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Single-layer structures of a100- and b010-Gallenene:
a tight-binding approach†

M. Nakhaee,ab M. Yagmurcukardes, *a S. A. Ketabib and F. M. Peetersa

Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio

calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer

gallium: a100- and b010-Gallenene. The analytical expression for the Hamiltonian and numerical results

for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster

(SK) integrals are obtained. We find that the compaction of different structures affects significantly the

formation of the orbitals. The results for a100-Gallenene can be very well explained with an orthogonal

basis set, while for b010-Gallenene we have to assume a non-orthogonal basis set in order to construct

the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along

the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ–b010-Gallenene

nanoribbons exhibit semiconducting behavior with zero transmission while those of a100-Gallenene

nanoribbons are metallic.

1 Introduction

Following the successful synthesis of graphene1,2 from its bulk
crystal, graphite, two-dimensional (2D) materials have gained
a lot of interest in nanodevice applications owing to their
extraordinary properties.3–6 In recent years, researchers have
paid special attention to the synthesis of monolayers of other
mono-atomic crystals such as silicene7–9 germanene,10–13

stanene,14,15 phosphorene16 and borophene17 due to their
specific electronic properties.18–22

A wide range of 2D materials ranging from graphene to
topological insulators23–28 share the extraordinary phenomenon
that electrons behave as relativistic particles in their low-energy
excitations. This emergent behavior of fermions in condensed
matter systems has been classified as ‘‘Dirac materials’’ which
have attracted both experimental and theoretical interest.
Recently, fully metallic gallium-based 2D crystals, named as
‘Gallenene’ have been synthesized on different substrates.29,52

Gallium is a metallic element and it is known to exhibit
metallicity in its bulk crystal.30 It was also reported to be a
non-toxic liquid metal at room temperature.31,32 In its bulk form,
gallium exhibits various types of phases such as boron-like

molecular and close-packed metallic which are known to exist
under non-standard pressure and temperature.31,33,34 Moreover,
the extreme covalent bonding character of the Ga2 pairs causes
the pairs to exhibit dimer-like behavior. The a-Ga, a phase of
bulk-gallium, is known as the only one which reveals both
metallic and molecular character at zero pressure.31

We construct a tight-binding (TB) model35,36 whose para-
meters are determined through a nonlinear fitting algorithm of
the energy bands that are obtained by ab initio methods. The TB
model can provide us the hoppings and overlaps between
different orbitals of the atoms. The Slater and Koster scheme
(SK)37 and the Naval Research Laboratory (NRL) method,38 as
an extension of the SK approach, are two powerful methods
for reproducing the first-principles data in terms of a set of
non-interacting single-particles. The SK method gives the
hopping between the orbitals for each bond separately while
NRL also gives the hoppings as a function of distance up to a
certain cut-off radius. In 1954, J. C. Slater and G. F. Koster38

represented the expectation values of the matrix elements of
the Hamiltonian in the basis of the directed orbitals in terms of
eight integrals (vsss, vsps, vpps, vppp, ssss, ssps, spps, sppp).

The understanding of electronic transport of materials is
one of the interesting fields of research among the 2D systems.
A significant exploratory research study into 2D materials has
been done using Green’s function theory for which we need the
TB model. Here, we apply the SK method and present the
coefficients for different bonds.

The Slater–Koster integrals for different Ga–Ga bonds are
found up to the second nearest neighbors. The b010-Gallenene
structure is more compact than the a100-Gallenene and
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consequently, the orbitals are substantially different from the
pure atomic-like shape. Compaction of the structures can affect
significantly the overlap between orbitals and result in a non-
unitary overlap matrix. a100-Gallenene exhibits a graphene-like
planar structure and can be modelled by an orthogonal basis
while for the b010-Gallenene a non-orthogonal basis set is
needed.

2 Computational methodology

For structural optimization and electronic-band structure cal-
culations of the monolayers of a010- and b100-Gallenene crystals,
first principles calculations were performed in the framework
of density functional theory (DFT) as implemented in the
Vienna ab initio simulation package (VASP).39 The Perdew–
Burke–Ernzerhof (PBE)40 form of the generalized gradient
approximation (GGA) was adopted to describe electron
exchange and correlation. The electronic-band structures were
calculated at the GGA level.

The kinetic energy cut-off for plane-wave expansion was set
to 500 eV and the energy was minimized until its variation in
subsequent steps became 10�8 eV. The Gaussian smearing
method was employed for the total energy calculations and
the width of the smearing was chosen as 0.05 eV. Total
Hellmann–Feynman forces in the primitive unit cell were
reduced to 10�7 eV Å�1 for structural optimization. 19 � 19 � 1
G centered k-point samplings were used in the primitive unit cells.
To avoid interaction between the neighboring layers, our calcula-
tions were implemented with a vacuum space of 15 Å.

3 Structural and electronic properties

In this section, the structural and electronic properties of
mono-atomic monolayers of gallium, a100- and b010-Gallenene,
are discussed in detail. The optimized unit cell of each crystal
structure has four Ga atoms as shown in Fig. 1(a) and (b).
As mentioned by Kockat et al.,29 the relaxed crystal structures
of both monolayers exhibit imaginary frequencies through
the whole Brillouin Zone (BZ) which reveals the dynamical

instability in their free-standing forms. However, it was also
demonstrated that both of the monolayer crystals can be
stabilized upon application of a biaxial strain (6% and 2% for
a100- and b010-Gallenene, respectively). Therefore, in this work
we consider biaxially straining, i.e. we investigate the dynamically
stable structures, which can be realized by using an appropriate
substrate.

The monolayer of a100-Gallenene has a honeycomb structure
with a rectangular primitive unit cell. The lattice constants a
and b are found to be 7.87 and 4.65 Å, respectively. The Ga–Ga
bond lengths are nearly equal because the two nearest neigh-
bors of a Ga atom are both at 2.66 Å (d1) and the third one is at
2.67 Å (d2). These bond lengths are larger than those between
other group-IV atoms in a group-IV mono-atomic monolayer
that is attributed to the larger atomic radius of Ga. Moreover,
different interior angles (122.431 and 118.801 for y1 and y2,
respectively) in a100-Gallenene suggest that the hybridization in
the crystal structure is not completely sp2 despite the planar
structure. Different from the 2-atom primitive hexagonal unit
cell of graphene which belongs to the space group symmetry of
P%6/mmm, the primitive unit cell of a100-Gallenene is slightly
distorted which belongs to the Pbam space group symmetry.
In addition, the point symmetry of a100-Gallenene turns into
D2h which is known to be D6h for graphene.

The monolayer b010-Gallenene resembles a zigzag rhombic
lattice which exhibits lower symmetry than a100-Gallenene.
The lattice constants a and b, in this case, are calculated to
be 4.74 and 4.92 Å, respectively. The Ga–Ga bond length is
2.73 Å which is larger than that of a100-Gallenene due to the
buckled structure of b010-Gallenene. In the quasi-2D multi-
decker structure, the vertical direction between Ga-dimers, or
the buckling height, is calculated to be 1.19 Å. Such buckling
can also be seen in other monoatomic monolayer crystals such
as silicene, germanene, stanene, and black phosphorus.

In order to analyze the electronic properties of monolayers
of a100- and b010-Gallenene, the orbital-projected electronic-
band structures are calculated within the DFT-based methods
(see Fig. 2). It is clear that both the monolayer crystals exhibit
metallic character because of the finite number of bands
crossing the Fermi level. As shown in Fig. 2, the unoccupied
pz orbitals in planar a100-Gallenene creates Dirac cones which
lie above the Fermi level. In the case of b010-Gallenene, the pz

orbitals are hybridized with the in-plane orbitals due to
the buckled crystal structure. Therefore, the bands are highly
dispersive in monolayer b010-Gallenene.

4 Tight-binding model

In DFT, we have in principle an infinite number of atoms with
an infinite number of orbitals to explain the electronic structure
of the different crystal structures. With the linear combination of
atomic orbitals (LCAO), we are able to limit the system up to a
finite number of atoms and a finite number of orbitals per atom
and thus, the Bloch theorem can be effectively applied through a
TB model. We use these orbitals as the basis set to represent the

Fig. 1 The optimized structure of (a) a100-Gallenene and (b) b010-
Gallenene. The unit cell is given by the dotted box. Ri denotes the distance
between the Ga atoms.
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wave function. The Bloch function with a well-defined k vector
can be generally expanded as linear combinations of the orbitals
j as follows

ckðrÞ ¼
X
n0

X
i0

ci0n0 ðkÞfn;kðr� riÞ (1)

in which i and n run over the atoms in the unit cell and the
orbitals s, px, py and pz, respectively. In the case of a100-Gallenene
and b010-Gallenene we have four orbitals per atom and so 16
orbitals per unit cell. fn,k(r) is defined as follows

fn;kðrÞ ¼
X
n2Z

X
m2Z

eik:Rn;mjnðr� Rn;mÞ (2)

where Rn,m is the discrete translation vector of the unit cell at
(m,n). We limit the interactions up to the first nearest unit cell.
We follow the SK scheme in combination with the usual Leven-
berg–Marquardt nonlinear fitting algorithm41 to find the best
hoppings for both Hamiltonian and overlap matrices.

For both structures, we have a basis of four Ga atoms and we
assume a basis of four orbitals (s, px, py and pz) per atom, which
generates a band structure with 8 valence and 8 conduction
bands. So, we have in total 16 bands and we focus on the first
11 bands in the case of a100-Gallenene and the first 10 bands for
b010-Gallenene. The generalized eigenvalue equation for the TB
model may be written as follows;42

X
n0

X
i0
½Hin;i0n0 � ekSin;i0n0 �ci0n0 ðkÞ ¼ 0; (3)

in which H is the mono-electronic Hamiltonian and S is the
overlap matrix which is dimensionless. The basis can be
formed not orthonormal,43–45 but in the case of an orthogonal
basis set (a100-Gallenene) the overlap matrix is a unity matrix

and can be ignored from the expression. The expectation values
for the Hamiltonian and overlap matrix can be written in terms
of distances in real space as follows

Hin;i0n0 ¼ fnðr� riÞjHjfn0 ðr� ri0 Þh i;

Sin;i0n0 ¼ fnðr� riÞjfn0 ðr� ri0 Þh i:
(4)

The integrals are calculated over the whole unit cell and i and n
run over the atoms in the unit cell and the orbitals s, px, py and
pz, respectively. Theoretically, the inter-atomic matrix elements
in eqn (4) can in principle be calculated directly from the
known wave functions, but alternatively, we can use the fitting
algorithm to find the best values for the integrals. The expecta-
tion values may be written in terms of the directional cosines
(ni = r�ei/|r|) as follows;

hs|H|si = vsss,

hs|H|pii = nivsps,

h pi|H|pji = (dij � ninj)vppp + ninjvpps,

where r is the vector along the bond while i is x, y and z. The
corresponding expressions for the overlap matrix can be found
by replacing H by S and v by s. Note that one should consider the
rule of angular quantum number ljHjl0h i ¼ ð�1Þlþl0 l0jHjlh i

� �
to

evaluate complex conjugated hopping matrix elements.
To calculate the TB Hamiltonian by using the eight Slater–

Koster integrals, one needs to know the inter-atomic dis-
tances. In Fig. 1 the distance between two Ga atoms is shown
by Ri where i refers to different types of bonds. After optimiz-
ing the atomic positions, we find the distances R1 = 2.655 Å,
R2 = 2.656 Å, R3 = 4.572 Å and R4 = 4.654 Å for a100-Gallenene
and R1 = 2.732 Å, R2 = 4.744 Å, R3 = 2.876 Å and R4 = 4.649 Å
for b010-Gallenene.

The complicated electronic dispersion bands and the
compact structure of b010-Gallenene exhibit a sp3 hybridization.
By making a comparison between the atomic packing factor
(APF)46 of a100-Gallenene and b010-Gallenene one can find
APFb010

= 1.71APFa100
, which is the reason why we choose a non-

orthogonal basis set for the structure of b010-Gallenene. For both
the structures we have found the Slater–Koster integrals of the
Ga–Ga bonds up to the second nearest neighbors which result
in a satisfactory fitting of the band structure (see Fig. 3). In
Table 1, we list the Slater–Koster parameters of both systems
in terms of bond length and bond type as obtained by fitting
the DFT energy bands shown in Fig. 3. The on-site parameters
of the Ga atoms are presented in Table 2. The TB model for
b010-Gallenene can be also defined orthogonally but with
taking more neighbors into account.

In the case of a100-Gallenene the distance between the atoms
is large enough to assume that the orbitals are orthogonal, but
to construct a TB model for b010-Gallenene, since the structure
is compact we need to assume a non-orthogonal set of orbitals
or alternatively we can construct an orthogonal TB model with
taking more bonds into account. In the orthogonal model of

Fig. 2 The electronic-band structure of a100-Gallenene (left side) and
b010-Gallenene (right side). The different colors of the bands refer to the
different orbital contribution. The dashed rectangle indicates the BZ with
the high symmetry points.
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b010-Gallenene we used R1, R2, R3 and R4 while for the orthogonal
model we should add more bonds.

To explain the system orthogonally we add the hopping
between the orbitals of the Ga atoms with the distance R5

and R6 (see Fig. 1). The SK parameters and on-sites of the
orthogonal TB model of b010-Gallenene are presented in
Tables 3 and 4.

The bandstructure of the orthogonal TB model of b010-Gallenene
is presented in Fig. 4. It can be seen that taking more neighbors
into account is equivalent to a defined non-orthogonal basis set
for orbitals that both cases can result in more real interactions
between the Ga atoms.

Using the Slater–Koster parameters one can calculate
the coupling matrices between different unit cells in terms of
hoppings between different orbitals (see ESI† 47).

5 Transmission and density of states

Electronic transport is one of the most interesting properties of
2D materials. Here our methodology is based on the Green’s
function approach in the tight-binding approximation. For a 2D
system, transmission and density of states (DOS) have been
calculated in x (armchair, AC,) and y (zigzag, ZZ,) directions.
The Green’s function method is a powerful method to study the
electronic properties in which the most important property
of the physical observables in transport, such as electrical
current, is the transmission. The tight-binding description of
transmission through a junction has been interesting for
scientists to observe how much an electron wave packet would
transmit in a specific energy. One needs the Hamiltonian of
the system which is expressed in the tight-binding approxi-
mation. The routine method based upon a formulation for the
conductance in terms of Green’s functions, G, is the well
known Fisher–Lee linear-response48 for the conductance of a

Fig. 3 The band structure of a100-Gallenene (left side) and b010-Gallenene
(right side) calculated within DFT (dashed blue lines) and from the TB model
(solid red lines).

Table 1 The Slater–Koster parameters for a100-Gallenene (top) and b010-
Gallenene (bottom). The V parameters are in eV, and the S parameters are
dimensionless

R Vsss Vsps Vpps Vppp Ssss Ssps Spps Sppp

R1 �1.304 �1.605 2.313 �0.579 0 0 0 0
R2 0.016 0.034 0.227 �0.058 0 0 0 0

R Vsss Vsps Vpps Vppp Ssss Ssps Spps Sppp

R1 �1.003 �2.167 1.944 �0.662 0.030 0.205 �0.334 0.270
R2 �0.147 �0.113 0.608 �0.030 0.027 0.015 �0.071 0.055
R3 �1.176 �2.353 1.300 �0.795 0.017 0.141 �0.367 0.082
R4 0.303 �0.146 0.636 �0.063 �0.034 �0.003 �0.035 �0.025

Table 2 The on-site energies for a100-Gallenene and b010-Gallenene in
units of eV

a100-Gallenene b010-Gallenene

s px py pz s px py pz

Ga �3.934 2.969 2.992 1.377 �4.378 �0.099 0.601 0.682

Table 3 Orthogonal Slater–Koster parameters for b010-Gallenene in eV

R Vsss Vsps Vpps Vppp

R1 �0.612 �1.855 0.966 �0.634
R2 �0.176 0.042 �0.163 0.126
R3 �0.771 �1.433 1.148 �0.831
R4 0.013 0.073 �0.431 0.126
R5 �0.025 0.098 �0.100 0.108
R6 �0.249 �0.175 0.156 0.019

Table 4 The on-site energies of the orthogonal TB model of b010-
Gallenene in units of eV

b010-Gallenene

s px py pz

Ga �3.188 1.052 1.907 1.393

Fig. 4 The electronic-band structure of b010-Gallenene using orthogonal
SK parameters.
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finite lattice embedded between the leads. We represent our
results for AC and ZZ nanoribbons of a100-Gallenene and b010-
Gallenene structures. At this point, it is necessary to discuss that
for a nanoribbon, the transmission T(e) can be calculated as follows:

TðeÞ ¼ Re Tr
X
l

G �
X
r

Gy

 ! !
(5)

To have complete information about a solid, all possible
states should be taken into account. The number of occupied
available states as a function of energy is important for the
calculations of the band theory like transition probability,49 con-
ductivity calculation and computing scattering rates.50,51 The
Green’s function of the Hamiltonian of the system is a key concept
with important links for the concept of density of state as follows;

DOSðeÞ ¼ �1
p
ImðTrðGÞÞ (6)

Fig. 5 shows the nanoribbon made of a100-Gallenene and
b010-Gallenene unit-cells in both x and y directions. The width
of the nanoribbon can be determined by the parameter N which
determines the number of repetitions of the unit-cell in the non-
periodic direction. The green part indicates the unit-cell of the
2D nanosheet. By growing the 2D unit-cell one can construct any
finite or infinite structure and calculate the band energies of
different nanoribbons with different widths (see ESI† 47).

Using the SK parameters mentioned in Section 4, the TB
Hamiltonian can be constructed (see ESI†47). Note that the
Hamiltonian matrix for a nanoribbon can be generated from
the blocks of a 2D Hamiltonian matrix. Fig. 6 shows the band

structure of the nanoribbons of both monolayers with N = 2.
It is found that a100-Gallenene nanoribbons exhibit metallic
behavior for orientations while b010-Gallenene nanoribbons
display semiconducting behavior.

Using eqn (5) and (6), the transmission and density of states
of the corresponding nanoribbons are calculated. As presented
in Fig. 7, ZZ–b010-Gallenene nanoribbon shows an interesting
linear transmission related to the conduction band in Fig. 6(c)
near the Fermi level. Notably, the zero transmission arises from
the 0.35 (eV) band gap in its band structure. As shown in

Fig. 5 The structure of a100-Gallenene nanoribbon in the (a) x and (b) y direction and also b010-Gallenene nanoribbon in the (c) x and (d) y direction. The
unit cell is given by the solid line box. The dashed line represents the periodic chain labeled by N = 1, 2, 3,. . . which determines the width of the ribbon.

Fig. 6 The electronic-band structure of the nanoribbons of a100-
Gallenene in AC (a) and ZZ (b) directions and b010-Gallenene in AC (c)
and ZZ (d) directions for N = 2.
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Fig. 6(d), ZZ–b010-Gallenene nanoribbon has a 0.97 (eV) band
gap which is much larger than that of the AC nanoribbon.

Moreover, the density of states for the nanoribbons are
presented in Fig. 8. AC–a100-Gallenene nanoribbon displays a
linear density of states near the Fermi level which is evidence of
a Dirac point in the Fermi level. As shown in Fig. 6(a), AC–a100-
Gallenene nanoribbon has a Dirac point around the X point in
the BZ. The gaps for both nanoribbons of b010-Gallenene are
in agreement with the band-structure calculations shown in
Fig. 6(c) and (d). It should be noted that the linear transmission
related to the AC–b010-Gallenene nanoribbon shows a constant
density of states as presented in Fig. 8(c) near the Fermi level.

6 Summary

In summary, based on symmetry aspects and the LCAO method
combined with first-principles calculations, we derived a TB

model for two stabilized monolayer Gallenene structures.
An orthogonal TB model was presented for a100-Gallenene
limited to the second nearest neighbors. b010-Gallenene has a
buckled structure with a high packing fraction which led us to
construct a TB model based on a non-orthogonal basis set.
In order to construct a TB model based on the simplified LCAO,
we followed the SK approach in which the energy dispersion
was fitted to the one obtained from DFT calculations.
We determined the SK coefficients in a non-orthogonal basis
set for monolayers of a100-Gallenene and b010-Gallenene which
allows one to calculate different electronic properties using
Green’s function theory, e.g. electrical transport, tunneling, and
the effect of impurities and defects on different electronic
properties. The full expression for the Hamiltonian and overlap
matrices for a100-Gallenene and b010-Gallenene are given in the
ESI.† Moreover, the transmission properties of nanoribbons of
both monolayers oriented along the AC and ZZ directions
were also investigated and it was shown that both AC-
and ZZ–b010-Gallenene nanoribbons exhibit semiconducting
behavior with zero transmission while a100-Gallenene nano-
ribbons are metallic.
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