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Good Deal Bounds Induced by Shortfall Risk∗
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Abstract. We consider, throughout this paper, an incomplete financial market which is governed by a possi-
bly nonlocally bounded right-continuous with left-limits (RCLL) special semimartingale. We shall
provide good deal bounds for contingent claims induced by shortfall risk in the framework of the
Orlicz heart setting. We prove that the upper and lower bounds of such a good deal bound are
expressed by a convex risk measure on an Orlicz heart. In addition, we obtain representation results
for three types of model, which are an unconstrained portfolio model, a W -admissible model, and a
predictably convex model.
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1. Introduction. There exist many no-arbitrage prices for a contingent claim in an incom-
plete market, since there exist many equivalent martingale measures. Thus, the no-arbitrage
principle provides merely a pricing bound. However, this bound is too wide to be useful from
a practical point of view. It is then meaningful to obtain a sharper pricing bound. Good deal
bounds are strong candidates for such a sharper pricing bound.

The study of good deal bounds has been undertaken by Cochrane and Saá-Requejo [11].
A claim (a payoff at the maturity) is called a good deal if a suitable index related to the claim
is greater (or less) than a certain level at which an investor makes up her mind. Cochrane and
Saá-Requejo, in the above paper, chose the Sharpe ratio as a criterion of good deals. Moreover,
Bernardo and Ledoit [2] introduced the notion of good deals in terms of the gain-loss ratio.
Klöppel and Schweizer [21] researched good deal bounds based on expected utilities and their
dynamics. In addition, much literature on this topic has been published. See, for instance,
Carr, Geman, and Madan [7], Jaschke and Küchler [18], Černý and Hodges [9], Černý [8],
Larsen et al. [23], Staum [24], and Björk and Slinko [6]. In particular, [21] overviewed a
history of the research of this topic.

In this paper, we select shortfall risk as such a criterion to obtain a sharper pricing bound.
Although the good deal bounds introduced above are independent of hedging strategies, the
bounds presented in this paper are influenced by the way to define hedging (or admissible)
strategies. Now, we presume a seller who intends to sell a claim and who selects an increasing
convex function as her loss function. Note that an investor’s attitude toward risk is assumed
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2 TAKUJI ARAI

to be described in terms of loss function; that is, loss functions look like utility functions with
respect to losses. The convexity of loss functions represents the investor’s risk-aversion. The
case of lower partial moments l(x) = xp/p for p ≥ 1 is well known as a common example. For
more details, see Remark 2.2 of Föllmer and Leukert [14]. When she selects a hedging strategy,
her shortfall is defined as the positive part of the claim minus the value of her hedging strategy.
Her shortfall risk is given by the expectation of the shortfall weighted by her loss function.
The starting point of the shortfall risk problem is given by [14]. Incidentally, if the seller
succeeds in selling the claim for the upper bound of no-arbitrage prices, she could eliminate
her shortfall risk, that is, attain a perfect hedge by selecting a suitable hedging strategy. Note
that this upper bound is called the superhedging cost. However, it would be too expensive to
trade in general. Thus, in order to get a deal, she should sell the claim for a price less than
the superhedging cost; that is, she should accept some shortfall risk. A price for a claim is
called a good deal price for a seller if there exists an admissible strategy whose corresponding
cashflow at maturity suppresses its shortfall risk below a threshold level determined by the
seller. A claim is called a good deal for a seller if the claim is priced for a good deal price
for the seller. We can define good deal prices and good deals for a buyer, too. Note that loss
functions may vary from investor to investor. The interval between the lowest good deal price
for a seller and the upper good deal price for a buyer is called a good deal bound induced by
shortfall risk. This bound becomes narrower than the no-arbitrage one in general.

Throughout the paper, we consider the shortfall risk problem under the Orlicz heart
setting. Thus, we can take various functions as a loss function, such as xp/p for p ≥ 1, ex− 1,
x − log(x + 1), (x + 1) log(x + 1) − x, and so forth. Although it suffices to consider the Lp

setting for the case of the lower partial moments, it is too wide to treat the exponential loss
function ex − 1. While we can apply the L∞ setting to the exponential loss function, L∞ is
too restrictive to treat various claims. This is why we consider the Orlicz heart setting to
treat various loss functions and various claims in a unified framework. We shall prove that, for
continuous time models, a good deal bound induced by shortfall risk is given by a convex risk
measure on an Orlicz heart. Furthermore, we shall obtain its robust representation theorems
for various settings and introduce some examples.

Convex risk measures are introduced by Föllmer and Schied [15] and Frittelli and Rosazza-
Gianin [17] for the first time. The article [17] treated a representation of convex risk measures
having lower semicontinuity. On the other hand, [15] defined convex risk measures only for
the L∞-random variables and obtained representation results. In addition, they proved that
the upper and lower bounds of a good deal bound induced by shortfall risk are described by
a convex risk measure for bounded claims under the discrete time setting, although they did
not use the terminology “good deal.” Thus, our result may be regarded as a direct extension
of [15] to the framework of Orlicz hearts and continuous time setting. Xu [25] and Klöppel
and Schweizer [20] considered problems similar to ours. Recently, Kaina and Rüschendorf [19]
studied some properties of convex risk measures on Lp-spaces. In addition, they treated a
convex risk measure related to shortfall risk, although theirs is somewhat different from ours.
Cheridito and Li [10] extended the concept of convex risk measures to Orlicz hearts.

The paper is organized as follows: After some preparations in section 2, we shall prove in
section 3 that a good deal bound induced by shortfall risk is given by a convex risk measure
on an Orlicz heart. We obtain in section 4 representation results of this convex risk measure
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GOOD DEAL BOUNDS 3

when the space of admissible strategies is linear. Moreover, we consider the case where the
gain process is bounded from below by a random variable W in section 5. The σ-martingale
measures will play a vital role. In addition, we consider the case where the admissible strategies
form a predictable convex set in section 6. As an extension of a result of Föllmer and Kramkov
[13], we introduce upper variation processes. We prove that the minimal penalty function of
the convex risk measure on this setting is represented by using an upper variation process.
We shall introduce some examples in subsection 6.3.

2. Preliminaries. Consider an incomplete financial market being composed of one riskless
asset and d risky assets. The fluctuation of the risky assets is described by an Rd-valued
RCLL special semimartingale S, which is possibly nonlocally bounded, defined on a completed
probability space (Ω,F , P ;F = {Ft}t∈[0,T ]), where T > 0 is the maturity of our market and F
is a filtration satisfying the so-called usual condition, that is, F is right-continuous, FT = F ,
and F0 contains all null sets of F . Suppose that the interest rate is given by 0. Let X be a
suitable subset of L0, the set of all random variables defined on (Ω,FT ). We assume that any
contingent claim belongs to the set X .

Next, we presume a seller who intends to sell a claim X ∈ X . She selects a loss function
l, which is an R+-valued continuous nondecreasing convex function defined on R, where
R+ = [0,∞). We assume that l(x) = 0 if x ≤ 0, and l(x) > 0 if x > 0. Let Θ be a
convex subset of S-integrable predictable processes including 0, and let Gt(ϑ) :=

∫ t
0 ϑsdSs for

any t ∈ [0, T ] and any ϑ ∈ Θ. Throughout the paper, Θ represents the set of all admissible
strategies. Note that any admissible strategy in this paper is self-financing and represented by
a predictable process. The process G(ϑ) represents the gain process induced by an admissible
strategy ϑ ∈ Θ. In sections 4–6, we shall take ΘM , ΘW , and ΘS as Θ, respectively, where ΘM

is the linear space of S-integrable predictable processes ϑ such that GT (ϑ) belongs to the Orlicz
heart generated by l, ΘW is defined, for a random variable W satisfying some conditions, as
the conic set of ϑ such that there exists a constant c > 0 satisfying Gt(ϑ) ≥ −cW for any
t ∈ [0, T ], and ΘS is defined as the corresponding subset of ΘW to S being a predictably
convex subset of {GT (ϑ)|ϑ ∈ ΘW}. When X is priced for x ∈ R and the seller selects a
hedging strategy ϑ ∈ Θ, her shortfall and shortfall risk are defined by (−x−GT (ϑ) +X) ∨ 0
and E[l(−x−GT (ϑ) +X)], respectively.

In order to determine whether a price of X is a good deal price or not, we presume that the
seller selects a constant δ > 0, which is called a threshold level in this paper. That is, a price
x ∈ R is a good deal price of X for her if there exists a ϑ ∈ Θ such that x+GT (ϑ)−X ∈ A0,
where A0 := {Y ∈ X |E[l(−Y )] ≤ δ}. Note that x+GT (ϑ)−X is required to be in X . Hence,
the lower bound Bs of good deal prices is given by

Bs = inf{x ∈ R| there exists a ϑ ∈ Θ such that x+GT (ϑ) −X ∈ A0}.

In the case where δ = 0, no matter which l is selected, Bs is given by inf{x ∈ R| there exists a
ϑ ∈ Θ such that x + GT (ϑ) ≥ X}. This is why Bs coincides with the superhedging cost. In
addition, Bs may be regarded as a decreasing function on δ. Similarly, we can consider the
upper bound Bb of good deal prices for a buyer. Now, we assume a buyer with a loss function
lb and a threshold level δb. Note that any buyer or seller would select a different loss function
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4 TAKUJI ARAI

and a different threshold level from others. Then, we have

Bb = sup{x ∈ R| there exists a ϑ ∈ Θ such that − x+GT (ϑ) +X ∈ A0,b},

where A0,b = {Y ∈ X |E[lb(−Y )] ≤ δb}. Thus, the interval (Bb, Bs) must be called the good
deal bound of X induced by shortfall risk between the seller and the buyer.

In order to get a representation of Bs as well as Bb, we define a functional ρl on X as

ρl(X) := inf{x ∈ R| there exists a ϑ ∈ Θ(2.1)

such that x+GT (ϑ) +X ∈ A0}.

Note that Bs = ρl(−X), and Bb = −ρlb(X) with the threshold level δb. Hence, we have only
to obtain a robust representation of ρl in order to represent the lower and the upper bounds
of good deal bounds induced by shortfall risk. Thus, the main aim of the paper is to obtain
representations of ρl for various settings. Actually, the functional ρl is a convex risk measure
on X . This fact will be proved in the next section under the Orlicz heart setting. Moreover,
the set A0 is closely related to the acceptance set or the penalty function of ρl. Thus, we
define it as a subset of X .

Example 2.1 (one period model). Consider a one period model with trading times t = 0 and
1. In particular, we consider the case where the asset price process S is nonlocally bounded.
Let S be given by S0 = 1 and S1 = |Y |, where Y is a random variable following a normal
distribution N(μ, σ2). We consider a European call option X := (S1 − K)+, where K > 0.
The set Θ of all admissible strategies is given by R. Then, the superhedging costs of X for
sellers and for buyers are given by 1 and 0 ∨ (1 −K), respectively. Let the loss function l be
the exponential type ex− 1 and the threshold level δ > 0. Noting that l(x) = 0 for any x ≤ 0,
we have

inf
ϑ∈R

E[l(−1 + ε− ϑ(S1 − 1) +X)]

≤ E[l(−1 + ε− (S1 − 1) +X)] = E[l(ε − S1 + (S1 −K)+)]

= E[l(ε− S1)1{S1<K}] + E[l(ε−K)1{S1≥K}]

=

∫ ε

−ε

(
eε−|y| − 1

) 1√
2πσ2

exp

{
−(y − μ)2

2σ2

}
dy ≤ 2ε(eε − 1)√

2πσ2
≤ δ

for any sufficiently small ε ∈ (0,K), Hence, ρl(−X), that is, the lowest good deal price for a
seller, is less than the superhedging cost 1.

Remark 2.2. In general, good deal bounds are induced by a performance measure, such
as the Sharpe ratio, the gain-loss ratio, or expected utilities. These bounds have nothing to
do with how to take the set Θ of all admissible strategies. On the other hand, the pricing
bounds treated in this paper take the structure of Θ into account. In other words, comparing
Theorems 4.1, 5.2, and 6.9, we see that representations of the functional ρl change according
to the definitions of admissible strategies.

Remark 2.3. Xu [25] proposed the concept of the risk indifference valuation, which is a
valuation method for claims by using a convex risk measure. Given a convex risk measure ρ
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GOOD DEAL BOUNDS 5

and an initial liability L which is an FT -measurable random variable, the selling price of a
claim X is defined as

inf

{
x ∈ R| inf

ϑ∈Θ
ρ(x+GT (ϑ) − L−X) ≤ inf

ϑ∈Θ
ρ(GT (ϑ) − L)

}
.

We can define the buying price in a similar way. It was pointed out that these prices form a
good deal bound. Although the mathematical setting in [25] is slightly different from ours,
this problem is closely related. Actually, the risk indifference valuation based on ρl was
mentioned there. Its selling price of X is given by ρl(−X) − ρl(0), which is subtly different
from Bs = ρl(−X) if L is given by 0. However, [25] did not discuss any robust representation
result on convex risk measures.

Throughout the paper, we consider ρl on an Orlicz heart generated by a loss function.
That is, we take an Orlicz heart as X . Thus, we have to introduce terminologies and concepts
on Orlicz spaces. A left-continuous nondecreasing convex nontrivial function Φ : R+ → [0,∞]
with Φ(0) = 0 is called an Orlicz function, where Φ is nontrivial if Φ(x) > 0 for some x > 0
and Φ(x) <∞ for some x > 0. When Φ is an R+-valued continuous, strictly increasing Orlicz
function, we call it a strict Orlicz function in this paper. Note that, for any strict Orlicz
function Φ, we have Φ(x) ∈ (0,∞) for any x > 0 and limx→∞ Φ(x) = ∞. Moreover, a strict
Orlicz function Φ is differentiable a.e. and its left derivative Φ′ satisfies

Φ(x) =

∫ x

0
Φ′(u)du.

Note that Φ′ is left-continuous and may have at most countably many jumps. Define I(y) :=
inf{x ∈ (0,∞)|Φ′(x) ≥ y}, which is called the generalized left-continuous inverse of Φ′. We
define Ψ(y) :=

∫ y
0 I(v)dv for y ≥ 0, which is an Orlicz function called the conjugate function

of Φ.
Remark 2.4. Any polynomial function starting at 0 whose minimal degree is equal to or

greater than 1 and whose coefficients are all positive is a strict Orlicz function. For example,
cxp for c > 0, p ≥ 1, x2 +3x5, and so forth. Moreover, ex−1, ex−x−1, (x+1) log(x+1)−x,
and x− log(x+ 1) are strict Orlicz functions.

Now, we need the following definitions.
Definition 2.5. For an Orlicz function Φ, we define three spaces of random variables:

Orlicz space: LΦ := {X ∈ L0|E[Φ(c|X|)] <∞ for some c > 0},
Orlicz heart: MΦ := {X ∈ L0|E[Φ(c|X|)] <∞ for any c > 0}.
In addition, we define two norms:
Luxemburg norm: ‖X‖Φ := inf

{
λ > 0|E [Φ (∣∣Xλ ∣∣)] ≤ 1

}
,

Orlicz norm: ‖X‖∗Φ := sup{E[XY ]| ‖Y ‖Φ ≤ 1}.
Note that MΦ ⊂ LΦ and both spaces LΦ and MΦ are linear. Moreover, if Φ is a strict

Orlicz function, the norm dual of (MΦ, ‖ · ‖Φ) is given by (LΨ, ‖ · ‖∗Φ).
Remark 2.6. In the case of the lower partial moments Φ(x) = xp/p for p > 1, the Orlicz

space LΦ and the Orlicz heart MΦ are both identical to Lp. In this case, the conjugate
function is given by xq/q, where q = p/(p − 1), and MΨ = LΨ = Lq. See Example 4.5.

In general, if lim supx→∞
xΦ′(x)
Φ(x) < ∞, then MΦ is identical to LΦ. For instance, Φ(x) =

x− log(x + 1). Otherwise, MΦ must be a subset of LΦ—for example, Φ(x) = ex − 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

6 TAKUJI ARAI

Hereafter, a strict Orlicz function Φ is fixed arbitrarily, and l is taken as the loss function
associated with Φ as follows:

l(x) :=

{
Φ(x) if x ≥ 0,
0 if x < 0.

Moreover, we fix a constant δ > 0 and treat ρl as a functional defined on MΦ. Thus, we take
MΦ as X , and A0 is denoted by A0 := {Y ∈MΦ|E[l(−Y )] ≤ δ}.

3. Convex risk measure property of ρl. Föllmer and Schied [15] have proved that,
roughly speaking, ρl defined by (2.1) becomes a convex risk measure in the framework of
bounded claims and discrete time trading. In this section, we try to extend their result to
the framework of Orlicz hearts and continuous time trading. Recall that the set Θ of all
admissible strategies is a convex subset of S-integrable predictable processes including 0. Let
PΨ be the set of all probability measures absolutely continuous with respect to P and having
LΨ-density with respect to P , that is,

PΨ := {Q� P |dQ/dP ∈ LΨ}.

Next, we state the standing assumption of this paper.
Assumption 3.1. ρl(0) > −∞.
Assumption 3.1 is used to prove only the properness of ρl in Proposition 3.3. There

are many examples satisfying this condition. Now, we introduce a sufficient condition for
Assumption 3.1.

Example 3.2. We assume that there exists an m > 0 such that infϑ∈ΘE[l(m−GT (ϑ))] > 0.
This condition would be very similar to the no-arbitrage one. Under this assumption, we can
find a c ≥ 1 satisfying infϑ∈ΘE[l(cm−GT (ϑ))] > δ by the convexity of Θ. Thus, ρl(0) > −∞.

In Cheridito and Li [10], a convex risk measure on an Orlicz heart Y is defined as a
(−∞,+∞]-valued functional ρ on Y satisfying the following:
(1) Properness: ρ(0) ∈ R and ρ > −∞.
(2) Monotonicity: ρ(X) ≥ ρ(Y ) for any X,Y ∈ Y such that X ≤ Y .
(3) Translation invariance: ρ(X +m) = ρ(X) −m for X ∈ Y and m ∈ R.
(4) Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for any X,Y ∈ Y and λ ∈ [0, 1].

First, we prove the following proposition.
Proposition 3.3. ρl is an R-valued convex risk measure on MΦ.
Proof. It is clear that ρl is translation invariant and monotone. We prove the convexity.

Denoting A0 −GT (ϑ) := {Y −GT (ϑ)|Y ∈ A0} for any ϑ ∈ Θ, we have, for any X ∈MΦ,

ρl(X) = inf
{
x ∈ R| there exists a ϑ ∈ Θ such that x+GT (ϑ) +X ∈ A0

}
= inf

{
x ∈ R| there exists a ϑ ∈ Θ such that x+X ∈ (A0 −GT (ϑ))

}
= inf

{
x ∈ R|x+X ∈

⋃
ϑ∈Θ

(A0 −GT (ϑ))

}
.

Note that, although a union of convex sets is in general not convex, the set
⋃
ϑ∈Θ(A0−GT (ϑ))

becomes convex by the convexity of Θ and the linearity of GT . Let X1 and X2 be in MΦ.
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For any x1 > ρl(X1), x2 > ρl(X2), and λ ∈ [0, 1], we can easily prove λx1 + (1 − λ)x2 ≥
ρl(λX1 + (1 − λ)X2). By the arbitrariness of x1 and x2, the convexity of ρl follows.

Next, we prove the properness of ρl, that is, ρl(0) ∈ R and ρl > −∞. It is clear that
ρl(0) ≤ 0. The rest is to prove ρl > −∞. Suppose that there exists an X ∈ MΦ such that
ρl(X) = −∞. The convexity of ρl yields that

ρl(λX) ≤ λρl(X) + (1 − λ)ρl(0) = −∞

for any λ ∈ (0, 1]. Thus, we may assume that E[l(X)] ≤ δ/2. Since ρl(0) > −∞, there exists
an m > 0 such that E[l(m − GT (ϑ))] > δ for any ϑ ∈ Θ. Then, since ρl(X) = −∞, there
exists a ϑX ∈ Θ such that

δ ≤ inf
ϑ∈Θ

E[l(m−GT (ϑ))] ≤ 1

2
E[l(2m−GT (ϑX) −X)] +

1

2
E[l(X)] ≤ 3

4
δ,

which is a contradiction. Hence, the properness is obtained.

Finally, we prove that ρl < ∞. Since ϑ = 0 belongs to Θ, we have, for any X ∈ MΦ,
ρl(X) ≤ inf{m ∈ R|E[l(−m − X)] ≤ δ} < +∞. The last inequality is implied by the fact
E[l(−m−X)] → 0 as m tends to ∞ by the dominated convergence theorem.

Note that (MΦ, ‖ · ‖Φ) is a locally convex Fréchet lattice with order continuous topology
(see [5] or Aliprantis and Border [1]). Corollary 1 of [5], together with Proposition 3.3, implies
that ρl is represented as

(3.1) ρl(X) = max
Q∈PΨ

{EQ[−X] − al(Q)},

where al : PΨ → R is the convex conjugate of ρl, which is called the minimal penalty function.
Note that al is given by

(3.2) al(Q) := sup
X∈MΦ

{EQ[−X] − ρl(X)}.

In order to obtain a representation of al, we need some preparations. First, we define two
acceptance sets before stating a significant lemma:

(3.3) Aρl := {X ∈MΦ|ρl(X) ≤ 0}

and

Ã := {X ∈MΦ| there exists a ϑ ∈ Θ

such that X +GT (ϑ) ≥ Y for some Y ∈ A0}.

Then, we can prove that ρl(X) = inf{m ∈ R|m + X ∈ Ã}(=: ρ
˜A(X)) by the very definition

of Ã. Thus, by Remark 4.16(c) of Föllmer and Schied [16], we have al(Q) = supX∈ ˜AEQ[−X].
Since only the L∞-case was discussed in [16], we try to give another proof of this fact just to
be sure.

Lemma 3.4. al(Q) = supX∈ ˜AEQ[−X] for any Q ∈ PΨ.
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Proof. By (3.2) and (3.3), we have

sup
X∈Aρl

EQ[−X] ≤ sup
X∈Aρl

{EQ[−X] − ρl(X)}(3.4)

≤ sup
X∈MΦ

{EQ[−X] − ρl(X)} = al(Q).

Since ρl = ρ
˜A, we have Ã ⊂ Aρl . Hence, (3.4) implies

(3.5) al(Q) ≥ sup
X∈Aρl

EQ[−X] ≥ sup
X∈ ˜A

EQ[−X].

Note that the translation invariance of ρl implies that

(3.6) EQ[−(X +m)] − ρl(X +m) = EQ[−X] − ρl(X)

for any m ∈ R, X ∈ MΦ, and Q ∈ PΨ. Since {X ∈ MΦ|ρl(X) = −ε} ⊂ Ã for any ε > 0, we
have

al(Q) = sup
X∈MΦ

{EQ[−X] − ρl(X)} = sup
X∈MΦ,ρl(X)=−ε

{EQ[−X] − ρl(X)}

= sup
X∈MΦ,ρl(X)=−ε

EQ[−X] + ε ≤ sup
X∈ ˜A

EQ[−X] + ε

for any ε > 0. The second equality holds due to (3.6). Thus, we have al(Q) ≤ sup
X∈ ˜AEQ[−X].

Hence, we can conclude, together with (3.5), that al(Q) = sup
X∈ ˜AEQ[−X].

Based on the above preparations, we prove the following representation result of the convex
risk measure ρl.

Proposition 3.5. The convex risk measure ρl is represented as, for any X ∈MΦ,

ρl(X) = max
Q∈PΨ

{
EQ[−X] − sup

X1∈A1

EQ[−X1] − inf
λ>0

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}}
,(3.7)

where

(3.8) A1 := {X1 ∈MΦ| there exists a ϑ ∈ Θsuch that X1 +GT (ϑ) ≥ 0 P - a.s.}.

Proof. For any X ∈ Ã, there exist a ϑ ∈ Θ and a Y ∈ A0 such that X +GT (ϑ) ≥ Y , that
is, X − Y + GT (ϑ) ≥ 0. Hence, X − Y ∈ A1, that is, Ã = {X1 + X0|X1 ∈ A1,X0 ∈ A0}.
Thus, Lemma 3.4 implies that, for any Q ∈ PΨ,

al(Q) = sup
X∈ ˜A

EQ[−X] = sup
X1∈A1

sup
X0∈A0

EQ[−X1 −X0](3.9)

= sup
X1∈A1

{
EQ[−X1] + sup

X0∈A0

EQ[−X0]

}
= sup

X1∈A1

EQ[−X1] + sup
X0∈A0

EQ[−X0].
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Consequently, (3.9) implies that

ρl(X) = max
Q∈PΨ

{EQ[−X] − al(Q)}

= max
Q∈PΨ

{
EQ[−X] − sup

X1∈A1

EQ[−X1] − sup
X0∈A0

EQ[−X0]

}
.(3.10)

Moreover, by the same sort argument as in Theorem 10 of [15], we can obtain that

sup
X0∈A0

EQ[−X0] = inf
λ>0

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}
.

This, together with (3.10), completes the proof of Proposition 3.5.

Remark 3.6. We can extend the above result to more general cases. Let G be a convex set
of FT -measurable random variables including 0. We can rewrite the definition of ρl as follows:

ρl(X) := inf{x ∈ R| there exists a g ∈ G such that x+ g +X ∈ A0}.

Under this definition, ρl must be represented in the same way as in Proposition 3.5.

4. Unconstrained portfolio. We consider the case where Θ, which is the space of all
admissible strategies, forms a linear subspace of MΦ. Let L(S) be the set of all S-integrable
predictable processes. Denoting ΘM := {ϑ ∈ L(S)|GT (ϑ) ∈ MΦ}, we regard ΘM as the
collection of admissible strategies. Note that ΘM is linear. We shall introduce a representation
theorem for ρl under this setting and some examples.

Now, we define the set of martingale measures as follows:

(4.1) MΨ :=
{
Q ∈ PΨ|EQ[GT (ϑ)] = 0 for any ϑ ∈ ΘM

}
.

The following theorem is the main result of this section. The proof is strongly dependent on
the linearity of ΘM .

Theorem 4.1. Let Θ be given by ΘM . Suppose that MΨ �= ∅. The convex risk measure ρl
is represented as

ρl(X) = max
Q∈MΨ

{
EQ[−X] − inf

λ>0

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}}
for any X ∈MΦ.

Proof. By Proposition 3.5, we have only to calculate supX1∈A1 EQ[−X1]. For anyX1 ∈ A1,
there exists a ϑ ∈ ΘM such thatX1 ≥ GT (−ϑ). Thus, supX1∈A1 EQ[−X1] ≤ supϑ∈ΘM EQ[GT (ϑ)].
On the other hand, since GT (ϑ) ∈ A1 for any ϑ ∈ ΘM , we have supX1∈A1 EQ[−X1] ≥
supϑ∈ΘM EQ[−GT (ϑ)] = supϑ∈ΘM EQ[GT (ϑ)]. The linearity of ΘM and (4.1) imply that

sup
X1∈A1

EQ[−X1] = sup
ϑ∈ΘM

EQ[GT (ϑ)] =

{
0 if Q ∈ MΨ,
∞ if Q /∈ MΨ,

which completes the proof of Theorem 4.1.
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Remark 4.2. We have to remark that the assumption MΨ �= ∅ does not ensure the no-
arbitrage condition, which is exemplified as follows: Consider a one period model. The price
process S is defined as follows: S0 = 0 and S1 follows the exponential distribution with
parameter 1. Thus, this model includes arbitrage opportunities. Let Φ(x) = ex − 1. Thus,
ΘM = {0}. Hence, MΨ is given by {Q � P |dQ/dP ∈ LΨ}. Note that each element of MΨ

is not a martingale measure.

Corollary 4.3. For any Q ∈ MΨ, if we find a λ̂Q > 0 satisfying δ = E[Φ(I(λ̂Q
dQ
dP ))], then

we have

(4.2) al(Q) = EQ

[
I

(
λ̂Q

dQ

dP

)]
.

Recall that I is the generalized left-continuous inverse of the left derivative Φ′. Note that we
can find such a λ̂Q at least when I is continuous.

Proof. For any λ > 0, we have

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}
≥ EQ

[
I

(
λ̂Q

dQ

dP

)]
by Young’s inequality. Moreover, we have 1

̂λQ
{δ + E[Ψ(λ̂Q

dQ
dP )]} = EQ[I(λ̂Q

dQ
dP )]. Therefore,

(4.2) holds.

We introduce three typical examples.

Example 4.4 (expected shortfall). Let Φ be Φ(x) = x. Its conjugate is given by

Ψ(y) =

{
0 if y ≤ 1,
+∞ if y > 1.

Denoting Mbdd := {Q� P |dQ/dP ∈ L∞, EQ[GT (ϑ)] = 0 for any ϑ ∈ ΘM}, we have then

ρl(X) = max
Q∈Mbdd

{
EQ[−X] − δ

∥∥∥∥dQdP
∥∥∥∥
∞

}
.

Example 4.5 (lower partial moments). Let Φ be given by Φ(x) = xp/p for p > 1. Note that
MΦ = LΦ = Lp and MΨ = LΨ = Lq, where q is the conjugate index of p. Example 13 of [15]
implies that

al(Q) = (pδ)
1
p

∥∥∥∥dQdP
∥∥∥∥
q

.

Thus, ρl is represented as

ρl(X) = max
Q∈Mq

{
EQ[−X] − (pδ)

1
p

∥∥∥∥dQdP
∥∥∥∥
q

}
,

where Mq is the set of all absolutely continuous martingale measures whose density is in the
space Lq.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GOOD DEAL BOUNDS 11

Example 4.6 (exponential loss functions). If Φ is given by Φ(x) = C(eαx − 1), where C > 0
and α > 0, then Φ′(x) = Cαeαx, and I(y) = 1

α log y
Cα when y ≥ Cα. Hence, for y ≥ Cα, we

have

Ψ(y) =
y

α

(
log

y

Cα
− 1
)

+C.

Note that L∞ ⊂MΦ ⊂ Lp ⊂ LΨ ⊂ L1 for any 1 < p <∞. Define Mf := {Q � P |H(Q|P ) <
∞, EQ[GT (ϑ)] = 0 for any ϑ ∈ ΘM}, where H(Q|P ) := E[dQdP log dQ

dP ]. For any Q ∈ Mf , we

denote by λ̂Q a real number satisfying E[Φ(I(λ̂Q
dQ
dP ))] = δ. Then, Corollary 4.3 implies that

ρl(X) = max
Q∈Mf

{
EQ[−X] − 1

α
EQ

[
log

(
λ̂Q

dQ
dP

Cα
∨ 1

)]}
.

5. W -admissible case. In this section and the next, we shall investigate models with
portfolio constraints. That is, we shall obtain representation results of ρl when Θ is not a
linear space. In this section, we consider a model with cone constraint, which is so-called
W -admissibility. As for a financial interpretation of W -admissibility, see Biagini and Frit-
telli [3]. From the viewpoint of Proposition 3.5, all we have to do is to calculate the term
supX1∈A1 EQ[−X1] in (3.7), where the definition of A1 is given in (3.8). Hereafter, we fix an
FT -measurable random variable W such that W ≥ 1 and W ∈MΦ. Moreover, we define

ΘW := {ϑ ∈ L(S)| there exists a c > 0 such that Gt(ϑ) ≥ −cW P - a.s.(5.1)

for any t ∈ [0, T ]}.

We will use the following lemma not only in this section but also throughout the paper.

Lemma 5.1. Suppose that Θ ⊂ ΘW . For any Q ∈ PΨ, we have

sup
X1∈A1

EQ[−X1] = sup
ϑ∈Θ

EQ[GT (ϑ)].

Proof. For any c̃ > 0 and any ϑ ∈ Θ, there exists a c > 0 such that −cW ≤ GT (ϑ)∧ c̃W ≤
c̃W . Thus, we have GT (ϑ)∧ c̃W ∈MΦ and −(GT (ϑ)∧ c̃W ) ∈ A1 for any c̃ > 0. The monotone
convergence theorem implies that

(5.2) sup
ϑ∈Θ

EQ[GT (ϑ)] = sup
ϑ∈Θ

lim
c̃→∞

EQ[GT (ϑ) ∧ c̃W ] ≤ sup
X1∈A1

EQ[−X1].

On the other hand, for any X1 ∈ A1, there exists a ϑ ∈ Θ such that GT (ϑ) ≥ −X1. Hence, we
have supX1∈A1 EQ[−X1] ≤ supϑ∈ΘEQ[GT (ϑ)]. Together with (5.2), this completes the proof
of Lemma 5.1.

We regard ΘW as the set of all admissible strategies. In other words, Θ coincides with
ΘW . We define the set of all absolutely continuous σ-martingale measures as

Mσ := {Q � P |S is a σ-martingale under Q}.

Moreover, a nonnegative random variable Y is said to be suitable if

1. Y ≥ 1, and
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2. for each i = 1, . . . , d, there exists a ϑi ∈ L(Si) such that P ({ω| there exists a t ∈ [0, T ]
such that ϑit(ω) = 0}) = 0 and | ∫ t0 ϑisdSis| ≤ Y for any t ∈ [0, T ], P -a.s.

We state the main theorem of this section. In the W -admissible case, ρl has the same rep-
resentation as in the unconstrained case discussed in the previous section, except for replacing
MΨ by Mσ.

Theorem 5.2. Let Θ be given by ΘW . Suppose that Mσ ∩ PΨ �= ∅ and W is suitable. For
any Q ∈ PΨ, we have then

sup
X1∈A1

EQ[−X1] =

{
0 if Q ∈ Mσ,
+∞ if Q /∈ Mσ.

Hence, we have

ρl(X) = max
Q∈Mσ∩PΨ

{
EQ[−X] − inf

λ>0

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}}
for any X ∈MΦ.

Proof. Step 1. By Proposition 19(d) of Biagini and Frittelli [4], we have

(5.3) Mσ ∩ PΨ = {Q ∈ PΨ|G(ϑ) is a Q-supermartingale for any ϑ ∈ ΘW }.

Thus, when Q ∈ Mσ ∩ PΨ, EQ[GT (ϑ)] ≤ 0 for any ϑ ∈ ΘW . The fact 0 ∈ ΘW implies
supϑ∈ΘW EQ[GT (ϑ)] = 0. Together with Lemma 5.1, supX1∈A1 EQ[−X1] = supϑ∈ΘW EQ[GT (ϑ)]
= 0 for any Q ∈ Mσ ∩ PΨ.

Step 2. Suppose that Q ∈ PΨ and Q /∈ Mσ. Then, there exists a ϑ ∈ ΘW such that G(ϑ)
is not a Q-supermartingale from the viewpoint of (5.3). Now, we define, for 0 ≤ t1 < t2 ≤ T
and ϑ ∈ ΘW ,

(5.4) U(t1, t2;ϑ) := {EQ[Gt2(ϑ)|Ft1 ] > Gt1(ϑ)}.

Then, there exist t1, t2 ∈ [0, T ] with t1 < t2 and a ϑ ∈ ΘW such that Q(U(t1, t2;ϑ)) > 0.
Otherwise, we have EQ[Gt2(ϑ)|Ft1 ] ≤ Gt1(ϑ) for any t1, t2 ∈ [0, T ] with t1 < t2 and any
ϑ ∈ ΘW . Substituting t1 = 0, we have EQ[Gt2(ϑ)] ≤ 0 for any t2 ∈ [0, T ] and any ϑ ∈ ΘW .
Incidentally, for any ϑ ∈ ΘW , there exists a c > 0 such that Gt(ϑ) ≥ −cW for any t ∈ [0, T ]
by (5.1). Thus, Gt(ϑ) ∈ L1(Q) for any t ∈ [0, T ] and any ϑ ∈ ΘW . Hence, G(ϑ) is a
Q-supermartingale for any ϑ ∈ ΘW . This is a contradiction.

Now, for t ∈ [0, T ], k ≥ 1, and ϑ ∈ ΘW , we define

B(t, k;ϑ) := {Gt(ϑ) ≤ k}.

Then, for any t ∈ [0, T ] and any ϑ ∈ ΘW , Q(∪∞
k=1B(t, k;ϑ)) = 1. Taking a sufficiently large

k ≥ 1, we have Q(U(t1, t2;ϑ) ∩ B(t1, k;ϑ)) > 0. Note that, denoting U = U(t1, t2;ϑ) ∩
B(t1, k;ϑ), we have U ∈ Ft1 . We construct ϑ̃ by using ϑ as follows:

ϑ̃t :=

{
0 if t ≤ t1 or t2 < t,

1Uϑt if t1 < t ≤ t2.
(5.5)
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We have Gt1(ϑ) ≤ k ≤ kW on U . Moreover, since ϑ ∈ ΘW , there exists a c > 0 such that
Gt(ϑ) ≥ −cW for any t ∈ [0, T ]. By (5.5), we obtain, for any t ∈ [0, T ],

Gt(ϑ̃) ≥ −(c+ k)W,

that is, ϑ̃ ∈ ΘW . As a result, (5.4) and the definition of U yield

EQ[GT (ϑ̃)] = EQ[1U (Gt2(ϑ) −Gt1(ϑ))]

= EQ[1U (EQ[Gt2(ϑ)|Ft1 ] −Gt1(ϑ))] > 0.

Since cϑ̃ ∈ ΘW for any c > 0, we can conclude that supϑ∈ΘW EQ[GT (ϑ)] = +∞.

6. Predictably convex case. A family of semimartingales S is said to be predictably convex
if, for any S1, S2 ∈ S and any [0, 1]-valued predictable process h,

∫ ·
0 hdS

1+
∫ ·
0(1−h)dS2 belongs

to S. In this section, let S be a predictable convex subset of G(ΘW ) := {G(ϑ)|ϑ ∈ ΘW}.
We denote by ΘS the corresponding subset of ΘW to the fixed S. That is, we can describe
S = {G(ϑ)|ϑ ∈ ΘS}. Throughout this section, we regard ΘS as the set of all admissible
strategies. Examples of S satisfying the above conditions shall be discussed in subsection 6.3.
Now, we introduce an example of the case where ΘW is not predictably convex.

Example 6.1 (ΘW is not necessarily predictably convex). Let d = 1. We consider a discrete
time model with maturity 3. Let Z1, Z2, Y1, and Y2 be four independent random variables.
Suppose that Zi, i = 1, 2, takes values in {1, 2, . . . }, and Yi, i = 1, 2, in {−1, 1}, respectively.
Let F0 = {∅,Ω}, F1 = σ(Z1), F2 = σ(Y1, Z1), and F3 = σ(Y1, Y2, Z1, Z2). Moreover, the asset
price process S is given by S0 = S1 = 0, S2 = Z11{Y1=1} − 1{Y1=−1}, and

S3 = (S2 + 1)1{Y1=1,Y2=1} − Z21{Y1=1,Y2=−1} − 1{Y1=−1}.

Suppose that Z2 ∈MΦ. Put W = Z2 + 1.
For instance, letting ϑ1 = 1 and ϑ2 = ϑ3 = Z−1

1 , we have |Gt(ϑ)| ≤ W for t = 1, 2, 3.
Thus, W is suitable. Next, letting ϑ1 ≡ 1, we have Gt(ϑ

1) ≥ −Z2 for t = 1, 2, 3, which
means ϑ1 ∈ ΘW . However, letting ϑ21 = ϑ22 = 0 and ϑ23 = 1, we have G3(ϑ2) = −Z1 − Z2

on {Y1 = 1, Y2 = −1}. Since Z1 is independent of Z2, we get ϑ2 /∈ ΘW . Hence, ΘW is not
predictably convex.

6.1. Upper variation process. Before stating the main theorem of this section, we need
some mathematical preparations. We first define

P(S) := {Q� P | there exists an increasing predictable process A(6.1)

such that G(ϑ) −A is a Q-supermartingale for any ϑ ∈ ΘS}.

We can now prove the following lemma.
Lemma 6.2. If Q ∈ P(S), then, for any ϑ ∈ ΘS , G(ϑ) is a special semimartingale under

Q.
Proof. By (6.1), for any Q ∈ P(S), there exists an increasing predictable process AQ

satisfying that G(ϑ) − AQ is a Q-supermartingale for any ϑ ∈ ΘS . Now, we denote by

Mϑ −Aϑ the Doob decomposition of G(ϑ) −AQ, where Mϑ is a Q-local martingale, and Aϑ
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is an increasing predictable process null at 0. See Theorem VII.12 of Dellacherie and Meyer
[12]. Then, we have G(ϑ) = Mϑ − Aϑ + AQ, which gives a canonical decomposition of G(ϑ)
under Q.

Unless otherwise stated explicitly, for Q ∈ P(S), we denote by Mϑ + Aϑ the canonical
decomposition of G(ϑ) under Q. Note that this decomposition Mϑ +Aϑ depends on Q. Now,
for Q ∈ P(S), we define

A := {Aϑ|ϑ ∈ ΘS}.
Note that the set A depends on Q. In particular, when Q /∈ P(S), we are not necessarily
able to define A. In addition, for two stochastic processes X and Y , we define an order � as
follows:

X � Y ⇐⇒ Y −X is an increasing process.

Remark 6.3. For any A ∈ A, we can construct an increasing process Ã ∈ A by modifying
A. Denote

ht :=

{
1, dAt ≥ 0,
0, dAt < 0.

Note that h is a [0, 1]-valued predictable process. Defining Ãt :=
∫ t
0 hsdAs, Ã is an increasing

predictable process satisfying A � Ã. The predictable convexity of S implies that Ã ∈ A. By
taking Ã instead of A if need be, we can regard every element of A as an increasing predictable
process.

Remark 6.3 will be used in many places. Now, we need to prepare one more lemma.

Lemma 6.4. For Q ∈ P(S), the ordered set (A,�) is directed upward.

Proof. Let A1, A2 ∈ A. Define Bt := 1
2(A1

t + A2
t +

∫ t
0 |dA1

s − dA2
s|). By the proof of

Lemma 2.2 of Kramkov [22], there exists a {−1,+1}-valued predictable process h satisfying∫ t
0 |dA1

s − dA2
s| =

∫ t
0 hs(dA

1
s − dA2

s). Hence, we can denote Bt =
∫ t
0

1+hs
2 dA1

s +
∫ t
0

1−hs
2 dA2

s,
and the predictable convexity of S yields B ∈ A. Moreover, A1 � B holds, since Bt − A1

t =∫ t
0 (dA1

s − dA2
s)

−. We obtain A2 � B in the same manner. As a result, (A,�) is directed
upward.

For any A1, A2 ∈ A, we denote the above B by A1∨A2. An increasing predictable process
AS is called an upper variation process of the ordered set (A,�) if AS satisfies the following
two conditions:

1. A � AS for any A ∈ A;
2. if an increasing predictable process Â satisfies A � Â for any A ∈ A, then AS � Â

holds.

We can prove the existence of an upper variation process and its integrability. The following
lemma will be essential in proving the main theorem in this section. Note that Lemma 2.1 of
Föllmer and Kramkov [13] proved a result very similar to the following lemma.

Lemma 6.5. Let Q ∈ P(S). We have the following three assertions:

(a) An upper variation process AS of (A,�) exists.
(b) There exists an increasing sequence (An)n≥1 of (A,�) such that Ant ↑ AS

t Q-a.s. for any
t ∈ [0, T ].

(c) EQ[AS
T ] <∞.
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Proof. We prove this lemma in a similar way to Theorem A.32 of Föllmer and Schied [16].
Step 1. Since Q ∈ P(S), there exists an increasing predictable process AQ such that

G(ϑ) − AQ is a Q-supermartingale for any ϑ ∈ ΘS . Taking ϑ ≡ 0, −AQ itself is a Q-
supermartingale. That is, EQ[AQT ] < ∞. Since AQ −Aϑ is increasing by the proof of Lemma

6.2, we have EQ[AϑT ] ≤ EQ[AQT ] <∞ for any ϑ ∈ ΘS .
Step 2. Let B ⊂ A be a countable set. Thus, we can denote B = {A1, A2, . . . }. We then

define inductively Ã1 := A1 and Ãk := Ak ∨ Ãk−1 for k ≥ 2. Clearly, we have Ã1 � Ã2 � · · · ,
and Ãk ∈ A for any k ≥ 1. Let B̃ := {Ã1, Ã2, . . . }. Considering B̃ instead of B, we may
assume that every countable subset B = {A1, A2, . . . } has the monotonicity in the sense of
that A1 � A2 � · · · .

Now, we define, for any countable set B, AB
t := limn→∞Ant for any t ∈ [0, T ]. The

monotone convergence theorem implies that EQ[AB
t ] = limn→∞EQ[Ant ] for any t ∈ [0, T ].

Note that the stochastic process AB is an increasing predictable process. Denoting

(6.2) α := sup{EQ[AB
T ] | B ⊂ A countable},

α is finite by Step 1. We take a sequence (Bn)n≥1 of countable subsets of A so that EQ[ABn

T ] ↑ α
as n→ ∞. Letting B∗ := ∪∞

n=1Bn, B∗ is countable and satisfies EQ[AB∗
T ] = α. Without loss of

generality, B∗ is denoted by {A∗,1, A∗,2, . . . } such that A∗,1 � A∗,2 � · · · and A∗,n
t → AB∗

t Q-
a.s. as n→ ∞ for any t ∈ [0, T ].

Step 3. In order to complete the proof of Lemma 6.5, we have only to prove that AB∗
is

an upper variation process of (A,�). First, we shall prove that A � AB∗
for any A ∈ A.

For ε > 0, A ∈ A, and 0 ≤ t1 < t2 ≤ T , we define

D(t1, t2; ε,A) := {(At2 −At1) − (AB∗
t2 −AB∗

t1 ) > ε}.

Assume that there exist ε > 0, Â ∈ A, and 0 ≤ t1 < t2 ≤ T such that Q(D(t1, t2; ε, Â)) > 0.
Thus, we have Q({AB∗

t1 − A∗,N
t1 < ε/2} ∩D(t1, t2; ε, Â)) > 0 for any sufficiently large number

N , where (A∗,n)n≥1 is the sequence of increasing processes that appeared in Step 2; that is,

A∗,n converges increasingly to AB∗
as n tends to ∞. For such an N , denote A := Â ∨ A∗,N .

Then, we have Q(At2 > AB∗
t2 ) > 0. Defining A

k
:= A ∨A∗,N+k for k ≥ 1, we have EQ[AB∗

T ] <

limk→∞EQ[A
k
T ]. That is, there exists an A′ ∈ A such that EQ[AB∗

T ] < EQ[A′
T ]. Letting

B′ := B∗ ∪ {A′}, we have EQ[AB′
T ] > EQ[AB∗

T ] = α, which contradicts the definition of α,
since B′ is countable. Thus, Q(D(t1, t2; ε,A)) = 0 for any ε > 0, any A ∈ A, and any
0 ≤ t1 < t2 ≤ T , that is, A � AB∗

for any A ∈ A.
Step 4. Let B be an increasing predictable process such that A � B for any A ∈ A. We

prove that AB∗ � B as the last step of the proof. Defining

Dt1,t2 := {AB∗
t2 −AB∗

t1 > Bt2 −Bt1}, 0 ≤ t1 < t2 ≤ T,

we assume that Q(Dt1,t2) > 0 for some 0 ≤ t1 < t2 ≤ T .
Denoting

B̃t :=

⎧⎨⎩
AB∗
t if t ≤ t1,

AB∗
t1 +Bt −Bt1 if t1 < t ≤ t2,

AB∗
t1 +Bt2 −Bt1 +AB∗

t −AB∗
t2 if t > t2,
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we have

(6.3) Q(AB∗
t2 > B̃t2) = Q(Dt1,t2) > 0.

Note that A � AB∗
and A � B for any A ∈ A. Thus, A � B̃ for any A ∈ A. This fact,

together with (6.3), contradicts that AB∗
t = limn→∞A∗,n

t for any t ∈ [0, T ], and each A∗,n

belongs to A. Hence, Q(Dt1,t2) = 0 for any 0 ≤ t1 < t2 ≤ T , that is, AB∗ � B.
From the viewpoint of Lemma 6.5, we obtain the following proposition. In addition to

this, we introduce one corollary, which is proved immediately by the proof of Proposition 6.6.
Proposition 6.6. Let Q ∈ PΨ. Then, Q ∈ P(S) if and only if

(1) G(ϑ) is a special semimartingale under Q for any ϑ ∈ ΘS , and
(2) an upper variation process AS exists with EQ[AS

T ] <∞.
Proof. The “only if” part has been proved by Lemmas 6.2 and 6.5(c). We prove the “if”

part. Note that, when condition (1) holds, the ordered set (A,�) is well defined; that is,
condition (2) becomes meaningful.

Fix ϑ ∈ ΘS arbitrarily. There exists then a constant c > 0 such that, for any t ∈ [0, T ],
Gt(ϑ) ≥ −cW and cW ∈ L1(Q), since Q ∈ PΨ. Let (τn)n≥1 be a localizing sequence of Mϑ.
For any 0 ≤ t1 < t2 ≤ T , we have

EQ[Gt2(ϑ) −AS
t2 |Ft1 ] = EQ[lim inf

n→∞ (Mϑ
t2∧τn +Aϑt2∧τn) −AS

t2 |Ft1 ]

≤ lim inf
n→∞ EQ[(Mϑ

t2∧τn +Aϑt2∧τn) −AS
t2 |Ft1 ]

= lim inf
n→∞

(
Mϑ
t1∧τn + EQ[Aϑt2∧τn −AS

t2 |Ft1 ]
)

≤Mϑ
t1 + EQ[Aϑt2 −AS

t2 |Ft1 ]

≤Mϑ
t1 +Aϑt1 −AS

t1 = Gt1(ϑ) −AS
t1 .

The first inequality is given by the Fatou lemma, the second equality the martingale property
of the stopped process (Mϑ)τn , the second inequality the increasing property of Aϑ, and the
last inequality the fact that Aϑ � AS , respectively. Hence, Q ∈ P(S).

Remark 6.7. Although we treat Aϑ as an increasing process in the above proof, we can
extend it to the case where Aϑ is not increasing.

Corollary 6.8. Let Q ∈ PΨ. Then, Q ∈ P(S) if and only if AS exists and G(ϑ) − AS is a
Q-supermartingale for any ϑ ∈ ΘS .

6.2. Main theorem. At last, we state the main theorem of this section. By using an
upper-variation process, the representation of the first term of the minimal penalty function
will be given.

Theorem 6.9. Let Θ be given by ΘS. Suppose that P(S) ∩ PΨ �= ∅. For any Q ∈ PΨ, we
have then

(6.4) sup
X1∈A1

EQ[−X1] =

{
EQ[AS

T ] if Q ∈ P(S),
+∞ if Q /∈ P(S).

Hence, we have

ρl(X) = max
Q∈P(S)∩PΨ

{
EQ[−X] − EQ[AS

T ] − inf
λ>0

1

λ

{
δ + E

[
Ψ

(
λ
dQ

dP

)]}}
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for any X ∈MΦ.
Proof. Step 1. Let Q ∈ P(S). Corollary 6.8 implies that EQ[GT (ϑ)] ≤ EQ[AS

T ] for any
ϑ ∈ ΘS . Thus, we have

(6.5) sup
ϑ∈ΘS

EQ[GT (ϑ)] ≤ EQ[AS
T ].

Let (ϑn)n≥1 ⊂ ΘS be a sequence such that the corresponding sequence Aϑ
n

is increasing in
the order �, and Aϑ

n

t ↑ AS
t Q-a.s. for any t ∈ [0, T ]. The existence of such a sequence is ensured

by Lemma 6.5(b). Let (τnk )k≥1 be a localizing sequence of Mϑn . Then, Aϑ
n

T∧τnk ↑ AϑnT Q-a.s.

as k → ∞. Indeed, this convergence holds in L1(Q), too, because AS
T ∈ L1(Q). Take ε > 0

arbitrarily. Then, for each n ≥ 1, we can take a sufficiently large number k(n) to satisfy
that EQ[Aϑ

n

T − Aϑ
n

T∧τn
k(n)

] < ε/2. Denoting σn := τnk(n), we have EQ[AS
T − Aϑ

n

T∧σn ] < ε for any

sufficiently large number n, since EQ[AS
T −Aϑ

n

T ] < ε/2 holds for any sufficiently large number
n. Noting that G(ϑ)σ

n ∈ S because the predictable convexity of S, we obtain, for such a
sufficiently large number n,

sup
ϑ∈ΘS

EQ[GT (ϑ)] ≥ EQ[GT (ϑn)σ
n
] = EQ[Aϑ

n

T∧σn ] > EQ[AS
T ] − ε.

By the arbitrariness of ε, we can conclude that supϑ∈ΘS EQ[GT (ϑ)] ≥ EQ[AS
T ]. This, together

with (6.5) and Lemma 5.1, implies that (6.4) holds for any Q ∈ P(S).
Step 2. We consider the case of Q /∈ P(S). We divide it into three cases from the viewpoint

of Proposition 6.6.
Case 1. Consider the case where condition (1) in Proposition 6.6 holds, AS exists, and

EQ[AS
T ] = +∞. Assuming that α in (6.2) is finite, Steps 2–4 in the proof of Lemma 6.5 hold.

We have then EQ[AS
T ] = α < ∞, which is a contradiction. Hence, α must be +∞. Then, for

any M > 0, there exists a countable subset BM of A such that EQ[ABM

T ] > M . Thus, there
exists an AM ∈ BM such that EQ[AMT ] > M . Denoting by ϑM the corresponding element of

ΘS to AM , and by (τMk )k≥1 a localizing sequence of MϑM , we have G(ϑM )τ
M
k ∈ S for any

k ≥ 1. Thus, for any k ≥ 1, the following holds:

sup
X1∈A1

EQ[−X1] = sup
ϑ∈ΘS

EQ[GT (ϑ)] ≥ EQ[GT (ϑM )τ
M
k ] = EQ[AM

T∧τMk ].

Note that Aϑ
M

= AM . As k → ∞,

sup
X1∈A1

EQ[−X1] ≥ lim
k→∞

EQ[AM
T∧τMk ] = EQ[AMT ] > M.

By the arbitrariness of M , we obtain supX1∈A1 EQ[−X1] = +∞.
Case 2. We treat the case where condition (1) in Proposition 6.6 holds and AS does not

exist. Assuming that α in (6.2) is finite, Steps 2–4 in Lemma 6.5 hold. Thus, AS exists,
which is a contradiction. Letting α = +∞, the same argument as Case 1 provides that
supX1∈A1 EQ[−X1] = +∞.

Case 3. Consider the case where condition (1) in Proposition 6.6 does not hold. We can
take some ϑ ∈ ΘS such that G(ϑ) is not a special semimartingale under Q. Remark that G(ϑ)
is a semimartingale under Q by Theorem VII.45 of [12].
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Denote Rϑt := sups∈[0,t] |Gs(ϑ)|. Theorem VII.25 of [12] says that Rϑ is not locally Q-
integrable. Now, for any n ≥ 1, we define τn := inf{t ≥ 0||Gt(ϑ)| ≥ n}∧T . Then, there exists
an N ≥ 1 such that EQ[Rϑ

τN
] = +∞. Let AN := {|Gt(ϑ)| < N for any t ∈ [0, T ]}. Then,

Rϑ
τN

≤ N on AN . On the other hand, Rϑ
τN

= |GτN (ϑ)| on (AN )c.
Hence, we have

+∞ = EQ[RϑτN ] = EQ[1ANRϑτN + 1(AN )cR
ϑ
τN ]

≤ NQ(AN ) + EQ[|GτN (ϑ)|],

which means EQ[|GτN (ϑ)|] = +∞. Since G(ϑ)τ
N ∈ S, there exists a c > 0 such that

Gt(ϑ)τ
N ≥ −cW for any t ∈ [0, T ]. Thus, since W ∈ L1(Q) and |GT (ϑ)τ

N |1{GT (ϑ)τN≤0} ≤ cW ,

we have

sup
X1∈A1

EQ[−X1] ≥ EQ[GT (ϑ)τ
N

] ≥ EQ[|GT (ϑ)τ
N |1{GT (ϑ)τN>0} − cW ]

≥ EQ[|GT (ϑ)τ
N | − 2cW ] = +∞.

Hence, (6.4) holds. This completes the proof of Theorem 6.9.

6.3. Examples. In this subsection, we shall introduce two examples of ΘS . We aim to
illustrate examples of nonlocally bounded asset price processes. Thus, we treat exponential
compound Poisson processes as typical cases of continuous time asset price processes with
jumps. Furthermore, we shall calculate upper-variation processes for the first example. For
simplicity, we consider only the case of one-dimensional pure jump type models.

Let N be a Poisson process with parameter λ > 0. Set Tj = 0 for j = 0,−1. For j ≥ 1,
the jth jump time of N is denoted by Tj . Let (Yj)j≥1 be a sequence of i.i.d. (−1,∞)-valued
random variables which are independent of N , and Y0 = 0. Define a compound Poisson process
Z as Zt :=

∑Nt
i=0 Yi. The asset price process S is given by St = S0E(Z)t, where E means the

stochastic exponential, and S0 > 0. In other words, S is represented as St = S0
∏Nt
i=0(1 + Yi),

which is a positive semimartingale.
Before stating the first example, we need some preparations.
Assumption 6.10. We assume the existence of W satisfying the following conditions:

1. W ∈MΦ;
2. W ≥ 1 + sup{|Gt(h)| : h is a [0, 1]-valued predictable process, and t ∈ [0, T ]}.

Note that such a W is suitable.
Proposition 6.11. Under Assumption 6.10, we fix two nonnegative constants k1 and k2 and

define

Θk1,k2 := {ϑ ∈ L(S)| − k1 ≤ ϑ ≤ k2}.
Then, Θk1,k2 is predictably convex and a subset of ΘW .

Proof. We have only to prove Θk1,k2 ⊂ ΘW . Taking a ϑ ∈ Θk1,k2 , there exists a [0, 1]-
valued predictable process h such that ϑ = −k1h+k2(1−h). Then, for any t ∈ [0, T ], we have
Gt(ϑ) = −k1Gt(h) + k2Gt(1 − h) ≥ −k1W − k2W . This completes the proof of Proposition
6.11.

This proposition implies that, under Assumption 6.10, Θk1,k2 becomes an example of ΘS .
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Example 6.12. We consider the case where Φ(x) = x2/2. Suppose that the random variable
Y1 satisfies E[Y 2

1 ] <∞. Taking

W := 1 + sup{|Gt(h)| : h is a [0, 1]-valued predictable process, and t ∈ [0, T ]},

we prove W ∈MΦ. Since we have, for any [0, 1]-valued predictable process h,

G2
t (h) ≤ Nt

Nt∑
i=0

h2Ti(STi − STi−1)2 ≤ Nt

Nt∑
i=0

(STi − STi−1)2 ≤ 2Nt

Nt∑
i=0

S2
Ti ,

it suffices to prove that E[NT
∑NT

i=0 S
2
Ti

] <∞. Denoting σ := E[(1 + Y1)2] > 0, we have

E

[
NT

NT∑
i=0

S2
Ti

]
=

∞∑
k=0

E

[
k

k∑
i=0

S2
Ti

∣∣∣NT = k

]
P (NT = k)

=

∞∑
k=0

k

k∑
i=0

E

⎡⎣S2
0

i∏
j=0

(1 + Yj)
2

⎤⎦P (NT = k)

= S2
0

∞∑
k=0

k

k∑
i=0

σi
(λT )k

k!
e−λT ≤ S2

0

∞∑
k=0

k

k∑
i=0

(σ + 1)i
(λT )k

k!
e−λT

= S2
0

∞∑
k=1

(σ + 1)k+1 − 1

σ

(λT )k

(k − 1)!
e−λT ≤ S2

0

(σ + 1)2λT

σ
eσλT <∞.

By Proposition 6.11, Θk1,k2 for any k1, k2 ≥ 0 is predictably convex. Denoting Z̃t :=

Zt − E[Y1]λt, we have that Z̃ is a P -martingale. For any ϑ ∈ Θk1,k2 , we have Gt(ϑ) =∫ t
0 ϑsSs−dZs =

∫ t
0 ϑsSs−dZ̃s + E[Y1]λ

∫ t
0 ϑsSs−ds. Note that the process S is positive. Thus,

by the definition of upper variation processes, we can see that P belongs to P(S) and its
upper-variation process AS

t is given by

AS
t =

{
E[Y1]λk2

∫ t
0 Ss−ds if E[Y1] ≥ 0,

−E[Y1]λk1
∫ t
0 Ss−ds if E[Y1] < 0.

In the next example, we consider the exponential loss function case.

Example 6.13. Suppose that Y1 belongs to the Orlicz heart MΦ, where Φ(x) = ex− 1. For
instance, 1 + Y1 has the same distribution as |Y |, where Y is a normal distributed random
variable. For any predictable process h, we have Gt(ϑ) =

∑
j≥0,Tj≤t ϑTjSTj−1Yj. If ϑ belongs

to the set

F := {ϑ ∈ L(S)| ϑTjSTj−1 is [0, 1]-valued for any j ≥ 0},
then |Gt(ϑ)| ≤∑Tj≤T |Yj| for any t ∈ [0, T ]. Let W be defined by

(6.6) W := 1 + sup{|Gt(ϑ)| : ϑ ∈ F, t ∈ [0, T ]}.
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We have

E

⎡⎣exp

⎧⎨⎩c ∑
Tj≤T

|Yj |
⎫⎬⎭
⎤⎦ =

∞∑
k=0

E

⎡⎣ k∏
j=0

ec|Yj |
∣∣∣NT = k

⎤⎦P (NT = k)

=

∞∑
k=0

Ek
[
ec|Y1|

] (λT )k

k!
e−λT <∞,

from which W ∈ MΦ follows. We can define the set ΘW associated with (6.6). Defining, for
two nonnegative constants k1 and k2,

ΘS := {ϑ ∈ L(S)| − k1 ≤ ϑTjSTj−1 ≤ k2 for any j ≥ 1},
we can see that ΘS is a predictably convex subset of ΘW by the same argument as Proposition
6.11.
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Jump-Diffusion Risk-Sensitive Asset Management I: Diffusion Factor Model∗

Mark Davis† and Sébastien Lleo‡

Abstract. This paper considers a portfolio optimization problem in which asset prices are represented by
SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions
of an auxiliary diffusion factor process. The criterion, following earlier work by Bielecki, Pliska,
Nagai, and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate
subject to a constraint on variance). By using a change of measure technique introduced by Kuroda
and Nagai we show that the problem reduces to solving a certain stochastic control problem in the
factor process, which has no jumps. The main result of this paper is to show that the risk-sensitive
jump-diffusion problem can be fully characterized in terms of a parabolic Hamilton–Jacobi–Bellman
PDE rather than a partial integro-differential equation, and that this PDE admits a classical (C1,2)
solution.

Key words. stochastic control, risk-sensitive control, jump-diffusion processes, Lévy processes, Hamilton–
Jacobi–Bellman partial differential equation, linear parabolic partial differential equation, partial
integro-differential equation, policy improvement
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1. Introduction. In this article, we consider a finite time jump-diffusion version of the
risk-sensitive asset management problem of Bielecki and Pliska [5]. Fundamentally, our main
result is to show that the resulting stochastic control problem can be fully characterized by
a parabolic Hamilton–Jacobi–Bellman (HJB) PDE rather than a partial integro-differential
equation (PIDE) and that this PDE admits a classical (C1,2) solution.

Risk-sensitive control is a generalization of classical stochastic control in which the degree
of risk aversion or risk tolerance of the optimizing agent is explicitly parameterized in the
objective criterion and influences the outcome of the optimization directly. In risk-sensitive
control, the decision maker’s objective is to select a control policy h(t) to maximize the
criterion

(1.1) J(x, t, h; θ) := −1

θ
lnE

[
e−θF (x,h)

]
,

where t is the time, x is the state variable, F is a given reward function, and the risk sensitivity
θ > 0 is an exogenous parameter representing the decision maker’s degree of risk aversion. A
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Taylor expansion of the previous expression around θ = 0 evidences the vital role played by
the risk sensitivity parameter:

(1.2) J(x, t, h; θ) = E [F (x, t, h)] − θ

2
Var [F (x, t, h)] +O(θ2).

This criterion amounts to maximizing E [F (x, t, h)] subject to a penalty for variance. For a
general reference, see Whittle [40]. Much of the recent literature concerns the infinite time
horizon problem:

(1.3) J∞(x, h; θ) := lim inf
t→∞ −1

θ
t−1 lnE

[
e−θf(x,h)

]
.

This is interesting from a theoretical perspective but is not applicable to practical asset man-
agement because of the nonuniqueness of controls. Optimality in this sense is a “tail property”:
if h∗(t) is optimal, then so is h̃(t) = h∗(t)1t>T + h(t)1t≤T for any arbitrary process h(t) and
time T > 0. Of course, near-term decisions are the ones that are of primary importance to
investment managers.

In the past decade, the applications of risk-sensitive control to asset management have
flourished. Risk-sensitive control was first applied to solve financial problems by Lefebvre
and Montulet [29] in a corporate finance context and by Fleming [15] in a portfolio selection
context. However, Bielecki and Pliska [5] were the first to apply the continuous time risk-
sensitive control as a practical tool that could be used to solve “real world” portfolio selection
problems. They considered a long-term asset allocation problem and proposed the logarithm
of the investor’s wealth as a reward function, so that the investor’s objective is to maximize
the risk-sensitive (log) return of his/her portfolio or alternatively to maximize a function of
the power utility (HARA) of terminal wealth. They derived the optimal control and solved
the associated HJB PDE under the restrictive assumption that the asset and factor noise are
uncorrelated. This assumption is unrealistic, and it was later relaxed (see [8]). The contribu-
tion of Bielecki and Pliska to the field is immense: they studied the economic properties of
the risk-sensitive asset management criterion (see [7]), extended the asset management model
into an intertemporal CAPM [8], worked on transaction costs [6] and numerical methods [4],
and considered factors driven by a CIR model [9]. A major contribution to the mathemati-
cal theory was made by Kuroda and Nagai [26], who introduced an elegant solution method
based on a change of measure argument which transforms the risk-sensitive control problem
into a linear exponential of quadratic regulator. They solved the associated HJB PDE over a
finite time horizon and then studied the properties of the ergodic HJB PDE. Recently, Davis
and Lleo [12] applied this change of measure technique to solve, at a finite and an infinite
horizon, a benchmarked investment problem in which an investor selects an asset allocation
to outperform a given financial benchmark. The problem we consider is also related to the
vast literature on HARA utility maximization that has flourished in the past 50 years. This
literature includes a number of references related to risk-sensitive control, such as works by
Fleming and Sheu [17], [18], [19] or Hansen and Sargent [22] in the context of robust control.

Risk-sensitive asset management theory was originally set in a world of diffusion dynamics
where randomness is modelled using correlated Brownian motions. To our knowledge, the only
attempt to extend the risk-sensitive asset management theory from a diffusion to a jump-
diffusion setting was made by Wan [39], who briefly sketched a jump-diffusion extension of
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Bielecki and Pliska’s original infinite horizon risk-sensitive asset management model [5]. Wan’s
treatment is, however, restrictive, as it considers only a single Poisson process-driven jump per
asset and assumes that the underlying valuation factor risks and asset risks are uncorrelated.
Our paper addresses these two limitations. The setting of our control problem, which takes
place within a finite time horizon, allows for both infinite activity jumps in asset prices and for
a correlation structure between factor risks and asset risks. To solve this control problem we
extend Kuroda and Nagai’s powerful change of measure technique to account for the jumps.
One of the difficulties we face in extending this technique is proving that the optimal control
is admissible, as this requires showing that the Doléans exponential (2.9) associated with
this control is a martingale. In a pure diffusion setting, this would follow easily from the
Kamazaki condition or the Novikov condition. However, when the Doléans exponential does
not have continuous paths, as is the case in a jump-diffusion setting, proving that it is indeed
a martingale is more difficult, as only weaker partial results exist. This question is addressed
in the appendix of the present paper.

In this paper the asset price processes are modelled as jump diffusions whose growth rates
are functions of an auxiliary “factor” process X(t) which satisfies a linear diffusion SDE. Our
main result is that the risk-sensitive jump-diffusion asset management problem is equivalent
to an optimal control problem for a diffusion process (no jumps) and that the HJB equation
for the latter admits a unique classical C1,2 ([0, T ) × R

n) solution. Showing the existence
and uniqueness of a solution to a risk-sensitive control problem can prove difficult even in a
pure diffusion setting. For example, Bensoussan, Freshe, and Nagai [3] had to constrain the
behavior of the Hamiltonian in order to prove the existence of a classical solution. Still in
a pure diffusion setting, Fleming and Soner (see section V.9 in [20]) proved that the value
function is a continuous viscosity solution of the associated HJB PDE but had to assume
boundedness of all coefficients and of the derivatives of the reward function. No such strong
condition is required to solve the jump-diffusion problem considered in this article. In fact
all our assumptions arise naturally from the structure of the risk-sensitive asset management
problem. Uniqueness follows from a classical verification argument, while the proof of existence
relies on a policy improvement algorithm and on the properties of linear parabolic PDEs.

This paper is organized as follows. We first introduce the general setting of the model in
section 2 and define the class of random Poisson measures which will be used to model the
jump component of the asset dynamics. In section 3, we formulate the jump-diffusion control
problem and introduce the change of measure argument of Kuroda and Nagai [26]. In a pure
diffusion case, this is enough to transform the problem into a standard linear exponential of
quadratic regulator (LEQR) problem. In our jump-diffusion setting, the change of measure
simplifies the problem by associating the HJB PDE given in section 3.3, rather than the
expected PIDE containing nonlocal terms, to the value function. It is striking that an optimal
control problem for a jump-diffusion model has a solution that is characterized in terms of an
HJB PDE and not an HJB PIDE.1

Our main result is Theorem 4.3 in section 4. The proof depends on various technical
arguments which are given in sections 5 to 7. In section 5, we show the existence of a unique
optimal control before addressing two key questions in section 6. First, the admissibility of

1See Øksendal and Sulem [34] for a treatment of jump-diffusion control problems.
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the optimal control is no longer a priori guaranteed because the Doléans exponential defining
the Radon–Nikodym derivative does not have continuous paths. This point is addressed in
Propositions 6.3 and 6.4. Second, the risk-sensitive (RS) HJB PDE contains a jump-induced
control-dependent integral term: it is no longer possible to find an analytical solution, and
the existence of a strong, classical solution is no longer guaranteed. However, should we
be able to prove the existence of a classical C1,2 solution to the RS HJB PDE, then we can
prove uniqueness and resolve the control problem using a straightforward verification theorem,
presented in Theorem 6.1 and Corollary 6.2 in section 6.

In section 7, we address the existence and regularity of solutions to the RS HJB PDE. We
show, in Theorem 7.2 and Corollary 7.3, that the risk-sensitive jump-diffusion control problem
we consider admits a unique classical C1,2 ([0, T ) × R

n) solution. Showing the existence and
uniqueness of a solution to a risk-sensitive control problem can prove difficult even in a pure
diffusion setting. For example, Bensoussan, Frehse, and Nagai [3] had to constrain the behavior
of the Hamiltonian in their finite time horizon problem to prove the existence of a classical
solution. Still in a pure diffusion setting and over a finite time horizon, Fleming and Soner
(see section V.9 in [20]) proved that the value function is a continuous viscosity solution of the
associated HJB PDE but had to assume boundedness of all coefficients and of the derivatives of
the reward function. No such strong condition is required to solve the jump-diffusion problem
considered in this article. In fact all our assumptions arise naturally from the structure of the
risk-sensitive asset management problem. We obtain our result by applying an approximation
in policy space in a two-step process: first, we show existence on a bounded region and then
extend to the unbounded state space. With this result in hand, we have all the ingredients
needed for the proof of Theorem 4.3.

Up to this point, we have assumed that the factor process X(t) is directly observed by the
controller and therefore represents real economic factors: GDP growth, inflation, the S&P500
index, etc. We may, however, wish to use X(t) as an abstract latent factor, introduced to
model volatility of returns, in which case only the prices, and not X(t), will be observed.
In section 8, we note that this problem, once adequately reformulated, can be solved using
a classical Kalman filter, as in [32], as the jump noise is absent from the dynamics of X(t).
While this is from a technical point of view a simple observation, it greatly enhances the
applicability of our results.

In a companion paper [14] we consider the case in which there are jumps in both the price
and factor processes. There the measure change technique does not remove the jumps and
the argument is substantially different.

2. Analytical setting.

2.1. Overview. The growth rates of the assets are assumed to depend on the n factors
X1(t), . . . ,Xn(t) which follow the dynamics given in (2.3). As in Kuroda and Nagai’s asset-
only model, the assets market comprises m risky securities Si, i = 1, . . . ,m. In contrast
to Kuroda and Nagai, we assume that the money market account process, S0, is an affine
function of the valuation factors, which enables us to easily model a stochastic short-term
rate. Let M := n+m. Throughout, we will assume that m > n; this is needed in connection
with the “zero beta” policies introduced in section 7.1.

Let (Ω, {Ft} ,F ,P) be the underlying probability space. On this space is defined an R
M -



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

26 MARK DAVIS AND SÉBASTIEN LLEO

valued (Ft)-Brownian motion W (t) with components Wk(t), k = 1, . . . ,M . Moreover, let N
be an (Ft)-Poisson point process on (0,∞)×Z, independent of W (t), where (Z,BZ) is a given
Borel space.2 Define

(2.1) Z := {U ∈ B(Z),E [N(t, U)] <∞ ∀t} .

Finally, for notational convenience, we fix throughout the paper a set Z0 ∈ BZ such that
ν(Z\Z0) <∞ and define

N̄(dt, dz)(2.2)

=

{
N(dt, dz) − N̂(dt, dz) = N(dt, dz) − ν(dz)dt =: Ñ(dt, dz) if z ∈ Z0,
N(dt, dz) if z ∈ Z\Z0.

2.2. Factor dynamics. The dynamics of the n factors are expressed by the affine diffusion
equation

(2.3) dX(t) = (b+BX(t))dt + ΛdW (t), X(0) = x,

where X(t) is the R
n-valued factor process with components Xj(t) and b ∈ R

n, B ∈ R
n×n,

and Λ ∈ R
n×M .

2.3. Asset market dynamics. Let S0 denote the wealth invested in the money market
account with dynamics given by the equation

(2.4)
dS0(t)

S0(t)
=
(
a0 +AT0X(t)

)
dt, S0(0) = s0,

where a0 ∈ R is a scalar constant, A0 ∈ R
n is an n-element column vector, and throughout

the paper xT denotes the transpose of the matrix or vector x.
Let Si(t) denote the price at time t of the ith security, with i = 1, . . . ,m. The dynamics

of risky security i can be expressed as

dSi(t)

Si(t−)
= (a+AX(t))idt +

N∑
k=1

σikdWk(t) +

∫
Z
γi(z)N̄ (dt, dz),

Si(0) = si, i = 1, . . . ,m,(2.5)

where a ∈ R
m, A ∈ R

m×n, Σ := [σij] , i = 1, . . . ,m, j = 1, . . . ,M , and γ(z) ∈ R
m satisfies

Assumption 1.
Assumption 1. γ(z) ∈ R

m satisfies

−1 ≤ γmini ≤ γi(z) ≤ γmaxi < +∞, i = 1, . . . ,m,

and
−1 ≤ γmini < 0 < γmaxi < +∞, i = 1, . . . ,m,

2Z is a Polish space and BZ is the Borel σ-field. See Ikeda and Watanabe [23] for a formal definition of the
Poisson point process.
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for i = 1, . . . ,m. Furthermore, define

S := supp(ν) ∈ BZ

and

S̃ := supp(ν ◦ γ−1) ∈ B (Rm) ,

where supp(·) denotes the measure’s support; then we assume that
∏m
i=1[γ

min
i , γmaxi ] is the

smallest closed hypercube containing S̃.

In addition, the vector-valued function γ(z) satisfies

(2.6)

∫
Z0

|γ(z)|2ν(dz) <∞.

Note that Assumption 1 implies that each asset has, with positive probability, both upward
and downward jumps. As will become evident in section 3.2, the effect of this assumption is
to bound the space of controls. Relation (2.6) is a standard condition.

Define the set J as

(2.7) J :=
{
h ∈ R

m : −1 − hTψ < 0 ∀ψ ∈ S̃
}
,

and let J be the closure of J . For a given z, the equation hTγ(z) = −1 describes a hyperplane
in R

m. J is a bounded open convex subset of Rm.

2.4. Portfolio dynamics. We will need the following assumptions.

Assumption 2. ΣΣT > 0.

The effect of this assumption is to prevent redundant assets. For example, we will not able
to model in our investment market a share and an option or futures on that share. However,
this assumption leaves us free to model a wide range of assets such as shares, bonds, and
commodity products as well as related indices.

Assumption 3. ΛΛT > 0.

Let Gt := σ((S(s),X(s)), 0 ≤ s ≤ t) be the sigma-field generated by the security and
factor processes up to time t. An investment strategy or control process is an R

m-valued
process with the interpretation that hi(t) is the fraction of current portfolio value invested
in the ith asset, i = 1, . . . ,m. The fraction invested in the money market account is then
h0(t) = 1 −∑m

i=1 hi(t).

Definition 2.1. An R
m-valued control process h(t) is in class H if the following conditions

are satisfied:

1. h(t) is progressively measurable with respect to {B([0, t]) ⊗ Gt}t≥0 and is càdlàg;

2. P(
∫ t
0 |h(s)|2 ds < +∞) = 1 ∀t > 0;

3. hT (t)γ(z) > −1 ∀t > 0, z ∈ Z, a.s. dν.

Define the set K as

(2.8) K := {h ∈ H : h(t, ω) ∈ J a.e. dt× dP} .
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Lemma 2.2. Under Assumption 1, a control process h(t) satisfying condition 3 in Defini-
tion 2.1 is bounded.

Proof. The proof of this result is immediate.

Definition 2.3. A control process h is in class A(T ) if the following conditions are satisfied:

1. h ∈ H;
2. EχhT = 1, where χht , t ∈ (0, T ], is the Doléans exponential defined as

χht := exp

{
−θ
∫ t

0
h(s)TΣdWs − 1

2
θ2
∫ t

0
h(s)TΣΣTh(s)ds(2.9)

+

∫ t

0

∫
Z

ln (1 −G(z, h(s))) Ñ(ds, dz)

+

∫ t

0

∫
Z
{ln (1 −G(z, h(s))) +G(z, h(s))} ν(dz)ds

}
and

(2.10) G(z, h) = 1 − (1 + hT γ(z)
)−θ

.

We say that a control process h is admissible if h ∈ A(T ).

The proportion invested in the money market account is h0(t) = 1 −∑m
i=1 hi(t). Taking

this budget equation into consideration, the wealth, V (t), of the investor in response to an
investment strategy h(t) ∈ H follows the dynamics

dV (t)

V (t−)
=
(
a0 +AT0X(t)

)
dt+ hT (t)

(
a− a01 +

(
A− 1AT0

)
X(t)

)
dt

+hT (t)ΣdWt +

∫
Z
hT (t)γ(z)N̄ (dt, dz),

with 1 ∈ Rm denoting the m-element unit column vector and with V (0) = v. Defining
â := a− a01 and Â := A− 1AT0 , we can express the portfolio dynamics as
(2.11)
dV (t)

V (t−)
=
(
a0 +AT0X(t)

)
dt+ hT (t)

(
â+ ÂX(t)

)
dt+ hT (t)ΣdWt +

∫
Z
hT (t)γ(z)N̄ (dt, dz)

with initial endowment V (0) = 0.

3. Problem setup.

3.1. Optimization criterion. We will assume that the objective of the investor is to max-
imize the risk adjusted growth of his/her portfolio of assets over a finite time horizon. In this
context, the objective of the risk-sensitive management problem is to find h∗ ∈ A(T ), which
maximizes the control criterion

(3.1) J(x, t, h; θ) := −1

θ
lnE

[
e−θ lnV (t,x,h)

]
.
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By Itô’s lemma, the log of the portfolio value in response to a strategy h is

lnV (t) = ln v +

∫ t

0

(
a0 +AT0X(s)

)
+ h(s)T

(
â+ ÂX(s)

)
ds− 1

2

∫ t

0
h(s)TΣΣTh(s)ds

+

∫ t

0
h(s)TΣdW (s)

+

∫ t

0

∫
Z0

{
ln
(
1 + h(s)T γ(z)

) − h(s)T γ(z)
}
ν(dz)ds

+

∫ t

0

∫
Z

ln
(
1 + h(s)T γ(z)

)
N̄(ds, dz).(3.2)

Hence,

(3.3) e−θ lnV (t) = v−θ exp

{
θ

∫ t

0
g(Xs, h(s))ds

}
χht ,

where

g(x, h) =
1

2
(θ + 1) hTΣΣTh− a0 −AT0 x− hT (â+ Âx)

+

∫
Z

{
1

θ

[(
1 + hT γ(z)

)−θ − 1
]

+ hT γ(z)1Z0(z)

}
ν(dz)(3.4)

and the Doléans exponential χht is given by (2.9).

3.2. Change of measure. Let Ph be the measure on (Ω,FT ) defined via the Radon–
Nikodym derivative

dPh
dP

:= χhT .(3.5)

For a change of measure to be possible, we must ensure that the following technical condition
holds:

G(z, h(s)) < 1.

This condition is satisfied iff

hT (s)γ(z) > −1(3.6)

a.s. dν, which was already required for h(t) to be in class H (condition 3 in Definition 2.1).
Condition (3.6) is endogenous to the control problem and can be interpreted as a risk man-
agement safeguard preventing the investor from investing in some of the portfolios if the jump
component of these portfolios could result in the investor’s bankruptcy.

Observe that Ph is a probability measure for h ∈ A(T ). Then

W h
t = Wt + θ

∫ t

0
ΣTh(s)ds
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is a standard Brownian motion under the measure Ph and we have (recall the notation defined
at (2.2)) ∫ t

0

∫
Z0

Ñh(ds, dz) =

∫ t

0

∫
Z0

N(ds, dz) −
∫ t

0

∫
Z0

{1 −G(z, h(s))} ν(dz)ds

=

∫ t

0

∫
Z0

N(ds, dz) −
∫ t

0

∫
Z0

{(
1 + hT γ(z)

)−θ}
ν(dz)ds.

As a result, X(t) satisfies the SDE

dX(t) = f (X(t), h(t)) dt+ ΛdW h
t , t ∈ [0, T ],(3.7)

where

f(x, h) :=
(
b+Bx− θΛΣTh

)
.(3.8)

We will now introduce the following two auxiliary criterion functions under the measure
Ph:

• the auxiliary function directly associated with the risk-sensitive control problem:

(3.9) I(v, x;h; t, T ) = −1

θ
lnEh

t,x

[
exp

{
θ

∫ T

t
g(Xs, h(s))ds − θ ln v

}]
,

with Et,x [·] denoting the expectation taken with respect to the measure Ph and with
initial conditions (t, x);

• the exponentially transformed criterion

(3.10) Ĩ(v, x, h; t, T ) := Eh
t,x

[
exp

{
θ

∫ T

t
g(s,Xs, h(s))ds − θ ln v

}]
,

which we will find convenient to use in our derivations.

We have completed our reformulation of the problem under the measure Ph. It is striking
that the asset allocation problem with jump-diffusion asset prices reduces to a stochastic con-
trol problem for a diffusion process, with dynamics (3.7) and reward function (3.9) or (3.10).

3.3. The risk-sensitive control problems under Ph. Let Φ be the value function for the
auxiliary criterion function I(v, x;h; t, T ). Then Φ is defined as

(3.11) Φ(t, x) = sup
h∈A(T )

I(v, x;h; t, T ).

We will show that Φ satisfies the HJB PDE

(3.12)
∂Φ

∂t
(t, x) + sup

h∈J
Lht Φ(t, x) = 0, (t, x) ∈ (0, T ) × R

n,

where
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Lht Φ(t, x) =
(
b+Bx− θΛΣTh(s)

)T
DΦ

+
1

2
tr
(
ΛΛTD2Φ

)− θ

2
(DΦ)TΛΛTDΦ − g(x, h),(3.13)

and is subject to terminal condition

(3.14) Φ(T, x) = ln v, x ∈ R
n.

Similarly, let Φ̃ be the value function for the auxiliary criterion function Ĩ(v, x;h; t, T ). Then
Φ̃ is defined as

(3.15) Φ̃(t, x) = inf
h∈A(T )

Ĩ(v, x;h; t, T ).

The corresponding HJB PDE is

(3.16)
∂Φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2Φ̃(t, x)
)

+H(t, x, Φ̃,DΦ̃) = 0,

which is subject to terminal condition

(3.17) Φ̃(T, x) = v−θ

and where

(3.18) H(x, r, p) = inf
h∈J

{
f(x, h)T p+ θg(x, h)r

}
for r ∈ R, p ∈ R

n and, in particular,

(3.19) Φ̃(t, x) = exp {−θΦ(t, x)} .

Note that since Φ and Φ̃ are related through a strictly monotone continuous transfor-
mation, an admissible (optimal) strategy for the exponentially transformed problem is also
admissible (optimal) for the risk-sensitive problem.

4. Main result. In this section, we present the main result of this article, namely, that
the risk-sensitive jump diffusion problem admits a classical (C1,2) solution, and show that the
value function Φ is convex in x.

Proposition 4.1. The value function Φ(t, x) is convex in x.

Proof. To prove that the value function Φ(t, x) is convex in x, it is necessary and sufficient
to show that ∀(x1, x2) ∈ R

n and for any κ ∈ (0, 1),

Φ(t, κx1 + (1 − κ)x2) ≤ κΦ(t, x1) + (1 − κ)Φ(t, x2).(4.1)
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Start from the left-hand side:

Φ(t, κx1 + (1 − κ)x2)

= sup
h∈A(T )

−1

θ
lnEh

t,κx1+(1−κ)x2

[
exp

{
θ

∫ T

t
g(Xs, h(s))ds − θ ln v

}
χ(t)

]
= sup

h∈A(T )
−1

θ
lnEh

t,(x1,x2)

[
exp

{
θ

∫ T

t
g(κX1(s) + (1 − κ)X2(s), h(s))ds − θ ln v

}
χ(t)

]
= sup

h∈A(T )
−1

θ
lnEh

t,(x1,x2)

[
exp

{
κθ

∫ T

t
g(X1(s), h(s))ds

+ (1 − κ)θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

]
= sup

h∈A(T )
−1

θ
lnEh

t,(x1,x2)

[(
exp

{
θ

∫ T

t
g(X1(s), h(s))ds − θ ln v

}
χ(t)

)κ

×
(

exp

{
θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

)1−κ]

≤ sup
h∈A(T )

−1

θ
ln

{
Eh
t,x1

[(
exp

{
θ

∫ T

t
g(X1(s), h(s))ds − θ ln v

}
χ(t)

)κ]

×Eh
t,x2

[(
exp

{
θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

)1−κ]}
= sup

h∈A(T )

{
−1

θ
lnEh

t,x1

[(
exp

{
θ

∫ T

t
g(X1(s), h(s))ds − θ ln v

}
χ(t)

)κ]

− 1

θ
lnEh

t,x2

[(
exp

{
θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

)1−κ]}

≤ sup
h∈A(T )

−1

θ
lnEh

t,x1

[(
exp

{
θ

∫ T

t
g(X1(s), h(s))ds − θ ln v

}
χ(t)

)κ]

+ sup
h∈A(T )

−1

θ
lnEh

t,x2

[(
exp

{
θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

)1−κ]

≤ sup
h∈A(T )

−κ
θ

lnEh
t,x1

[
exp

{
θ

∫ T

t
g(X1(s), h(s))ds − θ ln v

}
χ(t)

]
+ sup
h∈A(T )

−1 − κ

θ
lnEh

t,x2

[
exp

{
θ

∫ T

t
g(X2(s), h(s))ds − θ ln v

}
χ(t)

]
= κΦ(t, x1) + (1 − κ)Φ(t, x2),

where the fourth equality follows from the fact that the covariance of two random variables
inside the expectations is positive and the third inequality is due to the fact that the function
x �→ xα for x > 0 and α ∈ (0, 1) is concave.
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Corollary 4.2. The exponentially transformed value function Φ̃ has the following property:
∀(x1, x2) ∈ R

2, κ ∈ (0, 1, ),

Φ̃(t, κx1 + (1 − κ)x2) ≥ Φ̃κ(t, x1)Φ̃1−κ(t, x2).(4.2)

Proof. The property follows immediately from the definition of Φ = −1
θ ln Φ̃.

We now come to the main result of this article. Recall the standing assumptions: in section
2, Assumption 1 is a condition on the support of the jump measure, and Assumptions 2 and 3
are the nondegeneracy conditions ΣΣT > 0, ΛΛT > 0, while Assumption 4, introduced in
section 7.1, is a full-rank condition on the matrix Â defined at (2.11).

Theorem 4.3. Under Assumptions 1–4 the following hold:
1. The optimal asset allocation is the unique maximizer of the supremum (3.12).
2. Φ̃ is the unique C1,2 ([0, T ] × R

n) solution of the RS HJB PIDE (3.16)–(3.17). More-
over, Φ̃ satisfies the property (4.2).

3. Φ is the unique C1,2 ([0, T ] × R
n) solution of the RS HJB PIDE (3.12)–(3.14). More-

over, Φ is convex in its argument x.
Proof. The proof is based on a series of results proved in sections 5–7. These combine to

give us the following arguments.
Existence of an optimal control. By Proposition 5.1, the supremum in (3.12) admits a

unique Borel measurable maximizer. Moreover, by Proposition 6.3, this maximizer is admis-
sible, and by Proposition 6.4 it is also a maximizer with respect to the P-measure criterion J
defined in (3.1). Thus, we can take this maximizer as our optimal asset allocation.

Existence of a classical (C1,2) solution. By Corollary 7.3, Φ̃ is a C1,2 ([0, T ] × R
n) solution

of the RS HJB PDE (3.16)–(3.17).
Uniqueness of the classical solution. The existence of zero beta policies enable us to deduce

(as in Step 1 of the proof of Theorem 7.2) that Φ̃ is bounded. Part (i) of Theorem 6.1 therefore
applies. Choosing as optimal control the unique maximizer of the supremum in (3.12), part
(ii) of Theorem 6.1 also applies: Φ̃ is the unique solution to the HJB PIDE. Property (4.2) is
proved in Corollary 4.2.

By Corollaries 7.3 and 6.2, it then follows that Φ is the unique classical solution to the HJB
PIDE (3.12) with terminal condition (3.14). Moreover, Φ is convex in its second argument
x.

This result proves that we have solved our original control problem in the context of
strong, classical solutions. What would this imply in terms of weaker viscosity solutions? As
a classical solution is also a viscosity solution, our result implies that the value function is
indeed a viscosity solution of the HJB PDE. However, uniqueness of classical solutions does
not necessarily imply uniqueness of viscosity solutions. To prove uniqueness in the viscosity
sense, we would need a comparison result such as Theorem 33 in Davis and Lleo [13].

In the remainder of this paper, we develop the various technical arguments required in the
proof of Theorem 4.3.

5. Existence of a maximizing control.
Proposition 5.1. Under Assumption 2, the supremum in (3.12) admits a unique Borel mea-

surable maximizer ĥ(t, x, p) for (t, x, p) ∈ [0, T ]×R
n×R

n. Moreover, the maximizer ĥ(t, x, p)
is an interior point of the set J .
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Proof. The supremum in (3.12) can be expressed as

sup
h∈J

Lht Φ

= (b+Bx)T DΦ +
1

2
tr
(
ΛΛTD2Φ

)− θ

2
(DΦ)TΛΛTDΦ + a0 +AT0 x

+ sup
h∈J

{
−1

2
(θ + 1) hTΣΣTh− θhTΣΛTDΦ + hT (â+ Âx)

− 1

θ

∫
Z

{[(
1 + hT γ(z)

)−θ − 1
]

+ θhTγ(z)1Z0(z)
}
ν(dz)

}
.(5.1)

Under Assumption 2, for any p ∈ R
n, the terms

−1

2
(θ + 1) hTΣΣTh− θhTΣΛT p+ hT (â+ Âx) −

∫
Z
hTγ(z)1Z0(z)ν(dz)

and

−1

θ

∫
Z

{[(
1 + hTγ(z)

)−θ − 1
]}

ν(dz)

are both strictly concave in h ∀z ∈ Z a.s. dν. Therefore, the supremum is reached for a unique
maximizer ĥ(t, x, p), which is an interior point of the set J , which is the closure of the set
J defined in (2.7), and the supremum, evaluated at ĥ(t, x, p) ∈ R

n, is finite. By measurable
selection, ĥ can be taken as a Borel measurable function on [0, T ] ×R

n × R
n.

6. Verification theorems. In this section, we prove a verification theorem to the effect
that if (3.12) has a C1,2 solution, then that solution is equal to Φ defined by (3.11) and
the control h∗(t) = ĥ(t, x,DΦ) is optimal. We will first prove a verification theorem for the
exponentially transformed problem (3.15) with HJB PDE (3.16) and value function Φ̃(t, x).
As a corollary, we will obtain a verification theorem for the risk-sensitive control problem
with (3.11), HJB PDE (3.12), and value function Φ(t, x). Define the first order operator

L̃hϕ(t, x) =
(
b+Bx− θΛΣTh

)T
Dϕ(t, x) + θg(x, h)ϕ(t, x).(6.1)

Theorem 6.1 (verification theorem for the exponentially transformed control problem). Let φ̃
be a C1,2 ([0, T ] × R

n) bounded function.
(i) Assume that φ̃(T, x) ≤ e−θ ln v ∀x ∈ R

n and

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃) ≥ 0

on [0, T ] × R
n; then φ̃(t, x) ≤ Φ̃(t, x) ∀(t, x) ∈ [0, T ] × R

n.
(ii) Further assume that φ̃(T, x) = e−θ ln v ∀x ∈ R

n and that there exists a Borel-measurable

minimizer h̃∗(t, x) of h̃ �→ L̃h̃φ̃ defined in (6.1) such that

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

=
∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+ L̃h̃
∗
φ̃

= 0
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and the stochastic differential equation

dX(t) =
(
b+BX(t) − θΛΣTh(t)

)
dt+ ΛdW θ

t

defines a unique solution X(s) for each given initial data Xt = x and the process π∗(s) :=
h̃∗(s,X(s)) is a well-defined control process in Ã(T ). Then φ̃ = Φ̃, and π∗(s) is an
optimal Markov control process.

Proof. The following proof is based on an argument used by Touzi [38].

(i) Let h̃ ∈ Ã(T ) be an arbitrary control, with X(t) the state process with initial data
X(t) = x. Define the stopping time

τN := T ∧ inf {s > t : |Xs − x| ≥ N} .

Define Z(s) = θ
∫ s
t g(s,Xs, ĥs)ds; then

d
(
eZs
)

:= θg(s,Xs, ĥs)e
Zs .

Also, by the Itô formula, for s ∈ [t, τδ],

dφ̃s =

{
∂φ̃

∂s
+ Lφ̃

}
ds+Dφ̃TΛdW θ

s ,

where L is the generator of the state process X(t) defined as

Lφ̃(t, x) :=
(
b+Bx− θΛΣTh(s)

)T
Dφ̃+

1

2
tr
(

ΛΛTD2φ̃
)
.

By the Itô product rule, and since dZs · φ̃s = 0, we get

d
(
φ̃se

Zs

)
= φ̃sd

(
eZs
)

+ eZsdφ̃s,

and hence for s ∈ [t, τN ]

φ̃(s,Xs)e
Zs = φ̃(t, x)eZt + θ

∫ s

t
φ̃(u,Xu)g(u,Xu, ĥu)eZudu

+

∫ s

t

(
∂φ̃

∂u
(u,Xu) + Lφ̃(u,Xu)eZu

)
du+

∫ s

t
Dφ̃TΛdW θ

u .

Because, for an arbitrary control h,

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+ Lh̃φ̃(t,Xt)

≥ ∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

≥ 0
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and eZs ≥ 0 ∀s ∈ [t, τN ], we have

φ̃(t, x)eZt ≤ φ̃(s,Xs)e
Zs +

∫ s

t
Dφ̃TΛdW θ

u .

Taking the expectation, we obtain

φ̃(t, x)eZt ≤ Eh̃,θ
t,x

[
φ̃(s,Xs)e

Zs

]
= Eh̃,θ

t,x

[
φ̃(s,Xs)e

θ
∫ s
t
g(u,Xu,ĥu)du

]
.

In particular, take s = τN , and note that eZt = 1; then

φ̃(t, x)eZt ≤ Eh̃,θ
t,x

[
φ̃(τN ,XτN )eθ

∫ τN
t g(u,Xu,ĥu)du

]
.

Since φ̃ is assumed to be bounded, there exists a constant C1 > 0 such that∣∣∣φ̃(s,Xs)e
θ
∫ τN
s

g(s,Xs,ĥs)ds
∣∣∣ ≤ C1e

θ
∫ τN
t g(u,Xu,ĥu)du.

Since for an arbitrary admissible control h̃ ∈ A(T ) and fixed s ∈ [t, T ] there exists some
constant C2 > 0 such that ∣∣∣g(s,Xs, ĥs)

∣∣∣ ≤ C2 |1 +X(s)| ,
then ∣∣∣φ̃(s,Xs)e

θ
∫ τN
s g(s,Xs,ĥs)ds

∣∣∣ ≤ C3e
θ
∫ τN
t |1+X(s)|du

≤ C3e
θ(τN−t)+θ ∫ τN

t |X(s)|du

≤ C4e
θ
∫ τN
t |X(s)|du

≤ C4e
θ(T−t) supt≤s≤T |X(s)|

for C3 = C1e
C2 and C4 = C3e

θ(T−t).
By the dominated convergence theorem and the assumption that φ̃(T,Xt) ≤ e−θ ln v,

φ̃(t, x) ≤ Eh̃,θ
t,x

[
φ̃(T,XT )eθ

∫ T
t g(u,Xu,ĥu)du

]
≤ Eh̃,θ

t,x

[
eθ

∫ T
t
g(u,Xu,ĥu)du − θ ln v

]
.

We have now proved the first part of the theorem.
(ii) To prove the second part, we can simply apply the same reasoning for the optimal control

h̃∗. Note, however, that with this choice of control we would have

∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+H(t, x, φ̃,Dφ̃)

=
∂φ̃

∂t
(t, x) +

1

2
tr
(

ΛΛTD2φ̃(t, x)
)

+ L̃h̃
∗
φ̃

= 0,

which would lead us to equality in the last equation, i.e.,

φ̃(t, x) = Eh̃,θ
t,x

[
eθ

∫ T
t
g(u,Xu,ĥu)du − θ ln v

]
.
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Corollary 6.2 (verification theorem for the risk-sensitive control problem). Letting φ be a
C1,2 ([0, T ] × R

n) ∩ C ([0, T ] × R
n) bounded function, we assume the following:

(i) φ(T, x) ≤ e−θ ln v ∀x ∈ R
n and

∂φ

∂t
+ sup
h∈J

Lht φ(t,X(t)) ≥ 0

on [0, T ] × R
n; then φ(t, x) ≤ Φ̃(t, x) ∀(t, x) ∈ [0, T ] × R

n.
(ii) Further, φ(T, x) = e−θ ln v ∀x ∈ R

n and there exists a minimizer h∗(t, x) of h �→ Lhφ
defined in (3.13) such that

∂φ

∂t
+ sup
h∈J

Lht φ(t,X(t)) =
∂φ

∂t
+ Lh

∗
t φ(t,X(t)) = 0

and the stochastic differential equation

dX(s) =
(
b+BX(s−) − θΛΣTh(s)

)
ds+ ΛdW θ

s

defines a unique solution X for each given initial data Xt = x and the process π∗(s) :=
h̃∗(s,X(s)) is a well-defined control process in Ã(T ). Then φ = Φ, and π∗(s) is an
optimal Markov control process.

Proof. This corollary follows from (3.19) and from the fact that an admissible (optimal)
strategy for the exponentially transformed problem is also admissible (optimal) for the risk-
sensitive problem.

Proposition 6.3. The process h∗(t) is admissible: h∗(t) ∈ A(T ).
Proof. Refer to the appendix for a full discussion and a proof of this proposition.
Applying Proposition 6.3 we deduce that the control h∗(t) is optimal for the auxiliary

problems (3.9) and (3.10) resulting from the change of measure. However, this proposition is
not sufficient to conclude that h∗(t) is optimal for the original problem (3.1) set under the
P-measure. The next result shows that this is indeed the case.

Proposition 6.4. The optimal control h∗(t) for the auxiliary problem

sup
h∈A(T )

I(v, x;h; t, T ),

where I is defined in (3.9), is also optimal for the initial problem suph∈A(T ) J(x, t, h), where
J is defined in (3.1).

Proof. See the appendix.

7. Existence of a classical solution. Historically, proving the existence of a strong, ana-
lytical solution to the HJB PDE was both the main difficulty and the main objective when
solving a control problem. Fleming and Rishel [16] as well as Krylov [24], [25] have been the
main contributors, proposing techniques based either on PDE arguments or on probability
theory. Recently, however, the emphasis has switched from strong solutions to weaker types
of solutions. Viscosity solutions have proved particularly useful and successful, gaining many
applications in stochastic control theory (see, for example, the classic article by Crandall,
Ishii, and Lions [11] as well as Fleming and Soner [20] for their applications to stochastic
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control). The reason for this appeal is twofold. First, it is significantly easier to prove the
existence of a viscosity solution than a classical solution. In the viscosity world, the difficulty
is shifted from proof of existence to proof of uniqueness, and even then it is generally easier
to prove uniqueness of a viscosity solution via a comparison theorem than the existence of
a classical solution. Second, the stability result due to Barles and Souganidis [1] connects
viscosity solutions to numerical methods directly, making it easy to solve “real world” control
problems.

This section follows similar arguments to those developed by Fleming and Rishel [16]
(Theorem 6.2 and Appendix E). Namely, we use an approximation in policy space alongside
results on linear parabolic PDEs to prove that the exponentially transformed value function
Φ̃ is of class C1,2((0, T ) × R

n). Then it follows that the value function Φ is also of class
C1,2((0, T ) × R

n). The approximation in policy space algorithm was originally proposed by
Bellman in the 1950s (see Bellman [2] for details) as a numerical method to compute the
value function. Our approach has two steps. First, we use the approximation in policy space
algorithm to show the existence of a classical solution in a bounded region. Then we extend
our argument to unbounded state space. To derive this second result we follow an argument
different from that of Fleming and Rishel [16] which makes more use of the actual structure
of the control problem.

Our interest in classical solutions is as much mathematical as practical. First, since
a smooth solution is a viscosity solution but the converse is not necessarily true, we are
proving a stronger result. Second, this stronger result immediately translates a better grasp
of the analytical properties of the value function. While viscosity solutions provide continuity,
they do not generally give information about higher order derivatives. By contrast, classical
solutions are smooth in the state, implying that they are (at least) C1 in time and C2 in the
state. Third, viscosity solutions are purely about solving the PDE, and although they show
that the value function is the unique solution of the HJB PDE, they do not prove directly
that the control problem has a solution, that is, a pair of a value function and an admissible
optimal control. Fourth and finally, in our case seeking a strong solution does not impair our
search for numerical results. Because our state process X(t) can clearly be interpreted as the
continuous time limit of a Markov chain, we can apply well-known results by Kushner and
Dupuis [27] to prove convergence of a finite approximation scheme to the value function. We
can therefore solve concrete portfolio selection problems quite directly.

7.1. “Zero beta” policies. In this section, we introduce a new class of control policies:
the zero beta (0β) policies.

Definition 7.1 (0β policy). By reference to the definition of the function g in (3.4), a 0β
control policy ȟ(t) is an admissible control policy for which the function g is independent of
the state variable x.

The term “zero beta” is borrowed from financial economics (see, for instance, Black [10]).
To avoid assuming the existence of a globally risk-free rate in factor models such as the CAPM
and the APT or in ad hoc valuation models, it is customary to build portfolios without any
exposure to the factor(s) as a substitute for the risk-free rate. These special portfolios are
referred to as 0β portfolios by reference to the slope coefficient β used to measure the sensitivity
of asset returns to the valuation factor(s).
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In the risk-sensitive asset management model, if A0 = 0, then the policy h0 = 0, i.e.,
invest all the wealth in the risk-free asset, is a 0β policy. When A0 = 0, we see from (2.11)
that a 0β policy can exist only if there is a vector ȟ satisfying

(7.1) ȟT Â = −A0.

We introduce the following standing assumption.

Assumption 4. The matrix Â has rank n.
Under this assumption there are always 0β policies: we need only take a vector ȟ satisfying

(7.1) and scale it if necessary so that ȟ ∈ J (see (2.7)), and then h(t, ω) = ȟ is a 0β policy.
We have no reason to consider anything other than the set Z of constant policies of this kind.
Note that when ȟ ∈ Z the function g of (3.4) is a constant: g(x, ȟ) ≡ ǧ.

7.2. The Lη(K) and L η(K), 1 < η < ∞ spaces. The following ideas and notation
relate to the treatment of linear parabolic PDEs found in Ladyženskaja, Solonnikov, and
Uralceva [28]. The relevant results are summarized in Appendix E of Fleming and Rishel [16].
They concern PDEs of the form

∂ψ

∂t
+

1

2
tr
(
a(t, x)D2ψ

)
+ b(t, x)TDψ + θc(t, x)ψ + d(t, x) = 0(7.2)

on a set Q = (0, T ) ×G and with boundary conditions

ψ(t, x) = ΨT (x), x ∈ G,

ψ(t, x) = Ψ(t, x), (t, x) ∈ (0, T ) × ∂G.

The set G is open and is such that ∂G is a compact manifold of class C2. Denote the following:

• ∂∗Q is the boundary of Q, i.e.,

∂∗Q := ({T} ×G) ∪ ((0, T ) × ∂G) .

• Lη(K) is the space of ηth power integrable functions on K ⊂ Q.
• ‖·‖η,K is the norm in Lη(K).

Also, denote by L η(Q), 1 < η < ∞, the space of all functions ψ such that ψ and all its
generalized partial derivatives are in Lη(K). We associate with this space the Sobolev-type
norm

‖ψ‖(2)η,K := ‖ψ‖η,K +

∥∥∥∥∂ψ∂t
∥∥∥∥
η,K

+

n∑
i=1

∥∥∥∥ ∂ψ∂xi
∥∥∥∥
η,K

+

n∑
i,j=1

∥∥∥∥ ∂2ψ

∂xixj

∥∥∥∥
η,K

.(7.3)

We will also introduce additional notation and concepts as required in the proofs.

7.3. Existence of a classical solution. In this section, we use an approximation in policy
space to show the existence of a C1,2 solution to the RS HJB PDE (3.12).

Theorem 7.2 (existence of a classical solution for the exponentially transformed control problem).
The RS HJB PDE (3.16) with terminal condition Φ̃(T, x) = e−θ ln v has a solution Φ̃ ∈
C1,2 ((0, T ) × R

n) with Φ̃ continuous in [0, T ] × R
n.
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Proof.
Step 1: Approximation in policy space—bounded space. Consider the following auxiliary

problem: fix R > 0, and let BR be the open n-dimensional ball of radius R > 0 centered at
0 defined as BR := {x ∈ R

n : |x| < R}. We construct an investment portfolio by solving the
optimal risk-sensitive asset allocation problem as long as X(t) ∈ BR for R > 0. Then, as
soon as X(t) /∈ BR, we switch all of the wealth into the 0β policy ȟ from the exit time t until
the end of the investment horizon at time T . The HJB PDE for this auxiliary problem can
be expressed as

(7.4)
∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+H(t, x, Φ̃,DΦ̃) = 0 ∀(t, x) ∈ QR := (0, T ) × BR,

where, as in (3.18),
H(x, r, p) = inf

h∈J

{
f(x, h)T p+ θg(t, x, h)r

}
for p ∈ R

n and for g and f defined in (3.4) and (3.8), respectively. J , defined as the closure
of J , is a compact set. The boundary conditions are

Φ̃(t, x) = Ψ(t, x) ∀(t, x) ∈ ∂∗QR := ((0, T ) × ∂BR) ∪ ({T} × BR) ,

where the following hold:
• Ψ(T, x) = e−θ ln v ∀x ∈ BR.
• Ψ(t, x) := ψ(t, x) := eθǧ(T−t) ∀(t, x) ∈ (0, T )×∂BR, and ȟ is a fixed arbitrary 0β policy

which is constant as a function of time. Note that ψ is obviously of class C1,2(QR)
and that the Sobolev-type norm

‖Ψ‖(2)η,∂∗QR
= ‖Ψ̃‖(2)η,QR

(7.5)

is finite.
Define a sequence of functions Φ̃1, Φ̃2, . . . , Φ̃k, . . . on QR = [0, T ] × BR and of bounded

measurable feedback control laws h0, h1, . . . , hk, . . . , where h0 is an arbitrary control. Assum-
ing hk−1 is known, we define the function Φ̃k+1 as the solution to the boundary value problem

(7.6)
∂Φ̃k

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃k
)

+ f(x, hk−1)TDΦ̃k + θg(t, x, hk−1)Φ̃k = 0

subject to boundary conditions

Φ̃(t, x) = Ψ(t, x) ∀(t, x) ∈ ∂∗QR := ((0, T ) × ∂BR) ∪ ({T} × BR) .

Note that the boundary value problem (7.6) is a special case of the generic problem
introduced earlier in (7.2) with

a(t, x) = ΛΛT (t),

b(t, x) = f(x, hk),

c(t, x) = g(t, x, hk),

d(t, x) = 0.
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Moreover, since BR is bounded and J is compact, all of these functions are also bounded.
Thus, based on standard results on parabolic PDEs (see, for example, Appendix E in Fleming
and Rishel [16] and Chapter IV in Ladyženskaja, Solonnikov, and Uralceva [28]), the boundary
value problem (7.6) admits a unique solution in L η(QR).

Next, for almost all (t, x) ∈ QR, k = 1, 2, . . ., we define hk by the prescription

hk = Argmin
h∈J

{
f(x, h)TDΦ̃k + θg(t, x, h)Φ̃k

}
(7.7)

so that

f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k = inf
h∈J

{
f(x, h)TDΦ̃k + θg(t, x, h)Φ̃k

}
= H(t, x, Φ̃k,DΦ̃k).(7.8)

Note, in view of the definition of g in (3.4), that the minimum is never achieved on the
boundary of J ; i.e., hk takes values in J .

Observe that the sequence (Φ̃k)k∈N is globally bounded. Indeed, by the Feynman–Kac
formula, the sequence (Φ̃k)k∈N is bounded from below by 0. By the optimality principle, it

is also bounded from above by eθ
∫ T
t
g(X(s),ȟ)ds = eθǧ(T−t). Moreover, these bounds do not

depend on the radius R and are therefore valid over the entire space (0, T ) × R
n.

Step 2: Convergence inside the cylinder (0, T ) × BR.

Step 2.1: Monotonicity of the sequence. Take k ≥ 1. Subtracting the PDE for Φ̃k+1

from the PDE for Φ̃k, we see that

(
∂Φ̃k+1

∂t
− ∂Φ̃k

∂t

)
+

(
1

2
tr
[(

ΛΛT (t)D2Φ̃k+1
)
−
(

ΛΛT (t)D2Φ̃k
)])

+
(
f(x, hk)TDΦ̃k+1 − f(x, hk−1)TDΦ̃k

)
+ θ

(
g(t, x, hk)Φ̃k+1 − g(t, x, hk−1)Φ̃k

)
= 0 in (0, T ) × R

n

with Φ̃k+1 − Φ̃k = 0 on R
n.

Add and subtract f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k:

(
∂Φ̃k+1

∂t
− ∂Φ̃k

∂t

)
+

(
1

2
tr
[(

ΛΛT (t)D2Φ̃k+1
)
−
(

ΛΛT (t)D2Φ̃k
)])

+
(
f(x, hk)TDΦ̃k+1 − f(x, hk−1)TDΦ̃k

)
+ θ

(
g(t, x, hk)Φ̃k+1 − g(t, x, hk−1)Φ̃k

)
+
(
f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

)
−
(
f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

)
= 0 in (0, T ) × R

n.
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Rearranging,(
∂Φ̃k+1

∂t
− ∂Φ̃k

∂t

)
+

(
1

2
tr
[(

ΛΛT (t)D2Φ̃k+1
)
−
(

ΛΛT (t)D2Φ̃k
)])

+ f(x, hk)T
(
DΦ̃k+1 −DΦ̃k

)
+ θg(t, x, hk)

(
Φ̃k+1 − Φ̃k

)
+
(
f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

)
−
(
f(x, hk−1)TDΦ̃k + θg(t, x, hk−1)Φ̃k

)
= 0 in (0, T ) × R

n.

Define the function �k(t, x) as

�k(t, x) :=
(
f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

)
−
(
f(x, hk−1)TDΦ̃k + θg(t, x, hk−1)Φ̃k

)
.

By the definition of hk given in (7.7), �k(t, x) ≤ 0 ∀(t, x) ∈ [0, T ] × R
n,∀k ∈ N. Define the

sequence of functions (W k)k∈N as

W k := Φ̃k+1 − Φ̃k;

then W k satisfies the PDE

(7.9)
∂W k

∂t
+

1

2
tr
(

ΛΛT (t)D2W k
)

+ f(x, hk)TDW k + θg(t, x, hk)W k + �k(t, x) = 0

in (0, T ) × BR and has boundary condition W k(T, x) = 0 on ∂∗QR = ((0, T ) × ∂BR) ∪
({T} × BR).

Define the stopping time τG as the first exit time from BR:

τG := inf {t : X(t) /∈ G} .

By a standard Feynman–Kac representation, W k(t, x) can be represented by the expectation

W k(t, x) = E

[∫ T∧τG

t
�k(s,Xs)e

θ
∫ s
0 g(r,Xr)drds

]
.(7.10)

Because �(t, x) ≤ 0, W k(t, x) ≤ 0 for k ≥ 1, and hence, by definition of W k,

Φ̃k ≥ Φ̃k+1 ∀k ∈ N,

which implies that the sequence {Φ̃k}k∈N is nonincreasing.

Step 2.2: Convergence of the sequence. Since the sequence (Φ̃k)k∈N is nonincreasing
and is also bounded, it converges. Denote by Φ̃ its limit as k → ∞. Now, since the Sobolev-

type norm ‖Φ̃k+1‖(2)η,QR
is bounded for 1 < η < ∞, we can apply the following estimate given

by equation (E.9) in Appendix E of Fleming and Rishel [16]:

|Φ̃k|1+μQR
≤MR‖Φ̃k‖(2)η,QR

(7.11)
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for some constant MR (depending on R) and where

μ = 1 − n+ 2

η
,

|Φ̃k|1+μQR
= |Φ̃k|μQR

+

n∑
i=1

|Φ̃k
xi |μQR

,

and

|Φ̃k|μQR
= sup

(t,x)∈QR

|Φ̃k(t, x)| + sup
(x,y)∈G
0≤t≤T

|Φ̃k(t, x) − Φ̃k(t, y)|
|x− y|μ

+ sup
x∈G

0≤s,t≤T

|Φ̃k(s, x) − Φ̃k(t, x)|
|s− t|μ/2

to show that the Hölder-type norm |Φ̃k|1+μQR
is bounded. As k → ∞ we conclude the following:

• DΦ̃k converges to DΦ̃ uniformly in Lη(QR);
• D2Φ̃k converges to D2Φ̃ weakly in Lη(QR); and

• ∂Φ̃k

∂t converges to ∂Φ̃
∂t weakly in Lη(QR).

Step 2.3: Proving that Φ̃ ∈ C1,2(QR). Using estimate (7.11), we see that |Φ̃k|1+μQR
is

bounded for μ > 0, which implies that η > n+ 2. Using relationship (7.8) and then (7.6), we
get

∂Φ̃k

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃k
)

+ f(x, h)TDΦ̃k + θg(t, x, h)Φ̃k

≥ ∂Φ̃k

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃k
)

+ f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

=

(
∂Φ̃k

∂t
− ∂Φ̃k+1

∂t

)
+

(
1

2
tr
[(

ΛΛT (t)D2Φ̃k
)
−
(

ΛΛT (t)D2Φ̃k+1
)])

+ f(x, hk)T
(
DΦ̃k −DΦ̃k+1

)
+ θg(t, x, hk)

(
Φ̃k − Φ̃k+1

)
(7.12)

for any admissible control h.

Since the left-hand side of (7.12) tends weakly in Lη(QR) to

∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+ f(x, h)TDΦ̃ + θg(t, x, h)Φ̃(7.13)

as k → ∞ and the right-hand side tends tends weakly to 0, we obtain the following inequality:

∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+ f(x, h)TDΦ̃ + θg(t, x, h)Φ̃ ≥ 0

a.e. in QR.
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Using a measurable selection theorem and following an argument similar to that of Lemma
VI.6.1 of Fleming and Rishel [16], we see that there exists a Borel measurable function h∗

from (0, T ) × BR into J (in fact J ) such that

f(x, h∗)TDΦ̃ + θg(t, x, h∗)Φ̃ = inf
h∈J

{
f(x, h)TDΦ̃ + θg(t, x, h)Φ̃

}
holds for almost all (t, x) ∈ (0, T ) × BR. Then

∂Φ̃k

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃k
)

+ f(x, h∗)TDΦ̃k + θg(t, x, h∗)Φ̃k

≤ ∂Φ̃k

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃k
)

+ f(x, hk)TDΦ̃k + θg(t, x, hk)Φ̃k

=

(
∂Φ̃k

∂t
− ∂Φ̃k+1

∂t

)
+

(
1

2
tr
[(

ΛΛT (t)D2Φ̃k
)
−
(

ΛΛT (t)D2Φ̃k+1
)])

+ f(x, hk)T
(
DΦ̃k −DΦ̃k+1

)
+ θg(t, x, hk)

(
Φ̃k −DΦ̃k+1

)
.(7.14)

Since the left-hand side of (7.14) tends weakly in Lη(QR) to

∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+ f(x, h∗)TDΦ̃ + θg(t, x, h∗)Φ̃

as k → ∞ and the right-hand side tends weakly to 0, we obtain the inequality

∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+ f(x, h∗)TDΦ̃ + θg(t, x, h∗)Φ̃ ≤ 0(7.15)

a.e. in QR.
Combining (7.13) and (7.15), we have shown that

∂Φ̃

∂t
+

1

2
tr
(

ΛΛT (t)D2Φ̃
)

+ f(x, h∗)TDΦ̃ + θg(t, x, h∗)Φ̃ = 0

a.e. in QR.
Hence, Φ̃ is a solution of (3.16) on a bounded domain. Moreover, Φ̃ ∈ Lη(QR). Also, since

H is locally Lipschitz, |Φ̃k|μQR
<∞ for μ > 0, and |DΦ̃k|μQR

<∞ for μ > 0, |H(t, x, Φ̃k,DΦ̃k)|μQR

<∞.
We can now show that Φ̃ ∈ C1,2(QR). Define

|Φ̃k|2+μQR
:= |Φ̃k|1+μQR

+

∣∣∣∣∣∂Φ̃k

∂t

∣∣∣∣∣
μ

QR

+
n∑

i,j=1

|Φ̃k
xixj |μQR

.

Consider the following estimate given by equation (E.10) in Appendix E of Fleming and Rishel
[16]:

|Φ̃|2+μQ′ ≤M2‖Φ̃‖Q′′(7.16)
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for some constant M2 and two open subsets Q′ and Q′′ of Q such that Q̄′ ⊂ Q̄′′. In this
estimate, set Q′′ = QR, and take Q′ to be any subset of Q such that Q̄′ ⊂ Q. Thus

|Φ̃|2+μQ′ <∞.(7.17)

When interpreted in light of estimate (7.11) (stemming from (E9)), we see that the derivatives
∂Φ̃
∂t , ∂Φ̃

∂xi
, and ∂2Φ̃

∂xixj
satisfy a uniform Hölder condition on any compact subset Q′ of QR. By

Theorem 10.1 in Chapter IV of Ladyženskaja, Solonnikov, and Uralceva [28], we can therefore
conclude that Φ̃ ∈ C1,2(QR).

Step 3: Convergence from the cylinder [0, T ) × BR to the state space [0, T ) × R
n.

Step 3.1: Setting. Let {Ri}i∈N > 0 be a nondecreasing sequence with limi→∞Ri → ∞,
and let {τi}i∈N be the sequence of stopping times defined as

τi := inf {t : X(t) /∈ BRi} .

Note that {τi}i∈N is nondecreasing and limi→∞ τi = ∞.

Denote by Φ̃(i) the limit of the sequence (Φ̃k)k∈N on (0, T ) × BRi , i.e.,

Φ̃(i)(t, x) = lim
k→∞

Φ̃k(t, x) ∀(t, x) ∈ (0, T ) × BRi .(7.18)

Step 3.2: Convergence of the sequence (Φ̃(i))i∈N. First, observe that the sequence
(Φ̃(i))i∈N is nonincreasing. Indeed, for i < j, the stochastic control problem defined over
(0, T ) × BRi is nested into the stochastic control problem defined over (0, T ) × BRj . In
particular, a suboptimal strategy for the stochastic control problem defined over (0, T )×BRj

would be to invest optimally while x ∈ BRi and then switch to the 0β policy ȟ when x ∈
BRj\BRi . By the optimality principle, the expected total cost of such a strategy is greater

than the value function Φ̃(j). But this suboptimal strategy also corresponds to the optimal
strategy for the stochastic control problem defined over (0, T ) × BRi . Hence

Φ̃(i)(t, x) ≥ Φ̃(j)(t, x) ∀i, j ∈ N, ∀(t, x) ∈ (0, T ) × BRi .

By the argument in Step 1, the sequence (Φ̃(i))i∈N is also bounded. As a result, it converges
to a limit Φ̃. This limit satisfies the boundary condition (3.17). We now show that Φ̃ is C1,2

and satisfies the HJB PDE. These statements are local properties, so we can restrict ourselves
to a finite ball QR.

Step 3.3: Proving that Φ̃ ∈ C1,2(QR). Now that we have shown the convergence of
the sequence (Φ̃(i))i∈N through a simple control-based argument, we can conclude the proof
using the same arguments based on Ascoli’s theorem as those of Fleming and Rishel (see [16],
proof of Theorem 6.2 in Appendix E).

Corollary 7.3 (existence of a classical solution for the risk-sensitive control problem). The RS
HJB PDE (3.12) with terminal condition Φ(T, x) = ln v has a solution Φ ∈ C1,2 ([0, T ] × R

n)
with Φ continuous in [0, T ] × Rn.
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8. Partial observation. In this section we show how the results of this paper can be
extended to the case where the factor process X(t) is not directly observed and the asset
allocation strategy ht must be adapted to the filtration FS

t = σ{Si(u), 0 ≤ u ≤ t, j = 0, . . . ,m}
generated by the asset price processes alone. In the linear diffusion case studied by Nagai [31]
and Nagai and Peng [32], the authors noted that the pair of processes (X(t), Y (t)), where
Yi(t) = logSi(t), takes the form of the “signal” and “observation” processes in a Kalman
filter system, and consequently the conditional distribution of X(t) is normal N(X̂(t), P (t)),
where X̂(t) = E[X(t)|FS

t ] satisfies the Kalman filter equation and P (t) is a deterministic
matrix-valued function. By using this idea they obtain an equivalent form of the problem in
which X(t) is replaced by X̂(t) and the dynamic equation (2.3) by the Kalman filter. Optimal
strategies take the form h(t, X̂(t)). This is in fact a very old idea in stochastic control, going
back at least to Wonham [41].

8.1. Decomposition. At first sight it does not seem apparent that the same approach
can be used here, as the price processes contain jumps, but a simple observation shows that
the jumps play no role in the estimation process, which is still, at the base, the Kalman
filter; see Proposition 8.1. A further complication is that the money market interest rate
r(t) = a0 +AT0X(t) (see (2.4)) is observed directly and contains information about X(t). This
was not the case in [31] and [32], where, in our notation, A0 = 0. We start by assuming that
A0 = 0 and briefly discuss the extension to A0 = 0 at the end of the section.

Recall first that X(t) satisfies

(8.1) dX(t) = (b+BX(t))dt + ΛdW (t), X(0) = X0.

When Xt is observed, the initial value X0 is just a constant. In the present case we need to
assume that X0 is a normal random vector N(m0, P0) with known mean m0 and covariance
P0 and that X0 is independent of the processes W,Np.

An application of the general Itô formula3 shows that for i = 1, . . . ,m the log-prices Yi(t)
satisfy Yi(0) = log si and

dYi(t) =

[
(â+ ÂX(t))i − 1

2
ΣΣT

ii

]
dt+

N∑
k=1

σikdWk(t)

+

∫
Z0

{ln (1 + γi(z)) − γi(z)} ν(dz)dt +

∫
Z

ln (1 + γi(z)) N̄(dt, dz).(8.2)

Proposition 8.1. Define processes Y 1(t), Y 2(t) ∈ R
m as follows:

dY 1(t) = ÂX(t) + ΣdW (t), Y 1
i (0) = 0,(8.3)

dY 2
i (t) = cidt+

∫
Z

ln (1 + γ(z))i N̄(dt, dz), i = 1, . . . ,m, Y 2
i (0) = log si

with c ∈ R
m defined by

ci := âi − 1

2
ΣΣT

ii +

∫
Z0

{ln (1 + γi(z)) − γi(z)} ν(dz)

3See Øksendal and Sulem [34] for this calculation.
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so that Y (t) = Y 1(t) + Y 2(t). Also, define Yit = σ{Y i(u), 0 ≤ u ≤ t}, i = 1, 2. Then the
following hold:

(i) The processes Y 1, Y 2 are each adapted to the filtration FS
t .

(ii) For any bounded measurable function f and t ≥ 0,

E[f(X(t))|FS
t ] = E[f(X(t))|Y1t].

Proof. (i) S(t) and Y (t) are in 1-1 correspondence and therefore generate the same filtra-
tion FS

t . Apart from rearrangement of deterministic terms, the decomposition Y = Y 1+Y 2 is
the same as the standard decomposition Y = Y c +Y d of a semimartingale into its continuous
and discontinuous components; see paragraph VI. 37 of Rogers and Williams [37].

(ii) N and W (t) are independent; as a result Y1t and Y2t are independent, and clearly
FS
t = Y1t ∨ Y2t. The result follows, since X(t) is independent of Y2t.

8.2. Kalman filter. The processes (X(t), Y 1(t)) satisfying (8.1) and (8.3) and the filtering
equations, which are standard, are stated in the following proposition.

Proposition 8.2 (Kalman filter). The conditional distribution of X(t) given Y1t is N(X̂(t), P (t)),
calculated as follows:

(i) The innovation process U(t) ∈ R
m defined by

(8.4) dU(t) =
(
ΣΣT

)−1/2
(dY 1(t) − ÂX̂(t)dt), U(0) = 0

is a vector Brownian motion.
(ii) X̂(t) is the unique solution of the SDE

(8.5) dX̂(t) = (b+BX̂(t))dt +
(

ΛΣT + P (t)ÂT
) (

ΣΣT
)−1/2

dU(t), X̂(0) = m0.

(iii) P (t) is the unique nonnegative definite symmetric solution of the matrix Riccati equation

Ṗ (t) = ΛΞΞTΛT − P (t)ÂT
(
ΣΣT

)−1
ÂP (t) +

(
B − ΛΣT

(
ΣΣT

)−1
Â
)
P (t)

+P (t)
(
BT − ÂT

(
ΣΣT

)−1
ΣΛT

)
, P (0) = P0,

where Ξ := I − ΣT
(
ΣTΣ

)−1
Σ.

To conclude, the Kalman filter has replaced our initial state process X(t) by an estimate
X̂(t) with dynamics given in (8.5). To recover the asset price process, we use (8.3) together
with (8.4) to obtain the dynamics of Y (t):

dYi(t) = dY 1
i (t) + dY 2

i (t)

= âi + ÂX̂(t)dt− 1

2
ΣΣT

iidt+
(
ΣΣT

)1/2
dU(t)

+

∫
Z0

{ln (1 + γi(z)) − γi(z)} ν(dz) +

∫
Z

ln (1 + γ(z))i N̄(dt, dz).(8.6)

We then apply Itô’s lemma to Si(t) = expYi(t) to get

dSi(t)

Si(t−)
= (a+AX̂(t))idt+

N∑
k=1

[(
ΣΣT

)1/2]
ik
dUk(t) +

∫
Z
γi(z)N̄(dt, dz),

Si(0) = si, i = 1, . . . ,m.(8.7)
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We now solve the stochastic control problem with partial observation simply by replacing
the original asset price description (2.5) by (8.7), and the factor process description (2.3) by
the Kalman filter equation (8.5), in our solution of the full observation case. The Kalman
filter has time-varying coefficients, but this does not affect the preceding arguments.

Finally, we briefly sketch what to do if A0 = 0. We observe the short rate r(t) = a0 +
AT0X(t), and hence the 1-dimensional statistic Y0(t) ≡ AT0X(t), exactly. We need to assume
that this observation contains positive “noise,” i.e., AT0 ΛΛTA0 > 0. Changing coordinates if
necessary, we can assume that AT0 = (0, 0, . . . , 1) and hence Y0(t) = Xn(t). Our “observation”
is now the (m + 1)-dimensional process Ȳ = (Y0, . . . , Ym), and we can set up a Kalman filter
system to estimate the unobserved states X̄ = (X1, . . . ,Xn−1)T ∈ R

n−1. Ultimately, our

optimal strategy will take the form h(t,X1(t), ˆ̄X(t)), where ˆ̄X(t) is the Kalman filter estimate
for X̄(t) given {Ȳ (u), u ≤ t}. The details are left to the reader.

9. Conclusion. In this article, we extended the classical risk-sensitive asset management
setting to include the possibility of infinite activity jumps in asset prices. We applied the
change of measure technique proposed by Kuroda and Nagai [26] to derive the HJB PDE
associated with the control problem and then proved the existence and uniqueness of an
admissible optimal control policy. Using an approximation in policy space algorithm, we
established the existence of a classical C1,2 ((0, T ) × R

n) solution and obtained the uniqueness
of this solution through a verification result. This approach also extends naturally and with
similar results to a jump-diffusion version of the risk-sensitive benchmarked asset management
problem.

Finally, we have observed that an attractive, if somewhat surprising, feature of the jump-
diffusion risk-sensitive asset management is that it naturally prohibits any investment policy
which may result in the investor’s bankruptcy. In particular, in the risk-sensitive setting
presented in this article, an investor who implements the optimal asset allocation is certain to
remain solvent over the investment horizon. This contrasts with the Merton type of approach
in which the threat of bankruptcy remains present and has to be accounted for using a stopping
time.

The approach presented in this article extends naturally to a jump-diffusion version of the
risk-sensitive benchmarked asset management problem introduced by Davis and Lleo [12] and
would yield similar results, namely, the existence of a unique admissible control policy and of
a classical C1,2 solution to the associated RS HJB PDE.

Appendix. Admissibility of the optimal control policy. The admissibility of the optimal
control process h∗(t) solving (5.1) is linked to the existence of a probability measure P

θ
h∗, which

itself hinges on the characterization as an exponential martingale of the Radon–Nikodym

derivative
dPθ

h∗
dP = χ∗

T defined in (3.5) via the Doléans exponential introduced in (2.9). In
the setting of Kuroda and Nagai [26], the admissibility of the control follows easily from an
argument in Gihman and Skorohod [21] which proves that the Doléans exponential (here a
Girsanov exponential with Gaussian integrand) is an exponential martingale. However, when
the Doléans exponential does not have continuous paths, as is the case in a jump-diffusion
setting, proving that it is indeed a martingale is more difficult. As noted by Protter [36], some
partial results exist in this case (see, for example, Mémin [30] and more recently Protter and
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Shimbo [35]), but none is as powerful as their counterparts in the continuous case, namely,
the Kamazaki or the Novikov conditions.

To show that the Doléans exponential introduced in (2.9) is a martingale we will apply
results derived by Mémin [30]. We recall here the definition of the Doléans-Dade exponential as
well as results from Mémin [30] (see also Exercise 13 in Chapter V of [36]) on the multiplicative
decomposition of local martingales that we will use to prove our point.

Definition A.1 (Doléans-Dade exponential). The Doléans-Dade exponential E(X)(t) of a semi-
martingale X(t) is defined as

E(X)(t) = exp

{
X(t) − 1

2
[Xc,Xc]t

} ∏
0<s≤t

(1 + ΔXt)e
−ΔXs .(A.1)

Definition A.2 (Mémin’s additive decomposition of local martingales). LetM(t) be a local mar-
tingale. We define an additive decomposition of M into two processes M1(t) and M2(t), i.e.,
such that M(t) = M1(t) +M2(t).

In this decomposition, the process M1(t) is defined as M1(t) = L(t) − L̃(t), where

L(t) =
∑

0<s≤t
ΔMs1{|ΔMs|≥ 1

2}

and L̃(t) is the compensator of L(t).
Proposition A.3 (Mémin’s Proposition III-1). Let M(t) be a local martingale with additive

decomposition as per Definition A.2 and such that M0 = 0. Then the following hold:
(i) E(M) has the decomposition

E(M) = E(M2)E(M̃1),

where

M̃1(t) = M1(t) −
∑

0<s≤t

ΔM1(s)ΔM2(s)

1 + ΔM2(s)
, t <∞.

(ii) E(M2)M̃1 is a local martingale.
(iii) If ΔM(s) > −1, then ΔM̃1(s) > −1 for all finite s.

Corollary A.4 (Mémin’s Corollary III-2). Let N be a local martingale such that ΔN(s) > −1
for all finite s and such that E(N)(∞) is uniformly integrable. Let P′ be the probability defined
as

dP′

dP
= E(N)(∞).

Let N1 be a local martingale with locally integrable variations, and denote by Ñ1 the P-
semimartingale defined as

Ñ1(t) = N1(t) −
∑

0<s≤t

ΔN1(s)ΔN(s)

1 + ΔN(s)
, t <∞;

then Ñ1 is a P
′ local martingale, with locally integrable variations. Moreover, the P′ predictable

compensator of
∑

0<s≤t |ΔÑ1(s)| is equal to the P predictable compensator of
∑

0<s≤t |ΔN1(s)|.
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Theorem A.5 (Mémin’s Theorem III-3). Let M(t) be a local martingale with additive decom-
position as per Definition A.2. If the predictable compensator of the process

Y (t) = [M c,M c]t +
∑

0<s≤t
|ΔM1(s)| +

∑
0<s≤t

(ΔM2(s))
2(A.2)

is bounded, then E(M)(t) is uniformly integrable.

Proof of Proposition 6.3. To prove that the control h∗(t) is admissible, we need to show
that the local martingale M∗(t) defined as

M∗(t) := −θ
∫ t

0
(h∗(s))T ΣdWs −

∫ t

0

∫
Z

ln (1 −G(z, h∗(s))) Ñ(ds, dz)(A.3)

and such that

E(M)(t) = χ∗
t

is an exponential martingale.

To achieve this objective, we will define a new class of control processes to which the
optimal control belongs. We will start from the definition of a control h as a function:

h : [0, T ] × R
n → J ,

(t, x) �→ h(t, x),

where the set J was defined in (2.7). Based on this definition, the control space can be viewed
as a functional space.

Define the functional L(x, p, h) as

L(x, p, h) := −1

2
(θ + 1) hTΣΣTh− θhTΣΛT p+ hT (â+ Âx)

− 1

θ

∫
Z

{[(
1 + hTγ(z)

)−θ − 1
]

+ θhTγ(z)1Z0(z)
}
ν(dz),(A.4)

where p ∈ R
n so that

sup
h∈J

Lht Φ = (b+Bx)T DΦ +
1

2
tr
(
ΛΛTD2Φ

)− θ

2
(DΦ)TΛΛTDΦ + a0 +AT0 x

+ sup
h∈J

L(x,DΦ, h)(A.5)

and the unique maximizer of Lht Φ(t, x), ĥ(t, x), is also the unique maximizer of L(x,DΦ, h).

Observe that with the choice of control function h0(t, x) := 0 ∀(t, x) ∈ [0, T ] × R
n the

functional L(x, p, h0) = 0 ∀(t, x, p) ∈ [0, T ] × R
n × R

n. Invoking the optimality principle, we
deduce that L(x,DΦ, h∗(t, x)) ≥ 0.

Denote by Ĵ the range of the control functions h̃(t, x) such that L(x, p, h̃) ≥ 0. Under
Assumption 1, the set J , defined by (2.7), is in the interior of a hypercube, and since the
functional L(x, p, h) is smooth and strictly concave in h and limh→∂J L(x, p, h) = −∞, we
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deduce that the set Ĵ is a closed convex subset of J ∀(t, x) ∈ [0, T ]×R
n. The control functions

h̃ take the form

h̃ : [0, T ] × R
n → Ĵ ⊂ J ,

(t, x) �→ h̃(t, x).

More formally, we can define a class Ĥ(T ) of Markov control processes as follows.
Definition A.6. A control process h̃(t) is in class Ĥ(T ) if the following conditions are sat-

isfied:
1. h̃(t) is in class H introduced in Definition 2.1;
2. h̃(t, x) ∈ Ĵ ∀(t, x) ∈ [0, T ] × R

n.
In particular, we note that the optimal control process h∗(t) ∈ Ĥ(T ) ∀t ∈ [0, T ] and

∀ω ∈ Ω.
For any control policy h̃(t) ∈ Ĥ(T ), define the local martingale M̂(t) as

M̂(t) := −θ
∫ t

0
h̃(s)TΣdWs −

∫ t

0

∫
Z

ln
(

1 −G(z, h̃(s))
)
Ñ(ds, dz).(A.6)

Also, let L(t) be the process defined as

L(t) =
∑

0<s≤t
ΔYs1{|ΔYs|≥ 1

2}

= −
∫ t

0

∫
Z\Z1

ln
(

1 −G(z, h̃(s))
)
N(ds, dz),

where Z1 =
{
z ∈ Z : |ΔYs| < 1

2 , 0 ≤ s ≤ t
}

. Then the process M1(t) := L(t) − L̃(t) can be
expressed as

M1(t) = −
∫ t

0

∫
Z\Z1

ln
(

1 −G(z, h̃(s))
)
Ñ(ds, dz).

To complete our decomposition of the local martingale M(t), we define the process M2(t) as

M2(t) = M(t) −M1(t)

= −
∫ t

0

∫
Z1

ln
(

1 −G(z, h̃(s))
)
Ñ(ds, dz).

The next step is to study each component of the process Y (t) defined in (A.2):
• The process

[M c,M c]t = exp

{
θ2
∫ t

0
h̃(s)TΣΣT h̃(s)ds

}
is clearly bounded because h̃(s) ∈ Ĥ(T ) ∀s ∈ [0, t].

• The process ∑
0<s≤t

|ΔM1(s)| =

∫ t

0

∫
Z\Z1

∣∣∣ ln(1 −G(z, h̃(s))
) ∣∣∣N(ds, dz)
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is bounded because h̃(s) ∈ Ĥ(T ) ∀s ∈ [0, t]. In addition, the number of jumps greater
than 1

2 is finite:

# {0 ≤ s ≤ t; |ΔM1(s)|} = #
{

0 ≤ s ≤ t; |ΔM(s)|1{|ΔMs|≥ 1
2}
}

= N

(
t,

]
−∞,−1

2

[
∪
]

1

2
,∞
[)

<∞.

• Finally, we turn our attention to the process∑
0<s≤t

(ΔM2(s))
2 =

∫ t

0

∫
Z1

∣∣∣ ln(1 −G(z, h̃(s))
) ∣∣∣2N(ds, dz).

Recalling that we assumed that in our setting∫
Z0

|γ(z)|2ν(dz) <∞

and taking into consideration the fact that h̃(s) ∈ Ĥ(T )∀s ∈ [0, t], then we deduce
that ∫

Z0

∣∣∣ ln(1 −G(z, h̃(s))
) ∣∣∣2ν(dz) <∞

for any ω ∈ Ω, which proves that∫ t

0

∫
Z1

∣∣∣ ln(1 −G(z, h̃(s))
) ∣∣∣2N(ds, dz) <∞.

By Theorem A.5, the Doléans-Dade exponential

E(M̂)(t) = χ∗
t

is uniformly integrable for all h̃ ∈ Ĥ(T ). We can now apply Corollary A.4 to formally define the
measure P

θ
h̃
. In particular, the measure P

θ
h∗ characterized via the Radon–Nikodym derivative

χ∗
t is well defined because h∗(t) ∈ Ĥ(T ) ∀ω ∈ Ω. This proves that the control h∗(t) is

admissible ∀t ∈ [0, T ] and ω ∈ Ω.
Note that the control policy h0(t) = 0 corresponds to investing the entire wealth into the

money market asset for the duration of the investment period. The associated measure P
θ
h0

is well defined, and it is equal to the physical measure P. In fact, this proof not only shows
that the optimal control process h∗(t) is admissible but also that a large class of “reasonable”
control processes h̃(t) is also admissible and is associated with a well-defined probability
measure.

Proof of Proposition 6.4. Consider the exponentially transformed problem infh∈A(T ) J̃(x, t, h),
where

(A.7) J̃(x, t, h) := lnE
[
e−θ lnV (t,x,h)

]
.
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Note that because the term e−θ lnV (t,x,h) is bounded from below by 0, infh∈A(T ) J̃(x, t, h) is

well defined, which implies that there exists at least one minimizer h̃:

E
[
e−θ lnV (t,x,h)

]
= Eh

t,x

[
exp

{
θ

∫ T

t
g(s,Xs, h(s))ds − θ ln v

}]
(see, for example, Lemma 8.6.2 in [33]) and hence

inf
h∈A(T )

E
[
e−θ lnV (t,x,h)

]
= inf

h∈A(T )
Eh
t,x

[
exp

{
θ

∫ T

t
g(s,Xs, h(s))ds − θ ln v

}]
= I(v, x;h∗(t); t, T ),

which proves that the optimal control h∗(t) for the auxiliary problem suph∈A(T ) I(v, x;h; t, T )
derived in section 3.3 is indeed optimal for the problem suph∈A(T ) J(x, t, h).
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On the Convergence of Higher Order Hedging Schemes: The Delta-Gamma Case∗

Mats Brodén† and Magnus Wiktorsson†

Abstract. Hedging errors induced by discrete rebalancing of the hedge portfolio of a delta-gamma hedging
strategy are investigated. The rate of convergence of the expected squared hedging error as the
number of adjustments of the hedge portfolio goes to infinity is analyzed. It is found that the
delta-gamma strategy produces higher convergence rates than the usual delta strategy.

Key words. discrete time hedging, rate of convergence, delta-gamma hedging
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1. Introduction. The aim of this paper is to investigate the convergence of the expected
squared hedging error of a discretely rebalanced hedge portfolio containing two hedge instru-
ments with respect to the number of rebalancings. We consider a complete diffusion market
containing a number of instruments with sufficiently smooth payoff functions (i.e., European
call options), where the hedge portfolio is rebalanced on an equidistant time grid.

The hedging strategy considered is the well-known delta-gamma hedging strategy (see, for
example, Björk [2] or Hull [12]), a strategy where the hedge portfolio is made both delta and
gamma neutral using the underlying and some other derivative as hedge instruments.

The hedging error at maturity T using n rebalancing points is defined by

R(n) = Φ(XT ) − VT ,

where Φ denotes the payoff function, XT denotes the stock price, and VT is the value of the
hedge portfolio. In this paper we will measure the error using an L2 criterion and study the
rate at which E[R2(n)] goes to zero as n approaches infinity.

The question of hedging errors due to discrete trading has already been raised in the paper
by Black and Scholes [3], where it was claimed that the risk induced from discrete trading
is nonsystematic and to a large extent can be diversified away. This claim was supported
by Boyle and Emanuel [4], who utilized a Taylor expansion approach. Moreover, they also
investigated the actual distribution of the hedging error of a discretely rebalanced hedge
portfolio. In both of these papers the delta of the hedge portfolio was set to equal delta of the
derivative when rebalancing the portfolio. Robins and Schachter [14] depart from this idea
and instead minimize the variance over each rebalancing period with respect to the hedge
portfolio weights. They show that this strategy yields a significant reduction in variance of
the hedging error compared with the delta neutral strategy.
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Figure 1. Log mean squared hedging error (MSHE) as a function of the log number of rebalancings for the
delta hedge (circles) and the delta-gamma hedge (squares).

Later accounts on the topic of discrete time hedging have often focused on the order
of convergence to zero of the hedging error as the number of rebalancing dates approaches
infinity. In Zhang [15] and Bertsimas, Kogan, and Lo [1], discrete hedging of European options
in complete diffusion markets on an equidistant time grid was considered. Whereas Zhang
considers an L2 criterion for the order of convergence, Bertsimas, Kogan, and Lo [1] analyze
both the L2 convergence of the hedging error and convergence in the weak sense. Among
other things it was shown that, when delta hedging a European option, nE[R2(n)] converges
to a nonzero finite limit as n approaches infinity. The results by Bertsimas, Kogan, and Lo [1]
were extended in different directions in the paper by Hayashi and Mykland [11]. In Gobet and
Temam [10] it was shown that, when the derivative has a more irregular payoff, the order of
convergence may decrease. In particular, for a digital option it was found that n1/2E[R2(n)]
converges to a nondegenerate limit as n → ∞. In Geiss [8] it was shown that the order of
convergence in the case of digital options may be improved by using a nonequidistant net of
adjustment dates. For a particular choice of nonequidistant rebalancing dates it was shown
that nE[R2(n)] converges to a nonzero finite limit also in the case of digital options.

In the work presented here we extend previous results to cover the case of contracts
that are hedged using two hedge instruments (the underlying and some other derivative) on
an equidistant time grid. We find that n3/2E[R2(n)] converges to a nondegenerate limit as
n approaches infinity. Thus the order of convergence increases substantially when adding one
more hedge instrument to the hedge portfolio.

To illustrate the improvement in order of convergence for the delta-gamma hedge, we
performed a simulation of the delta hedging strategy and of the delta-gamma hedging strategy
in a Black and Scholes market. Figure 1 shows the log mean squared hedging error (MSHE)
as a function of the log number of adjustments of the hedge portfolio. The advantage of the
delta-gamma strategy over the delta strategy is clearly visible in the picture.

In the case of a market with normally distributed log returns (i.e., the Black and Scholes
market) we investigate by simulation to what extent the asymptotic expression approximates
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the true mean squared error for finite n, and we analyze the MSHE with respect to the choice
of the additional hedge instrument.

This paper is mainly an extension of the paper by Zhang [15], but the techniques used in the
proof are more related to those used in Gobet and Temam [10]. In Gobet and Makhlouf [9]
the convergence of the tracking error for the delta-gamma hedging strategy is analyzed in
a multiasset setting where log returns are assumed to be normally distributed. They derive
upper bounds of the expected squared hedging error for a class of payoff functions with variable
regularity properties. In particular it is seen that, in the case of digital options, delta-gamma
hedging does not increase the order of convergence compared to delta hedging. In our paper
we analyze a wider class of prices processes, i.e., time homogeneous local volatility models,
and prove the exact order of L2 convergence in the case of European call options. We also
derive an explicit expression of the constant limn→∞ n3/2E[R2(n)].

Discrete trading may arise because of a number of reasons, e.g., due to the presence of
transaction costs or if the stock price process can be observed only at discrete points in time.
Since options in many cases are subjected to higher transaction costs than the underlying
stock, it is clear that transaction costs might have an impact on the practical applicability
of delta-gamma hedging strategies. However, in this paper we assume that there are no
transaction costs.

The next section introduces some notation, basic facts, and previous results together with
our results. In section 3 we perform a simulation study investigating how the results from
section 2 relate to a simulated example. We conclude our findings in section 4. The proofs of
the lemmas as well as some technical results are presented in Appendix A.

2. Preliminaries and results.
Setting and assumptions. Let the diffusion process X, defined on a filtered probability

space {Ω, Ft, {Ft}t≥0, P}, describe the price of a risky asset. Assuming that the risk free
interest rate equals r, under the risk neutral probability measure Q the process X has the
dynamics

(1) dXt = rXtdt+ σ(Xt)XtdWt,

with X0 = x0 and where {Wt}t≥0 is a one-dimensional Wiener process.
The above market model may be recognized as a local volatility model with a time invari-

ant diffusion coefficient. In this setting it is often convenient to work with the transformed
process Yt = log(Xt). In connection to this define σ̃(y) = σ(ey), which is simply the diffusion
coefficient of the process Y . Let pX(t, x, x′) and pY (t, y, y′) denote the transition densities of
the processes X and Y , respectively (in the case they exist). One typically wants the processes
to have sufficiently smooth transition densities, which translates to smoothness properties of
the pricing functions of derivatives in this market. The smoothness of the transition densities
is dependent on properties of the diffusion coefficient σ̃. We introduce the following set of
assumptions:

H1.
(i) There is a positive constant σ0 such that σ̃(y) ≥ σ0 for all y ∈ R.
(ii) The function σ̃ is bounded, uniformly Lipschitz continuous in compact subsets

of R, and uniformly Hölder continuous.
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H2. The functions (∂k/∂yk)σ̃(y), i ∈ {1, 2, 3, 4}, are bounded.
Under assumption H1 the transition probability function of Y has a transition density,

i.e., pY (see Theorem 6.5.4 of [7]). The densities pY and pX are related through

pX(t, x, x′) =
pY (t, log(x), log(x′))

x′
,

and thus under assumption H1 X also has a density.
Now consider a T1 claim denoted F1 with payoff function Φ1(x) = (x−K1)

+. We would
like to replicate this contract using the underlying and some other derivative F2 with payoff
function Φ2(x) = (x−K2)

+ and which expires at T2 > T1. Thus the contracts should satisfy
the following assumption:

H3. Φ1(x) = (x−K1)+, Φ2(x) = (x−K2)+, and T2 > T1.
Pricing and delta hedging. The price of the contracts at time t will be denoted F1(t,Xt)

and F2(t,Xt), respectively. We will let F1,x(t,Xt) and F2,x(t,Xt) denote their respective
derivatives with respect to the underlying asset and equivalently for higher order derivatives
and derivatives with respect to the variable t.

It can be shown using replication arguments (see, e.g., [2]) that the price of some derivative
Fi at time t with payoff function Φi solves the following Cauchy problem:

(2)
Fi,t(t, x) + rxFi,x(t, x) +

1

2
σ2(x)x2Fi,xx(t, x) = rFi(t, x) ,

Fi(T, x) = Φi(x) .

Under assumption H1 the Cauchy problem (2) has a solution given by the following stochastic
representation:

(3) Fi(t, x) = e−r(Ti−t)Et,x[Φi(XTi)] ,

where Et,x denotes the expectation under the risk neutral measure Q conditioned on Ft with
the process in question starting in the point x. At times we will suppress this dependence and
simply write E. It is also possible to deduce the well-known risk neutral valuation formula (3)
using arbitrage arguments (see [5] for a full account on this topic).

Introduce the processes X̃t = e−rtXt and F̃i(t,Xt) = e−rtFi(t,Xt). Using (2) and Itô’s
formula, it is seen that both X̃t and F̃i(t,Xt) are Q-martingale adapted to FW

t . By the
martingale representation theorem for Wiener processes there exists a uniquely determined
FW
t -adapted process ht such that

e−rTiΦi(XTi) = F̃i(0,X0) +

∫ Ti

0
hsdWs .

Using Itô and the fact that dX̃t = e−rtσ(Xt)XtdWt yields

ht = σ(Xt)XtF̃i,x(t) ,

and thus

e−rTiΦi(XTi) = Fi(0,X0) +

∫ Ti

0
Fi,x(s)dX̃s .
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Since the market considered is complete, the derivatives can be perfectly replicated using the
underlying asset as a hedge instrument. This is what is usually called delta hedging.

One major concern regarding hedging is the possibility of exploding hedge quotes. This
problem is an issue when, for example, one is delta hedging an up and out barrier call option.
When the option is close to maturity and at the same time approaches the barrier, the delta
of the option may grow infinitely high. This is not a problem in our case, i.e., delta hedging of
a European call option, which is seen in Lemma 2.1. The gamma of the option, on the other
hand, may grow like 1/

√
Ti − t as the option approaches its maturity Ti.

Lemma 2.1. Assume that H1 and H2 hold; then there exists a bounded constant C such
that

(4) |Fi,x(t, x)| ≤ C ∀ (t, x) ∈ [0, Ti] × R+.

Assume in addition that p is a bounded real number; then there exists a bounded constant C
such that

(5) |xpFi,xx(t, x)| ≤ C

(Ti − t)
1
2

∀ (t, x) ∈ [0, Ti] × R+.

The proof of Lemma 2.1 is presented in Appendix A.
Delta-gamma hedging. We now turn our attention to the case where we use both the

underlying asset and F2 to hedge F1. We will let hBt and hXt and hF2
t denote the amount held

in the bank account and the number of shares of the underlying and of the hedge derivative,
respectively. We will let Vt denote the value of the hedge portfolio at time t:

Vt = hXt Xt + hF2
t F2(t,Xt) + hBt .

Clearly we want the value of this portfolio to equal the value of F1. In order to hedge the
issued contract, one way is to make the hedge portfolio both delta and gamma neutral. Thus
(see [2])

F1(t,Xt) = hXt Xt + hF2
t F2(t,Xt) + hBt ,

F1,x(t,Xt) = hXt + hF2
t F2,x(t,Xt) ,

F1,xx(t,Xt) = hF2
t F2,xx(t,Xt) .

By solving this we get the portfolio

hXt = F1,x(t,Xt) − F2,x(t,Xt)F1,xx(t,Xt)

F2,xx(t,Xt)
,

hF2
t =

F1,xx(t,Xt)

F2,xx(t,Xt)
,

hBt = F1(t,Xt) − hXt Xt − hF2
t F2(t,Xt) .

We will refer to this type of hedging as delta-gamma hedging. As in the delta hedging case,
the value of our hedge portfolio at time T1 can be written as

VT1 = F1(0,X0) +

∫ T1

0

(
F1,x(t,Xt) − F1,xx(t,Xt)

F2,xx(t,Xt)
F2,x(t,Xt)

)
dX̃t

+

∫ T1

0

F1,xx(t,Xt)

F2,xx(t,Xt)
dF̃2(t,Xt) .
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Using that dF̃2(t,Xt) = F2,x(t,Xt)dX̃t yields

VT1 = F1(0,X0) +

∫ T1

0

(
F1,x(t,Xt) − F1,xx(t,Xt)

F2,xx(t,Xt)
F2,x(t,Xt)

)
dX̃t

+

∫ T1

0

F1,xx(t,Xt)

F2,xx(t,Xt)
F2,x(t,Xt)dX̃t

= F1(0,X0) +

∫ T1

0
(F1,x(t,Xt)) dX̃t = Φ1(XT1) ,

and thus this portfolio also replicates the contract.
It has already been pointed out that the delta of our option is bounded (see Lemma 2.1).

However, the hedge portfolio is now also dependent on the fraction F1,xx/F2,xx, that is, the
position held in F2. It is seen that in order to guarantee boundedness one needs to make sure
that gamma of F2 is bounded away from zero, or at least that F1,xx goes to zero faster than
F2,xx when F2,xx approaches zero. For practical considerations we point out that the only
point at which hF2 may explode is when Xt equals K1 and t approaches T1 (this is apparent
from the proof of Lemma 2.2). Later in the proofs we will need the following bound (which is
sufficient for our needs) presented in the following lemma.

Lemma 2.2. Assume that H1–H3 hold; then there exists a bounded constant C such that

(6)

∣∣∣∣F1,xx(t, x)

F2,xx(t, x)

∣∣∣∣ ≤ C

(T1 − t)
1
2

∀ (t, x) ∈ [0, T1] × R+ .

The proof of Lemma 2.2 is presented in Appendix A.
Discrete time hedging. In our setting we will adjust the hedge portfolio at a prespecified

time grid tni , where n denotes the number of rebalancing points. In the equidistant case we
have that tni = iT1/n, where i = {0, . . . , n − 1}. The difference between the hedge portfolio
and the derivative at time t = T1 with n the number of adjustments will be denoted by RΔ(n)
in the delta hedging case and RΓ(n) in the delta-gamma hedging case. In the delta hedging
case the discounted hedging error, RΔ(n), can be written as

RΔ(n) =

∫ T1

0

(
F1,x(t,Xt) − F1,x(ϕn(t),Xϕn(t))

)
dX̃t ,

where ϕn(t) = sup{tni | tni < t}. In the delta-gamma hedging case we have that

RΓ(n) =

∫ T1

0

(
hXt − hXϕn(t)

)
dX̃t +

∫ T1

0

(
hF2
t − hF2

ϕn(t)

)
dF̃2(t,Xt) .

In [15] the discretely rebalanced delta hedge is investigated. The expected squared hedging
error is found to approach zero as n−1 when n→ ∞.

E[R2
Δ(n)] =

T1
2n

E

[∫ T1

0
e−2rtσ4(Xt)X

4
t (F1,xx(t,Xt))

2 dt

]
+ o

(
1

n

)
.

In Proposition 2.3 our main result is presented. It states that the expected squared hedging

error, induced by discretely rebalancing the delta-gamma hedge portfolio, goes to zero as n−
3
2

when n→ ∞.
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Proposition 2.3. Assume that H1–H3 hold; then

(7)

E[R2
Γ(n)] =

(
T1
n

) 3
2

C 3
2

lim
t→T1

g(t) + o

(
1

n3/2

)
=

(
T1
n

) 3
2

C 3
2
e−2rT1K

3
1σ

3(K1)

4
√
π

pX(T1, x0,K1) + o

(
1

n3/2

)
,

where

(8) g(t) = (T1 − t)3/2E
[
e−2rtF 2

1,xxx(t,Xt)X
6
t σ

6(Xt)
]
,

and

Ca =

∞∑
k=1

∫ 1

0

∫ x

0

∫ w

0

1

(k − v)a
dv dw dx.

Proof. In Lemma A.3 the error is decomposed into seven terms Ai (1 ≤ i ≤ 7), where A1

is given by

A1(n) = E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
e−2ruF 2

1,xxx(u,Xu)X6
uσ

6(Xu)dudsdt

]
.

The rest of the terms, Ai (2 ≤ i ≤ 7), go to zero as O(1/n13/8) or faster (see Lemma A.5).
Lemma A.2, which states that

lim
t→T1

(T1 − t)
3
2E[e−2rtF 2

1,xxx(t,Xt)X
6
t σ

6(Xt)] = e−2rT1K
3
1σ

3(K1)

4
√
π

pX(T1, x0,K1),

together with Lemma A.4 yields that

E[R2
Γ(n)] =

(
T1
n

) 3
2

C 3
2
e−2rT1K

3
1σ

3(K1)

4
√
π

pX(T1, x0,K1) + o

(
1

n3/2

)
,

which is the desired result, so the proof is complete.

3. Simulation study. In this section we conduct a simulation study to examine the be-
havior of the expected squared hedging error as we let n approach infinity as well for some
fixed choices of n. First, we investigate the transition of the expected squared hedging error
to its limiting value as we let n go from some low value to some high value for some different
choices of K2 and T2. Second, we investigate the expected squared error as a function of K2

for some different values of n and T2.
The setup for our simulation study is that of the Black and Scholes market with r = 0.

More specifically, we let the risky asset X be defined by the SDE

dXt = σXtdWt,

where X0 = x0 and σ is a constant. The process X is log-normally distributed with transition
density given by

pX(t, x, x′) =
1

x′
√

2πσ2t
e−

(log(x′)−log(x)+σ2t/2)2

2σ2t .
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According to Proposition 2.3, for large values of n

(9) E[R2
Γ(n)] ≈

(
T1
n

) 3
2

C 3
2

K3
1σ

3(K1)

4
√
π

pX(T1, x0,K1).

Our results in the simulation study will be compared with the above approximate value of the
expected squared hedging error.

A number of trajectories, NMC , of the process X, where σ = 0.4 and x0 = 100, together
with option prices and hedge ratios were simulated. For the option to be hedged the strike
price was set to K1 = 100, and the time to maturity was set to T1 = 0.5.

In the first part we investigate the expected squared hedging error as we let n approach
infinity. This is done for three values of K2 ∈ {60, 100, 140} and two values of T2 ∈ {0.6, 1.0}.
The measured MSHEs from the simulations are depicted in Figure 2 together with the value
of expression (9). In this simulation NMC was set to NMC = 100000.

It is seen that the graphs for the different values of K2 are more spread out around the
value of (9) in the case when T2 = 0.6 than when T2 = 1.0, and that the mean squared
error attains the limiting value faster for high values of T2 than for low values of T2 when
n approaches infinity. As expected, the hedge derivative most similar to F1, that is, when
T2 = 0.6 and K2 = 100, is the one giving the lowest mean squared error. As can be seen, all
Monte Carlo estimates are relatively close to the value of (9), especially for high values of T2.

In Figure 3 the MSHE as a function of K2 for different values of T2 ∈ {0.6, 0.8, 1.0} and
n ∈ {10, 100} is depicted. In this case the numbers of simulations was set to NMC = 1000000.

As can be seen, for every choice of T2 there is a clear smile pattern with a distinct optimal
value of K2, and this smile is more pronounced for low values of T2 and n. It is also seen that
even though hedge contracts with short maturities might produce very feasible hedges there is
also the possibility of ending up with very high values of the expected squared hedging error
if one is not able to find a contact with the right strike price. Hence, with hedge contracts
with longer time to maturity the expected squared error is more robust with respect to the
choice of K2.

4. Conclusions. We have shown that the expected squared hedging error using two hedge
instruments converges to zero as n−

3
2 when the number of adjustments of the hedge portfolio

n goes to infinity. An expression of the leading n−
3
2 -order term has also been derived.

By simulation it is shown that the derived expression of the leading term approximates
the true MSHE quite well (see Figure 2), especially for high values of T2. It can also be seen
that, as expected, using hedge instruments that are similar to the instrument to be hedged,
that is, values of K2 close to K1 and values of T2 close to T1, gives a lower mean squared
error. However, in the case when T2 is chosen to be close to T1, the value of the MSHE is very
sensitive with respect to the value of K2 (see Figure 3).

Further research could be directed to the investigation of the higher order terms in the
expansion of the MSHE in order to find an optimal choice of hedge instrument in a collection
of possible hedge instruments.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE CONVERGENCE OF HIGHER ORDER HEDGING SCHEMES 63

0.5 1 1.5 2 2.5 3
−4

−2

0

2

log10(n)

lo
g
1
0
(M

S
H
E

)
T2 = 0.6

0.5 1 1.5 2 2.5 3
−4

−2

0

2

log10(n)

lo
g
1
0
(M

S
H
E

)

T2 = 1.0

Figure 2. Log MSHE as a function of the log number of rebalancings, where K2 = 60 (squares), K2 = 100
(circles), K2 = 140 (triangles), and expression (9) (dash-dotted line).
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Figure 3. MSHE as a function of K2, where T2 = 0.6 (squares), T2 = 0.8 (circles), T2 = 1.0 (triangles),
and expression (9) (dash-dotted line).

Appendix A. Proofs and technical lemmas. In Lemma A.3 the mean squared error is
decomposed into seven terms Ai (1 ≤ i ≤ 7), and in Lemma A.5 it is shown that all but term

A1(n) are of higher order than n−
3
2 . The proof of Lemma A.5 relies on the estimates from

Lemmas 2.1 and 2.2, as well as on an estimate that is stated in Lemma A.2 together with a
limit result. Furthermore, we need an analysis result, Lemma A.4, that provides us with the
order of convergence of some integrals.

In the first part of the appendix we will prove Lemmas 2.1 and 2.2, as well as state and
prove Lemma A.2. In order to prove Lemmas 2.1 and 2.2, we will make use of two results
from [6] that are stated below (see (11) and (12)).

Consider a process Z with dynamics given by

(10) dZt = μ(Zt)dt+ dWt , Z0 = z0.
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Define the functions N and G by

N(t) =

∫ t

0
(μ′(Zu) + μ2(Zu))du and G(y) =

∫ y

y0

μ(u)du,

where y0 ∈ R, and define the constants m and m by

m = sup(μ′(z) + μ2(z)) and m = inf(μ′(z) + μ2(z)).

Assuming that μ is absolutely continuous and such that (10) has unique strong solution, then,
according to Proposition 1 of [6], for any A ∈ Ft

(11) E0,z0 [I(A)] = Ê0,z0

[
eG(Zt)−G(z0)e−(1/2)N(t)I(A)

]
,

where Ê denotes expectation with respect to the law of a standard Brownian motion. Fur-
thermore, under the same assumptions as above, according to Corollary 5 of [6],

(12) e−tm/2 ≤ pZ(t, z, z′)
eG(z′)−G(z)pW (t, z, z′)

≤ e−tm/2,

where pZ is the transition density of the process Z and pW is the transition density of a
standard Brownian motion.

Another result that will be used in the calculations is the so-called put-call duality.
According to Corollary 3.2 of [13], which holds under H1–H2, the call price, Fi(t, x) =
Et,xe

−r(Ti−t)[(XTi −K)+], may be represented by

(13) Fi(t, x) = Et,K [(x− X̂Ti)
+],

where the process X̂ is defined by the dynamics

dX̂t = −rX̂tdt+ σ(X̂t)X̂tdŴt,

where Ŵ is a standard Wiener process.
In the proofs below we will let a(x) = σ2(x)x2, ki = log(Ki), and τi = Ti−t. Furthermore,

we define the constants σ and σ by

σ = sup σ(z) and σ = inf σ(z) .

Also, throughout we will let C denote a bounded positive constant whose value may change
from line to line.

Proof of Lemma 2.1.
Equation (4). Differentiating (13) once with respect to x, we get that

Fi,x(t, x) =

∫ x

0
pX̂(τi,Ki, y)dy = Et,Ki [I(X̂Ti < x)],

where pX̂ denotes the transition density of the process X̂. It holds that

0 ≤ Et,Ki [I(X̂Ti < x)] ≤ 1,
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which proves the claim.
Equation (5). Differentiating (13) twice with respect to x, we get that

Fi,x(t, xx) = pX̂(τi,Ki, x).

Consider the transformation Zt = H(log(X̂t)), where H(y) =
∫ y
y0

1/σ̃(u)du for some y0 ∈ R;
then

dZt = μ(Zt)dt+ dWt,

where

μ(z) = −1

2

(
σ̃(H−1(z)) + σ̃′(H−1(z))

)
.

Note that since |(∂k/∂y)σ̃(y)| <∞, i ∈ {0, 1, 2} (due to H1–H2), the function μ is absolutely
continuous, and thus the condition of Corollary 5 of [6] is satisfied and (12) holds.

Let pX̂ and pZ denote the transition densities of X̂ and Z, respectively; then the following
relation between the transition densities holds:

pX̂(t, x, x′) =
pZ(t,H(log(x)),H(log(x′)))

x′σ(x′)
.

Using the inequalities (12) for the density, we get

(14) 0 ≤ Fi,xx(t, x) ≤ e−
1
2
mτieG(H(log(x)))−G(H(ki))

pW (τi,H(ki),H(log(x)))

σ(x)x
.

Since σ is bounded, it holds that

(15) −(H(log(x)) −H(ki))
2 ≤ −(log(x) − ki)

2

σ2
,

which will be used to bound pW (τi,H(ki),H(log(x))). For the function G it holds that

G(H(log(x))) −G(H(ki)) = −
∫ log(x)

ki

r

σ̃2(u)
du− 1

2
(log(x) − ki) − 1

2
log

(
σ(x)

σ(Ki)

)
.

Since |log(σ(x)/σ(K))| is bounded and∣∣∣∣∣
∫ log(x)

ki

r

σ̃2(u)
du

∣∣∣∣∣ ≤ r

σ2
|log(x) − ki|,

there is a bounded constant C such that

(16) eG(H(log(x)))−G(H(ki)) ≤ CeC|log(x)−ki|.

To bound expressions of the form xp = exp{n log(x)}, where p is a bounded real number, we
will use

(17) ep log(x) ≤ epki+p|log(x)−ki| ≤ CeC|log(x)−ki|
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for some bounded constant C.
Using (14)–(17), we have that there is a bounded constant C such that

|xpFi,xx(t, x)| ≤ CeC|log(x)−ki| e
− (log(x)−ki)

2

2σ2τi√
τi

.

The above inequality together with the inequality

(18) −x2 + cx ≤ −x2/2 + c2/2,

which holds for all x, c ∈ R, yields that there is a bounded constant C such that

|xpFi,xx(t, x)| ≤ C
e
− (log(x)−ki)

2

4σ2τi√
τi

,

which implies that there is a bounded constant C such that |xpFi,xx(t, x)| ≤ C/
√
Ti − t, which

concludes the proof.
Proof of Lemma 2.2. In the same way as for (14), we get

(19) Fi,xx(t, x) ≥ e−
1
2
mτieG(H(log(x)))−G(H(ki))

pW (τi,H(ki),H(log(x)))

σ(x)x
.

Inequalities (14) and (19) yield that there is a constant C such that

F1,xx(t, x)

F2,xx(t, x)
≤ C√

T1 − t
e
− (H(log(x))−H(k1))

2

2(T1−t)
+

(H(log(x))−H(k2))
2

2(T2−t) .

Consider the function f defined by

f(z) = −(z −H(k1))2

2(T1 − t)
+

(z −H(k2))2

2(T2 − t)
.

The equation f ′(z0) = 0 has the solution

z0 =
H(k1)τ2 +H(k2)τ1

T2 − T1
,

and

f(z0) =
(H(k1) −H(k2))2

2(T2 − T1)
,

which is bounded since T2 > T1 and is a maximum since f ′′(z0) = −1/τ1 + 1/τ2 < 0. Hence,
we have proved that exp{f(H(log(x)))} is bounded, and thus there is a bounded constant C
such that

F1,xx(t, x)

F2,xx(t, x)
≤ C√

T1 − t
,

whence the lemma follows.
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Lemma A.1. Define the function hτ by

hτ (z, z
′) =

2

τ
3
2
√
π

(z − z′)2e−
(z−z′)2

τ ,

and let g be a continuous and integrable function; then

lim
τ→0

∫
R

g(x)hτ (x0, x)dx = g(x0) .

Proof. For some ε > 0 decompose the integral as∫
R

g(x)hτ (x0, x)dx =

∫ x0−ε

−∞
g(x)hτ (x0, x)dx

+

∫ x0+ε

x0−ε
g(x)hτ (x0, x)dx+

∫ ∞

x0+ε
g(x)hτ (x0, x)dx.

For the first term we have that∣∣∣∣∫ x0−ε

−∞
g(x)hτ (x0, x)dx

∣∣∣∣ ≤ hτ (x0, ξ)

∫ x0−ε

−∞
|g(x)|dx ,

where ξ ∈ (−∞, x0− ε). Since g is integrable, we have that
∫ x0−ε
−∞ |g(x)|dx <∞. Furthermore,

limτ→0 hτ (x0, ξ) = 0; thus

lim
τ→0

∫ x0−ε

−∞
g(x)hτ (x0, x)dx = 0,

and equivalently for the last term. For the second term we have that∫ x0+ε

x0−ε
g(x)hτ (x0, x)dx = g(ξ)

∫ x0+ε

x0−ε
hτ (x0, x)dx ,

where ξ ∈ (x0 − ε, x0 + ε). Now

lim
τ→0

g(ξ)

∫ x0+ε

x0−ε
hτ (x0, x)dx = g(ξ) lim

τ→0

∫ ε/
√
τ

−ε/√τ

2√
π
u2e−u

2
du = g(ξ) .

Since g is continuous and ε can be chosen arbitrarily small, this finishes the proof.
Lemma A.2. Assume that H1 and H2 hold; then there exists a constant C such that

(20) E[e−2rtF 2
i,xxx(t)X

6
t σ

6(Xt)] ≤ C

(Ti − t)
3
2

,

and

(21) lim
t→Ti

(Ti − t)
3
2E[e−2rtF 2

i,xxx(t)X6
t σ

6(Xt)] = e−2rTi
K3
i σ

3(Ki)

4
√
π

pX(Ti, x0,Ki) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Proof. Differentiating Fi twice with respect to x, we get that

Fi,xx(t, x) =
∂

∂x
Et,Ki[I(X̂Ti < x)] .

Using the transformation Zt = H(log(X̂t)), as in the proof of Lemma 2.2, and the change of
measure from (11), we have that

Fi,xx(t, x) =
∂

∂x
Êt,H(ki)

[
I(ZTi < H(log(x)))eG(ZTi

)−G(H(ki))e−
1
2
(N(Ti)−N(t))

]
=

∂

∂x
Êt,H(ki)

[
I(ZTi < H(log(x)))eG(ZTi

)−G(H(ki))Êt,H(ki)

[
e−

1
2
(N(Ti)−N(t))|ZTi

]]
.

Denote
φ(t, z, z′) = Êt,z[e

− 1
2
(N(Ti)−N(t))|ZTi = z′] ;

then

Fi,xx(t, x) =
∂

∂x
Et,H(ki)

[
I(ZTi < H(log(x)))eG(ZTi

)−G(H(ki))φ(t,H(ki), ZTi)
]

= eG(H(log(x)))−G(H(ki))φ(t,H(ki),H(log(x)))
pW (τi,H(ki),H(log(x)))

xσ(x)
.

Differentiating Fi,xx(t, x) with respect to x yields

Fi,xxx(t, x) = f1(t, x) + f2(t, x) + f3(t, x) + f4(t, x) ,

where

f1(t, x) = eG(H(log(x)))−G(H(ki))
μ(H(log(x)))

σ(x)x
φ(t,H(ki),H(log(x)))

× pW (τi,H(ki),H(log(x)))

σ(x)x
,

f2(t, x) = eG(H(log(x)))−G(H(ki))
∂

∂z
φ(t,H(ki), z)|z=H(log(x))

1

xσ(x)

× pW (τi,H(ki),H(log(x)))

xσ(x)
,

f3(t, x) = eG(H(log(x)))−G(H(ki))φ(t,H(ki),H(log(x)))

× pW (τ,H(ki),H(log(x)))
(−σ(x) − xσ′(x))

x2σ2(x)
,

and
f4(t, x) = eG(H(log(x)))−G(H(ki))φ(t,H(ki),H(log(x)))

× ∂

∂z
pW (τ,H(ki), z)|z=H(log(x))

1

x2σ2(x)
.

Since the functions μ and μ′ under assumptions H1 and H2 are bounded, there is a bounded
constant C such that

(22) φ(t, z, z′) = Êt,z[e
− 1

2

∫ Ti
t μ′(Zs)+μ2(Zs)ds|ZTi = z′] ≤ C.
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Note that the process Z conditioned on ZTi = z′ is a Brownian bridge from z to z′. Let

h(s, z, z′) = z +
s− t

Ti − t
(z′ − z) +

(
Ws−t − s− t

Ti − t
WTi−t

)
for s ∈ [t, Ti] ;

then, under the measure Ê and the condition ZTi = z′, the following equality in distribution

holds: h(s, z, z′) d
= Zs. Define the function g by g(z) = −(μ′(z) + μ2(z))/2. Differentiating φ

we get, after applying the dominated convergence theorem twice, that

∂

∂z
φ(t, z, z′) =

∂

∂z
E

[
e
∫ Ti
t g(h(s,z,z′))ds

]
= E

[
e
∫ Ti
t g(h(s,z,z′))ds

∫ Ti

t

∂

∂x
g(x)|x=h(s,z,z′)

∂

∂z
h(s, z, z′)ds

]
,

where ∂
∂zh(s, z, z′) = (Ti − s)/(Ti − t). Since g and g′ are bounded under H1–H2, there is a

bounded constant C such that

(23)

∣∣∣∣ ∂∂zφ(t, z, z′)
∣∣∣∣ ≤ 2C

∫ Ti

t

Ti − s

Ti − t
ds = C(Ti − t) .

By (15), (16), (17), (22), (23), and the boundedness of σ, σ̃′, and μ, we have that there is
a bounded constant C such that

(24) |(f1(t, x) + f2(t, x) + f3(t, x))x3σ3(x)| ≤ CeC|log(x)−ki| e
− (log(x)−ki)

2

2στi√
2πτi

.

Inequality (18) together with (24) yields that there is a bounded constant C such that

(25) |(f1(t, x) + f2(t, x) + f3(t, x))x3σ3(x)| ≤ C
e
− (log(x)−ki)

2

4στi√
2πτi

.

The bounds (15), (16), (17), (18), and (22) yield that there is a bounded constant C such
that

|f4(t, x)x3σ3(x)| ≤ CeC|log(x)−ki| |H(ki) −H(log(x))|
τi

e
− (H(ki)−H(log(x)))2

2τi√
2πτi

≤ C
|ki − log(x)|

στi

e
− (ki−log(x))2

4στi√
2πτi

.(26)

Using the transformation H(log(Xt)) =
∫ log(Xt)
y0

1/σ̃(u)du, the bound (12), and inequality

(18), we get that there is a bounded constant C such that

pX(t, x, x′) ≤ Ce−
1
2
(log(x′)−log(x)) pW (t,H(log(x)),H(log(x′)))

x′

≤ C
e−

(log(x′)−log(x))2

4σt√
2πt

.(27)
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By (25), (27), and a change of variable (y = log(x)), formal integration yields that there is a
bounded constant C such that

E[e−2rt(f1(t,Xt) + f2(t,Xt) + f3(t,Xt))
2X6

t σ
6(Xt)] ≤ C√

Ti − t
.

Using (26), we get in the same way as for the bound above that there is a bounded constant
C such that

E[e−2rtf24 (t,Xt)X
6
t σ

6(Xt)] ≤ C

(Ti − t)3/2
.

Consequently, by the Cauchy–Bunyakovskii inequality, there is a bounded constant C such
that

E[e−2rt(f1(t,Xt) + f2(t,Xt) + f3(t,Xt))f3X
6
t σ

6(Xt)] ≤ C

(Ti − t)
.

Hence, E[f24 (t,Xt)X
6
t σ

6(Xt)] is the leading term, and there is a bounded constant C such
that

E[e−2rtF 2
i,xxx(t)X

6
t σ

6(Xt)] ≤ C

(Ti − t)
3
2

,

which proves the first part of the lemma.
It holds that

E[e−2rtf24 (t,Xt)X
6
t σ

6(Xt)]

=

∫ ∞

0
e−2rt e

2(G(H(log(x)))−G(H(ki)))φ(t,H(ki),H(log(x)))

K2
i σ

2(Ki)x2σ2(x)

× (H(log(x)) −H(ki))
2

τ2
e
− (H(log(x))−H(ki))

2

τi

2πτi
x6σ6(x)pX(t, x0, x)dx

=

∫
R

e−2rt e
2(G(z)−G(H(ki)))φ(t,H(ki), z)

K2
i σ

2(Ki)

(z −H(ki))
2

τ2i

e
− (z−H(ki))

2

τi

2πτi

× e5H
−1(z)σ5(eH

−1(z))pX(t, x0, e
H−1(z))dz .

Using Lemma A.1 and that E[f23 (t,Xt)X
6
t σ

6(Xt)] is the leading term, we get

lim
τi→0

τ
3
2
i E[e−2rtF 2

i,xxx(Xt, t)X
6
t σ

6(Xt)]

= lim
τi→0

∫
R

e−2rte2(G(z)−G(H(ki)))φ(t,H(ki), z)
e5H

−1(z)σ5(eH
−1(z))

4
√
πK2

i σ
2(Ki)

× pX(t, x0, e
H−1(z))

2

τ
3
2
i

√
π

(z −H(ki))
2e

− (z−H(ki))
2

τi dy

= e−2rTi
K3
i σ

3(Ki)

4
√
π

pX(t, x0,Ki) ,

which finishes the proof.
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To ease the notation in the following lemma and its proof we will occasionally suppress
the second variable in the functions Fi(t,Xt); i.e., Fi(t) = Fi(t,Xt). We adopt the same
notation for derivatives of the function Fi and write Fi,x(t) = Fi,x(t,Xt) and equivalently
for higher order derivatives and derivatives with respect to the variable t. Also, recall that
a(x) = x2σ2(x), and let the function D be defined by

D(t) = F1,x(t) − F1,x(ϕn(t)) − (F2,x(t) − F2,x(ϕn(t)))
F1,xx(ϕn(t))

F2,xx(ϕn(t))
.

Furthermore, let Dt(t), Dx(t), Dxx(t), and Dxxx(t) be defined by

Dt(t) = F1,tx(t) − F2,tx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))
,

Dx(t) = F1,xx(t) − F2,xx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))
,

Dxx(t) = F1,xxx(t) − F2,xxx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))
,

Dxxx(t) = F1,xxxx(t) − F2,xxxx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))
.

Lemma A.3. Let

Ai(n) = E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
e−2rugi(u,Xu)dudsdt

]
for i ∈ {1, 2, 3, 4, 5}, and

Ai(n) = E

[∫ T1

0

∫ t

ϕn(t)
e−2rsgi(s,Xs)dsdt

]
for i ∈ {6, 7}, where

g1(u,Xu) = F 2
1,xxx(u)a3(Xu) ,

g2(u,Xu) = −2F1,xxx(u)F2,xxx(u)
F1,xx(ϕn(u))

F2,xx(ϕn(u))
a3(Xu) ,

g3(u,Xu) = F 2
2,xxx(u)

F 2
1,xx(ϕn(u))

F 2
2,xx(ϕn(u))

a3(Xu) ,

g4(u,Xu) = D2
x(u)h2(Xu) ,

g5(u,Xu) = 2Dx(u)Dxx(u)a2(Xu)a′(Xu) ,

g6(s,Xs) = D2(s)h1(Xs) ,

g7(s,Xs) = D(s)Dx(s)a(Xs)a
′(Xs) ,

where
h1(x) = −2ra(x) + rxa′(x) + a(x)a′′(x)/2,

h2(x) = a(x)(−4ra(x) + 2rxa′(x) + (a′(x))2).
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Then

E[R2
Γ(n)] =

7∑
i=1

Ai(n).

Proof. The expected squared error can be written as

E[R2
Γ(n)] = E

[∫ T1

0

((
F1,x(t) − F2,xx(t)F1,xx(t)

F2,xx(t)

)
−
(
F1,x(ϕn(t)) − F2,xx(ϕn(t))F1,xx(ϕn(t))

F2,xx(ϕn(t))

)
+

(
F1,xx(t)

F2,xx(t)
− F1,xx(ϕn(t))

F2,xx(ϕn(t))

)
F2,x(t)

)2

X2
t σ

2(Xt)e
−2rtdt

]

= E

[∫ T1

0
D2(t)X2

t σ
2(Xt)e

−2rtdt

]
.

Let

f1(t) = e−2rtD2(t)X2
t σ

2(Xt) = e−2rtD2(t)a(Xt) ,

and apply Itô’s formula between ϕn(t) and t. Then

df1(t) =

{
f1,t(t) + rXtf1,x(t) +

1

2
a(Xt)f1,xx(t)

}
dt+ σ(Xt)Xtf1,x(t)dWt ,

where the diffusion term vanishes when taking expectations. The derivatives of f1 are given
by

f1,t(t) = e−2rt(2D(t)Dt(t)a(Xt) − 2rD2(t)a(Xt)) ,

f1,x(t) = e−2rt(2D(t)Dx(t)a(Xt) +D2(t)a′(Xt)) ,

and
f1,xx(t) = e−2rt(2D2

x(t)a(Xt) + 2D(t)Dxx(t)a(Xt)

+ 4D(t)Dx(t)a′(Xt) +D2(t)a′′(Xt)) .

Multiplying these terms with the corresponding coefficients and summing them together yields
the drift term

f1,t(t) + rXtf1,x(t) +
1

2
a(Xt)f1,xx(t)

= e−2rt

(
2D(t)Dt(t)a(Xt) − 2rD2(t)a(Xt) + 2rXtD(t)Dx(t)a(Xt)

+ rXtD
2(t)a′(Xt) +D2

x(t)a2(Xt) +D(t)Dxx(t)a2(Xt)

+ 2D(t)Dx(t)a(Xt)a
′(Xt) +

1

2
D2(t)a(Xt)a

′′(Xt)

)
.

Differentiating the Black and Scholes PDE
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Fi,t(t, x) + rxFi,x(t, x) +
1

2
a(x)Fi,xx(t, x) = rFi(t, x)

with respect to x yields

(28) Fi,tx(t, x) +

(
rx+

1

2
a′(x)

)
Fi,xx(t, x) +

1

2
a(x)Fi,xxx(t, x) = 0 .

Using (28), we have that

(29) Dt(t) +

(
rXt +

1

2
a′(Xt)

)
Dx(t) +

1

2
a(Xt)Dxx(t) = 0 .

This leaves us with the drift term

f1,t(t) + rXtf1,x(t) +
1

2
a(Xt)f1,xx(t) = e−2rt

(
D2
x(t)a2(Xt) − 2rD2(t)a(Xt)

+ rXtD
2(t)a′(Xt) +

1

2
D2(t)a(Xt)a

′′(Xt) +D(t)Dx(t)a(Xt)a
′(Xt)

)
.

Thus we get the following decomposition:

(30)

E[R2
Γ(n)] = E

[∫ T1

0

∫ t

ϕn(t)
e−2rtD2

x(s)a2(Xs)dsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)
e−2rtD2(s)h1(Xt)dsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)
e−2rtD(s)Dx(s)a(Xs)a

′(Xs)dsdt

]
,

where h1(x) = −2ra(x) + rxa′(x) + a(x)a′′(x)/2.
In the next step the first term will be decomposed once more. The first term is given by

E

[∫ T1

0

∫ t

ϕn(t)
e−2rsD2

x(s)a2(Xs)dsdt

]

= E

[∫ T1

0

∫ t

ϕn(t)
e−2rs

(
F1,xx(s)

F2,xx(s)
− F1,xx(ϕn(s))

F2,xx(ϕn(s))

)2

F 2
1,xx(s)a2(Xs) ds dt

]
.

Let

f2(t) = e−2rtD2
x(t)a2(Xt) ,

and apply Itô’s lemma between ϕn(s) and s. The derivatives of f2 are given by

f2,t(t) = e−2rt(2Dx(t)Dtx(t)a2(Xt) − 2rD2
x(t)a2(Xt)) ,

f2,x(t) = e−2rt(2Dx(t)Dxx(t)a2(Xt) + 2D2
x(t)a(Xt)a

′(Xt)) ,
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and
f2,xx(t) = e−2rt

(
2D2

xx(t)a2(Xt) + 2Dx(t)Dxxx(t)a2(Xt) + 2D2
x(t)(a′(Xt))

2

+ 8Dx(t)Dxx(t)a(Xt)a
′(Xt) + 2D2

x(t)a(Xt)a
′′(Xt)

)
.

Hence, the drift term is given by

f2,t(t) + rXtf2,x(t) +
1

2
a(Xt)f2,xx(t)

= e−2rt
(
2Dx(t)Dtx(t)a(Xt) − 2rD2

x(t)a2(Xt)

+ 2rXtDx(t)Dxx(t)a2(Xt) + 2rXtD
2
x(t)a(Xt)a

′(Xt)

+D2
x(t)a2(Xt)a

′′(Xt) + 4Dx(t)Dxx(t)a2(Xt)a
′(Xt)

+Dx(t)Dxxx(t)a3(Xt) + 2D2
xx(t)a2(Xt) + 2D2

x(t)(a′(Xt))
2
)
.

Differentiating (28) with respect to x, we have that

Fi,txx(t) +

(
r +

1

2
a′′(x)

)
Fi,xx(t) +

(
rx+ a′(x)

)
Fi,xxx(t) +

1

2
a(Xt)Fi,xxxx(t) = 0 ,

and, consequently,

(31) Dtx(t) +

(
r +

1

2
a′′(Xt)

)
Dx(t) +

(
rXt + a′(Xt)

)
Dxx(t) +

1

2
a(Xt)Dxxx(t) = 0 .

Equation (31) yields

f2,t(t) + rXtf2,x(t) +
1

2
σ2(Xt)X

2
t f2,xx(t)

= e−2rt
(
D2
xx(t)a3(Xt) − 4rD2

x(t)a2(Xt) + 2rXtD
2
x(t)a′(Xt)

+D2
x(t)a(Xt)a

2
x(Xt) + 2Dx(t)Dxx(t)a2(Xt)a

′(Xt)
)
,

and

E[R2
Γ(n)] = E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
e−2ruD2

xx(u)a3(Xu)dudsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
e−2ruD2

x(u)h2(Xu)dudsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
e−2ru2Dx(u)Dxx(u)a2(Xu)a′(Xu)dudsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)
e−2rsD2(s)h1(Xs)dsdt

]

+ E

[∫ T1

0

∫ t

ϕn(t)
e−2rsD(s)Dx(s)a(Xs)a

′(Xs)dsdt

]
,
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where h2(x) = a(x)(−4ra(x) + 2rxa′(x) + (a′(x)2)). Furthermore, we have that

D2
xx(t) =

(
F1,xxx(t) − F2,xxx(t)

F1,xx(ϕn(t))

F2,xx(ϕn(t))

)2

= F 2
1,xxx(t) − 2F1,xxx(t)F2,xxx(t)

F1,xx(ϕn(t))

F2,xx(ϕn(t))
+ F 2

2,xxx

F 2
2,xx(ϕn(t))

F 2
1,xx(ϕn(t))

,

which completes the proof.
In order to show that the integrals are of the right order in the proof of Lemma A.5, we

will use the following lemma, which is an extension of Lemma 4 of [10].
Lemma A.4. Let g : [0, T ] 
→ R be a measurable, bounded, and continuous function, and let

a ∈ (1, 5/2). Then

∫ T

0

∫ u

ϕn(u)

∫ t

ϕn(t)

g(s)

(T − s)a
ds dt du = Ca g(T )

(
T

n

)3−a
+ o

(
1

n3−a

)
,

where

Ca =

∞∑
j=1

∫ 1

0

∫ x

0

∫ w

0

1

(j − v)a
dv dw dx .

Proof. Let ε = T/n; then we have that

∫ T

0

∫ u

ϕn(u)

∫ t

ϕn(t)

g(s)

(T − s)a
ds dt du =

n−1∑
k=0

∫ ε(k+1)

εk

∫ u

εk

∫ t

εk

g(s)

(T − s)a
ds dt du

=

∣∣∣∣v =
s− εk

ε

∣∣∣∣ =
n−1∑
k=0

∫ ε(k+1)

εk

∫ u

εk

∫ t−εk
ε

0

g(ε(v + k))

(T − ε(v + k))a
ε dv dt du

=

∣∣∣∣w =
t− εk

ε

∣∣∣∣ =

n−1∑
k=0

∫ ε(k+1)

εk

∫ u−εk
ε

0

∫ w

0

g(ε(v + k))

(T − ε(x+ k))a
ε2 dv dw du

=

∣∣∣∣x =
u− εk

ε

∣∣∣∣ =

n−1∑
k=0

∫ 1

0

∫ x

0

∫ w

0

g(ε(v + k))

(T − ε(v + k))a
ε3 dv dw dx

=

n−1∑
k=0

∫ 1

0

∫ x

0

∫ w

0

g
(
T
n (v + k)

)(
T
n (n− (v + k))

)a (Tn
)3

dv dw dx

= |j = n− k| =

(
T

n

)3−a n∑
j=1

∫ 1

0

∫ x

0

∫ w

0

g
(
T − T j−v

n

)
(j − v)a

dv dw dx .

Since g is continuous, for every ε > 0 there exists a δ0 such that |g(T ) − g(T − δ)| < ε for
all δ ≤ δ0. For all n > �T/δ� there exist j0(n) > 0 such that Tj/n ≤ δ for all j ≤ j0(n) and
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76 MATS BRODÉN AND MAGNUS WIKTORSSON

Tj/n > δ for all j > j0(n). Now we have using that g is bounded, say by C,

n∑
j=1

∫ 1

0

∫ x

0

∫ w

0

∣∣∣g(T ) − g
(
T − T j−v

n

)∣∣∣
(j − v)a

dv dw dx

=

j0(n)∑
j=1

∫ 1

0

∫ x

0

∫ w

0

∣∣∣g(T ) − g
(
T − T j−v

n

)∣∣∣
(j − v)a

dv dw dx

+
n∑

j=j0(n)+1

∫ 1

0

∫ x

0

∫ w

0

∣∣∣g(T ) − g
(
T − T j−v

n

)∣∣∣
(j − v)a

dv dw dx

≤ ε

j0(n)∑
j=1

∫ 1

0

∫ x

0

∫ w

0

1

(j − v)a
dv dw dx+

2CT a

(nδ − T )a
n .

Since ε can be made arbitrarily small, we have shown that

(
T

n

)3−a n∑
j=1

∫ 1

0

∫ x

0

∫ w

0

g
(
T − j−v

n

)
(j − v)a

dv dw dx

=

(
T

n

)3−a
g(T )

n∑
j=1

∫ 1

0

∫ x

0

∫ w

0

1

(j − v)a
dv dw dx+ o

(
1

n3−a

)
.

Finally, we have that

(
T

n

)3−a n∑
j=1

∫ 1

0

∫ x

0

∫ w

0

g
(
T − j−v

n

)
(j − v)a

dv dw dx

=

(
T

n

)3−a
g(T )

∞∑
j=1

∫ 1

0

∫ x

0

∫ w

0

1

(j − v)a
dv dw dx+ o

(
1

n3−a

)
,

which is the desired result, and thus the lemma is proved.
Lemma A.5. Assume that H1–H3 hold; then

Ai(n) ≤ O

(
1

n
13
8

)
for i ∈ {2, 3, 4, 5, 6, 7}.

Proof. Recall that C denotes a bounded constant whose value may change between the
lines. Also, in the calculations below we will use that exp(−2rt) ≤ 1, without referring to this
fact.

Term A2. Inequalities (6) and (20), the Cauchy–Bunyakovskii inequality, and Lemma A.4
with a = 5/4 yield

|A2(n)| ≤ C

∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)

1

(T1 − u)
5
4

duds dt ≤ O

(
1

n
7
4

)
.
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Term A3. Inequalities (6) and (20) together with Lemma A.4 with a = 5/4 yield

|A3(n)| ≤ C

∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)

1

(T1 − u)
duds dt

≤ C

∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)

1

(T1 − u)
5
4

duds dt ≤ O

(
1

n
7
4

)
,

where C may change between the lines.
Term A4. Taking absolute values yields

|A4(n)| ≤
∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
E[D2

x(u)h2(Xu)]dudsdt .

There is a constant C such that |h2(x)| ≤ Cx4 (by the boundedness assumption of σ̃ and σ̃′).
Using (5) and (6), we have that X4(t)D2

x(t) ≤ C/(T1 − t). Now, in the same way as for term

A3, we get that |A4(n)| ≤ O(1/n
7
4 ).

Term A5. Taking absolute values yields

|A5(n)| ≤ E

[∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)
2|Dx(u)Dxx(u)|a2(Xu)a′(Xu) duds dt

]
.

Furthermore, we have that

|Dx(t)Dxx(t)| ≤ |F1,xxx(t)|
(
|F1,xx(t)| +

∣∣∣∣∣F2,xx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))

∣∣∣∣∣
)

+

∣∣∣∣∣F2,xxx(t)
F1,xx(ϕn(t))

F2,xx(ϕn(t))

∣∣∣∣∣(|F1,xx(t)| + |F2,xx(t)|) ,

where the first term is the leading one. Using that there is a constant C such that |a2(x)a′(x)| ≤
C|x|5, the Cauchy–Bunyakovskii inequality, and inequalities (6) and (20), together with
Lemma A.4 with a = 5/4, we have that

|A5(n)| ≤ C

∫ T1

0

∫ t

ϕn(t)

∫ s

ϕn(s)

1

(T1 − u)
5
4

duds dt ≤ O

(
1

n
7
4

)
.

Term A6. Recall that

A6(n) = E

[∫ T1

0

∫ t

ϕn(t)
D2(s)h1(X(s)) ds dt

]
.

Using Itô’s formula and (29) on D2(s)h1(X(s)), we have that the leading term of A6 is of the

form
∫ T1
0

∫ t
ϕn(t)

∫ s
ϕn(s)

E[D2
x(u)X4

u]duds dt. Thus we are in the same situation as for Term A4.

Using the same techniques as for A4, we have that |A6(n)| ≤ O(1/n
7
4 ). The assumption that
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σ̃(4) is bounded (assumption H2) is used for one of the lower order terms in the expansion
of A6.

Term A7. Consider the decomposition (30). From the calculations of the Terms A2–A5

and inequality (20) we have that E[D2
x(t)X4

t ] ≤ C/(T − t)3/2, and from the calculations of
Term A6 we have that E[D2(t)X2

t ] ≤ C/(T − t)5/4. The Cauchy–Bunyakovskii inequality
gives us that E[D(t)Dx(t)a(Xt)a

′(Xt)] ≤ C/(T − t)11/8, which together with Lemma A.4

yields |A4(n)| ≤ O(1/n
13
8 ).
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Convergence of Price and Sensitivities in Carr’s Randomization Approximation
Globally and Near Barrier∗

Sergei Levendorskĭı†

Abstract. Barrier options under wide classes of Lévy processes with exponentially decaying jump densities,
including the variance gamma model, KoBoL and CGMY models, normal inverse Gaussian processes,
and β-class, are studied. The leading term of asymptotics of the option price and the leading term
of asymptotics in Carr’s randomization approximation to the price are calculated as the price of
the underlying approaches the barrier. We prove that the order of asymptotics is the same in
both cases and that the asymptotic coefficient in the asymptotic formula for Carr’s randomization
approximation converges to the asymptotic coefficient for the price as the number of time steps
N → +∞. Also, we justify Richardson extrapolation of arbitrary order. Similar results are derived
for sensitivities and the leading terms of their asymptotics in Carr’s randomization approximation.
The convergence of prices and sensitivities is proved in appropriate weighted Hölder spaces.

Key words. Greeks, barrier options, first-touch digitals, Lévy processes, Carr’s randomization, KoBoL pro-
cesses, CGMY model, normal inverse Gaussian processes, variance gamma processes, β-class, Wiener–
Hopf factorization, asymptotics

AMS subject classifications. 91G20, 91G60, 65T50, 60K99

DOI. 10.1137/100788331

1. Introduction.

1.1. Carr’s randomization. In [22], Carr and Faguet applied a time discretization tech-
nique known as the “analytical method of lines” to pricing a finite-lived American option. This
method reduces the pricing problem for the finite-lived option with a sequence of pricing prob-
lems for perpetual American options. The latter problems are easier to solve than the former,
so that, as a result, an efficient numerical pricing procedure for finite-lived American options
was developed. In [20], Carr found a conceptual interpretation of this method in the language
of probability theory and christened it “Canadization” (or “maturity randomization”); we
prefer the term “Carr’s randomization.”

Briefly speaking, Carr’s idea was to replace a deterministic maturity date T of an American
option on a given stock S = {St}t≥0 with a sum, T̃ = T̃1+· · ·+T̃N , of exponentially distributed
random maturity dates that are independent of each other and of the process S, such that
each T̃j has mean T/N . Therefore, T̃ has mean T and variance T 2/N . As N → ∞, the
variance of T̃ approaches 0, while the mean remains fixed. Carr’s insight was that the price of
the option with random maturity T̃ should approach the price of the option with deterministic
maturity T as N → ∞.

∗Received by the editors March 11, 2010; accepted for publication (in revised form) October 24, 2010; published
electronically January 20, 2011.
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The convergence as N → ∞ of the approximation scheme described above was proved
fully in [6] for American options in the classical Black–Scholes model, along with results for
more general classes of models under certain additional assumptions. (We recall that Carr’s
randomization procedure can be formulated for American options in arbitrary Lévy-driven
models (see, e.g., [15]) and Markov models [6].)

1.2. Barrier options. Carr’s randomization method can also be applied to barrier options;
it was already used to design fast and accurate pricing procedures for single and double barrier
options under various classes of Lévy processes in a number of works [31, 10, 11, 12, 8]. A
formal convergence proof for these procedures was derived in [7]. However, the proof in [7]
cannot justify the claim made in [31, 10, 11] that Carr’s randomization method gives more
accurate approximation to prices near the barrier than many other methods. The aim of this
paper is to supplement [7] and prove that, for wide classes of Lévy processes, the leading term
of asymptotics of the price of a barrier option in Carr’s randomization approximation tends
to the leading term of asymptotics of the price of the barrier option as N → ∞. We prove
similar results for sensitivities as well.

These results are important because qualitatively different behavior of prices of barrier
options and first-touch digitals near the barrier, in different Lévy models, can be used to
identify the type of underlying process. In applications to real financial markets, the prices
are calculated using an approximate numerical method. Therefore, it is important to know
that the method used reproduces the prices near the barrier accurately. The aim of this paper
is to provide a theoretical background for Carr’s randomization approximation as a reliable
tool for pricing barrier options near the barrier. At the same time, there are fundamental
reasons for many other numerical methods to produce a different kind of price behavior near
the boundary.

The problem of pricing and hedging barrier options has attracted much attention in recent
years, from both the theoretical finance side and the practitioners’ side. For instance, a rather
comprehensive review of the 1965–1995 literature on the pricing of barrier options given in [19]
lists about 30 articles, while hundreds of new works devoted to the same topic have appeared
since 1995. In the framework of the Black–Scholes market model [5], an explicit formula for the
price of a barrier call option was obtained by Merton [40]. Many subsequent works on barrier
and first-touch digital options also remained in the Black–Scholes framework (the interested
reader may wish to consult, for example, the bibliography lists in the papers [19, 18]).

However, it is a known fact that the Black–Scholes model yields rather inaccurate prices
of barrier options near expiry, especially when the spot price S is close to the barrier. The
reason is that the Black–Scholes value function VBS = Vbarr,BS(T, S), where T is time to
maturity, for (say) a down-and-out barrier put option is continuously differentiable w.r.t. S
within the closed interval [H,+∞), whereas, for many classes of Lévy processes, the delta is
unbounded as the underlying tends to the barrier. The dashed line in Figure 1 is an example
of such a behavior if the underlying process is Brownian motion: we can clearly see how the
delta, ∂VBS/∂S, of the option has a finite limit as S approaches H from the right.

As a result, the relative errors of prices of barrier options computed using the Black–Scholes
model versus more realistic stock pricing models can sometimes reach several dozen percent
near the barrier. We refer the reader to [31], where this phenomenon was demonstrated using
an example of the normal inverse Gaussian (NIG) model.
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Figure 1. The value function of a down-and-out barrier put option in the NIG and Black–Scholes models.
The strike price is K = 3500, the barrier is H = 2100, the time to maturity is T = 1 year, the riskless rate
is 3%, and the underlying stock pays no dividends. (The example is taken from [28].) Solid line: the graph
of the value function calculated assuming that under a risk-neutral measure chosen by the market the log-price
process {Xt = lnSt} of the underlying is an NIG process with parameters α = 8.858, β = −5.808, δ = 0.174.
Dashed line: same as above, except that X is assumed to be a Brownian motion with volatility σ ≈ 0.2136,
chosen so that the second (instantaneous) moment, σ2, of X = {Xt} is the same as the second (instantaneous)
moment, δα2(α2 − β2)−3/2, of the NIG process in the first example.

Similar problems arise if the underlying pure jump Lévy process (or a Lévy process with
insignificant jump component) is approximated by a jump diffusion with a tangible diffusion
component. The most convenient jump-diffusion models are the double-exponential jump-
diffusion model [30, 35, 36] and its natural generalization constructed in [33] to price American
options and later labelled the hyperexponential jump-diffusion (HEJD) model by Jeannin and
Pistorius [28], who derived explicit formulas for the Laplace transforms w.r.t. the time variable
of the value functions, deltas, gammas, and thetas of the barrier options. They further showed
that, approximating other Lévy-driven models (such as variance gamma (VG) [39, 38, 37] and
NIG) by suitable hyperexponential models, one can obtain accurate approximations to the
prices and sensitivities of barrier and first-touch digital options in the regions not too close to
the barrier. For a more recent and more detailed approach to an approximation technique of
a similar nature, and for its application to the pricing of double barrier options, we refer the
reader to [26, 21], respectively.

Nevertheless, hyperexponential models (with nonzero Gaussian component) also have the
disadvantage that the value functions of barrier options in these models are continuously
differentiable up to the barrier. In other words, qualitatively these functions exhibit behavior
similar to that of the dashed line in Figure 1, whereas value functions obtained from more
realistic models of stock prices, such as NIG and KoBoL, exhibit behavior similar to that of
the solid line in Figure 1.

Other methods of pricing barrier options that use models with a tangible diffusion com-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

82 SERGEI LEVENDORSKĬI

ponent to approximate models with zero diffusion component (such as the method of Cont
and Voltchkova [25]) suffer from the same problem (see [34, 31] for an analysis of the errors
that result from applying these methods). This issue is important because empirical studies
of financial markets (see, e.g., [23]) show that, fairly often, the dynamics of the underlying
has zero diffusion component.

1.3. Main results. In the paper, we derive the leading terms of asymptotics of the price of
a barrier option and the corresponding Carr’s randomization approximation, and we prove that
the asymptotic coefficient in the latter converges to the asymptotic coefficient of the former
as N → ∞ for wide classes of options including puts, calls, and digital options, as well as wide
classes of Lévy processes, which contain the processes of the extended Koponen family [13]1

(with the CGMY model [23] as a special case), NIG processes [2] and the generalization of this
family (normal tempered stable processes [3]), the VG model introduced to finance by Madan
and coauthors [39, 38, 37], and Kuznetsov’s β-class [32]. However, in the case of VG model,
we were able to calculate the leading term of asymptotics only in the case of drift pointing
from the boundary. The same holds for β-class, in cases when the Lévy density has the same
leading term of asymptotics at the origin as in the VG model. Hence, in these cases, we are
able to prove the convergence of the asymptotic coefficient only if the drift points from the
barrier.

We also prove that, in all cases, the difference between the price and Carr’s randomiza-
tion approximation can be represented in the form

∑m
j=1 cj(T, x)N−j + O(N−m−1), for any

positive integer m, with the constant in the O-term depending on m,T, x. Similar results
can be obtained for sensitivities and their leading terms of asymptotics. This implies that
Richardson extrapolation of any order is justified provided Carr’s randomization approxima-
tions are calculated sufficiently accurately. We produce numerical results, which demonstrate
that Richardson extrapolation of different orders agree very well, and, therefore, Richardson
extrapolation of prices obtained with small numbers of time steps can be used to achieve very
good accuracy.

1.4. Organization of the paper. In section 2, we present the well-known formulas that
express the prices of barrier options in probabilistic terms, calculate the Laplace transforms
of these expressions w.r.t. time to maturity in terms of the expected present value (EPV)
operators under supremum and infimum processes,2 and write the formulas for the prices
using the inverse Laplace transform. In section 3, we derive similar general formulas for
Carr’s randomization approximation.

Main results for prices (formulas for the leading terms of asymptotics and convergence
theorems) are formulated in section 6.1 for a wide class of regular Lévy processes of exponen-
tial type (RLPEs) of order ν ∈ (1, 2] and for strongly regular Lévy processes of exponential
type (sRLPEs) of order ν ∈ [0+, 2]. The definitions of RLPEs and sRLPEs are given in sec-
tion 4, and necessary general formulas for the Wiener–Hopf factors are recalled in section 5.
In section 6, we derive explicit formulas for the Wiener–Hopf factors and crucial estimates
for the Wiener–Hopf factors, and we use these estimates to prove the convergence of Carr’s

1These are also known as KoBoL processes [15]; we adopt this terminology.
2Here we use the operator form of the Wiener–Hopf factorization method developed in [14, 15, 16, 34, 17]

with an important further development in [11].
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randomization approximation to the price in a Hölder norm and justify Richardson extrapola-
tion of arbitrary order. In section 7, we prove the convergence of the asymptotic coefficient of
Carr’s randomization approximation to the asymptotic coefficient of the price as the time step
vanishes and improve the characterization of the convergence of Carr’s randomization to the
price. Similar statements for sensitivities are formulated and proved in section 8. Numerical
examples are given in section 9; section 10 concludes. Technical proofs and necessary elements
of the theory of generalized functions are relegated to the appendices.

2. General formulas for barrier options.

2.1. Lévy-driven models. For an exposition of the general theory of Lévy processes and
their applications to pricing derivative securities, we refer the reader to [4, 42] and [15, 24, 43],
respectively. We recall that every Lévy process X = {Xt}t≥0 has the characteristic exponent,
which is a continuous function ψ : R → C satisfying ψ(0) = 0 and

E
[
eiξXt

]
= e−tψ(ξ) ∀ ξ ∈ R, t ≥ 0;

and, conversely, the law of a Lévy process is uniquely determined by its characteristic exponent
[42, Thm. 7.10]. Some examples of Lévy processes that are commonly used in empirical studies
of financial markets are listed in section 4.

We consider a model frictionless market consisting of a riskless bond and a stock, which
is modelled as an exponential Lévy process St = eXt , under a chosen equivalent martingale
measure (EMM) Q. The riskless rate r is constant. We remark that, in general, Q is not
unique. We assume that an EMM Q has been fixed once and for all, and all expectation
operators appearing in this text will be w.r.t. this measure. The characteristic exponent ψ
of X is also under this Q.

If the stock does not pay dividends, then St must be a martingale under Q. In terms of
the characteristic exponent of the log-price process {Xt}, the EMM condition can be written
as follows: r + ψ(−i) = 0, where we are implicitly assuming that ψ(ξ) admits the analytic
continuation into the closed strip −1 ≤ Im ξ ≤ 0 (if this is not the case, then E[St] = ∞ for all
t > 0, i.e., the process {St} cannot be priced; we exclude this situation from our consideration).
If the stock pays dividends at constant rate δ, then the EMM condition becomes r+ψ(−i) = δ.

2.2. Down-and-out options. We consider a down-and-out barrier contingent claim with
barrier H, expiry date T , and terminal payoff function G(x), which is a nonnegative mea-
surable function on R. If, at any time t ≤ T prior to expiry, the price, St = eXt , of the
underlying reaches or falls below H = eh, the claim expires worthless. Otherwise, at expiry,
the claim yields payoff equal to G(XT ). The payoff function is nonnegative and measurable.
Contingent claims of this type provide a common generalization of down-and-out barrier call
and put options. In particular, G(x) = (ex − K)+ (respectively, G(x) = (K − ex)+) for a
down-and-out barrier call (respectively, put) option, and G(x) = �[lnK,+∞)(x) (respectively,
G(x) = �(−∞,lnK](x)) for the digital call (respectively, put), with strike price K > H. To cal-
culate the leading term of asymptotics, we impose an additional regularity condition, which is
satisfied for down-and-out barrier (European) call and put options and digital down-and-out
options. Namely, the Fourier transform of the payoff function admits the bound

(2.1) |Ĝ(ξ)| ≤ C(1 + |ξ|)−1
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along any line Im ξ = ω, with the exception of a finite number of omegas (indeed, for puts
and calls, Ĝ(ξ) has two poles at ξ = 0,−i, and, for digitals, it has one pole at ξ = 0). The
results apply (and the proof simplifies) in the case of the digital no-touch option with G = �R.
Formally, we can satisfy (2.1) in this case as well using G(x) = �[lnK,+∞)(x) with K < H,
but this will unnecessarily complicate the proof. Finally, pricing the call option with K < H
reduces to pricing the digital no-touch option by the change of measure.

The time-0 value of the barrier option with payoff G(XT ) is given by

(2.2) V (T, x) = E
x
[
e−rTG(XT )�{τh>T}

]
,

where x is the current log-spot price of the underlying, h = lnH, and τh is the first entrance
time of the process {Xt}t≥0 into the interval (−∞, h].

As is well known, V̂ (q, x), the Laplace transform of V (T, x), can be calculated more
explicitly. Applying Fubini’s theorem, we obtain that V̂ (q, x) is the value function of the
perpetual stream G(Xt), which is terminated the first moment Xt reaches the barrier or falls
below it, the discounting factor being q + r:

V̂ (q, x) =

∫ +∞

0
e−qtEx

[
e−rtG(Xt)�{τh>t}

]
dt = E

x

[∫ τh

0
e−(q+r)tG(Xt)dt

]
.

Before giving a formula for the last expectation, let us introduce some notation. First, we
define the supremum process X and the infimum process X of X by

(2.3) X t = sup
0≤s≤t

Xs, X t = inf
0≤s≤t

Xs.

Given any q > 0, we let Tq ∼ Exp q denote an exponentially distributed random variable with
mean q−1, and we define operators E+

q and E−
q acting on a nonnegative measurable (or an

arbitrary bounded measurable) function f on R as follows:

(2.4) (E+
q f)(x) = E

x
[
f(XTq )

]
, (E−

q f)(x) = E
x
[
f(XTq)

]
,

where the notation E
x means that X, X, and X start at x. Writing explicitly the right-hand

sides (RHSs) in (2.4) as expectations of integrals

(E+
q f)(x) = E

x

[∫ +∞

0
qe−qtf(Xt)dt

]
,(2.5)

(E−
q f)(x) = E

x

[∫ +∞

0
qe−qtf(Xt)dt

]
,(2.6)

we obtain the interpretation of E±
q as the EPV operators, which calculate the EPV of the

stream, under the supremum and infimum processes. Note that the EPV operator Eqf(x) =
E
x
[
f(XTq )

]
under the initial process is the normalized resolvent.

Lemma 2.1. We have

(2.7) V̂ (q, x) = (q + r)−1
(E−
q+r�(h,+∞)E+

q+rG
)

(x).
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Equation (2.7) was derived in [15] for RLPEs (see section 4 for the definition) and in [11]
for any Lévy process.

It is evident from (2.5) and (2.6) that the EPV operators E±
q+r admit the analytic con-

tinuation into the open half-plane Re q > −r, which is uniformly bounded (as a family of
operators in L∞(R)) in each closed half-plane Re q + r ≥ σ > 0. Hence, V̂ (q, x) admits the
bound

(2.8) |V̂ (q, x)| ≤ Cσ|q + r|−1, Re q + r ≥ σ,

where Cσ depends on σ > 0 but not on q. Now, one can use the inverse Laplace transform
and calculate the value function of the barrier option. To simplify the result, we make the
change of variables q + r 	→ q:

(2.9) V (T, x) =
e−rT

2πi

∫
Re q=σ

eqT q−1
(E−
q �(h,+∞)E+

q G
)

(x)dq.

To prove that the RHS in (2.9) is continuous as a function of T > 0 and to derive the leading
term of asymptotics, we integrate by parts k times using eqT dq = T−1deqT :

(2.10) V (T, x) =
e−rT

2πi(−T )k

∫
Re q=σ

eqT∂kq
(
q−1E−

q �(h,+∞)E+
q G
)

(x)dq.

In section 6, we prove that if k is sufficiently large, then the integral in (2.10) converges
absolutely and uniformly w.r.t. T , and we calculate the leading term of asymptotics as x ↓ h.

3. Carr’s randomization for barrier options.

3.1. General formulas. We consider the simplest case of Carr’s randomization, which is
equivalent to the analytical method of lines. We divide the time interval [0, T ] into N intervals
of equal length. For the calculations below, it is convenient to use the opposite direction on
the time line, with T as the initial point. We set ts = T − sT/N , s = 0, 1, . . . , and denote by
V s(x) Carr’s randomization approximation to V (ts, x), the option price at time ts. For s = 0,
V 0(x) = G(x)�(h,+∞)(x) is known, and, for s = 0, 1, . . . , V s+1 are found by induction as

(3.1) V s+1(x) = E
x

[∫ τh

0
e−(r+N/T )t(N/T )V s(Xt)dt

]
,

where τh is the first entrance time by X into (−∞, h]. If X satisfies the (ACP) property
(absolute continuity of potential kernels (see [42]); all processes that we consider satisfy this
property), then it follows from [15, Thm. 2.12] that function V s+1 solves the stationary gen-
eralized Black–Scholes equation

(3.2)
V s(x) − V s+1(x)

T/N
+ (L− r)V s+1(x) = 0, x > h,

which is understood in the sense of the theory of generalized functions (the analytical method
of lines starts with time discretization of the nonstationary Black–Scholes equation, which
also gives (3.2)). Clearly, the boundary condition

(3.3) V s+1(x) = 0, x ≤ h,
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holds. Changing the measure if necessary, we can reduce to the case of a bounded G; then,
for all s and x,

(3.4) |V s(x)| ≤ (1 + rT/N)−s||G||∞.
For z ∈ C, define

V̂ (z, x) =
∞∑
s=0

zsV s+1(x),

notice that, on the strength of (3.4), V̂ (z, x) is analytic in the open disc |z| < erT/N , multiply
(3.2) and (3.3) by zs, and sum up; the result is the boundary problem

G(x) + (z − 1)V̂ (z, x)

(N/T )
+ (L− r)V̂ (z, x) = 0, x > h,(3.5)

V̂ (z, x) = 0, x ≤ h.(3.6)

We rewrite (3.5) as

(3.7) (r + (N/T )(1 − z) − L)V̂ (z, x) = (N/T )G(x), x > h,

and set q = r + (N/T )(1 − z). In [14, Thm. 4.4], it was proved for RLPEs that if q > 0
is sufficiently large so that q + Reψ(ξ) > 0 for ξ in the strip Im ξ ∈ (λ−, λ+), for some
λ− < 0 < λ+, and G is measurable and bounded, then a solution of the problem (3.7), (3.6) is
unique in the class of measurable bounded functions; if the order of the process is 2 (that is,
the diffusion component is nontrivial) or the process is of order ν < 1 with the drift pointing to
the barrier, then the uniqueness holds in the class of continuous bounded functions. Moreover,
it was proved that, for sufficiently large q > 0,

(3.8) V̂ (z, x) = (N/T )q−1E−
q �(h,+∞)E+

q G(x).

The RHS admits the analytic continuation into an open half-plane Re q > 0 and hence into
the disc |z| ≤ 1. The left-hand side (LHS) admits the analytic continuation into this disc as
well, and hence the equality (3.8) holds for z in this disc.

Since V̂ (z, x) is analytic in the disc |z| ≤ 1, we can recover

(3.9) V N (x) =
1

2πi

∫
|z|=1

z−N
(
N

T

)
q−1E−

q �(h,+∞)E+
q G(x)dz.

Change the variable z = 1 + T (r − q)/N , dz = −(T/N)dq, and denote by CN the contour
{q | |1 + (T/N)(r − q)| = 1}. Then

(3.10) V N (x) = − 1

2πi

∫
CN

(
1 +

T (r − q)

N

)−N
q−1E−

q �(h,+∞)E+
q G(x)dq.

We integrate by parts k (< N) times to get

V N (x) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k
(3.11)

×
∫
CN

(
1 +

T (r − q)

N

)k−N
∂kq
(
q−1E−

q �(h,+∞)E+
q

)
G(x)dq.
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3.2. Idea of the proofs of convergence. We compare the price of the barrier option given
by (2.9) and Carr’s randomization approximation (3.11). Denote by CN,σ the simple closed
contour, which coincides with CN in the open half-plane Re q > σ and with a segment of the
line Re q = σ in the closed half-plane Re q ≤ σ. Clearly, if σ is fixed and N is sufficiently
large, we can transform CN in (3.11) into CN,σ. Next, fix a positive integer k and ρ ∈ (0, 1/2),
and set CN,σ,ρ = {q | Re q = σ, |Im q| ≤ Nρ}. It follows from estimate (6.24), which we will
derive in section 6.4, that, as N → ∞,

V N (x) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k
(3.12)

×
∫
CN,σ,ρ

(
1 +

T (r − q)

N

)k−N
∂kq
(
q−1E−

q �(h,+∞)E+
q

)
G(x)dq + o(1),

where the segment CN,σ,ρ is passed down. Since ρ ∈ (0, 1/2), we have for |q| ≤ Nρ

(1 + T (r − q)/N)k−N = exp[(k −N) ln(1 + T (r − q)/N)] = e(q−r)T + o(1);

therefore, as N → ∞,

V N (x) =
Nk(N − k − 1)!

(N − 1)!
· e−rT

2πi(−T )k
(3.13)

×
∫ σ+iNρ

σ−iNρ

eqT∂kq
(
q−1E−

q �(h,+∞)E+
q

)
G(x)dq + o(1).

Using (6.24) once again, we pass to the limit in (3.13) and obtain that

(3.14) lim
N→∞

V N (x) =
e−rT

2πi(−T )k

∫
Re q=σ

eqT∂kq
(
q−1E−

q �(h,+∞)E+
q

)
G(x)dq.

The absolute convergence of the integral will be proved in section 6.5.
Rigorous proofs of the asymptotic formulas above and similar formulas for sensitivities

and the leading term of asymptotics require certain regularity conditions on the characteristic
exponent, which are formulated in section 4. In fact, asymptotic formulas of a simple form
are possible only if the characteristic exponent ψ(ξ) stabilizes to a positively homogeneous
function as ξ → ∞ in the domain of analyticity of ψ. This is the basis for the definitions
below. Luckily, the popular classes of Lévy processes satisfy this condition.

4. Regular Lévy processes of exponential type.

4.1. Definition. The main classes of processes used in the study of financial markets (see
the examples in the next subsection) enjoy the following property: there exist λ− < −1 < 0 <
λ+ such that the underlying Lévy process X is of exponential type (λ−, λ+). This means that
the characteristic exponent ψ(ξ) of X admits the analytic continuation into the open strip
Im ξ ∈ (λ−, λ+). Moreover, ψ(ξ) grows at most polynomially as Re ξ → ±∞ within every
closed strip Im ξ ∈ [ω−, ω+] ⊂ (λ−, λ+). For the behavior of the value function (especially near
the barrier) to be sufficiently regular, and for the leading term of the asymptotics of a simple
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form to exist, we need additional regularity conditions. In [15, Def. 3.2], such conditions
were formulated, and the resulting class of processes was called regular Lévy processes of
exponential type (RLPEs) in one dimension. Two definitions were given: in terms of the
properties of the Lévy measure and in terms of the Lévy exponent. Loosely speaking, the first
definition postulates that the Lévy measure behaves, asymptotically, as c±|x|−ν−1 as x→ ±0
and decays at least as fast as e−λ±x as x→ ∓∞. An almost equivalent definition in terms of
the characteristic exponent is as follows.

Definition 4.1. Let λ− < 0 < λ+, and let ν ∈ (0, 2]. We call X an RLPE (λ−, λ+) of order
ν if its characteristic exponent admits the analytic continuation in the strip Im ξ ∈ (λ−, λ+),
and, for some μ ∈ R, function ψ0(ξ) := ψ(ξ) + iμξ is asymptotically positively homogeneous
of order ν as Re ξ → ±∞ and ξ remains in any strip Im ξ ∈ [ω−, ω+] ⊂ (λ−, λ+):

(4.1) ψ0(ξ) = d0±|ξ|ν +O(|ξ|ν1),

where Re d0± > 0 and ν1 < ν. In addition, there exists ν2 < ν such that

(4.2) (ψ0)′(ξ) = O(|ξ|ν2)

as ξ → ∞ in the strip.

The following class of strongly regular Lévy processes of exponential type (sRLPEs), which
is slightly less general than the class of RLPEs, was introduced in [9] to study the asymptotics
of the prices of barrier options and first-touch digitals near the barrier.

Definition 4.2. Let λ− < 0 < λ+, and let ν ∈ (0, 2]. We call X an sRLPE (λ−, λ+) of
order ν if the following conditions hold:

(i) the characteristic exponent ψ admits the analytic continuation into the complex plane
with two cuts i(−∞, λ−] and i[λ+,+∞);

(ii) for z < λ− and z > λ+, the limits ψ(iz ± 0) exist;
(iii) there exists μ ∈ R such that the function ψ0(ξ) := ψ(ξ) + iμξ is asymptotically positively

homogeneous of order ν as ξ → ∞ in the complex plane with these cuts;
(iv) to be more specific, there exist ν1 < ν and d0±, Re d0± > 0, such that, as ρ→ +∞,

ψ0(ρeiϕ) = d0+e
iϕνρν +O(ρν1) ∀ ϕ ∈ [0, π/2 − 0];(4.3)

ψ0(ρeiϕ) = d0−e
i(−π+ϕ)νρν +O(ρν1) ∀ ϕ ∈ [π/2 + 0, π];(4.4)

ψ0(ρeiϕ) = d0−e
i(π+ϕ)νρν +O(ρν1) ∀ ϕ ∈ [−π,−π/2 − 0];(4.5)

ψ0(ρeiϕ) = d0+e
iϕνρν +O(ρν1) ∀ ϕ ∈ [−π/2 + 0, 0].(4.6)

The notation ϕ = π/2 ± 0 means that η = ρeiϕ is of the form η = iz ∓ 0, where z > 0,
and ϕ = −π/2 ± 0 means that η = ρeiϕ is of the form η = iz ± 0, where z < 0.

4.2. Model classes. It is straightforward to verify that the following popular classes of
Lévy processes are sRLPEs:

(1) A Brownian motion (used in the classical Black–Scholes model [5]) is an sRLPE of

order 2 and exponential type (−∞,∞). Its characteristic exponent is given by σ2

2 ξ
2 − iμξ,

where σ > 0 is the volatility and μ ∈ R is the drift of the process. We have d0± = σ2/2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF CARR’S RANDOMIZATION APPROXIMATION 89

(2) Kou’s model [30], its generalization introduced in [33] and later called the hyperexpo-
nential jump-diffusion (HEJD) model in [28], and any Lévy process with the rational charac-
teristic exponent and nontrivial Brownian motion component (in particular, Lévy processes
of phase type [1]) are sRLPEs of order 2.

(3) Merton’s model is an sRLPE of order 2.
(4) Lévy processes of the extended Koponen family (generalizing the class of processes

introduced by Koponen [29]) were defined by Boyarchenko and Levendorskĭı [13]. Later a
subfamily thereof was used in [23] under the name “CGMY model,” and the full family was
used in [15] under the name “KoBoL processes.” We use the latter term. The Lévy density
of a KoBoL process has the form

(4.7) F (dx) = c+(−λ−)x−ν
−−1eλ−x�(0,+∞)dx+ c−λ+x−ν

+−1eλ+x�(−∞,0)dx,

where c± ≥ 0, ν± < 2, and λ− < 0 < λ+; see [13, 15]. In the special case where c+ = c = c−
and ν± = ν = 0, 1 (which corresponds to the CGMY model), the characteristic function of
the process is given by

(4.8) ψ(ξ) = −iμξ + c · Γ(−ν) · [(−λ−)ν − (−λ− − iξ)ν + λν+ − (λ+ + iξ)ν
]
.

(5) Variance gamma (VG) processes were first used in empirical studies of financial markets
by Madan and collaborators [39, 38, 37]. The characteristic exponent of a VG process is of
the form3

(4.9) ψ(ξ) = −iμξ + c+[ln(−λ− − iξ) − ln(−λ−)] + c−[ln(λ+ + iξ) − ln(λ+)],

where λ− < 0 < λ+, c > 0, and μ ∈ R. A VG process with these parameters is also a Lévy
process of exponential type (λ−, λ+); but it is not an sRLPE because the jump term in (4.9)
increases at infinity as a logarithm. We will call the VG model an sRLPE of order ν = 0+.

(6) Normal inverse Gaussian (NIG) processes were introduced by Barndorff-Nielsen [2].
A natural generalization of NIG was constructed in [3] and called a normal tempered stable
(NTS) Lévy process. The characteristic exponent of an NTS process is of the form

(4.10) ψ(ξ) = −iμξ + δ ·
[(
α2 − (β + iξ)2

)ν/2 − (α2 − β2)ν/2
]
,

where ν ∈ (0, 2), α > |β| > 0, δ > 0, and μ ∈ R. An NTS process with these parameters has
exponential type (β − α, β + α), order ν, and d0± = δ. NIG is an NTS process of order ν = 1.

(7) The β-family of Lévy processes constructed in [32] is defined by the Lévy density

(4.11) F (dx) = c1
e−α1β1x

(1 − e−β1x)γ1
�(0,+∞)(x) + c2

eα2β2x

(1 − eβ2x)γ2
�(−∞,0)(x),

where cj ≥ 0, αj , βj > 0, and γj ∈ (0, 3). For any positive integer N , F (dx) can be repre-
sented as a sum of a finite number of densities of the form (4.7), with decreasing ν±, and

3What we present is not the most common way of writing the formula. Rather, we chose an expression that
is equivalent to the standard one and makes the analogy with (4.8) transparent.
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not necessarily positive c±, plus a density of the form pN (x)dx, where, for each s = 0, 1, . . . ,

p
(s)
N (x) = |x|N−s as x → 0 and exponentially decays as x → +∞. Therefore, the straight-

forward calculations (the same as those used to derive the formulas for the characteristic
exponent of the processes of the extended Koponen family in [13, 15]) show that the char-
acteristic exponent of the β model and its derivatives admit the same estimates as in the
(general) KoBoL model with the steepness parameters and orders for positive and negative
jumps λ+ = α2β2, ν+ = 1 − γ2, λ− = −α1β1, ν− = 1 − γ1.

Hyperbolic processes are sRLPEs of order 1 (see, e.g., [15]), but the verification is not so
easy.

4.3. Important constants characterizing an sRLPE. For real ξ, ψ0(ξ) = ψ0(−ξ); hence,

d0− = d0+. We consider the following cases:
(i) if ν ∈ (1, 2] or ν ∈ (0, 1) and μ = 0, set d± = d0±, d = |d±|, γ± = arg d±, ν̄ = ν,

(4.12) ν± = ν/2 − γ±/π;

(ii) if ν = 1, set d± = ∓iμ+ d0±, d = |d±|, γ± = arg d±, ν± = 1/2 − γ±/π, ν̄ = 1;
(iii) if ν ∈ [0+, 1) and μ > 0, set d± = ∓iμ, ν+ = 1, ν− = 0, ν̄ = 1;
(iv) if ν ∈ [0+, 1) and μ < 0, set d± = ∓iμ, ν+ = 0, ν− = 1, ν̄ = 1.
Notice that, in all cases, ν+ + ν− = ν̄, and

(4.13) ν± = ν̄/2 − γ±/π.

Furthermore, ν± ∈ (0, ν) if ν ≥ 1; if ν ∈ (0, 1) and μ = 0, then we require that γ := |γ±| be
in [0, πν/2); then ν± ∈ (0, 1) as well.

As we will see, constants ν± characterize the rate of decay of the Wiener–Hopf factors at
infinity and, as a consequence, the rate of decay of the price of the barrier option near the
barrier as well.

5. Wiener–Hopf factorization.

5.1. Three forms of the Wiener–Hopf factorization. Let q > 0, and let Tq be an expo-
nential random variable of mean 1/q, independent of X. The proof of (2.7) in [11] is very
close to the proof of the Wiener–Hopf factorization formula in the form used in probability
(see, e.g., [41, p. 98]):

(5.1) E
[
eXTq

]
= E

[
eXTq

] · E[eXTq
]
.

The operator form of the Wiener–Hopf factorization

(5.2) Eq = E−
q E+

q = E+
q E−

q

can also be proved similarly to (5.1). Finally, using the definition

(5.3) φ+q (ξ) = E
[
eiξXTq

]
, φ−q (ξ) = E

[
e
iξXTq

]
of the Wiener–Hopf factors and noticing that

(5.4) E
(
eiXTq ξ

)
=

q

q + ψ(ξ)
,
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we can write (5.1) in the form

(5.5)
q

q + ψ(ξ)
= φ+q (ξ)φ−q (ξ).

Equation (5.5) is a special case of the factorization of functions on the real line into a product
of two functions analytic in the upper and lower open half-planes and admitting the continuous
continuation up to the real line. This is the initial factorization formula discovered by Wiener
and Hopf [44] in 1931 for functions of a much more general form than in the LHS of (5.5).

5.2. Realization of the EPV operators using the Fourier transform. Decomposing a
sufficiently regular function f(x) as a Fourier integral and using (5.4), we obtain

(5.6) (Eqf)(x) =
1

2π

∫ ∞

−∞
eiξx

qf̂(ξ)

q + ψ(ξ)
dξ,

where f̂(ξ) = Fx→ξf is the Fourier transform of f . Identity (5.6) can be justified under fairly
weak regularity assumptions; we refer the reader to [15, sect. 2.3.3] for the details (with the
notation of op. cit., we have Eq = qU q, where U q is referred to as the resolvent operator, or
the q-potential operator, of X).

Similarly, it follows from (2.5)–(2.6) and (5.3) that

(5.7) (E±
q f)(x) =

1

2π

∫ ∞

−∞
eiξxφ±q (ξ)f̂(ξ) dξ.

We conclude that Eq and E±
q are pseudodifferential operators (PDOs) with the symbols

q/(q + ψ(ξ)) and φ±q (ξ), respectively.
To realize PDOs E±

q , one needs explicit analytical expressions for the Wiener–Hopf factors
φ±(ξ). There exist general formulas [42, eqs. (4.5), (4.6)] for any Lévy process, but they are
inefficient for both theoretical study and computational purposes.

Under a certain regularity assumption on the characteristic exponent ψ(ξ) of X (see, e.g.,
[15, Thm. 3.2]), Boyarchenko and Levendorskĭı obtained integral formulas for the Wiener–Hopf
factors φ±q (ξ), which are efficient for computational purposes. This assumption holds in all
model examples of Lévy processes of exponential type, including those listed in section 4.2, so
we prefer not to state it to save space. To state these formulas, recall that (see [15, eq. (3.40)])
if the characteristic exponent is analytic in a strip (λ−, λ+), then, for any q > 0, there exist
ω− < 0 < ω+ and δ > 0 such that

(5.8) Re (q + ψ(ξ)) ≥ δ, Im ξ ∈ [ω−, ω+].

The formulas [15, eqs. (3.58), (3.60)] are as follows: for ±Im ξ > ±ω∓,

(5.9) φ±q (ξ) = exp

[
± 1

2πi

∫
Im η=ω∓

ξ · ln(q + ψ(η))

η(ξ − η)
dη

]
.

Note that one can take any ω− ∈ (λ−, 0) and ω+ ∈ (0, λ+) and, after that, choose a sufficiently
large q > 0 so that (5.8) holds. Next, to apply the inverse Laplace transform w.r.t. q, we need
to consider the analytic continuation w.r.t. q as well. In addition, we need to obtain estimates
for φ±q (ξ) and, whenever possible, calculate the leading term of asymptotics of φ±q (ξ) as ξ → ∞.
It follows from (5.8) that if σ > 0 is sufficiently large, then the RHS in (5.9) defines the analytic
continuation into the half-plane Im q ≥ σ.
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6. Convergence of Carr’s randomization approximation.

6.1. Main results. We consider a down-and-out barrier option with the payoff satisfying
(2.1), fixed time to maturity T , and barrier at x = 0.

For s ≥ 0, denote by Cs([0+,∞)) the space of functions f defined on (0,+∞), which
admit continuations lf ∈ Cs(R), with the norm ||f ||s = inf ||lf ||s, and let ν± be the constants
defined in section 4.3.

Theorem 6.1. Let X be either an RLPE of order ν ∈ (1, 2] or an sRLPE of order ν ∈ (0, 1]
or an sRLPE of order 0+ with the drift pointing from the boundary.

Then there exists s > 0 such that Carr’s randomization approximation V N (·) converges
to the option price V (T, ·) in the topology of the Hölder space Cν−([0+,∞)).

Theorem 6.2. For any integer m > 0, there exist functions cj(m,T, ·) ∈ Cν−([0+,∞)),
j = 1, 2, . . . ,m, which are independent of N , such that, as N → ∞,

(6.1) V N (x) = V (T, x) +

m∑
j=1

cj(m,T, x)N−j +O(N−m−1),

where the O-term is understood in the sense of the Cν−([0+,∞))-norm.
We conclude that if, for large N , and several multiples of N , say, Nj = njN , j =

1, 2, . . . ,m, Carr’s randomization approximations V Nj(x) are calculated, then we can use the
extrapolation formula of order m in 1/N -line to calculate W (0) := V (T, x) given W (1/Nj) :=
V Nj (x), j = 1, 2, . . . ,m. In particular, the linear extrapolation gives V (T, x) = 2V 2N (x) −
V N (x), and the quadratic extrapolation used in [20] is V (T, x) = 0.5V N (x) − 4V 2N (x) +
4.5V 3N (x). The next two versions of quadratic extrapolation V (T, x) = (1/3)V N (x) −
2V 2N (x) + (8/3)V 4N (x) and V (T, x) = V 2N (x) − 3V 3N (x) + 3V 6N (x) are more accurate
but need more CPU time. The reader can easily derive extrapolations of higher order; how-
ever, we have found that quite often even linear extrapolation with moderate N = 20 for
T = 1 gives the result with the relative error less than 0.5 percent.

Theorem 6.3. Let X be either an RLPE of order ν ∈ (1, 2] or an sRLPE of order ν ∈ (0, 1]
or an sRLPE of order 0+ with the drift pointing from the boundary.

Then there exists σ > 0 such that the following hold:
(a) function G̃(q, 0+) = (E+

q G)(0+) is well defined and analytic in the half-plane Re q ≥ σ;
(b) for q in the half-plane Re q ≥ σ, the Wiener–Hopf factors have the following asymp-

totics as ξ → ∞ in a strip around the real axis:

(6.2) φ±q (ξ) = φ±q,∞(1 ∓ iξ)−ν±(1 +O(|ξ|−ρ)),

where ρ > 0, and functions q 	→ φ±q,∞ are analytic in the half-plane Re q ≥ σ;
(c) there exist C, s > 0 and integer k ≥ 1 such that

(6.3) |∂kq (q−1φ−q,∞G̃(q, 0+))| ≤ C|q|−1−s, Re q ≥ σ;

hence, the following integrals absolutely converge:

(6.4) κk(T ) =
e−rT

2πiΓ(1 + ν−)(−T )k

∫
Re q=σ

eqT∂kq (q−1φ−q,∞G̃(q, 0+))dq
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and

κCarr;N,k(T ) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k
(6.5)

×
∫
CN

(
1 +

T (r − q)

N

)k−N
∂kq

(
q−1φ−q,∞G̃(q, 0+)

)
dq;

(d) there exists s > 0 such that, as x ↓ 0,

(6.6) V (T, x) = κk(T )xν− +O(xν−+s)

and

(6.7) V N (x) = κCarr;N,k(T )xν− +O(xν−+s);

(e) κCarr;N,k(T ) → κk(T ) as N → ∞, and the O-term in (6.7) converges to the O-term in
(6.6) in the Cν−+s-norm.

Remark 6.4. (i) The proofs of Theorems 6.1 and 6.2 and part (e) of Theorem 6.3, which
are the first main results of the paper for the price, are based on parts (a)–(d) of Theorem
6.3. Statements (a)–(c) and (6.6) are proved in [9] for sRLPEs of order ν ∈ [0+, 2], with
the exception of the VG model with zero drift or drift pointing to the boundary; therefore,
the proof of convergence based on the crucial estimates is valid for sRLPEs (with the same
reservation) as well. The proof of (6.7) is almost identical to the proof of (7.11). In the present
paper, we complement the results in [9] calculating the leading term of asymptotics for all
RLPEs of order ν > 1, in particular, for all standard classes of processes with a nontrivial
Brownian motion component.

(ii) In this section, we prove that if k is sufficiently large, then the integrals in (2.10)
and (3.11) converge absolutely and uniformly w.r.t. T ; moreover, the latter converges to the
former as N → ∞ in the Hölder space of order s < ν−. We also prove Theorem 6.2. These
proofs are simpler than the proof of Theorem 6.3, which we give in section 7. Theorem 6.1
follows from Theorem 6.3(e).

(iii) For processes of order ν > 1, we will show that it is possible to take k = 1.
(iv) The proofs are based on several crucial estimates listed in section 6.3 and proved

below for RLPEs of order ν > 1. Similar estimates are derived in [9] for sRLPEs of order
ν ∈ (0, 2] and for the VG model with the drift pointing from the boundary.

6.2. Formulas and estimates for the Wiener–Hopf factors. Fix λ− < ω− < 0 < ω+ <
λ+. The statements below are valid for η in the strip Im η ∈ [ω−, ω+], and q in the half-plane
Re q ≥ σ, if σ is sufficiently large. (“Large” means that Re (q+ψ(η)) > 0 for (q, η) indicated.)

Define ν± as in section 4.3 for the case ν > 1. Then ν+ + ν− = ν, and ν± ∈ (0, ν).
Lemma 6.5. Let X be an RLPE of order ν ∈ (1, 2]. Then the following hold:
(a) there exist ρ > 0 and d > 0 such that

(6.8) Ψ(q, η) :=
1 + ψ(η)/q

(1 − iη(d/q)1/ν)ν+(1 + iη(d/q)1/ν )ν−
= 1 +O(|η|−ρ)

as η → ∞, with the coefficient in the O-term depending on q;
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(b) moreover, for any s ∈ (0, ν), ρ and the coefficient in the O-term can be chosen the
same for all (q, η) that satisfy |q| ≤ |η|s;

(c) there exists C > 0 such that

(6.9) |ln Ψ(q, η)| ≤ C

{ |η|ν/|q|, |η|ν ≤ |q|,
|q|/|η|ν , |η|ν ≥ |q|;

(d) for any positive integer k, there exists Ck > 0 such that

(6.10) |∂kq (ln Ψ(q, η))| ≤ C|q|−k.

Proof. (a) and (b) can be easily verified (see [15, sect. 3.6.2]).4 (c) As c → 0, we have
sup|η|ν≤c|q| |Ψ(q, η) − 1| → 0, and, similarly to (6.8),

sup
|η|ν≥C|q|

|Ψ(q, η) − 1| → 0 as C → +∞.

Since ln(1 + x) = O(x) as x → 0, we conclude that (6.9) holds if |η|ν ≤ c|q| or |η|ν ≥ C|q|,
where c > 0 is sufficiently small and C > 0 is sufficiently large. Since Ψ(q, η) is uniformly
bounded, (6.9) holds for c ≤ |η|ν/|q| ≤ C as well.

(d) We take the multiplicative structure of Ψ(q, η) into account and apply the Leibnitz
rule.

If q ≥ σ is real, then it follows from [15, Thm. 3.3] that, for ±Im ξ > ±ω∓, the Wiener–
Hopf factors (5.3) in the Wiener–Hopf factorization formula (5.1) can be represented in the
form

(6.11) φ±q (ξ) = (1 ∓ iξ(d/q)1/ν )−ν± exp[Î±(q, 0) − Î±(q, ξ)],

where

(6.12) Î±(q, ξ) = ± 1

2πi

∫
Im η=ω∓

ln Ψ(q, η)

η − ξ
dη.

The integral in (6.12) absolutely converges for (q, ξ) under consideration due to (6.8) and
defines an analytic function in the region Re q ≥ σ, ±Im ξ > ±ω∓. In the following lemma,
we state important bounds for functions Î±(q, ξ) and the Wiener–Hopf factors. The bounds
will be valid for ±Im ξ ≥ ±ω′∓, where λ− < ω− < ω′− < 0 < ω′

+ < ω+ < λ+.

6.3. Crucial estimates. In Appendix C, we will prove the following two lemmas.

Lemma 6.6. (a) There exist C, c > 0 such that

|Î±(q, ξ)| ≤ C,(6.13)

c(1 + |ξ|/|q|1/ν)−ν± ≤ |φ±q (ξ)| ≤ C(1 + |ξ|/|q|1/ν |)−ν± .(6.14)

4Condition ν > 1 forces q1/ν to be in a sector Σσ,θ = {q = σ + ρeiϕ | ρ ≥ 0, −θ < ϕ < θ}, where
θπν/2 > π/2. In this paper, we will use the analytic continuation into the half-plane Re q ≥ σ only.
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(b) For any ε > 0 and positive integer k, there exists Ck,ε > 0 such that

|∂kq Î±(q, ξ)| ≤ Ck,ε|q|ε−k,(6.15)

|∂kq φ±q (ξ)| ≤ Ck,ε|q|ε−k(1 + |ξ|/|q|1/ν)−ν± .(6.16)

Lemma 6.7. For any s ∈ (0, ν), k ∈ Z+, and ε > 0, there exists Cs,k,ε > 0 such that, in the
region |q| ≤ |ξ|s,
(6.17) |∂kq Î±(q, ξ)| ≤ Cs,k,ε|q|−k(1 + |ξ|)−1+s/ν+ε.

Furthermore,

(6.18) φ±q (ξ) = φ±q,∞(1 ∓ iξ)−ν± +R±(q, ξ),

where

(6.19) φ±q,∞ = (q/d)ν±/ν exp[Î±(q, 0)],

and R±(q, ξ) admits the following estimate:

(6.20) |∂kqR±(q, ξ)| ≤ Cs,k,ε|q|ν±/ν−k|ξ|−ν±−1+s/ν+ε.

The proofs of Lemmas 6.6 and 6.7 and the form of the asymptotic coefficient φ±q,∞ rely
on the assumption ν > 1; however, the statements of these lemmas, with different ν± ∈ [0, 1]
and expressions for φ±q,∞, are valid for sRLPEs of order ν ∈ [0+, 1] as well, with certain
modifications for the upper bounds in (6.16) for processes of order ν ∈ [0+, 1), with nonzero
drift. Therefore, the proofs of the main results in the following subsections are valid for these
processes as well.

6.4. Convergence of the integrals in (2.10) and (3.11). Without loss of generality, we
may assume that h = 0. Since ν ∈ (1, 2], we have ν+ ∈ (0, ν), and therefore it follows from
(6.16) with sign “+” and (2.1) that, for any k ∈ Z+, ε > 0, and a ∈ [0, ν+],

(6.21) |∂kq φ+q (ξ)Ĝ(ξ)| ≤ Ck,ε(1 + |ξ|)−1−a|q|a/ν−k+ε,
where Ck,ε is independent of q ∈ Σσ,θ and ξ in the half-plane Im ξ ≥ ω′−. Therefore, for k, a, ε

satisfying the same conditions, function G̃(q, ·) := E+
q G = φ+q (D)G admits the bound

(6.22) ||∂kq G̃(q, ·)||1/2+a+ε = O(|q|a/ν−k+ε),

where || · ||s denotes the norm in Hs(R). Letting a = 0 and using the Sobolev embedding
theorem, we conclude that ∂kq G̃(q, ·) is continuous on (0,+∞) and has the right limit at 0,
which admits the bound

(6.23) |∂kq G̃(q, 0+)| ≤ Ck,ε|q|−k+ε

for any ε > 0, where Ck,ε is independent of q ∈ Σσ,θ. Next, using the general facts collected in
Appendix A, we deduce from (6.22) that, for any s ∈ (−1/2, 1/2) and ε > 0, ∂kq �[0,+∞)G̃(q, ·) =



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

96 SERGEI LEVENDORSKĬI

O(|q|ε−k) as an element of H̊s(R+). Set fk(q, x) = ∂kq (q−1E−
q �[0,+∞)G̃(q, ·)), and denote by

f̂k(q, ξ) the Fourier transform of fk(q, x) w.r.t. x. Using (6.22) and applying (6.16) with sign
“−,” we conclude that if k ≥ 1, then, for any ε, ε′ > 0, there exists Cε,ε′ such that

(6.24) |f̂k(q, ξ)| ≤ Cε,ε′(1 + |ξ|)−1−ν−+ε′ |q|−1−k+ν−/ν+ε.

Since 0 < ν− < ν, (6.24) implies that, by the Sobolev embedding theorem, the integral (2.10)
absolutely converges and defines a continuous function of T , with values in H̊1/2+ν−−ε1(R+) ⊂
Cν−−ε2(R), for any 0 < ε2 < ε1 < ε′.

To prove that the integral in (3.11) converges absolutely and uniformly w.r.t. N and T ,
it suffices to note that the length of CN is O(N) (which is O(|q|) for q on the contour of
integration) and use (6.24).

6.5. Convergence of Carr’s randomization. It follows from (6.24) that (3.12) holds, and
(3.13) follows. Using (6.24) once again, we pass to the limit in (3.13) and obtain (3.14). We
consider the case ν > 1, which implies that ν− > 0. Therefore, the integral in (3.14) absolutely
converges for any k ≥ 1, and we can integrate back and obtain (3.14) with k = 1. In some
other cases, it may be necessary to use larger k; see [9]. Finally, we note that the proof above
gives the convergence of Carr’s randomization in the Cs-norm for any s < ν−. To prove the
convergence in Cν− , we need to calculate the leading term of asymptotics near the boundary.

6.6. Justification of Richardson extrapolation of arbitrary order. Fix a positive integer
m, and choose k > m and ρ ∈ (0, 1) such that (k−ν−/ν−m−1)ρ > m+1. Then the O-term in
(3.12) can be replaced with O(N−m−1) and, in the integral in (3.12), the asymptotic expansion
of the form

(1 + T (r − q)/N)k−N = eT (q−r)(1 + T (r − q)/N)k

×
(

1 +
m∑
j=1

cj(T (r − q)/N)j

)
+O((Tq/N)m+1)

used. The O-term above can be omitted but an additional O(N−m−1) term in (3.12) added,
and then the integral over CN,σ,ρ replaced with the integral over Re q = σ, at the same
cost. Since, for a fixed k, the coefficient in front of the integral in (3.12) can be represented
as a convergent series in 1/N , we arrive at (6.1), where the coefficients are independent of
N and belong to the same Hölder space as indicated in the proof of convergence of Carr’s
randomization to the price; the asymptotic expansion can be understood in the topology of
this space.

7. Asymptotics and convergence: The leading term for prices. Without loss of gener-
ality, we assume that h = 0, and we use the notation fk(q, x) and f̂(q, ξ) introduced in section
6.4.

7.1. Asymptotics of the price near the barrier. Step I. Take s > 0, and consider the set
{(ξ, q) | |ξ|s ≤ |q|}. On this set, we have |q|−k+ν−/ν ≤ |ξ|−s(1−ν−/ν) since 0 < ν−/ν < 1. Now
it follows from (6.24) that, for any ε, ε′ > 0,

(7.1) |�|ξ|s≤|q|f̂k(q, ξ)| ≤ Cε,ε′(1 + |ξ|)−1−ν−−s(1−ν−/ν)+ε′ |q|−1−ε.
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Hence, if we substitute the inverse Fourier transform of �|ξ|s≤|q|f̂k(q, ξ) for fk(q, x) in (2.10),

then we obtain a continuous function of T , with values in H̊1/2+ν−+s′(R+) ⊂ Cν−+s′′(R), for
any 0 < s′′ < s′ < s(1 − ν−/ν). This function decays faster than xν− as x ↓ 0. Therefore, we
can continue the calculation of the leading term replacing fk(q, x) in (2.10) with f sk(q, ξ), the

inverse Fourier transform of �|ξ|s≥|q|f̂k(q, ξ).
Step II. We take s ∈ (0, ν) and, for a multi-index p = (p1, p2, p3), define

(7.2) f(p, q, x) = q−1−p1(∂p2q E−
q )�(0,+∞)(∂

p3
q E+

q )G(x)

and then f s(p, q, ξ), the inverse Fourier transform of �|ξ|s≥|q|f̂(p, q, ξ). Applying the Leib-

nitz rule to ∂kq
(
q−1E−

q �(0,+∞)E+
q G
)

(x) in (2.10), we obtain a linear combination of functions
f(p, q, x) with |p| = k. According to Step I, we can replace f(p, q, x) with f s(p, q, x) (that is,
introduce factor �|ξ|s≥|q| in the dual space).

Introduce further

gν−(x) = (1 + iD)−ν−−1δ = (1/Γ(ν− + 1))�[0,+∞)(x)xν−e−x,(7.3)

f1(p, q, x) = q−1−p1∂p2q G̃(q, 0+)(∂p3q E−
q )(1 + iD)−1δ,(7.4)

f2(p, q, ξ) = q−1−p1∂p2q G̃(q, 0+)∂p3q

(
(q/d)ν−/ν exp[Î−(q, 0)]

)
gν−(x),(7.5)

and then define f j,s(p, q, x) similarly to f s(p, q, x) above.
Step III. We use the equality (see (A.2))5

(7.6) �(0,+∞)∂
k
q G̃ = ∂kq G̃(q, 0+)(1 + iD)−1δ + (1 + iD)−1

�(0,+∞)(1 + iD)∂kq G̃,

where G̃(q, x) = ∂kq E+
q G(x), to show that if |p| ≥ 1, then there exist C > 0, s1 > 1, and

s2 > ν−, independent of q ∈ ∂Σσ,θ and ξ in the half-plane Im ξ ≤ 0, such that

(7.7) |f̂ s(p, q, ξ) − f̂1,s(p, q, ξ)| ≤ C|q|−s1(1 + |ξ|)−1−s2

and conclude that, for any ε > 0,

(7.8)

∫
Re q=σ

eqT (f s(p, q, x) − f1,s(p, q, x))dq ∈ H̊1/2+s2−ε(R+).

By the Sobolev embedding theorem, the integral above defines a function of class Cs2−ε, for
any ε > 0, which vanishes on (−∞, 0]; hence, it tends to zero as x → 0 faster than xν− . It
follows that the leading term of asymptotics does not change if we replace f s(p, q, x) with
f1,s(p, q, x).

Take a ∈ (0,min{ν+, 1}); then −1/2 < a− 1/2 < 1/2. Using (6.21), we conclude that, for
any ε > 0,

(7.9) |f̂(p, q, ξ) − f̂1(p, q, ξ)| ≤ Cp,ε|q|(a+ν−)/ν−2+ε|ξ|−1−a−ν−+ε.

Since ν± ∈ (0, ν), (7.9) implies (7.7).

5Equation (7.6) is justified if (1 + iD)E+
q G ∈ Hs(R) for some s > −1/2; in our case, we can take s =

−1/2 + ν+ − ε for any ε > 0 (see (6.22) and (6.21)). Since ν+ ∈ (0, 1), we can take s > −1/2.
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Step IV. We show that we can replace f1,s(p, q, x) with f2,s(p, q, x). As above, it suffices
to prove that if s is sufficiently close to ν, then there exist C > 0, s1 > 1, and s2 > ν−,
independent of q ∈ Σσ,θ and ξ in the half-plane Im ξ ≤ ω′

+, such that

(7.10) |f̂1,s(p, q, ξ) − f̂2,s(p, q, ξ)| ≤ C|q|−s1(1 + |ξ|)−1−s2 .

But this follows from (6.19)–(6.20).
Step V. The same argument as at Step I shows that we can replace f2,s(p, q, x) with

f2(p, q, x). After that, we use (7.3) and derive the asymptotic formula

(7.11) V (T, x) = κk(T )xν− +O(xν−+s′), x ↓ 0,

for some s′ > 0, where κk(T ) is given by (6.4). It follows from (6.13) and (6.15) that, for
k ∈ Z+ and any ε > 0,

(7.12) |∂kq φ±q,∞| ≤ Ck,ε|q|ν±/ν−k+ε.
Using (7.12) and (6.23), we conclude that, for any integer k ≥ 1, there exist Ck and ρ > 0
such that

(7.13)
∣∣∣∂kq (q−1φ−q,∞G̃(q, 0+)

)∣∣∣ ≤ Ck|q|−k−ρ, Re q ≥ σ.

Hence, we can integrate by parts back and derive (6.4) and (6.6) with k = 1.

7.2. Asymptotics of the price in Carr’s randomization approximation near the barrier.
The only difference with the case of the barrier option itself is that, now, we need to estimate
a series of integrals over a regular contour of length O(|q|), and the functions involved admit
estimates via |q|−1−s, where s > 0. Hence, the same argument applies, and the result is (6.7).
As above, we can integrate by parts back and obtain (6.5) with k = 1.

7.3. Convergence of the asymptotic coefficient in Carr’s randomization. It follows from
(7.13) that, as N → ∞,

κCarr;N,1(T ) = − N

N − 1
· 1

2πi(−T )

∫
CN,σ,ρ

(
1 +

T (r − q)

N

)1−N
(7.14)

× ∂q

(
q−1φ−q,∞G̃(q, 0+)

)
dq + o(1),

where ρ ∈ (0, 1/2) and CN,σ,ρ are the same as in section 6.5. We have for |q| ≤ Nρ

(1 + T (r − q)/N)−N = exp[−N ln(1 + T (r − q)/N)] = e(q−r)T + o(1);

therefore, as N → ∞,

(7.15) κCarr;N,1(T ) =
e−rT

2πi(−T )

∫ σ+iNρ

σ−iNρ

eqT ∂q

(
q−1φ−q,∞G̃(q, 0+)

)
dq + o(1).

Finally, using (7.13) once again, we pass to the limit in (7.15) and obtain that

(7.16) lim
N→∞

κCarr;N,1(T ) =
e−rT

2πi(−T )

∫
Re q=σ

eqT ∂q

(
q−1φ−q,∞G̃(q, 0+)

)
dq.
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7.4. Convergence of Carr’s randomization approximation to the price in the Hölder
norm. A straightforward analysis of the proof of convergence above shows that the O-term
in the asymptotic formula for Carr’s randomization approximation converges to the O-term
of the asymptotic formula for the price in the Cν−+s-norm, for some s > 0.

8. Sensitivities. In this section, we consider four related problems for θ, Δ, and Γ of
the barrier option: calculation of a sensitivity in Carr’s randomization approximation; proof
of convergence of Carr’s sensitivity to the sensitivity of the barrier option; calculation of the
leading term of the sensitivity and the leading term of its Carr’s randomization approximation;
convergence of the leading term. The cases of θ and Δ will be considered in more detail, and
the case Γ will be only outlined, because the calculations in the last case are rather long. The
detailed calculations with a systematic study of the zoology of possible shapes of sensitivity
curves and surfaces will be made in a different paper. The types of processes below are the
same as in Theorems 6.1 and 6.3.

8.1. Theta. By definition, θ = −∂V (T, x)/∂T . Since we want to differentiate under the
integral sign in (2.10), we need to choose k large enough so that even after we insert an
additional factor q under the integral sign the integrand will remain absolutely and uniformly
integrable. For such a k, which exists on the strength of estimates used to calculate the
asymptotics of the price, we have

θ(T, x) = − e−rT

2πi(−T )k

×
∫
Re q=σ

eqT
(
q − r − k

T

)
∂kq
(
q−1E−

q �(0,+∞)E+
q G
)

(x)dq.(8.1)

The asymptotics of the integral in (8.1), as x ↓ 0, can be calculated exactly as the asymptotics
of the price was calculated, except a larger k may be necessary. Similarly, in the final formula
for the asymptotic coefficient (6.4) in the formula (6.6) for the price, k = 1 was admissible;
now we need to use k ≥ 2. The final result is the following evident analogue of (6.6) and (6.4).

Theorem 8.1. Let k be an integer ≥ 2. There exists s > 0 such that

(8.2) θ(T, x) = κθ(T )xν− +O(xν−+s), x ↓ 0,

where

κθ(T ) = − e−rT

2πiΓ(1 + ν−)(−T )k

∫
Im q=σ

eqT
(
q − r − k

T

)
∂kq

(
q−1φ−q,∞G̃(q, 0+)

)
dq.

The natural analogue of θ in Carr’s randomization approximation is the finite difference

θCarr;N(T, x) =
V N−1(x) − V N (x)

T/N
,

where V N is given by (3.10) and (3.11) and V N−1 by a similar formula:

(8.3) V N−1(x) = − 1

2πi

∫
CN

(
1 +

T (r − q)

N

)1−N
q−1E−

q �(0,+∞)E+
q G(x)dq.
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We integrate by parts in (8.3) k times and obtain

V N−1(x) = −N
k(N − k − 2)!

(N − 2)!
· 1

2πi(−T )k
(8.4)

×
∫
CN

(
1 +

T (r − q)

N

)1+k−N
∂kq
(
q−1E−

q �(0,+∞)E+
q

)
G(x)dq.

Then we subtract (3.11) from (8.4) and divide by T/N :

θCarr;N (T, x) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k

×
∫
CN

(
N − 1

N − k − 1

(
1 +

T (r − q)

N

)
− 1

)
N

T

×
(

1 +
T (r − q)

N

)k−N
∂kq
(
q−1E−

q �(0,+∞)E+
q

)
G(x)dq.

For a fixed k, as N → ∞,(
N − 1

N − k − 1

(
1 +

T (r − q)

N

)
− 1

)
N

T
→ q − r − k

T
;

therefore, the proof of convergence θCarr;N (T, x) → θ(T, x) as N → ∞ is essentially the same
as the proof of convergence V N (x) → V (T, x).

The asymptotics of θCarr;N (T, x) as x ↓ 0 is calculated as the asymptotics of θ(T, x),
and the proof of convergence of the asymptotic coefficient in the former to the asymptotic
coefficient of the latter is proved as convergence θCarr;N (T, x) → θ(T, x). We summarize the
results in the following theorem.

Theorem 8.2. (a) Let k be an integer ≥ 2. There exists s > 0 such that

(8.5) θCarr;N (T, x) = κθCarr;N (T )xν− +O(xν−+s), x ↓ 0,

where

κθCarr;N (T ) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k
(8.6)

×
∫
CN

(
N − 1

N − k − 1

(
1 +

T (r − q)

N

)
− 1

)
N

T

×
(

1 +
T (r − q)

N

)k−N
∂kq

(
q−1φ−q,∞G̃(q, 0+)

)
dq

for any integer k ≥ 2.

(b) κθCarr;N (T ) → κθ(T ) as N → ∞, and the O-term in (8.5) converges to the O-term in

(8.2) in the Cν−+s-norm.
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8.2. Delta. Clearly, it suffices to consider the log-delta Δ̃ = ∂V/∂x. It can be shown that
if k is sufficiently large, then the differentiation under the integral sign in (2.10) is admissible,
and the interchange of the order of differentiation ∂x∂

k
q = ∂kq ∂x is admissible as well. Thus,

(8.7) Δ̃(T, x) =
e−rT

2πi(−T )k

∫
Re q=σ

eqT∂kq
(
q−1∂xE−

q �(0,+∞)E+
q G(x)

)
dq.

Similarly, the log-delta in Carr’s randomization approximation is

Δ̃Carr;N(T, x) = −N
k(N − k − 1)!

(N − 1)!
· 1

2πi(−T )k

×
∫
CN

(
1 +

T (r − q)

N

)k−N
∂kq
(
q−1∂xE−

q �(0,+∞)E+
q G(x)

)
dq.(8.8)

Theorem 8.3. (a) Let k be a sufficiently large integer. There exists s > 0 such that

(8.9) Δ̃(T, x) = ν−κk(T )xν−−1 +R(x),

where R(x) = O(xν−−1+s), and

(8.10) Δ̃Carr;N (T, x) = ν−κCarr;N ;k(T )xν−−1 +RN (x),

where RN (x) = O(xν−−1+s).
(b) xRN (x) → xR(x) in the Cν−+s([0+,∞))-norm.
Proof. To calculate the asymptotics of (8.7) and (8.8) and study the convergence of the

latter to the former, we apply (7.6) with k = 0:

(8.11) �(0,+∞)G̃ = G̃(q, 0+)(1 + iD)−1δ + (1 + iD)−1
�(0,+∞)(1 + iD)G̃,

which leads to

∂xE−
q �(0,+∞)E+

q G(x) = φ−q (D)iD(1 + iD)−1[G̃(q, 0+)δ(x) + �(0,+∞)(1 + iD)G̃(q, x)]

= F0(q, x) + F1(q, x) − F2(q, x),

where F0(q, x) = G̃(q, 0+)φ−q (D)δ(x), F1(q, x) = φ−q (D)�(0,+∞)(1 + iD)G̃(q, x), and

F2(q, x) = φ−q (D)(1 + iD)−1[G̃(q, 0+)δ(x) + �(0,+∞)(1 + iD)G̃(q, x)]

= E−
q �(0,+∞)E+

q G(x)

is the expression in the formulas for the price of the option and Carr’s randomization approx-
imation V N to the price. Denote by

Δ̃(T, x) = Δ̃0(T, x) + Δ̃1(T, x) − Δ̃2(T, x)

and
Δ̃Carr;N(T, x) = Δ̃Carr;N ;0(T, x) + Δ̃Carr;N ;1(T, x) − Δ̃Carr;N ;2(T, x)
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the corresponding decompositions of the log-delta and the log-delta Carr’s randomization
approximation. Both Δ̃2(T, x) = V (T, x) and Δ̃Carr;N ;2(T, x) = V N (x) are of order O(xν−),
and the latter converges to the former as stated in section 7.4.

In the case ν > 1 that we consider, ν+ > 0, and F1(q, x) ∈ H̊ν−+ν+−1/2−ε(R) = H̊ν−1/2−ε(R)
for any ε > 0. (If ν+ = 0, then, taking into account the representation φ+q (D) = φ+q,∞ +

R+(q,D), where R+(q,D) is a PDO of negative order, we find that F1(q, x) ∈ H̊s(R) for some
s > −1/2.) Moreover, for any k ∈ Z+, there exists Ck,ε such that

||∂kqF1(q, ·)||ν−1/2−ε ≤ Ck,ε|q|1−k

uniformly w.r.t. q in a half-plane Re q ≥ σ. We conclude that Δ̃1(T, x) and Δ̃Carr;N ;1(T, x) are

of class C̊ν−1−ε(R+), for any ε > 0, and the latter converges to the former in the C̊ν−1−ε(R+)-
norm.6 Furthermore, Δ̃1(T, x) = O(xν−1−ε) as x ↓ 0, which can be included in the O-term
of the asymptotics in view of the study of F0(q, x) below. Integrating by parts in the Fourier
inversion formula for F1(q, ·), as we will do in a moment for F0(q, ·), it is possible to obtain a
better characterization of convergence: xΔ̃1(T, x) and xΔ̃Carr;N ;1(T, x) are of class Cν−ε(R+),
for any ε > 0, and the latter converges to the former in the Cν−ε(R+)-norm.7

For x > 0,

φ−q (D)δ(x) =
1

2π

∫
Im ξ=ω+

eixξφ−q (ξ)dξ =
1

2π(−ix)

∫
Im ξ=ω+

eixξ∂ξφ
−
q (ξ)dξ,

where
∂ξφ

−
q (ξ) = ∂ξ

(
(1 + iξ(d/q)1/ν )−ν− exp[Î−(q, 0) − Î−(q, ξ)]

)
= −[iν−((d/q)1/ν + iξ)−1 + ∂ξ Î

−(q, ξ)]φ−q (ξ).

Introduce
F00(q, x) = G̃(q, 0+)ν−((d/q)1/ν + iD)−1φ−q (D)δ(x),

F01(q, x) = −iG̃(q, 0+)(∂ξ Î
−)(q,D)φ−q (D)δ(x),

and define Δ̃00(T, x), Δ̃01(T, x) and their Carr’s randomization analogues using F00(q, x) and
F01(q, x), in the same way as Δ̃0(T, x) was defined using F0(q, x). Then

Δ̃0(T, x) = x−1(Δ̃00(T, x) + Δ̃01(T, x)).

In section C.3 of Appendix C, it is proved that, for any k ∈ Z+ and any ε > 0, there exists
Ck,ε such that

(8.12) |∂kq ∂ξ Î−(q, ξ)| ≤ Ck,ε|q|−k+(k−1)ε(1 + |ξ|)−1.

Bound (8.12) means that we can repeat the argument for the price and obtain that, for any
ε > 0, Δ01(T, x) ∈ Cν−−ε(R+), and ΔCarr;N ;01(T, x) → Δ01(T, x) in the Cν−−ε(R+)-norm.

6In the case of digital puts and calls, (1 + iD)G is a sum of a regular function and a multiple of the
delta function supported at lnK. This leads to a certain drop of regularity of the theta at lnK, which can
be quantified; even in these cases, the theta is regular on (lnH, lnK) as stated. For simplicity, we restrict
ourselves to the case of puts and calls and the case G(x) ≡ 1, where this problem does not emerge.

7If ν ≤ 1, then we can prove that xΔ̃1(T, x) and xΔ̃Carr;N;1(T, x) are of class C ν̄−ε(R+), for any ε > 0, and
the latter converges to the former in the C ν̄−ε(R+)-norm.
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The asymptotics of Δ̃00(T, x) can be calculated and the convergence of Δ̃Carr;N ;00(T, x)
proved exactly as for the prices, and the evident result is

Δ̃00(T, x) = ν−κ(T )xν− +O(xν−+s)

for some s > 0. Finally, summing up all the terms considered above, we derive (8.9). The
remaining results are proved similarly.

Remark 8.4. The asymptotic formula (8.9) can be obtained by the formal differentiation
of the asymptotic formula (7.11) for the price. However, if ν− = 0, then F00 ≡ 0, and the
result—only an upper bound for Δ̃—is too weak. Studying the asymptotics of F01 ≡ 0, it is
possible to prove that if ν− = 0 (this is the case of processes of order ν < 1 with the drift
pointing from the barrier), then the asymptotics of Δ̃ and Δ̃Carr;N(T, x) are of the form

Δ̃(T, x) = κ̃(T )xν−1 +R(x),(8.13)

Δ̃Carr;N (T, x) = κ̃N (T )xν−1 +RN (x),(8.14)

where R(x) = O(xν−1+s) and RN (x) = O(xν−1+s) for some s > 0. Moreover, κ̃N (T ) → κ̃(T )
and xRN (x) → xR(x) in the Cν+s-norm.

8.3. Gamma. Since the convergence and asymptotics of the price and log-delta have
already been studied, it suffices to consider the log-gamma Γ̃ = ∂2V/∂2x. It can be shown
that if k is sufficiently large, then the differentiation under the integral sign in (2.10) is
admissible, and the interchange of the order of differentiation ∂2x∂

k
q = ∂kq ∂

2
x is admissible as

well. Thus,

(8.15) Γ̃(T, x) =
e−rT

2πi(−T )k

∫
Re q=σ

eqT∂kq
(
q−1∂2xE−

q �(0,+∞)E+
q G(x)

)
dq.

The study of Γ̃ is very similar to the study of Δ̃. The main changes are as follows. We have
to use an analogue of (8.11) with an additional term:

�(0,+∞)E+
q G = G̃(q, 0+)(1 + iD)−1δ

+ (G̃(q, 0+) + (∂xG̃)(q, 0+))(1 + iD)−2δ

+ (1 + iD)−2
�(0,+∞)E+

q (1 + iD)2G.(8.16)

In the case of digital puts and calls, (1 + iD)2G is a sum of a regular function and a linear
combination of the delta function and its derivative supported at lnK; in the case of the
standard calls and puts, the derivative of the delta function at lnK does not emerge. This
leads to a certain drop of regularity of the gamma at lnK, which can be quantified. As
global statements, the statements below are valid on (lnH, lnK), and, naturally, any loss of
regularity at lnK > 0 = lnH does not influence the leading term of asymptotics as x ↓ 0.
The number of terms, which needs to be studied separately, is larger than in the study of Δ̃,
and in the Fourier-inversion representation of some of those it may be necessary to integrate
by parts twice. The result is the following theorem.

Theorem 8.5. (a) Let ν− > 0, ν− = 1; then there exists s > 0 such that, as x ↓ 0,

(8.17) Γ̃(T, x) = ν−(ν− − 1)κ(T )xν−−2 +O(xν−−2+s),
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and Γ̃Carr;N(T, x) converges to Γ̃(T, x) in Cν−([0+,∞)) with weight x2:

(8.18) x2Δ̃Carr;N(T, x) → x2Δ̃(T, x)

in the Cν−([0+,∞))-norm.
(b) If ν− = 0, then Γ̃(T, x) is unbounded as x ↓ 0, and the same is typically true if ν− = 1.
From the list of model classes that we consider, the exceptions are Brownian motion, Kou’s

model, and the HEJD model, for which ν− = 1 and Γ(x) has the finite limit as x ↓ 0.

9. Numerical examples. Consider the same example as in Figure 1. In Table 1, we give
prices (rounded) of the down-and-out put option of maturity T = 1, strike K = 3500, and
barrier H = 2100 close to the barrier; the distances are shown in the x = ln(S/H) coordinate.
In panel A, we show the benchmark prices calculated using Monte Carlo simulations and prices
calculated using Carr’s randomization approximations with moderate N = 10, 20, 30, 40. After
that, we calculate the prices using three versions of Richardson extrapolations; we see that
all three agree very well. In panel B, we show prices normalized by x−ν− , that is, V (x)x−ν−
instead of V (x), and, in panel C, we show the relative errors with respect to the Monte Carlo
prices. We observe that all three versions of Richardson extrapolation produce small errors of
the same order of magnitude, which suggests that a significant part of the errors are errors of
Monte Carlo simulations. The discretization and truncation errors in realizations of the EPV
operators are a less likely source of errors. Indeed, the former errors must be sensitive to the
choice of N and hence of q; but they are almost identical.

In Table 2, we produce similar results for the log-delta, the normalization being done
with x1−ν− instead of x−ν−. We observe that all three versions of Richardson extrapolation
produce small errors of the same order of magnitude, which suggests that the errors are
mostly the errors of Carr’s randomization approximation with a too large N = 160 used
as the benchmark. This example, as do many others, indicates that better results can be
obtained with a moderate number of time steps and Richardson extrapolation than with a
very large number of time steps.

10. Conclusion. In the paper, we derived the leading terms of asymptotics of the prices
and sensitivities of down-and-out barrier options and the corresponding Carr’s randomization
approximations and showed that the asymptotic coefficients in the latter converge to the
asymptotic coefficients of the former as N → ∞. We also proved the convergence of prices
and sensitivities in appropriate Hölder norms. The result is proved for wide classes of options
including puts, calls, and digital options, as well as wide classes of Lévy processes.

Finally, we justified Richardson extrapolation of arbitrary order and demonstrated that it
can be more accurate than Carr’s randomization with a very large number of time steps.

Appendix A. Elements of the theory of generalized functions [27, 15]. The Sobolev
space Hs(R) consists of generalized functions with the finite norm

||u||s =

(∫
R

|û(ξ)|2(1 + |ξ|2)sdξ

)1/2

,

where û is the Fourier transform of u. H̊s(R+) denotes the subspace of functions from Hs(R+)
supported on [0,+∞). For any s ∈ (−1/2, 1/2), the multiplication-by-�(0,+∞) operator ex-

tends to a bounded operator �(0,+∞) : Hs(R) → H̊s(R+).
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Table 1
Convergence of Carr’s randomization approximation in the NIG model. Price of a down-and-out put option.

A. Prices (in units of 100, rounded)

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c) MC

0.0025 2.0040 1.9579 1.9428 1.9352 1.9125 1.9129 1.9127 1.9163
0.005 2.4442 2.3884 2.3701 2.3609 2.3335 2.3339 2.3338 2.3398
0.01 3.0061 2.9387 2.9165 2.9055 2.8724 2.8728 2.8728 2.8732
0.02 3.7280 3.6483 3.6220 3.6090 3.5696 3.5700 3.5699 3.5754
0.04 4.6231 4.5351 4.5058 4.4912 4.4473 4.447 4.4474 4.4570
0.06 5.1859 5.0988 5.0697 5.0551 5.0114 5.0112 5.0112 5.0182
0.08 5.5511 5.4697 5.4422 5.4284 5.3871 5.3868 5.3868 5.3877

B. Prices in units of 100, normalized by x−ν− and rounded.

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c) MC

0.0025 9.6647 9.4424 9.3694 9.3329 9.2234 9.2250 9.2245 9.2415
0.005 9.8258 9.6014 9.5278 9.4912 9.3809 9.3825 9.3822 9.463
0.01 10.0736 9.8477 9.7736 9.7367 9.6257 9.6271 9.6269 9.6284
0.02 10.414 10.191 10.1179 10.0814 9.9714 9.9725 9.9724 9.988
0.04 10.7652 10.5603 10.4921 10.4581 10.3560 10.3561 10.3560 10.3785
0.06 10.8554 10.6737 10.6128 10.5823 10.4908 10.4905 10.4904 10.505
0.08 10.7751 10.6170 10.5637 10.5369 10.4568 10.4561 10.4561 10.458

C. Relative errors (rounded) w.r.t. Monte Carlo

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c)

0.0025 0.046 0.022 0.014 0.0010 −0.0002 −0.0002 −0.0002
0.005 0.045 0.020 0.013 0.009 −0.0027 −0.0025 −0.0026
0.01 0.046 0.023 0.015 0.011 −0.00028 −0.00015 −0.00015
0.02 0.043 0.020 0.013 0.009 −0.0016 −0.0015 −0.0015
0.04 0.037 0.018 0.011 0.008 −0.0022 −0.0022 −0.0022
0.06 0.033 0.016 0.010 0.007 −0.0014 −0.0014 −0.0014
0.08 0.030 0.015 0.010 0.008 −0.00011 −0.00018 −0.00018

NIG parameters: α = 8.858, β = −5.808, δ = 0.174, μ ≈ 0.16074; ν− ≈ 0.262593798
Option parameters: K = 3500, H = 2100, r = 0.03, T = 1
Monte Carlo parameters: # of trajectories 1,000,000, # of time steps 20000; st. dev. varies from 0.00408 to
0.00508
Parameters of the realization of Carr’s randomization in [11]: M2 = 2, M3 = 16, m = 8, N = # number of
time steps; Δ = 0.00025
(a) Richardson extrapolation V (T, x) = 2V 40(x) − V 20(x)
(b) Richardson extrapolation V (T, x) = 0.5V 10(x) − 4V 20(x) + 4.5V 30(x)
(c) Richardson extrapolation V (T, x) = (1/3)V 10(x) − 2V 20(x) + (8/3)V 40(x)

If a is a measurable function, which admits an estimate

(A.1) |a(ξ)| ≤ C(1 + |ξ|2)m/2, ξ ∈ R,

then the PDO a(D) : Hs(R) → Hs−m(R) is a bounded operator, with the norm bounded by C,
and if (A.1) holds for ξ in the half-plane Im ξ ≤ 0, then a(D) maps H̊s(R+) to H̊s−m(R+).

The Sobolev embedding theorem (in one dimension) states that if s > 1/2, then, for any
ε > 0, Hs(R) is continuously embedded in the Hölder space Cs−1/2−ε(R). Denoting by C̊s(R+)
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Table 2
Convergence of Carr’s randomization approximation in the NIG model. Log-delta of a down-and-out put

option.
A. Log-delta (in units of 104, rounded)

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c) N = 160

0.0025 2.1837 2.1348 2.1189 2.1111 2.0875 2.0878 2.0880 2.0957
0.005 1.4053 1.3750 1.3651 1.3602 1.3454 1.3455 1.3456 1.3499
0.01 0.9100 0.8924 0.8865 0.8836 0.8749 0.8749 0.8749 0.8773
0.02 0.5834 0.5751 0.5723 0.5708 0.5666 0.5664 0.5665 0.5677
0.04 0.3454 0.3443 0.3438 0.3435 0.3428 0.3426 0.3426 0.3429
0.06 0.2251 0.2270 0.2276 0.2278 0.2286 0.2285 0.2285 0.2284
0.08 0.1437 0.1470 0.1480 0.1485 0.1500 0.1499 0.1499 0.1496

B. Log-delta in units of 102, normalized by x1−ν− and rounded.

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c) N = 160

0.0025 2.6328 2.5738 2.5547 2.5453 2.5168 2.5172 2.5175 2.5267
0.005 2.8247 2.7638 2.7439 2.7340 2.7044 2.7046 2.7047 2.7134
0.01 3.0494 2.9905 2.9709 2.9611 2.9318 2.9318 2.9319 2.9400
0.02 3.2595 3.2132 3.1973 3.1892 3.1653 3.1647 3.1647 3.1714
0.04 3.2167 3.2066 3.2020 3.1996 3.1925 3.1911 3.1912 3.1937
0.06 2.8273 2.8516 2.8585 2.8617 2.8718 2.8703 2.8703 2.8686
0.08 2.2314 2.2820 2.2979 2.3057 2.3294 2.3284 2.3284 2.3230

C. Relative errors (rounded) w.r.t. the benchmark N = 160

x N = 10 N = 20 N = 30 N = 40 (a) (b) (c)

0.0025 0.04 0.02 0.01 0.007 −0.0004 −0.0004 −0.0004
0.005 0.04 0.02 0.01 0.008 −0.003 −0.003 −0.003
0.01 0.04 0.02 0.01 0.007 −0.003 −0.003 −0.003
0.02 0.03 0.01 0.008 0.006 −0.0002 −0.0002 −0.0002
0.04 0.007 0.004 0.003 0.002 −0.0004 −0.0008 −0.0008
0.06 −0.014 −0.006 −0.004 −0.002 0.0011 0.0006 0.0006
0.08 −0.037 −0.018 −0.011 −0.007 0.0028 0.0023 0.0023

NIG parameters: α = 8.858, β = −5.808, δ = 0.174, μ ≈ 0.16074; ν− ≈ 0.262593798
Option parameters: K = 3500, H = 2100, r = 0.03, T = 1
Parameters of the realization of Carr’s randomization in [11]: M2 = 2, M3 = 16, m = 8, N = # number of
time steps; Δ = 0.00025
(a) Richardson extrapolation V (T, x) = 2V 40(x) − V 20(x)
(b) Richardson extrapolation V (T, x) = 0.5V 10(x) − 4V 20(x) + 4.5V 30(x)
(c) Richardson extrapolation V (T, x) = (1/3)V 10(x) − 2V 20(x) + (8/3)V 40(x)

the subspace of Cs(R) of functions vanishing on (−∞, 0], we have H̊s(R) ⊂ C̊s−1/2−ε(R+) for
any s > 1/2.

If u ∈ Hs(R), and if s > m− 1/2, where m is a positive integer, then

�(0,+∞)u = u(0+)(1 + iD)−1δ + ((1 + iD)u)(0+)(1 + iD)−2δ

· · · + (1 + iD)−m�(0,+∞)(1 + iD)mu

= u(0+)(1 + iD)−1δ + (u(0+) + u′(0+))(1 + iD)−2δ

· · · + (1 + iD)−m�(0,+∞)(1 + iD)mu(A.2)

(see [27, Lem. 5.5], [15, Thm. 15.15]).
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Appendix B. Digital puts and calls, and the case of strike K < H. If strike K < H,
then only the down-and-out call option makes sense, and we may assume that G(x) = ex−K
and calculate G̃(q, x) = φ+q (−i)ex−K explicitly. The rest of the calculations remain the same.

Similarly, in the case of the call option with strike K < H, G̃(q, x) = 1. In the case of digitals
with strike K > H (= 1), (2.1) fails. We take χ ∈ C∞(R), χ(x) = 1, x < lnK/2, χ(x) = 0,
x > lnK/3, and write (A.2) in the form

�(0,+∞)G̃(q, x) = G̃(q, 0+)(1 + iD)−1δ + · · · + ((1 + iD)mG̃)(q, 0+)(1 + iD)−mδ

+ (1 + iD)−m�(0,+∞)(1 + iD)mχ(x)G̃(q, x) + (1 − χ(x))G̃(q, x).(B.1)

The last term vanishes in a neighborhood of zero; hence, it is irrelevant for the study of the
leading term of asymptotics. For the standard classes of RLPEs, the characteristic exponent
admits estimates of the form

|ψ(s)(ξ)| ≤ Cs(1 + |ξ|)ν−s, s = 0, 1, . . . ,

and the Wiener–Hopf factors admit similar estimates. Using the estimates for φ+q (ξ) and inte-

grating by parts in the oscillatory integral that defines χ(x)G̃(q, x) (composition of the Fourier
transform, multiplication-by-φ+q (ξ), and the inverse Fourier transform applied to G(x)), one

easily obtains that χ(x)G̃(q, x) is of class C∞(R) in x, with the derivatives w.r.t. q decaying
faster with each differentiation.

Hence, in (B.1), all terms but the first one do not influence the leading term of asymptotics.
These terms do not influence the second term as well if the second term is of order xν−+s,
where s ∈ (0, 1). If the second term is of order xν−+1, then the second term in (B.1) must be
taken into account.

Appendix C. Technical proofs.

C.1. Proof of Lemma 6.6. In view of (6.11), bounds (6.14) and (6.16) are immediate
from (6.13) and (6.15); therefore it suffices to prove the latter pair.

C.1.1. Proof of (6.13). We consider cases |ξ| ≤ |q|1/ν and |ξ| ≥ |q|1/ν . Both cases being
similar, we consider only the case |ξ| ≤ |q|1/ν . We separate the line of integration into four
parts by conditions |η| ≤ |ξ|/2, |ξ|/2 ≤ |η| ≤ 2|ξ|, 2|ξ| ≤ |η| ≤ |q|1/ν , and |η| ≥ |q|1/ν and
denote the corresponding integrals Î±j (q, ξ), j = 1, 2, 3, 4 (depending on (q, ξ), some of the
intervals may be empty, and then the corresponding integrals equal 0). To obtain the bounds
for Î±j (q, ξ), j = 1, 3 (respectively, j = 4), we use the first line (respectively, second line) in
(6.9):

|Î±1 (q, ξ)| ≤ C

∫ |ξ|/2

1

|η|ν |q|−1

1 + |ξ| dη ≤ C1|ξ|ν |q|−1 ≤ C1,

|Î±3 (q, ξ)| ≤ C

∫ |q|1/ν

2|ξ|

|η|ν |q|−1

1 + |η| dη ≤ C1|q|ν/ν |q|−1 = C1,

|Î±4 (q, ξ)| ≤ C

∫ +∞

|q|1/ν
|q||η|−ν−1dη ≤ C1|q||q|−ν/ν = C1.
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To estimate Î±2 , we use (4.2) and the mean value theorem to represent ln Ψ(q, η) for |ξ|/2 ≤
|η| ≤ 2|ξ| in the form

ln Ψ(q, η) = ln Ψ(q, ξ) +O(|ξ|−ρ)
for some ρ > 0 and conclude that

|Î±2 (q, ξ)| ≤ |ln Ψ(q, ξ)|
∣∣∣∣ln 2|ξ| − ξ

|ξ|/2 − ξ

∣∣∣∣+O(|ξ|−ρ ln(1 + |ξ|)),

which is bounded.

C.1.2. Proof of (6.15). We use (6.10):

|∂kq Î±(q, ξ)| ≤ C|q|−k+ε
∫ +∞

1

dη

|q|ε(1 + |η|/|q|1/ν )(1 + |ξ − η|) ;

notice that the last integral is uniformly bounded as a function of ξ (for a proof, divide [1,+∞)
into three parts by inequalities |η| ≤ |ξ|/2, |ξ|/2 ≤ |η| ≤ 2|ξ|, 2|ξ| ≤ |η|).

C.2. Proof of Lemma 6.7. Using (6.9),

|Î±(q, ξ)| ≤ C

(∫ |q|1/ν

0

|η|ν |q|−1dη

1 + |ξ| +

∫ |ξ|/2

|q|1/ν
|q||η|−νdη

1 + |ξ|

+

∫ 2|ξ|

|ξ|/2

|q||ξ|−νdη
1 + |ξ − η| +

∫ +∞

2|ξ|
|q||η|−ν−1dη

)
≤ C1(|ξ|−1|q|1/ν + |ξ|−1|q|1/ν + |q||ξ|−1 ln |ξ| + |q||ξ|−1),

which gives (6.17) with k = 0 because s < ν and |q| ≤ |ξ|s. To obtain (6.17) with k ≥ 0, we
use (6.10) and argue similarly.

Representation (6.19)–(6.20) in the region |q| ≤ |ξ|s is immediate from (6.17).

C.3. Proof of (8.12). To simplify the proof, we assume that the characteristic exponent
admits the analytic continuation not only into a strip around the real axis but into a union
of two open sectors with the real half-axis as the axes of symmetry as well and obeys there
the same estimates as in the strip.8 Then there exists θ̃ ∈ (0, π/2) such that function Ψ(q, η)
admits the analytic continuation w.r.t. η into the set bounded from below by the line Im η = ω−
and from above by the contour Lω+,θ̃

= {η = ρeiϕ | ρ ≥ 0, ϕ = π/2±θ̃}, and into the half-plane

Re q ≥ σ w.r.t. q, and admits there estimates (6.9) and (6.10). Then

Î−(q, ξ) = − 1

2πi

∫
Lω+,θ̃

ln Ψ(q, η)

η − ξ
dη,

and, for ξ in the half-plane Im ξ ≤ ω′
+ (< ω+),

∂ξ Î
−(q, ξ) =

1

2πi

∫
Lω+,θ̃

ln Ψ(q, η)

(η − ξ)2
dη

8All model classes of RLPEs satisfy this condition.
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admits a bound

|∂ξ Î−(q, ξ)| ≤ C

∫ ∞

1

min{|q||η|−ν , |η|ν |q|−1}
|η|2 + |ξ|2 dη

≤ C

[∫ |q|1/ν

1

|q|−1ην

|η|2 + |ξ|2 dη +

∫ ∞

|q|1/ν
|q|η−ν

|η|2 + |ξ|2 dη
]

(see (6.9)). Consider two cases: |ξ|ν ≤ |q| and |ξ|ν ≥ |q|. In the first case,

|∂ξ Î−(q, ξ)| ≤ C

[∫ |ξ|

1

|q|−1ην

|η|2 + |ξ|2dη +

∫ |q|1/ν

|ξ|

|q|−1ην

|η|2 + |ξ|2 dη +

∫ ∞

|q|1/ν
|q|η−ν

|η|2 + |ξ|2dη
]

≤ C1(|q|−1|ξ|−2+ν+1 + |q|−1|ξ|ν−1 + |q|1−1−1/ν)

≤ C2(|q|−1|ξ|ν−1 + |q|−1/ν)

≤ C3|ξ|−1;

in the second case,

|∂ξ Î−(q, ξ)| ≤ C

[∫ |q|1/ν

1

|q|−1ην

|η|2 + |ξ|2 dη +

∫ |ξ|

|q|1/ν
|q|η−ν

|η|2 + |ξ|2dη +

∫ ∞

|ξ|

|q|η−ν
|η|2 + |ξ|2 dη

]
≤ C1(|q|−1+1+1/ν |ξ|−2 + |q||ξ|−2+1−ν + |q||ξ|1−ν)

≤ C2|ξ|−1

as well. This proves (8.12) with k = 0.
To obtain the bounds for k ≥ 1, we use (6.10). If |ξ|ν ≤ |q|, then

|∂kq ∂ξ Î−(q, ξ)| ≤ Ck

[∫ |ξ|

1
|q|−k|ξ|−2dη +

∫ |q|1/ν

|ξ|
|q|−kη−2dη +

∫ ∞

|q|1/ν
|q|−k+1/νη−3dη

]
≤ C1k(|q|−k|ξ|−1 + |q|−k|ξ|−1 + |q|−k+1/ν−2/ν) ≤ C2k|q|−k|ξ|−1,

and if |ξ|ν ≥ |q|, then, for any ε > 0,

|∂kq ∂ξ Î−(q, ξ)| ≤ Ck

[∫ |q|1/ν

1
|q|−k|ξ|−2dη

+

∫ |ξ|

|q|1/ν
|q|−k+1/ν |ξ|−2η−1dη +

∫ ∞

|ξ|
|q|−k+1/νη−3dη

]
≤ C1k(|q|−k+1/ν |ξ|−2 + |q|−k+1/ν |ξ|−2 ln |ξ| + |q|−k+1/ν |ξ|−2)

≤ Ck,ε|q|−k+ε|ξ|−1.
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Dynamic Hedging of Portfolio Credit Derivatives∗

Rama Cont† ‡ and Yu Hang Kan‡

Abstract. We compare the performance of various hedging strategies for index collateralized debt obligation
(CDO) tranches across a variety of models and hedging methods during the recent credit crisis.
Our empirical analysis shows evidence for market incompleteness: a large proportion of risk in the
CDO tranches appears to be unhedgeable. We also show that, unlike what is commonly assumed,
dynamic models do not necessarily perform better than static models, nor do high-dimensional
bottom-up models perform better than simpler top-down models. When it comes to hedging, top-
down and regression-based hedging with the index provide significantly better results during the
credit crisis than bottom-up hedging with single-name credit default swap (CDS) contracts. Our
empirical study also reveals that while significantly large moves—“jumps”—do occur in CDS, index,
and tranche spreads, these jumps do not necessarily occur on the default dates of index constituents,
an observation which shows the insufficiency of some recently proposed portfolio credit risk models.

Key words. hedging, credit default swaps, portfolio credit derivatives, index default swaps, collateralized debt
obligations, portfolio credit risk models, default contagion, spread risk, sensitivity-based hedging,
variance minimization
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1. Introduction. Static factor models, in particular the Gaussian copula model [18], have
been widely used for hedging portfolio credit derivatives such as collateralized debt obligations
(CDOs). In such models, the risk of a CDO tranche is characterized in terms of sensitivities
to shifts in risk factors [10, 24]. Accordingly, hedging practices have typically been based on
such measures of sensitivity. The most common hedging approach has been to “delta hedge”
spread fluctuations using credit default swaps (CDSs).

However, the recent turmoil in credit derivatives markets shows that these commonly used
hedging approaches are inefficient. One of the main criticisms has been the lack of well-defined
dynamics for the risk factors in such static models, which prevents any model-based assessment
of hedging strategies. In particular, delta hedging of spread risk is loosely justified using a
Black–Scholes analogy which does not necessarily hold, and the corresponding hedge ratios,
the spread-deltas, are in fact computed from a static model without spread risk. Indeed, delta
hedging of spread risk is not deduced from any theory of derivative replication. Furthermore,
delta hedging of spread risk ignores default risk and jumps in the spreads, which appeared to
be critical for risk management during the difficult market environment in 2008. Although
gamma hedging can improve performance slightly, it is not sufficient to solve these issues.
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Finally, the common approach to price portfolio credit derivatives using copula-based models
does not guarantee the absence of arbitrage. Cont, Deguest, and Kan [6] show that pricing
CDO tranches based on linear interpolation of the base correlations in a one-factor Gaussian
copula model can lead to static arbitrage.

Given the deficiencies of copula-based hedging methods, alternatives have been proposed
to tackle the problem of hedging portfolio credit derivatives. Durand and Jouanin [10] describe
common hedging practices for credit derivatives and correctly point out the inconsistency be-
tween most of the pricing models, where the sole risk is in the occurrence of defaults, and
delta hedging strategies, where the trader seeks to protect his/her portfolio against small
movements in CDS spreads. Bielecki, Jeanblanc, and Rutkowski [3] show that, in a bottom-
up hazard process framework driven by a Brownian motion, perfect replication is possible by
continuously trading a sufficient number of liquid CDS contracts. Bielecki, Crépey, and Jean-
blanc [2] discuss hedging performance in bottom-up and top-down models using simulation
but do not comment on the performance of such strategies in a real market setting.

Laurent, Cousin, and Fermanian [17] study hedging of synthetic CDO tranches in a local
intensity framework without spread risk, and show that CDO tranches can then be replicated
by a self-financing portfolio consisting of the index default swap and a risk-free bond. However,
as we will show in section 3, spread fluctuation is a major source of risk even in the absence
of defaults, so failure to incorporate spread risk can lead to unrealistic conclusions.

Using a more realistic approach which acknowledges market incompleteness and incor-
porates both spread risk and default contagion, Frey and Backhaus [14] observe significant
differences between the sensitivity-based hedging strategies computed in the Gaussian copula
framework and the dynamic hedging strategies derived in their setup. They also show that
variance-minimization hedging provides a model-based endogenous interpolation between the
hedging against spread risk and default risk.

Giesecke, Goldberg, and Ding [15] discuss an alternative hedging approach based on a
self-exciting process for portfolio defaults and compare the hedging performance for equity
CDO tranches in September 2008 with a Gaussian copula model.

The hedging methods in these studies approach the problem from different, often in-
compatible, standpoints, and a systematic comparison of the resulting hedge ratios and the
subsequent hedging performance has not been done in a realistic setting with market data.
Needless to say, in order for such a comparison to be meaningful, the models need to be
calibrated to the same data set. The very feasibility of this calibration is a serious (computa-
tional) constraint which excludes many models discussed in the literature, leading us to focus
on the class of tractable models.

Motivated by previous studies indicating the impact of model uncertainty on the pricing
and hedging derivative instruments [5], our objective is to assess the performance of hedging
strategies of index CDO tranches derived under various model assumptions. We compare the
performance of different dynamic hedging strategies across a range of models including the
Gaussian copula model, a multiname reduced-form model introduced by Duffie and Gârleanu
[9], a Markovian portfolio default model [16], and a two-factor model with spread and default
risk [1]. Strategies considered include delta hedging of spread risk, hedging of default risk,
variance minimization (quadratic hedging), and regression-based hedging.

In particular we shall attempt to address some important questions which have been left
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unanswered by previous studies:
• How did various hedging strategies for CDOs perform during major credit events in

2008?
• Do complete market models provide the right insight for hedging credit derivatives?
• How good are delta hedging strategies for CDO tranches?
• Does gamma hedging improve hedging performance?
• Do hedge ratios based on jump-to-default fare better than sensitivity-based hedge

ratios?
• Are dynamic models better for hedging than static models?
• Do hedging strategies using single-name CDSs perform better than hedges using the

index?
• Are bottom-up models more suitable for hedging than top-down models?

This article is structured as follows. Section 2 describes the cash flow structure of credit de-
fault swaps, index default swaps, and index CDO tranches. Section 3 presents the dataset used
for the empirical analysis and describes some important statistical features of the CDO and
CDS markets. Section 4 introduces the models under consideration and discusses procedures
used for parameter calibration. Section 5 discusses the hedging strategies under consideration.
Section 6 compares the performance of different strategies for the hedging of index tranches
in 2008. Section 7 summarizes our main findings and discusses some implications.

2. Credit derivatives. A credit derivative is a financial instrument whose payoff depends
on the losses due to defaults of the reference obligors (debt instruments). A portfolio credit
derivative is a credit derivative whose payoffs depend on default losses in a reference portfolio
of obligors. We will consider here index credit derivatives, for which the underlying portfolio
is an equally weighted portfolio, such as the CDX or iTraxx indices. Typically, the payoffs
depend only on the aggregate loss due to defaults in the index, not on the identity of the
defaulting firm.

Consider an equally weighted portfolio consisting of n obligors, and assume for simplicity
a constant recovery rate R (typically assumed to be 40%) and deterministic interest rates.
Let τi be the default time of obligor i. The portfolio loss (in fraction of total notional value)
at time t is equal to

Lt =
1 −R

n

n∑
i=1

1τi≤t =
1 −R

n
Nt,

where Nt is the number of defaults by time t. The portfolio loss (Lt) is modeled as a sto-
chastic process on a (filtered) probability space (Ω,F , (Ft),Q), where Ω is the set of market
scenarios, (Ft) represents the flow of information, and Q is a risk-neutral probability measure
representing the market pricing rule.

We will consider the three most commonly traded credit derivatives: credit default swaps
(CDSs), index default swaps (index), and collateralized debt obligations (CDOs). All three
derivatives are swap contracts between two parties, a protection buyer and a protection seller,
whereby the protection buyer is compensated for the loss generated by the default of a reference
obligor (CDS) or defaults from a pool of obligors (index and CDO). In return, the protection
buyer pays a premium to the protection seller. A more detailed description of these products
can be found in [7, 14, 20].
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2.1. Credit default swaps. Consider a reference obligor i and its corresponding CDS
contract initiated at time 0 with unit notional and payment dates T1 < T2 < · · · < TM ,
where T = TM is the maturity date. Assume that the default payments are made on the next
payment date;1 then if obligor i defaults between time Tm−1 and Tm, the default payment at
time Tm is equal to 1 − R. On the other hand, if obligor i has not defaulted yet at time Tm,
the protection seller will receive a premium payment si0(Tm − Tm−1), where si0 is the CDS
spread that has been determined at the inception.

The par CDS spread sit quoted in the market at date t is defined as the value of the spread
which sets the present values of the default leg and the premium leg equal. The mark-to-
market value of a protection seller’s position at time t is equal to the difference between the
net present values of the two legs:

(1) V i
t = (si0 − sit)

∑
Tm>t

B(t, Tm)(Tm − Tm−1)Q(τi > Tm|Ft),

where B(t, Tm) is the discount factor from time t to Tm. In what follows we will refer to
the value of the protection seller’s position as the mark-to-market value, and we will use
scdst = (s1t , . . . , s

n
t ) to denote the vector of constituent CDS spreads and Dt = (1τ1≤t, . . . , 1τn≤t)

to denote the vector of default indicators at time t.

2.2. Index default swap. Index default swaps are now commonly traded on various credit
indices such as iTraxx and CDX series which are equally weighted indices of CDSs. In an index
default swap transaction initiated at time 0, a protection seller agrees to pay all default losses
in the index in return for a fixed periodic spread sidx0 paid on the total notional of obligors
remaining in the index.

The index default swap par spread sidxt quoted in the market at time t is defined as the
value of the spread which balances the present values of the default leg and the premium leg.
The mark-to-market value of a protection seller’s position at time t is equal to the difference
between the two legs, which can be expressed as

(2) V idx
t =

(
sidx0 − sidxt

) ∑
Tm>t

B(t, Tm)(Tm − Tm−1)EQ

[
1 − NTm

n

∣∣∣Ft] .
Here, we assume that the outstanding notional value is calculated at payment dates.2

2.3. Collateralized debt obligations. Consider a tranche defined by an interval [a, b],
0 ≤ a < b ≤ 1, for the portfolio loss normalized by the total notional value of the underlying
portfolio. We call a (resp., b) the attachment (resp., detachment) point of the tranche. A
synthetic CDO tranche swap is a bilateral contract in which the protection seller agrees to

pay all portfolio loss within the interval [a, b] in return for a periodic spread s
[a,b]
0 , which is

determined at inception t = 0, on the remaining tranche notional value.

1The default payment is sometimes assumed to be made immediately after the default. Nevertheless, the
choice of payment schedule has negligible effects on our analysis in this paper.

2A more precise valuation would consider the average outstanding notional value over the time period
between the payment dates [4], but the approximation above has negligible effects on our analysis.
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The par tranche spread s
[a,b]
t quoted in the market at time t is defined as the spread which

sets the present values of the default leg and the premium leg to be equal. The mark-to-
market value of a protection seller’s position (normalized by the total tranche notional value)
at time t is equal to the difference between the two legs, which can be expressed as

(3) V
[a,b]
t =

(
s
[a,b]
0 − s

[a,b]
t

) ∑
Tm>t

B(t, Tm)

b− a
(Tm − Tm−1)EQ

[
(b− LTm)+ − (a− LTm)+

∣∣∣Ft] .
3. Data analysis. Our dataset contains the 5-year CDX North America Investment Grade

Series 10 (CDX) index spreads; the standard tranche spreads with attachment/detachment
points 0%, 3%, 7%, 10%, 15%, 30%, 100%; and the constituent 5-year CDS spreads, all obtained
from Bloomberg. The time series runs from 25 March, 2008 until 25 September, 2008. Figure 1
illustrates the time series of the index, tranche [10%, 15%], CDS of IBM and Disney Corp.
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Figure 1. Left: 5-year CDX.NA.IG.10 index and tranche [10%, 15%] spreads. Right: 5-year CDS spreads
of IBM and Disney Corp. (DIS).

3.1. Comovements in CDSs and CDO tranches. A CDO hedging strategy should be
based on a good understanding of the relation between the profit and loss (P&L) of the
hedging instruments, namely the CDSs and the index, and that of the target instruments, the
CDO tranches. Given that the P&L is driven mainly by the changes in spreads, this requires
a correct representation of comovements in the credit spreads. Figure 2 shows the tranche
[10%, 15%] daily spread returns against the index and IBM CDS daily spread returns. The
crosses and circles represent the data points where spread returns of the two credit derivatives
move in the same and opposite directions, respectively. Here we use IBM CDS and the
[10%, 15%] tranche data for illustration, but similar results are obtained by looking at other
constituent CDSs and tranches. From the figure, we can immediately observe two important
properties:

1. CDS/index spreads tend to move together with the tranche spreads when the move-
ments are large.

2. In many cases, CDS/index spreads and tranche spreads move in opposite directions,
especially when the movements are small.

Large comovements of the spreads, or common jumps, can be explained by the exposures
of the credit derivatives to common risk factors which undergo large movements. This phe-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMIC HEDGING OF PORTFOLIO CREDIT DERIVATIVES 117

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
Tranche [10%,15%] vs Index

Index spread return

T
ra

nc
he

 [1
0%

,1
5%

] s
pr

ea
d 

re
tu

rn

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3
Tranche [10%,15%] vs IBM

IBM CDS spread return

T
ra

nc
he

 [1
0%

,1
5%

] s
pr

ea
d 

re
tu

rn

Figure 2. Tranche [10%, 15%] daily spread returns versus index daily spread returns and IBM CDS daily
spread returns. Crosses represent data points where spread returns have the same signs (movements in the same
direction), and circles represent data points where spread returns have opposite signs (movements in opposite
directions).

Table 1
Conditional correlations between daily spread returns of the index and tranche [10%, 15%] show evidence

of a common heavy-tailed factor.

Index spread return Unconditional > 8% > 5% > 1% < −1% < −5% < −8%

Correlation 0.63 0.82 0.82 0.60 0.68 0.71 0.81
Observations 126 4 12 52 43 11 6

nomenon can be seen more clearly in Table 1, which shows that the correlation between the
index and tranche spread returns increases substantially if we condition on larger observations.

From a hedging perspective, frequent opposite movements between the CDS/index and
the tranche spreads can lead to serious problems, because most hedging strategies imply
positive hedge ratios with respect to the CDSs or the index. When the values of the hedging
instruments and the tranche move in opposite directions, those strategies may fail to reduce
the exposure of the tranche positions or, more seriously, can substantially amplify the overall
exposure. As we will see in our empirical study in section 6, this problem frequently arises in
common hedging strategies.

3.2. Impact of defaults on credit spreads. Our sample period covers several important
credit events: the takeover of Fannie Mae and Freddie Mac, which led to losses in the CDX,
and the bankruptcy of Lehman Brothers, which led to a significant shock to the market.

During the sample period, Fannie Mae and Freddie Mac were taken over by the U.S.
government on 7 September, 2008, which generated a credit event in the CDX reference
portfolio. According to Bloomberg, the recovery rates of the 5-year senior CDS contracts of
Fannie Mae and Freddie Mac were 92% and 94%, respectively, which will be used to determine
the losses in our empirical study. On the other hand, although Lehman Brothers is not a
reference obligor in the CDX, Figure 1 shows that there is considerable upward movement of
the spreads on the next business day after Lehman Brothers announced bankruptcy.

Table 2 shows the daily spread returns on the next business day after Fannie Mae/Freddie
Mac and Lehman Brothers credit events in units of sample standard deviation. Interestingly,
we observe that the IBM, the index, and the super senior tranche [30%, 100%] spreads decrease
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Table 2
Daily spread returns on the next business day after Fannie Mae/Freddie Mac ( 8 September, 2008) and

Lehman Brothers ( 16 September, 2008) credit events, normalized by unconditional sample standard deviations.

IBM Index 0%–3% 3%–7% 7%–10% 10%–15% 15%–30% 30%–100%

8-Sep-08 −0.66 −1.10 0.16 0.05 0.04 0.44 0.02 −0.06
16-Sep-08 3.23 4.55 3.51 4.92 4.45 3.91 4.14 4.05

on the next business day after Fannie Mae/Freddie Mac were taken over. Although the spreads
of other tranches do increase, the magnitudes of these changes are rather small, less than 0.5
standard deviations.

On the other hand, we do observe jumps in CDX spreads, but not necessarily on the dates
corresponding to constituent defaults. The typical example is on 16 September, 2008 when
Lehman Brothers filed for bankruptcy. Although Lehman Brothers is not a constituent of the
CDX, the IBM, index, and tranche spreads increase by as much as 4.9 standard deviations,
which are substantial upward moves and can be attributed to jumps.

These observations have two important implications. First, they show that jumps in
the spreads are not necessarily tied to defaults in the underlying portfolio, as is the case in
Markovian contagion models [1, 16] and self-exciting models [12, 15], where jumps occur only
on portfolio default dates. Jumps may be caused by information external to the portfolio,
such as macroeconomic events, of which the Lehman credit event is an example. Second, jump
sizes at default dates appear to depend on the severity of the events, with lower recovery rate
implying fewer or no upward jumps in the spreads. This suggests that models with constant
jumps in the default intensity at each default are insufficient for capturing the impact of
defaults on the spread movements: this impact should depend on the severity of loss in the
given default, as suggested in [15]. We note that this may be difficult in practice, since recovery
rates are usually not observable immediately after default and can be determined only after
liquidation.

4. Models for portfolio credit derivatives. We will consider four different modeling ap-
proaches in our analysis: the one-factor Gaussian copula model [18], a bottom-up affine jump-
diffusion model [9], a local intensity model [6, 7, 16, 21, 25], and a top-down bivariate spread-
loss model [1].

4.1. Gaussian copula model. The one-factor Gaussian copula model [18] is a standard
market reference for pricing CDO tranches, in which the default times are constructed as

τi = F−1
i (Φ(ρM0 +

√
1 − ρ2Mi)),

where M0,Mi are independent standard normal random variables, Φ(.) is the standard normal
distribution function, Fi is the marginal distribution of τi, and ρ is a correlation parameter.
The distribution function Fi(.) is calibrated to the single-name CDS spreads by assuming
a constant hazard rate.3 Then, we fit one correlation to each tranche, which is a situation
known as compound correlations. If multiple correlations give the same tranche spread, we
will choose the smallest one.

3The hazard rate term structure is usually assumed to be piecewise constant. Since we consider only CDS
with one maturity for each obligor, it reduces to a constant hazard rate.
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There are two reasons why we consider compound correlations instead of the base correla-
tions [19] for calibration. As noted by Morgan and Mortensen [22], we found that computing
the spread-deltas while keeping base correlations fixed can lead to a negative sensitivity of
a tranche with respect to a change in the CDS spreads. Therefore, even if the CDS and
the tranche spreads move in the same direction, especially when the movement is large, the
negative spread-deltas will have the wrong sign and give poor hedging results. Second, unlike
the Black–Scholes implied volatility, which is in a one-to-one correspondence to the vanilla
options prices, base correlations are not guaranteed to exist. For instance, we were not able
to calibrate the base correlation for 15% strike on many of the dates in our sample.

In order to express the hedging positions in later sections, it is convenient to write the
mark-to-market values of the credit derivatives as functions of the modeling variables. Given
the CDS spreads scdst = scds = (s1, . . . , sn), the default indicators Dt = D, and the set
of compound correlations ρt = ρ, we write the mark-to-market values of CDS i, the in-
dex, and a tranche [a, b] at time t computed under the Gaussian copula model as V i

gc(t, s
i),

V idx
gc (t, scds,ρ,D), and V

[a,b]
gc (t, scds,ρ,D), respectively.

4.2. Affine jump-diffusion model. Various dynamic reduced-form models have been pro-
posed to overcome some of the shortcomings of static copula-based models. An example of
such a model used in industry is the affine jump-diffusion model introduced by Duffie and
Gârleanu [9]. In this model the default time τi of an obligor i is modeled as a random time
with a stochastic intensity (λit) given by

(4) λit = Xi
t + aiX0

t ,

where the idiosyncratic risk factors (X1
t , . . . ,X

n
t ) and the common (macro) risk factor (X0

t )
are independent affine jump-diffusion processes

dXi
t = κ(θ −Xi

t)dt+ σ
√
Xi
tdW

i
t + dJ it ,

where (W i
t ) are standard Brownian motions and (J it ) are compound Poisson process with

exponentially distributed jump sizes. The conditional survival probability is then given by

Q(τi > T |Ft) = EQ

[
exp

(
−
∫ T

t
λiudu

) ∣∣∣Ft] .
We will denote by Xt = (X0

t ,X
1
t , . . . ,X

n
t ) the risk factor values at time t. In order to

calibrate the model, we follow the algorithm proposed by Eckner [11]. The tractability of this
model relies on the conditional independence assumption of the default processes and also an
analytical formula for the characteristic function of the affine jump-diffusion process. We refer
readers to [9, 11] for the details of the calibration procedure.

Since (Xt,Dt) is a Markov process, given the values Xt = X = (X0,X1, . . . ,Xn) and the
default indicators Dt = D, we can write the mark-to-market values of CDS i, the index, and
a tranche [a, b] at time t computed under the affine jump-diffusion model as V i

af (t,X0,Xi),

V idx
af (t,X,D), and V

[a,b]
af (t,X,D), respectively. The mark-to-market values are computed as

given in (1), (2), and (3).
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4.3. Local intensity models. Local intensity models [6, 7, 16, 21, 25] are top-down models
in which the number of defaultsNt in a reference portfolio is modeled as a Markov point process
with an intensity λt = f(t,Nt−): the portfolio default intensity is a (positive) function of time
and the number of defaulted obligors.

We consider the following parametrization of the local intensity function, introduced by
Herbertsson [16]:

(5) λt = (n−Nt−)

Nt−∑
k=0

bk,

where {bk} are the parameters. The interpretation of (5) is that the portfolio default intensity
jumps by an amount bk when the kth default happens. There is no sign restriction on {bk} as
long as the portfolio default intensity remains positive. As in [16], we parameterize {bk} as

(6) bk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b(1), 1 ≤ k < μ1,

b(2), μ1 ≤ k < μ2,
...

b(I), μI−1 ≤ k < μI = n,

where 1, μ1, . . . , μI is a partition of {1, . . . , n} which includes the attachment points of the
tranches. The local intensity model is a Markovian top-down model in which the only risk
factor is the loss process. Therefore we can express the mark-to-market values of the index

and a tranche [a, b] at date t computed as functions V idx
lo (t,N) and V

[a,b]
lo (t,N) of the number

of defaults and time.

4.4. Bivariate spread-loss model. One major shortcoming of the local intensity model is
that spreads have piecewise-deterministic dynamics—i.e., no “volatility”—between defaults.
As we have seen in Figure 1, credit derivative positions fluctuate substantially in value even
in the absence of defaults in the underlying credit portfolio, so a hedging strategy based on
the jump-to-default ratio may lead to poor performance. A more realistic picture is given by
a two-factor top-down model [1, 21] which accounts for both default risk and spread volatility
by allowing the portfolio default intensity to depend on the number of defaults and a factor
driving spread volatility:

λt = F (t,Nt−, Yt).

Arnsdorff and Halperin [1] model the number of defaults Nt in a reference portfolio as a point
process which has a (portfolio default) intensity (λt) that follows

(7) λt = eYt(n−Nt−)

Nt−∑
k=0

bk,

where {bk} are parameters and the second factor (Yt) generates spread volatility between
default dates which follows an Ornstein–Uhlenbeck process,

dYt = −κYtdt + σdWt,
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Table 3
Relative calibration error (RMSE), as a percentage of market spreads.

Model CDS Index 0%–3% 3%–7% 7%–10% 10%–15% 15%–30%

Gaussian copula 6.04 0.00 0.00 0.18 0.05 0.00 0.00
Affine jump-diffusion 14.53 21.67 14.56 5.05 10.40 13.91 6.17

Local intensity - 6.29 1.60 0.95 0.46 0.34 1.71
Bivariate spread-loss - 6.67 1.67 1.02 0.42 0.39 1.79

where (Wt) is a standard Brownian motion. Notice that the parameters {bk} will provide
enough degrees of freedom to fit the CDO tranche spreads on a given date, so the remaining
parameters (κ, σ) are estimated from time series of tranche spreads as follows:

• On the first sample day: Set Y0 = 0, κ = 0.3, and σ = 0.7 and calibrate {bk} to index
and tranche spreads on day 1.

• On the jth sample day:
1. Fix {bk} as those calibrated on day j − 1.
2. Calibrate Y0, κ, and σ by minimizing the mean square pricing error of day j−10,
j − 9, . . . , j.

3. Calibrate {bk} to the index and the tranche spreads on day j.
Since (Nt, Yt) is a Markov process, given the values Nt = N and Yt = Y , we can write the
mark-to-market values of the index and a tranche [a, b] at time t computed under the bivariate

spread-loss model as functions V idx
bi (t, Y,N) and V

[a,b]
bi (t, Y,N) of the state variables.

4.5. Calibration results. All models are calibrated to the same market data using a 40%
recovery rate. Table 3 shows the root mean square calibration error (RMSE). Since we
calibrate the Gaussian copula model to each tranche with a different correlation (compound
correlations), it by design gives good fits to the tranche spreads. The discrepancy of CDS
spreads is due to the adjustment to match the index spreads. Top-down models are amendable
to calibration to the market data as well. The RMSE are well within 2% for all tranches
and around 5% for the CDS and the index. On the other hand, the Duffie–Gârleanu affine
jump-diffusion does not calibrate market data as well as the top-down models. The CDS
and the tranche spreads have RMSE at about 10%, which is still reasonable, but the fit
to the index spread has RMSE larger than 20%, which is a poor fit. This is due to the
fact that its calibration involves a high dimensional nonlinear optimization problem which is
not guaranteed to converge. Therefore, we will consider only a hedging strategy using the
single-name CDS as the hedging instruments in the affine jump-diffusion framework, so that
the poor calibration to the index will not affect our analysis significantly. Note that, for
all models under consideration, we have experienced a poor fit to the super senior tranche
[30%, 100%], even with the Gaussian copula model. Since poor calibration leads to inaccurate
computation of the mark-to-market values and the hedge ratios, we will omit the [30%, 100%]
tranche in what follows.

5. Hedging strategies. Our objective is to hedge a position in a tranche [a, b] using the
constituent CDSs and the index, and sometimes with an additional tranche [l, u]. We will now
introduce different dynamic hedging strategies that aim to achieve this task.

We assume a continuously rebalancing framework and let (φit), (φidxt ), and (φ
[l,u]
t ) be

predictable processes which denote the hedging positions in CDS i, the index, and a tranche
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[l, u], respectively. In addition, we will use the same notation as in section 4 to represent the
mark-to-market values of the credit derivatives computed under different models. All hedging
strategies are implemented using daily rebalancing.

5.1. Delta hedging of single-name spread movements. The most common approach for
hedging CDO tranches is to hedge against small changes in the single-name CDS spreads
[10, 24]. In practice, traders usually consider delta hedging under the Gaussian copula model
where the corresponding hedging position in CDS i is known as the spread-delta:

(8) φit =
δsiV

[a,b]
gc (t, scdst− ,ρt−,Dt−)

δsiV
i
gc(t, s

i
t−)

,

where
δsiV

[a,b]
gc (t, scds,ρ,D) = V [a,b]

gc (t, scds + ei,ρ,D) − V [a,b]
gc (t, scds,ρ,D),

δsiV
i
gc(t, s

i) = V i
gc(t, s

i + 1bp) − V i
gc(t, s

i)

are the changes in value of a tranche [a, b] and CDS i with respect to an increase in the CDS
spread of obligor i by 1 basis point, while the correlations and other CDS spreads remain
unchanged. ei ∈ R

n is a vector with all entries equal to 0 except for the ith entry equal to 1
basis point.

In order to compute the spread-deltas, we first calibrate the one-factor Gaussian copula
model [18] to the market CDS and the tranche spreads as described in section 4.1. After
that, we perturb the CDS spread of, say, obligor i by 1 basis point while keeping all other
CDS spreads and the correlations unchanged. Then, we recalibrate the hazard rate function
of obligor i and compute the new values for CDS i and the tranche. The spread-delta defined
by (8) is the ratio of the change in the tranche value to the change in the CDS value.

The main drawback of implementing the spread-deltas (8) is the absence of well-defined
dynamics for the single-name CDS spreads in the Gaussian copula framework. On the other
hand, we can consider delta hedging under the dynamic affine jump-diffusion model [9]. Hedg-
ing moves in the single-name CDS spreads is then equivalent to hedging against changes in
the idiosyncratic risk factor. The corresponding position in CDS i is equal to

(9) φit =
∂XiV

[a,b]
af (t,Xt−,Dt−)

∂XiV i
af (t,X0

t−,Xi
t−)

,

where ∂XiV
[a,b]
af (t,X,D) and ∂XiV i

af (t,X0,Xi) are the partial derivatives with respect to Xi

which can be approximated by finite differences. Note that one of the main differences between
the hedge ratio (9) and the spread-delta (8) is that there is no recalibration involved when
computing (9) under the affine jump-diffusion model.

5.2. Delta hedging of index spread movements. In section 3.1, we observe that the
CDS and the tranche spreads appear to be driven by some common risk factors. Therefore,
we may argue that it is also important to hedge against global movements in the CDS spreads.
We use the Gaussian copula model and enter positions in the index to neutralize the index
spread-delta:

(10) φidxt =
Δ

[a,b]
gc (t)

Δidx
gc (t)

,
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Figure 3. Index spread-deltas. Data: CDX.NA.IG.S10 on 25 March, 2008.

where
Δ[a,b]
gc (t) = V [a,b]

gc (t, scdst− + e,ρt−,Dt−) − V [a,b]
gc (t, scdst− ,ρt−,Dt−),

Δidx
gc (t) = V idx

gc (t, scdst− + e,Dt−) − V idx
gc (t, scdst− ,Dt−),

and e ∈ R
n is a vector with all entries equal to 1 basis point. Notice that Δ

[a,b]
gc (t) and Δidx

gc (t)
are the changes of a tranche [a, b] and the index values with respect to a parallel shift in all
CDS spreads by 1 basis point while keeping the correlations unchanged. Computation of the
index spread-delta is the same as for the spread-deltas, except that we need to shift all CDS
spreads by 1 basis point.

This strategy also has the advantage of being cost-effective. Unlike delta hedging indi-
vidual CDS fluctuations, which requires rebalancing multiple hedging positions, this strategy
only requires adjusting the position in the index.

If we consider the CDS/index spreads and the correlations as the market inputs, which
is analogous to the stock price and implied volatility moves in equity derivatives markets,
the index spread-delta (10) can also be computed by models other than the Gaussian copula
model. The procedure is similar to the case described above in which we first calibrate the
models to the CDS/index spreads and the correlations. Then, we recalibrate the models
to the perturbed CDS/index spreads while keeping the correlations unchanged. The index
spread-delta is the ratio of the change in tranche value over the change in the index value.

Figure 3 shows the index spread-deltas (10) computed under different models. Interest-
ingly, we observe that the index spread-deltas are very similar across the models, except those
for tranches [7%, 10%] and [10%, 15%] computed from the affine jump-diffusion model. In
fact, this discrepancy is due only to the fact that the affine jump-diffusion model does not
calibrate well to the market data.

The similarity of the index spread-deltas across the models implies that there is no point
in using a more sophisticated model if its only use is to delta hedge spread risk. The standard
one-factor Gaussian copula model would be sufficient to carry out this strategy. Indeed, a
more meaningful hedging strategy for the dynamic models is to hedge against the underlying
risk factors specified in the modeling framework, taking into account the dynamics of these
factors and their correlations.

5.3. Delta and gamma hedging of index spread movements. By analogy with gamma
hedging of equity derivatives, one may consider hedging the second-order changes in the
tranche values due to fluctuations in the CDS spreads. We consider positions in the index
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and a tranche [l, u] such that

Δ[a,b]
gc (t) = φ

[l.u]
t Δ[l,u]

gc (t) + φidxt Δidx
gc (t),

Γ[a,b]
gc (t) = φ

[l.u]
t Γ[l,u]

gc (t) + φidxt Γidxgc (t),

where

Γ[a,b]
gc (t) = V [a,b]

gc (t, scdst− + e,ρt−,Dt−) − 2V [a,b]
gc (t, scdst− ,ρt,Dt−) + V [a,b]

gc (t, scdst− − e,ρt−,Dt−),

(11)

Γidxgc (t) = V idx
gc (t, scdst− + e,Dt−) − 2V idx

gc (t, scdst− ,Dt−) + V idx
gc (t, scdst− − e,Dt−)

(12)

are the gammas of a tranche [a, b] and the index, or equivalently the second-order finite
differences in the values with respect to 1 basis point shifting of all CDS spreads. Solving for
the hedge ratios, we have

φidxt =
Δ

[a,b]
gc (t)Γ

[l,u]
gc (t) − Δ

[l,u]
gc (t)Γ

[a,b]
gc (t)

Δidx
gc (t)Γ

[l,u]
gc (t) − Δ

[l,u]
gc (t)Γidxgc (t)

,(13)

φ
[l,u]
t =

Δ
[a,b]
gc (t)Γidxgc (t) − Δidx

gc (t)Γ
[a,b]
gc (t)

Δ
[l,u]
gc (t)Γidxgc (t) − Δidx

gc (t)Γ
[l,u]
gc (t)

.(14)

Note that we can also delta hedge against movements in the single-name CDS spreads in
the case of gamma hedging. However, we need to solve an ill-conditioned linear system which
may lead to unstable hedge ratios. Moreover, as we will see in section 6, the main component
of changes in the single-name CDS spreads is a parallel move which is already reflected in the
index spread. Thus, the inclusion of single-name CDS corresponds to hedging higher-order
principal components, which have a smaller impact on the variance of the portfolio. Therefore,
we do not include single-name CDS hedges in our gamma hedging analysis.

Unlike the situation in a Black–Scholes model, where the gamma of a call or put option
is always positive and the gamma of a long position in a call or put option can be neutralized
by shorting another call or put option, such simple relations fail to hold in the Gaussian
copula framework for CDO tranches. Figure 4 shows the gammas of tranches [0%, 3%] and
[3%, 7%] computed for various days in the sample. Observe that the gammas can be positive or
negative, even for the equity tranche. Moreover, the gammas of the two tranches do not have
any clear relationship, in the sense that they do not always have the same sign. These results
also suggest that the empirical performance of gamma hedging may depend on the choice
of the hedging tranches, so we will consider below different choices of tranches as hedging
instruments.

5.4. Hedging parallel shifts in correlations. In addition to hedging against changes in
spreads, by analogy with “vega” hedging in the Black–Scholes model, one can argue that it
is also important to manage the risk of the fluctuation in another parameter of the Gaussian
copula model, the implied correlation. We will consider scenarios where all (compound)
correlations shift by the same magnitude.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DYNAMIC HEDGING OF PORTFOLIO CREDIT DERIVATIVES 125

−2 −1 0 1 2

x 10
−5

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−5

Tranche [0%,3%]

T
ra

nc
he

 [3
%

,7
%

]

Figure 4. Values of gammas Γ
[a,b]
gc (t) for [0%, 3%] and [3%, 7%] CDX tranches. Each point represents one

day in the sample.

A joint hedge with respect to small changes in spreads and correlation then requires us to
enter positions in the CDSs and a tranche [l, u] such that

δsiV
[a,b]
gc (t, scdst− ,ρt−,Dt−) = φ

[l,u]
t δsiV

[l,u]
gc (t, scdst− ,ρt−,Dt−) + φit δsiV

i
gc(t, s

i
t−), i = 1, . . . , n,

δρV
[a,b]
gc (t, scdst− ,ρt−,Dt−) = φ

[l,u]
t δρV

[l,u]
gc (t, scdst− ,ρt−,Dt−),

where

δρV
[a,b]
gc (t, scds,ρ,D) = V [a,b]

gc (t, scds,ρ + 0.1%,D) − V [a,b]
gc (t, scds,ρ,D)

is the change in the tranche value with respect to an increase in all compound correlations by
0.1%. Since the index is insensitive to the correlations, we must consider another tranche as
a hedging instrument. Solving for the hedge ratios, we have

φ
[l,u]
t =

δρV
[a,b]
gc (t, scdst− ,ρt−,Dt−)

δρV
[l,u]
gc (t, scdst− ,ρt−,Dt−)

,

φit =
δsiV

[a,b]
gc (t, scdst− ,ρt−,Dt−)δρV

[l,u]
gc (t, scdst− ,ρt−,Dt−) − δρV

[a,b]
gc (t, scdst− ,ρt−,Dt−)δsiV

[l,u]
gc (t, scdst− ,ρt−,Dt−)

δsiV i
gc(t, s

i
t−) δρV

[l,u]
gc (t, scdst− ,ρt−,Dt−)

.

Note that this strategy does not take into account the comovements in the index and in
correlations. This is simply a first-order sensitivity-based hedge against moves in the CDS
spreads and the correlation movements.

5.5. Hedging default risk. Although the common hedging practice is to protect against
CDS spread fluctuations, the occurrence of defaults is also a major source of risk of a CDO
tranche. The natural strategy to hedge against constituent defaults is to enter positions in
the CDS or the index according to the jump-to-default ratio, which is defined as the ratio of
the change in the tranche value over the change in the index (or CDS) value with respect to
one additional default.

Since the top-down models, such as the local intensity model, focus on the next-to-default
rather than the default of a specific obligor, there is only one jump-to-default ratio to consider,
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Figure 5. Jump-to-default ratios. Data: CDX.NA.IG.S10 on 25 March, 2008. Ratios of Gaussian copula
model and affine jump-diffusion model are computed by assuming that IBM defaults.

which is equal to

(15) φidxt =
V

[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
.

The jump-to-default ratio under the bivariate spread-loss model is defined in the same manner.
On the other hand, since the bottom-up models specify the default probabilities of each

obligor, there are n possible jump-to-default ratios to be considered. For the Gaussian copula
model, the jump-to-default ratio corresponding to obligor i, using the index as the hedging
instrument, is equal to

(16) φidxt =
V

[a,b]
gc (t, scdst− ,ρt−,Dt− + ui) − V

[a,b]
gc (t, scdst− ,ρt−,Dt−)

V idx
gc (t, scdst− ,Dt− + ui) − V idx

gc (t, scdst− ,Dt−)
,

where ui ∈ R
n is a vector with all entries equal to 0 except for the ith entry equal to 1. We

can define the jump-to-default ratio for the affine jump-diffusion model in the same manner.
Figure 5 shows the jump-to-default ratios computed from different models using the index

as the hedging instrument as in (15) and (16). For the bottom-up models, the ratios are
computed in the scenario where IBM defaults. Unlike the index spread-deltas, the jump-to-
default ratios are substantially different across models. This implies that hedging against
occurrence of default is also exposed to substantial model risk, because the jump-to-default
ratio, which is computed by assuming the occurrence of one additional default, depends on the
credit portfolio loss dynamic in the modeling framework. Although each model is calibrated
to the same CDS, index, and CDO market data, those credit derivatives provide information
only on the marginal distribution of the loss process at some fixed times. Therefore, the
dynamic of the loss process cannot be uniquely determined by the market data, and thus the
jump-to-default ratios are substantially different across models.

5.6. Variance minimization. When spread risk and default risk are considered simulta-
neously, we are in an incomplete market setting, and hedging strategies in this setting need
to be determined by an optimality criterion which takes both spread risk and default risk into
account. A well-known approach to hedging in incomplete markets is the variance-minimizing
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strategy, introduced by Föllmer and Sondermann [13]. Unlike many other approaches to hedg-
ing in incomplete markets, it has been shown that this approach actually leads to analytically
tractable hedging strategies [8, 14].

Definition 5.1. Let H be a square-integrable contingent claim at maturity T , and (Xt) be
the discounted price process of the hedging instrument which is a square-integrable martingale
under Q. Let S be the set of admissible self-financing strategies with EQ[(

∫ T
0 φtdXt)

2] < ∞.
A variance-minimizing strategy is a choice of initial capital c and a self-financing trading
strategy (φt) ∈ S which minimizes the quadratic hedging error:

(17) inf
c∈R,(φt)∈S

EQ

[(
c+

∫ T

0
φtdXt −H

)2
]
.

The variance (17) is computed under the risk-neutral probability measure Q, because the
models are calibrated to the observed credit spreads which only provide information on the
risk factor dynamics under the risk-neutral measure. If we want to minimize the hedging
error under the real-world measure, we will need a statistical model. One example is the
regression-based hedging strategy in section 5.7.

Föllmer and Sondermann [13] characterize the variance-minimizing strategy in terms of
a Galtchouk–Kunita–Watanabe projection of the claim on the set of replicable payoffs (see
Appendix A). One nice property of the variance-minimizing strategy is that it coincides
with the self-financing hedging strategy, which replicates the contingent claim in a complete
market. Furthermore, in many Markovian models with jumps, the variance-minimizing hedge
ratios can be explicitly computed [8, 14, 23]. The justification for this approach, which is not
specific to credit derivatives, is discussed in [8, 14] from a methodological standpoint.

We will show that these variance-minimizing hedge ratios can be explicitly computed for
the local intensity model and the bivariate spread-loss model. Our analysis will omit the
Gaussian copula model and the affine jump-diffusion model. The reason is that since the
Gaussian copula model defines the marginal distribution of the portfolio losses only at fixed
times, there is no intrinsic dynamic for the loss process. For the affine jump-diffusion model,
the computation requires inverting a high dimensional matrix (125×125) which is numerically
unstable.

5.6.1. Local intensity model. Laurent, Cousin, and Fermanian [17] show that the local
intensity framework generates a complete market in the sense that we can replicate the payoff
of a tranche [a, b] by means of a self-financing portfolio with positions in the index default
swap and a numeraire. The hedge ratio in the replication strategy then coincides with the
variance-minimizing hedge ratio, which is equal to the jump-to-default ratio.

Proposition 5.2. Consider a local intensity model in which the portfolio default intensity
(λt) under the risk-neutral measure Q has the form λt = f(t,Nt−) for some positive function

f(., .) > 0. Let V idx
lo (t,N) and V

[a,b]
lo (t,N) be the mark-to-market values of the index and a

tranche [a, b] at time t given N number of defaults which satisfy the following:

• For N = 0, . . . , n, the functions t �→ V idx
lo (t,N) and t �→ V

[a,b]
lo (t,N) belong to

C1([0, T )).
• |V idx

lo (t,N + 1) − V idx
lo (t,N)| > 0 for all t ∈ [0, T ], N = 0, . . . , n− 1.
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Then, the variance-minimizing hedge defined in Definition 5.1 for a tranche [a, b] using the
index as the only hedging instrument is given by

(18) φt =
V

[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
.

The second condition in Proposition 5.2 implies that the index default swap value is
always sensitive to defaults in the underlying portfolio. The proof of this proposition is shown
in Appendix B.1.

5.6.2. Bivariate spread-loss model. In the bivariate spread-loss model, the portfolio de-
fault intensity is driven by the loss process (Lt) and a diffusion process (Yt). Since we consider
the index as the only hedging instrument, the market is incomplete in this two-factor frame-
work. We use variance minimization to compute a trade-off between default risk and spread
risk, as follows.

Proposition 5.3. Consider the bivariate spread-loss model [1] in which the portfolio de-
fault intensity (λt) under the risk-neutral measure Q follows (7). Let V idx

bi (t, Y,N) and

V
[a,b]
bi (t, Y,N) be the values of the index and a tranche [a, b] at time t given N number of

defaults and risk factor value Y which satisfy the following:

• For N = 0, . . . , n, the functions (t, Y ) �→ V idx
bi (t, Y,N) and (t, Y ) �→ V

[a,b]
bi (t, Y,N)

belong to C1,2([0, T ) × R);
• [∂Y V

idx
bi (t, Y,N)]2 +[δNV

idx
bi (t, Y,N)]2λ > 0 for all t ∈ [0, T ], Y ∈ R, N = 0, . . . , n−1;

• EQ
[∫ T

0

(
∂Y V

[a,b]
bi (t, Yt−, Nt−)

)2
dt
]
<∞,

where λ = (n − N)
∑N

k=0 bk, ∂Y V
·
bi(t, Y,N) is the partial derivative with respect to Y , and

δNV
·
bi(t, Y,N) = V ·

bi(t, Y,N + 1) − V ·
bi(t, Y,N) is the change of value with respect to one ad-

ditional default. Then, the variance-minimizing hedge defined in Definition 5.1 for a tranche
[a, b] using the index as the only hedging instrument is given by
(19)

φt =
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2 + δNV

[a,b]
bi (t, Yt−, Nt−) δNV

idx
bi (t, Yt−, Nt−)λt[

∂Y V idx
bi (t, Yt−, Nt−)σ

]2
+
[
δNV idx

bi (t, Yt−, Nt−)
]2
λt

.

The second condition in Proposition 5.3 implies that the index default swap is always
sensitive to either the change of the risk factor (Yt) or defaults in the underlying portfolio.
The third condition is an integrability condition to ensure that the optimal hedging portfolio
has finite variance. The proof of this proposition is shown in Appendix B.2.

Unlike the case of the local intensity model, the variance-minimizing hedge ratio for the
bivariate spread-loss model involves not only the jump-to-default values but also the partial
derivatives of the values with respect to the additional risk factor (Yt). This reflects the fact
that variance-minimization hedging is a strategy that takes both default risk and spread risk
into account.

Figure 6 shows the variance-minimizing hedge ratios of the local intensity model and the
bivariate spread-loss model. Similar to the case of comparing the jump-to-default ratios, the
variance-minimizing hedge ratios are substantially different across the models, especially for
the junior tranches. The reason for the differences is the same as the case for the jump-to-
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Figure 6. Variance-minimization hedge ratios. Data: CDX.NA.IG.S10 on 25 March, 2008.

default ratios: from (18) and (19), we can see that the variance-minimizing hedge ratio is a
model-dependent quantity.

5.7. Regression-based hedging. One drawback of hedging strategies based on pricing
models is that it is not clear how well the models can capture the dynamics of the credit
spreads under the real-world measure, which is an important issue for hedging in practice. We
now discuss a model-free, regression-based hedging strategy based on the observed dynamics
of the credit spreads.

Consider a simple regression model relating the daily changes in the index and tranche
values:

δV
[a,b]
tj

= α[a,b] + β[a,b] δV idx
tj + εj ,

where δV ·
tj = V ·

tj − V ·
tj−1

is the daily change of value from time tj−1 to tj . α
[a,b] and β[a,b] can

be estimated by the ordinary least squares regression over a rolling window. Choosing the
hedging position in the index default swap as

(20) β̂
[a,b]
t :=

∑
tj≤t(δV

idx
tj − δV idx

t )(δV
[a,b]
tj

− δV
[a,b]
t )∑

tj≤t(δV
idx
tj

− δV idx
t )2

yields a model-free hedging strategy which we call the regression-based hedge. Here δV ·
t is the

average of daily P&L on [0, t], and β̂
[a,b]
t is the estimate of β[a,b] using observations over the

period [0, t].
The main advantages of this strategy are its ability to directly capture the actual dynamics

of comovements in credit spreads and its simplicity.

6. Empirical performance of hedging strategies. We now present an empirical assess-
ment of the performance of the eight hedging strategies described in section 5 using the dataset
in section 3. Table 4 summarizes all the strategies that will be considered. Note that we will
consider two choices of hedging tranches for gamma hedging where the details will be presented
in the following subsections.

We consider the hedging of the protection seller’s position on a CDX tranche, initiated
on the first day of the sample period. On each day, we calibrate the models to the market
data, as stated in section 5, and compute the corresponding hedging positions. A successful
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Table 4
Overview of hedging strategies.

Strategy Underlying risk Model Type Nature

1 Single-name CDS fluctuation Gaussian copula Bottom-up Static
2 Global CDS/index fluctuation Gaussian copula Bottom-up Static
3 1st- and 2nd-order Gaussian copula Bottom-up Static

global CDS fluctuation
4 Single-name CDS fluctuation Gaussian copula Bottom-up Static

+ correlations shifts
5 Single-name CDS fluctuation Affine jump-diffusion Bottom-up Dynamic
6 Default risk Local intensity Top-down Dynamic
7 Variance minimization Bivariate spread-loss Top-down Dynamic

(risk-neutral measure)
8 Variance minimization Ordinary least squares Statistical -

(statistical measure) regression
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Figure 7. Comparison among delta hedging strategies based on the Gaussian copula model.

strategy should (substantially) reduce dispersion of the P&L distribution with respect to an
unhedged position. Here, we use the following metrics to assess the reduction in magnitude
and volatility of the daily P&L:

Relative hedging error =
∣∣∣ Average daily P&L of hedged position

Average daily P&L of unhedged tranche position

∣∣∣,
Residual volatility =

Daily P&L volatility of hedged position

Daily P&L volatility of unhedged tranche position
.

Note that the two ratios should be close to 0 for a good hedging strategy.

6.1. Does delta hedging work? Our first analysis is to check whether the commonly
criticized delta hedging strategies under the Gaussian copula model work. In Figure 7, we
see that delta hedging does not work well. Indeed, the only effective strategy is a delta hedge
against index movements, which reduces the absolute exposures of tranches [0%, 3%], [3%, 7%],
and [10%, 15%]. On the other hand, delta hedging against single-name CDS movements fails
to reduce absolute exposures. In terms of reduction in P&L volatility, delta hedging of single-
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Table 5
Hedging tranches for gamma hedging strategy.

Tranche being hedged 0%–3% 3%–7% 7%–10% 10%–15% 15%–30%

Hedging tranche: Case 1 7%–10% 7%–10% 10%–15% 15%–30% 10%–15%
Hedging tranche: Case 2 15%–30% 15%–30% 15%–30% 7%–10% 7%–10%
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Figure 8. Comparison among delta and gamma hedging strategies.

name CDS movements results in a consistent reduction of volatility across all tranches, while
delta hedging index movements fails to do so for the three most senior tranches.

6.2. Does gamma hedging improve hedging performance? In order to examine whether
gamma hedging can improve performance, we consider two different choices of tranches as the
hedging instruments, as illustrated in Table 5.

Hedging tranches in Case 1 are chosen such that they give the best performance in our
sample in terms of the relative hedging errors, and those in Case 2 are chosen as a comparison
with Case 1. Figure 8 shows that gamma hedging can help reduce the hedging error for the
[0%, 3%], [3%, 7%], and [15%, 30%] tranches and reduce the P&L volatility for the tranches
[3%, 7%] and [15%, 30%]. However, gamma hedging worsens the hedging performance in all
other cases. Moreover, its performance is very sensitive to the choice of hedging tranches.

In summary, we conclude that gamma hedging, while very sensitive to the choice of hedging
instruments, does not necessarily perform well. Indeed, observations in section 3.1 suggest
that the appropriate correction to delta hedging is not the second-order sensitivity with respect
to the CDS spread movements but a correction taking into account jumps in spreads. This
situation also arises in other contexts when jump risk is present [8].

6.3. Can hedging parallel shifts in correlations improve performance? As shown in
Figure 9, immunizing the portfolio against parallel shifts in the (implied) correlation does
not improve performance: for almost all tranches neither the hedging error nor the P&L
volatility is reduced. This suggests that the (observed) changes in the compound correlations
are typically not parallel. Hedging performance may be improved if we consider other scenarios
for changes in the correlations.
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Figure 9. Comparison between delta hedging and the addition of hedging parallel shifts in compound corre-
lations.
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Figure 10. Comparison between delta hedging under the static Gaussian copula and the dynamic affine
jump-diffusion models.

6.4. Do dynamic models have better hedging performance than static models?. Copula-
based factor models have faced a lot of criticism for their insufficiency for hedging, and one
popular explanation is that this is due to their static nature. In order to verify this claim, we
compare the hedging performance of delta hedging under the static Gaussian copula model
and under the dynamic affine jump-diffusion model [9].

Interestingly, the hedging error and the reduction in volatility ratios in Figure 10 do not
provide any evidence that dynamic models perform better than this simple static model.
Although the dynamic model successfully reduces the hedging error for tranches [10%, 15%]
and [15%, 30%], it amplifies the hedging error significantly for the two most junior tranches.
Moreover, the residual volatilities from the dynamic model are larger than those from the
static model for tranches [7%, 10%], [10%, 15%], and [15%, 30%].

6.5. Do bottom-up models perform better than top-down models? Although top-down
models are more flexible for calibration, it has been suggested that they may be inadequate
for hedging [2]. However, this claim has not been backed by any empirical evidence: we
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Figure 11. Comparison of top-down and bottom-up hedging.

will attempt to verify whether there is indeed an advantage in using bottom-up models for
hedging.

Figure 11 compares the performance of various strategies based on bottom-up models,
delta hedging based on the Gaussian copula model and the affine jump-diffusion model, versus
the top-down strategies, hedging default risk based on the local intensity model and variance
minimization based on the bivariate spread-loss model. First, we observe that the reduction
of volatility is similar across the strategies, which does not provide much information to
distinguish them. By comparing the hedging error, we find that the top-down models perform
better than the bottom-up models for the three junior tranches, [0%, 3%], [3%, 7%], and
[7%, 10%], while bottom-up models fare better for the other two senior tranches.

Overall, there is no strong evidence that hedging based on the bottom-up models must
perform better than that based on the top-down models. This observation contradicts the
statements of Bielecki, Crépey, and Jeanblanc [2], who compare bottom-up and top-down
hedging based on simulation. Although bottom-up models provide additional degrees of free-
dom, the effectiveness of a hedging strategy is not about goodness of fit but depends on how
well the model can predict short-term comovements of the target instrument and the hedging
instruments. From our results it appears that existing bottom-up models do a poor job at
predicting such short-term comovements.

6.6. How does model-based hedging compare to regression-based hedging? Given the
simplicity and intuitiveness of regression-based hedging, it is interesting to examine how well
it performs relative to the model-based strategies. In Figure 12, we observe that regression-
based hedging performs well across all tranches, consistently reducing both the hedging error
and the daily P&L volatility. In particular, it reduces the volatilities for all tranches more
than do the model-based strategies which are theoretically “optimal” in the respective models.
This suggests that model misspecification is nonnegligible in all the models considered above.

6.7. Performance on credit event dates. Of particular interest is the performance of
the hedging strategies on the next business day after the Lehman Brothers and Fannie Mae/
Freddie Mac credit events. Figure 13 shows the hedging error on the next business days after
the credit events under various hedging strategies. During the Lehman Brothers event, we



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

134 RAMA CONT AND YU HANG KAN

0−3 3−7 7−10 10−15 15−30
0

50

100

150

200

Tranche

%
Relative hedging error

 

 

Delta hedging single−name CDS: Gaussian copula
Delta hedging single−name CDS: affine jump−diffusion
Variance−minimization − bivariate spread−loss model
Regression−based hedging

0−3 3−7 7−10 10−15 15−30
0

50

100

150

200

Tranche

%

Reduction in standard deviation

 

 

Delta hedging single−name CDS: Gaussian copula
Delta hedging single−name CDS: affine jump−diffusion
Variance−minimization − bivariate spread−loss model
Regression−based hedging

Figure 12. Comparison among top-down, bottom-up, and regression-based hedging.
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Figure 13. Comparison of strategies on the next business day after Fannie Mae/Freddie Mac ( 8 September,
2008) and Lehman Brothers ( 16 September, 2008) credit events.

observe that the top-down and regression-based hedging outperform the bottom-up hedging
for all tranches. In particular, variance minimization based on the two-factor top-down model
provides the best hedge for most tranches. This suggests that a macro event is better captured
by top-down hedging.

On the other hand, all strategies failed to reduce the P&L during the Fannie Mae and
Freddie Mac credit event, because, as we saw in section 3, the market happened to have
anticipated the event, and there are no significant movements in the spreads. In particular,
we observe a negative change in the CDS and index spreads, which leads to an increase in the
overall exposure when we try to hedge the tranche positions with positive hedge ratios.

7. Conclusion. We have presented theoretical and empirical comparison of a wide range
of hedging strategies for portfolio credit derivatives, with a detailed analysis of the hedging of
index CDO tranches. By comparing the performance of these strategies in 2008, our analysis
reveals several interesting features:

• Our analysis reveals a large proportion of unhedgeable risk in CDO tranches. This
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suggests that market completeness is by no means an acceptable approximation, and
toy models which assume a complete market may fail to provide useful insight for
issues related to hedging of CDO tranches.

• Delta hedging of CDO tranche positions based on the Gaussian copula model is not
effective.

• Although gamma hedging can improve the performance for certain tranches, its ef-
fectiveness is very sensitive to the choice of hedging instruments and is inconsistent
across tranches.

• We do not find strong evidence that the Duffie and Gârleanu [9] bottom-up dynamic
model performs better than the static Gaussian copula model when it comes to delta
hedging with credit default swaps.

• Moreover, bottom-up models ([9] and [18]) do not appear to perform consistently
better than top-down models ([1] and [16]), in contrast to what has been asserted
(without justification) in the literature [2]. In fact, during the period around the
Lehman Brothers default, hedging strategies based on top-down models performed
substantially better than those based on bottom-up models. This leads us to question
the need for computationally costly dynamic bottom-up models instead of the top-
down models for hedging portfolio credit derivatives.

• Model-free regression-based hedging appears to be surprisingly effective when com-
pared to other hedging strategies. This suggests—not surprisingly—that incorporat-
ing the statistical behavior of credit spreads is an important criterion for a successful
hedging strategy.

• We find evidence for common jumps, or large comovements, in spreads. However,
index and tranche spreads did not appear to have upward jumps at the default dates of
index constituents. This observation goes against models, such as Markovian contagion
models [1, 16] and self-exciting models [15], in which jumps in spreads occur only at
constituent default dates. Jumps in spreads may also arise from unexpected events
not necessarily related to defaults inside the portfolio.

We have left out many practically important considerations, such as liquidity, transaction
costs, and computational issues, when assessing hedging performance. The (il)liquidity of
CDS contracts leads to questions of feasibility of hedging strategies which require frequent
rebalancing of positions in single-name CDS. Transaction costs—as reflected, for instance, in
bid-ask spreads—are known to be higher for single-name CDS contracts than for the index,
and taking them into account would favor top-down/index hedging strategies as opposed
to hedging with single-name CDS, which requires rebalancing more than a hundred single-
name CDS positions. Finally, computational costs are much lower for the top-down models,
especially when it comes to calibration: various fast calibration methods have been proposed
for top-down models [1, 6, 7, 21], whereas parameter calibration, especially if it needs to be
done on a periodic basis, remains nontrivial for bottom-up models [11]. Therefore it should
be clear that taking these aspects into account would tilt the comparison even more in favor
of top-down/index hedging as opposed to hedging with single-name CDS.

Appendix A. Variance-minimizing hedge and Galtchouk–Kunita–Watanabe decompo-
sition. Our work in this section is similar to the earlier work by Frey and Backhaus [14]. We
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first define the gain process for the index and tranches. Let P idx(Tm) be the net payment
received from an index default swap contract at time Tm which is bounded by definition. The
mark-to-market value of an index default swap at time t is equal to

V idx
t =

∑
Tm>t

B(t, Tm)EQ[P idx(Tm)|Ft].

We define the discounted value process as

Ṽ idx
t := B(0, t)V idx(t).

Then, the gain process is defined as the present value of all cash-flows:

(21) Gidxt =
∑
Tm≤t

B(0, Tm)P idx(Tm) + Ṽ idx
t = EQ

[ ∑
Tm>0

B(0, Tm)P idx(Tm)
∣∣∣Ft

]
,

where (Gidxt ) is a square-integrable (bounded) martingale under Q. Similarly, we can derive

the expression for the gain process of an [a, b] tranche (G
[a,b]
t ) which is also a square-integrable

(bounded) martingale under Q.
Consider the variance minimization setting in Definition 5.1. Our goal is to hedge a tranche

[a, b] using the index default swap. Although we consider a terminal payoff H at maturity
in Definition 5.1, the results in [23] allow us to replace the conditional expected value of the

terminal payoff EQ[H|Ft] by the gain process value G
[a,b]
t . Let (φt) be the variance-minimizing

hedging strategy which represents positions in the index default swap. Then, it can be shown
that (see [13]) (φt) satisfies the Galtchouk–Kunita–Watanabe decomposition

(22) G
[a,b]
t = G

[a,b]
0 +

∫ t

0
φsdG

idx
s + Zt,

where the process (ZtG
idx
t ) is a martingale under Q. Therefore, the variance-minimizing

strategy satisfies

(23) d〈G[a,b], Gidx〉t = φtd〈Gidx〉t, 0 ≤ t ≤ T,

where (〈G〉t) denotes the unique predictable process with 〈G〉0 = 0 and right-continuous
increasing paths such that (G2

t − 〈G〉t) is a martingale under Q.
Remark 1. Instead of variance minimization in Definition 5.1, Föllmer and Sondermann

[13] introduce a stronger optimality condition which is known as risk-minimization. However,
since the gain processes of the index and CDO tranches are bounded martingales under Q,
the two optimality criteria lead to the same optimal hedging strategies.

Appendix B. Derivation of the variance-minimizing hedge ratio. The key to computing

the variance-minimizing hedge under a particular model is to express (Gidxt ) and (G
[a,b]
t ) as

stochastic integrals, use the Ito isometry formula for these stochastic integrals, then solve
(23) (see, e.g., [8]). In particular, Frey and Backhaus [14] show the derivation for the convex
counterparty risk model, and our following computations are similar to those in [14].
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B.1. Proof of Proposition 5.2. Let (Ut) be a deterministic counting process which jumps
by 1 at payment dates, i.e., UTm − UTm−1 = 1 for all m = 1, . . . ,M . Using Ito’s lemma, the
dynamics of the discounted value process under Q for the index follows

dṼ idx
lo (t,Nt−) =

∂

∂t
Ṽ idx
lo (t,Nt−)dt + δN Ṽ

idx
lo (t,Nt−)dNt −B(0, t)P idx(t)dUt,

where P idx(t) is the net payment received at time t. Using Ito’s lemma again and from (21),
the dynamics of the gain process under Q for the index follows

dGidxlo (t) = B(0, t)P idx(t)dUt + dṼ idx
lo (t,Nt−)

=
∂

∂t
Ṽ idx
lo (t,Nt−)dt + δN Ṽ

idx
lo (t,Nt−)dNt

=

(
∂

∂t
Ṽ idx
lo (t,Nt−) + δN Ṽ

idx
lo (t,Nt−)λt

)
dt+ δN Ṽ

idx
lo (t,Nt−)dN c

t

= δN Ṽ
idx
lo (t,Nt−)dN c

t ,

where (N c
t ) = (Nt −

∫ t
0 λsds) is the compensated version of (Nt). The last equality comes

from the fact that (Gidxlo (t)) is a martingale under Q. Similarly, the gain process of a tranche
[a, b] under Q follows

dG
[a,b]
lo (t) = δN Ṽ

[a,b]
lo (t,Nt−)dN c

t .

We now compute the compensators involved in (23) and obtain

φt =
δN Ṽ

[a,b]
lo (t,Nt−)δN Ṽ

idx
lo (t,Nt−)λt

(δN Ṽ idx
lo (t,Nt−))2λt

=
B(0, t)δNV

[a,b]
lo (t,Nt−)

B(0, t)δNV
idx
lo (t,Nt−)

=
V

[a,b]
lo (t,Nt− + 1) − V

[a,b]
lo (t,Nt−)

V idx
lo (t,Nt− + 1) − V idx

lo (t,Nt−)
.

Then, we want to show that the hedging portfolio obtained by implementing the above strat-

egy has finite variance, i.e., EQ
[∫ T

0 φtdG
idx
lo (t)

]2
< ∞, and it is sufficient to show that

EQ
[∫ T

0 φ2td〈Gidxlo 〉t
]
< ∞. Since all the cash flows of tranche [a, b] are bounded, there ex-

ists a K > 0 such that |V [a,b]
lo (t,N)| ≤ K/2 for all t ∈ [0, T ], N = 0, . . . , n, which implies that

|δNV [a,b]
lo (t,N)| ≤ K for all t ∈ [0, T ], N = 0, . . . , n. Consider

EQ

[∫ T

0
φ2td〈Gidxlo 〉t

]
= EQ

⎡⎣∫ T

0

(
δNV

[a,b]
lo (t,Nt−)

δNV idx
lo (t,Nt−)

)2 (
δN Ṽ

idx
lo (t,Nt−)

)2
λtdt

⎤⎦
≤ EQ

[∫ T

0

(
δNV

[a,b]
lo (t,Nt−)

)2
λtdt

]
≤ K2EQ

[∫ T

0
λtdt

]
≤ K2n <∞,
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which gives the desired result.
Note that if we implement this hedging strategy, we have

dG
[a,b]
lo (t) = φtdG

idx
lo (t).

The tranche is perfectly hedged in this case, which is consistent with the results of [17].

B.2. Proof of Proposition 5.3. Defining the deterministic counting process (Ut) as in
Appendix B.1 and applying Ito’s lemma, the dynamic of the discounted value process for the
index becomes

dṼ idx
bi (t, Yt−, Nt−) =

∂

∂t
Ṽ idx
bi (t, Yt−, Nt−)dt +

∂

∂Y
Ṽ idx
bi (t, Yt−, Nt−)dYt

+
1

2

∂2

∂Y 2
Ṽ idx
bi (t, Yt−, Nt−)σ2dt + δN Ṽ

idx
bi (t, Yt−, Nt−)dNt −B(0, t)P idx(t)dUt,

where P idx(t) is the net payment received at time t. Then, using Ito’s lemma again and from
(21), the dynamics of the gain process for the index follows

dGidxbi (t) = B(0, t)P idx(t)dUt + dṼ idx
bi (t, Yt−, Nt−)

=
∂

∂t
Ṽ idx
bi (t, Yt−, Nt−)dt +

∂

∂Y
Ṽ idx
bi (t, Yt−, Nt−)dYt

+
1

2

∂2

∂Y 2
Ṽ idx
bi (t, Yt−, Nt−)σ2dt+ δN Ṽ

idx
bi (t, Yt−, Nt−)dNt

=

(
∂

∂t
Ṽ idx
bi (t, Yt−, Nt−) − ∂

∂Y
Ṽ idx
bi (t, Yt−, Nt−)κYt

+
1

2

∂2

∂Y 2
Ṽ idx
bi (t, Yt−, Nt−)σ2 + δN Ṽ

idx
bi (t, Yt−, Nt−)λt

)
dt

+
∂

∂Y
Ṽ idx
bi (t, Yt−, Nt−)σdWt + δN Ṽ

idx
bi (t, Yt−, Nt−)dN c

t

=
∂

∂Y
Ṽ idx
bi (t, Yt−, Nt−)σdWt + δN Ṽ

idx
bi (t, Yt−, Nt−)dN c

t .

Similarly, the gain process of a tranche [a, b] follows

dG
[a,b]
bi (t) =

∂

∂Y
Ṽ

[a,b]
bi (t, Yt−, Nt−)σdWt + δN Ṽ

[a,b]
bi (t, Yt−, Nt−)dN c

t .

We can now compute the compensators of (G
[a,b]
bi (t)) and (Gidxbi (t)) and use (23) to compute

(φt) which gives (19).
Let us now show that the hedging portfolio based on (19) has finite variance. Consider

the following:
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EQ

[∫ T

0

φtd〈Gidx
bi 〉t

]

= EQ

⎡⎢⎣∫ T

0

[
∂Y Ṽ

[a,b]
bi (t, Yt−, Nt−) ∂Y Ṽ

idx
bi (t, Yt−, Nt−)σ2 + δN Ṽ

[a,b]
bi (t, Yt−, Nt−)δṼ idx

bi (t, Yt−, Nt−)λt

]2
(∂Y Ṽ idx

bi (t, Yt−, Nt−)σ)2 + (δN Ṽ idx
bi (t, Yt−, Nt−))2 λt

dt

⎤⎥⎦
≤ EQ

⎡⎢⎣∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2 + δNV

[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2
(∂Y V idx

bi (t, Yt−, Nt−)σ)2 + (δNV idx
bi (t, Yt−, Nt−))2 λt

dt

⎤⎥⎦
≤ 2EQ

⎡⎢⎣∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2

]2
(∂Y V idx

bi (t, Yt−, Nt−)σ)2 + (δNV idx
bi (t, Yt−, Nt−))2 λt

dt

⎤⎥⎦
+ 2EQ

⎡⎢⎣∫ T

0

[
δNV

[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2
(∂Y V idx

bi (t, Yt−, Nt−)σ)2 + (δNV idx
bi (t, Yt−, Nt−))2 λt

dt

⎤⎥⎦ .
Consider the first term. For a fixed time t, the integrand is equal to zero if ∂Y V

idx
bi (t, Yt−, Nt−) =

0. If ∂Y V
idx
bi (t, Yt−, Nt−) 	= 0, we have[
∂Y V

[a,b]
bi (t, Yt−, Nt−) ∂Y V

idx
bi (t, Yt−, Nt−)σ2

]2
(∂Y V idx

bi (t, Yt−, Nt−)σ)2 + (δNV idx
bi (t, Yt−, Nt−))2 λt

≤
[
∂Y V

[a,b]
bi (t, Yt−, Nt−)σ

]2
.

For the second expectation, for a fixed time t, the integrand is equal to zero if δNV
idx
bi (t, Yt−, Nt−)λt

= 0. Otherwise, we have[
δNV

[a,b]
bi (t, Yt−, Nt−)δNV

idx
bi (t, Yt−, Nt−)λt

]2
(∂Y V idx

bi (t, Yt−, Nt−)σ)2 + (δNV idx
bi (t, Yt−, Nt−))2 λt

≤
(
δNV

[a,b]
bi (t, Yt−, Nt−)

)2
λt.

Using the fact that δNV
[a,b]
bi (t, Y,N) is bounded, we obtain

EQ

[∫ T

0
φtd〈Gidxbi 〉t

]
≤ 2EQ

[∫ T

0

[
∂Y V

[a,b]
bi (t, Yt−, Nt−)σ

]2
+
(
δNV

[a,b]
bi (t, Yt−, Nt−)

)2
λtdt

]
≤ 2σ2EQ

[∫ T

0

(
∂Y V

[a,b]
bi (t, Yt−, Nt−)

)2
dt

]
+ 2K2n <∞.

Therefore, EQ
[∫ T

0 φtdG
idx
bi (t)

]2
<∞.
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[9] D. Duffie and N. Gârleanu, Risk and valuation of collateralized debt obligations, Financial Anal. J.,
57 (2001), pp. 41–59.

[10] P. Durand and J.-F. Jouanin, Some short elements on hedging credit derivatives, ESAIM Probab.
Statist., 11 (2007), pp. 23–34.

[11] A. Eckner, Computational techniques for basic affine models of portfolio credit risk, J. Comput. Finance,
13 (2009), pp. 63–97.

[12] E. Errais, K. Giesecke, and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM
J. Finan. Math., 1 (2010), pp. 642–665.
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Robust Hedging of Double Touch Barrier Options∗
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Abstract. We consider robust pricing of digital options, which pay out if the underlying asset has crossed
both upper and lower barriers. We make only weak assumptions about the underlying process
(typically continuity), but assume that the initial prices of call options with the same maturity
and all strikes are known. In such circumstances, we are able to give upper and lower bounds on
the arbitrage-free prices of the relevant options and show that these bounds are tight. Moreover,
pathwise inequalities are derived, which provide the trading strategies with which we are able to
realize any potential arbitrages. These super- and subhedging strategies have a simple quasi-static
structure, their associated hedging error is bounded below, and in practice they carry low transaction
costs. We show that, depending on the risk aversion of the investor, they can outperform significantly
the standard delta/vega-hedging in presence of market frictions and/or model misspecification. We
make use of embeddings techniques; in particular, we develop two new solutions to the (optimal)
Skorokhod embedding problem.

Key words. double barrier option, robust hedging, no-arbitrage pricing, Skorokhod embedding, risk neutral
distribution, superhedging, subhedging
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1. Introduction. In the standard approach to pricing and hedging, one postulates a model
for the underlying asset, calibrates it to the market prices of liquidly traded vanilla options, and
then uses the model to derive prices and associated hedges for exotic over-the-counter products.
Prices and hedges will be correct only if the model describes the real world perfectly, which
is unlikely. The robust (model-independent) approach uses market data to deduce bounds on
the prices consistent with no-arbitrage and the associated super- and subreplicating strategies,
which are robust to model misspecification. More precisely, we start with quoted prices of
some liquid options and assume that this market input is consistent with no-arbitrage. Then
we want to answer two questions. First, for a given exotic option, what is the range of prices
that we can charge for it without introducing a model-independent arbitrage? Second, if we
see a price outside this range, how do we exploit it to make a riskless profit? In this paper we
adopt such an approach to pricing and hedging for digital double barrier options.

The general methodology, which we now outline, is based on solving the Skorokhod embed-
ding problem (SEP). We assume no-arbitrage and suppose that we know the market prices of
calls and puts for all strikes at one maturity T . We are interested in pricing an exotic option
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with payoff given by a path-dependent functional O(S)T . The example we consider here is a
digital double touch barrier option struck at (b, b) which pays 1 if the stock price reaches both
b and b before maturity T . Our aim is to construct a robust superreplicating strategy of the
form

(1.1) O(S)T ≤ F (ST ) +NT ,

where F (ST ) is the payoff of a finite portfolio of European puts and calls quoted at time
zero and NT are gains from a self-financing trading strategy (typically forward transactions).
Furthermore, we want (1.1) to be tight in the sense that we can construct a market model
which matches the market prices of calls and puts and in which we have equality in (1.1). The
initial price of the portfolio F (ST ) is then the least upper bound on the price of the exotic
O(S)T , and the right-hand side (RHS) of (1.1) gives a simple superreplicating strategy at that
cost. There is an analogous argument for the lower bound and an analogous subreplicating
strategy. We stress that the RHS in (1.1) makes sense as a model-independent superhedge.
It requires an initial capital, the price of F (ST ), which is uniquely specified by the prices
quoted in the market, and the rest is carried out in a self-financing way. Typically, for any
specific payoff O(S)T , one will be able to come up with a variety of random variables X which
satisfy O(S)T ≤ X ≤ F (ST ) + NT , and hence, in some market models, X may be cheaper
than F (ST ). However, such X has no interpretation as a model-independent superreplicating
strategy. Indeed, if X is a valid model-independent superreplicating strategy, it has a uniquely
specified price at time t = 0 from the market quoted prices. This price is independent of the
market model and hence, since we required (1.1) to be tight, is equal to the price of F (ST ),
as in the extreme model both are equal to the price of O(S)T .

In fact, in order to construct (1.1), we first construct the market model which induces
the upper bound on the price of O(S)T and hence will attain equality in (1.1). For this
construction we rely on the theory of Skorokhod embeddings (cf. Ob�lój [34]). We assume
no-arbitrage and consider a market model in the risk-neutral measure so that the forward
price process (St : t ≤ T ) is a martingale.1 It follows from the work of Monroe [32] that
St = Bρt , for a Brownian motion (Bt) with B0 = S0 and some increasing sequence of stopping
times {ρt : t ≤ T} (possibly relative to an enlarged filtration). Let us further assume that the
payoff of the exotic option is invariant under the time change: O(S)T = O(B)ρT a.s. Knowing
the market prices of calls and puts for all strikes at maturity T is equivalent to knowing
the distribution μ of ST (cf. Breeden and Litzenberger [6]). Thus, we can see the stopping
time ρ = ρT as a solution to the SEP for μ. Conversely, let τ be a solution to the SEP for
μ; i.e., Bτ ∼ μ and (Bt∧τ : t ≥ 0) is a uniformly integrable martingale. Then the process
S̃t := Bτ∧ t

T−t
is a model for the stock-price process consistent with the observed prices of calls

and puts at maturity T . In this way, we obtain a correspondence which allows us to identify
market models with solutions to the SEP and vice versa. In consequence, to estimate the fair
price of the exotic option EO(S)T , it suffices to bound EO(B)τ among all solutions τ to the

1Equivalently, under a simplifying assumption of zero interest rates, St is simply the stock price process.
See section 3.2 for further discussion.
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SEP. More precisely, we have

(1.2) inf
τ :Bτ∼μ

EO(B)τ ≤ EO(S)T ≤ sup
τ :Bτ∼μ

EO(B)τ ,

where all stopping times τ are such that (Bt∧τ )t≥0 is uniformly integrable. Once we compute
the above bounds and the stopping times which achieve them, we usually have a good intuition
into how to construct the super- (and sub-)replicating strategies (1.1).

A more detailed description of the SEP-driven methodology outlined above can be found
in Hobson [27] or in Ob�lój [35]. The idea of no-arbitrage bounds on prices goes back to
Merton [31], and a recent survey of the literature can be found in Cox [12]. The methods for
robust pricing and hedging of options sketched above go back to the works of Hobson [28]
(lookback option) and Brown, Hobson, and Rogers [8] (single barrier options). More recently,
Dupire [20] investigated volatility derivatives using the SEP, and Cox, Hobson, and Ob�lój [13]
designed pathwise inequalities to derive price range and robust superreplicating strategies for
derivatives paying a convex function of the local time.

Unlike in previous works, e.g., [8], we don’t find a unique inequality (1.1) for a given barrier
option. Instead we find that, depending on the market input (i.e., prices of calls and puts) and
the pair of barriers, different strategies may be optimal. We characterize all of them and give
precise conditions for deciding which one should be used. This new difficulty is coming from
the dependence of the payoff on both the running maximum and minimum of the process.
Solutions to the SEP which maximize or minimize P(supu≤τ Bu ≥ b, infu≤τ Bu ≤ b) have
not been developed previously and are introduced in this paper. These are new probabilistic
results of independent interest which we derive here as tools to study our financial problem.
As one might suspect, our new solutions are considerably more involved than those by Perkins
[36] or Azéma and Yor [2] exploited by Brown, Hobson, and Rogers [8].

From a practical point of view, the no-arbitrage price bounds which we obtain are too
wide to be used for pricing. However, our super- or subhedging strategies can still be used.
Specifically, suppose an agent sells a double touch barrier option O(S)T for a premium p.
She can then set up our superhedge (1.1) for an initial premium p > p. At maturity T she
holds H = −O(S)T + F (S)T + NT + p − p, which on average is worth zero, EH = 0, but is
also bounded below: H ≥ p − p. In reality, in the presence of model uncertainty and market
frictions, this can be an appealing alternative to the standard delta/vega-hedging. Indeed,
our numerical simulations in section 3.3 suggest that in the presence of transaction costs a risk
averse agent will generally prefer the hedging strategy we construct to a (monitored daily)
delta/vega-hedge.

The paper is structured as follows. First we present the setup: our assumptions and
terminology and the types of double barriers considered in this paper. Then in section 2 we
consider digital double touch barrier options introduced above. We first present super- and
subreplicating strategies and then prove in section 2.3 that they induce tight robust bounds on
the admissible prices of the double touch options. In section 3 we reconsider our assumptions
and investigate some applications. Specifically, in section 3.1 we consider the case when calls
and puts with only a finite number of strikes are observed, and in section 3.2 we discuss
discontinuities in the price process (St), nonzero interest rates, and further additions to the
set of available market quoted prices. In section 3.3 we present a numerical investigation of
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the performance of our super- and subhedging strategies. Section 4 contains the proofs of
main theorems. In particular, it contains new solutions to the SEP which are necessary to
prove results in section 2.3.

1.1. Setup. In what follows, (St)t≥0 is the forward price process. Equivalently, we can
think of the underlying asset with zero interest rates, or an asset with zero cost of carry. In
particular, our results can be directly applied in Foreign Exchange markets for currency pairs
from economies with equal interest rates. Moving to the spot market with nonzero interest
rates is not immediate as our barriers become time-dependent; see section 3.2.

We assume that (St)t≥0 has continuous paths. We comment in section 3.2 that this
assumption can be removed or weakened to a requirement that given barriers are crossed
continuously. We fix a maturity T > 0 and assume that we observe the initial spot price S0
and the market prices of European calls for all strikes K > 0 and maturity T ,

(1.3)
(
C(K) : K ≥ 0

)
,

which we call the market input. For simplicity we assume that C(K) is twice differentiable
and strictly convex on (0,∞). Further, we assume that we can enter a forward transaction at
no cost. More precisely, let ρ be a stopping time relative to the natural filtration of (St)t≤T
such that Sρ = b. Then the portfolio corresponding to selling a forward at time ρ has final
payoff (b − ST )1ρ≤T , and we assume its initial price is zero. The initial price of a portfolio
with a constant payoff K is K. We denote by X the set of all calls, forward transactions,
and constants, and Lin(X ) is the space of their finite linear combinations, which is precisely
the set of portfolios with given initial market prices. For convenience we introduce a pricing
operator P which, to a portfolio with payoff X at maturity T , associates its initial (time zero)
price, e.g., PK = K, P(ST −K)+ = C(K), and P(b − ST )1ρ≤T = 0. We also assume that
P is linear, whenever defined. Initially, P is given only on Lin(X ). One of the aims of the
paper is to understand extensions of P which do not introduce arbitrage to Lin(X ∪{Y }), for
double touch barrier derivatives Y . Note that linearity of P on Lin(X ) implies that call-put
parity holds, and in consequence we also know the market prices of all European put options
with maturity T :

P (K) := P(K − ST )+ = K − S0 +C(K).

Finally, we assume that the market admits no model-independent arbitrage in the sense
that any portfolio of initially traded assets with a nonnegative payoff has a nonnegative price:

(1.4) ∀X ∈ Lin(X ) : X ≥ 0 =⇒ PX ≥ 0.

As we do not yet have any probability measure, by X ≥ 0 we mean that the payoff is
nonnegative for any continuous nonnegative stock price path (St)t≤T .

By a market model we mean a filtered probability space (Ω,F , (Ft),P) with a continuous
P-martingale (St) which matches the market input (1.3). Note that we consider the model
under the risk-neutral measure, and the pricing operator is then just the expectation P = E.
Saying that (St) matches the market input is equivalent to saying that it starts in the initial
spot S0 a.s. and that E(ST −K)+ = C(K), K > 0. This in turn is equivalent to knowing the
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distribution of ST (cf. [6, 8]). We denote this distribution by μ and often refer to it as the law
of ST implied by the call prices. Our regularity assumptions on C(K) imply that

(1.5) μ(dK) = C ′′(K)dK, K > 0,

so that μ has a positive density on (0,∞). We could relax this assumption and take the support
of μ to be any interval [a, b]. Introducing atoms would complicate our formulae (essentially
without introducing new difficulties).

The running maximum and minimum of the price process are denoted respectively by
St = supu≤t Su and St = infu≤t Su. We are interested in this paper in derivatives whose

payoff depends on both ST and ST . It is often convenient to express events involving the
running maximum and minimum in terms of the first hitting times Hx = inf{t : St = x},
x ≥ 0. As an example, note that 1ST≥b, ST≤b = 1Hb∨Hb≤T .

We use the notation a 
 b to indicate that a is much smaller than b. This is only used
to give intuition and is not formal. The minimum and maximum of two numbers are denoted
a ∧ b = min{a, b} and a ∨ b = max{a, b}, respectively, and the positive part is denoted by
a+ = a ∨ 0.

1.2. Connections to other barrier options. The barrier options considered in this paper
are fairly specific: we are interested in a double touch option which pays out 1ST≥b, ST≤b at
maturity T . It is natural to ask how the problem we consider is connected to similar problems
for related barrier options, and also whether the results can be generalized to a wider class
of options. One question is: can our results on double barrier options be expressed in terms
of the results for single barrier options due to Brown, Hobson, and Rogers [8]? The answer
is negative: we are inspired by their paper and we use similar methodology but to solve a
different problem, and we cannot apply their results in our setting. More specifically, in [8],
the authors develop arbitrage-free bounds on the price of a one-touch digital option (that is,
an option which pays out 1 if a given level is crossed before maturity). At first sight one might
want to price our double touch option as a sort of compound option which, upon hitting the
first barrier, pays out a one-touch option struck at the second barrier. This intuition would
work in a model-specific framework, but it breaks down entirely in the model-independent
framework that we consider. Specifically, the bounds given in [8] depend on knowing the call
prices at the time the option is issued. In our setting, however, we know the call prices initially
but make no assumption about how they behave (or even if they are quoted) at intermediate
times. In particular we have no a priori information about future call prices at the time the
first barrier is hit and so cannot use the bounds derived in [8] for the options we study. On
the other hand, we will recover results from [8] as limiting cases of double touch options when
one of the barriers degenerates to the spot S0.

An alternative question that may be asked is: can one use our results to say something
about different types of digital barrier options? In this work, we are interested in the option
with payoff 1ST≥b, ST≤b, but the identity 1ST≥b, ST≤b = 1 − 1ST<b or ST>b

immediately allows
us to convert a superhedge of 1ST≥b, ST≤b into a subhedge of 1ST<b or ST>b

, and consequently
we can convert an upper bound on the price of 1ST≥b, ST≤b to a lower bound on the price of
1ST<b or ST>b

. There are also identities which connect the double touch to other double barrier
options, for example, 1ST≥b, ST≤b = 1ST≥b− 1ST≥b, ST>b

. A natural conjecture would then be
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that an upper bound on the price of 1ST≥b, ST≤b might translate into a lower bound on the
price of 1ST≥b, ST>b

. However, in the setup we consider this is not the case since the price of
the one-touch option, 1ST≥b, is not specified under our assumptions, and the lowest possible
price of 1ST≥b, ST>b

will typically not occur at the same time as the price of the one-touch
option is maximized. This situation would alter if we assumed that the one-touch option was
traded at a given initial price, in which case the lower bound on the price of 1ST≥b, ST≤b would
correspond to an upper bound on 1ST≥b, ST>b

. However, then the additional information given
in the price of the one-touch option changes the setup of the initial problem and would, in all
likelihood, change the bounds we derive in this paper. See section 3.2 for a further discussion
of this point. As a consequence, the results in this paper will not extend to other double
barrier options beyond the bounds given by the identity 1ST≥b, ST≤b = 1 − 1ST<b or ST>b

.

The question of bounds for the double no-touch option 1ST≤b, ST≥b is considered in Cox

and Ob�lój [14]. In this case, the analysis of the hedges and bounds is relatively straightforward,
but the paper focuses much more on subtleties concerning different classes of arbitrage with
which we do not concern ourselves in this paper.

1.3. Probabilistic interpretation. The bounds on prices of double touch options developed
in Theorems 2.2 and 2.4 correspond, in probabilistic terms, to computing

(1.6) sup
M

P

(
sup
t
Mt ≥ b, inf

t
Mt ≤ b

)
and inf

M
P

(
sup
t
Mt ≥ b, inf

t
Mt ≤ b

)
over all uniformly integrable continuous martingales M = (Mt : 0 ≤ t ≤ ∞) with M0 = S0
and M∞ distributed according to μ. To the best of our knowledge, such bounds have not
been studied before and hence are of independent interest. As mentioned above, in order to
compute these we develop new solutions to the Skorokhod embedding problem. The bounds
that we obtain depend in a complex way on μ and (b, b) and are considerably more involved
than in the single-sided case b = S0, which goes back to Blackwell and Dubins [4] and which
was exploited in [8]. More precisely, supM P(suptMt ≥ b) is attained by the Azéma–Yor
martingale (see Azéma and Yor [3]) simultaneously for all b ≥ S0. In contrast, the supremum
in (1.6) is attained by a different martingale for each pair (b, b). The bounds in (1.6) can be
seen as a first step toward studying admissible laws for the triplet (M∞, suptMt, inftMt), in
a similar way as the single-sided case led to studies of admissible laws for (M∞, suptMt) in
Rogers [37] and Vallois [40].

2. Robust pricing and hedging. We now investigate robust pricing and hedging of a
double touch option which pays 1 if and only if the stock price goes above b and below
b before maturity: 1ST≥b, ST≤b. We present simple quasi-static super- and subreplicating

strategies which prove to be optimal (i.e., replicating) in some market model.2 Sometimes, by
a slight abuse, we refer to these robust strategies as model-independent. This emphasises that
they work universally under our setup outlined above and do not depend on specific modeling
assumptions.

2At first how the strategies below were derived may appear rather mysterious. In fact, as explained in the
introduction, we first identified these extreme models and analyzed hedging strategies within these models.
This way the super- and subreplicating strategies arise quite naturally.
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It seems to us that the hedges are most easily expressed by considering four special cases.
Each case will provide a super- or subhedge. We will see, however, that, depending on the
values of b, b relative to S0, a different one will be the smallest superhedge/largest subhedge.
In sections 2.1 and 2.2 we will outline the super- and subhedges, and in section 2.3 we will
give criteria that allow us to determine exactly into which case a given set of parameter values
falls.

The fact that we have four different hedges is rather intuitive. Imagine a trader who has a
long position in a digital double touch barrier option and needs to hedge it in a robust way.3

Then he is likely to think differently about the option depending on where the barriers are
relative to the spot. If one of the barriers is very close to the spot, then he can effectively
approximate the double touch with a simple one-touch struck at the other barrier. We will
see that for some parameter values this is indeed the case, and the double touch has robust

prices and superhedges that are identical to the one-touch. These cases are given below as H
I

and H
II

. When barriers are approximately symmetric around the spot, our rough estimation
above becomes too costly, and the trader hedges a genuine double touch option. When the
barriers are close to the spot—relative to trader’s belief about the volatility of the market
(which is here inferred from the quoted call prices)—then it is reasonable to build the hedging
strategy around the assumption that at least one of them will be hit. The optimal strategy

then is described in our hedge H
IV

. On the other hand, if the barriers are far away, there
will also be situations when neither barrier is struck, and the strategy has to account for that.

This is done in H
III

. Finally, an analogous story holds for subhedging strategies.

We note also that there are strong similarities between some of the cases that we separate,

to the extent that it is natural to ask, for example: can we express H
IV

as a special case of

H
III

? To some degree, the answer to this is that we can, with a suitable interpretation of some
of the parameter values. However, it does not appear to us that making such a change would
simplify the analysis in any way, since the special cases would need to be treated separately
in any subsequent analysis anyway; rather, we have chosen to express the different super- and
subhedges in the manner that appears to convey the most intuitive picture of the differing
possible behavior.

2.1. Superhedging. We present here four superreplicating strategies. All our strategies
have the same simple structure: we buy an initial portfolio of calls and puts, and when the
stock price reaches b or b we buy or sell forward contracts. Naturally our goal is not only to
write a superreplicating strategy but to write the smallest superreplicating strategy, and to do
so we have to choose the parameters judiciously. As we will see in section 2.3, for a given pair
of barriers b, b exactly one of the superreplicating strategies will induce a tight bound on the
derivative’s price. We will provide an explicit criterion determining which strategy to use.

H
I
: superhedge for b 
 S0 < b. We buy α puts with strike K ∈ (b,∞), and when the

stock price reaches b we buy β forward contracts; see Figure 1. The values of α, β are chosen
so that the final payoff on (0,K), provided that the stock price has reached b, is constant and
equal to 1. One easily computes that α = β = (K − b)−1. Formally, the superreplication

3This can be due to, e.g., high uncertainty about a market model, an illiquid market, or high transaction
costs; see section 3.3 for a detailed discussion.
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b K

Initial portfolio

Portfolio after Hb

Figure 1. Superhedge H
I
.

follows from the following inequality:

(2.1) 1ST≥b, ST≤b ≤ 1ST≤b ≤ (K − ST )+

K − b
+
ST − b

K − b
1ST≤b =: H

I
(K),

where the last term corresponds to a forward contract entered into, at no cost, when St = b.
Note that 1ST≤b = 1Hb≤T .

H
II
: superhedge for b < S0 
 b. This is a mirror image of H

I
: we buy α calls with strike

K ∈ (0, b), and when the stock price reaches b we sell β forward contracts. The values of
α, β are chosen so that the final payoff on (K,∞), provided that the stock price reaches b,
is constant and equal to 1. One easily computes that α = β = (b − K)−1. Formally, the
superreplication follows from the following inequality:

(2.2) 1ST≥b, ST≤b ≤ 1ST≥b ≤
(ST −K)+

b−K
+
b− ST

b−K
1ST≥b =: H

II
(K).

H
III

: superhedge for b 
 S0 
 b. This superhedge involves a static portfolio of four
calls and puts and at most four dynamic trades. The choice of parameters is judicious, which
makes the strategy the most complex to describe. Choose

(2.3) 0 < K4 < b < K3 < K2 < b < K1

and buy αi calls with strike Ki, i = 1, 2, and αj puts with strike Kj , j = 3, 4. If the stock
price reaches b without having hit b before, that is when Hb < Hb ∧ T , sell β1 forward. If
Hb < Hb ∧ T , at Hb buy β2 forwards. When the stock price, having hit b, first reaches b, that
is, at Hb ∈ (Hb, T ], buy β3 = α3 + β1 forwards. Finally, at Hb ∈ (Hb, T ] sell β4 = α2 + β2
forwards. The choice of β3 and β4 is such that the final payoff after hitting b and then b
(resp., b and then b) is constant and equal to 1 on [K4,K3] (resp., [K2,K1]). We now proceed
to impose conditions which determine other parameters. A pictorial representation of the
superhedge is given in Figure 2.
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b b K1K2K3K4

Initial portfolio

Portfolio at t = Hb < Hb ∧ T
Portfolio at t = Hb > Hb

1

Figure 2. Superhedge H
III

.

Note that the initial payoff on [K3,K2] is zero. After hitting b and before hitting b, the
payoff should be zero on [K1,∞) and equal to 1 at b. Likewise, after hitting b and before
hitting b, the payoff should be zero on [0,K4] and equal to 1 at b. This yields six equations:

(2.4)

⎧⎨⎩
α1 + α2 − β1 = 0,

α2(K1 −K2) − β1(K1 − b) = 0,

α3(K3 − b) − β1(b− b) = 1,

⎧⎨⎩
α3 + α4 − β2 = 0,
α3(K3 −K4) + β2(K4 − b) = 0,

α2(b−K2) + β2(b− b) = 1.

The superhedging strategy corresponds to an almost-sure inequality

1ST≥b, ST≤b ≤ α1(ST −K1)
+ + α2(ST −K2)

+ + α3(K3 − ST )+ + α4(K4 − ST )+

− β1(ST − b)1Hb<Hb∧T + β2(ST − b)1Hb<Hb∧T
+ β3(ST − b)1Hb<Hb≤T − β4(ST − b)1Hb<Hb≤T

=: H
III

(K1,K2,K3,K4),

(2.5)

where the parameters, after solving (2.4), are given by

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α3 = (K1−K2)(b−K4)(b−b)−(K1−b)(b−K2)(b−K4)

(K1−K2)(K3−K4)(b−b)2−(K3−b)(K1−b)(b−K2)(b−K4)
,

α1 =
(
1 − α3

K3−K4
b−K4

(b− b)
)
(K1 − b)−1,

α2 =
(
1 − α3

K3−K4
b−K4

(b− b)
)
(b−K2)−1,

α4 = K3−b
b−K4

α3,

{
β1 = α1 + α2,
β2 = α3 + α4.

Using (2.3), one can verify that α3 and α1 are nonnegative and thus also α2 and α4 and all
β1, . . . , β4.

H
IV
: superhedge for b < S0 < b. Choose 0 < K2 < b < S0 < b < K1. The initial portfolio

is composed of α1 calls with strike K1, α2 puts with strike K2, α3 forward contracts, and α4

in cash. If we hit b before hitting b, we sell β1 forwards, and if we hit b before hitting b, we
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b b K1K2

Initial portfolio

Portfolio at t = Hb < Hb ∧ T
Portfolio at t = Hb > Hb

1

Figure 3. Superhedge H
IV

.

buy β2 forwards. The payoff of the portfolio should be zero on [K1,∞) (resp., [0,K2]) and
equal to 1 at b (resp., b) in the first (resp., second) case. Finally, when we first hit b after
having hit b, we buy β3 forwards, and when we first hit b having previously hit b, we sell β4
forwards. In both cases the final payoff should then be equal to 1 on [K2,K1]; see Figure 3.
The superhedging strategy corresponds to the following almost-sure inequality:

1ST≥b, ST≤b ≤ α1(ST −K1)
+ + α2(K2 − ST )+ + α3(ST − S0) + α4

− β1(ST − b)1Hb<Hb∧T + β2(ST − b)1Hb<Hb∧T
+ β3(ST − b)1Hb<Hb≤T − β4(ST − b)1Hb<Hb≤T

=: H
IV

(K1,K2),

(2.7)

where, working out the conditions on αi, βi, the parameters are

(2.8)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α1 = 1/(K1 − b),

α2 = 1/(b−K2),

α3 = (K1−b)−(b−K2)

(K1−b)(b−K2)
,

α4 = bb−K1K2

(K1−b)(b−K2)
+ α3S0,

⎧⎪⎪⎨⎪⎪⎩
β1 = α1 + α3 = 1/(b −K2),
β2 = α2 − α3 = 1/(K1 − b),
β3 = α1 = 1/(K1 − b),

β4 = α2 = 1/(b−K2).

As we highlighted at the beginning of the section, all our superhedges have the same
general structure: they consist of an initial portfolio of cash, puts, and calls and then involve
some forward transactions. We presented above four distinct strategies of this type, and one
could ask: it is possible to unify them into one general parametric strategy? It is not too
difficult to see that the inequalities (2.1), (2.2), and (2.7) can, with the correct modifications
of the parameters, be rewritten in the form (2.5); however, in general the relationships in
(2.4) and (2.3) will not hold (for (2.7), one needs to take K3 = K1 > b and K2 = K4 < b).
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However, if we suppose simply that

K4 < b, K3 > b, K2 < b, K1 > b,

one can derive the following conditions on the parameters in (2.5), which preserve the inequal-
ity: we require α1, α2, α3, α4, β1, β2 ≥ 0 and

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α1 + α2 − β1 ≥ 0,

α2(K1 −K2) − β1(K1 − b) + α3(K3 −K1)
+ ≥ 0,

α3(K3 − b) − β1(b− b) + +α2(b−K2)
+ ≥ 1,

α3 + α4 − β2 ≥ 0,
α3(K3 −K4) + β2(K4 − b) + α2(K4 −K2)

+ ≥ 0,

α2(b−K2) + β2(b− b) + α3(K3 − b)+ ≥ 1.

It can then be verified that the four different cases are each specific solutions of this system
where the inequalities are tight in differing manners. Of course, checking that these are the
only interesting such solutions is nontrivial and will be the content of Theorem 2.2. We also
believe that, while perhaps this is presentationally more concise, the unified presentation hides
the true nature of the superhedging strategies.

2.2. Subhedging. We present now three constructions of robust subhedges. Depending
on the relative distance of barriers from the spot, one of them will turn out to be the most
expensive (model-independent) subhedge. We note, however, that there is also a fourth (triv-
ial) subhedge, which has payoff zero and corresponds to an empty portfolio. In fact this will
be the most expensive subhedge when b 
 S0 
 b, and we can construct a market model in
which both barriers are never hit. Details will be given in Theorem 2.4.

HI : subhedge for b < S0 < b. Choose 0 < K2 < b < S0 < b < K1. The initial portfolio will
contain a cash amount, a forward, and calls with five different strikes and will also include two
digital options, which pay 1 provided that ST is above a specified level. Figure 4 demonstrates
graphically the hedging strategy, and we note that the effect of the digital options is to provide
a jump in the payoff at the points b, b.

As in the previous cases, the optimality of the construction will follow from an almost-sure
inequality. The relevant inequality is now

1ST≥b, ST≤b ≥ α0 + α1(ST − S0) − α2(ST −K2)
+ + α3(ST − b)+ − α3(ST −K3)+

+ α3(ST − b)+ − (α3 − α2)(ST −K1)+ − γ11{ST>b} + γ21{ST≥b}
+ (α2 − α1)(ST − b)1{Hb<Hb∧T} − α2(ST − b)1{Hb<Hb<T}
− (α3 − α2 + α1)(ST − b)1{Hb<Hb∧T} + (α3 − α2)(ST − b)1{Hb<Hb<T}.

(2.10)

Specifically, we can see that the hedging strategy consists of a portfolio which contains cash α0,
has α1 forwards, is short α2 calls at strike K2, etc. The novel terms here are the digital options;
we note further that the digital options can be considered also as the limit of portfolios of calls
(see, for example, Bowie and Carr [5]). In our context, we can use their limiting argument to
deduce P1{ST≥b} = −C ′(K).
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b b
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Initial portfolio
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Portfolio at t = Hb < Hb ∧ T

b b K1K2

Portfolio at t = Hb > Hb

Figure 4. Subhedge HI .

The strategy to be employed is then as follows: initially, run to either b or b; supposing that
b is hit first, we buy (α2 − α1) forwards, then if we later hit b, we sell α2 forwards. A similar
strategy is followed if b is hit first. As previously, the structure imposes some constraints on
the parameters. The relevant constraints are

0 = α0 + α1(b− S0) − α2(b−K2),(2.11)

0 = α0 + α1(b− S0) − α2(b−K2) + α3(K3 − b) − γ1 + γ2,(2.12)

1 = α0 + α1(K2 − S0) + (α2 − α1)(K2 − b) − α2(K2 − b),(2.13)

1 = α0 + α1(K2 − S0) − (α3 − α2 + α1)(K2 − b) + (α3 − α2)(K2 − b),(2.14)

γ1 = (K3 − b)α3,(2.15)

γ2 = (b−K3)α3,(2.16)

K3 − b

K1 − b
=
b−K3

b−K2

.(2.17)

Equations (2.11) and (2.12) arise from the constraint that initially the payoff is zero at b,
b; constraints (2.13) and (2.14) come from the constraint that the final payoff is 1 at K2

when both barriers are hit (in either order); (2.15) and (2.16) represent the fact that, in the
intermediate step, at K3 the gap at b (resp., b) is the size of the respective digital option.
The final constraint, (2.17), follows from noting that K3 is the intersection point of the lines
from (b, 0) to (K1, 1) and from (K2, 1) to (b, 0). Note that it follows that the initial payoffs on
(0,K1) and (K2,∞) are colinear and that the final payoff in K1 is 1 when both barriers are
hit.
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The given equations can be solved to deduce

(2.18)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α0 = S0(K1+K2−b−b)+bb−K1K2

(b−K2)(K1−b) ,

α1 = K1+K2−b−b
(b−K2)(K1−b) ,

α2 = 1
b−K2

,

α3 = b−K2+K1−b
(b−K2)(K1−b) ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K3 = bK1−bK2

b−K2−b+K1
,

γ1 = b−b
b−K2

,

γ2 = b−b
K1−b .

We note from the above that α2, α3, γ1, and γ2 are all (strictly) positive; further, it can be
checked that the quantities (α3−α2), (α2 −α1), (α3 −α2 +α1) are all positive. It follows that
the construction holds for all choices of K1,K2 with K2 < b and K1 > b.

For future reference, we define HI(K1,K2) to be the random variable given by the RHS
of (2.10), where the coefficients are given by the solutions of (2.11)–(2.17).

HII : subhedge for b < S0 
 b. While the above hedge can be considered to be the
“typical” subhedge for the option, there are two further cases that need to be considered
when the initial stock price, S0, is much closer to one of the barriers than the other. The
resulting subhedge will share many of the features of the previous construction; however, the
main difference concerns the behavior in the tails: we now have the hedge taking the value 1
in the tails under only one of the possible ways of knocking in (specifically, in the case where
b < S0 
 b, we get equality in the tails only when b is hit first).

A graphical representation of the construction is given in Figure 5. In this case, rather
than specifying only K1 and K2, we also need to specify K3 ∈ (b, b) satisfying

b−K3

b−K2

≥ K3 − b

K1 − b
.

This identity implies that, for the initial portfolio, the value of the function just below b is
strictly smaller than the value of the function just above b. This can be rearranged to get

K3 ≤ b
K1 − b

(K1 − b) + (b−K2)
+ b

b−K2

(K1 − b) + (b−K2)
.

The actual inequality we use remains the same as in the previous case (2.10), as do some
of the constraints:

0 = α0 + α1(b− S0) − α2(b−K2),(2.19)

0 = α0 + α1(b− S0) − α2(b−K2) + α3(K3 − b) − γ1 + γ2,(2.20)

1 = α0 + α1(K2 − S0) + (α2 − α1)(K2 − b) − α2(K2 − b),(2.21)

1 = α0 + α1(b− S0) + α2(K2 −K1 + b− b) + α3(K3 +K1 − b− b) − γ1 + γ2,(2.22)

γ1 = (K3 − b)α3,(2.23)

γ2 = (b−K3)α3;(2.24)

(2.19) and (2.20) refer still to having an initial payoff of 0 at b and b, and (2.23) and (2.24)
also still relate the size of the digital options to the slopes. The change is in the constraints
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Figure 5. Subhedge HII .

(2.21) and (2.22), which now ensure that the function at K1 and K2, after hitting first b and
then b, takes the value 1. We note that, in the previous example, where (2.17) held, these
are in fact equivalent to (2.13) and (2.14); the fact that (2.17) no longer holds means that we
need to be more specific about the constraints.

The solutions to the above are now
(2.25)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α0 = (bb+S0K3)(K1−K2)−(bK1+S0b)(K3−K2)−(bK2+S0b)(K1−K3)

(b−b)(K1−K3)(b−K2)
,

α1 = K3(K1−K2)−b(K1−K3)−b(K3−K2)

(b−b)(K1−K3)(b−K2)
,

α2 = 1
b−K2

,

α3 = K1−K2

(K1−K3)(b−K2)
,

⎧⎨⎩ γ1 = (K3−b)(K1−K2)

(b−K2)(K1−K3)
,

γ2 = (b−K3)(K1−K2)

(b−K2)(K1−K3)
.
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As before, we write HII(K1,K2,K3) for the random variable on the RHS of (2.10), where
the constants are now specified by (2.25).

HIII : subhedge for b 
 S0 < b. The third case here is the corresponding version of the
above where we have a large value of K3, specifically,

K3 ≥ b
K1 − b

(K1 − b) + (b−K2)
+ b

b−K2

(K1 − b) + (b−K2)
,

and we need to modify (2.21) and (2.22) appropriately:

1 = α0 + α1(b− S0) + (α3 − α2)(b− b),

1 = α0 + α1(b− S0) + α2(K2 −K1 + b− b) + α3(K3 +K1 − 2b) − γ1 + γ2.

The solutions are now
(2.26)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α0 = (bb+S0K3)(K1−K2)−(bK1+S0b)(K3−K2)−(bK2+S0b)(K1−K3)

(b−b)(K3−K2)(K1−b) ,

α1 = K3(K1−K2)−b(K1−K3)−b(K3−K2)

(b−b)(K3−K2)(K1−b) ,

α2 = K1−K3
(K3−K2)(K1−b) ,

α3 = K1−K2
(K3−K2)(K1−b) ,

⎧⎨⎩ γ1 = (K3−b)(K1−K2)
(K3−K2)(K1−b) ,

γ2 = (b−K3)(K1−K2)
(K3−K2)(K1−b) .

As before, we write HIII(K1,K2,K3) for the random variable on the RHS of (2.10), where
the constants are now specified by (2.26).

We note that all three subhedges have very similar structure, and it was convenient to
represent them using a common inequality (2.10). We could further combine them into a
“general” lower bound consisting of (2.10) together with a set of inequalities constraining the
parameter choice, out of which one finds three differing possible extremal sets of inequalities.
However, similarly to the superhedge, we do not think this would offer any new insights or
simplify the presentation.

2.3. Pricing. Consider the double touch digital barrier option with the payoff 1ST≥b, ST≤b.
As an immediate consequence of the superhedging strategies described in section 2.1 we get
an upper bound on the price of this derivative, as follows.

Proposition 2.1. Given the market input (1.3), no-arbitrage (1.4) in the class of portfolios
Lin(X ∪ {1ST≥b, ST≤b}) implies the following inequality between the prices:

(2.27) P1ST≥b, ST≤b ≤ inf
{PHI

(K),PHII
(K ′),PH III

(K1,K2,K3,K4),PH IV
(K1,K4)

}
,

where the infimum is taken over K > b, K ′ < b, and 0 < K4 < b < K3 < K2 < b < K1 and

where H
I
, H

II
, H

III
, and H

IV
are given by (2.1), (2.2), (2.5), and (2.7), respectively.

The purpose of this section is to show that, given the law of ST and the pair of barriers b, b,
we can determine explicitly which superhedges and with what strikes the infimum on the RHS
of (2.27) is achieved. We present formal criteria, but we also use labels, e.g., b
 S0 < b, which
provide an intuitive classification. Furthermore, we will show that we can always construct a
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market model in which the infimum in (2.27) is the actual price of the double barrier option
and therefore exhibit the model-independent least upper bound for the price of the derivative.
Subsequently, an analogous reasoning for subhedging and the lower bound is presented.

Let μ be the market implied law of ST given by (1.5). The barycenter of μ associates with
a nonempty Borel set Γ ⊂ R the mean of μ over Γ via

(2.28) μB(Γ) =

∫
Γ uμ(du)∫
Γ μ(du)

.

For w < b and z > b let ρ−(w) > b and ρ+(z) < b be the unique points such that the intervals
[w, ρ−(w)] and [ρ+(z), z] are centered respectively around b and b, that is,

(2.29)

{
ρ− : [0, b] → [b,∞) defined via μB([w, ρ−(w)]) = b,

ρ+ : [b,∞) → [0, b] defined via μB([ρ+(z), z]) = b.

Note that ρ± are decreasing and well defined as μB([0,∞)) = S0 ∈ (b, b). We need to define
two more functions,

(2.30)

{
γ+(w) ≥ b defined via μB

(
[0, w] ∪ [ρ+(γ+(w)), γ+(w)]

)
= b, w ≤ b,

γ−(z) ≤ b defined via μB
(
[γ−(z), ρ−(γ−(z))] ∪ [z,∞)

)
= b, z ≥ b,

so that γ+(·) is increasing, γ−(·) is decreasing, and

γ+(w) ↓ b as w ↓ 0, γ−(z) ↑ b as z ↑ ∞.

Note that γ+ is defined on [0, w0], where w0 = b∧ sup{w < b : γ+(w) <∞}, and similarly γ−
is defined on [z0,∞]. We are now ready to state our main theorem.

Theorem 2.2. Let μ be the law of ST inferred from the prices of vanillas via (1.5), and
consider the double barrier derivative paying 1ST≥b, ST≤b for a fixed pair of barriers b < S0 < b.
Then exactly one of the following is true:

I “b
 S0 < b”: There exists z0 > b such that4

(2.31) γ−(z) ↓ 0 as z ↓ z0 and ρ−(0) ≤ b.

Then there is a market model in which E1ST≥b, ST≤b = EH
I
(ρ−(0)) = P (ρ−(0))

ρ−(0)−b .

II “b < S0 
 b”: There exists w0 < b such that

γ+(w) ↑ ∞ as w ↑ w0 and ρ+(∞) ≥ b.

Then there is a market model in which E1ST≥b, ST≤b = EH
II

(ρ+(∞)) = C(ρ+(∞))

b−ρ+(∞)
.

4Note that here and subsequently, we use ↑ ∞ and ↓ 0 as meaning only the case where the increas-
ing/decreasing sequence is itself finite/strictly positive, so that in (2.31) we strictly mean γ−(z) → 0 as z ↓
z0 and γ−(z) > 0 for z > z0.
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III “b 
 S0 
 b”: There exists 0 ≤ w0 ≤ b such that γ−(γ+(w0)) = w0 and ρ−(w0) ≤
ρ+(γ+(w0)). Then there is a market model in which

E1ST≥b, ST≤b = EH
III(

γ+(w0), ρ+(γ+(w0)), ρ−(w0), w0

)
= α1C

(
γ+(w0)

)
+ α2C

(
ρ+(γ+(w0))

)
+ α3P

(
ρ−(w0)

)
+ α4P

(
w0

)
,

(2.32)

where αi are given in (2.6).

IV “b < S0 < b”: We have b < ρ−(0), b > ρ+(∞), and ρ+(ρ−(0)) < ρ−(ρ+(∞)). Then
there is a market model in which

E1ST≥b, ST≤b = EH
IV (

ρ−(0), ρ+(∞)
)

= α1C
(
ρ−(0)

)
+ α2P

(
ρ+(∞)

)
+ α4,

(2.33)

where αi are given in (2.8).
We present now the analogues of Proposition 2.1 and Theorem 2.2 for the subhedging

case. Whereas above we find an upper bound on the price of the derivative, in this case we
will construct a lower bound.

Proposition 2.3. Given the market input (1.3), no-arbitrage (1.4) in the class of portfolios
Lin(X ∪ {1ST≥b, ST≤b,1{ST>b},1{ST≥b}}) implies the following inequality between the prices:

(2.34) P1ST≥b, ST≤b ≥ sup {PHI(K1,K2),PH II(K1,K2,K3),PH III(K1,K2,K3), 0},

where the supremum is taken over 0 < K2 < b < K3 < b < K1 and HI ,HII ,HIII are given
by (2.10) and the solutions to the relevant set of equations: (2.18), (2.25), and (2.26).

Again, an important aspect of (2.34) is that we can in fact show that the bound is tight—
that is, given a set of call prices, there exists a market model under which equality is attained.
Recall that under no-arbitrage the prices of digital calls are essentially specified by our market
input via P1{ST≥b} = −C ′(K).

In order to classify the different states, we make the following definitions. Let μ be the
law of ST implied by the call prices. Fix b < S0 < b, and, given v ∈ [b, b], define

ψ(v) = inf

{
z ∈ [0, b] :

∫
(z,b)∪(v,b)

uμ(du) + b

(
b− S0

b− b
− μ((z, b) ∪ (v, b))

)
= b

b− S0

b− b
and μ((z, b) ∪ (v, b)) ≤ b− S0

b− b

}
,(2.35)

θ(v) = sup

{
z ≥ b :

∫
(b,v)∪(b,z)

uμ(du) + b

(
S0 − b

b− b
− μ((b, v) ∪ (b, z))

)
= b

S0 − b

b− b
and μ((b, v) ∪ (b, z)) ≤ S0 − b

b− b

}
,(2.36)

where we use the convention sup{∅} = −∞, inf{∅} = ∞. The functions ψ and θ have a
natural interpretation in terms of embedding properties used in the proofs in section 4. For
example, the definition of ψ ensures that, on the set where ψ(v) �= ∞, we can diffuse all the
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mass initially from S0 to {b, b} and then embed from b to (ψ(v), b)∪ (v, b) and a compensating
atom at b with the remaining mass.

The functions ψ and θ are both decreasing on the sets {v ∈ [b, b] : ψ(v) < ∞} and
{v ∈ [b, b] : θ(v) > −∞}, which are both closed intervals. Specifically, we will be interested in
the region where both the functions allow for a suitable embedding; define

v = min
{

sup{v ∈ [b, b] : ψ(v) <∞}, sup{v ∈ [b, b] : θ(v) > −∞}},
v = max

{
inf{v ∈ [b, b] : ψ(v) <∞}, inf{v ∈ [b, b] : θ(v) > −∞}},(2.37)

κ(v) = b
θ(v) − b

θ(v) − b+ b− ψ(v)
+ b

b− ψ(v)

θ(v) − b+ b− ψ(v)
,

where sup{∅} = −∞ and inf{∅} = ∞.

Theorem 2.4. Let μ be the law of ST inferred from the prices of vanillas via (1.5), consider
the double barrier derivative paying 1ST≥b, ST≤b for a fixed pair of barriers b < S0 < b, and

recall (2.35)–(2.37). Then exactly one of the following is true:

I “b < S0 < b”: We have v ≥ v, and there exists v0 ∈ [v, v] such that κ(v0) = v0. Then
there exists a market model in which

E1ST≥b, ST≤b = EHI(θ(v0), ψ(v0))

= α0 + α2(C(θ(v0)) − C(ψ(v0))) + γ2D(b) − γ1D(b)(2.38)

+ α3

[
C(b) + C(b) − C(v0) − C(θ(v0))

]
,

where D(x) is the price of a digital option with payoff 1{ST≥x} and the values of
α0, α2, α3, γ1, γ2 are given by (2.18).

II “b < S0 
 b”: We have v ≥ v and v < κ(v). Then there exists a market model in
which

E1ST≥b, ST≤b = EHII(θ(v), ψ(v), v)

= α0 + α2(C(θ(v)) − C(ψ(v))) + γ2D(b) − γ1D(b)(2.39)

+ α3

[
C(b) + C(b) − C(v) − C(θ(v))

]
,

where D(x) is the price of a digital option with payoff 1{ST≥x} and the values of
α0, α2, α3, γ1, γ2 are given by (2.25).

III “b 
 S0 < b”: We have v ≥ v and v > κ(v). Then there exists a market model in
which

E1ST≥b, ST≤b = EHIII(θ(v), ψ(v), v)

= α0 + α2(C(θ(v)) − C(ψ(v))) + γ2D(b) − γ1D(b)

+ α3

[
C(b) + C(b) − C(v) − C(θ(v))

]
,

where D(x) is the price of a digital option with payoff 1{ST≥x} and the values of
α0, α2, α3, γ1, γ2 are given by (2.26).
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IV “b 
 S0 
 b”: We have v < v. Then there exists a market model in which
E1ST≥b, ST≤b = 0.

Furthermore, in cases I – III we have v = inf{v ∈ [b, b] : ψ(v) <∞} ≤ sup{v ∈ [b, b] : θ(v) >
−∞} = v.

3. Applications and practical considerations.

3.1. Finitely many strikes. One important practical aspect where reality differs from the
theoretical situation described above concerns the availability of calls with arbitrary strikes.
Generally, calls will only trade at a finite set of strikes, 0 = x0 ≤ x1 ≤ · · · ≤ xN (with
x0 = 0 corresponding to the asset itself). It is then natural to ask: how does this affect the
hedging strategies introduced above? In full generality, this question results in a rather large
number of “special” cases that need to be considered separately (for example, the case where
no strikes are traded above b, or the case where there are no strikes traded with b < K < b).
In addition, there are differing cases, dependent on whether the digital options at b and b are
traded. Consequently, we will not attempt to give a complete answer to this question, but
will consider only the cases where there are “comparatively many” traded strikes and will
assume that digital calls are not available to trade. Furthermore, we will apply the theorems
of section 2 to measures with atoms. It should be clear how to do this, but a formal treatment
would be rather lengthy and tedious, with some extra care needed when the atoms are at the
barriers. In addition, as noted in Cox and Ob�lój [14], there are some rather technical issues
relating to forms of arbitrage that need to be carefully considered for some boundary cases.
For that reason we state the results of this section only informally.

Mathematically, the presence of atoms in the measure μ means that the call prices are no
longer twice differentiable. The function is still convex, but we now have possibly differing
left and right derivatives for the function. The implication for the call prices is the following:

μ([x,∞)) = −C ′
−(K) and μ((x,∞)) = −C ′

+(K).

In particular, atoms of μ will correspond to “kinks” in the call prices.
The first remark to make in the finite-strike case is that, if we replace the supremum/infimum

over strikes that appear in expressions such as (2.27) and (2.34) by the maximum/minimum
over traded strikes, then the arguments that conclude that these are lower/upper bounds on
the price are still valid. The argument breaks down only when we wish to show that these are
the best possible bounds. To try to replace the latter, we now need to consider which models
might be possible under the given call prices. Our approach will be based on the following
type of argument:

(i) suppose that, using only calls and puts with traded strikes, we may construct H̃ i for

i ∈ {I, . . . , IV } such that H̃ i ≥ H
i

as a function of ST ;
(ii) suppose further that we can find an admissible call price function C(K), K > 0,

which agrees with the traded prices and such that in the market model (Ω,F , (Ft),P∗)

associated by Theorem 2.2 with the upper bound (2.27) we have H̃ i(ST ) = H
i
(ST ),

P∗-a.s.;
then the smallest upper bound on the price of a digital double touch barrier option is the
cost of the cheapest portfolio H̃ i. This is fairly easy to see: clearly the price is an upper
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Kxj xj+1

Figure 6. Possible call price surfaces as a function of the strike. The crosses indicate the prices of traded
calls, and the solid line corresponds to the upper bound, which corresponds to placing all possible mass at traded
strikes. The lower bound on the interval (xj , xj+1) is indicated by the dotted line, and the dashed line indicates
the surface we will choose when we wish to minimize the call price at K. In this case, we note that there will
be mass at K and xj but not at xj+1. There is a second case where K is below the kink in the dotted line, when
the resulting surface would place mass at K and xj+1 but not at xj .

bound on the price of the option, since H̃ i superhedges, and under P∗ this upper bound
is attained. Indeed, by assumption on H̃ i, in the market model associated with P∗ we have

PH̃ i = E∗H̃ i = E∗H i
= PH i

. Consequently, by Theorem 2.2, the price of the traded portfolio
H̃ i and the price of the digital double touch barrier option are equal under the market model

P∗. Note that in (ii) above it is in fact enough to have H̃ i(ST ) = H
i
(ST ) just for the H

i
which

attains equality in (2.27).

We now wish to understand the possible models that might correspond to a given set of
call prices {C(xi); 0 ≤ i ≤ N}. Simple arbitrage constraints (see, e.g., Carr and Madan [11] or
Theorem 3.1 in Davis and Hobson [16]5) require that the call prices at other strikes (if traded)
are such that the function C(K) is convex and decreasing. This allows us to deduce that, for
K such that xj < K < xj+1 for some j, we must have

C(K) ≤ C(xj)
xj+1 −K

xj+1 − xj
+ C(xj+1)

K − xj
xj+1 − xj

,(3.1)

C(K) ≥ C(xj) +
C(xj) − C(xj−1)

xj − xj−1
(K − xj),(3.2)

C(K) ≥ C(xj+1) − C(xj+2) − C(xj+1)

xj+2 − xj+1
(xj+1 −K);(3.3)

see Figure 6 for a graphical representation. These inequalities therefore provide upper and
lower bounds on the call price at strike K, and it can be seen that the upper bound and
lower bound are tight by choosing suitable models: in the upper bound, the corresponding

5We suppose also that our call prices do not exhibit what is termed here as weak arbitrage.
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b b K1K2K3K4 xj xj+1

Figure 7. An optimal superhedge H
III

in the case where only finitely many strikes are traded. The lower
(solid) payoff denotes the optimal construction under the chosen extension of call prices to all strikes, and the
upper (dashed) payoff denotes the payoff actually constructed. Note that, for example, xj is the largest traded
strike below K1, and xj+1 is the smallest traded strike greater than K1.

model places all mass of the law of ST at the strikes xi; in the lower bounds, the larger of
the two possible terms can be attained with a law that places mass at K, and at other xi’s
except, in (3.2), at xj, and, in (3.3), at xj+1. Moreover, provided that there is at least one
traded call between two strikes K,K ′, we can (for example) choose a law that attains the
maximum possible call price at K and the minimum possible price at K ′, while we need at
least two traded strikes between K and K ′ should we wish these both to be able to attain
their minimum possible price. In general, two intermediate strikes will be sufficient for all
constructions, and we will assume that this property holds for all “relevant” points in what
follows.

Consider first the case where we wish to superhedge the double touch option. We will
consider the model P∗ which corresponds (through Theorem 2.2) to the call prices obtained by
linearly interpolating the prices at x0, . . . , xn—in particular, C(K) is the maximum possible
value call prices may take under the assumption of no arbitrage—and assume we are in case

III of Theorem 2.2 so that (2.32) holds. In particular, H
III

would be a perfect hedge if
all call options were traded. The key idea is to consider the portfolio depicted in Figure 7,

where the smaller payoff is the static part of H
III

and the upper payoff is one that may be
constructed using only strikes that are actually traded. Then, although the upper payoff is
strictly larger between xj and xj+1, say, where xj < K1 < xj+1, the points at which this
occurs are not attained by ST since, under P∗, the law of ST is supported only by the points
xi. Consequently, both the upper and lower payoff have a.s. the same payoff under P∗ and

therefore the same expectation and price. Define H̃III to be H
III

with its static part replaced
with the upper payoff in Figure 7. Then H̃III is a superhedge and a perfect hedge under P∗

and hence is the least expensive superhedge. Analogous arguments (with the same choice of

C(K)) hold for the other hedges H
I
, H

II
, and H

IV
.

Consider now the lower bound. To keep things simple we begin by altering slightly the
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problem: rather than the payoff 1ST≥b, ST≤b, we consider a subhedge of the option with payoff

1ST>b, ST<b
.6 Then (2.10) still holds7 with the new term 1ST>b, ST<b

on the left-hand side

(LHS), provided that we modify the digital options on the RHS to 1{ST≥b} and 1{ST>b}. So

we may still consider the optimal portfolio (in all three cases) as being short a collection of
calls at strikes K1,K2, and K3, long calls at b and b, and holding digital options at each of
these points. Intuitively, we should look for a model which will maximize the cost of the calls
at K1,K2, and K3 and minimize the cost at b and b, as well as maximizing the cost of a digital
call at b and minimizing the cost of the digital call at b. The former conditions correspond to
choosing the call prices which give the upper bound (3.1), so we choose the call price which
linearly interpolates C(xi) except when xi ≤ b ≤ xi+1 and xi ≤ b ≤ xi+1. In the latter cases,
we wish to minimize the call price, so we choose the prices corresponding to the appropriate
lower bound (3.2) or (3.3), which have a kink at b and at (exactly) one of its two adjacent
traded strikes, and likewise for b. We note that the prices of the digital calls (which are either
minus the left gradient or minus the right gradient of the call prices at the barrier) will also
now be optimized when they trade in exactly the forms specified above (that is, the digital
call at b pays out only if the asset is greater than or equal to b, while the digital call at b will
pay out if the asset is strictly larger than b at maturity).

The above procedure specifies uniquely a complete set of call prices C(K), which match
the market input and which are our candidate for the largest lower bound among the possible
models. Then we note that a construction similar to that given in Figure 8 will work—the main
difference from the superhedge case is that, at the discontinuity, there are two possible cases
that need to be considered, and the optimal subhedge will depend on behavior of C(K) at the
strikes adjacent to b and b. More precisely, the portfolio given by the dotted line in Figure 8
corresponds to the case when C(K) has no kinks at the traded strikes to the immediate right
of both barriers (i.e., ST has no atoms at these strikes). The other three possibilities are
straightforward modifications. The argument then proceeds as above: in the model given by
Theorem 2.4, subhedgeH i achieves equality in (2.34) (modified to account for the changes from
inequalities to strict inequalities and vice versa), and the portfolio constructed in Figure 8 is
a.s. equal8 to H i, so that they must have the same price. The resulting subhedge, constructed
using only calls and puts with traded strikes, is therefore a hedge under the chosen model and
therefore the optimal lower bound.

6Under the optimal model (see the proofs in section 4), the distribution of ST has atoms at the barriers
which are embedded by mass which has already hit the other barrier. With the modified payoff, 1ST>b, ST<b,
this will still give equality in the subhedge, but this would not have been the case with the original payoff.
One could now consider the option 1ST ≥b, ST ≤b by approximating it with a sequence of payoffs of the form

1ST >b−ε, ST <b+ε, which would (in the optimal embedding) place atoms “just inside the barriers”—it is this
behavior of the “optimal” construction that required us to consider the modified payoff in this case. A more
careful analysis of the behavior in the limit is nontrivial, but the consequences for a similar example can be
seen in Cox and Ob�lój [14].

7Technically, for (2.10) to still hold, we actually need to modify the hitting times so that we consider the
entrance times of, e.g., (0, b) rather than the hitting time of b, and be able to trade forward with strike b at
this stopping time. In practice, this will not be crucial, since, for example, continuity of the asset price means
that this entrance time may be suitably approximated, and it will commonly be the case that the two stopping
times are in fact equal.

8Assuming that the optimal K3 chosen is separated from b and b by a traded call price.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ROBUST HEDGING OF DOUBLE TOUCH BARRIER OPTIONS 163

b b K1K2

Figure 8. An optimal subhedge in the case where only finitely many strikes are traded. The upper (solid)
payoff denotes the optimal construction under the chosen extension of call prices to all strikes, and the lower
(dashed) payoff denotes the payoff actually constructed. Observe that there are two possible constructions at
the discontinuity—which type of construction is optimal will depend on whether the optimal lower bound on the
call price at b or b corresponds to the bound (3.2) or (3.3).

3.2. Toward relaxation of our market assumptions. So far, we have made a number of
idealized assumptions about the setup that will not necessarily be true in an application. In
the previous section, we described how having only finitely many traded strikes may affect
our results; in this section we briefly describe how several other aspects that are not captured
immediately by our assumptions might alter the results presented.

Continuity of paths. Throughout the paper, we have assumed that (St)t≥0 has continuous
paths. In fact we can relax this assumption considerably. First, it is relatively simple
to see that if we assume only that barriers b, b are crossed in a continuous manner, then
all of our results remain true. Second, if we make no continuity assumptions,9 then
all our superhedges still work—jumping over the barrier only makes the appropriate
forward transaction more profitable. In contrast, our subhedges do not work, and
lower bounds on prices are trivially zero and are attained in the model where St = S0
for all t < T , and then it jumps to the final position ST .

Zero interest rates. The assumption that we are working with a forward price (or, more
specifically, that interest rates are zero) is an important assumption for the methods
we have used. Without assuming that the cost-of-carry is zero, the position of the
barriers, after discounting, will alter over the lifetime of the option, and our methods
are not easily adapted to this setting. There are perhaps two possible resolutions: the
first is to look at the “worst-case” barrier values and compute the upper and lower
bounds using these values, resulting in upper and lower estimates on the value of the
option. Note, however, that there may not be models that correspond to these worst-
case scenarios. Second, a more practical response may be to carry out a model-specific
adjustment to the model-independent bounds, which may involve something along the
following lines: choose an “average” interest adjusted value for each of the barriers
and solve the robust problem for these barriers (and discounted stock price process).

9We always suppose that the processes have right-continuous paths with left limits.
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The idea is to use this as a basic hedge, and, in general, one should expect that the
performance of the hedge may be fairly close to a super- or subhedge. Now choose
your favorite model, look at the paths where the super- or subhedge fails, and add in
a model-specific adjustment. If the choice of model which one makes is moderately
good, one would expect an adjustment that is of relatively small transactional size
compared to the model-independent component, but which performed relatively well
across most models, thus maintaining the relatively robust nature of the initial hedge.

Additional traded options. In practice, in most markets where digital double barrier op-
tions are traded, there will be other options traded—for example, one-touch barrier
options or call options with earlier maturities. In both of these cases, one would ex-
pect these options to include further information about the price of the double-barrier
option which, one may hope, would impact the resulting price bounds and hedges. In
theory, we believe this to be the case; however, it would seem that a complete analysis
along the lines carried out in this work that also included these extra options would be
much more involved—this additional complexity can be seen, for example, in the work
of Brown, Hobson, and Rogers [7], where including calls traded at a single intermediate
time considerably complicates the picture established in Hobson [28]. In this case, the
most natural question to ask would appear to be: how might the bounds and hedges
alter if, in addition to the call prices with the same maturity, one could also trade in
one-touch barrier options with the same maturity? From a theoretical point of view,
experience with Skorokhod embeddings suggests this may be a very hard problem, but
it is an interesting direction for further research.

3.3. Hedging comparisons. In practice, one would expect that the prices we derive as
upper and lower bounds using the techniques of this paper will be rather far apart and well
outside typical bid/ask spreads. Consequently, the use of these techniques as a method for
pricing is unlikely to be successful, although it will give a good indication of the size of the
model-risk associated with a given model-based price. However, our techniques also provide
superhedging and subhedging strategies that may be helpful. Consider a trader who has sold
a double barrier option (at a price determined by some model perhaps) and who wishes to
hedge the resulting risk. In a Black–Scholes world, the trader could remove the risk from
his position by delta-hedging the short position. However, there are a number of practical
considerations that would interfere with such an approach:

Discrete hedging. A notable source of errors in the hedge will be the fact that the hedging
portfolio cannot be continuously adjusted; rather the delta of the position might be
adjusted on a periodic basis, resulting in an inexact hedge of the position. While
including a gamma hedge could improve this, the hedge will never be perfect. In addi-
tion, there is an organizational cost (and risk) to setting up such a hedging operation
that might be important.

Transaction costs. A second consideration is that each trade will incur a certain level of
transaction costs. These might be tiny for delta-hedging, but this is no longer the case
for vega-hedging. To minimize the total transaction costs, the trader would like to be
able to trade as infrequently as possible. Of course, this means that there will be a
necessary trade-off with the discretization errors incurred above.
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Model risk. The final concern for the trader would be: am I hedging with the correct model?
Using an incorrect model will of course result in systematic hedging errors due to, e.g.,
incorrectly estimated volatility, but could also lead to large losses should the model
fail to incorporate structural effects such as jumps. A delta-hedge would typically
be improved with a vega-hedge, which in turn raises the issue of transaction costs as
mentioned above.

We claim that the constructions developed in section 2 address some of these issues: there is
no need for regular recalculation of the Greeks of the position, although the breaching of the
barrier still requires monitoring; since there are only a small number of transactions, it seems
likely that the transaction costs may be reduced; our hedge has been derived using robust
techniques, so that we will still be hedged even if the market does not behave according to our
initial model, and behavior such as jumps (at least for the upper bound of the double touch)
will not affect this.

A further consideration that will be of importance to a hedger is the distribution of the
returns, even before the transaction costs are deducted. Under the hedging strategy suggested
above, if the trader has sold the option using the “correct” price (plus a small profit) and set up
the robust superhedging strategy suggested at a higher price, on average the trader will come
out even, as he will if he delta hedges. His comparison between the approaches would then
come down to the respective risk involved in the different hedges. For a delta/vega-hedge
this is typically symmetric about zero; however, the robust hedge will be very asymmetric
since it is bounded below. If the trader is particularly worried about the possible tail of
his trading losses as a measure of risk, this strict cut-off could be very advantageous. The
delta/vega-hedge, on the other hand, has the appeal of having a lower variance of hedging
errors.

Of course a variety of such strategies (typically known as static, semistatic, or robust)
have been suggested in the literature, under a variety of more or less restrictive assumptions
on the price process, and mostly for single barrier options and variants such as knock-out calls.
We have already mentioned the paper by Brown, Hobson, and Rogers [8], which makes very
limited restrictions on the underlying price process. More restrictive is the work of Bowie and
Carr [5], and subsequent papers of Carr and Chou [9] and Carr, Ellis, and Gupta [10]. Here
the authors assume that the volatility satisfies a symmetry assumption, and as a consequence
one can, for example, hedge a knock-out call with the barrier above the strike by holding the
vanilla call and being short a call at a certain strike above the barrier. By the assumption on
the volatility, whenever the underlying asset hits the barrier, both calls have the same value,
and the position may be closed out for zero value. A related technique is due to Derman,
Ergener, and Kani [18], followed up by Andersen, Andreasen, and Eliezer [1] and Fink [23].
The idea here is to use other traded options to make the value of the hedging portfolio equal
to zero along the barrier when liquidated. In the simplest form, a portfolio of calls above
the barrier at different strikes and/or maturities is purchased so that the portfolio value at
selected times before maturity is zero. Extensions allow this idea to be used for stochastic
volatility, and even to cover jumps, at the expense of needing possibly a very large portfolio of
options. More recently, work of Nalholm and Poulsen [33] unifies both these approaches and
allows a fairly general set of asset dynamics, as does work by Giese and Maruhn [25], where
the authors find an optimal portfolio by setting up an optimization problem. Note, however,
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that all these strategies assume a known model for the underlying asset and also that the
hedging assets will be liquid enough for the portfolio to be liquidated at the price specified
under the model. In addition, since some of the hedging portfolios can involve a large number
of options, it is not clear that the static hedges here will be efficient at resolving the issues
of transaction costs (and operational simplicity) or model risk. A numerical investigation of
the performance of a range of these hedges in practice has been conducted in Engelmann
et al. [21], and similar investigations for a different class of static hedges appear in Davis,
Schachermayer, and Tompkins [17] and Tompkins [38].

There are also more classical, theoretical approaches to the problem of hedging where the
problem is considered in an incomplete market (without which, of course, a perfect hedge
would be possible). In this situation (see, for example, Föllmer and Schweizer [24]), one
wants to solve an optimal control problem where the aim is to minimize the “risk” of the
hedging error, where risk is interpreted suitably (perhaps with regards to a utility function or
a risk measure). More recently, in a combination of the static and dynamic approaches, Ilhan,
Jonsson, and Sircar [30] have considered the problem of risk minimization over an initial static
portfolio and a dynamic trading strategy in the underlying asset.

The most notable difference between the studies described above and the ideas of the
previous sections is that we make very few modeling assumptions on the underlying asset,
whereas most of the approaches listed require a single model to be specified, with respect
to which the results will then be optimal. In particular, these techniques are unable to say
anything about hedging losses should the assumed model actually be incorrect.

Of course, the criteria under which we have constructed our hedges—that they are the
smallest robust superhedging strategy, or the greatest robust subhedging strategy—do not
necessarily mean that the behavior of the hedges in “normal” circumstances will be particularly
suitable: we would expect that the hedge would perform best in extreme market conditions;
however, in order for it to be suitable as a hedge against model risk, one would also want the
performance of the hedge to generally be reasonable. To see how this strategy compares, we
will now consider some Monte Carlo–based comparisons with the standard delta/vega-hedging
techniques. The comparisons will take the following form:

(i) We choose the Heston model for the “true” underlying asset and compute the time-0
call prices under this model at a range of strike prices, and the time-0 price of a double
barrier option.

(ii) We compute the optimal super- and subhedges for the digital double touch barrier
option based on the observed call prices, and suppose that the hedger purchases these
portfolios using the cash received from the buyer (and borrowing/investing the differ-
ence between the portfolios).

(iii) For comparison purposes, we also hedge the option using a suitable delta/vega-hedge
with daily updating. For the robust hedges, we will consider both the case where
hitting of the barrier is monitored daily and the case where it is monitored exactly.

In the numerical examples, we assume that the underlying process is the Heston stochastic
volatility model (Heston [26])

(3.4)

{
dSt =

√
vtStdW

1
t , S0 = S0, v0 = σ0

dvt = κ(θ − vt)dt + ξ
√
vtdW

2
t , d〈W 1,W 2〉t = ρdt,
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with parameters

(3.5) S0 = 1.4990, σ20 = 0.0110, κ = 3.8626, θ = 0.0169, ξ = 0.5004, and ρ = −0.1850.

These parameters, taken from Ulmer [39], resulted from the calibration of a Heston model
to market prices of European options with different strikes and maturities (a total of 176
options) on the EUR/USD foreign exchange spot rate on January 14, 2010. This gives us
realistic dynamics for our hypothetical forward market, which in fact is not far from the real
spot market, given that 1-year interest rates were then similar for EUR and USD (deposit
rates reported by Bloomberg were respectively 1.1% and 0.905%).

Transactions in St carry a 0.15% transaction cost, and buying or selling call/put options
carries a 1% transaction cost.10 The delta/vega-hedge is constructed using the Black–Scholes
delta of the option, but using the at-the-money implied volatility assuming that the call
prices are correct (i.e., they follow the Heston model). While not perfect as a hedge, empirical
evidence as in Dumas, Fleming, and Whaley [19] or Engelmann, Fengler, and Schwendner [22]
suggests that the hedge is reasonable even without the vega component, although it is also
the case that more sophisticated methods should result in an improvement of this benchmark.

We consider a short and a long position in a digital double touch barrier option with
payoff 1ST≥b, ST≤b for each combination of upper and lower barriers b = 1.47, 1.52, 1.57 and
b = 1.35, 1.39, 1.43. We then compare hedging performance of our robust super- and subhedges
and the standard delta/vega-hedges by running 20,000 Monte Carlo simulations for each of
the nine combinations of upper and lower barrier, and analyzing the resulting loss/gains from
trading.11 We note that whether the barrier is monitored exactly or daily (so that the trades
in the robust hedges may not occur exactly at the barrier) will have a noticeable difference
on the cumulative distribution function. To highlight this difference, the daily hedge will be
type (A) and the exact hedge type (B).

The cumulative distributions of hedging errors for a selection of barrier pairs are given
in the graphs in Figure 9. Figure 9 shows that the robust super- and subhedges introduced
in this paper can incur losses in a manner similar to the delta/vega strategies. However,
the comparatively large losses are less frequent for the robust strategies in comparison to the
delta/vega-hedging strategy. Indeed, in Table 1 we show that an agent with an exponential
utility12 U(x) = 1−exp(−x) would systematically, strongly prefer the error distribution of our
hedges to that of the delta/vega-hedge. Note also that if we allow our hedges to monitor the
barrier crossings exactly, the corresponding cumulative distributions of hedging errors have
losses which are bounded below. It is interesting, however, to note that in terms of utility of
hedging errors (cf. Table 1) this doesn’t really change the performance of our hedges.

Finally, we consider how the performance of our hedges compares if we vary the barrier
levels. The hedge for the short position fairly consistently outperforms delta/vega-hedging.
In the long position, on the other hand, the hedge appears to perform worse as the barriers

10The latter has a predominant effect in our simulations, and the results below remain essentially the same
even when transactions in St carry no transaction costs.

11The resulting hedging errors were mean-adjusted as in Tompkins [38] for consistency. The adjustments
are of order 0.01 and have no qualitative influence on our results.

12We take the parameter α in the utility function U(x) = 1−exp(−αx) to be 1, but a sensible parametrization
may be to take α = 10−6 and to consider a contract with notional value £106.
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(a) Type I subhedge. Barriers at 1.52 and 1.39.
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(b) Type III subhedge. Barriers at 1.52 and 1.43.
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(c) Type III subhedge. Barriers at 1.47 and 1.35.
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(d) Type II superhedge. Barriers at 1.57 and 1.39.
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(e) Type III superhedge. Barriers at 1.52 and 1.39.
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(f) Type IV superhedge. Barriers at 1.47 and 1.43.

Figure 9. Cumulative distributions of hedging errors under different scenarios of a long position (a)–(c)
and a short position (d)–(f) in a double touch option with barriers at different levels under the Heston model
(3.4)–(3.5). The robust hedge (A) monitors barrier crossing daily, while the robust hedge (B) is allowed to
monitor exactly the moments of barrier crossings.
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Table 1
Comparison of exponential utilities of hedging errors of positions (Pos) in double touch options under

Heston model (3.4)–(3.5) resulting from delta/vega (Δ/V) hedging and our robust (Rob) super- or subhedging
strategies. The robust hedge (A) monitors barrier crossing daily, while the robust hedge (B) is allowed to monitor
exactly the moments of barrier crossings. Type of the robust hedge and the strikes used in its construction are
reported.

Barriers Pos Δ/V Rob (A) Rob (B) Type K1 K2 K3 K4

1.47–1.35 Short −0.3258 −0.0690 −0.0674 IV 1.5017 1.1611
1.47–1.35 Long −0.3278 −0.1774 −0.1767 III 1.7421 1.2546 1.416

1.47–1.39 Short −0.3183 −0.0605 −0.0589 IV 1.5818 1.1611
1.47–1.39 Long −0.3180 −0.1139 −0.1117 III 1.6753 1.2947 1.4416

1.47–1.43 Short −0.1666 −0.0414 −0.0406 IV 1.7487 1.1611
1.47–1.43 Long −0.1698 −0.1550 −0.1495 I 1.5751 1.3214 1.4549

1.52–1.35 Short −0.3272 −0.0501 −0.0483 III 1.5551 1.4883 1.4015 1.2880
1.52–1.35 Long −0.3263 −0.0609 −0.0623 III 1.9558 1.0275 1.4549

1.52–1.39 Short −0.3750 −0.0824 −0.0786 III 1.5885 1.4616 1.4416 1.3214
1.52–1.39 Long −0.3799 −0.0779 −0.0795 I 1.7287 1.1477 1.4549

1.52–1.43 Short −0.3121 −0.0668 −0.0654 IV 1.7487 1.3414
1.52–1.43 Long −0.3169 −0.1107 −0.1082 II 1.6018 1.2078 1.4549

1.57–1.35 Short −0.2363 −0.0313 −0.0303 III 1.6152 1.5351 1.3748 1.3214
1.57–1.35 Long −0.2348 −0.0421 −0.0445 IV

1.57–1.39 Short −0.2850 −0.0441 −0.0423 III 1.6486 1.5150 1.4149 1.3614
1.57–1.39 Long −0.2875 −0.0603 −0.0617 II 1.9758 0.9341 1.4349

1.57–1.43 Short −0.2702 −0.0660 −0.0636 III 1.7755 1.4683 1.4416 1.4149
1.57–1.43 Long −0.2795 −0.0841 −0.0838 II 1.6619 1.1277 1.4349

get closer together. However, for the parameters given, the robust strategy appears to con-
sistently outperform the delta/vega strategy. Naturally when the barriers vary, the types of
super-
and subhedges which we use change. Table 1 also shows which types are optimal depend-
ing on the values of the barriers, and indicates the values of the corresponding strikes. This
provides an illustration of the intuitive labels we gave to each case in section 2.

The results presented in this section clearly show that the hedges we advocate are in
many circumstances an improvement on the classical hedges. We stress that this was meant
to be an indicative enquiry and not a comprehensive numerical study of performance of our
robust hedging methods. Naturally, there is a large literature (e.g., Hodges and Neuberger
[29], Cvitanić and Karatzas [15], Whalley and Wilmott [41]) on more sophisticated techniques
that might offer a considerable improvement over the classical hedge we have implemented.
In our case the delta/vega-hedge was severely impacted by high transaction costs associated
with trading options, and it is possible that such improvements would reverse the relative
performance of the hedges. Further, it would be interesting to compare the performance
of our hedges against various static and semistatic hedges cited above. Such study could
feature different market scenarios and levels of model misspecification as well as more involved
performance measures than just expected utility for one value of risk aversion. We believe
this is an interesting avenue for further research.

However, we hope that the numerical evidence presented above does at least convince
the reader that the robust hedges are competitive with dynamic hedging, and that their



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

170 A. M. G. COX AND JAN OB�LÓJ

differing nature means that they might well prove a more suitable approach in situations
where market conditions are dramatically different from the idealized Black–Scholes world—
e.g., large transaction costs, illiquidity, or parameter uncertainty. There also seems scope for
a more sophisticated approach based on the robust hedges but allowing for some model-based
trading: for example, a hybrid of a robust portfolio and some dynamic trading could be used
to reduce some of the overhedge in the simple robust hedge. Finally, our simulations include
only a very simple form of model misspecification. We would expect that if a trader believes
in a model which is significantly different from the real world model, in particular if real
world dynamics change dramatically within the time horizon [0, T ], then our robust hedging
strategies would outperform hedging “using the wrong model.”

4. Proofs. Let (Bt)t≥0 be a standard real valued Brownian motion starting from B0,
defined on a filtered probability space (Ω,F , (Ft),P) satisfying the usual hypothesis. We
recall that for any probability measure ν on R+ with νB(R+) = B0 we can find a stopping
time τ such that Bτ ∼ ν and (Bt∧τ ) is a uniformly integrable martingale. Such stopping
is simply a solution to the Skorokhod embedding problem (SEP), and a number of different
explicit solutions are known; see Ob�lój [34] for an overview of the domain. Note also that
when ν([a, b]) = 1 then (Bt∧τ ) is a uniformly integrable martingale if and only if Bt ∈ [a, b],
t ≤ τ , a.s. In the remainder, when speaking about embedding a measure we implicitly mean
embedding it in a uniformly integrable (UI) manner in (Bt).

Recall that if B0 = S0 and τ is an embedding of μ, then St := Bτ∧ t
T−t

, t ≤ T , is a

market model which matches the market input (1.3). In what follows we will be constructing
embeddings τ of μ such that the associated market model attains equality in our super- or
subhedging inequalities. Stopping times τ will often be compositions of other stopping times
embedding (rescaled) restrictions of μ or some other intermediary measures. Unless specified
otherwise, the choice of particular intermediary stopping times has no importance, and we do
not specify it—one’s favorite solution to the SEP can be used.

Proof of Theorem 2.2. We start with some preliminary lemmas and then prove Theo-
rem 2.2. In the body of the proof, cases I – IV refer to the cases stated in Theorem 2.2. We

note that, by considering z0 = γ+(w0), III is equivalent to

There exists z0 ≥ b such that γ+(γ−(z0)) = z0 and ρ+(z0) ≥ ρ−(γ−(z0)).

We recall, without proof, straightforward properties of the barycenter function (2.28) which
will be useful in what follows.

Lemma 4.1. The barycenter function defined in (2.28) satisfies
(i) μB(Γ) ≥ a, Γ1 ⊂ (0, a) =⇒ μB(Γ \ Γ1) ≥ a,
(ii) a ≤ μB(Γ) ≤ μB(Γ1) ≤ b and μ(Γ ∩ Γ1) = 0 =⇒ a ≤ μB(Γ ∪ Γ1) ≤ b.

We separate the proof into two steps. In the first step we prove that exactly one of I – IV
holds. In the second step we construct the appropriate embeddings and market models which
achieve the upper bounds on the prices.

Step 1. This step is divided into four possible cases, (a)–(d), corresponding to four regions

in which b, b may lie. For each region, we shall show that exactly one of the instances I – IV
will hold, and therefore in general exactly one them can hold. We start with technical lemmas
which are proved after the cases are considered.
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Lemma 4.2. If ρ+(γ+(w0)) < ρ−(w0) for some w0, then ρ+(γ+(w)) < ρ−(w) for all w ≤ w0.
Similarly, if ρ−(γ−(z0)) > ρ+(z0) for some z0, then ρ−(γ−(z)) > ρ+(z) for all z ≥ z0.

Lemma 4.3. If b ≥ ρ−(0) and b ≤ ρ+(∞), then at least of one of the functions γ± is

bounded on its domain. In particular at most one of I and II may be true.

Lemma 4.4. IV implies not III . III implies not ( I or II ).

Case (a): b ≥ ρ−(0), b ≤ ρ+(∞). We note first that the case IV is not possible, and

that the second half of the conditions for I and II are trivially true. Suppose that neither

I nor II holds. If we have γ−(b) = 0, then III holds with w0 = 0, and if γ+(b) = ∞,

then III holds with w0 = b. We may thus assume that γ+(·) is bounded above and γ−(·) is
bounded away from zero, which in turn implies

γ−(γ+(b)) < b and γ−(γ+(0)) > 0.

The function γ−(γ+(·)) is continuous and increasing on (0, b], and thus we must have w0

such that γ−(γ+(w0)) = w0. Finally, suppose that for such a w0 we in fact have ρ−(w0) >
ρ+(γ+(w0)); then Lemma 4.2 implies ρ−(0) > ρ+(γ+(0)) = b, contradicting our assumptions.

That only one of the cases I – III holds now follows from Lemmas 4.3 and 4.4.

Case (b): b ≥ ρ−(0), b > ρ+(∞). It follows that neither II nor IV is possible. Observe
that Lemma 4.2 implies that ρ−(w) ≤ ρ+(γ+(w)) for all w ≤ b—if this were not true, then

b = ρ+(γ+(0)) < ρ−(0). Suppose further that I does not hold. If γ−(b) = 0, then III holds
with w0 = 0.

So assume instead that γ−(·) is bounded away from zero, and therefore that w < γ−(γ+(w))
for w close to zero. If we show also that γ−(γ+(ρ+(∞))) ≤ ρ+(∞), then by continuity

of γ−(γ+(·)) there exists a suitable w0 for which III holds. Let Γ1 = (ρ+(∞),∞) and
Γ2 = (ρ+(γ+(ρ+(∞))), γ+(ρ+(∞))). We have by definition μB(Γ1) = b = μB(Γ2) so that
μB(Γ1 \ Γ2) = b, since Γ2 ⊂ Γ1. Let Γ = (ρ+(∞), ρ−(ρ+(∞))) ∪ (γ+(ρ+(∞)),∞) and note
that μB(Γ) = b is equivalent to γ−(γ+(ρ+(∞))) = ρ+(∞). Noting that ρ−(w) ≤ ρ+(γ+(w))
for all w ≤ b implies ρ−(ρ+(∞)) ≤ ρ+(γ+(ρ+(∞))), and using Lemma 4.1, we have

μB
(
Γ
)

= μB

((
Γ1 \ Γ2

) \ (ρ−(ρ+(∞)), ρ+(γ+(ρ+(∞)))
)) ≥ b,

which implies that γ−(γ+(ρ+(∞))) ≤ ρ+(∞). As previously, it remains to note that Lemma 4.4

implies exclusivity of III and I .
Case (c): b < ρ−(0), b ≤ ρ+(∞). This case is essentially identical to Case (b) above.

Case (d): b < ρ−(0), b > ρ+(∞). Note that we now cannot have either of I or II .

Suppose further that IV does not hold—or rather, the weaker:

ρ+(ρ−(0)) > b,

ρ−(ρ+(∞)) < b.

Let Γw = (w, ρ−(w)) ∪ (b,∞), and observe that μB(Γw) decreases as w decreases, provided
that ρ−(w) < b. We have

μB(Γρ+(∞)) ≥ μB((ρ+(∞),∞)) = b.
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Our assumption ρ−(ρ+(∞)) < b < ρ−(0) implies that ρ−1
− (b) ∈ (0, ρ+(∞)) so that Γρ−1

− (b) �

(ρ+(∞),∞) and in consequence μB(Γρ−1
− (b)) < b. Using continuity of w → μB(Γw), we

conclude that there exists a w1 ∈ (ρ−1
− (b), ρ+(∞)] with μB(Γw1) = b, or equivalently γ−(b) =

w1. A symmetric argument implies that γ+(b) > 0. We conclude, as in Case (a), that there
exists a w0 such that γ−(γ+(w0)) = w0.

It remains to show that if IV does not hold, and the first half of the condition for

III holds, then so too does the second condition. Suppose that w0 is a point satisfying
γ−(γ+(w0)) = w0, and suppose for a contradiction that ρ−(w0) > ρ+(γ+(w0)). Since the sets
(ρ+(γ+(w0)), γ+(w0)) and (w0, ρ−(w0)) ∪ (γ+(w0),∞) are both centered at b and overlap, it
follows that μB([w0,∞)) > b and in consequence ρ+(∞) < w0. Symmetric arguments imply
that ρ−(0) > γ+(w0). Applying ρ−(·), ρ+(·) to these inequalities, we further deduce that

ρ−(w0) < ρ−(ρ+(∞)),

ρ+(ρ−(0)) < ρ+(γ+(w0)),

which, together with the assumption that ρ−(w0) > ρ+(γ+(w0)), implies

ρ+(ρ−(0)) < ρ+(γ+(w0)) < ρ−(w0) < ρ−(ρ+(∞)),

contradicting IV not holding. Hence Step 1 is complete once we prove the lemmas stated at
the start, as follows.

Proof of Lemma 4.2. Consider w < w0 with ρ+(γ+(w0)) < ρ−(w0). The latter implies
μB((w0, ρ+(γ+(w0)))) < b, so that μB((0, γ+(w0))) < b. Suppose now that ρ+(γ+(w)) ≥
ρ−(w). As ρ− is decreasing and γ+ is increasing, we have ρ−(w0) < ρ−(w) ≤ ρ+(γ+(w)) and
b < γ+(w) < γ+(w0). We then have

b = μB
(
(0, ρ−(w)) ∪ (ρ+(γ+(w)), γ+(w))

)
= μB

(
(0, γ+(w0)) \

[(
ρ−(w0), ρ+(γ+(ω))

) ∪ ((γ+(w), γ+(w0))
)])

≤ μB
(
(0, γ+(w0))

)
< b,

which gives the desired contradiction.
Proof of Lemma 4.3. Define Γ = (0, b) ∪ (b,∞) and consider μB(Γ). If both I and II

hold, or more generally if γ−(z0) = 0 and γ+(w0) = ∞ for some z0 ≥ b, w0 ≤ b, we have

(4.1) μB((0, ρ−(0)) ∪ (b,∞)) ≥ μB((0, ρ−(0)) ∪ (z0,∞)) = b

and

(4.2) μB((0, b) ∪ (ρ+(∞),∞)) ≤ μB((0, w0) ∪ (ρ+(∞),∞)) = b.

Now suppose μB(Γ) < b. Then

μB(Γ ∪ (b, ρ−(0))) < b,

contradicting (4.1), and similarly if μB(Γ) > b,

μB(Γ ∪ (ρ+(∞), b)) > b

contradicts (4.2).
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Proof of Lemma 4.4. IV =⇒ not III : Assume that both IV and III hold. From
the definition of γ+(w0) and ρ−(w0) we have that μB(Γ+) = b for Γ+ = (0, ρ−(w0)) ∪
(ρ+(γ+(w0)), γ+(w0)). This implies that γ+(w0) ≥ ρ−(0) since otherwise

μB(Γ+) = μB

((
0, ρ−(0)

) \ {(ρ−(w0), ρ+(γ+(w0))
) ∪ (γ+(w0), ρ−(0)

)})
> b,

where we also used the assumption ρ−(w0) ≤ ρ+(γ+(w0)). Likewise, using γ−(γ+(w0)) = w0,
we see that w0 ≤ ρ+(∞). Applying ρ− to the last inequality and using our assumptions, we
obtain

ρ+(ρ−(0)) < ρ−(ρ+(∞)) ≤ ρ−(w0) ≤ ρ+(γ+(w0)).

In consequence, γ+(w0) < ρ−(0), which gives the desired contradiction.

III =⇒ not ( I or II ): Suppose that III and II hold together. Let w1 < b be the point

given by II such that γ+(w1) = ∞, and w0 the point in III such that γ−(γ+(w0)) = w0.
Naturally, as γ−(γ+(w1)) = γ−(∞) = b > w1 we have that w0 < w1. Observe also that
μB((0, ρ−(w1))∪(ρ+(∞),∞)) = b and μB(R) = S0 ∈ (b, b), which readily imply b < ρ−(w1) <
ρ+(∞) < b. Let us further denote r = min{ρ−(w0), ρ+(∞)} and R = max{ρ−(w0), ρ+(∞)}
so that finally, using our assumptions,

(4.3) w0 < w1 < b < ρ−(w1) < r ≤ R ≤ ρ+(γ+(w0)) ≤ b ≤ γ+(w0).

By definition we have∫ ∞

ρ+(∞)
(b− u)μ(du) = 0 =

∫ ρ−(w0)

w0

(b− u)μ(du) +

∫ ∞

ρ+(γ+(w0))
(b− u)μ(du).

Subtracting these two quantities, we arrive at∫ ρ+(γ+(w0))

R
(b− u)μ(du) =

∫ r

w0

(b− u)μ(du), and using (4.3), we deduce

μ
((
R, ρ+(γ+(w0))

))
> μ

(
(w0, r)

)
.(4.4)

Using the properties of our functions again, we have∫ w1

−∞
(u− b)μ(du) +

∫ ∞

ρ+(∞)
(u− b)μ(du) = 0 =

∫ w0

−∞
(u− b)μ(du) +

∫ γ+(w0)

ρ+(γ+(w0))
(u− b)μ(du),

which after subtracting, using
∫ w1

w0
(u− b)μ(du) = − ∫ ρ−(w0)

ρ−(w1)
(u− b)μ(du), yields

(4.5)

∫ ρ+(γ+(w0))

ρ+(∞)
(u− b)μ(du) −

∫ ρ−(w0)

ρ−(w1)
(u− b)μ(du) +

∫ ∞

γ+(w0)
(u− b)μ(du) = 0.

The last term in (4.5) is positive, and for the first two terms, using (4.4), we have∫ ρ+(γ+(w0))

R
(u− b)μ(du) ≥ (R− b

)
μ
((
R, ρ+(γ+(w0))

))
>
(
R− b

)
μ
(

(ρ−(w1), r)
)
≥
∫ r

ρ−(w1)
(u− b)μ(du).(4.6)
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This readily implies that the LHS of (4.5) is strictly positive, leading to the desired contra-
diction.

The case when III and I hold together is similar.

Step 2. Construction of relevant embeddings. Our strategy is now as follows. For each
of the four exclusive cases I – IV we construct a stopping time τ which solves the SEP for

μ and such that for the price process St := B t
T−t

∧τ the appropriate superhedge H
I −H

IV
is

in fact a perfect hedge. The stopping time τ will be a composition of stopping times, each of
which is a solution to an embedding problem for a (rescaled) restriction of μ to appropriate
intervals.

Suppose that II holds. This embedding is closely related to the classical embedding of
Azéma and Yor [2] used in the work of Brown, Hobson, and Rogers [8] on one-sided barrier
options. There, it is used to achieve equality in the second inequality in (2.2). However, in
order to also achieve equality in the first inequality we need to modify the embedding slightly.
Let τ1 be a UI embedding, in (Bt)t≥0 with B0 = S0, of

ν1 = μ|(w0,ρ+(∞)) + pδb, where p = 1 − μ((w0, ρ+(∞))),

which is centered in S0. Let ν2 = 1
pμ|R+\(w0,ρ+(∞)), which is a probability measure with

ν2B(R+) = b, and let τ2 be the Azéma–Yor embedding (cf. section 5 in [34]) of ν2, i.e.,

τ2 = inf
{
t > 0 : Bt ≥ ν2B([Bt,∞))

}
,

which is a UI embedding of ν2 whenB0 = b. Note that ν2B([x,∞)) = μB([x,∞)) for x ≥ ρ+(∞)
and that

{Bτ2 ≥ b} = {Bτ2 ≥ ρ+(∞)}, since ν2B((ρ+(∞),∞)) = b.

We define our final embedding as follows: we first embed ν1, and then the atom in b is diffused
into ν2 using the Azéma–Yor procedure, i.e.,

(4.7) τ := τ11Bτ1 �=b + τ2 ◦ τ11Bτ1=b
,

where B0 = S0. Clearly, τ is a UI embedding of μ, and St := B t
T−t

∧τ defines a model for

the stock price which matches the given prices of calls and puts; i.e., ST ∼ μ. Furthermore,
{ST ≥ b} = {ST ≥ b, ST ≤ b} = {ST ≥ ρ+(∞)}, since ρ+(∞) < b implies {τ = τ1} ⊆ {ST <
b} and {τ �= τ1} ⊆ {ST ≤ b}. It follows that

1ST≥b, ST≤b = H
II

(ρ+(∞)).

Suppose that I holds. This is a mirror image of II . We first embed ν1 = μ|(ρ−(0),z0)+pδb,

with p = 1−μ((ρ−(0), z0)). Then the atom in b is diffused into μ|R+\(ρ−(0),z0) using the reversed
Azéma–Yor stopping time (cf. section 5.3 in [34]). The resulting stopping time τ and the stock

price model St := B t
T−t

∧τ satisfy 1ST≥b, ST≤b = H
I
(ρ−(0)).

Suppose that III holds. We describe the embedding in words before writing it formally.
We first embed μ on (ρ−(w0), ρ+(γ+(w0))), or we stop when we hit b or b. If we hit b, then we
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embed μ on (γ+(w0),∞) or we run until we hit b. Likewise, if we first hit b, then we embed
μ on (0, w0) or we run till we hit b. Finally, from b and b we embed the remaining bits of μ.

We now formalize these ideas. Let

(4.8) ν1 = pδb + μ|(ρ−(w0),ρ+(γ+(w0))) +
(
1 − p− μ(ρ−(w0), ρ+(γ+(w0)))

)
δb,

where p is chosen so that ν1B(R+) = S0. Define two more measures,

ν2 = μ
(
[w0, ρ−(w0)]

)
δb + μ|(γ+(w0),∞),

ν3 = μ|(0,w0) + μ
(
[ρ+(γ+(w0)), γ+(w0)]

)
δb,

(4.9)

and note that by definition ν2B(R+) = b and ν3B(R+) = b. Furthermore, as the barycenter of

ν3 + μ|((ρ−(w0),ρ+(γ+(w0))) + ν2

is equal to the barycenter of μ, and from the uniqueness of p in (4.8), we deduce that

ν3(R+) = p and ν2(R+) = q =
(
1 − p− μ(ρ−(w0), ρ+(γ+(w0)))

)
.

Let τ1 be a UI embedding of ν1 (for B0 = S0), τ2 be a UI embedding of 1
qν

2 (for B0 = b),

and τ3 be a UI embedding of 1
pν

3 (for B0 = b). Further, let τ4 and τ5 be UI embeddings
respectively of

1

μ
(
(w0, ρ−(w0))

)μ|(w0,ρ−(w0)) and
1

μ
(
(ρ+(γ+(w0)), γ+(w0))

)μ|(ρ+(γ+(w0)),γ+(w0)),

where the starting points are respectively B0 = b and B0 = b. We are ready to define our
stopping time. Let B0 = S0, and write Hz = inf{t : Bt = z}. We put

τ := τ11τ1<Hb∧Hb

+ τ2 ◦ τ11Hb=τ1
1τ2◦τ1<Hb

+ τ4 ◦ τ2 ◦ τ11Hb=τ1
1Hb=τ2◦τ1

+ τ3 ◦ τ11Hb=τ11τ3◦τ1<Hb

+ τ5 ◦ τ3 ◦ τ11Hb=τ11Hb=τ3◦τ1 ,

(4.10)

and it is immediate from the properties of our measures that Bτ ∼ μ and (Bt∧τ ) is a UI
martingale. Furthermore, with St := B t

T−t
∧τ , we see that

1ST≥b, ST≤b = H
III(

γ+(w0), ρ+(γ+(w0)), ρ−(w0), w0

)
, a.s.

Finally, suppose that IV holds. In this case, we initially run to {b, b} without stopping
any mass. Then, from b, we either run to b or embed μ on (ρ−(0),∞). The mass which is
at b after the first step is either run to b or used to embed μ on (0, ρ+(∞)). The mass which
remains at b and b is then used to embed the remaining part of μ on (ρ+(∞), ρ−(0)).
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To begin with, we define the measures

ν1 =

[
S0 − b

b− b
− μ((ρ−(0),∞))

]
δb + μ|(ρ−(0),∞),

ν2 =

[
b− S0

b− b
− μ((0, ρ+(∞))

]
δb + μ|(0,ρ+(∞)).

Then ν1 is a measure, since μ((ρ−(0),∞)) < S0−b
b−b : noting that b < ρ−(0), we get

0 =

∫ ρ−(0)

0
(u− S0)μ(du) +

∫ ∞

ρ−(0)
(u− S0)μ(du)

≥ (b− S0)μ((0, ρ−(0))) + (b− S0)μ((ρ−(0),∞)),

and the statement follows. Moreover, we can see that ν1B(R+) = b:∫ ∞

ρ−(0)
(u− b)μ(du) +

S0 − b

b− b
(b− b) − μ((ρ−(0),∞))(b − b)

=

∫ ∞

ρ−(0)
(u− b)μ(du) + (b− S0)

= (S0 − b) −
∫ ρ−(0)

0
(u− b)μ(du) + (b− S0) = 0.

Similar results hold for ν2.

Consequently, we can construct the first stages of the embedding. The final stage is to run
from b and b to embed the remaining mass. Of course, it does not matter exactly how we do
this from the optimality point of view, since these paths have already struck both barriers, but
we do need to check that the embedding is possible. It is clear that the means and probabilities
match, but unlike the previously considered cases, we now have initial mass in two places, and
the existence of a suitable embedding is not trivial. To resolve this, we note the following:
suppose we can find a point z∗ ∈ (ρ+(ρ−(0)), ρ−(ρ+(∞))) such that ν1({b}) = μ((ρ+(∞), z∗)).
Then because μB((ρ+(∞), ρ−(ρ+(∞)))) = b, we can find z1 ∈ (ρ+(∞), z∗) such that the
measure

ν3 = μ|(ρ+(∞),z1) + (ν1({b}) − μ((ρ+(∞), z1)))δz∗

has barycenter b. There is a similar construction for ν4, a point z2 which will embed mass
from ν2 at b to μ on (z2, ρ−(0)), and an atom at z∗. In the final stage, we can then embed
the mass from z∗ to (z1, z2).

It remains to show that we can find such a point z∗. To do this, we check that there is
sufficient mass being stopped at b at the end of the second step (i.e., paths which have first
hit b and then b). Specifically, we need to show that

S0 − b

b− b
− μ((ρ−(0),∞)) ≥ μ((ρ+(∞), ρ+(ρ−(0)))).
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Rearranging and using the definitions of the functions ρ+ and ρ−, this is equivalent to

(S0 − b) ≥
∫ ∞

ρ+(∞)
(u− b)μ(du) −

∫ ρ−(0)

ρ+(ρ−(0))
(u− b)μ(du)

≥
∫
(ρ+(∞),ρ+(ρ−(0)))∪(ρ−(0),∞)

(u− b)μ(du)

≥ (S0 − b) −
∫
(0,ρ+(∞))∪(ρ+(ρ−(0)),ρ−(0))

(u− b)μ(du).

Using the definitions of the appropriate functions, this can be seen to be equivalent to

0 ≤
∫ ρ−(ρ+(∞))

ρ+(ρ−(0))
(u− b)μ(dy),

which follows since ρ+(ρ−(0)) > b. The construction of the appropriate stopping time, and
its optimality, follow as previously. This ends the proof of Theorem 2.2.

In order to prove Theorem 2.4 we start with an auxiliary lemma.
Lemma 4.5. Either we may construct an embedding of μ under which the process never hits

both b and b, or

inf{v ∈ [b, b] : ψ(v) <∞} ≥ inf{v ∈ [b, b] : θ(v) > −∞},(4.11)

sup{v ∈ [b, b] : ψ(v) <∞} ≥ sup{v ∈ [b, b] : θ(v) > −∞},(4.12)

and we may then write

(4.13) v = inf{v ∈ [b, b] : ψ(v) <∞} ≤ sup{v ∈ [b, b] : θ(v) > −∞} = v,

where v, v are given in (2.37).
Proof. We begin by showing that if θ(v) = −∞ for all v ∈ [b, b], then there exists an

embedding of μ which does not hit both b and b.
For w ≥ b, define α∗(w) to be the mass that must be placed at b in order for the barycenter

of this mass plus μ on (b, w) to be b, so that α∗(w) satisfies

α∗(w)b+

∫ w

b
uμ(du) = b

(
α∗(w) + μ((b, w))

)
.

It follows that α∗(w) exists, although there is no guarantee that it is less than 1 − μ((b, w)).
In addition, define β∗(w) to be

β∗(w) = inf

{
β ∈ [b, b] :

∫
(b,β)∪(b,w)

uμ(du) = b

∫
(b,β)∪(b,w)

μ(du)

}
.

If this is finite, then it is the point at which μB((b, β∗(w)) ∪ (b, w)) = b. Note also that β∗(w)
is increasing as a function of w and is continuous when β∗(w) <∞. Define

p∗(w) = μ((b, w)) + α∗(w),

p∗(w) = μ((b, β∗(w)) ∪ (b, w)).
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Suppose initially that β∗(w) ≤ b for all w ≥ b. Then we may assign the following in-
terpretations to these quantities: p∗(w) is the smallest amount of mass that we can start at
b and run to embed μ on (b, w), (b, ·) and an atom at b, and p∗(w) is the largest amount
of mass that we may do this with; the smallest amount is attained by running all the mass
below b to b, while the largest probability is attained by running all this mass to (b, β∗(w)).
The assumption that β∗(w) ≤ b implies that this upper bound does not run out of mass to
embed. Moreover, by adjusting the size of the atom at b, we can embed an atom of any size
between p∗(w) and p∗(w) from b in this way. Recalling the definition of θ(v), we conclude
that there exists v such that θ(v) = w if and only if p∗(w) ≤ S0−b

b−b ≤ p∗(w). Finally, note

that the functions p∗(w) and p∗(w) are both increasing in w, and further that p∗(b) = 0.
Consequently, if there is no v such that θ(v) > −∞, and if β∗(w) ≤ b for all w ≥ b, we must
have p∗(∞) := limw→∞ p∗(w) < S0−b

b−b .

So suppose p∗(∞) < S0−b
b−b . We now construct an embedding as follows: from S0, we

initially run to either b or

b∗ =
S0 − p∗(∞)b

1 − p∗(∞)
.

Since p∗(∞) < S0−b
b−b , then b∗ ∈ (b, S0), and the probability that we hit b before b∗ is p∗(∞). In

addition, by the definition of β∗(w), we deduce that the set (b, β∗(∞)] ∪ [b,∞) is given mass
p∗(∞) by μ, and that the barycenter of μ on this set is b. We may therefore embed the paths
from b to this set, and the paths from b∗ to the remaining intervals, [0, b]∪ (β∗(∞), b), and we
note that no paths will hit both b and b.

Suppose instead that β∗(w0) = b for some w0, with p∗(w0) ≤ S0−b
b−b . (If the latter condition

does not hold, then using the fact that β∗(w) is left-continuous and increasing, we can find
a w such that β∗(w) < b and p∗(w) = S0−b

b−b , and therefore, by the arguments above, there

exists v with θ(v) > −∞.) We may then continue to construct measures with barycenter b,
which are equal to μ on (b, w) for w > w0 and have a compensating atom at b. As we increase
w, eventually either w reaches ∞ or the mass of the measure reaches S0−b

b−b . In the latter

case, we know θ(b) = w, contradicting θ(v) = −∞ for all v ∈ [b, b]. So consider the former
case: we obtained that the measure which is μ on (b,∞) with a further atom at b to give
barycenter b has total mass (p, say) less than S0−b

b−b . We show that this is impossible: divide μ

into its restriction to (0, z) and [z,∞), where z is chosen so that μ([z,∞)) = p. Then z < b,
and the barycenter of the restriction to [z,∞) is strictly smaller than the barycenter of the
measure with the mass on [z, b) placed at b, which is the measure described above and which
has barycenter b. Additionally, the barycenter of the lower restriction of μ must be strictly
smaller than b. Moreover, we may calculate the barycenter of μ by considering the barycenter
of the two restrictions; since μ has mean (and therefore barycenter) S0, we must have

S0 = (1 − p)μB((0, z)) + pμB([z,∞)) < (1 − p)b+ pb < b
b− S0

b− b
+ b

S0 − b

b− b
= S0,

which is a contradiction.
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We conclude that, if {v ∈ [b, b] : θ(v) > −∞} is empty, there is an embedding of μ which
does not hit both b and b. A similar result follows for ψ(v). In particular, if we assume that
there is no such embedding, then there exists v such that ψ(v) <∞, and (not necessarily the
same) v such that θ(v) > −∞. We now wish to show that (4.11) holds. Suppose not. Then

v∗ := inf{v ∈ [b, b] : ψ(v) <∞} < inf{v ∈ [b, b] : θ(v) > −∞} =: v∗.

Moreover, we can deduce from the definition of θ(v) that since v∗ > b, we must have θ(v∗) = ∞.
Now consider the barycenter of the measure which is taken by running from S0 to b and b,
and then from b to (ψ(v∗), b)∪ (v∗, b), with a compensating mass at b, so that the measure has
barycenter b, and from b to (b, v∗)∪(b, θ(v∗)) = (b, v∗)∪(b,∞), with a compensating mass at b,
so that the measure has barycenter b. Then the whole law of the resulting process must have
mean S0, since this can be done in a uniformly integrable way, but the resulting distribution
is at least μ on (ψ(v∗),∞) (it is twice μ on (v∗, v∗), has atoms at b and b, and is μ elsewhere),
and zero on (0, ψ(v∗)), so must have mean greater than S0, which is a contradiction. A similar
argument shows (4.12). Hence, we may conclude (still under the assumption that there is no
embedding which never hits both b and b) that the equalities in (4.13) hold. It remains to
show the inequality when v, v ∈ (b, b). However, this is now almost immediate: the forms of

v, v imply that μ gives mass b−S0

b−b to the set (ψ(v), b) ∪ (v, b) and gives mass S0−b
b−b to the set

(b, v) ∪ (b, θ(v)). If v < v, this implies that μ gives mass 1 to the set (ψ(v), v) ∪ (v, θ(v)) �

[0,∞), contradicting the positivity of μ.

Proof of Theorem 2.4. From Lemma 4.5 case IV and the last statement of the theorem
follow. Assume from now on that v ≤ v. We note first that ψ(v) and θ(v) are both continuous
and decreasing on [v, v], and consequently κ(v) is also continuous and decreasing as a function
of v on [v, v]. It follows that the three cases κ(v) < v, κ(v) > v, and the existence of v0 ∈ [v, v]
such that κ(v0) = v0 are exclusive and exhaustive. We consider each case separately:

I Suppose that there exists v0 ∈ [v, v] such that κ(v0) = v0. By the definition of ψ(v),
we can run all the mass initially from S0 to {b, b} and then embed (in a UI way) from b to
(ψ(v0), b)∪(v0, b) and a compensating atom at b with the remaining mass, and similarly from b
to (b, v0)∪ (b, θ(v0)) with an atom at b. The mass now at b and b can then be embedded in the
remaining tails in a suitable way—the means and masses must agree, since the initial stages
were embedded in a UI manner, and the remaining mass all lies outside [b, b]. We denote by
τ the stopping time which achieves the embedding.

Now we compare both sides of the inequality in (2.10), where we choose K1 = θ(v0),K2 =
ψ(v0), and therefore, as a consequence of the definition of κ(v), we also have K3 = v0. The key
observation is now that the mass is stopped only at points where the inequality is an equality:
mass which hits b initially either stops in the interval (b,K3) ∪ (b,K1), when there is equality
in (2.10), or it goes on to hit b, and from this point also continues to the tails (0,K2)∪(K1,∞),
where there is again equality between both sides of (2.10). Taking expectations on the RHS
of (2.10), we get the terms on the RHS of (2.38), and we conclude that (2.38) holds in the
market model St := Bτ∧ t

T−t
.

II Suppose now that κ(v) > v. Then we must have v = sup{v ∈ [b, b] : θ(v) > −∞} by
Lemma 4.5, and then v < κ(v) ≤ b. So, by the definition of θ(v), since v exists and is less
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than b, we must have∫
(b,v)∪(b,θ(v))

uμ(du) = b
S0 − b

b− b
and μ((b, v) ∪ (b, θ(v))) =

S0 − b

b− b
,

and we can embed from b (having initially run to {b, b}) to (b, v) ∪ (b, θ(v)) without leaving
an atom at b. Similarly, we can also run from b to (ψ(v), b) ∪ (v, b) with an atom at b. The
atom can then be embedded in the tails (0, ψ(v)) ∪ (θ(v),∞) in a UI manner. We now need
to show that when we take K3 = v,K1 = θ(v), and K2 = ψ(v) we get the required equality
in (2.39). The main difference from the above case occurs in the case where we hit b initially
and then hit b: we no longer need equality in (2.10), since this no longer occurs in our optimal
construction; however, what remains to be checked is that the inequality does hold on this
set. Specifically, we need to show that

1 ≥ α0 + α1(K2 − S0) − (α3 − α3 + α1)(K2 − b) + (α3 − α2)(K2 − b).

Using (2.20) and (2.25), we see that this occurs when

(K3 −K2)(K1 − b)

(b−K2)(K1 −K3)
≤ 1,

which rearranges to give

K3 ≤ b
K1 − b

(K1 − b) + (b−K2)
+ b

b−K2

(K1 − b) + (b−K2)
.

This is satisfied by our choice of v as K3, and K1 = θ(v),K2 = ψ(v).

III This is symmetric to case II .
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Abstract. We construct an optimal execution strategy for the purchase of a large number of shares of a financial
asset over a fixed interval of time. Purchases of the asset have a nonlinear impact on price, and this is
moderated over time by resilience in the limit-order book that determines the price. The limit-order
book is permitted to have arbitrary shape. The form of the optimal execution strategy is to make
an initial lump purchase and then purchase continuously for some period of time during which the
rate of purchase is set to match the order book resiliency. At the end of this period, another lump
purchase is made, and following that there is again a period of purchasing continuously at a rate set
to match the order book resiliency. At the end of this second period, there is a final lump purchase.
Any of the lump purchases could be of size zero. A simple condition is provided that guarantees
that the intermediate lump purchase is of size zero.
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1. Introduction. We consider optimal execution over a fixed time interval of a large asset
purchase in the face of a one-sided limit-order book. We assume that the ask price (sometimes
called the best ask price) for the underlying asset is a continuous martingale that undergoes
two adjustments during the period of purchase. The first adjustment is that orders consume
a part of the limit-order book, and this increases the ask price for subsequent orders. The
second adjustment is that resilience in the limit-order book causes the effect of these prior
orders to decay over time. In this paper, there is no permanent effect from the purchase we
model. However, the temporary effect requires infinite time to disappear completely.

We assume that there is a fixed shadow limit-order book shape toward which resilience
returns the limit-order book. At any time, the actual limit-order book relative to the mar-
tingale component of the ask price has this shape but with some left-hand part missing due
to prior purchases. An investor is given a period of time and a target amount of asset to be
purchased within that period. His goal is to distribute his purchasing over the period in order
to minimize the expected cost of purchasing the target. We permit purchases to occur in
lumps or to be spread continuously over time. We show that the optimal execution strategy
consists of three lump purchases, one or more of which may be of size zero, i.e., does not
occur. One of these lump purchases is made at the initial time, one at an intermediate time,
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and one at the final time. Between these lump purchases, the optimal strategy purchases at
a constant rate matched to the limit-order book recovery rate so that the ask price minus
its martingale component remains constant. We provide a simple condition under which the
intermediate lump purchase is of size zero (see Theorem 4.2 and Remark 4.4).

Bouchaud, Farmer, and Lillo [9] provide a survey of the empirical behavior of limit-order
books. Dynamic models for optimal execution designed to capture some of this behavior
have been developed by several authors, including Bertsimas and Lo [8], Almgren and Chriss
[6, 7], Grinold and Kahn [15] (Chapter 16), Almgren [5], Obizhaeva and Wang [10], and
Alfonsi, Fruth, and Schied [1, 4]. Trading in [8] is on a discrete-time grid, and the price
impact of a trade is linear in the size of the trade and is permanent. In [8], the expected-
cost-minimizing liquidation strategy for an order is to divide the order into equal pieces, one
for each trading date. Trading in [6, 7] is also on a discrete-time grid, and there are linear
permanent and temporary price impacts. In [6, 7], the variance of the cost of execution is
taken into account. This leads to the construction of an efficient frontier of trading strategies.
In [15] and [5], trading takes place continuously, and finding the optimal trading strategy
reduces to a problem in the calculus of variations.

Other authors focus on the possibility of price manipulation, an idea that traces back
to Huberman and Stanzl [16]. Price manipulation is a way of starting with zero shares
and using a strategy of buying and selling so as to end with zero shares while generating
income. Gatheral, Schied, and Slynko [13] permit continuous trading and use an integral
of a kernel with respect to the trading strategy to capture the resilience of the book. In
such a model, Gatheral [12] shows that exponential decay of market impact and absence of
price manipulation opportunities are compatible only with linear market impact. In [14], this
result is reconciled with the nonlinear market impact in models such as [2, 3, 4] and this
paper. Alfonsi, Schied, and Slynko [3] discover in a discrete-time version of the model of [13]
that, even under conditions that prevent price manipulation, it may still be optimal to execute
intermediate sells while trying to execute an overall buy order, and they provide conditions
to rule out this phenomenon.

For the type of model we consider in this paper, based on a shadow limit-order book, Al-
fonsi and Schied [2] show that price manipulation is not possible under very general conditions.
Furthermore, it is never advantageous to execute intermediate sells while trying to execute an
overall buy order. In [2], trading takes place at finitely many stopping times, and execution
is optimized over these stopping times. In the present paper, where trading is continuous, we
do not permit intermediate sells. This simplification of the model is justified by Remark 3.1,
which argues that intermediate sells cannot reduce the total cost.

The present paper is inspired by Obizhaeva and Wang [10], who explicitly model the one-
sided limit-order book as a means of capturing the price impact of order execution. Empirical
evidence for the model of [10] and its generalizations by Alfonsi, Fruth, and Schied [1, 4] and
Alfonsi and Schied [2] are reported in [1, 2, 4, 10]. In [10] and [1], the limit-order book has a
block shape, and in this case the price impact of a purchase is linear, the same as in [8, 7].
However, the change of mindset is important because it focuses attention on the shape of the
limit-order book as the determinant of price impact, rather than making assumptions about
the price impact directly. This change of mindset was exploited in [2, 4], where more general
limit-order book shapes are permitted, subject to the condition discussed in Remark 4.4.
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In [2, 4], trading is on a discrete-time grid, and it is shown that for an optimal purchasing
strategy all purchases except the first and last ones are of the same size. Furthermore, the size
of the intermediate purchases is chosen so that the price impact of each purchase is exactly
offset by the order book resiliency before the next purchase. Similar results are obtained in
[2], although here trades are executed at stopping times.

In contrast to [2, 4, 10], we permit the order book shape to be completely general. However,
in our model all price impact is transient; [4, 10] also include the possibility of a permanent
linear price impact. In contrast to [2, 4], we do not assume that the limit-order book has a
positive density. It can be discrete or continuous and can have gaps. In contrast to [2, 4, 10],
we permit the resilience in the order book to be a function of the adjustments to the martingale
component of the ask price. Weiss [18] argues in a discrete-time model that this conforms
better to empirical observations.

Finally, we set up our model so as to allow for both discrete-time and continuous-time
trading, whereas [4, 10] begin with discrete-time trading and then study the limit of their
optimal strategies as trading frequency approaches infinity. The simplicity afforded by a fully
continuous model is evident in the analysis below. In particular, we provide constructive
proofs of Theorems 4.2 and 4.5 that describe the form of the optimal purchasing strategies.

Section 2 of this paper presents our model. It contains the definition of the cost of
purchasing in our more general framework, and that is preceded by a justification of the
definition. Section 3 shows that randomness can be removed from the optimal purchasing
problem and reformulates the cost function into a convenient form. In section 4, we solve the
problem, first in the case that is analogous to the one solved by [4] and then in full generality.
Sections 4.1 and 4.3 contain examples.

2. The model. Let T be a positive constant. We assume that the ask price of some
asset, in the absence of the large investor modeled by this paper, is a continuous nonnegative
martingale At, 0 ≤ t ≤ T , relative to some filtration {Ft}0≤t≤T satisfying the usual conditions.
We assume that

(2.1) E

[
max
0≤t≤T

At

]
<∞.

We show below that for the optimal execution problem of this paper one can assume without
loss of generality that this martingale is identically zero. We make this assumption beginning
in section 3 in order to simplify the presentation.

For some extended positive real number M , let μ be an infinite measure on [0,M) that
is finite on each compact subset of [0,M). Denote the associated left-continuous cumulative
distribution function by

F (x) � μ
(
[0, x)

)
, x ≥ 0.

This is the shadow limit-order book, in the sense described below. We assume F (x) > 0
for every x > 0. If B is a measurable subset of [0,M), then, in the absence of the large
investor modeled in this paper, at time t ≥ 0 the number of limit orders with prices in
B +At � {b+At; b ∈ B} is μ(B).

There is a strictly positive constant X such that our large investor must purchase X
shares over the time interval [0, T ]. His purchasing strategy is a nondecreasing right-continuous
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adapted process X with XT = X. We interpret Xt to be the cumulative amount of purchasing
done by time t. We adopt the convention X0− = 0, so that X0 = ΔX0 is the number of shares
purchased at time zero. Here and elsewhere, we use the notation ΔXt to denote the jump
Xt −Xt− in X at time t.

The effect of the purchasing strategy X on the limit-order book is determined by a re-
silience function h, a strictly increasing, locally Lipschitz function defined on [0,∞) and
satisfying

(2.2) h(0) = 0, h(∞) � lim
x→∞h(x) >

X

T
.

The function h together with X determines the volume effect process1 E satisfying

(2.3) Et = Xt −
∫ t

0
h(Es) ds, 0 ≤ t ≤ T.

It is shown in Appendix A that there is a unique nonnegative right-continuous finite-variation
adapted process E satisfying (2.3). As with X, we adopt the convention E0− = 0. We note
that ΔXt = ΔEt for 0 ≤ t ≤ T .

Let B be a measurable subset of [0,M). The interpretation of E is that, in the presence
of the large investor using strategy X, at time t ≥ 0 the number of limit orders with prices
in B + A(t) is μt(B), where μt is the σ-finite infinite measure on [0,M) with left-continuous
cumulative distribution function (F (x) − Et)

+, x ≥ 0. In other words, Et units of mass have
been removed from the shadow limit-order book μ. In any interval in which no purchases are
made, (2.3) implies d

dtEt = −h(Et). Hence, in the absence of purchases, the volume effect
process decays toward zero and the limit-order book tends toward the shadow limit-order
book μ, displaced by the ask price A.

To calculate the cost to the investor of using the strategy X, we introduce the following
notation. We first define the left-continuous inverse of F ,

ψ(y) � sup{x ≥ 0|F (x) < y}, y > 0.

We set ψ(0) � ψ(0+) = 0, where the second equality follows from the assumption that
F (x) > 0 for every x > 0. The ask price in the presence of the large investor is defined to be
At +Dt, where

(2.4) Dt � ψ(Et), 0 ≤ t ≤ T.

This is the price after any lump purchases by the investor at time t (see Figure 1). We give
some justification for calling At +Dt the ask price after the following three examples.

Example 2.1 (block order book). Let q be a fixed positive number. If q is the density of
shares available at each price, then for each x ≥ 0 the quantity available at prices in [0, x]
is F (x) = qx. This is the block order book considered by [10]. In this case, ψ(y) = y/q and
F (ψ(y)) = y for all y ≥ 0.

1The case that resilience is based on price rather than volume is also considered in [2, 4].
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Figure 1. Limit-order book at time t. The shaded region corresponds to the remaining shares. The white
area Et corresponds to the amount of shares missing from the order book at time t. The current ask price is
At +Dt.

Figure 2. Density and cumulative distribution of the modified block order book.

Example 2.2 (modified block order book). Let 0 < a < b <∞ be given, and suppose

(2.5) F (x) =

⎧⎨⎩
x, 0 ≤ x ≤ a,
a, a ≤ x ≤ b,
x− (b− a), b ≤ x <∞.

This is a block order book, except that the orders with prices between a and b are not
present (see Figure 2). In this case,

(2.6) ψ(y) =

{
y, 0 ≤ y ≤ a,
y + b− a, a < y <∞.

We have F (ψ(y)) = y for all y ≥ 0.
Example 2.3 (discrete order book). Suppose that

(2.7) F (x) =
∞∑
i=0

I(i,∞)(x), x ≥ 0,

which corresponds to an order of size 1 at each of the nonnegative integers (see Figure 3).
Then

(2.8) ψ(y) =
∞∑
i=1

I(i,∞)(y), y ≥ 0.
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Figure 3. Measure and cumulative distribution function of the discrete order book.

For every nonnegative integer j, we have F (j) = j, F (j+) = j + 1, ψ(j + 1) = j, ψ(j+) = j,
F (ψ(j)+) = j, and ψ(F (j)+) = j.

We return to the definition of the ask price as At+Dt to provide some justification, leading
up to Definition 2.4, for the total cost of a purchasing strategy. Suppose, as in Example 2.2,
F is constant on an interval [a, b] but strictly increasing to the left of a and to the right of
b. Let y = F (x) for a ≤ x ≤ b. Then ψ(y) = a and ψ(y+) = b. Suppose, at time t, we
have Et = y. Then Dt = a, but the measure μt assigns mass zero to [a, b). The ask price is
At + Dt, but there are no shares for sale at this price, nor in an interval to the right of this
price. Nonetheless, it is reasonable to call At +Dt the ask price for an infinitesimal purchase
because if the agent will wait an infinitesimal amount of time before making this purchase,
shares will appear at the price At+Dt due to resilience. We make this argument more precise.

Suppose the agent wishes to purchase a small number ε > 0 shares at time t at the ask
price At +Dt. This purchase can be approximated by first purchasing zero shares in the time
interval [t, t + δ], where δ is chosen so that

∫ t+δ
t h(Es) ds = ε and

Es = Xt −
∫ s

0
h(Eu) du, t ≤ s < t+ δ.

In other words, Es for t ≤ s < t + δ is given by (2.3) with X held constant (no purchases)
over this interval. With δ chosen this way, E(t+δ)− = Et − ε. Resilience in the order book
has created ε shares. Suppose the investor purchases these shares at time t+ δ, which means
that ΔXt+δ = ΔEt+δ = ε and Et+δ = Et. Immediately before the purchase, the ask price is
At+δ + ψ(Et − ε); immediately after the purchase, the ask price is At+δ + ψ(Et) = At+δ + a.
The cost of purchasing these shares is

(2.9) εAt+δ +

∫
[ψ(Et−ε),a]

ξ d
(
F (ξ) − Et + ε

)+
.

Because
∫
[ψ(Et−ε),a] d

(
F (ξ)−Et+ε)+ = ε, the integral in (2.9) is bounded below by εψ(Et−ε)

and bounded above by εa. But a = ψ(Et) = Dt and ψ is left continuous, so the cost per share
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obtained by dividing (2.9) by ε converges to At + a = At + Dt as ε (and hence δ) converges
down to zero.

On the other hand, an impatient agent who does not wait before purchasing shares could
choose a different method of approximating an infinitesimal purchase at time t that leads to a
limiting cost per share At + b. In particular, it is not the case that our definition of ask price
is consistent with all limits of discrete-time purchasing strategies. Our definition is designed
to capture the limit of discrete-time purchasing strategies that seek to minimize cost.

To simplify calculations of the type just presented, we define the functions

ϕ(x) =

∫
[0,x)

ξ dF (ξ), x ≥ 0,(2.10)

Φ(y) = ϕ
(
ψ(y)

)
+
[
y − F

(
ψ(y)

)]
ψ(y), y ≥ 0.(2.11)

We note that Φ(0) = 0, and we extend Φ to be zero on the negative half-line. In the absence
of the large investor, the cost one would pay to purchase all the shares available at prices in
the interval [A(t), A(t) + x) at time t would be A(t) + ϕ(x). The function Φ(y) captures the
cost, in excess of At, of purchasing y shares in the absence of the large investor. The first
term on the right-hand side of (2.11) is the cost less At of purchasing all the shares with prices
in the interval [At, At + ψ(y)). If F has a jump at ψ(y), this might be fewer than y shares.
The difference, y − F (ψ(y)) shares, can be purchased at price At + ψ(y), and this explains
the second term on the right-hand side of (2.11). We present these functions in the three
examples considered earlier.

Example 2.1 (block order book, continued). We have simply ϕ(x) = q
∫ x
0 ξ dξ = q

2x
2 for all

x ≥ 0, and Φ(y) = q
2ψ

2(y) = 1
2qy

2 for all y ≥ 0. Note that Φ is convex and Φ′(y) = ψ(y)
for all y ≥ 0, including at y = 0 because we define Φ to be identically zero on the negative
half-line.

Example 2.2 (modified block order book, continued). With F and ψ given by (2.5) and
(2.6), we have

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2
x2, 0 ≤ x ≤ a,

1

2
a2, a ≤ x ≤ b,

1

2
(x2 + a2 − b2), b ≤ x <∞,

and

Φ(y) =

⎧⎪⎪⎨⎪⎪⎩
1

2
y2, 0 ≤ y ≤ a,

1

2

(
(y + b− a)2 + a2 − b2

)
, a ≤ y <∞.

Note that Φ is convex with subdifferential

(2.12) ∂Φ(y) =

⎧⎨⎩
{y}, 0 ≤ y < a,
[a, b], y = a,
{y + b− a}, a < y <∞.
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Figure 4. Functions Φ and ψ for the modified block order book with parameters a = 4 and b = 14.

In particular, ∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0 (see Figure 4).
Example 2.3 (discrete order book, continued). With F given by (2.7), we have ϕ(x) =∑∞

i=0 iI(i,∞)(x). In particular, ϕ(0) = 0, and for integers k ≥ 1 and k − 1 < x ≤ k,

ϕ(x) =

k−1∑
i=0

i =
k(k − 1)

2
.

For 0 ≤ y ≤ 1, ψ(y) = 0 and hence ϕ(ψ(y)) = 0, [y − F (ψ(y))]ψ(y) = 0, and Φ(y) = 0. For

integers k ≥ 1 and k < y ≤ k + 1, (2.8) gives ψ(y) = k, and hence ϕ(ψ(y)) = k(k−1)
2 . Finally,

for y in this range, [y − F (ψ(y))]ψ(y) = k(y − k). We conclude that

(2.13) Φ(y) =

∞∑
k=1

k

(
y − 1

2
k − 1

2

)
I(k,k+1](y).

For each positive integer k, Φ(k−) = Φ(k+) = 1
2k(k − 1), so Φ is continuous. Furthermore,

∂Φ(k) = [k − 1, k] = [ψ(k), ψ(k+)]. For nonnegative integers k and k < y < k + 1, Φ′(y)
is defined and is equal to ψ(y) = k. Furthermore, Φ′(0) = ψ(0) = 0. Once again we have
∂Φ(y) = [ψ(y), ψ(y+)] for all y ≥ 0, and because ψ is nondecreasing, Φ is convex (see Figure
5).

We decompose the purchasing strategy X into its continuous and pure jump parts Xt =
Xc
t +

∑
0≤s≤t ΔXs. The investor pays price At +Dt for infinitesimal purchases at time t, and

hence the total cost of these purchases is
∫ T
0 (At+Dt) dX

c
t . On the other hand, if ΔXt > 0, the

investor makes a lump purchase of size ΔXt = ΔEt at time t. Because mass Et− is missing in
the shadow order book immediately prior to time t, the cost of this purchase is the difference
between purchasing Et and purchasing Et− from the shadow order book, i.e., the difference
in what the costs of these purchases would be in the absence of the large investor. Therefore,
the cost of the purchase ΔXt at time t is AtΔXt+Φ(Et)−Φ(Et−). These considerations lead
to the following definition.
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Figure 5. Functions Φ and ψ for the discrete order book.

Definition 2.4. The total cost incurred by the investor using purchasing strategy X over the
interval [0, T ] is

C(X) �
∫ T

0

(
At +Dt) dX

c
t +

∑
0≤t≤T

[
AtΔXt + Φ(Et) − Φ(Et−)

]
=

∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
+

∫
[0,T ]

At dXt.(2.14)

Our goal is to determine the purchasing strategy X that minimizes EC(X).

3. Problem simplifications. To compute the expectation of C(X) defined by (2.14), we
invoke the integration by parts formula∫

[0,T ]
At dXt = ATXT −A0X0− −

∫ T

0
Xt dAt

for the bounded variation process X and the continuous martingale A. Our investor’s strate-
gies must satisfy 0 = X0− ≤ Xt ≤ XT = X, 0 ≤ t ≤ T , and hence E

∫ T
0 Xt dAt = 0 (see

Appendix B) and E
∫ T
0 At dXt = XEAT = XA0. It follows that

(3.1) EC(X) = E

∫ T

0
Dt dX

c
t + E

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
+XA0.

Since the third term on the right-hand side of (3.1) does not depend on X, minimization of
EC(X) is equivalent to minimization of the first two terms. But the first two terms do not
depend on A, and hence we may assume without loss of generality that A is identically zero.
Under this assumption, the cost of using strategy X is

(3.2) C(X) =

∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
.
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But, with A ≡ 0, there is no longer a source of randomness in the problem. Consequently,
without loss of generality we may restrict the search for an optimal strategy to nonrandom
functions of time. Once we find a nonrandom purchasing strategy minimizing (3.2), then even
if A is a continuous nonzero nonnegative martingale, we have found a purchasing strategy
that minimizes the expected value of (2.14) over all (possibly random) purchasing strategies.

Remark 3.1. We do not allow our agent to make intermediate sells in order to achieve the
ultimate goal of purchasing X shares because doing so would not decrease the cost, at least
when the total amount of buying and selling is bounded. Indeed, in addition to the purchasing
strategy X, suppose the agent has a selling strategy Y , which we take to be a nondecreasing
right-continuous adapted process with Y0− = 0. We assume that both X and Y are bounded.
For each t, Xt represents the number of shares bought by time t and Yt is the number of
shares sold. These processes must be chosen so that XT −YT = X. We have not modeled the
limit-buy-order book, but if we did so in a way analogous to the model of the limit-sell-order
book, then the bid price at each time t would be less than or equal to At. Therefore, the net
cost of executing the strategy (X,Y ) would satisfy

C(X,Y ) ≥
∫ T

0
Dt dX

c
t +

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
+

∫
[0,T ]

At dXt −
∫
[0,T ]

At dYt.

The integration by parts formula implies∫
[0,T ]

At dXt −
∫
[0,T ]

At dYt = AT (XT − YT ) −A0(X0− − Y0−) −
∫ T

0
(Xt − Yt) dAt

= ATX −
∫ T

0
(Xt − Yt) dAt.

Because we can apply Lemma B.1 to both X and Y , the expectation of
∫ T
0 (Xt − Yt) dAt is

zero and

(3.3) EC(X,Y ) ≥ E

∫ T

0
Dt dX

c
t + E

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
+XA0.

The right-hand side of (3.3) is the formula (3.1) obtained for the cost of using the purchasing
strategy X alone, but the X in inequality (3.3) makes a total purchase of XT = X +YT ≥ X .
If we replace X by min{X,X}, we obtain a feasible purchasing strategy whose total cost is
less than or equal to the right-hand side of (3.3).

Theorem 3.2. Under the assumption (made without loss of generality) that A is identically
zero, the cost (3.2) associated with a nonrandom nondecreasing right-continuous function Xt,
0 ≤ t ≤ T , satisfying X0− = 0 and XT = X is equal to

(3.4) C(X) = Φ(ET ) +

∫ T

0
Dth(Et) dt.

Proof. The proof proceeds in two steps. In Step 1 we show that, as we have seen in the
examples, Φ is a convex function with subdifferential

(3.5) ∂Φ(y) = [ψ(y), ψ(y+)], y ≥ 0.
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In Step 2 we justify the integration formula

(3.6) Φ(ET ) =

∫ T

0
D−Φ(Et) dE

c
t +

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
,

where D−Φ(Et) denotes the left-hand derivative ψ(Et) = Dt of Φ at Et, and Ec is the
continuous part of E: Ect = Et −

∑
0≤s≤t ΔEs. From (2.3) and (3.6) we have immediately

that

Φ(ET ) =

∫
[0,T ]

Dt dX
c
t −

∫ T

0
Dth(Et) dt +

∑
0≤t≤T

[
Φ(Et) − Φ(Et−)

]
,

and (3.4) follows from (3.2).
Step 1. Using the integration by parts formula xF (x) =

∫
[0,x) ξ dF (ξ) +

∫ x
0 F (ξ) dξ, we

write

Φ(y) =

∫
[0,ψ(y))

ξ dF (ξ) + [y − F (ψ(y))]ψ(y)

=

∫ ψ(y)

0

(
y − F (ξ)

)
dξ

=

∫ ψ(y)

0

∫ y

F (ξ)
dη dξ

=

∫ y

0

∫ ψ(η)

0
dξdη,

where the last step follows from the fact that the symmetric difference of the sets {(η, ξ)|ξ ∈
[0, ψ(y)], η ∈ [F (ξ), y]} and {(η, ξ)|η ∈ [0, y], ξ ∈ [0, ψ(η)]} is an at most countable union of
line segments and thus has two-dimensional Lebesgue measure 0. Therefore,

(3.7) Φ(y) =

∫ y

0
ψ(η) dη,

and by Problem 3.6.20 on p. 213 of [17], with ψ and Φ extended to be 0 for the negative reals,
we conclude that Φ is convex and that ∂Φ(y) = [ψ(y), ψ(y+)], as desired.

Step 2. We mollify ψ, taking ρ to be a nonnegative C∞ function with support on [−1, 0]
and integral 1, defining ρn(η) = nρ(nη), and defining

ψn(y) =

∫
R

ψ(y + η)ρn(η) dη =

∫
R

ψ(ζ) ρn(ζ − y) dζ.

Then each ψn is a C∞ function satisfying 0 ≤ ψn(y) ≤ ψ(y) for all y ≥ 0. Furthermore,
ψ(y) = limn→∞ ψn(y) for every y ∈ R. We set Φn(y) =

∫ y
0 ψn(η) dη, so that each Φn is also a

C∞ function and limn→∞ Φ′
n(y) = D−Φ(y).

Because Φn(E0−) = Φ(0) = 0, we have

(3.8) Φn(ET ) =

∫ T

0
Φ′
n(Et) dE

c
t +

∑
0≤t≤T

[Φn(Et) − Φn(Et−)];
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see, e.g., [11, p. 78]. The function Et, 0 ≤ t ≤ T , is bounded. Letting n → ∞ in (3.8) and
using the bounded convergence theorem, we obtain

(3.9) Φ(ET ) =

∫ T

0
D−Φ(Et) dE

c
t + lim

n→∞
∑

0≤t≤T

[
Φn(Et) − Φn(Et−)

]
.

To conclude the proof of (3.6), we divide the sum in (3.9) into two parts. Given δ > 0, we
define Sδ = {t ∈ [0, T ] : 0 < ΔEt ≤ δ} and S′

δ = {t ∈ [0, T ] : ΔEt > δ}. The sum in (3.9) is
over t ∈ Sδ ∪ S′

δ, and because E has finite variation,
∑

t∈Sδ∪S′
δ

ΔEt <∞. Let ε > 0 be given.

We choose δ > 0 so small that
∑

t∈Sδ
ΔEt ≤ ε. Because ψ (and hence each ψn) is bounded on

[0, ET ], the function Φ and each Φn is Lipschitz continuous on [0, ET ] with the same Lipschitz
constant L = ψ(ET ). It follows that∑

t∈Sδ

[
Φ(Et) − Φ(Et−)

] ≤ L
∑
t∈Sδ

ΔEt ≤ Lε,

∑
t∈Sδ

[
Φn(Et) − Φn(Et−)

] ≤ L
∑
t∈Sδ

ΔEt ≤ Lε, n = 1, 2, . . . .

Hence the difference between
∑

t∈Sδ

[
Φ(Et) − Φ(Et−)

]
and any limit point as n → ∞ of∑

t∈Sδ

[
Φn(Et) − Φn(Et−)

]
is at most 2Lε. On the other hand, the set S′

δ contains only
finitely many elements, and thus

lim
n→∞

∑
t∈S′

δ

[
Φn(Et) − Φn(Et−)

]
=
∑
t∈S′

δ

[
Φ(Et) − Φ(Et−)

]
.

Since ε > 0 is arbitrary, (3.9) reduces to (3.6).

4. Solution of the optimization problem. In view of Theorem 3.2, we want to minimize
Φ(ET ) +

∫ T
0 Dth(Et) dt over the set of deterministic purchasing strategies. The main result

of this paper is that there exists an optimal strategy X under which the trader buys a lump
quantity X0 = E0 of shares at time 0, then buys at a constant rate dXt = h(E0) dt up to time
t0 (so as to keep Et = E0 for t ∈ [0, t0)), then buys another lump quantity of shares at time
t0, subsequently trades again at a constant rate dXt = h(Et0) dt until time T (so as to keep
Et = Et0 for t ∈ [t0, T )), and finally buys the remaining shares at time T . We shall call this
strategy a Type B strategy. We further show that if the nonnegative function

(4.1) g(y) � yψ
(
h−1(y)

)
is convex, then the purchase at time t0 consists of 0 shares (so X has jumps only at times 0
and T ). We call such a strategy a Type A strategy. Clearly the latter is a special case of the
former.

Although g is naturally defined on [0, h(∞)) by (4.1), we will want it to be defined on a
compact set. Therefore we set

(4.2) Y = max

{
h(X),

X

T

}
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and note that, because of assumption (2.2), h−1 is defined on [0, Y ]. We specify the domain
of the function g to be [0, Y ]. For future reference, we make three observations about the
function g. First,

(4.3) lim
y↓0

g(y) = g(0) = 0.

Second, using the definition (2.4) of Dt, we can rewrite the cost function formula (3.4) as

(4.4) C(X) = Φ(ET ) +

∫ T

0
g
(
h(Et)

)
dt.

Lemma A.1(iv) in Appendix A shows that 0 ≤ Et ≤ X , so the domain [0, Y ] of g is large
enough in order for (4.4) to make sense. Because h−1 is strictly increasing and continuous and
ψ is nondecreasing and left continuous, the function g is nondecreasing and left continuous
and hence lower semicontinuous. In particular,

(4.5) g
(
Y ) = lim

y↑Y
g(y).

4.1. Convexity and Type A strategies.

Remark 4.1. A Type A strategy XA can be characterized in terms of the terminal value
EAT of the process EA related to XA by (2.3), and the cost of using a Type A strategy can
be written as a function of EAT . It is this function of EAT we will minimize. To see that this is
possible, let XA be a Type A strategy and let EA be related to XA via (2.3), so that EAt = XA

0

for 0 ≤ t < T . Then

XA
T− = EAT− +

∫ T

0
h(EAt ) dt = XA

0 + h(XA
0 )T,(4.6)

ΔXA
T = X −XA

T− = X −XA
0 − h(XA

0 )T,(4.7)

EAT = EAT− + ΔXA
T = X − h(XA

0 )T.(4.8)

A Type A strategy is fully determined by its initial condition XA
0 , and from (4.8) we now see

that choosing XA
0 is equivalent to choosing EAT . According to (4.4) and (4.8), the cost of this

strategy

(4.9) C(XA) = Φ(EAT ) + Tg
(
h(XA

0 )
)

= Φ(EAT ) + Tg

(
X − EAT

T

)
can be written as a function of EAT .

We conclude this remark by determining the range of values that EAT can take for a Type
A strategy. We must choose XA

0 so that XA
0 ≥ 0 and XA

T− given by (4.6) does not exceed X .

The function k(x) � x+h(x)T is strictly increasing and continuous on [0,∞), and k(X) > X .
Therefore, there exists a unique e ∈ (0,X) such that k(e) = X, i.e.,

(4.10) e+ h(e)T = X.
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The constraint on the initial condition of Type A strategies that guarantees that the strategy
is feasible is 0 ≤ XA

0 ≤ e. From (4.8) and (4.10) we see that the corresponding feasibility
condition on EAT for Type A strategies is

(4.11) e ≤ EAT ≤ X.

Theorem 4.2. If g given by (4.1) is convex on [0, Y ], then there exists a Type A purchasing
strategy that minimizes C(X) over all purchasing strategies X. If g is strictly convex, this is
the unique optimal strategy.

Proof. Assume that g is convex, and let X be a purchasing strategy. Jensen’s inequality
applied to (4.4) yields the lower bound

C(X) = Φ(ET ) + T

∫ T

0
g
(
h(Et)

)dt
T

≥ Φ(ET ) + Tg

(∫ T

0
h(Et)

dt

T

)
.

From (2.3) we further have
∫ T
0 h(Et) dt = X−ET , and thus the lower bound can be rewritten

as

(4.12) C(X) ≥ Φ(ET ) + Tg

(
X − ET

T

)
.

Recall that 0 ≤ ET ≤ X, so the argument of g in (4.12) is in [0, Y ].
This leads us to consider minimization of the function

G(e) � Φ(e) + Tg

(
X − e

T

)
over e ∈ [0,X ]. By assumption, the function g is convex on [0, Y ] and hence continuous on
(0, Y ). Equations (4.3) and (4.5) show that g is also continuous at the endpoints of its domain.
Because Φ has the integral representation (3.7), it also is convex and continuous on [0,X ].
Therefore, G is a convex continuous function on [0,X ], and hence the minimum is attained.

We show next that the minimum of G over [0,X ] is attained in [e,X ]. For this, we first
observe that, because g is convex,

D+g(y) ≥ g(y) − g(0)

y
= ψ

(
h−1(y)

)
, 0 < y ≤ Y .

This inequality together with (3.5) and (4.10) implies that

(4.13) D−G(e) = ψ(e) −D+g(y)
∣∣∣
y=X−e

T

≤ ψ(e) − ψ

(
h−1

(
X − e

T

))
= 0.

Therefore, the minimum of the convex function G over [0,X ] is obtained in [e,X].
Let e∗ ∈ [e,X ] attain the minimum of G over [0,X ]. The Type A strategy XA with initial

condition XA
0 = h−1(X−e∗

T ) satisfies EAT = e∗ (see (4.8)), and hence the strategy is feasible
(see (4.11)). The cost associated with this strategy is less than or equal to the right-hand side
of (4.12) (see (4.9)). This strategy is therefore optimal.
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If g is strictly convex at the point X−e∗
T , where e∗ minimizes G, then G is strictly convex

at e∗, and this point is thus the unique minimizer of G. Therefore, every optimal strategy
strategy must satisfy ET = e∗. By strict convexity of g, a strategy that does not keep h(E)

equal to X−e∗
T almost everywhere in (0, T ) would result in strict inequality in (4.12). Since

h is strictly increasing, we conclude that the only optimal strategy is the Type A strategy
constructed above.

If g is not strictly convex at the point X−e∗
T found in the proof of Theorem 4.2, then G

might still be strictly convex at e∗, in which case there would be only one optimal strategy of
Type A, but there could be optimal strategies that are not of Type A. We demonstrate this
phenomenon with an example.

Example 4.3 (nonuniqueness of optimal purchasing strategy). Suppose

F (x) =

⎧⎨⎩
x, 0 ≤ x ≤ 2,
4

4−x , 2 ≤ x ≤ 3,

4 + 1
8 (x− 3), x ≥ 3.

This function is continuous and strictly increasing, and hence

ψ(y) =

⎧⎨⎩
y, 0 ≤ y ≤ 2,
4 − 4

y , 2 ≤ y ≤ 4,

8y − 29, y ≥ 4,

is also continuous and strictly increasing. This implies that

Φ(y) =

∫ y

0
ψ(η)dη =

⎧⎨⎩
1
2y

2, 0 ≤ y ≤ 2,
4y − 6 − 4 log y

2 , 2 ≤ y ≤ 4,
4y2 − 29y + 62 − 4 log 2, y ≥ 4.

We take h(x) = x, so that

g(y) = yψ(y) =

⎧⎨⎩
y2, 0 ≤ y ≤ 2,
4y − 4, 2 ≤ y ≤ 4,
8y2 − 29y, y ≥ 4,

and

g′(y) =

⎧⎨⎩
2y, 0 ≤ y ≤ 2,
4, 2 ≤ y < 4,
16y − 29, y > 4.

Note that g′ is nondecreasing, so g is convex, but g is not strictly convex on the interval [2, 4].
Finally, we take X = 101

8 and T = 2.

In the notation of the proof of Theorem 4.2, we have e∗ = 41
8 and hence X−e∗

T = 3. Indeed,
G′ (41

8

)
= ψ

(
41
8

) − g′(3) = 0, and because ψ is strictly increasing, G is strictly convex, and
hence 41

8 is the unique minimizer of G.

The Type A strategy with EAT = 41
8 begins with an initial purchase of XA

0 = 3 and then
consumes at rate 3 over the interval [0, 2], so that EAt = 3 for 0 ≤ t < T . At the final time
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T = 2, there is an additional lump purchase of 11
8 , so that EAT = 41

8 . The total cost of this
strategy is

Φ(EAT ) +

∫ T

0
g(EAt ) dt = Φ

(
4

1

8

)
+

∫ 2

0

(
4EAt − 4

)
dt = Φ

(
4

1

8

)
+ 16.

In particular,
∫ 2
0 E

A
t dt = 6.

In fact, any policy that satisfies 2 ≤ Et ≤ 4, 0 ≤ t < 2, and
∫ 2
0 Et dt = 6 will result in the

same cost. Indeed, for such a policy, we will have

ET = XT −
∫ T

0
Et dt = 10

1

8
− 6 = 4

1

8
= EAT

and ∫ T

0
g(Et) dt =

∫ T

0
(4Et − 4) dt = 16 =

∫ T

0
g(EAt ) dt,

so Φ(ET ) +
∫ T
0 g(Et) dt = Φ(EAT ) +

∫ T
0 g(EAt ) dt. There are infinitely many policies like this.

One such policy is to make an initial lump purchase of size 2 and then purchase at rate 2 up
to time 1

2 so that Et = 2, 0 ≤ t < 1
2 , make a lump purchase of size 1 at time 1

2 and then
purchase at rate 3 up to time 3

2 so that Et = 3, 1
2 ≤ t < 3

2 , make a lump purchase of size 1
at time 3

2 and then purchase at rate 4 up to time 2 so that Et = 4, 3
2 ≤ t < 2, and conclude

with a lump purchase of size 1
8 at time 2 so that E2 = 41

8 .
Remark 4.4. Alfonsi, Fruth, and Schied [4] consider the case that the measure μ has a

strictly positive density f . In this case, the function F (x) =
∫ x
0 f(ξ) dξ is strictly increasing

and continuous with derivative F ′(x) = f(x), and its inverse ψ is likewise strictly increasing
and continuous with derivative ψ′(y) = 1/f(ψ(y)). Furthermore, in [4], the resilience function
is h(x) = ρx, where ρ is a positive constant. In this case,

g′(y) = ψ(y/ρ) +
y/ρ

f
(
ψ(y/ρ)

) ,
and Theorem 4.2 guarantees the existence of a Type A strategy under the assumption that g′

is nondecreasing. This is equivalent to the condition that

ψ(y) +
y

f
(
ψ(y)

)
is nondecreasing.

Alfonsi, Fruth, and Schied [4] obtain a discrete-time version of a Type A strategy under
the assumption that

h1(y) � ψ(y) − e−ρτψ(e−ρτ y)

is strictly increasing, where τ is the time between trading dates. In order to study the limit
of their model as τ ↓ 0, they observe that

lim
τ↓0

h1(y)

1 − e−ρτ
= ψ(y) +

y

f
(
ψ(y)

) ,
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which is thus nondecreasing. Thus g given by (4.1) is convex in their model.
To find a simpler formulation of the hypothesis of Theorem 4.2 under the assumption that

μ has a strictly positive density f and h(x) = ρx for a positive constant ρ, we compute

d

dy

(
ψ(y) +

y

f
(
ψ(y)

)) =
2

f
(
ψ(y)

) − yf ′
(
ψ(y)

)
f3
(
ψ(y)

) .
This is nonnegative if and only if 2f2

(
ψ(y)

) ≥ yf ′
(
ψ(y)

)
. Replacing y by F (x), we obtain

the condition
2f2(x) ≥ F (x)f ′(x), x ≥ 0.

This is clearly satisfied under the assumption of [10] that f is a positive constant.
Example 2.1 (block order book, continued). In the case of the block order book with

h(x) = ρx, where ρ is a strictly positive constant,

g(y) =
yh−1(y)

q
=
y2

ρq
,

which is strictly convex. Theorem 4.2 implies that there is an optimal strategy of Type A,
and this is the unique optimal strategy. From the formula Φ(e) = 1

2qe
2, we have

G(e) =
e2

2q
+

(X − e)2

ρqT
.

The minimizer is e∗ = 2X
2+ρT , which lies between e = X

1+ρT and X, as expected. According to
Remark 4.1, the optimal strategy of Type A is to make an initial purchase of size

XA
0 = h−1

(
X − e∗

T

)
=

X

2 + ρT
,

then purchase continuously at rate dXA
t = h(XA

0 ) dt = ρX
2+ρT dt over the time interval [0, T ],

and conclude with a lump purchase

e∗ −XA
0 =

X

2 + ρT

at the final time T . In particular, the initial and final lump purchases are of the same size,
and there is no intermediate lump purchase.

4.2. Type B strategies.

Theorem 4.5. In the absence of the assumption that g given by (4.1) is convex, there exists
a Type B purchasing strategy that minimizes C(X) over all purchasing strategies X.

The proof of Theorem 4.5 depends on the following lemma, whose proof is given in Ap-
pendix C.

Lemma 4.6. The convex hull of g, defined by

(4.14) ĝ(y) � sup
{
(y) :  is an affine function and (η) ≤ g(η) ∀η ∈ [0, Y ]

}
,
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is the largest convex function defined on [0, Y ] that is dominated by g there. It is continuous
and nondecreasing on [0, Y ], ĝ(0) = g(0) = 0, and ĝ(Y ) = g(Y ). If y∗ ∈ (0, Y ) satisfies
ĝ(y∗) < g(y∗), then there exists a unique affine function  lying below g on [0, Y ] and agreeing
with ĝ at y∗. In addition, there exist numbers α and β satisfying

0 ≤ α < y∗ < β ≤ Y ,(4.15)

(α) = ĝ(α) = g(α), (β) = ĝ(β) = g(β),(4.16)

(y) = ĝ(y) < g(y), α < y < β.(4.17)

Proof of Theorem 4.5. Using ĝ in place of g in (4.4), we define the modified cost function

Ĉ(X) � Φ(ET ) +

∫ T

0
ĝ
(
h(Et)

)
dt.

For any purchasing strategy X, we obviously have Ĉ(X) ≤ C(X). Analogously to (4.12), for
any purchasing strategy X, the lower bound

Ĉ(X) ≥ Φ(ET ) + T ĝ

(
X − ET

T

)
holds. This leads us to consider minimization of the function

(4.18) Ĝ(e) � Φ(e) + T ĝ

(
X − e

T

)
over e ∈ [0,X ]. As in the proof of Theorem 4.2, this function attains its minimum at some
e∗ ∈ [0,X ].

For the remainder of the proof, we use the notation

(4.19) y∗ =
X − e∗

T
, x∗ = h−1(y∗),

where it is assumed without loss of generality that e∗ is the largest minimizer of Ĝ in [0,X ].
There are two cases. In both cases, we construct a strategy that satisfies EBT = e∗ and

(4.20) C(XB) = Ĝ(e∗).

In the first case, the strategy is a Type A strategy, and it is Type B in the second case. In
both cases, we exhibit the strategy explicitly.

Case I. ĝ(y∗) = g(y∗). It is tempting to claim that we are now in the situation of Theorem
4.2 with the convex function ĝ replacing g. However, the proof needed here that e∗ ≥ e, where
e is determined by (4.10), cannot follow the proof of Theorem 4.2. In the proof of Theorem
4.2, this inequality was a consequence of (4.13), which ultimately depended on the definition
(4.1) of g(e). But we have only ĝ(e) ≤ eψ(h−1(e)); we do not have an equation analogous to
(4.1) for ĝ. We thus provide a different proof, which depends on e∗ being the largest minimizer
of Ĝ in [0,X ].
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If x∗ = 0, then y∗ = 0, e∗ = X, and Ĝ(e∗) = G(e∗). The Type A strategy that waits until
the final time T and then purchases X is optimal. In particular, this strategy satisfies the
initial condition XA

0 = x∗.
If x∗ > 0, we must consider two subcases. It could be that 0 < x∗ ≤ F (0+). In this

subcase, ĝ(y∗) = g(y∗) = y∗ψ(x∗) = 0 because ψ ≡ 0 on [0, F (0+)]. But ĝ(0) = 0 and ĝ is
nondecreasing, so ĝ ≡ 0 on [0, y∗]. Furthermore, x∗ is positive, so e∗ < X . For e ∈ (e∗,X),

the number X−e
T is in (0, y∗), and by (3.5), D+Ĝ(e) = D+Φ(e) = ψ(e+). On the other hand,

e∗ is the largest minimizer of Ĝ in [0,X ], which implies that D+Ĝ(e) > 0. This shows that
ψ(e+) > 0 for every e ∈ (e∗,X), which implies that ψ(e) > 0 for every e ∈ (e∗,X) and further
implies that e > F (0+) for every e ∈ (e∗,X). We conclude that e∗ ≥ F (0+). Applying h to
this inequality and using the subcase assumption x∗ ≤ F (0+), we obtain

(4.21) h(e∗) ≥ h
(
F (0+)

) ≥ h(x∗) =
X − e∗

T
.

In other words, e∗ + h(e∗)T ≥ X, and by the defining equation (4.10) of e we conclude that
e∗ ≥ e. The corresponding optimal strategy, which is Type A, satisfies XA

0 = x∗ and EAT = e∗.
The proof of optimality of this strategy follows the proof of Theorem 4.2 with ĝ replacing g.

Finally, we consider the subcase x∗ > F (0+). Because y∗ = h(x∗) is positive, the left-hand
derivative of ĝ at y∗ is defined, and it satisfies

(4.22) D−ĝ(y∗) ≥ ĝ(y∗) − ĝ(0)

y∗
=
g(y∗)

y∗
= ψ(x∗).

In fact, the inequality in (4.22) is strict. It it were not, the affine function

(y) = ψ(x∗)
(
y − y∗

)
+ ĝ(y∗) = yψ(x∗)

would describe a tangent line to the graph of ĝ at (y∗, ĝ(y∗)) lying below ĝ(y), and hence
below g(y), for all y ∈ [0, Y ]. But the resulting inequality yψ(x∗) ≤ g(y) = yψ(h−1(y)) yields
ψ(x∗) ≤ ψ(h−1(y)) for all y ∈ (0, Y ], and letting y ↓ 0 we would conclude that ψ(x∗) = 0.
This violates the subcase assumption x∗ > F (0+). We conclude that D−ĝ(y∗) > ψ(x∗). The
strict inequality, the fact that e∗ minimizes Ĝ, and (3.5) further imply that

0 ≤ D+Ĝ(e∗) = D+Φ(e∗) −D−ĝ(y∗) < ψ(e∗+) − ψ(x∗).

But ψ(x∗) < ψ(e∗+) implies that x∗ ≤ e∗. Consequently, h(e∗) ≥ h(x∗) = X−e∗
T . This is the

essential part of inequality (4.21), and we conclude as above, constructing an optimal Type
A strategy with XA

0 = x∗ and EAT = e∗.
Case II. ĝ(y∗) < g(y∗). Recall from Lemma 4.6 that this case can occur only if 0 < y∗ < Y .

In particular, x∗ > 0. We let  be the affine function and α and β be numbers as described in
Lemma 4.6, and we construct a Type B strategy. To do this, we define t0 ∈ (0, T ) by

(4.23) t0 =

(
β − y∗

)
T

β − α
,
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so that αt0 + β(T − t0) = y∗T . Consider the Type B strategy that makes an initial purchase
XB

0 = h−1(α), then purchases at rate dXB
t = α dt for 0 ≤ t < t0 (so EBt = h−1(α) for

0 ≤ t < t0), then follows this with a purchase ΔXB
t0 = h−1(β) − h−1(α) at time t0, thereafter

purchases at rate dXB
t = β dt for t0 ≤ t < T (so EBt = h−1(β) for t0 ≤ t < T ), and makes a

final purchase X −XB
T− at time T . According to (2.3),

XB
t =

⎧⎨⎩
h−1(α) + αt, 0 ≤ t < t0,
h−1(β) + αt0 + β(t− t0), t0 ≤ t < T,

X, t = T.

In particular,

(4.24) ΔXB
T = X − h−1(β) − αt0 − β(T − t0) = X − h−1(β) − y∗T = e∗ − h−1(β).

We show at the end of this proof that

(4.25) h−1(β) ≤ e∗.

This will ensure that ΔXB
T is nonnegative, and since XB is obviously nondecreasing on [0, T ),

this will establish that XB is a feasible purchasing strategy.

Accepting (4.25) for the moment, we note that (4.24) implies that

(4.26) EBT = EBT− + ΔEBT = h−1(β) + ΔXB
T = e∗.

Using (4.4), (4.26), (4.16), the affine property of , and (4.17) in that order, we compute

C(XB) = Φ(EBT ) +

∫ T

0
g
(
h(EBt )

)
dt

= Φ(e∗) + g(α)t0 + g(β)(T − t0)

= Φ(e∗) + (α)t0 + (β)(T − t0)

= Φ(e∗) + T

(
αt0 + β(T − t0)

T

)
= Φ(e∗) + T(y∗)
= Φ(e∗) + T ĝ(y∗)

= Ĝ(e∗).

This is (4.20).

Finally, we turn to the proof of (4.25). Because e∗ is the largest minimizer of the convex
function Ĝ in [0,X ] and e∗ < X (because x∗ > 0), the right-hand derivative of Ĝ at e∗ must
be nonnegative. Indeed, for all e ∈ (e∗,X), this right-hand derivative must in fact be strictly

positive. For e greater than but sufficiently close to e∗, X−e
T is in (α, y∗), where ĝ is linear
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with slope g(β)−g(α)
β−α . For such e,

0 < D+Ĝ(e)

= D+Φ(e) −D−ĝ(y)
∣∣∣
y=X−e

T

= ψ(e+) − g(β) − g(α)

β − α

= ψ(e+) − βψ
(
h−1(β)

) − αψ
(
h−1(α)

)
β − α

≤ ψ(e+) − βψ
(
h−1(β)

) − αψ
(
h−1(β)

)
β − α

= ψ(e+) − ψ
(
h−1(β)

)
.

This inequality ψ
(
h−1(β)

)
< ψ(e+) for all e greater than but sufficiently close to e∗ implies

(4.25).
Remark 4.7 (uniqueness). In Case I of the proof of Theorem 4.5, when ĝ(y∗) = g(y∗), strict

convexity of ĝ at y∗ implies uniqueness of the optimal purchasing strategy. The proof is similar
to the uniqueness proof in Theorem 4.2.

However, in Case II, ĝ is not strictly convex at y∗. In this case, if ψ is strictly increasing
at e∗ and if the affine function  of Lemma 4.6 agrees with g only at α and β, then the optimal
purchasing strategy is unique. Indeed, if ψ is strictly increasing at e∗, then Φ (and hence Ĝ)
is strictly convex at e∗, which implies that e∗ is the unique minimizer of Ĝ. In order to be
optimal, a purchasing strategy must satisfy the two inequalities

(4.27)

∫ T

0
g
(
h(Et)

)
dt ≥

∫ T

0
ĝ
(
h(Et)

)
dt ≥ T ĝ

(∫ T

0
h(Et)

dt

T

)
with equality, as we explain below, and must also satisfy ET = e∗. When the inequalities
(4.27) hold, we can use (2.3) to obtain a lower bound on the cost of an arbitrary purchasing
strategy X by the relations

C(X) = Φ(ET ) +

∫ T

0
g(h(Et))dt

≥ Φ(ET ) + T ĝ

(∫ T

0
h(Et)

dt

T

)
= Φ(ET ) + T ĝ

(
X − ET

T

)
= Ĝ(ET ).

The minimal cost is Ĝ(e∗) = Φ(e∗) + T ĝ(X−e∗
T ) = Φ(e∗) + T ĝ(y∗), and hence optimality of a

strategy requires that equality hold in both parts of (4.27). The second inequality in (4.27)
is Jensen’s inequality, and equality holds if and only if h(Et), 0 ≤ t < T , stays in the region

in which ĝ is affine. But the average value of h(Et),
1
T

∫ T
0 h(Et)dt, is equal to y∗, and hence
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Figure 6. Function g for the modified block order book with parameters a = 4 and b = 14. The convex
hull ĝ is constructed by replacing a part {g(y) , y ∈ (a, β)} by a straight line connecting g(a) and g(β). Here
β = 10.3246.

we cannot have h(Et) < y∗ for all t ∈ [0, T ), nor can we have h(Et) > y∗ for all t ∈ [0, T ).
Hence the region in which h(Et) stays must be the region in which ĝ agrees with . To get an
equality in the first inequality in (4.27), h(Et), 0 ≤ t < T , must stay in the region where ĝ
agrees with g. If  agrees with g only at the two points α and β, then h(Et), 0 ≤ t < T , must
stay in the two-point set {α, β}. Because ΔEt = ΔXt ≥ 0 for all t, there must be some initial
time interval [0, t0) on which h(Et) = α and there must be some final time interval [t0, T ) on

which h(Et) = β. In order to achieve this and to also have 1
T

∫ T
0 h(Et) = y∗, t0 must be given

by (4.23).

4.3. Examples of Type B optimal strategies.

Example 2.2 (modified block order book, continued). We continue Example 2.2 under the
simplifying assumptions T = 1 and h(x) = x for all x ≥ 0, so h−1(y) = y for all y ≥ 0 and
Y = X. Recalling (2.6) and (4.1), we see that

g(y) =

{
y2, 0 ≤ y ≤ a,
y2 + (b− a)y, a < y <∞.

The convex hull of g over [0,∞), given by (4.14), is

ĝ(y) =

⎧⎨⎩
y2, 0 ≤ y ≤ a,
(2β + b− a)(y − a) + a2, a ≤ y ≤ β,
y2 + (b− a)y, β ≤ y <∞,

where

(4.28) β = a+
√
a(b− a)

(see Figure 6). We take X = Y > β, so that this is also the convex hull of g over [0, Y ].
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For a < y∗ < β, we have ĝ(y∗) < g(y). For constants α and β from the statement of
Lemma 4.6 (see (C.1)–(C.2) in Appendix C), we have that α of (C.1) is a, and β of (C.2) is
given by (4.28). In order to illustrate a case in which a Type B purchasing strategy is optimal,
we assume

(4.29) a+ 2β < X < 3β.

The function Ĝ of (4.18) is minimized over [0,X ] at e∗ if and only if

0 ∈ ∂Ĝ(e∗) = ∂Φ(e∗) − ∂ĝ(X − e∗),

which is equivalent to ∂Φ(e∗) ∩ ∂ĝ(X − e∗) �= ∅. We show below that the largest value of
e∗ satisfying this condition is e∗ = 2β. According to (4.29), e∗ = 2β is in (X − β,X − a).
Because β > a, e∗ is also in (a,∞). We compute (recall (2.12))

∂Φ(e) =

⎧⎨⎩
{e}, 0 ≤ e < a,
[a, b], e = a,
{e+ b− a}, a < e <∞,

∂ĝ(X − e) =

⎧⎪⎪⎨⎪⎪⎩
{

2(X − e) + b− a
}
, 0 ≤ e ≤ X − β,{

2β + b− a
}
, X − β ≤ e < X − a,

[2a, 2β + b− a], e = X − a,{
2(X − e)

}
, X − a < e ≤ X,

and then evaluate

∂Φ(e∗) = {e∗ + b− a} = {2β + b− a} = ∂ĝ(X − e∗).

Therefore, Ĝ attains its minimum at e∗.
To see that there is no e ∈ (2β,X ] where Ĝ attains its minimum, we observe that for

e ∈ (2β,X − a), ∂Φ(e) ∩ ∂ĝ(X − e) = {e + b − a} ∩ {2β + b − a} = ∅. For e ∈ [X − a,X ],
all points in ∂ĝ(X − e) lie in the interval [0, 2a], whereas the only point in ∂Φ(e), which is
e+b−a, lies in the interval [X+b−2a,X+b−a]. Because of (4.29), we have 2a < X+b−2a,
and hence ∂Φ(e) ∩ ∂ĝ(X − e) = ∅ for e ∈ [X − a,X ].

As in the proof of Theorem 4.5, we set y∗ = X − e∗ = X − 2β, x∗ = h−1(y∗) = X − 2β.
Condition (4.29) is equivalent to a < y∗ < β, which in turn is equivalent to ĝ(y∗) < g(y∗).
The first inequality in (4.29) shows that x∗ > 0, and we are thus in Case II of the proof of
Theorem 4.5. In this case, we define

t0 =
β − y∗

β − a
=

3β −X

β − a
.

The optimal purchasing strategy is

XB
t =

⎧⎨⎩
a(t+ 1), 0 ≤ t < t0,
at0 + β(t + 1 − t0), t0 ≤ t < 1,

X, t = 1.
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In particular, ΔX0 = a, ΔXt0 = β − a, ΔX1 = β (see (4.24) for the last equality). The
corresponding EB process is

EBt =

⎧⎨⎩
a, 0 ≤ t < t0,
β, t0 ≤ t < 1,
2β, t = 1.

The initial lump purchase moves the ask price to the left endpoint a of the gap in the
order book. Purchasing is done to keep the ask price at a until time t0, when another lump
purchase moves the ask price to β beyond the right endpoint b of the gap in the order book.
Purchasing is done to keep the ask price at β until the final time, when another lump purchase
is executed.

Example 2.3 (discrete order book, continued). We continue Example 2.3 under the sim-
plifying assumptions that T = 1 and h(x) = x for all x ≥ 0, so that h−1(y) = y for all
y ≥ 0 and Y = X . From (2.8) and (4.1) we see that g(0) = 0, and g(y) = ky for integers
k ≥ 0 and k < y ≤ k + 1. In particular, g(k) = (k − 1)k for nonnegative integers k. The
convex hull of g interpolates linearly between the points (k, (k − 1)k) and (k + 1, k(k + 1)),
i.e., ĝ(y) = k(2y − (k + 1)) for k ≤ y ≤ k + 1, where k ranges over the nonnegative integers
(see Figure 7).

Figure 7. Function g for the discrete order book. The convex hull ĝ interpolates linearly between the points
(k, (k − 1)k) and (k + 1, k(k + 1)).

Therefore,

∂ĝ(y) =

⎧⎨⎩
{0}, y = 0,
[2(k − 1), 2k], y = k and k is a positive integer,
{2k}, k < y < k + 1 and k is a nonnegative integer.

Recall from the discussion following (2.13) that

∂Φ(y) =

⎧⎨⎩
{0}, y = 0,
[k − 1, k], y = k and k is a positive integer,
{k}, k < y < k + 1 and k is a nonnegative integer.
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We seek the largest number e∗ ∈ [0,X ] for which ∂Φ(e∗) ∩ ∂ĝ(X − e∗) �= ∅. This is the
largest minimizer of Ĝ(e) = Φ(e) + ĝ(X − e) in [0,X ]. We define k∗ to be the largest integer

less than or equal to X
3 , so that

3k∗ ≤ X < 3k∗ + 3.

We divide the analysis into three cases:

Case A. 3k∗ ≤ X ≤ 3k∗ + 1.

Case B. 3k∗ + 1 < X < 3k∗ + 2.

Case C. 3k∗ + 2 ≤ X < 3k∗ + 3.

We show below that in Cases A and B the optimal strategy makes an initial lump purchase
of size k∗, which executes the orders at prices 0, 1, . . . , k∗−1. In Case A, the optimal strategy
then purchases at rate k∗ over the interval (0, 1) and at time 1 makes a final lump purchase
of size X − 2k∗, which is in the interval [k∗, k∗ + 1]. This is a Type A strategy. In Case B,
there is an intermediate lump purchase of size 1 at time 3k∗ + 2−X . Before this intermediate
purchase, the rate of purchase is k∗, and after this purchase the rate of purchase is k∗ + 1.
In Case B, at time 1, there is a final lump purchase of size k∗. In Case B, we have a Type
B strategy. In Case C, the optimal strategy makes a lump purchase of size k∗ + 1 at time 0,
which executes the orders at prices 0, 1, . . . , k∗ − 1, k∗. The optimal strategy then purchases
continuously at rate k∗ + 1 over the interval (0, 1) and at time 1 makes a final lump purchase
of size X − 2k∗ − 2, which is in the interval [k∗, k∗ + 1). This is a Type A strategy.

Case A. 3k∗ ≤ X ≤ 3k∗ + 1. We define e∗ = X − k∗, so that 2k∗ ≤ e∗ ≤ 2k∗ + 1 and
k∗ = X−e∗. Then 2k∗ ∈ ∂Φ(e∗) and ∂ĝ(X−e∗) = [2(k∗−1), 2k∗], so the intersection of ∂Φ(e∗)
and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗,X ]
and ∂ĝ(X − e) ⊂ [0, 2(k∗ − 1)], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to k∗, and hence ĝ(y∗) = g(y∗).
If k∗ = 0, we are in the first subcase of Case I of the proof of Theorem 4.5. The optimal
purchasing strategy is to do nothing until time 1 and then make a lump purchase of size X .
If k∗ = 1, which is equal to F (0+), we are in the second subcase of Case I of the proof of
Theorem 4.5. We should make an initial purchase of size x∗ = 1, purchase continuously over
the time interval (0, 1) at rate 1 so that Et ≡ 1 and Dt ≡ 0, and make a final purchase of
size X − 2. If k∗ ≥ 2, we are in the third subcase of Case I of the proof of Theorem 4.5. We
should make an initial purchase of size k∗, purchase continuously over the time interval (0, 1)
at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗ − 1, and make a final purchase of size X − 2k∗.

Case B. 3k∗ + 1 < X < 3k∗ + 2. We define e∗ = 2k∗ + 1, so that k∗ < X − e∗ < k∗ + 1.
Then ∂Φ(e∗) = [2k∗, 2k∗ + 1] and ∂ĝ(X − e∗) = {2k∗}, so the intersection of ∂Φ(e∗) and
∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗, then ∂Φ(e) ⊂ [2k∗ + 1,X ]
and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is empty.

In this case, y∗ and x∗ defined by (4.19) are both equal to X−e∗. Hence k∗ < y∗ < k∗ +1,
ĝ(y∗) < g(y∗), and we are in Case II of the proof of Theorem 4.5 with α = k∗ and β = k∗ + 1
(see (4.14)–(4.17) and (C.1)–(C.2)). The optimal purchasing strategy is Type B. In particular,
with t0 = β−y∗ = k∗ +1−x∗ = 3k∗ +2−X , the optimal purchasing strategy makes an initial
lump purchase α = k∗, which executes the orders at prices 0, 1, . . . ,k∗ − 1, then purchases
continuously over the interval (0, t0) at rate k∗ so that Et ≡ k∗ and Dt ≡ k∗ − 1, at time t0
makes a lump purchase of size β−α = 1, which consumes the order at price k∗, then purchases
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continuously over the interval (t0, 1) at rate k∗ + 1 so that Et ≡ k∗ + 1 and Dt ≡ k∗, and
finally executes a lump purchase of size e∗ −β = k∗ (see (4.24)) at time 1. The total quantity
purchased is

k∗ + k∗t0 + 1 + (k∗ + 1)(1 − t0) + k∗ = X,

as required.

Case C. 3k∗ +2 ≤ X < 3k∗ +3. We define e∗ = X−k∗−1, so that 2k∗ +1 ≤ e∗ < 2k∗ +2
and X − e∗ = k∗ + 1. Then 2k∗ + 1 ∈ ∂Φ(e∗) and ĝ(X − e∗) = [2k∗, 2k∗ + 2], and the
intersection of ∂Φ(e∗) and ∂ĝ(X − e∗) is nonempty, as desired. On the other hand, if e > e∗,
then ∂Φ(e) ⊂ [2k∗ + 1,X ] and ∂ĝ(X − e) ⊂ [0, 2k∗], so the intersection of these two sets is
empty. In this case, y∗ and x∗ are both equal to k∗ + 1. The optimal purchasing strategy
falls into either the second (if k∗ = 0) or third (if k∗ ≥ 1) subcase of Case I of the proof of
Theorem 4.5.

Appendix A. The process E. In this appendix we prove that there exists a unique adapted
process E satisfying (2.3) pathwise, and we provide a list of its properties.

Lemma A.1. Let h be a nondecreasing, real-valued, locally Lipschitz function defined on
[0,∞) such that h(0) = 0. Let X be a purchasing strategy. Then there exists a unique bounded
adapted process E depending pathwise on X such that (2.3) is satisfied. Furthermore, the
following hold:

(i) E is right continuous with left limits;
(ii) ΔEt = ΔXt for all t;
(iii) E has finite variation on [0, T ];
(iv) E takes values in [0,X ].

Proof. Because we do not know a priori that E is nonnegative, we extend h to all of R by
defining h(x) = 0 for x < 0. This extended h is nondecreasing and locally Lipschitz.

In section 2 we introduced the filtration {Ft}0≤t≤T . The purchasing strategy X is right
continuous and adapted to this filtration and hence is an optional process; i.e., (t, ω) �→ Xt(ω)
is measurable with respect to the optional σ-algebra, the σ-algebra generated by the right-
continuous adapted processes. For any bounded optional process Y , h(Y ) and

∫ ·
0 h(Ys) ds are

also bounded optional processes. Optional processes are adapted, and hence
∫ t
0 h(Ys) ds is

Ft-measurable for each t ∈ [0, T ].

We first prove uniqueness. If E and Ê are bounded processes satisfying (2.3), then there
is a local Lipschitz constant K, chosen taking the bounds on E and Ê into account, such that

|Et − Êt| =

∣∣∣∣∫ t

0

(
h(Es) − h(Ês)

)
ds

∣∣∣∣ ≤ K

∫ t

0
|Es − Ês| ds.

Gronwall’s inequality implies E = Ê.

For the existence part of the proof, we assume for the moment that h is globally Lipschitz
with Lipschitz constant K, and we construct E as a limit of a recursion. Let E0

t ≡ X0. For
n = 1, 2, . . . , define recursively

Ent = Xt −
∫ t

0
h(En−1

s ) ds, 0 ≤ t ≤ T.
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Since X is bounded and optional, each En is bounded and optional. For n = 1, 2, . . . , let
Znt = sup0≤s≤t |Ens − En−1

s |. A proof by induction shows that

Znt ≤ Kn−1tn−1

(n− 1)!
max

{
X,Th(X0) +X0

}
.

Because this sequence of nonrandom bounds is summable, En converges uniformly in t ∈ [0, T ]
and ω to a bounded optional process E that satisfies (2.3). In particular, Et is Ft-measurable
for each t, and since X is nondecreasing and right continuous with left limits and the integral
in (2.3) is continuous, (i), (ii), and (iii) hold.

It remains to prove (iv). For ε > 0, letXε
t = Xt+εt and define tε0 = inf{t ∈ [0, T ] : Eεt < 0}.

Assume this set is not empty. Then the right continuity of Eε combined with the fact that Eε

has no negative jumps implies that Eεtε0
= 0. Let tεn ↓ tε0 be such that Eεtεn < 0 for all n. Then

∫ tεn

tε0

h(Eεs) ds = Xε
tεn

−Xε
tε0
− (Eεtεn − Eεtε0) > Xε

tεn
−Xε

tε0
≥ ε(tεn − tε0).

But, since ∫ tεn

tε0

h(Eεs) ds ≤ K

(
max

tε0≤s≤tεn
Eεs

)
(tεn − tε0),

there must exist sεn ∈ (tε0, t
ε
n) such that Eεsεn ≥ ε

K . This contradicts the right continuity of Eε

at tε0. Consequently, the set {t ∈ [0, T ] : Eεt < 0} must be empty. We conclude that Eεt ≥ 0
for all t ∈ [0, T ].

Now notice that for 0 ≤ t ≤ T ,

Eεt − Et = εt−
∫ t

0
(h(Eεs) − h(Es)) ds,

and hence

|Eεt − Et| ≤ εt +K

∫ t

0
|Eεs − Es| ds.

Gronwall’s inequality implies that Eε → E as ε ↓ 0. Since Eεt ≥ 0, we must have Et ≥ 0 for
all t. Equation (2.3) now implies that Et ≤ Xt, and therefore Et ≤ X . The proof of (iv) is
complete.

When h is locally but not globally Lipschitz, we let h̃ be equal to h on [0,X ], h̃(x) = 0 for
x < 0, and h̃(x) = h(X) for x > X . We apply the previous arguments to h̃, and we observe
that the resulting Ẽ satisfies the equation corresponding to h.

Remark A.2. The pathwise construction of E in the proof of Lemma A.1 shows that if X
is deterministic, then so is E.

Appendix B. E
∫ T
0 Xt dAt = 0.

Lemma B.1. Under the assumptions that 0 ≤ Xt ≤ X, 0 ≤ t ≤ T , and that the continuous
nonnegative martingale A satisfies (2.1), we have E

∫ T
0 Xt dAt = 0.
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Proof. The Burkholder–Davis–Gundy inequality implies that the continuous local martin-
gale Mt =

∫ t
0 Xs dAs satisfies

E

[
max
0≤t≤T

|Mt|
]
≤ CE

[〈M〉1/2T

]
= CE

[(∫ T

0
X2
t d〈A〉t

)1/2
]

≤ CXE
[〈A〉1/2T

]
≤ C ′XE

[
max
0≤t≤T

At

]
,

where C and C ′ are positive constants. By virtue of being a local martingale, M has the
property that EMτn = 0 for a sequence of stopping times τn ↑ T . The dominated convergence
theorem implies that EMT = 0.

Appendix C. Convex hull of g.
Proof of Lemma 4.6. Recall the definition

(4.14) ĝ(y) � sup
{
(y) :  is an affine function and (η) ≤ g(η) ∀η ∈ [0, Y ]

}
of the convex hull of g, defined for y ∈ [0, Y ]. The function ĝ is the largest convex function
defined on [0, Y ] that is dominated by g there.

For each 0 ≤ y < Y , the supremum in (4.14) is obtained by the support line of ĝ at y. For
y = 0, the zero function is such a support line, and hence 0 ≤ ĝ(0) ≤ g(0) = 0 (recall (4.3)).
At y = Y the only support line might be vertical, in which case the supremum in (4.14) is
not attained. Because ĝ(0) = 0, ĝ is nonnegative, and ĝ is convex, we know that ĝ is also
nondecreasing. Being convex, ĝ is continuous on (0, Y ) and upper semicontinuous on [0, Y ],
and we have continuity at 0 because of (4.3). We also have continuity of ĝ at Y , as we now
show. Given ε > 0, the definition of ĝ implies that there exists an affine function  ≤ g such
that (Y ) ≥ ĝ(Y ) − ε. But ĝ ≥ , and thus lim infy↑Y ĝ(y) ≥ limy↑Y (y) = (Y ) ≥ ĝ(Y ) − ε.

Since ε > 0 is arbitrary, we must in fact have lim infy↑Y ĝ(y) ≥ ĝ(Y ). Coupled with the upper

semicontinuity of ĝ at Y , this gives us continuity.

We next argue that ĝ(Y ) = g(Y ). Suppose, on the contrary, we had ĝ(Y ) < g(Y ). The
function g is continuous at Y (see (4.5)), and ĝ is upper semicontinuous. Therefore, there is a
one-sided neighborhood [γ, Y ] of Y (with γ < Y ) on which g − ĝ is bounded away from zero
by a positive number ε. The function

ĝ(y) +
ε(y − γ)

Y − γ
, 0 ≤ y ≤ Y ,

is convex, lies strictly above ĝ at Y , and lies below g everywhere. This contradicts the fact
that ĝ is the largest convex function dominated by g. We must therefore have ĝ(Y ) = g(Y ).

Finally, we describe the situation when for some y∗ ∈ [0, Y ] we have ĝ(y∗) < g(y∗). We
have shown that this can happen only if 0 < y∗ < Y . Let  be a support line of ĝ at y∗,
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which is an affine function that attains the maximum in (4.14) at the point y∗. In particular,
 ≤ ĝ ≤ g and (y∗) = ĝ(y∗). Define

α = sup{η ∈ [0, y∗] : g(η) − (η) = 0},(C.1)

β = inf{η ∈ [y∗, Y ] : g(η) − (η) = 0}.(C.2)

Because g is lower semicontinuous, the minimum of g− over [0, Y ] is attained. This minimum
cannot be a positive number ε, for then  + ε would be an affine function lying below g.
Therefore, either the supremum in (C.1) or the infimum in (C.2) is taken over a nonempty
set. In the former case, we must have g(α) = (α), whereas in the latter case g(β) = (β).

Let us consider first the case that g(α) = (α). Define γ = 1
2(α+ y∗). Like α, γ is strictly

less than y∗. The function g −  attains its minimum over [γ, Y ]. If this minimum were a
positive number ε, then the affine function

(y) +
ε
(
y − γ

)
Y − γ

, 0 ≤ y ≤ Y ,

would lie below g but have a larger value at y∗ than , violating the choice of . It follows that
g −  attains the minimum value zero on [γ, Y ], and since this function is strictly positive on
[γ, y∗], the minimum is attained to the right of y∗. This implies that g(β) = (β). Similarly,
if we begin with the assumption that g(β) = (β), we can argue that g(α) = (α).

In conclusion, α and β defined by (C.1) and (C.2) satisfy (4.15) and (4.16). Finally, (4.16)
shows that  restricted to [α, β] is the largest affine function lying below g on this interval,
and hence (4.17) holds.

Because of (4.16), every affine function lying below g on [0, Y ] must lie below  on [α, β].
If such an affine function agrees with ĝ and hence with  at y∗, it must in fact agree with
 everywhere. Hence,  is the only function lying below g on [0, Y ] and agreeing with ĝ at
y∗.
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Is the Minimum Value of an Option on Variance Generated by Local Volatility?∗
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Abstract. We discuss the possibility of obtaining model-free bounds on volatility derivatives, given present
market data in the form of a calibrated local volatility model. A counterexample to a widespread
conjecture is given.
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1. Introduction. “. . . it has been conjectured that the minimum possible value of an option
on variance is the one generated from a local volatility model fitted to the volatility surface.”
(Gatheral [Gat06, page 155]).

Leaving precise definitions to below, let us clarify that an option on variance refers to a
derivative whose payoff is a convex function f of total realized variance. Turning from convex
to concave, this conjecture, if true, would also imply that the maximum possible value of
a volatility swap (f(x) = x1/2) is the one generated from a local volatility model fitted to
the volatility surface. Given the well-documented model risk in pricing volatility swaps, such
bounds are of immediate practical interest.

The mathematics of local volatility theory (à la Dupire, Derman, Kani, . . .) is intimately
related to the following.

Theorem 1 (see [Gyö86]). Assume dYt = μ (t, ω) dt+ σ (t, ω) dBt is a multidimensional Itô
process, where B is a multidimensional Brownian motion, μ, σ are progressively measurable
and bounded, and σσT ≥ ε2I for some ε > 0 (σT denotes the transpose of σ). Then

dỸt = μloc

(
t, Ỹt

)
dt+ σloc

(
t, Ỹt

)
dB̃t, Ỹ0 = Y0,(1.1)
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μloc (t, y) = E [μ (t, ω) | Yt = y] ,

σloc (t, y) = E
[
σ (t, ω)σT (t, ω) | Yt = y

] 1
2

(where the power 1
2 denotes the positive square root of a positive definite matrix) has a weak

solution Ỹt such that Ỹt
law
= Yt for all fixed t.

We will apply Theorem 1 only in the simple one-dimensional (resp., two-dimensional in
section 4) setting, where it is well known that the solution to (1.1) is unique (cf. [Kry67] or
[SV06, Chapter 7]).

A generic stochastic volatility model (already written under the appropriate equivalent
martingale measure and with a suitable choice of numéraire) is of the form dS = SσdB,
where σ = σ (t, ω) is the (progressively measurable) instantaneous volatility process. (It will
suffice for our application to assume σ to be bounded from above and below by positive
constants.) Arguing on log-price X = log S rather than S,

(1.2) dXt = σ (t, ω) dBt −
(
σ2 (t, ω) /2

)
dt,

a classical application of Theorem 1 yields the following Markovian projection result:1 the
(weak) solution to

dX̃t = σloc

(
t, X̃

)
dB̃t −

(
σ2loc

(
t, X̃t

)
/2
)
dt, X̃0 = X0,(1.3)

(σloc (t, x) = E
[
σ2 (t, ω) | Xt = x

] 1
2 )

has the one-dimensional marginals of the original process Xt. Equivalently,2 the process
S̃ = exp X̃,

dS̃t = σloc(t, S̃t)S̃t dBt,

known as (Dupire’s) local volatility model, gives rise to identical prices of all European call
options C (T,K).3 It easily follows that σ2loc(t, S̃) is given by Dupire’s formula:

(1.4) σ2loc(T, S̃)|S̃=K = 2
∂TC

K2∂KKC
.

Volatility derivatives are options on realized variance; that is, the payoff is given by some
function f of realized variance. The latter is given by

VT := 〈log S〉T = 〈X〉T =

∫ T

0
σ2(t, ω) dt

in the model dS = σ (t, ω)S dB and by

ṼT := 〈log S̃〉T = 〈X̃〉T =

∫ T

0
σ2loc(t, X̃t) dt

in the corresponding local volatility model.

1Let us quickly remark that Markovian projection techniques have recently led to a number of new appli-
cations (see [Pit06], for instance).

2The abuse of notation, by writing both σloc(t, X̃) and σloc(t, S̃), will not cause confusion.
3We emphasize that C(T,K) denotes the price at time t = 0 of a European call with maturity T and

strike K.
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Common choices of f are f (x) = x, the variance swap, f (x) = x1/2, the volatility swap,
and simply f (x) = (x−K)+, a call option on realized variance. See [FG05], for instance. As is
well known (see, e.g., [Gat06]), the pricing of a variance swap, assuming continuous dynamics
of S such as those specified above, is model free in the sense that it can be priced in terms of
a log-contract, that is, a European option with payoff log ST . In particular, it follows that

E
[
ṼT

]
= E [VT ] .

Of course this can also be seen from (1.3), after exchanging E and integration over [0, T ].
Passing from VT to f(VT ) for general f , this is not true, and the resulting differences are
known in the industry as convexity adjustment. We can now formalize the conjecture given
in the first lines of the introduction.4

Conjecture 1. For any convex f , one has E
[
f
(
ṼT
)] ≤ E

[
f
(
VT
)]
.

Our contribution is twofold: first, we discuss a simple (toy) example which provides a coun-
terexample to the above conjecture; second, we refine our example using a two-dimensional
Markovian projection (which may be interesting in its own right) and thus construct a per-
fectly sensible Markovian stochastic volatility model in which the conjectured result fails. All
this narrows the class of possible dynamics for S for which the conjecture can hold true and
thus should be a useful step towards positive answers.

2. Idea and numerical evidence.
Example 2. Consider a Black–Scholes “mixing” model dS = SσdB, S0 = 1 with time

horizon T = 3 in which σ2 (t, ω) is given by σ2+(t) or σ2−(t),

σ2+(t) :=

⎧⎪⎨⎪⎩
2 if t ∈ [0, 1],

3 if t ∈ ]1, 2],

1 if t ∈ ]2, 3],

σ2−(t) :=

⎧⎪⎨⎪⎩
2 if t ∈ [0, 1],

1 if t ∈ ]1, 2],

3 if t ∈ ]2, 3],

depending on a fair coin flip ε = ±1 (independent of B). Obviously V = V3 =
∫ 3
0 σ

2 dt ≡ 6
in this example; hence E

[
(V − 6)+

]
= (V − 6)+ = 0. On the other hand, the local volatility

is explicitly computable (cf. the following section), and one can see from simple Monte Carlo
simulations that for Ṽ = Ṽ3

E
[
(Ṽ − 6)+

]
≈ 0.026 > 0,

thereby (numerically) contradicting Conjecture 1, with f (x) = (x− 6)+.
Our analysis of this toy model is simple enough: in section 3 we prove that P [Ṽ = 6] 	= 1.

Since E[Ṽ ] = E[V ] = 6 and (x− 6)+ is strictly convex at x = 6, Jensen’s inequality then tells
us that E[(Ṽ − 6)+] > 0 = E[(V − 6)+].

The reader may note that an even simpler construction would be possible; i.e., one could
simply leave out the interval [0, 1] where σ2+ and σ2− coincide. We decided not to do so for two
reasons. First, insisting on σ2+(t) = σ2−(t) for t ∈ [0, 1] leads to well-behaved coefficients of the
SDE describing the local volatility model. Second, we will use the present setup to obtain a
complete model contradicting Conjecture 1 at the end of the next section.

4It is tacitly assumed that f(VT ), f(ṼT ) are integrable.
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3. Analysis of the toy example. We recall that it suffices to show that Ṽ =
∫ 3
0 σ

2
loc(t, X̃t) dt

is not a.s. equal to V ≡ 6. The distribution of Xt is simply the mixture of two normal distri-
butions. More explicitly, Xt = I{ε=+1}Xt,+ + I{ε=−1}Xt,−,

Xt,± =

∫ t

0
σ±(s) dBs − 1

2

∫ t

0
σ2±(s) ds ∼ N

(
1
2Σ±(t),Σ±(t)

)
,

where Σ±(t) :=
∫ t
0 σ

2±(s) ds. Thus σ2loc(t, x) = E[σ2(t, ω) | Xt = x] is given by5

(3.1) σ2loc(t, x) =

σ2+(t)√
Σ+(t)

exp
[− (x+Σ+(t)/2)2

2Σ+(t)

]
+

σ2−(t)√
Σ−(t)

exp
[− (x+Σ−(t)/2)2

2Σ−(t)

]
1√

Σ+(t)
exp

[− (x+Σ+(t)/2)2

2Σ+(t)

]
+ 1√

Σ−(t)
exp

[− (x+Σ−(t)/2)2

2Σ−(t)

] .
Since σloc = σloc(s, x) is bounded and measurable in t and Lipschitz in x (uniformly w.r.t. t)
and bounded away from zero, it follows from [SV06, Theorem 5.1.1] that the SDE

dX̃t = σloc

(
t, X̃

)
dBt − 1

2σ
2
loc

(
t, X̃t

)
dt

has a unique strong solution (started from X̃0 = 0, say). Since σloc is uniformly bounded away
from 0, it follows that the process (X̃t) has full support ; i.e., for every continuous ϕ : [0, 3] → R,
ϕ(0) = 0 and every ε > 0,

P [‖X̃t − ϕ(t)‖∞;[0,T ] ≤ ε] > 0.

Indeed, there are various ways to see this: one can apply the Stroock–Varadhan support
theorem in the form of [Pin95, Theorem 6.3] (several simplifications arise in the proof thanks
to the one-dimensionality of the present problem); alternatively, one can employ localized
lower heat kernel bounds (à la Fabes and Stroock [FS86]) or exploit that the Itô map is
continuous here (thanks to Doss and Sussman; see, for instance, [RW00, page 180]) and
deduce the support statement from the full support of B.

Figure 1 illustrates the dependence of σ2loc(t, x) on time t and log-moneyness x. To gain

our end of proving that Ṽ (ω) =
∫ 3
0 σ

2
loc(t, X̃t) dt is not constantly equal to 6, we can de-

termine a set of paths (X̃t(ω)) for which Ṽ is strictly larger than 6. In view of Figure 1
it is natural to consider paths which are large, i.e., X̃t(ω) ∈ [8, 10], for t ∈ ]1, 2 − 1

10 ] and

small, i.e., |X̃t(ω)| ≤ 1, on the interval ]2, 3]. A short Mathematica calculation reveals that
Ṽ (ω) � 6.65 > 6 for each such path, and according to the full-support statement the set of
all such paths has positive probability; hence Ṽ is indeed not deterministic.

Using elementary analysis it is not difficult to turn numerical evidence into rigorous math-
ematics. Making (3.1) explicit yields that σ2loc(t, x) ≡ 2 for t ∈ [0, 1] and that

σ2loc(t + 1, x) =

3√
2+3t

e
− (2x+2+3t)2

8(2+3t) + 1√
2+t

e
− (2x+2+t)2

8(2+t)

1√
2+3t

e
− (2x+2+3t)2

8(2+3t) + 1√
2+t

e
− (2x+2+t)2

8(2+t)

,(3.2)

5More general expressions for local volatility are found in [BM06, Chapter 4] and [Lee01, HL09]. Note
the necessity to keep σ2(., ω) constant on some interval [0, ε]; for otherwise the local volatility surface is not
Lipschitz in x uniformly as t → 0.
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Figure 1. Time evolution of local variance σ2
loc(t, x) in dependence of log-moneyness. The bright strip

indicates a set of paths with realized variance strictly larger than 6.

σ2loc(t+ 2, x) =

1√
5+t

e
− (2x+5+t)2

8(5+t) + 3√
3+3t

e
− (2x+3+3t)2

8(3+3t)

1√
5+t

e
− (2x+5+t)2

8(5+t) + 1√
3+3t

e
− (2x+3+3t)2

8(3+3t)

(3.3)

for t ∈ ]0, 1]. We fix ε ∈ ]0, 1] and observe that it is simple to see that limx→∞ σ2loc(t+1, x) = 3
uniformly w.r.t. t ∈ [ε, 1] and that limx→0 σ

2
loc(t+1, x) ≥ 2 uniformly w.r.t. t ∈ ]0, 1]. It follows

that there exists some δ > 0 such that

σ2loc(t + 1, x) ≥ 3 − ε for x > 1
δ , t ∈ [ε, 1],

σ2loc(t + 1, x) ≥ 2 − ε for |x| < δ, t ∈ ]0, 1].

Thus we obtain

(3.4) Ṽ (ω) =

∫ 3

0
σ2loc(t, X̃t(ω)) dt ≥ 1 · 2 + (1 − 2ε) · (3 − ε) + 1 · (2 − ε)

for every path X̃(ω) satisfying X̃t(ω) > 1
δ for t ∈ [1 + ε, 2 − ε] and |X̃t(ω)| < δ for t ∈ [2, 3].

This set of paths X̃(ω) has positive probability, and the quantity on the right-hand side of
(3.4) is strictly larger than 6, provided that ε was chosen sufficiently small. Hence we find
that Ṽ is not constantly equal to 6 as required.

For what it’s worth, the example can be modified such that volatility is adapted to the
filtration of the driving Brownian motion.

The trick is to choose a random sign ε̂, P (ε̂ = +1) = P (ε̂ = −1) = 1
2 depending solely on

the behavior of (Bt)0≤t≤1 and in such a way that S1 is independent of ε̂. For instance, if we let
m(s) be the unique number satisfying P (S1/2 > m(s) | S1 = s) = P (S1/2 ≤ m(s) | S1 = s) =
1
2 , it is sensible to define ε̂ := +1 if S1/2 > m(S1) and ε̂ := −1 otherwise.
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We then leave the stock price process unchanged on [0, 1]; i.e., we define σ̂2(t) = σ2(t) = 2
and Ŝt = St for t ∈ [0, 1]. On ]1, 2] (resp., ]2, 3]) we set σ̂2(t) := 2 + ε̂ (resp., σ̂2(t) := 2 − ε̂)
and define Ŝt, t ∈ ]1, 3] as the solution of the SDE

(3.5) dŜt = σ̂(t)Ŝt dBt, Ŝ1 = S1.

Here (3.5) depends only on S1 and the process (Bt − B1)1≤t≤3; since both are independent
of ε̂, we obtain that (Ŝt)1≤t≤3 and (St)1≤t≤3 are equivalent in law. It follows that V̂ =∫ 3
0 σ̂

2(t, ω) dt ≡ 6, and since Ŝt and St have the same law for each t ∈ [0, 3], they induce the

same local volatility model and in particular the same (nondeterministic) Ṽ .

4. Counterexample for a Markovian stochastic volatility model. Recall that X denotes
the log-price process of a general stochastic volatility model,

dXt = σ (t, ω) dBt −
(
σ2 (t, ω) /2

)
dt,

where σ = σ (t, ω) is the (progressively measurable) instantaneous volatility process.6 Recall
also our standing assumption that σ is bounded from above and below by positive constants.
We would like to apply Theorem 1 to the two-dimensional diffusion (X,V ), where dV = σ2dt
keeps track of the running realized variance.7 We can do so only after elliptic regularization.
That is, we consider

dXt = σ (t, ω) dBt −
(
σ2 (t, ω) /2

)
dt,

daεt = σ2 (t, ω) dt+ ε1/2dZt,

where Z is a Brownian motion, independent of the filtration generated by B and σ. It follows
that the “double-local” volatility model

dX̃ε
t = σdloc

(
t, X̃ε

t , ã
ε
t

)
dBt −

(
σ2dloc

(
t, X̃ε

t , ã
ε
t

)
/2
)
dt,

dãεt = σ2dloc

(
t, X̃ε

t , ã
ε
t

)
dt+ ε1/2dZt

(with σ2dloc (t, x, a) = E[σ2 (t, ω) | Xt = x, aεt = a]) has the one-dimensional marginals of the
original process (Xt, a

ε
t ). That is, for all fixed t and ε,

Xt
law
= X̃ε

t and ãεt
law
= aεt .

Let us also note that the law of aεt is the law of Vt = a0t convolved with a standard Gaussian
of mean 0 and variance ε. The log-price processes X and X̃ε induce the same local volatility

surface. To this end, just observe that Xt
law
= X̃ε

t implies identical call option prices for all
strikes and maturities and hence (by Dupire’s formula) the same local volatility:

σ2loc (t, x) = E
[
σ2
(
t, ω
) | Xt = x

]
= E

[
σ2dloc

(
t, X̃ε

t , ã
ε
t

) | X̃ε
t = x

]
.

6We note that we intend to insert the volatility of Example 2 later, but so far our considerations hold in
general.

7In other words, VT =
∫ T

0
σ2 (t, ω) dt if V0 = 0, which we shall assume from here on.
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Since the law of a time inhomogeneous Markov process is fully specified by its generator, it
follows that the law of the local volatility process associated with (X) has the same law as
the local volatility process associated with (X̃ε).

We apply this to the toy model discussed earlier. Recall that in this example, with T = 3,

VT =

∫ T

0
σ2 (t, ω) dt = 6,

whereas realized variance under the corresponding local volatility model,

ṼT =

∫ T

0
σ2loc

(
t, X̃t

)
dt,

was seen to be random (but with mean VT , thanks to the matching variance swap prices). As
a particular consequence, using Jensen,

E

(∫ T

0
σ2loc
(
t, X̃t

)
dt− 6

)+

>

(
E

∫ T

0
σ2loc
(
t, X̃t

)
dt− 6

)+

=

(
E

∫ T

0
σ2 (t, ω) dt− 6

)+

= (VT − 6)+ = 0.

We claim that this persists when replacing the abstract stochastic volatility model (X) by
(X̃ε), the first component of a two-dimensional Markov diffusion, for any ε > 0. Indeed, thanks
to the identical laws of the respective local volatility processes, the left-hand side above does
not change when replacing (X̃) by the local volatility process associated with (X̃ε). On the
other hand,

E

∫ T

0
σ2dloc

(
t, X̃ε

t , ã
ε
t

)
dt = E(ãεT − ε1/2ZT )

= E (ãεT ) = E (aεT )

= E
(
VT + ε1/2ZT

)
= VT .

Thus, insisting again that the process X̃ be (in law) the local volatility model associated with
the double-local volatility model (X̃ε, ãε), we see that

c = E

(∫ T

0
σ2loc
(
t, X̃t

)
dt− 6

)+

>

(
E

∫ T

0
σ2dloc

(
t, X̃ε

t , ã
ε
t

)
dt− 6

)+

= 0.

(Observe that c > 0 is independent of ε.) Using the Lipschitz property of the hockeystick
function, again Gyöngy, and the fact that aεT is normally distributed with mean VT and
variance εT , we can conclude that

E

(∫ T

0
σ2dloc

(
t, X̃ε

t , ã
ε
t

)
dt− 6

)+

= E

(∫ T

0
σ2dloc

(
t, X̃ε

t , ã
ε
t

)
dt+ ε

1
2ZT − 6 − ε

1
2ZT

)+

≤ E
(
(ãεT − 6)+ + |ε 1

2ZT |
)

= E(aεT − 6)+ + E|ε 1
2ZT | = 3

√
εT/2π.

Now we choose ε small enough such that 3
√
εT/2π < c, whence the conjecture fails to hold

true in the double-local volatility model for ε > 0 small enough.
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5. Conclusion. Summing up, the double-local volatility model constitutes an example of a
continuous two-dimensional Markovian stochastic volatility model, where stochastic volatility
is a function of both state variables, in which Conjecture 1 fails, i.e., in which the minimal
possible value of a call option is not generated by a local volatility model.

Acknowledgment. All authors thank Gerard Brunick, Johannes Muhle-Karbe, and Wal-
ter Schachermayer for useful comments.
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A Fast Mean-Reverting Correction to Heston’s Stochastic Volatility Model∗
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Abstract. We propose a multiscale stochastic volatility model in which a fast mean-reverting factor of volatility
is built on top of the Heston stochastic volatility model. A singular perturbative expansion is then
used to obtain an approximation for European option prices. The resulting pricing formulas are
semianalytic, in the sense that they can be expressed as integrals. Difficulties associated with the
numerical evaluation of these integrals are discussed, and techniques for avoiding these difficulties
are provided. Overall, it is shown that computational complexity for our model is comparable to
the case of a pure Heston model, but our correction brings significant flexibility in terms of fitting
to the implied volatility surface. This is illustrated numerically and with option data.

Key words. stochastic volatility, Heston model, fast mean reversion, asymptotics, implied volatility smile/skew
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1. Introduction. Since its publication in 1993, the Heston model [12] has received con-
siderable attention from academics and practitioners alike. The Heston model belongs to a
class of models known as stochastic volatility models. Such models relax the assumption of
constant volatility in the stock price process and, instead, allow volatility to evolve stochas-
tically through time. As a result, stochastic volatility models are able to capture some of
the well-known features of the implied volatility surface, such as the volatility smile and skew
(slope at the money). Among stochastic volatility models, the Heston model enjoys wide
popularity because it provides an explicit, easy-to-compute, integral formula for calculating
European option prices. In terms of the computational resources needed to calibrate a model
to market data, the existence of such a formula makes the Heston model extremely efficient
compared to models that rely on Monte Carlo techniques for computation and calibration.

Yet, despite its success, the Heston model has a number of documented shortcomings. For
example, it has been statistically verified that the model misprices far in-the-money and out-
of-the-money European options [6], [21]. In addition, the model is unable to simultaneously
fit implied volatility levels across the full spectrum of option expirations available on the
market [10]. In particular, the Heston model has difficulty fitting implied volatility levels for
options with short expirations [11]. In fact, such problems are not limited to the Heston model.
Any stochastic volatility model in which the volatility is modeled as a one-factor diffusion (as
is the case in the Heston model) has trouble fitting implied volatility levels across all strikes
and maturities [11].
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One possible explanation for why such models are unable to fit the implied volatility surface
is that a single factor of volatility, running on a single time scale, is simply not sufficient for
describing the dynamics of the volatility process. Indeed, the existence of several stochastic
volatility factors running on different time scales has been well documented in literature that
uses empirical return data [1], [2], [3], [5], [8], [13], [16], [18], [19]. Such evidence has led to the
development of multiscale stochastic volatility models, in which instantaneous volatility levels
are controlled by multiple diffusions running on different time scales (see, for example, [7]).
We see value in this line of reasoning and thus develop our model accordingly.

Multiscale stochastic volatility models represent a struggle between two opposing forces.
On one hand, adding a second factor of volatility can greatly improve a model’s fit to the
implied volatility surface of the market. On the other hand, adding a second factor of volatil-
ity often results in the loss of some, if not all, analytic tractability. Thus, in developing a
multiscale stochastic volatility model, one seeks to model market dynamics as accurately as
possible, while at the same time retaining a certain level of analyticity. Because the Heston
model provides explicit integral formulas for calculating European option prices, it is an ideal
template on which to build a multiscale model and accomplish this delicate balancing act.

In this paper, we show one way to bring the Heston model into the realm of multiscale
stochastic volatility models without sacrificing analytic tractability. Specifically, we add a fast
mean-reverting component of volatility on top of the Cox–Ingersoll–Ross (CIR) process that
drives the volatility in the Heston model. Using the multiscale model, we perform a singular
perturbation expansion, as outlined in [7], in order to obtain a correction to the Heston price of
a European option. This correction is easy to implement, as it has an integral representation
that is quite similar to that of the European option pricing formula produced by the Heston
model.

This paper is organized as follows. In section 2 we introduce the multiscale stochastic
volatility model, and we derive the resulting pricing partial differential equation (PDE) and
boundary condition for the European option pricing problem. In section 3 we use a singular
perturbative expansion to derive a PDE for a correction to the Heston price of a European
option, and in section 4 we obtain a solution for this PDE. A proof of the accuracy of the
pricing approximation is provided in section 5. In section 6 we examine how the implied
volatility surface, as obtained from the multiscale model, compares with that of the Heston
model, and in section 7 we present an example of calibration to market data. In Appendix
A we review the dynamics of the Heston stochastic volatility model under the risk-neutral
measure and present the pricing formula for European options. An explicit formula for the
correction is given in Appendix B, and the issues associated with numerically evaluating the
integral representations of option prices obtained from the multiscale model are explored in
Appendix D.

2. Multiscale model and pricing PDE. Consider the price Xt of an asset (stock, index,
etc.) whose dynamics under the pricing risk-neutral measure are described by the following
system of stochastic differential equations:

dXt = rXtdt+ ΣtXtdW
x
t ,(2.1)

Σt =
√
Zt f(Yt),(2.2)
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dYt =
Zt
ε

(m− Yt)dt + ν
√

2

√
Zt
ε
dW y

t ,(2.3)

dZt = κ(θ − Zt)dt+ σ
√
Zt dW

z
t .(2.4)

Here, W x
t , W y

t , and W z
t are one-dimensional Brownian motions with the correlation structure

d 〈W x,W y〉t = ρxydt,(2.5)

d 〈W x,W z〉t = ρxzdt,(2.6)

d 〈W y,W z〉t = ρyzdt,(2.7)

where the correlation coefficients ρxy, ρxz, and ρyz are constants satisfying ρ2xy < 1, ρ2xz < 1,
ρ2yz < 1, and ρ2xy + ρ2xz + ρ2yz − 2ρxyρxzρyz < 1 in order to ensure positive definiteness of the
covariance matrix of the three Brownian motions.

As it should be, in (2.1), the stock price discounted by the risk-free rate r is a martingale
under the pricing risk-neutral measure. The volatility Σt is driven by two processes Yt and
Zt, through the product

√
Zt f(Yt). The process Zt is a CIR process with long-run mean θ,

rate of mean reversion κ, and “CIR volatility” σ. We assume that κ, θ, and σ are positive,
and that 2κθ ≥ σ2, which ensures that Zt > 0 at all times, under the condition Z0 > 0.

Note that, given Zt, the process Yt in (2.3) appears as an Ornstein–Uhlenbeck (OU) process
evolving on the time scale ε/Zt, and with the invariant (or long-run) distribution N (m, ν2).
This way of “modulating” the rate of mean reversion of the process Yt by Zt has also been
used in [4] in the context of interest rate modeling.

Multiple time scales are incorporated in this model through the parameter ε > 0, which
is intended to be small, so that Yt is fast reverting.

We do not specify the precise form of f(y), which will not play an essential role in the
asymptotic results derived in this paper. However, in order to ensure Σt has the same behavior
at zero and infinity as in the case of a pure Heston model, we assume there exist constants c1
and c2 such that 0 < c1 ≤ f(y) ≤ c2 < ∞ for all y ∈ R. Likewise, the particular choice of an
OU-like process for Yt is not crucial in the analysis. The mean-reversion aspect (or ergodicity)
is the important property. In fact, we could have chosen Yt to be a CIR-like process instead
of an OU-like process without changing the nature of the correction to the Heston model
presented in this paper.

Here, we consider the unique strong solution to (2.1)–(2.4) for a fixed parameter ε > 0.
Existence and uniqueness are easily obtained by (i) using the classical existence and uniqueness
result for the CIR process Zt defined by (2.4), (ii) using the representation (5.18) of the process
Yt to derive moments for a fixed ε > 0, and (iii) using the exponential formula for Xt:

Xt = x exp

(∫ t

0

(
r − 1

2
Σ2
s

)
ds+

∫ t

0
ΣsdW

x
s

)
.

We note that if one chooses f(y) = 1, the multiscale model becomes ε-independent and
reduces to the pure Heston model expressed under the risk-neutral measure with stock price
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Xt and stochastic variance Zt:

dXt = rXtdt +
√
ZtXtdW

x
t ,

dZt = κ(θ − Zt)dt+ σ
√
Zt dW

z
t ,

d 〈W x,W z〉t = ρxzdt.

Thus, the multiscale model can be thought of as a Heston-like model with a fast-varying factor
of volatility, f(Yt), built on top of the CIR process Zt, which drives the volatility in the Heston
model.

We consider a European option expiring at time T > t with payoff h(XT ). As the dynamics
of the stock in the multiscale model are specified under the risk-neutral measure, the price of
the option, denoted by Pt, can be expressed as an expectation of the option payoff, discounted
at the risk-free rate:

Pt = E

[
e−r(T−t)h(XT )

∣∣∣Xt, Yt, Zt

]
=: P ε(t,Xt, Yt, Zt),

where we have used the Markov property of (Xt, Yt, Zt) and defined the pricing function
P ε(t, x, y, z), the superscript ε denoting the dependence on the small parameter ε. Using the
Feynman–Kac formula, P ε(t, x, y, z) satisfies the following PDE and boundary condition:

LεP ε(t, x, y, z) = 0,(2.8)

Lε =
∂

∂t
+ L(X,Y,Z) − r ,(2.9)

P ε(T, x, y, z) = h(x),(2.10)

where the operator L(X,Y,Z) is the infinitesimal generator of the process (Xt, Yt, Zt):

L(X,Y,Z) = rx
∂

∂x
+

1

2
f2(y)zx2

∂2

∂x2
+ ρxzσf(y)zx

∂2

∂x∂z

+ κ(θ − z)
∂

∂z
+

1

2
σ2z

∂2

∂z2

+
z

ε

(
(m− y)

∂

∂y
+ ν2

∂2

∂y2

)
+

z√
ε

(
ρyzσν

√
2
∂2

∂y∂z
+ ρxyν

√
2f(y)x

∂2

∂x∂y

)
.

It will be convenient to separate Lε into groups of like powers of 1/
√
ε. To this end, we define

the operators L0, L1, and L2 as follows:

L0 := ν2
∂2

∂y2
+ (m− y)

∂

∂y
,(2.11)

L1 := ρyzσν
√

2
∂2

∂y∂z
+ ρxyν

√
2 f(y)x

∂2

∂x∂y
,(2.12)

L2 :=
∂

∂t
+

1

2
f2(y)zx2

∂2

∂x2
+ r

(
x
∂

∂x
− ·

)
+

1

2
σ2z

∂2

∂z2
+ κ(θ − z)

∂

∂z
+ ρxzσf(y)zx

∂2

∂x∂z
.(2.13)
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With these definitions, Lε is expressed as

Lε =
z

ε
L0 +

z√
ε
L1 + L2.(2.14)

Note that L0 is the infinitesimal generator of an OU process with unit rate of mean reversion,
and L2 is the pricing operator of the Heston model with volatility and correlation modulated
by f(y).

3. Asymptotic analysis. For a general function f , there is no analytic solution to the
Cauchy problem (2.8)–(2.10). Thus, we proceed with an asymptotic analysis as developed
in [7]. Specifically, we perform a singular perturbation with respect to the small parameter ε,
expanding our solution in powers of

√
ε:

P ε = P0 +
√
εP1 + εP2 + · · · .(3.1)

We now plug (3.1) and (2.14) into (2.8) and (2.10) and collect terms of equal powers of
√
ε.

The order 1/ε terms. Collecting terms of order 1/ε we have the following PDE:

0 = zL0P0.(3.2)

We see from (2.11) that both terms in L0 take derivatives with respect to y. In fact, L0 is an
infinitesimal generator, and consequently zero is an eigenvalue with constant eigenfunctions.
Thus, we seek P0 of the form

P0 = P0(t, x, z)

so that (3.2) is satisfied.

The order 1/
√
ε terms. Collecting terms of order 1/

√
ε leads to the following PDE:

0 = zL0P1 + zL1P0

= zL0P1.(3.3)

Note that we have used that L1P0 = 0, since both terms in L1 take derivatives with respect
to y and P0 is independent of y. As above, we seek P1 of the form

P1 = P1(t, x, z)

so that (3.3) is satisfied.

The order 1 terms. Matching terms of order 1 leads to the following PDE and boundary
condition:

0 = zL0P2 + zL1P1 + L2P0

= zL0P2 + L2P0,(3.4)

h(x) = P0(T, x, z).(3.5)
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In deriving (3.4) we have used that L1P1 = 0, since L1 takes derivative with respect to y and
P1 is independent of y.

Note that (3.4) is a Poisson equation in y with respect to the infinitesimal generator L0

and with source term L2P0; in solving this equation, (t, x, z) are fixed parameters. In order
for this equation to admit solutions with reasonable growth at infinity (polynomial growth),
we impose that the source term satisfy the following centering condition:

0 = 〈L2P0〉 = 〈L2〉P0,(3.6)

where we have used the notation

〈g〉 :=

∫
g(y)Φ(y)dy;(3.7)

here Φ denotes the density of the invariant distribution of the process Yt, which we remind the
reader is N (m, ν2). Note that in (3.6) we have pulled P0(t, x, z) out of the linear 〈·〉 operator,
since it does not depend on y.

Note that the PDE (3.6) and the boundary condition (3.5) jointly define a Cauchy problem
that P0(t, x, z) must satisfy.

Using (3.4) and the centering condition (3.6), we deduce

P2 = −1

z
L−1
0 (L2 − 〈L2〉)P0,(3.8)

where L−1
0 is the inverse operator of L0 acting on the centered functions.

The order
√
ε terms. Collecting terms of order

√
ε, we obtain the following PDE and

boundary condition:

0 = zL0P3 + zL1P2 + L2P1,(3.9)

0 = P1(T, x, z).(3.10)

We note that P3(t, x, y, z) solves the Poisson equation (3.9) in y with respect to L0. Thus, we
impose the corresponding centering condition on the source zL1P2 + L2P1, leading to

〈L2〉P1 = −〈zL1P2〉 .(3.11)

Plugging P2, given by (3.8), into (3.11) gives

〈L2〉P1 = AP0,(3.12)

A :=

〈
zL1

1

z
L−1
0 (L2 − 〈L2〉)

〉
.(3.13)

Note that the PDE (3.12) and the zero boundary condition (3.10) define a Cauchy problem
that P1(t, x, z) must satisfy.
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Summary of the key results. We summarize the key results of our asymptotic analysis.
We have written the expansion (3.1) for the solution of the PDE problem (2.8)–(2.10). Along
the way, he have chosen solutions for P0 and P1 which are of the forms P0 = P0(t, x, z) and
P1 = P1(t, x, z). These choices lead us to conclude that P0(t, x, z) and P1(t, x, z) must satisfy
the following Cauchy problems:

〈L2〉P0 = 0,(3.14)

P0(T, x, z) = h(x),(3.15)

and

〈L2〉P1(t, x, z) = AP0(t, x, z),(3.16)

P1(T, x, z) = 0,(3.17)

where

〈L2〉 =
∂

∂t
+

1

2

〈
f2

〉
zx2

∂2

∂x2
+ r

(
x
∂

∂x
− ·

)
+

1

2
σ2z

∂2

∂z2
+ κ(θ − z)

∂

∂z
+ ρxzσ 〈f〉 zx ∂2

∂x∂z
,(3.18)

and A is given by (3.13). Recall that the bracket notation is defined in (3.7).

4. Formulas for P0(t, x, z) and P1(t, x, z). In this section we use the results of our
asymptotic calculations to find explicit solutions for P0(t, x, z) and P1(t, x, z).

4.1. Formula for P0(t, x, z). Recall that P0(t, x, z) satisfies a Cauchy problem defined
by (3.14) and (3.15).

Without loss of generality, we normalize f so that
〈
f2

〉
= 1. Thus, we rewrite 〈L2〉 given

by (3.18) as follows:

〈L2〉 =
∂

∂t
+

1

2
zx2

∂2

∂x2
+ r

(
x
∂

∂x
− ·

)
+

1

2
σ2z

∂2

∂z2
+ κ(θ − z)

∂

∂z
+ ρσzx

∂2

∂x∂z
(4.1)

:= LH ,
ρ := ρxz 〈f〉 .(4.2)

We note that ρ2 ≤ 1, since 〈f〉2 ≤ 〈
f2

〉
= 1. So, ρ can be thought of as an effective correlation

between the Brownian motions in the Heston model obtained in the limit ε → 0, where
〈L2〉 = LH , the pricing operator for European options as calculated in the Heston model.
Thus, we see that P0(t, x, z) =: PH(t, x, z) is the classical solution for the price of a European
option as calculated in the Heston model with effective correlation ρ = ρxz 〈f〉.
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The derivation of pricing formulas for the Heston model is given in Appendix A. Here, we
simply state the main result:

PH(t, x, z) = e−rτ
1

2π

∫
e−ikqĜ(τ, k, z)ĥ(k)dk,(4.3)

τ(t) = T − t,(4.4)

q(t, x) = r(T − t) + log x,(4.5)

ĥ(k) =

∫
eikqh(eq)dq,(4.6)

Ĝ(τ, k, z) = eC(τ,k)+zD(τ,k),(4.7)

C(τ, k) =
κθ

σ2

(
(κ+ ρikσ + d(k)) τ − 2 log

(
1 − g(k)eτd(k)

1 − g(k)

))
,(4.8)

D(τ, k) =
κ+ ρikσ + d(k)

σ2

(
1 − eτd(k)

1 − g(k)eτd(k)

)
,(4.9)

d(k) =
√
σ2(k2 − ik) + (κ+ ρikσ)2,(4.10)

g(k) =
κ+ ρikσ + d(k)

κ+ ρikσ − d(k)
.(4.11)

We note that, for certain choices of h, the integral in (4.6) may not converge. For example,
a European call with strike K has h(eq) = (eq − K)+. In this case, the integral in (4.6)
converges only if we set k = kr + iki, where ki > 1. Hence, when evaluating (4.3), (4.6), one
must impose k = kr + iki, kr > 1, and dk = dkr.

4.2. Formula for P1(t, x, z). Recall that P1(t, x, z) satisfies a Cauchy problem defined by
(3.16) and (3.17). In order to find a solution for P1(t, x, z) we must first identify the operator
A. To this end, we introduce two functions, φ(y) and ψ(y), which solve the following Poisson
equations in y with respect to the operator L0:

L0φ =
1

2

(
f2 − 〈

f2
〉)
,(4.12)

L0ψ = f − 〈f〉 .(4.13)

From (3.13) we have

A =

〈
zL1

1

z
L−1
0 (L2 − 〈L2〉)

〉
=

〈
zL1

1

z
L−1
0

z

2

(
f2 − 〈

f2
〉)
x2

∂2

∂x2

〉
+

〈
zL1

1

z
L−1
0 ρxzσz (f − 〈f〉)x ∂2

∂x∂z

〉
= z

〈
L1φ(y)x2

∂2

∂x2

〉
+ ρxzσz

〈
L1ψ(y)x

∂2

∂x∂z

〉
.
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Using the definition (2.12) of L1, one deduces the following expression for A:

A = V1zx
2 ∂3

∂z∂x2
+ V2zx

∂3

∂z2∂x

+ V3zx
∂

∂x

(
x2

∂2

∂x2

)
+ V4z

∂

∂z

(
x
∂

∂x

)2

,(4.14)

V1 = ρyzσν
√

2
〈
φ′

〉
,(4.15)

V2 = ρxzρyzσ
2ν

√
2
〈
ψ′〉 ,(4.16)

V3 = ρxyν
√

2
〈
fφ′

〉
,(4.17)

V4 = ρxyρxzσν
√

2
〈
fψ′〉 .(4.18)

Note that we have introduced four group parameters, Vi, i = 1, . . . , 4, which are constants
that can be obtained by calibrating our model to the market, as will be done in section 7.

Now that we have expressions for A, PH , and LH , we are in a position to solve for
P1(t, x, z), which is the solution to the Cauchy problem defined by (3.16) and (3.17). We
leave the details of the calculation to Appendix B. Here, we simply present the main result:

P1(t, x, z) =
e−rτ

2π

∫
R

e−ikq
(
κθf̂0(τ, k) + zf̂1(τ, k)

)
× Ĝ(τ, k, z)ĥ(k)dk,(4.19)

τ(t) = T − t,

q(t, x) = r(T − t) + log x,

ĥ(k) =

∫
eikqh(eq)dq,

Ĝ(τ, k, z) = eC(τ,k)+zD(τ,k),

f̂0(τ, k) =

∫ τ

0
f̂1(s, k)ds,(4.20)

f̂1(τ, k) =

∫ τ

0
b(s, k)eA(τ,k,s)ds,(4.21)

C(τ, k) =
κθ

σ2

(
(κ+ ρikσ + d(k)) τ − 2 log

(
1 − g(k)eτd(k)

1 − g(k)

))
,

D(τ, k) =
κ+ ρikσ + d(k)

σ2

(
1 − eτd(k)

1 − g(k)eτd(k)

)
,

A(τ, k, s) = (κ+ ρσik + d(k))
1 − g(k)

d(k)g(k)
log

(
g(k)eτd(k) − 1

g(k)esd(k) − 1

)
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+ d(k) (τ − s) ,(4.22)

d(k) =
√
σ2(k2 − ik) + (κ+ ρikσ)2 ,

g(k) =
κ+ ρikσ + d(k)

κ+ ρikσ − d(k)
,

b(τ, k) = − (
V1D(τ, k)

(−k2 + ik
)

+ V2D
2(τ, k) (−ik)

+ V3
(
ik3 + k2

)
+ V4D(τ, k)

(−k2)) .(4.23)

Once again, we note that, depending on the option payoff, evaluating (4.19) may require
setting k = kr + iki and dk = dkr, as described at the end of subsection 4.1.

5. Accuracy of the approximation. In this section, we prove that the approximation
P ε ∼ P0 +

√
εP1, where P0 and P1 are defined in the previous sections, is accurate to order

εα for any given α ∈ (1/2, 1). Specifically, for a European option with a payoff h such that
h(eξ) belongs to the Schwartz class of rapidly decaying functions with respect to the log-price
variable ξ = log x, we will show

|P ε(t, x, y, z) − (
P0(t, x, z) +

√
εP1(t, x, z)

) | ≤ C εα,(5.1)

where C is a constant which depends on (y, z) but is independent of ε.
We start by defining the remainder term Rε(t, x, y, z):

Rε =
(
P0 +

√
εP1 + εP2 + ε

√
εP3

)− P ε.(5.2)

Recalling that

0 = LεP ε,
0 = zL0P0,

0 = zL0P1 + zL1P0,

0 = zL0P2 + zL1P1 + L2P0,

0 = zL0P3 + zL1P2 + L2P1

and applying Lε to Rε, we obtain that Rε must satisfy the following PDE:

LεRε = Lε (P0 +
√
εP1 + εP2 + ε

√
εP3

)− LεP ε

=

(
z

ε
L0 +

z√
ε
L1 + L2

)(
P0 +

√
εP1 + εP2 + ε

√
εP3

)
= ε

(
zL1P3 + L2P2 +

√
εL2P3

)
= ε F ε,(5.3)

F ε := zL1P3 + L2P2 +
√
εL2P3,(5.4)

where we have defined the ε-dependent source term F ε(t, x, y, z). Recalling that

P ε(T, x, y, z) = h(x),

P0(T, x, z) = h(x),

P1(T, x, z) = 0,
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we deduce from (5.2) that

Rε(T, x, y, z) = εP2(T, x, y, z) + ε
√
εP3(T, x, y, z)

= εGε(x, y, z),(5.5)

Gε(x, y, z) := P2(T, x, y, z) +
√
εP3(T, x, y, z),(5.6)

where we have defined the ε-dependent boundary term Gε(x, y, z).

Using the expression (2.9) for Lε, we find that Rε(t, x, y, z) satisfies the following Cauchy
problem with source: (

∂

∂t
+ LX,Y,Z − r

)
Rε = ε F ε,(5.7)

Rε(T, x, y, z) = εGε(x, y, z).(5.8)

Therefore Rε admits the following probabilistic representation:

Rε(t, x, y, z) = εE

[
e−r(T−t)Gε(XT , YT , ZT )

−
∫ T

t
e−r(s−t)F ε(s,Xs, Ys, Zs)ds | Xt = x, Yt = y, Zt = z

]
.(5.9)

In order to bound Rε(T, x, y, z), we need bounds on the growth of F ε(t, x, y, z) and Gε(x, y, z).
From (5.6) we see that Gε(x, y, z) contains the functions P2(t, x, y, z) and P3(t, x, y, z). And
from (5.4) we see that F ε(t, x, y, z) contains terms with the linear operators, L1 and L2,
acting on P2(t, x, y, z) and P3(t, x, y, z). Thus, to bound F ε(t, x, y, z) and Gε(x, y, z), we
need to obtain growth estimates for P2(t, x, y, z) and P3(t, x, y, z) and growth estimates for
P2(t, x, y, z) and P3(t, x, y, z) when linear operators act upon them. To do this, we use the
following classical result, which can be found in Chapter 5 of [7].

Lemma 5.1. Suppose L0χ = g, 〈g〉 = 0, and |g(y)| < C1(1+|y|n); then |χ(y)| < C2(1+|y|n)
for some C2. When n = 0 we have |χ(y)| < C2(1 + log(1 + |y|)).

Now, by continuing the asymptotic analysis of section 3, we find that P2(t, x, y, z) and
P3(t, x, y, z) satisfy Poisson equations in y with respect to the operator, L0. We have

L0P2(t, x, y, z) =
1

z
(−L2 + 〈L2〉)P0(t, x, z),

L0P3(t, x, y, z) =
1

z
(−L2 + 〈L2〉)P1(t, x, z) + (−L1P2(t, x, y, z) + 〈L1P2(t, x, y, z)〉) .

Also note that, for any operator, M, of the form

M =
∂m

∂zm

N∏
j=1

xn(j)
∂n(j)

∂xn(j)
,(5.10)
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we have ML0 = L0M because L0 does not contain x or z. Hence, MP2(t, x, y, z) and
MP3(t, x, y, z) satisfy the following Poisson equations in y with respect to the operator, L0:

L0 (MP2(t, x, y, z)) = M1

z
(−L2 + 〈L2〉)P0(t, x, z),(5.11)

L0 (MP3(t, x, y, z)) = M1

z
(−L2 + 〈L2〉)P1(t, x, z)

+ M (−L1P2(t, x, y, z) + 〈L1P2(t, x, y, z)〉) .
Let us bound functions of the form MP0(t, x, z). Using (4.3) and (5.10) and recalling that
q = rτ + log x and Ĝ = eC+zD, we have

MP0 =
e−rτ

2π

∫ ⎛⎝ N∏
j=1

xn(j)
∂n(j)

∂xn(j)
e−ikq

⎞⎠(
∂m

∂zm
eC(τ,k,z)+zD(τ,k,z)

)
ĥ(k)dk

=
e−rτ

2π

∫
e−ikq

⎛⎝ N∏
j=1

n(j)∏
l=1

(−ik − l + 1)

⎞⎠(
(D(τ, k, z))m eC(τ,k,z)+zD(τ,k,z)

)
ĥ(k)dk

=
e−rτ

2π

∫ ⎛⎝ N∏
j=1

n(j)∏
l=1

(−ik − l + 1)

⎞⎠ (D(τ, k, z))m e−ikqĜ(τ, k, z)ĥ(k)dk.

We note the following:
• By assumption, the option payoff h(eq) ∈ S, the Schwartz class of rapidly decreasing

functions, so that the Fourier transform ĥ(k) ∈ S, and therefore ‖kmĥ(k)‖∞ < ∞ for
all integers, m.

• |Ĝ(τ, k, z)| ≤ 1 for all τ ∈ [0, T ], k ∈ R, z ∈ R
+. This follows from the fact that

Ĝ(τ, k, z) is the characteristic function, E[exp(ikQT )|Xt = x,Zt = z].
• There exists a constant, C, such that |D(τ, k)| ≤ C(1 + |k|) for all τ ∈ [0, T ].

It follows that for any M of the form (5.10) we have the following bound on MP0(t, x, z):

|MP0(t, x, z)| ≤ e−rτ

2π

∫ ∣∣∣∣∣∣
N∏
j=1

n(j)∏
l=1

(−ik − l + 1)

∣∣∣∣∣∣ |D(τ, k)|m
∣∣∣e−ikq∣∣∣ ∣∣∣Ĝ(τ, k, z)

∣∣∣ ∣∣∣ĥ(k)
∣∣∣ dk

≤
∫ ∣∣∣∣∣∣

N∏
j=1

n(j)∏
l=1

(−ik − l + 1)

∣∣∣∣∣∣ |D(τ, k)|m
∣∣∣ĥ(k)

∣∣∣ dk := C <∞.(5.12)

The constant C depends on M but is independent of (t, x, z). Using similar techniques, a
series of tedious but straightforward calculations leads to the following bounds:

|MP1(t, x, z)| ≤ C(1 + z),∣∣∣∣ ∂∂tMP0(t, x, z)

∣∣∣∣ ≤ C(1 + z),∣∣∣∣ ∂∂tMP1(t, x, z)

∣∣∣∣ ≤ C(1 + z2),
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where, in each case, C is some finite constant which depends on M but is independent
of (t, x, z). We are now in a position to bound functions of the form MP2(t, x, y, z) and
MP3(t, x, y, z). From (5.11) we have

L0 (MP2(t, x, y, z)) = M1

z
(−L2 + 〈L2〉)P0(t, x, z)

=
1

2

(−f2(y) +
〈
f2

〉)M1P0(t, x, z)

+ ρxzσ (−f(y) + 〈f〉)M2P0(t, x, z)

=: g(t, x, y, z),

where Mi are of the form (5.10). Now, using the fact that f(y) is bounded and using (5.12),
we have

|g(t, x, y, z)| ≤ C,

where C is a constant which is independent of (t, x, y, z). Hence, using Lemma 5.1, there
exists a constant, C, such that

|MP2(t, x, y, z)| ≤ C(1 + log(1 + |y|)).
Similar, but more involved calculations lead to the following bounds:

|MP3(t, x, y, z)| ,
∣∣∣∣ ∂∂tMP2(t, x, y, z)

∣∣∣∣ ≤ C(1 + log(1 + |y|))(1 + z),(5.13) ∣∣∣∣ ∂∂yMP2(t, x, y, z)

∣∣∣∣ ≤ C,∣∣∣∣ ∂∂y ∂∂tMP2(t, x, y, z)

∣∣∣∣ , ∣∣∣∣ ∂∂yMP3(t, x, y, z)

∣∣∣∣ ≤ C(1 + z),∣∣∣∣ ∂∂tMP3(t, x, y, z)

∣∣∣∣ ≤ C(1 + log(1 + |y|))(1 + z2),∣∣∣∣ ∂∂y ∂∂tMP3(t, x, y, z)

∣∣∣∣ ≤ C(1 + z2).(5.14)

We can now bound Gε(x, y, z). Using (5.6), we have

|Gε(x, y, z)| ≤ |P2(T, x, y, z)| +
√
ε|P3(T, x, y, z)|

≤ C1(1 + log(1 + |y|)) +
√
εC2(1 + log(1 + |y|))(1 + z)

≤ C(1 + log(1 + |y|))(1 + z).(5.15)

Likewise, using (5.4), we have

|F ε(t, x, y, z)| ≤ z |L1P3(t, x, y, z)| + |L2P2(t, x, y, z)| +
√
ε |L2P3(t, x, y, z)| .

Each of the above terms can be bounded using (5.13)–(5.14). In particular we find that there
exists a constant, C, such that

|F ε(t, x, y, z)| ≤ C(1 + log(1 + |y|))(1 + z2).(5.16)
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Using (5.9), bounds (5.15) and (5.16), the Cauchy–Schwarz inequality, and moments of the
ε-independent CIR process Zt (see, for instance, [15]), one obtains

|Rε(t, x, y, z)| ≤ εC(z)

(
1 + Et,y,z|YT | +

∫ T

t
Et,y,z|Ys|ds

)
,(5.17)

where Et,y,z denotes the expectation starting at time t from Yt = y and Zt = z under the
dynamics (2.3)–(2.4). Under these dynamics, starting at time zero from y, we have

Yt = m+ (y −m)e−
1
ε

∫ t
0
Zsds +

ν
√

2√
ε
e−

1
ε

∫ t
0
Zudu

∫ t

0
e

1
ε

∫ s
0
Zuduν

√
Zs dW

y
s .(5.18)

Using the bound established in Appendix C, we have that for any given α ∈ (1/2, 1) there is
a constant C such that

E|Yt| ≤ C εα−1 ,(5.19)

and the error estimate (5.1) follows.

Numerical illustration for call options. The result of accuracy above is established for
smooth and bounded payoffs. The case of call options, important for implied volatilities and
calibration described in the following sections, would require regularizing the payoff as was
done in [9] in the Black–Scholes case with fast mean-reverting stochastic volatility. Here, in
the case of the multiscale Heston model, we simply provide a numerical illustration of the
accuracy of approximation. The full model price is computed by Monte Carlo simulation, and
the approximated price is given by the formula for the Heston price P0 given in section 4.1 and
our formulas for the correction

√
ε P1 given in section 4.2. Note that the group parameters Vi

needed to compute the correction are calculated from the parameters of the full model.

In Table 1, we summarize the results of a Monte Carlo simulation for a European call
option. We use a standard Euler scheme, with a time step of 10−5 years, which is short
enough to ensure that Zt never becomes negative. We run 106 sample paths with ε = 10−3

so that
√
εV3 = 0.0303 is of the same order as V ε

3 , the largest of the V ε
i ’s obtained in the

calibration example presented in section 7. The parameters used in the simulation are

x = 100, z = 0.24, r = 0.05, κ = 1, θ = 1, σ = 0.39, ρxz = −0.35,

y = 0.06, m = 0.06, ν = 1, ρxy = −0.35, ρyz = 0.35,

τ = 1, K = 100,

and f(y) = ey−m−ν2 so that
〈
f2

〉
= 1. Note that, although f is not bounded, it is a convenient

choice because it allows for analytic calculation of the four group parameters Vi given by
(4.15)–(4.18).

Note that the error |P0 +
√
ε P1 − P̂MC | is smaller than σ̂MC while the correction

√
ε P1 is

statistically significant. This illustrates the accuracy of our approximation for call options in
a realistic parameter regime.
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Table 1
Results of a Monte Carlo simulation for a European call option.

ε
√
ε P1 P0 +

√
ε P1

̂PMC σ̂MC |P0 +
√
ε P1 − ̂PMC |

0 0 21.0831 - - -

10−3 −0.2229 20.8602 20.8595 0.0364 0.0007

6. The multiscale implied volatility surface. In this section, we explore how the implied
volatility surface produced by our multiscale model compares to that produced by the Heston
model. To begin, we remind the reader that an approximation to the price of a European
option in the multiscale model can be obtained through the formula

P ε ∼ P0 +
√
εP1

= PH + P ε1 ,

P ε1 :=
√
ε P1,

where we have absorbed the
√
ε into the definition of P ε1 and used P0 = PH , the Heston price.

Form the formulas for the correction P1, given in section 4.2, it can be seen that P1 is linear
in Vi, i = 1, . . . , 4. Therefore, by setting

V ε
i =

√
ε Vi, i = 1, . . . , 4 ,

the small correction P ε1 is given by the same formulas as P1 with the Vi replaced by the V ε
i .

It is important to note that, although adding a fast mean-reverting factor of volatility on
top of the Heston model introduces five new parameters (ν, m, ε, ρxy, ρyz) plus an unknown
function f to the dynamics of the stock (see (2.2) and (2.3)), neither knowledge of the values
of these five parameters nor the specific form of the function f is required to price options
using our approximation. The effect of adding a fast mean-reverting factor of volatility on top
of the Heston model is entirely captured by the four group parameters V ε

i , which are constants
that can be obtained by calibrating the multiscale model to option prices on the market.

By setting V ε
i = 0 for i = 1, . . . , 4, we see that P ε1 = 0, P ε = PH , and the resulting implied

volatility surface, obtained by inverting the Black–Scholes formula, corresponds to the implied
volatility surface produced by the Heston model. If we then vary a single V ε

i while holding
V ε
j = 0 for j �= i, we can see exactly how the multiscale implied volatility surface changes as

a function of each of the V ε
i . The results of this procedure are plotted in Figure 1.

Because they are on the order of
√
ε, typical values of the V ε

i are quite small. However,
in order to highlight their effect on the implied volatility surface, the range of values plotted
for the V ε

i in Figure 1 was intentionally chosen to be large. It is clear from Figure 1 and from
(4.23) that each V ε

i has a distinct effect on the implied volatility surface. Thus, the multiscale
model provides considerable flexibility when it comes to calibrating the model to the implied
volatility surface produced by options on the market.

7. Calibration. Denote by Θ and Φ the vectors of unobservable parameters in the Heston
and multiscale approximation models, respectively:

Θ = (κ, ρ, σ, θ, z),

Φ = (κ, ρ, σ, θ, z, V ε
1 , V

ε
2 , V

ε
3 , V

ε
4 ).
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Figure 1. Implied volatility curves are plotted as a function of the strike price for European calls in the
multiscale model. In this example the initial stock price is x = 100. The Heston parameters are set to z = 0.04,
θ = 0.024, κ = 3.4, σ = 0.39, ρxz = −0.64, and r = 0.0. In subfigure (a) we vary only V ε

1 , fixing V ε
i = 0

for i �= 1. Likewise, in subfigures (b), (c), and (d), we vary only V ε
2 , V

ε
3 , and V

ε
4 , respectively, fixing all other

V ε
i = 0. We remind the reader that, in all four plots, V ε

i = 0 corresponds to the implied volatility curve of the
Heston model.

Let σ(Ti,Kj(i)) be the implied volatility of a call option on the market with maturity date
Ti and strike price Kj(i). Note that, for each maturity date, Ti, the set of available strikes,
{Kj(i)}, varies. Let σH(Ti,Kj(i),Θ) be the implied volatility of a call option with maturity
date Ti and strike price Kj(i) as calculated in the Heston model using parameters Θ. And let
σM (Ti,Kj(i),Φ) be the implied volatility of the call option with maturity date Ti and strike
price Kj(i) as calculated in the multiscale approximation using parameters Φ.

We formulate the calibration problem as a constrained, nonlinear, least squares optimiza-
tion. Define the objective functions as

Δ2
H(Θ) =

∑
i

∑
j(i)

(
σ(Ti,Kj(i)) − σH(Ti,Kj(i),Θ)

)2
,

Δ2
M(Φ) =

∑
i

∑
j(i)

(
σ(Ti,Kj(i)) − σM (Ti,Kj(i),Φ)

)2
.
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We consider Θ∗ and Φ∗ to be optimal if they satisfy

Δ2
H(Θ∗) = min

Θ
Δ2
H(Θ),

Δ2
M (Φ∗) = min

Φ
Δ2
M(Φ).

It is well known that the objective functions, Δ2
H and Δ2

M , may exhibit a number of local
minima. Therefore, if one uses a local gradient method to find Θ∗ and Φ∗ (as we do in this
paper), there is a danger of ending up in a local minima rather than the global minimum.
Therefore, it becomes important to make a good initial guess for Θ and Φ, which can be done
by visually tuning the Heston parameters to match the implied volatility surface and setting
each of the V ε

i = 0. In this paper, we calibrate the Heston model first to find Θ∗. Then, for
the multiscale model, we make an initial guess Φ = (Θ∗, 0, 0, 0, 0) (i.e., we set the V ε

i = 0 and
use Θ∗ for the rest of the parameters of Φ). This is a logical calibration procedure because
the V ε

i , being of order
√
ε, are intended to be small parameters.

The data we consider consists of call options on the S&P 500 index (SPX) taken from
May 17, 2006. We limit our data set to options with maturities greater than 45 days and with
open interest greater than 100. We use the yield on the nominal 3-month, constant maturity,
U.S. Government treasury bill as the risk-free interest rate. And we use a dividend yield on
the SPX taken directly from the Standard & Poor’s website (http://www.standardandpoors.
com). In Figures 2 through 8, we plot the implied volatilities of call options on the market
as well as the calibrated implied volatility curves for the Heston and multiscale models. We
would like to emphasize that, although the plots are presented maturity by maturity, they are
the result of a single calibration procedure that uses the entire data set.

From Figures 2 through 8, it is apparent to the naked eye that the multiscale model
represents a vast improvement over the Heston model, especially for call options with the
shortest maturities. In order to quantify this result, we define marginal residual sum of
squares

Δ̄2
H(Ti) =

1

N(Ti)

∑
j(i)

(
σ(Ti,Kj(i)) − σH(Ti,Kj(i),Θ

∗)
)2
,

Δ̄2
M (Ti) =

1

N(Ti)

∑
j(i)

(
σ(Ti,Kj(i)) − σM (Ti,Kj(i),Φ

∗)
)2
,

where N(Ti) is the number of different calls in the data set that expire at time Ti (i.e.,
N(Ti) = #{Kj(i)}). A comparison of Δ̄2

H(Ti) and Δ̄2
M (Ti) is given in Table 2. The table

confirms what is apparent to the naked eye, namely, that the multiscale model fits the market
data significantly better than the Heston model for the two shortest maturities as well as the
longest maturity.

In general, as explained in [7], the calibrated parameters are sufficient to compute approx-
imated prices of exotic options. The leading order price P0 is obtained by solving (eventually
numerically) the homogenized PDE appropriate for a given exotic option (for instance with an
additional boundary condition in the case of a barrier option). The correction P ε1 is obtained
as the solution of the PDE with source where the source can be computed with P0 and the
Vi’s calibrated on European options.
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Figure 2. SPX implied volatilities from May 17, 2006.
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Figure 3. SPX implied volatilities from May 17, 2006.

Finally, we remark that V ε
3 , the largest calibrated V ε

i , was found to be 0.025. In the Monte
Carlo simulation presented at the end of section 5, we chose ε so that the value of

√
εV3 was

of the same order of magnitude as the calibrated V ε
3 .
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Figure 4. SPX implied volatilities from May 17, 2006.
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Figure 5. SPX implied volatilities from May 17, 2006.

Appendix A. Heston stochastic volatility model. There are a number of excellent re-
sources where one can read about the Heston stochastic volatility model—so many, in fact,
that a detailed review of the model would seem superfluous. However, in order to establish
some notation, we will briefly review the dynamics of the Heston model here as well as show
our preferred method for solving the corresponding European option pricing problem. The
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Figure 6. SPX implied volatilities from May 17, 2006.
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Figure 7. SPX implied volatilities from May 17, 2006.

notes from this section closely follow [20]. The reader should be aware that a number of the
equations developed in this section are referred to throughout the main text of this paper.

Let Xt be the price of a stock. And denote by r the risk-free rate of interest. Then, under
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Figure 8. SPX implied volatilities from May 17, 2006.

Table 2
Residual sum of squares for the Heston and the multiscale models at several maturities.

Ti − t (days) Δ̄2
H(Ti) Δ̄2

M (Ti) Δ̄2
H(Ti)/Δ̄

2
M (Ti)

65 29.3 × 10−6 7.91 × 10−6 3.71

121 10.2 × 10−6 3.72 × 10−6 2.73
212 4.06 × 10−6 8.11 × 10−6 0.51
303 3.93 × 10−6 3.51 × 10−6 1.12
394 7.34 × 10−6 5.17 × 10−6 1.42
583 11.3 × 10−6 9.28 × 10−6 1.22
947 3.31 × 10−6 1.47 × 10−6 2.25

the risk-neutral probability measure, P, the Heston model takes the following form:

dXt = rXtdt+
√
ZtXtdW

x
t ,

dZt = κ (θ − Zt) dt + σ
√
Zt dW

z
t ,

d 〈W x,W z〉t = ρdt.

Here, W x
t and W z

t are one-dimensional Brownian motions with correlation ρ such that |ρ| ≤ 1.
The process, Zt, is the stochastic variance of the stock. And κ, θ, and σ are positive constants
satisfying 2κθ ≥ σ2; assuming Z0 > 0, this ensures that Zt remains positive for all t.

We denote by PH the price of a European option, as calculated under the Heston frame-
work. As we are already under the risk-neutral measure, we can express PH as an expectation
of the option payoff, h(XT ), discounted at the risk-free rate:

PH(t, x, z) = E

[
e−r(T−t)h(XT )

∣∣∣Xt = x,Zt = z
]
.
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Using the Feynman–Kac formula, we find that PH(t, x, z) must satisfy the following PDE and
boundary condition:

LHPH(t, x, z) = 0,(A.1)

PH(T, x, z) = h(x),(A.2)

LH =
∂

∂t
− r + rx

∂

∂x
+

1

2
zx2

∂2

∂x2

+ κ (θ − z)
∂

∂z
+

1

2
σ2z

∂2

∂z2

+ ρσzx
∂2

∂x∂z
.(A.3)

In order to find a solution for PH(t, x, z), it will be convenient to transform variables as follows:

τ(t) = T − t,

q(t, x) = r(T − t) + log x,

PH(t, x, z) = P ′
H(τ(t), q(t, x), z)e−rτ(t) .

This transformation leads us to the following PDE and boundary condition for P ′
H(τ, q, z):

L′
HP

′
H(τ, q, z) = 0,

L′
H = − ∂

∂τ
+

1

2
z

(
∂2

∂q2
− ∂

∂q

)
+ ρσz

∂2

∂q∂z

+
1

2
σ2z

∂2

∂z2
+ κ (θ − z)

∂

∂z
,(A.4)

P ′
H(0, q, z) = h(eq).

We will find a solution for P ′
H through the method of Green’s functions. Denote by δ(q) the

Dirac delta function, and let G(τ, q, z), the Green’s function, be the solution to the following
Cauchy problem:

L′
HG(τ, q, z) = 0,(A.5)

G(0, q, z) = δ(q).(A.6)

Then,

P ′
H(τ, q, z) =

∫
R

G(τ, q − p, z)h(ep)dp.

Now, let P̂H(τ, k, z), Ĝ(τ, k, z), and ĥ(k) be the Fourier transforms of P ′
H(τ, q, z), G(τ, q, z),

and h(eq), respectively:

P̂H(τ, k, z) =

∫
R

eikqP ′
H(τ, q, z)dq,

Ĝ(τ, k, z) =

∫
R

eikqG(τ, q, z)dq,

ĥ(k) =

∫
R

eikqh(eq)dq.
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Then, using the convolution property of Fourier transforms, we have

P ′
H(τ, q, z) =

1

2π

∫
R

e−ikqP̂H(τ, k, z)dk

=
1

2π

∫
R

e−ikqĜ(τ, k, z)ĥ(k)dk.

Multiplying (A.5) and (A.6) by eikq
′

and integrating over R in q′, we find that Ĝ(τ, k, z)
satisfies the following Cauchy problem:

L̂HĜ(τ, k, z) = 0,(A.7)

L̂H = − ∂

∂τ
+

1

2
z
(−k2 + ik

)
+

1

2
σ2z

∂2

∂z2

+ (κθ − (κ+ ρσik) z)
∂

∂z
,

Ĝ(0, k, z) = 1.(A.8)

Now, we give an ansatz: suppose Ĝ(τ, k, z) can be written as follows:

Ĝ(τ, k, z) = eC(τ,k)+zD(τ,k).(A.9)

Substituting (A.9) into (A.7) and (A.8) and collecting terms of like powers of z, we find that
C(τ, k) and D(τ, k) must satisfy the following ordinary differential equations (ODEs):

dC

dτ
(τ, k) = κθD(τ, k),(A.10)

C(0, k) = 0,(A.11)

dD

dτ
(τ, k) =

1

2
σ2D2(τ, k) − (κ+ ρσik)D(τ, k) +

1

2

(−k2 + ik
)
,(A.12)

D(0, k) = 0.(A.13)

Equations (A.10), (A.11), (A.12), and (A.13) can be solved analytically. Their solutions, as
well as the final solution to the European option pricing problem in the Heston framework,
are given in (4.3)–(4.11).

Appendix B. Detailed solution for P1(t, x, z). In this section, we show how to solve
for P1(t, x, z), which is the solution to the Cauchy problem defined by (3.16) and (3.17). For
convenience, we repeat these equations here with the notation LH = 〈L2〉 and PH = P0:

LHP1(t, x, z) = APH(t, x, z),(B.1)

P1(T, x, z) = 0.(B.2)

We remind the reader that A is given by (4.14), LH is given by (4.1), and PH(t, x, z) is given
by (4.3). It will be convenient in our analysis to make the following variable transformation:

P1(t, x, z) = P ′
1(τ(t), q(t, x), z)e−rτ ,(B.3)

τ(t) = T − t,

q(t, x) = r(T − t) + log x.
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We now substitute (4.3), (4.14), and (B.3) into (B.1) and (B.2), which leads us to the following
PDE and boundary condition for P ′

1(τ, q, z):

L′
HP

′
1(τ, q, z) = A′ 1

2π

∫
e−ikqĜ(τ, k, z)ĥ(k)dk,(B.4)

L′
H = − ∂

∂τ
+

1

2
z

(
∂2

∂q2
− ∂

∂q

)
+ ρσz

∂2

∂q∂z

+
1

2
σ2z

∂2

∂z2
+ κ (θ − z) ,

A′ = V1z
∂

∂z

(
∂2

∂q2
− ∂

∂q

)
+ V2z

∂3

∂z2∂q

+V3z

(
∂3

∂q3
− ∂2

∂q2

)
+ V4z

∂3

∂z∂q2
,

P ′
1(0, q, z) = 0.(B.5)

Now, let P̂1(τ, k, z) be the Fourier transform of P ′
1(τ, q, z):

P̂1(τ, k, z) =

∫
R

eikqP ′
1(τ, q, z)dq.

Then,

P ′
1(τ, q, z) =

1

2π

∫
R

e−ikqP̂1(τ, k, z)dk.(B.6)

Multiplying (B.4) and (B.5) by eikq
′

and integrating in q′ over R, we find that P̂1(τ, k, z)
satisfies the following Cauchy problem:

L̂H P̂1(τ, k, z) = ÂĜ(τ, k, z)ĥ(k),(B.7)

L̂H = − ∂

∂τ
+

1

2
z
(−k2 + ik

)
+

1

2
σ2z

∂2

∂z2

+ (κθ − (κ+ ρσik) z)
∂

∂z
,

Â = z

(
V1

∂

∂z

(−k2 + ik
)

+ V2
∂2

∂z2
(−ik)

+ V3
(
ik3 + k2

)
+ V4

∂

∂z

(−k2)) ,
P̂1(0, k, z) = 0.(B.8)

Now, we give an ansatz: we suppose that P̂1(τ, k, z) can be written as

P̂1(τ, k, z) =
(
κθf̂0(τ, k) + zf̂1(τ, k)

)
Ĝ(τ, k, z)ĥ(k).(B.9)

We substitute (B.9) into (B.7) and (B.8). After a good deal of algebra (and, in particular,
making use of (A.10) and (A.12)), we find that f̂0(τ, k) and f̂1(τ, k) satisfy the following
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system of ODEs:

df̂1
dτ

(τ, k) = a(τ, k)f̂1(τ, k) + b(τ, k),(B.10)

f̂1(0, k) = 0,(B.11)

df̂0
dτ

(τ, k) = f̂1(τ, k),(B.12)

f̂0(0, k) = 0,(B.13)

a(τ, k) = σ2D(τ, k) − (κ+ ρσik) ,

b(τ, k) = − (
V1D(τ, k)

(−k2 + ik
)

+ V2D
2(τ, k) (−ik)

+ V3
(
ik3 + k2

)
+ V4D(τ, k)

(−k2)) ,
where D(τ, k) is given by (4.9).

Equations (B.10)–(B.13) can be solved analytically (to the extent that their solutions can
be written down in integral form). The solutions for f̂0(τ, k) and f̂1(τ, k), along with the final
solution for P1(t, x, z), are given by (4.19)–(4.23).

Appendix C. Moment estimate for Yt. In this section we will derive a moment estimate
for Yt, whose dynamics under the pricing measure are given by (2.3), (2.4), (2.7). Specifically,
we will show that for all α ∈ (1/2, 1) there exists a constant, C (which depends on α but is
independent of ε), such that E|Yt| ≤ C εα−1.

We will begin by establishing some notation. First we define a continuous, strictly in-
creasing, nonnegative process, βt, as

βt :=

∫ t

0
Zsds.

Next, we note that W y
t may be decomposed as

W y
t = ρyzW

z
t +

√
1 − ρ2yzW

⊥
t ,(C.1)

where W⊥
t is a Brownian motion which is independent of W z

t . Using (5.18) and (C.1), we
derive

|Yt| ≤ C1 +
C2√
ε

[
e

−1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βs

√
ZsdW

z
s

∣∣∣∣ + e
−1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βs

√
ZsdW

⊥
s

∣∣∣∣ ] ,
where C1 and C2 are constants. We will focus on bounding the first moment of the second
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stochastic integral. We have

1

ε
E

[(
e

−1
ε
βt

∫ t

0
e

1
ε
βs

√
ZsdW

⊥
s

)2
]

=
1

ε
E

[
e−2βt/εE

[(∫ t

0
eβs/ε

√
ZsdW

⊥
s

)2

|βt
]]

=
1

ε
E

[
e−2βt/εE

[∫ t

0
e2βs/εZsds|βt

]]
=

1

ε
E

[
e−2βt/εE

[∫ t

0
e2βs/εdβs|βt

]]
=

1

ε
E

[
e−2βt/ε ε

2

(
e2βt/ε − 1

)]
=

1

2
E

[
1 − e−

2
ε
βt
]
≤ 1

2
.

Then, by the Cauchy–Schwarz inequality, we see that

1√
ε
E

[
e

−1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βs

√
ZsdW

⊥
s

∣∣∣∣ ] ≤ 1√
2
.

What remains is to bound the first moment of the other stochastic integral,

A :=
1√
ε
E

[
e

−1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βs

√
ZsdW

z
s

∣∣∣∣ ] .
Naively, one might try to use the Cauchy–Schwarz inequality in the following manner:

A ≤ 1√
ε

√
E

[
e−2βt/ε

]√
E

[∫ t

0
e2βs/εZsds

]
=

1√
ε

√
E

[
e−2βt/ε

]√
E

[ ε
2

(
e2βt/ε

)]
.

However, this approach does not work, since E
[
e2βt/ε

] → ∞ as ε→ 0. Seeking a more refined
approach of bounding A, we note that

1√
ε
e

−1
ε
βt

∫ t

0
e

1
ε
βs

√
ZsdW

z
s =

1

σ
√
ε
e−

1
ε
βt(Zt − z) − κ

σ
√
ε
e−

1
ε
βt

∫ t

0
e

1
ε
βs(θ − Zs)ds

+
1

σε3/2
e−

1
ε
βt

∫ t

0
e

1
ε
βsZs(Zt − Zs)ds,

which can be derived by replacing t by s in (2.4), multiplying by eβs/ε, integrating the result
from 0 to t, and using Z2

s = ZtZs −Zs(Zt −Zs) and
∫ t
0 e

−(βt−βs)/εZsds = ε(1− e−βt/ε). From
the equation above, we see that

A ≤ 1

σ
√
ε
E

[
e−

1
ε
βt|Zt − z|

]
+

κ

σ
√
ε
E

[
e−

1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βs(θ − Zs)ds

∣∣∣∣ ]
+

1

σε3/2
E

[
e−

1
ε
βt

∣∣∣∣∫ t

0
e

1
ε
βsZs(Zt − Zs)ds

∣∣∣∣ ] .(C.2)
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At this point, we need the moment generating function of (Zt, βt). From [15], we have

E

[
e−λZt−μβt

]
= e−κθφλ,μ(t)−zψλ,μ(t),(C.3)

φλ,μ(t) =
−2

σ2
log

[
2γe(γ+κ)t/2

λσ2 (eγt − 1) + γ − κ+ eγt(γ + κ)

]
,

ψλ,μ(t) =
λ
(
γ + κ+ eγt(γ − κ)

)
+ 2μ

(
eγt − 1

)
λσ2 (eγt − 1) + γ − κ+ eγt(γ + κ)

,

γ =
√
κ2 + 2σ2μ.

Now, let us focus on the first term in (C.2). Using the Cauchy–Schwarz inequality, we have

1

σ
√
ε
E

[
e−βt/ε|Zt − z|

]
≤ 1

σ
√
ε

√
E

[
e−2βt/ε

]√
E [|Zt − z|2].

From (C.3) one can verify

E
[|Zt − z|2] ≤ C3,

E

[
e−2βt/ε

]
= e−κθφ0,2/ε(t)−zφ0,2/ε(t) ∼ eC4/

√
ε,

where C3 and C4 < 0 are constants. Since 1√
ε
eC4/

√
ε → 0 as ε → 0, we see that

1

σ
√
ε
E

[
e−βt/ε|Zt − z|

]
≤ C5

for some constant C5.
We now turn our attention to the second term in (C.2). We have

κ

σ
√
ε
E

[ ∣∣∣∣∫ t

0
e−

1
ε
(βt−βs)(θ − Zs)ds

∣∣∣∣ ]
≤ κ

σ
√
ε
E

[∫ t

0
e−

1
ε
(βt−βs)Zsds

]
+

κθ

σ
√
ε
E

[∫ t

0
e−

1
ε
(βt−βs)ds

]
≤ κ

σ
√
ε
E

[∫ t

0
e−

1
ε
(βt−βs)dβs

]
+

κθ

σ
√
ε
E

[∫ t

0
e−

1
ε
(βt−βs)ds

]
≤ κ

σ
√
ε
E

[
ε
(

1 − e−βt/ε
)]

+
κθ

σ
√
ε
E

[∫ t

0
e−

1
ε
(βt−βs)ds

]
≤ C6 +

κθ

σ
√
ε

∫ t

0
E

[
e−

1
ε
(βt−βs)

]
ds

for some constant C6. To bound the remaining integral we calculate

E

[
e−

1
ε
(βt−βs)

]
= E

[
E

[
e−

1
ε
(βt−βs)

∣∣∣Zs]]
= E

[
e−κθφ0,1/ε(t−s)−Zsψ0,1/ε(t−s)

]
= exp

(
− κθφ0,1/ε(t− s) − κθφψ̄,0(s) − zψψ̄,0(s)

)
,(C.4)

ψ̄(s) := ψ0,1/ε(t− s).
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Using the fact that φλ,μ(t), ψλ,μ(t) > 0 for any λ, μ, t > 0, we see that

E

[
e−

1
ε
(βt−βs)

]
≤ exp

(
− zψψ̄,0(s)

)
.

Hence ∫ t

0
E

[
e−

1
ε
(βt−βs)

]
ds ≤

∫ t−εα

0
exp

(
− zψψ̄,0(s)

)
ds+

∫ t

t−εα
exp

(
− zψψ̄,0(s)

)
ds

=: I1 + I2,(C.5)

where α ∈ (1/2, 1). Using ψλ,μ(t) > 0 again, we deduce ψψ̄,0(s) > 0 and therefore

I2 ≤ εα.(C.6)

As for I1, we claim

I1 ≤ C7 exp
(−C8ε

α−1
)
,(C.7)

which is equivalent to showing there exists a constant C such that

ψψ̄,0(s) ≥ Cεα−1(C.8)

for all s ∈ [0, t− εα]. To prove this claim, we note that for small ε

ψ̄(s) = ψ0,1/ε(t− s) ∼ σ
√

2√
ε

⎛⎝exp
[
σ
√
2√
ε

(t− s)
]
− 1

exp
[
σ
√
2√
ε

(t− s)
]

+ 1

⎞⎠ ,

where we have used γ =
√
κ2 + 2σ2/ε ∼ σ

√
2/

√
ε. A direct computation shows that ψ̄(s) is

strictly decreasing in s with

ψ̄(t− εα) = ψ0,1/ε(ε
α) ∼ σ2εα−1.

Now, we note that ψψ̄,0(s) is given by

ψψ̄,0(s) =
2κψ̄(s)

σ2 (eκs − 1) ψ̄(s) + 2κeκs
=

2κ

σ2 (eκs − 1) + 2κeκs/ψ̄(s)
.

Since eκs < eκt, and since, at worst, ψ̄(s) ∼ σ2εα−1, we conclude that there exists a constant
C such that (C.8), and therefore (C.7), holds. Hence, using (C.5)–(C.7), we have∫ t

0
E

[
e−

1
ε
(βt−βs)

]
ds =

∫ t−εα

0
E

[
e−

1
ε
(βt−βs)

]
ds+

∫ t

t−εα
E

[
e−

1
ε
(βt−βs)

]
ds

≤ C7e
−C8εα−1

+ εα.

This implies that there exists a constant C9 such that for any α ∈ (1/2, 1)

κθ

σ
√
ε

∫ t

0
E

[
e−

1
ε
(βt−βs)

]
ds ≤ C9.
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Having established a uniform bound on the first two terms in (C.2), we turn our attention
toward the third and final term. For α ∈ (1/2, 1) we have

1

σε3/2
E

[ ∣∣∣∣∫ t

0
e−

1
ε
(βt−βs)Zs(Zt − Zs)ds

∣∣∣∣ ] ≤ 1

σε3/2
E

[∫ t

0
e−

1
ε
(βt−βs)Zs|Zt − Zs|ds

]
=

1

σε3/2
E

[∫ t−εα

0
e−

1
ε
(βt−βs)Zs|Zt − Zs|ds

]
+

1

σε3/2
E

[∫ t

t−εα
e−

1
ε
(βt−βs)Zs|Zt − Zs|ds

]
.

For the integral from 0 to (t− εα) we compute

1

σε3/2
E

[∫ t−εα

0
e−

1
ε
(βt−βs)Zs|Zt − Zs|ds

]

≤ 1

σε3/2

√√√√
E

[(
sup
0≤s≤t

Zs|Zt − Zs|
)2

]√
E

[∫ t−εα

0
e−

1
ε
(βt−βs)ds

]
≤ 1

ε3/2
C10e

−C11εα−1 ≤ C12

for some constants C10, C11, and C12. For the integral from (t− εα) to t we have

1

σε3/2
E

[∫ t

t−εα
e−

1
ε
(βt−βs)Zs|Zt − Zs|ds

]
≤ 1

σε3/2
E

[
sup

t−εα≤s≤t
|Zt − Zs|

∫ t

t−εα
e−

1
ε
(βt−βs)Zsds

]
=

1

σε3/2
E

[
sup

t−εα≤s≤t
|Zt − Zs| ε (1 − e−β(t−εα)/ε)

]
≤ 1

σε1/2
E

[
sup

t−εα≤s≤t
|Zt − Zs|

]
≤ C13ε

α−1

for some constant C13. With this result, we have established that for all α ∈ (1/2, 1) there
exists a constant, C, such that E|Yt| ≤ C εα−1.

Appendix D. Numerical computation of option prices. The formulas (4.3) and (4.19)
for PH(t, x, z) and P1(t, x, z) cannot be evaluated analytically. Therefore, in order for these
formulas to be useful, an efficient and reliable numerical integration scheme is needed. Unfor-
tunately, numerical evaluation of the integral in (4.3) is notoriously difficult. And the double
and triple integrals that appear in (4.19) are no easier to compute. In this section, we point
out some of the difficulties associated with evaluating these expressions numerically and show
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how these difficulties can be addressed. We begin by establishing some notation:

P ε(t, x, z) ∼ PH(t, x, z) +
√
εP1(t, x, z)

=
e−rτ

2π

∫
R

e−ikq
(

1 +
√
ε
(
κθf̂0(τ, k) + zf̂1(τ, k)

))
× Ĝ(τ, k, z)ĥ(k)dk

=
e−rτ

2π

(
P0,0(t, x, z) + κθ

√
εP1,0(t, x, z) + z

√
εP1,1(t, x, z)

)
,

where we have defined

P0,0(t, x, z) :=

∫
R

e−ikqĜ(τ, k, z)ĥ(k)dk,(D.1)

P1,0(t, x, z) :=

∫
R

e−ikqf̂0(τ, k)Ĝ(τ, k, z)ĥ(k)dk,(D.2)

P1,1(t, x, z) :=

∫
R

e−ikqf̂1(τ, k)Ĝ(τ, k, z)ĥ(k)dk.(D.3)

As they are written, (D.1), (D.2), and (D.3) are general enough to accommodate any European
option. However, in order to make progress, we now specify an option payoff. We will limit
ourselves to the case of a European call, which has payoff h(x) = (x − K)+. Extension to
other European options is straightforward.

We remind the reader that ĥ(k) is the Fourier transform of the option payoff, expressed
as a function of q = r(T − t) + log(x). For the case of the European call, we have

ĥ(k) =

∫
R

eikq(eq −K)+dq =
K1+ik

ik − k2
.(D.4)

We note that (D.4) will not converge unless the imaginary part of k is greater than 1. Thus,
we decompose k into its real and imaginary parts and impose the following condition on the
imaginary part of k:

k = kr + iki,

ki > 1.(D.5)

When we integrate over k in (D.1), (D.2), and (D.3), we hold ki > 1 fixed and integrate kr
over R.

Numerical evaluation of P0,0(t, x, z). We rewrite (D.1) here, explicitly using expressions

(4.7) and (D.4) for Ĝ(τ, k, z) and ĥ(k), respectively:

P0,0(t, x, z) =

∫
R

e−ikqeC(τ,k)+zD(τ,k) K
1+ik

ik − k2
dkr.(D.6)

In order for any numerical integration scheme to work, we must verify the continuity of the
integrand in (D.6). First, by (D.5), the poles at k = 0 and k = i are avoided. The only other
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worrisome term in the integrand of (D.6) is eC(τ,k), which may be discontinuous due to the
presence of the log in C(τ, k).

We recall that any ζ ∈ C can be represented in polar notation as ζ = r exp(iθ), where
θ ∈ [−π, π). In this notation, log ζ = log r + iθ. Now, suppose we have a map ζ(kr) : R → C.
We see that whenever ζ(kr) crosses the negative real axis, log ζ(kr) will be discontinuous (due
to θ jumping from −π to π or from π to −π). Thus, in order for log ζ(kr) to be continuous,
we must ensure that ζ(kr) does not cross the negative real axis.

We now return our attention to C(τ, k). We note that C(τ, k) has two algebraically
equivalent representations, (4.8) and the following representation:

C(τ, k) =
κθ

σ2
((κ+ ρikσ − d(k)) τ − 2 log ζ(τ, k)) ,(D.7)

ζ(τ, k) :=
e−τd(k)/g(k) − 1

1/g(k) − 1
.(D.8)

It turns out that, under most reasonable conditions, ζ(τ, k) does not cross the negative real
axis [17]. As such, as one integrates over kr, no discontinuities will arise from the log ζ(τ, k)
which appears in (D.7). Therefore, if we use expression (D.7) when evaluating (D.6), the
integrand will be continuous.

Numerical evaluation of P1,1(t, x, z) and P1,0(t, x, z). The integrands in (D.3) and

(D.2) are identical to that of (D.1), except for the additional factor of f̂1(τ, k). Using (4.21)
for f̂1(τ, k), we have the following expression for P1,1(t, x, z):

P1,1(t, x, z)

=

∫
R

e−ikq
(∫ τ

0
b(s, k)eA(τ,k,s)ds

)
eC(τ,k)+zD(τ,k) K

1+ik

ik − k2
dkr

=

∫ τ

0

∫
R

e−ikqb(s, k)eA(τ,k,s)+C(τ,k)+zD(τ,k) K
1+ik

ik − k2
dkrds.(D.9)

Similarly,

P1,0(t, x, z)

=

∫ τ

0

∫ t

0

∫
R

e−ikqb(s, k)eA(t,k,s)+C(τ,k)+zD(τ,k) K
1+ik

ik − k2
dkrdsdt.(D.10)

We already know, from our analysis of P0,0(t, x, z), how to deal with the log in C(τ, k). It turns
out that the log in A(τ, k, s) can be dealt with in a similar manner. Consider the following
representation for A(τ, k, s), which is algebraically equivalent to expression (4.22):

A(τ, k, s) = (κ+ ρikσ + d(k))

(
1 − g(k)

d(k)g(k)

)
× (d(k)(τ − s) + log ζ(τ, k) − log ζ(s, k))

+ d(k)(τ − s),(D.11)

where ζ(τ, k) is defined in (D.8). As expressed in (D.11), A(τ, k, s) is, under most reasonable
conditions, a continuous function of kr. Thus, if we use (D.11) when numerically evaluating
(D.9) and (D.10), their integrands will be continuous.
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Transforming the domain of integration. Aside from using (D.7) and (D.11) for C(τ, k)
and A(τ, k, s), there are a few other tricks we can use to facilitate the numerical evaluation
of (D.6), (D.10), and (D.9). Denote by I0(k) and I1(k, s) the integrands appearing in (D.6),
(D.9), and (D.10):

P0,0 =

∫
R

I0(k)dkr ,

P1,1 =

∫ τ

0

∫
R

I1(k, s)dkrds,

P1,0 =

∫ τ

0

∫ t

0

∫
R

I1(k, s)dkrdsdt.

First, we note that the real and imaginary parts of I0(k) and I1(k, s) are even and odd
functions of kr, respectively. As such, instead of integrating in kr over R, we can integrate in
kr over R+, drop the imaginary part, and multiply the result by 2.

Second, numerically integrating in kr over R+ requires that one arbitrarily truncate the
integral at some kcutoff . Rather than doing this, we can make the following variable transfor-
mation, suggested by [14]:

kr =
− log u

C∞
,

C∞ :=

√
1 − ρ2

σ
(z + κθτ).(D.12)

Then, for some arbitrary I(k), we have

∫ ∞

0
I(k)dkr =

∫ 1

0
I

(− log u

C∞
+ iki

)
1

uC∞
du.

Thus, we avoid having to establish a cutoff value, kcutoff (and avoid the error that comes along
with doing so).

Finally, evaluating (D.10) requires that one integrate over the triangular region param-
eterized by 0 ≤ s ≤ t ≤ τ . Unfortunately, most numerical integration packages facilitate
integration only over a rectangular region. We can overcome this difficulty by performing the
following transformation of variables:

s = tv,

ds = tdv.

Then, for some arbitrary I(s), we have

∫ τ

0

∫ t

0
I(s)dsdt =

∫ τ

0

∫ 1

0
I(tv)tdvdt.(D.13)
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Pulling everything together we obtain

P0,0 = 2Re

∫ 1

0
I0

(− log u

C∞
+ iki

)
1

uC∞
du,

P1,1 = 2Re

∫ τ

0

∫ 1

0
I1

(− log u

C∞
+ iki, s

)
1

uC∞
duds,

P1,0 = 2Re

∫ τ

0

∫ 1

0

∫ 1

0
I1

(− log u

C∞
+ iki, tv

)
t

uC∞
dudvdt,

where C∞ is given by (D.12). These three changes allow one to efficiently and accurately
numerically evaluate (D.6), (D.9), and (D.10).

Numerical tests show that for strikes ranging from 0.5 to 1.5 times the spot price, and for
expirations ranging from 3 months to 3 years, it takes roughly 100 times longer to calculate a
volatility surface using the multiscale model than it does to calculate the same surface using
the Heston model.
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On the Heston Model with Stochastic Interest Rates∗

Lech A. Grzelak† and Cornelis W. Oosterlee‡

Abstract. We discuss the Heston model [Rev. Financ. Stud., 6 (1993), pp. 327–343] with stochastic interest
rates driven by Hull–White (HW) [J. Derivatives, 4 (1996), pp. 26–36] or Cox–Ingersoll–Ross
(CIR) [Econometrica, 53 (1985), pp. 385–407] processes. Two projection techniques to derive
affine approximations of the original hybrid models are presented. In these approximations we can
prescribe a nonzero correlation structure between all underlying processes. The affine approximate
models admit pricing basic derivative products by Fourier techniques [P. P. Carr and D. B. Madan,
J. Comput. Finance, 2 (1999), pp. 61–73, F. Fang and C. W. Oosterlee, SIAM J. Sci. Comput., 31
(2008), pp. 826–848] and can therefore be used for fast calibration of the hybrid model.

Key words. equity-interest rate hybrid models, stochastic volatility, Heston–Hull–White and Heston–Cox–
Ingersoll–Ross processes, approximation by affine diffusion process
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1. Introduction. Modelling derivative products in finance usually starts with the specifi-
cation of a system of stochastic differential equations (SDEs) that correspond to state variables
like stock, interest rate, and volatility. By correlating the SDEs from the different asset classes,
one can define so-called hybrid models and use them for pricing multiasset derivatives. Even
if each of these SDEs yields a closed-form solution, a nonzero correlation structure between
the processes may cause difficulties for modeling and product pricing. Typically, a closed-form
solution of the hybrid models is not known, and numerical approximation by means of Monte
Carlo (MC) simulation or discretization of the corresponding partial differential equations
(PDEs) has to be employed for model evaluation and derivative pricing. The speed of pricing
European products is, however, crucial, especially for the calibration. Several theoretically
attractive SDE models that cannot fulfill the speed requirements are not used in practice.

The aim of this paper is to define hybrid SDE models that fit in the class of affine diffusion
processes (AD), as in Duffie, Pan, and Singleton [13]. For processes within this class a closed-
form solution of the characteristic function (ChF) exists. Suppose we have given a system of
SDEs, i.e.,

(1.1) dX(t) = μ(X(t))dt + σ(X(t))dW(t).
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This system (1.1) is said to be of affine form if

μ(X(t)) = a0 + a1X(t) for any (a0, a1) ∈ R
n × R

n×n,(1.2)

(σ(X(t))σ(X(t))T)i,j = (c0)ij + (c1)TijX(t), with (c0, c1) ∈ R
n×n × R

n×n×n,(1.3)

r(X(t)) = r0 + rT1 X(t) for (r0, r1) ∈ R× R
n,(1.4)

for i, j = 1, . . . , n, with r(X(t)) being an interest rate component. Then, the discounted ChF
is of the following form [13]:

φ(u,X(t), t, T ) = E
Q

(
exp

(
−
∫ T

t
r(s)ds+ iuTX(T )

) ∣∣∣F(t)

)
= eA(u,τ)+BT(u,τ)X(t),

where the expectation is taken under the risk-neutral measure, Q. For a time lag, τ := T − t,
the coefficients A(u, τ) and BT(u, τ) have to satisfy the following complex-valued ordinary
differential equations (ODEs):

(1.5)

⎧⎪⎨⎪⎩
d

dτ
B(u, τ) = −r1 + aT1 B(u, τ) +

1

2
BT(u, τ)c1B(u, τ),

d

dτ
A(u, τ) = −r0 + BT(u, τ)a0 +

1

2
BT(u, τ)c0B(u, τ),

with ai, ci, ri, i = 0, 1, as in (1.2), (1.3), and (1.4).
In this article we focus our attention specifically on a hybrid model which combines the

equity and interest rate asset classes. Brigo and Mercurio [8] have shown that the assumption
of constant interest rates in the classical Black–Scholes model [7] can be generalized, and
by including the stochastic interest rate process of Hull and White [23], one is still able to
obtain a closed-form solution for European-style option prices. Originally, the Black–Scholes–
Hull–White model in [8] was not dedicated to pricing hybrid products but to increasing the
accuracy for long-maturity options. The model is not, however, able to describe any smile
and skew shapes present in the equity markets.

In [37] a hybrid model was presented which could provide the skew pattern for the equity
and included a stochastic (but uncorrelated) interest rate process. Generalizations were
presented in [19, 3], where the Heston stochastic volatility model [22] was used. Some form of
correlation was indirectly modeled by including additional terms in the SDEs (this approach
is discussed in some detail in section 3.1.1).

In [20, 21] the Heston stochastic volatility model was replaced by the Schöbel–Zhu (SZ)
model [35], while the interest rate was still driven by a Hull–White (HW) process (SZHW
model). In this model a full matrix of correlations can be directly imposed on the driving
Brownian motions. The model is well defined under the class of AD processes, but since
the SZHW model is based on a Vašiček-type process [36] for the stochastic volatility, the
volatilities can become negative.

A different approach to modelling equity-interest rate hybrids was presented by Benhamou,
Rivoira, and Gruz [6], extending the local volatility framework of Dupire [15] and Derman
and Kani [12] and incorporating stochastic interest rates.

Here, we investigate the Heston–Hull–White (HHW) and the Heston–Cox–Ingersoll–Ross
(HCIR) hybrid models and propose approximations so that we can obtain their ChFs. The
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framework presented is relatively easy to understand and implement. It is inspired by the
techniques in [19, 2].

Our approximations do not require several preliminary calculations of expectations like in
the case of Markovian projection methods [4, 5]. The resulting option pricing method benefits
greatly from the speed of ChF evaluations.

The interest rate models studied here cannot generate interest rate implied volatility smiles
or skews. They can therefore mainly be used for long-term equity options and for “not too
complicated” equity-interest rate hybrid products. As described in [24], for accurate modeling
of hybrid derivatives, it is necessary to be able to describe a nonzero correlation between equity
and interest rate. This is possible in the approximations presented here.

This paper is organized as follows. In section 2 we discuss the full-scale Heston
hybrid models with stochastic interest rate processes. Section 3 presents a deterministic
approximation of the HHW hybrid model, together with the corresponding ChF, and section
4 gives the ChF based on another stochastic approximation of that hybrid model. In section 5
we deal with the HCIR model. In section 6 the calibration based on the approximations of the
full-scale hybrid models is applied. Section 7 offers concluding remarks. Details of proofs and
tests are in the appendices, where, in particular, in Appendix C we compare the performance
of the approximations developed with the Markovian projection method studied in [4, 5].

2. Heston hybrid models with stochastic interest rate. With state vector X(t) =
[S(t), v(t)]T, under the risk-neutral pricing measure, the Heston stochastic volatility
model [22], which is our point of departure, is specified by the following system of SDEs:

(2.1)

{
dS(t)/S(t) = rdt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

with r > 0 a constant interest rate, correlation dWx(t)dWv(t) = ρx,vdt, and |ρx,v| < 1. The
variance process, v(t), of the stock, S(t), is a mean reverting square-root process, in which
κ > 0 determines the speed of adjustment of the volatility towards its theoretical mean v̄ > 0,
and γ > 0 is the second-order volatility, i.e., the volatility of the volatility.

As already indicated in [22], the model given in (2.1) is not in the class of affine processes,
whereas under the log-transform for the stock, x(t) = log S(t), it is. Then, the discounted
ChF is given by

(2.2) φH(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)v(t)) ,

where the functions A(u, τ), B(u, τ), and C(u, τ) are known in closed form (see [22]).

The ChF is explicit, but its inverse also has to be found for pricing purposes. Because
of the form of the ChF, we cannot get its inverse analytically, and a numerical method for
integration has to be used; see, for example, [10, 16, 29, 30] for Fourier methods.

2.1. Full-scale hybrid models. A constant interest rate, r, may be insufficient for pricing
interest rate sensitive products. Therefore, we extend our state vector with an additional
stochastic quantity, i.e., X(t) = [S(t), v(t), r(t)]T. This model corresponds to a hybrid
stochastic volatility equity model with a stochastic interest rate process, r(t). In particular, we
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add to the Heston model the HW interest rate [23] or the square-root CIR process [11]. The
extended model can be presented in the following way:

(2.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dS(t)/S(t) = r(t)dt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt + ηrp(t)dWr(t), r(0) > 0,

where exponent p = 0 in (2.3) represents the HHW model and for p = 1
2 it becomes the HCIR

model. For both models the correlations are given by dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) =
ρx,rdt, and dWv(t)dWr(t) = ρv,rdt, and κ, γ, and v̄ are as in (2.1); λ > 0 determines the speed
of mean reversion for the interest rate process; θ(t) is the interest rate term structure; and η
controls the volatility of the interest rate. We note that the interest rate process in (2.3) for
p = 1

2 is of the same form as the variance process v(t).
System (2.3) is not in the affine form, not even with x(t) = logS(t). In particular, the

symmetric instantaneous covariance matrix is given by

(2.4) σ(X(t))σ(X(t))T =

⎡⎣ v(t) ρx,vγv(t) ρx,rηr
p(t)
√
v(t)

∗ γ2v(t) ρr,vγηr
p(t)
√
v(t)

∗ ∗ η2r2p(t)

⎤⎦
(3×3)

.

Setting the correlation ρr,v to zero would still not make the system affine. Matrix (2.4) is of
the linear form with respect to state vector [x(t) = log S(t), v(t), r(t)]T if two correlations, ρr,v
and ρx,r, are set to zero.1 Models with two correlations equal to zero are covered in [31].

Since for pricing equity-interest rate products a nonzero correlation between stock and
interest rate is crucial (see, for example, [24]), approximations to the Heston hybrid models
need to be formulated, so that correlations can be imposed. Variants are discussed in the
sections to follow. These approximate models are evaluated with the help of the Cholesky
decomposition of a correlation matrix.

We can decompose a given general symmetric correlation matrix, C, denoted by

(2.5) C =

⎡⎣ 1 ρ1 ρ2
∗ 1 ρ3
∗ ∗ 1

⎤⎦ ,
as C = LLT, where L is a lower triangular matrix, with

(2.6) L =

⎡⎢⎢⎢⎣
1 0 0

ρ1
√

1 − ρ21 0

ρ2
ρ3−ρ2ρ1√

1−ρ21

√
1 − ρ22 −

(
ρ3−ρ2ρ1√

1−ρ21

)2

⎤⎥⎥⎥⎦ .
We then rewrite the system of SDEs in terms of the independent Brownian motions,

dW̃(t), with the help of the lower triangular matrix L.

1Here we assume positive parameters.
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Since our main objective is to derive a closed-form ChF while assuming a nonzero
correlation between the equity process, S(t), and the interest rate, r(t), we first assume that
the Brownian motions for the interest rate r(t) and the variance v(t) are not correlated (the
case of a full correlation structure is discussed in detail in Appendix B).

By exchanging the order of the state variables X(t) = [S(t), v(t), r(t)]T to X∗(t) =
[r(t), v(t), S(t)]T, the HHW and HCIR models in (2.3) then have ρ1 ≡ ρr,v = 0, ρ2 ≡ ρx,r �= 0,
and ρ3 ≡ ρx,v �= 0 in (2.5) and read as

(2.7)

⎡⎢⎢⎢⎣
dr(t)

dv(t)

dS(t)

S(t)

⎤⎥⎥⎥⎦ =

⎡⎣ λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)

⎤⎦ dt+ σ(X∗(t))

⎡⎢⎣ dW̃r(t)

dW̃v(t)

dW̃x(t)

⎤⎥⎦ ,
with

(2.8) σ(X∗(t)) =

⎡⎢⎣ ηrp(t) 0 0

0 γ
√
v(t) 0

ρx,r
√
v(t) ρx,v

√
v(t)

√
1 − ρ2x,v − ρ2x,r

√
v(t)

⎤⎥⎦ .
2.2. Reformulated Heston hybrid models. In the previous section we have seen that

for the HHW and HCIR models with a full matrix of correlations given in (2.3), the affinity
relations [13] are not satisfied, so that the ChF cannot be obtained by standard techniques.

In order to obtain a well-defined Heston hybrid model with an indirectly imposed
correlation, ρx,r, we propose the following system of SDEs:

(2.9) dS(t)/S(t) = r(t)dt+
√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + Δ

√
v(t)dWv(t), S(0) > 0,

with

(2.10)
dv(t) = κ(v̄ − v(t))dt + γ

√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt + ηrp(t)dWr(t), r(0) > 0,

where

(2.11) dWx(t)dWv(t) = ρ̂x,vdt, dWx(t)dWr(t) = 0, dWv(t)dWr(t) = 0,

where p = 0 for HHW and p = 1
2 for HCIR. We have included a function,2 Ω(t), and a constant

parameter, Δ. Note that we still assume independence between the instantaneous short rate,
r(t), and the variance process, v(t), i.e., ρ̂r,v = 0.

By exchanging the order of the state variables to X∗(t) = [r(t), v(t), S(t)]T, system (2.9)
is given, in terms of the independent Brownian motions, by

(2.12)

⎡⎢⎢⎢⎣
dr(t)

dv(t)

dS(t)

S(t)

⎤⎥⎥⎥⎦ =

⎡⎣ λ(θ(t) − r(t))
κ(v̄ − v(t))

r(t)

⎤⎦ dt+ σ̂(X∗(t))

⎡⎢⎣ dW̃r(t)

dW̃v(t)

dW̃x(t)

⎤⎥⎦ ,
2This under certain conditions can also be stochastic.
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where

(2.13) σ̂(X∗(t)) =

⎡⎢⎣ ηrp(t) 0 0

0 γ
√
v(t) 0

Ω(t)rp(t)
√
v(t) (ρ̂x,v + Δ)

√
v(t)
√

1 − ρ̂2x,v

⎤⎥⎦ .
In the following lemma we show that the model (2.9) is equivalent to the full-scale HHW

model in (2.3), with nonzero correlation ρx,r.
Lemma 2.1. Model (2.9) satisfies the system in (2.3) with nonzero correlation ρx,r for

(2.14) Ω(t) = ρx,r

√
v(t)

rp(t)
, ρ̂2x,v = ρ2x,v + ρ2x,r, Δ = ρx,v − ρ̂x,v,

where correlation ρ̂x,v is as in model (2.9) and ρx,v as in model (2.3).
Proof. We presented the two models (2.3) and (2.9) in terms of the independent Brownian

motions, (2.7) and (2.12), respectively. By matching the appropriate coefficients in (2.7)
and (2.12), we find that the following relations should hold:

(2.15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ω(t)rp(t)S(t) = ρx,r

√
v(t)S(t),√

1 − ρ̂2x,v
√
v(t)S(t) =

√
1 − ρ2x,v − ρ2x,r

√
v(t)S(t),

(ρ̂x,v + Δ)
√
v(t)S(t) = ρx,v

√
v(t)S(t).

By simplifying (2.15) the proof is finished.
If results (2.14) were directly included in the main system (2.9), the affinity property

of the system would be lost. So, in order to satisfy the affinity constraints, appropriate
approximations need to be introduced.

2.3. Log-transform. Before going into the details of the approximations of the HHW and
HCIR models, let us first find the dynamics for the log-transform of the reformulated Heston
hybrid models. By applying Itô’s lemma, model (2.9) in log-equity space, x(t) = logS(t),
with a constant parameter, Δ, and a function, Ω(t), is given by

dx(t) =

[
r(t) − 1

2

(
Ω2(t)r2p(t) + v(t)

(
1 + Δ2 + 2ρ̂x,vΔ

))]
dt+

√
v(t)dWx(t)

+ Ω(t)rp(t)dWr(t) + Δ
√
v(t)dWv(t)

=

(
r(t) − 1

2
v(t)

)
dt+

√
v(t)dWx(t) + Ω(t)rp(t)dWr(t) + Δ

√
v(t)dWv(t),

because of (2.14).
For a given state vector X∗(t) = [r(t), v(t), x(t)]T, the symmetric instantaneous covariance

matrix (1.3) is given by

(2.16) Σ :=

⎡⎣ η2r2p(t) 0 ηΩ(t)r2p(t)
∗ γ2v(t) γv(t) (ρ̂x,v + Δ)
∗ ∗ Ω2(t)r2p(t) + v(t)

(
1 + Δ2 + 2ρ̂x,vΔ

)
⎤⎦ .
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As we consider two cases for parameter p = {0, 1/2}, the affinity issue appears in only one
term of matrix (2.16), namely, in element (1, 3):

(2.17) Σ(1,3) = ηΩ(t)r2p(t) = ηρx,r
√
v(t)rp(t) =

{
ηρx,r

√
v(t) for HHW,

ηρx,r
√
v(t)
√
r(t) for HCIR.

Although term Σ(3,3) does not seems to be of the affine form, by (2.14), it equals Σ(3,3) = v(t),
and therefore it is linear in the state variables.

Remark 1. We see that, in order to make either the HHW or the HCIR model affine,
one does not necessarily need to approximate function Ω(t); only the nonaffine terms in the
corresponding instantaneous covariance matrix3 need be approximated. By approximation
of the nonaffine covariance term, Σ(1,3), the corresponding pricing PDE also changes. The
Kolmogorov backward equation for the log-stock price (see, for example, [33]) is now given by

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p

∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
− rφ,(2.18)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).

The derivations in section 2.3 show that system (2.9) is nothing but a reformulation of the
original HHW system under the conditions in (2.14). It is therefore sufficient to linearize the
nonaffine terms in the covariance matrix to determine an affine approximation of the full-scale
model. In the sections to follow we discuss two possible approximations for Σ(1,3).

3. Deterministic approximation for hybrid models. In order to make the Heston hybrid
model affine, we provide a first approximation for the expressions in (2.17) in section 3.1. The
corresponding ChF is derived in section 3.2.

3.1. Deterministic approach: The H1-HW model. The first approach to finding an
approximation for the term Σ(1,3) = ηρx,r

√
v(t)rp(t) in matrix (2.16) is to replace it by its

expectation; i.e.,

(3.1) Σ(1,3) ≈ ηρx,rE
(
rp(t)
√
v(t)
) ⊥⊥

= ηρx,rE(rp(t))E(
√
v(t)),

assuming independence between r(t) and v(t).

The approximation for Σ(1,3) in (3.1) consists of two expectations: one with respect to√
v(t) and another with respect to rp(t). E(rp(t)) = 1 for p = 0, and it is E(

√
r(t)) for

p = 1/2. Since the processes for v(t) and r(t) are then of the same type, the approximations
are analogous. By taking the expectations of the stochastic variables, the model becomes of
affine form, so that we can obtain the corresponding ChF.

In Lemma 3.1 the closed-form expressions for the expectation and variance of
√
v(t) (a

CIR-type process) are presented.

3The drifts and the interest rate are already in the affine form, presented in (1.2) and (1.4).
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Lemma 3.1 (expectation and variance for CIR-type process). For a given time t > 0 the
expectation and variance of

√
v(t), where v(t) is a CIR-type process (2.1), are given by

(3.2) E(
√
v(t)) =

√
2c(t)e−λ(t)/2

∞∑
k=0

1

k!

(
λ(t)

2

)k Γ
(
1+d
2 + k

)
Γ(d2 + k)

and

(3.3) Var
(√

v(t)
)

= c(t)(d + λ(t)) − 2c(t)e−λ(t)
( ∞∑
k=0

1

k!

(
λ(t)

2

)k Γ
(
1+d
2 + k

)
Γ
(
d
2 + k

) )2

,

where

(3.4) c(t) =
1

4κ
γ2(1 − e−κt), d =

4κv̄

γ2
, λ(t) =

4κv(0)e−κt

γ2(1 − e−κt)
,

with Γ(k) being the gamma function defined by

Γ(k) =

∫ ∞

0
tk−1e−tdt.

Proof. By [14] one can find the closed-form expression for the expectation E(
√
v(t)), which

by the principle of Kummer [28] can be simplified.

The analytic expression for the expectation, either of
√
v(t) or

√
r(t) in (3.1), is involved

and requires rather expensive numerical operations.

In order to find a first-order approximation, we can apply the so-called delta method (see,
for example, [1, 32]), which states that a function ϕ(X) can be approximated by a first-order
Taylor expansion at E(X), for a given random variable, X, with expectation, E(X), and
variance, Var(X), assuming that for ϕ(X) its first derivative with respect to X exists and is
sufficiently smooth.

The result below provides details of the approximation.

Result 3.2. The expectation, E(
√
v(t)), with stochastic process v(t) given by (2.3), can be

approximated by

E(
√
v(t)) ≈

√
c(t)(λ(t) − 1) + c(t)d+

c(t)d

2(d + λ(t))
=: Λ(t),(3.5)

with c(t), d, and λ(t) given in Lemma 3.1, and where κ, v̄, γ, and v(0) are the parameters
given in (2.3).

In order to find the approximation in Result 3.2, we can use the delta method as follows.
Assuming the function ϕ to be sufficiently smooth and the first two moments of X to exist,
we obtain by first-order Taylor expansion

(3.6) ϕ(X) ≈ ϕ(EX) + (X − EX)
∂ϕ

∂X
(EX).
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Since the variance of ϕ(X) can be approximated by the variance of the right-hand side of (3.6),
we have

Var(ϕ(X)) ≈ Var

(
ϕ(EX) + (X − EX)

∂ϕ

∂X
(EX)

)
=

(
∂ϕ

∂X
(EX)

)2

VarX.(3.7)

Now, by using this result for function ϕ(v(t)) =
√
v(t), we find

(3.8) Var(
√
v(t)) ≈

(
1

2

1√
E(v(t))

)2

Var(v(t)) =
1

4

Var(v(t))

E(v(t))
.

However, from the definition of the variance, we also have

(3.9) Var(
√
v(t)) = E(v(t)) −

(
E(
√
v(t))
)2
,

and by combining (3.8) and (3.9) we obtain the following approximation:

(3.10) E(
√
v(t)) ≈

√
E(v(t)) − 1

4

Var(v(t))

E(v(t))
.

Since v(t) is a square-root process, as in (2.9), we have

(3.11) v(t) = v(0)e−κt + v̄(1 − e−κt) + γ

∫ t

0
eκ(s−t)

√
v(s)dWv(s).

The expectation reads E(v(t)) = c(t)(d + λ(t)), and for the variance we get Var(v(t)) =
c2(t)(2d + 4λ(t)), with c(t), d, and λ(t) as given in (3.4).

Now, by substituting these expressions in (3.10), the result is proved. Since Result 3.2
provides an explicit approximation for Σ(1,3) in (3.1) in terms of a deterministic function for

E(
√
v(t)), we are, in principle, able to derive the corresponding ChF.

We show here for which parameters the expression under the square root in approxima-
tion (3.5) is nonnegative.

Consider the following inequality:

c(t)(λ(t) − 1) + c(t)d+
c(t)d

2(d+ λ(t))
≥ 0.(3.12)

Division by c(t) > 0 gives

2 (λ(t) + d) (d+ λ(t)) + d

2(d + λ(t))
≥ 1.(3.13)

So,

2 (λ(t) + d)2 − 2(λ(t) + d) + d ≥ 0.(3.14)
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By setting y = λ(t) + d we find 2y2 − 2y + d ≥ 0. The parabola is nonnegative for the
discriminant 4 − 4 · 2 · d ≤ 0, so that the expression in (3.5) is nonnegative for d ≥ 1

2 (i.e.,
2d ≥ 1). With d = 4κv̄/γ2 we can compare the inequality obtained to the Feller condition. If
the Feller condition is satisfied, the expression under the square root is certainly well defined.
If 8κv̄/γ2 ≥ 1 but the Feller condition is not satisfied, the approximation is also valid. If the
expression under the square root in (3.5) becomes negative, we suggest using the expressions
in Lemma 3.1 instead.

Remark 2. We assume that the first-order linear terms around the parameter values in the
Taylor expansion give an accurate representation. However, this may not work satisfactorily
for “flat” density functions, like those from a uniform distribution. In order to increase the
accuracy, higher-order terms can be included in the expansion [1]. More discussion on the
conditions for the delta method to perform well can be found in [32].

The approximation for E(
√
v(t)) in (3.5) is still nontrivial and may cause difficulties when

deriving the corresponding ChFs. In order to find the coefficients of the ChF, a routine for
numerically solving the corresponding ODEs has to be incorporated. Numerical integration,
however, slows down the option pricing engine and would make the SDE model less attractive.
As we aim to find a closed-form expression for the ChF, we further simplify Λ(t) in (3.5).
Expectation E(

√
v(t)) can be further approximated by a function of the following form:

(3.15) E(
√
v(t)) ≈ a+ be−ct =: Λ̃(t),

with a, b, and c constant. Appropriate values for a, b, and c in (3.15) can be obtained via an
optimization problem of the form mina,b,c ||Λ(t) − Λ̃(t)||n, where || · ||n is any nth norm.

We propose here, instead of a numerical approximation for these coefficients, a simple
analytic expression in Result 3.3.

Result 3.3. By matching functions Λ(t) and Λ̃(t) for t→ +∞, t→ 0, and t = 1, we find

(3.16)

lim
t→+∞ Λ(t) =

√
v̄ − γ2

8κ
= a = lim

t→+∞ Λ̃(t),

lim
t→0

Λ(t) =
√
v(0) = a+ b = lim

t→0
Λ̃(t),

lim
t→1

Λ(t) = Λ(1) = a+ be−c = lim
t→1

Λ̃(t).

The values a, b, and c can now be estimated by

(3.17) a =

√
v̄ − γ2

8κ
, b =

√
v(0) − a, c = − log

(
b−1(Λ(1) − a)

)
,

where Λ(t) is given by (3.5).
The approximation given in Result 3.3 may give difficulties for v̄ < γ2/8κ in (3.17) (the

expression under the square root then becomes negative). We recognize that this expression
is well defined, as the expression under the square root in the function Λ(t) in Result 3.2 is
positive.

In order to measure the quality of approximation (3.17) to E(
√
v(t)) in (3.2), we perform

a numerical experiment (see the results in Figure 1). For randomly chosen sets of parameters
the approximation (3.17) resembles E(

√
v(t)) in (3.2) very closely.

We call the resulting model the H1-HW model (HHW model-1).
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 proxy: κ =1.2,γ =0.1,v̄ =0.03,v(0) =0.04
exact

proxy: κ =1.2,γ =0.1,v̄ =0.02,v(0) =0.035
exact

proxy: κ =1.2,γ =0.1,v̄ =0.04,v(0) =0.01
exact
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exact
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exact

Figure 1. The quality of the approximation E(
√

v(t)) ≈ a+be−ct (continuous line) versus the exact solution
given in (3.2) (squares) for 5 random κ, γ, v̄, and v(0).

3.1.1. The case Δ = 0 and Ω(t) ≡ const. With Δ = 0 in systems (2.9) and (2.12),
the model resembles the one in [19, 3]. There, a constant parameter Ω̄ = Ω(t) was prescribed,
and an instantaneous correlation was imposed indirectly.

The following lemma, however, shows that this model with Δ = 0 resembles the full-scale
HHW and HCIR models only for correlation ρx,r = 0.

Lemma 3.4. The hybrid models (2.9) with Δ = 0 are full-scale HHW and HCIR models,
in the sense of system (2.3), only if the instantaneous correlation between the stock and the
interest rate processes in system (2.3) equals zero, i.e., ρx,r = 0.

Proof. The proof is analogous to the proof of Lemma 2.1. We see from the equalities
in (2.14) that system (2.7) resembles system (2.12) with Δ = 0 only if

(3.18) Ω̄ = ρx,r

√
v(t)

rp(t)
, ρ̂x,v = ρx,v, ρ̂2x,v = ρ2x,v + ρ2x,r.

The equations (3.18) hold only for ρx,r = 0. So, the models with Δ = 0 are not full-scale
HHW and HCIR models with nonzero correlation ρx,r.

Although the model with Δ = 0 is not a properly defined Heston hybrid model, one can
still proceed with the analysis. Parameter Ω̄ was derived based on the following equality
(see [19]), using the definition of the instantaneous correlation:

(3.19) ρ̂x,r =
E (dS(t)dr(t)) − E(dS(t))E(dr(t))√

v(t)S2(t) dt+ Ω̄2r2p(t)S2(t) dt
√
η2r2p(t) dt

=
Ω̄rp(t)√

v(t) + Ω̄2r2p(t)
.

To deal with the affinity issue a constant approximation for Ω̄ was proposed, given by

(3.20) Ω̄ ≈ ρ̂x,r√
1 − ρ̂2x,r

E

(
1

T

∫ T

0
v(t)dt

) 1
2
/

E

(
1

T

∫ T

0
r(t)dt

)p
.

By choosing Ω̄ = 0 the model collapses to the well-known HHW model (p = 0) or the
HCIR model (p = 1

2) with zero correlation ρx,r.
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In Figure 2 we present the behavior of the instantaneous correlation between the equity
and the interest rates. We see that for time-dependent Ω(t), as defined in Lemma 2.1, the
instantaneous correlations are stable and oscillate around the exact value, chosen to be ρx,r =
60%, whereas for the model with Ω(t) = Ω̄ a different correlation pattern is observed. For
the latter model, initially the correlation is significantly higher than 60%, and it decreases in
time. These results show that a constant Ω̄ in the model with Δ = 0 may give an average
correlation close to the exact value, although the instantaneous correlation is not stable in
time.

Figure 2. The instantaneous correlations for different models. The blue line represents the model with Δ = 0
with constant Ω̄, the dotted-red line corresponds to the full-scale HHW model, and the green line corresponds to
the model with time-dependent Ω(t). Maturity is chosen to τ = 2 years.

The assumptions of constant Ω̄ and Δ = 0 also have an impact on the corresponding
pricing PDE. With the Feynman–Kac theorem the corresponding PDE is given by

0 =
∂φ

∂t
+

[
r − 1

2

(
v + r2pΩ̄2

)] ∂φ
∂x

+ κ(v̄ − v)
∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2

(
v + r2pΩ̄2

) ∂2φ
∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2r2p

∂2φ

∂r2
+ ρ̂x,vγv

∂2φ

∂x∂v
+ ηΩ̄r2p

∂2φ

∂x∂r
− rφ,(3.21)

with the same terminal condition as for (2.18). The assumption of constant Ω̄ and Δ = 0
gives rise to additional terms in the convection and diffusion parts of PDE (3.21).

By means of a numerical experiment, we check the accuracy of the model with Δ = 0 and
determine whether the model approximates the full-scale HHW hybrid model sufficiently well.
We consider here the following set of parameters: S(0) = 1, κ = 2, v(0) = v̄ = 0.05, γ = 0.1,
λ = 1.2, r(0) = θ = 0.05, η = 0.01, and correlation ρx,v = −40%. In the simulation we choose
two different values for correlation ρx,r = {30%, 50%}.

We compare the following three models: the full-scale HHW model (with MC simulation),
the model with Δ = 0, and our approximation for Σ(1,3) in PDE (2.18) with the projection
according to (3.1).
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Figure 3. The implied Black–Scholes volatilities for the full-scale Heston model and two approximations:
deterministic approach (model (2.18) with (3.1)), and model with Δ = 0 (model (3.21)).

In Figure 3 the implied volatilities obtained are compared. The model with Δ = 0 in (3.21)
does not provide a satisfactory fit to the full-scale HHW model, whereas the implied volatilities
obtained with the deterministic hybrid approximation compare very well (they essentially
overlap) with the full-scale reference results; see Figure 3. The volatility compensator Δ, as
defined in Lemma 2.1, cannot be neglected when approximating the full-scale HHW model,
as was stated in Lemma 3.4.

3.2. ChF for the H1-HW model. We derive a ChF for the HHW hybrid model given
in (2.18). For p = 0, the nonaffine term, Σ(1,3), in matrix (2.18) equals Σ(1,3) = ηρx,r

√
v(t)

and will be approximated by Σ(1,3) ≈ ηρx,rE(
√
v(t)).

We assume here that the term structure for the interest rate θ(t) is constant: θ(t) = θ. A
generalization can be found in [8].

According to [13], the discounted ChF for the H1-HW model is of the following form:

(3.22) φH1-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) ,

with final conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, and τ := T − t.
The ChF for the H1-HW model can be derived in closed form, with the help of the following

lemmas.
Lemma 3.5 (ODEs related to the H1-HW model). The functions B(u, τ) =: B(τ),

C(u, τ) =: C(τ), D(u, τ) =: D(τ), and A(u, τ) =: A(τ) for u ∈ R and τ ≥ 0 in (3.22) for the
H 1-HW model satisfy the following system of ODEs:

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 − λC(τ) +B(τ), C(u, 0) = 0,

D′(τ) = B(τ)(B(τ) − 1)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = λθC(τ) + κv̄D(τ) + η2C2(τ)/2 + ηρx,rE(
√
v(t))B(τ)C(τ), A(u, 0) = 0,
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with τ = T − t, and where κ, λ, and θ and η, ρx,r, and ρx,v correspond to the parameters in
the HHW model (2.3).

Proof. The proof can be found in section A.1.

The following lemma gives the closed-form solution for the functions B(u, τ), C(u, τ),
D(u, τ), and A(u, τ) in (3.22).

Lemma 3.6 (ChF for the H1-HW model). The solution of the ODE system in Lemma 3.5 is
given by

B(u, τ) = iu,(3.23)

C(u, τ) = (iu− 1)λ−1(1 − e−λτ ),(3.24)

D(u, τ) =
1 − e−D1τ

γ2 (1 − ge−D1τ )
(κ− γρx,viu−D1) ,(3.25)

A(u, τ) = λθI1(τ) + κv̄I2(τ) +
1

2
η2I3(τ) + ηρx,rI4(τ),(3.26)

with D1 =
√

(γρx,viu− κ)2 − γ2iu(iu − 1), and where g =
κ−γρx,viu−D1

κ−γρx,viu+D1
, κ, θ, λ, and γ are as

in (2.10).
The integrals I1(τ), I2(τ), and I3(τ) admit an analytic solution, and I4(τ) admits a

semianalytic solution:

I1(τ) =
1

λ
(iu− 1)

(
τ +

1

λ
(e−λτ − 1)

)
,

I2(τ) =
τ

γ2
(κ− γρx,viu−D1) − 2

γ2
log

(
1 − ge−D1τ

1 − g

)
,

I3(τ) =
1

2λ3
(i+ u)2

(
3 + e−2λτ − 4e−λτ − 2λτ

)
,

I4(τ) = iu

∫ τ

0
E(
√
v(T − s))C(u, s)ds

= − 1

λ
(iu+ u2)

∫ τ

0
E(
√
v(T − s))

(
1 − e−λs

)
ds.

Proof. The proof can be found in section A.2.
Note that by taking E(

√
v(T − s)) ≈ a+ be−c(T−s), with a, b, and c as given in (3.15), we

obtain a closed-form expression:

I4(τ) = − 1

λ
(iu+ u2)

[
b

c

(
e−ct − e−cT

)
+ aτ +

a

λ

(
e−λτ − 1

)
+

b

c− λ
e−cT

(
1 − e−τ(λ−c)

)]
.

In Appendix B we present the generalization to a full matrix of nonzero correlations
between the processes.

4. Stochastic approximation for hybrid models. In the previous section a rather
straightforward way to approximate the nonaffine elements in the instantaneous covariance
matrix was presented. Here, we model those elements alternatively by stochastic processes
and call the resulting approximate model H2-HW (HHW model-2).
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4.1. Stochastic approach: The H2-HW model. In the result below an approximation
for finite time t and a nonzero centrality parameter is presented.

Result 4.1 (normal approximation for
√
v(t), for 0 < t <∞). For any time t < ∞, the

square root of v(t) in (2.9) can be approximated by

(4.1)
√
v(t) ≈ N

(√
c(t)(λ(t) − 1) + c(t)d +

c(t)d

2(d + λ(t))
, c(t) − c(t)d

2(d+ λ(t))

)
,

with c(t), d, and λ(t) from (3.4). Moreover, for a fixed value of x in the cumulative distribution
function F√

v(t)
(x) and a fixed value for parameter d, the error is of order O(λ2(t)) for λ(t) → 0

and O(λ(t)−
1
2 ) for λ(t) → ∞.

To show the validity of the approximations presented above, we follow Patnaik in [34], who
found that an accurate approximation for the noncentral chi-square distribution, χ2

d(λ(t)), can
be obtained by an approximation with a centralized chi-square distribution, i.e.,

(4.2) χ2(d, λ(t)) ≈ a(t)χ2(f(t)),

with a(t) and f(t) in (4.2) chosen so that the first two moments match, i.e.,

(4.3) a(t) =
d+ 2λ(t)

d+ λ(t)
, f(t) = d+

λ2(t)

d+ 2λ(t)
.

It was shown in [11, 9] that, for a given time t > 0, v(t) is distributed as c(t) times a
noncentral chi-squared random variable, χ2(d, λ(t)), with degrees of freedom parameter d and
noncentrality parameter λ(t), i.e., v(t) = c(t)χ2 (d, λ(t)) , t > 0. By combining this with (4.2)
we have

(4.4)
√
v(t) ≈

√
c(t)
√
a(t)χ2(f(t)).

Now, we use a result by Fisher [17] that for a given central chi-square random variable, χ2(d),
the expression

√
2χ2(d) is approximately normally distributed with mean

√
2d− 1 and unit

variance, i.e.,

(4.5) Fχ2(d)(x) ≈ Φ
(√

2x−
√

2d− 1
)
,

which implies

(4.6)
√
v(t) ≈ N

(√(
f(t) − 1

2

)
c(t)a(t),

1

2
c(t)a(t)

)
.

The order of this approximation can be found in [26].
Remark 3. Also in [34] it was indicated that the normal approximation resembles the

noncentral chi-square distribution very well for either a large number of degrees of freedom, d,
or a large noncentrality, λ(t). For t → 0, the noncentrality parameter, λ(t), tends to infinity.
Therefore, accurate approximations are expected.
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In the case of long maturities, the noncentrality parameter converges to 0, which may
give an inaccurate approximation. In this case, satisfactory results depend on the size of the
degrees of freedom parameter d. It is clear that d in (3.4) is directly related to the Feller
condition. In practical applications, however, 2κv̄ is often smaller than γ2. In the numerical
experiments to follow, we will study the impact of not satisfying the Feller condition.

In Result 4.1 we have shown that
√
v(t) can be well approximated by a normally

distributed random variable. As the application of Itô’s lemma to find the dynamics for√
v(t) is not allowed (the square-root process is not twice differentiable at the origin [25]),

we construct here a stochastic process, ξ(t), so that equality in distribution holds, i.e.,

ξ(t)
d≈ √v(t). Since a normal random variable is completely described by the first two

moments, we need to ensure that E(ξ(t)) = E(
√
v(t)) and Var(ξ(t)) = Var(

√
v(t)). For

this purpose we propose the following dynamics:

dξ(t) = μξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),(4.7)

with some deterministic, time-dependent functions μξ(t) and ψξ(t), determined so that the
first two moments match. By moment matching, the unknown functions μξ(t) and ψξ(t)
in (4.7) read as

(4.8) μξ(t) =
d

dt
E(
√
v(t)), ψξ(t) =

√
d

dt
Var(
√
v(t)).

Using the results from Lemma 3.1, the expectation, E(
√
v(t)), and the variance, Var(

√
v(t)),

can be derived:

μξ(t) =
1

2
√

2

Γ
(
1+d
2

)√
c(t)

[
1F̃1

(
−1

2
,
d

2
,−λ(t)

2

)
1

2
γ2e−κt

+ 1F̃1

(
1

2
,
2 + d

2
,−λ(t)

2

)
v(0)κ

1 − eκt

]
,

ψξ(t) =
(
κ(v̄ − v(0))e−κt − 2E(

√
v(t)) μξ(t)

) 1
2
.(4.9)

Here, E(
√
v(t)) and d, c(t), and λ(t) are as in (3.2), and the regularized hypergeometric

function 1F̃1(a; b; z) =: 1F1(a; b; z)/Γ(b).

The expressions for μξ(t) and ψξ(t) in (4.9) are exact. However, since those expressions are
not cheap to compute, one can find suitable approximations based on the results in Result 3.2,
which are, however, not guaranteed to be well defined for all sets of parameters.

Since the approximate hybrid models are to be used for the calibration to European-style
options (with one terminal payment), we do not need pathwise equality between processes
ξ(t) and

√
v(t); only equality in terminal distribution is needed.

Remark 4. In section 4.1 we projected
√
v(t) onto a normal process, ξ(t). As is common

with approximations by normal processes (a nonnegative random variable is projected onto
another variable ∈ R), this approximation comes with an error (as we indicated in Result 4.1).
During stress testing, examples of which are presented in section 4.3 and in Appendix C, we did
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not encounter any problems with this approximation. Typically, the stochastic approximation
is somewhat more accurate than the deterministic approach (which is not based on a normal
approximation).4

4.2. ChF for the H2-HW model. We now use the (stochastic) approximation for the
term Σ(1,3), with the process dξ(t) given by (4.7), and the time-dependent functions μξ(t) and

ψξ(t) as in (4.9).

This approximation gives rise to an extension of the three-dimensional space variable
X(t) = [S(t), v(t), r(t)]T to a four-dimensional space X̃(t) = [S(t), v(t), r(t), ξ(t)]T , with the
following system of SDEs:

(4.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dS(t)/S(t) = r(t)dt+

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt+ ηdWr(t), r(0) > 0,

dξ(t) = μξ(t)dt+ ψξ(t)dWv(t), ξ(0) =
√
v(0),

where

(4.11)

⎧⎨⎩
dWx(t)dWv(t) = ρx,vdt,
dWx(t)dWr(t) = ρx,rdt,
dWv(t)dWr(t) = 0,

with
√
v(t) ≈ ξ(t) and μξ(t),ψξ(t) as defined in (4.9).

By taking the log-transform, x(t) = logS(t), in the model above all the drift terms are
linear, and the symmetric instantaneous covariance matrix, with ξ(t) ≈√v(t), is given by

(4.12) Σ̃ =

⎡⎢⎢⎣
v(t) γρx,vv(t) ρx,rηξ(t) ρx,vψ

ξ(t)ξ(t)
∗ γ2v(t) 0 γψξ(t)ξ(t)
∗ ∗ η2 0

∗ ∗ ∗ (
ψξ(t)

)2
⎤⎥⎥⎦ ,

which, since ψξ(t) is a deterministic time-dependent function, is now affine.

Since the system of SDEs (4.10) is affine, we derive the corresponding ChF:
(4.13)
φH2-HW(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t) + E(u, τ)ξ(t)) ,

with final conditions φH2-HW(u,X(T ), 0) = exp(iux(T )) and ξ(t) ≈√v(t).

The functions A(u, τ), B(u, τ), C(u, τ), D(u, τ), and E(u, τ) satisfy the complex-valued
ODEs given by the following lemma.

Lemma 4.2 (ODEs related to the H2-HW model). The functions B(u, τ) =: B(τ),
C(u, τ) := C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), and A(u, τ) =: A(τ) for u ∈ R

4The method by Antonov from [4, 5] is also not based on normal approximations.
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and τ = T − t > 0 in (4.13) satisfy

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ) − λC(τ), C(u, 0) = 0,

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

E′(τ) = ρx,rηB(τ)C(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ), E(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + μξ(t)E(τ) + η2C2(τ)/2 +
(
ψξ(t)

)2
E2(τ)/2, A(u, 0) = 0,

with μξ(t), ψξ(t) as given in (4.9).
Proof. The proof is very similar to the proof of Lemma 3.5.
Solutions to the ODEs for B(u, τ), C(u, τ), and D(u, τ) can be found in Lemma 3.6, where

the deterministic linearization was applied.
Note that the remaining two functions, E(u, τ) and A(u, τ), contain the rather complicated

functions μξ(t) and ψξ(t). We leave these equations to be solved numerically by a basic ODE
routine.

A detailed analysis of the properties of the ChF will be studied in a followup article with
theoretical research.

4.3. Numerical experiment. Here we check the performance of the deterministic (sec-
tion 3.2) and the stochastic (section 4.2) approximations to the full-scale HHW model in
terms of differences in implied volatilities. The HHW benchmark prices were obtained by MC
simulation, as in [2].

In Table 1 we present the errors for Black–Scholes implied volatilities, ε(ρx,r), for different
correlations between the stock, S(t), and the short rate, r(t), and different strikes. We show
results for a maturity of 10 years, τ = 10, and for parameters that do not satisfy the Feller
condition.5

Both approximations give very similar, highly accurate results for low correlations, ρx,r.
This is different for high values of ρx,r. The deterministic approach generates somewhat
more bias for high strikes, whereas the stochastic approach is essentially bias-free. The errors
presented in Table 1 depend on the size of the volatility parameter of the interest rate process,
η. For very low volatility, the two approximations provide a similar level of accuracy. As the
volatility of the short rate process increases, a higher accuracy is expected for the stochastic
approximation.

Calibration results will be presented in section 6. The performance of the methods
developed is also presented in Appendix C, where our schemes are compared to the Markovian
projection method [5].

5. HCIR hybrid model. We also present the ChF for an HCIR hybrid model, p = 1/2
in (2.3), which is more involved than the HW-based hybrid models. In the HCIR model the
nonaffine term is given in (2.17). Again we use two approximations to obtain the ChF. In the
first model, H1-CIR, we use the deterministic setup, and for the second model, H2-CIR, we
determine the stochastic approximation.

5For short maturities, τ < 10, and for model parameters for which the Feller condition is satisfied, we did
not find any significant differences between the two approximations and the full-scale model.
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Table 1
The implied volatilities and errors for the deterministic approximation (Approx 1) from (2.18) with

approximation (3.2) and the stochastic approximation (Approx 2) from section 4.1 of the HHW model compared
to the MC simulation performed with 20T steps and 100.000 paths. The error is defined as a difference between
reference implied volatilities and the approximations. The parameters were chosen as κ = 0.3, γ = 0.6,
v(0) = v̄ = 0.05, λ = 0.01, r(0) = θ = 0.02, η = 0.01, and S(0) = 100 and the correlations as ρx,v = −30%
and ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

ρx,r Strike MC Imp. vol. [%] Approx 1 Approx 2 Err. 1 Err. 2

40 26.26 (0.22) 25.87 25.99 0.39 0.27
80 20.07 (0.22) 20.03 20.02 0.04 0.05

20% 100 18.43 (0.24) 18.55 18.36 −0.12 0.07
120 17.51 (0.20) 17.74 17.42 −0.23 0.09
180 17.40 (0.22) 17.55 17.36 −0.15 0.04

40 26.27 (0.14) 26.21 26.61 0.06 −0.34
80 20.59 (0.11) 21.00 20.91 −0.41 −0.32

60% 100 19.11 (0.10) 19.84 19.22 −0.72 −0.10
120 18.31 (0.10) 19.21 18.18 −0.90 0.13
180 18.25 (0.11) 18.92 18.34 −0.67 −0.09

5.1. ChF for the H1-CIR model. The dynamics for the stock, S(t), in the HCIR model
read as

(5.1)

⎧⎪⎪⎨⎪⎪⎩
dS(t)/S(t) = r(t)dt +

√
v(t)dWx(t), S(0) > 0,

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt + η
√
r(t)dWr(t), r(0) > 0,

with dWx(t)dWv(t) = ρx,vdt, dWx(t)dWr(t) = ρx,rdt, and dWv(t)dWr(t) = 0.
Here, we assume that the nonaffine term in the pricing PDE (2.18), Σ(1,3), in (2.17) can

be approximated as

(5.2) Σ(1,3) ≈ ηρx,rE
(√

r(t)
√
v(t)
) ⊥⊥

= ηρx,rE(
√
r(t))E(

√
v(t)).

Since the processes involved are of the same type, the expectations in (5.2) can be determined
as presented in section 3.1. For the log-stock, x(t) = log S(t), the ChF and the corresponding
Riccati ODEs are defined as below:

(5.3) φH1-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)) .

Lemma 5.1 (ODEs related to the H1-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ), and A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.3)
satisfy

B′(τ) = 0, B(u, 0) = iu,

C ′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2, C(u, 0) = 0,

D′(τ) = (B(τ) − 1)B(τ)/2 + (γρx,vB(τ) − κ)D(τ) + γ2D2(τ)/2, D(u, 0) = 0,

A′(τ) = κv̄D(τ) + λθC(τ) + ηρx,rE(
√
v(t))E(

√
r(t))B(τ)C(τ), A(u, 0) = 0,(5.4)
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with τ = T − t, E(
√
v(t)), and E(

√
r(t)) from Lemma 3.1.

Proof. The proof is very similar to the proof of Lemma 3.5 in section A.1.
Lemma 5.2 (solutions for the ChF coefficients of the H1-CIR model). The solutions for the

ODEs for B(u, τ), C(u, τ), D(u, τ), and A(u, τ), defined in Lemma 5.1, are given by

B(u, τ) = iu,(5.5)

C(u, τ) =
1 − e−D1τ

η2 (1 −G1e−D1τ )
(λ−D1) ,(5.6)

D(u, τ) =
1 − e−D2τ

γ2 (1 −G2e−D2τ )
(κ− γρx,viu−D2) ,(5.7)

and

A(u, τ) =

∫ τ

0

(
κv̄D(u, s) + λθC(u, s) + ρx,rηiuE(

√
v(T − s))E(

√
r(T − s))C(u, s)

)
ds,

with D1 =
√
λ2 + 2η2(1 − iu), D2 =

√
(γρx,viu− κ)2 − (iu− 1)iuγ2, G1 = λ−D1

λ+D1
, and G2 =

κ−γρx,viu−D2

κ−γρx,viu+D2
.

Proof. The proof is very similar to the proof of Lemma 3.6 in section A.2.
The integral for A(u, τ) in Lemma 5.2 can be determined analytically only for constant

approximations of the two expectations involved.

5.2. ChF for the H2-CIR model. As before, we aim to find an approximation of the
instantaneous covariance matrix for which the affinity of the approximation model is obtained,
but now with the stochastic approximation.

Σ(1,3) now consists of two stochastic components,
√
v(t) and

√
r(t). We approximate

both and obtain

(5.8) Σ(1,3) ≈ Σ̃(1,3) = ρx,rηξ(t)R(t), R(t) ≈
√
r(t), ξ(t) ≈

√
v(t).

This form, based on the product of two random variables, is not affine. To linearize (5.8)
we need to specify the joint dynamics, d(

√
v(t)
√
r(t)). If we assume that the dynamics for

d(
√
v(t)) and d(

√
r(t)) can be approximated by normally distributed processes, we find, by

Itô’s lemma, that the dynamics of z(t) = ξ(t)R(t) are given by

(5.9) dz(t) =
(
μR(t)ξ(t) + μξ(t)R(t)

)
dt+ ψξ(t)R(t)dWv(t) + ψR(t)ξ(t)dWr(t).

With three additional variables, ξ(t), R(t), and z(t), the state vector X(t), with log-
stock process x(t) = log S(t), is expanded to X(t) = [x(t), v(t), r(t), ξ(t), R(t), z(t)]T , with the
following corresponding system of SDEs:

(5.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dx(t) =

(
r(t) − 1

2
v(t)

)
dt +

√
v(t)dWx(t), x(0) = log(S(0)),

dv(t) = κ(v̄ − v(t))dt + γ
√
v(t)dWv(t), v(0) > 0,

dr(t) = λ(θ(t) − r(t))dt + η
√
r(t)dWr(t), r(0) > 0,
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with the linearizing variables ξ(t), R(t), and z(t) given by
(5.11)

dξ(t) = μξ(t)dt + ψξ(t)dWv(t), ξ(0) =
√
v(0),

dR(t) = μR(t)dt + ψR(t)dWr(t), R(0) =
√
r(0),

dz(t) =
(
μR(t)ξ(t) + μξ(t)R(t)

)
dt + ψξ(t)

√
r(t)dWv(t) + ψR(t)

√
v(t)dWr(t),

with z(0) =
√
r(0)
√
v(0), ξ(t) ≈ √v(t), R(t) ≈ √r(t), z(t) ≈ √v(t)

√
r(t), and the other

parameters as in (2.3). The symmetric instantaneous covariance matrix reads as

(5.12) Σ̃∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

v(t) ρx,vγv(t) ρx,rηz(t) ρx,vψ
ξ(t)ξ(t) ρx,rψ

R(t)ξ(t) s1(t)
∗ γ2v(t) 0 ψξ(t)γξ(t) 0 γψξ(t)z(t)
∗ ∗ η2r(t) 0 ψR(t)ηR(t) ηψR(t)z(t)
∗ ∗ ∗ (ψξ(t))2 0 (ψξ(t))2R(t)
∗ ∗ ∗ ∗ (ψR(t))2 (ψR(t))2ξ(t)
∗ ∗ ∗ ∗ ∗ s2(t)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

with s1(t) = ρx,vψ
ξ(t)z(t) + ρx,rψ

R(t)v(t) and s2(t) = (ψξ(t))2r(t) + (ψR(t))2v(t).
Since ψξ(t) and ψR(t) are deterministic time-dependent functions, the approximate H2-

CIR model is now affine, and we can derive the corresponding ChF:

(5.13)
φH2-CIR(u,X(t), τ) = exp (A(u, τ) +B(u, τ)x(t) + C(u, τ)r(t) +D(u, τ)v(t)

+E(u, τ)ξ(t) + F (u, τ)R(t) +G(u, τ)z(t)) ,

with ξ(t) =
√
v(t), R(t) =

√
r(t), and z(t) =

√
v(t)
√
r(t), and where the functions A(u, τ),

B(u, τ), C(u, τ), D(u, τ), E(u, τ), F (u, τ), and G(u, τ) satisfy the ODEs given by the following
lemma.

Lemma 5.3 (ODEs related to the H2-CIR model). The functions B(u, τ) =: B(τ),
C(u, τ) =: C(τ), D(u, τ) =: D(τ), E(u, τ) =: E(τ), F (u, τ) =: F (τ), G(u, τ) =: G(τ), and
A(u, τ) =: A(τ) for u ∈ R and τ > 0 in (5.13) satisfy

B′(τ) = 0,

C ′(τ) = −1 +B(τ) − λC(τ) + η2C2(τ)/2 + (ψξ(t))2G2(τ)/2,

F ′(τ) = μξ(t)G(τ) + ψR(t)ηC(τ)G(τ) + (ψξ(t))2E(τ)G(τ),

G′(τ) = ηρx,rB(τ)C(τ) + ρx,vψ
ξ(t)B(τ)G(τ) + γψξ(t)D(τ)G(τ) + ηψR(t)C(τ)G(τ)

and

D′(τ) = B(τ) (B(τ) − 1) /2 − κD(τ) + γρx,vB(τ)D(τ) + γ2D2(τ)/2

+ ρx,rψ
R(t)B(τ)G(τ) + (ψR(t))2G2(t)/2,

E′(τ) = μR(t)G(τ) + ψξ(t)ρx,vB(τ)E(τ) + γψξ(t)D(τ)E(τ)

+ ρx,rψ
R(t)B(τ)F (τ) + (ψR(t))2F (τ)G(τ),

A′(τ) = κv̄D(τ) + λθC(τ) + μξ(t)E(τ) + μR(t)F (τ)

+ (ψξ(t))2E2(τ)/2 + (ψR(τ))2F 2(τ)/2,
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with the final conditions B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0, E(u, 0) = 0, F (u, 0) = 0,
G(u, 0) = 0, and A(u, 0) = 0. Parameters μξ(t), μR(t), ψξ(t), ψR(t) are specified in (4.9),
and the remaining parameters are in (5.10).

Proof. The proof is very similar to the proof of Lemma 3.5 in section A.1.

The system of the ODEs given in Lemma 5.3 is difficult to solve analytically. To find the
solution we have used an explicit Runge–Kutta method [18, 27], ode45 from the MATLAB
package. Numerical results are presented in the next subsection.

The extension of the H2-CIR model to the case of a full matrix of correlations is a trivial
exercise.

5.3. Numerical experiment. We compare the performance of the approximations H1-CIR
and H2-CIR with the full-scale HCIR model. As in the case of the HHW models, we have
chosen here T = 10, and the model parameters are chosen so that the Feller condition does
not hold. The results, presented in Table 2, are very satisfactory. Both approximation models,
H1-CIR and H2-CIR, provide an error, ε(ρx,r), for a call option within the confidence bounds.
For higher correlation ρx,r, the error grows, but it is still small.

Table 2
The implied volatilities and errors for the deterministic approximation (Approx 1) from (2.18) with

approximation (3.2) and the stochastic approximation (Approx 2) from section 4.1 of the HCIR model compared
to the MC simulation performed with 20T steps and 100.000 paths. The error is defined as a difference between
the reference implied volatilities and the approximation. The parameters were chosen as κ = 0.3, γ = 0.6,
v(0) = v̄ = 0.05, λ = 0.01, r(0) = θ = 0.02, η = 0.01, and S(0) = 100 and the correlations as ρx,v = −30%
and ρx,r ∈ {20%, 60%}. Numbers in brackets indicate standard deviations.

ρx,r Strike MC Imp. vol. [%] Approx 1 Approx 2 Err. 1 Err. 2

40 25.66 (0.17) 25.68 25.74 −0.02 −0.08
80 19.17 (0.15) 19.21 19.25 −0.04 −0.08

20% 100 17.10 (0.18) 17.19 17.09 −0.09 −0.01
120 15.77 (0.17) 15.90 15.85 −0.14 −0.08
180 15.84 (0.18) 15.90 15.86 −0.06 −0.02

40 24.95 (0.14) 25.72 25.79 −0.77 −0.84
80 18.93 (0.12) 19.32 19.32 −0.39 −0.39

60% 100 16.92 (0.13) 17.37 17.08 −0.44 −0.15
120 15.60 (0.13) 16.17 15.93 −0.57 −0.32
180 15.57 (0.14) 16.10 15.98 −0.53 −0.41

We also present the time needed for obtaining the plain vanilla option prices, with the ChFs
H2-HW (section 4.2) and H2-CIR (section 5.2) based on the numerical solution for the system
of Riccati ODEs. Table 3 shows that, although the ODEs in Lemma 5.3 need to be solved
numerically, the time for obtaining European option prices, by the COS pricing method [16],
is often less than 0.1 seconds. The pricing of the options by means of the COS method, a
method based on Fourier cosine series expansions, was performed with a fixed number of 250
terms, which guaranteed highly accurate option prices (up to machine precision).

The tolerance for the ODE solves, by ode45 from MATLAB, is varied in the experiments
shown in the table.
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Table 3
Time in seconds for pricing a call option based on an explicit Runge–Kutta method combined with the COS

method [16].

Model Accuracy Maturity
τ = 0.5 τ = 1 τ = 2 τ = 5 τ = 10

H2-HW 10−2 4.37e-2 4.80e-2 6.41e-2 7.49e-2 8.10e-2
10−5 5.32e-2 5.82e-2 8.05e-2 9.74e-2 1.21e-1

H2-CIR 10−2 7.78e-2 7.80e-2 8.38e-2 8.48e-2 8.90e-2
10−5 8.33e-2 8.97e-2 1.05e-1 1.34e-1 1.62e-1

6. Calibration of the Heston hybrid models. Here, we evaluate the performance of the
approximations H1-HW and H2-HW for the HHW hybrid model in a calibration setting.

We reference call option prices, based on synthetic data that is representative for the
skew and smile patterns observed in real-life applications. For all models the simulation was
performed with an a priori defined speed of mean reversion for the variance process, κ = 0.3
(which is set small on purpose). The calibration is performed here with constant correlation
ρx,r = 20%. In practice, this correlation can be obtained from historical data.

The calibration procedure is performed in two stages. First, the parameters for the
short rate process are determined (independent of the equity part). In the second stage, the
calibrated r(t) is included in the Heston model, and the remaining parameters are determined.
The parameters for the interest rate part are found to be λHW = 0.501, ηHW = 0.005, and
r(0) = 0.04.

First, we also perform, as a benchmark, the calibration of the pure Heston model with
constant interest rate; see Table 4. SSE stands stands for the “sum-squared error.” We
calibrate the models for different maturities, τ .

Table 4
Calibration results for the Heston stochastic volatility model with deterministic interest rate. The mean

reversion parameter is κ = 0.3.

Model γ v̄ ρx,v v(0) r SSE

Heston (τ = 0.5) 0.5992 0.0823 −58.32% 0.0407 0.04 4.9063E-4
Heston (τ = 10) 0.6019 0.0828 −48.49% 0.0411 0.04 1.2182E-4

In Table 5 the calibration results for the HHW approximations, H1-HW and H2-HW,
are presented. For both models a highly satisfactory fit is obtained, with a slightly better
performance of the stochastic approximation H2-HW. For ρx,r = 20% the calibration
procedure gives roughly the same sets of parameters for both models. When comparing the
calibration results for HHW with those for the pure Heston model, we see that the inclusion
of stochastic interest rates in the model results in a lower vol-vol parameter, γ, and a more
negative correlation, ρx,v. The lower value of parameter γ can be explained by the additional
volatility which comes from the interest rate process.

In Figure 4 the corresponding implied volatilities, for the full-scale model, for a short and
a long maturity time (τ = 0.5y and τ = 10y) are presented. The left-hand sides of the figure
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Table 5
Calibration results for the H 1-HW model from section 3.2, and the H 2-HW model from section 4.2, with

κ = 0.3 and correlation ρx,r = 20%.

Model τ γ v̄ ρx,v v(0) SSE

H1-HW τ = 0.5 0.5840 0.0822 −60.06% 0.0407 4.4581E-4
τ = 10 0.4921 0.0826 −61.50% 0.0418 3.2912E-4

H2-HW τ = 0.5 0.5879 0.0930 −60.10% 0.0398 4.9677E-4
τ = 10 0.4884 0.0820 −60.72% 0.0421 8.5934E-5

present the implied volatilities and their errors for H1-HW and H2-HW. The related implied
volatilities of the full-scale HHW model, with the parameters from H1-HW and H2-HW, are
shown in the right-hand sides of the figure.

Both hybrid models perform very well. For long maturities a higher accuracy for the
hybrid models compared to the plain Heston model can be observed.

7. Concluding remarks. In this article we have presented the extension of the Heston
stochastic volatility equity model by stochastic interest rates. We have focused our attention
on two hybrid models, the HHW and the HCIR models.

By approximations of the nonaffine terms in the corresponding instantaneous covariance
matrix, we placed the approximation hybrid models in the framework of AD processes. The
approximations in the models have been validated by comparing the implied volatilities to the
full-scale hybrid models.

The approximations in the HHW and the HCIR models lead to highly efficient deter-
mination of the corresponding ChFs. The more sophisticated approximation is based on a
transformation of the three-dimensional HCIR model to a six-dimensional representation.

The deterministic and the stochastic approaches for approximating the instantaneous
covariance matrix of the hybrid model provide highly satisfactory approximations for prices
for European options.

Appendix A. Proofs and details.

A.1. Proof of Lemma 3.5.

Proof. For a given state vector X(t) = [x(t), r(t), v(t)]T and φ := φ(u,X(t), t, T ), we find
the system of the ODEs satisfying the following pricing PDE:

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2

+
1

2
γ2v

∂2φ

∂v2
+

1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ ηρx,rE(

√
v(t))

∂2φ

∂x∂r
− rφ,(A.1)

subject to terminal condition φ(u,X(T ), T, T ) = exp (iux(T )).

Since the PDE in (A.1) is affine, its solution is of the following form:

φ := φ(u,X(t), t, T ) = exp (A(u, t, T ) +B(u, t, T )x(t) + C(u, t, T )r(t) +D(u, t, T )v(t)) .
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Figure 4. For τ = 0.5 and τ = 10, ρx,r = 20%, the implied Black–Scholes volatilities for Heston hybrid
models are compared to the pure Heston model and a reference implied volatility curve. The left-hand graphs
present the implied volatilities and errors for H 1-HW and H 2-HW. The implied volatilities for the full-scale
HHW model, with the parameters from H 1-HW and H 2-HW, are in the right-hand figures.

By setting A := A(u, t, T ), B := B(u, t, T ), C := C(u, t, T ), and D := D(u, t, T ), we find the
following partial derivatives:

∂φ

∂t
= φ

(
∂A

∂t
+ x(t)

∂B

∂t
+ r(t)

∂C

∂t
+ v(t)

∂D

∂t

)
,(A.2)

∂φ

∂x
= Bφ,

∂2φ

∂x2
= B2φ,

∂2φ

∂x∂v
= BDφ,

∂2φ

∂x∂r
= BCφ,(A.3)

∂φ

∂r
= Cφ,

∂2φ

∂r2
= C2φ,(A.4)

∂φ

∂v
= Dφ,

∂2φ

∂v2
= D2φ.(A.5)
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By substitution, PDE (A.1) becomes

0 =
∂A

∂t
+ x

∂B

∂t
+ r

∂C

∂t
+ v

∂D

∂t
+

(
r − 1

2
v

)
B + κ(v̄ − v)D + λ(θ(t) − r)C

+
1

2
vB2 +

1

2
γ2vD2 +

1

2
η2C2 + ρx,vγvBD + ηρx,rE(

√
v(t))BC − r.(A.6)

Now, by collecting the terms for x(t), r(t), and v(t), we find the following set of ODEs:

∂B

∂t
= 0,(A.7)

∂C

∂t
= −B + λC + 1,(A.8)

∂D

∂t
=

1

2
B + κD − 1

2
γ2D2 − ρx,vγBD − 1

2
B2,(A.9)

∂A

∂t
= −κv̄D − λθC − 1

2
η2C2 − ρx,rηE(

√
v(t))BC.(A.10)

By setting τ = T − t, the proof is finished.

A.2. Proof of Lemma 3.6.
Proof. Obviously, due to the final condition, B(u, 0) = iu, we have B(u, τ) = iu. For the

second ODE, by multiplying both sides with eλτ , we get

d

dτ

(
eλτC(u, τ)

)
= (iu− 1)eλτ ;(A.11)

by integrating both sides and using the final condition, C(u, 0) = 0, we find

C(u, τ) = (iu− 1)λ−1
(

1 − e−λτ
)
.

By setting a = −1
2(u2 + iu), b = γρx,viu − κ, and c = 1

2γ
2, the ODEs for D(u, τ) and I2(τ)

are given by the following Riccati-type equation:

d

dτ
D(u, τ) = a+ bD(u, τ) + cD2(u, τ), D(u, 0) = 0,(A.12)

I2(τ) = κv̄

∫ τ

0
D(u, s)ds.(A.13)

Equations (A.12) and (A.13) are of the same form as those in [22]. Their solutions are given
by

D(u, τ) =
−b−D1

2c(1 −Ge−D1τ )
(1 − e−D1τ ),(A.14)

I2(τ) =
1

2c

(
(−b−D1)τ − 2 log

(
1 −Ge−D1τ

1 −G

))
,(A.15)

with D1 =
√
b2 − 4ac, G = −b−D1

−b+D1
.
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The evaluation of the integrals I1(τ), I3(τ), and I4(τ) is straightforward. The proof is
finished by appropriate substitutions.

Appendix B. Hybrid model with full matrix of correlations. Similar to the approximation
of the nonaffine terms in the instantaneous covariance matrix of the Heston hybrid model
presented in section 3.1, we discuss here the inclusion of the additional correlation, ρr,v,
between the interest rate, r(t), and the stochastic variance, v(t). We call the resulting
model the HHW hybrid model-3 and denote it by H3-HW. For the state vector X(t) =
[x(t), v(t), r(t)]T, the H3-HW model has the following symmetric instantaneous covariance
matrix:

(B.1) Σ := σ(X(t))σ(X(t))T =

⎡⎣ v(t) ρx,vγv(t) ρx,rη
√
v(t)

∗ γ2v(t) ρr,vγη
√
v(t)

∗ ∗ η2

⎤⎦
(3×3)

.

The affinity issue arises in two terms of matrix (B.1), namely, in elements (1, 3) and (2, 3):

Σ(1,3) = ρx,rη
√
v(t), Σ(2,3) = ρr,vγη

√
v(t).

For completeness, we also present the associated Kolmogorov backward equation, which is
now given by

0 =
∂φ

∂t
+

(
r − 1

2
v

)
∂φ

∂x
+ κ(v̄ − v)

∂φ

∂v
+ λ(θ(t) − r)

∂φ

∂r
+

1

2
v
∂2φ

∂x2
+

1

2
γ2v

∂2φ

∂v2

+
1

2
η2
∂2φ

∂r2
+ ρx,vγv

∂2φ

∂x∂v
+ Σ(1,3)

∂2φ

∂x∂r
+ Σ(2,3)

∂2φ

∂r∂v
− rφ,(B.2)

with the final condition equal to

φ(u,X(T ), T, T ) = exp(iux(T )).

With ρr,v = 0 the H3-HW model with a full matrix of correlations collapses to the setup
in section 3.1.

As before, we can use the deterministic approximations Σ(1,3) ≈ ρx,rηE(
√
v(t)) and

Σ(2,3) ≈ ρr,vγηE(
√
v(t)), for which Result 3.3 can be used.

The representations of the HHW model in (2.9) and the model in (2.3) with ρr,v �= 0 for
p = 0 are closely related. The following lemma specifies the relation in terms of the coefficients
of the corresponding ChF.

Lemma B.1 (ChF for the H3-HW model with a full matrix of correlations). The discounted
ChF for the H 3-HW model is of the following form:

φH3-HW(u,X(t), τ) = exp
(
Â(u, τ) + B̂(u, τ)x(t) + Ĉ(u, τ)r(t) + D̂(u, τ)v(t)

)
,

with the functions Â(u, τ), B̂(u, τ), Ĉ(u, τ), and D̂(u, τ) given by

B̂(u, τ) = B(u, τ), Ĉ(u, τ) = C(u, τ), D̂(u, τ) = D(u, τ),(B.3)
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with B(u, τ) in (3.23), C(u, τ) in (3.24), and D(u, τ) in (3.25). For Â(u, τ) we have

(B.4) Â(u, τ) = A(u, τ) + ρr,vγη

∫ τ

0
E(
√
v(T − s))Ĉ(u, s)D̂(u, s)ds,

where A(u, τ) is given in (3.26).

The accuracy of the HHW approximations with a full matrix of correlations is discussed
in Appendix C.

Appendix C. Comparison to Markov projection method. In this appendix we compare
our results to the Markovian projection (MP) method [5]. We check the results of three
different approximation schemes: the MP method, Approx 1, i.e., the approximation with√
v(t) ≈ E(

√
v(t)) (section 3.1), and Approx 2, i.e., the method with

√
v(t) ≈ N (·)

(section 4.1).

In the experiment, taken directly from [4], we price an equity option with continuous
dividend. The model parameters for the HHW model are given by κ = 0.25, v̄ = v(0) = 0.0625,
γ = 0.625, λ = 0.05, and η = 0.01, and a zero-coupon bond is given by P (0, T ) = e−0.05T and
a continuous dividend of 2%. A full matrix of correlations, as in [4], is given by

(C.1) C =

⎡⎣ 1 ρx,v ρx,r
ρx,v 1 ρv,r
ρx,r ρv,r 1

⎤⎦ =

⎡⎣ 100% −40% 30%
−40% 100% 15%
30% 15% 100%

⎤⎦ .
The MC reference for the implied volatilities, the corresponding standard deviations, and the
results for the MP method are all taken from [4].

In order to incorporate a continuous dividend in the equity model, one can model foreign-
exchange (FX), in which the volatility of the foreign interest rates is set to zero. In such a
setup, the forward, F (t), is defined as

F (t) = S(t)
Pf (t, T )

Pd(t, T )
and F (0) = S(0)

e−0.02T

e−0.05T
,

where Pf (t, T ) and Pd(t, T ) are the foreign and domestic zero-coupon bonds, respectively,
paying e1 at the maturity T . By switching from the spot risk-neutral measure, Q, to the
T -forward measure, QT , discounting will be decoupled from taking the expectation, i.e.,

E

(
1

B(T )
max(S(T ) −K, 0)|F(0)

)
= Pd(0, T )ET (max(F (T ) −K, 0)|F(0)) .

Moreover, the forward, F (t), is a martingale with dynamics given by

(C.2)
dF (t)/F (t) =

√
v(t)dW T

x (t) − ηBr(t, T )dW T
r (t),

dv(t) =
(
κ(v̄ − v(t)) + γρv,rηBr(t, T )

√
v(t)
)

dt+ γ
√
v(t)dW T

v (t),

where Br(t, T ) = 1
λ

(
e−λ(T−t) − 1

)
, and the full correlation structure given in (C.1).
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Table 6
The error for a deterministic (Approx 1) and a stochastic approximation (Approx 2) of the HHW model

compared to the MP method. The MP and MC results with the corresponding standard deviations were taken
from [4]. The error is defined as a difference between the reference implied volatilities and the approximation.

T Strike Imp. vol [%] MP Approx 1 Approx 2 Err. MP Err. 1 Err. 2

86.07 24.45 24.49 24.48 24.48 −0.04 −0.03 −0.03
92.77 22.25 22.27 22.27 22.25 −0.02 −0.02 0.00

1y 100.00 20.36 20.32 20.35 20.30 0.04 0.01 0.06
107.79 19.42 19.34 19.38 19.34 0.08 0.04 0.08
116.18 19.67 19.64 19.62 19.64 0.03 0.05 0.03

77.12 22.61 22.65 22.61 22.63 −0.04 0.00 −0.02
87.82 20.05 20.05 20.09 20.06 0.00 −0.04 −0.01

3y 100.00 17.95 17.91 18.09 17.90 0.04 −0.14 0.05
113.87 17.23 17.14 17.32 17.15 0.09 −0.09 0.08
129.67 18.02 17.92 17.93 18.00 0.10 0.09 0.02

71.50 21.89 21.94 21.90 21.95 −0.05 −0.01 −0.06
84.56 19.43 19.45 19.52 19.48 −0.02 −0.09 −0.05

5y 100.00 17.49 17.44 17.71 17.45 0.05 −0.22 0.04
118.26 16.83 16.72 17.01 16.76 0.11 −0.18 0.07
139.85 17.55 17.42 17.49 17.57 0.13 0.06 −0.02

62.23 21.55 21.61 21.57 21.68 −0.06 −0.02 −0.13
78.89 19.52 19.51 19.67 19.61 0.01 −0.15 −0.09

10y 100.00 18.01 17.91 18.31 17.97 0.10 −0.30 −0.04
126.77 17.41 17.22 17.67 17.30 0.19 −0.26 0.11
160.70 17.75 17.51 17.79 17.78 0.24 −0.04 −0.03

51.13 22.28 22.32 22.37 22.47 −0.04 −0.09 −0.19
71.50 20.91 20.86 21.14 21.03 0.05 −0.23 −0.12

20y 100.00 19.94 19.77 20.27 19.91 0.17 −0.33 0.03
139.85 19.44 19.16 19.77 19.32 0.28 −0.33 0.12
195.58 19.40 19.05 19.63 19.39 0.35 −0.23 0.01

Under the log-transform, x(t) = logF (t), the Kolmogorov backward PDE reads as

− ∂φ

∂t
= κ(v̄ − v)

∂φ

∂v
+

(
1

2
v − ρx,rηBr(t, T )

√
v − 1

2
η2B2

r (t, T )

)(
∂2φ

∂x2
− ∂φ

∂x

)
+
(
ρx,vγv − ρv,rγη

√
vBr(t, T )

) ∂2φ
∂x∂v

+
1

2
γ2v

∂2φ

∂v2
+ ρv,rγη

√
v
∂φ

∂v
,(C.3)

with the final condition φ(u,X(T ), T, T ) = eiux(T ).
We linearize PDE (C.3) in two ways: by the deterministic approach described in section 3.1

and Appendix B, and by the stochastic approach as in section 4.1. Both approximations result
in affine approximations of PDE (C.3).6

The results of the experiments performed, presented in Table 6, show a highly satisfactory
accuracy of the HHW approximations introduced in this paper. When comparing to the MP
method, we see that the MP method is more accurate for low strike values, whereas our proxies
perform favorably for larger strike values, especially when large maturities are considered.

6Since the moments of the square-root process under the T -forward measure are difficult to find, we first
project

√

v(t) on a normal process, under measure Q, and then change measures.
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Figure 5. Left: Implied volatilities for a maturity of 10 years. Right: The error for the different
approximations. (MP stands for Markovian projection, Approx 1 is the deterministic approach, and Approx 2
corresponds to the approximation with

√

v(t) ≈ N (·).)

In Figure 5 the error results for T = 10 are presented. In this experiment, the stochastic
approximation, Approx 2, performed somewhat better than the deterministic approach,
Approx 1.

In the case of the deterministic approach, pricing of European options is done in a
split second (the corresponding ChF is analytic when the Feller condition is satisfied; one
integration step is required otherwise). In the case of the stochastic approach a numerical
routine for solving the ODEs is employed. This, however, can also be done highly efficiently,
as already presented in Table 3.
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