March 2005

EI Plug-in ToolKit changes

1. The new service overview

The new service provides following features:

· a plug-in can be informed about most events are processed in actual project;

· a plug-in can modify desired animation channels in entire project, these modifications are accepted by host adequately

1.1 Backward compatibility

All old plug-ins don’t need any changes/recompilation.

1.2 The list of changes

· the pluginProjectInfo new command is passed by host to plug-ins to inform them about project’s events;

· the hostProjectInfoRequest new command can be send by plug-ins to host to initialize channels’ modification loop by plug-n’s initiative;

· the hostObjectSynchronize new command can be send by plug-ins to host to update the geometry of desired object;

· the bugs in hostModelGINF command are fixed;

· the hostObjectInfoRec is expanded;

2. The pluginProjectInfo command

2.1 Activating new service

The new service is activated by setting the new permission flag:

#define pluginProjectInfoFlag

29

A plug-in should set this bit of thePluginPermission field of PluginInformationRec when pluginInformation command is received, if it wants to receive pluginProjectInfo commands.

If a plug-in needs to modify animation channels by its own initiative, for example to process user’s changes in its interface window, then it should send the hostProjectInfoRequest new command. That tells host to send pluginProjectInfo command.

Note that in this situation the bit PluginPermissionModeless should be ON, otherwise pluginProjectInfo will be received only after plug-in’s window closing.

2.2 The communication loop

When the pluginProjectInfo command is received, it means that something is modified in actual project (by user and/or plug-ins) and the plug-in can modify desired animation channels.

The modifications, produced by a plug-in, force host to update the project and secondary pluginProjectInfo command is passed to plug-ins. At this moment plug-in sees what changes are brought by itself and other plug-ins during previous calls. If they forced host to process additional actions, then these actions will be passed too. This loop continues until all plug-ins stops all modifications. No any user input is accepted before all is finished.

Note: typically plug-ins setup their animation channels during pluginUpdateChannel command. It has no any relation with new service and it doesn’t require any changes from plug-ins’ side. The formula “modifying animation channels” means that plug-in changes channels everywhere, in entire project

Also note that new service is not intended ultimately for channels’ modification only. For example, a lot of plug-ins work with their child groups by their names and for them it’s very usable simply to update their private data by using arrived info.

2.3 The PluginProjectInfoRec structure

The PluginProjectInfoRec is declared as:

typedef struct PluginProjectInfoRec {

PluginInfoRec theInfo;

long
theVersion;

long theFrameIndex;

double theFrameTime;

double theFrameTimeDelta;

long
theSessionID;

long
theProjectInfoMode;

long
theObjectNum;

HostObjectInfoRec * theObject;

long
theActionNum;

TSActionRec * theAction;

long
theChannelNum;

TSChannelRec * theChannel;

TSUserListRec * theUserList;

} PluginProjectInfoRec, *PluginProjectInfoPtr;

2.3.1 General fields

PluginInfoRec theInfo
The standard portion that any passed by host structure starts from.

long
theVersion

The version of this command (reserved for future expansion)

long theFrameIndex;

double theFrameTime;

double theFrameTimeDelta;

The actual time/animation layout

2.3.2 Using theSessionID

The field theSessionID indicates the actual loop count of processed host-plug-in sessions. A plug-in always must count what session is actually processed in order to avoid endless circle.

2.3.3 Using theProjectInfoMode

It’s one of following constants:

#define projectInfoMode_Update

0

#define projectInfoMode_Track

1

#define projectInfoMode_Animation

2

This field tells plug-ins general way they should modify desired channels

projectInfoMode_Update
It’s the general case: user’s input, plug-in’s input, changing time value etc.

projectInfoMode_Track

It’s the special case: user drags a set of desired objects interactively. If a plug-in needs to modify channels, then it can and should do this here, otherwise plug-in’s changes are not reflected during dragging. However, there is the important specific:

Only momentary (current frame) data are used during track process. Plug-ins also should use only hostGetChannelFrame and hostAddChannelFrame at this time

The projectInfoMode_Update will be passed after finish of every drag.

projectInfoMode_Animation

This mode signals plug-ins that preview or writing CCN file is in process. The plug-in should avoid actions like creation new channel keys, filling a range of frames etc. – they have no sense in this context.

2.3.4 Using the Objects array

long
theObjectNum;

HostObjectInfoRec * theObject;

The array of project’s objects are affected/involved in modification process. The standard HostObjectInfoRec is used. The fields theReference and
theReferenceIndex are zeroes for all elements of this array. If a plug-in uses one of modified objects, then the plug-in should re-extract the modified object information.
2.3.5 Using the Action array

long
theActionNum;

TSActionRec * theAction;

The TSActionRec is defined as:

typedef struct {

Ptr theParent;

Ptr theChild;

long theAction;

} TSActionRec, *TSActionPtr;
The fields theParent and theChild are parent and child project objects respectively. theChild can be NULL.

The field theAction can be one of Host’s Primarily Actions or one of one of Host’s Extra Actions. The actions are defined as:

/* Host's Primarily Actions */

#define
tsa_Hierarchy

1

#define
tsa_IKInverse

2

#define
tsa_IKInverseEnd

3

#define
tsa_Master

4

#define
tsa_Deform

5

#define
tsa_Skin

6

#define
tsa_Constraint

10000

#define
tsa_Expression

20000

/* Host's Extra Actions */

#define
tsa_ObjectCreate

20001

#define
tsa_ObjectDelete

20002

#define
tsa_ObjectRename

20003

#define
tsa_ObjectDuplicate
20004

#define
tsa_PluginRequest

20005

#define
tsa_ObjectVisibility
20006

#define
tsa_ObjectAnimation
20007

The Host’s Primarily Actions are dependencies that reflect relations between parent and child objects. Let’s consider examples.

There is TSActionRec structure that’s filled as:

theParent = (address)

theChild = (address)

theAction = tsa_Constraint

It means that theChild is controlled by theParent via EI constraint engine. Note that there are NO any more details there (like which channel is controlled etc.). Maybe in this concrete case the constraint engine does absolute nothing, but nevertheless the host updated theChild entirely. The plug-in should follow by same way exactly and update all its private data belongs to theChild (same as all belongs to theParent)

Another one example:

theParent = (address)

theChild = (address)

theAction = tsa_Hierarchy

It means that theChild is a child of theParent. There are some changes in theParent, so the host updated theChild as well. Don’t confuse this with concrete situation: the linkage action is happened and now theChild is linked to theParent. Yes, in this case you receive pluginProjectInfo as well, but generally Host’s Primarily Actions shows the actual stage, not what’s happened.

The Host’s Extra Actions are project’s events that host processes in “standalone” way, without any objects/hierarchy updating. Nevertheless, these events are significant for plug-ins. For example, a group’s renaming doesn’t force any updates, but it can be very meaningful for a plug-in that works with this groups by name. Thus the new service collects and passes such events to plug-ins with corresponding theAction field. The Extra Actions are always first (before any Primarily Actions) in theAction array.

tsa_ObjectCreate – the new object is created;

tsa_ObjectDelete – the object is deleted. Note that theObject array does not contain HostObjectInfoRec of deleted object;

tsa_ObjectRename – the object’s name is changed by user/plug-in;

tsa_ObjectDuplicate – the object is duplicated. The field theParent of this TSActionRec contains an original object and theChild is a newly duplicated object;

tsa_PluginRequest – the signal that model plug-in (theParent field) asked host to send thePluginProjectInfo to start channels’ modification;

tsa_ObjectVisibility
tsa_ObjectAnimation – the object’s visibility/animation has been changed. This info is passed in the new theObjectFlags field of HostObjectInfoRec, see more details in chapter 4.

2.3.6 Using the Channel array

long
theChannelNum;

TSChannelRec * theChannel;

The TSChannelRec is declared as:

typedef struct {

Ptr theChannel;

Ptr theOwner;

} TSChannelRec, *TSChannelPtr;

The Channel array contains channels, modified by user and/or other plug-ins. If a plug-in modifies animation channels, then these will be passed back in next theSessionID
It’s important for plug-ins that a channel can be placed into theChannel array in view of 2 different reasons:

· the channel’s value(s) has been changed;

· the channel’s animation status has been changed;

Use hostGetChannelInformation to detect what’s happened.

2.3.7 Using theUserList (the communication between plug-ins)

All above explains plug-in/host communication process. Ok, but what to do if there are several plug-ins and 2 or more of them tend to modify the same animation channel(s) ?

There is theUserList field to solve this problem.

TSUserListRec * theUserList;

The TSUserListRec is declared as:

typedef struct TSUserListRec {

IFFType thePluginID;

long thePluginDataSize;

struct TSUserListRec * theNext;

char
 thePluginData[4];

} TSUserListRec, *TSUserListPtr;

The host does ABSOLUTE NOTHING with theUserList field. The host simply set this field to zero (NULL) when new loop starts (theSessionID = 0) and guarantees that this modified by plug-ins pointer is passed to next plug-in and in all next sessions.

What is the content of theUserList field and how it’s processed – it’s absolute not interested for host. It’s plug-ins’ affair, they can establish any protocols they want. The possible (but not absolute necessary/ultimate) way for plug-ins is to add their data to the list’s head or tail.

Note that the host also does NOT perform any actions to allocate or delete datas, connected to theUserList. Thus if a plug-in allocates and links memory block(s) to theUserList, then the plug-in should take care about their disposing when new loop starts (theSessionID = 0)

3. Working with Geometry Data

The new service also allows reading Geometry Data (vertices and facets) of desired groups. The read process itself looks like:

· use hostModelGINF to extract count of vertices and facets of desired group;

· use standard hostModelGetVertex and hostModelGetFacet calls to extract Geometry Data;

Note: do NOT try to extract vertices/facets with indices outside limits, reported by hostModelGINF. The result will be not an returned error code, but host’s crash or invalid data.

However, the reading requires described below additional synchronization, otherwise the counted geometry info can be not synchronized and/or invalid.

Let’s consider host’s pipeline overview. It looks like:

 Input -> Update Object’s Data -> Update Object’s Geometry

where:

· Update Object’s Data is the synchronization of all object’s data counting all dependencies;

· Update Object’s Geometry is a geometry creation and modification, performed by model plug-ins, deformations, skinning and morphing;
thePluginProjectInfo is passed AFTER Update Object’s Data, but BEFORE Update Object’s Geometry phase. Why “before”, not “after”? Cause the “geometry phase” is processed not always (unlike objects’ data updating). The host always tends to avoid this time-consuming phase as possible. Generally geometry operations are applied only if an object(s) needs to be drawn and in time of drawing.
The hostObjectSynchronize new command allows forcing host to perform all geometry transformations of the desired object. The command also can be applied to bones objects. The format is:

typedef struct {

char * theReference;

long theFrameIndex;

double theFrameTime;

double theFrameTimeDelta;

Ptr
 theObject;

} HostObjectSynchronizeRec, *HostObjectSynchronizePtr;

This command should be used before reading geometry of modified groups, i.e. groups are affected in current modification process.

If a visible group is not touched by current loop, then you can read its geometry without any additional synchronization.

There are also limitations:

· the hostObjectSynchronize has no effect for invisible groups;

· don’t forget that model plug-ins require geometry of their child group(s) to generate data. So you need to apply hostObjectSynchronize to all plug-in’s hierarchy (to all plug-in’s children and sub-children from bottom to top) before to synchronize the plug-in group itself. Also some deformations use child bones and that also should be synchronized first as well.

4. Other Plug-In ToolKit Changes

4.1 The hostModelGINF is changed: now the returned fields totalCoordinates and totalPolygons contain actual geometry counts (previous version informed zeroes for plug-ins groups)

4.2 The new field theObjectFlag is added to HostObjectInfoRec and now the declaration is:

typedef struct {

char
*theReference;

long
theReferenceIndex;

char
*theObject;

long
theObjectType;

PStr255
theObjectName;

long
theObjectIndex;

char
*theObjectParent;

long
theObjectFlag;

} HostObjectInfoRec, *HostObjectInfoPtr;

Actually there are following meaningful flags (bits of theObjectFlag field):

#define OBJECTINFO_FLAG_VISIBILITY

0

#define OBJECTINFO_FLAG_ANIMATABLE

1

The host informs “final” visibility, count its inheritance from parent object.

Note that “old” HostObjectInfoRec (with less size) also can be passed and processed. In this case host doesn’t fill the new field that’s outside of old structure size.

