Electric Image User Interface API 4/13/2001

Table of Contents

I L1 (ST 0) O 0] (=] 0L S 1

L) (Yo [o3 1 o] o 2o
(OF0] 0 1V7=T 01110] o £ 2
y N o VAT =10 o] T PP 3
L@ o= L0 LU [T I8/ o 1= PP 3
1 L 1 Y 4........
ST T0 181 o= 6
USEr INtErface CONIOIScu i e e ens 6
(=Y oo =T (o I o Lot U RPN 12
9] 7= 111V T PP 12

[(= (=] = 12.........
(@01 415 7= | £ 12
107 153 16
F o B V4= 51 [0 o 20
Modal DIalOg BOXESiviiiiii it 20
(O]] 1 (0] 27
LR 210] £ 56
D 7= 111 T PRSP 57
IMAGE BUFTEIS ..oeeee et e e e e e aaaaeaes 68
1S T [1 = Vo [PPSR 75
RECIANGIES. .. e 77
FIlE REIEIENCES ..o et e e e e e et e e eans 80
RS OUICE FlBS . ettt et e et e e et e e e eneees 90
e L 1 L 92
(@0] [o] g =d Tod (1 o [PP 99
QUICKTIME SUP PO ... ettt e e e e e e e e et e e e e e eaaaeeaanaaaes 101
B I T L= 104

Electric Image User Interface API 4/13/2001

Introduction

The Electric Image User Interface API (hereafter known simply as “the API”)
contains over 200 functions that allow you to create full featured dialog boxes
in a cross-platform environment.

The API was designed to allow plugin developers to manipulate dialog boxes
created using Interface Builder. However, there are limitations. The API does
not, for example, provide support for creating non-modal windows, nor does it
allow modification of the dialog box by creating new controls or destroying
existing ones.

Conventions

Names

All function and type names begin with the prefix “El_.” All constants are
defined as enumeration constants and begin with the prefix “cEl_.”

Arguments to functions always begin with “i,” “0,” or “i0.” The prefix “i” is
for input-only arguments, “0” is for output-only arguments, and the prefix
“i0” is for arguments which are both input and output arguments. Usually,
input-only arguments are const.

All macro names begin with “El_" and all letters are upper case.

Pointers

Many functions take arguments that are of pointer type. Unless otherwise
noted in a function description, passing NULL as a function argument will
cause the function to return without taking any action.

Indices

Many functions deal with indices. For example, you can obtain a list box item
by index. In all cases, the indices in the API are zero-based. That is, the first
item indexed uses the index value 0. Unless otherwise noted, passing invalid
indices to a function (such as a negative index) will cause the function to
return without taking any action.

Electric Image User Interface API 4/13/2001

Strings

Throughout the API are functions which take arguments of string type. The
strings used by the API are always C strings: an array of character bytes
terminated by a zero byte. For operations that return a string (such as the
function which retrieves the text from an edit text control), there are two
functions provided: one which returns the size of a character buffer big
enough to hold the string (note that the size returned includes the terminating
zero byte), and another which copies the characters of the string into a buffer
provided by the caller. It is not necessary to call the length function in order to
call the copy function, but doing so will allow you to allocate a buffer large
enough to hold all of the characters in the string.

Boolean Values

Many functions accept arguments of boolean type, and return boolean results.
In all cases, the boolean argument is passed as type “int.” The interpretation of
the int as a boolean is in accordance with the normal C convention: a non-zero
int is considered true, while a zero int is false. Beyond this convention, you
cannot count on any particular value of the int. In particular, in the

relationship between the function El_StopDialog and the return result of
El_ExecuteDialog, the exact integer value of the argument iResult of
El_StopDialog will not be returned from EI_ExecuteDialog. The value of
iResult will be converted to either 1 or O before it is returned from
El_ExecuteDialog.

API Versioning

The API contains one function, El_GetAPIVersion, which returns the version
of the API that is exported by the host program. As the API evolves, this will
allows your code to determine what features are available through the API.

Opaque Types

Many of the types that the API deals with are opaque. For example, in the API
there is no definition of the data contained in an El_Dialog. These types are
all defined similarly in the file EI_Types.h. For example, here is how
El_Dialog is defined:

typedef struct {
i nt nDat a;
} El _Dialog;

Electric Image User Interface API 4/13/2001

The only method available to you to manipulate these types is through the
functions of the API. There is no way to directly manipulate the internal data
of an opaque type.

The types of the API are defined this way so that

» each type is unigue and provides some type safety (for example, you
cannot accidentally pass an El_Dialog pointer to a function expecting
an El_Control)

* your code is prevented from depending on implementation details of
the underlying implementation

All opaque types in the API are passed by pointer.

File 1/0O

The API provides support for binary endian-correct I/O to files. Endian-
correct means that writing a file on one platform and then reading the file on
another platform will work, even if the platforms use different byte ordering.
By convention, all binary 1/0 is performed using big-endian data. All of the
details of byte-swapping are handled by the API I/O functions.

You also have the option of using block-level I/O calls to read and write
arbitrary blocks of raw data. However, you should use these functions only
with data that does not use a specific byte ordering, such as text strings, or
data which you know will not be moved to another platform.

You should avoid code that reads and writes data by writing entire structs at a
time. For example

typedef struct {

I nt nmDat al;
unsi gned char nDat a2;
fl oat nDat a3;

} MyStructure;

MyStruct ure dat a;
| ong count;

count = sizeof (MyStructure);
El WiteStream(nyStream &data, &count);

This kind of 1/0O is problematic for at least two reasons:
1) It will not byte-swap the members of the structure.

2) It also writes out any padding bytes the compiler inserts into the
structure MyStructure. This forces anyone who wants to read the data,

Electric Image User Interface API 4/13/2001

on any platform, to be aware of these padding bytes and account for
them somehow.

Instead, write out each member of the structure individually, using the byte-
swapping 1/O functions.

The file 1/0 system revolves around three types of objects: directory
references, file references and streams.

A directory reference is a representation of a path name to a directory. The
path name is stored as a sequential list of strings. The directory does not
actually have to exist in the user’s file system for the directory reference to be
valid.

There are three predefined directory references you can access: the home
directory, the preferences directory and the temporary directory. The home
directory is the directory in which your plugin resides. The preferences
directory is a directory you can use to store preference information, if
necessary. The temporary directory is a directory you should use for
temporary files.

A file reference is essentially a directory reference plus a file name which
names a file in the directory. In a manner analogous to directory references,
the file referred to by a file reference does not need to exist in the user’s file
system for the file reference to be valid.

File references also carry a file type and extension with them. A file type is a

4 byte value, expressed as an unsigned integer value, used on the Macintosh to
encode the type of the file, while the extension is a short string used to encode
the type on Microsoft Windows.

NOTE: Changing the file type or extension of a file reference does not
affect the corresponding file in the user’s file system.

NOTE: Ifyouinclude an extension in the file reference’s name (e.g.,
“SomekFile.txt”), then the file reference’s extension string will
be ignored. If an extension appears in the file reference’s name,
it override’s the extension of the file reference.

Note that file references and directory references do not make use of directory
separator characters; however, you can convert file references and directory
references into strings, which are pathnames which include directory separator
characters between directory names.

A stream is an object that provides I/O services for an open file. Given a file
reference, you can open a stream that you can use to perform I/O to the
corresponding file in the user’s file system.

Many file-related functions return error codes. In all cases, a zero result
indicates successful completion of the function, while non-zero indicates

Electric Image User Interface API 4/13/2001

failure. Note that this is the reverse of the boolean convention of zero meaning
false and non-zero meaning true.

Resources

The APl makes use of resources. A resource is a piece of data from a file that
is addressed by an unsigned long type and an integer ID. Dialog box
definitions and images are stored in resources. The API provides functions for
reading images and dialog box definitions from resource files, as well as
reading raw resource data of any type.

There is no support for writing resource files in the API. Currently, resource
files can be created and edited only on the Macintosh, using a program such as
ResEdit or Resorcerer.

Resources in the API will be familiar to Macintosh programmers, with one
difference: resources are always returned as a pointer and a size rather than
the ubiquitous “Handle” type.

To read any resource, you must first open the resource file that contains it.
You can open as many resource files as you like, but you must close each file
when you are done with it.

User Interface Controls

The user interface objects inside dialog boxes are called controls. The controls
supported by the API are

* push buttons

* check boxes

» radio button groups
» divider lines

e group boxes

» tab controls

* color sliders

» scrollers

» static text

* edit text fields

e color buttons

Electric Image User Interface API 4/13/2001

» scrolling lists

* popup Menus

e pictures

* user controls

* OpenGL controls

When users interact with the controls in a dialog box, your code will need to
receive some kind of notification of the interaction. This notification comes
from a callback function called a hit function. Hit functions are called when
the following events occur:

» the user clicks a push button, radio button or check box

» the user drags the thumb of a color slider or scroller (in this case, the
hit function is called every time the thumb moves while the user drags

it)
» the user types a character into an edit text field

* the user clicks a color button and chooses a new color in the color
picker that comes up

» the user clicks on an item in a scrolling list

» the user chooses a new item in a popup menu
» the user clicks on a user control

» the user clicks on an OpenGL control

Controls have attributes. There is a core set of attributes that all controls have,
while some controls contain additional attributes. For example, push buttons
have title strings, but scrollers don’t. All controls have the following

attributes:

* ID number

* aboundary rectangle

* an immediate draw flag
» avisibility flag

* an enabled flag

* a hit function

* an “extra data” pointer

The extra data pointer allows you to define and attach your own attributes to
controls.

Electric Image User Interface API 4/13/2001

NOTE: Dialogboxes have an extra data pointer attribute as well.
Other attributes, with the controls that have them, are listed here:

» atitle (push button, check box, group box, popup menu, static text,
edit text)

» avalue (push buttons that are in “toggle” mode, check box, radio
button control, scroller, color slider, popup menu)

e a maximum value (scroller, color slider)

e anicon ID (push button, picture)

 title/icon layout (push button)

* an edit string (edit text)

* an edit filter type (edit text)

» an edit filter function (edit text)

» aselection range (edit text)

» acolor (color button)

» alist of items (list box)

» aset of list flags (list box)

» alist double-click function (list box)

» alist reorder function (list box)

» auser control draw function (user control)

» auser control click function (user control)

* auser control mouse moved function (user control)
* an OpenGL draw function (OpenGL control)

* an OpenGL click function (OpenGL control)

* an OpenGL mouse moved function (OpenGL control)

When making a call to get or set the value of an attribute of a control which
does not actually have the attribute, the function will do nothing. For example,
attempting to get the value of a push button will return 0.

A description of each control’s interpretation of its optional attributes follows.

Push Buttons

Push buttons have a title and icon, which are drawn inside the button. If the
push button is in toggle mode (which is set with Interface Builder), then the

Electric Image User Interface API 4/13/2001

push buttons also have a value. Push buttons also have two layout attributes
describing how the title and icon are positioned out with respect to each other.

Check Boxes

Check boxes have a title and a value. The title string is displayed next to the
check box’s button, and the value of a check box is boolean.

Radio Buttons

Radio button groups have a value. Each radio button control contains a set of
1 or more individual radio buttons. The value of the radio button control is
simply the index of the chosen button. To turn off all radio buttons in a group,
use a value of -1.

Pictures

Pictures have an icon ID.

Group Boxes

Group boxes have a title, which is drawn at the upper left corner of the box.

Color Sliders

Color sliders have a value and a maximum value. The value of the slider is
always in the range [0, slider maximum]. When the thumb is all the way to the
left, the value is 0, and when the thumb is all the way to the right the value is
equal to the maximum. It is not possible to set the color slider’s value less
than zero or greater than the maximum.

Scrollers

Scrollers have a value and a maximum value. The value of the slider is always
in the range [0, slider maximum]. When the thumb is all the way to the left

(for a horizontal scroller) or all the way at the top (for a vertical scroller), the
value is 0, and when the thumb is all the way to the right (for a horizontal
scroller) or all the way to the bottom (for a vertical scroller) the value is equal
to the maximum. It is not possible to set the scroller’s value less than zero or
greater than the maximum.

Electric Image User Interface API 4/13/2001

Static Text Controls

Static text controls have a title, which is displayed as the text of the control.

Edit Text Controls

Edit text controls have a title, an edit string, an edit filter type, an edit filter
function and a selection range. The title is drawn to the left of the edit box,
and the edit string is drawn within the edit box, where the user can edit it.
Whenever the user enters text into the edit box, the edit text control filters the
text according to its edit filter type. The edit filter type is an enumeration that
names several predefined filter types, such as unsigned integer or signed
floating point. However, if the enumeration indicates a filter function is used,
the edit filter function (if it is not NULL) is called to see if the text typed by

the user should be allowed. The selection range is a pair of integers (start,
end), and represents the indices of the text currently highlighted by the user in
the edit box. Note that if there is no text selected (that is, if there is an
insertion point blinking), the start and end values will be equal to each other.

Color Buttons

Color buttons have a color attribute, which is used to fill the interior of the
color button.

List Boxes

A list box has a list of items, a set of list flags, a double-click function and a
reorder function.

The list items are simply strings. Each item can be drawn using stylistic
variations such as bold or italics.

Currently, only two flag values are defined. One flag value enables or disables
whether the list allows multiple selections or constrains the user to selecting
single items at a time, and the other flag determines whether or not the user is
allowed to drag items in the list to reorder them.

The double-click function is called whenever the user double-clicks an item.
Note that the first click of a double-click sequence will cause the hit function
(if any) to be called first.

The reorder function will be called if the user drags an item to a new position
in the list.

List box controls can be the keyboard focus control of their dialog box. When
a list box is the keyboard focus, it lets the user move the list selection up and
down using the arrow keys of the keyboard.

10

Electric Image User Interface API 4/13/2001

Popup Menus

Popup menus have a title and a value. The title is drawn to the left of the
popup button, and the value is the index of the selected item.

User Controls

A user control has a draw function, a click function, and a mouse moved
function. The draw function is called when the user control needs to be drawn,
the click function is called when the user presses the mouse button while the
cursor is in the user control, and the mouse moved function is called whenever
the mouse is moved within the user control.

NOTE: The click function is different from the hit function. The click
function is meant to track the user’'s mouse activity when the
control is clicked, perhaps changing its appearance as
appropriate, while the hit function is a general notification
mechanism that is used to alert your code that the user acted on
a control.

N OTE: The hitfunction is not called for a user control unless either the
user control has no click function OR the click function returns
a non-zero result.

OpenGL Controls

An OpenGL control provides an OpenGL context you can use to draw 3D
scenes using the OpenGL API. An OpenGL control has a draw function, a
click function, and a mouse moved function, similar to the user control. The
draw function is called when the OpenGL control needs to be drawn, the click
function is called when the user presses the mouse button while the cursor is
in the OpenGL control, and the mouse moved function is called whenever the
mouse is moved within the OpenGL control.

NOTE: The click function is different from the hit function. The click
function is called immediately when the user clicks the
OpenGL control; you use it to track the user's mouse activity,
perhaps changing its appearance as appropriate. The hit
function is a general notification mechanism that is used to
alert your code that the user acted on a control.

NOTE: The hit function is not called for an OpenGL control unless
either the OpenGL control has no click function OR the click
function returns a non-zero result.

11

Electric Image User Interface API 4/13/2001

Keyboard Focus

At any given time, there may be at most one keyboard focus control. The
keyboard focus control will be the control that responds to keyboard events.
Edit text controls and list box controls can be keyboard focus controls.

NOTE: The dialog’s key filter function can intercept key events before
they get to the keyboard focus. You can use the key filter
function to implement custom accelerator keys.

Drawing

Two dimensional drawing takes place in the API through the use of a drawing
context object. A drawing context object contains all of the information

needed by the API to perform the drawing, including the destination of the
drawing (either a dialog box window or an off-screen buffer), a clipping
rectangle, a foreground and background color, a pen location, a pen mode and
font information.

The pen location is used for drawing lines and text. When you use
El_MoveTo, you move the pen to a new location. EI_MoveTo does not
perform any drawing. El_LineTo, however, moves the pen to a new location
while drawing a line from the previous pen location to the new location.
Similarly, EI_DrawText and EI_DrawTextToFit draw text beginning at the
current pen location, moving the pen to a new location after the last character
drawn.

When drawing text, the text is positioned so that the pen’s location is aligned
near the bottom left of the first character drawn.

Note that it is not possible to change the actual font used for drawing text,
although you can change the size and style attributes (such as bold or
underline) of the font.

Reference

Constants

The constants described in this section are defined in the header file
El_Types.h.

12

Electric Image User Interface API 4/13/2001

API Version Numbers

enum {
cEl InitialVersion = 1,

CEl _CurrentVersion = cEl _Initial Version

}s

The constants defined by this enumeration define the supported versions of
the API. The constant cEl_InitialVersion is the value that will be returned by
the first shipping version of the API. In the future, as the API evolves,
additional version number constants will be defined to represent newer
versions of the API.

The constant cEl_CurrentVersion represents the version number of the API
which corresponds to the definitions in the APl header files. The version
number of the API which is compiled into the host application is returned by
the function El_GetAPIVersion.

As the API evolves, subsequent version numbers, and the value of
cEl_CurrentVersion, will always increase (though not necessarily by any
fixed amount).

Font Style Flags

enum {
CEl _TextBold =1 <
CEl Textltalic =1 <
CEl _TextUnderline =
CEl _TextCQutline 1

CcEl _Text Shadow = 1 <

e

}s

The constants defined by this enumeration represent the font style variations
usable by a drawing context object to draw text. The constants may be bit-
wise or'ed together to produce different style combinations.

Image Buffer Pixel Constants

enum {
cEl _Al phaShift,
cEl _Redshift,
CEl _GreenShift,
cEl _BlueShift,

cEl _Al phaCO f set,
CEl _RedOf fset,
CEl _GeenOfset,
cEl Bl ueOfset

13

Electric Image User Interface API 4/13/2001

The constants defined by this enumeration can be used for low-level access to
the individual components of the pixels contained in an image buffer. Each of
these constants is defined differently for different operating systems.

NOTE: Youshould prefer to use the pixel access macros defined in
El_ImageBuffer.h whenever possible. Use the pixel access
constants only when the macros don't provide the functionality
you need.

The “shift” constants (CEl_AlphaShift, cEl_RedShift, cEl_GreenShift, and
cEl_BlueShift) define the number of bit positions to left-shift an 8 bit integer
value into the proper position in a 32 bit pixel. For example:

El _32Bit Pi xel pi xel ;
unsi gned char red, green, blue;

/1 kind of a linme green color:

red = Ox7F;
green = OxFF;
bl ue = 0x3F;

pi xel = ((ElI_32BitPixel) red << cEl _RedShift) |
((El _32BitPixel) green << cEl _GreenShift) |
((El _32BitPixel) blue << cEl _BlueShift);

Likewise, the shift constants can be used to extract color components from a
32 bit pixel using the right-shift operator:

red = (unsigned char) ((pixel >> cEl _RedShift) & OxFF);

The “offset” constants allow access to pixel components using pointer offsets.
Given a pointer to a 32 bit pixel, the offset constants give the offset in bytes
from the pixel pointer to the address of the corresponding color component
within that pixel. This works because the pixel is actually stored as four bytes.
The offsets allow you to address each bytes individually. For example, to get
the red component from a pixel pointer, you cast the pixel pointer to a pointer
to an unsigned char and then add the cEl_RedOffset to it:

El _32Bit Pi xel *pi xel Ptr;
unsi gned char red;

red = *((unsigned char*) pixelPtr + cEl _RedOfset);

List Box Flags

enum {
cEl ListMultipleSelect =1 << 0O,
CEl ListDragReorder = 1 << 1

}s

The constants defined by this enumeration define the flag bits returned by
El_GetListFlags. If the bit represented by the constant cEl_ListMultipleSelect

14

Electric Image User Interface API 4/13/2001

is set, the list allows the user to make multiple item selections. If it is clear,

the user may select only one item at a time. If the bit represented by the
constant cEl_DragReorder is set, then the list allows the user to drag items up
and down in the list to reorder the list. If it is clear, the user may not drag
items up and down in the list.

You may set or clear either or both of these flags using the function
El_SetListFlags.

Modifier Key Flags

enum {
CEl _ShiftKey = 1 << 0,
CEl _ControlKey = 1 << 1,
CEl _MdPrimary = 1 << 2,
cEl _MddSecondary = 1 << 3,
CEl _MdTernary = 1 << 4

}s

When a user control’s click function is called, the state of the modifier keys is
passed as an integer argument containing bits for each modifier key. You can
test the modifier keys argument by performing a bit-wise “and” operation
using the constants defined in this enumeration.

If the bit represented by the constant cEl_ShiftKey is set, the shift key is being
pressed. If the bit represented by the constant cEl_ControlKey is set, the
control key is being pressed.

The constants cEl_ModPrimary, cEl_ModSecondary and cEl_ModTernary

are meant to abstract the modifier keys. cEl_ModPrimary represents the “most
important” modifier key, cEl_ModSecondary the next most important and so
on.

Currently, on the Macintosh cEl_ModPrimary maps to the command key,
cEl_ModSecondary maps to the option key and cEl_ModTernary maps to the
control key. On the PC, cEl_ModPrimary maps to the control key,
cEl_ModSecondary maps to the Alt key and cEl_ModTernary is not mapped.

NOTE: fthe user clicks the right mouse button on a Windows PC, the
cEl_ControlKey (as well as cEl_ModPrimary) bit will be set
even if the control key is not pressed.

Push Button Layout Constants

enum {
cEl Left,

cEl :Ri ght,
cEl _Bottom

15

Electric Image User Interface API 4/13/2001

cEl _Center
1

The constants defined by this enumeration can be passed to the function
El_SetPushButtonLayout, and are used to position the text and icon of a push
button.

Mouse Moved Constants

enum {
cEl _MouseEnter = 1 << 0,
CEl _MuuseWthin = 1 << 1,
CEl _MouseExit = 1 << 2
1

The constants defined by this enumeration are passed to your mouse moved
function to tell you how the cursor has moved. If the value is
cEl_MouseEnter, the cursor has just entered your control. If the value is
cEl_MouseWithin, the cursor has moved within the control. If the value is
cEl_MouseExit, the cursor has just left the control.

Types

This section describes the types available to the clients of the API, beginning
with the non-opaque types and followed by the opaque types. The types
described in this section are defined in the header file El_Types.h.

El_Rect

typedef struct {
i nt left;

i nt t op;

i nt right;

i nt bott om
} El _Rect;

El_Rect represents an axis-aligned rectangle. Many drawing functions take
El_Rects as arguments.

El_Color
typedef struct {
unsi gned char red;
unsi gned char green;
unsi gned char bl ue;
} El _Col or;

16

Electric Image User Interface API 4/13/2001

El_Color represents a single RGB color. The values of each member may be
in the range [0, 255], where zero represents the complete absence of the
corresponding color component, and 255 represents the maximum amount of
that color component.

El_32BitPixel

t ypedef unsigned | ong El _32Bit Pi xel ;

This type represents the pixels contained in an image buffer. You can use the
pixel access macros described in the section “Image Buffers” for accessing the
color components of a pixel, or you can use the image buffer pixel constants if
you need lower level component access.

El_PenMode

t ypedef enum {
cEl _PenCol or,
cEl _PenXOR

} El _Penhbde;

El_PenMode represents the two styles of drawing that can be done using a
drawing context object. When the pen mode is cEl_PenColor, the drawing
uses the foreground color directly for drawing. When the pen mode is
cEl_PenXOR, however, the drawing causes the pixels in the destination to be
inverted.

El_ControlType

t ypedef enum {
cEl _NoCont r ol Type,
cEl _PushButt on,
cEl _CheckBox,
cEl _Radi oG oup,
cEl _Divi derlLine,
cEl _G oupBox,
cEl _TabG oup,
cEl _Col orSlider,
cEl _Scroller,
CEl _StaticText,
cEl _Edit Text,
cEl _Col orButton,
cEl _Li st Box,
cEl _PopupMenu,
cEl _Picture,
cEl _UserControl,
cEl _OpenG.Contr ol
} El _Control Type;

17

Electric Image User Interface API 4/13/2001

The constants defined by this enumeration define the various control types.

El_EditFilterType

t ypedef enum {
cEl _NoFilter,
cEl _Unsi gnedl nt,
cEl _Si gnedl nt,
cEl _Unsi gnedFl oat
cEl _Si gnedFl oat,
cEl _Custom

} El _EditFilterType;

The constants defined by this enumeration are used when setting the type of
edit filter used with an edit text control.

El_StreamAccess

t ypedef enum {
cEl _ReadOnl vy,
CEl Witenly,
CEl _ReadWite
} El _StreamAccess;

The constants defined by this enumeration are used when creating an
El_Stream for I/O.

El_ResourceFile

This is an opaque type.

El_ResourceFile represents an open resource file. You can get resources,
including dialog box definitions and disk images, from a resource file.

El_DrawContext

This is an opaque type.

El_DrawContext represents a drawing context object. Using an
El_DrawContext you can draw lines, text, rectangles, ovals and image buffers.

El_ImageBuffer

This is an opaque type.

El_ImageBuffer represents an off-screen graphics buffer. You can draw to the
off-screen buffer by creating a drawing context object for it, and you can copy

18

Electric Image User Interface API 4/13/2001

pixels to or from an off-screen buffer to a context. You can also manipulate
the pixels of an image buffer directly

El_Diskimage

This is an opaque type.

El_Disklmage represents an image that is read from a resource file. The types
of images which can be read into an EI_Diskimage are

« 'PICT

e ‘argb’

* ‘cicn’
El_Control

This is an opaque type.

El_Control represents a single control inside a dialog box.

El_Dialog

This is an opaque type.

El_Dialog represents a dialog box that is read from a resource file and
displayed on screen.

El_DirectoryRef

This is an opaque type.

El_DirectoryRef represents a cross-platform reference to a directory on a
user’s file system.

El_FileRef

This is an opaque type.

El_FileRef represents a cross-platform reference to a file on a user’s file
system. A file reference contains a directory reference, a file name, and a file
type and extension.

El_Stream

This is an opaque type.

19

Electric Image User Interface API 4/13/2001
El_Stream is used for performing binary, endian-correct file I/O.

El_Timer

This is an opaque type.

El_Timer is used for writing timer functions, functions that get called
periodically when the system is idle.

El_Cursor

This is an opaque type.

El_Cursor is used to represent the image displayed on the cursor.

APl Version

The function described in this section is declared in the header file EI_API.h.

El_GetAPIVersion

i nt El _Get API Ver si on(
voi d) ;

return value an integer value

El_GetAPIVersion returns the version number of the API that is currently
executing. This value may differ from the value of the constant
cEl_CurrentVersion if the plugin is running in a host which contains a
different version of the API than the version being used to compile the plugin.

Modal Dialog Boxes

The functions described in this section allow you to create modal dialog
boxes. The functions described in this section are declared in the header file

El_Dialog.h.

El_MakeDialog

El _Dial og *El _MakeDi al og(
El _ResourceFile *i Resour ceFi | e,
i nt i Di al ogl D);

20

Electric Image User Interface API 4/13/2001

iResourceFile a pointer to a resource file object

iDialogID an integer which must be the ID of a dialog
definition resource in the resource file
indicated by iResourceFile

return value a pointer to a dialog box object

El_MakeDialog constructs a modal dialog box by reading the dialog
definition resource iDialogID from iResourceFile. If the dialog box cannot be
constructed, El_MakeDialog returns NULL. The dialog box is initially
invisible, and will remain invisible until you call El_ExecuteDialog.

El_DestroyDialog

voi d El _DestroyDi al og(
El _Dialog *iDialog);

iDialog a pointer to a dialog box object

El_DestroyDialog destroys a dialog box previously created with
El_MakeDialog.

El_SetDialogTitle

voi d El _SetDi al ogTitl e(

El _Di al og *j oDi al og,

const char *i Di al ogTitle);
ioDialog a pointer to a dialog box object
iDialogTitle a pointer to a C string

El_SetDialogTitle changes the title of the modal dialog box’s window to the
string given by iDialogTitle.

El_MoveDialog
voi d El _MoveDi al og(
El _Di al og *j oDi al og,
i nt i NewLeft,
i nt i NewTop) ;
ioDialog a pointer to a dialog box object
iNewLeft a horizontal coordinate on the screen
iNewTop a vertical coordinate on the screen

El_MoveDialog moves the dialog box’s position on screen so that its upper
left corner is moved to the point (iNewLeft, iINewTop).

21

Electric Image User Interface API 4/13/2001

El_GetDialogPosition

voi d El _Get Di al ogPosi ti on(

const ElI _Dial og *i Di al og,

i nt *olLeft,

i nt *oTop) ;
iDialog a pointer to a dialog box object
olLeft a pointer to an int
oTop a pointer to an int

El_GetDialogPosition returns in *oLeft and *oTop the current location of the
upper left corner of *iDialog on the screen.

El_SetDialogSize

voi d El _Set Di al ogSi ze(

El _Di al og *i Di al og,

i nt i Wdth,

i nt i Hei ght) ;
iDialog a pointer to a dialog box object
iWidth the new width
iHeight the new height

El_SetDialogSize resizes the dialog box to the size given by iWidth and
iHeight.

El_GetDialogSize

voi d El _GetDi al ogSi ze(

const El_Di al og *i Di al og,

i nt *oW dt h,

i nt *oHei ght) ;
iDialog a pointer to a dialog box object
oWidth a pointer to an int
oHeight a pointer to an int

El_GetDialogSize returns in *oWidth and *oHeight the size of the dialog box.
El_GetMonitorBounds

voi d El _Get Moni t or Bounds(
El _Rect *oMbni t or Bounds) ;

22

Electric Image User Interface API 4/13/2001

oMonitorBounds a pointer to an EI_Rect

El_GetMonitorBounds returns in oMonitorBounds the boundary rectangle of
the main monitor. This boundary rectangle is somewhat platform-dependent in
nature. On the Macintosh, it will be the boundary rectangle of the main screen,
minus the menu bar. On Windows, it will be the boundary rectangle of the

root window of the running application.

El_SetDialogExtraData

voi d El _Set Di al ogExtraDat a(

El _Di al og *j oDi al og,

voi d *i ExtrabDat a) ;
ioDialog a pointer to a dialog box object
iIExtraData a pointer

El_SetDialogExtraData sets the extra data pointer of a dialog box object. The
value passed in iExtraData is not dereferenced or used in any way by the API,
S0 you are free to use this argument in any way you like. You can pass a
pointer to a structure containing extra data for your dialog box. During hit
functions or other callbacks, you can extract the extra data pointer using the
El_GetDialogExtraData function.

NOTE: Ifthe extra data pointer points to dynamically allocated
memory, the API will not free that memory for you when the
dialog box is destroyed; you are responsible for freeing any
memory you allocate when you are through using it.

El_GetDialogExtraData

voi d *El _Get Di al ogExt rabDat a(

const ElI_Dial og *i Di al og);
iDialog a pointer to a dialog box object
return value a pointer

El_GetDialogExtraData returns the extra data pointer currently assigned to
*iDialog. If you have not yet assigned an extra data pointer to *iDialog,
El_GetDialogExtraData returns NULL.

El_ExecuteDialog

int El _ExecuteDi al og(
El _Di al og *joDi al 0g);

23

Electric Image User Interface API 4/13/2001

ioDialog a pointer to a dialog box object
return value a boolean value

El_ExecuteDialog shows the given dialog and allows the user to interact with
it. Any callbacks you have installed into the dialog or its controls will be
executed at the appropriate times. EI_ExecuteDialog will not return until the
user dismisses the dialog. If the user dismisses the dialog by clicking the OK
button, EI_ExecuteDialog returns true (non-zero); if the user dismisses a
dialog by clicking the Cancel button, EI_ExecuteDialog returns false (zero).
Also, if one of your callbacks calls El_StopDialog, the boolean result value
passed to EI_StopDialog will be returned by El_ExecuteDialog.

NoOTE: Ifthe user clicks the OK button and there is a validation
function in your dialog box, the validation function must return
a true result for the dialog box to actually be dismissed.

El_StopDialog
voi d El _StopDi al og(
El _Di al og *j oDi al og,
i nt i Resul t);
ioDialog a pointer to a dialog box object
iResult a boolean value

El_StopDialog may be called from within a dialog or control callback
function to shut down the dialog box. The boolean value contained in iResult
will be returned from the enclosing call to El_ExecuteDialog.

NOTE: Youcannotdepend on the exact integer value in iResult being
returned by EI_ExecuteDialog. The return value of
El_ExecuteDialog, and the iResult argument of El_StopDialog,
are booleans. The API only guarantees that the result will be
zero or non-zero.

NOTE: Ifyou pass atrue value in iResult and there is a validation
function in your dialog box, the validation function must return
a true result for the dialog box to actually shut down.

El_SetDialogValidationFunction
voi d El _Set Di al ogVal i dat eFuncti on(

El _Di al og *j oDi al og,
El _Di al ogVval i dati onFuncti on i Function);

24

Electric Image User Interface API 4/13/2001

ioDialog a pointer to a dialog box object
iFunction a pointer to a dialog box validation function

El_SetDialogValidationFunction sets the dialog box’s validation function.
Whenever the user presses the OK button in your dialog box, it may not be
appropriate for the dialog box to be dismissed. For example, if the value
entered into an edit text field is out of range, the user must be told to correct
the entry. The validation function allows you to check that the data entered is
valid.

The validation function is called whenever the user presses the OK button, or
you call El_StopDialog and you pass a true value in iResult. In either case, if
the validation function returns false, the dialog is not dismissed.

If the user clicks the cancel button, or El_StopDialog is called with a false
result, the validation function is not called.

El_SetDialogHitFunction

voi d El _Set Di al ogHi t Functi on(

El _Di al og *j oDi al og,

El _Di al ogHi t Functi on i Function);
ioDialog a pointer to a dialog box object
iFunction a pointer to a dialog hit callback function

El_SetDialogHitFunction sets *ioDialog’s current dialog hit callback function
to iFunction. To clear the dialog hit function, pass NULL in iFunction.

The dialog’s hit function is called if the user clicks in “empty space” in the
dialog; that is, if the user clicks the mouse button when the cursor is not
within a control.

El_SetDialogKeyFilterFunction

voi d El _Set Di al ogKeyFi | terFuncti on(

El _Di al og *j oDi al og,
El _Di al ogKeyFil ter i Function);
iDialog a pointer to a dialog box object
iFunction a pointer to a dialog key down filter function

El_SetDialogKeyFilterFunction sets *ioDialog’s current dialog key down
filter function to iFunction.

The dialog’s key down filter function is called whenever there is a key down
event for the dialog, and before the key down event is given to the key board
focus. The filter function returns a boolean result; if the filter function returns
true, the key down event is not given to the key focus.

25

Electric Image User Interface API 4/13/2001

Callbacks

El_DialogValidationFunction
int MyDi al ogVal i dati onFunction(El _Di al og *i oDi al og);

iDialog a pointer to a dialog box object
return value a boolean value

The dialog validation function is called when the user attempts to dismiss the
dialog box by clicking the OK button. Your validation function can examine

the data entered into the dialog box and decide if it is valid or not. For
example, the value entered into a text field might need to be in a certain range
in order for the dialog to be filled out correctly. If the validation function
decides the dialog is not correct, it should return false, which will cause the
dialog box to remain on screen. If the dialog is correctly filled out, the
validation function should return true, which will cause the dialog box to shut
down and return true from El_ExecuteDialog.

Note that if your function is going to return false, it should probably tell the
user what went wrong by presenting another dialog box with a message in it.
Also, if you want to further direct the user’s attention to the problem, you can
call El_SetKeyControl to set the keyboard focus control to the field that was
entered incorrectly.

El_DialogHitFunction

void MyDi al ogHi t Function(El _Di al og* i Di al og);

iDialog a pointer to a dialog box object

When the mouse is clicked in the dialog *iDialog, but not in any control, the
dialog’s hit function is called.

El_DialogKeyFilter

int MyDi al ogKeyFilter(

El _Di al og *i Di al og,
i nt i Key,
i nt i Modi fiers);

26

Electric Image User Interface API 4/13/2001

iDialog a pointer to a dialog box object
iKey a character value

iModifiers an integer value

return value a boolean value

If a dialog box has a key down event filter, then whenever a key is pressed,
the filter is called before giving the key to the key focus control. The return
value tells the host application whether or not the filter function handled the
key down completely, and thus whether or not to give the key down to the key
focus control. A return value of true tells the host application that the filter
function handled the key down event and that the key focus control should not
get it. A return value of false tells the host application that the filter function
did not handle the event, and that the key focus control should handle it.

You can use the key down event filter to implement custom accelerator keys.

Controls

The functions described in this section allow you to manipulate controls in
dialog boxes. The functions described in this section are declared in the file
El_Control.h.

General Control Functions

El_GetControllID

int El _GetControl |l X

const ElI _Control *i Control);
iControl a pointer to a control object
return value a control ID number

El_GetControlID returns the control’'s ID number.

El_SetControlID

voi d El _Set Control I

El _Control *joControl,

i nt i New D) ;
ioControl a pointer to a control object
iNewID a new control ID number

El_SetControlID sets the control’'s ID number to iNewlID.

27

Electric Image User Interface API 4/13/2001

El_CountControls

i nt El _Count Control s(

const ElI _Dial og *i Di al og);
iDialog a pointer to a dialog box object
return value the number of controls in the dialog box

El_CountControls returns the number of controls contained in *iDialog.

El_FindControlByIndex

El _Control *ElI _Fi ndControl Byl ndex(

const ElI_Dial og *i Di al og,

i nt i Control Nunber);
iDialog a pointer to a dialog box object
iControINumber a control index
return value a pointer to a control object

El_FindControlByIlndex returns a pointer to the iControINumber’th control
contained in *iDialog. If iControlINumber is not a valid index,
El_FindControlByIndex returns NULL.

Using EI_CountControls and El_FindControlBylndex, you can iterate over all
of the controls contained in a given dialog box.

El_FindControlByID

El _Control *ElI _FindControl Byl D(

const ElI _Dial og *i Di al og,

i nt i Control I D);
iDialog a pointer to a control object
iControllID a control ID
return value a pointer to a control object

El_FindControlByID will return a pointer to the control contained in *iDialog
with ID equal to iControlID. If no control has this ID, EI_FindControlByID
returns NULL.

El_InvalControl

voi d El _Inval Control (
const ElI _Control *iControl);

28

Electric Image User Interface API 4/13/2001

iControl a pointer to a control object

El_InvalControl will force the control to be redrawn. Normally, you should
not need to call this function for most controls, since changing control
attributes will cause the correct redrawing to occur automatically. But you
may need to call this if you modify data associated with a user control and
drawn by the user control’'s draw procedure.

El_GetControlDialog

El _Dialog *El _GetControl D al og(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a pointer to a dialog box object

El_GetControlDialog returns a pointer to the dialog box object which contains
the control.

El_GetControlType

El _Control Type ElI _Get Control Type(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a control type

El_GetControlType returns the type of the control.

El_GetControlBounds

voi d El _Get Contr ol Bounds(

const ElI _Control *j Control,

El _Rect *oBounds) ;
iControl a pointer to a control object
oBounds a pointer to an EI_Rect

El_GetControlBounds sets *oBounds to the boundary rectangle of *iControl.

El_SetControlBounds

voi d El _Set Contr ol Bounds(
El _Control *joControl,
const El_Rect *i Bounds) ;

29

Electric Image User Interface API 4/13/2001

ioControl a pointer to a control object
iBounds a pointer to an EI_Rect

El_SetControlBounds sets *ioControl's boundary rectangle to *iBounds. This
function can be used to change the position or size of a control.

El_SetControlDrawlmmediate

voi d El _Set Contr ol Drawl medi at e(

El _Control *joControl,
i nt i Drawi medi at eFl ag) ;
ioControl a pointer to a control object

iDrawlmmediateFlag a boolean value

El_SetControlDrawlmmediate sets the control’'s immediate draw flag to the
value of iDrawlmmediateFlag. If a control’s immediate draw flag is true, then
when changing attributes of the control (such as its value or its title), it is
redrawn immediately; otherwise, the control is invalidated, as if you had
called EIl_InvalControl.

Usually, it is best to leave a control’s flag set to false. However, sometimes
you can’t wait until the next window update event is handled. For example, if
the user clicks on a slider and drags the thumb and you want to update a static
text with the value of the slider, you would install a callback into the slider
which gets called while the user drags the thumb. Your callback obtains the
value of the slider, converts it to a string, and then calls EI_SetControlTitle to
set the text of the static text control. You must therefore set the control’s
immediate draw flag to true so that the static text control is drawn when you
call El_SetControlTitle; otherwise it won’t be redrawn until the next window
update event is processed, after the user releases the mouse button.

El_GetControlDrawlmmediate

int El _GetControl Draw mmedi at e(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a boolean value

El_GetControlDrawlmmediate returns the value of the controls immediate
draw flag.

El_SetControlVisible

voi d El _Set Control Vi si bl e(
El _Control *joControl,
i nt i Visible);

30

Electric Image User Interface API 4/13/2001

ioControl a pointer to a control object
iVisible a boolean value

El_SetControlVisible can show or hide a control. If iVisible is true, the
control is made visible. If iVisible is false, the control is made invisible. In
either case the dialog box containing the control is updated appropriately.

El_GetControlVisible

int El _GetControl Visibleg(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a boolean value

El_GetControlVisible returns true if the *iControl is visible and false if
*iControl is invisible.

El_SetControlEnable

voi d El _Set Contr ol Enabl e(

El _Control *joControl,

i nt i Enabl ed) ;
ioControl a pointer to a control object
iEnabled a boolean value

El_SetControlEnable sets the control’s enable flag. The enable flag
determines whether or not the control responds to events, and also influences
the appearance of the control. Most controls, when disabled, appear “grayed
out.” If iEnabled is true, the control will be enabled, and if iEnabled is false,
the control will be disabled. In either case the dialog box containing the
control is updated appropriately.

El_GetControlEnable

i nt El _Get Control Enabl e(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a boolean value

El_GetControlEnable returns the value of the control’'s enable flag.

31

Electric Image User Interface API 4/13/2001

El_SetControlTitle

void El _SetControl Title(

El _Control *joControl,

const char *ITitleString);
ioControl a pointer to a control object
iTitleString a pointer to a C-string

El_SetControlTitle sets the control’s title to the given string.

El_GetControlTitleSize

int El _GetControl TitleSi ze(

const ElI _Control *iControl);
iControl a pointer to a control object
return value the number of characters in the control’s
title

El_GetControlTitleSize returns the number of characters in the control’s title,
including the terminating zero byte.

El_GetControlTitle

void El _GetControl Title(

const ElI _Control *j Control,
char *oText,
i nt *j oNuntChars) ;
iControl a pointer to a control object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetControlTitle copies the control’s title string to the buffer pointed at by
oText. If the title is too long to fit into the buffer, as indicated by the value of
*loNumChars, El_GetControlTitle will copy as many characters as will fit,
including a terminating zero. El_GetControlTitle will also adjust the value of
*loNumChars to indicate how many characters were actually copied.

El_GetControlValue

int El _GetControl Val ue(
const ElI _Control *iControl);

32

Electric Image User Interface API 4/13/2001

iControl a pointer to a control object
return value an integer value

El_GetControlValue will return the value of the given control.

El_SetControlValue

voi d El _Set Control Val ue(

El _Control *joControl,

i nt i Newval ue) ;
ioControl a pointer to a control object
iNewValue an integer value

El_SetControlValue will change the control’'s value to iINewValue. If
iNewValue is greater than the control’'s maximum, it will be truncated to the
maximum value.

El_GetControlMax

i nt El _Get Control Max(

const ElI _Control *iControl);
iControl a pointer to a control object
return value an integer value

El_GetControlMax returns the current maximum value of the control.

El_SetControlMax

voi d El _Set Contr ol Max(

El _Control *joControl,

i nt i NewVax) ;
ioControl a pointer to a control object
iINewMax an integer value

El_SetControlMax sets the control’'s maximum value to iNewMax.

El_SetControlExtraData

voi d El _Set Contr ol Ext rabDat a(
El _Control *joControl,
voi d *i ExtrabDat a) ;

33

Electric Image User Interface API 4/13/2001

ioControl a pointer to a control object
iIExtraData a pointer

El_SetControlExtraData sets the extra data pointer of a control object. The
value passed in iExtraData is not dereferenced or used in any way by the API,
S0 you are free to use this argument in any way you like. You can pass a
pointer to a structure containing extra data for your control. During hit
functions or other callbacks, you can extract the extra data pointer using the
El_GetControlExtraData function.

NOTE: Ifthe extra data pointer points to dynamically allocated
memory, the API will not free that memory for you when the
control is destroyed; you are responsible for freeing any
memory you allocate when you are through using it.

El_GetControlExtraData

voi d *El _Get Control ExtraDat a(

const ElI _Control *iControl);
iControl a pointer to a control object
return value a pointer

El_GetControlExtraData returns the extra data pointer currently assigned to
*iControl. If you have not yet assigned an extra data pointer to *iControl,
El_GetControlExtraData returns NULL.

El_SetControlHitFunction

voi d El _Set Control Hit Functi on(

El _Control *joControl,

El _Control Hit Function i Function);
ioControl a pointer to a control object
iFunction a pointer to a control hit function

El_SetControlHitFunction sets the hit function of a control to iFunction.

Control Images

El_GetControlimagelD

int El _GetControl |l magel X
const ElI _Control *iControl);

34

Electric Image User Interface API 4/13/2001

iControl a pointer to a control object
return value an image ID

El_GetControlimagelD returns the resource ID of the image used by
*iControl. This function applies to push buttons and pictures.

El_SetControlimagelD

voi d El _Set Control | magel X

El _Control *joControl,

i nt i New magel D) ;
ioControl a pointer to a control object
iNewlmagelD an image ID

El_SetControlimagelD changes the image used by *ioControl to the image
indicated by iNewlmagelD. The value of iNewlmagelD must the ID of an
existing 'argb’, 'cicn’' or 'PICT' resource.

NOTE: Use IDs in the range 12000 to 18000 for your images, or you
may collide with images defined by Electric Image.

Push Button Layout

El_GetPushButtonLayout

voi d El _Get PushButt onLayout (

const ElI _Control *j Control,

i nt *olLabel Posi tion,

i nt *ol conPosi tion);
iControl a pointer to a push button control
oLabelPosition a pointer to an int
olconPosition a pointer to an int

El_GetPushButtonLayout returns, in *oLabelPosition and *olconPosition, the
layout values used by *iControl.

Push buttons display a label that can contain an icon, a title string, or both.
The value returned in *oLabelPosition controls the position of the label, and
can be any one of cEl_Left, cEl_Top, cEl_Right, cEl_Bottom, or cEl_Center.
For cEl_Left, the label is positioned against the left side of the button, for the
cEl_Top, the label is positioned against the top side of the button, and so on.
For cEl_Center (the default), the label is placed in the center of the button.

The value returned in *olconPosition controls the position of the icon with
respect to the title string. This value is meaningful only if the label contains an

35

Electric Image User Interface API 4/13/2001

icon and a title string, and can be any one of cEl_Left, cEl_Top, cEl_Right, or
cEl_Bottom. For cEl_Left, the icon will be positioned to the left of the title
string, for cEl_Top, the icon will be positioned above the title string, and so
on. The value cEl_Center has no meaning for *olconPosition.

El_SetPushButtonLayout

voi d El _Set PushButt onLayout (

El _Control *joControl,

i nt i Label Posi ti on,

i nt i | conPosition);
ioControl a pointer to a push button control
iLabelPosition a layout value
ilconPosition a layout value

El_SetPushButtonLayout lets you change the label’s layout values. The
meaning of the layout values is described above in the description of the
function EI_GetPushButtonLayout.

Keyboard Focus Controls

El_SetKeyControl

voi d El _Set KeyControl (
El _Control *iControl);

iControl a pointer to a keyboard focus control object

El_SetKeyControl makes *iControl become the current keyboard focus for its
dialog box. If *iControl is not a valid keyboard focus control (either an edit
text control or a list box control), El_SetKeyControl has no effect.

El_GetKeyControl

El _Control *ElI_Get KeyControl (

const ElI_Dial og *i Di al og) ;
iDialog a pointer to a dialog box object
return value a pointer to a keyboard focus control object

El_GetKeyControl returns the control object which is the current keyboard
focus in the given dialog box. If there is no keyboard focus for the dialog,
El_GetKeyControl returns NULL.

36

Electric Image User Interface API 4/13/2001
Edit Text Controls

El_SetEditTextString

voi d El _Set EditText String(

El _Control *joControl,

const char *IEditString);
ioControl a pointer to an edit text control object
IEditString a pointer to a C string

El_SetEditTextString changes the text in the edit box of an edit text control to
the string passed in iEditString.

El_GetEditTextStringSize

int El _GetEditTextStringSize(

const ElI _Control *iControl);
iControl a pointer to an edit text control object
return value the number of characters in the control’s edit
box

El_GetEditTextStringSize returns the number of characters in an edit text
control’s edit box, including the terminating zero byte.

El_GetEditTextString

void El _Get EditTextString(

const ElI _Control *j Control,
char *oText,
i nt *j oNuntChars) ;
iControl a pointer to an edit text control object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetEditTextString copies the text from an edit control’s edit box to the
buffer pointed at by oText. If the text is too long to fit into the buffer, as
indicated by the value of *ioNumChars, ElI_GetEditTextString will copy as
many characters as will fit, including a terminating zero.
El_GetEditTextString will also adjust the value of *ioNumChars to indicate
how many characters were actually copied.

37

Electric Image User Interface API 4/13/2001

El_SetEditTextSelection

voi d El _Set Edi t Text Sel ecti on(

El _Control *joControl,

i nt i Sel ectionStart,

i nt i Sel ectionEnd);
ioControl a pointer to an edit text control object
iSelectionStart an integer value
iSelectionEnd an integer value

El_SetEditTextSelection changes the selection range of an edit text control to
the range given by iSelectionStart and iSelectionEnd. Both values are indexes
into the string, and begin at zero. If iSelectionStart or iSelectionEnd indicates
a position after the end of the text, the last text position will be used in its
place.

El_GetEditTextSelection

voi d El _Get Edi t Text Sel ecti on(

const ElI _Control *joControl,

i nt *0Sel ectionStart,

i nt *0Sel ecti onEnd) ;
ioControl a pointer to an edit text control object
oSelectionStart a pointer to an integer value
oSelectionEnd a pointer to an integer value

El_GetEditTextSelection sets *oSelectionStart and *oSelectionEnd to the edit
text control’s current selection range.

El_SetEditTextFilter

void El _SetEditTextFilter(

El _Control *joControl,

El _EditFilterType i FilterType,

El _EditFilterFunction i FilterFunction);
ioControl a pointer to an edit text control object
iFilterType a filter type constant
iFilterFunction a pointer to an edit text filter function

El_SetEditTextFilter changes the filter used with an edit text control. The
value passed in iFilterType determines how the edit text will filter text typed
by an end user.

The meanings of the El_EditFilterType constants are:

38

Electric Image User Interface API 4/13/2001

cEl_NokFilter The edit text control performs no filtering; all text
typed by the user is accepted into the control.

cEl_Unsignedint The edit text control only allows an unsigned
integer value to be typed into the control.

cEl_Signedint The edit text control only allows an integer value to
be typed into the control, with an optional sign.

cEl_UnsignedFloat The edit text control only allows an unsigned
floating point number to be typed into the control.

cEl_SignedFloat The edit text control only allows a floating point
number to be typed into the control, with an
optional sign.

cEl_Custom The edit text calls the filter function pointed to by

iFilterFunction to provide filtering. See the
discussion of El_EditFilterFunction callback
functions.

NOTE: |IfiFilterType is cEl_Custom and the iFilterFunction pointer is
NULL, the edit text control performs no filtering; all text typed
by the user is accepted into the control.

Color Button Controls

El_GetColorButtonColor

voi d El _Get Col or Butt onCol or (

const ElI _Control *j Control,
i nt *oRed,
i nt *oG een,
i nt * 0Bl ue,
i nt *0Al pha) ;
iControl a pointer to a color button control object
oRed a pointer to an integer value
oGreen a pointer to an integer value
oBlue a pointer to an integer value
oAlpha a pointer to an integer value

El_GetColorButtonColor sets *oRed, *oGreen, *oBlue and *oAlpha to the
current color value in the color button control. The values will all be in the
range 0O to 255.

Any or all of the integer pointers can be NULL. If a pointer is NULL, it is
ignored. This way you can ask for only the components you are interested in.

39

Electric Image User Interface API 4/13/2001

For example, if you only want the RGB part but don’t care about the alpha,
you can pass NULL as oAlpha.

El_SetColorButtonColor

voi d El _Set Col or But t onCol or (

El _Control *joControl,
i nt i Red,
i nt i Green,
i nt i Bl ue,
i nt i Al pha);
ioControl a pointer to a color button control object
iRed an integer value
iGreen an integer value
iBlue an integer value
iAlpha an integer value

El_SetColorButtonColor changes the color of a color button to the color given
by iRed, iGreen, iBlue and iAlpha. The values are expected to be in the range
0 to 255. If a value is greater than 255, it will be truncated to 255. If any value
is less than zero, that argument will be ignored and will leave the
corresponding component in the color button unchanged. For example, if you
want to change the color to a particular RGB value but don’t want to disturb
the alpha, you can pass -1 as iAlpha.

Tab Controls

The functions in this section allow you to change the current tab displayed in a
tab control.

NOTE: Group controls can also have multiple “branches.” Group
branches are similar to tab panes in a tab control, in that only
one group branch, and the controls within it, are visible at a
time. The tab control functions described in this section also
work with groups containing multiple branches. Group
branches can be edited in Interface Builder.

El_GetNumTabPanels

i nt El _Get NunirabPanel s(

const ElI _Control *iControl);
iControl a pointer to a tab control
return value the number of tab panels in the tab control

El_GetNumTabPanels returns the number of tab panels in a tab control.

40

Electric Image User Interface API 4/13/2001

El_GetCurrentTabPanel

i nt El _Get Current TabPanel (

const ElI _Control *iControl);
iControl a pointer to a tab control
return value the index of the tab panel currently

displayed in the tab control

El_GetCurrentTabPanel returns the index of the tab control’s current tab
panel. The index is zero based.

El_SetCurrentTabPanel

voi d El _Set Current TabPanel (

El _Control *joControl,

i nt i Panel Nurber) ;
ioControl a pointer to a tab control
iPanelNumber a tab panel index

El_SetCurrentTabPanel switches the tab control’s current tab panel to the tab
panel indicated by iPanelNumber.

List Box Controls

El_CountListitems

int El _CountListltens(

const ElI _Control *iControl);
iControl a pointer to a list box control object
return value an integer value

El_CountListltems returns the number of items in a list box control.

El_InsertListitem

void El InsertListlten

El _Control *joControl,
i nt i Bef or eWhi chltem
const char *iltenBtring);

41

Electric Image User Interface API 4/13/2001

ioControl a pointer to a list box control object
iBeforeWhichitem an item index
iltemString a pointer to a C string

El_InsertListitem adds a string to a list box. The new item is inserted before
the item whose index is passed in iBeforeWhichltem, and the string is passed
in iltemString.

El_RemovelListltem

voi d El _Renobvelistlten

El _Control *joControl,

i nt i Whi chltem;
ioControl a pointer to a list box control object
iWhichltem an item index

El_RemovelListitem removes an item from a list box. The index of the item to
remove is passed in iWhichltem.

El_SetListString

void El _SetListString(

El _Control *joControl,

i nt i Whi chltem

const char *iltenBtring);
ioControl a pointer to a list box control object
iWhichltem an item index
iltemString a pointer to a C string

El_SetListString changes the text of an existing list item to the string passed
in iltemString. The index of the item to change is passed in iWhichltem.

El_GetListStringSize

int El _GetListStringSize(

const ElI _Control *j Control,

i nt i Whi chltem;
iControl a pointer to a list box control object
iWhichitem an item index
return value an integer value

El_GetListStringSize returns the number of characters in an item of a list box
control, including the terminating zero byte. The index of the item is passed in
iWhichltem.

42

Electric Image User Interface API 4/13/2001

El_GetListString

void El _GetListString(

const ElI _Control *j Control,
i nt i Whi chltem
char *oText,
i nt *j oNuntChars) ;
iControl a pointer to a list box control object
iWhichltem an item index
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetListString copies the string from the list box item whose index is
passed in iWhichltem to the buffer pointed at by oText. If the text is too long
to fit into the buffer, as indicated by the value of *ioNumChars,
El_GetListString will copy as many characters as will fit, including a
terminating zero. EI_GetListString will also adjust the value of *ioNumChars
to indicate how many characters were actually copied.

El_SetListltemStyle

void El _SetlListltenttyl e(

El _Control *joControl,

i nt i Whi chltem

i nt i Styl eFl ags) ;
ioControl a pointer to a list box control object
iWhichitem an item index
iIStyleFlags an integer value

El_SetListltemStyle sets the font style flags of the list box item whose index
is passed in iWhichltem to iStyleFlags. The style flags can be any bit-wise
combination of cEl_TextBold, cEl_Textltalic, cEl_TextUnderline,
cEl_TextOutline, and cEl_TextShadow. To remove all stylistic variation from
the list box item, pass 0O as iStyleFlags.

El_GetListitemStyle

int El _GetListltenttyl e(
const ElI _Control *j Control,
i nt i Whi chltem;

43

Electric Image User Interface API 4/13/2001

iControl a pointer to a list box control object
iWhichitem an item index
return value an integer value

El_GetListltemStyle returns the font style flags of the list box item whose
index is passed in iWhichitem.

El_GetListSelectedltem

int El _GetlListSel ectedlten

const ElI _Control *iControl);
iControl a pointer to a list box control object
return value an item index

El_GetListSelecteditem returns the index of the currently selected item. If
more than one item in the list is selected, the index returned is the index of the
first item in the list that is selected. For example, if items 5 and 10 are
selected, El_GetListSelecteditem will return 5. If no item is selected,
El_GetListSelectedltem returns -1.

El_SelectListlitem

void El _Sel ectListlten

El _Control *joControl,

i nt i Whi chltem

i nt i Sel ect);
ioControl a pointer to a list box control object
iWhichltem an item index
iSelect a boolean value

El_SelectListltem either selects or deselects an item in the list box control.
The index of the item is passed in iWhichltem. If iSelect is true, the item is
selected. If iSelect is false, the item is deselected.

El_IsListitemSelected

int El _IsListltentel ected(
const ElI _Control *j Control,
i nt i Whi chltem;

44

Electric Image User Interface API 4/13/2001

iControl a pointer to a list box control object
iWhichltem an item index
return value a boolean value

El_IsListltemSelected returns true if the item whose index is iWhichltem is
selected and false if it is not selected.

El_SetListFlags

voi d El _Set Li st Fl ags(

El _Control *joControl,

i nt i Li stFlags);
ioControl a pointer to a list box control object
iListFlags an integer value

El_SetListFlags sets the list box control’s flags to the flags passed in
iListFlags.

El_GetListFlags

int El _GetListFlags(

const ElI _Control *iControl);
iControl a pointer to a list box control object
return value an integer value

El_GetListFlags returns the current value of a list box control’s flags.

El_SetListDoubleClickFunction

voi d El _Set Li st Doubl ed i ckFuncti on(

El _Control *joControl,

El _Li st Doubl ed i ckFuncti on i Function);
ioControl a pointer to a list box control object
iFunction a pointer to a list double-click function

El_SetListDoubleClickFunction sets the double-click function of *ioControl
to iFunction. Whenever the end-user double-clicks an item in the list, the
double-click function will be called. To clear the double-click function, pass
NULL in iFunction.

45

Electric Image User Interface API 4/13/2001

El_SetListReorderFunction

voi d El _Set Li st Reor der Functi on(

El _Control *joControl,

El _Li st Reorder Function i Function);
ioControl a pointer to a list box control object
iFunction a pointer to a list reorder function

El_SetListReorderFunction sets the reorder function of *ioControl to
iFunction. Whenever the end-user drags an item to a new position in the list,
the reorder function will be called. To clear the reorder function, pass NULL
in iFunction.

User Controls

El_SetUserControlDraw

voi d El _Set User Cont r ol Dr awm

El _Control *joControl,
El _User DrawFuncti on i Function);
ioControl a pointer to a control object
iFunction a pointer to a user control draw function

El_SetUserControlDraw sets the draw function of a user control to the
function pointed at by iFunction.

El_SetUserControlClick

voi d El _Set User Control C i ck(

El _Control *joControl,
El _Userd i ckFunction i Function);
ioControl a pointer to a control object
iFunction a pointer to a user control click function

El_SetUserControlClick sets the click function of a user control to the
function pointed at by iFunction.
El_SetUserControlIMouseMoved

voi d El _Set User Cont r ol MouseMoved(
El _Control *joControl,
El _User MouseMovedFuncti on i Function);

46

Electric Image User Interface API 4/13/2001

ioControl a pointer to a control object
iFunction a pointer to a user control mouse moved
function

El_SetUserControlIMouseMoved sets the mouse moved function of a user
control to the function pointed at by iFunction.

El_TrackMouseDown

int El _TrackMouseDown(

const ElI _Control * i Control,

int* oMbuseX,

int* oMbuseY) ;
iControl a pointer to a control object
oMouseX a pointer to an integer value
oMouseY a pointer to an integer value
return value a boolean value

El_TrackMouseDown can be called from within a user control click function.
Pass the user control in iControl. EI_TrackMouseDown will return when the
mouse moves and set *oMouseX and *oMouseY to the new location of the
mouse. The return value will be true if the user is still pressing the mouse
button and false if the user has released the mouse button.

NOTE: EI TrackMouseDown will return false as soon as the mouse
button is released, whether the mouse moves or not.

OpenGL Controls

El_SetGLDrawFunction

voi d El _Set GLDr awFuncti on(

El _Control *joControl,

El _GLDrawFunction i Function);
ioControl a pointer to an OpenGL control
iFunction a pointer to an OpenGL control draw

function

El_SetGLDrawFunction sets the draw function for the OpenGL control
*joControl to iFunction.

47

Electric Image User Interface API 4/13/2001

El_SetGLClickFunction

void El _Set GLd i ckFuncti on(

El _Control *joControl,

El _GL.dickFunction i Function);
ioControl a pointer to an OpenGL control
iFunction a pointer to an OpenGL control click

function

El_SetGLClickFunction sets the click function for the OpenGL control
*joControl to iFunction.

El_SetGLControIMouseMoved

voi d El _Set GLCont r ol MouseMoved(

El _Control *joControl,
El _GL.MouseMovedFuncti on i Function);
ioControl a pointer to an OpenGL control

iFunction a pointer to an OpenGL mouse moved function

El_SetGLControlMouseMoved sets the mouse moved function of an OpenGL
control to the function pointed at by iFunction.

El_BeginGLDrawing

i nt El_Begi nG.Dr awi ng(

const ElI _Control *iControl);
iControl a pointer to an OpenGL control
return value a boolean value

El_BeginGLDrawing sets up the OpenGL state so that drawing can occur
within the OpenGL control *iControl. If the OpenGL state cannot be properly
set up for *iControl, EI_BeginGLDrawing returns O; otherwise it returns non-
zero.

You use El_BeginGLDrawing and EI_EndGLDrawing within your OpenGL
control callbacks to bracket the OpenGL calls that you use to draw a 3D
scene.

See the description of the EI_GLDrawFunction for an example of using
El_BeginGLDrawing.

48

Electric Image User Interface API 4/13/2001

El_EndGLDrawing

voi d El _EndGL.Dr awi ng(
const ElI _Control *iControl);

iControl a pointer to an OpenGL control

El_EndGLDrawing finishes up the OpenGL drawing that was previously
begun by calling EI_BeginGLDrawing. EI_EndGLDrawing also flushes the
drawing to the screen, so you should not call glFinish or gIFlush.

El_WindowToGL

void El _W ndowToGL(

const ElI _Dial og *i Di al og,

i nt *ioX,

i nt *ioY);
iDialog a pointer to a dialog box object
ioX a pointer to an integer value
ioY a pointer to an integer value

El_WindowToGL transforms the two dimensional point given by (*ioX,

*ioY) from the API's window coordinates to OpenGL'’s window coordinates.
The API's window coordinates have their origin at the upper left corner of the
window, with X and Y increasing to the right and down, respectively.
OpenGL’s window coordinates, on the other hand, have the origin at the lower
left corner of the window, with X and Y increasing to the right and up,
respectively.

You can use this function to transform a mouse location (as returned by the
function EI_TrackMouseDown) to OpenGL coordinates when handling
mouse clicks in an OpenGL control.

El_GLToWindow

void El _G.ToW ndow(

const ElI_Dial og *i Di al og,

i nt *ioX,

i nt *ioY);
iDialog a pointer to a dialog box object
ioX a pointer to an integer value
ioY a pointer to an integer value

El_GLToWindow is the inverse of EIl_WindowToGL. Given a point (*ioX,
*loY) given in OpenGL window coordinates, EI_ GLToWindow transforms
the point to the equivalent point in APl window coordinates.

49

Electric Image User Interface API 4/13/2001

Callbacks

El_ControlHitFunction

void MyHi t Functi on(

El _Control *j Control,

El _Dr awCont ext *j Cont ext);
iControl a pointer to a control
iContext a pointer to a drawing context

A control’s hit function is a notification that the user has interacted with the
control in some way. Your can take whatever actions are appropriate for the
given control. For example, if you need to update another control when the
user interacts with this control, you can do so from within the hit function. A
pointer to the control that was interacted with is passed in iControl, and
iContext contains a pointer to a drawing context you can use to perform
drawing if necessary.

NOTE: Youshould only need to drawing context in unusual
circumstances, such as when dealing with user controls with
special drawing needs. Most of the time, the iContext argument
can be ignored.

El_EditFilterFunction

int MyEditFilterFunction(

El _Control *j Control,
const char *i NewText) ;
iControl a pointer to an edit text control
iNewText a pointer to a C string
return result a boolean value

When an edit text control is set to use an edit filter function, the edit filter
function will be called each time the user enters text into an edit text control
(either by typing individual characters or by pasting a string of characters).
The edit text control constructs a new string based on the edit string and the
user’s action, and then passes the new string in as iNewText. The edit filter
function must examine the string passed in iNewText and determine if it is
acceptable or not. If so, then the edit filter function should return true. If the
edit filter returns false, the string will be rejected and the edit string will
remain unchanged.

50

Electric Image User Interface API 4/13/2001

El_ListDoubleClickFunction

voi d MyLi st Doubl ed i ckFuncti on(

El _Control *j Control,
i nt i Doubl el i ckedl tem
El _Dr awCont ext *j Cont ext);
iControl a pointer to a list box control
iDoubleClickedltem the index of the item that was double-
clicked
iContext a pointer to a drawing context

When a user double-clicks an item in a list box control, the double-click
function is called to allow you to respond.

El_ListReorderFunction

voi d MyLi st Reorder Functi on(

El _Control *j Control,

El _Dr awCont ext *j Cont ext);
iControl a pointer to a list box control
iContext a pointer to a drawing context

When the user drags an item to a new position within a list box control, the
reorder function is called to allow you to respond. Because the user may be
dragging multiple items, there is no “iWhichltem” argument; you must inspect
the list to see how it has changed.

El_UserDrawFunction

voi d MyUser Dr awFunct i on(
const ElI _Control *j Control,
El _Dr awCont ext *j Cont ext);

iControl a pointer to a user control

iContext a pointer to a drawing context
A user control drawing function is called whenever the user control to which
it is attached needs to be drawn. A pointer to the user control is passed in

iControl, and iContext contains a drawing context that can be used to draw the
user control.

51

Electric Image User Interface API 4/13/2001

El_UserClickFunction

int MyUserd i ckFunction(

El _Control *j Control,

El _Dr anCont ext *i Cont ext,

i nt i Modi fierKeys,

i nt i dickH,

i nt i dickV);
iControl a pointer to a user control
iContext a pointer to a drawing context
iModifierKeys an integer value
iClickH an integer value
iClickv an integer value
return value a boolean value

When a user control is clicked, its click function gets called. A pointer to the
user control is passed in iControl, and iContext contains a pointer to a drawing
context that can be used for drawing purposes while you track the mouse’s
movements. The initial location of the mouse is passed in iClickH and

iClickV.

Your click function should retain control as long as necessary (usually until
the mouse button is released), tracking the mouse and updating the display
appropriately.

If the user control click function returns a true result, then the user control’s
hit function (if any) will be called; otherwise, if the click function returns
false, the hit function will not be called. This allows your user control to
communicate whether or not a click should count as a “hit.”

El_UserMouseMovedFunction

voi d MyUser MouseMovedFuncti on(

El _Control * i Control,

El _Dr awCont ext * i Cont ext,

i nt i Modi fierKeys,
i nt i MouseH,

i nt i MouseV,

i nt i MoveType)

52

Electric Image User Interface API 4/13/2001

iControl a pointer to a user control
iContext a pointer to a drawing context
iModifierKeys an integer value

iMouseH an integer value

iMouseV an integer value

iMoveType an integer value

When the user moves the cursor into a user control, the control’'s mouse
moved function gets called. A pointer to the control is passed in iControl, and
iContext contains a pointer to a drawing context that can be used for drawing.
The cursor’s location is passed in iMouseH and iMouseV, and the current
state of the modifier keys is passed in iModifierKeys.

The value of iMoveType tells you whether the mouse has entered the control,
is moving within the control, or exiting the control, and can be one of the
values cEl_MouseEnter, cEl_MouseWithin, or cEl_MouseEXxit.

You can use a mouse moved function to perform such tasks as custom cursor
changing or rollover highlighting.

El_GLDrawFunction

voi d MyQ.Dr awFunct i on(
const ElI _Control *iControl);

iControl a pointer to an OpenGL control

The EI_GLDrawFunction is analogous to the user control draw function, and
is used to draw an OpenGL control. One difference between the OpenGL
draw function and the user control draw function is that no EI_DrawContext is
passed to the OpenGL draw function. Because the OpenGL draw function is
expected to draw the control using the OpenGL API, an EI_DrawContext is
unnecessary.

NOTE: Using an El_DrawContext to draw in a dialog box at the
location of an OpenGL control is not supported.

To draw using the OpenGL API, your draw function must call
El_BeginGLDrawing before the first OpenGL call, and EI_EndGLDrawing
after the last OpenGL call. It is not necessary for you to call any of the
OpenGL finishing functions (like glFinish or glFlush), because that is taken
care of for you by EI_EndGLDrawing. For example:

void MyGA.Dr awFuncti on(El _Control *iControl)
i f (El_Begi nGDraw ng(i Control)) {

glClearColor(1.0f, 1.0f, 0.0f, 1.0f);
gl Cl ear (G._COLOR BUFFER BIT);

53

Electric Image User Interface API 4/13/2001

/* Draw a snooth shaded pol ygon */
gl Begi n(GL_POLYCGON) ;

gl Col or3d(1.0, 0.0, 0.0);

gl Vertex3d(0.8, 0.8, 0.0);
gl Col or3d(0.0, 1.0, 0.0);

gl Vertex3d(0.8, -0.8, 0.0);
gl Col or3d(0.0, 0.0, 1.0);

gl Vertex3d(-0.8, -0.8, 0.0);
gl Col or3d(1.0, 0.0, 1.0);

gl Vertex3d(-0.8, 0.8, 0.0);
gl End() ;

El _EndG.Drawi ng(i Control);

El_GLClickFunction

int MyGLd i ckFunction(

El _Control *j Control,

i nt i Modi fierKeys,

i nt i dickH,

i nt i dickV);
iControl a pointer to an OpenGL control
iModifierKeys an integer value
iClickH an integer value
iClickv an integer value
return value a boolean value

The OpenGL click function is analogous to the user control click function.
However, like the OpenGL draw function, the OpenGL click function is not
passed an EI_DrawContext because the click function is expected to do its
drawing using the OpenGL API. The other arguments (iModifierKeys,

iClickH and iClickV) have the same meaning that they do for the user control.
Your OpenGL click function should retain control as long as necessary
(usually until the mouse button is released), tracking the mouse and updating
the display appropriately.

Also like the OpenGL draw function, if the click function is going to do any
drawing, that drawing must be bracketed between calls to
El_BeginGLDrawing and EI_EndGLDrawing. Note that

El_BeginGLDrawing and EI_EndGLDrawing bracket a single frame, so if
your click function draws multiple frames (for example, because it is tracking
the mouse and updating the display as the mouse moves), then each frame
must be bracketed by a call to EI_BeginGLDrawing and EI_EndGLDrawing.

If the OpenGL control click function returns a true result, then the OpenGL
control’s hit function (if any) will be called; otherwise, if the click function

54

Electric Image User Interface API 4/13/2001

returns false, the hit function will not be called. This allows your OpenGL
control to communicate whether or not a click should count as a “hit.”

El_GLMouseMovedFunction

voi d MyGA.MouseMdvedFuncti on(

El _Control * i Control,

i nt i Modi fi erKeys,

i nt i CursorH,

i nt i CursorV,

i nt i MoveType)
iControl a pointer to a user control
iModifierKeys an integer value
iMouseH an integer value
iMouseV an integer value
iMoveType an integer value

The OpenGL mouse moved function is analogous to the user control mouse
moved function. However, no El_DrawContext is passed to an OpenGL
mouse moved function, because the OpenGL mouse moved function is
expected to do its drawing using the OpenGL API. The other arguments have
the same meaning as they do for the user control mouse moved function.

You can use a mouse moved function to perform such tasks as custom cursor
changing or rollover highlighting.

El_TimerFunction

voi d MyTi mer Functi on(
El _Ti mer *i Tiner);

iTimer a pointer to a timer object

The timer function is called whenever the corresponding timer expires. The
timer may expire once (if it was scheduled using El_StartOneShotTimer) or
many times (if it was scheduled using El_StartPeriodicTimer). The timer
action may take any action you like. For example, here is how to use a timer
to time out a dialog box:

static El _Timer *sTinmer = NULL;
voi d Ti meQut Function(El _Tiner* i Tiner)

{
El _Di al og *di al og;

/* Extract the dialog fromthe tiner’'s extra data. */
dialog = (ElI _Dialog*) ElI _GetTinerExtrabData(i Ti ner);

55

Electric Image User Interface API 4/13/2001

/* Stop the dialog as if the user had canceled it. */
El _St opDi al og(di al og, 0);

}
void InitDial og(El _Dialog *iDial og)
{

[* ... %

/* Create a new tiner. */
sTimer = EI _MakeTimer();

/* Initialize its timer function and extra data. */
El _Set Ti nmer Functi on(sTi ner, Ti meQutFunction);
El _Set Ti ner ExtraData(sTinmer, (void*) iDialog);

/* Set it to go off 60 seconds fromnow. */
El _Start OneShot Ti mer (sTinmer, 60 * 1000);

}

voi d Cl eanUpDi al og(El _Di al og *i Di al og)

/* Al done with the timer. */
El _DestroyTi ner (sTiner);

I* ... %
}
Note that it is valid to either start or stop any timer when a timer function
executes.
Cursors

The functions described in this section allow you to load and display custom
cursors. The functions described in this section are declared in the file
El_Cursor.h.

El_MakeCursor

El _Cursor* ElI_MakeCursor (

i nt i CursorlD);
iCursorlD an integer value
return value a pointer to an EI_Cursor

El_MakeCursor loads the cursor with resource ID iCursorID. If the cursor
cannot be created (for example because the resource cannot be found),
El_MakeCursor returns NULL.

56

Electric Image User Interface API 4/13/2001

Cursors are created on the Macintosh and must be of type 'crsr'. These
resources can be created with a resource editing tool such as ResEdit or
Resorcer.

NOTE: Use IDsin the range 12000 to 18000 for your cursors, or you
may collide with cursors defined by Electric Image.

El_DestroyCursor

voi d El _DestroyCursor(
El _Cursor *j Cursor);

iCursor a pointer to an EI_Cursor

El_DestroyCursor destroys a cursor that was previously created using
El_MakeCursor.

El_SetCursor

voi d El _Set Cursor (
El _Cursor *j Cursor);

iCursor a pointer to an EI_Cursor

El_SetCursor sets the system cursor to *iCursor. You can also pass NULL in
iCursor, which will cause the system cursor to be reset to the standard arrow.

Drawing

The functions described in this section allow you to perform drawing to a
drawing context. The context can be a screen context (if it is a context passed
to one of your control callback functions) or it can be an off-screen image
buffer context (if you created it yourself by calling
El_MakeContextForimageBuffer). The functions described in this section are
declared in the file EI_DrawContext.h.

El_MakeContextForimageBuffer

El _DrawCont ext *El _MakeCont ext For | mageBuf f er (

El | mageBuffer *i | mage) ;
ilmage a pointer to an image buffer
return value a pointer to a drawing context object

El_MakeContextForimageBuffer makes a drawing context for the given
image buffer. Any drawing done using this context will draw into the image

57

Electric Image User Interface API 4/13/2001

buffer. This can be handy for performing drawing off-screen that is later
copied to the screen using the function EI_Drawlmage. When you are done
using the draw context you must make sure to destroy the draw context using
El_DestroyContext.

El_MakeContextForDialog

El _DrawCont ext *El _MakeCont ext For Di al og(

El _Di al og *i Di al 0g);
iDialog a pointer to a dialog box
return value a pointer to a drawing context object

El_MakeContextForDialog makes a drawing context for the given dialog box.
Any drawing done using this context will draw into the dialog box. When you
are done using the draw context you must make sure to destroy the draw
context using El_DestroyContext.

El_DestroyContext

voi d El _DestroyCont ext (
El _Dr awCont ext *j Cont ext);

iContext a pointer to a drawing context object

El_DestroyContext destroys a drawing context object that was previously
created with EI_MakeContextForimageBuffer or EI_MakeContextForDialog.
Call this function when you are done using the drawing context object.

NOTE: Do notcall EI_DestroyContext on any context that you did not
create. Specifically, do not call EI_DestroyContext on a
context passed to your control callback functions.

El_SetClip
void El _Setdip(
El _Dr awCont ext *j oCont ext,
const El_Rect *i dipRect);
ioContext a pointer to a drawing context object
iClipRect a pointer to a rectangle

El_SetClip sets the clipping area of the given context to the rectangle
*IClipRect. It is not possible to set the clipping area of a context to a non-
rectangular area.

58

Electric Image User Interface API 4/13/2001

El_GetClip
void El _Getdip(
const El _DrawCont ext *j Cont ext
El _Rect *od i pRect);
iContext a pointer to a drawing context object
oClipRect a pointer to a rectangle

El_GetClip sets *iClipRect to the current clipping rectangle of the context.

El_SetPenMode

voi d El _Set PenMbde(

El _Dr awCont ext *j oCont ext,

El _PenMbde i Penhbde) ;
ioContext a pointer to a drawing context object
iPenMode a pen mode value

El_SetPenMode sets the pen drawing mode to iPenMode. The pen mode may
be either cEl_PenColor or cEl_PenXOR.

El_GetPenMode

El _PenMbde El _Get PenMode(

const El _DrawCont ext *j Cont ext);
iContext a pointer to a drawing context object
return value a pen mode value

El_GetPenMode returns the context’s pen drawing mode.

El_MoveTo
voi d El _MoveTo(
El _Dr awCont ext *j oCont ext,
i nt i PenH,
i nt i PenV);
ioContext a pointer to a drawing context object
iPenH an integer value
iPenV an integer value

El_MoveTo moves the context’s pen to the location (iPenH, iPenV).

59

Electric Image User Interface API 4/13/2001

El_LineTo
voi d El _LineTo(
El _Dr awCont ext *j oCont ext,
i nt i PenH,
i nt i PenV);
ioContext a pointer to a drawing context object
iPenH an integer value
iPenV an integer value

El _LineTo draws a line to the context from the context’s current pen location
to the location (iPenH, iPenV). The line is drawn using the foreground color
and the pen drawing mode, and the pen is left at location (iPenH, iPenV).

El_GetPenLocation

voi d El _Get PenLocati on(

const El _DrawCont ext *j Cont ext

i nt *oPenH,

i nt *oPenV) ;
iContext a pointer to a drawing context object
oPenH a pointer to an integer value
oPenV a pointer to an integer value

El_GetPenLocation sets *oPenH and *oPenV to the context’s pen location.

El_SetForeColor

voi d El _Set For eCol or (

El _Dr awCont ext *j oCont ext,

const El_Col or *j ForeCol or);
ioContext a pointer to a drawing context object
iForeColor a pointer to a color

El_SetForeColor sets the context’s foreground color to the color *iForeColor.

El_GetForeColor

voi d El _Get For eCol or (
const El _DrawCont ext *j Cont ext
El _Col or *oFor eCol or);

60

Electric Image User Interface API 4/13/2001

iContext a pointer to a drawing context object
oForeColor a pointer to a color

El_GetForeColor copies the context’s current foreground color to
*oForeColor.

El_SetBackColor

voi d El _Set BackCol or (

El _Dr awCont ext *j oCont ext,

const El_Col or *j BackCol or) ;
ioContext a pointer to a drawing context object
iBackColor a pointer to a color

El_SetBackColor sets the context’s background color to the color
*iBackColor.

El_GetBackColor

voi d El _Get BackCol or (

const El _DrawCont ext *j Cont ext

El _Col or *oBackCol or) ;
iContext a pointer to a drawing context object
oBackColor a pointer to a color

El_GetBackColor copies the context’s current background color to
*oBackColor.

El_FrameRect

voi d El _FranmeRect (

El _Dr awCont ext *j oCont ext,

const El_Rect *i Frane) ;
ioContext a pointer to a drawing context object
iIFrame a pointer to a rectangle

El_FrameRect draws a rectangle frame to the context. The rectangle’s frame
will be one pixel thick, and will be drawn in the foreground color using the
pen drawing mode.

El_PaintRect

voi d El _Pai nt Rect (
El _Dr awCont ext *j oCont ext,
const El_Rect *i Frane) ;

61

Electric Image User Interface API 4/13/2001

ioContext a pointer to a drawing context object
iIFrame a pointer to a rectangle

El_PaintRect draws a filled rectangle to the context. The rectangle will be
filled with the foreground color using the pen drawing mode.

El_EraseRect

voi d El _EraseRect (

El _Dr awCont ext *j oCont ext,

const El_Rect *i Frane) ;
ioContext a pointer to a drawing context object
iIFrame a pointer to a rectangle

El_EraseRect erases a rectangle to the context. The rectangle will be filled
with the background color using the pen drawing mode.

El_FrameOval

voi d El _FranmeOval (

El _Dr awCont ext *j oCont ext,

const El_Rect *i Frane) ;
ioContext a pointer to a drawing context object
iIFrame a pointer to a rectangle

El_FrameOval draws an ellipse to the context. The ellipse drawn will fit just
inside the given rectangular frame. The ellipse will be one pixel thick, and
will be drawn in the foreground color using the pen drawing mode.

El_PaintOval
voi d El _Pai nt Oval (
El _Dr awCont ext *j oCont ext,
const El_Rect *i Frane) ;
ioContext a pointer to a drawing context object
iIFrame a pointer to a rectangle

El_FrameOval draws a filled ellipse to the context. The ellipse drawn will fit
just inside the given rectangular frame. The ellipse will be filled with the
foreground color using the pen drawing mode.

62

Electric Image User Interface API 4/13/2001

El_Drawlmage

voi d El _Draw mage(

El _Dr awCont ext *j oCont ext,
const El | mageBuffer *i | mage,
const El_Rect *j Sour ceRect,
const El_Rect *j Dest Rect) ;
ioContext a pointer to a drawing context object
ilmage a pointer to an image buffer
iISourceRect a pointer to a rectangle defined in *ilmage’s
coordinate space
iDestRect a pointer to a rectangle defined in

*ljoContext’s coordinate space

El_Drawlmage draws the pixels from *ilmage to the context. The pixels are
taken from the rectangular area defined by *iSourceRect, and are copied to the
rectangular area defined by *iDestRect.

If the image buffer is from a disk image object, and the disk image has a mask
associated with it, only pixels that are included by the mask are drawn to the

drawing context.

El_Capturelmage

voi d El _Capturel mage(

const El _DrawCont ext *j Cont ext
El | mageBuffer *i | mage,
const El_Rect *j Sour ceRect,
const El_Rect *j Dest Rect) ;
iContext a pointer to a drawing context object
ilmage a pointer to an image buffer
iISourceRect a pointer to a rectangle defined in
*iContext’s coordinate space
iDestRect a pointer to a rectangle defined in *ilmage’s

coordinate space

El_Capturelmage is the inverse of EI_Drawlmage. EI_Capturelmage copies
pixels from the context to *ilmage. The pixels are taken from the rectangular
area defined by *iSourceRect, and are copied to the rectangular area defined
by *iDestRect.

El_SetTextSize

voi d El _Set Text Si ze(
El _Dr awCont ext *j oCont ext,
i nt i Si ze);

63

Electric Image User Interface API 4/13/2001

ioContext a pointer to a drawing context object
iSize an integer value

El_SetTextSize sets the font size of the context to iSize.

El_GetTextSize

int El _GetTextSize(

const El _DrawCont ext *j Cont ext);
iContext a pointer to a drawing context object
return value an integer value

El_GetTextSize returns the font size of the context.

El_SetTextStyle

voi d El _Set Text Styl e(

El _Dr awCont ext *j oCont ext,

i nt i Styl eFl ags) ;
ioContext a pointer to a drawing context object
iStyleFlags an integer value

El_SetTextStyle sets the font style flags of the context to iStyleFlags. The
style flags can be any bit-wise combination of cEl_TextBold, cEl_Textltalic,
cEl_TextUnderline, cEl_TextOutline, and cEl_TextShadow. To remove all
stylistic variation from the context, pass 0 as iStyleFlags.

El_GetTextStyle

int El _GetTextStyl e

const El _DrawCont ext *j Cont ext);
iContext a pointer to a drawing context object
return value an integer value

El_GetTextStyle returns the font style flags of the context.

El _MeasureText

i nt El _MeasureText (

const El _DrawCont ext *j Cont ext
const char *i Text,
i nt i NuntChar s) ;

64

Electric Image User Interface API 4/13/2001

iContext a pointer to a drawing context object

iText a pointer to a character buffer

iINumChars the number of characters in the buffer
pointed to by iText

return value an integer value

El_MeasureText returns the pixel width of the string passed in iText and
iINumChars. The pixel width accounts for the font size and font style of the
context, and is the distance the pen would move if this string was drawn using
El_DrawText.

NOTE: EI MeasureText does not require that the text argument be a C
string, as do other string functions in the API.

El_GetFontMetrics

voi d El _Get Font Metri cs(

const El _DrawCont ext *j Cont ext

i nt *0Ascent ,

i nt *oDescent,

i nt *olLeadi ng) ;
iContext a pointer to a drawing context object
oAscent a pointer to an integer value
oDescent a pointer to an integer value
oLeading a pointer to an integer value

El_GetFontMetrics returns height information about the context’s font, taking
into account the font size and font style. The ascent is the distance that glyphs
in the font rise above the base line, the descent is the distance that glyphs sink
below the baseline, and the leading is the normal distance between the descent
of one line of text and the ascent of the next line of text. This implies that the
height of a single line of text can be calculated as the ascent + the descent +
the leading.

Any one of oAscent, oDescent and oLeading can be NULL, and if so, they are
skipped. For example, if you are only interested in the ascent, you can pass
NULL as oDescent and oLeading.

El_DrawText

voi d El _DrawText (
El _Dr awCont ext *j oCont ext,
const char *i Text,
i nt i NunChar s) ;

65

Electric Image User Interface API 4/13/2001

ioContext a pointer to a drawing context object
iText a pointer to a character buffer
iINumChars the number of characters in the buffer

pointed to by iText

El_DrawText draws the string given by iText and iNumChars to the context.
This string is drawn at the current pen location, and uses the current
foreground color. After EI_DrawText completes, the context’s pen is move to
the point just after the last character drawn.

NOTE: EI DrawText does not require that the text argument be a C
string, as do other string functions in the API.

El_DrawTextToFit

voi d El _DrawText ToFit (

El _Dr awCont ext *j oCont ext,

const char *i Text,

i nt i NuntChar s,

i nt i MaxPi xel W dt h,

i nt i Al'l owCondensed) ;
iContext a pointer to a drawing context object
iText a pointer to a character buffer
iINumChars the number of characters in the buffer

pointed to by iText
iMaxPixelWidth an integer value

iAllowCondensed a boolean value

El_DrawTextToFit behaves like EI_DrawText, but allows you to specify a
maximum pixel width for the drawn string. If the string’s pixel width is less
than or equal to iMaxPixelWidth, EI_DrawTextToFit draws the text and
returns. If the string’s pixel width is greater than iMaxPixelWidth, then it will
try to shrink the text to make it fit.

First, if iAllowCondensed is true, EI_DrawTextToFit will draws the text in a
compressed mode, where characters are moved closer together. If
iIAllowCondensed is false, or if condensing did not make the pixel width short
enough, EI_DrawTextToFit will truncate characters off of the end of the
string, replacing them with an ellipsis (“...”) to make the string fit.

Like EI_DrawText, EI_DrawTextToFit draws the text in the context’s
foreground color using the context’s font size and font style. Drawing begins
at the current pen location, and after drawing the pen is left just past the last
character drawn.

NOTE: EI DrawTextToFit does not require that the text argument be a
C string, as do other string functions in the API.

66

Electric Image User Interface API 4/13/2001

El_DrawTextInRect

voi d El _DrawText | nRect (

El _Dr awCont ext *j oCont ext,

const char *i Text,

i nt i NuntChar s,

const El_Rect *i Bounds) ;
ioContext a pointer to a drawing context object
iText a pointer to a character buffer
iINumChars the number of characters in the buffer

pointed to by iText

iBounds a pointer to a rectangle

El_DrawTextinRect draws text to the context within a rectangular area. If the
text is too long to fit on one line, the text is word-wrapped as necessary. In no
case does drawing occur outside of *iBounds. If the text is long enough to
wrap below the bottom of *iBounds, it will be clipped.

El_DrawTextinRect draws the text in the context’s foreground color using the
context’s font size and font style, but does not use the context’s pen location.

NOTE: EI DrawTextinRect does not require that the text argument be
a C string, as do other string functions in the API.

El_HiliteRect
void EI_HliteRect(
El _Dr awCont ext *j oCont ext,
const El_Rect *i Bounds,
const El_Col or *iHiliteCol or,
const El_Col or *j BackCol or);
ioContext a pointer to a drawing context object
iBounds a pointer to a rectangle
iHiliteColor a pointer to a color
iBackColor a pointer to a color

El_HiliteRect highlights the rectangle by swapping the colors of pixels
matching *iHiliteColor and *iBackColor. Pixels that are colored *iHiliteColor
are changed to *iBackColor, and pixels that are colored *iBackColor are
changed to *iHiliteColor. This has the effect of “highlighting” the rectangle in
the given color.

67

Electric Image User Interface API 4/13/2001

Image Buffers

The functions described in this section allow you to create and destroy image
buffer objects. The functions and macros described in this section are declared
in the file EI_ImageBuffer.h.

El_MakelmageBuffer

El | mageBuffer *El_Makel nageBuf f er (

const El_Rect *i Bounds) ;
iBounds a pointer to a rectangle
return value a pointer to an image buffer object

El_Makelmage creates and returns a new image buffer object, using the
boundary rectangle *iBounds. The boundary rectangle not only defines the
pixel dimensions of the image buffer, but also the coordinate space of the
image buffer. For example if the boundary rectangle is (50, 50, 100, 100), then
the coordinates of the upper left pixel of the image buffer are (50, 50).

The image buffer created always uses 32-bit pixels.

El_DestroylmageBuffer

voi d El _Destroyl mageBuf fer (
El | mageBuffer *i | mage) ;

ilmage a pointer to an image buffer object

El_DestroylmageBuffer destroys an image buffer. Call
El_DestroylmageBuffer after you are through using the image buffer.

NOTE: Do notcall EI_DestroylmageBuffer on an image buffer that
you did not create. In particular, do not call
El_DestroylmageBuffer on the image buffer returned by
calling El_GetDisklmageBuffer.

El_GetBufferRowBytes

i nt El_Get Buf f er RowByt es(

const El | mageBuffer *i | mage) ;
ilmage a pointer to an image buffer object
return value an integer value

El_GetBufferRowBytes returns the size, in bytes, of a single row of pixels
from the image buffer.

68

Electric Image User Interface API 4/13/2001

NOTE: Do notassume that this value is equal to the number of pixels
in a row times the number of bytes in a pixel. An operating
system may add padding bytes to each scan line so that it will
be aligned for better performance.

El_GetBufferBaseAddress

unsi gned char *El _Get Buf f er BaseAddr ess(

El | mageBuffer *i | mage) ;
ilmage a pointer to an image buffer object
return value a pointer to raw pixel memory

El_GetBufferBaseAddress returns a pointer to the image buffer’s raw pixel
memory. This pointer is actually a pointer to the upper left pixel in the image
buffer.

To access and set pixel memory, use the pixel access macros.

El_GetBufferBounds

voi d El _Get Buf f er Bounds(

const El | mageBuffer *i | mage,

El _Rect *oRect) ;
ilmage a pointer to an image buffer object
oRect a pointer to a rectangle

El_GetBufferBounds sets *oRect to the boundary rectangle of the image
buffer.

Pixel Access Macros

The pixel access macros provided by the API allow you to get and set the
color components of the pixels in an image buffer.

NOTE: Ifyouhave a pointer to pixel memory, you must dereference
the pointer when using it with the pixel access macros or you
will get a compiler error. The macros all assume they are
working on pixel values, not pointers to pixel values.

For example:
El _32Bit Pi xel *pi xel Ptr;
unsi gned char r, g, b, a;

/1l Set pixelPtr to point into an inmage buffer.

El GET _PI XEL _ALL(*pixelPtr, r, g, b, a);

69

Electric Image User Interface API

El_MAKE_PIXEL

El _MAKE_PI XEL(

i Red,

i & een,

i Bl ue

i Al pha)
iRed
iGreen
iBlue
iAlpha
return value

4/13/2001

a red value

a green value

a blue value

an alpha value
a 32 bit pixel

The macro EI_ MAKE_PIXEL combines its four arguments to create a 32 bit
pixel value. The values of the arguments should be unsigned values in the

range O to 255.

The best use of EI_ MAKE_PIXEL is for creating compile-time constants. For

example:

#def i ne RED Pl XEL EI _MAKE_PI XEL(0, OXFF, 0, 0)

For setting components of pixel variables or pixel memory, use the other

macros described below.

El_GET_PIXEL_ALL

El _GET_PI XEL_ALL(
i Pi xel,
oRed,
oG een,
oBl ue,
oAl pha)
iPixel
oRed
oGreen
oBlue

oAlpha

a 32 bit pixel value
an integer value
an integer value
an integer value
an integer value

The macro EI_GET_PIXEL_ALL breaks up the pixel value iPixel into its
separate components and stores the results in oRed, oGreen, oBlue and

oAlpha.

70

Electric Image User Interface API 4/13/2001

El_SET_PIXEL_ALL

El _SET_PI XEL_ALL(

oPi xel ,

i Red,

i Green,

i Bl ue,

i Al pha)
oPixel a 32 bit pixel value
iRed an integer value
iGreen an integer value
iBlue an integer value
iAlpha an integer value

The macro EI_SET_PIXEL_ALL combines the pixel components passed in
iRed, iGreen, iBlue and iAlpha into the pixel variable oPixel.

El_GET_PIXEL_RED

El _GET_PI XEL_RED(
i Pi xel)

iPixel a 32 bit pixel value
return value an integer value

The macro EI_GET_PIXEL_RED returns the red component of the given
pixel value.

El_SET_PIXEL_RED

El _SET_PI XEL_RED

i oPi xel ,

i Red)
ioPixel a 32 bit pixel value
iRed an integer value

The macro EI_SET_PIXEL_RED sets the red component of the given pixel
value without changing any of the other components.

El_GET_PIXEL_GREEN

El _GET_PI XEL_GREEN(
i Pi xel)

71

Electric Image User Interface API 4/13/2001

iPixel a 32 bit pixel value
return value an integer value

The macro EI_GET_PIXEL_GREEN returns the green component of the
given pixel value.

El_SET_PIXEL_GREEN

El _SET_PI XEL_GREEN(

i oPi xel ,

i Geen)
ioPixel a 32 bit pixel value
iGreen an integer value

The macro EI_SET_PIXEL_GREEN sets the green component of the given
pixel value without changing any of the other components.

El_GET_PIXEL_BLUE

El _GET_PI XEL_BLUE(
i Pi xel)

iPixel a 32 bit pixel value
return value an integer value

The macro EI_GET_PIXEL_BLUE returns the blue component of the given
pixel value.

El_SET_PIXEL_BLUE

El _SET_PI XEL_BLUE(

i oPi xel ,

i Bl ue)
ioPixel a 32 bit pixel value
iBlue an integer value

The macro EI_SET_PIXEL_BLUE sets the blue component of the given pixel
value without changing any of the other components.

El_GET_PIXEL_ALPHA

El _GET_PI XEL_ALPHA(
i Pi xel)

72

Electric Image User Interface API 4/13/2001

iPixel a 32 bit pixel value
return value an integer value

The macro EI_GET_PIXEL_ALPHA returns the red component of the given
pixel value.

NOTE: The alpha componentisignored when the image buffer is
displayed; unless you are performing pixel operations yourself
that use the alpha component, you will probably not need to
use this macro.

El_SET_PIXEL_ALPHA

El _SET_PI XEL_ALPHA(

i Pi xel,

i Al pha)
ioPixel a 32 bit pixel value
iAlpha an integer value

The macro EI_SET_PIXEL_ALPHA sets the alpha component of the given
pixel value without changing any of the other components.

NOTE: The alpha componentisignored when the image buffer is
displayed; unless you are performing pixel operations yourself
that use the alpha component, you will probably not need to
use this macro.

Sample Code

This section presents sample code showing how to use the image buffer
functions and macros to render to an image buffer.

The first example shows how to render to the entire image buffer.
voi d Render Whol eBuf fer (El _| mageBuf fer *iBuffer)

{

El _Rect bounds;

i nt rowBytes, wi dth, height, x, vy;
char* rowbtr;

El _32Bit Pi xel *pi xel Ptr;

unsi gned char red, green, blue;

El _Get Buf f er Bounds(i Buf fer, &bounds);

wi dth = bounds.right - bounds.|eft;

hei ght = bounds. bottom - bounds. t op;
rowBytes = El _Get Buf f er RowByt es(i Buffer);

rowPtr = El _Get BufferBaseAddress(iBuffer);

73

Electric Image User Interface API 4/13/2001

for (y = 0; y < height; ++y) {

pi xel Ptr (El _32BitPixel*) rowPtr;
for (x =0; x <wdth; ++x) {

/* Conpute red, green, and blue values as desired */

El _SET PI XEL_RED(*pi xel Ptr, red);
El _SET PI XEL_CGREEN(* pi xel Ptr, green);
El _SET PI XEL _BLUE(*pi xel Ptr, blue);

++pi xel Ptr;

}

rowPtr += rowBytes;

}

The function begins by getting the boundary rectangle, row bytes value and
the pointer to the first pixel in the image buffer. The outer loop increments the
row pointer by adding rowBytes to it, which gives a pointer to the next row of
pixels. The inner loop begins by copying the row pointer to a pixel pointer

(casting to EI_32BitPixel*), then it sets the red, green and blue values of each
pixel independently.

To render to an area within an image buffer (rather than the whole image
buffer), the code is very similar:

voi d RenderParti al Buf fer(El _| nageBuffer *iBuffer,
const El _Rect *i Render Bounds)

{
El _Rect render Bounds, bounds;
i nt rowBytes, wi dth, height, x, vy;
char* rowbPtr;
El _32Bit Pi xel *pi xel Ptr;
unsi gned char red, green, blue;

El _Get Buf f er Bounds(i Buf fer, &bounds);

if (El_IntersectRects(&ounds, i RenderBounds,
& ender Bounds)) {

wi dt h = renderBounds. right - renderBounds.|eft;
hei ght = render Bounds. bottom - render Bounds. t op;

rowBytes = El _Get Buf f er RowByt es(i Buffer);
rowPtr = El _Get BufferBaseAddress(iBuffer) +
(renderBounds.top - bounds.top) * rowBytes +
(renderBounds. |l eft - bounds.left) *
si zeof (EI _32Bi t Pi xel) ;

for (y = 0; < height; ++y) {

y
pi xel Ptr = (El _32BitPixel*) rowPtr;
for (x = 0; x <width; ++x) {

74

Electric Image User Interface API 4/13/2001

/* Compute red, green, and blue values as desired */

El _SET PI XEL_RED(*pi xel Ptr, red);
El _SET PI XEL_CGREEN(* pi xel Ptr, green);
El _SET PI XEL _BLUE(*pi xel Ptr, blue);

++pi xel Ptr;

}
rowPtr += rowBytes;

}
}
}

There are only two significant differences between this function and the
previous function. The first is the call to El_IntersectRects, which makes sure
that the area being rendered is really within the bounds of the image buffer.

The second difference is that the beginning row pointer is no longer just the
pointer to the top left pixel. Rather, this pixel is offset downward by the
distance from the top of the image buffer to the top of the render area, and
leftward by the distance from the left of the image buffer to the left of the
render area. Notice that the distance is computed by getting the image buffer’s
boundary rectangle and subtracting it from the render area bounds. The image
buffer’'s boundary rectangle does not necessarily have its origin at (0, 0).

Note that in both examples, x and y do not necessarily correspond to pixel
coordinates; they are instead just counters that tell the function how many
rows and columns to render. If you need counters that correspond to pixel
coordinates, you can increment from the top to the bottom and from the left to
the right of the render area bounds.

Disk Images

The functions described in this section allow you to work with disk images
stored in resource files. The functions described in this section are declared in
El_Disklmage.h.

El_MakeDisklimage

El _Di skl mage *El _MakeDi skl nage(

El _ResourceFile *i Resour ceFi | e,
unsi gned | ong i Type,
i nt i1D);

75

Electric Image User Interface API 4/13/2001

iResourceFile a pointer to a resource file
iType a resource type
iID a resource ID

El_MakeDisklmage reads a disk image from the given resource file, using the
type iType and ID iID. If EI_MakeDisklmage cannot create the disk image, it
returns NULL.

The allowed types include ‘argb’, ‘PICT’, and ‘cicn.’

El_DestroyDiskimage

voi d El _DestroyDi skl mage(
El _Di skl mage *i | mage) ;

ilmage a pointer to a disk image

El_DestroyDisklmage destroys a disk image object that was created using
El_MakeDisklmage. Call EI_DestroyDiskimage when you are done using the
disk image object.

El_GetDisklmageBuffer

const El I mageBuffer *El _Get D skl mageBuf fer (

El _Di skl mage *i | mage) ;
ilmage a pointer to a disk image
return value a pointer to an image buffer object

El_GetDiskimageBuffer returns the image buffer associated with the disk
image object. You can draw this image buffer to a drawing context using
El_Drawlmage.

NOTE: Because ElI_GetDiskimageBuffer returns a const
El_ImageBuffer pointer, you are not allowed to modify the
image buffer associated with a disk image in any way. The
pixels of a disk image’s image buffer should be considered
read-only. In particular, you cannot draw to this image buffer
by creating an ElI_DrawContext for it, and you cannot destroy
this image buffer by calling El_DestroylmageBuffer.

76

Electric Image User Interface API 4/13/2001

Rectangles

El_GetRectWidth

int El _Get Rect Wdt h(

const El_Rect *i Rect);
iRect a pointer to a rectangle
return value an integer value

El_GetRectWidth returns the width of the rectangle.

El_GetRectHeight

i nt El _Get Rect Hei ght (

const El_Rect *i Rect);
iRect a pointer to a rectangle
return value an integer value

El_GetRectHeight returns the height of the rectangle.

El_SetRect
voi d El _Set Rect (
El _Rect *oRect,
i nt i Left,
i nt i Top,
i nt i Ri ght,
i nt i Bottom;
oRect a pointer to a rectangle
iLeft an integer value
iTop an integer value
iRight an integer value
iBottom an integer value

El_SetRect sets all of the members of a rectangle at once. It is equivalent to
the following code fragment:

oRect->left = ileft;
oRect->top = i Top;
oRect->right = iRight;

oRect - >bottom = i Bott om

77

Electric Image User Interface API

El_IsRectEmpty

int El_IsRect Enpty(
const El _Rect

iRect
return value

El_IsRectEmpty returns true if the rectangle is empty and false if the rectangle

IS non-empty.

El_IsPtInRect

int El _IsPtlnRect(

const El _Rect
i nt
i nt

iRect

iX

iY

return value

4/13/2001

*i Rect);

a pointer to a rectangle
a boolean value

*i Rect,
i X
Y);
a pointer to a rectangle
an integer value
an integer value
a boolean value

El_IsPtInRect returns true if the point given by (iX, iY) is contained within

*iRect.

El_UnionRects

voi d El _Uni onRect s(
const El _Rect
const El _Rect
El _Rect
iRectl
iRect2

oResult

*i Rect 1,
*i Rect 2,
*oResul t);
a pointer to a rectangle
a pointer to a rectangle

a pointer to a rectangle

El_UnionRects sets *oResult to the union of *iRectl and *iRect2. The union
of two rectangles is defined as the smallest rectangle that encloses both

rectangles.

El_IntersectRects

int El _IntersectRects(
const El _Rect
const El _Rect
El _Rect

*i Rect 1,
*i Rect 2,
*oResul t);

78

Electric Image User Interface API 4/13/2001

iRectl a pointer to a rectangle
iRect2 a pointer to a rectangle
oResult a pointer to a rectangle
return value a boolean value

El_IntersectRects sets *oResult to the intersection of *iRectl and *iRect2,
and returns true if *oResult is non-empty. The intersection of two rectangles is
defined as the largest rectangle that contains area in both rectangles.

If you pass NULL as oResult, El_IntersectRects will still compute whether or
not the intersection is empty and return the appropriate value.

El_InsetRect
voi d El I nset Rect (El _Rect *i oRect,
i nt il nsetX
i nt il nsetY);
ioRect a pointer to a rectangle
iInsetX an integer value
iinsetY an integer value

El_InsetRect shrinks *ioRect by moving the left and right sides inwards by
iinsetX pixels, and by moving the top and bottom sides inwards by ilnsetY
pixels. If either value is negative, the corresponding sides of *ioRect will
move outwards rather than inwards.

El_OffsetRect

void El _OfsetRect(

El Rect *j oRect,

i nt i O fsetX,

i nt i OffsetY);
ioRect a pointer to a rectangle
iOffsetX an integer value
iOffsetY an integer value

El_OffsetRect moves *ioRect iOffsetX pixels horizontally and iOffsetY
pixels vertically.
El_AreRectsEqual

i nt El _AreRectsEqual (
const El_Rect *i Rect 1,
const El_Rect *i Rect 2) ;

79

Electric Image User Interface API 4/13/2001

iRectl a pointer to a rectangle
iRect2 a pointer to a rectangle
return value a boolean value

El_AreRectsEqual returns true if the rectangles are identical and false if they
are not identical.

File References

The functions described in this section allow you to manipulate directory
reference and file reference objects. The functions described in this section are
declared in the file EI_FileRef.h.

El_MakeDirectoryRef

El _DirectoryRef *ElI _MakeDirectoryRef(
voi d) ;

return value a pointer to a directory reference object

El_MakeDirectoryRef creates and returns an empty directory reference object.
When you are done using this directory reference, you must destroy it by
calling El_DestroyDirectoryRef.

El_DestroyDirectoryRef

voi d El _DestroyDirectoryRef (
El _DirectoryRef *i Di rectoryRef);

iDirectoryRef a pointer to a directory reference object

El_DestroyDirectoryRef destroys a directory reference object that was created
using any of the functions which create new directory reference objects. These
functions are

* El_MakeDirectoryRef
* El_GetHomeDirectory
* EIl_GetPreferencesDirectory

» EI_GetTemporaryDirectory

80

Electric Image User Interface API 4/13/2001

El_AppendDirectoryName

voi d El _AppendDi r ect or yNane(

El _DirectoryRef *j oDirectoryRef,

const char *i Di rectoryNane);
ioDirectoryRef a pointer to a directory reference object
iDirectoryName a pointer to a C string

El_AppendDirectoryName adds the string given by iDirectoryName to the
path name list in the directory reference.

El_RemovelastDirectoryName

voi d El _Renpvelast Di rect or yNange(
El _DirectoryRef *joDi rectoryRef);

ioDirectoryRef a pointer to a directory reference object

El_RemovelLastDirectoryName removes the last name in a directory
reference’s path name list. This has the effect of changing the directory
reference so that it now refers to the directory that previously enclosed it.

El_GetNumDirectoryNames

i nt El _Get NunDi r ect or yNames(
const El _DirectoryRef *i DirectoryRef);

iDirectoryRef a pointer to a directory reference object

El_GetNumDirectoryNames returns the number of names in the directory
reference’s path name list.

El_GetDirectoryNameSize

int El _GetDirectoryNaneSi ze(

const El_DirectoryRef *i Di rectoryRef,

i nt i Nanel ndex) ;
iDirectoryRef a pointer to a directory reference object
iNamelndex a path name list index
return value an integer value

El_GetDirectoryNameSize returns the number of characters in the name from
the directory reference’s path name list whose index is given by iNamelndex.
The number of characters includes the terminating zero.

81

Electric Image User Interface API 4/13/2001

El_GetDirectoryName

voi d El _Get Di rectoryNane(

const El _DirectoryRef *i Di rectoryRef,

i nt i Nanel ndex,

char *i Text,

i nt *j oNuntChars) ;
iDirectoryRef a pointer to a directory reference object
iNamelndex a path name list index
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetDirectoryName copies the text from the name from the directory
reference’s path name list whose index is given by iNamelndex to the buffer
pointed at by oText. If the text is too long to fit into the buffer, as indicated by
the value of *ioNumChars, El_GetDirectoryName will copy as many
characters as will fit. including the terminating zero. El_GetDirectoryName
will also adjust the value of *ioNumChars to indicate how many characters
were actually copied.

El_GetDirectoryPathNameSize

int El _GetDirectoryPat hNaneSi ze(

const El _DirectoryRef *i DirectoryRef);
iDirectoryRef a pointer to a directory reference object
return value an integer value

El_GetDirectoryPathNameSize creates a platform-specific path name from
the directory reference object and returns the number of characters in the path
name, including the terminating zero.

El_GetDirectoryPathName

voi d El _Get Di rect oryPat hNanme(

const El _DirectoryRef *i Di rectoryRef,
char *i Text,
i nt *j oNuntChars) ;

82

Electric Image User Interface API 4/13/2001

iDirectoryRef a pointer to a directory reference object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetDirectoryPathName creates a platform-specific path name from the
directory reference object, then copies it to the buffer pointed at by oText. If
the path name is too long to fit into the buffer, as indicated by the value of
*loNumChars, El_GetDirectoryPathName will copy as many characters as
will fit, including the terminating zero. EI_GetDirectoryPathName will also
adjust the value of *ioNumChars to indicate how many characters were
actually copied.

El_GetHomeDirectory

El _DirectoryRef *El _GetHoneDirectory(
voi d) ;

return value a pointer to a directory reference object

El_GetHomeDirectory creates and returns a directory reference object that is
initialized to point to the home directory. When you are done using this
directory reference, you must destroy it by calling El_DestroyDirectoryRef.

El_GetPreferencesDirectory

El _DirectoryRef *ElI GetPreferencesDi rectory(
voi d) ;

return value a pointer to a directory reference object

El_GetPreferencesDirectory creates and returns a directory reference object
that is initialized to point to the preferences directory. When you are done
using this directory reference, you must destroy it by calling
El_DestroyDirectoryRef.

El_GetTemporaryDirectory

El _DirectoryRef *ElI Get TenporaryDirectory(
voi d) ;

return value a pointer to a directory reference object

El_GetTemporaryDirectory creates and returns a directory reference object
that is initialized to point to the temporary items directory. When you are done
using this directory reference, you must destroy it by calling
El_DestroyDirectoryRef.

83

Electric Image User Interface API 4/13/2001

El_CreateDirectory

int El _CreateDirectory(

const El _DirectoryRef *i DirectoryRef);
iDirectoryRef a pointer to a directory reference object
return value an error code

El_CreateDirectory creates a directory in the user’s file system that matches
the directory reference *iDirectoryRef. EI_CreateDirectory will also create
intermediate parent directories (for example, if the parent directory of the
directory indicated by *iDirectoryRef does not exist, the parent directory will
be created first). The function result is an error code; zero indicates success,
non-zero values indicate failure.

If the directory indicated by *iDirectoryRef already exists,
El_CreateDirectory will do nothing and return zero.

El_MAKE_FILE_TYPE

El _MAKE_FI LE_TYPE(

iA

i B,

i C,

i D
iA a character constant
iB a character constant
iC a character constant
iD a character constant
return value a file type value

The macro EI_ MAKE_FILE_TYPE combines its four character constant
arguments into a single file type. Use this macro to construct file type values.
For example:

const unsigned | ong cTextFil eType =
El_MAKE_FILETYPE(' T, "E, "X, 'T);

El_MakeEmptyFileRef

El _Fil eRef *ElI _MakeEnptyFil eRef (
voi d) ;

84

Electric Image User Interface API 4/13/2001

return value a pointer to a file reference object

El_MakeEmptyFileRef creates and returns an empty file reference object.
When you are done using this file reference, you must destroy it by calling
El_DestroyFileRef.

El_MakeFileRef

El _Fil eRef *ElI _MakeFil eRef (

const ElI_DirectoryRef *i Directory,

const char *i Nare,

unsi gned | ong i Fil eType,

const char *| Ext ensi on) ;
iDirectory a pointer to a directory reference object
iName a pointer to a C string
iFileType a file type value
IExtension a pointer to a C string
return value a pointer to a file reference object

El_MakeFileRef creates and returns a completely initialized file reference
object. The file reference will copy the directory reference pointed at by
iDirectory to use as its own, so you can destroy iDirectory without affecting
the new file reference. For example:

El _DirectoryRef *di r Ref;
El _Fil eRef *fil eRef;

dirRef = EI _GetHomeDirectory();

fileRef = El _MakeFil eRef(dirRef, "Sone File",
cTextFil eType, "txt");

El _DestroyDirectoryRef (dirRef);

/* Use fil eRef here. */

Note that the extension string does not include a period (“.”). Also, if an
extension string appears in the name, it will override the file reference’s own
extension string. For example:

fileRef = El _MakeFil eRef(dirRef, "Sone File.rsc",
cTextFil eType, "txt");

This file reference object will refer to a file called “Some File.rsc,” not “Some
File.txt,” or “Some File.rsc.txt.”

When you are done using this file reference, you must destroy it by calling
El_DestroyFileRef.

85

Electric Image User Interface API 4/13/2001

El_DestroyFileRef

voi d El _DestroyFil eRef (
El _Fil eRef *i Fil eRef);

iFileRef a pointer to a file reference object

El_DestroyFileRef destroys a file reference object that was created using any
of the functions which create new file reference objects. These functions are

* El_MakeEmptyFileRef

* ElI_MakeFileRef

» EIl_AskUserForNewFile

» EIl_AskUserForExistingFile

El_GetFileDirectory

El DirectoryRef *El GetFileDirectory(El _FileRef *iFileRef)

iFileRef a pointer to a file reference object

return value a pointer to a directory reference object
El_GetFileDirectory returns a pointer to the directory reference object used by
*IFileRef. This directory reference object is the directory reference object
used internally by *iFileRef, so changing the directory reference object (for

example, by adding or removing names) will change the location of the file
indicated by *iFileRef.

NOTE: Do notcall EI_DestroyDirectoryRef on the directory reference
returned by EI_GetFileDirectory.

El_SetFileRefType

voi d El _Set Fil eRef Type(

El _Fil eRef *i Fi | eRef,

unsi gned | ong i FileType);
iFileRef a pointer to a file reference object
iFileType a file type value

El_SetFileRefType sets the file type bytes of the given file type. Calling
El_SetFileRefType will have no effect on the corresponding file in the user’s
file system. Therefore you should set the file type before using the file
reference object to create or open a file (by calling EI_OpenFileStream or
El_OpenResourceFile).

86

Electric Image User Interface API 4/13/2001

El_GetFileRefType

unsi gned | ong El _Get Fil eRef Type(

const ElI _Fil eRef *i Fil eRef);
iFileRef a pointer to a file reference object
return value a file type value

El_GetFileRefType returns the file reference object’s file type bytes.

El_SetFileRefExtension

voi d El _Set Fi | eRef Ext ensi on(

El _Fil eRef *i Fi | eRef,

const char *| Ext ensi on) ;
iFileRef a pointer to a file reference object
IExtension a pointer to a C string

El_SetFileRefExtension sets the file reference object’s extension string to the
string given by iExtension. Note that iExtension should not contain a period
character (“.”). Calling El_SetFileRefExtension will have no effect on the
corresponding file in the user’s file system. Therefore you should set the file
extension before using the file reference object to create or open a file (by
calling El_OpenFileStream or EI_OpenResourceFile).

El_GetFileRefExtensionSize

i nt El _GetFil eRef Ext ensi onSi ze(

const ElI _Fil eRef *i Fil eRef);
iFileRef a pointer to a file reference object
return value an integer value

El_GetFileRefExtensionSize returns the number of characters in the file
reference object’s extension string, including a terminating zero.

El_GetFileRefExtension

voi d El _Get Fi | eRef Ext ensi on(

const ElI _Fil eRef *i Fi | eRef,
char *oText,
i nt *j oNuntChars) ;

87

Electric Image User Interface API 4/13/2001

iFileRef a pointer to a file reference object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetFileRefExtension copies the file reference object’s extension string to
the buffer pointed at by oText. If the extension string is too long to fit into the
buffer, as indicated by the value of *ioNumChars, El_GetFileRefExtension
will copy as many characters as will fit, including a terminating zero.
El_GetFileRefExtension will also adjust the value of *ioNumChars to indicate
how many characters were actually copied.

El_SetFileName

voi d El _Set Fi | eNange(

El _Fil eRef *i Fi | eRef,

const char *i Nane) ;
iFileRef a pointer to a file reference object
iName a pointer to a C string

El_SetFileName sets the file reference object’s file name to the string given
by iName.

El_GetFileNameSize

int El _GetFileNaneSi ze(

const ElI _Fil eRef *i Fil eRef);
iFileRef a pointer to a file reference object
return value an integer value

El_GetFileNameSize returns the number of characters in the file reference
object’s file name, including a terminating zero.

El_GetFileName

voi d El _Get Fi |l eNange(

const ElI _Fil eRef *i Fi | eRef,
char *i Text,
i nt *j oNuntChars) ;

88

Electric Image User Interface API 4/13/2001

iFileRef a pointer to a file reference object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetFileName copies the file reference object’s file name to the buffer
pointed at by oText. If the file name is too long to fit into the buffer, as
indicated by the value of *ioNumChars, El_GetFileName will copy as many
characters as will fit, including a terminating zero. El_GetFileName will also
adjust the value of *ioNumChars to indicate how many characters were
actually copied.

El_GetFilePathNameSize

int El _GetFil ePat hNaneSi ze(

const ElI _Fil eRef *i Fil eRef);
iFileRef a pointer to a file reference object
return value an integer value

El_GetFilePathNameSize creates a platform-specific path name from the file
reference object and returns the number of characters in the path name.

El_GetFilePathName

voi d El _Get Fi | ePat hName(

const ElI _Fil eRef *i Fi | eRef,
char *oText,
i nt *j oNuntChars) ;
iFileRef a pointer to a file reference object
oText a pointer to a character buffer
ioNumChars a pointer to the number of characters in the

buffer pointed to by oText

El_GetFilePathName creates a platform-specific path name from the file
reference object, then copies it to the buffer pointed at by oText. If the path
name is too long to fit into the buffer, as indicated by the value of
*loNumChars, El_GetFilePathName will copy as many characters as will fit,
including a terminating zero. El_GetFilePathName will also adjust the value
of *iloNumChars to indicate how many characters were actually copied.

El_AskUserForNewFile

El _Fil eRef *ElI _AskUser For NewFi | e(
const char *i Pronpt Text,
i nt i NunChar s) ;

89

Electric Image User Interface API 4/13/2001

iPromptText a pointer to a character buffer

iINumChars the number of characters in the buffer
pointed to by iPromptText

return value a pointer to a file reference object

El_AskUserForNewFile presents the user with a platform-specific file dialog
box and lets the user name a new file. The string passed in iPromptText and
iINumChars is displayed as a prompt in the dialog box.

When you are done using the file reference object, you must destroy it by
calling El_DestroyFileRef.

El_AskUserForExistingFile

El _Fil eRef *ElI _AskUser For Exi stingFil e(

const char *i Pronpt Text,

i nt i NunChar s) ;
iPromptText a pointer to a character buffer
iINumChars the number of characters in the buffer

pointed to by iPromptText
return value a pointer to a file reference object

El_AskUserForExistingFile presents the user with a platform-specific file
dialog box and lets the user pick an existing file. The string passed in
iPromptText and iNumChars is displayed as a prompt in the dialog box.

When you are done using the file reference object, you must destroy it by
calling El_DestroyFileRef.

El_DeleteFile
int EI _Del eteFil ¢g(
const ElI _Fil eRef *i Fil eRef);
iFileRef a pointer to a file reference object
return value an error code

El_DeleteFile deletes the file indicated by *iFileRef from the user’s file
system.

Resource Files

The functions described in this section let you retrieve resources from
resource files. The functions described in this section are declared in the file
El_ResourceFile.h.

90

Electric Image User Interface API 4/13/2001

El_OpenResourceFile

El _ResourceFil e* El _OpenResourceFil e(
const ElI _Fil eRef *i Resour ceFi | eRef);
iResourceFileRef a file reference object
return value a pointer to a resource file object
El_OpenResourceFile attempts to open the resource file indicated by the file

reference object. If the resource file cannot be opened, EI_OpenResourceFile
returns NULL.

The resource file object does not retain any connection to the file reference
object, so you can destroy it as soon as the resource file object is created. For

example:
El _Fil eRef *fil eRef;
El _ResourceFile *rsrcFil e;

/* Create fil eRef here. */

rsrcFile = El _OpenResourceFile(fileRef);
El _DestroyFil eRef (fil eRef);

/* Use rsrcFile to read resources here. */

El_CloseResourceFile

voi d El _C oseResourceFil e(
El _ResourceFile *i ResourceFil e);

iResourceFile a pointer to a resource file object

El_CloseResourceFile closes a resource file that was previously opened with
El_OpenResourceFile. You must use ElI_CloseResourceFile when you are
done using the resource file. When you call El_CloseResourceFile, all
resources previously obtained from the resource file using the
El_GetResource function are disposed.

El_GetResource

voi d *El _Get Resour ce(

El _ResourceFile *i Resour ceFi | e,
unsi gned | ong i Resour ceType,

i nt i Resour cel D,

| ong *oResour ceSi ze) ;

91

Electric Image User Interface API 4/13/2001

iResourceFile a pointer to a resource file object
iResourceType a resource type

iResourcelD a resource ID

oResourceSize a pointer to an integer value
return value a pointer to a resource

El_GetResource reads resource data from a resource file. The resource of type
iIResourceType and with ID iResourcelD is read into a memory and a pointer

to the resource memory is returned. If oResourceSize is not NULL,
*oResourceSize is set to the size in bytes of the resource data.

If the resource cannot be read into memory for any reason, EI_GetResource
returns NULL.

El_ReleaseResource

voi d El _Rel easeResour ce(
voi d *j Resource);

iResource a pointer to a resource

El_ReleaseResource disposes of the resource pointed at by iResource. When
you are done with a resource, you should call EI_ReleaseResource.

NOTE: Ifyoudo notcall EI_ReleaseResource, the resource will be
disposed when you call EI_CloseResourceFile.

File 1/0O

The functions described in this section allow you to perform file 1/0. The
functions described in this section are declared in the file EI_Stream.h.

El_OpenFileStream

El _Stream *El _OpenFi |l eStreamn
const ElI _Fil eRef *i Fi | eRef,
El _StreamAccess i Access);
iFileRef a pointer to a file reference object
IAccess a stream access value
return value a stream object

El_OpenFileStream opens the file indicated by *iFileRef for 1/0O using the
access value iAccess. The possible values of iAccess, and their behavior, are

92

Electric Image User Interface API 4/13/2001

cEl_ReadOnly If the file indicated by *iFileRef does not exist, the
function result is NULL. Otherwise the file is
opened for read access and a stream object is
constructed and returned.

cEl_WriteOnly If the file does not exist, the file is created. Then the
file is opened for write access and a stream object is
constructed and returned.

cEl_ReadWrite If the file does not exist, the file is created. Then the
file is opened for read-write access and a stream
object is constructed and returned.

In any case, if the file cannot be opened or the stream object cannot be
created, EI_OpenFileStream returns NULL.

Once you have finished using the stream object, you must close it by calling
El_CloseStream.

El_CloseStream

voi d El _Cl oseStrean
El _Stream *j Stream;

iStream a pointer to a stream object

El_CloseStream closes the file associated with the stream object, and then
destroys the stream object.

El_SetStreamPosition

int El_SetStreanPosition(

El _Stream *j Stream

| ong i Position);
iStream a pointer to a stream object
iPosition a stream position
return value an error code

El_SetStreamPosition sets the position of the stream to iPosition. The position
of the stream is the position from within the stream at which the next read or
write operation occurs. Valid values for the stream’s position are between 0
and the stream’s size, inclusive. The function result is an error code; zero
indicates success, non-zero values indicate failure.

93

Electric Image User Interface API 4/13/2001

El_GetStreamPosition

| ong El _Get StreanPosition(

El _Stream *j Stream;
iStream a pointer to a stream object
return value a stream position

El_GetStreamPosition returns the stream’s current position. If an error occurs,
the return value will be negative.

El_GetStreamSize

long ElI _CGet StreantSi ze(

El _Stream *j Stream;
iStream a pointer to a stream object
return value a stream size

El_GetStreamSize returns the number of bytes contained in the stream. If an
error occurs, the return value will be negative.

El_ReadStream

i nt El _ReadStrean

El _Stream *j Stream
char *oBuf f er,
| ong *i oCount) ;
iStream a pointer to a stream object
oBuffer a pointer to a data buffer
ioCount a pointer to the number of bytes in the buffer
pointed to by oBuffer
return value an error code

El_ReadStream reads raw data from the stream to the buffer pointed to by
oBuffer. The number of bytes to read is passed in *ioCount; if an error occurs,
*loCount will be set to the actual number of bytes read. The function result is
an error code; zero indicates success, non-zero values indicate failure.

El_WriteStream

int EI _WiteStream

El _Stream *j Stream
char *i Buf fer,
| ong *joCount) ;

94

Electric Image User Interface API 4/13/2001

iStream a pointer to a stream object

iBuffer a pointer to a data buffer

ioCount a pointer to the number of bytes in the buffer
pointed to by iBuffer

return value an error code

El_WriteStream writes raw data from the stream to the buffer pointed to by
oBuffer. The number of bytes to write is passed in *ioCount; if an error

occurs, *ioCount will be set to the actual number of bytes read. The function
result is an error code; zero indicates success, non-zero values indicate failure.

El_WriteUInt8
int El _WitelU nt8(
El _Stream *j Stream
unsi gned char i Dat a) ;
iStream a pointer to a stream object
iData an unsigned char value
return value an error code

El_WriteUInt8 writes an unsigned char value to the stream as an 8 bit value.
The function result is an error code; zero indicates success, non-zero values
indicate failure.

NOTE: EI WriteUInt8 does not perform byte-swapping; it is provided
for completeness.

El_WriteSInt16

int EI _WiteSlnt16(

El _Stream *j Stream
short i Dat a) ;
iStream a pointer to a stream object
iData a short value
return value an error code

El_WriteSInt16 writes a short value to the stream as a 16 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

El_WriteUInt16

int El _WiteUl nt16(
El _Stream *i Stream
unsi gned short i Dat a) ;

95

Electric Image User Interface API 4/13/2001

iStream a pointer to a stream object
iData an unsigned short value
return value an error code

El_WriteUInt16 writes an unsigned short value to the stream as al6 bit value
(byte-swapped if necessary). The function result is an error code; zero
indicates success, non-zero values indicate failure.

El_WriteSInt32

int EIl _WiteSlnt32(

El _Stream *j Stream

| ong i Dat a) ;
iStream a pointer to a stream object
iData a long value
return value an error code

El_WriteSInt32 writes a long value to the stream as a 32 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

El_WriteUInt32

int EIl _WiteU nt32(

El _Stream *j Stream
unsi gned | ong i Dat a) ;
iStream a pointer to a stream object
iData an unsigned long value

return value an error code

El_WriteUInt32 writes an unsigned long value to the stream as a 32 bit value
(byte-swapped if necessary). The function result is an error code; zero
indicates success, non-zero values indicate failure.

El_WriteFloat32

int El _WiteFl oat32(
El _Stream *j Stream
fl oat i Dat a) ;

96

Electric Image User Interface API 4/13/2001

iStream a pointer to a stream object
iData a short value
return value an error code

El_WriteFloat32 writes a float value to the stream as a 32 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

El_WriteFloat64

int El _WiteFl oat 64(

El _Stream *j Stream
doubl e i Dat a) ;
iStream a pointer to a stream object
iData a short value
return value an error code

El_WriteFloat64 writes a double value to the stream as a 64 bit value (byte-
swapped if necessary). The function result is an error code; zero indicates
success, non-zero values indicate failure.

El_ReadUInt8
i nt El _ReadUl nt 8(
El _Stream *j Stream
unsi gned char *oDat a) ;
iStream a pointer to a stream object
oData a pointer to an unsigned char value
return value an error code

El_ReadUInt8 reads an 8 bit unsigned char value from the stream and assigns
it to *oData. The function result is an error code; zero indicates success, non-
zero values indicate failure.

NOTE: EI ReadUInt8 does not perform byte-swapping; it is provided
for completeness.

El_ReadSInt16

i nt El _ReadSl nt 16(
El _Stream *j Stream
short *oDat a) ;

97

Electric Image User Interface API 4/13/2001

iStream a pointer to a stream object
oData a pointer to a short value
return value an error code

El_ReadSIntl6 reads a 16 bit short value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

El_ReadUInt16

i nt El _ReadUl nt 16(

El _Stream *j Stream

unsi gned short *oDat a) ;
iStream a pointer to a stream object
oData a pointer to an unsigned short value
return value an error code

El_ReadUInt16 reads a 16 bit unsigned short value from the stream and
assigns it to *oData, performing byte-swapping if necessary. The function
result is an error code; zero indicates success, non-zero values indicate failure.

El_ReadSInt32

i nt El _ReadSl nt 32(

El _Stream *j Stream

| ong *oDat a) ;
iStream a pointer to a stream object
oData a pointer to a long value
return value an error code

El_ReadSInt32 reads a 32 bit long value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

El_ReadUInt32

i nt El _ReadUl nt 32(
El _Stream *j Stream
unsi gned | ong *oDat a) ;

98

Electric Image User Interface API 4/13/2001

iStream a pointer to a stream object
oData a pointer to an unsigned long value
return value an error code

El_ReadUInt32 reads a 32 bit unsigned long value from the stream and
assigns it to *oData, performing byte-swapping if necessary. The function
result is an error code; zero indicates success, non-zero values indicate failure.

El_ReadFloat32

i nt El _ReadFl oat 32(

El _Stream *j Stream
fl oat *oDat a) ;
iStream a pointer to a stream object
oData a pointer to a float value

return value an error code

El_ReadFloat32 reads a 32 bit float value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

El_ReadFloat64

i nt El _ReadFl oat 64(

El _Stream *j Stream
doubl e *oDat a) ;
iStream a pointer to a stream object
oData a pointer to a double value

return value an error code

El_ReadFloat64 reads a 64 bit double value from the stream and assigns it to
*oData, performing byte-swapping if necessary. The function result is an error
code; zero indicates success, non-zero values indicate failure.

Color Picking

The functions described in this section allow you to bring up a color picker
dialog box programmatically. The functions described in this section are
declared in the file EI_ColorPicker.h.

99

Electric Image User Interface API 4/13/2001

El_PickColor
int EI _PickColor(
const char *i Pronpt Stri ng,
const El_Col or *i Ori gi nal Col or,
El _Col or *oNewCol or) ;
iPromptString a pointer to a C string
iOriginalColor a pointer to a color
oNewColor a pointer to a color
return value a boolean value

El_PickColor presents the color picker dialog box to the user and allows the
user to pick a new color. The string given by iPromptString is displayed in the
color picker to prompt the user. The original color presented in the dialog box
is given by *iOriginalColor. If the user clicks the OK button, the new color is
copied to *oNewColor and the function returns true. If the user clicks the
Cancel button, the function returns false and *oNewColor is unaffected.

When you present the color picker dialog box with EI_PickColor, color picker
does not allow the user to edit an alpha value.

El_PickColorWithAlpha

i nt El_PickCol or Wt hAl pha(

const char *i Pronpt Stri ng,
const El_Col or *i Ori gi nal Col or,
unsi gned char i Oiginal Al pha,
El _Col or *oNewCol or,
unsi gned char *oNewAl pha) ;
iPromptString a pointer to a C string
iOriginalColor a pointer to a color
iOriginalAlpha an unsigned char value
oNewColor a pointer to a color
oNewAlpha a pointer to an unsigned char value
return value a boolean value

El_PickColorWithAlpha is similar to EI_PickColor, but allows the user to edit
an alpha value as well as a color. The string given by iPromptString is
displayed in the color picker to prompt the user. The original color presented
in the dialog box is given by *iOriginalColor, with the alpha passed in
iOriginalAlpha. If the user clicks the OK button, the new color is copied to
*oNewColor, the new alpha is copied to *oNewAlpha, and the function

returns true. If the user clicks the Cancel button, the function returns false and
*oNewColor and *oNewAlpha are unaffected.

100

Electric Image User Interface API 4/13/2001

QuickTime Support

The functions described in this section allow you to use QuickTime API calls
in your dialog box. The way to do this is to use a user control, and write a user
control draw function and a user control click function that calls through to

the QuickTime API. The strategy taken is to allow conversion from EI API
data types to QuickTime data types. The functions described in this section
are declared in the file EI_QuickTime.h.

NOTE: When you open a QuickTime movie, you must make sure to set
the current GrafPort and GDevice. See the description of
El_DialogToWindowPtr and EI_ImageBufferToGWorld for
more.

El_GetDialogFrameOffset

voi d El _Get Di al ogFranmeO fset (

const ElI _Dial og *i Di al og,

i nt *oOF f set X,

i nt *oOf fsetY);
iDialog a pointer to a dialog box object
oOffsetX a pointer to an integer value
oOffsetY a pointer to an integer value

El_GetDialogFrameOffset returns in *0OffsetX and *oOffsetY the dialog’s
frame offset. The ElI API draws a dialog box’s frame and title bar within an
operating system window. When you make API drawing calls, the API adjusts
the coordinates of the drawing operation to account for the width and height
of the dialog box’s frame. However, if you are going to display a QuickTime
movie in a dialog box you will need to perform the coordinate offset yourself.
The values returned in *oOffsetX and *oOffsetY are the horizontal and
vertical offsets needed to adjust a location in API coordinates to the
underlying window’s coordinates. For example, to display a QuickTime

movie in a user control you will need to call SetMovieBox:

El _Di al og *nmyDi al og;

Movi e nmyMovi e;

El _Control *control;

El _Rect bounds;

Rect gt Rect ;

i nt of fset X, offsetY;

/* Initialize nyDialog, nyMvie here... */
/* Get the control’s bounds. */

control = EI _FindControl Byl D(nyDi al og, cMyUserControl ID);
El _Get Control Bounds(control, &bounds);

101

Electric Image User Interface API 4/13/2001

/* Copy it into a QuickTime (Mac) Rect:
gt Rect.left = bounds.|eft;

gt Rect.top = bounds. top;

gt Rect.right = bounds.right;

gt Rect . bott om = bounds. bott om

/* Get the dialog's frane offset and offset the QuickTine
Rect. */

El _Get Di al ogFraneOf fset (nyDi al og, &offsetX, &offsetY);

MacCOf f set Rect (> Rect, (short) offsetX, (short) offsetY);

/* Now set the novie's bounds. */
Set Movi eBox(myMovi e, > Rect);

Note that if you set up a movie for display into an El_ImageBuffer, you do not
need to perform any offset operation.

El_FileRefToFSSpec

int El_Fil eRef ToFSSpec(

const ElI _Fil eRef *i Fi | eRef,

FSSpec * 0oFSSpec) ;
iFileRef a pointer to a file reference object
oFSSpec a pointer to an FSSpec structure
return value an error code

El_FileRefToFSSpec converts a file reference object to an FSSpec which can
be used in QuickTime calls. The return value is O if the conversion completed
successfully, or non-zero if the conversion failed.

The FSSpec returned in *oFSSpec and the file reference are not linked in any
way; specifically, you can destroy the file reference *iFileRef and still use
*oFSSpec.

El_DialogToWindowPtr

int El_Dial ogToW ndowPt r (

El _Di al og *i Di al og,

W ndowPt r *oW ndowPtr) ;
iDialog a pointer to a dialog box object
oWindowPtr a pointer to a WindowPtr
return value an error code

El_DialogToWindowPtr converts a dialog box object to a WindowPtr which
can be used in QuickTime calls. The return value is O if the conversion
completed successfully, or non-zero if the conversion failed.

102

Electric Image User Interface API 4/13/2001

The EI API does not make any guarantees about how the current GrafPort and
GDevice are set at any given time. Since QuickTime will initialize the

movie’s GWorld based on the current GrafPort and GDevice when the movie
is opened, you should explicitly set them before creating the movie. Using
El_DialogToWindowPtr, you can set the current GrafPort to the dialog box.

For example:
El _Di al og *nmyDi al og;
El _Fil eRef *novi eFi | eRef ;
FSSpec novi eSpec;
CSErr err Code;
short novi eResFi | e;
W ndowpt r wi ndow;

/* Get a reference to a novie file and convert it to
an FSSpec. */
novi eFi | eRef = ElI _AskUser For Exi stingFile
(" Choose a novie file");

if (El_FileRef ToFSSpec(novi eFil eRef, &movi eSpec) != 0) {
El _DestroyFil eRef (novi eFi | eRef);
return;

}

El _DestroyFil eRef (novi eFi | eRef);

/* Convert the dialog box to a WndowPtr and set the
current GrafPort to it. */

if (El_D al ogToWndowPtr (nmyDi al og, & ndow) != 0)
return;

Set GWor | d(Get W ndowPor t (wi ndow), Get Mai nDevi ce());

/* Now open the nmovie. */

err Code = OpenMovi eFi |l e(&movi eSpec, &novi eResFil e,
f sRdPerm ;

Because the WindowPtr returned in *oWindowPtr refers to the same object
referred to by *iDialog, you cannot use *oWindowPtr after destroying
*iDialog.

El_ImageBufferToGWorld

i nt El | mageBuffer ToGMr I d(

El | mageBuffer *i | mgeBuffer,
Gworl dptr *oGWr | d) ;
ilmageBuffer a pointer to an image buffer
oGWorld a pointer to a GWorldPtr
return value an error code

El_ImageBufferToGWorld converts an image buffer object to a GWorldPtr
which can be used in QuickTime calls. The return value is 0 if the conversion
completed successfully, or non-zero if the conversion failed.

103

Electric Image User Interface API 4/13/2001

The EI API does not make any guarantees about how the current GrafPort and
GDevice are set at any given time. Since QuickTime will initialize the

movie’s GWorld based on the current GrafPort and GDevice when the movie
is opened, you should explicitly set them before creating the movie. Using
El_ImageBufferToGWorld, you can set the current GrafPort to the image
buffer. For example:

El _Di al og *nmyDi al og;

El _Fil eRef *novi eFi | eRef ;
FSSpec novi eSpec;
CSErr err Code;

short novi eResFi | e;
Gworl dptr myGWor | d;

/* Get a reference to a novie file and convert it to
an FSSpec. */
novi eFi | eRef = ElI _AskUser For Exi stingFile
(" Choose a novie file");

if (El_FileRef ToFSSpec(novi eFil eRef, &movi eSpec) != 0) {
El _DestroyFil eRef (novi eFi | eRef);
return;

}

El _DestroyFil eRef (novi eFi | eRef);

/* Convert the inmage buffer to a GMrldPtr and set the
current GrafPort to it. */

i f (El_ImageBufferToGMrl d(nyl mageBuffer, &ryGarid) !'= 0)
return;

Set GWor I d(myGwor I d, Get GWor | dDevi ce(nmyGworl d));

/* Now open the nmovie. */
err Code = OpenMovi eFi |l e(&movi eSpec, &novi eResFil e,
f sRdPerm ;

Because the GWorldPtr returned in *oGWorld refers to the same object
referred to by *ilmageBuffer, you cannot use *oGWorld after destroying
*IimageBulffer.

Timers

The functions described in this section allow you to write simple callback
functions which can get called periodically when the system is idle. One use
of the timer system is to write a timer function that can call the QuickTime
function MoviesTask. The functions described in this section are declared in
the header file EI_Timer.h.

104

Electric Image User Interface API 4/13/2001

El_MakeTimer
El _Timer *ElI _MakeTi ner(
voi d) ;
return value a pointer to a timer object

El_MakeTimer creates and returns a timer object. If the timer cannot be
created, the function result is NULL. When you are through with the timer
object, you must destroy it by calling El_DestroyTimer.

El_DestroyTimer

voi d El _DestroyTi ner(
El _Ti ner *i Timer) ;

iTimer a pointer to a timer object
El_DestroyTimer destroys a timer object previously created with
El_MakeTimer. If the timer is currently scheduled for execution, it is stopped
before being destroyed.

El_SetTimerFunction

voi d El _Set Ti mer Functi on(

El _Ti ner *i oTi ner,

El _Ti mer Functi on i Function);
ioTimer a pointer to a timer object
iFunction a pointer to a timer function

El_SetTimerFunction sets the timer object’s timer function. When the timer
object is scheduled for execution (by calling either EI_StartPeriodicTimer or
El_StartOneShotTimer), the timer function will be called when the timer fires.

El_SetTimerExtraData

voi d El _Set Ti nmer Ext r aDat a(

El _Ti mer *j oTi ner,

voi d *i ExtrabDat a) ;
ioTimer a pointer to a timer object
iIExtraData a pointer

El_SetTimerExtraData allows you to associate extra data with a timer object.
The extra data is analogous to the extra data used with control objects and
dialog box objects. A timer object’s extra data can be retrieved by calling
El_GetTimerExtraData.

105

Electric Image User Interface API 4/13/2001

El_GetTimerExtraData

void *El _Get Ti mer ExtraDat a(

const El_Tiner *i Timer) ;
iTimer a pointer to a timer object
return value a pointer

El_GetTimerExtraData returns the extra data pointer associated with the timer
object *iTimer. If the timer object has no extra data pointer,
El_GetTimerExtraData returns NULL.

El_StartPeriodicTimer

int El _StartPeriodicTinmner(

El _Ti ner *i Ti mer,

i nt iMI1liseconds);
iTimer a pointer to a timer object
iMilliseconds an integer value
return value an error code

El_StartPeriodicTimer schedules a timer object for future execution. When a
timer object is scheduled using EI_StartPeriodicTimer, the timer object’'s

timer function will be called once every iMilliseconds milliseconds. If the

timer is successfully scheduled, El_StartPeriodicTimer returns zero; otherwise
a non-zero value is returned.

El_StartPeriodicTimer can be useful for scheduling repetitive actions that
must occur frequently. For example, here is how you could write a timer
function to call the QuickTime function MoviesTask:

static El _Tinmer *sQITimer = NULL;

/* The tiner function just calls MyviesTask. */
void MyTi mer Function(El _Ti ner *iTinmer)

{
}

void MylnitTinmer(void)

Movi esTask(NULL, DoTheRi ght Thi ng);

/* Create the tiner. */
sQITi mer = ElI _MakeTiner();

/* Set the tinmer function. */
El _Set Ti nmer Functi on(sQTTi mer, MTi nmerFunction);

/* Set up timer for approximately 30 calls/second */
El _StartPeriodicTinmer(sQITiner, 33);

106

Electric Image User Interface API 4/13/2001

}
voi d Myd eanUpTi ner (voi d)

/* No need to stop the timer; El_DestroyTi ner does it
for us. */
El _DestroyTi ner (sQITi ner);

El_StartOneShotTimer

int El _StartOneShot Ti ner (

El _Ti ner *i Ti mer,

i nt iMIliseconds);
iTimer a pointer to a timer object
iMilliseconds an integer value
return value an error code

El_StartOneShotTimer schedules a timer object for future execution. When a
timer object is scheduled using ElI_StartOneShotTimer, the timer object’s
timer function will be called exactly once iMilliseconds milliseconds into the
future, after which the timer will become unscheduled as if you had called
El_StopTimer. If the timer is successfully scheduled, EI_StartOneShotTimer
returns zero; otherwise a non-zero value is returned.

El_StopTimer
int El_StopTiner(
El _Ti ner *i Timer) ;
iTimer a pointer to a timer object
return value an error code

El_StopTimer stops a previously scheduled timer. After calling
El_StopTimer, the timer object is no longer scheduled for execution. If the
timer is successfully stopped, El_StopTimer returns zero; otherwise a non-
zero value is returned.

107

Electric Image User Interface API

Index

‘argb’, 19

‘cicn’, 19

‘PICT’, 19

API Versioning, 3
cEl_AlphaOffset, 13
cEl_AlphaShift, 13, 14
cEl_BlueOffset, 13
cEl_BlueShift, 13, 14
cEl_Bottom, 15, 35, 36
cEl_Center, 16, 35, 36
cEl_CheckBox, 17
cEl_ColorButton, 17
cEl_ColorSlider, 17
cEl_ControlKey, 15
cEl_CurrentVersion, 13, 20
cEl_Custom, 18, 39
cEl_DividerLine, 17
cEl_EditText, 17
cEl_GreenOffset, 13
cEl_GreenShift, 13, 14
cEl_GroupBox, 17
cEl_InitialVersion, 13
cEl_Left, 15, 35, 36
cEl_ListBox, 17
cEl_ListDragReorder, 14
cEl_ListMultipleSelect, 14
cEl_ModPrimary, 15
cEl_ModSecondary, 15
cEl_ModTernary, 15
cEl_MouseEnter, 16, 53
cEl_MouseExit, 16, 53
cEl_MouseWithin, 16, 53
cEl_NoControlType, 17
cEl_NoFilter, 18, 39
cEl_PenColor, 17
CEl_PenXOR, 17
cEl_Picture, 17
cEl_PopupMenu, 17
cEl_PushButton, 17
cEl_RadioGroup, 17
cEl_ReadOnly, 18
cEl_ReadWrite, 18
cEl_RedOffset, 13, 14
cEl_RedShift, 13, 14

4/13/2001

cEl_Right, 15, 35, 36
cEl_Scroller, 17
cEl_ShiftKey, 15
cEl_SignedFloat, 18, 39
cEl_Signedint, 18, 39
cEl_StaticText, 17
cEl_TabGroup, 17
cEl_TextBold, 13
cEl_Textltalic, 13
cEl_TextOutline, 13
cEl_TextShadow, 13
cEl_TextUnderline, 13
cEl_Top, 15, 35, 36
cEl_UnsignedFloat, 18, 39
cEl_Unsignedint, 18, 39
cEl_UserControl, 17
cEl_WriteOnly, 18
Control Attributes, 7

Check Boxes, 9

Color Buttons, 10

Color Sliders, 9

Edit Text Controls, 10

Group Boxes, 9

Hit Function, 7

List Boxes, 10

OpenGL Controls, 11

Pictures, 9

Popup Menus, 11

Push Buttons, 8

Radio Buttons, 9

Scrollers, 9

Static Text Controls, 10

User Controls, 11
Conventions

Boolean Values, 3

Indices, 2

Names, 2

Pointers, 2

Strings, 3
Drawing, 12
El_32BitPixel, 14, 17, 69, 73, 74
El_AppendDirectoryName, 81
El_AreRectsEqual, 79, 80
El_AskUserForExistingFile, 86, 90

108

Electric Image User Interface API

El_AskUserForNewFile, 86, 89, 90
El_BeginGLDrawing, 48, 49, 53, 54
El_Capturelmage, 63
El_CloseResourceFile, 91
El_CloseStream, 93

El _Color, 16

El_Control, 19
El_ControlHitFunction, 34, 50
El_ControlType, 17
El_CountControls, 28
El_CountListltems, 41
El_CreateDirectory, 84

El_Cursor, 20, 56, 57
El_DeleteFile, 90
El_DestroyContext, 58
El_DestroyCursor, 57
El_DestroyDialog, 21
El_DestroyDirectoryRef, 80, 83, 86
El_DestroyDisklmage, 76
El_DestroyFileRef, 85, 86, 90, 91
El_DestroylmageBuffer, 68
El_DestroyTimer, 56, 105, 107

El Dialog, 19
El_DialogHitFunction, 26
El_DialogKeyFilter, 26
El_DialogToWindowPtr, 101, 102, 103
El_DialogValidationFunction, 26
El_DirectoryRef, 19
El_Disklmage, 19
El_DrawContext, 18
El_Drawlmage, 58, 63, 76
El_DrawText, 12, 65, 66
El_DrawTextInRect, 67
El_DrawTextToFit, 12, 66
El_EditFilterFunction, 38, 39, 50
El_EditFilterType, 18
El_EndGLDrawing, 48, 49, 53, 54
El_EraseRect, 62
El_ExecuteDialog, 3, 21, 23, 24, 26
El_FileRef, 19
El_FileRefToFSSpec, 102, 103, 104
El_FindControlByID, 28
El_FindControlBylndex, 28
El_FrameOval, 62

El_FrameRect, 61
El_GET_PIXEL_ALL, 69, 70

4/13/2001

El_GET_PIXEL_ALPHA, 72, 73
El_GET_PIXEL_BLUE, 72
El_GET_PIXEL_GREEN, 71, 72
El_GET_PIXEL_RED, 71
El_GetAPIVersion, 3, 13, 20
El_GetBackColor, 61
El_GetBufferBaseAddress, 69
El_GetBufferBounds, 69
El_GetBufferRowBytes, 68
El_GetClip, 59
El_GetColorButtonColor, 39
El_GetControlBounds, 29
El_GetControlDialog, 29
El_GetControlDrawlmmediate, 30
El_GetControlEnable, 31
El_GetControlExtraData, 34
El_GetControllD, 27
El_GetControllmagelD, 34, 35
El_GetControlMax, 33
El_GetControlTitle, 32
El_GetControlTitleSize, 32
El_GetControlType, 29
El_GetControlVvalue, 32, 33
El_GetControlVisible, 31
El_GetCurrentTabPanel, 41
El_GetDialogExtraData, 23
El_GetDialogFrameOffset, 101, 102
El_GetDialogPosition, 22
El_GetDialogSize, 22
El_GetDirectoryName, 82
El_GetDirectoryNameSize, 81
El_GetDirectoryPathName, 82, 83
El_GetDirectoryPathNameSize, 82
El_GetDiskimageBuffer, 76
El_GetEditTextSelection, 38
El_GetEditTextString, 37
El_GetEditTextStringSize, 37
El_GetFileDirectory, 86
El_GetFileName, 88, 89
El_GetFileNameSize, 88
El_GetFilePathName, 89
El_GetFilePathNameSize, 89
El_GetFileRefExtension, 87, 88
El_GetFileRefExtensionSize, 87
El_GetFileRefType, 87
El_GetFontMetrics, 65

109

Electric Image User Interface API

El_GetForeColor, 60, 61
El_GetHomeDirectory, 83, 85
El_GetHomeDirectory, 83
El_GetKeyControl, 36
El_GetListFlags, 14, 45
El_GetListitemStyle, 43, 44
El_GetListSelecteditem, 44
El_GetListString, 43
El_GetListStringSize, 42
El_GetMonitorBounds, 22, 23
El_GetNumDirectoryNames, 81
El_GetNumTabPanels, 40
El_GetPenLocation, 60
El_GetPenMode, 59
El_GetPreferencesDirectory, 80, 83
El_GetPushButtonLayout, 35, 36
El_GetRectHeight, 77
El_GetRectWidth, 77
El_GetResource, 91, 92
El_GetStreamPosition, 94
El_GetStreamSize, 94
El_GetTemporaryDirectory, 80, 83
El_GetTextSize, 64
El_GetTextStyle, 64
El_GetTimerExtraData, 55, 105, 106
El_GLClickFunction, 48, 54
El_GLDrawFunction, 47, 48, 53
El_GLMouseMovedFunction, 55
El_GLToWindow, 49
El_HiliteRect, 67
El_ImageBuffer, 18
El_ImageBufferToGWorld, 101, 103,
104
El_InsertListitem, 41, 42
El_InsetRect, 79
El_IntersectRects, 78, 79
El_InvalControl, 28, 29, 30
El_IsListlitemSelected, 44, 45
El IsPtInRect, 78
El_IsRectEmpty, 78
El_LineTo, 12, 60
El_ListDoubleClickFunction, 45, 51
El_ListReorderFunction, 46, 51
El_MAKE_FILE_TYPE, 84
El_MAKE_PIXEL, 70
El_MakeContextForDialog, 58

4/13/2001

El_MakeContextForimageBuffer, 57, 58
El_MakeCursor, 56, 57
El_MakeDialog, 20, 21
El_MakeDirectoryRef, 80
El_MakeDisklmage, 75, 76
El_MakeEmptyFileRef, 84, 85
El_MakeFileRef, 85, 86
El_MakelmageBuffer, 68
El_MakeTimer, 56, 105, 106
El_MeasureText, 64, 65
El_MoveDialog, 21

El_MoveTo, 12, 59
El_OffsetRect, 79
El_OpenFileStream, 86, 87, 92, 93
El_OpenResourceFile, 91
El_PaintOval, 62

El_PaintRect, 61, 62
El_PenMode, 17

El_PickColor, 100
El_PickColorWithAlpha, 100
El_ReadFloat32, 99
El_ReadFloat64, 99
El_ReadSInt16, 97, 98
El_ReadSInt32, 98
El_ReadStream, 94
El_ReadUInt16, 98
El_ReadUInt32, 98, 99
El_ReadUInt8, 97

El Rect, 16
El_ReleaseResource, 92
El_RemovelLastDirectoryName, 81
El_RemovelListitem, 42
El_ResourceFile, 18
El_SelectListltem, 44
El_SET_PIXEL_ALL, 71
El_SET_PIXEL_ALPHA, 73
El_SET_PIXEL_BLUE, 72
El_SET_PIXEL_GREEN, 72
El_SET_PIXEL_RED, 71, 74,75
El_SetBackColor, 61
El_SetClip, 58
El_SetColorButtonColor, 40
El_SetControlBounds, 29, 30
El_SetControlDrawlmmediate, 30
El_SetControlEnable, 31
El_SetControlExtraData, 33, 34

110

Electric Image User Interface API

El_SetControlHitFunction, 34
El_SetControllD, 27
El_SetControlimagelD, 35
El_SetControlMax, 33
El_SetControlTitle, 30, 32
El_SetControlValue, 33
El_SetControlVisible, 30, 31
El_SetCurrentTabPanel, 41
El_SetCursor, 57
El_SetDialogExtraData, 23
El_SetDialogHitFunction, 25
El_SetDialogKeyFilterFunction, 25
El_SetDialogSize, 22
El_SetDialogTitle, 21
El_SetDialogValidationFunction, 24, 25
El_SetEditTextFilter, 38
El_SetEditTextSelection, 38
El_SetEditTextString, 37
El_SetFileName, 88
El_SetFileRefExtension, 87
El_SetFileRefType, 86
El_SetForeColor, 60
El_SetGLClickFunction, 48
El_SetGLControlMouseMoved, 48
El_SetGLDrawFunction, 47
El_SetKeyControl, 26, 36
El_SetListDoubleClickFunction, 45
El_SetListFlags, 15, 45
El_SetListltemStyle, 43
El_SetListReorderFunction, 46
El_SetListString, 42
El_SetPenMode, 59
El_SetPushButtonLayout, 16, 36
El_SetRect, 77
El_SetStreamPosition, 93
El_SetTextSize, 63, 64

4/13/2001

El_SetTextStyle, 43, 64
El_SetTimerExtraData, 56, 105
El_SetTimerFunction, 56, 105, 106
El_SetUserControlClick, 46
El_SetUserControlDraw, 46
El_SetUserControlIMouseMoved, 46, 47
El_StartOneShotTimer, 55, 56, 105, 107
El_StartPeriodicTimer, 55, 105, 106
El_StopDialog, 3, 24, 25, 56
El_StopTimer, 107

El_Stream, 19

El_StreamAccess, 18

El_Timer, 20, 55, 104, 105, 106, 107
El_TimerFunction, 55, 105
El_TrackMouseDown, 47, 49
El_UnionRects, 78
El_UserClickFunction, 46, 52
El_UserDrawFunction, 46, 51
El_UserMouseMovedFunction, 52
El_WindowToGL, 49
El_WriteFloat32, 96, 97
El_WriteFloat64, 97
El_WriteSInt16, 95

El_WriteSInt32, 96
El_WriteStream, 4, 94, 95
El_WriteUInt16, 95, 96
El_WriteUInt32, 96

El_WriteUInt8, 95

Extra Data Pointer, 7

File Extension, 5

File 1/0, 4

File Types, 5

Keyboard Focus, 12

Opaque Types, 3

Resources, 6

User Interface Controls, 6

111

