user control)

• an OpenGL draw function (OpenGL control)

• an OpenGL click function (OpenGL control)

• an OpenGL mouse moved function (OpenGL control)

When making a call to get or set the value of an attribute of a control which
does not actually have the attribute, the function will do nothing. For example,
attempting to get the value of a push button will return 0.

A description of each control’s interpretation of its optional attributes follows.

Push Buttons

Push buttons have a title and icon, which are drawn inside the button. If the
push button is in toggle mode (which is set with Interface Builder), then the

Electric Image User Interface API 2/12/2001

9

push buttons also have a value. Push buttons also have two layout attributes
describing how the title and icon are positioned out with respect to each other.

Check Boxes

Check boxes have a title and a value. The title string is displayed next to the
check box’s button, and the value of a check box is boolean.

Radio Buttons

Radio button groups have a value. Each radio button control contains a set of
1 or more individual radio buttons. The value of the radio button control is
simply the index of the chosen button. To turn off all radio buttons in a group,
use a value of -1.

Pictures

Pictures have an icon ID.

Group Boxes

Group boxes have a title, which is drawn at the upper left corner of the box.

Color Sliders

Color sliders have a value and a maximum value. The value of the slider is
always in the range [0, slider maximum]. When the thumb is all the way to the
left, the value is 0, and when the thumb is all the way to the right the value is
equal to the maximum. It is not possible to set the color slider’s value less
than zero or greater than the maximum.

Scrollers

Scrollers have a value and a maximum value. The value of the slider is always
in the range [0, slider maximum]. When the thumb is all the way to the left
(for a horizontal scroller) or all the way at the top (for a vertical scroller), the
value is 0, and when the thumb is all the way to the right (for a horizontal
scroller) or all the way to the bottom (for a vertical scroller) the value is equal
to the maximum. It is not possible to set the scroller’s value less than zero or
greater than the maximum.

Electric Image User Interface API 2/12/2001

10

Static Text Controls

Static text controls have a title, which is displayed as the text of the control.

Edit Text Controls

Edit text controls have a title, an edit string, an edit filter type, an edit filter
function and a selection range. The title is drawn to the left of the edit box,
and the edit string is drawn within the edit box, where the user can edit it.
Whenever the user enters text into the edit box, the edit text control filters the
text according to its edit filter type. The edit filter type is an enumeration that
names several predefined filter types, such as unsigned integer or signed
floating point. However, if the enumeration indicates a filter function is used,
the edit filter function (if it is not NULL) is called to see if the text typed by
the user should be allowed. The selection range is a pair of integers (start,
end), and represents the indices of the text currently highlighted by the user in
the edit box. Note that if there is no text selected (that is, if there is an
insertion point blinking), the start and end values will be equal to each other.

Color Buttons

Color buttons have a color attribute, which is used to fill the interior of the
color button.

List Boxes

A list box has a list of items, a set of list flags, a double-click function and a
reorder function.

The list items are simply strings. Each item can be drawn using stylistic
variations such as bold or italics.

Currently, only two flag values are defined. One flag value enables or disables
whether the list allows multiple selections or constrains the user to selecting
single items at a time, and the other flag determines whether or not the user is
allowed to drag items in the list to reorder them.

The double-click function is called whenever the user double-clicks an item.
Note that the first click of a double-click sequence will cause the hit function
(if any) to be called first.

The reorder function will be called if the user drags an item to a new position
in the list.

List box controls can be the keyboard focus control of their dialog box. When
a list box is the keyboard focus, it lets the user move the list selection up and
down using the arrow keys of the keyboard.

Electric Image User Interface API 2/12/2001

11

Popup Menus

Popup menus have a title and a value. The title is drawn to the left of the
popup button, and the value is the index of the selected item.

User Controls

A user control has a draw function, a click function, and a mouse moved
function. The draw function is called when the user control needs to be drawn,
the click function is called when the user presses the mouse button while the
cursor is in the user control, and the mouse moved function is called whenever
the mouse is moved within the user control.

N O T E : The click function is different from the hit function. The click
function is meant to track the user’s mouse activity when the
control is clicked, perhaps changing its appearance as
appropriate, while the hit function is a general notification
mechanism that is used to alert your code that the user acted on
a control.

N O T E : The hit function is not called for a user control unless either the
user control has no click function OR the click function returns
a non-zero result.

OpenGL Controls

An OpenGL control provides an OpenGL context you can use to draw 3D
scenes using the OpenGL API. An OpenGL control has a draw function, a
click function, and a mouse moved function, similar to the user control. The
draw function is called when the OpenGL control needs to be drawn, the click
function is called when the user presses the mouse button while the cursor is
in the OpenGL control, and the mouse moved function is called whenever the
mouse is moved within the OpenGL control.

N O T E : The click function is different from the hit function. The click
function is called immediately when the user clicks the
OpenGL control; you use it to track the user’s mouse activity,
perhaps changing its appearance as appropriate. The hit
function is a general notification mechanism that is used to
alert your code that the user acted on a control.

N O T E : The hit function is not called for an OpenGL control unless
either the OpenGL control has no click function OR the click
function returns a non-zero result.

Electric Image User Interface API 2/12/2001

12

Keyboard Focus

At any given time, there may be at most one keyboard focus control. The
keyboard focus control will be the control that responds to keyboard events.
Edit text controls and list box controls can be keyboard focus controls.

N O T E : The dialog’s key filter function can intercept key events before
they get to the keyboard focus. You can use the key filter
function to implement custom accelerator keys.

Drawing

Two dimensional drawing takes place in the API through the use of a drawing
context object. A drawing context object contains all of the information
needed by the API to perform the drawing, including the destination of the
drawing (either a dialog box window or an off-screen buffer), a clipping
rectangle, a foreground and background color, a pen location, a pen mode and
font information.

The pen location is used for drawing lines and text. When you use
EI_MoveTo, you move the pen to a new location. EI_MoveTo does not
perform any drawing. EI_LineTo, however, moves the pen to a new location
while drawing a line from the previous pen location to the new location.
Similarly, EI_DrawText and EI_DrawTextToFit draw text beginning at the
current pen location, moving the pen to a new location after the last character
drawn.

When drawing text, the text is positioned so that the pen’s location is aligned
near the bottom left of the first character drawn.

Note that it is not possible to change the actual font used for drawing text,
although you can change the size and style attributes (such as bold or
underline) of the font.

Reference

Constants

The constants described in this section are defined in the header file
EI_Types.h.

Electric Image User Interface API 2/12/2001

13

API Version Numbers

enum {
cEI_InitialVersion = 1,

cEI_CurrentVersion = cEI_InitialVersion
};

The constants defined by this enumeration define the supported versions of
the API. The constant cEI_InitialVersion is the value that will be returned by
the first shipping version of the API. In the future, as the API evolves,
additional version number constants will be defined to represent newer
versions of the API.

The constant cEI_CurrentVersion represents the version number of the API
which corresponds to the definitions in the API header files. The version
number of the API which is compiled into the host application is returned by
the function EI_GetAPIVersion.

As the API evolves, subsequent version numbers, and the value of
cEI_CurrentVersion, will always increase (though not necessarily by any
fixed amount).

Font Style Flags

enum {
cEI_TextBold = 1 << 0,
cEI_TextItalic = 1 << 1,
cEI_TextUnderline = 1 << 2,
cEI_TextOutline = 1 << 3,
cEI_TextShadow = 1 << 4

};

The constants defined by this enumeration represent the font style variations
usable by a drawing context object to draw text. The constants may be bit-
wise or’ed together to produce different style combinations.

Image Buffer Pixel Constants

enum {
cEI_AlphaShift,
cEI_RedShift,
cEI_GreenShift,
cEI_BlueShift,

cEI_AlphaOffset,
cEI_RedOffset,
cEI_GreenOffset,
cEI_BlueOffset

};

Electric Image User Interface API 2/12/2001

14

The constants defined by this enumeration can be used for low-level access to
the individual components of the pixels contained in an image buffer. Each of
these constants is defined differently for different operating systems.

N O T E : You should prefer to use the pixel access macros defined in
EI_ImageBuffer.h whenever possible. Use the pixel access
constants only when the macros don’t provide the functionality
you need.

The “shift” constants (cEI_AlphaShift, cEI_RedShift, cEI_GreenShift, and
cEI_BlueShift) define the number of bit positions to left-shift an 8 bit integer
value into the proper position in a 32 bit pixel. For example:

EI_32BitPixel pixel;
unsigned char red, green, blue;

// kind of a lime green color:
red = 0x7F;
green = 0xFF;
blue = 0x3F;
pixel = ((EI_32BitPixel) red << cEI_RedShift) |

((EI_32BitPixel) green << cEI_GreenShift) |
((EI_32BitPixel) blue << cEI_BlueShift);

Likewise, the shift constants can be used to extract color components from a
32 bit pixel using the right-shift operator:

red = (unsigned char) ((pixel >> cEI_RedShift) & 0xFF);

The “offset” constants allow access to pixel components using pointer offsets.
Given a pointer to a 32 bit pixel, the offset constants give the offset in bytes
from the pixel pointer to the address of the corresponding color component
within that pixel. This works because the pixel is actually stored as four bytes.
The offsets allow you to address each bytes individually. For example, to get
the red component from a pixel pointer, you cast the pixel pointer to a pointer
to an unsigned char and then add the cEI_RedOffset to it:

EI_32BitPixel *pixelPtr;
unsigned char red;

red = *((unsigned char*) pixelPtr + cEI_RedOffset);

List Box Flags

enum {
cEI_ListMultipleSelect = 1 << 0,
cEI_ListDragReorder = 1 << 1

};

The constants defined by this enumeration define the flag bits returned by
EI_GetListFlags. If the bit represented by the constant cEI_ListMultipleSelect

Electric Image User Interface API 2/12/2001

15

is set, the list allows the user to make multiple item selections. If it is clear,
the user may select only one item at a time. If the bit represented by the
constant cEI_DragReorder is set, then the list allows the user to drag items up
and down in the list to reorder the list. If it is clear, the user may not drag
items up and down in the list.

You may set or clear either or both of these flags using the function
EI_SetListFlags.

Modifier Key Flags

enum {
cEI_ShiftKey = 1 << 0,
cEI_ControlKey = 1 << 1,

cEI_ModPrimary = 1 << 2,
cEI_ModSecondary = 1 << 3,
cEI_ModTernary = 1 << 4

};

When a user control’s click function is called, the state of the modifier keys is
passed as an integer argument containing bits for each modifier key. You can
test the modifier keys argument by performing a bit-wise “and” operation
using the constants defined in this enumeration.

If the bit represented by the constant cEI_ShiftKey is set, the shift key is being
pressed. If the bit represented by the constant cEI_ControlKey is set, the
control key is being pressed.

The constants cEI_ModPrimary, cEI_ModSecondary and cEI_ModTernary
are meant to abstract the modifier keys. cEI_ModPrimary represents the “most
important” modifier key, cEI_ModSecondary the next most important and so
on.

Currently, on the Macintosh cEI_ModPrimary maps to the command key,
cEI_ModSecondary maps to the option key and cEI_ModTernary maps to the
control key. On the PC, cEI_ModPrimary maps to the control key,
cEI_ModSecondary maps to the Alt key and cEI_ModTernary is not mapped.

N O T E : f the user clicks the right mouse button on a Windows PC, the
cEI_ControlKey (as well as cEI_ModPrimary) bit will be set
even if the control key is not pressed.

Push Button Layout Constants

enum {
cEI_Left,
cEI_Top,
cEI_Right,
cEI_Bottom,

Electric Image User Interface API 2/12/2001

16

cEI_Center
};

The constants defined by this enumeration can be passed to the function
EI_SetPushButtonLayout, and are used to position the text and icon of a push
button.

Mouse Moved Constants

enum {
cEI_MouseEnter = 1 << 0,
cEI_MouseWithin = 1 << 1,
cEI_MouseExit = 1 << 2

};

The constants defined by this enumeration are passed to your mouse moved
function to tell you how the cursor has moved. If the value is
cEI_MouseEnter, the cursor has just entered your control. If the value is
cEI_MouseWithin, the cursor has moved within the control. If the value is
cEI_MouseExit, the cursor has just left the control.

Types

This section describes the types available to the clients of the API, beginning
with the non-opaque types and followed by the opaque types. The types
described in this section are defined in the header file EI_Types.h.

EI_Rect

typedef struct {
int left;
int top;
int right;
int bottom;

} EI_Rect;

EI_Rect represents an axis-aligned rectangle. Many drawing functions take
EI_Rects as arguments.

EI_Color

typedef struct {
unsigned char red;
unsigned char green;
unsigned char blue;

} EI_Color;

Electric Image User Interface API 2/12/2001

17

EI_Color represents a single RGB color. The values of each member may be
in the range [0, 255], where zero represents the complete absence of the
corresponding color component, and 255 represents the maximum amount of
that color component.

EI_32BitPixel

typedef unsigned long EI_32BitPixel;

This type represents the pixels contained in an image buffer. You can use the
pixel access macros described in the section “Image Buffers” for accessing the
color components of a pixel, or you can use the image buffer pixel constants if
you need lower level component access.

EI_PenMode

typedef enum {
cEI_PenColor,
cEI_PenXOR

} EI_PenMode;

EI_PenMode represents the two styles of drawing that can be done using a
drawing context object. When the pen mode is cEI_PenColor, the drawing
uses the foreground color directly for drawing. When the pen mode is
cEI_PenXOR, however, the drawing causes the pixels in the destination to be
inverted.

EI_ControlType

typedef enum {
cEI_NoControlType,
cEI_PushButton,
cEI_CheckBox,
cEI_RadioGroup,
cEI_DividerLine,
cEI_GroupBox,
cEI_TabGroup,
cEI_ColorSlider,
cEI_Scroller,
cEI_StaticText,
cEI_EditText,
cEI_ColorButton,
cEI_ListBox,
cEI_PopupMenu,
cEI_Picture,
cEI_UserControl,
cEI_OpenGLControl

} EI_ControlType;

Electric Image User Interface API 2/12/2001

18

The constants defined by this enumeration define the various control types.

EI_EditFilterType

typedef enum {
cEI_NoFilter,
cEI_UnsignedInt,
cEI_SignedInt,
cEI_UnsignedFloat,
cEI_SignedFloat,
cEI_Custom

} EI_EditFilterType;

The constants defined by this enumeration are used when setting the type of
edit filter used with an edit text control.

EI_StreamAccess

typedef enum {
cEI_ReadOnly,
cEI_WriteOnly,
cEI_ReadWrite

} EI_StreamAccess;

The constants defined by this enumeration are used when creating an
EI_Stream for I/O.

EI_ResourceFile

This is an opaque type.

EI_ResourceFile represents an open resource file. You can get resources,
including dialog box definitions and disk images, from a resource file.

EI_DrawContext

This is an opaque type.

EI_DrawContext represents a drawing context object. Using an
EI_DrawContext you can draw lines, text, rectangles, ovals and image buffers.

EI_ImageBuffer

This is an opaque type.

EI_ImageBuffer represents an off-screen graphics buffer. You can draw to the
off-screen buffer by creating a drawing context object for it, and you can copy

Electric Image User Interface API 2/12/2001

19

pixels to or from an off-screen buffer to a context. You can also manipulate
the pixels of an image buffer directly

EI_DiskImage

This is an opaque type.

EI_DiskImage represents an image that is read from a resource file. The types
of images which can be read into an EI_DiskImage are

• ‘PICT’

• ‘argb’

• ‘cicn’

EI_Control

This is an opaque type.

EI_Control represents a single control inside a dialog box.

EI_Dialog

This is an opaque type.

EI_Dialog represents a dialog box that is read from a resource file and
displayed on screen.

EI_DirectoryRef

This is an opaque type.

EI_DirectoryRef represents a cross-platform reference to a directory on a
user’s file system.

EI_FileRef

This is an opaque type.

EI_FileRef represents a cross-platform reference to a file on a user’s file
system. A file reference contains a directory reference, a file name, and a file
type and extension.

EI_Stream

This is an opaque type.

Electric Image User Interface API 2/12/2001

20

EI_Stream is used for performing binary, endian-correct file I/O.

EI_Timer

This is an opaque type.

EI_Timer is used for writing timer functions, functions that get called
periodically when the system is idle.

EI_Cursor

This is an opaque type.

EI_Cursor is used to represent the image displayed on the cursor.

API Version

The function described in this section is declared in the header file EI_API.h.

EI_GetAPIVersion

int EI_GetAPIVersion(
void);

return value an integer value

EI_GetAPIVersion returns the version number of the API that is currently
executing. This value may differ from the value of the constant
cEI_CurrentVersion if the plugin is running in a host which contains a
different version of the API than the version being used to compile the plugin.

Modal Dialog Boxes

The functions described in this section allow you to create modal dialog
boxes. The functions described in this section are declared in the header file
EI_Dialog.h.

EI_MakeDialog

EI_Dialog *EI_MakeDialog(
EI_ResourceFile *iResourceFile,
int iDialogID);

Electric Image User Interface API 2/12/2001

21

iResourceFile a pointer to a resource file object

iDialogID an integer which must be the ID of a dialog
definition resource in the resource file
indicated by iResourceFile

return value a pointer to a dialog box object

EI_MakeDialog constructs a modal dialog box by reading the dialog
definition resource iDialogID from iResourceFile. If the dialog box cannot be
constructed, EI_MakeDialog returns NULL. The dialog box is initially
invisible, and will remain invisible until you call EI_ExecuteDialog.

EI_DestroyDialog

void EI_DestroyDialog(
EI_Dialog *iDialog);

iDialog a pointer to a dialog box object

EI_DestroyDialog destroys a dialog box previously created with
EI_MakeDialog.

EI_SetDialogTitle

void EI_SetDialogTitle(
EI_Dialog *ioDialog,
const char *iDialogTitle);

ioDialog a pointer to a dialog box object

iDialogTitle a pointer to a C string

EI_SetDialogTitle changes the title of the modal dialog box’s window to the
string given by iDialogTitle.

EI_MoveDialog

void EI_MoveDialog(
EI_Dialog *ioDialog,
int iNewLeft,
int iNewTop);

ioDialog a pointer to a dialog box object

iNewLeft a horizontal coordinate on the screen

iNewTop a vertical coordinate on the screen

EI_MoveDialog moves the dialog box’s position on screen so that its upper
left corner is moved to the point (iNewLeft, iNewTop).

Electric Image User Interface API 2/12/2001

22

EI_GetDialogPosition

void EI_GetDialogPosition(
const EI_Dialog *iDialog,
int *oLeft,
int *oTop);

iDialog a pointer to a dialog box object

oLeft a pointer to an int

oTop a pointer to an int

EI_GetDialogPosition returns in *oLeft and *oTop the current location of the
upper left corner of *iDialog on the screen.

EI_SetDialogSize

void EI_SetDialogSize(
EI_Dialog *iDialog,
int iWidth,
int iHeight);

iDialog a pointer to a dialog box object

iWidth the new width

iHeight the new height

EI_SetDialogSize resizes the dialog box to the size given by iWidth and
iHeight.

EI_GetDialogSize

void EI_GetDialogSize(
const EI_Dialog *iDialog,
int *oWidth,
int *oHeight);

iDialog a pointer to a dialog box object

oWidth a pointer to an int

oHeight a pointer to an int

EI_GetDialogSize returns in *oWidth and *oHeight the size of the dialog box.

EI_GetMonitorBounds

void EI_GetMonitorBounds(
EI_Rect *oMonitorBounds);

Electric Image User Interface API 2/12/2001

23

oMonitorBounds a pointer to an EI_Rect

EI_GetMonitorBounds returns in oMonitorBounds the boundary rectangle of
the main monitor. This boundary rectangle is somewhat platform-dependent in
nature. On the Macintosh, it will be the boundary rectangle of the main screen,
minus the menu bar. On Windows, it will be the boundary rectangle of the
root window of the running application.

EI_SetDialogExtraData

void EI_SetDialogExtraData(
EI_Dialog *ioDialog,
void *iExtraData);

ioDialog a pointer to a dialog box object

iExtraData a pointer

EI_SetDialogExtraData sets the extra data pointer of a dialog box object. The
value passed in iExtraData is not dereferenced or used in any way by the API,
so you are free to use this argument in any way you like. You can pass a
pointer to a structure containing extra data for your dialog box. During hit
functions or other callbacks, you can extract the extra data pointer using the
EI_GetDialogExtraData function.

N O T E : If the extra data pointer points to dynamically allocated
memory, the API will not free that memory for you when the
dialog box is destroyed; you are responsible for freeing any
memory you allocate when you are through using it.

EI_GetDialogExtraData

void *EI_GetDialogExtraData(
const EI_Dialog *iDialog);

iDialog a pointer to a dialog box object

return value a pointer

EI_GetDialogExtraData returns the extra data pointer currently assigned to
*iDialog. If you have not yet assigned an extra data pointer to *iDialog,
EI_GetDialogExtraData returns NULL.

EI_ExecuteDialog

int EI_ExecuteDialog(
EI_Dialog *ioDialog);

Electric Image User Interface API 2/12/2001

24

ioDialog a pointer to a dialog box object

return value a boolean value

EI_ExecuteDialog shows the given dialog and allows the user to interact with
it. Any callbacks you have installed into the dialog or its controls will be
executed at the appropriate times. EI_ExecuteDialog will not return until the
user dismisses the dialog. If the user dismisses the dialog by clicking the OK
button, EI_ExecuteDialog returns true (non-zero); if the user dismisses a
dialog by clicking the Cancel button, EI_ExecuteDialog returns false (zero).
Also, if one of your callbacks calls EI_StopDialog, the boolean result value
passed to EI_StopDialog will be returned by EI_ExecuteDialog.

N O T E : If the user clicks the OK button and there is a validation
function in your dialog box, the validation function must return
a true result for the dialog box to actually be dismissed.

EI_StopDialog

void EI_StopDialog(
EI_Dialog *ioDialog,
int iResult);

ioDialog a pointer to a dialog box object

iResult a boolean value

EI_StopDialog may be called from within a dialog or control callback
function to shut down the dialog box. The boolean value contained in iResult
will be returned from the enclosing call to EI_ExecuteDialog.

N O T E : You cannot depend on the exact integer value in iResult being
returned by EI_ExecuteDialog. The return value of
EI_ExecuteDialog, and the iResult argument of EI_StopDialog,
are booleans. The API only guarantees that the result will be
zero or non-zero.

N O T E : If you pass a true value in iResult and there is a validation
function in your dialog box, the validation function must return
a true result for the dialog box to actually shut down.

EI_SetDialogValidationFunction

void EI_SetDialogValidateFunction(
EI_Dialog *ioDialog,
EI_DialogValidationFunction iFunction);

Electric Image User Interface API 2/12/2001

25

ioDialog a pointer to a dialog box object

iFunction a pointer to a dialog box validation function

EI_SetDialogValidationFunction sets the dialog box’s validation function.
Whenever the user presses the OK button in your dialog box, it may not be
appropriate for the dialog box to be dismissed. For example, if the value
entered into an edit text field is out of range, the user must be told to correct
the entry. The validation function allows you to check that the data entered is
valid.

The validation function is called whenever the user presses the OK button, or
you call EI_StopDialog and you pass a true value in iResult. In either case, if
the validation function returns false, the dialog is not dismissed.

If the user clicks the cancel button, or EI_StopDialog is called with a false
result, the validation function is not called.

EI_SetDialogHitFunction

void EI_SetDialogHitFunction(
EI_Dialog *ioDialog,
EI_DialogHitFunction iFunction);

ioDialog a pointer to a dialog box object

iFunction a pointer to a dialog hit callback function

EI_SetDialogHitFunction sets *ioDialog’s current dialog hit callback function
to iFunction. To clear the dialog hit function, pass NULL in iFunction.

The dialog’s hit function is called if the user clicks in “empty space” in the
dialog; that is, if the user clicks the mouse button when the cursor is not
within a control.

EI_SetDialogKeyFilterFunction

void EI_SetDialogKeyFilterFunction(
EI_Dialog *ioDialog,
EI_DialogKeyFilter iFunction);

iDialog a pointer to a dialog box object

iFunction a pointer to a dialog key down filter function

EI_SetDialogKeyFilterFunction sets *ioDialog’s current dialog key down
filter function to iFunction.

The dialog’s key down filter function is called whenever there is a key down
event for the dialog, and before the key down event is given to the key board
focus. The filter function returns a boolean result; if the filter function returns
true, the key down event is not given to the key focus.

Electric Image User Interface API 2/12/2001

26

Callbacks

EI_DialogValidationFunction

int MyDialogValidationFunction(EI_Dialog *ioDialog);

iDialog a pointer to a dialog box object

return value a boolean value

The dialog validation function is called when the user attempts to dismiss the
dialog box by clicking the OK button. Your validation function can examine
the data entered into the dialog box and decide if it is valid or not. For
example, the value entered into a text field might need to be in a certain range
in order for the dialog to be filled out correctly. If the validation function
decides the dialog is not correct, it should return false, which will cause the
dialog box to remain on screen. If the dialog is correctly filled out, the
validation function should return true, which will cause the dialog box to shut
down and return true from EI_ExecuteDialog.

Note that if your function is going to return false, it should probably tell the
user what went wrong by presenting another dialog box with a message in it.
Also, if you want to further direct the user’s attention to the problem, you can
call EI_SetKeyControl to set the keyboard focus control to the field that was
entered incorrectly.

EI_DialogHitFunction

void MyDialogHitFunction(EI_Dialog* iDialog);

iDialog a pointer to a dialog box object

When the mouse is clicked in the dialog *iDialog, but not in any control, the
dialog’s hit function is called.

EI_DialogKeyFilter

int MyDialogKeyFilter(
EI_Dialog *iDialog,
int iKey,
int iModifiers);

Electric Image User Interface API 2/12/2001

27

iDialog a pointer to a dialog box object

iKey a character value

iModifiers an integer value

return value a boolean value

If a dialog box has a key down event filter, then whenever a key is pressed,
the filter is called before giving the key to the key focus control. The return
value tells the host application whether or not the filter function handled the
key down completely, and thus whether or not to give the key down to the key
focus control. A return value of true tells the host application that the filter
function handled the key down event and that the key focus control should not
get it. A return value of false tells the host application that the filter function
did not handle the event, and that the key focus control should handle it.

You can use the key down event filter to implement custom accelerator keys.

Controls

The functions described in this section allow you to manipulate controls in
dialog boxes. The functions described in this section are declared in the file
EI_Control.h.

General Control Functions

EI_GetControlID

int EI_GetControlID(
const EI_Control *iControl);

iControl a pointer to a control object

return value a control ID number

EI_GetControlID returns the control’s ID number.

EI_SetControlID

void EI_SetControlID(
EI_Control *ioControl,
int iNewID);

ioControl a pointer to a control object

iNewID a new control ID number

EI_SetControlID sets the control’s ID number to iNewID.

Electric Image User Interface API 2/12/2001

28

EI_CountControls

int EI_CountControls(
const EI_Dialog *iDialog);

iDialog a pointer to a dialog box object

return value the number of controls in the dialog box

EI_CountControls returns the number of controls contained in *iDialog.

EI_FindControlByIndex

EI_Control *EI_FindControlByIndex(
const EI_Dialog *iDialog,
int iControlNumber);

iDialog a pointer to a dialog box object

iControlNumber a control index

return value a pointer to a control object

EI_FindControlByIndex returns a pointer to the iControlNumber’th control
contained in *iDialog. If iControlNumber is not a valid index,
EI_FindControlByIndex returns NULL.

Using EI_CountControls and EI_FindControlByIndex, you can iterate over all
of the controls contained in a given dialog box.

EI_FindControlByID

EI_Control *EI_FindControlByID(
const EI_Dialog *iDialog,
int iControlID);

iDialog a pointer to a control object

iControlID a control ID

return value a pointer to a control object

EI_FindControlByID will return a pointer to the control contained in *iDialog
with ID equal to iControlID. If no control has this ID, EI_FindControlByID
returns NULL.

EI_InvalControl

void EI_InvalControl(
const EI_Control *iControl);

Electric Image User Interface API 2/12/2001

29

iControl a pointer to a control object

EI_InvalControl will force the control to be redrawn. Normally, you should
not need to call this function for most controls, since changing control
attributes will cause the correct redrawing to occur automatically. But you
may need to call this if you modify data associated with a user control and
drawn by the user control’s draw procedure.

EI_GetControlDialog

EI_Dialog *EI_GetControlDialog(
const EI_Control *iControl);

iControl a pointer to a control object

return value a pointer to a dialog box object

EI_GetControlDialog returns a pointer to the dialog box object which contains
the control.

EI_GetControlType

EI_ControlType EI_GetControlType(
const EI_Control *iControl);

iControl a pointer to a control object

return value a control type

EI_GetControlType returns the type of the control.

EI_GetControlBounds

void EI_GetControlBounds(
const EI_Control *iControl,
EI_Rect *oBounds);

iControl a pointer to a control object

oBounds a pointer to an EI_Rect

EI_GetControlBounds sets *oBounds to the boundary rectangle of *iControl.

EI_SetControlBounds

void EI_SetControlBounds(
EI_Control *ioControl,
const EI_Rect *iBounds);

Electric Image User Interface API 2/12/2001

30

ioControl a pointer to a control object

iBounds a pointer to an EI_Rect

EI_SetControlBounds sets *ioControl’s boundary rectangle to *iBounds. This
function can be used to change the position or size of a control.

EI_SetControlDrawImmediate

void EI_SetControlDrawImmediate(
EI_Control *ioControl,
int iDrawImmediateFlag);

ioControl a pointer to a control object

iDrawImmediateFlag a boolean value

EI_SetControlDrawImmediate sets the control’s immediate draw flag to the
value of iDrawImmediateFlag. If a control’s immediate draw flag is true, then
when changing attributes of the control (such as its value or its title), it is
redrawn immediately; otherwise, the control is invalidated, as if you had
called EI_InvalControl.

Usually, it is best to leave a control’s flag set to false. However, sometimes
you can’t wait until the next window update event is handled. For example, if
the user clicks on a slider and drags the thumb and you want to update a static
text with the value of the slider, you would install a callback into the slider
which gets called while the user drags the thumb. Your callback obtains the
value of the slider, converts it to a string, and then calls EI_SetControlTitle to
set the text of the static text control. You must therefore set the control’s
immediate draw flag to true so that the static text control is drawn when you
call EI_SetControlTitle; otherwise it won’t be redrawn until the next window
update event is processed, after the user releases the mouse button.

EI_GetControlDrawImmediate

int EI_GetControlDrawImmediate(
const EI_Control *iControl);

iControl a pointer to a control object

return value a boolean value

EI_GetControlDrawImmediate returns the value of the controls immediate
draw flag.

EI_SetControlVisible

void EI_SetControlVisible(
EI_Control *ioControl,
int iVisible);

Electric Image User Interface API 2/12/2001

31

ioControl a pointer to a control object

iVisible a boolean value

EI_SetControlVisible can show or hide a control. If iVisible is true, the
control is made visible. If iVisible is false, the control is made invisible. In
either case the dialog box containing the control is updated appropriately.

EI_GetControlVisible

int EI_GetControlVisible(
const EI_Control *iControl);

iControl a pointer to a control object

return value a boolean value

EI_GetControlVisible returns true if the *iControl is visible and false if
*iControl is invisible.

EI_SetControlEnable

void EI_SetControlEnable(
EI_Control *ioControl,
int iEnabled);

ioControl a pointer to a control object

iEnabled a boolean value

EI_SetControlEnable sets the control’s enable flag. The enable flag
determines whether or not the control responds to events, and also influences
the appearance of the control. Most controls, when disabled, appear “grayed
out.” If iEnabled is true, the control will be enabled, and if iEnabled is false,
the control will be disabled. In either case the dialog box containing the
control is updated appropriately.

EI_GetControlEnable

int EI_GetControlEnable(
const EI_Control *iControl);

iControl a pointer to a control object

return value a boolean value

EI_GetControlEnable returns the value of the control’s enable flag.

Electric Image User Interface API 2/12/2001

32

EI_SetControlTitle

void EI_SetControlTitle(
EI_Control *ioControl,
const char *iTitleString);

ioControl a pointer to a control object

iTitleString a pointer to a C-string

EI_SetControlTitle sets the control’s title to the given string.

EI_GetControlTitleSize

int EI_GetControlTitleSize(
const EI_Control *iControl);

iControl a pointer to a control object

return value the number of characters in the control’s
title

EI_GetControlTitleSize returns the number of characters in the control’s title,
including the terminating zero byte.

EI_GetControlTitle

void EI_GetControlTitle(
const EI_Control *iControl,
char *oText,
int *ioNumChars);

iControl a pointer to a control object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetControlTitle copies the control’s title string to the buffer pointed at by
oText. If the title is too long to fit into the buffer, as indicated by the value of
*ioNumChars, EI_GetControlTitle will copy as many characters as will fit,
including a terminating zero. EI_GetControlTitle will also adjust the value of
*ioNumChars to indicate how many characters were actually copied.

EI_GetControlValue

int EI_GetControlValue(
const EI_Control *iControl);

Electric Image User Interface API 2/12/2001

33

iControl a pointer to a control object

return value an integer value

EI_GetControlValue will return the value of the given control.

EI_SetControlValue

void EI_SetControlValue(
EI_Control *ioControl,
int iNewValue);

ioControl a pointer to a control object

iNewValue an integer value

EI_SetControlValue will change the control’s value to iNewValue. If
iNewValue is greater than the control’s maximum, it will be truncated to the
maximum value.

EI_GetControlMax

int EI_GetControlMax(
const EI_Control *iControl);

iControl a pointer to a control object

return value an integer value

EI_GetControlMax returns the current maximum value of the control.

EI_SetControlMax

void EI_SetControlMax(
EI_Control *ioControl,
int iNewMax);

ioControl a pointer to a control object

iNewMax an integer value

EI_SetControlMax sets the control’s maximum value to iNewMax.

EI_SetControlExtraData

void EI_SetControlExtraData(
EI_Control *ioControl,
void *iExtraData);

Electric Image User Interface API 2/12/2001

34

ioControl a pointer to a control object

iExtraData a pointer

EI_SetControlExtraData sets the extra data pointer of a control object. The
value passed in iExtraData is not dereferenced or used in any way by the API,
so you are free to use this argument in any way you like. You can pass a
pointer to a structure containing extra data for your control. During hit
functions or other callbacks, you can extract the extra data pointer using the
EI_GetControlExtraData function.

N O T E : If the extra data pointer points to dynamically allocated
memory, the API will not free that memory for you when the
control is destroyed; you are responsible for freeing any
memory you allocate when you are through using it.

EI_GetControlExtraData

void *EI_GetControlExtraData(
const EI_Control *iControl);

iControl a pointer to a control object

return value a pointer

EI_GetControlExtraData returns the extra data pointer currently assigned to
*iControl. If you have not yet assigned an extra data pointer to *iControl,
EI_GetControlExtraData returns NULL.

EI_SetControlHitFunction

void EI_SetControlHitFunction(
EI_Control *ioControl,
EI_ControlHitFunction iFunction);

ioControl a pointer to a control object

iFunction a pointer to a control hit function

EI_SetControlHitFunction sets the hit function of a control to iFunction.

Control Images

EI_GetControlImageID

int EI_GetControlImageID(
const EI_Control *iControl);

Electric Image User Interface API 2/12/2001

35

iControl a pointer to a control object

return value an image ID

EI_GetControlImageID returns the resource ID of the image used by
*iControl. This function applies to push buttons and pictures.

EI_SetControlImageID

void EI_SetControlImageID(
EI_Control *ioControl,
int iNewImageID);

ioControl a pointer to a control object

iNewImageID an image ID

EI_SetControlImageID changes the image used by *ioControl to the image
indicated by iNewImageID. The value of iNewImageID must the ID of an
existing 'argb', 'cicn' or 'PICT' resource.

N O T E : Use IDs in the range 12000 to 18000 for your images, or you
may collide with images defined by Electric Image.

Push Button Layout

EI_GetPushButtonLayout

void EI_GetPushButtonLayout(
const EI_Control *iControl,
int *oLabelPosition,
int *oIconPosition);

iControl a pointer to a push button control

oLabelPosition a pointer to an int

oIconPosition a pointer to an int

EI_GetPushButtonLayout returns, in *oLabelPosition and *oIconPosition, the
layout values used by *iControl.

Push buttons display a label that can contain an icon, a title string, or both.
The value returned in *oLabelPosition controls the position of the label, and
can be any one of cEI_Left, cEI_Top, cEI_Right, cEI_Bottom, or cEI_Center.
For cEI_Left, the label is positioned against the left side of the button, for the
cEI_Top, the label is positioned against the top side of the button, and so on.
For cEI_Center (the default), the label is placed in the center of the button.

The value returned in *oIconPosition controls the position of the icon with
respect to the title string. This value is meaningful only if the label contains an

Electric Image User Interface API 2/12/2001

36

icon and a title string, and can be any one of cEI_Left, cEI_Top, cEI_Right, or
cEI_Bottom. For cEI_Left, the icon will be positioned to the left of the title
string, for cEI_Top, the icon will be positioned above the title string, and so
on. The value cEI_Center has no meaning for *oIconPosition.

EI_SetPushButtonLayout

void EI_SetPushButtonLayout(
EI_Control *ioControl,
int iLabelPosition,
int iIconPosition);

ioControl a pointer to a push button control

iLabelPosition a layout value

iIconPosition a layout value

EI_SetPushButtonLayout lets you change the label’s layout values. The
meaning of the layout values is described above in the description of the
function EI_GetPushButtonLayout.

Keyboard Focus Controls

EI_SetKeyControl

void EI_SetKeyControl(
EI_Control *iControl);

iControl a pointer to a keyboard focus control object

EI_SetKeyControl makes *iControl become the current keyboard focus for its
dialog box. If *iControl is not a valid keyboard focus control (either an edit
text control or a list box control), EI_SetKeyControl has no effect.

EI_GetKeyControl

EI_Control *EI_GetKeyControl(
const EI_Dialog *iDialog);

iDialog a pointer to a dialog box object

return value a pointer to a keyboard focus control object

EI_GetKeyControl returns the control object which is the current keyboard
focus in the given dialog box. If there is no keyboard focus for the dialog,
EI_GetKeyControl returns NULL.

Electric Image User Interface API 2/12/2001

37

Edit Text Controls

EI_SetEditTextString

void EI_SetEditTextString(
EI_Control *ioControl,
const char *iEditString);

ioControl a pointer to an edit text control object

iEditString a pointer to a C string

EI_SetEditTextString changes the text in the edit box of an edit text control to
the string passed in iEditString.

EI_GetEditTextStringSize

int EI_GetEditTextStringSize(
const EI_Control *iControl);

iControl a pointer to an edit text control object

return value the number of characters in the control’s edit
box

EI_GetEditTextStringSize returns the number of characters in an edit text
control’s edit box, including the terminating zero byte.

EI_GetEditTextString

void EI_GetEditTextString(
const EI_Control *iControl,
char *oText,
int *ioNumChars);

iControl a pointer to an edit text control object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetEditTextString copies the text from an edit control’s edit box to the
buffer pointed at by oText. If the text is too long to fit into the buffer, as
indicated by the value of *ioNumChars, EI_GetEditTextString will copy as
many characters as will fit, including a terminating zero.
EI_GetEditTextString will also adjust the value of *ioNumChars to indicate
how many characters were actually copied.

Electric Image User Interface API 2/12/2001

38

EI_SetEditTextSelection

void EI_SetEditTextSelection(
EI_Control *ioControl,
int iSelectionStart,
int iSelectionEnd);

ioControl a pointer to an edit text control object

iSelectionStart an integer value

iSelectionEnd an integer value

EI_SetEditTextSelection changes the selection range of an edit text control to
the range given by iSelectionStart and iSelectionEnd. Both values are indexes
into the string, and begin at zero. If iSelectionStart or iSelectionEnd indicates
a position after the end of the text, the last text position will be used in its
place.

EI_GetEditTextSelection

void EI_GetEditTextSelection(
const EI_Control *ioControl,
int *oSelectionStart,
int *oSelectionEnd);

ioControl a pointer to an edit text control object

oSelectionStart a pointer to an integer value

oSelectionEnd a pointer to an integer value

EI_GetEditTextSelection sets *oSelectionStart and *oSelectionEnd to the edit
text control’s current selection range.

EI_SetEditTextFilter

void EI_SetEditTextFilter(
EI_Control *ioControl,
EI_EditFilterType iFilterType,
EI_EditFilterFunction iFilterFunction);

ioControl a pointer to an edit text control object

iFilterType a filter type constant

iFilterFunction a pointer to an edit text filter function

EI_SetEditTextFilter changes the filter used with an edit text control. The
value passed in iFilterType determines how the edit text will filter text typed
by an end user.

The meanings of the EI_EditFilterType constants are:

Electric Image User Interface API 2/12/2001

39

cEI_NoFilter The edit text control performs no filtering; all text
typed by the user is accepted into the control.

cEI_UnsignedInt The edit text control only allows an unsigned
integer value to be typed into the control.

cEI_SignedInt The edit text control only allows an integer value to
be typed into the control, with an optional sign.

cEI_UnsignedFloat The edit text control only allows an unsigned
floating point number to be typed into the control.

cEI_SignedFloat The edit text control only allows a floating point
number to be typed into the control, with an
optional sign.

cEI_Custom The edit text calls the filter function pointed to by
iFilterFunction to provide filtering. See the
discussion of EI_EditFilterFunction callback
functions.

N O T E : If iFilterType is cEI_Custom and the iFilterFunction pointer is
NULL, the edit text control performs no filtering; all text typed
by the user is accepted into the control.

Color Button Controls

EI_GetColorButtonColor

void EI_GetColorButtonColor(
const EI_Control *iControl,
int *oRed,
int *oGreen,
int *oBlue,
int *oAlpha);

iControl a pointer to a color button control object

oRed a pointer to an integer value

oGreen a pointer to an integer value

oBlue a pointer to an integer value

oAlpha a pointer to an integer value

EI_GetColorButtonColor sets *oRed, *oGreen, *oBlue and *oAlpha to the
current color value in the color button control. The values will all be in the
range 0 to 255.

Any or all of the integer pointers can be NULL. If a pointer is NULL, it is
ignored. This way you can ask for only the components you are interested in.

Electric Image User Interface API 2/12/2001

40

For example, if you only want the RGB part but don’t care about the alpha,
you can pass NULL as oAlpha.

EI_SetColorButtonColor

void EI_SetColorButtonColor(
EI_Control *ioControl,
int iRed,
int iGreen,
int iBlue,
int iAlpha);

ioControl a pointer to a color button control object

iRed an integer value

iGreen an integer value

iBlue an integer value

iAlpha an integer value

EI_SetColorButtonColor changes the color of a color button to the color given
by iRed, iGreen, iBlue and iAlpha. The values are expected to be in the range
0 to 255. If a value is greater than 255, it will be truncated to 255. If any value
is less than zero, that argument will be ignored and will leave the
corresponding component in the color button unchanged. For example, if you
want to change the color to a particular RGB value but don’t want to disturb
the alpha, you can pass -1 as iAlpha.

Tab Controls

The functions in this section allow you to change the current tab displayed in a
tab control.

N O T E : Group controls can also have multiple “branches.” Group
branches are similar to tab panes in a tab control, in that only
one group branch, and the controls within it, are visible at a
time. The tab control functions described in this section also
work with groups containing multiple branches. Group
branches can be edited in Interface Builder.

EI_GetNumTabPanels

int EI_GetNumTabPanels(
const EI_Control *iControl);

iControl a pointer to a tab control

return value the number of tab panels in the tab control

EI_GetNumTabPanels returns the number of tab panels in a tab control.

Electric Image User Interface API 2/12/2001

41

EI_GetCurrentTabPanel

int EI_GetCurrentTabPanel(
const EI_Control *iControl);

iControl a pointer to a tab control

return value the index of the tab panel currently
displayed in the tab control

EI_GetCurrentTabPanel returns the index of the tab control’s current tab
panel. The index is zero based.

EI_SetCurrentTabPanel

void EI_SetCurrentTabPanel(
EI_Control *ioControl,
int iPanelNumber);

ioControl a pointer to a tab control

iPanelNumber a tab panel index

EI_SetCurrentTabPanel switches the tab control’s current tab panel to the tab
panel indicated by iPanelNumber.

List Box Controls

EI_CountListItems

int EI_CountListItems(
const EI_Control *iControl);

iControl a pointer to a list box control object

return value an integer value

EI_CountListItems returns the number of items in a list box control.

EI_InsertListItem

void EI_InsertListItem(
EI_Control *ioControl,
int iBeforeWhichItem,
const char *iItemString);

Electric Image User Interface API 2/12/2001

42

ioControl a pointer to a list box control object

iBeforeWhichItem an item index

iItemString a pointer to a C string

EI_InsertListItem adds a string to a list box. The new item is inserted before
the item whose index is passed in iBeforeWhichItem, and the string is passed
in iItemString.

EI_RemoveListItem

void EI_RemoveListItem(
EI_Control *ioControl,
int iWhichItem);

ioControl a pointer to a list box control object

iWhichItem an item index

EI_RemoveListItem removes an item from a list box. The index of the item to
remove is passed in iWhichItem.

EI_SetListString

void EI_SetListString(
EI_Control *ioControl,
int iWhichItem,
const char *iItemString);

ioControl a pointer to a list box control object

iWhichItem an item index

iItemString a pointer to a C string

EI_SetListString changes the text of an existing list item to the string passed
in iItemString. The index of the item to change is passed in iWhichItem.

EI_GetListStringSize

int EI_GetListStringSize(
const EI_Control *iControl,
int iWhichItem);

iControl a pointer to a list box control object

iWhichItem an item index

return value an integer value

EI_GetListStringSize returns the number of characters in an item of a list box
control, including the terminating zero byte. The index of the item is passed in
iWhichItem.

Electric Image User Interface API 2/12/2001

43

EI_GetListString

void EI_GetListString(
const EI_Control *iControl,
int iWhichItem,
char *oText,
int *ioNumChars);

iControl a pointer to a list box control object

iWhichItem an item index

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetListString copies the string from the list box item whose index is
passed in iWhichItem to the buffer pointed at by oText. If the text is too long
to fit into the buffer, as indicated by the value of *ioNumChars,
EI_GetListString will copy as many characters as will fit, including a
terminating zero. EI_GetListString will also adjust the value of *ioNumChars
to indicate how many characters were actually copied.

EI_SetListItemStyle

void EI_SetListItemStyle(
EI_Control *ioControl,
int iWhichItem,
int iStyleFlags);

ioControl a pointer to a list box control object

iWhichItem an item index

iStyleFlags an integer value

EI_SetListItemStyle sets the font style flags of the list box item whose index
is passed in iWhichItem to iStyleFlags. The style flags can be any bit-wise
combination of cEI_TextBold, cEI_TextItalic, cEI_TextUnderline,
cEI_TextOutline, and cEI_TextShadow. To remove all stylistic variation from
the list box item, pass 0 as iStyleFlags.

EI_GetListItemStyle

int EI_GetListItemStyle(
const EI_Control *iControl,
int iWhichItem);

Electric Image User Interface API 2/12/2001

44

iControl a pointer to a list box control object

iWhichItem an item index

return value an integer value

EI_GetListItemStyle returns the font style flags of the list box item whose
index is passed in iWhichItem.

EI_GetListSelectedItem

int EI_GetListSelectedItem(
const EI_Control *iControl);

iControl a pointer to a list box control object

return value an item index

EI_GetListSelectedItem returns the index of the currently selected item. If the
list allows multiple selections, the item index returned is the index of the first
selected item. If no item is selected, EI_GetListSelectedItem returns -1.

EI_SelectListItem

void EI_SelectListItem(
EI_Control *ioControl,
int iWhichItem,
int iSelect);

ioControl a pointer to a list box control object

iWhichItem an item index

iSelect a boolean value

EI_SelectListItem either selects or deselects an item in the list box control.
The index of the item is passed in iWhichItem. If iSelect is true, the item is
selected. If iSelect is false, the item is deselected.

EI_IsListItemSelected

int EI_IsListItemSelected(
const EI_Control *iControl,
int iWhichItem);

iControl a pointer to a list box control object

iWhichItem an item index

return value a boolean value

EI_IsListItemSelected returns true if the item whose index is iWhichItem is
selected and false if it is not selected.

Electric Image User Interface API 2/12/2001

45

EI_SetListFlags

void EI_SetListFlags(
EI_Control *ioControl,
int iListFlags);

ioControl a pointer to a list box control object

iListFlags an integer value

EI_SetListFlags sets the list box control’s flags to the flags passed in
iListFlags.

EI_GetListFlags

int EI_GetListFlags(
const EI_Control *iControl);

iControl a pointer to a list box control object

return value an integer value

EI_GetListFlags returns the current value of a list box control’s flags.

EI_SetListDoubleClickFunction

void EI_SetListDoubleClickFunction(
EI_Control *ioControl,
EI_ListDoubleClickFunction iFunction);

ioControl a pointer to a list box control object

iFunction a pointer to a list double-click function

EI_SetListDoubleClickFunction sets the double-click function of *ioControl
to iFunction. Whenever the end-user double-clicks an item in the list, the
double-click function will be called. To clear the double-click function, pass
NULL in iFunction.

EI_SetListReorderFunction

void EI_SetListReorderFunction(
EI_Control *ioControl,
EI_ListReorderFunction iFunction);

ioControl a pointer to a list box control object

iFunction a pointer to a list reorder function

EI_SetListReorderFunction sets the reorder function of *ioControl to
iFunction. Whenever the end-user drags an item to a new position in the list,

Electric Image User Interface API 2/12/2001

46

the reorder function will be called. To clear the reorder function, pass NULL
in iFunction.

User Controls

EI_SetUserControlDraw

void EI_SetUserControlDraw(
EI_Control *ioControl,
EI_UserDrawFunction iFunction);

ioControl a pointer to a control object

iFunction a pointer to a user control draw function

EI_SetUserControlDraw sets the draw function of a user control to the
function pointed at by iFunction.

EI_SetUserControlClick

void EI_SetUserControlClick(
EI_Control *ioControl,
EI_UserClickFunction iFunction);

ioControl a pointer to a control object

iFunction a pointer to a user control click function

EI_SetUserControlClick sets the click function of a user control to the
function pointed at by iFunction.

EI_SetUserControlMouseMoved

void EI_SetUserControlMouseMoved(
EI_Control *ioControl,
EI_UserMouseMovedFunction iFunction);

ioControl a pointer to a control object

iFunction a pointer to a user control mouse moved
function

EI_SetUserControlMouseMoved sets the mouse moved function of a user
control to the function pointed at by iFunction.

Electric Image User Interface API 2/12/2001

47

EI_TrackMouseDown

int EI_TrackMouseDown(
const EI_Control* iControl,
int* oMouseX,
int* oMouseY);

iControl a pointer to a control object

oMouseX a pointer to an integer value

oMouseY a pointer to an integer value

return value a boolean value

EI_TrackMouseDown can be called from within a user control click function.
Pass the user control in iControl. EI_TrackMouseDown will return when the
mouse moves and set *oMouseX and *oMouseY to the new location of the
mouse. The return value will be true if the user is still pressing the mouse
button and false if the user has released the mouse button.

N O T E : EI_TrackMouseDown will return false as soon as the mouse
button is released, whether the mouse moves or not.

OpenGL Controls

EI_SetGLDrawFunction

void EI_SetGLDrawFunction(
EI_Control *ioControl,
EI_GLDrawFunction iFunction);

ioControl a pointer to an OpenGL control

iFunction a pointer to an OpenGL control draw
function

EI_SetGLDrawFunction sets the draw function for the OpenGL control
*ioControl to iFunction.

EI_SetGLClickFunction

void EI_SetGLClickFunction(
EI_Control *ioControl,
EI_GLClickFunction iFunction);

Electric Image User Interface API 2/12/2001

48

ioControl a pointer to an OpenGL control

iFunction a pointer to an OpenGL control click
function

EI_SetGLClickFunction sets the click function for the OpenGL control
*ioControl to iFunction.

EI_SetGLControlMouseMoved

void EI_SetGLControlMouseMoved(
EI_Control *ioControl,
EI_GLMouseMovedFunction iFunction);

ioControl a pointer to an OpenGL control

iFunction a pointer to an OpenGL mouse moved function

EI_SetGLControlMouseMoved sets the mouse moved function of an OpenGL
control to the function pointed at by iFunction.

EI_BeginGLDrawing

int EI_BeginGLDrawing(
const EI_Control *iControl);

iControl a pointer to an OpenGL control

return value a boolean value

EI_BeginGLDrawing sets up the OpenGL state so that drawing can occur
within the OpenGL control *iControl. If the OpenGL state cannot be properly
set up for *iControl, EI_BeginGLDrawing returns 0; otherwise it returns non-
zero.

You use EI_BeginGLDrawing and EI_EndGLDrawing within your OpenGL
control callbacks to bracket the OpenGL calls that you use to draw a 3D
scene.

See the description of the EI_GLDrawFunction for an example of using
EI_BeginGLDrawing.

EI_EndGLDrawing

void EI_EndGLDrawing(
const EI_Control *iControl);

Electric Image User Interface API 2/12/2001

49

iControl a pointer to an OpenGL control

EI_EndGLDrawing finishes up the OpenGL drawing that was previously
begun by calling EI_BeginGLDrawing. EI_EndGLDrawing also flushes the
drawing to the screen, so you should not call glFinish or glFlush.

EI_WindowToGL

void EI_WindowToGL(
const EI_Dialog *iDialog,
int *ioX,
int *ioY);

iDialog a pointer to a dialog box object

ioX a pointer to an integer value

ioY a pointer to an integer value

EI_WindowToGL transforms the two dimensional point given by (*ioX,
*ioY) from the API’s window coordinates to OpenGL’s window coordinates.
The API’s window coordinates have their origin at the upper left corner of the
window, with X and Y increasing to the right and down, respectively.
OpenGL’s window coordinates, on the other hand, have the origin at the lower
left corner of the window, with X and Y increasing to the right and up,
respectively.

You can use this function to transform a mouse location (as returned by the
function EI_TrackMouseDown) to OpenGL coordinates when handling
mouse clicks in an OpenGL control.

EI_GLToWindow

void EI_GLToWindow(
const EI_Dialog *iDialog,
int *ioX,
int *ioY);

iDialog a pointer to a dialog box object

ioX a pointer to an integer value

ioY a pointer to an integer value

EI_GLToWindow is the inverse of EI_WindowToGL. Given a point (*ioX,
*ioY) given in OpenGL window coordinates, EI_GLToWindow transforms
the point to the equivalent point in API window coordinates.

Electric Image User Interface API 2/12/2001

50

Callbacks

EI_ControlHitFunction

void MyHitFunction(
EI_Control *iControl,
EI_DrawContext *iContext);

iControl a pointer to a control

iContext a pointer to a drawing context

A control’s hit function is a notification that the user has interacted with the
control in some way. Your can take whatever actions are appropriate for the
given control. For example, if you need to update another control when the
user interacts with this control, you can do so from within the hit function. A
pointer to the control that was interacted with is passed in iControl, and
iContext contains a pointer to a drawing context you can use to perform
drawing if necessary.

N O T E : You should only need to drawing context in unusual
circumstances, such as when dealing with user controls with
special drawing needs. Most of the time, the iContext argument
can be ignored.

EI_EditFilterFunction

int MyEditFilterFunction(
EI_Control *iControl,
const char *iNewText);

iControl a pointer to an edit text control

iNewText a pointer to a C string

return result a boolean value

When an edit text control is set to use an edit filter function, the edit filter
function will be called each time the user enters text into an edit text control
(either by typing individual characters or by pasting a string of characters).
The edit text control constructs a new string based on the edit string and the
user’s action, and then passes the new string in as iNewText. The edit filter
function must examine the string passed in iNewText and determine if it is
acceptable or not. If so, then the edit filter function should return true. If the
edit filter returns false, the string will be rejected and the edit string will
remain unchanged.

Electric Image User Interface API 2/12/2001

51

EI_ListDoubleClickFunction

void MyListDoubleClickFunction(
EI_Control *iControl,
int iDoubleClickedItem,
EI_DrawContext *iContext);

iControl a pointer to a list box control

iDoubleClickedItem the index of the item that was double-
clicked

iContext a pointer to a drawing context

When a user double-clicks an item in a list box control, the double-click
function is called to allow you to respond.

EI_ListReorderFunction

void MyListReorderFunction(
EI_Control *iControl,
EI_DrawContext *iContext);

iControl a pointer to a list box control

iContext a pointer to a drawing context

When the user drags an item to a new position within a list box control, the
reorder function is called to allow you to respond. Because the user may be
dragging multiple items, there is no “iWhichItem” argument; you must inspect
the list to see how it has changed.

EI_UserDrawFunction

void MyUserDrawFunction(
const EI_Control *iControl,
EI_DrawContext *iContext);

iControl a pointer to a user control

iContext a pointer to a drawing context

A user control drawing function is called whenever the user control to which
it is attached needs to be drawn. A pointer to the user control is passed in
iControl, and iContext contains a drawing context that can be used to draw the
user control.

Electric Image User Interface API 2/12/2001

52

EI_UserClickFunction

int MyUserClickFunction(
EI_Control *iControl,
EI_DrawContext *iContext,
int iModifierKeys,
int iClickH,
int iClickV);

iControl a pointer to a user control

iContext a pointer to a drawing context

iModifierKeys an integer value

iClickH an integer value

iClickV an integer value

return value a boolean value

When a user control is clicked, its click function gets called. A pointer to the
user control is passed in iControl, and iContext contains a pointer to a drawing
context that can be used for drawing purposes while you track the mouse’s
movements. The initial location of the mouse is passed in iClickH and
iClickV.

Your click function should retain control as long as necessary (usually until
the mouse button is released), tracking the mouse and updating the display
appropriately.

If the user control click function returns a true result, then the user control’s
hit function (if any) will be called; otherwise, if the click function returns
false, the hit function will not be called. This allows your user control to
communicate whether or not a click should count as a “hit.”

EI_UserMouseMovedFunction

void MyUserMouseMovedFunction(
EI_Control* iControl,
EI_DrawContext* iContext,
int iModifierKeys,
int iMouseH,
int iMouseV,
int iMoveType)

Electric Image User Interface API 2/12/2001

53

iControl a pointer to a user control

iContext a pointer to a drawing context

iModifierKeys an integer value

iMouseH an integer value

iMouseV an integer value

iMoveType an integer value

When the user moves the cursor into a user control, the control’s mouse
moved function gets called. A pointer to the control is passed in iControl, and
iContext contains a pointer to a drawing context that can be used for drawing.
The cursor’s location is passed in iMouseH and iMouseV, and the current
state of the modifier keys is passed in iModifierKeys.

The value of iMoveType tells you whether the mouse has entered the control,
is moving within the control, or exiting the control, and can be one of the
values cEI_MouseEnter, cEI_MouseWithin, or cEI_MouseExit.

You can use a mouse moved function to perform such tasks as custom cursor
changing or rollover highlighting.

EI_GLDrawFunction

void MyGLDrawFunction(
const EI_Control *iControl);

iControl a pointer to an OpenGL control

The EI_GLDrawFunction is analogous to the user control draw function, and
is used to draw an OpenGL control. One difference between the OpenGL
draw function and the user control draw function is that no EI_DrawContext is
passed to the OpenGL draw function. Because the OpenGL draw function is
expected to draw the control using the OpenGL API, an EI_DrawContext is
unnecessary.

N O T E : Using an EI_DrawContext to draw in a dialog box at the
location of an OpenGL control is not supported.

To draw using the OpenGL API, your draw function must call
EI_BeginGLDrawing before the first OpenGL call, and EI_EndGLDrawing
after the last OpenGL call. It is not necessary for you to call any of the
OpenGL finishing functions (like glFinish or glFlush), because that is taken
care of for you by EI_EndGLDrawing. For example:

void MyGLDrawFunction(EI_Control *iControl)
{

if (EI_BeginGLDrawing(iControl)) {
glClearColor(1.0f, 1.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);

Electric Image User Interface API 2/12/2001

54

/* Draw a smooth shaded polygon */
glBegin(GL_POLYGON);
glColor3d(1.0, 0.0, 0.0);
glVertex3d(0.8, 0.8, 0.0);
glColor3d(0.0, 1.0, 0.0);
glVertex3d(0.8, -0.8, 0.0);
glColor3d(0.0, 0.0, 1.0);
glVertex3d(-0.8, -0.8, 0.0);
glColor3d(1.0, 0.0, 1.0);
glVertex3d(-0.8, 0.8, 0.0);
glEnd();

EI_EndGLDrawing(iControl);
}

}

EI_GLClickFunction

int MyGLClickFunction(
EI_Control *iControl,
int iModifierKeys,
int iClickH,
int iClickV);

iControl a pointer to an OpenGL control

iModifierKeys an integer value

iClickH an integer value

iClickV an integer value

return value a boolean value

The OpenGL click function is analogous to the user control click function.
However, like the OpenGL draw function, the OpenGL click function is not
passed an EI_DrawContext because the click function is expected to do its
drawing using the OpenGL API. The other arguments (iModifierKeys,
iClickH and iClickV) have the same meaning that they do for the user control.
Your OpenGL click function should retain control as long as necessary
(usually until the mouse button is released), tracking the mouse and updating
the display appropriately.

Also like the OpenGL draw function, if the click function is going to do any
drawing, that drawing must be bracketed between calls to
EI_BeginGLDrawing and EI_EndGLDrawing. Note that
EI_BeginGLDrawing and EI_EndGLDrawing bracket a single frame, so if
your click function draws multiple frames (for example, because it is tracking
the mouse and updating the display as the mouse moves), then each frame
must be bracketed by a call to EI_BeginGLDrawing and EI_EndGLDrawing.

If the OpenGL control click function returns a true result, then the OpenGL
control’s hit function (if any) will be called; otherwise, if the click function

Electric Image User Interface API 2/12/2001

55

returns false, the hit function will not be called. This allows your OpenGL
control to communicate whether or not a click should count as a “hit.”

EI_GLMouseMovedFunction

void MyGLMouseMovedFunction(
EI_Control* iControl,
int iModifierKeys,
int iCursorH,
int iCursorV,
int iMoveType)

iControl a pointer to a user control

iModifierKeys an integer value

iMouseH an integer value

iMouseV an integer value

iMoveType an integer value

The OpenGL mouse moved function is analogous to the user control mouse
moved function. However, no EI_DrawContext is passed to an OpenGL
mouse moved function, because the OpenGL mouse moved function is
expected to do its drawing using the OpenGL API. The other arguments have
the same meaning as they do for the user control mouse moved function.

You can use a mouse moved function to perform such tasks as custom cursor
changing or rollover highlighting.

EI_TimerFunction

void MyTimerFunction(
EI_Timer *iTimer);

iTimer a pointer to a timer object

The timer function is called whenever the corresponding timer expires. The
timer may expire once (if it was scheduled using EI_StartOneShotTimer) or
many times (if it was scheduled using EI_StartPeriodicTimer). The timer
action may take any action you like. For example, here is how to use a timer
to time out a dialog box:

static EI_Timer *sTimer = NULL;

void TimeOutFunction(EI_Timer* iTimer)

{
EI_Dialog *dialog;

/* Extract the dialog from the timer’s extra data. */
dialog = (EI_Dialog*) EI_GetTimerExtraData(iTimer);

Electric Image User Interface API 2/12/2001

56

/* Stop the dialog as if the user had canceled it. */
EI_StopDialog(dialog, 0);

}

void InitDialog(EI_Dialog *iDialog)

{
/* ... */

/* Create a new timer. */
sTimer = EI_MakeTimer();

/* Initialize its timer function and extra data. */
EI_SetTimerFunction(sTimer, TimeOutFunction);
EI_SetTimerExtraData(sTimer, (void*) iDialog);

/* Set it to go off 60 seconds from now. */
EI_StartOneShotTimer(sTimer, 60 * 1000);

}

void CleanUpDialog(EI_Dialog *iDialog)

{
/* All done with the timer. */
EI_DestroyTimer(sTimer);

/* ... */
}

Note that it is valid to either start or stop any timer when a timer function
executes.

Cursors

The functions described in this section allow you to load and display custom
cursors. The functions described in this section are declared in the file
EI_Cursor.h.

EI_MakeCursor

EI_Cursor* EI_MakeCursor(
int iCursorID);

iCursorID an integer value

return value a pointer to an EI_Cursor

EI_MakeCursor loads the cursor with resource ID iCursorID. If the cursor
cannot be created (for example because the resource cannot be found),
EI_MakeCursor returns NULL.

Electric Image User Interface API 2/12/2001

57

Cursors are created on the Macintosh and must be of type 'crsr'. These
resources can be created with a resource editing tool such as ResEdit or
Resorcer.

N O T E : Use IDs in the range 12000 to 18000 for your cursors, or you
may collide with cursors defined by Electric Image.

EI_DestroyCursor

void EI_DestroyCursor(
EI_Cursor *iCursor);

iCursor a pointer to an EI_Cursor

EI_DestroyCursor destroys a cursor that was previously created using
EI_MakeCursor.

EI_SetCursor

void EI_SetCursor(
EI_Cursor *iCursor);

iCursor a pointer to an EI_Cursor

EI_SetCursor sets the system cursor to *iCursor. You can also pass NULL in
iCursor, which will cause the system cursor to be reset to the standard arrow.

Drawing

The functions described in this section allow you to perform drawing to a
drawing context. The context can be a screen context (if it is a context passed
to one of your control callback functions) or it can be an off-screen image
buffer context (if you created it yourself by calling
EI_MakeContextForImageBuffer). The functions described in this section are
declared in the file EI_DrawContext.h.

EI_MakeContextForImageBuffer

EI_DrawContext *EI_MakeContextForImageBuffer(
EI_ImageBuffer *iImage);

iImage a pointer to an image buffer

return value a pointer to a drawing context object

EI_MakeContextForImageBuffer makes a drawing context for the given
image buffer. Any drawing done using this context will draw into the image

Electric Image User Interface API 2/12/2001

58

buffer. This can be handy for performing drawing off-screen that is later
copied to the screen using the function EI_DrawImage. When you are done
using the draw context you must make sure to destroy the draw context using
EI_DestroyContext.

EI_MakeContextForDialog

EI_DrawContext *EI_MakeContextForDialog(
EI_Dialog *iDialog);

iDialog a pointer to a dialog box

return value a pointer to a drawing context object

EI_MakeContextForDialog makes a drawing context for the given dialog box.
Any drawing done using this context will draw into the dialog box. When you
are done using the draw context you must make sure to destroy the draw
context using EI_DestroyContext.

EI_DestroyContext

void EI_DestroyContext(
EI_DrawContext *iContext);

iContext a pointer to a drawing context object

EI_DestroyContext destroys a drawing context object that was previously
created with EI_MakeContextForImageBuffer or EI_MakeContextForDialog.
Call this function when you are done using the drawing context object.

N O T E : Do not call EI_DestroyContext on any context that you did not
create. Specifically, do not call EI_DestroyContext on a
context passed to your control callback functions.

EI_SetClip

void EI_SetClip(
EI_DrawContext *ioContext,
const EI_Rect *iClipRect);

ioContext a pointer to a drawing context object

iClipRect a pointer to a rectangle

EI_SetClip sets the clipping area of the given context to the rectangle
*iClipRect. It is not possible to set the clipping area of a context to a non-
rectangular area.

Electric Image User Interface API 2/12/2001

59

EI_GetClip

void EI_GetClip(
const EI_DrawContext *iContext,
EI_Rect *oClipRect);

iContext a pointer to a drawing context object

oClipRect a pointer to a rectangle

EI_GetClip sets *iClipRect to the current clipping rectangle of the context.

EI_SetPenMode

void EI_SetPenMode(
EI_DrawContext *ioContext,
EI_PenMode iPenMode);

ioContext a pointer to a drawing context object

iPenMode a pen mode value

EI_SetPenMode sets the pen drawing mode to iPenMode. The pen mode may
be either cEI_PenColor or cEI_PenXOR.

EI_GetPenMode

EI_PenMode EI_GetPenMode(
const EI_DrawContext *iContext);

iContext a pointer to a drawing context object

return value a pen mode value

EI_GetPenMode returns the context’s pen drawing mode.

EI_MoveTo

void EI_MoveTo(
EI_DrawContext *ioContext,
int iPenH,
int iPenV);

ioContext a pointer to a drawing context object

iPenH an integer value

iPenV an integer value

EI_MoveTo moves the context’s pen to the location (iPenH, iPenV).

Electric Image User Interface API 2/12/2001

60

EI_LineTo

void EI_LineTo(
EI_DrawContext *ioContext,
int iPenH,
int iPenV);

ioContext a pointer to a drawing context object

iPenH an integer value

iPenV an integer value

EI_LineTo draws a line to the context from the context’s current pen location
to the location (iPenH, iPenV). The line is drawn using the foreground color
and the pen drawing mode, and the pen is left at location (iPenH, iPenV).

EI_GetPenLocation

void EI_GetPenLocation(
const EI_DrawContext *iContext,
int *oPenH,
int *oPenV);

iContext a pointer to a drawing context object

oPenH a pointer to an integer value

oPenV a pointer to an integer value

EI_GetPenLocation sets *oPenH and *oPenV to the context’s pen location.

EI_SetForeColor

void EI_SetForeColor(
EI_DrawContext *ioContext,
const EI_Color *iForeColor);

ioContext a pointer to a drawing context object

iForeColor a pointer to a color

EI_SetForeColor sets the context’s foreground color to the color *iForeColor.

EI_GetForeColor

void EI_GetForeColor(
const EI_DrawContext *iContext,
EI_Color *oForeColor);

Electric Image User Interface API 2/12/2001

61

iContext a pointer to a drawing context object

oForeColor a pointer to a color

EI_GetForeColor copies the context’s current foreground color to
*oForeColor.

EI_SetBackColor

void EI_SetBackColor(
EI_DrawContext *ioContext,
const EI_Color *iBackColor);

ioContext a pointer to a drawing context object

iBackColor a pointer to a color

EI_SetBackColor sets the context’s background color to the color
*iBackColor.

EI_GetBackColor

void EI_GetBackColor(
const EI_DrawContext *iContext,
EI_Color *oBackColor);

iContext a pointer to a drawing context object

oBackColor a pointer to a color

EI_GetBackColor copies the context’s current background color to
*oBackColor.

EI_FrameRect

void EI_FrameRect(
EI_DrawContext *ioContext,
const EI_Rect *iFrame);

ioContext a pointer to a drawing context object

iFrame a pointer to a rectangle

EI_FrameRect draws a rectangle frame to the context. The rectangle’s frame
will be one pixel thick, and will be drawn in the foreground color using the
pen drawing mode.

EI_PaintRect

void EI_PaintRect(
EI_DrawContext *ioContext,
const EI_Rect *iFrame);

Electric Image User Interface API 2/12/2001

62

ioContext a pointer to a drawing context object

iFrame a pointer to a rectangle

EI_PaintRect draws a filled rectangle to the context. The rectangle will be
filled with the foreground color using the pen drawing mode.

EI_EraseRect

void EI_EraseRect(
EI_DrawContext *ioContext,
const EI_Rect *iFrame);

ioContext a pointer to a drawing context object

iFrame a pointer to a rectangle

EI_EraseRect erases a rectangle to the context. The rectangle will be filled
with the background color using the pen drawing mode.

EI_FrameOval

void EI_FrameOval(
EI_DrawContext *ioContext,
const EI_Rect *iFrame);

ioContext a pointer to a drawing context object

iFrame a pointer to a rectangle

EI_FrameOval draws an ellipse to the context. The ellipse drawn will fit just
inside the given rectangular frame. The ellipse will be one pixel thick, and
will be drawn in the foreground color using the pen drawing mode.

EI_PaintOval

void EI_PaintOval(
EI_DrawContext *ioContext,
const EI_Rect *iFrame);

ioContext a pointer to a drawing context object

iFrame a pointer to a rectangle

EI_FrameOval draws a filled ellipse to the context. The ellipse drawn will fit
just inside the given rectangular frame. The ellipse will be filled with the
foreground color using the pen drawing mode.

Electric Image User Interface API 2/12/2001

63

EI_DrawImage

void EI_DrawImage(
EI_DrawContext *ioContext,
const EI_ImageBuffer *iImage,
const EI_Rect *iSourceRect,
const EI_Rect *iDestRect);

ioContext a pointer to a drawing context object

iImage a pointer to an image buffer

iSourceRect a pointer to a rectangle defined in *iImage’s
coordinate space

iDestRect a pointer to a rectangle defined in
*ioContext’s coordinate space

EI_DrawImage draws the pixels from *iImage to the context. The pixels are
taken from the rectangular area defined by *iSourceRect, and are copied to the
rectangular area defined by *iDestRect.

If the image buffer is from a disk image object, and the disk image has a mask
associated with it, only pixels that are included by the mask are drawn to the
drawing context.

EI_CaptureImage

void EI_CaptureImage(
const EI_DrawContext *iContext,
EI_ImageBuffer *iImage,
const EI_Rect *iSourceRect,
const EI_Rect *iDestRect);

iContext a pointer to a drawing context object

iImage a pointer to an image buffer

iSourceRect a pointer to a rectangle defined in
*iContext’s coordinate space

iDestRect a pointer to a rectangle defined in *iImage’s
coordinate space

EI_CaptureImage is the inverse of EI_DrawImage. EI_CaptureImage copies
pixels from the context to *iImage. The pixels are taken from the rectangular
area defined by *iSourceRect, and are copied to the rectangular area defined
by *iDestRect.

EI_SetTextSize

void EI_SetTextSize(
EI_DrawContext *ioContext,
int iSize);

Electric Image User Interface API 2/12/2001

64

ioContext a pointer to a drawing context object

iSize an integer value

EI_SetTextSize sets the font size of the context to iSize.

EI_GetTextSize

int EI_GetTextSize(
const EI_DrawContext *iContext);

iContext a pointer to a drawing context object

return value an integer value

EI_GetTextSize returns the font size of the context.

EI_SetTextStyle

void EI_SetTextStyle(
EI_DrawContext *ioContext,
int iStyleFlags);

ioContext a pointer to a drawing context object

iStyleFlags an integer value

EI_SetTextStyle sets the font style flags of the context to iStyleFlags. The
style flags can be any bit-wise combination of cEI_TextBold, cEI_TextItalic,
cEI_TextUnderline, cEI_TextOutline, and cEI_TextShadow. To remove all
stylistic variation from the context, pass 0 as iStyleFlags.

EI_GetTextStyle

int EI_GetTextStyle(
const EI_DrawContext *iContext);

iContext a pointer to a drawing context object

return value an integer value

EI_GetTextStyle returns the font style flags of the context.

EI_MeasureText

int EI_MeasureText(
const EI_DrawContext *iContext,
const char *iText,
int iNumChars);

Electric Image User Interface API 2/12/2001

65

iContext a pointer to a drawing context object

iText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iText

return value an integer value

EI_MeasureText returns the pixel width of the string passed in iText and
iNumChars. The pixel width accounts for the font size and font style of the
context, and is the distance the pen would move if this string was drawn using
EI_DrawText.

N O T E : EI_MeasureText does not require that the text argument be a C
string, as do other string functions in the API.

EI_GetFontMetrics

void EI_GetFontMetrics(
const EI_DrawContext *iContext,
int *oAscent,
int *oDescent,
int *oLeading);

iContext a pointer to a drawing context object

oAscent a pointer to an integer value

oDescent a pointer to an integer value

oLeading a pointer to an integer value

EI_GetFontMetrics returns height information about the context’s font, taking
into account the font size and font style. The ascent is the distance that glyphs
in the font rise above the base line, the descent is the distance that glyphs sink
below the baseline, and the leading is the normal distance between the descent
of one line of text and the ascent of the next line of text. This implies that the
height of a single line of text can be calculated as the ascent + the descent +
the leading.

Any one of oAscent, oDescent and oLeading can be NULL, and if so, they are
skipped. For example, if you are only interested in the ascent, you can pass
NULL as oDescent and oLeading.

EI_DrawText

void EI_DrawText(
EI_DrawContext *ioContext,
const char *iText,
int iNumChars);

Electric Image User Interface API 2/12/2001

66

ioContext a pointer to a drawing context object

iText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iText

EI_DrawText draws the string given by iText and iNumChars to the context.
This string is drawn at the current pen location, and uses the current
foreground color. After EI_DrawText completes, the context’s pen is move to
the point just after the last character drawn.

N O T E : EI_DrawText does not require that the text argument be a C
string, as do other string functions in the API.

EI_DrawTextToFit

void EI_DrawTextToFit(
EI_DrawContext *ioContext,
const char *iText,
int iNumChars,
int iMaxPixelWidth,
int iAllowCondensed);

iContext a pointer to a drawing context object

iText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iText

iMaxPixelWidth an integer value

iAllowCondensed a boolean value

EI_DrawTextToFit behaves like EI_DrawText, but allows you to specify a
maximum pixel width for the drawn string. If the string’s pixel width is less
than or equal to iMaxPixelWidth, EI_DrawTextToFit draws the text and
returns. If the string’s pixel width is greater than iMaxPixelWidth, then it will
try to shrink the text to make it fit.

First, if iAllowCondensed is true, EI_DrawTextToFit will draws the text in a
compressed mode, where characters are moved closer together. If
iAllowCondensed is false, or if condensing did not make the pixel width short
enough, EI_DrawTextToFit will truncate characters off of the end of the
string, replacing them with an ellipsis (“...”) to make the string fit.

Like EI_DrawText, EI_DrawTextToFit draws the text in the context’s
foreground color using the context’s font size and font style. Drawing begins
at the current pen location, and after drawing the pen is left just past the last
character drawn.

N O T E : EI_DrawTextToFit does not require that the text argument be a
C string, as do other string functions in the API.

Electric Image User Interface API 2/12/2001

67

EI_DrawTextInRect

void EI_DrawTextInRect(
EI_DrawContext *ioContext,
const char *iText,
int iNumChars,
const EI_Rect *iBounds);

ioContext a pointer to a drawing context object

iText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iText

iBounds a pointer to a rectangle

EI_DrawTextInRect draws text to the context within a rectangular area. If the
text is too long to fit on one line, the text is word-wrapped as necessary. In no
case does drawing occur outside of *iBounds. If the text is long enough to
wrap below the bottom of *iBounds, it will be clipped.

EI_DrawTextInRect draws the text in the context’s foreground color using the
context’s font size and font style, but does not use the context’s pen location.

N O T E : EI_DrawTextInRect does not require that the text argument be
a C string, as do other string functions in the API.

EI_HiliteRect

void EI_HiliteRect(
EI_DrawContext *ioContext,
const EI_Rect *iBounds,
const EI_Color *iHiliteColor,
const EI_Color *iBackColor);

ioContext a pointer to a drawing context object

iBounds a pointer to a rectangle

iHiliteColor a pointer to a color

iBackColor a pointer to a color

EI_HiliteRect highlights the rectangle by swapping the colors of pixels
matching *iHiliteColor and *iBackColor. Pixels that are colored *iHiliteColor
are changed to *iBackColor, and pixels that are colored *iBackColor are
changed to *iHiliteColor. This has the effect of “highlighting” the rectangle in
the given color.

Electric Image User Interface API 2/12/2001

68

Image Buffers

The functions described in this section allow you to create and destroy image
buffer objects. The functions and macros described in this section are declared
in the file EI_ImageBuffer.h.

EI_MakeImageBuffer

EI_ImageBuffer *EI_MakeImageBuffer(
const EI_Rect *iBounds);

iBounds a pointer to a rectangle

return value a pointer to an image buffer object

EI_MakeImage creates and returns a new image buffer object, using the
boundary rectangle *iBounds. The boundary rectangle not only defines the
pixel dimensions of the image buffer, but also the coordinate space of the
image buffer. For example if the boundary rectangle is (50, 50, 100, 100), then
the coordinates of the upper left pixel of the image buffer are (50, 50).

The image buffer created always uses 32-bit pixels.

EI_DestroyImageBuffer

void EI_DestroyImageBuffer(
EI_ImageBuffer *iImage);

iImage a pointer to an image buffer object

EI_DestroyImageBuffer destroys an image buffer. Call
EI_DestroyImageBuffer after you are through using the image buffer.

N O T E : Do not call EI_DestroyImageBuffer on an image buffer that
you did not create. In particular, do not call
EI_DestroyImageBuffer on the image buffer returned by
calling EI_GetDiskImageBuffer.

EI_GetBufferRowBytes

int EI_GetBufferRowBytes(
const EI_ImageBuffer *iImage);

iImage a pointer to an image buffer object

return value an integer value

EI_GetBufferRowBytes returns the size, in bytes, of a single row of pixels
from the image buffer.

Electric Image User Interface API 2/12/2001

69

N O T E : Do not assume that this value is equal to the number of pixels
in a row times the number of bytes in a pixel. An operating
system may add padding bytes to each scan line so that it will
be aligned for better performance.

EI_GetBufferBaseAddress

unsigned char *EI_GetBufferBaseAddress(
EI_ImageBuffer *iImage);

iImage a pointer to an image buffer object

return value a pointer to raw pixel memory

EI_GetBufferBaseAddress returns a pointer to the image buffer’s raw pixel
memory. This pointer is actually a pointer to the upper left pixel in the image
buffer.

To access and set pixel memory, use the pixel access macros.

EI_GetBufferBounds

void EI_GetBufferBounds(
const EI_ImageBuffer *iImage,
EI_Rect *oRect);

iImage a pointer to an image buffer object

oRect a pointer to a rectangle

EI_GetBufferBounds sets *oRect to the boundary rectangle of the image
buffer.

Pixel Access Macros

The pixel access macros provided by the API allow you to get and set the
color components of the pixels in an image buffer.

N O T E : If you have a pointer to pixel memory, you must dereference
the pointer when using it with the pixel access macros or you
will get a compiler error. The macros all assume they are
working on pixel values, not pointers to pixel values.

For example:

EI_32BitPixel *pixelPtr;
unsigned char r, g, b, a;

// Set pixelPtr to point into an image buffer.

EI_GET_PIXEL_ALL(*pixelPtr, r, g, b, a);

Electric Image User Interface API 2/12/2001

70

EI_MAKE_PIXEL

EI_MAKE_PIXEL(
iRed,
iGreen,
iBlue
iAlpha)

iRed a red value

iGreen a green value

iBlue a blue value

iAlpha an alpha value

return value a 32 bit pixel

The macro EI_MAKE_PIXEL combines its four arguments to create a 32 bit
pixel value. The values of the arguments should be unsigned values in the
range 0 to 255.

The best use of EI_MAKE_PIXEL is for creating compile-time constants. For
example:

#define RED_PIXEL EI_MAKE_PIXEL(0, 0xFF, 0, 0)

For setting components of pixel variables or pixel memory, use the other
macros described below.

EI_GET_PIXEL_ALL

EI_GET_PIXEL_ALL(
iPixel,
oRed,
oGreen,
oBlue,
oAlpha)

iPixel a 32 bit pixel value

oRed an integer value

oGreen an integer value

oBlue an integer value

oAlpha an integer value

The macro EI_GET_PIXEL_ALL breaks up the pixel value iPixel into its
separate components and stores the results in oRed, oGreen, oBlue and
oAlpha.

Electric Image User Interface API 2/12/2001

71

EI_SET_PIXEL_ALL

EI_SET_PIXEL_ALL(
oPixel,
iRed,
iGreen,
iBlue,
iAlpha)

oPixel a 32 bit pixel value

iRed an integer value

iGreen an integer value

iBlue an integer value

iAlpha an integer value

The macro EI_SET_PIXEL_ALL combines the pixel components passed in
iRed, iGreen, iBlue and iAlpha into the pixel variable oPixel.

EI_GET_PIXEL_RED

EI_GET_PIXEL_RED(
iPixel)

iPixel a 32 bit pixel value

return value an integer value

The macro EI_GET_PIXEL_RED returns the red component of the given
pixel value.

EI_SET_PIXEL_RED

EI_SET_PIXEL_RED(
ioPixel,
iRed)

ioPixel a 32 bit pixel value

iRed an integer value

The macro EI_SET_PIXEL_RED sets the red component of the given pixel
value without changing any of the other components.

EI_GET_PIXEL_GREEN

EI_GET_PIXEL_GREEN(
iPixel)

Electric Image User Interface API 2/12/2001

72

iPixel a 32 bit pixel value

return value an integer value

The macro EI_GET_PIXEL_GREEN returns the green component of the
given pixel value.

EI_SET_PIXEL_GREEN

EI_SET_PIXEL_GREEN(
ioPixel,
iGreen)

ioPixel a 32 bit pixel value

iGreen an integer value

The macro EI_SET_PIXEL_GREEN sets the green component of the given
pixel value without changing any of the other components.

EI_GET_PIXEL_BLUE

EI_GET_PIXEL_BLUE(
iPixel)

iPixel a 32 bit pixel value

return value an integer value

The macro EI_GET_PIXEL_BLUE returns the blue component of the given
pixel value.

EI_SET_PIXEL_BLUE

EI_SET_PIXEL_BLUE(
ioPixel,
iBlue)

ioPixel a 32 bit pixel value

iBlue an integer value

The macro EI_SET_PIXEL_BLUE sets the blue component of the given pixel
value without changing any of the other components.

EI_GET_PIXEL_ALPHA

EI_GET_PIXEL_ALPHA(
iPixel)

Electric Image User Interface API 2/12/2001

73

iPixel a 32 bit pixel value

return value an integer value

The macro EI_GET_PIXEL_ALPHA returns the red component of the given
pixel value.

N O T E : The alpha component is ignored when the image buffer is
displayed; unless you are performing pixel operations yourself
that use the alpha component, you will probably not need to
use this macro.

EI_SET_PIXEL_ALPHA

EI_SET_PIXEL_ALPHA(
iPixel,
iAlpha)

ioPixel a 32 bit pixel value

iAlpha an integer value

The macro EI_SET_PIXEL_ALPHA sets the alpha component of the given
pixel value without changing any of the other components.

N O T E : The alpha component is ignored when the image buffer is
displayed; unless you are performing pixel operations yourself
that use the alpha component, you will probably not need to
use this macro.

Sample Code

This section presents sample code showing how to use the image buffer
functions and macros to render to an image buffer.

The first example shows how to render to the entire image buffer.

void RenderWholeBuffer(EI_ImageBuffer *iBuffer)

{
EI_Rect bounds;
int rowBytes, width, height, x, y;
char* rowPtr;
EI_32BitPixel *pixelPtr;
unsigned char red, green, blue;

EI_GetBufferBounds(iBuffer, &bounds);
width = bounds.right - bounds.left;
height = bounds.bottom - bounds.top;

rowBytes = EI_GetBufferRowBytes(iBuffer);

rowPtr = EI_GetBufferBaseAddress(iBuffer);

Electric Image User Interface API 2/12/2001

74

for (y = 0; y < height; ++y) {

pixelPtr = (EI_32BitPixel*) rowPtr;
for (x = 0; x < width; ++x) {

/* Compute red, green, and blue values as desired */

EI_SET_PIXEL_RED(*pixelPtr, red);
EI_SET_PIXEL_GREEN(*pixelPtr, green);
EI_SET_PIXEL_BLUE(*pixelPtr, blue);

++pixelPtr;
}

rowPtr += rowBytes;
}

}

The function begins by getting the boundary rectangle, row bytes value and
the pointer to the first pixel in the image buffer. The outer loop increments the
row pointer by adding rowBytes to it, which gives a pointer to the next row of
pixels. The inner loop begins by copying the row pointer to a pixel pointer
(casting to EI_32BitPixel*), then it sets the red, green and blue values of each
pixel independently.

To render to an area within an image buffer (rather than the whole image
buffer), the code is very similar:

void RenderPartialBuffer(EI_ImageBuffer *iBuffer,
const EI_Rect *iRenderBounds)

{
EI_Rect renderBounds, bounds;
int rowBytes, width, height, x, y;
char* rowPtr;
EI_32BitPixel *pixelPtr;
unsigned char red, green, blue;

EI_GetBufferBounds(iBuffer, &bounds);

if (EI_IntersectRects(&bounds, iRenderBounds,
&renderBounds)) {

width = renderBounds.right - renderBounds.left;
height = renderBounds.bottom - renderBounds.top;

rowBytes = EI_GetBufferRowBytes(iBuffer);
rowPtr = EI_GetBufferBaseAddress(iBuffer) +

(renderBounds.top - bounds.top) * rowBytes +
(renderBounds.left - bounds.left) *

sizeof(EI_32BitPixel);

for (y = 0; y < height; ++y) {
pixelPtr = (EI_32BitPixel*) rowPtr;
for (x = 0; x < width; ++x) {

Electric Image User Interface API 2/12/2001

75

/* Compute red, green, and blue values as desired */

EI_SET_PIXEL_RED(*pixelPtr, red);
EI_SET_PIXEL_GREEN(*pixelPtr, green);
EI_SET_PIXEL_BLUE(*pixelPtr, blue);

++pixelPtr;
}
rowPtr += rowBytes;

}
}

}

There are only two significant differences between this function and the
previous function. The first is the call to EI_IntersectRects, which makes sure
that the area being rendered is really within the bounds of the image buffer.

The second difference is that the beginning row pointer is no longer just the
pointer to the top left pixel. Rather, this pixel is offset downward by the
distance from the top of the image buffer to the top of the render area, and
leftward by the distance from the left of the image buffer to the left of the
render area. Notice that the distance is computed by getting the image buffer’s
boundary rectangle and subtracting it from the render area bounds. The image
buffer’s boundary rectangle does not necessarily have its origin at (0, 0).

Note that in both examples, x and y do not necessarily correspond to pixel
coordinates; they are instead just counters that tell the function how many
rows and columns to render. If you need counters that correspond to pixel
coordinates, you can increment from the top to the bottom and from the left to
the right of the render area bounds.

Disk Images

The functions described in this section allow you to work with disk images
stored in resource files. The functions described in this section are declared in
EI_DiskImage.h.

EI_MakeDiskImage

EI_DiskImage *EI_MakeDiskImage(
EI_ResourceFile *iResourceFile,
unsigned long iType,
int iID);

Electric Image User Interface API 2/12/2001

76

iResourceFile a pointer to a resource file

iType a resource type

iID a resource ID

EI_MakeDiskImage reads a disk image from the given resource file, using the
type iType and ID iID. If EI_MakeDiskImage cannot create the disk image, it
returns NULL.

The allowed types include ‘argb’, ‘PICT’, and ‘cicn.’

EI_DestroyDiskImage

void EI_DestroyDiskImage(
EI_DiskImage *iImage);

iImage a pointer to a disk image

EI_DestroyDiskImage destroys a disk image object that was created using
EI_MakeDiskImage. Call EI_DestroyDiskImage when you are done using the
disk image object.

EI_GetDiskImageBuffer

const EI_ImageBuffer *EI_GetDiskImageBuffer(
EI_DiskImage *iImage);

iImage a pointer to a disk image

return value a pointer to an image buffer object

EI_GetDiskImageBuffer returns the image buffer associated with the disk
image object. You can draw this image buffer to a drawing context using
EI_DrawImage.

N O T E : Because EI_GetDiskImageBuffer returns a const
EI_ImageBuffer pointer, you are not allowed to modify the
image buffer associated with a disk image in any way. The
pixels of a disk image’s image buffer should be considered
read-only. In particular, you cannot draw to this image buffer
by creating an EI_DrawContext for it, and you cannot destroy
this image buffer by calling EI_DestroyImageBuffer.

Electric Image User Interface API 2/12/2001

77

Rectangles

EI_GetRectWidth

int EI_GetRectWidth(
const EI_Rect *iRect);

iRect a pointer to a rectangle

return value an integer value

EI_GetRectWidth returns the width of the rectangle.

EI_GetRectHeight

int EI_GetRectHeight(
const EI_Rect *iRect);

iRect a pointer to a rectangle

return value an integer value

EI_GetRectHeight returns the height of the rectangle.

EI_SetRect

void EI_SetRect(
EI_Rect *oRect,
int iLeft,
int iTop,
int iRight,
int iBottom);

oRect a pointer to a rectangle

iLeft an integer value

iTop an integer value

iRight an integer value

iBottom an integer value

EI_SetRect sets all of the members of a rectangle at once. It is equivalent to
the following code fragment:

oRect->left = iLeft;
oRect->top = iTop;
oRect->right = iRight;
oRect->bottom = iBottom;

Electric Image User Interface API 2/12/2001

78

EI_IsRectEmpty

int EI_IsRectEmpty(
const EI_Rect *iRect);

iRect a pointer to a rectangle

return value a boolean value

EI_IsRectEmpty returns true if the rectangle is empty and false if the rectangle
is non-empty.

EI_IsPtInRect

int EI_IsPtInRect(
const EI_Rect *iRect,
int iX,
int iY);

iRect a pointer to a rectangle

iX an integer value

iY an integer value

return value a boolean value

EI_IsPtInRect returns true if the point given by (iX, iY) is contained within
*iRect.

EI_UnionRects

void EI_UnionRects(
const EI_Rect *iRect1,
const EI_Rect *iRect2,
EI_Rect *oResult);

iRect1 a pointer to a rectangle

iRect2 a pointer to a rectangle

oResult a pointer to a rectangle

EI_UnionRects sets *oResult to the union of *iRect1 and *iRect2. The union
of two rectangles is defined as the smallest rectangle that encloses both
rectangles.

EI_IntersectRects

int EI_IntersectRects(
const EI_Rect *iRect1,
const EI_Rect *iRect2,
EI_Rect *oResult);

Electric Image User Interface API 2/12/2001

79

iRect1 a pointer to a rectangle

iRect2 a pointer to a rectangle

oResult a pointer to a rectangle

return value a boolean value

EI_IntersectRects sets *oResult to the intersection of *iRect1 and *iRect2,
and returns true if *oResult is non-empty. The intersection of two rectangles is
defined as the largest rectangle that contains area in both rectangles.

If you pass NULL as oResult, EI_IntersectRects will still compute whether or
not the intersection is empty and return the appropriate value.

EI_InsetRect

void EI_InsetRect(EI_Rect *ioRect,
int iInsetX,
int iInsetY);

ioRect a pointer to a rectangle

iInsetX an integer value

iInsetY an integer value

EI_InsetRect shrinks *ioRect by moving the left and right sides inwards by
iInsetX pixels, and by moving the top and bottom sides inwards by iInsetY
pixels. If either value is negative, the corresponding sides of *ioRect will
move outwards rather than inwards.

EI_OffsetRect

void EI_OffsetRect(
EI_Rect *ioRect,
int iOffsetX,
int iOffsetY);

ioRect a pointer to a rectangle

iOffsetX an integer value

iOffsetY an integer value

EI_OffsetRect moves *ioRect iOffsetX pixels horizontally and iOffsetY
pixels vertically.

EI_AreRectsEqual

int EI_AreRectsEqual(
const EI_Rect *iRect1,
const EI_Rect *iRect2);

Electric Image User Interface API 2/12/2001

80

iRect1 a pointer to a rectangle

iRect2 a pointer to a rectangle

return value a boolean value

EI_AreRectsEqual returns true if the rectangles are identical and false if they
are not identical.

File References

The functions described in this section allow you to manipulate directory
reference and file reference objects. The functions described in this section are
declared in the file EI_FileRef.h.

EI_MakeDirectoryRef

EI_DirectoryRef *EI_MakeDirectoryRef(
void);

return value a pointer to a directory reference object

EI_MakeDirectoryRef creates and returns an empty directory reference object.
When you are done using this directory reference, you must destroy it by
calling EI_DestroyDirectoryRef.

EI_DestroyDirectoryRef

void EI_DestroyDirectoryRef(
EI_DirectoryRef *iDirectoryRef);

iDirectoryRef a pointer to a directory reference object

EI_DestroyDirectoryRef destroys a directory reference object that was created
using any of the functions which create new directory reference objects. These
functions are

• EI_MakeDirectoryRef

• EI_GetHomeDirectory

• EI_GetPreferencesDirectory

• EI_GetTemporaryDirectory

Electric Image User Interface API 2/12/2001

81

EI_AppendDirectoryName

void EI_AppendDirectoryName(
EI_DirectoryRef *ioDirectoryRef,
const char *iDirectoryName);

ioDirectoryRef a pointer to a directory reference object

iDirectoryName a pointer to a C string

EI_AppendDirectoryName adds the string given by iDirectoryName to the
path name list in the directory reference.

EI_RemoveLastDirectoryName

void EI_RemoveLastDirectoryName(
EI_DirectoryRef *ioDirectoryRef);

ioDirectoryRef a pointer to a directory reference object

EI_RemoveLastDirectoryName removes the last name in a directory
reference’s path name list. This has the effect of changing the directory
reference so that it now refers to the directory that previously enclosed it.

EI_GetNumDirectoryNames

int EI_GetNumDirectoryNames(
const EI_DirectoryRef *iDirectoryRef);

iDirectoryRef a pointer to a directory reference object

EI_GetNumDirectoryNames returns the number of names in the directory
reference’s path name list.

EI_GetDirectoryNameSize

int EI_GetDirectoryNameSize(
const EI_DirectoryRef *iDirectoryRef,
int iNameIndex);

iDirectoryRef a pointer to a directory reference object

iNameIndex a path name list index

return value an integer value

EI_GetDirectoryNameSize returns the number of characters in the name from
the directory reference’s path name list whose index is given by iNameIndex.
The number of characters includes the terminating zero.

Electric Image User Interface API 2/12/2001

82

EI_GetDirectoryName

void EI_GetDirectoryName(
const EI_DirectoryRef *iDirectoryRef,
int iNameIndex,
char *iText,
int *ioNumChars);

iDirectoryRef a pointer to a directory reference object

iNameIndex a path name list index

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetDirectoryName copies the text from the name from the directory
reference’s path name list whose index is given by iNameIndex to the buffer
pointed at by oText. If the text is too long to fit into the buffer, as indicated by
the value of *ioNumChars, EI_GetDirectoryName will copy as many
characters as will fit. including the terminating zero. EI_GetDirectoryName
will also adjust the value of *ioNumChars to indicate how many characters
were actually copied.

EI_GetDirectoryPathNameSize

int EI_GetDirectoryPathNameSize(
const EI_DirectoryRef *iDirectoryRef);

iDirectoryRef a pointer to a directory reference object

return value an integer value

EI_GetDirectoryPathNameSize creates a platform-specific path name from
the directory reference object and returns the number of characters in the path
name, including the terminating zero.

EI_GetDirectoryPathName

void EI_GetDirectoryPathName(
const EI_DirectoryRef *iDirectoryRef,
char *iText,
int *ioNumChars);

Electric Image User Interface API 2/12/2001

83

iDirectoryRef a pointer to a directory reference object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetDirectoryPathName creates a platform-specific path name from the
directory reference object, then copies it to the buffer pointed at by oText. If
the path name is too long to fit into the buffer, as indicated by the value of
*ioNumChars, EI_GetDirectoryPathName will copy as many characters as
will fit, including the terminating zero. EI_GetDirectoryPathName will also
adjust the value of *ioNumChars to indicate how many characters were
actually copied.

EI_GetHomeDirectory

EI_DirectoryRef *EI_GetHomeDirectory(
void);

return value a pointer to a directory reference object

EI_GetHomeDirectory creates and returns a directory reference object that is
initialized to point to the home directory. When you are done using this
directory reference, you must destroy it by calling EI_DestroyDirectoryRef.

EI_GetPreferencesDirectory

EI_DirectoryRef *EI_GetPreferencesDirectory(
void);

return value a pointer to a directory reference object

EI_GetPreferencesDirectory creates and returns a directory reference object
that is initialized to point to the preferences directory. When you are done
using this directory reference, you must destroy it by calling
EI_DestroyDirectoryRef.

EI_GetTemporaryDirectory

EI_DirectoryRef *EI_GetTemporaryDirectory(
void);

return value a pointer to a directory reference object

EI_GetTemporaryDirectory creates and returns a directory reference object
that is initialized to point to the temporary items directory. When you are done
using this directory reference, you must destroy it by calling
EI_DestroyDirectoryRef.

Electric Image User Interface API 2/12/2001

84

EI_CreateDirectory

int EI_CreateDirectory(
const EI_DirectoryRef *iDirectoryRef);

iDirectoryRef a pointer to a directory reference object

return value an error code

EI_CreateDirectory creates a directory in the user’s file system that matches
the directory reference *iDirectoryRef. EI_CreateDirectory will also create
intermediate parent directories (for example, if the parent directory of the
directory indicated by *iDirectoryRef does not exist, the parent directory will
be created first). The function result is an error code; zero indicates success,
non-zero values indicate failure.

If the directory indicated by *iDirectoryRef already exists,
EI_CreateDirectory will do nothing and return zero.

EI_MAKE_FILE_TYPE

EI_MAKE_FILE_TYPE(
iA,
iB,
iC,
iD)

iA a character constant

iB a character constant

iC a character constant

iD a character constant

return value a file type value

The macro EI_MAKE_FILE_TYPE combines its four character constant
arguments into a single file type. Use this macro to construct file type values.
For example:

const unsigned long cTextFileType =
EI_MAKE_FILE_TYPE('T', 'E', 'X', 'T');

EI_MakeEmptyFileRef

EI_FileRef *EI_MakeEmptyFileRef(
void);

Electric Image User Interface API 2/12/2001

85

return value a pointer to a file reference object

EI_MakeEmptyFileRef creates and returns an empty file reference object.
When you are done using this file reference, you must destroy it by calling
EI_DestroyFileRef.

EI_MakeFileRef

EI_FileRef *EI_MakeFileRef(
const EI_DirectoryRef *iDirectory,
const char *iName,
unsigned long iFileType,
const char *iExtension);

iDirectory a pointer to a directory reference object

iName a pointer to a C string

iFileType a file type value

iExtension a pointer to a C string

return value a pointer to a file reference object

EI_MakeFileRef creates and returns a completely initialized file reference
object. The file reference will copy the directory reference pointed at by
iDirectory to use as its own, so you can destroy iDirectory without affecting
the new file reference. For example:

EI_DirectoryRef *dirRef;
EI_FileRef *fileRef;

dirRef = EI_GetHomeDirectory();
fileRef = EI_MakeFileRef(dirRef, "Some File",

cTextFileType, "txt");
EI_DestroyDirectoryRef(dirRef);

/* Use fileRef here. */

Note that the extension string does not include a period (“.”). Also, if an
extension string appears in the name, it will override the file reference’s own
extension string. For example:

fileRef = EI_MakeFileRef(dirRef, "Some File.rsc",
cTextFileType, "txt");

This file reference object will refer to a file called “Some File.rsc,” not “Some
File.txt,” or “Some File.rsc.txt.”

When you are done using this file reference, you must destroy it by calling
EI_DestroyFileRef.

Electric Image User Interface API 2/12/2001

86

EI_DestroyFileRef

void EI_DestroyFileRef(
EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

EI_DestroyFileRef destroys a file reference object that was created using any
of the functions which create new file reference objects. These functions are

• EI_MakeEmptyFileRef

• EI_MakeFileRef

• EI_AskUserForNewFile

• EI_AskUserForExistingFile

EI_GetFileDirectory

EI_DirectoryRef *EI_GetFileDirectory(EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value a pointer to a directory reference object

EI_GetFileDirectory returns a pointer to the directory reference object used by
*iFileRef. This directory reference object is the directory reference object
used internally by *iFileRef, so changing the directory reference object (for
example, by adding or removing names) will change the location of the file
indicated by *iFileRef.

N O T E : Do not call EI_DestroyDirectoryRef on the directory reference
returned by EI_GetFileDirectory.

EI_SetFileRefType

void EI_SetFileRefType(
EI_FileRef *iFileRef,
unsigned long iFileType);

iFileRef a pointer to a file reference object

iFileType a file type value

EI_SetFileRefType sets the file type bytes of the given file type. Calling
EI_SetFileRefType will have no effect on the corresponding file in the user’s
file system. Therefore you should set the file type before using the file
reference object to create or open a file (by calling EI_OpenFileStream or
EI_OpenResourceFile).

Electric Image User Interface API 2/12/2001

87

EI_GetFileRefType

unsigned long EI_GetFileRefType(
const EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value a file type value

EI_GetFileRefType returns the file reference object’s file type bytes.

EI_SetFileRefExtension

void EI_SetFileRefExtension(
EI_FileRef *iFileRef,
const char *iExtension);

iFileRef a pointer to a file reference object

iExtension a pointer to a C string

EI_SetFileRefExtension sets the file reference object’s extension string to the
string given by iExtension. Note that iExtension should not contain a period
character (“.”). Calling EI_SetFileRefExtension will have no effect on the
corresponding file in the user’s file system. Therefore you should set the file
extension before using the file reference object to create or open a file (by
calling EI_OpenFileStream or EI_OpenResourceFile).

EI_GetFileRefExtensionSize

int EI_GetFileRefExtensionSize(
const EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value an integer value

EI_GetFileRefExtensionSize returns the number of characters in the file
reference object’s extension string, including a terminating zero.

EI_GetFileRefExtension

void EI_GetFileRefExtension(
const EI_FileRef *iFileRef,
char *oText,
int *ioNumChars);

Electric Image User Interface API 2/12/2001

88

iFileRef a pointer to a file reference object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetFileRefExtension copies the file reference object’s extension string to
the buffer pointed at by oText. If the extension string is too long to fit into the
buffer, as indicated by the value of *ioNumChars, EI_GetFileRefExtension
will copy as many characters as will fit, including a terminating zero.
EI_GetFileRefExtension will also adjust the value of *ioNumChars to indicate
how many characters were actually copied.

EI_SetFileName

void EI_SetFileName(
EI_FileRef *iFileRef,
const char *iName);

iFileRef a pointer to a file reference object

iName a pointer to a C string

EI_SetFileName sets the file reference object’s file name to the string given
by iName.

EI_GetFileNameSize

int EI_GetFileNameSize(
const EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value an integer value

EI_GetFileNameSize returns the number of characters in the file reference
object’s file name, including a terminating zero.

EI_GetFileName

void EI_GetFileName(
const EI_FileRef *iFileRef,
char *iText,
int *ioNumChars);

Electric Image User Interface API 2/12/2001

89

iFileRef a pointer to a file reference object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetFileName copies the file reference object’s file name to the buffer
pointed at by oText. If the file name is too long to fit into the buffer, as
indicated by the value of *ioNumChars, EI_GetFileName will copy as many
characters as will fit, including a terminating zero. EI_GetFileName will also
adjust the value of *ioNumChars to indicate how many characters were
actually copied.

EI_GetFilePathNameSize

int EI_GetFilePathNameSize(
const EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value an integer value

EI_GetFilePathNameSize creates a platform-specific path name from the file
reference object and returns the number of characters in the path name.

EI_GetFilePathName

void EI_GetFilePathName(
const EI_FileRef *iFileRef,
char *oText,
int *ioNumChars);

iFileRef a pointer to a file reference object

oText a pointer to a character buffer

ioNumChars a pointer to the number of characters in the
buffer pointed to by oText

EI_GetFilePathName creates a platform-specific path name from the file
reference object, then copies it to the buffer pointed at by oText. If the path
name is too long to fit into the buffer, as indicated by the value of
*ioNumChars, EI_GetFilePathName will copy as many characters as will fit,
including a terminating zero. EI_GetFilePathName will also adjust the value
of *ioNumChars to indicate how many characters were actually copied.

EI_AskUserForNewFile

EI_FileRef *EI_AskUserForNewFile(
const char *iPromptText,
int iNumChars);

Electric Image User Interface API 2/12/2001

90

iPromptText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iPromptText

return value a pointer to a file reference object

EI_AskUserForNewFile presents the user with a platform-specific file dialog
box and lets the user name a new file. The string passed in iPromptText and
iNumChars is displayed as a prompt in the dialog box.

When you are done using the file reference object, you must destroy it by
calling EI_DestroyFileRef.

EI_AskUserForExistingFile

EI_FileRef *EI_AskUserForExistingFile(
const char *iPromptText,
int iNumChars);

iPromptText a pointer to a character buffer

iNumChars the number of characters in the buffer
pointed to by iPromptText

return value a pointer to a file reference object

EI_AskUserForExistingFile presents the user with a platform-specific file
dialog box and lets the user pick an existing file. The string passed in
iPromptText and iNumChars is displayed as a prompt in the dialog box.

When you are done using the file reference object, you must destroy it by
calling EI_DestroyFileRef.

EI_DeleteFile

int EI_DeleteFile(
const EI_FileRef *iFileRef);

iFileRef a pointer to a file reference object

return value an error code

EI_DeleteFile deletes the file indicated by *iFileRef from the user’s file
system.

Resource Files

The functions described in this section let you retrieve resources from
resource files. The functions described in this section are declared in the file
EI_ResourceFile.h.

Electric Image User Interface API 2/12/2001

91

EI_OpenResourceFile

EI_ResourceFile* EI_OpenResourceFile(
const EI_FileRef *iResourceFileRef);

iResourceFileRef a file reference object

return value a pointer to a resource file object

EI_OpenResourceFile attempts to open the resource file indicated by the file
reference object. If the resource file cannot be opened, EI_OpenResourceFile
returns NULL.

The resource file object does not retain any connection to the file reference
object, so you can destroy it as soon as the resource file object is created. For
example:

EI_FileRef *fileRef;
EI_ResourceFile *rsrcFile;

/* Create fileRef here. */

rsrcFile = EI_OpenResourceFile(fileRef);
EI_DestroyFileRef(fileRef);

/* Use rsrcFile to read resources here. */

EI_CloseResourceFile

void EI_CloseResourceFile(
EI_ResourceFile *iResourceFile);

iResourceFile a pointer to a resource file object

EI_CloseResourceFile closes a resource file that was previously opened with
EI_OpenResourceFile. You must use EI_CloseResourceFile when you are
done using the resource file. When you call EI_CloseResourceFile, all
resources previously obtained from the resource file using the
EI_GetResource function are disposed.

EI_GetResource

void *EI_GetResource(
EI_ResourceFile *iResourceFile,
unsigned long iResourceType,
int iResourceID,
long *oResourceSize);

Electric Image User Interface API 2/12/2001

92

iResourceFile a pointer to a resource file object

iResourceType a resource type

iResourceID a resource ID

oResourceSize a pointer to an integer value

return value a pointer to a resource

EI_GetResource reads resource data from a resource file. The resource of type
iResourceType and with ID iResourceID is read into a memory and a pointer
to the resource memory is returned. If oResourceSize is not NULL,
*oResourceSize is set to the size in bytes of the resource data.

If the resource cannot be read into memory for any reason, EI_GetResource
returns NULL.

EI_ReleaseResource

void EI_ReleaseResource(
void *iResource);

iResource a pointer to a resource

EI_ReleaseResource disposes of the resource pointed at by iResource. When
you are done with a resource, you should call EI_ReleaseResource.

N O T E : If you do not call EI_ReleaseResource, the resource will be
disposed when you call EI_CloseResourceFile.

File I/O

The functions described in this section allow you to perform file I/O. The
functions described in this section are declared in the file EI_Stream.h.

EI_OpenFileStream

EI_Stream *EI_OpenFileStream(
const EI_FileRef *iFileRef,
EI_StreamAccess iAccess);

iFileRef a pointer to a file reference object

iAccess a stream access value

return value a stream object

EI_OpenFileStream opens the file indicated by *iFileRef for I/O using the
access value iAccess. The possible values of iAccess, and their behavior, are

Electric Image User Interface API 2/12/2001

93

cEI_ReadOnly If the file indicated by *iFileRef does not exist, the
function result is NULL. Otherwise the file is
opened for read access and a stream object is
constructed and returned.

cEI_WriteOnly If the file does not exist, the file is created. Then the
file is opened for write access and a stream object is
constructed and returned.

cEI_ReadWrite If the file does not exist, the file is created. Then the
file is opened for read-write access and a stream
object is constructed and returned.

In any case, if the file cannot be opened or the stream object cannot be
created, EI_OpenFileStream returns NULL.

Once you have finished using the stream object, you must close it by calling
EI_CloseStream.

EI_CloseStream

void EI_CloseStream(
EI_Stream *iStream);

iStream a pointer to a stream object

EI_CloseStream closes the file associated with the stream object, and then
destroys the stream object.

EI_SetStreamPosition

int EI_SetStreamPosition(
EI_Stream *iStream,
long iPosition);

iStream a pointer to a stream object

iPosition a stream position

return value an error code

EI_SetStreamPosition sets the position of the stream to iPosition. The position
of the stream is the position from within the stream at which the next read or
write operation occurs. Valid values for the stream’s position are between 0
and the stream’s size, inclusive. The function result is an error code; zero
indicates success, non-zero values indicate failure.

Electric Image User Interface API 2/12/2001

94

EI_GetStreamPosition

long EI_GetStreamPosition(
EI_Stream *iStream);

iStream a pointer to a stream object

return value a stream position

EI_GetStreamPosition returns the stream’s current position. If an error occurs,
the return value will be negative.

EI_GetStreamSize

long EI_GetStreamSize(
EI_Stream *iStream);

iStream a pointer to a stream object

return value a stream size

EI_GetStreamSize returns the number of bytes contained in the stream. If an
error occurs, the return value will be negative.

EI_ReadStream

int EI_ReadStream(
EI_Stream *iStream,
char *oBuffer,
long *ioCount);

iStream a pointer to a stream object

oBuffer a pointer to a data buffer

ioCount a pointer to the number of bytes in the buffer
pointed to by oBuffer

return value an error code

EI_ReadStream reads raw data from the stream to the buffer pointed to by
oBuffer. The number of bytes to read is passed in *ioCount; if an error occurs,
*ioCount will be set to the actual number of bytes read. The function result is
an error code; zero indicates success, non-zero values indicate failure.

EI_WriteStream

int EI_WriteStream(
EI_Stream *iStream,
char *iBuffer,
long *ioCount);

Electric Image User Interface API 2/12/2001

95

iStream a pointer to a stream object

iBuffer a pointer to a data buffer

ioCount a pointer to the number of bytes in the buffer
pointed to by iBuffer

return value an error code

EI_WriteStream writes raw data from the stream to the buffer pointed to by
oBuffer. The number of bytes to write is passed in *ioCount; if an error
occurs, *ioCount will be set to the actual number of bytes read. The function
result is an error code; zero indicates success, non-zero values indicate failure.

EI_WriteUInt8

int EI_WriteUInt8(
EI_Stream *iStream,
unsigned char iData);

iStream a pointer to a stream object

iData an unsigned char value

return value an error code

EI_WriteUInt8 writes an unsigned char value to the stream as an 8 bit value.
The function result is an error code; zero indicates success, non-zero values
indicate failure.

N O T E : EI_WriteUInt8 does not perform byte-swapping; it is provided
for completeness.

EI_WriteSInt16

int EI_WriteSInt16(
EI_Stream *iStream,
short iData);

iStream a pointer to a stream object

iData a short value

return value an error code

EI_WriteSInt16 writes a short value to the stream as a 16 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

EI_WriteUInt16

int EI_WriteUInt16(
EI_Stream *iStream,
unsigned short iData);

Electric Image User Interface API 2/12/2001

96

iStream a pointer to a stream object

iData an unsigned short value

return value an error code

EI_WriteUInt16 writes an unsigned short value to the stream as a16 bit value
(byte-swapped if necessary). The function result is an error code; zero
indicates success, non-zero values indicate failure.

EI_WriteSInt32

int EI_WriteSInt32(
EI_Stream *iStream,
long iData);

iStream a pointer to a stream object

iData a long value

return value an error code

EI_WriteSInt32 writes a long value to the stream as a 32 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

EI_WriteUInt32

int EI_WriteUInt32(
EI_Stream *iStream,
unsigned long iData);

iStream a pointer to a stream object

iData an unsigned long value

return value an error code

EI_WriteUInt32 writes an unsigned long value to the stream as a 32 bit value
(byte-swapped if necessary). The function result is an error code; zero
indicates success, non-zero values indicate failure.

EI_WriteFloat32

int EI_WriteFloat32(
EI_Stream *iStream,
float iData);

Electric Image User Interface API 2/12/2001

97

iStream a pointer to a stream object

iData a short value

return value an error code

EI_WriteFloat32 writes a float value to the stream as a 32 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

EI_WriteFloat64

int EI_WriteFloat64(
EI_Stream *iStream,
double iData);

iStream a pointer to a stream object

iData a short value

return value an error code

EI_WriteFloat64 writes a double value to the stream as a 64 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

EI_ReadUInt8

int EI_ReadUInt8(
EI_Stream *iStream,
unsigned char *oData);

iStream a pointer to a stream object

oData a pointer to an unsigned char value

return value an error code

EI_ReadUInt8 reads an 8 bit unsigned char value from the stream and assigns
it to *oData. The function result is an error code; zero indicates success, non-
zero values indicate failure.

N O T E : EI_ReadUInt8 does not perform byte-swapping; it is provided
for completeness.

EI_ReadSInt16

int EI_ReadSInt16(
EI_Stream *iStream,
short *oData);

Electric Image User Interface API 2/12/2001

98

iStream a pointer to a stream object

oData a pointer to a short value

return value an error code

EI_ReadSInt16 reads a 16 bit short value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

EI_ReadUInt16

int EI_ReadUInt16(
EI_Stream *iStream,
unsigned short *oData);

iStream a pointer to a stream object

oData a pointer to an unsigned short value

return value an error code

EI_ReadUInt16 reads a 16 bit unsigned short value from the stream and
assigns it to *oData, performing byte-swapping if necessary. The function
result is an error code; zero indicates success, non-zero values indicate failure.

EI_ReadSInt32

int EI_ReadSInt32(
EI_Stream *iStream,
long *oData);

iStream a pointer to a stream object

oData a pointer to a long value

return value an error code

EI_ReadSInt32 reads a 32 bit long value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

EI_ReadUInt32

int EI_ReadUInt32(
EI_Stream *iStream,
unsigned long *oData);

Electric Image User Interface API 2/12/2001

99

iStream a pointer to a stream object

oData a pointer to an unsigned long value

return value an error code

EI_ReadUInt32 reads a 32 bit unsigned long value from the stream and
assigns it to *oData, performing byte-swapping if necessary. The function
result is an error code; zero indicates success, non-zero values indicate failure.

EI_ReadFloat32

int EI_ReadFloat32(
EI_Stream *iStream,
float *oData);

iStream a pointer to a stream object

oData a pointer to a float value

return value an error code

EI_ReadFloat32 reads a 32 bit float value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

EI_ReadFloat64

int EI_ReadFloat64(
EI_Stream *iStream,
double *oData);

 iStream a pointer to a stream object

oData a pointer to a double value

return value an error code

EI_ReadFloat64 reads a 64 bit double value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

Color Picking

The functions described in this section allow you to bring up a color picker
dialog box programmatically. The functions described in this section are
declared in the file EI_ColorPicker.h.

Electric Image User Interface API 2/12/2001

100

EI_PickColor

int EI_PickColor(
const char *iPromptString,
const EI_Color *iOriginalColor,
EI_Color *oNewColor);

iPromptString a pointer to a C string

iOriginalColor a pointer to a color

oNewColor a pointer to a color

return value a boolean value

EI_PickColor presents the color picker dialog box to the user and allows the
user to pick a new color. The string given by iPromptString is displayed in the
color picker to prompt the user. The original color presented in the dialog box
is given by *iOriginalColor. If the user clicks the OK button, the new color is
copied to *oNewColor and the function returns true. If the user clicks the
Cancel button, the function returns false and *oNewColor is unaffected.

When you present the color picker dialog box with EI_PickColor, color picker
does not allow the user to edit an alpha value.

EI_PickColorWithAlpha

int EI_PickColorWithAlpha(
const char *iPromptString,
const EI_Color *iOriginalColor,
unsigned char iOriginalAlpha,
EI_Color *oNewColor,
unsigned char *oNewAlpha);

iPromptString a pointer to a C string

iOriginalColor a pointer to a color

iOriginalAlpha an unsigned char value

oNewColor a pointer to a color

oNewAlpha a pointer to an unsigned char value

return value a boolean value

EI_PickColorWithAlpha is similar to EI_PickColor, but allows the user to edit
an alpha value as well as a color. The string given by iPromptString is
displayed in the color picker to prompt the user. The original color presented
in the dialog box is given by *iOriginalColor, with the alpha passed in
iOriginalAlpha. If the user clicks the OK button, the new color is copied to
*oNewColor, the new alpha is copied to *oNewAlpha, and the function
returns true. If the user clicks the Cancel button, the function returns false and
*oNewColor and *oNewAlpha are unaffected.

Electric Image User Interface API 2/12/2001

101

QuickTime Support

The functions described in this section allow you to use QuickTime API calls
in your dialog box. The way to do this is to use a user control, and write a user
control draw function and a user control click function that calls through to
the QuickTime API. The strategy taken is to allow conversion from EI API
data types to QuickTime data types. The functions described in this section
are declared in the file EI_QuickTime.h.

N O T E : When you open a QuickTime movie, you must make sure to set
the current GrafPort and GDevice. See the description of
EI_DialogToWindowPtr and EI_ImageBufferToGWorld for
more.

EI_GetDialogFrameOffset

void EI_GetDialogFrameOffset(
const EI_Dialog *iDialog,
int *oOffsetX,
int *oOffsetY);

iDialog a pointer to a dialog box object

oOffsetX a pointer to an integer value

oOffsetY a pointer to an integer value

EI_GetDialogFrameOffset returns in *oOffsetX and *oOffsetY the dialog’s
frame offset. The EI API draws a dialog box’s frame and title bar within an
operating system window. When you make API drawing calls, the API adjusts
the coordinates of the drawing operation to account for the width and height
of the dialog box’s frame. However, if you are going to display a QuickTime
movie in a dialog box you will need to perform the coordinate offset yourself.
The values returned in *oOffsetX and *oOffsetY are the horizontal and
vertical offsets needed to adjust a location in API coordinates to the
underlying window’s coordinates. For example, to display a QuickTime
movie in a user control you will need to call SetMovieBox:

EI_Dialog *myDialog;
Movie myMovie;
EI_Control *control;
EI_Rect bounds;
Rect qtRect;
int offsetX, offsetY;

/* Initialize myDialog, myMovie here... */

/* Get the control’s bounds. */
control = EI_FindControlByID(myDialog, cMyUserControlID);
EI_GetControlBounds(control, &bounds);

Electric Image User Interface API 2/12/2001

102

/* Copy it into a QuickTime (Mac) Rect:
qtRect.left = bounds.left;
qtRect.top = bounds.top;
qtRect.right = bounds.right;
qtRect.bottom = bounds.bottom;

/* Get the dialog’s frame offset and offset the QuickTime
Rect. */

EI_GetDialogFrameOffset(myDialog, &offsetX, &offsetY);
MacOffsetRect(&qtRect, (short) offsetX, (short) offsetY);

/* Now set the movie’s bounds. */
SetMovieBox(myMovie, &qtRect);

Note that if you set up a movie for display into an EI_ImageBuffer, you do not
need to perform any offset operation.

EI_FileRefToFSSpec

int EI_FileRefToFSSpec(
const EI_FileRef *iFileRef,
FSSpec *oFSSpec);

iFileRef a pointer to a file reference object

oFSSpec a pointer to an FSSpec structure

return value an error code

EI_FileRefToFSSpec converts a file reference object to an FSSpec which can
be used in QuickTime calls. The return value is 0 if the conversion completed
successfully, or non-zero if the conversion failed.

The FSSpec returned in *oFSSpec and the file reference are not linked in any
way; specifically, you can destroy the file reference *iFileRef and still use
*oFSSpec.

EI_DialogToWindowPtr

int EI_DialogToWindowPtr(
EI_Dialog *iDialog,
WindowPtr *oWindowPtr);

iDialog a pointer to a dialog box object

oWindowPtr a pointer to a WindowPtr

return value an error code

EI_DialogToWindowPtr converts a dialog box object to a WindowPtr which
can be used in QuickTime calls. The return value is 0 if the conversion
completed successfully, or non-zero if the conversion failed.

Electric Image User Interface API 2/12/2001

103

The EI API does not make any guarantees about how the current GrafPort and
GDevice are set at any given time. Since QuickTime will initialize the
movie’s GWorld based on the current GrafPort and GDevice when the movie
is opened, you should explicitly set them before creating the movie. Using
EI_DialogToWindowPtr, you can set the current GrafPort to the dialog box.
For example:

EI_Dialog *myDialog;
EI_FileRef *movieFileRef;
FSSpec movieSpec;
OSErr errCode;
short movieResFile;
WindowPtr window;

/* Get a reference to a movie file and convert it to
an FSSpec. */

movieFileRef = EI_AskUserForExistingFile
("Choose a movie file");

if (EI_FileRefToFSSpec(movieFileRef, &movieSpec) != 0) {
EI_DestroyFileRef(movieFileRef);
return;

}

EI_DestroyFileRef(movieFileRef);

/* Convert the dialog box to a WindowPtr and set the
current GrafPort to it. */

if (EI_DialogToWindowPtr(myDialog, &window) != 0)
return;

SetGWorld(GetWindowPort(window), GetMainDevice());

/* Now open the movie. */
errCode = OpenMovieFile(&movieSpec, &movieResFile,

fsRdPerm);

Because the WindowPtr returned in *oWindowPtr refers to the same object
referred to by *iDialog, you cannot use *oWindowPtr after destroying
*iDialog.

EI_ImageBufferToGWorld

int EI_ImageBufferToGWorld(
EI_ImageBuffer *iImageBuffer,
GWorldPtr *oGWorld);

iImageBuffer a pointer to an image buffer

oGWorld a pointer to a GWorldPtr

return value an error code

EI_ImageBufferToGWorld converts an image buffer object to a GWorldPtr
which can be used in QuickTime calls. The return value is 0 if the conversion
completed successfully, or non-zero if the conversion failed.

Electric Image User Interface API 2/12/2001

104

The EI API does not make any guarantees about how the current GrafPort and
GDevice are set at any given time. Since QuickTime will initialize the
movie’s GWorld based on the current GrafPort and GDevice when the movie
is opened, you should explicitly set them before creating the movie. Using
EI_ImageBufferToGWorld, you can set the current GrafPort to the image
buffer. For example:

EI_Dialog *myDialog;
EI_FileRef *movieFileRef;
FSSpec movieSpec;
OSErr errCode;
short movieResFile;
GWorldPtr myGWorld;

/* Get a reference to a movie file and convert it to
an FSSpec. */

movieFileRef = EI_AskUserForExistingFile
("Choose a movie file");

if (EI_FileRefToFSSpec(movieFileRef, &movieSpec) != 0) {
EI_DestroyFileRef(movieFileRef);
return;

}

EI_DestroyFileRef(movieFileRef);

/* Convert the image buffer to a GWorldPtr and set the
current GrafPort to it. */

if (EI_ImageBufferToGWorld(myImageBuffer, &myGWorld) != 0)
return;

SetGWorld(myGWorld, GetGWorldDevice(myGWorld));

/* Now open the movie. */
errCode = OpenMovieFile(&movieSpec, &movieResFile,

fsRdPerm);

Because the GWorldPtr returned in *oGWorld refers to the same object
referred to by *iImageBuffer, you cannot use *oGWorld after destroying
*iImageBuffer.

Timers

The functions described in this section allow you to write simple callback
functions which can get called periodically when the system is idle. One use
of the timer system is to write a timer function that can call the QuickTime
function MoviesTask. The functions described in this section are declared in
the header file EI_Timer.h.

Electric Image User Interface API 2/12/2001

105

EI_MakeTimer

EI_Timer *EI_MakeTimer(
void);

return value a pointer to a timer object

EI_MakeTimer creates and returns a timer object. If the timer cannot be
created, the function result is NULL. When you are through with the timer
object, you must destroy it by calling EI_DestroyTimer.

EI_DestroyTimer

void EI_DestroyTimer(
EI_Timer *iTimer);

iTimer a pointer to a timer object

EI_DestroyTimer destroys a timer object previously created with
EI_MakeTimer. If the timer is currently scheduled for execution, it is stopped
before being destroyed.

EI_SetTimerFunction

void EI_SetTimerFunction(
EI_Timer *ioTimer,
EI_TimerFunction iFunction);

ioTimer a pointer to a timer object

iFunction a pointer to a timer function

EI_SetTimerFunction sets the timer object’s timer function. When the timer
object is scheduled for execution (by calling either EI_StartPeriodicTimer or
EI_StartOneShotTimer), the timer function will be called when the timer fires.

EI_SetTimerExtraData

void EI_SetTimerExtraData(
EI_Timer *ioTimer,
void *iExtraData);

ioTimer a pointer to a timer object

iExtraData a pointer

EI_SetTimerExtraData allows you to associate extra data with a timer object.
The extra data is analogous to the extra data used with control objects and
dialog box objects. A timer object’s extra data can be retrieved by calling
EI_GetTimerExtraData.

Electric Image User Interface API 2/12/2001

106

EI_GetTimerExtraData

void *EI_GetTimerExtraData(
const EI_Timer *iTimer);

iTimer a pointer to a timer object

return value a pointer

EI_GetTimerExtraData returns the extra data pointer associated with the timer
object *iTimer. If the timer object has no extra data pointer,
EI_GetTimerExtraData returns NULL.

EI_StartPeriodicTimer

int EI_StartPeriodicTimer(
EI_Timer *iTimer,
int iMilliseconds);

iTimer a pointer to a timer object

iMilliseconds an integer value

return value an error code

EI_StartPeriodicTimer schedules a timer object for future execution. When a
timer object is scheduled using EI_StartPeriodicTimer, the timer object’s
timer function will be called once every iMilliseconds milliseconds. If the
timer is successfully scheduled, EI_StartPeriodicTimer returns zero; otherwise
a non-zero value is returned.

EI_StartPeriodicTimer can be useful for scheduling repetitive actions that
must occur frequently. For example, here is how you could write a timer
function to call the QuickTime function MoviesTask:

static EI_Timer *sQTTimer = NULL;

/* The timer function just calls MoviesTask. */
void MyTimerFunction(EI_Timer *iTimer)

{
MoviesTask(NULL, DoTheRightThing);

}

void MyInitTimer(void)

{
/* Create the timer. */
sQTTimer = EI_MakeTimer();

/* Set the timer function. */
EI_SetTimerFunction(sQTTimer, MyTimerFunction);

/* Set up timer for approximately 30 calls/second */
EI_StartPeriodicTimer(sQTTimer, 33);

Electric Image User Interface API 2/12/2001

107

}

void MyCleanUpTimer(void)

{
/* No need to stop the timer; EI_DestroyTimer does it

for us. */
EI_DestroyTimer(sQTTimer);

}

EI_StartOneShotTimer

int EI_StartOneShotTimer(
EI_Timer *iTimer,
int iMilliseconds);

iTimer a pointer to a timer object

iMilliseconds an integer value

return value an error code

EI_StartOneShotTimer schedules a timer object for future execution. When a
timer object is scheduled using EI_StartOneShotTimer, the timer object’s
timer function will be called exactly once iMilliseconds milliseconds into the
future, after which the timer will become unscheduled as if you had called
EI_StopTimer. If the timer is successfully scheduled, EI_StartOneShotTimer
returns zero; otherwise a non-zero value is returned.

EI_StopTimer

int EI_StopTimer(
EI_Timer *iTimer);

iTimer a pointer to a timer object

return value an error code

EI_StopTimer stops a previously scheduled timer. After calling
EI_StopTimer, the timer object is no longer scheduled for execution. If the
timer is successfully stopped, EI_StopTimer returns zero; otherwise a non-
zero value is returned.

Electric Image User Interface API 2/12/2001

108

Index
‘argb’, 19
‘cicn’, 19
‘PICT’, 19
API Versioning, 3
cEI_AlphaOffset, 13
cEI_AlphaShift, 13, 14
cEI_BlueOffset, 13
cEI_BlueShift, 13, 14
cEI_Bottom, 15, 35, 36
cEI_Center, 16, 35, 36
cEI_CheckBox, 17
cEI_ColorButton, 17
cEI_ColorSlider, 17
cEI_ControlKey, 15
cEI_CurrentVersion, 13, 20
cEI_Custom, 18, 39
cEI_DividerLine, 17
cEI_EditText, 17
cEI_GreenOffset, 13
cEI_GreenShift, 13, 14
cEI_GroupBox, 17
cEI_InitialVersion, 13
cEI_Left, 15, 35, 36
cEI_ListBox, 17
cEI_ListDragReorder, 14
cEI_ListMultipleSelect, 14
cEI_ModPrimary, 15
cEI_ModSecondary, 15
cEI_ModTernary, 15
cEI_MouseEnter, 16, 53
cEI_MouseExit, 16, 53
cEI_MouseWithin, 16, 53
cEI_NoControlType, 17
cEI_NoFilter, 18, 39
cEI_PenColor, 17
cEI_PenXOR, 17
cEI_Picture, 17
cEI_PopupMenu, 17
cEI_PushButton, 17
cEI_RadioGroup, 17
cEI_ReadOnly, 18
cEI_ReadWrite, 18
cEI_RedOffset, 13, 14
cEI_RedShift, 13, 14

cEI_Right, 15, 35, 36
cEI_Scroller, 17
cEI_ShiftKey, 15
cEI_SignedFloat, 18, 39
cEI_SignedInt, 18, 39
cEI_StaticText, 17
cEI_TabGroup, 17
cEI_TextBold, 13
cEI_TextItalic, 13
cEI_TextOutline, 13
cEI_TextShadow, 13
cEI_TextUnderline, 13
cEI_Top, 15, 35, 36
cEI_UnsignedFloat, 18, 39
cEI_UnsignedInt, 18, 39
cEI_UserControl, 17
cEI_WriteOnly, 18
Control Attributes, 7

Check Boxes, 9
Color Buttons, 10
Color Sliders, 9
Edit Text Controls, 10
Group Boxes, 9
Hit Function, 7
List Boxes, 10
OpenGL Controls, 11
Pictures, 9
Popup Menus, 11
Push Buttons, 8
Radio Buttons, 9
Scrollers, 9
Static Text Controls, 10
User Controls, 11

Conventions
Boolean Values, 3
Indices, 2
Names, 2
Pointers, 2
Strings, 3

Drawing, 12
EI_32BitPixel, 14, 17, 69, 73, 74
EI_AppendDirectoryName, 81
EI_AreRectsEqual, 79, 80
EI_AskUserForExistingFile, 86, 90

Electric Image User Interface API 2/12/2001

109

EI_AskUserForNewFile, 86, 89, 90
EI_BeginGLDrawing, 48, 49, 53, 54
EI_CaptureImage, 63
EI_CloseResourceFile, 91
EI_CloseStream, 93
EI_Color, 16
EI_Control, 19
EI_ControlHitFunction, 34, 50
EI_ControlType, 17
EI_CountControls, 28
EI_CountListItems, 41
EI_CreateDirectory, 84
EI_Cursor, 20, 56, 57
EI_DeleteFile, 90
EI_DestroyContext, 58
EI_DestroyCursor, 57
EI_DestroyDialog, 21
EI_DestroyDirectoryRef, 80, 83, 86
EI_DestroyDiskImage, 76
EI_DestroyFileRef, 85, 86, 90, 91
EI_DestroyImageBuffer, 68
EI_DestroyTimer, 56, 105, 107
EI_Dialog, 19
EI_DialogHitFunction, 26
EI_DialogKeyFilter, 26
EI_DialogToWindowPtr, 101, 102, 103
EI_DialogValidationFunction, 26
EI_DirectoryRef, 19
EI_DiskImage, 19
EI_DrawContext, 18
EI_DrawImage, 58, 63, 76
EI_DrawText, 12, 65, 66
EI_DrawTextInRect, 67
EI_DrawTextToFit, 12, 66
EI_EditFilterFunction, 38, 39, 50
EI_EditFilterType, 18
EI_EndGLDrawing, 48, 49, 53, 54
EI_EraseRect, 62
EI_ExecuteDialog, 3, 21, 23, 24, 26
EI_FileRef, 19
EI_FileRefToFSSpec, 102, 103, 104
EI_FindControlByID, 28
EI_FindControlByIndex, 28
EI_FrameOval, 62
EI_FrameRect, 61
EI_GET_PIXEL_ALL, 69, 70

EI_GET_PIXEL_ALPHA, 72, 73
EI_GET_PIXEL_BLUE, 72
EI_GET_PIXEL_GREEN, 71, 72
EI_GET_PIXEL_RED, 71
EI_GetAPIVersion, 3, 13, 20
EI_GetBackColor, 61
EI_GetBufferBaseAddress, 69
EI_GetBufferBounds, 69
EI_GetBufferRowBytes, 68
EI_GetClip, 59
EI_GetColorButtonColor, 39
EI_GetControlBounds, 29
EI_GetControlDialog, 29
EI_GetControlDrawImmediate, 30
EI_GetControlEnable, 31
EI_GetControlExtraData, 34
EI_GetControlID, 27
EI_GetControlImageID, 34, 35
EI_GetControlMax, 33
EI_GetControlTitle, 32
EI_GetControlTitleSize, 32
EI_GetControlType, 29
EI_GetControlValue, 32, 33
EI_GetControlVisible, 31
EI_GetCurrentTabPanel, 41
EI_GetDialogExtraData, 23
EI_GetDialogFrameOffset, 101, 102
EI_GetDialogPosition, 22
EI_GetDialogSize, 22
EI_GetDirectoryName, 82
EI_GetDirectoryNameSize, 81
EI_GetDirectoryPathName, 82, 83
EI_GetDirectoryPathNameSize, 82
EI_GetDiskImageBuffer, 76
EI_GetEditTextSelection, 38
EI_GetEditTextString, 37
EI_GetEditTextStringSize, 37
EI_GetFileDirectory, 86
EI_GetFileName, 88, 89
EI_GetFileNameSize, 88
EI_GetFilePathName, 89
EI_GetFilePathNameSize, 89
EI_GetFileRefExtension, 87, 88
EI_GetFileRefExtensionSize, 87
EI_GetFileRefType, 87
EI_GetFontMetrics, 65

Electric Image User Interface API 2/12/2001

110

EI_GetForeColor, 60, 61
EI_GetHomeDirectory, 83, 85
EI_GetHomeDirectory, 83
EI_GetKeyControl, 36
EI_GetListFlags, 14, 45
EI_GetListItemStyle, 43, 44
EI_GetListSelectedItem, 44
EI_GetListString, 43
EI_GetListStringSize, 42
EI_GetMonitorBounds, 22, 23
EI_GetNumDirectoryNames, 81
EI_GetNumTabPanels, 40
EI_GetPenLocation, 60
EI_GetPenMode, 59
EI_GetPreferencesDirectory, 80, 83
EI_GetPushButtonLayout, 35, 36
EI_GetRectHeight, 77
EI_GetRectWidth, 77
EI_GetResource, 91, 92
EI_GetStreamPosition, 94
EI_GetStreamSize, 94
EI_GetTemporaryDirectory, 80, 83
EI_GetTextSize, 64
EI_GetTextStyle, 64
EI_GetTimerExtraData, 55, 105, 106
EI_GLClickFunction, 47, 54
EI_GLDrawFunction, 47, 48, 53
EI_GLMouseMovedFunction, 55
EI_GLToWindow, 49
EI_HiliteRect, 67
EI_ImageBuffer, 18
EI_ImageBufferToGWorld, 101, 103,

104
EI_InsertListItem, 41, 42
EI_InsetRect, 79
EI_IntersectRects, 78, 79
EI_InvalControl, 28, 29, 30
EI_IsListItemSelected, 44
EI_IsPtInRect, 78
EI_IsRectEmpty, 78
EI_LineTo, 12, 60
EI_ListDoubleClickFunction, 45, 51
EI_ListReorderFunction, 45, 51
EI_MAKE_FILE_TYPE, 84
EI_MAKE_PIXEL, 70
EI_MakeContextForDialog, 58

EI_MakeContextForImageBuffer, 57, 58
EI_MakeCursor, 56, 57
EI_MakeDialog, 20, 21
EI_MakeDirectoryRef, 80
EI_MakeDiskImage, 75, 76
EI_MakeEmptyFileRef, 84, 85
EI_MakeFileRef, 85, 86
EI_MakeImageBuffer, 68
EI_MakeTimer, 56, 105, 106
EI_MeasureText, 64, 65
EI_MoveDialog, 21
EI_MoveTo, 12, 59
EI_OffsetRect, 79
EI_OpenFileStream, 86, 87, 92, 93
EI_OpenResourceFile, 91
EI_PaintOval, 62
EI_PaintRect, 61, 62
EI_PenMode, 17
EI_PickColor, 100
EI_PickColorWithAlpha, 100
EI_ReadFloat32, 99
EI_ReadFloat64, 99
EI_ReadSInt16, 97, 98
EI_ReadSInt32, 98
EI_ReadStream, 94
EI_ReadUInt16, 98
EI_ReadUInt32, 98, 99
EI_ReadUInt8, 97
EI_Rect, 16
EI_ReleaseResource, 92
EI_RemoveLastDirectoryName, 81
EI_RemoveListItem, 42
EI_ResourceFile, 18
EI_SelectListItem, 44
EI_SET_PIXEL_ALL, 71
EI_SET_PIXEL_ALPHA, 73
EI_SET_PIXEL_BLUE, 72
EI_SET_PIXEL_GREEN, 72
EI_SET_PIXEL_RED, 71, 74, 75
EI_SetBackColor, 61
EI_SetClip, 58
EI_SetColorButtonColor, 40
EI_SetControlBounds, 29, 30
EI_SetControlDrawImmediate, 30
EI_SetControlEnable, 31
EI_SetControlExtraData, 33, 34

Electric Image User Interface API 2/12/2001

111

EI_SetControlHitFunction, 34
EI_SetControlID, 27
EI_SetControlImageID, 35
EI_SetControlMax, 33
EI_SetControlTitle, 30, 32
EI_SetControlValue, 33
EI_SetControlVisible, 30, 31
EI_SetCurrentTabPanel, 41
EI_SetCursor, 57
EI_SetDialogExtraData, 23
EI_SetDialogHitFunction, 25
EI_SetDialogKeyFilterFunction, 25
EI_SetDialogSize, 22
EI_SetDialogTitle, 21
EI_SetDialogValidationFunction, 24, 25
EI_SetEditTextFilter, 38
EI_SetEditTextSelection, 38
EI_SetEditTextString, 37
EI_SetFileName, 88
EI_SetFileRefExtension, 87
EI_SetFileRefType, 86
EI_SetForeColor, 60
EI_SetGLClickFunction, 47, 48
EI_SetGLControlMouseMoved, 48
EI_SetGLDrawFunction, 47
EI_SetKeyControl, 26, 36
EI_SetListDoubleClickFunction, 45
EI_SetListFlags, 15, 45
EI_SetListItemStyle, 43
EI_SetListReorderFunction, 45
EI_SetListString, 42
EI_SetPenMode, 59
EI_SetPushButtonLayout, 16, 36
EI_SetRect, 77
EI_SetStreamPosition, 93
EI_SetTextSize, 63, 64

EI_SetTextStyle, 43, 64
EI_SetTimerExtraData, 56, 105
EI_SetTimerFunction, 56, 105, 106
EI_SetUserControlClick, 46
EI_SetUserControlDraw, 46
EI_SetUserControlMouseMoved, 46
EI_StartOneShotTimer, 55, 56, 105, 107
EI_StartPeriodicTimer, 55, 105, 106
EI_StopDialog, 3, 24, 25, 56
EI_StopTimer, 107
EI_Stream, 19
EI_StreamAccess, 18
EI_Timer, 20, 55, 104, 105, 106, 107
EI_TimerFunction, 55, 105
EI_TrackMouseDown, 47, 49
EI_UnionRects, 78
EI_UserClickFunction, 46, 52
EI_UserDrawFunction, 46, 51
EI_UserMouseMovedFunction, 52
EI_WindowToGL, 49
EI_WriteFloat32, 96, 97
EI_WriteFloat64, 97
EI_WriteSInt16, 95
EI_WriteSInt32, 96
EI_WriteStream, 4, 94, 95
EI_WriteUInt16, 95, 96
EI_WriteUInt32, 96
EI_WriteUInt8, 95
Extra Data Pointer, 7
File Extension, 5
File I/O, 4
File Types, 5
Keyboard Focus, 12
Opaque Types, 3
Resources, 6
User Interface Controls, 6

