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NO-ARBITRAGE PRICING FOR DIVIDEND-PAYING SECURITIES
IN DISCRETE-TIME MARKETS WITH TRANSACTION COSTS

TOMASZ R. BIELECKI, IGOR CIALENCO, AND RODRIGO RODRIGUEZ

Illinois Institute of Technology

We prove a version of First Fundamental Theorem of Asset Pricing under trans-
action costs for discrete-time markets with dividend-paying securities. Specifically, we
show that the no-arbitrage condition under the efficient friction assumption is equiv-
alent to the existence of a risk-neutral measure. We derive dual representations for the
superhedging ask and subhedging bid price processes of a contingent claim contract.
Our results are illustrated with a vanilla credit default swap contract.
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1. INTRODUCTION

One of the central themes in mathematical finance is no-arbitrage pricing and its appli-
cations. At the foundation of no-arbitrage pricing is the First Fundamental Theorem of
Asset Pricing (FFTAP). We prove a version of the FFTAP under transaction costs for
discrete-time markets with dividend-paying securities.1

The FFTAP has been proved in varying levels of generality for frictionless markets. In a
discrete-time setting for a finite state space, the theorem was first proved in Harrison and
Pliska (1981). Almost a decade later, Dalang, Morton, and Willinger (1990) proved the
FFTAP for the more technically challenging setting in which the state space is general.
Their approach requires the use of advanced, measurable selection arguments, which
motivated several authors to provide alternative proofs using more accessible techniques
(see Schachermayer 1992; Kabanov and Kramkov 1994; Rogers 1994; Jacod and Shiryaev
1998; and Kabanov and Stricker 2001b). Using advanced concepts from functional and
stochastic analysis, the FFTAP was first proved in a general continuous-time setup in the
celebrated paper by Delbaen and Schachermayer (1994). A comprehensive review of the
literature pertaining to no-arbitrage pricing theory in frictionless markets can be found
in Delbaen and Schachermayer (2006).

The first rigorous study of the FFTAP for markets with transaction costs in a discrete-
time setting was carried out by Kabanov and Stricker (2001a). Under the assumption
that the state space is finite, it was proved that no-arbitrage condition (NA) is equivalent
to the existence of a consistent pricing system (CPS, using the terminology introduced
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in Schachermayer 2004). However, their results did not extend to the case of a general
state space. As in the frictionless case, the transition from a finite state space to a general
state space is nontrivial due to measure-theoretic and topological related difficulties.
These difficulties were overcome in Kabanov, Rásonyi, and Stricker (2002), where a
version of the FFTAP was proven under the efficient friction assumption (EF). It was
shown that the strict no-arbitrage condition, a condition which is stronger than NA,
is equivalent to the existence of a strictly CPS. Therein, it was asked whether EF can
be discarded. Schachermayer (2004) answered this question negatively by showing that
neither NA nor the strict no-arbitrage condition alone is sufficiently strong to yield
the existence of a CPS. More importantly, Schachermayer (2004) proved a new version
of the FFTAP that does not require EF. Specifically, he proved that the robust no-
arbitrage condition, which is stronger than the strict no-arbitrage condition, is equivalent
to the existence of a strictly consistent pricing system. Subsequent studies that treat the
robust no-arbitrage condition are Bouchard (2006), De Vallière, Kabanov, and Stricker
(2007), Jacka, Berkaoui, and Warren (2008). Recently, Pennanen (2011a,b,c,d) studied
no-arbitrage pricing in a general context in which markets can have constraints and
transaction costs may depend nonlinearly on traded amounts. Therein, the problem of
superhedging a claims process (e.g., swaps) is also investigated. An excellent survey of
the literature pertaining to no-arbitrage pricing in markets with transaction costs can be
found in Kabanov and Safarian (2009). Let us mention that versions of the FFTAP for
markets with transaction costs in a continuous-time setting have also been studied in the
literature. This literature considers stronger conditions than NA (see, for instance, Jouini
and Kallal 1995; Cherny 2007; Guasoni, Rásonyi, and Schachermayer 2010; Guasoni,
Lépinette, and Rásonyi 2011; Denis and Kabanov 2012).

The fundamental difference between no-arbitrage pricing theory for dividend-paying
securities and no-arbitrage pricing theory for nondividend paying securities is that trans-
action costs associated with trading dividend-paying securities may not be proportional
to the number of units of securities purchased or sold. Transaction costs associated with
dividend-paying securities may accrue over time by merely holding the security—for a
nondividend paying security transaction costs are only charged whenever the security is
bought or sold. Our consideration of transaction costs on dividends distinguishes this
study from other studies.

The contribution of this paper is summarized as follows:

� We define and study the value process and the self-financing condition un-
der transaction costs for discrete-time markets with dividend-paying securities
(Section 2).

� We define and investigate NA and EF in our context (Section 3).
� We prove a key closedness property of the set of claims that can be superhedged at

zero cost (Section 3.1).
� Using classic separation arguments, we prove a version of the FFTAP that is relevant

to our setup. Specifically, we prove that NA under EF is satisfied if and only if
there exists a risk-neutral measure for the price processes of the traded securities
(Section 3.2).

� We introduce an appropriate notion of CPSs in our setup, and we study the re-
lationship between them and NA under EF (Section 4). We demonstrate that, if
there are no transaction costs on the dividends paid by securities, NA under EF is
equivalent to the existence of a CPS (Section 4.1).
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� We derive a dual representation for the superhedging ask and subhedging bid price
processes for a contingent claim contract (Section 5).

2. THE VALUE PROCESS AND THE SELF-FINANCING CONDITION

Let T be a fixed time horizon, and let T := {0, 1, . . . , T} and T ∗ := {1, 2, . . . , T}. Next,
let (�,FT, F = (Ft)t∈T , P) be the underlying filtered probability space.

On this probability space, we consider a market consisting of a savings account B and
of N traded securities satisfying the following properties:

� The savings account can be purchased and sold according to the price process
B := ((

∏t
s=0(1 + rs)))T

t=0, where (rt)T
t=0 is a nonnegative process specifying the risk-

free rate.
� The N securities can be purchased according to the ex-dividend price process

Pask := ((Pask,1
t , . . . , Pask,N

t ))T
t=0, and pay (cumulative) dividends specified by the

process Aask := ((Aask,1
t , . . . , Aask,N

t ))T
t=1. The quantity �Aask

t is the dividends per
unit of securities held.

� The N securities can be sold according to the ex-dividend price process Pbid :=
((Pbid,1

t , . . . , Pbid,N
t ))T

t=0, and pay (cumulative) dividend specified by the process
Abid := ((Abid,1

t , . . . , Abid,N
t ))T

t=1. The quantity �Abid
t is the dividends per unit of

securities held short.

We assume that the processes introduced above adapted. In what follows, we shall
denote by � the backward difference operator: �Xt := Xt − Xt−1, and we take the
convention that Aask

0 = Abid
0 = 0.

REMARK 2.1. For any t = 1, 2, . . . , T and j = 1, 2, . . . , N, the random variable
�Aask, j

t is interpreted as amount of dividend associated with holding one unit of se-
curity j from time t − 1 to time t, and the random variable �Abid, j

t is interpreted as
amount of dividend associated with selling one unit of security j from time t − 1 to
time t.

We now illustrate the processes introduced above in the context of a vanilla Credit
Default Swap (CDS) contract.

EXAMPLE 2.2. A CDS contract is a contract between two parties, a protection buyer
and a protection seller, in which the protection buyer pays periodic fees to the protection
seller in exchange for some payment made by the protection seller to the protection
buyer if a prespecified credit event of a reference entity occurs. Let τ be the nonnegative
random variable specifying the time of the credit event of the reference entity. Suppose
the CDS contract admits the following specifications: initiation date t = 0, expiration
date t = T, and nominal value $1. For simplicity, we assume that the loss-given-default
is a nonnegative scalar δ and is paid at default. Typically, CDS contracts are traded on
over-the-counter markets in which dealers quote CDS spreads to investors. Suppose that
the CDS spread quoted by the dealer to sell a CDS contract with above specifications
is κbid (to be received every unit of time), and the CDS spread quoted by the dealer to
buy a CDS contract with above specifications is κask (to be paid every unit of time). We
remark that the CDS spreads κask and κbid are specified in the CDS contract, so the CDS
contract to sell protection is technically a different contract than the CDS contract to
buy protection.
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The cumulative dividend processes Aask and Abid associated with buying and selling
the CDS with specifications above, respectively, are defined as

Aask
t := 1{τ≤t}δ − κask

t∑
u=1

1{u<τ }, Abid
t := 1{τ≤t}δ − κbid

t∑
u=1

1{u<τ }

for t ∈ T ∗. In this case, the ex-dividend ask and bid price processes Pbid and Pask specify
the mark-to-market values of the CDS for the protection seller and protection buyer,
respectively, from the perspective of the protection buyer. The CDS spreads κask and
κbid are set so that Pbid

0 = Pask
0 = 0. Also, we have that Pask

T = Pbid
T = 0 since they are

ex-dividend prices.

Next, we illustrate the processes above with a vanilla Interest Rate Swap (IRS) contract.

EXAMPLE 2.3. An IRS contract is a contract between two parties, in which one party
agrees to periodically pay a fixed rate (the swap rate) to the other party, in exchange for
a floating rate (usually the Libor rate). We suppose that the floating rate from i − 1 to i ,
denoted by Li , is exchanged for the swap rate every unit of time. Also, we assume that
the IRS admits the following specifications: initiation date t = 0, expiration date t = T,
and nominal value $1. IRS contracts are traded on over-the-counter markets in which
dealers quote swap rates to investors. For the contract specified above, we denote by sask

the swap rate quoted by the dealer for a Payer IRS (pays the swap rate and receives the
floating rate), and denote by sbid the swap rate quoted by the dealer for a Receiver IRS
(pays the floating rate and receives the swap rate). We remark that the spreads sask and
sbid are specified in the IRS contract.

The cumulative dividend processes Abid and Aask associated with the Payer and Receiver
swap with specifications above, respectively, are defined as

Aask
t :=

t∑
i=1

(Li − sask), Abid
t :=

t∑
i=1

(sbid − Li )

for t ∈ T ∗. The ex-dividend ask and bid price processes Pbid and Pask specify the mark-
to-market values of the IRS for the Payer IRS and Receiver IRS, respectively. The values
of swap spreads sask and sbid are set so that Pbid

0 = Pask
0 = 0 are null at initiation date,

and also note that Pask
T = Pbid

T = 0 since they are ex-dividend prices.

From now on, we make the following standing assumption.

BID–ASK ASSUMPTION. Pask ≥ Pbid and �Aask ≤ �Abid.

For convenience we define J := {0, 1, . . . , N} and J ∗ := {1, 2, . . . , N}. Unless stated
otherwise, all inequalities and equalities between processes and random variables are
understood P-a.s. and coordinate-wise.

2.1. The Value Process and Trading Strategies

A trading strategy is a predictable process φ := (φ0
t , φ

1
t , . . . , φ

N
t )T

t=1, where φ
j
t is in-

terpreted as the number of units of security j held from time t − 1 to time t. Processes
φ1, . . . , φN correspond to the holdings in the N securities, and process φ0 corresponds
to the holdings in the savings account B. We take the convention φ0 = (0, . . . , 0).
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DEFINITION 2.4. The value process (Vt(φ))T
t=0 associated with a trading strategy φ is

defined as

Vt(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0
1 +

N∑
j=1

φ
j
1

(
1{φ j

1 ≥0} Pask, j
0 + 1{φ j

1 <0} Pbid, j
0

)
, if t = 0,

φ0
t Bt +

N∑
j=1

φ
j
t
(
1{φ j

t ≥0} Pbid, j
t + 1{φ j

t <0} Pask, j
t

)
+

N∑
j=1

φ
j
t
(
1{φ j

t <0}�Abid, j
t + 1{φ j

t ≥0}�Aask, j
t

)
, if 1 ≤ t ≤ T.

For t = 0, V0(φ) is interpreted as the cost of the portfolio φ, and for t ∈ {1, . . . , T}, Vt(φ)
is interpreted as the liquidation value of the portfolio φ before any time t transactions,
including any dividends acquired from time t − 1 to time t.

REMARK 2.5. Due to the presence of transaction costs, the value process V may not be
linear in its argument, i.e., Vt(φ) + Vt(ψ) �= Vt(φ + ψ), and Vt(αφ) �= αVt(φ) for α ∈ R,
and some trading strategies φ, ψ , some time t ∈ T . This is the major difference from the
frictionless setting.

Next, we introduce the self-financing condition, which is appropriate in the context of
this paper.

DEFINITION 2.6. A trading strategy φ is self-financing if

Bt�φ0
t+1 +

N∑
j=1

�φ
j
t+1

(
1{�φ

j
t+1≥0} Pask, j

t + 1{�φ
j
t+1<0} Pbid, j

t
)

(2.1)

=
N∑

j=1

φ
j
t
(
1{φ j

t ≥0}�Aask, j
t + 1{φ j

t <0}�Abid, j
t

)
for t = 1, 2, . . . , T − 1.

The self-financing condition imposes the restriction that no money can flow in or out
of the portfolio. We note that if P := Pask = Pbid and �A := �Aask = �Abid, then the
self-financing condition in the frictionless case is recovered.

REMARK 2.7. Note that the self-financing condition not only takes into account
transaction costs due to purchases and sales of securities (left-hand side of (2.1)), but
also transaction costs accrued through the dividends (right-hand side of (2.1)).

The following two propositions give useful characterizations of the self-financing con-
dition in terms of the value process. The proofs are straightforward, and are left for the
reader.

PROPOSITION 2.8. A trading strategy φ is self-financing if and only if the value process
V(φ) satisfies
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Vt(φ) = V0(φ) +
t∑

u=1

φ0
u�Bu +

N∑
j=1

φ
j
t
(
1{φ j

t ≥0} Pbid, j
t + 1{φ j

t <0} Pask, j
t

)
(2.2)

−
N∑

j=1

t∑
u=1

�φ j
u

(
1{�φ

j
u ≥0} Pask, j

u−1 + 1{�φ
j
u <0} Pbid, j

u−1

)

+
N∑

j=1

t∑
u=1

φ j
u

(
1{φ j

u ≥0}�Aask, j
u + 1{φ j

u <0}�Abid, j
u

)
for all t ∈ T ∗.

The next proposition extends the previous result in terms of our numéraire B. For
convenience, we let V∗(φ) := B−1V(φ) for all trading strategies φ.

PROPOSITION 2.9. A trading strategy φ is self-financing if and only if the discounted
value process V∗(φ) satisfies

V∗
t (φ) = V0(φ) +

N∑
j=1

φ
j
t B−1

t

(
1{φ j

t ≥0} Pbid, j
t + 1{φ j

t <0} Pask, j
t

)
(2.3)

−
N∑

j=1

t∑
u=1

�φ j
u B−1

u−1

(
1{�φ

j
u ≥0} Pask, j

u−1 + 1{�φ
j
u <0} Pbid, j

u−1

)

+
N∑

j=1

t∑
u=1

φ j
u B−1

u

(
1{φ j

u ≥0}�Aask, j
u + 1{φ j

u <0}�Abid, j
u

)
for all t ∈ T ∗.

REMARK 2.10. If P = Pask = Pbid and �A = �Aask = �Abid, then we recover the
classic result: a trading strategy φ is self-financing if and only if the value process satisfies

V∗
t (φ) = V0(φ) +

N∑
j=1

t∑
u=1

φ j
u �

(
B−1

u P j
u +

u∑
w=1

B−1
w �Aj

w

)

for all t ∈ T ∗.

For convenience, we define Pask,∗ := B−1 Pask and Pbid,∗ := B−1 Pbid, and with a slight
abuse of notation Aask,∗ := B−1�Aask and Abid,∗ := B−1�Abid.

In frictionless markets, the set of all self-financing trading strategies is a linear space
because securities’ prices are not influenced by the direction of trading. This is no
longer the case if the direction of trading matters: the strategy φ + ψ may not be self-
financing even if φ and ψ are self-financing. Intuitively this is true because transaction
costs can be avoided whenever φ

j
t ψ

j
t < 0 by combining orders. However, the strategy

(θ0, φ1 + ψ1, φ2 + ψ2, . . . , φN + ψ N) can enjoy the self-financing property if the units
in the savings account θ0 are properly adjusted. The next proposition states that such θ0

exists, is unique, and satisfies φ0 + ψ0 ≤ θ0. The proof is straightforward, and is left to
the reader.

PROPOSITION 2.11. Let ψ and φ be any two self-financing trading strategies with V0(ψ) =
V0(φ) = 0. Then there exists a unique predictable process θ0 such that the trading strategy
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θ defined as θ := (θ0, φ1 + ψ1, . . . , φN + ψ N) is self-financing with V0(θ ) = 0. Moreover,
φ0 + ψ0 ≤ θ0.

The next result is the natural extension of Proposition 2.11 to value processes. It is
intuitively true since some transaction costs may be avoided by combining orders. The
proof is straightforward and therefore it is omitted.

THEOREM 2.12. Let φ and ψ be any two self-financing trading strategies such that
V0(φ) = V0(ψ) = 0. There exists a unique predictable process θ0 such that the trading
strategy defined as θ := (θ0, φ1 + ψ1, . . . , φN + ψ N) is self-financing with V0(θ ) = 0, and
VT(θ ) satisfies

VT(φ) + VT(ψ) ≤ VT(θ ).

The following technical lemma, which is easy to verify, will be used in the next section.

LEMMA 2.13. The following hold:

� Let Ya and Yb be any random variables, and suppose Xm is a sequence of R-valued
random variables converging a.s. to X. Then, 1{Xm≥0} XmYb + 1{Xm<0} XmYa converges
a.s. to 1{X≥0} XYb + 1{X<0} XYa .

� If a sequence of trading strategies φm converges a.s. to φ, then V(φm) converges a.s.
to V(φ).

2.2. The Set of Claims That Can Be Superhedged at Zero Cost

For all t ∈ T , denote by L0(�,Ft, P ; R(N+1)) the space of all (P-equivalence classes
of) R(N+1)-valued, Ft-measurable random variables. We equip L0(�,Ft, P ; R) with the
topology of convergence in measure P. Also, let S be the set of all self-financing trading
strategies. For the sake of conciseness, we will refer to sets that are closed with respect to
convergence in measure P simply as P-closed.

We define the sets

K := {
V∗

T (φ) : φ ∈ S, V0(φ) = 0
}
,

L0
+(�,FT, P ; R) := {X ∈ L0(�,FT, P ; R) : X ≥ 0},

K − L0
+(�,FT, P ; R) := {Y − X :Y ∈ K and X ∈ L0

+(�,FT, P ; R)}.

The set K is the set of attainable claims at zero cost. On the other hand, K −
L0

+(�,FT, P ; R) is the set of claims that can be superhedged at zero cost: for any
X ∈ K − L0

+(�,FT, P ; R), there exists an attainable claim at zero cost K ∈ K so that
X ≤ K .

The following lemma asserts that the set of claims that can be superhedged at zero
cost is a convex cone. The proof follows from Theorem 2.12.

LEMMA 2.14. The set K − L0
+(�,FT, P ; R) is a convex cone.

REMARK 2.15. The set K is not necessarily a convex cone. To see this, let us sup-
pose that T = 1, J = {0, 1}, and r = 0. Consider the trading strategies φ = {φ0, 1} and
ψ = {ψ0, −1}, where φ0 and ψ0 are chosen so that V0(φ) = V0(ψ) = 0. By definition,
V1(φ), V1(ψ) ∈ K. However,
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V∗
1 (φ) + V∗

1 (ψ) = Pbid
1 − Pask

1 + Aask
1 − Abid

1 + Pbid
0 − Pask

0

is generally not in the set K.

3. THE NO-ARBITRAGE CONDITION

We begin by introducing the definition of the no-arbitrage condition.

DEFINITION 3.1. The no-arbitrage condition (NA) is satisfied if for each φ ∈ S such
that V0(φ) = 0 and VT(φ) ≥ 0, we have VT(φ) = 0.

In the present context, NA has the usual interpretation that “it is impossible to make
something out of nothing.” The next lemma provides us equivalent conditions to NA in
terms of the set of attainable claims at zero cost, and also in terms of the set of claims
that can be superhedged at zero cost. They are straightforward to verify.

LEMMA 3.2. The following conditions are equivalent:

(i) NA is satisfied.
(ii)

(
K − L0

+(�,FT, P ; R)
) ∩ L0

+(�,FT, P ; R) = {0}.
(iii) K ∩ L0

+(�,FT, P ; R) = {0}.

We proceed by defining The Efficient Friction Assumption in our context.

THE EFFICIENT FRICTION ASSUMPTION (EF):

{φ ∈ S : V0(φ) = VT(φ) = 0} = {0}.(3.1)

Note that if (3.1) is satisfied, then for each φ ∈ S, we have V0(φ) = VT(φ) = 0 if and
only if φ = 0. The efficient friction assumption, which was introduced by Kabanov et al.
(2002), states that the only portfolio that can be liquidated into the zero portfolio that
is available at zero price is the zero portfolio. In the present context, EF has the same
interpretation: the only zero-cost, self-financing strategy that can be liquidated into the
zero portfolio is the zero portfolio.

We will denote by NAEF the no-arbitrage condition under the efficient friction
assumption.

In what follows, we denote by P the set of all RN-valued, F-predictable processes. Also,
we define the mapping

F(φ) :=
N∑

j=1

φ
j
T

(
1{φ j

T≥0} Pbid, j ,∗
T + 1{φ j

T<0} Pask, j ,∗
T

)
(3.2)

−
N∑

j=1

T∑
u=1

�φ j
u

(
1{�φ

j
u ≥0} Pask, j ,∗

u−1 + 1{�φ
j
u <0} Pbid, j ,∗

u−1

)

+
N∑

j=1

T∑
u=1

φ j
u

(
1{φ j

u ≥0} Aask, j ,∗
u + 1{φ j

u <0} Abid, j ,∗
u

)
for all RN-valued stochastic processes

(φs)T
s=1 ∈ L0(�,FT, P; RN) × · · · × L0(�,FT, P; RN),
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and let K := {F(φ) : φ ∈ P}. In view of Proposition 2.9, we note that V∗
T (φ) = V0(φ) +

F(φ) for all self-financing trading strategies φ, and that K = K.

REMARK 3.3.

(i) Note that F is defined on the set of all RN-valued stochastic processes. On the
contrary, the value process is defined on the set of trading strategies, which are
RN+1-valued predictable processes.

(ii) The set K has the same financial interpretation as the set K. We introduce the set
K because it is more convenient to work with from the mathematical point of view.

(iii) F(αφ) = αF(φ) for any nonnegative random variable α.

The next result, which is easy to prove, provides an equivalent condition for EF to
hold.

LEMMA 3.4. The efficient friction assumption (EF) is satisfied if and only if {ψ ∈ P :
F(ψ) = 0} = {0}.

3.1. Closedness Property of the Set of Claims That Can Be Superhedged at Zero Cost

In this section, we prove that the set of claims that can be superhedged at zero cost,
K − L0

+(�,FT, P ; R), is P-closed whenever NAEF is satisfied. This property plays a
central role in the proof of the FFTAP (Theorem 3.13).

We will denote by ‖ · ‖ the Euclidean norm on RN.
Let us first recall lemma A.2 from Schachermayer (2004), which is closely related to

lemma 1 in Kabanov et al. (2002).

LEMMA 3.5. For a sequence of random variables Xm ∈ L0(�,F, P; RN) there is a
strictly increasing sequence of positive, integer-valued, F-measurable random variables τm

such that Xτm
converges a.s. in the one-point-compactification RN ∪ {∞} to some random

variable X ∈ L0(�,F, P; RN ∪ {∞}). Moreover, we may find the subsequence such that
‖X‖ = lim supm ‖Xm‖, where ‖∞‖ = ∞.

The next result extends the previous lemma to processes. For the proof, see lemma 5.2
in Pennanen (2011c).

LEMMA 3.6. Let F i be a σ -algebra, and Ym
i ∈ L0(�,F i , P; RN) for i = 1, . . . , M.

Suppose that F i ⊆ F j for all i ≤ j , and that Ym
i satisfies lim supm ‖Ym

i ‖ < ∞ for i =
1, . . . , M. Then there is a strictly increasing sequence of positive, integer-valued, FM-
measurable random variables τm such that, for i = 1, . . . , M, the sequence Yτm

i converges
a.s. to some Yi ∈ L0(�,F i , P; RN).

We proceed with a technical lemma.

LEMMA 3.7. Let F i be a σ -algebra, and Ym
i ∈ L0(�,F i , P; RN) for i = 1, . . . , M.

Suppose that F i ⊆ F j for all i ≤ j , and that there exists k ∈ {1, . . . , M} and �′ ⊆ � with
P(�′) > 0 such that lim supm ‖Ym

k (ω)‖ = ∞ for a.e. ω ∈ �′, and lim supm ‖Ym
i (ω)‖ < ∞

for i = 1, . . . , k − 1 and for a.e. ω ∈ �. Then there exists a strictly increasing sequence of
positive, integer-valued,Fk-measurable random variables τm such that limm ‖Yτm

k (ω)‖ = ∞,
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for a.e. ω ∈ �′, and2

Xm
i (ω) := 1�′ (ω)

Yτm(ω)
i (ω)∥∥Yτm(ω)
k (ω)

∥∥ , ω ∈ �, i = 1, . . . , M,

satisfies limm Xm
i (ω) = 0, for i = 1, . . . , k − 1 and for a.e. ω ∈ �.

Proof. Since lim supm ‖Ym
k (ω)‖ = ∞ for a.e. ω ∈ �′, we may apply Lemma 3.5 to

the sequence Ym
k to find a strictly increasing sequence of positive, integer-valued, Fk-

measurable random variables τm so that ‖Yτm(ω)
k (ω)‖ diverges for a.e. ω ∈ �′.

Because lim supm ‖Ym
i ‖ < ∞ for i = 1, . . . , k − 1, we have lim supm ‖Yτm

i ‖ < ∞ for
i = 1, . . . , k − 1. Now since ‖Yτm(ω)

k (ω)‖ diverges for a.e. ω ∈ �′,

lim
m→∞

∥∥Xm
i (ω)

∥∥ = 1�′ (ω)

∥∥Yτm(ω)
i (ω)

∥∥∥∥Yτm(ω)
k (ω)

∥∥ = 0, a.e. ω ∈ �, i = 1, . . . , k − 1.

Thus, ‖Xm
i ‖ converges a.s. to 0 for i = 1, . . . , k − 1, which implies that Xm

i converges a.s.
to 0 for i = 1, . . . , k − 1. Hence, the claim holds. �

We are now ready to prove the crucial result in this paper.

THEOREM 3.8. If the no-arbitrage condition under the efficient friction assumption
(NAEF)is satisfied, then the set K − L0

+(�,FT, P; R) is P-closed.

Proof. Since K = K, we may equivalently prove that K − L0
+(�,FT, P; R) is P-closed.

Suppose that Xm ∈ K − L0
+(�,FT, P; R) converges in probability to X. Then there ex-

ists a subsequence Xkm of Xk so that Xkm converges a.s. to X. With a slight abuse of
notation, we will denote by Xm the sequence Xkm in what follows. By the definition of
K − L0

+(�,FT, P; R), there exists Zm ∈ L0
+(�,FT, P; R) and φm ∈ P so that

Xm = F(φm) − Zm.(3.3)

We proceed the proof in two steps. In the first step, we show by contradiction that
lim supm ‖φm

s ‖ < ∞ for all s ∈ T ∗.

Step 1a: Let us assume that lim supm ‖φm
s ‖ < ∞ for all s ∈ T ∗ does not hold. Then

I0 :=
{

s ∈ T ∗ : ∃ �′ ⊆ � such that P(�′) > 0, lim sup
m→∞

∥∥φm
s (ω)

∥∥ = ∞ for a.e. ω ∈ �′
}

is nonempty. Let t0 := min I0, and define the Ft0−1-measurable set

E0 :=
{
ω ∈ � : lim sup

m→∞

∥∥φm
t0 (ω)

∥∥ = ∞
}

.

Note that P(E0) > 0 by assumption. We now apply Lemma 3.7 to φm: there exists a strictly
increasing sequence of positive, integer-valued, Ft0−1-measurable random variables τm

0
such that

lim
m→∞

∥∥φτm
0 (ω)

t0 (ω)
∥∥ = ∞, a.e. ω ∈ E0,(3.4)

2We take Xm
i (ω) = 0 whenever ‖Yτm(ω)

k (ω)‖ = 0. We will take the convention x/0 = 0 throughout this
section.
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and

ψm,(0)
s := 1E0

φ
τm

0
s∥∥φτm

0
t0

∥∥ , s ∈ T ∗(3.5)

satisfies limm ψ
m,(0)
s (ω) = 0, for s = 1, . . . , t0 − 1, for a.e. ω ∈ �.

We proceed as follows.

Recursively for i = 1, . . . , T

If lim supm ‖ψm,(i−1)
s ‖ < ∞ for all s ∈ {ti−1 + 1, . . . , T}, then define k := i and ϕm :=

ψm,(k−1), and proceed to Step 1b.

Else, define

ti := min
{

s ∈ {ti−1 + 1, . . . , T} : ∃ �′ ⊆ Ei−1 s.t. P(�′) > 0,

lim sup
m→∞

∥∥ψm,(i−1)
s (ω)

∥∥ = ∞ for a.e. ω ∈ �′
}
,

and

Ei :=
{
ω ∈ Ei−1 : lim sup

m→∞

∥∥ψm,(i−1)
ti (ω)

∥∥ = ∞
}
.

Next, apply Lemma 3.7 to ψm,(i ): there exists a strictly increasing sequence of positive,
integer-valued, Fti −1-measurable random variables τm

i such that{
τ 1

i (ω), τ 2
i (ω), . . .

} ⊆ · · · ⊆ {τ 1
0 (ω), τ 2

0 (ω), . . .
}
, a.e. ω ∈ �,(3.6)

the sequence ψ
τm

i ,(i−1)
ti satisfies

lim
m→∞

∥∥ψτm
i (ω),(i−1)

ti (ω)
∥∥ = ∞, a.e. ω ∈ Ei ,(3.7)

and the sequence ψm,(i ) defined as

ψm,(i )
s := 1Ei

ψ
τm

i ,(i−1)
s∥∥ψτm

i ,(i−1)
ti

∥∥ , s ∈ T ∗(3.8)

satisfies limm ψ
m,(i )
s (ω) = 0 for s = 1, . . . , ti − 1, for a.e. ω ∈ �.

Repeat: i → i + 1.

Given this construction, we define

βm
i (ω) := τi ◦ τi+1 ◦ · · · ◦ τm

k (ω), i ∈ {0, . . . , k}, ω ∈ �,

Um(ω) := ∥∥φβm
0 (ω)

t0 (ω)
∥∥ k∏

i=1

∥∥ψβm
i (ω),(i−1)

ti (ω)
∥∥, ω ∈ �.

We make the following observations on this construction:

(i) The construction always produces a sequence ϕm such that lim supm ‖ϕm
s ‖ < ∞

for all s ∈ T ∗. Indeed, if ti = T for some i = 1, . . . , T, then limm ψ
m,(i )
s (ω) = 0 for
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s = 1, . . . , T − 1, for a.e. ω ∈ �, and limm ‖ψm,(i )
T (ω)‖ = 1Ei (ω), for a.e. ω ∈ �.

The sequence ψm,(i ) clearly satisfies lim supm ‖ψm,(i )
s ‖ < ∞ for all s ∈ T ∗.

(ii) We have that ϕm
s ∈ L0(�,Ftk−1, P, RN) for s = 1, . . . , tk − 1, and

ϕm
s ∈ L0(�,Fs−1, P, RN) for s = tk, . . . , T. Hence, the sequence ϕm is not a se-

quence of predictable processes. However, the limit of any a.s. convergent subse-
quence of ϕm is predictable because ϕm

s converges a.s. to 0 for s = 1, . . . , tk − 1.
(iii) Ek ⊆ · · · ⊆ E0, and P(Ek) > 0.
(iv) Any a.s. convergent subsequence of ϕm converges a.s. to a nonzero process since

‖ϕm
tk ‖ converges a.s. to 1Ek , which is nonzero a.s. since P(Ek) > 0.

(v) From (3.5) and (3.8), we have ϕm
s = 1Eφ

βm
0

s /Um for all s ∈ T ∗, where E :=⋂k
i=1 Ei .

Because Ek ⊆ · · · ⊆ E0,

ϕm
s = 1Ek

φ
βm

0
s

Um
, s ∈ T ∗.(3.9)

(vi) Um(ω) diverges for a.e. ω ∈ Ek since (3.4), (3.6), and (3.7) hold.

Step 1b: By the previous step, lim supm ‖ϕm
s ‖ < ∞ for all s ∈ T ∗. We apply

Lemma 3.6 to ϕm to find a strictly increasing sequence of positive, integer-valued,
FT−1-measurable random variables ρm so that ϕρm

converges a.s. to some process ϕ

such that ϕs ∈ L0(�,Ftk−1, P; RN) for s = 1, . . . , tk − 1, and ϕs ∈ L0(�,Fs−1, P; RN) for
s = tk, . . . , T.3 By observation (ii) in Step 1a, we have that ϕ is predictable.

Step 1c: We proceed by showing that NAEF implies P(E0) = 0. Toward this, we first show
that the process ϕ constructed in Step 1b satisfies F(ϕ) ∈ K. For the sake of notation,
we define ηm := β

ρm

0 . From (3.9), we have ϕρm = 1Ekφηm
/Uρm

. Since 1Ek and Uρm
are

nonnegative, R-valued random variables,

1Ek
F(φηm

)
Uρm = F

(
1Ek

φηm

Uρm

)
= F(ϕρm

).(3.10)

Because ϕρm
converges a.s. to ϕ, we may apply Lemma 2.13 to see that F(ϕρm

) converges
a.s. to F(ϕ). Since ϕ is predictable, we have from the definition of K that F(ϕ) ∈ K.

We proceed by showing that F(ϕ) ∈ L0
+(�,FT, P; R). Let us begin by defining X̃m :=

Xηm
/Uρm

and Z̃m := Zηm
/Uρm

. From (3.3),

F(φηm
) = Xηm + Zηm

.(3.11)

By multiplying both sides of (3.11) by 1Ek/Uρm
, we see from (3.10) that

F(ϕρm
) = 1Ek(X̃m + Z̃m).(3.12)

The sequence Xm converges a.s. by assumption, so the sequence Xηm
also converges

a.s. Recall that the sequence Um(ω) diverges for a.e. ω ∈ Ek, so Uρm
(ω) diverges for

a.e. ω ∈ Ek since {ρ1(ω), ρ2(ω), . . . , } ⊆ N for a.e. ω ∈ �.4 Hence, 1Ek X̃m converges a.s.
to 0. Since F(ϕρm

) and 1Ek X̃m converge a.s., the sequence 1Ek Z̃m also converges a.s.
to some Z ∈ L0

+(�,FT, P; R). Thus, F(ϕρm
) converges a.s. to Z, which implies F(ϕ) ∈

L0
+(�,FT, P; R).

3See observation (ii) in Step 1a.
4See observation (vi) in Step 1a.
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Since F(ϕ) ∈ K, we immediately see that F(ϕ) ∈ K ∩ L0
+(�,FT, P; R). It is assumed

that NA is satisfied, so by Lemma 3.2 we deduce that F(ϕ) = 0. We are supposing that
EF holds, so according to Lemma 3.4 we have ϕ = 0. This cannot happen given our
assumption that P(Ek) > 0 because ‖ϕtk‖ = 1Ek .5 Therefore, we must have that P(Ek) =
0. This contradicts the construction in Step 1a, so P(E0) = 0.

Step 2: By the conclusion in Step 1, we obtain that lim supm ‖φm
s ‖ < ∞ for s ∈ T ∗.

By applying Lemma 3.6 to φm, we may find a strictly increasing sequence of positive,
integer-valued, FT−1-measurable random variables σ m such that φσ m

converges a.s. to
some predictable process φ.

By Lemma 2.13, the sequence F(φσ m
) converges a.s. to F(φ). Since φ ∈ P , we have

F(φ) ∈ K. Because Xm converges a.s. to X, the sequence Xσ m
also converges a.s. to X.

From (3.3), it is true that Xσ m = F(φσ m
) − Zσ m

. Since Xσ m
and F(φσ m

) converges a.s., the
sequence Zσ m

also converges a.s. Thus, F(φσ m
) − Xσ m

converges a.s. to some nonnegative
random variable Z := F(φ) − X, which gives us that X = F(φ) − Z. We conclude that
X ∈ K − L0

+(�,FT, P; R). �

3.2. The FFTAP

In this section, we formulate and prove a version of the FFTAP. We define the following
set for convenience:

Z := {Q : Q ∼ P, Pask,∗, Pbid,∗, Aask,∗, Abid,∗ are Q-integrable}.

We now define a risk-neutral measure in our context.

DEFINITION 3.9. A probability measure Q is a risk-neutral measure if Q ∈ Z, and if
EQ[V∗

T (φ)] ≤ 0 for all φ ∈ S such that φ j is bounded a.s., for j ∈ J ∗, and V0(φ) = 0.

We note that V∗
T (φ) is Q-integrable under any Q ∈ Z, and any φ ∈ S such that φ j is

bounded a.s., for j ∈ J ∗, and V0(φ) = 0.

REMARK 3.10. For frictionless markets (P := Pask = Pbid, A := Aask = Abid), a risk-
neutral measure is classically defined to be an equivalent probability measure such that
the discounted cumulative price process (Pt +∑t

u=1 �Au)T
u=0 is a martingale under Q.

The present definition of a risk-neutral coincides with this classic definition of a risk-
neutral measure if the market is frictionless. Indeed, if there are no frictions the value
process satisfies V∗

T (−φ) = −V∗
T (φ) for all trading strategies. Also, by Proposition 2.9,

we have that EQ[V∗
T (φ)] = 0 for all φ ∈ S such that φ j is bounded a.s. and V0(φ) = 0 for

j ∈ J ∗ if and only if

N∑
j=1

T∑
u=1

EQ

[
φ j

u EQ

[
�

(
B−1

u P j
u +

u∑
w=1

B−1
w �Aj

w

) ∣∣∣∣Fu−1

]]
= 0

for all φ ∈ S such that φ j is bounded a.s., for j ∈ J ∗.

The next lemma provides a mathematically convenient condition that is equivalent to
NA. The proof is straightforward and is skipped.

5See observation (iv) in Step 1a.
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LEMMA 3.11. The no-arbitrage condition (NA) is satisfied if and only if for each φ ∈ S
such that φ j is bounded a.s. for j ∈ J ∗, V0(φ) = 0, and VT(φ) ≥ 0, we have VT(φ) = 0.

Next, we recall the well-known Kreps–Yan Theorem. It was first proved by Yan (1980),
and then obtained independently by Kreps (1981) in the context of financial mathematics.
For a proof of the version presented in this paper, see Schachermayer (1992). Theorem 3.8
and the Kreps–Yan Theorem will essentially imply the FFTAP (Theorem 3.13).

THEOREM 3.12 (Kreps–Yan). Let C be a closed convex cone in L1(�,F, P; R) containing
L1

−(�,F, P; R) such that C ∩ L1
+(�,F, P; R) = {0}. Then there exists a functional f ∈

L∞(�,F, P; R) such that, for each h ∈ L1
+(�,F, P; R) with h �= 0, we have that EP[ f h] >

0 and EP[ fg] ≤ 0 for any g ∈ C.

We are now ready to prove the following version of the FFTAP. To prove the FFTAP,
we will employ the usual separation argument (cf. Schachermayer 1992).

THEOREM 3.13 (FFTAP). The following conditions are equivalent:

(i) The no-arbitrage condition under the efficient friction assumption (NAEF) is sat-
isfied.

(ii) There exists a risk-neutral measure.
(iii) There exists a risk-neutral measure Q so that dQ/dP ∈ L∞(�,FT, P; R).

Proof. In order to prove these equivalences, we show that (i i ) ⇒ (i ), (i ) ⇒ (i i i ), and
(i i i ) ⇒ (i i ). The implications (i i i ) ⇒ (i i ) and (i i ) ⇒ (i ) are immediate, so we only show
(i ) ⇒ (i i i ).

Let us first define the weight function

w := 1 +
T∑

u=0

∥∥Pask,∗
u

∥∥+
T∑

u=0

∥∥Pbid,∗
u

∥∥+
T∑

u=1

∥∥Aask,∗
u

∥∥+
T∑

u=1

∥∥Abid,∗
u

∥∥,(3.13)

and let P̃ be the measure on FT with Radon–Nikodým derivative dP̃/dP = c̃/w , where c̃
is an appropriate normalizing constant. The processes Pask,∗, Pbid,∗, Aask,∗, Abid,∗ are
P̃-integrable, so P̃ ∈ Z. We consider the convex cone C := (K − L0

+(�,FT, P̃ ; R)
) ∩

L1(�,FT, P̃ ; R), which is closed in L1(�,FT, P̃ ; R) according to Theorem 3.8. By
Theorem 3.12 there exists a strictly positive functional f ∈ L∞(�,FT, P̃ ; R) such that
EP̃[K f ] ≤ 0 for all K ∈ K ∩ L1(�,FT, P̃ ; R).6 This implies that EP̃[V∗

T (φ) f ] ≤ 0 for all
φ ∈ S such that φ j is bounded a.s., for j ∈ J ∗, V0(φ) = 0, and V∗

T (φ) ∈ L1(�,FT, P̃ ; R).
Now let Q be the measure on FT with Radon–Nikodým derivative dQ/dP̃ := c f , where
c is an appropriate normalizing constant. We conclude that note that Q is a risk-neutral
measure satisfying dQ/dP ∈ L∞(�,FT, P; R). �

REMARK 3.14.

(i) Note that EF is not needed to prove the implication (i i ) ⇒ (i ).
(ii) In practice, it is typically required for a market model to satisfy NA. According

to Theorem 3.13, it is enough to check that there exists a risk-neutral measure.
However, this is not straightforward because it has to be verified whether there
exists a probability measure Q ∈ Z so that EQ[V∗

T (φ)] ≤ 0 for all φ ∈ S so that φ j

is bounded a.s., for j ∈ J ∗, and V0(φ) = 0. We will show in the following section
that CPSs help solve this issue (see Proposition 4.3 and Theorem 4.7).

6For each h ∈ L1+(�,FT, P̃ ; R) with h �= 0, we have EP̃[ f h] > 0.
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4. CONSISTENT PRICING SYSTEMS

CPSs are instrumental in the theory of arbitrage in markets with transaction costs—
they provide a bridge between martingale theory in the theory of arbitrage in frictionless
markets and more general concepts in the theory of arbitrage in markets with transaction
costs. Essentially, CPSs are interpreted as corresponding auxiliary frictionless markets.
In this section, we explore the relationship between CPSs and NA.

We begin by defining a CPS in our context.

DEFINITION 4.1. A consistent pricing system corresponding to the market (B, Pask,

Pbid, Aask, Abid) is a quadruplet {Q, P, A, M} consisting of

(i) a probability measure Q ∈ Z;
(ii) an adapted process P satisfying Pbid,∗ ≤ P ≤ Pask,∗;

(iii) an adapted process A satisfying Aask,∗ ≤ A ≤ Abid,∗;
(iv) a martingale M under Q satisfying Mt = Pt +∑t

u=1 Au for all t ∈ T .

REMARK 4.2. Since our market is fixed throughout the paper, we shall simply
refer to {Q, P, A, M} as a CPS, rather than a CPS corresponding to the market
(B, Pask, Pbid, Aask, Abid). Note that one can drop M from the definition of a CPS since it
is uniquely expressed in terms of A and P. However, we will keep it to simplify notation,
and because M has the following key interpretation: for a CPS {Q, P, A, M}, the process
P is interpreted as the corresponding auxiliary frictionless ex-dividend price process, and
the process A has the interpretation of the corresponding auxiliary frictionless cumu-
lative dividend process, whereas M is viewed as the corresponding auxiliary frictionless
cumulative price process.

The next result establishes a relationship between NA and CPSs in our context.

PROPOSITION 4.3. If there exists a CPS, then the no-arbitrage condition (NA) is satisfied.

Proof. Suppose there exists a CPS, call it {Q, P, A, M}, and suppose φ ∈ S is a
trading strategy such that φ j is bounded a.s., for j ∈ J ∗, and V0(φ) = 0. In view of
Proposition 2.9, and because Pbid ≤ P ≤ Pask and Aask ≤ A ≤ Abid, we deduce that

V∗
T (φ) ≤

N∑
j=1

(
φ

j
T P j

T +
T∑

u=1

(−�φ j
u P j

u−1 + φ j
u Aj

u

))
.

Since M = P +∑·
u=1 Au is a martingale under Q, and because φ j is bounded a.s., for

j ∈ J ∗, we have

EQ

[
V∗

T (φ)
] ≤

N∑
j=1

EQ

[
φ

j
T P j

T +
T∑

u=1

(− �φ j
u P j

u−1 + φ j
u Aj

u

)]

=
N∑

j=1

T∑
u=1

EQ

[
�φ j

u EQ

[
Mj

T − Mj
u−1

∣∣Fu−1
]] = 0.

Therefore Q is a risk-neutral measure. According to Theorem 3.13, NA holds. �

At this point, a natural question to ask is whether there exists a CPS whenever NA is
satisfied. In general, this is still an open question. However, for the special case in which
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there are no transaction costs in the dividends paid by the securities, Aask = Abid, will
show in Theorem 4.7 that there exists a CPS if and only if NAEF is satisfied.

Proposition 4.3 is important from the modeling point of view because it provides a
sufficient condition for a model to satisfy NA. In the next example, we construct a model
for which there exists a CPS.

EXAMPLE 4.4. Let us consider the CDS specified in Example 2.2. Recall that the
cumulative dividend processes Aask and Abid corresponding to the CDS are defined as

Aask
t := 1{τ≤t}δ − κask

t∑
u=1

1{u<τ }, Abid
t := 1{τ≤t}δ − κbid

t∑
u=1

1{u<τ }

for all t ∈ T ∗. Let us fix any probability measure Q equivalent to P. We postulate that
the ex-dividend prices Pask and Pbid satisfy

Pask,∗
t = EQ

[
T∑

u=t+1

Abid,∗
u

∣∣∣∣Ft

]
, Pbid,∗

t = EQ

[
T∑

u=t+1

Aask,∗
u

∣∣∣∣Ft

]
,

for all t ∈ T ∗. By substituting Aask,∗ and Abid,∗ into the equations for Pask,∗ and Pbid,∗

above, we see that

Pask,∗
t = EQ

[
1{t<τ≤T} B−1

τ δ − κbid
T∑

u=t+1

B−1
u 1{u<τ }

∣∣∣∣Ft

]
,

Pbid,∗
t = EQ

[
1{t<τ≤T} B−1

τ δ − κask
T∑

u=t+1

B−1
u 1{u<τ }

∣∣∣∣Ft

]
.

For a fixed κ ∈ [κbid, κask], we define

At := B−1
t (1{τ=t}δ − κ1{t<τ }), t ∈ T ∗,

Pt := EQ

[
T∑

u=t+1

Au

∣∣∣∣Ft

]
= EQ

[
1{t<τ≤T} B−1

τ δ − κ

T∑
u=t+1

B−1
u 1{u<τ }

∣∣∣∣Ft

]
, t ∈ T ,

Mt := Pt +
t∑

u=1

Au, t ∈ T .

The quadruplet {Q, P, A, M} is a CPS. To see this, first observe that A and P are Q-
integrable since A is bounded Q-a.s. Thus, Q ∈ Z. Next, M satisfies

Mt = EQ

[
1{τ≤T} B−1

τ δ − κ

T∑
u=1

B−1
u 1{u<τ }

∣∣∣∣Ft

]
, t ∈ T ,

so M is a Doob martingale under Q. Also, since κ ∈ [κbid, κask], we have Aask,∗ ≤
A ≤ Abid,∗ and Pbid,∗ ≤ P ≤ Pask,∗. Thus, {Q, P, A, M} is a CPS. According to
Proposition 4.3, we may additionally conclude that the financial market model
{B, Pask, Pbid, Aask, Abid} satisfies NA.
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4.1. CPSs under the Assumption Aask = Abid

In this section, we investigate the relationship between risk-neutral measures and CPSs
under the assumption Aask = Abid. We begin by proving two preliminary lemmas that
hold in general (without the assumption Aask = Abid).

LEMMA 4.5. If Q is a risk-neutral measure, then

Pbid,j,∗
σ1

≤ EQ

⎡⎣Pask,j,∗
σ2

+
σ2∑

u=σ1+1

Abid,j,∗
u

∣∣∣∣Fσ1

⎤⎦ ,

Pask,j,∗
σ1

≥ EQ

⎡⎣Pbid,j,∗
σ2

+
σ2∑

u=σ1+1

Aask,j,∗
u

∣∣∣∣Fσ1

⎤⎦ ,

for all j ∈ J ∗ and stopping times 0 ≤ σ1 < σ2 ≤ T.

Proof. Suppose Q is a risk-neutral measure. For stopping times 0 ≤ σ1 < σ2 ≤ T and
random variables ξσ1 ∈ L∞(�,Fσ1 , P; RN), we define the trading strategy

θ (σ1, σ2, ξσ1 ) := (θ0
t (σ1, σ2, ξσ1 ), 1{σ1+1≤t≤σ2}ξ

1
σ1

, . . . , 1{σ1+1≤t≤σ2}ξ
N
σ1

)T
t=1,

where θ0(σ1, σ2, ξσ1 ) is chosen such that θ (σ1, σ2, ξσ1 ) is self-financing and V0(θ (σ1,

σ2, ξσ1 )) = 0. Due to Proposition 2.9, the value process associated with θ satisfies

V∗
T (θ (σ1, σ2, ξσ1 )) =

N∑
j=1

1{ξ j
σ1 ≥0}ξ

j
σ1

⎛⎝Pbid,j,∗
σ2

+
σ2∑

u=σ1+1

Aask,j,∗
u − Pask,j,∗

σ1

⎞⎠
+

N∑
j=1

1{ξ j
σ1 <0}ξ

j
σ1

⎛⎝Pask,j,∗
σ2

+
σ2∑

u=σ1+1

Abid,j,∗
u − Pbid,j,∗

σ1

⎞⎠ .

Since Q is a risk-neutral measure, we have EQ[V∗
T (θ (σ1, σ2, ξσ1 ))] ≤ 0 for all stopping

times 0 ≤ σ1 < σ2 ≤ T and ξσ1 ∈ L∞(�,Fσ1 , P; RN). Hence, we are able to obtain

EQ

⎡⎣ N∑
j=1

1{ξ j
σ1 ≥0}ξ

j
σ1

EQ

⎡⎣Pbid,j,∗
σ2

+
σ2∑

u=σ1+1

Aask,j,∗
u − Pask,j,∗

σ1

∣∣∣∣Fσ1

⎤⎦
+

N∑
j=1

1{ξ j
σ1 <0}ξ

j
σ1

EQ

⎡⎣Pask,j,∗
σ2

+
σ2∑

u=σ1+1

Abid,j,∗
u − Pbid,j,∗

σ1

∣∣∣∣Fσ1

⎤⎦⎤⎦ ≤ 0.

for all stopping times 0 ≤ σ1 < σ2 ≤ T and random variables ξσ1 ∈ L∞(�,Fσ1 , P; RN).
This implies that the claim is satisfied. �

The next result is motivated by theorem 4.5 in Cherny (2007). We will denote by Tt the
set of stopping times in {t, t + 1, . . . , T}, for all t ∈ T .
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LEMMA 4.6. Suppose Q is a risk-neutral measure, and let

Xb, j
s := ess sup

σ∈Ts

EQ

[
Pbid,j,∗

σ +
σ∑

u=1

Aask,j,∗
u

∣∣∣∣Fs

]
,

Xa, j
s := ess inf

σ∈Ts

EQ

[
Pask,j,∗

σ +
σ∑

u=1

Abid,j,∗
u

∣∣∣∣Fs

]

for all j ∈ J ∗ and s ∈ T . Then ,Xb is a supermartingale and Xa is a submartingale, both
under Q, and satisfy Xb ≤ Xa.

Proof. Let us fix j ∈ J ∗. The processes Xb, j and Xa, j are Snell envelopes, so Xa, j is
a supermartingale and Xb. j is a submartingale, both under Q (see, for instance, Föllmer
and Schied 2004).

We now show that Xb, j ≤ Xa, j . For stopping times τ1, τ2 ∈ Tt, let us define the process

X j
t := EQ

[
Pbid,j,∗

τ1
+

τ1∑
u=1

Aask,j,∗
u

∣∣∣∣Ft

]
− EQ

[
Pask,j,∗

τ2
+

τ2∑
u=1

Abid,j,∗
u

∣∣∣∣Ft

]
, t ∈ T .

We see that

X j
t = EQ

[
EQ

[
Pbid,j,∗

τ1
+

τ1∑
u=1

Aask,j,∗
u − Pask,j,∗

τ2
−

τ2∑
u=1

Abid,j,∗
u

∣∣∣∣Fτ1∧τ2

] ∣∣∣∣Ft

]

= EQ

[
1{τ1≤τ2}

(
Pbid,j,∗

τ1
+

τ1∑
u=1

Aask,j,∗
u − EQ

[
Pask,j,∗

τ2
+

τ2∑
u=1

Abid,j,∗
u

∣∣∣∣Fτ1

]) ∣∣∣∣Ft

]

+ EQ

[
1{τ1>τ2}

(
EQ

[
Pbid,j,∗

τ1
+

τ1∑
u=1

Aask,j,∗
u

∣∣∣∣Fτ2

]
− Pask,j,∗

τ2
−

τ2∑
u=1

Abid,j,∗
u

) ∣∣∣∣Ft

]
.

After rearranging terms and since Aask,∗ ≤ Abid,∗, we obtain that

X j
t ≤ EQ

⎡⎣1{τ1≤τ2}

⎛⎝Pbid,j,∗
τ1

− EQ

⎡⎣Pask,j,∗
τ2

+
τ2∑

u=τ1+1

Abid,j,∗
u

∣∣∣∣Fτ1

⎤⎦⎞⎠ ∣∣∣∣Ft

⎤⎦(4.1)

+ EQ

⎡⎣1{τ1>τ2}

⎛⎝EQ

⎡⎣Pbid,j,∗
τ1

+
τ1∑

u=τ2+1

Aask,j,∗
u

∣∣∣∣Fτ2

⎤⎦− Pask,j,∗
τ2

⎞⎠∣∣∣∣Ft

⎤⎦ .

Since Q is a risk-neutral measure, we see from Lemma 4.5 and (4.1) that X j
t ≤ 0. The

stopping times τ1 and τ2 are arbitrary in the definition of X j , so we conclude that
Xb, j ≤ Xa, j . �

The next theorem gives sufficient and necessary conditions for there to exist a CPS (cf.
Kabanov et al. 2002; Schachermayer 2004).

THEOREM 4.7. Under the assumption that Aask = Abid, there exists a CPS if and only if
the no-arbitrage condition under the efficient condition (NAEF) is satisfied.

Proof. Let us denote by A the process Aask. Necessity is shown in Proposition 4.3, so
we only prove sufficiency. Suppose that NAEF is satisfied. According to Theorem 3.13,
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there exists a risk-neutral measure Q. By Lemma 4.5,

Pbid,j,∗
σ1

≤ EQ

⎡⎣Pask,j,∗
σ2

+
σ2∑

u=σ1+1

Aj ,∗
u

∣∣∣∣Fσ1

⎤⎦ , Pask,j,∗
σ1

≥ EQ

⎡⎣Pbid,j,∗
σ2

+
σ2∑

u=σ1+1

Aj ,∗
u

∣∣∣∣Fσ1

⎤⎦
for all j ∈ J ∗ and stopping times 0 ≤ σ1 < σ2 ≤ T. Now, let us define the processes

Yb, j
t := ess sup

σ∈Tt

EQ

[
Pbid,j,∗

σ +
σ∑

u=t+1

Aj ,∗
u

∣∣∣∣Ft

]
,

Ya, j
t := ess inf

σ∈Tt

EQ

[
Pask,j,∗

σ +
σ∑

u=t+1

Aj ,∗
u

∣∣∣∣Ft

]
,(4.2)

Xb, j
t := Yb, j

t +
t∑

u=1

Aj ,∗
t , Xa, j

t := Ya, j
t +

t∑
u=1

Aj ,∗
t

for all t ∈ T and j ∈ J ∗. From Lemma 4.6, we know that under Q the process Xa is a
submartingale and the process Xb is a supermartingale, and that they satisfy Xb ≤ Xa .

For t = 0, 1, . . . , T − 1 and j ∈ J ∗, recursively define

Mj
0 := Ya, j

0 , P j
0 := Ya, j

0 , P j
t+1 := λ

j
t Ya, j

t+1 + (1 − λ
j
t
)
Yb, j

t+1,(4.3)

Mj
t+1 := P j

t+1 +
t+1∑
u=1

Aj
u,

where λ
j
t satisfies

λ
j
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mj

t − EQ

[
Xb, j

t+1

∣∣Ft
]

EQ

[
Xa, j

t+1 − Xb, j
t+1

∣∣Ft
] , if EQ

[
Xa, j

t+1

∣∣Ft
] �= EQ

[
Xb, j

t+1

∣∣Ft
]
,

1
2
, otherwise.

(4.4)

Let us fix j ∈ J ∗ for the rest of the proof.

Step 1: In this step, we show that the processes above are well-defined and adapted. First,
note that P0 and M0 are well-defined, and that, by (4.4),

λ
j
0 = Mj

0 − EQ

[
Xb, j

1

∣∣F0
]

EQ

[
Xa, j

1 − Xb, j
1

∣∣F0
] , or λ

j
0 = 1

2
.

Thus, λ
j
0 is well-defined and F0-measurable. Next, we compute P j

1 and Mj
1 , and conse-

quently we compute λ
j
1; all of them being F1-measurable. Inductively, we see that P j

t ,
Mj

t , and λ
j
t , for t = 2, . . . , T are well-defined and Ft-measurable.

Step 2: We inductively show that λ
j
t ∈ [0, 1] for t = 0, 1, . . . , T − 1. We first show that

λ
j
0 ∈ [0, 1]. If EQ[Xa, j

1 − Xb, j
1 |F0] = 0, then λ

j
0 ∈ [0, 1] automatically, so suppose that

EQ[Xa, j
1 − Xb, j

1 |F0] > 0. Now, by the definition of Mj , we have that Mj
0 = Xa, j

0 , so (4.4)
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gives that

λ
j
0 = Xa, j

0 − EQ

[
Xb, j

1

∣∣F0
]

EQ

[
Xa, j

1 − Xb, j
1

∣∣F0
] .(4.5)

The process Xa, j is a submartingale under Q, so it immediately follows that λ
j
0 ≤ 1. On

the other hand, since Xb, j is a supermartingale under Q,

λ
j
0 ≥ Xa, j

0 − Xb, j
0

EQ

[
Xa, j

1 − Xb, j
1

∣∣F0
] .

Because Xa, j
0 ≥ Xb, j

0 , we deduce that λ
j
0 ≥ 0.

Suppose that λ
j
t ∈ [0, 1] for t = 0, 1, . . . , T − 2. We now prove that λ

j
T−1 ∈ [0, 1]. If

EQ[Xa, j
T − Xb, j

T |FT−1] = 0, then λ
j
T−1 = 1/2, so assume that EQ[Xa, j

T − Xb, j
T |FT−1] > 0.

According to (4.4) and the definition of Mj , we have that

λ
j
T−1 = λ

j
T−2 Xa, j

T−1 + (1 − λ
j
T−2

)
Xb, j

T−1 − EQ

[
Xb, j

T

∣∣FT−1
]

EQ

[
Xa, j

T − Xb, j
T

∣∣FT−1
] .(4.6)

Since λ
j
T−2 ≤ 1, and because Xb, j is a supermartingale under Q, we get that

λ
j
T−1 ≥ λ

j
T−2

(
Xa, j

T−1 − Xb, j
T−1

)
EQ

[
Xa, j

T − Xb, j
T

∣∣FT−1
] .

Because Xa, j ≥ Xb, j , we arrive at λ
j
T−1 ≥ 0. Now, since Xa, j

T−1 ≥ Xb, j
T−1 and λ

j
T−2 ≤ 1, we

see from (4.6) that

λ
j
T−1 ≤ Xa, j

T−1 − EQ

[
Xb, j

T

∣∣FT−1
]

EQ

[
Xa, j

T − Xb, j
T

∣∣FT−1
] .

The process Xa, j is a submartingale under Q, so it follows that λ
j
T−1 ≤ 1. We conclude

that λ
j
t ∈ [0, 1] for t = 0, 1, . . . , T − 1.

Step 3: Next, we show that M is a martingale under Q. First, we note that by (4.2) and
(4.3) we have

Mj
t+1 = λ

j
t Xa, j

t+1 + (1 − λ
j
t
)
Xb, j

t+1.(4.7)

From here, the Q-integrability of Mj follows from Q-integrability of Xa, j , Xb, j and
boundedness of λ j . From (4.4) and (4.7), we get that EQ[Mj

t+1|Ft] = Mj
t , for t =

0, 1, . . . , T − 1. Hence, Mj is a martingale under Q.

Step 4: We continue by showing that P j satisfies Pbid,∗,j ≤ P j ≤ Pask,∗,j. Let us first show
that Pbid,j

0 ≤ P j
0 ≤ Pask,j

0 . By definition of P j
0 , we have that P j

0 = Ya, j
0 , and by (4.2) we

see that Ya, j
0 = Xa, j

0 . Therefore, the claim holds since Pbid,j
0 ≤ Xa, j

0 ≤ Pask,j
0 .

We proceed by proving that Pbid,j
t ≤ P j

t ≤ Pask,j
t for all t ∈ {1, . . . , T}. Toward this, let

t ∈ {1, . . . , T}. By the definition of P j
t , we have P j

t = λ
j
t−1Ya, j

t + (1 − λ
j
t−1)Yb, j

t . From
(4.2), it is true that Xa, j

t ≥ Xb, j
t if and only if Ya, j

t ≥ Yb, j
t . Also, since t ∈ Tt, we see from

(4.2) that Yb, j
t ≥ Pbid,j,∗

t and Ya, j
t ≤ Pask,j

t . According to Step 1, λ
j
t−1 ∈ [0, 1]. So, putting
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everything together, we obtain

Pbid,j
t ≤ Yb, j

t ≤ P j
t ≤ Ya, j

t ≤ Pask,j
t .

We conclude that {Q, P, A, M} is a CPS. �

The general case Aask ≤ Abid is harder to handle because transaction costs on dividends
accrue over time. This makes it hard to construct a process A from Aask and Abid,
satisfying Aask,∗ ≤ A ≤ Abid,∗, so that P +∑·

u=1 Au is a martingale under some Q ∈ Z.

5. SUPERHEDGING AND SUBHEDGING THEOREM

In this section, we define the superhedging ask and subhedging bid prices for a dividend-
paying contingent claim, and then we provide an important representation theorem for
these prices. The representation theorem is important because it provides an alternative
way of computing the superhedging ask prices and the superhedging bid prices. Also, it
is an application of the Fundamental Theorem of Asset Pricing: the theorem relates how
the no-arbitrage condition (and hence the existence of risk-neutral measures) is related
to the pricing of contingent claims.

For results related to this topic, both for discrete-time and continuous-time markets
with transaction costs, we refer to, among others, Soner, Shreve, and Cvitanić (1995); Lev-
ental and Skorohod (1997); Cvitanic, Pham, and Touzi (1999); Touzi (1999); Bouchard
and Touzi (2000); Kabanov et al. (2002); Schachermayer (2004); Campi and Schacher-
mayer (2006); Cherny (2007); Pennanen (2011a,b,c,d). Our contribution to this literature
is that we consider dividend-paying securities such as swap contracts as hedging securities.

A contingent claim D is any a.s. bounded, R-valued, F-adapted process. Here, D is
interpreted as the spot cash flow process (not the cumulative cash flow process). We
remark that the boundedness assumption on contingent claims is satisfied for fixed
income securities.

Let us now define the set of self-financing trading strategies initiated at time t ∈
{0, 1, . . . , T − 1} with bounded components ( j = 1, . . . , N) as

S(t) := {φ ∈ S : φ j is bounded a.s. for j ∈ J ∗, φs = 0 for all s ≤ t},

and the set of attainable claims at zero cost initiated at time t ∈ {0, 1, . . . , T − 1} as

K(t) := {V∗
T (φ) : φ ∈ S(t) such that V0(φ) = 0}.

REMARK 5.1.

(i) S(t) and K(t) are closed with respect to multiplication by random variables in
L∞

+ (�,Ft, P; R).7

(ii) S ⊃ S(0) ⊃ S(1) ⊃ · · · ⊃ S(T − 1) and K ⊃ K(0) ⊃ K(1) ⊃ · · · ⊃ K(T − 1).
Moreover, if Q is a risk-neutral measure, then EQ[K ] ≤ 0 for all K ∈ K(t), for
t = 0, 1, . . . , T − 1.

We proceed by defining the main objects of this section.

7 L∞+ (�,Ft, P; R) := {X ∈ L∞(�,Ft, P; R) : X ≥ 0}.



694 T. R. BIELECKI, I. CIALENCO, AND R. RODRIGUEZ

DEFINITION 5.2. The discounted superhedging ask and subhedging bid prices of a
contingent claim D at time t ∈ {0, . . . , T − 1} are defined as πask

t (D) := ess inf Wa(t, D)
and πbid

t (D) := ess sup Wb(t, D), where

Wa(t, D) :=
{

W ∈ L0(�,Ft, P; R) : −W +
T∑

u=t+1

D∗
u ∈ K(t) − L0

+(�,FT, P; R)

}
,

Wb(t, D) :=
{

W ∈ L0(�,Ft, P; R) : W −
T∑

u=t+1

D∗
u ∈ K(t) − L0

+(�,FT, P; R)

}
.

Note that πask
t (D) = −πbid

t (−D) and

Wa(t, D) =
{

W ∈ L0(�,Ft, P; R) : ∃ K ∈ K(t) such that
T∑

u=t+1

D∗
u ≤ K + W

}
,

Wb(t, D) =
{

W ∈ L0(�,Ft, P; R) : ∃ K ∈ K(t) such that −
T∑

u=t+1

D∗
u ≤ K − W

}
.

REMARK 5.3.

(i) For each t ∈ {0, 1, . . . , T − 1}, the prices πask
t (D) and πbid

t (D) have the follow-
ing interpretations: The price πask

t (D) is interpreted as the least discounted cash
amount W at time t so that the gain −W +∑T

u=t+1 D∗
u can be superhedged at

zero cost. On the other hand, the random variable πbid
t (D) is interpreted as the

greatest discounted cash amount W at time t so that the gain W −∑T
u=t+1 D∗

u can
be superhedged at zero cost.

(ii) In view of (i) above, it is unreasonable for the discounted ex-dividend ask price at
time t ∈ {0, 1, . . . , T − 1} of a contingent claim D to be a.s. greater than πask

t (D),
and for the ex-dividend bid price at time t ∈ {0, 1, . . . , T − 1} of a contingent claim
D to be a.s. less than πbid

t (D).
(iii) Direction of trade matters: a market participant can buy a contingent claim D at

price πask
t (D) and sell D at price πbid

t (D). This is in contrast to frictionless markets,
where a contingent claim can be bought and sold at the same price.

(iv) The prices πask
t (D) and πbid

t (D) satisfy πask
t (D) < ∞ and πbid

t (D) > −∞. Indeed,
since 0 ∈ K(t), 1 ∈ L0

++(�,Ft, P; R), and
∑T

u=t+1 D∗
u is a.s. bounded, say by M,

we have that −M +∑T
u=t+1 D∗

u ∈ L0
−(�,FT, P; R). Thus, πask

t (D) ≤ M. Similarly,
πbid

t (D) ≥ −M.

Next, we define the sets of extended attainable claims initiated at time t ∈ {0, 1, . . . , T − 1}
associated with cash amount W ∈ L0(�,Ft, P; R):

Ka(t, W) := K(t) +
{

ξ

(
−W +

T∑
u=t+1

D∗
u

)
: ξ ∈ L∞

+ (�,Ft, P; R)

}
,

Kb(t, W) := K(t) +
{

ξ

(
W −

T∑
u=t+1

D∗
u

)
: ξ ∈ L∞

+ (�,Ft, P; R)

}
.
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REMARK 5.4.

(i) The setsKa(t, W) andKb(t, W) are closed with respect to multiplication by random
variables in the set L∞

+ (�,Ft, P; R), and in view of Lemma 2.14 they are convex
cones. Also, K(t) ⊂ Ka(t, W) ∩ Kb(t, W) since 0 ∈ L∞

+ (�,Ft, P; R).
(ii) In view of Proposition 2.9,{

ξ

(
−πask

t (D) +
T∑

u=t+1

D∗
u

)
: ξ ∈ L∞

+ (�,Ft, P; R)

}
(5.1)

is the set of all discounted terminal claims associated with zero-cost, self-financing,
buy-and-hold trading strategies in the contingent claim D with discounted ex-
dividend ask price πask

t (D). On the other hand, the convex cone{
ξ

(
πbid

t (D) −
T∑

u=t+1

D∗
u

)
: ξ ∈ L∞

+ (�,Ft, P; R)

}
(5.2)

is the set of all discounted terminal claims associated with zero-cost, self-financing,
sell-and-hold trading strategies in the contingent claim D with discounted ex-
dividend bid price πbid

t (D).

We will now introduce definitions related to the sets of extended attainable claims.
For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(�,Ft, P; R), a probability measure Q is risk-
neutral for Ka(t, X) (Kb(t, X)) if Q ∈ Z and X is Q-integrable, and if EQ[K ] ≤ 0 for all
K ∈ Ka(t, X) (K ∈ Kb(t, X)). We denote by Ra(t, X) (Rb(t, X)) the set of all risk-neutral
measures Q for Ka(t, X) (Kb(t, X)) so that dQ/dP ∈ L∞(�,FT, P; R). We say that NA
holds forKa(t, X) ifKa(t, X) ∩ L0

+(�,FT, P; R) = {0}, and likewise we say that NA holds
for Kb(t, X) if Kb(t, X) ∩ L0

+(�,FT, P; R) = {0}.
We will say that Ka(t, X) satisfies EF if{

(φ, ξ ) ∈ S(t) × L∞
+ (�,Ft, P; R) : V0(φ) = 0, V∗

T (φ) + ξ

(
−X +

T∑
u=t+1

D∗
u

)
= 0

}
= {(0, 0)},

and say that Kb(t, X) satisfies EF if{
(φ, ξ ) ∈ S(t) × L∞

+ (�,Ft, P; R) : V0(φ) = 0, V∗
T (φ) + ξ

(
X −

T∑
u=t+1

D∗
u

)
= 0

}
= {(0, 0)}.

REMARK 5.5. According to Lemma A.1, for any t ∈ {0, 1, . . . , T − 1} and X ∈
L0(�,Ft, P; P), NAEF holds for Ka(t, X) (Kb(t, X)) if and only if Ra(t, X) �= ∅
(Rb(t, X) �= ∅).

For each t ∈ {0, 1, . . . , T − 1}, we denote by R(t) the set of all risk-neutral measures
for K(t) so that dQ/dP ∈ L∞(�,FT, P; R). Specifically, we define R(t) as

R(t) := {Q ∈ Z : EQ[K ] ≤ 0 for all K ∈ K(t)}.
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We note that Ra(t, X) ∪ Rb(t, X) ⊆ R(t) for any X ∈ L0(�,Ft, P; R) since K(t) ⊆
Ka(t, X) ∩ Kb(t, X). Also, by the definition of a risk-neutral measure, it immediately
follows that any risk-neutral measure Q (as in Definition 3.9) satisfies Q ∈ R(t) for any
t ∈ {0, 1, . . . , T − 1}.

The next technical lemma is needed to derive the dual representations of the su-
perhedging ask and subhedging bid prices. The proof is straightforward and therefore
skipped.

LEMMA 5.6.

(i) For each t ∈ {0, 1, . . . , T − 1}, if R(t) �= ∅ and Q ∈ R(t), then we have that
EQ[K|Ft] ≤ 0 Q-a.s. for all K ∈ K(t).

(ii) For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(�,Ft, P; R), if Ra(t, X) �= ∅ and Q ∈
Ra(t, X), then we have that EQ[Ka|Ft] ≤ 0 Q-a.s. for all Ka ∈ Ka(t, X).

(iii) For each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(�,Ft, P; R), if Rb(t, X) �= ∅ and Q ∈
Rb(t, X), then we have that EQ[Kb|Ft] ≤ 0 Q-a.s. for all Kb ∈ Kb(t, X).

We are ready to prove the main result of this section: the dual representations of the
superhedging ask price and subhedging bid price.

THEOREM 5.7. Suppose that the no-arbitrage condition under the efficient friction as-
sumption (NAEF) is satisfied. Let t ∈ {0, 1, . . . , T − 1} and D be a contingent claim. Then
the following hold:

(i) The essential infimum of Wa(t, D) and the essential supremum of Wb(t, D) are
attained.

(ii) Suppose that for each t ∈ {0, 1, . . . , T − 1} and X ∈ L0(�,Ft, P; R), the efficient
friction assumption (EF) holds for Ka(t, X) and Kb(t, X). Then the discounted
superhedging ask and subhedging bid prices for contingent claim D at time t satisfy

πask
t (D) = ess sup

Q∈R(t)
EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
,(5.3)

πbid
t (D) = ess inf

Q∈R(t)
EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
.(5.4)

Proof. Since πask
t (D) = −πbid

t (−D) holds for all t ∈ {0, . . . , T − 1} and contingent
claims D, it suffices to show that the essential infimum of Wa(t, D) is attained and (5.3)
holds. Let us fix t ∈ {0, 1, . . . , T − 1} throughout the proof.

We first prove (i). Let Wm be a sequence decreasing a.s. to πask
t (D), and fix

Km ∈ K(t) and Zm ∈ L0
+(�,FT, P; R) so that −Wm +∑T

u=t+1 D∗
u = Km − Zm. Since

a.s. converges implies convergence in probability, we see that the sequence Km − Zm

converges in probability to some Y. Due to Theorem 3.8, we have that K(t) −
L0

+(�,FT, P; R) is P-closed. Therefore, Y ∈ K(t) − L0
+(�,FT, P; R). This proves that

−πask
t (D) +∑T

u=t+1 D∗
u ∈ K(t) − L0

+(�,FT, P; R).
Next, we show that (ii) holds. We begin by showing that

πask
t (D) ≥ ess sup

Q∈R(t)
EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
.(5.5)
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By (i), we have that πask
t (D) ∈ Wa(t, D), so there exists K∗ ∈ K(t) so that

K∗ + πask
t (D) −

T∑
u=t+1

D∗
u ≥ 0.(5.6)

We are assuming that NAEF is satisfied, so according to Theorem 3.13 there exists a risk-
neutral measure Q∗. Because any risk-neutral measure Q satisfies Q ∈ R(t), we obtain
that Q∗ ∈ R(t). By taking the conditional expectation with respect to Ft under Q∗ of
both sides of the last inequality we deduce that

πask
t (D) + EQ∗ [K∗|Ft] ≥ EQ∗

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
.

According to part (i) of Lemma 5.6, we have that EQ∗ [K∗|Ft] ≤ 0. As a result, πask
t (D) ≥

EQ∗
[∑T

u=t+1 D∗
u

∣∣Ft
]
. Taking the essential supremum of both sides of the last inequality

over R(t) proves that (5.5) holds.
Next, we show that

πask
t (D) ≤ ess sup

Q∈R(t)
EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
.(5.7)

By (i), we have that πask
t (D) > −∞, so we may take X ∈ L0(�,Ft, P; R) so that πask

t (D) >

X. We now prove by contradiction that NA holds forKb(t, X). Toward this aim, we assume
that there exist K ∈ K(t), ξ ∈ L∞

+ (�,Ft, P; R), and �0 ⊆ � with P(�0) > 0 so that

K + ξ

(
X −

T∑
u=t+1

D∗
u

)
≥ 0 a.s., K + ξ

(
X −

T∑
u=t+1

D∗
u

)
> 0 a.s. on �0.(5.8)

Since NA is satisfied for underlying marketK, we have from (5.8) that there exists �1 ⊆ �0

with P(�1) > 0 such that �1 ∈ Ft and ξ > 0 a.s. on �1. Otherwise, our assumption that
NA holds is contradicted. Of course, if �1 ⊆ �0 is any set such that �1 ∈ Ft, P(�1) > 0,
and ξ = 0 a.s. on �1, then 1�1 K ∈ K(t) ∈ K satisfies 1�1 K ≥ 0 a.s., and 1�1 K > 0 a.s. on
�1, which violates that NA is satisfied.

Moreover, we observe that X −∑T
u=t+1 D∗

u ≥ 0 a.s. on �1. If there exists �2 ⊆ �1 with
P(�2) > 0 such that �2 ∈ Ft and X −∑T

u=t+1 D∗
u < 0 a.s. on �2, then from (5.8) we see

that K ≥ a.s., and K > 0 a.s. on �2, which contradicts that NA holds for K.
Now, let us define

X̃ := 1�1 X + 1(�1)c πask
t (D), K̃ := 1�1

K
supω∈�1{ξ (ω)} + 1(�1)c K∗.

From (5.6), we immediately have that

K̃ + X̃ −
T∑

u=t+1

D∗
u = K∗ + πask

t (D) −
T∑

u=t+1

D∗
u ≥ 0 a.s. on (�1)c.
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On the other hand, from (5.8) and since X −∑T
u=t+1 D∗

u ≥ 0 a.s. on �1, we see that

K̃ + X̃ −
T∑

u=t+1

D∗
u = K

supω∈�1{ξ (ω)} + X −
T∑

u=t+1

D∗
u ≥ 0 a.s. on �1.

Consequently, K̃ + X̃ −∑T
u=t+1 D∗

u ≥ 0 a.s. on �. Now, since 0 ≤ 1/ supω∈�1{ξ (ω)} < ∞,
and because K(t) is a convex cone that is closed with respect to multiplication by random
variables in L∞

+ (�,Ft, P; R), we have that K̃ ∈ K(t). Therefore, X̃ ∈ Wa(t, D). How-
ever, since X̃ satisfies X̃ ≤ πask

t (D) and P(X̃ < πask
t (D)) > 0, we have that X̃ ∈ Wa(t, D)

contradicts πask
t (D) = ess inf Wa(t, D). Thus, NA holds for Kb(t, X).

By assumption, EF holds for Kb(t, X), so NAEF is satisfied for Kb(t, X). According
to Lemma A.1 there exists Q̂ ∈ Rb(t, X). In view of the claim (iii) in Lemma 5.6, we see
that

ζ X + EQ̂[K|Ft] ≤ ζ EQ̂

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
, K ∈ K(t), ζ ∈ L∞

+ (�,Ft, P; R).

Since 0 ∈ K(t) and 1 ∈ L∞
+ (�,Ft, P; R), we obtain that X ≤ EQ̂[

∑T
u=t+1 D∗

u |Ft]. Now,
because Rb(t, X) ⊆ R(t), we have that Q̂ ∈ R(t). Hence,

X ≤ EQ̂

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
≤ sup
Q∈R(t)

EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
.(5.9)

The random variable X < πask
t (D) is arbitrary, so for any scalar ε > 0 we may take

X := πask
t (D) − ε. From (5.9), we see that

πask
t (D) ≤ sup

Q∈R(t)
: EQ

[
T∑

u=t+1

D∗
u

∣∣∣∣Ft

]
+ ε, ε > 0.

Letting ε approach zero shows that (5.7) holds. This completes the proof of (i). �
REMARK 5.8. An open question that remains is whether R(t) can be replaced by

R(0) in the representations in Theorem 5.7. In the arguments presented in this paper, it is
more convenient to work with R(t) than R(0) because K(t) is closed under multiplication
by random variables in L∞

+ (�,Ft, P; R). In contrast, the set K(0) is only closed under
multiplication by random variables in L∞

+ (�,F0, P; R).

6. CONCLUSIONS

In this paper, no-arbitrage pricing theory is extended to dividend-paying securities in
discrete-time markets with transaction costs. A version of the Fundamental Theorem of
Asset Pricing is proved under the efficient friction assumption, and the representations
for the superhedging ask prices and the subhedging bid prices are given. As usual, the
proof of the Fundamental Theorem of Asset Pricing relies on showing that the set of all
claims that can be superhedged at zero cost is closed (under convergence in probability).
In the special case when there are no transaction costs on the dividends paid by the
security, the no-arbitrage condition under the efficient friction assumption is proved to
be equivalent to the existence of a CPS. The general case, in which there are transaction
costs on the dividends, is open.
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The study conducted in this paper has been motivated by questions of valuation of
credit default swaps and interest rate swaps subject to bid–ask transaction costs. The
extensions to other types costs, such as funding costs, is important and should be studied
in the future.

APPENDIX

LEMMA A.1. For each t ∈ {0, 1, . . . , T − 1} and W ∈ L0(�,Ft, P; R), if the no-arbitrage
condition under the efficient friction assumption is satisfied for Ka(t, W) (Kb(t, W)), then
Ra(t, W) �= ∅ (Rb(t, W) �= ∅).

Proof. Let us first fix t ∈ {0, 1, . . . , T − 1} and W ∈ L0(�,Ft, P; R). We only prove
the lemma for Ka(t, W), because the proof for Kb(t, W) is similar. Instead of working
with Ka(t, X), we will work with the more mathematically convenient set

Ka(t, W) := {G(φ, ξ, t, W) : φ ∈ P(t), ξ ∈ L∞
+ (�,Ft, P; R)

}
,

where P(t) is the set

P(t) := {φ ∈ P : φ j is a.s. bounded for j ∈ J ∗, φs = 1{t+1≤s}φs for all s ∈ T ∗},

and

(A.1)

G(φ, ξ, t, W) :=
N∑

j=1

φ
j
T

(
1{φ j

T≥0} Pbid,j,∗
T + 1{φ j

T<0} Pask,j,∗
T

)

−
N∑

j=1

T∑
u=t+1

�φ j
u

(
1{�φ

j
u ≥0} Pask,j,∗

u−1 + 1{�φ
j
u <0} Pbid,j,∗

u−1

)

+
N∑

j=1

T∑
u=t+1

φ j
u

(
1{φ j

u ≥0} Aask,j,∗
u + 1{φ j

u <0} Abid,j,∗
u

)+ ξ

(
−W +

T∑
u=t+1

D∗
u

)

for all RN-valued stochastic processes

(φs)T
s=1 ∈ L0(�,FT, P; RN) × · · · × L0(�,FT, P; RN),

and random variables ξ ∈ L∞
+ (�,FT, P; R).

Since Ka(t, W) = Ka(t, W), we may equivalently prove that Ka(t, W) −
L0

+(�,FT, P; R) is P-closed whenever NAEF is satisfied for Ka(t, W). Let Xm ∈
Ka(t, W) − L0

+(�,FT, P; R) be a sequence converging in probability to some X. We
may find a subsequence Xkm that converges a.s. to X. With an abuse of notation we
denote this subsequence by Xm. By the definition of Ka(t, W), we may find φm ∈ P(t),
ξm ∈ L0

+(�,Ft, P; R), and Zm ∈ L0
+(�,FT, P; R) so that Xm = G(φm, ξm, t, W) − Zm.

Using the same arguments as in Step 1 in the proof of Theorem 3.8, we prove that
lim supm ‖φm

s ‖ < ∞ for all t ∈ T ∗ and lim supm ξm < ∞. Then, we apply Lemma 3.6
to show that we may find a strictly increasing set of positive, integer-valued, FT−1

measurable random variables σ m such that φσ m
converges a.s. to some bounded a.s.
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predictable process φ, and ξσ m
converges a.s. to some ξ ∈ L∞

+ (�,Ft, P; R). This gives
us that G(φσ m

, ξσ m
, t, W) − Xσ m

converges a.s. to some nonnegative random variable.
Therefore, Ka(t, W) − L0

+(�,FT, P; R) is P-closed.
We now argue that there exists a risk-neutral measure for Ka(t, W). Toward this, we

define the convex cone Ca := (Ka(t, W) − L0
+(�,FT, P; R)) ∩ L1(�,FT, P; R). Due to

the closedness property of Ka(t, W) − L0
+(�,FT, P; R), we have that the set Ca is closed

in L1(�,FT, P; R). As in the proof of Theorem 3.13, we may construct a measure Q ∈ Z
such that W is Q-integrable, and EQ[Ka ] ≤ 0 for all Ka ∈ Ka(t, X). This completes the
proof. �
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OPTION PRICING AND HEDGING WITH SMALL TRANSACTION COSTS
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An investor with constant absolute risk aversion trades a risky asset with general
Itô-dynamics, in the presence of small proportional transaction costs. In this setting,
we formally derive a leading-order optimal trading policy and the associated welfare,
expressed in terms of the local dynamics of the frictionless optimizer. By applying these
results in the presence of a random endowment, we obtain asymptotic formulas for
utility indifference prices and hedging strategies in the presence of small transaction
costs.

KEY WORDS: transaction costs, indifference pricing and hedging, exponential utility, asymptotics.

1. INTRODUCTION

The pricing and hedging of derivative securities is a central theme of mathematical fi-
nance. In complete markets, the risk incurred by selling any claim can be offset completely
by dynamic trading in the underlying. Then, there is only one price compatible with the
absence of arbitrage, namely, the initial value of the replicating portfolio. This line of
reasoning is torn to pieces by the presence of even the small bid-ask spreads present in the
most liquid financial markets. Transaction costs make (super-)replication prohibitively
expensive (Soner et al. 1995), thereby calling for approaches that explicitly balance the
gains and costs of trading.

An economically appealing choice is the utility-indifference approach put forward
by Hodges and Neuberger (1989) as well as Davis, Panas, and Zariphopoulou (1993).1

For an investor with given preference structure, the idea is to determine a “fair” price
by matching the maximal expected utilities that can be attained with and without the
claim. Both Hodges and Neuberger (1989) and Davis et al. (1993) focus on investors with
constant absolute risk aversion for tractability. Nevertheless, the numerical computation
of the solution turns out to be quite challenging, involving multidimensional nonlinear
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Černý, Christoph Czichowsky, Paolo Guasoni, Marcel Nutz, and Mete Soner for fruitful discussions. They
also thank Ren Liu for his careful reading of the manuscript, and two anonymous referees for their pertinent
remarks. Part of this work was completed while the second author was visiting Columbia University. He
thanks Ioannis Karatzas and the university for their hospitality.

Manuscript received September 2012; final revision received December 2012.
Address correspondence to Johannes Muhle-Karbe, ETH Zürich-Mathematics, Rämistrasse 101 Zürich
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free boundary problems already for plain vanilla call options written on a single risky
asset with constant investment opportunities.

In reality, transaction costs are small, having further declined substantially since stock
market decimalization in 2001.2 Therefore, asymptotic expansions for small spreads
have been proposed to “reveal the salient features of the problem while remaining a good
approximation to the full but more complicated model” (Whalley and Wilmott 1997).
For small costs, a formal asymptotic analysis of the model of Davis et al. (1993) has been
carried out by Whalley and Wilmott (1997).3 A different limiting regime, where absolute
risk version becomes large as the spread tends to zero, is studied by Barles and Soner
(1998). In both cases, the computation of indifference prices boils down to the solution
of certain inhomogeneous Black–Scholes equations, whereas the corresponding hedging
strategies are determined explicitly at the leading order.

For small costs, the present study provides formal asymptotics for essentially gen-
eral continuous asset price dynamics and arbitrary contingent claims. As in the ex-
tant literature, we also focus on investors with constant absolute risk aversion, for
which the cash additivity of the corresponding exponential utility functions allows to
handle the option position by a change of measure.4 Both with and without an option
position, the leading-order optimal trading strategies consist of keeping the number
of risky shares in a time and state-dependent no-trade region around their frictionless
counterparts. The width of the latter is determined by the following trade-off: large fluc-
tuations of the frictionless optimizer call for a wide buffer in order to reduce trading costs.
Conversely, wildly fluctuating asset prices cause the investor’s positions to deviate sub-
stantially from the frictionless target, thereby necessitating closer tracking. Accordingly,
the ratio of local fluctuations—measured in terms of the local quadratic variation both
for the frictionless optimizer and the risky asset—is the crucial statistic determining the
optimal trading boundaries in the presence of small transaction costs. The corresponding
welfare loss—and, in turn, the indifference price adjustments—turn out to be given by
the squared width of the no-trade region, suitably averaged with respect to both time and
states.

The pricing implications of small transaction costs depend on the interplay between
the frictionless pure investment and hedging strategies. If no trading takes place in the
absence of an option position, then the costs incurred by hedging the claims necessitate a
higher premium. This changes, however, if trades prescribed by the hedge partially offset
the rebalancing of the investor’s pure investment position. Then, maybe surprisingly, a
smaller compensation may, in fact, be sufficient for the risk incurred by selling the claims
if transaction costs are taken into consideration.

The remainder of the paper is organized as follows. The main results—explicit for-
mulas for the leading-order optimal policy and welfare—are presented in Section 2.
Subsequently, we discuss how they can be adapted to deal with utility-indifference pric-
ing and hedging. The derivations of all results are collected in Appendix A. They are
based on formal perturbation arguments, applied to the martingale optimality conditions
for a frictionless “shadow price,” which admits the same leading-order optimal strategy

2The CRSP database reports drops by almost one order of magnitude from 2001 to 2010.
3See Bichuch (2011) for a rigorous proof.
4Similar but more involved asymptotics for the optimal policy and the associated welfare can also be

obtained for general utilities and with intermediate consumption, see Soner and Touzi (2012) as well as the
forthcoming companion paper of the present study (Kallsen and Muhle-Karbe 2013). However, it is then
no longer possible to deal with option positions by a change of measure as in Section 3.
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and utility as the original market with transaction costs. A rigorous verification theorem
is a major challenge for future research.

2. OPTIMAL INVESTMENT

Consider a market with two assets, a riskless one with price normalized to one and a
risky one trading with proportional transaction costs. This means that one has to pay a
higher ask price (1 + ε)St when purchasing the risky asset but only receives a lower bid
price (1 − ε)St when selling it. Here, ε > 0 is the relative bid-ask spread and the mid price
St follows a general, not necessarily Markovian, Itô process:

dSt = bS
t dt +

√
cS

t dW t,(2.1)

for a standard Brownian motion Wt. In this setting, an investor with exponential util-
ity function U(x) = −e−px, i.e., with constant absolute risk aversion p > 0, trades to
maximize the certainty equivalent − 1

p log E[e−pXφ

T ] over all terminal wealths Xφ

T at time
T corresponding to self-financing trading strategies φt.5 The optimal number of shares
in the absence of frictions (ε = 0) is denoted by ϕt; we assume it to be a sufficiently
regular Itô process with local quadratic variation d〈ϕ〉t/dt, which is satisfied in most
applications.

The dynamics (2.1) are formulated in discounted terms. If the safe asset earns a constant
interest rate r > 0, one can reduce to this case by discounting, replacing risk aversion p
by er T p.

2.1. Optimal Policy

For small transaction costs ε, an approximately optimal6 strategy ϕε
t is to engage in

the minimal amount of trading necessary to keep the number of risky shares within the
following buy and sell boundaries around the frictionless optimizer ϕt:

�ϕ±
t = ±

(
3

2p
d〈ϕ〉t

d〈S〉t
εSt

)1/3

.(2.2)

The random and time varying no-trade region [ϕt + �ϕ−
t , ϕt + �ϕ+

t ] is symmetric around
the frictionless optimizer ϕt, and its half-width is given by the cubic root of three parts:

(i) the constant 3/2p that only depends on the investor’s risk aversion but not on the
underlying probabilistic model;

(ii) the observable (absolute) half-width εSt of the bid-ask spread;
(iii) the fluctuations of the frictionless optimizer, measured in terms of its local

quadratic variation d〈ϕ〉t, normalized by the market’s local fluctuations d〈S〉t.
Tracking more wildly fluctuating strategies requires a wider buffer to reduce trad-
ing costs. Conversely, large fluctuations in the asset prices cause large fluctuations
of the investor’s risky position, thereby necessitating closer tracking to reduce losses
due to displacement from the frictionless target position.

5The costs of setting up and liquidating the portfolio are only incurred once and are therefore of order
O(ε). Hence, they do not impact the investor’s welfare at the leading order ε2/3, and we disregard them
throughout.

6That is, this strategy matches the optimal certainty equivalent, at the leading order for small costs. See
Appendix A.2 for more details.
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Unless the planning horizon is postponed to infinity (Constantinides 1986; Davis and
Norman 1990; Shreve and Soner 1994), transaction costs introduce horizon effects even
with a constant investment opportunity set (Liu and Loewenstein 2002). Nevertheless, the
local dynamics of the frictionless optimizer ϕt alone always act as a sufficient statistic for
the asymptotically optimal trading boundaries (2.2)—the investor does not hedge against
the presence of a small constant friction. These optimal trading boundaries are “myopic”
in the sense that they are of the same form as for the local utility maximizers considered
by Martin (2011). By definition, these also behave myopically in the absence of frictions,
unlike the exponential investors considered here, whose optimal policies generally include
an intertemporal hedging term reflecting future investment opportunities. Somewhat
surprisingly, the generally different frictionless strategies enter the leading-order trading
boundaries in the same way through their local fluctuations.

More general preferences and intermediate consumption are studied by Soner and
Touzi (2012) and in a forthcoming companion paper of the present study (Kallsen and
Muhle-Karbe, 2013).

2.2. Welfare

The utility associated with the above policy can also be quantified, thereby allowing
to assess the welfare impact of transaction costs. To this end, let CE and CEε denote
the certainty equivalents without and with transaction costs ε, respectively, i.e., the cash
amounts that yield the same utility as trading optimally in the market. Then, for small
transaction costs ε:

CEε ∼ CE − p
2

EQ

[∫ T

0

(
�ϕ+

t

)2
d〈S〉t

]
,(2.3)

and this leading-order optimal performance is achieved by the policy from Section 2.1.
As the trading boundaries �ϕ+

t are proportional to ε1/3 by (2.2), the leading-order loss
due to transaction costs is therefore of order O(ε2/3) as in the Black–Scholes model
(Shreve and Soner 1994). It is given by an average of the squared half-width of the
optimal no-trade region. The latter has to be computed with respect to a clock that runs
at the speed d〈S〉t = cS

t dt of the market’s local variance, i.e., losses due to transaction
costs accrue more rapidly in times of frequent price moves. Moreover, this average has
to be determined under the marginal pricing measure Q associated with the frictionless
utility maximization problem, i.e., the equivalent martingale measure that minimizes the
entropy with respect to the physical probability. The leading-order effect of transaction
costs can therefore be interpreted as the price of a path-dependent contingent claim,
computed under the investor’s marginal pricing measure.

As first pointed out by Rogers (2004) (also compare Goodman and Ostrov 2010), the
utility loss due to transaction costs is composed of two parts. On the one hand, there is the
displacement loss due to following the strategy ϕε

t instead of the frictionless maximizer
ϕt. In addition, there is the loss due to the costs directly incurred by trading. Rogers
observed that for small transaction costs, the leading orders of these two losses coincide
for the optimal policy. For investors with constant absolute risk aversion, we complement
this by the insight that two-thirds of the leading-order welfare loss are incurred due to
trading costs, whereas the remaining one-third is caused by displacement. Surprisingly,
this holds irrespective of the model for the risky asset and the investor’s risk aversion.
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3. INDIFFERENCE PRICING AND HEDGING

Due to the cash additivity of the exponential utility function, the above results can be
adapted to optimal investment in the presence of a random endowment, thereby leading
to asymptotic formulas for utility-based prices and hedging strategies.

Indeed, suppose that at time t = 0, the investor sells a claim H maturing at time T, for
a premium π (H). Then, her investment problem becomes

supφ E
[−e−p(Xφ

T+π (H)−H)
] = e−pπ (H) E[e pH] supφ EPH

[ − e−pXφ

T
]
,

where PH is the equivalent probability with density dPH/dP = e pH/E[e pH]. Hence, we
are back in the above setting of pure investment; only the dynamics of the risky asset
St change when passing from the physical probability P to PH, and the frictionless
optimizer changes accordingly. Then, with small transaction costs ε, the optimal policy
in the presence of the random endowment −H corresponds to the minimal amount of
trading to keep the number of risky assets within the following buy and sell boundaries
around the frictionless optimizer ϕH

t :7

�ϕH,±
t =

(
3

2p
d〈ϕH〉t

d〈S〉t
εSt

)1/3

.(3.1)

Hence, at the leading order, the optimal investment strategy in the presence of a random
endowment again prescribes the minimal amount of trading to remain within a buffer
around its frictionless counterpart, whose width can be calculated from the local varia-
tions of the latter. Again, by appealing to the results for the pure investment problem,
the corresponding certainty equivalent is found to be

CEε,H ∼ CEH − p
2

EQH

[∫ T

0

(
�ϕH,+

t

)2
d〈S〉t

]
,(3.2)

where CEH and QH denote the frictionless certainty equivalent and minimal entropy
martingale measure in the presence of the claim H, respectively. With this result at hand,
the corresponding utility indifference price πε(H) of Hodges and Neuberger (1989) can be
computed by matching (3.2) with the investor’s certainty equivalent (2.3) in the absence of
the claim. At the leading order, it turns out that the frictionless indifference price π0(H)—
which makes the frictionless certainty equivalents CEH, CE with and without the claim
coincide—has to be corrected by the difference between the effects of transaction costs
with and without the claim:

πε(H) ∼ π0(H) + p
2

(
EQH

[∫ T

0

(
�ϕH,+

t

)2
d〈S〉t

]
− EQ

[∫ T

0

(
�ϕ+

t

)2
d〈S〉t

])
.(3.3)

As a consequence, the indifference price can be either higher or lower than its frictionless
counterpart, depending on whether higher or lower trading costs are incurred due to the
presence of the claim.

7Note that the square bracket processes of continuous processes are invariant under equivalent measure
changes, i.e., it does not matter whether they are computed under P or PH.
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3.1. Complete Markets

Even in the absence of frictions, utility-based prices and hedging strategies are typically
hard to compute unless the market is complete, and we first focus on this special case
in the sequel. Then, there is a unique equivalent martingale measure Q, and frictionless
indifference prices coincide with expectations under the latter:

π0(H) = EQ[H].

Moreover, any claim H can then be hedged perfectly by a replicating strategy �H
t :8

H = EQ[H] +
∫ T

0
�H

t dSt.

Consequently, the random endowment can simply be removed from the optimal invest-
ment problem:

supφ E
[−e−p(x+∫ T

0 φtdSt+π (H)−H)
] = e−p(π (H)−EQ[H])supφ E

[−e−p(x+∫ T
0 (φt−�H

t )dSt)
]
.

As a result, the optimal strategy for investors with constant absolute risk aversion is
to hedge away the random endowment and, in addition to that, invest as in the pure
investment problem:

ϕH
t = ϕt + �H

t .(3.4)

The (monetary) boundaries of the corresponding leading-order optimal no-trade region
for small transaction costs ε can, in turn, be determined by inserting (3.4) into (3.1):

�ϕ±,H
t St = ±

(
3

2p
d〈ϕ + �H〉t

d〈S〉t
S4

t

)1/3

ε1/3.(3.5)

To shed more light on this first-order correction due to the presence of small transaction
costs, write9

dϕt = �
ϕ
t dSt + aϕ

t dt, d�H
t = �H

t dSt + aH
t dt.(3.6)

The gammas �
ϕ
t and �H

t describe the sensitivities (of the diffusive parts) of the strategies
ϕt and �H

t with respect to price moves.10 With this notation,

d〈ϕ + �H〉t

d〈S〉t
S4

t = (
�

ϕ
t S2

t + �H
t S2

t

)2
.(3.7)

Hence, the width of the no-trade region (3.5) is determined by the cash-gamma of the
investor’s portfolio, that is, the sensitivity of the frictionless optimal risky position to
changes in the risky asset. If shocks to the risky asset cause the frictionless position to
move a lot, then the investor should keep a wider buffer around it to save transaction

8As this notation indicates, this is just the usual delta hedge in a Markovian setting, i.e., the derivative of
the option price with respect to the underlying.

9For dϕt = bϕ
t dt +

√
cϕ

t dWt , this is obtained by setting �
ϕ
t =

√
cϕ

t /cS
t and aϕ

t = bϕ
t − bS

t

√
cϕ

t /cS
t ; the

argument for �H is analogous.
10In a Markovian setting, Itô’s formula shows that these processes indeed coincide with the usual notion

of an option’s “gamma,” i.e., the second derivative of the option price with respect to the underlying.
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costs. For the Black–Scholes model, where the frictionless optimal risky position in the
pure investment problem is constant, (3.5) reduces to the formula derived by Whalley
and Wilmott (1997, Section 4).

Inserting (3.5) into (3.3), the corresponding utility indifference price for small trans-
action costs is found to be:

πε(H) ∼ EQ[H] +
(

9p
32

)1/3

ε2/3 EQ

[∫ T

0

[(
d〈ϕ + �H〉t

d〈S〉t

)2/3

−
(

d〈ϕ〉t

d〈S〉t

)2/3
]

S2/3
t d〈S〉t

]

= EQ[H] +
(

9p
32

)1/3

ε2/3 EQ

[∫ T

0

[∣∣�ϕ
t S2

t + �H
t S2

t

∣∣4/3 − ∣∣�ϕ
t S2

t

∣∣4/3]d〈S〉t

S2
t

]
.(3.8)

The correction compared to the frictionless model is therefore—up to a constant—
determined by the Q-expected time average of the difference between (suitable powers
of) the future cash-gamma of the investor’s optimal position with and without the option,
scaled by the infinitesimal variance of the relative returns. For the Black–Scholes model,
one readily verifies that (3.8) can be rewritten in terms of the inhomogeneous Black–
Scholes equation of Whalley and Wilmott (1997, Section 3.3).

Representation (3.8) implies that the investor should charge a higher price than in the
frictionless case if delta-hedging the option increases the sensitivity of her position with
respect to price changes of the risky asset. Conversely, a lower premium is sufficient if
delta hedging the claim reduces this sensitivity. The impact of trade size and risk aversion
depends on the relative importance of investment and hedging. Since the underlying
frictionless market is complete, the perfect hedge �H

t and, in turn, its gamma �H
t are

independent of the investor’s risk aversion, but scale linearly with the number n of claims
sold. Conversely, the optimal investment strategy ϕt and its gamma �

ϕ
t are independent of

the option position sold, but scale linearly with the inverse of risk aversion. Consequently,
the comparative statics of utility-based prices and hedges with transaction costs—which
depend on both quantities—are ambiguous in general. However, they can be analyzed
in more detail if either the option position or the pure investment dominates.

Marginal Investment. First, we focus on the case where the investor’s primary focus
lies on the pricing and risk management of her option position. This regime applies if
the cash-gamma �

ϕ
t of the pure investment under consideration is negligible compared

to its counterpart �nH
t for the option position nH. In particular, this occurs if the risky

asset is assumed to be a martingale with vanishing risk premium, as in Hodges and
Neuberger (1989), so that no investment is optimal without the option position, or in
the asymptotic regime of Barles and Soner (1998), where the option position increases
as the spread becomes small.

If the contribution of the pure investment strategy is negligible, formula (3.8) for the
indifference price per claim reads as

πε(nH)
n

∼ EQ[H] +
(

9pnε2

32

)1/3

EQ

[∫ T

0

∣∣�H
t S2

t

∣∣4/3 d〈S〉t

S2
t

]
.(3.9)

For a marginal pure investment, small transaction costs therefore always lead to a positive
price correction compared to the frictionless case. The interpretation is that the transac-
tion costs incurred by carrying out the approximate hedge necessitate a higher premium.
The size of this effect depends on the relative magnitudes of trade size, risk aversion, and
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transaction costs. Trade size n and risk aversion p both enter the leading-order correction
through their cubic roots, and therefore in an interchangeable manner.11

If the contribution of the pure investment strategy is negligible, the optimal trading
strategy in the presence of the claims can be directly interpreted as a utility-based hedge.
In view of (3.5), the latter corresponds to keeping the number of risky shares within a
no-trade region around the frictionless delta-hedge �nH

t = n�H
t ; the maximal monetary

deviations allowed are

�ϕnH,±St = ±n2/3ε1/3

p1/3

(
3
2

(
�H

t S2
t

)2
)1/3

.(3.10)

Higher risk aversion induces closer tracking of the frictionless target here, leading to
more trading and, in turn, higher prices (cf. formula (3.9)).

Semistatic Delta-Gamma Hedging. “Delta-gamma hedging” is often advocated in or-
der to reduce the impact of transaction costs (cf., e.g., Björk 2003, p. 129). The above
results allow to relate this idea to the semistatic hedging of a claim H, by dynamic trad-
ing in the underlying risky asset and a static position n′ in some other claim H′ setup
at time zero. In the frictionless case, the choice of n′ does not matter, since any such
position can be offset by delta-hedging with the underlying. With transaction costs, this
no longer remains true. Suppose the risky asset is a martingale (P = Q) and H and H′

are traded at their frictionless prices EQ[H], EQ[H′] with some transaction costs of order
O(ε). Then, (3.9) applied to the claim H − n′ H′ shows that the leading-order frictional
certainty equivalent of selling one unit of H—and hedging it with a static position of n′

units of H′ and optimal dynamic trading in the underlying—is given by

−
(

9p
32

)1/3

ε2/3 EQ

[∫ T

0

∣∣�H
t S2

t − n′�H′
t S2

t

∣∣4/3 d〈S〉t

S2
t

]
.

Maximizing this certainty equivalent to n′ therefore amounts to minimizing a suitable
average of the future (cash) gamma of the total option position H − n′ H′.

If other options are only used once for hedging, the total position should thus not
be made gamma-neutral at any one point in time. The exception is when both option
gammas are approximately constant over the horizon under consideration; then it is
optimal to make the total option position gamma-neutral. This situation occurs if the
static option position is only held briefly, and before maturity of either claim. Hence, it
seems reasonable to conjecture that one should trade to remain close to a delta-gamma
neutral position if hedging dynamically with both the underlying and an option.12

Marginal Option Position. Now, let us turn to the converse situation of a marginal
option position, i.e., the sale of a small number n of claims H. For incomplete markets
without frictions, the limiting price for n → 0, called marginal-utility-based price, is

11Barles and Soner (1998) consider the case where the product pnε2 converges to a finite limit. In the
Black–Scholes model, they characterize the limiting price per claim as the solution to an inhomogeneous
Black–Scholes equation. However, this limit does not coincide with the right-hand side of (3.9), whose
derivation assumes only transaction costs to be small while risk aversion is fixed.

12Compare Goodman and Ostrov (2011) for related results in a pure investment problem with a stock
and an option.
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a linear pricing rule, namely, the expectation under the frictionless minimal entropy
martingale measure, independent of both trade size and risk aversion. The leading-order
correction for small n is linear both in the trade size n and in the investor’s risk aversion
p (Becherer 2005; Mania and Schweizer 2006; Kallsen and Rheinländer 2011). Hence,
both quantities are interchangeable also in this setting: doubling risk aversion has the
same effect as doubling the trade size.

Let us now derive corresponding results for the incompleteness caused by imposing
small transaction costs in an otherwise complete market. Then, Taylor expanding (3.8)
for small n yields:13

πε(nH)
n

∼ EQ[H] +
(

9p
32

)1/3

ε2/3 EQ

[∫ T

0

4
3

∣∣�ϕ
t S2

t

∣∣4/3 �H
t

�
ϕ
t

d〈S〉t

S2
t

]

+ n
(

9p
32

)1/3

ε2/3 EQ

[∫ T

0

2
9

∣∣�ϕ
t S2

t

∣∣4/3
(

�H
t

�
ϕ
t

)2 d〈S〉t

S2
t

]
.

Recall that the optimal frictionless strategy ϕt and its gamma �
ϕ
t are independent of the

trade size n but scale linearly with the inverse of risk aversion p. Hence, the frictionless
scalings are robust with respect to small transaction costs: The limiting price per claim for
n → 0 is also linear in the claim, and independent of trade size and risk aversion. More-
over, these quantities both enter linearly, and therefore in an interchangeable manner, in
the leading-order correction term for small trade sizes.

For a small option position, the sign of the prize correction compared to the complete
frictionless market depends on the interplay between the pure investment strategy and the
hedge for the claim. The pure investment strategy is typically negatively correlated with
price shocks, �

ϕ
t < 0 (e.g., in the Black–Scholes model). Then, the difference between the

frictionless price and the limiting price with transaction costs is determined by the sign
of the option’s gamma. If the latter is positive as for European call or put options, then
the marginal utility-based price taking into account transaction costs is smaller than its
frictionless counterpart. This is because utility-based investment strategies are typically
of contrarian type, i.e., decreasing when the risky price rises, whereas the delta-hedge
of a European call or put is increasing with the value of its underlying. Consequently,
hedging the claim allows the investor to save transaction costs so that she is willing to
sell the claim for a smaller premium. This rationale, however, is only applicable if the
fluctuations of the hedging position are small enough to be absorbed by the investor’s
other investments. In particular, the price adjustment is always positive for a marginal
pure investment.

Let us also consider how the investor’s trading strategy changes in the presence of a
small number of claims. Taylor expanding (3.5) for small n shows that it is optimal to
refrain from trading as long as the risky position remains within a bandwidth of

�ϕnH,±
t St ∼ ±�ϕ±

t St

(
1 + 2

3
n

�H
t

�
ϕ
t

)

around the frictionless optimal position (ϕt + n�H
t )St. The interpretation for the ratio

of gammas is the same as for the corresponding utility-based prices above: if the trades
prescribed by the delta hedge partially offset moves of the pure investment strategy, then

13Here and in the sequel, we report the leading-order terms for small transaction costs ε and small trade
size n.
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the resulting reduced sensitivity to price shocks allows the investor to use a smaller no-
trade region than in the absence of the claims. As for risk aversion, note that whereas the
investor’s pure investment and the corresponding trading boundaries �ϕ±

t in the absence
of the claim scale with her risk tolerance 1/p, the adjustment due to the presence of the
claims does not. For small option positions, it is linear in trade size but independent of
risk aversion as is true for the frictionless hedge.

3.2. Incomplete Markets

In incomplete markets, simple formulas for indifference prices and hedging strategies
can typically only be obtained in the limit for a small number of claims, even in the
absence of frictions. If the trade size n is small, Mania and Schweizer (2006), Becherer
(2005), and Kallsen and Rheinländer (2011) show that the optimal strategy ϕt for the
pure investment problem should be complemented be nξt, where ξt is the mean-variance
optimal hedge for the claim, determined under the marginal pricing measure Q, i.e.,

ξt = d〈V, S〉t

d〈S〉t
,

where Vt denotes the Q-martingale generated by the payoff H. As a consequence, the
leading-order adjustment of the portfolio due to the presence of the claim is linear in
trade size and independent of risk aversion, as in the complete case discussed above.
The corresponding indifference price per claim converges to the expectation under the
marginal pricing measure, which is again independent of trade size and risk aversion. The
leading-order adjustment for larger trade sizes is given by the pn/2-fold of the minimal
Q-expected squared hedging error, i.e.,

π0(nH)
n

∼ EQ[H] + pn
2

EQ

[(
H − EQ[H] −

∫ T

0
ξt dSt

)2
]

.(3.11)

As a result, it is linear both in trade size and risk aversion. In this setting of a small
option position held in a potentially incomplete frictionless market, we now discuss the
implications of small transaction costs.

Negligible Risk Premium. Let us first consider the case where the risky asset is a
martingale under the physical probability. Then, no trading is optimal for the pure
investment problem, ϕt = 0, and the minimal entropy martingale measure coincides with
the physical probability, Q = P. As a consequence, the monetary trading boundaries
(3.1) around the frictionless strategy nξt are given by

�ϕnH,±
t St ∼ ±n2/3ε1/3

p1/3

(
3
2

d〈ξ 〉t

d〈S〉t
S4

t

)1/3

.

In view of (3.7), this is the same formula as in the complete case (3.10), with the perfect
hedge replaced by the mean-variance optimal one. In particular, the scalings in trade size
and risk aversion are robust to incompleteness in the frictionless market, as long as the
option position is small.

To determine the corresponding leading-order price correction, insert the above trad-
ing boundaries into (3.3) and note that Q = P, �ϕ+

t = 0, as well as dQnH/dP = 1 + O(n).
As a consequence,
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πε(nH)
n

∼ E[H] + pn
2

E

[(
H − E[H] −

∫ T

0
ξtdSt

)2
]

+
(

9pnε2

32

)1/3

E

[∫ T

0

(
d〈ξ 〉t

d〈S〉t
S4

t

)2/3 d〈S〉t

S2
t

]
.

The second term is the correction due to transaction costs, which once more parallels the
complete case (3.9), with the mean-variance optimal hedge again replacing the replicating
strategy. The first term is the correction (3.11) due to the incompleteness of the frictionless
market, which is proportional to the minimal squared hedging error and hence vanishes
in the complete case. At the leading order, the two price corrections therefore separate;
their relative sizes are determined by the magnitude of risk aversion p times trade size n,
compared to the spread ε.

Nontrivial Risk Premium. If the pure investment strategy ϕt is not negligible, the
trading boundaries (3.1) around the frictionless strategy ϕt + nξt are given by

�ϕnH,±
t ∼ �ϕ±

t

(
1 + 2n

3
d〈ϕ, ξ 〉t

d〈ϕ〉t

)
.

In the small claim limit, the interpretations from the complete case are therefore robust
as well: If shocks to the frictionless investment and hedging strategies are negatively
correlated, one should keep a smaller buffer with the claim, and conversely for the case
of a positive correlation.

Concerning the pricing implications of small transaction costs added to incomplete
frictionless markets, the situation is somewhat more involved. The reason is that the
presence of the claim changes the impact of the transaction costs in two different ways.
On the one hand, it affects the trading strategy that is used: the investor passes from
staying within �ϕ±

t around the pure investment strategy ϕt, to keeping within �ϕ
nH,±
t

around ϕnH
t = ϕt + nξt + O(n2). On the other hand, even after hedging the claim, the

latter still induces some unspanned risk in incomplete markets, and therefore affects
the investor’s marginal evaluation rule. That is, the marginal pricing measure changes
from Q, with density proportional to the marginal utility U ′(

∫ T
0 ϕtdSt) associated with

the pure investment strategy, to QnH, with density proportional to the marginal utility
augmented by the n claims, U ′(

∫ T
0 ϕH

t dSt − nH) (compare Owen 2002, Theorem 1.1). By
formula (3.3) and Taylor expansion for small n, the leading-order price impact of small
transaction costs is then found to be given by

p
2

(
EQ

[∫ T

0

4n
3

(
�ϕ+

t

)2 d〈ϕ, ξ 〉t

d〈ϕ〉t
d〈S〉t

]
+ E

[(
dQnH

dP
− dQ

dP

) ∫ T

0

(
�ϕ+

t

)2
d〈S〉t

])
.

The first term is due to changing the trading strategy; it is already visible for complete
frictionless markets. The second term reflects the change of the marginal pricing measure
due to the presence of the claim, which does not take place in complete frictionless
markets with a unique equivalent martingale measure. As for the hedging strategy above,
the sign of the first term depends on the correlation of shocks to investment and hedging
strategies. To examine the sign of the second term, notice that ϕH

t = ϕt + nξt + O(n2),
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Taylor expansion, and the Q-martingale property of the wealth process
∫ T

0 ξtdSt yield

dQnH

dP
= e−p(

∫ T
0 (ϕt+nξt)dSt+O(n2)−nH)

E
[
e−p(

∫ T
0 (ϕt+nξt)dSt+O(n2)−nH)

]
= dQ

dP

(
1 + np

(
H − EQ[H] −

∫ T

0
ξtdSt

))
+ O(n2).

As a result, the second term in the price impact of small transaction costs is given by the
covariance between the shortfall of the frictionless utility-based hedge and the cumulated
transaction costs effect, measured by the average squared width of the no-trade region:

E

[(
dQnH

dP
− dQ

dP

)∫ T

0

(
�ϕ+

t

)2
d〈S〉t

]

∼ npEQ

[(
H − EQ[H] −

∫ T

0
ξtdSt

)∫ T

0

(
�ϕ+

t

)2
d〈S〉t

]
.

Hence, incompleteness of the frictionless market increases the impact of transaction
costs, if these tend to accrue more rapidly when the imperfect utility-based hedge also
does badly, i.e., when the different sources of incompleteness tend to cluster. In contrast,
the premium for the option is decreased if the two risks are negatively correlated and
thereby diversify the investor’s portfolio. The same correlation adjustment also occurs
in frictionless markets, when passing from the marginal pricing measure for the pure
investment problem to its counterpart in the presence of a small option position. In
this sense, the marginal pricing implications of transaction costs are therefore the same
as for selling a path-dependent option with payoff

∫ T
0 (�ϕ+

t )2d〈S〉t. It is important to
emphasize, however, that this is not the case at all for the corresponding hedge.

APPENDIX A: DERIVATION OF THE MAIN RESULTS

In the following, the main results are derived by applying formal perturbation arguments
to the martingale optimality conditions for a frictionless shadow price. The latter is a
“least favorable” frictionless market extension in the sense that it evolves in the bid-
ask spread, thereby leading to potentially more favorable trading prices, but admits an
optimal policy that only entails the purchase resp. sale of risky shares when the shadow
price coincides with the ask resp. bid price.

The observation that such a shadow price should always exist can be traced back to
Jouini and Kallal (1995) as well as Cvitanić and Karatzas (1996) (also cf. Loewenstein
2002). Starting with Kallsen and Muhle-Karbe (2010), this concept has recently also
been used for the computation and verification of optimal policies in simple settings.
Since shadow prices are not known a priori, they have to be determined simultaneously
with the optimal policy. Here, we show how to do so for general continuous asset prices,
approximately for small costs. In contrast to most previous asymptotic results, we do not
first solve the problem for arbitrary costs ε > 0, and then expand the solution around
ε = 0. Instead, we directly tackle the much simpler approximate problem for ε ∼ 0, in
the same spirit as in the approach of Soner and Touzi (2012).

Throughout, mathematical formalism is treated liberally. For example, we do not
state and verify technical conditions warranting the uniform integrability of local
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martingales, interchange of integration and differentiation, and the uniformity of es-
timates. In particular, the Landau symbols O(·) and o(·) refer to pointwise estimates,
with the implicit assumption of enough regularity in time and states to eventually turn
these into an estimate of the expected utility generated by the approximately optimal pol-
icy. Rigorous proofs have been worked out in the present setting for the Black–Scholes
model (Bichuch 2011; Guasoni and Muhle-Karbe 2015), and by Soner and Touzi (2012)
for an infinite-horizon consumption problem in a Markovian setup.

A.1. Notation

Throughout, we write φ • S for the stochastic integral
∫ ·

0 φtdSt. The identity process
is denoted by It = t and for any Itô process X, we write bX and σ X for its local drift and
diffusion coefficients, respectively, in the sense that dXt = bX

t dt + σ X
t dW t for a standard

Brownian motion W. Finally, for Itô processes X and Y, we denote by cX,Y
t = d〈X, Y〉t/dt

their local quadratic covariation; if X = Y, we abbreviate to d〈X〉t/dt = cX,X
t = cX

t .

A.2. Martingale Optimality Conditions

In this section, we formally derive conditions ensuring that a family (ϕε)ε>0 of frictional
strategies is approximately optimal as the spread ε becomes small. For the convenience
of the reader, we first briefly recapitulate their exact counterparts in the frictionless case.

Frictionless Optimality Conditions. In the absence of transaction costs (ε = 0), the
following duality result is well known (cf., e.g., Delbaen et al. 2002): The wealth process
x + ϕ • S corresponding to a trading strategy ϕ is optimal, if (and essentially only if)
there exists a process Z satisfying the following optimality conditions:

(i) Z is a martingale.
(ii) ZS is a martingale.

(iii) ZT = U ′(x + ϕ • ST).

The first two conditions imply that Z is—up to normalization—the density of an
equivalent martingale measure Q for S. The third identifies it as the solution to a dual
minimization problem, linked to the primal maximizer by the usual first-order condition.

Let us briefly recall why conditions (i)–(iii) imply the optimality of ϕ. To this end, let
ψ be any competing strategy. Then, the concavity of the utility function U and condition
(iii) imply

E[U(x + ψ • ST)] ≤ E[U(x + ϕ • ST)] + E[U ′(x + ϕ • ST)(ψ − ϕ) • ST]

= E[U(x + ϕ • ST)] + E[Z0]EQ[(ψ − ϕ) • ST].

Since S and, in turn, the wealth process (ψ − ϕ) • S is a Q-martingale by conditions (i)
and (ii), the second expectation vanishes and the optimality of ϕ follows.

Approximate Optimality Conditions with Transaction Costs. Now, let us derive approx-
imate versions of conditions (i)–(iii) in the presence of small transaction costs ε, ensuring
the approximate optimality of a family (ϕε)ε>0 of strategies, at the leading order O(ε2/3) as
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ε becomes small. The exact optimal strategies converge to their frictionless counterpart.
Hence, it suffices to consider families (ψε)ε>0 of strategies converging to the frictionless
optimizer ϕ, i.e., ψε = ϕ + o(1).

Let (ϕε)ε>0 be a candidate family of strategies whose optimality we want to verify. As
above, for any family of competitors (ψε)ε>0, the concavity of U implies:

E
[
U

(
Xψε

T

)] ≤ E
[
U

(
Xϕε

T

)] + E
[
U ′(Xϕε

T

)(
Xψε

T − Xϕε

T

)]
,(A.1)

where Xψε

T , Xϕε

T denote the payoffs generated by trading the strategies with transaction
costs. Now, suppose we can find shadow prices Sε evolving within the bid-ask spreads
(1 ± ε)S, matching the trading prices (1 ± ε)S in the original market with transaction
costs whenever the respective strategies ϕε trade. Then, the frictional wealth process
associated with ϕε evidently coincides with its frictionless counterpart for Sε, i.e., Xϕε

T =
x + ϕε • Sε

T. For any other strategy, trading in terms of Sε rather than with the original
bid-ask spread can only increase wealth, since trades are carried out at potentially more
favorable prices: Xψε

T ≤ x + ψε • Sε
T. Together with (A.1), this implies:

E
[
U

(
Xψε

T

)] ≤ E
[
U

(
Xϕε

T

)] + E
[
U ′(Xϕε

T

)(
ψε − ϕε

) • Sε
T

]
.(A.2)

Now, suppose we can find a process Zε satisfying the following approximate versions of
the frictionless optimality conditions (i)–(iii) above:
(iε) Zε is approximately a martingale, in that its drift rate bZε

is of order O(ε2/3).
(iiε) Zε Sε is approximately a martingale, in that its drift rate bZε Sε

is of order O(ε2/3).
(iiiε) Zε

T = U ′(x + ϕε • Sε
T) + O(ε2/3).

Then, since ψε − ϕε = o(1), condition (iiiε) implies that (A.2) can be rewritten as

E
[
U

(
Xψε

T

)] ≤ E
[
U

(
Xϕε

T

)] + E
[
Zε

T

(
(ψε − ϕε) • Sε

T

)] + o(ε2/3).

Applying integration by parts twice yields

Zε((ψε − ϕε) • Sε) = Zε(ψε − ϕε) • Sε + ((ψε − ϕε) • Sε) • Zε + (ψε − ϕε) • 〈Zε, Sε〉
= ((ψε − ϕε) • Sε − (ψε − ϕε)Sε) • Zε + (ψε − ϕε) • (Zε Sε),

and, in turn,

E
[
U

(
Xψε

T

)] ≤ E
[
U

(
Xϕε

T

)]
+ E

[
((ψε − ϕε) • Sε − (ψε − ϕε)Sε) • Zε

T + (ψε − ϕε) • (Zε Sε)T
] + o(ε2/3).

The second expectation is given by the integrated expected drift rate of its argument

((ψε − ϕε) • Sε − (ψε − ϕε)Sε) bZε + (ψε − ϕε)bZε Sε

,

which is of order o(ε2/3), by conditions (iε) and (iiε) above and because ψε − ϕε = o(1).
Hence,

E
[
U

(
Xψε

T

)] ≤ E
[
U

(
Xϕε

T

)] + o(ε2/3),

and the expected utilities of the candidate family (ϕε)ε>0 therefore dominate those of
the competitors (ψε)ε>0 at the leading order O(ε2/3). In summary, the strategies (ϕε)ε>0

are indeed approximately optimal if we can find a shadow price Sε and an approximate
martingale density Zε satisfying the approximate optimality conditions (iε)–(iiiε).
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A.3. Derivation of a Candidate Policy

We now look for strategies ϕε, shadow prices Sε, and approximate martingale densities
Zε satisfying the approximate optimality conditions (iε) − (iiiε). Write

ϕε = ϕ + �ϕ, Sε = S + �S.

Motivated by previous asymptotic results (Whalley and Wilmott 1997; Bichuch 2011;
Guasoni and Muhle-Karbe 2015; Soner and Touzi 2012), we assume that the devia-
tions of the optimal strategy with transaction costs from the frictionless optimizer are
asymptotically proportional to the cubic root of the spread:

�ϕ = O(ε1/3).(A.3)

Since the shadow price Sε has to lie in the bid-ask spread (1 ± ε)S, we must have

�S = O(ε).(A.4)

In addition, we assume that �S is an Itô process with drift and diffusion coefficients
satisfying

b�S = O(ε1/3), σ�S = O(ε2/3).(A.5)

All of these assumptions will turn out to be consistent with the results of our calculations
below, see Section 1.4. Now, notice that

ϕε • Sε = ϕ • S + �ϕ • S + O(ε2/3),

because (A.3) and (A.5) give �ϕ • �S = O(ε2/3), and integration by parts in conjunction
with (A.4) and (A.5) shows ϕ • �S = O(ε2/3). Therefore,

U ′(x + ϕε • Sε
T

) = pe−p(x+ϕε•Sε
T ) = pe−p(x+ϕ•ST )(1 − p�ϕ • ST) + O(ε2/3).

The factor pe−p(x+ϕ•ST ) coincides with the terminal value of the frictionless martingale
density Z (cf. the frictionless optimality condition (iii) above). The process

Zε = Z(1 − p�ϕ • S)

therefore is a martingale (because Z is the density of a martingale measure for S),
satisfying condition (iε), for which (iiiε) holds as well. It remains to determine �S and
�ϕ for which (iiε) holds, too. Integration by parts yields

Zε Sε − Zε
0 Sε

0 = Sε • Zε + Zε • Sε + 〈Zε, Sε〉.

Since the martingale Zε has zero drift, it follows that the drift rate of Zε Sε is given by

bZε Sε = Zε(bS + b�S) + cZε,S+�S.(A.6)

As b�S = O(ε1/3) by assumption, and Zε = Z(1 − p�ϕ • S), it follows that

Zε(bS + b�S) = Z
(
bS − p(�ϕ • S)bS + b�S) + O(ε2/3).(A.7)
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Moreover, writing the frictionless martingale density as a stochastic exponential Z =
E(N) = 1 + Z • N, it follows from (A.5) and integration by parts that

〈Zε, S + �S〉 = 〈Z(1 − p�ϕ • S), S〉 + O(ε2/3)

= Z • (〈N, S〉 − p(�ϕ • S) • 〈N, S〉 − p�ϕ • 〈S, S〉) + O(ε2/3),

so that

cZε,S+�S = Z(cN,S − p(�ϕ • S)cN,S − p�ϕcS) + O(ε2/3).(A.8)

Then, inserting (A.7) and (A.8) into (A.6) and using that bS + cN,S = 0 by Girsanov’s
theorem because ZS = E(N)S is a martingale by the frictionless optimality condition (ii)
gives

bZε Sε = Z(bS + cN,S − p(�ϕ • S)(bS + cN,S) + b�S − p�ϕcS) + O(ε2/3)

= Z(b�S − p�ϕcS) + O(ε2/3).

To make the drift of Zε Sε vanish—up to terms of order O(ε2/3)—in accordance with
(iiε), it is therefore necessary that

b�S = p�ϕcS + O(ε2/3).(A.9)

This drift condition naturally leads to an ansatz of the form �S = f (�ϕ). Then, since
the shadow price Sε = S + �S has to move from the ask price (1 + ε)S to the bid price
(1 − ε)S as �ϕ varies between some buy boundary �ϕ− and some sell boundary �ϕ+,
the function f has to satisfy the boundary conditions

f (�ϕ−) = εS, f (�ϕ+) = −εS.(A.10)

Moreover, even though the process �ϕ is reflected to remain between the trading bound-
aries, these singular terms should vanish in the dynamics of �S so that the shadow
price Sε = S + �S does not allow for arbitrage. By Itô’s formula, this implies that the
derivative of f should vanish at the boundaries:

f ′(�ϕ−) = 0, f ′(�ϕ+) = 0.(A.11)

The simplest family of functions capable of matching these boundary conditions is given
by the symmetric cubic polynomials

f (x) = αx3 − γ x.

With this ansatz, (A.11) gives

�ϕ± = ±
√

γ

3α
,

and (A.10) implies

γ =
(

1
2
εS

)2/3

3α1/3.
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Moreover, Itô’s formula applied to f (x) = αx3 − γ x yields

�S − �S0 = (3α�ϕ2 − γ ) • �ϕ + 3α�ϕ • 〈�ϕ,�ϕ〉.

Now, notice that the optimal trading strategy ϕε = ϕ + �ϕ with transaction costs is
necessarily of finite variation. Assuming it is also continuous then implies 〈�ϕ〉 = 〈ϕ〉.
Moreover, since ϕε is constant except at the trading boundaries (where �ϕ = �ϕ± and,
in turn, 3α�ϕ2 − γ = 0), we also have

(3α�ϕ2 − γ ) • �ϕ = −(3α�ϕ2 − γ ) • ϕ.

Thus,

�S − �S0 = −(3α�ϕ2 − γ ) • ϕ + 3α�ϕ • 〈ϕ〉,
and the drift coefficient of �S is given by

b�S = 3α�ϕcϕ + O(ε2/3).

Comparing this to the leading-order term in (A.9), we obtain

α = p
3

cS

cϕ
,

and, in turn,

γ =
(

3p1/2

2

√
cS

cϕ
S

)2/3

ε2/3

as well as

�ϕ± = ±
√

γ

3α
= ±

(
3

2p
cϕ

cS
εS

)1/3

.

At the first order, this determines the optimal strategy ϕε with transaction costs as
the minimal amount of trading necessary to remain in the randomly changing interval
[ϕ + �ϕ−, ϕ + �ϕ+] around the frictionless optimizer ϕ.

A.4. Approximate Optimality

The above considerations assumed that the coefficients α and γ are constant, but then
lead to stochastic processes αt and γt, which seems contradictory at first glance. However,
we can verify a fortiori that this choice does indeed satisfy (iε)–(iiiε). To see this set, for
α, γ as above,

�St = αt�ϕ3
t − γt�ϕt,

and let the strategy ϕε = ϕ + �ϕ correspond to the minimal amount of trading necessary
to remain within the boundaries �ϕ± around the frictionless optimizer ϕ. Then, by
definition, the process Sε := S + �S takes values in [(1 − ε)S, (1 + ε)S] and coincides
with the bid resp. ask price whenever ϕε reaches the selling boundary ϕ + �ϕ+ resp. the
buying boundary ϕ − �ϕ+ as required for a shadow price. Concerning the dynamics of
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�S, notice that integration by parts (now taking into account the stochasticity of α and
γ ) and Itô’s formula give

�S − � S0 = α • (�ϕ3) + �ϕ3 • α + 〈α, �ϕ3〉 − γ • �ϕ − �ϕ • γ − 〈γ,�ϕ〉
= (3α�ϕ2 − γ ) • �ϕ + (3α�ϕ) • 〈�ϕ〉

+ �ϕ3 • α − �ϕ • γ + (3�ϕ2) • 〈α, �ϕ〉 − 〈γ,�ϕ〉
= − (3α�ϕ2 − γ ) • ϕ + (3α�ϕ) • 〈ϕ〉

+ �ϕ3 • α − �ϕ • γ − (3�ϕ2) • 〈α, ϕ〉 + 〈γ, ϕ〉.(A.12)

Here, we have used for the last equality that ϕε = ϕ + �ϕ only moves on the set �ϕ =
�ϕ± where 3α�ϕ2 − γ = 0, and that �ϕ = −ϕ + ϕε only differs from −ϕ by a finite
variation term. If the risky asset S, the frictionless optimizer ϕ, as well as their local
quadratic variation processes cS, cϕ (and, in turn, the processes α and γ ) follow sufficiently
regular Itô processes, this representation shows that this property is passed on to �S.
Moreover, since �ϕ = O(ε1/3), γ = O(ε2/3), and α = O(1) (and the same asymptotics
are valid for the drift and diffusion coefficients of α and γ ), its diffusion coefficient
is indeed of order O(ε2/3) and its drift rate is of order O(ε1/3). More specifically, the
latter is given by b�S = 3α�ϕcϕ + O(ε2/3); hence, by definition of α, the drift condition
(A.9) and, in turn, the approximate optimality condition (iiε) are indeed satisfied for the
shadow price Sε and the strategy ϕε. Consequently, the latter is approximately optimal
for small spreads.

A.5. Computation of the Leading-Order Utility Loss

Let us now compute—at the leading order O(ε2/3)—the expected utility that can be
obtained by applying the strategy ϕε. Since the latter is approximately optimal, this
will then also determine the leading-order impact of transaction costs on the certainty
equivalent of trading optimally in the market.

To do this, the analysis of the previous section needs to be refined. Including a second
term in the Taylor expansion of the utility function, and taking into account ϕε • Sε =
ϕ • S + �ϕ • S + ϕε • �S, where ϕε • �S is of order O(ε2/3),14 gives

E
[
U

(
x + ϕε • Sε

T

)] = E[U(x + ϕ • ST)] + E[U ′(x + ϕ • ST)(�ϕ • ST + ϕε • �ST)]

+ 1
2

E[U ′′(x + ϕ • ST)(�ϕ • ST)2] + O(ε).

For the exponential utility function U(x) = −e−px, the marginal utility U ′(x + ϕ • ST)
needs to be normalized by E[U ′(x + ϕ • ST)] = −pE[U(x + ϕ • ST)] to obtain the den-
sity of an equivalent martingale measure Q for S. Since, moreover, the absolute risk-
aversion −U ′′/U ′ = p is constant, it follows that

E
[
U

(
x + ϕε • Sε

T

)] = E[U(x + ϕ • ST)]

×
(

1 − pEQ[ϕε • �ST] + p2

2
EQ[(�ϕ • ST)2]

)
+ O(ε),

14This follows using integration by parts to write ϕε • �S = �ϕ • �S + ϕ�S − ϕ0�S0 − �S • ϕ −
〈ϕ,�S〉, and recalling that the drift and diffusion coefficients of �S are of order O(ε1/3) and O(ε2/3),
respectively, whereas �S and �ϕ are of order O(ε) resp. O(ε1/3).
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where we have used that the expectation of the Q-martingale �ϕ • Svanishes. The second
correction term p2

2 EQ[(�ϕ • ST)2] represents the leading-order relative utility loss due
to displacement, incurred by trading ϕε instead of the frictionless optimizer ϕ at the
frictionless price S. The first correction term −pEQ[ϕε • �ST] measures the utility loss
incurred directly due to transaction costs, when trades are carried out at the shadow price
Sε rather than at the mid price S.

Let us first focus on the displacement loss p2

2 EQ[(�ϕ • ST)2]. Integration by parts gives

(�ϕ • ST)2 = 2(�ϕ • S)�ϕ • ST + �ϕ2 • 〈S〉T.

As the first term is a Q-martingale, it follows that the leading-order displacement loss is
given by

p2

2
EQ[(�ϕ • ST)2] = p2

2
EQ[�ϕ2 • 〈S〉T].

Now, consider the direct transaction cost loss −pEQ[ϕε • �ST]. Integration by parts and
�S = O(ε) yield

ϕ • �S = −〈ϕ, �S〉 + O(ε).

First taking into account the dynamics of �S (cf. (A.12)), and then inserting the defini-
tions of α and γ and the trading boundaries �ϕ+, as well as cS • I = 〈S〉, it follows that

−pEQ[ϕ • �ST] = −pEQ[(3α�ϕ2 − γ )cϕ • IT] + O(ε)

= −p2 EQ[(�ϕ2 − (�ϕ+)2) • 〈S〉T] + O(ε).

The remaining term −pEQ[�ϕ • �ST] can again be computed by integrating the drift
rate of the argument of the expectation (here, b�S,Q denotes the drift of �S under the
measure Q):

−pEQ[�ϕ • �ST] = −pEQ[�ϕb�S,Q • IT]

= −pEQ[�ϕ(b�S + cN,�S) • IT] = −pEQ[�ϕb�S • IT] + O(ε).

Here, the second equality follows from Girsanov’s theorem, and the third one holds since
�ϕ = O(ε1/3) and the diffusion coefficient of �S is of order O(ε2/3) by (A.12). Combined
with the drift condition (A.9) and cS • I = 〈S〉, this yields

−pEQ[�ϕ • �ST] = −p2 EQ[�ϕ2 • 〈S〉T] + O(ε).

As a consequence, the total relative utility loss directly caused by transaction costs is
given by

−pEQ[ϕε • �ST] = p2 EQ[((�ϕ+)2 − 2�ϕ2) • 〈S〉T] + O(ε).

To further simplify the formulas for both parts of the utility loss, replace—at the leading
order O(ε2/3)—the terms �ϕ2 by their expectation 1

3 (�ϕ+)2 under the uniform distri-
bution on [�ϕ−, �ϕ+] (compare Rogers 2004; Goodman and Ostrov 2010), which is
justified below.
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Then, the displacement loss is determined as p2

6 EQ[(�ϕ+)2 • 〈S, S〉T] + o(ε2/3), and
the transaction cost loss is found to be given by twice that value. Hence, the total utility
loss due to transaction costs is given by

E
[
U

(
x + ϕε • Sε

T

)] = E[U(x + ϕ • ST)]
(

1 + p2

2
EQ

[
(�ϕ+)2 • 〈S〉T

]) + o(ε2/3),

and the claimed formula for the certainty equivalent follows by taking logarithms and
Taylor expansion.

To complete the argument, it remains to verify that we can indeed pass to the uniform
distribution for �ϕ at the leading order. To this end, define D = �ϕσ S, which is an
Itô process reflected to stay between the boundaries D± = �ϕ±σ S. In the interior of
[D−, D+], the strategy ϕε is constant so that �ϕ = −ϕ. Hence, the drift rate bD and the
diffusion coefficient σ D of D are both of order O(1). Now, fix a mesh 0 = tε

0 < · · · <

tε
Nε = T with mesh size of order O(ε1/3), and write

∫ T

0
�ϕ2

ud〈S〉u =
∫ T

0
D2

udu =
Nε∑

i=1

∫ tε
i

tε
i−1

D2
udu.(A.13)

Rescale D by dividing by ε1/3 and integrating over v = u/ε2/3 instead of u, obtaining∫ tε
i

tε
i−1

D2
udu = ε4/3

∫ tε
i /ε2/3

tε
i−1/ε

2/3

(
Dε2/3v

ε1/3

)2

dv .(A.14)

The drift and diffusion coefficients of the rescaled integrand (ε−1/3 Dε2/3v )v≥0 are given
by bD

ε2/3vε
1/3 = O(ε1/3) and σ D

ε2/3v = O(1), respectively. Hence, at the leading order, it
equals driftless Brownian motion with constant volatility σ D

tε
i

on tε
i−1/ε

2/3 ≤ v ≤ tε
i /ε2/3.

Reflected Brownian motion on the interval [D−
ε2/3v/ε

1/3, D+
ε2/3v/ε

1/3] (whose boundaries
are constant and equal to D±

tε
i−1

, at the leading order) has a uniform stationary distribution
with second moment (D+

tε
i−1

)2/3ε2/3. Consequently, the ergodic theorem (Borodin and
Salminen, 2002, II.35 and II.36) implies

∫ tε
i /ε2/3

tε
i−1/ε

2/3

(
Dε2/3v

ε1/3

)2

dv = tε
i − tε

i−1

ε2/3

⎛
⎝

(
D+

tε
i−1

)2

3ε2/3
+ o(1)

⎞
⎠ .

Combining this with (A.13) and (A.14) and letting the mesh size go to zero, we obtain
the assertion: ∫ T

0
�ϕ2

ud〈S, S〉u =
∫ T

0
D2

udu = 1
3

∫ T

0

(
D+

u

)2
du + o(ε2/3).
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CONSTANTINIDES, G. (1986): Capital Market Equilibrium with Transaction Costs, J. Polit. Econ-
omy 94(4), 842–862.

CVITANIĆ, J., and I. KARATZAS (1996): Hedging and Portfolio Optimization Under Transaction
Costs: A Martingale Approach, Math. Finance 6(2), 133–165.

DAVIS, M. H. A., and A. R. NORMAN (1990): Portfolio Selection with Transaction Costs, Math.
Oper. Res. 15(4), 676–713.

DAVIS, M. H. A., V. G. PANAS, and T. ZARIPHOPOULOU (1993): European Option Pricing with
Transaction Costs, SIAM J. Control Optim. 31(2), 470–493.
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For an investor with constant absolute risk aversion and a long horizon, who trades
in a market with constant investment opportunities and small proportional transaction
costs, we obtain explicitly the optimal investment policy, its implied welfare, liquidity
premium, and trading volume. We identify these quantities as the limits of their isoe-
lastic counterparts for high levels of risk aversion. The results are robust with respect
to finite horizons, and extend to multiple uncorrelated risky assets. In this setting, we
study a Stackelberg equilibrium, led by a risk-neutral, monopolistic market maker
who sets the spread as to maximize profits. The resulting endogenous spread depends
on investment opportunities only, and is of the order of a few percentage points for
realistic parameter values.

KEY WORDS: transaction costs, long-run portfolio choice, exponential utility, trading volume

1. INTRODUCTION

Despite their singular behavior, investors with constant absolute risk aversion are familiar
figures in financial economics, thanks to their tractable character. Such investors, defined
by exponential utility functions, are indeed peculiar for both portfolios and prices. With
constant investment opportunities, they insist on keeping in risky assets a fixed amount of
money, regardless of their wealth. If asked to price a claim, their answer depends neither
on wealth, nor on risk aversion. Consuming over time, they do not disdain negative
consumption, especially at later dates. Yet, their actions are often easier to grasp than
the proper but impenetrable behavior of isoelastic investors.1 Hence, exponential utility
remains a central tool to glean insights from complex models, such as the ones with
frictions.

This paper examines the implications of exponential utility for long-run portfolio
choice with small transaction costs. For an exponential investor, with constant investment
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opportunities and a long planning horizon, we find the optimal trading policy, its welfare,
the liquidity premium, and trading volume. We then allow a risk-neutral, monopolistic
market maker to set the spread as to maximize profits, obtaining an endogenous spread
that depends on investment opportunities alone.

Our analysis leads to new economic implications, and sheds new light on existing
results. We find that investing optimally with a long horizon is equivalent to receiving, over
the same period, a fixed equivalent annuity, found explicitly, which does not depend on
the horizon. This fact is well known in the frictionless case, but fails for transaction costs
with a finite horizon, due to the spurious effects of portfolio setup and liquidation. As
in the isoelastic case, transaction costs entail a small reduction in the equivalent annuity.

The equivalent annuity, trading boundaries, and absolute turnover are inversely pro-
portional to risk aversion, as in the frictionless case, while relative turnover and the
liquidity premium are independent of risk aversion. We identify all these quantities as
the limits of their isoelastic counterparts, as relative risk aversion becomes large. This
result suggests that exponential utility is a useful tool to study isoelastic investors with
high risk aversion.

Our results are robust to finite horizons and to several assets. For a finite horizon, we
derive bounds on the investor’s certainty equivalent, the time-average of which converges
to the equivalent annuity. In a market with several uncorrelated assets, one-dimensional
trading policies remain optimal, leading to the same liquidity premia and trading vol-
umes, while equivalent annuities add in the cross-section.

Finally, we endogenize the spread by allowing a risk-neutral, monopolistic market
maker to fix it to maximize expected profits. Unlike the investor, whose policy and
welfare depend on the bid and ask prices alone, the market maker’s profits depend on
the book price, which lies within the bid-ask spread, and represents the price at which
the market maker’s inventory is valued. The resulting endogenous spread is independent
of risk aversion, and hence depends only on investment opportunities, and on the book
price. When the latter is chosen close to the ask price, realistic values of investment
opportunities lead to spreads of a few percentage points.

Our results also have novel mathematical implications. We obtain new finite-horizon
bounds, which measure the monetary value of investment opportunities for an expo-
nential investor, and are expressed in terms of the risk-neutral probability. For isoelastic
investors, such bounds involve the myopic probability, under which a hypothetical log-
arithmic investor adopts the same policy as the original investor under the physical
probability. Thus, for exponential investors, the risk-neutral probability plays a similar
role as the myopic probability for isoelastic investors. This analogy is central to obtain a
new kind of verification theorem, which stems from the finite-horizon bounds.

Our paper touches on three main strands of literature: asymptotics, shadow prices, and
exponential utility. Our contribution to asymptotics is to prove the first rigorous expan-
sions for small transaction costs and exponential utility, complementing the heuristics
of Whalley and Wilmott (1997), Mokkhavesa and Atkinson (2002), and Goodman and
Ostrov (2010), as well as results for the isoelastic case, cf. Shreve and Soner (1994), Rogers
(2004), Janeček and Shreve (2004), Gerhold, Muhle-Karbe, and Schachermayer (2012,
2013), and Bichuch (2012). Our solution is based on shadow prices, as in the recent pa-
pers Kallsen and Muhle-Karbe (2010), Gerhold et al. (2012, 2013), Gerhold et al. (2013),
Herczegh and Prokaj (2011), and Choi, Sirbu, and Žitković (2012).

More broadly, our results are relevant for the literature on exponential utility with
transaction costs, both in the context of portfolio choice (Mokkhavesa and Atkinson
2002; Liu 2004; Goodman and Ostrov 2010) and of option pricing (Davis, Panas, and
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Zariphopoulou 1993; Whalley and Wilmott 1997; Barles and Soner 1998). In contrast
to these papers, we remove consumption and random endowment from our model,
focusing instead on long-horizon asymptotics for tractability. This approach is common
for isoelastic utilities (Taksar, Klass, and Assaf 1988; Dumas and Luciano 1991; Gerhold
et al. 2013), but, unaccountably, it seems unexplored in the exponential class. Our analysis
of endogenous spreads is closest to the work of Luciano (2012) on equilibrium between
isoelastic investors and dealers, with the difference that we pair an exponential investor
with a risk-neutral dealer.

Finally, this paper on constant absolute risk aversion complements the analysis of
constant relative risk aversion in Gerhold et al. (2013) (henceforth GGMKS). To facilitate
comparison, the main results in both papers are stated in the same format and with the
same notation. Yet, each paper addresses a different set of implications, which is specific
to the preference class considered.

The rest of the paper is organized as follows. Section 2 presents the model and our
main results. Their main implications are discussed in Section 3. The main results are
first derived informally in Section 4, then proved in Section 5.

2. MODEL AND MAIN RESULT

2.1. Market

The market has a safe asset S0
t = 1 and a risky asset, trading at ask (buying) price S.

The bid (selling) price is S(1 − ε), hence ε ∈ (0, 1) is the relative bid-ask spread. Denoting
by W a standard Brownian motion, the ask price S follows

d St/St = μdt + σdWt,

where μ > 0 is the expected excess return and σ > 0 is the volatility. The mean–variance
ratio μ̄ = μ/σ 2 turns out to be a key parameter in the solution.

A self-financing trading strategy is an R
2-valued predictable process (ϕ0, ϕ) of finite

variation: (ϕ0
0−, ϕ0−) = (ξ 0, ξ ) ∈ R

2 represents the initial positions (in units) in the safe
and risky asset, and ϕ0

t and ϕt denote the positions held at time t ≥ 0. Writing ϕt =
ϕ

↑
t − ϕ

↓
t as the difference between the cumulative number of shares bought (ϕ↑

t ) and sold
(ϕ↓

t ) by time t, the self-financing condition dictates that the cash balance ϕ0 changes only
due to trading activity in the number of shares ϕ:

dϕ0
t = −Stdϕ

↑
t + (1 − ε)Stdϕ

↓
t .

Trading strategies are further restricted from unlimited borrowing by the following ad-
missibility condition, which rules out doubling strategies: 2

DEFINITION 2.1. A self-financing strategy (ϕ0, ϕ) is admissible if the risky position ϕS
is a.s. uniformly bounded.

The liquidation value of the wealth associated to an admissible strategy is denoted by

�
ϕ

T = ϕ0
T + ϕ+

T (1 − ε)ST − ϕ−
T ST.

2The definition of admissibility given here is sufficient to guarantee an interior solution in our setting,
and has a clear interpretation. In more abstract models, admissibility is typically defined in terms of pricing
measures, cf. Delbaen et al. (2002), Kabanov and Stricker (2002), and Schachermayer (2003).
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2.2. Preferences

An investor with constant absolute risk aversion α > 0, which corresponds to the expo-
nential utility function U(x) = −e−αx, maximizes the certainty equivalent U−1(E[U(�)]),
which for exponential utility reduces to:

− 1
α

log E
[
e−α�

ϕ
T

]
.

In a market with constant investment opportunities, the certainty equivalent increases
linearly with the horizon. Hence, we focus on the certainty equivalent per unit of time,
which is the same as a fixed annuity.

DEFINITION 2.2. A strategy (ϕ0, ϕ) is long-run optimal if it maximizes the equivalent
annuity

E Aϕ
α = lim inf

T→∞
− 1

αT
log E

[
e−α�

ϕ
T

]
.(2.1)

E Aα = maxϕ E Aϕ
α denotes the maximal equivalent annuity.

2.3. Main Result

The next theorem contains our main results. Recall that μ̄ = μ/σ 2 is the mean–variance
ratio.

THEOREM 2.3. An investor with constant absolute risk aversion α > 0 trades to maximize
the equivalent annuity. Then, for a small bid-ask spread ε > 0:

(i) (Equivalent Annuity) For the investor, trading the risky asset with transaction costs
is equivalent to leaving all wealth in the safe asset, while receiving the equivalent
annuity (the gap λ̄ is defined in (iv) below):

E Aα = σ 2β̄ = σ 2

2α
(μ̄2 − λ̄2).

(ii) (Liquidity Premium) Trading the risky asset with transaction costs is equivalent to
trading a hypothetical asset, at no transaction costs, with the same volatility σ , but
with a lower expected excess return σ 2

√
μ̄2 − λ̄2. Thus, the liquidity premium is

Li Pr = σ 2
(

μ̄ −
√

μ̄2 − λ̄2

)
.

(iii) (Trading Policy) It is optimal to keep the value of the risky position within the buy
and sell boundaries

ηα− = μ̄ − λ̄

α
, ηα+ = μ̄ + λ̄

α
,

where ηα− and ηα+ are evaluated at ask and bid prices, respectively.
(iv) (Gap) The gap λ̄ is the unique value for which the solution of the initial value

problem

w ′(y) − w(y)2 + (2μ̄ − 1) w(y) − (μ̄ − λ̄)(μ̄ + λ̄) = 0

w(0) = μ̄ − λ̄,
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also satisfies the terminal value condition

w
(

log
(

u(λ̄)

l(λ̄)

))
= μ̄ + λ̄, where u(λ̄) = μ̄ + λ̄

(1 − ε)α
and l(λ̄) = μ̄ − λ̄

α
.

In view of the explicit formula for w(y, λ̄) in Lemma 5.1 below, this is a scalar
equation for λ̄.

(v) (Trading Volume) Let μ 
= σ 2/2.3 Then, relative turnover, defined as shares traded
d||ϕ||t divided by shares held |ϕt|, has long-term average

ShTu = lim
T→∞

1
T

∫ T

0

d‖ϕ‖t

|ϕt| = σ 2

2

(
1 − 2μ̄

(u(λ̄)/l(λ̄))1−2μ̄ − 1
+ 2μ̄ − 1

(u(λ̄)/l(λ̄))2μ̄−1 − 1

)
.

Absolute turnover, defined as value of wealth traded, has long-term average:4

WeTuα = lim
T→∞

1
T

(∫ T

0
(1 − ε)Stdϕ

↓
t +

∫ T

0
Stdϕ

↑
t

)

= σ 2

2

(
ηα+(1 − 2μ̄)

(u(λ̄)/l(λ̄))1−2μ̄ − 1
+ ηα−(2μ̄ − 1)

(u(λ̄)/l(λ̄))2μ̄−1 − 1

)
.

(vi) (Asymptotics) The following expansions in terms of the bid-ask spread ε hold:5

λ̄ =
(

3
4
μ̄2

)1/3

ε1/3 + O(ε),

E Aα = σ 2

2α

(
μ̄2 −

(
3
4
μ̄2

)2/3

ε2/3 + O(ε4/3)

)
,

Li Pr = σ 2

2μ̄

(
3
3
μ̄2

)2/3

ε2/3 + O(ε4/3),

ηα± = 1
α

(
μ̄ ±

(
3
4
μ̄2

)1/3

ε1/3 + O(ε)

)
,

ShTu = σ 2

2
μ̄

(
3
4
μ̄2

)−1/3

ε−1/3 + O(ε1/3),

WeTuα = 2σ 2

3α

(
3
4
μ̄2

)2/3

ε−1/3 + O(ε1/3).

The proof of Theorem 2.3 exploits the construction of a shadow price, i.e., a fictitious
risky asset evolving within the bid-ask spread, which is equivalent to the transaction cost
market in terms of both welfare and the optimal policy. This is the approach used for
power utility by Gerhold et al. (2013).

3The special case μ = σ 2/2 leads to analogous results, see GGMKS, lemma D.2.
4The number of shares is written as the difference ϕt = ϕ

↑
t − ϕ

↓
t of cumulative shares bought and sold,

and wealth is evaluated at trading prices, i.e., at the bid price (1 − ε)St when selling, and at the ask price St
when buying.

5Algorithmic calculations can deliver terms of arbitrarily high order.
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THEOREM 2.4 (Shadow price). The policy in Theorem 2.3 (i i i ) and the equivalent annuity
in Theorem 2.3 (i ) are also optimal for a frictionless risky asset with shadow price S̃, which
always lies within the bid-ask spread, and coincides with the trading price at times of trading
for the optimal policy. The shadow price follows

d S̃t/S̃t = μ̃(ϒt)dt + σ̃ (ϒt)dWt,

for deterministic functions μ̃(·) and σ̃ (·) given explicitly in Lemma 5.6. The state variable
ϒt = log(ϕt St/l(λ̄)) represents the centered logarithm of the risky position, which is a
Brownian motion with drift reflected to remain in the interval [0, log(u(λ̄)/l(λ̄))], i.e.,

dϒt = (μ − σ 2/2)dt + σdWt + d Lt − dUt.

Here, Lt and Ut are nondecreasing processes, corresponding to the relative purchases
and sales, respectively (cf. Lemma 5.9).6 In the interior of the no-trade region, i.e., when
the risky position lies in (l(λ̄), u(λ̄)), the numbers of units of the safe and risky asset are
constant, and the state variable ϒt follows Brownian motion with drift. When ϒt reaches
the boundary of the no-trade region, buying or selling takes place so as to keep it within
[l(λ), u(λ)].

3. IMPLICATIONS AND APPLICATIONS

Theorem 2.3 presents both analogies with and departures from the isoelastic case in
GGMKS. One analogy is that the trading policy depends on the market only through
the mean–variance ratio μ̄. All other quantities also only depend on μ̄ in business time,
i.e., when measured with respect to the clock τ = σ 2t running at the speed of the mar-
ket’s variance. Measured in usual calendar time t, they scale linearly with the market’s
variance σ 2.

In a departure from power utility, the gap λ̄ is independent of the investor’s risk
aversion α here. Hence, the liquidity premium and relative turnover are also common
to all investors with constant absolute risk aversion. The equivalent annuity and trading
boundaries, however, are inversely proportional to risk aversion, as in the frictionless
case, and so is absolute turnover.

Further, in this model a strategy of full investment in the risky asset is never optimal,
regardless of the risk aversion α, and the only solution without trading obtains with a null
risk premium μ̄ = 0. The absence of full risky investment is a consequence of constant
trading boundaries in terms of monetary amounts rather than fractions of wealth.

In spite of these differences, the model- and preference-free relationships for power
utilities (GGMKS, section 3.5) carry over to the exponential case. For example, the
universal relation

Li Pr ≈ 3
4
εShTu,

between the liquidity premium Li Pr , the spread ε, and the relative turnover ShTu
remains valid for exponential utilities. Thus, this relation not only holds both across
market and preference parameters, but is also the same for both families.

6The increasing processes Lt and Ut are explicitly identified by the double Skorokhod map in a finite
interval, see Kruk et al. (2007).
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3.1. Trading Policy and Average Risky Position

In analogy with the isoelastic case, the optimal policy is to keep the risky position
between two boundaries. Unlike the isoelastic case, but as in the frictionless setting,
trading boundaries are measured not as fractions of wealth, but as monetary amounts.
The novelty is that these boundaries are symmetric around the frictionless optimum.
In apparent contrast, Liu (2004) finds numerically that average risky holdings (over
the investment period) increase with transaction costs, suggesting that more transaction
costs reduce an investor’s effective risk aversion. In fact, our results are consistent with
his findings, once we observe that, if the risk premium is large enough, the risky position
is on average closer to the sell than to the buy boundary, even as the boundaries are
equidistant from the frictionless solution at the order ε2/3. To see this, it suffices to
calculate the average risky position, using the stationary distribution of the reflected
geometric Brownian motion Yt = ϕt St = leϒt :

lim
T→∞

1
T

∫ T

0
Ytdt =

∫ log u/l

0
ley 2μ̄ − 1

(u(λ̄)/l(λ̄))2μ̄−1 − 1
e(2μ̄−1)ydy

= μ̄ − 1
2

μ̄

(u(λ̄)/l(λ̄))2μ̄ − 1

(u(λ̄)/l(λ̄))2μ̄−1 − 1
.

To obtain an asymptotic expansion for small transaction costs, recall that l(λ̄) = (μ̄ −
λ̄)/α and u(λ̄) = (μ̄ + λ̄)/(1 − ε)α. Then, the expansion for λ̄ yields:

lim
T→∞

1
T

∫ T

0
Ytdt = μ̄

α

(
1 + μ̄ − 1

61/3μ̄2/3
ε2/3 + O(ε)

)
.(3.1)

As a result, for μ̄ > 1 the average risky position tends to be higher than the frictionless
value μ̄/α, and vice versa for μ̄ < 1. This effect is entirely due to the skewness of the
stationary distribution toward the upper boundary, because the boundaries (μ̄ ± λ)/α
are symmetric around μ̄/α at the order ε2/3. Thus, the estimator α̂ obtained by comparing
the average risky holding in (3.1) to the frictionless formula μ̄/α̂ is given by:

α̂ = α

(
1 − μ̄ − 1

61/3μ̄2/3
ε2/3 + O(ε)

)
.(3.2)

This estimator underestimates true risk aversion for μ̄ > 1, with larger transaction costs
leading to a larger bias, and explains the observation of Liu (2004) that transaction costs
seem to reduce effective risk aversion.

3.2. Convergence and High Risk-Aversion Asymptotics

The formulae in Theorem 2.3 for exponential utilities are closely related to the limits of
the corresponding isoelastic quantities in GGMKS. The next result makes this relation
precise, and justifies the dual interpretation of the aforementioned formulas as high risk-
aversion asymptotics for isoelastic investors, in the same spirit as in Černý (2009) and
Nutz (2012).

THEOREM 3.1 (High risk-aversion asymptotics). An investor with constant rel-
ative risk aversion γ > 0 trades to achieve the maximal equivalent safe rate
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ESRγ = maxϕ ESRγ (ϕ), where

ESRγ (ϕ) = lim
T→∞

1
T

log E
[
(�ϕ

T)1−γ
] 1

1−γ .

Denote by λ̄γ ,7 Li Prγ , πγ±, ShTuγ , and WeTuγ the corresponding gap, liquidity premium,
trading boundaries (as wealth fractions), share turnover, and (relative) wealth turnover
(see GGMKS for details). Then, as γ ↑ ∞, the following properties hold for a small spread
ε > 0:

(i) The equivalent safe rate times relative risk aversion converges to the equivalent
annuity times absolute risk aversion, i.e.,

lim
γ↑∞

γ ESRγ = αE Aα = σ 2

2
(μ̄2 − λ̄2).

(ii) The gap λ̄γ converges to the gap λ̄.
(iii) The liquidity premium Li Prγ converges to Li Pr.
(iv) The trading boundaries πγ± as wealth fractions, times γ , converge to the trading

boundaries ηα±, as position values, times α, i.e.,

lim
γ↑∞

γπγ± = αηα±.

(v) Share turnover ShTuγ converges to relative turnover ShTu.
(vi) Relative wealth turnover, times γ , converges to absolute turnover times α.

This result clarifies some properties of the isoelastic quantities. For example GGMKS,
section 3.4, share turnover converges to a finite limit as relative risk aversion increases.
Theorem 2.3 identifies this limit as the relative turnover of exponential utility. By contrast,
relative wealth turnover declines to zero as risk aversion increases but, once rescaled by
γ , it converges to absolute turnover for exponential utility.

3.3. Trading Volume and Endogenous Spreads

An attraction of exponential utility is that, because the value of the investor’s risky
position is bounded, then also total rebalancing costs are bounded. These costs are, in
turn, related to the profits of a market maker, who earns the costs paid by the investor.
Thus, exponential utility is well-suited to develop a valuation model of a market maker,
in which both trading and spreads are endogenous.

If the market maker acts as a monopolist, and fixes the spread to maximize profits, the
model yields an endogenous optimal spread, which depends on investment opportunities
only. The monopolist trade-off is clear: a larger spread increases the profit of each
transaction, but reduces demand for trading.

Bid and ask prices alone are not sufficient to determine profits. What is missing is
the “book” price S̄t, at which the market maker values his inventory.8 Such a price

7This is the gap in business time, replacing μ and σ 2 with μ̄ and 1, respectively, in GGMKS, theorem 2.2.
8The book price also admits the interpretation of production cost of the asset for the monopolist market

maker.
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must lie within the bid-ask spread: whichever policy the investor chooses, the average
execution price will be within the bid-ask spread. Thus, we denote the book value by
S̄t = St(1 − εδ), with δ = 0 and δ = 1 leading to the ask and bid prices, respectively. With
this notation, the average profits are:

ProfitT =
∫ T

0
(St − S̄t)dϕ

↑
t +

∫ T

0
(S̄t − (1 − ε)St)dϕ

↓
t .(3.3)

In other words, while the investor is only sensitive to the final bid and ask prices, the
market maker’s profits depend separately on sales or purchases, depending on the choice
of the book price.

Plugging S̄t = St(1 − εδ) in the above expression, and passing to the limit as T ↑ ∞,
average profits become equal to:

Profit = lim
T→∞

1
T

ProfitT = ε

(
δWeTuα− + 1 − δ

1 − ε
WeTuα+

)
,(3.4)

where WeTu− and WeTu+ denote the expressions for expected purchases and sales,
which add to absolute turnover in Theorem 2.3:

WeTuα− = σ 2

2
ηα−(2μ̄ − 1)

(u(λ̄)/l(λ̄))2μ̄−1 − 1
, WeTuα+ = σ 2

2
ηα+(1 − μ̄)

(u(λ̄)/l(λ̄))1−2μ̄ − 1
.

Figure 3.1 shows the market maker’s expected profit, as a function of the spread ε,
for δ = 1, 0.5, 0. When profits are concentrated on purchases (δ = 1), the market maker
optimally sets the spread in the range of 3–4%. This value is high compared to the
spreads currently observed in US and European equities, in which market makers are no
longer monopolists. However, such a figure is typical of the spreads observed on small
capitalization stocks (Amihud and Mendelson 1986), which are traded by fewer dealers.

By contrast, the model leads to unreasonably high spreads, well above 20%, if the
profits are split equally between sales and purchases, or concentrated on sales (δ = 0.5 or
0). This result, if counterintuitive initially, is implied by the asymmetry between expected
sales (δ = 0) and expected purchases (δ = 1). Because the exponential investor wants to
keep the risky position approximately fixed, and because the risky asset grows on average,
the investor steadily realizes past gains over time, as the risky position reaches the selling
boundary. By contrast, purchases occur after large drops in the asset price, which are
much less frequent.

This observation in fact hints at a weakness of the model, the absence of dividends,
which in practice allow the investor to avoid selling shares, cashing dividends instead.
Thus, using a value of δ close to 1 is a convenient assumption, which remedies in part
the absence of dividends in the model.

3.4. Finite-Horizon Bounds: Myopic Probability as Risk Neutral

A novel aspect of our analysis is the derivation of finite-horizon bounds (Guasoni and
Robertson 2012) in the context of exponential utility. These bounds offer estimates on the
performance of the candidate’s long-run optimal policy on any intermediate horizon T.
They are both a mathematical device to prove the verification theorem, and a diagnostic
tool to determine at which horizons the long-run optimal policy is effective enough.
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FIGURE 3.1. Expected value of future fees (vertical axis, in dollars) against the spread
ε (horizontal axis). The plot compares the case of fees earned 100% on purchases
(solid line), 50% on purchases and sales (long dashing), and 100% on sales (short
dashing). Parameters are μ = 8%, σ = 16%, and α = (μ/σ 2)/100, corresponding to
a frictionless position of η = μ/ασ 2 = 100 dollars, and both axes are in logarithmic
scale.

For exponential utility, finite-horizon bounds admit an especially appealing form—in
monetary units. As for isoelastic utilities, the respective asymptotics show that—at the
first order—our stationary long-run policy is also optimal for any fixed finite horizon
T > 0, because the corresponding utility matches the finite-horizon value function at the
first nontrivial order.

THEOREM 3.2. (Finite-horizon bounds) For any horizon T > 0, the payoff X̃φ

T of a
generic admissible strategy φ in the frictionless shadow market S̃ satisfies

− 1
α

log E
[
e−α X̃φ

T
] ≤ X̃φ

0 + σ 2β̄T + 1
α

Ẽ [q̃(ϒ0) − q̃(ϒT)] = X̃φ

0 + σ 2β̄T + O
( ε

α

)
.

For the shadow payoff corresponding to the long-run optimal strategy ϕ from Theorem 2.3,

− 1
α

log E
[
e−α X̃ϕ

T
] = X̃ϕ

0 + σ 2β̄T − 1
α

log Ẽ[eq̃(ϒT )−q̃(ϒ0)] = X̃ϕ

0 + σ 2β̄T + O
( ε

α

)
.

Here Ẽ [·] denotes the expectation with respect to the unique risk-neutral probability for
S̃, ϒ the centered logarithm of the risky position in Theorem 2.4, and q̃ the deterministic
function defined in Lemma 5.7 below.

A new mathematical insight of this theorem is that, with exponential utility, the risk
neutral probability replaces the myopic probability in the finite-horizon bounds. By
definition, under the myopic probability the logarithmic policy coincides with the optimal
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policy under the real probability. Thus, strictly speaking, a risk-neutral probability is
never myopic, because a logarithmic investor (in fact, any investor) takes a zero position
in a risky asset with null return.

Yet, the finite-horizon bounds in the theorem above involve expectations under the
risk-neutral probability, just as the similar bounds in Guasoni and Robertson (2012)
involve expectations under the myopic probability. The intuition is that, as relative risk
aversion increases, the risky weight in the optimal isoelastic policy decreases to zero, and
so does the drift under the myopic probability. Even as the weight decreases to zero, the
monetary position can converge to a finite amount, as it happens for exponential utility.

Duality theory sheds further light on the bounds. For any payoff X and any stochastic
discount factor (or martingale density) M = d Q/d P, Jensen’s inequality implies that:

− 1
α

log E
[
e−αX] = − 1

α
log EQ

[
e−αX−log M] ≤ EQ [X] + 1

α
E [M log M] .(3.5)

For a fixed payoff X, this inequality still holds passing to the infimum over M, thereby
indicating that equality may only hold when M has minimal entropy. This abstract
inequality also shows that the minimal entropy is interpreted as a monetary certainty
equivalent, which represents the opportunity value of trading in the market over a given
horizon. In the statement in Theorem 3.2, this opportunity value decomposes into the
integral term, which increases linearly with the horizon, and leads to the equivalent
annuity, and to the transitory term with q̃, which oscillates with the relative position of
the portfolio within the no-trade region.

3.5. Multiple Risky Assets

Consider a market with risky assets S1, . . . , Sd following

d Si
t /Si

t = μi dt + σi dWi
t ,

for excess returns μi > 0, volatilities σi > 0, and independent standard Brownian motions
Wi .

With exponential utility, the optimal policy in a market with several such independent
risky assets entails no-trade regions for each asset, which coincide with the no-trade
regions obtained for each risky asset alone, that is, in a market with a single risky
asset (Liu 2004). In our setting, the following verification theorem applies, which allows
to avoid the technical conditions in Liu (2004). The implication is that the equivalent
annuity for multiple independent risky assets is the sum of the equivalent annuities for
each asset.

THEOREM 3.3. For i = 1, . . . , d, let S̃i be the shadow price from Lemma 5.6, with
corresponding optimal strategy (ϕ0,i , ϕi ) from Lemma 5.8 in the market with safe asset
S0 and risky asset Si . Then, S̃ = (S̃1, . . . , S̃d ) is a shadow price in the market with safe
asset S0 and risky assets S1, . . . , Sd, with optimal strategy (

∑d
i=1 ϕ0,i , ϕ1, . . . , ϕd ) and

corresponding equivalent annuity

EAα =
d∑

i=1

EAi
α =

d∑
i=1

σ 2
i

2α
(μ̄2

i − λ̄2
i ).
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Here, μ̄i = μi/σ
2
i and each gap λ̄i is defined as in item (iv) of Theorem 2.3. Moreover, like

the equivalent annuity, relative and absolute turnover also add across independent assets.

These decompositions are unique for exponential utility, and fail for utilities in the
isoelastic class. For example, Akian, Menaldi, and Sulem (1996) show that, in a market
with two identical and independent assets, the no-trade region for each asset is wider
than the no-trade region for a market with that asset alone. As a result, the equivalent
safe rate for the two-asset market is greater than the sum of the equivalent safe rates.

3.6. Safe Rate

Throughout the paper, we assume a zero safe rate. This choice is made in part to
ease notation, and the results can be adapted to the case of a constant safe rate r , with
an important caveat. For an exponential investor with a long horizon, an arbitrarily
small safe rate r is preferable to any risky investment opportunity μ̄. The reason is that
the optimal policy of this particularly risk-averse investor is to keep only a bounded
amount of money in the risky asset, whence her wealth on average grows linearly over
time. By contrast, a positive safe rate allows wealth to grow exponentially—without risk.
Therefore, full investment in the safe asset is eventually preferred by the exponential
investor in the long run.

Nevertheless, the finite-horizon bounds in Theorem 3.2 remain valid even for a positive
safe rate. Indeed, setting α̂ = er Tα in Theorem 3.2 for discounted payoffs, it follows that
the undiscounted payoff X̃φ

T of any admissible strategy φ in the frictionless shadow market
S̃ satisfies

− 1
α

log E
[
e−α X̃φ

T
] ≤ er T X̃φ

0 + σ 2β̄T + 1
α

Ẽ[q̃(ϒ0) − q̃(ϒT)] = er T X̃φ

0 + σ 2β̄T + O
( ε

αT

)
.

Likewise, the shadow payoff of the long-run optimal strategy ϕ in Theorem 2.3 satisfies

− 1
α

log E
[
e−α X̃ϕ

T
] = er T X̃ϕ

0 + σ 2β̄T − 1
α

log Ẽ[eq̃(ϒT )−q̃(ϒ0)] = er T X̃ϕ

0 + σ 2β̄T + O
( ε

αT

)
.

Hence, our long-run optimal policy still matches the finite-horizon value function up to
terms of order O(ε/T). However, as the horizon becomes large, the contribution of the
risky investment grows only linearly with the horizon T. Hence it becomes negligible, as
the certainty equivalent grows exponentially.

4. HEURISTICS

In this section, we first use informal arguments from stochastic control to determine
a candidate for the optimal policy. Then, we derive a candidate shadow price process,
which is key for the subsequent verification.

4.1. Optimal Policy

For a trading strategy (ϕ0
t , ϕt), write the number of shares ϕ = ϕ↑ − ϕ↓ as the difference

of the cumulative numbers of shares purchased and sold, and denote by

Xt = ϕ0
t , Yt = ϕt St,
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the values of the safe and risky positions in terms of the ask price St. Then, the self-
financing condition, and the dynamics of S imply

d Xt = −Stdϕ
↑
t + (1 − ε)Stdϕ

↓
t ,

dYt = μYtdt + σYtdWt + Stdϕ
↑
t − Stdϕ

↓
t .

Consider the problem of maximizing the expected exponential utility U(x) = −e−αx from
terminal wealth at time T. Denote by V(t, x, y) its value function, which depends on time
as well as the safe and risky positions. Itô’s formula yields:

dV(t, Xt, Yt) = Vtdt + Vxd Xt + VydYt + 1
2

Vyyd〈Y, Y〉t

=
(

Vt + μYtVy + σ 2

2
Y2

t Vyy

)
dt

+St(Vy − Vx)dϕ
↑
t + St((1 − ε)Vx − Vy)dϕ

↓
t + σYtVydWt,

where the arguments of the functions are omitted for brevity. Because V(t, Xt, Yt) must
be a supermartingale for any choice of the cumulative purchases and sales ϕ↑, ϕ↓ (which
are increasing processes), it follows that Vy − Vx ≤ 0 and (1 − ε)Vx − Vy ≤ 0, that is,

1 ≤ Vx

Vy
≤ 1

1 − ε
.

In the interior of this region, the drift of V(t, Xt, Yt) cannot be positive, and must become
zero for the optimal policy,

Vt + μYtVy + σ 2

2
Y2

t Vyy = 0 if 1 <
Vx

Vy
<

1
1 − ε

.

To simplify further, we use the usual scaling for exponential utility (cf., e.g., Davis et al.
1993). Moreover, in the long run, the value function should grow exponentially with the
horizon at a constant rate. This leads to the following ansatz for the value function:

V(t, Xt, Yt) = −e−αXt eασ 2β̄tv(Yt),(4.1)

which reduces the Hamilton–Jacobi–Bellman (HJB) equation to

1
2

y2v ′′(y) + μ̄yv ′(y) + αβ̄v(y) = 0 if 1 <
−αv(y)

v ′(y)
<

1
1 − ε

.

Conjecturing that the set {y : 1 <
−αv(y)

v ′(y) < 1
1−ε

} coincides with some interval l < y < u
to be determined, the following free boundary problem arises:

1
2

y2v ′′(y) + μ̄yv ′(y) + αβ̄v(y) = 0 if l < y < u,(4.2)

v ′(l) + αv(l) = 0,(4.3)

(1/(1 − ε))v ′(u) + αv(u) = 0.(4.4)
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These conditions are not enough to identify the solution, because they can be matched
for any choice of the trading boundaries l, u. The optimal boundaries are the ones
that also satisfy the smooth pasting conditions (cf. Dumas 1991), formally obtained by
differentiating (4.3) and (4.4) with respect to l and u, respectively:

v ′′(l) + αv ′(l) = 0,(4.5)

(1/(1 − ε))v ′′(u) + αv ′(u) = 0.(4.6)

In addition to the reduced value function v , this system requires to solve for β̄ (and hence
the equivalent annuity σ 2β̄) as well as the trading boundaries l and u. Substituting (4.5)
and (4.3) into (4.2) yields

1
2

(−α)2l2v + μ̄(−α)lv + αβ̄v = 0.

Setting ηα− = l, and factoring out −αv , it follows that

−α

2
η2

α− + μ̄ηα− − β̄ = 0.

Note that ηα− is the risky position when it is time to buy, and hence the risky position
is valued at the ask price. The same argument for u shows that the other solution of the
quadratic equation is ηα+ = u(1 − ε), i.e., the risky position when it is time to sell, and
hence the risky position is valued at the bid price. Thus, the optimal policy is to buy
when the “ask” position falls below ηα−, sell when the “bid” position rises above ηα+,
and do nothing in between. Since ηα− and ηα+ solve the same quadratic equation, they
are related to β̄ via

ηα± = μ̄

α
±

√
μ̄2 − 2β̄α

α
.

It is convenient to set β̄ = (μ̄2 − λ̄2)/2α, because β̄ = μ̄2/2α without transaction costs.
With this notation, the buy and sell boundaries are just

ηα± = μ̄ ± λ̄

α
.

Now that l(λ̄), u(λ̄) are identified by ηα± in terms of λ̄, it remains to find λ̄. After deriving
l(λ̄) and u(λ̄), the boundaries in the problem (4.2)–(4.4) are no longer free, but fixed.
With the substitution

v(y) = e− ∫ log(y/l(λ̄))
0 w(z)dz, i.e., w(y) = − l(λ̄)eyv ′(l(λ̄)ey)

v(l(λ̄)ey)
,

the boundary problem (4.2)–(4.4) simplifies to a Riccati ordinary differential equation
(ODE):

w ′(y) − w(y)2 + (2μ̄ − 1) w(y) − (
μ̄ − λ̄

) (
μ̄ + λ̄

) = 0,

y ∈ [0, log u(λ̄)/l(λ̄)],(4.7)
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w(0) = μ̄ − λ̄,(4.8)

w(log (u(λ̄)/l(λ̄))) = μ̄ + λ̄,(4.9)

where

u(λ̄)

l(λ̄)
= 1

(1 − ε)
ηα+
ηα−

= 1
(1 − ε)

μ̄ + λ̄

μ̄ − λ̄
.

For each λ̄, the initial value problem (4.7) and (4.8) has a solution w(·), which we now
denote by w(λ̄, ·) with a slight abuse of notation. Thus, the correct value of λ̄ is identified
by the second boundary condition (4.9):

w(λ̄, log (u(λ̄)/l(λ̄))) = μ̄ + λ̄.(4.10)

4.2. Shadow Market

The key to making the above arguments rigorous is to find a frictionless shadow price
S̃, which yields the same optimal policy as the one derived in the previous section. This
step requires another heuristic argument.

As for logarithmic utility (Gerhold et al. 2012, 2013) and power utility (GGMKS), the
idea is that S̃/S, the ratio between the shadow and the ask price, should only depend on
the state variable. Hence, we look for a shadow price of the form

S̃t = St

eϒt
g(eϒt ),

where eϒt = Yt/l is the risky position at the ask price S, and centered at the buying
boundary l = ηα− = (μ̄ − λ̄)/α. The number of units ϕ remains constant inside the no-
trade region, so that in its interior the dynamics of ϒ = log(ϕ/l) + log(S) coincides with
that of log(S). Moreover, since ϒ must remain in [0, log(u/l)] by definition, ϒ is reflected
at the boundaries. Hence,

dϒt =
(

μ − σ 2

2

)
dt + σdWt + d Lt − dUt,

for nondecreasing local time processes L, U that only increase on {ϒt = 0} (resp.
{ϒt = log(u/l)}). The function g : [1, u/l] → [1, (1 − ε)u/l] is a C2-function satisfying
the smooth pasting conditions (cf. Gerhold et al. 2013):

g(1) = 1, g(u/l) = (1 − ε)u/l, g′(1) = 1, g′(u/l) = 1 − ε.(4.11)

The first two conditions ensure that S̃ equals the ask price S (resp. the bid price S(1 − ε))
when ϒ sits at the buying boundary 0 (resp. at the selling boundary log(u/l)), while the
latter two conditions ensure that the diffusion coefficient of S̃t/St vanishes both at the
bid 1 − ε and at the ask 1, and hence that these bounds are not breached. The boundary
conditions for g′, and Itô’s formula imply that S̃ is an Itô process with dynamics

d S̃t/S̃t = μ̃(ϒt)dt + σ̃ (ϒt)dWt,



LONG HORIZONS, HIGH RISK AVERSION, AND ENDOGENOUS SPREADS 739

where

μ̃(y) = μg′(ey)ey + σ 2

2 g′′(ey)e2y

g(ey)
, and σ̃ (y) = σ g′(ey)ey

g(ey)
.

To identify the function g, first derive the HJB equation for a generic g. Then, compare
this equation to the one obtained in the previous section for the market with transaction
costs. Because the value function of the two problems must be the same, matching the
two HJB equations identifies the function g.

The wealth process corresponding to a policy9 η̃ in terms of the shadow price S̃ is

d X̃t = η̃tμ̃(ϒt)dt + η̃tσ̃ (ϒt)dWt.

With the standard ansatz Ṽ(t, X̃t, ϒt) for the value function, Itô’s formula yields

dṼ(t, X̃t, ϒt) =
(

Ṽt + μ̃η̃t Ṽx + σ̃ 2

2
η̃2

t Ṽxx +
(

μ − σ 2

2

)
Ṽy + σ 2

2
Ṽyy + σ σ̃ η̃t Ṽxy

)
dt

+Ṽy(d Lt − dUt) + (σ̃ η̃t Ṽx + σ Ṽy)dWt,

where the arguments of the functions are omitted for brevity. Since Ṽ must be a super-
martingale for any strategy, and a martingale for the optimal strategy, the HJB equation
reads as:

sup
η̃

(
Ṽt + μ̃η̃Ṽx + σ̃ 2

2
η̃2Ṽxx +

(
μ − σ 2

2

)
Ṽy + σ 2

2
Ṽyy + σ σ̃ η̃Ṽxy

)
= 0,

with the Neumann boundary conditions

Ṽy(0) = Ṽy(log(u/l)) = 0.

The homogeneity of the value function, (i.e., Ṽ(t, x, y) = −e−αxṽ(t, y)) leads to the first-
order condition:

η̃t = 1
α

(
μ̃

σ̃ 2
+ σ

σ̃

ṽ y

ṽ

)
.

Plugging this equality back into the HJB equation yields the nonlinear equation

ṽt +
(

μ − σ 2

2

)
ṽ y + σ 2

2
ṽ yy − 1

2

(
μ̃

σ̃
+ σ

ṽ y

ṽ

)2

ṽ = 0.

Now, the equivalent annuity of the optimal policy must be the same for the shadow
market as for the transaction cost market in the previous section. Thus, in view of (4.1),
set

ṽ(t, y) = eασ 2β̄te− ∫ y
0 w̃(z)dz,

9Note that this is the monetary amount rather than the fraction of wealth in the risky asset.
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which implies that ṽt = αβ̄σ 2ṽ and ṽ y/ṽ = −w̃ . Then, the HJB equation reduces to the
inhomogeneous Riccati ODE,

w̃ ′ − w̃2 + (2μ̄ − 1) w̃ − (μ̄2 − λ̄2) +
(

μ̃

σ σ̃
− w̃

)2

= 0,(4.12)

with the boundary conditions

w̃(0) = w̃(log(u/l)) = 0.

For S̃ to be a shadow price, its value function

Ṽt = −eασ 2β̄t−α X̃t−
∫ y

0 w̃(z)dz,

must coincide with the value function

Vt = −eασ 2β̄t−αXt−
∫ y

0 w(z)dz,

for the transaction cost problem derived above. By definition, the safe position X and
the wealth X̃ in terms of S̃ = Se−ϒ g(eϒ ) are related via

X̃t − Xt = ϕ0
t + ϕt S̃t − ϕ0

t = g(eϒt )l.

Now, the condition Ṽ = V implies that

0 = αg(ey)l +
∫ y

0
(w̃(z) − w(z))dz,

which in turn means that

w̃(y) = w(y) − αg′(ey)eyl.

Plugging this relation into the ODE (4.12) for w̃ , using the ODE (4.7) for w , and
simplifying gives (

−w(y) + μ̃(y)
σ σ̃ (y)

)2

= 0.

Inserting the definitions of μ̃(y) and σ̃ (y), this relation is tantamount to the following
ODE for g:

g′′(ey)ey

g′(ey)
+ 2μ̄ − 2w(y) = 0.(4.13)

Now, the substitution10

k(y) = 1
g′(ey)ey

, i.e., g(ey) = 1 +
∫ y

0

1
k(z)

dz,

reduces this ODE to the inhomogeneous linear equation

k′(y) = k(y) (2μ̄ − 1 − 2w(y)) .(4.14)

10For the second representation, we already use the boundary condition g(1) = 1.
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The smooth pasting condition for g implies k(0) = 1/g′(1) = 1. The solution to (4.14)
then follows from the variation of constants formula. Plugging in the explicit formula (5.1)
for w , and integrating, leads to (with a = a(λ̄) and b = b(λ̄) as in (5.2)) the solution11

k (y) =
(

1 + b2

a2

)
cos2

[
tan−1

(
b
a

)
+ ay

]
.

Now the chain of substitutions is reversed starting from k, which is known explicitly up to
the constant λ̄. First, set w̃(y) = w(y) − αl/k (y); then w̃(0) = 0 by the initial conditions
for w and k. To establish the other boundary condition w̃(log(u/l)) = 0, it suffices to
check that k(log(u/l)) = (μ̄ − λ̄)/(μ̄ + λ̄). To see this, insert the boundary condition for
w ′,

μ̄ + λ̄ = w ′(log(u/l)) = a2

cos2
[
tan−1

( b
a

) + a log
( u

l

)] ,(4.15)

into the explicit formula for k(y).12 Now, observe that the function

g(ey) = 1 +
∫ y

0

1
k(z)

dz = 1 + a
a2 + b2

(
tan

[
tan−1

(
b
a

)
+ ay

]
− b

a

)
,

evidently satisfies g(1) = 1. Moreover, g(u/l) = (1 − ε)u/l, which follows by inserting the
terminal condition for w ,

μ̄ + λ̄ = w(log(u/l)) = a tan
[

tan−1
(

b
a

)
+ a log

(u
l

)]
+

(
μ̄ − 1

2

)
,

into the explicit expression for g. Finally, these boundary conditions for g and those
for k imply that g′(1) = 1 and g′(u/l) = 1 − ε, i.e., g satisfies the smooth pasting condi-
tions (4.11) and, by construction, also the ODE (4.13).

5. PROOFS

In the previous section, we first used informal control arguments to find a candidate
optimal policy and its corresponding value function. Then, we used this guess to derive
a candidate shadow price, matching a generic shadow value function with the one of the
transaction cost problem.

In this section, we prove a verification theorem for the optimal policy in the frictionless
market corresponding to the candidate shadow price process, and show that the optimal
shadow strategy only entails purchasing (selling) when the shadow price coincides with
the ask (bid) price. Thus, the policy is also feasible and optimal in the market with
transaction costs.

Key to this goal are the new finite-horizon bounds for exponential utility in Theorem
3.2.

11Here we only show the case μ̄ > 1/4. The other case leads to another explicit formula, whence similar
calculations follow.

12The first equalities in (4.15) follows from the ODE for w , whereas the second equality is obtained from
the explicit formula (5.1).
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5.1. Explicit Formulas and Their Properties

The first step to construct the shadow price is to determine, for a given small λ̄ > 0,
an explicit expression for the solution w of the ODE (4.7), complemented by the initial
condition (4.8).

LEMMA 5.1. For sufficiently small λ̄ > 0, the function

w(λ̄, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(λ̄) coth[coth−1(b(λ̄)/a(λ̄)) − a(λ̄)y] +
(

μ̄ − 1
2

)
, if μ̄ ≤ 1/4,

a(λ̄) tan[tan−1(b(λ̄)/a(λ̄)) + a(λ̄)y] +
(

μ̄ − 1
2

)
, if μ̄ > 1/4,

(5.1)

with

a(λ̄) =
√∣∣∣μ̄2 − λ̄2 −

(
1
2

− μ̄

)2 ∣∣∣ and b(λ) = 1
2

+ λ̄,(5.2)

is a local solution of

w ′(y) − w2(y) + (2μ̄ − 1) w(y) − (μ̄2 − λ̄2) = 0, w(0) = μ̄ − λ̄.(5.3)

Moreover, y �→ w(λ̄, y) is increasing in both cases.

Proof. The first part of the assertion is verified by taking derivatives. The second
follows by inspection of the explicit formulas. �

Next, establish that the crucial constant λ̄, which determines both the no-trade region
and the equivalent annuity, is well defined.

LEMMA 5.2. Let w(λ̄, ·) be defined as in Lemma 5.1, and set

l(λ̄) = μ̄ − λ̄

α
, u(λ̄) = 1

(1 − ε)
μ̄ + λ̄

α
.

Then, for sufficiently small ε > 0, there exists a unique solution λ̄ of

w
(

λ̄, log
(

u(λ̄)

l(λ̄)

))
− (μ̄ + λ̄) = 0.(5.4)

As ε ↓ 0, it has the asymptotics

λ̄ =
(

3
4
μ̄2

)1/3

ε1/3 + O(ε).

Proof. The explicit expression for w in Lemma 5.1 implies that w(λ̄, x) in Lemma 5.1
is analytic in both variables at (0, 0). By the initial condition in (5.3), its power series has
the form

w(λ̄, y) = (μ̄ − λ̄) +
∞∑

i=1

∞∑
j=0

Wi j yi λ̄ j ,
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where expressions for the coefficients Wi j are computed by expanding the explicit ex-
pression for w . Hence, the left-hand side of the boundary condition (5.4) is an analytic
function of ε and λ̄. Its power series expansion shows that the coefficients of ε0λ̄ j vanish
for j = 0, 1, 2, so that the condition (5.4) reduces to

λ̄3
∑
i≥0

Ai λ̄
i = ε

∑
i , j≥0

Bi jε
i λ̄ j ,(5.5)

with (computable) coefficients Ai and Bi j . This equation has to be solved for λ̄. Since

A0 = − 4
3μ̄

and B00 = μ̄

are nonzero, divide the equation (5.5) by
∑

i≥0 Ai λ̄
i , and take the third root, obtaining

that, for some Ci j ,

λ̄ = ε1/3
∑
i , j≥0

Ci jε
i λ̄ j = ε1/3

∑
i , j≥0

Ci j (ε1/3)3i λ̄ j .

The right-hand side is an analytic function of λ̄ and ε1/3, so that the implicit function
theorem (Gunning and Rossi 2009, theorem I.B.4) yields a unique solution λ̄ (for ε

sufficiently small), which is an analytic function of ε1/3. Its power series coefficients can
be computed at any order. �

Henceforth, consider a small relative bid-ask spread ε > 0, and let λ̄ denote the con-
stant in Lemma 5.2. Moreover, set w(y) := w(λ̄, y), a := a(λ̄), b := b(λ̄), and u := u(λ̄),
l := l(λ̄). By inspection, it follows that

LEMMA 5.3. In both cases of Lemma 5.1,

w ′(0) = μ̄ − λ̄, w ′
(

log
(u

l

))
= μ̄ + λ̄.

The next lemma states the properties of the function k.

LEMMA 5.4. Define

k (y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
b2

a2
− 1

)
sinh2

[
coth−1

(
b
a

)
− ay

]
, if μ̄ ≤ 1/4,

(
b2

a2
+ 1

)
cos2

[
tan−1

(
b
a

)
+ ay

]
, if μ̄ > 1/4.

Then k satisfies the linear ODE

k′(y) = k (y) (2μ̄ − 1 − 2w(y)) , 0 ≤ y ≤ log
(u

l

)
,

with boundary conditions

k (0) = 1, k
(

log
(u

l

))
= μ̄ − λ̄

μ̄ + λ̄
.

Moreover, k is strictly decreasing and, in particular, strictly positive on [0, log(u/l)].
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Proof. That k satisfies the ODE follows by insertion. The identities cos2[tan−1(x)] =
1/(1 + x2) and sinh2[coth−1(x)] = 1/(x2 − 1) yield the boundary condition at zero,
whereas the boundary condition at log(u/l) follows by inserting w ′(log(u/l)) = μ̄ + λ̄.
Finally, the ODE and a comparison argument yield that k is strictly decreasing. �

LEMMA 5.5. For 0 ≤ y ≤ log(u/l), define

g(ey) := 1 +
∫ y

0

1
k(z)

dz.

Then

g(ey) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + a
b2 − a2

(
sinh

[
sinh−1

(
b
a

)
− ay

]
− b

a

)
, if μ̄ ≤ 1/4,

1 + a
b2 + a2

(
tan

[
tan−1

(
b
a

)
+ ay

]
− b

a

)
, if μ̄ > 1/4,

and g satisfies the boundary and smooth pasting conditions

g(1) = 1, g(u/l) = (1 − ε)u/l, g′(1) = 1, g′(u/l) = 1 − ε.

Moreover, g′ > 0 so that g maps [1, u/l] onto [1, (1 − ε)u/l]. Finally, g solves the ODE

g′′(ey)ey

g′(ey)
+ 2μ̄ − 2w(y) = 0.(5.6)

Proof. The explicit representation follows by elementary integration. Evidently,
g(1) = 1. Moreover, g(u/l) = (1 − ε)u/l follows by inserting μ̄ + λ̄ = w(log(u/l)). Next,
since g′(ey) = 1/eyk(y), the boundary conditions for g and k imply the smooth past-
ing conditions g′(1) = 1 and g′(u/l) = 1 − ε. Furthermore, k > 0 and g′(ey) = 1/eyk(y)
show that g′ > 0. Finally, computing the derivatives verifies that g indeed satisfies the
ODE (5.6). �

5.2. The Shadow Price and Verification

The construction of the shadow price proceeds in analogy to logarithmic utilities
(Gerhold et al. 2012, 2013) and power utilities (GGMKS). For y ∈ [0, log(u/l)], let ϒ be
a Brownian motion with drift, reflected at 0 and log(u/l), that is, the continuous, adapted
process with values in [0, log(u/l)] such that

dϒt = (μ − σ 2/2)dt + σdWt + d Lt − dUt, ϒ0 = y0,(5.7)

for nondecreasing adapted local time processes L and U increasing only on the sets
{ϒt = 0} and {ϒt = log(u/l)}, respectively.

LEMMA 5.6. Define

y0 =

⎧⎪⎪⎨
⎪⎪⎩

0, if ξ S0 ≤ l,

log(u/l), if ξ S0 ≥ u,

log(ξ S0/l), otherwise,

(5.8)
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and let ϒ be defined as in (5.7), started at ϒ0 = y0. Then S̃ = Se−ϒ g(eϒ ), with g as in
Lemma 5.5, is a positive Itô process with dynamics

d S̃t/S̃t = μ̃(ϒt)dt + σ̃ (ϒt)dWt, S̃0 = S0e−y0 g(ey0 ),

for

μ̃(y) = μg′(ey)ey + σ 2

2 g′′(ey)e2y

g(ey)
, σ̃ (y) = σ g′(ey)ey

g(ey)
,

and S̃ takes values in the bid-ask spread [(1 − ε)S, S].

Note that the first (resp. second) case in (5.8) occurs if the initial position ξ S0 in the
risky asset lies below the buying boundary l or above the selling boundary u. Then, there
is a jump from the initial position (ϕ0

0−, ϕ0−) = (ξ 0, ξ ), which moves the position in the
risky asset to the nearest boundary of the interval [l, u]. Since this initial trade involves
the purchase (resp. sale) of shares, the initial value of S̃ is chosen to match the initial ask
(resp. bid) price.

Proof of Lemma 5.6. The first part of the assertion follows from the smooth pasting
conditions for g and Itô’s formula. As for the second part, since g′′(1) ≤ 0, a comparison
argument yields that the derivative (g′(y)y − g(y))/y2 of g(y)/y is nonpositive. Hence,
g(1)/1 = 1 and g(u/l)/(u/l) = 1 − ε yield that S̃ = Sg(eϒ )e−ϒ is indeed [(1 − ε)S, S]-
valued. �

The long-run optimal portfolio in the frictionless “shadow market” with price process
S̃ can be determined by calculating finite-horizon bounds, similarly as in Guasoni and
Robertson (2012) for power utility. Note that for the exponential utilities considered here,
the myopic probability coincides with the (unique) risk-neutral probability for S̃.

LEMMA 5.7. w̃(y) = w(y) − αg′(ey)eyl, with w and g as in Lemmas 5.1 and 5.5, solves
the ODE

w̃ ′ − w̃2 + (2μ̄ − 1) w̃ − (μ̄2 − λ̄2) +
(

μ̃

σ σ̃
− w̃

)2

= 0,(5.9)

with boundary conditions w̃(0) = w̃(log(u/l)) = 0. Moreover, denoting by q̃(y) =∫ y
0 w̃(z)dz, the shadow payoff X̃T corresponding to the policy η̃ = 1

α

(
μ̃

σ̃ 2
− σ

σ̃
w̃

)
(in terms

of S̃) and the shadow discount factor MT = E(− ∫ ·
0

μ̃

σ̃
dWt)T satisfies the following bounds:

E
[
e−α X̃T

] = e−α X̃0 e−ασ 2β̄T Ẽ
[
eq̃(ϒT )−q̃(ϒ0)

] = e−α X̃0 e−ασ 2β̄T + O(ε),(5.10)

e−α X̃0−Ẽ[log MT ] = e−α X̃0 e−ασ 2β̄TeẼ[q̃(ϒT )−q̃(ϒ0)] = e−α X̃0 e−ασ 2β̄T + O(ε).(5.11)

Here, β̄ = (μ̄2 − λ̄2)/2α and Ẽ[·] denotes the expectation with respect to the risk-neutral
probability Q̃ for S̃ with density process M.

Proof. That w̃ solves the ODE (5.9) is easily verified by taking derivatives, while the
boundary conditions immediately follow from their counterparts for w and g.

Next, note that μ̃, σ̃ , η̃, w̃ are functions of ϒt, but their argument is omitted throughout
to ease notation. To prove the first bound (5.10), note that the shadow wealth process X̃
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satisfies:

e−α X̃T = e−α X̃0 exp
(

−
∫ T

0
αη̃μ̃dt −

∫ T

0
αη̃σ̃dWt

)

= e−α X̃0 exp
(∫ T

0

(
− μ̃2

σ̃ 2
+ μ̃σ

σ̃
w̃

)
dt +

∫ T

0

(
− μ̃

σ̃
+ σ w̃

)
dWt

)
,(5.12)

where the second equality follows by substituting η̃ = 1
α

( μ̃

σ̃ 2 − σ
σ̃

w̃). Now, Itô’s formula
and the boundary conditions w̃(0) = w̃(log(u/l)) = 0 imply

q̃(ϒT) − q̃(ϒ0) =
∫ T

0

((
μ − σ 2

2

)
w̃ + σ 2

2
w̃ ′

)
dt +

∫ T

0
σ w̃dWt.

Plugging in the ODE for w̃ , it follows that

q̃(ϒT) − q̃(ϒ0) =
∫ T

0

(
− μ̃2

2σ̃ 2
+ μ̃σ

σ̃
w̃ + ασ 2β̄

)
dt +

∫ T

0
σ w̃dWt.(5.13)

Using this identity to replace
∫ T

0 σ w̃dWt in (5.12) and taking expectations then yields

E
[
e−α X̃T

] = e−α X̃0 e−ασ 2β̄T E
[

MTeq̃(ϒT )−q̃(ϒ0)
]
.

The first bound now follows by noting that, since μ̃(·)/σ̃ (·) is bounded on the sup-
port [0, log(u/l)] of its argument, the nonnegative local martingale M is in fact a true
martingale, such that Q̃ is well defined.

As for the second bound, first note that by definition of M and Girsanov’s theorem,

e−α X̃0−Ẽ[log MT ] = exp
(

−α X̃0 + Ẽ
[
−

∫ T

0

μ̃2

2σ̃ 2
dt +

∫ T

0

μ̃

σ̃
dW̃t

])
,(5.14)

where W̃t = Wt + ∫ t
0

μ̃

σ̃
ds denotes a Q̃-Brownian motion. Again by using that the process

μ̃/σ̃ is bounded, it follows that the stochastic integral in (5.14) is a Q̃-martingale with
vanishing expectation. Using (5.13), also rewritten in terms of W̃, to replace the Lebesgue
integral in (5.14) then shows

e−α X̃0−Ẽ[log MT ] = e−α X̃0−ασ 2β̄T exp
(

Ẽ
[

q̃(ϒT) − q̃(ϒ0) +
∫ T

0

(
μ̃

σ̃
− σ w̃

)
dW̃t

])
.

Since w̃(·) and μ̃(·)
σ̃ (·) are bounded on [0, log(u/l)], the dW̃t-term in this expression is a

Q̃-martingale, which yields the second bound (5.11).
The asymptotics follow by expanding the function q̃ as in the proof of GGMKS,

theorem 3.1 �

With the finite-horizon bounds at hand, we can now establish that the policy η̃ is
indeed long-run optimal in the frictionless market with price S̃.

LEMMA 5.8. The policy

η̃(ϒt) = 1
α

(
μ̃(ϒt)
σ̃ 2(ϒt)

− σ

σ̃ (ϒt)
w̃(ϒt)

)
= g(eϒt )l(5.15)
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is long-run optimal with equivalent annuity σ 2β̄ in the frictionless market with price process
S̃. The corresponding wealth process (in terms of S̃), and the numbers of safe and risky
units satisfy

X̃ = (ξ 0 + ξ S̃0) +
∫ ·

0
η̃(ϒt)μ̃(ϒt)dt +

∫ ·

0
η̃(ϒt)σ̃ (ϒt)dWt,

ϕ0
0− = ξ 0, ϕ0

t = X̃t − η̃(ϒt) for t ≥ 0,

ϕ0− = ξ, ϕt = η̃(ϒt)/S̃t for t ≥ 0.

Proof. The formulae for the trading strategy and the wealth process associated to η̃

are immediate consequences of the respective definitions. The second representation for
η̃ follows by inserting the definitions of μ̃, σ̃ from Lemma 5.6, the ODE (5.6) for g, and
w(y) − w̃(y) = αg′(ey)eyl.

Next, note that ϕ is admissible for S̃, because (5.15) shows that the corresponding
risky position η̃ is bounded. Now, standard duality arguments for exponential utility
imply that the shadow payoff X̃φ corresponding to any admissible strategy φ satisfies the
inequality

E
[
e−α X̃ φ

T
] ≥ e−α X̃ φ

0 −Ẽ[log MT ].(5.16)

Indeed, since σ̃ (ϒ) is uniformly bounded and the same holds for φ S̃ by admissibility
of φ and (1 − ε)S ≤ S̃ ≤ S, the local Q̃-martingale X̃φ = X̃φ

0 + ∫ ·
0 φtd S̃t is in fact a true

Q̃-martingale. Now, d Q̃|FT /d P|FT = MT and Jensen’s inequality yield

E
[
e−α X̃φ

T
] = Ẽ

[
e−α X̃ φ

T−log MT
] ≥ e−α Ẽ[X̃φ

T ]−Ẽ[log MT ],

such that (5.16) follows from the Q̃-martingale property of the shadow wealth process
X̃φ .

Inequality (5.16) in turn yields the following upper bound, valid for any admissible
strategy φ in the frictionless market with price process S̃:

lim inf
T→∞

(
1

−αT
log E

[
e−α X̃ φ

T
]) ≤ lim inf

T→∞
1
T

(
X̃φ

0 + 1
α

Ẽ[log MT]
)

.

The function q̃ in Lemma 5.7 is bounded on the compact support of its argument ϒ .
Hence, the bound (5.11) in Lemma 5.7 implies that the right-hand side equals σ 2β̄.

Likewise, the bound (5.10) in the same lemma implies that the shadow payoff X̃ϕ

(corresponding to the number of units ϕ, defined in terms of the policy η̃) satisfies, using
again that q̃ is bounded,

lim inf
T→∞

1
αT

log E
[
e−α X̃ϕ

T
] = lim inf

T→∞

(
σ 2β̄ + X̃ϕ

0

T
− 1

αT
log Ẽ

[
eq̃(ϒT )−q̃(ϒ0)]) = σ 2β̄ ,

which shows that the policy η̃ attains this upper bound, and concludes the proof. �
The next lemma establishes that S̃ is a shadow price.

LEMMA 5.9. The number of shares ϕ = η̃/S̃ in the portfolio η̃ in Lemma 5.8 has the
dynamics

dϕt/ϕt = d Lt − dUt.
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Thus, ϕ increases only when ϒt = 0, that is, when S̃ equals the ask price, and decreases only
when ϒt = log(u/l), that is, when S̃ equals the bid price.

Proof. Itô’s formula applied to (5.15) yields

dη̃(ϒt)
η̃(ϒt)

= μg′(eϒt )eϒt + σ 2

2 g′′(eϒt )e2ϒt

g(eϒt )
dt + σ g′(eϒt )eϒt

g(eϒt )
dWt

+ g′(eϒt )eϒt

g(eϒt )
d(Lt − Ut).

Integrating ϕ = η̃/S̃ by parts, inserting the dynamics of η̃ and S̃, and simplifying, it
follows that

dϕt

ϕt
= g′(eϒt )eϒt

g(eϒt )
d(Lt − Ut).

Since L and U only increase on the sets {ϒ = 0} and {ϒ = log(u/l)}, respectively, the
assertion now follows from the boundary conditions for g and g′. �

The equivalent annuity for any frictionless price within the bid-ask spread must be
greater or equal than in the original market with bid-ask process ((1 − ε)S, S), because the
investor trades at more favorable prices. For a shadow price, there is an optimal strategy
that only entails buying (resp. selling) stocks when S̃ coincides with the ask (resp. bid)
price. Hence, this strategy yields the same payoff when executed at bid-ask prices, and is
also optimal in the original model with transaction costs. The corresponding equivalent
annuity must also be the same, since the difference due to the liquidation costs vanishes
as the horizon grows in (2.1):

PROPOSITION 5.10. Let S̃ be the shadow price for ((1 − ε)S, S) from Lemma 5.6, and
(ϕ0, ϕ) the corresponding long-run optimal strategy from Lemma 5.8. Then (ϕ0, ϕ) is long-
run optimal for the bid-ask process ((1 − ε)S, S) as well, with the same equivalent annuity
σ 2β̄.

Proof. As ϕ only increases (resp. decreases) when S̃ = S (resp. S̃ = (1 − ε)S), the
strategy (ϕ0, ϕ) is self-financing for the bid-ask process ((1 − ε)S, S) as well. Moreover,
(5.15) and (1 − ε)S ≤ S̃ ≤ S show that it is also admissible for ((1 − ε)S, S) in the sense
of Definition 2.1.

Now, since S ≥ S̃ ≥ S(1 − ε) and the number ϕt of shares is always positive and
bounded from above by u/S > 0,

ϕ0
t + ϕt S̃t ≥ ϕ0

t + ϕ+
t (1 − ε)St − ϕ−

t St ≥ ϕ0
t + ϕt S̃t − εu.

These upper and lower bounds yield:

lim infT→∞
1

−αT
log E

[
e−α(ϕ0

T+ϕ+
T (1−ε)ST−ϕ−

T ST )]
= lim infT→∞

1
−αT

log E
[
e−α(ϕ0

T+ϕT S̃T )],(5.17)

that is, (ϕ0, ϕ) has the same growth rate, either with S̃ or with [(1 − ε)S, S].
Now let (ψ0, ψ) be any admissible strategy for the bid-ask spread [(1 − ε)S, S], and

define the corresponding cash position in the shadow market as ψ̃0 = ψ0
0− − ∫ ·

0 S̃tdψt.

Then (ψ̃0, ψ) is a self-financing trading strategy for the shadow price S̃, and ψ̃0 ≥ ψ0



LONG HORIZONS, HIGH RISK AVERSION, AND ENDOGENOUS SPREADS 749

because (1 − ε)S ≤ S̃ ≤ S implies that
∫ ·

0 S̃tdψt ≤ ∫ ·
0 Stdψ

↑
t − (1 − ε)

∫ ·
0 Stdψ

↓
t . Together

with S̃ ∈ [(1 − ε)S, S], the long-run optimality of (ϕ0, ϕ) for S̃, and (5.17), it follows that:

lim inf
T→∞

(
1

−αT
log E

[
e−α(ψ0

T+ψ+
T (1−ε)ST−ψ−

T ST )
])

≤ lim inf
T→∞

(
1

−αT
log E

[
e−α(ψ̃0

T+ψT S̃T )
])

≤ lim inf
T→∞

(
1

−αT
log E

[
e−α(ϕ0

T+ϕT S̃T )
])

= lim inf
T→∞

(
1

−αT
log E

[
e−α(ϕ0

T+ϕ+
T (1−ε)ST−ϕ−

T ST )
])

.

Hence (ϕ0, ϕ) is also long-run optimal for the bid-ask process ((1 − ε)S, S). �

Putting everything together, we can now complete the proofs of our main results:

Proofs of Theorem 2.3 (i )–(iv), (vi ), Theorem 2.4, Theorem 3.2. By Lemma 5.8, the
strategy (ϕ0, ϕ) is optimal in the frictionless market with price process S̃. Since the latter
is a shadow price process by Lemma 5.9, Proposition 5.10 yields that the same strategy is
also optimal with the same equivalent annuity σ 2β̄ = σ 2

2α
(μ̄2 − λ̄2) in the original market

with transaction costs. This proves Theorem 2.4 and also Item (i ) of Theorem 2.3, since
the definition of λ̄ in Lemma 5.1 matches (iv) by Lemma 5.2. Item (i i ) of Theorem 2.3
follows immediately by comparing the growth rate to its frictionless value. Next, since
S̃ is a shadow price, the buy (resp. sell) boundaries for (ϕ0, ϕ) are quoted in terms of
the ask (resp. bid) price. Item (i i i ) then follows from the representation in Lemma 5.8,
combined with the boundary conditions for g and the definitions of u, l in Lemma 5.2.
The corresponding asymptotic expansions in (vi ) are an immediate consequence of the
fractional power series for λ̄ (cf. Lemma 5.2) and Taylor expansion. Finally, Theorem 3.2
has been established in Lemma 5.7 and the proof of Lemma 5.8. �

Next, we prove Theorem 3.3, which generalizes the finite-horizon bounds to a market
with several uncorrelated assets.

Proof of Theorem 3.3. Let Mi = E(− ∫ ·
0

μ̃i (ϒ i
t )

σ̃i (ϒ i
t )

dWi
t ) be the stochastic discount factor

in the market (S0, S̃i ), where the coefficients μ̃i , σ̃i and the reflected Brownian motions
ϒ i are defined as in Lemma 5.6. Then, since the risky assets Si are independent, the
same holds for the processes ϒ i , Mi , S̃i . For the shadow wealth process X̃ϕ = X̃ϕ

0 +∑d
i=1

∫ ·
0 ϕi

t d S̃i
t, the first univariate finite-horizon bound in Lemma 5.7, therefore, yields

− 1
α

log E
[
e−α X̃ϕ

T
] = X̃ϕ

0 +
d∑

i=1

σ 2
i β̄i T − 1

α

d∑
i=1

log Ẽi
[
eq̃i (ϒ i

T )−q̃i (ϒ i
0)],

where Ẽi [·] denotes expectation with respect to the measure with density process Mi , and
the constants β̄i and the functions q̃i are defined as in Lemma 5.7 for i = 1, . . . , d. Since
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the mappings q̃i are bounded on the compact supports of the ϒ i , it follows that

lim inf
T→∞

− 1
αT

log E
[
e−αXϕ

T
] =

d∑
i=1

σ 2
i β̄i .(5.18)

Next, note that since each S̃i only depends on one of the independent Brownian motions,
Girsanov’s theorem implies that M = E(− ∑d

i=1

∫ ·
0

μ̃i (ϒ i
t )

σ̃i (ϒ i
t )

dWi
t ) is a stochastic discount

factor for the market (S0, S̃1, . . . , S̃d ). Hence, it follows verbatim as in the proof of
Lemma 5.8 that the shadow wealth process X̃φ associated to any admissible strategy φ

satisfies

E
[
e−α X̃ φ

T
] ≥ e−α X̃ φ

0 −Ẽ[log MT ],

where Ẽ[·] denotes the expectation with respect to the measure with density process M.
Since each of the Mi only depends on one of the independent Brownian motions, Yor’s
formula implies that MT = ∏d

i=1 Mi
T and hence, by independence of the Mi ,

E
[
e−α X̃ φ

T
] ≥ e−α X̃ φ

0

d∏
i=1

e−Ẽi [log Mi
T ],

where Ẽi [·] denotes the expectation with respect to the measure with density process Mi .
Combined with the second univariate finite-horizon bound from Lemma 5.7, it follows
that

E
[
e−α X̃φ

T
] ≥ e−α X̃ φ

0

d∏
i=1

e−ασ 2
i β̄i T+Ẽi [q̃i (ϒ i

T )−q̃i (ϒ i
0)].

In view of the boundedness of the q̃i , this inequality yields

lim inf
T→∞

− 1
αT

log E
[
e−α X̃φ

T
] ≤

d∑
i=1

σ 2
i β̄i .

Together with (5.18), it follows that the strategy ϕ is optimal in the frictionless market
with risky asset S̃. Since, by definition of S̃i and Lemma 5.9, the strategy ϕ only purchases
(resp. sells) shares of the risky asset i when S̃i = Si (resp. S̃i = (1 − ε)Si ), the process S̃ is
a shadow price. It then follows as in the proof of Proposition 5.10 that the same strategy
is also optimal with the same equivalent annuity in the original market with transaction
costs, completing the proof. �

5.3. Trading Volume

As above, let ϕt = ϕ
↑
t − ϕ

↓
t denote the number of risky units at time t, written as

the difference of the cumulated numbers of shares bought (resp. sold) until t. Rela-
tive turnover, defined as the measure S̃td‖ϕ‖t/S̃tϕt = d‖ϕ‖t/ϕt = dϕ

↑
t /|ϕt| + dϕ

↓
t /|ϕt|,

is a scale-invariant indicator of trading volume, compare Lo and Wang (2000). The
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long-term average relative turnover is defined as

lim
T→∞

1
T

∫ T

0

d‖ϕ‖t

|ϕt| .

Similarly, absolute turnover (1 − ε)Stdϕ
↓
t + Stdϕ

↑
t is defined as the amount of wealth

traded, evaluated in terms of the bid price (1 − ε)St when selling resp. in terms of the ask
price St when buying. As above, the long-term average absolute turnover is then defined
as

lim
T→∞

1
T

(∫ T

0
(1 − ε)Stdϕ

↓
t +

∫ T

0
Stdϕ

↑
t

)
.

These quantities can be expressed in terms of the long-run averages of the local times
L and U:

PROPOSITION 5.11. The long-term average relative turnover is

lim
T→∞

1
T

∫ T

0

d‖ϕ‖t

|ϕt| = lim
T→∞

UT

T
+ lim

T→∞
LT

T
.

The long-term average absolute turnover is

limT→∞
1
T

(∫ T

0
(1 − ε)Stdϕ

↓
t +

∫ T

0
Stdϕ

↑
t

)
= μ̄ + λ̄

α
lim

T→∞
UT

T
+ μ̄ − λ̄

α
lim

T→∞
LT

T
.

Proof. The formula for the relative turnover follows from the representation for dϕ/ϕ

in Lemma 5.9. The formulae for the absolute turnover follow analogously by noting
that Stϕt = (μ̄ − λ̄)/α on the set {ϒt = 0} where L increases, and likewise (1 − ε)Stϕt =
(μ̄ + λ̄)/α on the set {ϒt = log(u/l)} where U increases. �

Using the long-term limits of the local times L and U determined in GGMKS, lemma
D.2, it follows that the long-run averages of the local times admit explicit formulae in
terms of the gap λ̄. These in turn yield the asymptotic expansions for ε ↓ 0 stated in
Theorem 2.3 via Taylor expansion.

5.4. Connection to Constant Relative Risk Aversion

Finally, we prove Theorem 3.1, which states that all relevant quantities, i.e., liquidity
premium, optimal policy, equivalent annuity, and trading volume, for an investor with
constant absolute risk aversion arise in the limit for increasing constant relative risk
aversion.

To this end it suffices to show that the gap of GGMKS, lemma B.2 for relative risk
aversion γ converges to its counterpart in our Lemma 5.2 for constant absolute risk
aversion α, as γ ↑ ∞. Note that this convergence holds for any level of absolute risk
aversion, since our gap is independent of the latter.

THEOREM 5.12. As the relative risk aversion γ in GGMKS, lemma B.2 tends to infinity,
their gap λ̄γ converges to our counterpart λ̄ in Lemma 5.2, which is the gap for all levels α

of absolute risk aversion.
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Proof. For small ε, the gap13 λ̄γ of GGMKS is given by the unique root of the
function

fγ (λ̄) = γ wγ (λ̄, log[uγ (λ̄)/lγ (λ̄)]) − (μ̄ + λ̄),

where the function wγ is given explicitly in GGMKS,lemma B.1. Now, note that as the
relative risk aversion γ becomes large, Case 2 of GGMKS, lemma B.1 applies if μ̄ > 1/4
and Case 3 applies if μ̄ ≤ 1/4. By inspection of the explicit formulas in GGMKS, lemma
B.1 resp. our Lemma 5.1, it follows that, as γ ↑ ∞, the function γ wγ (·) converges
uniformly on compacts to w from our Lemma 5.1. Since the same holds for the functions
uγ (·), lγ (·) from GGMKS, lemma B.2 and u(·), l(·) from our Lemma 5.2, this in turn
yields that fγ (·) converges uniformly on compacts to

f (λ̄) = w(λ̄, log[u(λ̄)/l(λ̄)]) − (μ̄ + λ̄).

Since our gap λ̄ is the unique root of this function, it suffices to show that the zeros of
fγ also converge as γ ↑ ∞. But this follows, because a calculation shows that, for small
ε, the derivative ∂

∂λ̄
f is bounded away from zero in a neighborhood of the root of f ,

completing the proof. �

The convergence of all other—suitably rescaled—quantities follows immediately from
the explicit formulas in GGMKS and in this paper.
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Considering a positive portfolio diffusion X with negative drift, we investigate opti-
mal stopping problems of the form

inf
θ

E

⎡
⎢⎣ f

⎛
⎜⎝ Xθ

sup
s∈[0,τ ]

Xs

⎞
⎟⎠
⎤
⎥⎦ ,

where f is a nonincreasing function, τ is the next random time where the portfolio X
crosses zero and θ is any stopping time smaller than τ . Hereby, our motivation is the
obtention of an optimal selling strategy minimizing the relative distance between the
liquidation value of the portfolio and its highest possible value before it reaches zero.
This paper unifies optimal selling rules observed for the quadratic absolute distance
criteria in this stationary framework with bang–bang type ones observed for mone-
tary invariant criteria but in finite horizon. More precisely, we provide a verification
result for the general stopping problem of interest and derive the exact solution for
two classical criteria f of the literature. For the power utility criterion f : y �→ −yλ

with λ > 0, instantaneous selling is always optimal, which is consistent with previous
observations for the Black-Scholes model in finite observation. On the contrary, for
a relative quadratic error criterion, f : y �→ (1 − y)2, selling is optimal as soon as the
process X crosses a specified function ϕ of its running maximum X∗. These results
reinforce the idea that optimal stopping problems of similar type lead easily to selling
rules of very different nature. Nevertheless, our numerical experiments suggest that the
practical optimal selling rule for the relative quadratic error criterion is in fact very
close to immediate selling.

KEY WORDS: optimal stopping, optimal prediction, running maximum, free boundary partial
differential equation, verification.

1. INTRODUCTION

One of the main objectives of a hedge fund manager, an asset manager, or a proprietary
trader is to take positions on the financial markets in a way that allows him to generate
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profits, with a proper risk exposure. In order to achieve this goal, he will try to find
some particular behavior of an asset or a combination of assets. Two classical examples
are mean-reverting assets (or combinations of assets) and trend following assets. Besides
finding a combination of assets that meets the required behavior, the fund manager
requires to determine the right time to invest. To make it simple, he wants to sell high and
buy low. Different techniques to detect the good times to invest are used by practitioners,
such as statistical analysis, technical analysis, or financial intuition. Another idea would
be to fit a mathematical model on financial data and try to solve an optimization problem.
Indeed, what could be a best way of selling high than selling as close as possible to the
maximum of the associated process? However, when you think it twice, the random time
of interest is not a stopping time, and therefore this may seem to be a hopeless ambition.

Nevertheless, this kind of optimal prediction problem has remarkably already been
addressed in the literature. Graversen, Peskir, and Shiryaev were the first authors who
tackled successfully this challenging problem. Considering a standard Brownian motion
W on the time interval [0, 1], they solved in Graversen, Peskir, and Shiryaev (2001) the
optimal stopping problem infθ E[|Wθ − W∗

1 |2], where W∗
1 denotes the maximum of the

Brownian motion W at time 1 and θ is any stopping time smaller than 1. They found
out that selling was optimal as soon as the drawdown of the portfolio, that is, the gap
between its current maximum and its value, went above the function t �→ c∗√1 − t, for a
specified constant c∗. Urusov (2005) then observed that this strategy also provides a good
approximation of the last time τ ∗ where the portfolio reaches its maximum, since it solves
the problem infθ E[|θ − τ ∗|]. For a portfolio driven by a drifted Brownian motion, this
property is no longer satisfied, and Du Toit and Peskir (2007, 2008) characterized the so-
lution of both problems in this more general framework. Once again, stopping is optimal
as soon as the drawdown of the portfolio enters a time-to-horizon dependent region.

Considering instead a portfolio consisting of one stock (St)0≤t≤1 with Black-Scholes
dynamics, several authors (Shiryaev, Xu, and Zhou 2008, Du Toit and Peskir 2009, or
Dai et al. 2010) tried to minimize the relative distance between the stopped stock Sθ

and its ultimate maximum S∗
1 . In particular they characterized the optimal selling rule

associated to the natural stopping problem supθ E[Sθ /S∗
1 ]. As pointed out in Du Toit

and Peskir (2009), the formulation in terms of ratio between the stopped process and
its maximum has the effect of stripping away the monetary value of the stock, focusing
only on the underlying randomness. Using either probabilistic or deterministic methods,
the common interpretation of the solution derived in these papers is that one should
“sell bad stocks and keep good ones.” Indeed, introducing the “goodness index” α of the
stock as the ratio between its excess return and its square volatility, the optimal strategy
appears to be of “bang–bang” type: one should immediately sell the stock if α ≤ 1/2 and
keep it until maturity otherwise. Focusing also on the problem infθ E[S∗

1/Sθ ], Du Toit
and Peskir (2009) observed that one should sell immediately if α < 0, keep until time 1 if
α > 1, and stop as soon as the ratio S∗/S hits a specified deterministic function of time
in the intermediate case. It is worth noticing that these two optimal prediction problems
of similar type offer therefore different optimal selling strategies. It is also interesting to
point out that both problems with a relative criterion exhibit an optimal selling rule which
is very different from the ones obtained for an absolute criterion in Du Toit and Peskir
(2007, 2008), Graversen et al. (2001), and Urusov (2005). We also refer to Hobson (2007).

Of course, the only consideration of stocks with Black-Scholes dynamics is unrealistic
and limitative. A recent paper of Espinosa and Touzi (2012) allows for the consideration
of more general diffusion dynamics and, as a by-product, requires to focus on a station-
ary version of this problem. As pointed out by the authors, considering the first hitting
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of zero does not only have the advantage of reducing the problem to a stationary one,
but in fact corresponds to a classical mean-reversion strategy of fund managers. They
want to detect the maximum of a signal on each excursion above its mean or symmet-
rically detect its minimum on each excursion below its mean. Such a signal can be, for
example, generated by the difference between two (normalized) stocks of the same sector.
Considering a diffusion process X with general dynamics and negative drift starting at
X0 > 0, the authors in Espinosa and Touzi (2012) study the infinite time horizon problem:
infθ E[|X∗

τ − Xθ |2] where τ is the first time where X hits zero and θ is any stopping time
smaller than τ . They solve explicitly this stationary problem as a free boundary one and
verify that the fund manager should sell the portfolio whenever its running maximum
X∗ and its drawdown X∗ − X are both large enough. The underlying question, which is
very important for a fund manager, is whether or not the optimal selling rule is robust
with respect to the criterion of interest. Indeed, if two criteria seem very close and are
relevant, then they should bring close allocation strategies (here selling/buying rules),
because there is no a priori reason to choose one instead of the other.

Therefore, the motivation for this paper is twofold. First, we want to determine optimal
selling rules for monetary invariant criteria in a realistic stationary framework, and then
we intend to discuss the robustness of the solution with respect to the criterion. The
consideration of the ratio between the stopped portfolio and its upcoming maximum
allows to capture the scale of the prices themselves. We thus consider the following
problem:

inf
θ

E

[
f
(

Xθ

X∗
τ

)]
,

where τ is the first time where X hits 0, θ is any stopping time smaller than τ , and f is a
penalization function. X∗

τ represents the best price the fund manager could have reached,
while Xθ is what he is able to obtain in practice, so that the ratio Xθ /X∗

τ may interpret
as the efficiency of the manager. The penalization function f captures how he will be
penalized by his management, by his clients, or by his self-esteem when missing his target.
It is therefore directly related to his investment profile. More precisely, we focus on the
two following problems:

V1 = sup
θ

E

[(
Xθ

X∗
τ

)λ
]

, for λ > 0, and V2 = inf
θ

E

[(
X∗

τ − Xθ

X∗
τ

)2
]

.

The first problem consists in maximizing the power utility of the possible relative value of
the portfolio. The case λ = 1 corresponds to the criterion considered in Dai et al. (2010),
Du Toit and Peskir (2009), and Shiryaev et al. (2008) in the finite horizon Black-Scholes
framework. Solving the second problem consists simply in minimizing the classical rela-
tive quadratic distance between the stopped portfolio and its maximum possible value.
The power utility function with λ > 1 corresponds to an investment profile where the
fund manager absolutely wants to be as close as possible to the maximum. In case he
missed it, he does not really make a big difference between being away or far away. On
the contrary, for λ < 1 and for the quadratic error, the fund manager absolutely wants
to avoid poor efficiency, whereas as soon as he is doing well, it is not very important how
good he is. As we will see hereafter, those two problems lead to optimal selling rules of
very different nature.

For the first problem V1, we prove that the optimal stopping strategy consists in
liquidating the portfolio immediately. For λ ≤ 1, immediate selling is still optimal even if
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the portfolio value starts at a point below its current maximum. This is no longer the case
when λ > 1, where the fund manager should wait until the value of the portfolio gets close
enough to its running maximum. These conclusions extend and are in accordance with
the conclusions of Dai et al. (2010), Du Toit and Peskir (2009), and Shiryaev et al. (2008)
obtained in the finite horizon Black-Scholes framework for λ = 1. Conversely for V2,
when minimizing the relative quadratic distance between the portfolio and its maximum,
the optimal selling time is the first time where the process X goes below a specified
function ϕ of its running maximum X∗. Similarly to Peskir (1998) or Espinosa and Touzi
(2012), this function ϕ (or more precisely its inverse) is characterized as the “biggest”
solution of an ordinary differential equation (ODE) and can easily be approximated
numerically. Even though for V2, the solution seems to be of the same nature as the one
derived in Espinosa and Touzi (2012), they in fact differ a lot in practice. Indeed, here
ϕ(0) = 0 whereas ϕ is bounded from below by a positive constant in Espinosa and Touzi
(2012). Hence, for the absolute criterion considered in Espinosa and Touzi (2012), this
implies that one should hold the portfolio no matter how small its value gets, as long as
the running maximum of the portfolio has not reached a given minimal threshold. It is
worth noticing that this is not the case here.

As already observed by Du Toit and Peskir (2009), our results confirm that optimal
prediction problems of similar nature can lead to very different types of optimal solution.
Predicting the maximum of a portfolio is really intricate and the corresponding optimal
selling rule strongly depends on the criterion choice of the fund manager. However,
we shall temper a bit this conclusion in our framework, since numerical experiments
provided hereafter show that the function ϕ is close to the identity function. Hence,
even if immediate stopping is not optimal, a fund manager will not wait long until the
drawdown of the portfolio X∗ − X exceeds X∗ − ϕ(X∗). Thus, immediate selling is for
both criteria a reasonable strategy.

The paper is organized as follows. The next section provides the set-up of the problem
and derives preliminary properties. Section 3 is dedicated to the obtention of a general
verification theorem allowing to treat the first and the second optimal stopping problems
at once. Sections 4 and 5 tackle successively the power utility type criterion and the
quadratic distance one. In both cases, the value function solution is presented and dis-
cussed at the beginning of the section, numerical results are provided, and the technical
proofs are postponed to the end of it.

2. OPTIMAL LIQUIDATION OF A PORTFOLIO

2.1. The Optimal Stopping Problem of Interest

Let W be a scalar Brownian motion on the complete probability space (�,F, P), and
denote by F = {Ft, t ≥ 0} the corresponding augmented natural filtration. Let X be a
diffusion process given by the following dynamics:

dXt = −μ(Xt)dt + σ (Xt)dW t, t ≥ 0,(2.1)

together with an initial data x := X0 > 0, where μ and σ are Lipschitz continuous
functions. We will assume that the portfolio process X is directed toward the origin in
the sense that:

μ(x) ≥ 0 , for x ≥ 0.(2.2)
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We denote by τ := inf{t ≥ 0, Xt = 0} the first time where the process X hits the origin,
T the set of F-stopping times θ such that θ ≤ τ a.s and X∗

. := sups≤. Xs the running
maximum of the portfolio X. As motivated in the introduction, we consider the following
optimization problem:

V0 := inf
θ∈T

E f
(

Xθ

X∗
τ

)
,(2.3)

where f is a nonincreasing continuous function on [0, 1], C1 on (0, 1], and such that,
there exist two constants A > 0 and η > 0 satisfying

| f ′(x)| ≤ Axη−2, 0 < x ≤ 1.(2.4)

Since f is nonincreasing, solving this optimal stopping problem consists in minimizing
the relative distance, quantified according to the criterion f , between the liquidation
price of the portfolio and its highest possible value before hitting 0. We intend to focus
in Sections 4 and 5 on two particular classical cases of criteria f : y �→ −yλ, λ > 0 and
y �→ (1 − y)2. Before doing so, we first exhibit preliminary properties and provide a
verification argument for the optimal stopping problem (2.3) in its general form.

In order to use dynamic programming techniques, we introduce as usual the process Z
defined by Zt := z ∨ X∗

t for a given z > 0, and define the corresponding value function
associated to the optimization problem (2.3):

V(x, z) := inf
θ∈T

Ex,z f
(

Xθ

Zτ

)
, (x, z) ∈ �,(2.5)

where � is defined by

� := {(x, z), 0 ≤ x ≤ z and z > 0},(2.6)

and corresponds to the domain where (X, Z) lies.

REMARK 2.1. Notice that the definition of � differs from the one in Espinosa and
Touzi (2012). Observe also that contrary to Espinosa and Touzi (2012), the problem is
not invariant by translation. More precisely, if one considers the criterion infθ f ( b+Xθ

b+Zτ
),

the problem might not be well defined for b < 0 since we can have b + Zτ = 0. For b > 0
(or z > −b if b < 0) however, the problem makes sense and could be studied in a similar
fashion, but is not a particular case of what we do here.

Defining the reward function g from immediate stopping

g(x, z) := Ex,z f
(

x
Zτ

)
, (x, z) ∈ �,(2.7)

observe from the dynamics of (X, Z) that

Ex,z f
(

Xθ

Zτ

)
= Ex,z EXθ ,Zθ

f
(

Xθ

Zτ

)
= Ex,z g(Xθ , Zθ ), (x, z) ∈ �, θ ∈ T .

We may thus rewrite this problem in the standard form of an optimal stopping problem

V(x, z) = inf
θ∈T

Ex,z g(Xθ , Zθ ), (x, z) ∈ �.(2.8)
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2.2. Assumptions and First Properties

Let introduce the so-called scale function S defined, for x ≥ 0, by

S(x) :=
∫ x

0
e
∫ u

0 α(r )dr du, with α := 2μ

σ 2
.(2.9)

REMARK 2.2. Since the portfolio process X is directed toward 0, the function α is
non-negative. Therefore, the scale function S is increasing, convex and dominates the
Identity function.

By construction, S satisfies Sxx = αSx and is related to the law of Zτ via the estimate

Px,z[Zτ ≤ u] = Px
[
X∗

τ ≤ u
]
1z≤u =

(
1 − S(x)

S(u)

)
1z≤u, (x, z) ∈ �, u > 0.

Using the scale function S, the reward function g rewrites as

g(x, z) = f
(

x
z

)(
1 − S(x)

S(z)

)
+ S(x)

∫ ∞

z
f
(x

u

) S ′(u)
S(u)2

du, (x, z) ∈ �,(2.10)

which is well defined since f is continuous on [0, 1] so that we have∫ ∞

z

∣∣∣ f
(x

u

)∣∣∣ S ′(u)
S(u)2

du ≤ ‖ f ‖∞
∫ ∞

z

S ′(u)
S(u)2

du = ‖ f ‖∞
S(z)

, (x, z) ∈ �.

Via an integration by parts, we deduce

g(x, z) = f
(

x
z

)
− xS (x)

∫ ∞

z
f ′
(x

u

) du
u2S(u)

, (x, z) ∈ �, x > 0.(2.11)

Observe that the previous integral is well defined since, combining Remark 2.2 with
estimate (2.4), we compute∣∣∣∣∣ f ′ ( x

u

)
u2S(u)

∣∣∣∣∣ ≤ A
(x

u

)η−2 1
u3

= A
xη−2

u1+η
, 0 < x ≤ u.

If f is C1 on [0, 1], since g(0, z) = f (0), (2.11) also holds true for x = 0 and z > 0.
In this paper, we aim at considering a general framework including the classical types

of mean reverting portfolio processes. In particular, we intend to treat the following
diffusion dynamics:

� Brownian motion with negative drift: α constant, positive and S(x) = eαx−1
α

;
� Displaced Cox-Ingersol-Ross process: dXt = −μXtdt + σ

√
Xt + b dW t for some

positive constants μ, σ, b so we get α(x) = αx
x+b and S ′(x) = eαx( b

x+b )αb with α > 0;
� Ornstein-Uhlenbeck process: dXt = −μXtdt + σdW t for some positive constants

μ, σ so we get α(x) = αx and S ′(x) = eαx2/2 .

For this purpose, we impose on α similar but less restrictive conditions as in Espinosa
and Touzi (2012) and work under the following standing assumption:

α = 2μ

σ 2
: (0, ∞) → R is a C2 positive nondecreasing concave function.(2.12)
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REMARK 2.3. As in Espinosa and Touzi (2012), we observe for later use that the
restriction (2.12) implies in particular that the function 2S′ − αS − 2 is a non-negative
increasing function.

REMARK 2.4. One can reasonably wonder if the solution of the present problem
can be deduced from Espinosa and Touzi (2012) using the following change of variable:
Y := ln(1 + X), since Y would also be a process directed toward 0 if X is. We claim that this
is not the case. Indeed, we can observe that f ( 1+Xθ

1+Zτ
) = f ◦ exp(ln(1 + Xθ ) − ln(1 + Zτ )),

and define 
 : x �→ f ◦ exp(−x). First, as briefly explained in Remark 2.1, the problem
considered here where b = 0 cannot be deduced from the one with b = 1. Moreover, for
the functions f that we intend to study, f : x �→ −xλ or f : x �→ 1

2 (1 − x)2, the convexity
of 
 required in Espinosa and Touzi (2012) is not satisfied. Finally, if X is, for example,
an Ornstein-Uhlenbeck process, one can compute that the function αY associated to Y
is of the form αY : y �→ 2α(e2y − ey) + 1, which is convex on R+, and therefore does not
satisfy the assumptions of Espinosa and Touzi (2012).

3. A PDE VERIFICATION ARGUMENT

This section is devoted to the obtention of a partial differential equation (PDE) character-
ization for the solution of the optimal stopping problem of interest (2.5). We first derive
the corresponding Hamilton-Jacobi-Bellman equation and then provide a verification
theorem.

3.1. The Corresponding Dynamic Programming Equation

The linear second order Dynkin operator associated to the diffusion (2.1) is simply
given by

L : v �→ vxx − α(x)vx, with α(x) = 2μ(x)
σ 2(x)

, for x ≥ 0.

By construction, observe that the scale function S satisfies in particular LS = 0. Since
the value function of interest V rewrites as the solution of a classical optimal stopping
problem (2.8), we expect V to be the solution of the associated dynamic programming
equation. Namely, V should be a solution of the Hamilton-Jacobi-Bellman equation:

min(Lv ; g − v) = 0; v(0, z) = f (0), vz(z, z) = 0, (x, z) ∈ �.(3.1)

The first term indicates that V is dominated by the immediate reward function g and
that the dynamics of v in the continuation domain are given by the Dynkin operator of
the diffusion X. The second relation manifests that only immediate stopping is possible
whenever the diffusion X has reached 0. Finally, the last one is the classical Von Neumann
condition encountered whenever the diffusion process hits its maximum.

As in any optimal stopping problem, the domain of definition � of the value function
subdivides into two subsets: the stopping region S where immediate liquidation of the
portfolio is optimal and the continuation region where the optimal strategy consists in
waiting until the portfolio process enters the stopping region. The optimal stopping time
is the first time where the process arrives in the stopping region, and, in order to obtain
a stopping time in T , we expect the region S to be a closed subset of �. Of course, the
stopping region is characterized by the relation v = g since g is the reward function from
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immediate stopping. Depending on the position of (x, z) ∈ � with respect to the region
S, we expect the dynamics of (3.1) to rewrite

On the stopping region: v(x, z) = g(x, z), Lg(x, z) ≥ 0 ;

On the continuation region: v(x, z) < g(x, z), Lv(x, z) = 0 ;

Everywhere: vz(x, z)1{x=z} = 0 .

Observe that the last Neumann condition is expected on all the domain �, and thus
surprisingly in the stopping region where the portfolio X does not diffuse. This feature is
particular to our framework, in which the reward function g given in (2.10) satisfies by
construction gz(z, z) = 0 for z > 0.

In the next sections of the paper, we exhibit different shapes of stopping and contin-
uation regions depending on the choice of the objective function f . We observe that,
although the objective functions may appear rather similar, the optimal selling strategies
can be very different.

3.2. The Verification Theorem

As detailed earlier, we expect the value function V given by (2.5) to be solution of
the Hamilton-Jacobi-Bellman equation (3.1). The solution of this problem is intimately
related to the form of the associated stopping region S. Afterwards, we shall not prove
that V is indeed a (weak) solution of this PDE but instead try to guess a regular solution to
the PDE and verify that it satisfies the assumptions of the following verification theorem.

We first introduce the definition of piecewise C2,1 functions.

DEFINITION 3.1. We say that a function v defined on � is piecewise C2,1 on a subset
E ⊂ � if for any subset K which is compact in �, there exist K1, . . . , Kn compacts in
� such that K ∩ E ⊂ ∪n

i=1 Ki and v can be extended as a C2,1 function on Ki for each
i = 1, . . . , n.

THEOREM 3.2. Let v be a bounded from below function C1,0 on � and piecewise C2,1 on
�\{(0, z), z > 0} in the sense of Definition 3.1.

(i) If v satisfies Lv ≥ 0, v ≤ g as well as vz(z, z) ≥ 0 for z > 0, then v ≤ V.
(ii) More precisely, if vz(z, z) = 0 for z > 0 and there exists a closed in � set S ⊂ �

containing the axis {(0, z) , z > 0} such that

v = g on S , Lv ≥ 0 on S\{(0, z), z > 0},(3.2)

v ≤ g and Lv = 0 on �\S,

then v = V and θ∗ := inf{t ≥ 0, (Xt, Zt) ∈ S} is an optimal stopping time.
(iii) If in addition v < g on �\S, then θ∗ is the “smallest” optimal stopping time, in the

sense that θ∗ ≤ ν a.s. for any optimal stopping time ν.

Proof. We prove each assertion separately.
(i) Fix (X0, Z0) := (x, z) ∈ �. Let θ ∈ T and define θn = n ∧ θ ∧ inf{t ≥ 0; Zt ≥

n or Zt ≤ 1
n } for n ∈ N. Since (X, Z) takes value in a compact subset of �, a direct
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application of Itô’s formula gives

v(x, z) = v(Xθn , Zθn ) −
∫ θn

0
Lv(Xt, Zt)

σ (Xt)2

2
dt

−
∫ θn

0
vx(Xt, Zt)σ (Xt)dW t −

∫ θn

0
vz(Xt, Zt)dZt .

Combining estimates Lv ≥ 0 and vz(Xt, Zt)dZt = vz(Zt, Zt)dZt ≥ 0 with the fact that
(X, Z) lies in a compact subset of �, we deduce

v(x, z) ≤ Ex,zv(Xθn , Zθn ).(3.3)

Since v ≤ g, this leads directly to

v(x, z) ≤ Ex,zg(Xθn , Zθn ) = Ex,zEXθn ,Zθn
f
(

Xθn

Zτ

)
= Ex,z f

(
Xθn

Zτ

)
.

Clearly as n → ∞, θn → θ almost surely. Since 0 ≤ Xθn /Zτ ≤ 1 and f is continuous,
Lebesgue’s dominated convergence theorem gives: Ex,z f (Xθn /Zτ ) →n→∞ Ex,z f (Xθ /Zτ ),
leading to

v(x, z) ≤ V(x, z) , (x, z) ∈ �.

(ii) Observe that this framework is more restrictive than the previous one, so that v ≤ V
on �. For (x, z) ∈ S, we have v(x, z) = g(x, z) ≥ V(x, z) by definition of g. We now fix
(x, z) ∈ �\S and prove that v(x, z) ≥ V(x, z).

Let θ∗ := inf{t ≥ 0; (Xt, Zt) ∈ S}. Observe that θ∗ ∈ T since S is closed in � and con-
tains the axis {(0, z), z ≥ 0}. The regularity of v impliesLv(Xt, Zt) = 0 for any t ∈ [0, θ∗).
As before, we define θ∗

n := n ∧ θ∗ ∧ inf{t ≥ 0; Zt ≥ n or Zt ≤ 1
n }, which is a stopping time.

A very similar computation leads directly to

v(x, z) = Ex,zv
(
Xθ∗

n
, Zθ∗

n

)
.

Since v is bounded from below and v ≤ g ≤ ‖ f ‖∞, v is bounded. Therefore the sequence
(v(Xθ∗

n
, Zθ∗

n
))n is uniformly integrable and we deduce that v(x, z) = Ex,zv(Xθ∗ , Zθ∗ ). Since

(Xθ∗ , Zθ∗ ) ∈ S and v = g on S, we get

v(x, z) = Ex,zg(Xθ∗ , Zθ∗ ) = Ex,z f
(

Xθ∗

Zτ

)
≥ V(x, z).

Thus v = V on � and θ∗ is an optimal stopping time.
(iii) For a given (x, z) ∈ �, we argue by contradiction and suppose the existence of a

stopping time ν ∈ T satisfying P(ν < θ∗) > 0 and V(x, z) = Ex,z f (Xν/Zτ ).
By assumption, we have V(Xν, Zν) < g(Xν, Zν) on {τ < θ∗}, which combined with

estimate V ≤ g implies

V(x, z) = Ex,z f
(

Xν

Zτ

)
= Ex,zg(Xν, Zν) > Ex,zV(Xτ , Zτ ) ≥ V(x, z),

where the last inequality follows from the definition of V. This leads to a contradiction,
which guarantees the minimality of θ∗. �
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REMARK 3.3. From the definition of g, one easily checks that gz(z, z) = 0 for any z > 0.
Therefore, in the PDE dynamics (3.2), the Neumann boundary condition vz(z, z) = 0 is
only necessary for (z, z) ∈ �\S, since it is automatically satisfied otherwise.

REMARK 3.4. Whenever g is a function which is C1,0 with respect to (x, z) on �,
C2,1 with respect to (x, z) on �\{(0, z), z > 0} and Lg ≥ 0 on �\{(0, z), z > 0}, then
v = g and S = � satisfy the assumptions of Theorem 3.2 (ii). In that case, immediate
stopping is always optimal. We prove in Proposition 3.5 that the reverse is true. Notice
also that expression (2.10) implies that an immediate sufficient condition for g to be in
C1,0(�) ∩ C2,1(�\{(0, z), z > 0}) is that f is C2 on (0, 1].

PROPOSITION 3.5. Assume that g is C1,0 on �, C2,1 on �\{(0, z), z > 0}, and that there
exists (x0, z0) ∈ �\{(0, z), z > 0} such that Lg(x0, z0) < 0. Then, immediate stopping at
(x0, z0) is not optimal (or equivalently V(x0, z0) < g(x0, z0)).

Proof. Since Lg is continuous at (x0, z0), there exists a neighborhood U0 of (x0, z0) in
� such that Lg(x, z) < 0 for any (x, z) ∈ U0. Without loss of generality, we can assume
that U0 is compact in �. Let (X0, Z0) = (x0, z0). Since x0 > 0, there exists θ0 ∈ T such
that Ex0,z0θ0 > 0 and let define θ1 := 1 ∧ θ0 ∧ inf{t ≥ 0; (Xt, Zt) �∈ U0} ∈ T . Since {θ0 >

0} = {θ1 > 0}, we also have Ex0,z0θ1 > 0. Using Itô’s formula, we compute:

g(x0, z0) = g
(
Xθ1 , Zθ1

)−
∫ θ1

0
Lg(Xu, Zu)

σ (Xu)2

2
du

−
∫ θ1

0
gx(Xu, Zu)σ (Xu)dW u −

∫ θ1

0
gz(Xu, Zu) dZu .

From Remark 3.3, gz(z, z) = 0 for z > 0 so that the last term of the previous expression
disappears. Since U0 is compact and Ex0,z0θ1 > 0, taking conditional expectations, we
deduce that g(x0, z0) > Ex0,z0 g(Xθ1 , Zθ1 ) ≥ V(x0, z0). �

In the next sections, we investigate two particular cases of objective functions, for
which we exhibit functions v and stopping regions S, which satisfy the assumptions of
Theorem 3.2 and are in general nontrivial.

4. THE POWER UTILITY CRITERION

Let first examine the case where the function f is given by f : x �→ − xλ

λ
, for λ > 0. In

other words, we are computing the following value function

Vλ(x, z) := − 1
λ

sup
θ∈T

Ex,z

(
Xθ

Zτ

)λ

, (x, z) ∈ �, λ > 0.(4.1)

Consider an investor, whose relative preferences are given by a power utility function
and suppose that he detains at time 0 a given portfolio X directed toward 0. The optimal
stopping time at which he should liquidate his portfolio is the solution of the previous
prediction problem. With a given finite time horizon T, Du Toit and Peskir (2009) as
well as Shiryaev et al. (2008) investigate the case where X is a Geometric Brownian
motion. They conclude that the optimal strategy consists in waiting until time T if the
portfolio has promising returns (i.e. 1 < 2μ/σ 2 = xα(x), x > 0, with our notations), and
sell immediately otherwise. In our stationary framework, waiting until the wealth reaches
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0 is obviously a nonoptimal strategy. For a linear utility function (λ = 1), we prove in
Theorem 4.1 below that immediate stopping is also optimal. Depending on the value of
λ, the latter may no longer be the case for the nonlinear problem (4.1). Nevertheless, we
observe that immediate selling is still optimal for the practical value function of interest
Vλ(x, x), for x > 0.

4.1. The Particular Case Where λ ≤ 1

For λ ≤ 1, we prove hereafter that immediate stopping is always optimal. For λ = 1,
these conclusions are therefore in accordance with those of Du Toit and Peskir (2009),
Shiryaev et al. (2008) obtained for the case of an exponential Brownian motion on a fixed
time horizon.

A direct application of estimate (2.11) proves that the reward function gλ associated
to problem (4.1) is given by

gλ(x, z) = − xλ

λzλ
+ xλS(x)

∫ ∞

z

du
S(u)u1+λ

, (x, z) ∈ �, λ > 0.

The next theorem indicates that the framework of Remark 3.4 holds for λ ≤ 1, so that
gλ coincides with the value function on �.

THEOREM 4.1. For λ ≤ 1, immediate stopping is optimal for problem (4.1), so that

Vλ(x, z) = gλ(x, z), (x, z) ∈ �, 0 < λ ≤ 1.

Proof. For any λ > 0 and (x, z) ∈ � with x > 0, we compute

gλ
x(x, z) = − xλ−1

zλ
+ {λxλ−1S(x) + xλS ′(x)}

∫ ∞

z

du
S(u)u1+λ

.

Differentiating one more time and using the relation LS = 0, we get,

gλ
xx(x, z) = (1 − λ)

xλ−2

zλ
+ {λ(λ − 1)xλ−2S(x) + (2λxλ−1 + xλα(x))S ′(x)}

∫ ∞

z

du
S(u)u1+λ

,

for any λ �= 1 and 0 < x ≤ z. Combining the previous estimates, we deduce that

Lgλ(x, z) = xλ−2[xα(x) + 1 − λ]
(

1
zλ

−
∫ ∞

z

S(x)
S(u)

λdu
u1+λ

)
+ 2xλ−1S ′(x)

∫ ∞

z

λdu
S(u)u1+λ

,

(4.2)

for any λ �= 1 and 0 < x ≤ z. In the case, where λ = 1, we get similarly

Lg1(x, z) = α(x)
(

1
z

−
∫ ∞

z

S(x)du
u2S(u)

)
+ 2S ′(x)

∫ ∞

z

du
u2S(u)

, (x, z) ∈ �.(4.3)

Furthermore, since S is increasing, we have∫ ∞

z

S(x)
S(u)

λdu
u1+λ

≤
∫ ∞

z

S(z)
S(u)

λdu
u1+λ

≤
∫ ∞

z

λdu
u1+λ

= 1
zλ

, (x, z) ∈ �, λ > 0.

Plugging this estimate in (4.2) and (4.3), we see that Lgλ ≥ 0 on �\{(0, z), z > 0} for
any λ ≤ 1. As detailed in Remark 3.4, since g is C0 on � and C2,1 on �\{(0, z), z > 0},
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we deduce that Vλ = gλ on � and consequently immediate stopping is optimal for any
λ ≤ 1. �

4.2. Construction of the Solution When λ > 1

We now turn to the more interesting and intricate case where λ > 1. Then, the function
Lgλ is still given by expression (4.2) and we observe that:

Lgλ(x, z) ∼x∼0 (1 − λ)
xλ−2

zλ
< 0,

for any z > 0 and λ > 1. Therefore, Lgλ is not non-negative on � and Proposition 3.5
ensures that the associated continuation region is nonempty. Since immediate stopping
shall not be optimal close to the axis {(0, z); z > 0}, we expect to have a stopping region
of the form Sλ := {(x, z) ∈ �; x ≥ ϕλ(z)} ∪ {(0, z); z > 0}. Hence, our objective is to find
functions vλ and ϕλ satisfying

Lvλ(x, z) = 0 for 0 < x < ϕλ(z) and (x, z) ∈ �,(4.4)

vλ(x, z) = gλ(x, z) and Lgλ(x, z) ≥ 0 for x ≥ ϕλ(z) and (x, z) ∈ �,(4.5)

vλ(0, z) = 0 for z > 0,(4.6)

vλ
z (z, z) = 0 for z > 0.(4.7)

Since we look for regular solutions, we complement the above system by the continuity
and the smooth fit conditions

vλ(ϕλ(z), z) = gλ(ϕλ(z), z) and vλ
x(ϕλ(z), z) = gλ

x(ϕλ(z), z), for z > 0.(4.8)

The stopping region Sλ will then be defined as

Sλ := {(x, z) ∈ �; x ≥ ϕλ(z)} ∪ {(0, z); z > 0}.(4.9)

Since the optimization problem of practical interest corresponds to the value of Vλ on the
diagonal {(x, x); x > 0}, our main concern here is to find out if ϕλ(z) ≤ z for any z ≥ 0,
hence indicating if immediate stopping is always optimal on the diagonal. Surprisingly,
we verify hereafter that ϕλ(0) = 0 and ϕλ(z) < z, for z > 0, so that immediate stopping
is the optimal strategy for the practical problem of interest.

Due to the dynamics of (4.4) and since LS = 0, the function vλ must be of the form

vλ(x, z) = A(z) + B(z)S(x), (x, z) ∈ �\S.

Combined with the continuity and smooth fit conditions (4.8), this leads to

v(x, z) = gλ(ϕλ(z), z) + gλ
x(ϕλ(z), z)
S ′ ◦ ϕλ(z)

[S(x) − S ◦ ϕλ(z)], (x, z) ∈ �\S.

The free boundary ϕλ is then determined by the Dirichlet condition (4.6) and must satisfy:

gλ(ϕλ(z), z)S ′ ◦ ϕλ(z) = gλ
x(ϕλ(z), z)S ◦ ϕλ(z), (x, z) ∈ �\S.
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The next lemma introduces a free boundary function ϕλ satisfying this required condition.
It also provides useful properties of this free boundary function and its technical proof
is postponed to Section 4.4.

LEMMA 4.2. For any λ > 1, the function ϕλ given by

ϕλ : z ∈ (0, ∞) �→ arg min
x∈[0,z]

g(x, z)
S(x)

,

is a well defined increasing C1 function, satisfying:

(i) 0 ≤ ϕλ(z) < z, for any z > 0;
(ii) ϕλ maps (0, ∞) onto (0, yλ), where yλ is the unique non-null zero of y �→ yS′(y) −

λS(y).

REMARK 4.3. As pointed out by a referee, the definition of the optimal frontier ϕλ

interprets as the one associated to a one-dimensional classical stopping problem with
fixed running maximum z > 0. Indeed, we observe ex post that the exhibited optimal
policy does not allow the running maximum of the portfolio to increase. Hence solving
this stopping problem with a fixed z > 0 is essentially the same.

REMARK 4.4. Observe that, for any fixed z > 0 and λ > 1, gλ(x, z)/S(x) converges to
0 as x goes to 0, since S dominates the Identity function as pointed out in Remark 2.2.
Therefore, the function gλ(., z)/S(.) is well defined on [0, z] for any z > 0.

Before providing the value function solution and verifying that it satisfies the require-
ments of Theorem 3.2, we still need to check that the stopping region Sλ associated to
ϕλ is indeed a good candidate, that is, the second part of (4.5) holds. This is the purpose
of the next lemma, which proof is also postponed to Section 4.4.

LEMMA 4.5. For any λ > 1, the function Lgλ is non-negative on {(x, z) ∈ �, x ≥ ϕλ(z)}.
Given the free boundary ϕλ defined above and the corresponding stopping region Sλ, we
are now in position to provide the optimal strategy and value function solutions of the
problem (4.1).

THEOREM 4.6. For any λ > 1, the value function Vλ solution of problem (4.1) is given
by

Vλ(x, z) = gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
1{x<ϕλ(z)} + gλ(x, z)1{x≥ϕλ(z)}, (x, z) ∈ �.(4.10)

The smallest optimal stopping time associated to (4.1) is given by

θλ := inf {t ≥ 0, Xt ≥ ϕλ(Zt)} ∧ τ, λ > 1.

Proof. Let denote by vλ the candidate value function defined by the right-hand side
of (4.10). We shall prove that vλ coincides with the value function (4.1) by checking that
it satisfies all the requirements of Theorem 3.2.

It is immediate that vλ is bounded from below by 0 because gλ ≥ 0. Since gλ is C1 on
� and C2,1 with respect to (x, z) on �\{(0, z), z > 0}, and ϕλ is C1 by Lemma 4.2, vλ

is C2,1 with respect to (x, z) on both �\S and S\{(0, z), z > 0}, so that it is piecewise
C2,1 on �\{(0, z), z > 0}. By construction, vλ is continuous on � and we recall from the
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definition of ϕλ that

gλ(ϕλ(z), z)
S ′ ◦ ϕλ(z)
S ◦ ϕλ(z)

= gλ
x(ϕλ(z), z), z > 0.

Therefore, vλ is C1 on �.
The closed in � stopping region associated to the value function vλ is naturally given

by (4.9). By definition, vλ = gλ on Sλ and we deduce from Lemma 4.5 that Lgλ ≥ 0 on
the set Sλ\{(0, z), z > 0}. By construction, we have Lvλ = 0 on �\Sλ. For any z > 0,
since gλ(., z)/S achieves its minimum at a unique point ϕλ(z), we get

gλ(ϕλ(z), z)
S(x)

S ◦ ϕλ(z)
< gλ(x, z), 0 ≤ x < ϕλ(z),

and we deduce that vλ < gλ on �\Sλ. Finally, since vλ
z (z, z) = gλ

z (z, z) = 0 for any
z > 0, all the requirements of (ii)–(iii) in Theorem 3.2 are in force, and the proof is
complete. �

4.3. Properties of the Optimal Liquidation Strategy

We first observe that the two previous cases where λ is above or below 1 seem to be of
different natures. However, we prove hereafter that this is not the case and provide via
simple arguments the continuity of Vλ with respect to the parameter λ.

PROPOSITION 4.7. The mapping λ �→ Vλ is continuous on (0, ∞).

Proof. We fix λ1 and λ2 in (0, ∞) such that λ1 ≤ λ2. First notice that since X. ≤ Zτ on
[0, τ ], we necessarily have

(4.11)

−λ2Vλ2 (x, z) = sup
θ∈T

Ex,z

(
Xθ

Zτ

)λ2

≤ sup
θ∈T

Ex,z

(
Xθ

Zτ

)λ1

= −λ1Vλ1 (x, z), (x, z) ∈ �.

Now, using Jensen’s inequality, we observe that

[
Ex,z

(
Xθ

Zτ

)λ1
] λ2

λ1

≤ Ex,z

(
Xθ

Zτ

)λ2

≤ −λ2Vλ2 (x, z) , θ ∈ T , (x, z) ∈ �.

Bringing this expression to the power λ1/λ2 and taking the supremum over θ , we deduce
from (4.11) that

[−λ1Vλ1 (x, z)]
λ2
λ1 ≤ −λ2Vλ2 (x, z) ≤ −λ1Vλ1 (x, z), (x, z) ∈ �.

Therefore λ2Vλ2 → λ1Vλ1 whenever λ2 → λ1 and we deduce the continuity of Vλ with
respect to λ. �

For λ > 1, Theorem 4.6 indicates that the stopping region Sλ associated to problem
(4.1) is given by (4.9). Since ϕλ(z) < z, we see that the stopping region Sλ includes in
particular the axis {(x, x) , x > 0}. Therefore, if an investor detains a portfolio directed
toward zero and hopes to get close to its upcoming maximum before it reaches zero
according to the criterion (4.1), he should liquidate the portfolio immediately. If ever the
running maximum z of the portfolio exceeds its current value, he should wait until
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FIGURE 4.1. Optimal frontier for an OU (α = 1) and a CIR (α = 1, b = 1) with
different parameter λ

the value of the portfolio hits zero or increases enough and reaches ϕλ(z). In any
case, the optimal strategy does not allow the running maximum of the portfolio to
increase. Theorem 4.1 indicates that immediate selling is optimal for λ ∈ (0, 1] and these
results are in accordance with those of Shiryaev et al. (2008) for an exponential Brow-
nian motion on a finite fixed horizon, since waiting until maturity is irrelevant in our
framework. Nevertheless, changing the criterion of interest may lead to value functions
where immediate stopping is not optimal on the axis {(x, x) , x > 0}. This is exactly the
purpose of Section 5.

Figure 4.1 represents the frontier between the stopping and the continuation regions
for different values of λ larger than 1 and associated to an Orstein-Uhlenbeck with
parameter α = 1 and a CIR-Feller process with parameters α = 1 and b = 1. We first
observe that the shape of the free boundary ϕλ is rather similar in both cases, and we
observe indeed this feature for a large range of parameter set. Furthermore, the mapping
λ �→ ϕλ seems to be continuous, property which is easily verified from the definition of
ϕλ. Second, we notice that the free boundary ϕλ is decreasing with respect to λ. Indeed,
arguing as in Part 2. of the proof of Lemma 4.2, one can easily check that the function
x ∈ R

+ �→ xS′(x)/S(x) is decreasing starting from 1. Hence, by definition of yλ, the
valuation domain [0, yλ] of ϕλ shrinks monotonically to {0} as λ decreases to 1, hence
leading to the absence of continuation region for the problem V1.

REMARK 4.8. Considering, for example, an Ornstein-Uhlenbeck portfolio X, one
verifies easily from their definitions that the free boundary ϕλ and the value function
vλ are continuous with respect to the parameter α ∈ R, characterizing the dynamics of
the portfolio X. Hence, the continuation and stopping regions are not too sensitive to
eventual estimation errors of this parameter of interest.

4.4. Proofs of Lemma 4.2 and Lemma 4.5

This section provides successively the proofs of Lemma 4.2 and Lemma 4.5.

Proof of Lemma 4.2. Fix λ > 1. Let introduce the functions

m : x �→ xS′(x)
λS(x)2

− 1
S(x)

and 
 : z �→ −
∫ ∞

z

λzλdu
S(u)u1+λ

,
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so that the derivative of the function of interest rewrites

∂

∂x

[
g(x, z)
S(x)

]
= xλ−1

zλ
{m(x) − 
(z)} , (x, z) ∈ �.(4.12)

0. A useful estimate
We will use several times the following expansion as x → ∞:

α(x)S(x) ∼∞ S ′(x).(4.13)

Indeed, recalling that LS = 0 and integrating by parts, we compute:

S(x) = S(1) +
∫ x

1

α(u)S ′(u)
α(u)

du

= S(1) + S ′(x)
α(x)

− S ′(1)
α(1)

−
∫ x

1
(1/α)′(u)S ′(u)du ∼∞

S ′(x)
α(x)

,

since S(x) → ∞ as x → ∞ and (2.12) implies that (1/α)′(x) → 0 as x → ∞.

1. Definition of ϕλ

In order to justify that ϕλ is well defined, we study separately the functions m and

. We observe first that the function 
 is negative, increasing and, according to (4.13),
satisfies


(z) ∼∞ −
∫ ∞

z

λzλα(u)du
u1+λS ′(u)

∼∞ − λ

zS′(z)
→∞ 0,(4.14)

where the second equivalence comes from the following computation:

−
∫ ∞

z

λzλα(u)du
u1+λS ′(u)

=
[

λzλ

u1+λS ′(u)

]∞

z
+
∫ ∞

z

λ(1 + λ)zλdu
u2+λS ′(u)

, z > 0.

We now turn to the study of m and compute, for any x > 0,

m′(x) = {λ + 1 + xα(x)}
λS(x)3

S ′(x)M(x), with

M : x �→ S(x) − 2x
λ + 1 + xα(x)

S ′(x).

Differentiating one more time, we obtain

M′(x) = x2S ′(x)
(λ + 1 + xα(x))2

[
λ2 − 1

x2
− α(x)2 + 2α′(x)

]
, x > 0.

Since λ > 1 while α is non-negative, increasing and concave, the term in between brackets
is decreasing. Furthermore M′(0) = λ − 1 > 0 and, since xα′(x) ≤ α(x) for x > 0, we get

M′(x) ≤ S ′(x)
(λ + 1 + xα(x))2

[λ2 − 1 − x2α(x)2 + 2xα(x)] →x→∞ −∞.

Thus M is first increasing and then decreasing. Furthermore, estimate (4.13) implies that

M(x) ∼∞

[
1 − 2xα(x)

λ + 1 + xα(x)

]
S(x) = λ + 1 − xα(x)

λ + 1 + xα(x)
S(x) ∼∞ −S(x).
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Since M(0) = 0, we deduce that m is first increasing and then decreasing. Then we have
as x → 0, m(x) ∼ 1−λ

λx → −∞, and, using (4.13),

m(x) ∼x→∞
xα(x) − λ

λS(x)
> 0 , for sufficiently large x.(4.15)

Since the function 
 is negative, we deduce that, for any z > 0, there is a unique point
in (0, ∞), denoted ϕλ(z), such that m ◦ ϕλ(z) = 
(z), and is the unique minimum of
x �→ g(x, z)/S(x) on [0, ∞). This point is also the unique solution of

gx(x, z)S(x) − g(x, z)S ′(x) = 0(4.16)

for any fixed z. The implicit functions theorem implies that ϕλ is C1 on (0, ∞). We prove
hereafter that ϕλ(z) < z, for any z > 0, so that ϕλ corresponds to the definition given in
the statement of the lemma.

2. ϕλ(z) < z , for any z > 0
For any z > 0, since x �→ m(x) − 
(z) is first negative and then positive, on (0, ∞), the

property ϕλ(z) < z will be a direct consequence of the estimate m(z) − 
(z) > 0, that we
prove now. First observe that the derivative of h : z �→ [m(z) − 
(z)]z−λ is given by

h′(z) = 1 + zα(z)
zλS(z)3

S ′(z)n(z), z > 0, with

n : z �→ S(z) − 2z
1 + zα(z)

S ′(z).

Hence h′ has the same sign as n and, differentiating one more time, we compute

n′(z) = S ′(z)
[

1 − 2 + 2zα(z)
1 + zα(z)

+ 2z(α(z) + zα′(z))
|1 + zα(z)|2

]

= −1 + z2α(z)2 − 2z2α′(z)
|1 + zα(z)|2 S ′(z),

for any z > 0. Since α is concave and non-negative, we have zα′(z) ≤ α(z) for z > 0, and,
plugging this estimate in the previous expression, we obtain

n′(z) ≤ −|1 − zα(z)|2
|1 + zα(z)|2 S ′(z) ≤ 0, z > 0.

Hence, n is nonincreasing starting from n(0) = 0, and therefore h is also nonincreasing
on (0, ∞). Furthermore, we know from (4.14) and (4.15) that h(z) = [m(z) − 
(z)]z−λ > 0
for sufficiently large z, so that we have m(z) − 
(z) > 0, for any z > 0.

3. ϕλ is increasing and valued in [0, yλ]
Recall that m ◦ ϕλ = 
 and 
 is increasing and negative. Since m is also increasing when

it is negative, we deduce that ϕλ is increasing. Since after crossing zero, the function m
remains positive, ϕ(z) must be smaller than the point where m crosses zero, for any z > 0.
By definition of m, this point yλ is implicitly defined by yλS ′(yλ) = λS(yλ). Therefore
ϕλ(.) ≤ yλ and, since 
(z) →z→∞ 0, we even have ϕλ(z) →z→∞ yλ. �
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Proof of Lemma 4.5. We fix λ > 1 and recall from estimate (4.2) in the proof of
Theorem 4.1 that Lgλ is given by

Lgλ(x, z) = xλ−2[xα(x) + 1 − λ]

×
(

1
zλ

−
∫ ∞

z

S(x)
S(u)

λdu
u1+λ

)
+ 2xλ−1S ′(x)

∫ ∞

z

λdu
S(u)u1+λ

,(4.17)

for any 0 < x ≤ z. Since S is increasing, we first observe that Lgλ(x, .) ≥ 0 for any x > 0
such that xα(x) + 1 − λ ≥ 0. Denoting by xλ the unique point of R

+ defined implicitly
by

xλα(xλ) = λ − 1,

we deduce that Lgλ(x, .) ≥ 0 for any x ≥ xλ.
It remains to treat the case where x < xλ and we compute

∂

∂z
Lgλ(x, z) = λ

xλ−2

z1+λS(z)

{
[λ − 1 − xα(x)](S(z) − S(x)) − 2xS ′(x)

}
, 0 < x ≤ z.

For any fixed x ∈ (0, xλ), the previous expression in between brackets is increasing with
respect to z, negative for z = x and positive for z large enough. Hence, for any x ∈ (0, xλ),
Lg(x, .) is first decreasing, then increasing and Lg(x, z) goes to 0 as z goes to infinity.
Denoting by γ λ the inverse of ϕλ, we deduce that

Lg(x, z) ≥ 0, for any z ≤ γ λ(x) , if and only if Lg(x, γ λ(x)) ≥ 0,

for any fixed x ∈ (0, xλ). Since ϕλ and hence γ λ are increasing, it therefore only remains
to verify that Lg(., γ (.)) ≥ 0 on (0, xλ).

We recall from the proof of Lemma 4.2 that γ λ is defined implicitly by∫ ∞

γ λ(x)

λ[γ λ(x)]λdu
S(u)u1+λ

= 1
S(x)

− xS′(x)
λS(x)2

, 0 < x < xλ.

For a given x ∈ (0, xλ), plugging this estimate into (4.17), we deduce

Lg(x, γ λ(x)) = (xα(x) + 1 − λ)
xλ−1S ′(x)

λ[γ λ(x)]λS(x)
+
(

1
S(x)

− xS ′(x)
λS2(x)

)
2xλ−1S ′(x)

[γ λ(x)]λ
,

which after simplifications leads to

Lg(x, γ λ(x)) = (xα(x) + 1 + λ)xλ−1S ′(x)
λS(x)2[γ λ(x)]λ

h(x), with

h : x �→ S(x) − 2x
xα(x) + 1 + λ

S ′(x) .

In order to get the sign of Lg(., γ λ(.)), we look for the sign of h and compute

h′(x) = S ′(x)
[

1 − 2 + 2xα(x)
1 + λ + xα(x)

+ 2x(α(x) + xα′(x))
|1 + λ + xα(x)|2

]

= S ′(x)
|1 + λ + xα(x)|2 [λ2 − 1 − x2α(x)2 + 2x2α′(x)]

≥ S ′(x)
|1 + λ + xα(x)|2 [λ2 − (1 − xα(x))2], x < xλ.
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Since xα′(x) ≤ α(x) for x > 0, due to the concavity of α. By definition of xλ, we deduce
that h is nondecreasing on (0, xλ). However, h(0) = 0 and therefore Lg(., γ (.)) ≥ 0 on
(0, xλ), which concludes the proof. �

5. MINIMIZATION OF THE RELATIVE QUADRATIC ERROR

Let us now consider the case where f : x �→ 1
2 (1 − x)2. Therefore, we are computing the

following value function

V(x, z) := 1
2

inf
θ∈T

Ex,z

(
1 − Xθ

Zτ

)2

, (x, z) ∈ �.(5.1)

With such a criterion, the investor tries to minimize the expected value of the squared
relative error between the value of the stopped process and the maximal value of the
process up to τ . In other words he wants to minimize the expectation of [(Zτ − Xθ )/Zτ ]2,
whereas in Section 4, λ = 2 would correspond to the minimization of 1 − (Xθ /Zτ )2,
which is not as natural. In contrast with the previous optimal stopping problem (4.1),
we prove that stopping immediately even for x = z is not optimal in general. We exhibit
the optimal liquidation strategy, which is numerically not that different from immediate
selling.

5.1. Construction of the Solution

From (2.11), we compute the corresponding reward function:

g(x, z) = 1
2

(
1 − x

z

)2

+ xS(x)
∫ ∞

z

(
1 − x

u

) du
u2S(u)

, (x, z) ∈ � .

In view of Proposition 3.5, we would require Lg(x, z) ≥ 0 in order for some (x, z) ∈ �

to be in the stopping region. Let us first compute

gx(x, z) = −1
z

(
1 − x

z

)
+ [S(x) + xS′(x)]

∫ ∞

z

du
u2S(u)

− [2xS(x) + x2S ′(x)]
∫ ∞

z

du
u3S(u)

,

gxx(x, z) = 1
z2

+ [2 + xα(x)]S ′(x)
∫ ∞

z

du
u2S(u)

− [2S(x) + 4xS ′(x) + x2α(x)S ′(x)]
∫ ∞

z

du
u3S(u)

,

for any (x, z) ∈ �. Combining these estimates, we deduce

Lg(x, z) = 1
z2

[1 + α(x) (z − x)] + [2S ′(x) − α(x)S(x)]
∫ ∞

z

du
u2S(u)

− [S(x) + 2xS′(x) − xα(x)S(x)]
∫ ∞

z

2du
u3S(u)

, (x, z) ∈ �.(5.2)

In view of Theorem 3.2 (i), if Lg ≥ 0 on �, then immediate stopping is optimal, v = g
and the problem is trivial. However, the next result gives sufficient conditions such that
it is not the case. Consider the following condition:

α(0)2 − 2α′(0) < 0.(5.3)
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REMARK 5.1. Notice that (5.3) will be satisfied for an Ornstein-Uhlenbeck process as
well as a CIR-Feller process with positive “mean,” for which we respectively have α(x) =
αx and α(x) = α x

x+b , respectively, α and b being positive constants. More generally,
as soon as α(0) = 0, (5.3) is satisfied. However, for a drifted Brownian motion or a
degenerated CIR-Feller process with “mean” equal to 0, (5.3) does not hold true.

PROPOSITION 5.2. Assume that (5.3) is satisfied. Then, Lg(z, z) < 0 for z small enough
so that immediate stopping is not optimal for the problem of interest V(z, z).

Proof. Using the asymptotic expansions from Proposition 5.9 in Section 5.4, we
compute for z close to 0:

Lg(z, z) = [2S ′(z) − α(z)S(z)]
∫ ∞

z

du
u2S(u)

− [S(z) + 2zS ′(z) − zα(z)S(z)]
∫ ∞

z

2du
u3S(u)

+ 1
z2

= (
2 + α(0)z + O(z2)

) ( 1
2z2

− α(0)
2z

− α(0)2 − 2α′(0)
12

ln z + o(ln z)
)

−
(

3z + 3
2
α(0)z2 + O(z3)

)( 2
3z3

− α(0)
2z2

+ O
(

1
z

))
+ 1

z2

= −α(0)2 − 2α′(0)
6

ln z + o(ln z).

Since ln z → −∞ when z → 0, we see that if (5.3) holds, then Lg(z, z) < 0 for z in a
neighborhood of 0, so that we have the result by continuity of Lg.

In particular, we deduce from Proposition 3.5 that immediate selling is not optimal for
the problem V(z, z) with z small enough. �

Hence stopping immediately is not optimal in general and the optimal strategy shall
be very different from the one in the power utility case. Since we do not have Lg ≥ 0 on
the entire space � but we can exercise only in that region, we first need to study the set

�+ := {(x, z) ∈ �,Lg(x, z) ≥ 0} ,(5.4)

and we define similarly:

�− := {(x, z) ∈ �,Lg(x, z) ≤ 0} .(5.5)

In fact, observe that (5.2) rewrites as:

Lg(x, z) = α(x)
z − x

z2
+ [2S ′(x) − α(x)S(x)]

∫ ∞

z

(
1 − 2x

u

)
du

u2S(u)
(5.6)

+
(

1
z2

− S(x)
∫ ∞

z

2du
u3S(u)

)
, (x, z) ∈ �.

By Remark 2.3, we have 2S ′ − αS − 2 ≥ 0 and therefore each of the three terms above
are positive if z ≥ 2x, and so

Lg(x, z) > 0 for z ≥ 2x and (x, z) ∈ �,(5.7)

which implies that {(x, z) ∈ �, z ≥ 2x} ⊂ Int(�+).
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Moreover we have the following result, which proof is given in Section 5.4 later.

LEMMA 5.3. For any x > 0, there exists δx ∈ (x, 2x) such that Lg(x, .) is increasing on
[x, δx) and decreasing on (δx, 2x].

In view of (5.7), we can define the following function on R+\{0}:

�(x) := inf{z ≥ x,Lg(x, z) ≥ 0}.(5.8)

Lemma 5.3 and (5.7) imply that, if z > �(x), then Lg(x, z) > 0, while if z ∈ (x, �(x)),
then Lg(x, z) < 0. We also deduce that �(x) > x implies Lg(x, �(x)) = 0. Notice that �

is continuous, and, from (5.7), we also know that �(x) < 2x.
The next result provides the main properties of �: it is increasing and equal to the

Identity function for sufficiently large x. Again the proof is postponed to Section 5.4.

PROPOSITION 5.4. We have the two following properties:

(i) � is increasing on (0, +∞);
(ii) Denoting �∞ := sup{x ≥ 0; �(x) > x}, we get �∞ < ∞.

Notice that �+ �= � implies directly �∞ > 0.
Now that we have a better understanding of the set �+, we expect to have a stopping

region of the form {(x, z) ∈ � ; z ≥ γ (x)}, and our objective is then to find functions v
and γ , satisfying the following free-boundary problem:

Lv(x, z) = 0 for x ≤ z < γ (x) and (x, z) ∈ �,(5.9)

v(x, z) = g(x, z) and Lg(x, z) ≥ 0 for z ≥ γ (x) and (x, z) ∈ �,(5.10)

v(0, z) = 1
2

for z > 0,(5.11)

vz(z, z) = 0 for z > 0.(5.12)

In order to allow for the application of Itô’s formula, the verification step requires a value
function which is C1,0 and piecewise C2,1 with respect to (x, z). Therefore, as in Section 4,
we complement the above system by the continuity and the smooth fit conditions

v(x, γ (x)) = g(x, γ (x)) and vx(x, γ (x)) = gx(x, γ (x)) , for x > 0.(5.13)

The stopping region S will then be defined as:

S := {(x, z) ∈ �; z ≥ γ (x)} ∪ {(0, z); z > 0}.(5.14)

First by (5.9), on the continuation region, v is of the form:

v(x, z) = A(z) + B(z)S(x), (x, z) ∈ �\S .

Then, on the interval where γ is one-to-one, the continuity and smooth fit conditions
(5.13) imply that

v(x, z) = g(γ −1(z), z) + gx(γ −1(z), z)
S ′ ◦ γ −1(z)

[S(x) − S ◦ γ −1(z)], (x, z) ∈ �\S.
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Finally, the Neumann condition (5.12), implies that we expect the boundary γ to satisfy
the following ODE:

γ ′(x) = γ (x)2Lg(x, γ (x))(
2x

γ (x)
− 1
)(

1 − S(x)
S ◦ γ (x)

) , for x < �∞ .(5.15)

As in Espinosa and Touzi (2012), there is no a priori initial condition for this ODE. In the
sequel, we take this ODE (with no initial condition) as a starting point to construct the
boundary γ . Notice that this ODE has infinitely many solutions, as the Cauchy-Lipschitz
condition is locally satisfied whenever (5.15) is complemented with the condition γ (x0) =
z0 for any 0 < x0 < z0 and z0 �= 2x0. We will follow the ideas of Espinosa and Touzi (2012),
however in our case, (5.15) is not well defined for γ (x) = 2x, so that our framework
requires to be more cautious. Notice also that we encounter here a similar feature as in
Peskir (1998). The following result selects an appropriate solution of (5.15), and its proof
is given in Section 5.5.

PROPOSITION 5.5. Let Int(�−) be nonempty. Then, there exists an increasing continuous
function γ defined on R+ with graph {(x, γ (x)) : x > 0} ⊂ �, such that:

(i) On the set {x > 0 : γ (x) > x}, γ is a C1 solution of the ODE (5.47),
(ii) {(x, γ (x)) : x > 0} ⊂ �+, and {(x, γ (x)) : x > 0andγ (x) > x} ⊂ Int(�+),

(iii) γ (x) = x for all x ≥ �∞.

Since γ is increasing, we can define:

ϕ := γ −1.(5.16)

Now that we have constructed the free-boundary ϕ, we are able to state the following
result.

THEOREM 5.6. Let Int(�−) be nonempty, γ be given by Proposition 5.5 and ϕ be defined
by (5.16). Then the value function V solution of problem (5.1) is given, for (x, z) ∈ �, by:

V(x, z) :=

⎧⎪⎨
⎪⎩

g(x, z), if x ≤ ϕ(z)

g(ϕ(z), z) + gx(ϕ(z), z)
S(x) − S ◦ ϕ(z)

S ′ ◦ ϕ(z)
, if x > ϕ(z)

.(5.17)

Moreover, the smallest optimal stopping time associated to (5.1) is given by θ∗ :=
inf {t ≥ 0, Xt ≤ ϕ(Zt)}.

Proof. Let v be defined by (5.17) and recall that S is defined by (5.14). The result
follows from verifying that all the assumptions of Theorem 3.2 (ii) and (iii) are satisfied.

1. Regularity of v .
We know from Proposition 5.5 that γ and therefore ϕ are continuous and hence v is

continuous on � by construction. Furthermore, by Proposition 5.5 (i) and (ii) together
with the dynamics of the ODE (5.15), γ is a C1 function with positive derivative on the
set {x > 0; γ (x) > x}. Therefore ϕ is C1 as well on {z > 0; ϕ(z) < z} so that it is immediate
that v is C0 and piecewise C2,1 with respect to (x, z). Furthermore, since �∞ < ∞ by
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Proposition 5.4, �\S is bounded. Since v is continuous and g ≥ 0, v is bounded from
below.

2. Dynamics of v .
By definition, we have Lv = 0 on �\S. By Proposition 5.5 (ii), Lg(x, γ (x)) ≥ 0 for

x > 0, and we deduce from Lemma 5.3 and (5.7) that Lg(x, z) ≥ 0 for any (x, z) ∈ �

such that z ≥ γ (x). Hence, (5.7) ensures that Lg ≥ 0 on S.
It remains to prove that vz(z, z) = 0 for z > 0. We fix z > 0. If ϕ(z) ≥ z, since gz(z, z) =

0, we have vz(z, z) = 0 as well. Suppose now that ϕ(z) < z. Then, by Proposition 5.5 (i),
γ satisfies (5.15) in a neighborhood of ϕ(z), and by Proposition 5.5 (ii), Lg(ϕ(z), z) > 0,
which implies γ ′ ◦ ϕ(z) > 0, so that:

ϕ′(z)Lg(ϕ(z), z) = 1
z2

(
2ϕ(z)

z
− 1
)(

1 − S ◦ ϕ(z)
S(z)

)
.

We then compute from the definitions of v and g that

vz(z, z) = gz(ϕ(z), z) + gxz
S(z) − S ◦ ϕ(z)

S ′ ◦ ϕ(z)
+ ϕ′(z)Lg(ϕ(z), z)

S(z) − S ◦ ϕ(z)
S ′ ◦ ϕ(z)

=
[

1
z2

(
1 − 2ϕ(z)

z

)(
1 − S ◦ ϕ(z)

S(z)

)
+ ϕ′(z)Lg(ϕ(z), z)

]
S(z) − S ◦ ϕ(z)

S ′ ◦ ϕ(z)
= 0.

3. Comparing v and g.
Finally, the fact that v ≤ g on � and v < g on �\S follows from similar arguments

as in the proof of proposition 6.2 in Espinosa and Touzi (2012) but the demonstration is
simpler in our context since �∞ < ∞. For the sake of completeness, we detail this proof.
For (x, z) ∈ � such that x > ϕ(z), we compute

v(x, z) − g(x, z) = g(ϕ(z), z) + gx(ϕ(z), z)
S(x) − S ◦ ϕ(z)

S ′ ◦ ϕ(z)
− g(x, z),

and, differentiating twice with respect to x and using (5.13), we verify that

vx(x, z) − gx(x, z) = −S ′(x)
∫ x

ϕ(z)

Lg(u, z)
S ′(u)

du.(5.18)

Therefore, from Lemma 5.3 and Proposition 5.4 (i), for any fixed z, the function x �→
(v − g)(x, z) is either decreasing on [ϕ(z), z], or decreasing on [ϕ(z), δ) and then increasing
on (δ, z] for a given δ ∈ (ϕ(z), z). For any z > 0, since v(ϕ(z), z) = g(ϕ(z), z), we only need
to prove that n(z) := v(z, z) − g(z, z) < 0 if ϕ(z) < z.

Since vz(z, z) = gz(z, z) = 0 for z > 0, we compute:

n′(z) = vx(z, z) − gx(z, z) = −S ′(z)
∫ z

ϕ(z)

Lg(u, z)
S ′(u)

du, z > 0.

We assume the existence of a fixed z < �∞ such that n(z) ≥ 0 and ϕ(z) < z and
work toward a contradiction. We first observe that necessarily n′(z) > 0. If not,∫ z
ϕ(z)

Lg(u,z)
S ′(u) du ≥ 0 implies that

∫ x
ϕ(z)

Lg(u,z)
S ′(u) du > 0 for any x ∈ (ϕ(z), z), and (5.18) com-

bined with v(ϕ(z), z) = g(ϕ(z), z) leads to n(z) < 0 which is impossible. Since n is continu-
ous, this implies that n is increasing on any connected subset of {z′ ≥ z, ϕ(z′) < z′}. Defin-
ing a := inf{z′ > z; ϕ(z′) = z′} ≤ �∞ < ∞, we get n(a) = v(a, a) − g(a, a) > 0, which
contradicts the definition of v .
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FIGURE 5.1. Optimal frontier for an OU (α = 1) and a CIR (α = 0.1, b = 0.1).

Therefore, n(z) < 0 for any z > 0 such that ϕ(z) < z and we deduce that v ≤ g on �

and v < g on �\S. �

5.2. Properties of the Optimal Liquidation Strategy

Theorem 5.6 and Proposition 5.2 indicate that, at least for processes satisfying
(5.3), such as the Ornstein-Uhlenbeck process or the CIR-Feller process, the diagonal
{(x, x); x > 0} is not included in the stopping region S. In other words, it is not always
optimal to stop immediately, even when starting from points such that x = z. Therefore,
the form of the solution and the nature of the optimal strategy to apply in order to be
as close as possible to the maximum using this criterion is very different from the ones
obtained in Section 4 or in Shiryaev et al. (2008).

The Ornstein-Uhlenbeck process as well as the CIR-Feller process are two examples
for which the coefficient α satisfies Conditions (2.12) and Int(�−) �= ∅. Indeed we have
α(x) = αx and α(x) = α x

x+b , respectively, where α and b are two positive constants.
Therefore, Condition (5.3) is satisfied, ensuring that Int(�−) �= ∅ by Proposition 5.2.
Hence, Theorem 5.6 can be applied. Figure 5.1 represents the boundary ϕ for those two
processes, with α = 1 for the OU process and (α, b) = (0.1, 0.1) for the CIR process. We
observe that the continuation region is in fact pretty small since the free boundary is
very close to the diagonal axis. Therefore, even if immediate stopping is not optimal, an
investor should not wait long until the process (X, X∗) enters the stopping region.

REMARK 5.7. Similarly to proposition 7.3 of Espinosa and Touzi (2012), an homo-
geneity result can be derived for the OU process, so that the free boundary for any α > 0
can be deduced by a change of scale from the one for α = 1.

The Brownian motion with negative drift is another example for which α satisfies
Condition (2.12). However, since α(x) = α > 0 is constant, Condition (5.3) does not
hold. Although we did not verify it, numerical computations suggest that Lg ≥ 0 on �.

Finally, we can also consider the case of a Brownian motion. In this case, α(x) =
0, so that α does not satisfy Condition (2.12). However, for any (x, z) ∈ �, we can
compute from (5.2) that Lg(x, z) = 2 z−x

z3 ≥ 0 on �. Since the proofs of Theorem 3.2
and Remark 3.4 do not require Condition (2.12), we deduce that immediate stopping is
always optimal.

REMARK 5.8. Let α be associated to an Ornstein-Uhlenbeck or a CIR process and
hence be parameterized by a possibly bi-dimensional parameter set a. Since the parameter
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set a may be badly estimated, let consider a sequence of parameter set (an) converging to
a and denote by (αn) the corresponding sequence of functions. Then, Sn , gn , and all their
derivatives converge, respectively, to S, g, and their derivatives in the sense of the uniform
norm on the compact sets. Moreover, �n converges to � in the same sense so that for n
sufficiently large, Int(�−

n ) �= ∅. ODE (5.15) also depends continuously on an, so that z∗
n(x0)

defined by (5.31) converges to z∗(x0), and γn given by Proposition 5.5 converges pointwise
to γ . Since γn is increasing for any n and γ is continuous, Dini’s theorem implies that the
convergence is uniform on any compact set of R+\{0}. Let us prove that ϕn converges
to ϕ in the same sense. Let y > 0 be fixed, we define xn := ϕn(y) and x := ϕ(y). We
shall prove that xn → x. Indeed, since ϕn(y) ∈ [ y

2 , y] for any n, {xn ; n ∈ N} is relatively
compact in R+\{0}. Now let x′ be the limit of a subsequence of (xn). For notational
reasons, let us write xn → x′, forgetting that it is a subsequence. Since (γn) converges
uniformly on compact sets of R+\{0}, γn(xn) → γ (x′). Recalling that γn(xn) = y for any
n, we get γ (x′) = y and therefore x′ = x. In consequence, xn → x, or in other words, (ϕn)
converges pointwise to ϕ on R+\{0}. Noticing that ϕn(0) = 0 for any n and ϕ(0) = 0 and
using again Dini’s theorem, we see that (ϕn) converges to ϕ uniformly on the compact
sets of R+. This finally implies that (Vn) converges pointwise to V. As a consequence, if
one makes a small mistake estimating the parameters of the model, the induced mistake
on the free boundary as well as the mistake on the value function will be small as well.

5.3. Generalization

As in Section 4, we may also consider, for any λ > 0, the following extension of the
previous problem:

Vλ(x, z) := 1
λ

inf
θ∈T

Ex,z

(
1 − Xθ

Zτ

)λ

, (x, z) ∈ � .(5.19)

In that case, (2.10) rewrites

(5.20)

gλ(x, z) = 1
λ

(
1 − x

z

)λ

+ xS(x)
∫ ∞

z

(
1 − x

u

)λ−1 du
u2S(u)

du, (x, z) ∈ �, λ > 0.

If λ = 2, Lg2 is given by (5.2). If λ = 1, the stopping problem has already been solved in
Section 4 and Lg1 is given by (4.3). For any λ > 0 such that λ �∈ {1, 2}, we compute:

Lgλ(x, z) = (λ − 1)

{
1
z2

(
1 − x

z

)λ−2

−
∫ ∞

z

S(x)
S(u)

[
2
u3

(
1 − x

u

)λ−2
− (λ − 2)x

u4

(
1 − x

u

)λ−3
]

du
}

+ [2S ′(x) − α(x)S(x)]
∫ ∞

z

(
1 − x

u

)λ−2
(u − λx)

du
u3S(u)

+ α(x)
(z − x)λ−1

zλ
,(5.21)

for 0 ≤ x < z. In this case, the sign of Lgλ is hardly identifiable analytically, and we
shall restrict our analysis to simple remarks and guesses on the solution of the problem
(5.19).
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Noticing that
∫∞

z (1 − x
u )λ−2 2

u3 − (λ − 2)(1 − x
u )λ−3 x

u4 du = 1
z2 (1 − x

z )λ−2 for 0 < x < z,
we deduce from (4.3), (5.7), and (5.21) that

Lgλ(x, z) ≥ 0, for z ≥ λx>0 and 1 ≤ λ ≤ 2.(5.22)

Therefore, for 1 ≤ λ ≤ 2, we expect to obtain as for λ = 2 a free boundary γλ in between
the axis {(x, x) ; x > 0} and {(x, λx) ; x > 0}. We verify easily as in Proposition (4.7) that
λ �→ Vλ is continuous and, as expected, we observe a disappearance of the free boundary
γλ for λ = 1.

On the other hand, in the case where α(0) = 0, for λ < 1, we observe that Lg(x, z) < 0
for x small enough and z large enough. Indeed, recalling from (4.13) that S ′(z) ∼ α(z)S(z)
when z → ∞, an integration by parts leads to

∫∞
z

du
u2 S(u) ∼z→∞ 1

z2 S ′(z) . Assuming moreover
that α(0) = 0 and plugging this estimate in (5.21), we get

Lg(0, z) ∼z→∞
λ − 1

z2
< 0, for any λ < 1.

In view of Proposition 3.5, this implies that the stopping region cannot have the same
form as the one in the quadratic case λ = 2. It even suggests that the nature of the
stopping region could be similar to the one of Section 4.2.

5.4. Proofs of Lemma 5.3 and Proposition 5.4

This section is dedicated to the proofs of Lemma 5.3 and Proposition 5.4, but we first
state the asymptotic expansions used in Proposition 5.2.

PROPOSITION 5.9. As z → 0, we have the following expansions:

S ′(z) = 1 + α(0)z + (α′(0) + α(0)2)
z2

2
+ o(z2);

S(z) = z + α(0)
z2

2
+ (α′(0) + α(0)2)

z3

6
+ o(z3);

α(z)S(z) = zα(0) + z2

2

(
α(0)2 + 2α′(0)

)+ z3

6
(α(0)3 + 4α(0)α′(0) + 3α′′(0)) + o(z3);

∫ ∞

z

du
u2S(u)

= 1
2z2

− α(0)
2z

− α(0)2 − 2α′(0)
12

ln(z) + o
(

ln(z)
)
;

∫ ∞

z

2du
u3S(u)

= 2
3z3

− α(0)
2z2

+ α(0)2 − 2α′(0)
6z

+ o
(

1
z

)
.

Proof. As z → 0, we directly compute the expansion:

S ′(z) = S ′(0) + zS ′′(0) + z2

2
S(3)(0) + o(z2) = 1 + α(0)z + (α′(0) + α(0)2)

z2

2
+ o(z2).

The exact same reasoning also leads to

S(z) = z + α(0)
2

z2 + α′(0) + α(0)2

6
z3 + o(z3);

α(z)S(z) = zα(0) + z2

2
(α(0)2 + 2α′(0)) + z3

6
(α(0)3 + 4α(0)α′(0) + 3α′′(0)) + o(z3).



780 R. ELIE AND G.-E. ESPINOSA

Using one of the previous estimates, we get∫ ∞

z

du
u2S(u)

=
∫ ∞

z

du

u3

(
1 + α(0)

2
u + α′(0) + α(0)2

6
u2 + o(u2)

)

=
∫ ∞

z

(
1 − α(0)

2
u − α′(0) + α(0)2

6
u2 +

(
α(0)u

2

)2

+ o(u2)

)
du
u3

=
∫ ∞

z

(
1
u3

− α(0)
2u2

+ α(0)2 − 2α′(0)
12u

+ o
(

1
u

))
du

= 1
2z2

− α(0)
2z

− α(0)2 − 2α′(0)
12

ln(z) + o
(

ln(z)
)
,

which is justified since all the nonzero terms go to infinity when z → 0. Similarly, we
compute ∫ ∞

z

2du
u3S(u)

=
∫ ∞

z

(
2
u4

− α(0)
u3

+ α(0)2 − 2α′(0)
6u2

+ o
(

1
u2

))
du

= 2
3z3

− α(0)
2z2

+ α(0)2 − 2α′(0)
6z

+ o
(

1
z

)
.

�
Proof of Lemma 5.3. Differentiating (5.2) with respect to z, we compute

∂

∂z
Lg(x, z) = −2S′(x) − α(x)S(x)

z2S(z)
+ [2 − 2xα(x)]S(x) + 4xS ′(x)

z3S(z)
− 2 − 2xα(x)

z3
− α(x)

z2

= [(2x − z)α(x) − 2]
S(z) − S(x)

z3S(z)
+ (2x − z)

2S ′(x)
z3S(z)

, (x, z) ∈ �.

Let us introduce xα as the unique solution of:

xαα(xα) = 2.(5.23)

If x ≤ xα, then z �→ (2x − z)α(x) − 2 is negative on [x, 2x), whereas if x > xα, then there
exists zx ∈ (x, 2x) such that z �→ (2x − z)α(x) − 2 will be positive on (x, zx), zero at zx

and negative on (zx, 2x).
Let x be fixed and let us introduce

F : z �→ S(z) − S(x) + 2S ′(x)(2x − z)
(2x − z)α(x) − 2

,

which is well defined and continuous on [x, 2x] if x < xα, on [x, 2x) if x = xα and on
[x, 2x]\{zx} if x > xα. Furthermore, F is increasing, since we compute on the domain of
definition of F :

F ′(z) = S ′(z) + 4S′(x)
((2x − z)α(x) − 2)2

> 0.

We consider first the case where x ≤ xα. Then F and ∂
∂zLg(x, .) have opposite signs

on [x, 2x). Since F is increasing, F(x) < 0 while F(2x) = S(2x) − S(x) > 0, Lg(x, .) is
increasing on [x, δx) and decreasing on (δx, 2x], for a certain δx ∈ (x, 2x).



OPTIMAL SELLING RULES FOR MONETARY INVARIANT CRITERIA 781

We now turn to the case where x > xα. Then F and ∂
∂zLg(x, .) have the same sign on

[x, zx) and opposite signs on (zx, 2x]. Since F is increasing, F(x) > 0, F(z+
x ) = −∞ and

F(2x) > 0, we see that again Lg(x, .) is increasing on [x, δx) and decreasing on (δx, 2x],
for a certain δx ∈ (zx, 2x) ⊂ (x, 2x). �

Proof of Proposition 5.4. We prove the two assertions separately.
(i) � is increasing on (0, +∞).
We fix x > 0 such that �(x) > x. Then Lg(., �(.)) = 0 in a neighborhood of x, and

using the implicit functions theorem, � is C1 in a neighborhood of x and we have:

�′(x)
∂

∂z
Lg(x, �(x)) + ∂

∂x
Lg(x, �(x)) = 0.(5.24)

We will prove that �′(x) > 0. Denoting m := 2S ′ − αS which is increasing and positive,
we get combining Lg(x, �(x)) = 0 and (5.6):

m(x)
∫ ∞

�(x)

u − 2x
u3S(u)

du = S(x)
∫ ∞

�(x)

2du
u3S(u)

− 1 + α(x)(�(x) − x)
�(x)2

≤ −α(x)(�(x) − x)
�(x)2

,

since S is increasing. Differentiating (5.6) with respect to x, we also compute

∂

∂x
Lg(x, z) = α′(x)(z − x) − α(x)

z2
+ m′(x)

∫ ∞

z

u − 2x
u3S(u)

du

− [m(x) + S ′(x)]
∫ ∞

z

2du
u3S(u)

,

for z ≥ x. Denoting A := (αm′ − α′m
)
(� − Id) + αm, the two previous estimates lead to

∂

∂x
Lg(x, �(x)) ≤ − A(x)

m(x)�(x)2
− [m(x) + S ′(x)]

∫ ∞

�(x)

2du
u3S(u)

.(5.25)

Introducing B := αm′ − α′m and observing that x ≤ �(x) ≤ 2x, we obtain

A(x) ≥ α(x)m(x)1{B(x)≥0} + (xB(x) + α(x)m(x))1{B(x)<0}.(5.26)

Introducing finally C : x �→ xB(x) + α(x)m(x), we compute C(0) = 2α(0) ≥ 0 and

C′(x) = 2α(x)m′(x) + x(α(x)m′′(x) − α′′(x)m(x)) ≥ 0,

because m′′ ≥ 0 and α′′ ≤ 0. Therefore C is non-negative, and, according to (5.26), A
is also non-negative. As a consequence, combining m > 0 and (5.25), we deduce that
∂
∂xLg(x, �(x)) < 0. Using Lemma 5.3, we have ∂

∂zLg(x, �(x)) > 0, and (5.24) implies
that �′(x) > 0.

Therefore, � is increasing on the set {x > 0, �(x) > x}. However, it is also increasing
on the interior of the set {x > 0, �(x) = x}. Since � is continuous, it is increasing on
(0, +∞).

(ii) We have �∞ := sup{x ≥ 0; �(x) > x} < ∞.
The arguments used here are very close to the ones in the proof of proposition 4.3

in Espinosa and Touzi (2012). However, our conclusions cannot be deduced from theirs
since the involved computations are different and we need to detail this proof.
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From the definition of the scale function (2.9), we compute:

S(x) = S(1) + S ′(x)
α(x)

− S ′(1)
α(1)

−
∫ x

1

(
1
α

)′
(u)S ′(u)du, x > 0.

We then distinguish two cases depending on the explosion of the last term in the previous
expression.

Case 1:
∫∞

1 (1/α)′(u)S ′(u)du > −∞.

Then S(x) = S ′(x)
α(x) + O(1) for x large enough. Recalling that LS = 0, we compute∫ ∞

x

du
u2S(u)

=
∫ ∞

x

du

u2

(
S ′(u)
α(u)

+ O(1)
) =

∫ ∞

x

α(u)
u2S ′(u)

du

1 + O
(

α(u)
S ′(u)

)

=
∫ ∞

x

α(u)du
u2S ′(u)

+ O
(∫ ∞

x

α2(u)
u2[S ′(u)]2

)
,

for x large enough. Integrating by parts, we observe that∫ ∞

x

α(u)du
u2S ′(u)

= 1
x2S ′(x)

− 2
∫ ∞

x

du
u3S ′(u)

, x > 1.

We now prove that xα2(x)
S ′(x) → 0 when x → ∞.

Indeed, since α(1) > 0 by (2.12), and since α is nondecreasing, we get S ′(x) ≥ e(x−1)α(1),
for any x ≥ 1. On the other hand, since α is concave, we also have 0 ≤ α(x) ≤ xα′(0), so
that:

0 ≤ xα2(x)
S ′(x)

≤ x3[α′(0)]2

e(x−1)α(1)
→ 0 when x → ∞ .

As a consequence, we get∫ ∞

x

du
u2S(u)

= 1
x2S ′(x)

− 2
∫ ∞

x

du
u3S ′(u)

+ ◦
(∫ ∞

x

du
u3S ′(u)

)
.

Integrating by parts again, we finally compute∫ ∞

x

du
u2S(u)

= 1
x2S ′(x)

− 2
α(x)x3S ′(x)

+ ◦
(

1
α(x)x3S ′(x)

)
,

and similarly we get∫ ∞

x

du
u3S(u)

= 1
x3S ′(x)

− 3
α(x)x4S ′(x)

+ ◦
(

1
α(x)x4S ′(x)

)
.

Plugging these estimates in the expression of Lg given by (5.2) leads to:

Lg(x, x) = 1
x2

+ [2S ′(x) − α(x)S(x)]
∫ ∞

x

du
u2S(u)

− [S(x) + 2xS ′(x) − xα(x)S(x)]
∫ ∞

x

2du
u3S(u)
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= 1
x2

+ (S ′(x) + O(α(x))
) ( 1

x2S ′(x)
− 2

α(x)x3S ′(x)
+ ◦

(
1

α(x)x3S ′(x)

))

−2
(

xS′(x) + S ′(x)
α(x)

+ O(xα(x))
)

×
(

1
x3S ′(x)

− 3
α(x)x4S ′(x)

+ ◦
(

1
α(x)x4S ′(x)

))
.

Using the fact that xα2(x)
S ′(x) → 0 as x → ∞, we get:

Lg(x, x) = 2
α(x)x3

+ ◦
(

1
α(x)x3

)
.

Hence Lg(x, x) > 0 and therefore �(x) = x for x large enough, so that �∞ < ∞.

Case 2:
∫∞

1 (1/α)′(u)S ′(u)du = −∞.

For x large enough, we have

S(x) = S ′(x)
α(x)

[
1 −

(
1
α

)′
(x) + ◦

((
1
α

)′
(x)
)]

,

so that∫ ∞

x

du
u2S(u)

=
∫ ∞

x

α(u)
u2S ′(u)

[
1 +

(
1
α

)′
(u) + ◦

((
1
α

)′
(u)
)]

du

= 1
x2S ′(x)

−
∫ ∞

x

2du
u3S ′(u)

−
∫ ∞

x

α′(u)du
u2α(u)S ′(u)

+ ◦
(∫ ∞

x

α(u) + uα′(u)
u3α(u)S ′(u)

du
)

.

Noticing that 0 ≤ xα′(x) ≤ α(x) for x > 0, since α is concave, we have:

◦
(∫ ∞

x

α(u) + uα′(u)
u3α(u)S ′(u)

du
)

= ◦
(∫ ∞

x

du
u3S ′(u)

)
.

Integrating by parts, we finally get∫ ∞

x

du
u2S(u)

= 1
x2S ′(x)

− 2
x3α(x)S ′(x)

− α′(x)
x2α2(x)S ′(x)

+ ◦
(

1
x3α(x)S ′(x)

)
,

where the third term in the previous expansion might be negligible or not (depending on
α). Similarly, we compute:∫ ∞

x

du
u3S(u)

= 1
x3S ′(x)

− 3
x4α(x)S ′(x)

− α′(x)
x3α2(x)S ′(x)

+ ◦
(

1
x4α(x)S ′(x)

)
,

so that:

Lg(x, x) = 1
x2

+ [2S ′(x) − α(x)S(x)]
∫ ∞

x

du
u2S(u)

− [S(x) + 2xS′(x) − xα(x)S(x)]
∫ ∞

x

2du
u3S(u)

= 1
x2

− 2
(

xS ′(x) − x
α′(x)
α2(x)

S ′(x) + S ′(x)
α(x)

)
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×
(

1
x3S ′(x)

− 3
x4α(x)S ′(x)

− α′(x)
x3α2(x)S ′(x)

)
+
(

S ′(x) − α′(x)
α2(x)

S ′(x)
)

×
(

1
x2S ′(x)

− 2
x3α(x)S ′(x)

− α′(x)
x2α2(x)S ′(x)

)
+ ◦

(
1

x3α(x)

)

= 2
x3α(x)

+ 2α′(x)
x2α2(x)

+ ◦
(

1
x3α(x)

)
,

where the second term might be or not negligible. In any case, we see that for sufficiently
large x, Lg(x, x) > 0, so that �(x) = x. Therefore, �∞ < ∞ also holds in this case.

�

5.5. Proof of Proposition 5.5

This section is dedicated to the proof of Proposition 5.5. As already explained, this
proof uses the same ideas as the one developed in Espinosa and Touzi (2012). However,
because of the specificity of (5.15), the properties of the flow are different and the analysis
needs to be adapted to our framework. We will try to follow their notations and point
out in the proofs the parts that are identical to their paper, but we choose to rewrite them
for the sake of completeness.

First, for the convenience of the reader, we recall ODE (5.15) that γ needs to satisfy:

γ ′(x) = γ (x)2Lg(x, γ (x))(
2x

γ (x)
− 1
)(

1 − S(x)
S ◦ γ (x)

) , x > 0 .(5.27)

Let us first define

D− := {x > 0 : Lg(x, x) < 0},(5.28)

and, for all x0 ∈ D−, we introduce

d(x0) := sup{x ≤ x0 : Lg(x, x) ≥ 0} and u(x0) := inf{x ≥ x0;Lg(x, x) ≥ 0},(5.29)

with the convention that d(x0) = 0 if {x ≤ x0 : Lg(x, x) ≥ 0} = ∅. Observe that Propo-
sition 5.4 ensures that u(x0) ≤ �∞ < ∞. Since Lg is continuous and x0 ∈ D− we must
have d(x0) < x0 < u(x0) < ∞.

For any x0 ∈ D− and z0 > x0, we denote by γ z0
x0

the maximal solution of the Cauchy
problem (5.27) complemented by the additional condition γ (x0) = z0, and we denote by
Iz0

x0
:= (
z0

x0
, r z0

x0
) the corresponding (open) interval of definition of γ z0

x0
. Since the right-hand

side of ODE (5.27) is locally Lipschitz on either one of the sets {(x, γ ), 0 < 2x < γ } or
{(x, γ ), x < γ < 2x} but is not defined on the set {(x, γ ), 2x = γ }, the maximal solution
will be defined as long as (x, γ (x)) remains in one of those two sets. Since �(x0) < 2x0,
we restrict our attention to conditions γ (x0) = z0 satisfying x0 < z0 < 2x0.

The next lemma provides useful additional properties of the maximal solutions de-
scribed above and their respective domains of definitions.

LEMMA 5.10. Assume that α satisfies Conditions (2.12) and let x0 ∈ D− be fixed.

(i) For all z0 ∈ (x0, 2x0), 
z0
x0

≤ d(x0), we have limx→

z0
x0

γ z0
x0

(x) = 
z0
x0

and, if 
z0
x0

> 0, we
get Lg(
z0

x0
, 
z0

x0
) ≥ 0;

(ii) for all z0 ∈ (x0, �(x0)], Lg(x, γ z0
x0

(x)) < 0 for any x ∈ (x0, r z
x0

);
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(iii) there exists a0 ∈ (x0, 2x0) such that for any z0 ∈ [a0, 2x0), Lg(x, γ z0
x0

(x)) > 0 for any
x ∈ (x0, r z0

x0
).

Proof. We fix x0 ∈ D− and prove each property separately.
(i) Let us fix z0 ∈ (x0, 2x0). The right-hand side of (5.27) is locally Lipschitz as long as

0 < x < γ z0
x0

(x) < 2x, so that this last estimate holds for any x ∈ Iz0
x0

. We intend to prove
that γ z

x0
hits the diagonal {(x, z); x = z} at the left-hand side 
z0

x0
of Iz0

x0
.

For this purpose, let us first prove that, for any ζ ∈ (0, x0), the graph of γ z0
x0

restricted
to [ζ, x0] cannot come too close to {(x, z); 2x = z}. Since �(x) < 2x for x > 0 and �

and Lg are continuous, there exist ε > 0 and δ > 0 ∈ (0, ζ ) such that Lg ≥ ε on the
compact set {(x, z); x ∈ [ζ, x0] and z ∈ [2x − δ, 2x]}. Observe that, for x ∈ [ζ, x0] such
that γ z0

x0
(x) ∈ [max(2x − δ, 4x

2+ζ 2ε
), 2x), we get from (5.27) that

(
γ z0

x0

)′
(x) ≥ γ z0

x0
(x)2Lg

(
x, γ z0

x0
(x)
)

2x
γ

z0
x0 (x)

− 1
≥ 2γ z0

x0
(x)2ε

ζ 2ε
≥ 2,

where, for the last inequality, we used γ (x) ≥ x ≥ ζ . Hence, the function x �→ 2x −
γ z0

x0
(x) is nonincreasing on the set {x ∈ [ζ, x0] ∩ Iz0

x0
; γ z0

x0
(x) ∈ [max (2x − δ, 4x

2+ζ 2ε
), 2x)}.

Therefore, by arbitrariness of ζ > 0, the graph of γ z0
x0

restricted to (
z0
x0

, x0] stays away
from {(x, z); 2x = z} and γ z0

x0
necessarily hits the diagonal {(x, z); x = z} at the left-hand

side 
z0
x0

of the maximal interval Iz0
x0

.
On the other hand, we observe from (5.27) that γ z0

x0
is nonincreasing at the points x satis-

fying (x, γ z0
x0

(x)) ∈ �− and therefore 
z0
x0

/∈ D− by minimality of Iz0
x0

. Since
(
d(x0), u(x0)

) ⊂
D−, we get 
z0

x0
≤ d(x0) and Lg(
z0

x0
, 
z0

x0
) ≥ 0, or equivalently �(
z0

x0
) = 
z0

x0
.

It still remains to prove properly that limx→

z0
x0

γ z0
x0

(x) = 
z0
x0

. Assume first that 
z0
x0

>

0. Notice from (5.27) that γ z0
x0

is nondecreasing if (x, γ z0
x0

(x)) ∈ �+, and x ≤ γ z0
x0

(x) ≤
�(x) otherwise. Since � is also nondecreasing, γ̃ z0

x0
:= max(γ z0

x0
, �) is a nondecreasing

function defined on (
z0
x0

, x0], which therefore admits a limit at 
z0
x0

. Since 
z0
x0

> 0, we have
limx→


z0
x0

γ̃ z0
x0

(x) < 2
z0
x0

as observed earlier, so that, combining the maximality of Iz0
x0

with
�(
z0

x0
) = 
z0

x0
, we obtain limx→


z0
x0

γ̃ z0
x0

(x) = 
z0
x0

. Since x ≤ γ z0
x0

(x) ≤ γ̃ z0
x0

(x) for x ∈ (
z0
x0

, x0],
we have limx→


z0
x0

γ z0
x0

(x) = 
z0
x0

. Finally, if 
z0
x0

= 0, since x < γ z0
x0

(x) < 2x, we also have the
result.

(ii) Let us fix z0 ∈ (x0, �(x0)
)
. As already observed, the dynamics of (5.27) imply that

γ z0
x0

is nonincreasing in the neighborhood of any point x such that (x, γ z0
x0

(x)) ∈ Int(�−).
On the other hand, Proposition 5.4 tells us that the function � is increasing on [x0, +∞).
Hence x �→ (x, γ z0

x0
(x)) remains in Int(�−) on

[
x0, r z0

x0

)
.

We consider now the case where z0 = �(x0). Since �(x0) > x0, the proof of Propo-
sition 5.4 (i) tells us that �′ is positive on a neighborhood of x0. Since z0 = �(x0), we
deduce from (5.27) that (γ z0

x0
)′(x0) = 0, and the exact same reasoning as above implies

that x �→ (
x, γ z0

x0
(x)
) ∈ Int(�−) on

(
x0, r z0

x0

)
.

(iii) Recall that �∞ < ∞. Therefore, as in (i), there exist ε > 0 and δ ∈ (0, 1) such that
Lg ≥ ε on {(x, z); x ∈ [x0, �

∞] and z ∈ [(2 − δ)x, 2x]}. Let b := min(x2
0ε, δ). From (5.27),

we see that if x ∈ [x0, �
∞] and γ z

x0
(x) ∈ [(2 − b)x, 2x), then (γ z

x0
)′(x) ≥ 2−b

b x2
0ε ≥ 2 − b.

We denote a0 := (2 − b)x0 and fix z ∈ [a0, 2x0). We deduce from the previous reasoning
that we must have

γ z
x0

(x) ≥ z +
∫ x

x0

(
γ z

x0

)′
(u)du ≥ z + (2 − b)(x − x0) > (2 − b)x > �(x),
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for x ∈ [x0, min (r z
x0

, �∞)
)
. If ever r z

x0
≤ �∞, we just obtained the announced result and,

if ever r z
x0

> �∞, we complete the proof noticing that the maximality of Iz
x0

implies that
γ z

x0
(x) > x = �(x) for x ≥ �∞. �
We now construct the stopping boundary γ by selecting one of the previous maximal

solutions. For a given x0 ∈ D−, let

Z(x0) := {z ∈ (x0, 2x0);Lg
(
x, γ z

x0
(x)
)

< 0 for some x ∈ [x0, r z
x0

)
}
,(5.30)

z∗(x0) := sup Z(x0).(5.31)

Moreover, whenever z∗(x0) < 2x0, we denote

γ ∗
x0

:= γ z∗(x0)
x0

, 
∗
x0

:= 
z∗(x0)
x0

, r∗
x0

:= r z∗(x0)
x0

, and I∗
x0

:= (
∗
x0

, r∗
x0

)
.(5.32)

The next lemma provides useful properties on the function γ ∗ and its domain of defini-
tion. In particular, it discusses its dependance with respect to the starting point x0.

LEMMA 5.11. Assume that α satisfies Conditions (2.12) and let x0 be arbitrary in D−.
Then, the following holds.

(i) z∗(x0) ∈ (�(x0), 2x0) and γ ∗
x0

has a positive derivative on the interval I∗
x0

.
(ii)

(
d(x0), u(x0)

) ⊂ I∗
x0

and limx→r∗
x0

γ ∗
x0

(x) = r∗
x0

≤ �∞ with equality if u(x0) = �∞.
(iii) For x0, x1 ∈ D−, we have either I∗

x0
∩ I∗

x1
= ∅, or I∗

x0
= I∗

x1
and γ ∗

x0
= γ ∗

x1
.

Proof. We fix x0 ∈ D− and prove each assertion separately. The proofs of points (i)
and (iii) are very close to the proof of lemma 5.2 in Espinosa and Touzi (2012), but we
rewrite and adapt them here.

(i) Lemma 5.10 (iii) ensures the existence of a0 < 2x0 such that Lg
(
x, γ z

x0
(x)
)

> 0
for any x ≥ x0 and z ≥ a0. By definition of z∗(x0), we deduce that z∗(x0) ≤ a0 < 2x0.
Since x0 ∈ D−, we obtain from Lemma 5.10 (ii) that �(x0) ∈ Z(x0) and deduce that
�(x0) ≤ z∗(x0).

In order to prove that z∗(x0) ∈ (�(x0), 2x0), we now assume that z∗(x0) = �(x0) and
work toward a contradiction. Since Lg is continuous, D− is an open set and there exists
ε > 0 such that (x0, x0 + 2ε) ⊂ D− ∩ (x0, r∗

x0
) and d(x) = d(x0) for any x ∈ (x0, x0 + ε).

Let us denote xε := x0 + ε ∈ D− and zε := �(xε) > �(x0). By Lemma 5.10 (i), we have

zε

xε
≤ d(x0) < x0, and it follows from Lemma 5.10 (ii) and the dynamics of (5.27) that γ zε

xε

is decreasing on (x0, r zε

xε
). Therefore, we compute

γ zε

xε
(x0) > γ zε

xε
(xε) = �(xε) > �(x0) = z∗.(5.33)

On the other hand, since γ
γ zε

xε (x0)
x0 (xε) = zε = �(xε), Lemma 5.10 (ii) ensures that γ zε

xε
(x0) ∈

Z(x0), leading to z∗ ≥ γ zε

xε
(x0) ∈ Z(x0), which contradicts (5.33).

The same line of argument implies also that (x, γ ∗(x)) ∈ Int(�+) for any x ∈ I∗
x0

. We
deduce from the dynamics of (5.27) that γ ∗ has a positive derivative on I∗

x0
, and in

particular limx→r∗
x0

γ ∗(x) exists.
(ii) For any z ∈ Z(x0), since γ z

x0
is nonincreasing in �−, we deduce that limx→r z

x0
γ z

x0
(x) =

r z
x0

≤ �∞. Let us write r0 := sup{r z
x0

; z ∈ Z(x0)} ≤ �∞. Let us first prove that r0 ≥ u(x0).
Assume on the contrary that r0 < u(x0), so that �(r0) > r0. Let fix z ∈ (r0, �(r0)). By
Lemma 5.10 (i), 
z

r0
≤ d(x0), so that x0 ∈ Iz

r0
and, since Lemma 5.10 (ii) implies that
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Lg(x, γ z
r0

(x)) < 0 for x > r0, we deduce that γ z
r0

(x0) ∈ Z(x0). This contradicts the defini-

tion of r0 since z ∈ (r0, �(r0)) implies that r
γ z

r0
(x0)

x0 = r z
r0

> r0. In conclusion, r0 ≥ u(x0).
Besides, Lemma 5.10 (i) implies that 
∗

x0
≤ d(x0), and we intend to prove that r0 = r∗

x0
in

order to derive (d(x0), u(x0)) ⊂ I∗
x0

.
First, we derive the existence of a sequence (zn) ∈ Z(x0) such that zn → z∗(x0)

and r zn
x0

→ r0. Combining the one-to-one property of the flow with the property that
limx→r z

x0
γ z

x0
(x) = r z

x0
for z ∈ Z(x0), we deduce that z �→ r z

x0
is nondecreasing on Z(x0).

Hence, if z∗(x0) �∈ Z(x0), any sequence (zn) valued in Z(x0) such that zn → z∗(x0) satisfies
also sup{r zn

x0
; n ∈ N} = sup{r z

x0
; z ∈ Z(x0)} = r0 and thus the required property. If ever

z∗(x0) ∈ Z(x0), we simply pick the sequence zn := z∗(x0), for any n ∈ N.
We now prove that r0 = r∗

x0
. Let z ∈ (r0, 2r0) be arbitrary. Up to a subsequence, we

have by construction Izn
x0

∩ Iz
r0

�= ∅ for any n ∈ N. We know that limx→r zn
x0

γ zn
x0

(x) = r zn
x0

and γ z
r0

(r zn
x0

) > r zn
x0

since r z
r0

> r0 ≥ r zn
x0

, for any n ∈ N. Hence, the one-to-one prop-
erty of the flow ensures that γ z

r0
(x) > γ zn

x0
(x) for any x ∈ Izn

x0
∩ Iz

r0
and n ∈ N. By

Lemma 5.10 (i), limx→
z
r0

γ z
r0

(x) = 
z
r0

, so that x0 ∈ Izn
x0

∩ Iz
r0

. Since (zn) ∈ Z(x0) converges
to z∗(x0) = sup Z(x0), we deduce that γ z

r0
(x0) ≥ γ ∗

x0
(x0) = z∗(x0) ≥ zn = γ zn

x0
(x0) , for any

n ∈ N. Hence, the one-to-one property of the flow implies that

2x > γ z
r0

(x) ≥ γ ∗
x0

(x) ≥ γ zn
x0

(x), x ∈ [x0, r zn
x0

∧ r∗
x0

), n ∈ N.(5.34)

Therefore r∗
x0

≥ r zn
x0

for n ∈ N, and, passing to the limit, we get r∗
x0

≥ r0. Besides, (5.34)
implies that lim supx→r0

γ ∗
x0

(x) ≤ γ z
r0

(r0) = z, and the arbitrariness of z ∈ (r0, 2r0) leads
to lim supx→r0

γ ∗
x0

(x) ≤ r0. Since γ ∗
x0

(x) ≥ x for x ∈ I∗
x0

, we get limx→r0 γ ∗
x0

(x) = r0 and
r∗

x0
≤ r0. Hence, r∗

x0
= r0 ≤ �∞, and, if u(x0) = �∞, r0 ≥ u(x0) implies that r∗

x0
= �∞.

(iii) Let x1 in D−. Suppose that x0 < x1 and that there exists x2 ∈ I∗
x0

∩ I∗
x1

. If ever
γ ∗

x0
(x2) = γ ∗

x1
(x2), the one-to-one property of the flow combined with the maximality of

I∗ imply that I∗
x0

= I∗
x1

and γ ∗
x0

= γ ∗
x1

and conclude the proof. It therefore only remains to
prove that γ ∗

x0
(x2) = γ ∗

x1
(x2).

We assume on the contrary that γ ∗
x0

(x2) < γ ∗
x1

(x2), the case where γ ∗
x0

(x2) > γ ∗
x1

(x2)
being treated similarly. The one-to-one property of the flow implies that γ ∗

x0
< γ ∗

x1
on

all the interval I∗
x0

∩ I∗
x1

. Furthermore, Lemma 5.11 (i) and Lemma 5.10 (i) ensure that
limr∗

x1
γ ∗

x1
= r∗

x1
and lim
∗

x1
γ ∗

x1
= 
∗

x1
. Hence, we deduce from the maximality of I∗

x1
that

I∗
x0

⊂ I∗
x1

. Combining the definition of z∗(x1) with the continuity of the flow with respect
to initial data, we obtain the existence of z ∈ Z(x1) such that z < z∗(x1) and γ ∗

x0
(x2) <

γ z
x1

(x2) < γ ∗
x1

(x2). Once again, the one-to-one property of the flow implies that I∗
x0

⊂ Iz
x1

and γ ∗
x0

< γ z
x1

< γ ∗
x1

on I∗
x0

. Since z ∈ Z(x1), we deduce that γ z
x1

(x0) ∈ Z(x0) while γ z
x1

(x0) >

z∗(x0) = γ ∗
x0

(x0), which contradicts the definition of z∗(x0). �

Finally, we are in position to provide the proof of Proposition 5.5:

Proof of Proposition 5.5. This construction follows similar ideas as in the proof of
proposition 5.1 in Espinosa and Touzi (2012), but turns out to be simpler since �∞ < ∞.

Let

D :=
⋃

x0∈D−
I∗(x0) ⊃ D−.(5.35)

Lemma 5.11 (iii) ensures that , for any x0 and x1 in D−, we either have I∗
x0

= I∗
x1

or
I∗

x0
∩ I∗

x1
= ∅. Hence, there exists a subset D−

0 of D− such that D =⋃x0∈D−
0

I∗(x0) and,
for any x0, x1 ∈ D−

0 , x0 �= x1 implies that I∗
x0

∩ I∗
x1

= ∅.
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We now define the function γ on R+\{0} by:

γ (x) :=
{

γ ∗
x0

(x) if x ∈ I∗
x0

, for x0 ∈ D−
0

x otherwise.
(5.36)

According to Lemma 5.11, this definition does not depend on the choice of D−
0 .

Lemmata 5.10 and 5.11 imply that γ is continuous at the endpoints 
∗
x0

and r∗
x0

, for any
x0 ∈ D−

0 . Hence, setting γ (0) := 0, we obtain a continuous function γ on R+. For any
x0 ∈ D−

0 , γ ∗
x0

is increasing on I∗
x0

and the identity function is increasing as well, so that
γ is increasing on R+. We now justify each assertion of the proposition separately. (i) is
immediate from the definition of γ .

To prove (ii), we first notice that {x ≥ 0 : γ (x) = x} = R+\D ⊂ R+\D−, so that
Lg(x, x) ≥ 0 on the set {x > 0 : γ (x) = x}. On the set {x > 0 : γ (x) > x}, since γ has
a positive derivative by Lemma 5.11 (ii) and satisfies (5.27), we have Lg(x, γ (x)) > 0.
Finally, (iii) can be deduced from Lemma 5.11 (ii), since r∗

x0
≤ �∞ for any x0 ∈ D−

0 . �
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This paper proves a class of static fund separation theorems, valid for investors
with a long horizon and constant relative risk aversion, and with stochastic investment
opportunities. An optimal portfolio decomposes as a constant mix of a few preference-
free funds, which are common to all investors. The weight in each fund is a constant
that may depend on an investor’s risk aversion, but not on the state variable, which
changes over time. Vice versa, the composition of each fund may depend on the state,
but not on the risk aversion, since a fund appears in the portfolios of different investors.
We prove these results for two classes of models with a single state variable, and several
assets with constant correlations with the state. In the linear class, the state is an
Ornstein–Uhlenbeck process, risk premia are affine in the state, while volatilities and
the interest rate are constant. In the square root class, the state follows a square root
diffusion, expected returns and the interest rate are affine in the state, while volatilities
are linear in the square root of the state.

KEY WORDS: portfolio choice, fund separation, long horizon.

1. INTRODUCTION

Fund separation means that investors need to trade only a few well-chosen funds, not all
the securities in the market. Like primary colors, which mix to span the visible spectrum,
these funds, combined in varying weights, span the optimal portfolios of all investors.
The idea is as simple as it is important, and its implications range from equilibrium asset
pricing to the theory of financial intermediation.

There are two main streams of results.1 Two-fund separation holds if the risk-free
asset and the market span all optimal portfolios, and in equilibrium leads to the Capital
Asset Pricing Model. The main assumption of two-fund separation is that investment
opportunities are either deterministic or unhedgeable. When they are constant, along
with relative risk aversion, investors divide their wealth across funds in proportions that
are constant over time, or static.
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Schachermayer, Sı̂rbu, and Taflin (2009) characterize it in a semimartingale setting.
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A more complex fund separation obtains if investment opportunities are both stochas-
tic and hedgeable (at least partially). If they depend on k state variables, as in Merton
(1973), then k + 2 funds are needed to span optimal portfolios. The k funds, in addition
to the safe asset and the myopic portfolio, mimic each state variable over time. Then,
even investors with constant relative risk aversion (CRRA) need to dynamically change
their weights in the k + 2 funds, according to complex and generally unknown trading
strategies. This is dynamic fund separation.

This paper proves static fund separation theorems, valid for investors with a long
horizon and constant relative risk aversion, and for investment opportunities depending
on a single state variable. Unlike two-fund separation theorems, we allow for partially
hedgeable investment opportunities, and obtain three or more spanning funds. Unlike
the classical k + 2 separation, we obtain a static decomposition, whereby each investor
holds the funds in constant proportions.

Our setting of a single state variable (k = 1) already implies dynamic fund separation
with three funds: the safe asset, the myopic portfolio, and the hedging portfolio. But only
the myopic weight is known in this decomposition, while the risk-free and hedging weights
depend jointly on the residual horizon and on the state variable. This dependence severely
limits the significance of dynamic separation, and calls for a more precise description of
optimal portfolios.

With static fund separation, optimal portfolios are weighted sums of a fixed number
of funds, which are common to all investors. The weight of each fund is constant: it may
depend on the risk aversion and market parameters, but not on the state variable, which
changes over time. Vice versa, the composition of each fund may depend on the state
variable and on market parameters, but not on the risk aversion, since the same fund
appears in the portfolios of different investors. Because static fund separation requires
constant fund weights, in general it implies more funds than dynamic fund separation.
In addition, the number of static funds depends on the model considered, and so do fund
weights.

We prove two static separation results, corresponding to two mainstream classes of
models. Their common features are a single state variable and several assets, with constant
correlations with the state. In the linear class, the state is an Ornstein–Uhlenbeck process,
risk premia are affine in the state, while volatilities and the interest rate are constant. In the
square root class, the state follows Feller’s (1951) square root diffusion, expected returns
and the interest rate are affine in the state, while volatilities are linear in the square root
of the state. The first class includes, in particular, the models considered in the literature
on predictability of stock returns. Although the statistical significance of predictability
remains controversial, its potential welfare gains are large, and this paper shows that they
could be realized even by unsophisticated investors through a small number of mutual
funds.2

While our static fund separation results are based on the joint assumption of CRRA
preferences and long horizons, their implications have a broader scope, in both directions.
First, Brandt (1999), Barberis (2000), and Wachter (2002) report that optimal portfolios
for a 10-year horizon are already close to their long run limit. Second, turnpike theorems3

2For the debate on predictability, see Welch and Goyal (2008), Cochrane (2008), and Campbell and
Thompson (2008). For models with predictable returns, see Kim and Omberg (1996), Xia (2001), Wachter
(2002), and Bensoussan, Keppo, and Sethi (2009) among others.

3For turnpike theorems, see Leland (1972), Hakansson (1974), Huberman and Ross (1983), Cox and
Huang (1992), Huang and Zariphopoulou (1999), Dybvig, Rogers, and Back (1999), and Guasoni et al.
(2011).
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suggest that, at long horizons, optimal CRRA portfolios are approximately optimal for
a wide class of utility functions.

The rest of the paper is organized as follows: Section 2 describes the general framework,
and outlines the main ideas behind our static fund separation results. These ideas are
made precise in Sections 3 and 4, respectively, for the linear and square root models.
In each model, static fund separation holds with four funds. We find explicit formulas
for both the funds and their weights, and display their composition for typical values of
risk aversion, using the market parameters estimated by Barberis (2000) and Pan (2002).
Section 5 concludes, and all proofs are in the Appendixes.

2. PROBLEM AND HEURISTIC SOLUTION

This section describes the general setting of the paper, and shows the steps which unify
the main results, leaving aside the technical details, which differ across models. Here
arguments are presented at a heuristic level, while the next sections contain their precise
versions for two classes of models.

2.1. Market and Preferences

The market has a safe asset and several risky assets. Investment opportunities are
modeled by a single state variable Y , which drives the safe rate r, the excess returns μ,
and the volatility matrix σ . In summary, the prices of the safe asset S0 and risky assets
S1, . . . , Sn satisfy:

dS0
t

S0
t

= r (Yt) dt,(2.1)

dSi
t

Si
t

= r (Yt) dt + dRi
t 1 ≤ i ≤ n,(2.2)

where the cumulative excess returns R = (R1, . . . , Rn) and the state variable Y follow the
diffusion:

dRi
t = μi (Yt) dt +

n∑
j=1

σi j (Yt) dZ j
t 1 ≤ i ≤ n,(2.3)

dY t = b(Yt) dt + a(Yt) dW t,(2.4)

〈Zi , W〉t = ρi dt 1 ≤ i ≤ n,(2.5)

Z = (Z1, . . . , Zn) and W are Brownian motions, and ρ = (ρ1, . . . , ρn) denotes their vector
of cross correlations. � = σσ ′ = d〈R, R〉t/dt defines the covariance matrix of returns,
while A = a2 = d〈Y , Y〉t/dt is the variance rate of the state variable, and ϒ = σρa = d〈R,
Y〉t/dt is the covariation rate between asset returns and the state variable (the prime sign
denotes matrix transposition). Let E = (α, β) with −∞ ≤ α < β ≤ ∞ be an open interval
such that the state variable remains in E at all times. For example, E = (−∞, ∞) for the
linear model of Section 3, and E = (0, ∞) for the square root model of Section 4. The
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market defined above is potentially incomplete, because asset returns do not perfectly
span changes in the state variable.

An investor trades in the market according to a portfolio π = (π t)t≥0, which represents
the proportions of wealth in each risky asset. Since the investor observes the state variable
Y and the asset returns R, the portfolio π is adapted to the augmentation of the filtration
generated by (R, Y ), and is R-integrable. The corresponding wealth process Xπ = (Xπ

t )t≥0

satisfies:

d Xπ
t

Xπ
t

= r (Yt) dt + π ′
tdRt.(2.6)

Since a positive initial capital X0 ≥ 0 implies a positive wealth at all times (Xπ
t ≥ 0 a.s.

for all t ≥ 0), doubling strategies are excluded. Investors’ preferences display CRRA, so
that their marginal utilities are

U ′(x) = xp−1 p < 1.(2.7)

For a fixed planning horizon T > 0 and a current time 0 ≤ t < T , the investor’s goal is to
maximize utility from terminal wealth, given the current wealth x and the current state
y:

max
(πu )u≥t

1
p

E
[(

Xπ
T

)p ∣∣Yt = y, Xt = x
]
.(2.8)

2.2. Stochastic Control

Start by defining the value function V (t, Xt, Y t) as

V(t, Xt, Yt) = sup
(πu )u≥t

1
p

E
[(

Xπ
T

)p ∣∣Yt, Xt
]
.(2.9)

Following usual control arguments, (2.9) leads to the Hamilton–Jacobi–Bellman (HJB)
equation:

Vt + bVy + a2

2
Vyy + r xVx + sup

π

(
π ′(μVx + ϒVxy)x + x2Vxx

2
π ′�π

)
= 0(2.10)

with the terminal condition V (T , x, y) = xp/p. Here subscripts denote partial derivatives,
and a, b, μ, �, ϒ are functions of y, although their dependence is omitted to simplify
notation. Because V is concave in x, and recalling that supπ (π ′b + 1

2π ′ Aπ ) = − 1
2 b′ A−1b

for A negative definite, the equation becomes

Vt + bVy + a2

2
Vyy + r xVx − (μVx + ϒVxy)′

�−1

2Vxx
(μVx + ϒVxy) = 0(2.11)

and the corresponding optimal portfolio is π = −�−1μ Vx
xVxx

− �−1ϒ
Vxy

xVxx
. Since power

utility is homothetic, i.e., U(cx) = cpU(x), and payoffs can be scaled arbitrarily, the value
function is also homothetic. Thus, writing V (t, x, y) = u(t, y)xp/p, the HJB equation in
terms of the reduced value function u becomes

ut + (b − qϒ ′�−1μ)uy + a2

2
uyy +

(
pr − q

2
μ′�−1μ

)
u − q

a2

2
ρ ′ρ

u2
y

u
= 0,(2.12)
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where q = p/(p − 1), and the terminal condition is now u(T , y) = 1. The optimal portfolio
similarly reduces to

π (t, y) = 1
1 − p

(
�−1μ + �−1ϒ

uy

u

)
,(2.13)

which is the traditional dynamic three-fund separation into the safe asset, the myopic
portfolio �−1μ, and the intertemporal hedging component �−1ϒ . The word dynamic
refers to the dependence of the intertemporal weight uy

u on the value function, which
entails a complex dynamic trading strategy, depending jointly on the horizon, the state
variable, and the risk aversion.

Equation (2.12) simplifies further using the assumption that ρ ′ρ is constant.
Then, the power substitution of Zariphopoulou (2001) makes this equation linear.
Setting u(t, y) = v(t, y)δ, where δ = 1/(1 − qρ ′ρ), (2.12) turns into a linear parabolic
equation for v :

vt + 1
2

Avyy + (b − qϒ ′�−1μ)vy + 1
δ

(
pr − q

2
μ′�−1μ

)
v = 0 (t, y) ∈ (0, T) × E,

v(T, y) = 1 y ∈ E,

(2.14)

and the optimal portfolio accordingly reduces to

π (t, y) = 1
1 − p

(
�−1μ + δ�−1ϒ

vy

v

)
.(2.15)

By now, these steps have become standard, and underlie virtually all explicit solutions to
portfolio choice problems.

2.3. Eigenvalue Representation

We exploit an eigenvalue expansion, in which the the principal eigenvalue and its
eigenvector drive the long horizon limit. The first step in this direction is to rewrite (2.14)
in self-adjoint form. Set

bν = b − qϒ ′�−1μ V = 1
δ

(
pr − q

2
μ′�−1μ

)
(2.16)

and define the differential operator:

Lν = 1
2

A
d2

dy2
+ bν d

dy
,(2.17)

so that (2.14) becomes

vt + Lνv + Vv = 0 (t, y) ∈ (0, T) × E,

v(T, y) = 1 y ∈ E.
(2.18)

To ease presentation, the symbols ḟ , f̈ replace f y, f yy, the partial derivatives with
respect to the state y, for functions f (y) of the state variable alone. Define m as the
solution to the ordinary differential equation (ODE):
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ṁ
m

+ Ȧ
A

= 2bν

A
.(2.19)

If m integrable, it can be normalized to unit mass, and represents the steady-state distri-
bution of the state variable Y under the equivalent probability measure associated to Lν .
The self-adjoint version of (2.14) is then

vtm + 1
2

(Avym)y + Vvm = 0 (t, y) ∈ (0, T) × E,

v(T, y) = 1 y ∈ E.

(2.20)

The classical strategy is to solve such an equation by separation of variables. Define the
operator −M with a certain domain D(−M) ⊂ L2(E, m) as

Mφ = (a2φ̇m)·

2m
+ Vφ φ ∈ D(−M).(2.21)

If (−M,D(−M)) is Hilbert-Schmidt4 then a natural guess for the solution to the boundary
value problem is

v(t, y) =
∑
n≥0

αnφn(y)e−λn (T−t)(2.22)

provided that 1 ∈ L2(E, m) (or that m is a probability density), because v must satisfy the
terminal condition v(T , y) = 1. Then, the coefficients (αn)n≥0 are αn = ∫ Eφn(x)m(x)dx,
and αn does not depend on T .

The expansion in (2.22) has important consequences for portfolio choice. It implies
that v has the representation:

v(t, y) = e−λ0(T−t)

⎛
⎝α0φ0(y) +

∑
n≥1

αnφn(y)e−(λn−λ0)(T−t)

⎞
⎠ .(2.23)

Consider the terms within the parentheses in the above expression. Since each eigenfunc-
tion φn, n ≥ 1 carries a weight αne−(λn−λ0)(T−t) that decreases in the horizon T , for long
horizons both the value function u and the portfolio π are determined by the principal
eigenfunction φ0 alone. Indeed, (2.23) formally yields

lim
T↑∞

vy(t, y)
v(t, y)

= lim
T↑∞

α0φ̇0(y) +
∑
n≥1

αnφ̇n(y)e−(λn−λ0)(T−t)

α0φ0(y) +
∑
n≥1

αnφn(y)e−(λn−λ0)(T−t)
= φ̇0(y)

φ0(y)
(2.24)

provided that α0 �= 0. When φ0 > 0, α0 = ∫ Eφ0(x)m(x)dx > 0. Regarding the optimal
portfolios, the above calculation implies, by (2.15)

lim
T↑∞

π (t, y) = 1
1 − p

�−1μ + δ

1 − p
�−1ϒ

φ̇0(y)
φ0(y)

.(2.25)

Thus, as the horizon increases, the optimal portfolio converges to a time-homogeneous
portfolio that depends only on the current state variable y.

4An operator is Hilbert–Schmidt if it is self-adjoint, with a discrete spectrum, bounded from below,
tending to ∞, and the eigenfunctions (φn)n≥0 form an orthonormal basis for L2(E, m).
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2.4. Static Fund Separation

Equation (2.25) paves the way to static fund separation for long-term investments.
Optimal portfolios for long planning horizons decompose as combinations of a fixed
number of funds, such that

(i) The composition of each fund may depend on the state variable y, but is indepen-
dent of the risk aversion 1 − p.

(ii) Each investor chooses fund weights that depend on risk aversion 1 − p, but not on
the state variable y.

The crucial point is that most models lead to a decomposition of the form:

φ̇0(y)
φ0(y)

=
m∑

i=1

wi (p)ψi (y),(2.26)

which implies that any optimal portfolio for a long horizon is the combination of m +
2 funds, independent of the preference parameter p: the safe asset, the myopic portfo-
lio �−1μ, and the m hedging portfolios �−1ϒψ i(y). Risk aversion determines optimal
portfolios only through their weights in these funds, but does not affect the funds them-
selves. Thus, the funds are the same for all long-horizon investors, regardless of their risk
aversion.

Static fund separation entails a clear division of labor between an investor, or her
financial planner, on one side, and an intermediary, such as a mutual fund manager, on
the other. The investor or her financial planner choose the weights in the funds, as they
are in the best position to assess the investor’s tolerance for risk. As in usual dynamic fund
separation, investors do not need to trade the single securities in the funds’ portfolios.

Furthermore—and this is the hallmark of static fund separation—investors do not
trade in response to changes in the state variable y, but only rebalance as to keep fund
proportions constant over time. Investors do not even need to observe the state variable.
The manager, on the other hand, trades on behalf of several investors, with a broad range
of risk attitudes. He does not need to know the risk tolerance of investors, because the
composition of each fund is independent of preferences. On the contrary, the manager
must observe the state variable, as this is the only trading signal affecting security weights
within each fund.

The next sections carry out this program in detail for two classes of models, which nest
several examples in the literature. For each class, the state variable follows one of the two
basic stationary processes in finance: the Ornstein–Uhlenbeck and the Feller diffusions.
In both cases, it is possible to turn the above heuristic arguments into precise results, but
at the cost of some parametric restrictions, which guarantee the well-posedness of opti-
mization problems. In this regard, we tend to favor simpler to sharper results, sometimes
concentrating on the most relevant case of higher risk aversion than logarithmic utility
(p < 0).

There are two main technical difficulties in turning the heuristic arguments into pre-
cise statements. First, although finite linear combinations of functions of the form
e−λn (T−t)φn(y) satisfy the HJB equation, infinite sums may not commute with deriva-
tives, especially when the state space E is not compact, as in the models considered.
Checking that the guess in (2.22) solves (2.15) involves some careful arguments, which
exploit the specific properties of the eigenfunctions φn in each model. Second, the solution
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to the HJB equation must correspond to the value function of the utility maximization
problem—a verification theorem is needed.

3. LINEAR MODEL

This section studies a model with a state variable, which follows an Ornstein–Uhlenbeck
process. The expected returns of the risky assets depend linearly on the state variable,
while the interest rate and the volatilities are constant:

dRt = (σν0 + bσν1Yt) dt + σd Zt,

dY t = −bYtdt + dW t,

d〈R, Y〉t = ρdt,

r (Yt) = r0,

(3.1)

where σ ∈ Rn×n ; ν0, ν1, ρ ∈ Rn ; b, r0 > 0, ν ′
1ν1 > 0. We consider the parametric restric-

tion:

ASSUMPTION 3.1.

1 + qρ ′ν1 > 0, where q = p/(p − 1).(3.2)

To understand how this restriction arises, observe that m in (2.19) takes the form:

m(y) = Ke−b(1+qρ ′ν1)y2−2qρ ′ν0 y y ∈ R,(3.3)

where K > 0 is an arbitrary constant. Thus, unless (3.2) holds, there is no solution m
with finite integral. The eigenvalue equation −Mφ = λφ for M in (2.21) specifies to

1
2

(φ̇m)· +
(

1
δ

(
pr0 − q

2
ν ′

0ν0 − qbν ′
0ν1 y − q

2
b2ν ′

1ν1 y2
)

+ λ

)
φm = 0.(3.4)

The following lemma identifies the solutions of (3.4) with those of the differential equation
of the harmonic oscillator, under the additional parameter restriction:

ASSUMPTION 3.2.

b2
(

(1 + qρ ′ν1)2 + q
δ
ν ′

1ν1

)
> 0.(3.5)

REMARK 3.3. Note that (3.5) always holds if p < 0. For 0 < p < 1, setting ν1 = − 1−ε
qρ ′ρ ρ

for a small enough ε > 0 will cause (3.5) to fail even if Assumption 3.1 holds.

LEMMA 3.4. Let Assumptions 3.1 and 3.2. hold. Let φ ∈ L2(R, m), and define ψ by the
equality:

φ(y) = √
αm(y)−1/2ψ(αy + β),(3.6)

where the constants α > 0, β, η = K1λ + K2 are in (B.1). Then, φ solves (3.4) if and only
if ψ ∈ L2(R) solves the ODE

−ψ̈(z) + z2ψ(z) = ηψ(z).(3.7)

For n ≥ 0, consider the Hermite functions
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TABLE 3.1
Static Funds in the Linear Model. w1(p) and w2(p) Are Given in (3.15)

Fund Name Portfolio Fund Weight

Myopic �−1μ(y) wν(p) = 1
1−p

Hedging constant �−1ϒ whc(p) = δ
1−p w1(p)

Hedging linear �−1ϒy whl (p) = δ
1−p w2(p)

ψn(z) =
√

1
n!2n

√
π

e− 1
2 z2

hn(z),(3.8)

where hn is the nth Hermite polynomial defined by the recurrence relation

h0(z) = 1, hn+1(z) = 2zhn(z) − ḣn(z), n ≥ 0.

It is well known (Miklavčič 1998, section 2.9) that

ψn solves (3.7) with ηn = 2n + 1, n ≥ 0,

(ψn)n∈N0 is a complete orthonormal basis of L2(R).

(3.9)

Set

ϕ(z) =
(

1
α

m
(

z − β

α

))1/2

.(3.10)

Assumption 3.1 implies that ϕ ∈ L2(R), hence the series

M∑
n=0

αnψn, αn =
∫
R

ϕ(z)ψn(z) dz =
∫
R

φn(y)m(y) dy(3.11)

converges to ϕ in L2(R) as M ↑ ∞. By construction of ϕ and (3.11) the series
∑M

n=0 αnφn

converges to 1 in L2(R, m) as M ↑ ∞ and hence (2.22) is a candidate solution to
(2.18).

The series in (3.11) converges to ϕ in a very strong sense: since ϕ is in the space
of functions of rapid decrease,

∑
nαnψn converges to ϕ in this space (Reed and Si-

mon 1972, theorem V.13, page 143). In other words, for all nonnegative integers
l, m

lim
M↑∞

sup
z∈R

∣∣∣∣∣zl dm

dzm

(
M∑

n=0

αnψn(z) − ϕ(z)

)∣∣∣∣∣ = 0.(3.12)

This convergence entails that the series expansion for v solves the par-
tial differential equation (PDE) in (2.18). In summary, the following result
holds:
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THEOREM 3.5. Let Assumptions 3.1 and 3.2 hold. Define ψn, ηn as in (3.9), λn, φn as in
Lemma 3.4, and αn as in (3.11). Then

(i) the function

v(t, y) =
∞∑

n=0

e−λn (T−t)αnφn(y)(3.13)

is a strictly positive C1,2((0, T) × E) solution of the PDE in (2.18);
(ii) v satisfies the convergence property:

lim
T↑∞

vy(t, y)
v(t, y)

= φ̇0(y)
φ0(y)

for all t > 0, y ∈ R;(3.14)

(iii) the value function of the utility maximization problem (2.9) is equal to V(x, t, y) =
xp

p v(t, y)δ;
(iv) the decomposition (2.26) (static fund separation) holds with m = 2, ψ1(y) = 1 and

ψ2(y) = y, and with the corresponding weights in Table 3.1, where:

w1(p) = qρ ′ν0

⎛
⎜⎜⎜⎜⎝1 − 1√

1 + qν ′
1ν1

δ(1 + qρ ′ν1)2

⎞
⎟⎟⎟⎟⎠− qν ′

0ν1

δ(1 + qρ ′ν1)

√
1 + qν ′

1ν1

δ(1 + qρ ′ν1)2

,

w2(p) = b(1 + qρ ′ν1)

(
1 −

√
1 + qν ′

1ν1

δ(1 + qρ ′ν1)2

)
.

(3.15)

Wachter (2002) considers the following model with a single risky asset, in which the
Sharpe ratio follows a mean reverting OU process:

dRt = σ Xtdt + σd Zt,

d Xt = b
(
X̄ − Xt

)
dt + σXdW t,

d〈Z, W〉t = ρdt,

r (Xt) = r0.

(3.16)

TABLE 3.2
Parameter Values for the Linear Model, as in Barberis
(2000) and Wachter (2002). Time is in Monthly Units

Parameter Value

σ X 0.0189
X̄ 0.0788
σ 0.0436
b 0.0226
ρ −0.9350
r0 0.0014
ν0 0.0788
ν1 0.8363
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FIGURE 3.1. Reduced value function vδ (upper panel, vertical axis) and risky portfolio
weight (lower panel, vertical axis, in percent) against state variable (horizontal axis), as
the planning horizon varies from 0 (solid), 1 year (tiny dashed), 5 years (short dashed),
10 years (medium dashed), and ∞ (long dashed). The state variable is the Sharpe ratio
X from (3.16). Vertical lines are at the low (2.5%) and high (97.5%) percentiles of
the state variable, under its stationary distribution. Risk aversion is 10 (p = −9), and
market parameters are as in Table 3.2. All plots use 15 eigenfunctions from the series
representation.

The transformation Y = (X − X̄)/σX yields the model in (3.1) with ν0 = X̄ and ν1 =
σ X/b.

For the parameter values in Table 3.2, Assumptions 3.1, 3.2 hold for risk aversion
within the range [0.5, 10] used in the plots and tables below. The upper panel of Figure 3.1
shows the reduced value function vδ as a function of the Sharpe ratio X as in (3.16), for
a range of planning horizons, and for risk aversion of 10 (p = −9). The lower panel plots
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FIGURE 4.1. Reduced value function vδ (vertical axis) against state variable (horizontal
axis), as the planning horizon varies from 3 months (solid), 6 months (tiny dashed),
1 year (short dashed), 3 years (medium dashed), and 5 years (long dashed). Vertical
lines are at the low (2.5%) and high (97.5%) percentiles of the state variable, under its
stationary distribution. Risk aversion is 10 (p = −9), and market parameters are as in
Table 4.2. All plots use 15 eigenfunctions from the series representation.

the optimal portfolios as a function of the Sharpe ratio X for a number of horizons,
including the myopic (T ↓ 0) and long run (T ↑ ∞) limits, for risk aversion equal to 10.
This plot directly compares to figure 3.1 in Wachter (2002): the two figures are obtained
from the same set of parameters, with the difference that Wachter (2002) approximates
the correlation ρ = −0.935 with the value −1 required by her assumption of market
completeness. Thus, our results show the effects of this approximation.

Compared to Wachter (2002), Figure 4.1 shows substantially lower stock holdings,
especially at longer horizons. This finding is consistent with economic intuition: in a
complete market, intertemporal hedging is perfect, therefore the investor takes a larger
hedging position. By contrast, in an incomplete setting, intertemporal hedging is imper-
fect, therefore there is a tradeoff between hedging more, and adding more idiosyncratic
volatility. The net result is that an investor hedges less. Since in this model hedging is
achieved with a positive stock position, hedging less entails lower stock holdings.

Table 3.3 gives the respective fund weights for various values of the risk aversion 1
− p using the parameter values in Table 3.2. Fund weights are calculated for the low
(2.5%) and high (97.5%) quantiles of the state variable, which represents the Sharpe
ratio. Comparing the second and the last columns in the table shows how intertem-
poral hedging changes the variability of stock holdings for a range of risk aversions
and Sharpe ratios. For risk aversion greater than one, the difference between stock
holdings in the high and low state is bigger in the last column: intertemporal hedg-
ing leads to a larger variation between stock holdings in good and bad times, rela-
tive to the oscillation implied by the myopic strategy in the second column. The effect
is reversed for risk aversion less than one, since such investors have negative hedging
demands.

Another pattern emerges from the table: for the typical risk aversion greater than
one, the hedging component is large when the Sharpe ratio is high, while it is close to
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TABLE 3.3
Fund Weights and Implied Risky Positions for the Optimal Long Run Portfolios, for

Different Risk Aversion Levels (0.5, 1, 2, 3, 5, 10).

Risk Aversion Myopic Hedging Constant Hedging Linear
1 − p Fund Weight Fund Weight Fund Weight

wν(p) whc(p) whl(p)
Risky (low) wν(p)�−1μ(ymin) whc(p)�−1ϒ whl (p)�−1ϒ ymin Totals
Positions (high) wν(p)�−1μ(ymax) whc(p)�−1ϒ whl (p)�−1ϒ ymax

0.5 2 0.073 0.01
−4.4 −1.6 2 −3.9
12 −1.6 −2 8.1

1 1 0 0
−2.2 0 0 −2.2

5.8 0 0 5.8
2 0.5 −0.028 −0.0029

−1.1 0.6 −0.57 −1.1
2.9 0.6 0.57 4.1

3 0.33 −0.033 −0.0031
−0.73 0.71 −0.61 −0.64

1.9 0.71 0.61 3.3
5 0.2 −0.032 −0.0027

−0.44 0.68 −0.54 −0.29
1.2 0.68 0.54 2.4

10 0.1 −0.024 −0.0019
−0.22 0.52 −0.37 −0.068

0.58 0.52 0.37 1.5

In each subpanel, the first row contains the static fund weights, while the second and
third rows report the weights in the risky asset, respectively, at the low (2.5%) and
high (97.5%) quantiles of the state variable, under its stationary distribution. Market
parameters are as in Table 3.2.

zero when the Sharpe ratio is low. In other words, the optimal portfolio is substantially
different than myopic when current investment opportunities are good, but it is very
close to myopic when they are poor.

In summary, the hedging component amplifies the response of investors to changes
in the state variable, and (for typical levels of risk aversion) becomes more visible when
investment opportunities are good.

4. SQUARE ROOT DIFFUSION

In this model (cf. Guasoni and Robertson 2012) a single state variable follows the square-
root diffusion of Feller (1951), and simultaneously affects the interest rate, the volatilities
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of risky assets, and the Sharpe ratios.

dRt = (σν0 + σν1Yt) dt + √
Ytσd Zt,

dY t = b (θ − Yt) dt + a
√

YtdW t,

d〈R, Y〉t = ρdt,

r (Yt) = r0 + r1Yt.

(4.1)

Here σ ∈ Rn×n ; ν0, ν1, ρ ∈ Rn and b, θ , a, r0, r1 are all positive reals.

ASSUMPTION 4.1.

bθ − 1
2

a2 > 0, bθ − qaρ ′ν0 > 0, b + qaρ ′ν1 > 0.(4.2)

These parametric restrictions deserve some comment. bθ > 1
2 a2 ensures that Y remains

strictly positive at all times, so that E = (0, ∞) To understand (4.2), note that m in (2.19)
takes the form:

m(y) = Ky
2(bθ−qaρ′ν0)

a2 −1e− 2(b+qaρ′ν1)

a2 y y > 0,(4.3)

where K > 0 is an arbitrary constant. Thus, unless the second and third inequalities in
(4.2) hold, there is no solution m with finite integral. The eigenvalue equation −Mφ =
λφ for M from (2.21) specifies to

1
2

(
a2 yφ̇m

)· + (1
δ

(
−1

2
qν ′

0ν0
1
y

+ (pr0 − qν ′
0ν1
)+
(

pr1 − 1
2

qν ′
1ν1

)
y
)

+ λ

)
φm = 0.

(4.4)

The following lemma identifies solutions of (4.4) with solutions of the generalized La-
guerre differential equation, under the additional parameter restriction:

ASSUMPTION 4.2.

p < 0.(4.5)

REMARK 4.3. For 0 < p < 1 the results of this section still hold, but under very
delicate parameter restrictions (similar to, but more involved than, those in (3.5) from
Assumption 3.2). Since the proofs remain the same, only the case p < 0 is considered
here for brevity.

LEMMA 4.4. Let Assumptions 4.1 and 4.2 hold. Let φ ∈ L2((0, ∞), m), and define ψ by
the equality:

φ(y)m(y)1/2 =
√

ζψ(ζ y)m̂(ζ y)1/2,(4.6)

where

m̂(dz) = 1
�(ω + 1)

zωe−zdz(4.7)
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TABLE 4.1
Static Funds in the Square Root Model. w1(p) and w2(p) Are Given in (4.15)

Fund Name Portfolio Fund Weight

Myopic �−1μ(y) wν(p) = 1
1−p

Hedging constant �−1ϒ whc(p) = δ
1−p w1(p)

Hedging harmonic �−1ϒ 1
y whh(p) = δ

1−p w2(p)

and the constants ζ > 0, ω > 0, K1 > 0, K2 and η = K1λ + K2 are defined in (C.1). Then
φ solves (4.4) if and only if ψ ∈ L2((0, ∞), m̂) solves the ODE:

−zψ̈(z) − (1 + ω − z) ψ̇(z) = ηψ(z).(4.8)

For n ≥ 0 consider the generalized Laguerre polynomial

ψn(z) =
√

�(ω + 1)
n!�(n + ω + 1)

z−ωez dn

dzn

(
e−zzn+ω

)
.(4.9)

It is well known (Magnus, Oberhettinger, and Soni 1966, chapter 5.5) that

ψn solves (4.8) with ηn = n; n ≥ 0,

(ψn)n∈N0 is an orthonormal set in L2((0, ∞), m̂).
(4.10)

Set

ϕ(z) =
(

1
ζ

m(z/ζ )
m̂(z)

)1/2

.(4.11)

By Assumption 4.1 ϕ ∈ L2((0, ∞), m̂). Because ϕ is smooth, it follows from Lebedev
(1972, chapter 5, theorem 3) that the series:

M∑
n=0

αnψn ; αn =
∫ ∞

0
ϕ(z)ψn(z)m̂(z) dz =

∫ ∞

0
φn(y)m(y) dy(4.12)

converges to ϕ pointwise (i.e., for all z > 0) and in L2((0, ∞), m̂) as M ↑ ∞. By the
construction of ϕ and (4.12) the series

∑M
n=0 αnφn converges to 1 pointwise and in L2((0,

∞), m) as M ↑ ∞, hence it is a candidate solution to the PDE (2.18). Unlike the
linear model in Section 3, the convergence does not take place in the strong sense of
(3.12). However, asymptotic growth estimates for the Laguerre polynomials ψn imply the
following convergence result:

THEOREM 4.5. Let Assumptions 4.1 and 4.2 hold. Define ψn as in (4.9), ηn as in (4.10),
λn, φn as in Lemma 4.4, and αn as in (4.12). Then

(i) the function

v(t, y) =
∞∑

n=0

e−λn (T−t)αnφn(y)(4.13)

is a strictly positive C1,2((0, T) × (0, ∞)) solution of the PDE in (2.18);
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TABLE 4.2
Parameter Values for the Square Root Model as in Pan

(2002)

Parameter Value

ν0 0
ν1 8.6
σ 1.00
b 7.1
θ 0.0137
a 0.32
ρ −0.53
r0 0.058
r1 0

(ii) v satisfies the convergence property:

lim
T↑∞

vy(t, y)
v(t, y)

= φ̇0(y)
φ0(y)

for all t, y > 0;(4.14)

(iii) the value function of the utility maximization problem (2.9) is equal to V(x, t, y) =
xp

p v(t, y)δ;
(iv) the decomposition (2.26) (static fund separation) holds with m = 2, ψ1(y) = 1, and

ψ2(y) = 1/y, with respective weights in Table 4.1, where:

w1(p) = 1
a2

(
b + qaρ ′ν1 −

√
(b + qaρ ′ν1)2 − 2

δ
a2

(
pr1 − 1

2
qν ′

1ν1

))
,

w2(p) = 1
a2

⎛
⎝
√(

bθ − qaρ ′ν0 − 1
2

a2

)2

+ q
δ

a2ν ′
0ν0 −

(
bθ − qaρ ′ν0 − 1

2
a2
)⎞⎠ .

(4.15)

Table 4.2 shows the parameter values estimated by Pan (2002, Table 1, Row “SV”).
For these values, each of Assumptions 4.1, 4.2 holds for risk aversion within the range
[1, 10] used in the plots and tables below. Figure 4.1 shows the reduced value function vδ

as a function of the state variable Y for various planning horizons and for risk aversion
of 10 (p = −9). Figure 4.2 plots the optimal portfolios as a function of the state variable
Y for a number of horizons, including the myopic (T ↓ 0) and long run (T ↑ ∞) limits
when the risk aversion is 10. Figure 4.2 shows how the optimal portfolio shifts from the
myopic to the long run limit, as the horizon increases. All plots use 15 eigenfunctions
from the series representation.

Table 4.3 below gives the respective fund weights for various values of the risk aversion
1 − p using the parameter values in (4.2). Fund weights are given for high and low
percentiles of the state variable.
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FIGURE 4.2. Risky portfolio weight (vertical axis), against state variable (horizontal
axis). The planning horizon varies from T ↓ 0 (solid), 1 month (tiny dashed), 3 months
(short dashed), 6 months (medium dashed), and T ↑∞ (long dashed). Portfolio weights
are given in terms of percentages. Vertical lines are at the low (2.5%) and high (97.5%)
percentiles of the state variable, under its stationary distribution. Risk aversion is 10
(p = −9), and market parameters are as in Table 4.2. All plots use 15 eigenfunctions
from the series representation.

TABLE 4.3
Fund Weights and Implied Risky Positions for the Optimal Long Run Portfolios, for

Different Risk Aversion Levels (1, 2, 3, 5, 10)

Risk Aversion Myopic Hedging Constant
1 − p Fund Weight Fund Weight

wν(p) whc(p)
Risky Positions wν(p)�−1μ whc(p)�−1ϒ Totals

1 1 0
8.6 0 8.6

2 0.5 −1.2
4.3 0.21 4.5

3 0.33 −1.1
2.9 0.19 3.1

5 0.2 −0.83
1.7 0.14 1.9

10 0.1 −0.48
0.86 0.081 0.94

In each subpanel, the first row contains the static fund weights, while the second row
reports the weights in the risky asset. Market parameters are as in Table 4.2
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5. CONCLUSION

If static fund separation holds, optimal portfolios for long-term CRRA investors are
constant mixes of a few common funds. Then, hedging demands are explicit combinations
of one or more hedging funds. The number of funds depends on the model, and may
be larger than the number of state variables. Merton’s (1973) dynamic fund separation
implies that hedging funds are (locally) perfectly correlated with each other, but their
covariance changes over time, as it depends on the state variable.

This paper establishes static fund separation for two common classes of models, in
which the state variable is either an Ornstein–Uhlenbeck or a Feller diffusion. A central
technique is the eigenvalue decomposition of value functions, made possible by the linear
HJB equation, which follows from constant asset-state correlations, and a single state
variable. Static fund separation in models with several state variables is an open area of
research.

APPENDIX A: VERIFICATION

The following assumptions are on the coefficients μ, b, �, A, ϒ given in (2.2)–(2.3).
Note that these assumptions are satisfied by all the models considered within this paper.
The first assumption requires the regularity and nondegeneracy of coefficients, while the
second one guarantees that they identify the law of Y .

ASSUMPTION A.1. There exists α ∈ (0, 1] such that r ∈ C(E,R), b ∈ C1,α(E,R), ϒ, μ ∈
C1,α(E,Rn), � ∈ C1,α(E,Rn×n), and A ∈ C2,α(E,R). A > 0 and � is positive definite for
all y ∈ E, uniformly on all compact subsets of E.

�d = C([0, ∞),Rd ) denotes the space of continuous paths from [0, ∞) toRd , endowed
with the Borel σ -algebra F .

ASSUMPTION A.2. For all y ∈ E there exists a unique probability Py on (�n+1,F) such
that (R, Y ) satisfies (2.2)–(2.5) with initial condition (R0, Y 0) = (0, y), and Py(Y t ∈ E,
∀t ≥ 0) = 1. The family (Py)y∈E has the strong Markov property.

The value function of the utility maximization problem is defined as the expected
utility, conditional on the current state y ∈ E, the time t ∈ [0, T ], and the current wealth
x > 0:

V(t, x, y) = sup
(πu )u≥t

1
p

E
[(

Xπ
T

)p ∣∣Yt = y, Xt = x
]
.

The following lemma establishes conditions under which a solution to the HJB equation
is indeed the value function.

LEMMA A.3. Let Assumption A.1 hold. For bν , V as in (2.16) and Lν as in (2.17)
assume that

(i) v(t, y) is a strictly positive C1,2((0, T) × E,R) solution to

vt + Lνv + Vv = 0 (t, y) ∈ (0, T) × E,

v(T, y) = 1 y ∈ E.
(A.1)
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(ii) both the original and the auxiliary models:

(P)

{
dRt = μdt + σd Zt

dY t = bdt + adW t

(P̂T)

⎧⎪⎪⎨
⎪⎪⎩

dRt = 1
1 − p

(
μ + δϒ

vy

v

)
dt + σd Ẑt

dY t =
(

bν + A
vy

v

)
dt + adŴt

(A.2)

satisfy Assumption A.2 on [0, T ] under equivalent probabilities Py and P̂y
T , y ∈ E.

Then V(t, x, y) = xp

p (v(t, y))δ. The optimal trading strategy is given by

πt = 1
1 − p

�−1
(
μ + δϒ

vy

v

)
(A.3)

evaluated at (t, Y t).

Proof of Lemma A.3. For any function η ∈ C((0, T) × E,R) set

h(t, y) = −ρ ′σ−1(y)μ(y) + (1 − ρ ′ρ) a(y)η(t, y),

g(t, y) = −ρ̄ ′σ−1(y)μ(y) − ρ̄ ′ρa(y)η(t, y),
(A.4)

where ρ̄ is the unique, symmetric, nonnegative definite square root of 1 − ρρ ′. Note that
1 − ρρ being nonnegative definite is equivalent to 1 − ρ ′ρ ≥ 0. Using the decomposition
Z = ρW + ρ̄B, where B is a Brownian Motion independent of W define the process:

Zη
t = E

(∫ ·

0
h(s, Ys)′dW s +

∫ ·

0
g(s, Ys)′d Bs

)
t

0 ≤ t ≤ T.

The continuity of η and Assumptions A.1 and A.2 ensure that Zη is a strictly positive
Py local martingale on [0, T ] for any T > 0 and all y ∈ E. Furthermore, using stochastic
integration by parts, it follows that for any trading strategy π the process:

e− ∫ ·
0 rds Zη

· Xπ
·

is a nonnegative Py supermartingale. Set Mη = e− ∫0 rds Zη. Using the well-known duality
results relating terminal wealths from trading strategies and process which render trad-
ing strategies nonnegative supermartingales (see Kramkov and Schachermayer 1999), it
suffices to show that under the assumption of well-posedness for (P̂y

T )y∈E:

E
[

1
p

(
Xπ

T

)p | Xt = x, Yt = y
]

= xp

p

(
E
[(

Mη

T

Mη
t

)q ∣∣∣∣Yt = y
])1−p

for v solving (A.1), π as in (A.3) and η = δ
vy

v . Plugging in for Xπ
T , Mη

T/Mη
t , this is

equivalent to showing

E
[

exp
(

p
∫ T

t

(
r + π ′μ − 1

2
π ′�π

)
ds +

∫ T

t
pπ ′σρdW s +

∫ T

t
pπ ′σ ρ̄dBs

) ∣∣∣∣Yt = y
]

=
(

E
[
exp
(

q
∫ T

t

(
−r − 1

2
h′h − 1

2
g′g
)

ds +
∫ T

t
qh′dW s +

∫ T

t
qg′dBs

) ∣∣∣∣Yt = y
])1−p

.

(A.5)
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Under Assumptions A.2 and A.1, the smoothness of v and the well-posedness under Py

and P̂y
T imply that Ẑt = d P̂T/d P

∣∣
Ft

is a martingale (see Cheridito, Filipović, and Yor
2005, theorem 2.4). Ẑ takes the form:

Ẑt = E
(∫ ·

0

(
−qϒ ′�−1μ + A

vy

v

)′
a−1dW s − q

∫ ·

0

(
�−1μ + δ�−1ϒ

vy

v

)′
σ ρ̄d Bs

)
t
.

(A.6)

It is convenient to define w(t, y) = δlog v(t, y). w solves the semilinear PDE:

wt + 1
2

Aw yy + 1
2δ

Aw2
y + bνw y + δV = 0 (t, y) ∈ (0, T) × E,

w(T, y) = 0 y ∈ E.

(A.7)

With this notation, π = 1
1−p �−1

(
μ + ϒw y

)
and η = wy. It suffices to show that, for

Y t = y:

exp
(

p
∫ T

t

(
r + π ′μ − 1

2
π ′�π

)
ds +

∫ T

t
pπ ′σρdW s +

∫ T

t
pπ ′σ ρ̄d Bs

)
= ẐT

Ẑt
ew(t,y),

exp
(

−q
∫ T

t

(
r + 1

2
h′h + 1

2
g′g
)

ds +
∫ T

t
qh′dW s +

∫ T

t
qg′d Bs

)
= ẐT

Ẑt
e

1
1−p w(t,y)

(A.8)

from which (A.5) follows. Under Py, using Itô’s formula and (A.7) it follows that given
Y t = y:

−w(t, y) =
∫ T

t
wtds +

∫ T

t
bw yds +

∫ T

t
aw ydW s + 1

2

∫ T

t
Aw yyds

= −
∫ T

t

(
1
2δ

Aw2
y − qw yϒ

′�−1μ + pr − q
2
μ′�−1μ

)
ds +

∫ T

t
w yadW s

plugging back in for bν and V . At this point, verifying (A.8) amounts to plugging in for
ẐT/Ẑt, π , η (and hence h, g via (A.4)) and w and then matching up the ds, dW , and
dB terms. Performing these steps readily yields the conclusion (recalling that A/δ = A −
qϒ ′�−1ϒ). �

APPENDIX B: PROOFS OF SECTION 3

The following constants are used in Lemma 3.4 and Theorem 3.5:

A = 2qb
(

ρ ′ν0(1 + qρ ′ν1) + 1
δ
ν ′

0ν1

)
,

B = b2
(

(1 + qρ ′ν1)2 + q
δ
ν ′

1ν1

)
,

C = −q2(ρ ′ν0)2 + b(1 + qρ ′ν1) − q
δ
ν ′

0ν0 + 2pr0

δ
,
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α = B1/4, β = A
2B3/4

,

K1 = 2√
B

, K2 = 1√
B

(
A2

4B
+ C

)
.

(B.1)

Note that (3.5) in Assumption 3.2 is equivalent to B > 0.
The proof of Lemma 3.4 and Proposition 3.5 require the following two lemmas:

LEMMA B.1. Let Assumptions 3.1 and 3.2 hold. Let m be as in (3.3), α, β, K1, and K2

be as in (B.1), λ ∈ R and η = K1λ + K2. Let

V(y) = 1
δ

(
pr0 − q

2
ν ′

0ν0 − qbν ′
0ν1 y − q

2
b2ν ′

1ν1 y2
)

.(B.2)

If f , g ∈ C1,2((0, T) × R) are related by

f (t, y) = √
αm(y)−1/2g(t, z) ⇐⇒ f (t, y) = ϕ(z)−1g(t, z)

for z = αy + β then at z = αy + β

1
2

(
ḟ (t, y)m(y)

)· + V(y) f (t, y)m(y) + λ f (t, y)m(y) + ft(t, y)m(y)

= −1
2
α5/2m

(
z − β

α

)1/2 (
−g̈(z) + z2g(z) − ηg(z) − 2

α2
gt(t, z)

)
.

(B.3)

Proof of Lemma B.1. That ft(t, y)m(y) = √
αm((z − β)/α)1/2gt(t, z) is immediate. For

the remaining terms, it suffices to think of f , g as functions of y (resp. z) alone. Define
�(y) by

�(y) = 1
2

(
ḟ (y)m(y)

)· + V(y) f (y)m(y) + λ f (y)m(y).(B.4)

Let h(y) = m1/2(y)f (y). It follows that

ḟ = m−1/2
(

ḣ − ṁ
2m

h
)

,

f̈ = m−1/2

(
ḧ − 2

ṁ
2m

ḣ +
((

ṁ
2m

)2

−
(

ṁ
2m

)·)
h

)
.

Therefore, from (B.4) it follows that

� = 1
2

(
ḟ m
)· + (V + λ) f m

= m1/2

(
1
2

ḧ − ṁ
2m

ḣ + 1
2

((
ṁ
2m

)2

−
(

ṁ
2m

)·)
h + ṁ

2m
ḣ −

(
ṁ
2m

)2

h + (V + λ)h

)

= m1/2

(
1
2

ḧ +
(

V + λ − 1
2

(
ṁ

2m

)2

− 1
2

(
ṁ

2m

)·)
h

)
.

Plugging in for V from (B.2) and in for ṁ
m from (3.3) and multiplying by −2 yields

−2� = m1/2 (−ḧ + (By2 + Ay − C − 2λ
)

h
)

(B.5)
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for A, B, C as in (B.1). An affine transformation in the state variable normalizes the
quadratic constant B and eliminates the linear constant A. Let z = αy + β. By construc-
tion, g(z) = 1√

α
h(y) = 1√

α
h( z−β

α
). Evaluating (B.5) at y = z−β

α
yields

−2�

(
z − β

α

)
= α5/2m

(
z − β

α

)1/2 (
−g̈(z) +

(
B
α4

z2 +
(

A
α3

− 2βB
α4

)
z

+
(

β2B
α4

− βA
α3

− C
α2

− 2λ

α2

))
g(z)
)

.

(B.6)

Using the representations for α, β, A, B, C, K1, and K2 from (B.1) and η from the state-
ment of the lemma it follows that

−2�

(
z − β

α

)
= α5/2m

(
z − β

α

)1/2 (−g̈(z) + z2g(z) − ηg(z)
)
,(B.7)

which is the desired result. �

LEMMA B.2. Let (hn)n≥1 be a sequence of real numbers and let (γ n)n≥1 be a decreasing
sequence of positive real numbers. Then, for all m, M ∈ N, m ≤ M∣∣∣∣∣

M∑
n=m

γnhn

∣∣∣∣∣ ≤ γm max
N=m,...M

∣∣∣∣∣
N∑

n=m

hn

∣∣∣∣∣ .
Proof of Lemma B.2. For the γ n of the statement∣∣∣∣∣

M∑
n=m

γnhn

∣∣∣∣∣ =
∣∣∣∣∣γM

M∑
n=m

hn + (γM−1 − γM)
M−1∑
n=m

hn + · · · + (γm − γm+1)hm

∣∣∣∣∣
≤ γM

∣∣∣∣∣
M∑

n=m

hn

∣∣∣∣∣+ (γM−1 − γM)

∣∣∣∣∣
M−1∑
n=m

hn

∣∣∣∣∣+ · · · + (γm − γm+1) |hm|

≤ max
N=m,...M

∣∣∣∣∣
M∑

n=m

hn

∣∣∣∣∣ (γM + (γM−1 − γM) + · · · + (γm − γm+1))

= γm max
N=m,...M

∣∣∣∣∣
M∑

n=m

hn

∣∣∣∣∣ . �

Proof of Lemma 3.4. By applying Lemma B.1 for f (y) = φ(y), g(z) = ψ(z) (note there
is no dependence upon t) it follows that φ satisfies (3.4) for some λ ∈ R if and only if ψ

satisfies (3.7) for η = K1λ + K2. As for the respective L2 norms, since

∫
R

ψ(z)2dz = 1
α

∫
R

φ

(
z − β

α

)2

m
(

z − β

α

)
dz =

∫
R

φ(y)2m(y) dy,

ψ ∈ L2(R) if and only if φ ∈ L2 (R, m) and they both have the same norm. �

Proof of Theorem 3.5. It is first shown that v from (3.13) is a strictly positive
C1,2((0, T) × R) solution to the PDE in (2.18), or equivalently, to the PDE in (2.20),
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specified to the model in (3.1). We have, using (3.6), (3.9), (3.10), and (B.1) that for any
y ∈ R, at z = αy + β

v(t, y) =
∞∑

n=0

e−λn (T−t)αnφn(y) = eK2/K1(T−t)ϕ(z)−1
∞∑

n=0

e−ηn/K1(T−t)αnψn(z).(B.8)

Set

w(t, z) =
∞∑

n=0

e−ηn/K1(T−t)αnψn(z)(B.9)

so that (A.8) becomes

v(t, y) = eK2/K1(T−t)ϕ(z)−1w(t, z).(B.10)

By applying Lemma B.1 for

λ = 0, f (t, y) = v(t, y), g(t, z) = w(t, z)eK2/K1(T−t)

it follows that v(t, y) solves (2.20) if and only if w(t, z) solves (note α2/2 = 1/K1)

K1wt + wzz − z2w = 0 (t, z) ∈ (0, T) × R,

w(T, z) = ϕ(z) z ∈ R.
(B.11)

Set

τn(t) = e−ηn/K1(T−t) = e−(2n+1)/K1(T−t).(B.12)

In the light of (3.9), for each integer M the function

w M(t, z) ≡
M∑

n=0

αnτn(t)ψn(z)(B.13)

solves the differential expression in (B.11) with boundary condition w M(T, z) =∑M
n=0 αnψn(z). Thus, it suffices to prove that the function w(t, z) = limM↑∞wM(t, z)

is a well-defined C1,2((0, T) × R) function, which is strictly positive and which solves the
PDE in (A.11).

Since ϕ is a function of rapid decrease, taking l = 0, m = 0 in (3.12) shows that
wM(T , z) converges uniformly to ϕ(z) on R. To show that w(t, z) = limM↑∞wM(t, z)
exists on (0, T) × R and solves the full PDE in (B.11), it is enough to prove any integer l
that dl

dzl w M(t, z) as well as ∂ twM(t, z) are uniformly convergent as M ↑ ∞ in (0, T) × R.
Regarding the spatial derivatives for l = 1 it is clear that for each t ≤ T , γ n = τ n(t) satisfies
the hypothesis of Lemma B.2 with τn(t) ≤ e−T/K1 for all n, 0 ≤ t ≤ T . Since wM(T , z)
converges uniformly in R for any ε > 0 there is an Mε such that m, M > Mε implies that

sup
z∈R

∣∣∣∣∣
M∑

n=m

αnψn(z)

∣∣∣∣∣ < ε.(B.14)

Hence, by Lemma B.2 for any 0 ≤ t ≤ T

sup
z∈R

∣∣∣∣∣
M∑

n=m

αnτn(t)ψn(z)

∣∣∣∣∣ ≤ e−T/K1ε
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and thus wM(t, y) converges uniformly on (0, T) × R. The proof for dl

dzl w M(t, z) for any l
is analogous, using the convergence in the space of functions of rapid decrease at t = T .
As for ∂ twM note that

∂tw M =
M∑

n=0

ηn

K1
τn(t)αnψn(z) = 1

K1

M∑
n=0

τn(t)αn
(−ψ̈n(z) + z2ψn(z)

)

since ηnψn = −ψ̈n + z2ψn . Thus, the uniform convergence of ∂ twM follows from that of
ẇ M and z2ẅ M. This proves that w satisfies the PDE in (B.11). Note that (B.11) can be
written

wt + Lwzz − z2

K1
w = 0 (t, z) ∈ (0, T) × R,

w(T, z) = ϕ(z) z ∈ R
(B.15)

for the operator L = 1
2

2
K1

d2/dz2. Thus, using the fact that w solves (B.11) and that
ϕ is a function of rapid decrease it clearly follows that w(t, z) admits the stochastic
representation:

w(t, z) = EQ
z

[
ϕ(ZT−t) exp

(
− 1

K1

∫ T−t

0
Z2

s ds
)]

,(B.16)

where (Qz)z∈R is a solution to the martingale problem for L on R. Such a solution clearly
exists since Z = √2/K1W, where W is a standard Brownian Motion. The strict positivity
of w(t, z) easily follows from (A.16) since ϕ > 0.

It is next shown that v satisfies the convergence relation in (3.14). By (B.10) it follows
that at z = αy + β:

vy(t, y)
v(t, y)

= α

(
wz(t, z)
w(t, z)

− ϕ̇(z)
ϕ(z)

)
.(B.17)

By (3.6) and (3.10) it follows that at z = αy + β, φ0(y) = ϕ(z)−1ψ0(z) and hence

vy(t, y)
v(t, y)

− φ̇0(y)
φ0(y)

= ζ

(
wz(t, z)
w(t, z)

− ψ̇0(z)
ψ0(z)

)

and thus (3.14) will follow if

lim
T↑∞

wz(t, z)
w(t, z)

= ψ̇0(z)
ψ0(z)

(B.18)

holds for all (t, z) ∈ (0, ∞) × R. Using the uniform convergence of w M, ẇ M it follows
that
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lim
T↑∞

wz(t, z)
w(t, z)

= lim
T↑∞

∞∑
n=0

τn(t)αnψ̇n(z)

∞∑
n=0

τn(t)αnψn(z)

= lim
T↑∞

α0ψ̇0(z) +
∞∑

n=1

(τn(t)/τ0(t))αnψ̇n(z)

α0ψ0(z) +
∞∑

n=1

(τn(t)/τ0(t))αnψn(z)

.

Since τn(t)/τ0(t) = e−2n/K1(T−t) it suffices to show

lim
T↑∞

lim
M↑∞

M∑
n=1

e−2n/K1(T−t)αnψ̇n(z) = 0 lim
T↑∞

lim
M↑∞

∞∑
n=1

e−2n/K1(T−t)αnψn(z) = 0.

It will be shown for the partial sums of ψn, the proof for the partial sums of ψ̇n being
similar. Fix t > 0 and z ∈ R. Let T̃ be such that t < T̃ < T. Since wM(t, z) converges
uniformly in z for T̃ for any ε > 0 there is an Mε such that for m, M > Mε∣∣∣∣∣

M∑
n=m

e−ηn/K1(T̃−t)αnψn(z)

∣∣∣∣∣ < ε.

By making ε smaller it can be assumed that, plugging in ηn = 2n + 1,∣∣∣∣∣
M∑

n=m

e−2n/K1(T̃−t)αnψn(z)

∣∣∣∣∣ < ε.

It thus follows using Lemma B.2 with γn = e−2n/K1(T−T̃) and hn = e−2n/K1(T̃−t)αnψn(z)
that

lim
T↑∞

lim
M↑∞

∣∣∣∣∣
M∑

n=1

e−2n/K1(T−t)αnψn(z)

∣∣∣∣∣ ≤ lim
T↑∞

lim
M↑∞

∣∣∣∣∣∣
M∑

n=Mε+1

e−2n/K1(T−t)αnψn(z)

∣∣∣∣∣∣
= lim

T↑∞
lim

M↑∞

∣∣∣∣∣∣
M∑

n=Mε+1

e−2n/K1(T−T̃)e−2n/K1(T̃−t)αnψn(z)

∣∣∣∣∣∣
≤ lim

T↑∞
lim

M↑∞
e−2(Mε+1)/K1(T−T̃) max

N=Mε+1,...,M

∣∣∣∣∣
M∑

n=N

e−2n/K1(T̃−t)αnψn(z)

∣∣∣∣∣
≤ lim

T↑∞
εe−2(Mε+1)/K1(T−T̃) = 0.

It is now shown using Lemma A.3 that the value function V (x, t, y) is equal to
xp

p v(t, y)δ. It has already been shown that v satisfies the PDE in (A.1) specified to (3.1).
Thus, it only remains to prove that the model P̂T satisfies Assumption A.2. Specified to
the model in (3.1), P̂T takes the form:
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dRt = 1
1 − p

(
σν0 + bσν1Yt + δσρ

vy

v
(t, Yt)

)
dt + σd Zt,

dY t =
(
−qρ ′ν0 − b

(
1 + qρ ′ν1

)
Yt + vy

v
(t, Yt)

)
dt + dW t.

Notice that it is enough to prove there is a weak solution for the SDE involving Y . Indeed,
if this is the case, there is a weak solution for Y , B where B is an n-dimensional Brownian
Motion independent of Y . Then, setting Z = ρW + ρ̄B and defining R accordingly will
result in a weak solution for R, Y .

Clearly, for each z ∈ R, there is a weak solution to the SDE:

d Zt =
√

2
K1

dW t Z0 = z.

Indeed, the measures (Qz)z∈R from (B.16) provide such a solution. Using (A.16) it follows
that

1
w(0, z)

EQ
z

[
ϕ(ZT) exp

(
− 1

K1

∫ T

0
Z2

t dt
)]

= 1.

But, Itô’s formula implies that under Qz

1
w(0, z)

ϕ(ZT) exp
(

− 1
K1

∫ T

0
Z2

t dt
)

= E

⎛
⎝∫ ·

0

√
2

K1

wz

w
(t, Zt)dW t

⎞
⎠

T

and hence by Girsanov’s theorem there is a weak solution to the SDE

d Zt = 2
K1

wz

w
(t, Zt) dt +

√
2

K1
dW t

= α2 wz

w
(t, Zt) dt + αdW t

using the definition of α. Setting Y = 1
α

(Z − β) and using (B.17), (3.10), and (3.3) gives

dY t = α
wz

w
(t, αYt + β) dt + dW t

=
(

vy

v
(t, Yt) + α

ϕ̇

ϕ
(Yt)
)

dt + dW t

=
(
−qρ ′ν0 − b(1 + qρ ′ν1)Yt + vy

v
(t, Yt)

)
dt + dW t.

Therefore, the model P̂T is well posed.
Finally, the statements regarding (3.15) follow immediately from the fact that ψ0(z) =

π−1/4e−z2/2 and that φ0(y) = √
αm(y)−1/2ψ0(αy + β).

It remains to show the static fund separation given in (3.15). By (3.6) and the fact that
ψ0(z) = π−1/4e−z2/2 we have

φ̇0(y)
φ0(y)

= (qρ ′ν0 − αβ
)× 1 + (b(1 + qρ ′ν1) − α2β

)× y

from which (3.15) follows by plugging in for the constants in (B.1). �
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APPENDIX C: PROOFS OF SECTION 4

The following constants are used in the proof of Lemma 4.4 and Theorem 4.5:

α = bθ − qaρ ′ν0 − 1
2

a2, β = b + qaρ ′ν1,

� = α2 + qa2

δ
ν ′

0ν0, � = β2 − 2a2

δ

(
pr1 − 1

2
qν ′

1ν1

)
,

ω = 2
√

�

a2
, ζ = 2

√
�

a2
, K1 = 1√

�
,

K2 = a2

2
√

�

⎛
⎝β − √

�

a2
+

2
(
αβ − √

��
)

a4
+ 2

a2δ

(
pr0 − qν ′

0ν1
)⎞⎠ .

(C.1)

The proof of Lemma 4.4 and Theorem 4.5 requires the following three lemmas.

LEMMA C.1. Let Assumption 4.1 hold. Let m be as in (4.3), and m̂ as in (4.7). Let ω,
ζ , K1, and K2 be as in (C.1). Let λ ∈ R and η = K1 λ + K2. Let

V(y) = 1
δ

(
pr0 + pr1 y − 1

2
qν ′

0ν0
1
y

− qν ′
0ν1 − 1

2
qν ′

1ν1 y
)

.(C.2)

If f , g ∈ C1,2((0, T) × (0, ∞)) are related by (ϕ is defined by (4.11))

f (t, y)m(y)1/2 =
√

ζ g(t, z)m̂(z)1/2 ⇐⇒ f (t, y) = g(t, z)ϕ(z)−1

then, setting z = ζy,

1
2

(
a2 y ḟ (t, y)m(y)

)· + V(y) f (t, y)m(y) + λ f (t, y)m(y) + ft(t, y)m(y)

= 1
2

a2ζ 3/2
√

m̂(z)m(y)
(

zg̈(t, z) + (1 + ω − z)ġ(t, z) + ηg(t, z) + 1√
�

gt(t, z)
)

.

(C.3)

Proof of Lemma C.1. It suffices to compare the terms in the left- and the right-hand
sides. That ft(t, y)m(y) = 1

2 a2ζ 3/2(1/
√

�)
√

m(y)m̂(z)gt(t, z) follows from
√

� = (a2/2)ζ .
For the remaining terms, define �(y) by

�(y) = 1
2

(
a2 y ḟ (y)m(y)

)· + V(y) f (y)m(y) + λ f (y)m(y).(C.4)

From (C.1) and (4.3) it follows that ṁ
2m = α

a2 y − β

a2 . Plugging this equality in yields (to
ease notation, y is suppressed from the right-hand side of the following equations)

�(y) = m
(

1
2

a2 ḟ + 1
2

a2 y f̈ + a2 y ḟ
ṁ

2m
+ (V + λ) f

)

= m
(

1
2

a2 y f̈ +
(

α + 1
2

a2 − βy
)

ḟ + (V + λ) f
)

.

(C.5)
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Let h(y) = √m(y)/m̂(ζ y) f (y) = (1/K)y−Ae−By f (y), where ζ is from (C.1), K is a nor-
malizing constant and

A = 1/a2
(√

� − α
)

B = 1/a2
(
−

√
� + β

)
.(C.6)

It follows that

ḟ = KyAeBy
(

A
y

h + Bh + ḣ
)

,

f̈ = KyAeBy
(

A (A − 1) + 2ABy + B2 y2

y2
h + 2A + 2By

y
ḣ + ḧ

)
.

Plugging these relations into (C.5), the expressions for V in (C.2), and collecting terms,
yields

�(y) = 1
2

a2mKyAeBy

(
yḧ +

((
2A + 2α

a2
+ 1
)

+
(

2B − 2β

a2

)
y

)
ḣ

+
(

Â
y

+ B̂y + Ĉ + 2λ

a2

)
h

)

= 1
2

a2
√

m̂(ζ y)m(y)

(
yḧ +

((
2A + 2α

a2
+ 1
)

+
(

2B − 2β

a2

)
y
)

ḣ

+
(

Â
y

+ B̂y + Ĉ + 2λ

a2

)
h

)
(C.7)

for

Â = A2 + 2α

a2
A − q

δa2
ν ′

0ν0,

B̂ = B2 − 2β

a2
B + 2

δa2

(
pr1 − q

2
ν ′

1ν1

)
,

Ĉ = B + 2AB + 2αB − 2βA
a2

+ 2
a2δ

(pr0 − qν ′
0ν1).

By (C.6), it follows that Â = B̂ = 0 and

Ĉ = β − √
�

a2
+ 2(αβ − √

��)
a4

+ 2
a2δ

(pr0 − qν ′
0ν1).

Plugging this equality into (C.7) and using the expressions for K1, K2 in (C.1) yields

�(y) = 1
2

a2
√

m̂(ζ y)m(y)

(
yḧ +

((
1 + 2

√
�

a2

)
− ζ y

)
ḣ + ζ (K1λ + K2) h

)
.

Setting z = ζy, g(z) = (1/
√

ζ )h(y), and η = K1λ + K2 yields that, at z = ζy,

�(y) = 1
2

a2ζ 3/2
√

m̂(z)m(y)

(
zg̈ +

(
1 + 2

√
�

a2
− z

)
ġ + ηg

)
,

which is the desired result. �
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LEMMA C.2. Let Assumptions 4.1 and 4.2 hold, and let the functions (ψn)n≥0 be defined
as in (4.10). If a sequence (γn)n≥0 ⊂ R satisfies, for some s > ω

2 + 1
4 ,

∞∑
n=0

ns |γn| < ∞(C.8)

then, the series

∞∑
n=0

γnψn(z)(C.9)

converges uniformly on compacts on (0, ∞).

Proof of Lemma C.2. Hille (1926) shows that the series
∑∞

n=1 n−sψn(z) converges
uniformly on compacts on (0, ∞). For any positive integers m < M

∣∣∣∣∣
M∑

n=m

γnψn(z)

∣∣∣∣∣ =
∣∣∣∣∣

M∑
n=m

nsγnn−sψ(z)

∣∣∣∣∣ ≤ max
n=m,...M

∣∣n−sψn(z)
∣∣ M∑

n=m

ns |γn|

and thus the result follows by (C.8). �

LEMMA C.3. Let ϕ ∈ L2((0, ∞), m̂) be strictly positive and continuously differentiable.
Let the functions (ψn)n≥0 be from (4.10). Let

βn =
∫ ∞

0
ϕ(y)ψn(y)m̂(y) dy.

Let (Qz)z>0 denote the solution to the martingale problem on (0, ∞) for

L =
√

�z
d2

dz2
+

√
� (1 + ω − z)

d
dz

.(C.10)

Let Z denote the coordinate mapping process. Let τ (t) = e−√
�(T−t) . Then, for t ∈ [0, T ]

and z > 0

∞∑
n=0

τ (t)nβnψn(z) = EQ
z [ϕ(ZT−t)] .(C.11)

REMARK C.4. Note that underQz, Z is a CIR process starting at z. Since
√

�(1 + ω) >√
�, Z does not hit 0, and thus there is a solution to the martingale problem for L on

(0, ∞).

Proof of Lemma C.3. Let t < T and γ n = τ (t)nβn. Note that for any s > 0, by Parseval’s
equality, and the fact that

√
� > 0

∞∑
n=0

ns |γn| ≤ 2
∞∑

n=0

n2sτ (t)2n + 2
∞∑

n=0

β2
n < ∞.(C.12)
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Thus, Lemma C.2 implies that the series

∞∑
n=0

τ (t)nβnψn(z)

converges uniformly on compact subsets of (0, ∞). At t = T the pointwise convergence
of

∞∑
n=0

βnψn(z)

follows from Lebedev (1972, chapter 5, theorem 3) since ϕ is continuously differentiable.
Therefore, the series

∑∞
n=0 τ (t)nβnψn(z) defines a function on (0, T) × (0, ∞).

Three facts about the Feller diffusion and generalized Laguerre polynomials are nec-
essary to prove (C.11). First, (Glasserman 2004, chapter 3.4), under Qz, for 0 ≤ t < T ,
ZT−t is distributed like KX , where

K = 1
2

(1 − e−√
�(T−t)) = 1

2
(1 − τ (t))(C.13)

and X is a noncentral Chi-square random variable with noncentrality parameter λ and
degrees of freedom d given by

λ = 2e−√
�(T−t)z

1 − e−√
�(T−t)

= 2τ (t)z
1 − τ (t)

, d = 2(1 + ω).(C.14)

Second, X has probability density equal to

f (x) = 1
2

e−x/2−λ/2xd/4−1/2λ−(d/4−1/2) Id/2−1(
√

λx)

= 1
2

e−x/2−λ/2xω/2λ−ω/2 Iω(
√

λx),

(C.15)

where Iω(y) is the modified Bessel function of the first kind. Third, recall the following
identity regarding generalized Laguerre polynomials: for |τ | < 1 (Magnus et al. 1966,
chapter 5.5, note the typo in this reference, in that yz/τ should read as yzτ )

∞∑
n=0

ψn(y)ψn(z)τ n = �(1 + ω)
1 − τ

(yzτ )−ω/2 exp
(

−τ (y + z)
1 − τ

)
Iω

(√
4yzτ

(1 − τ )2

)
.(C.16)

(C.15) readily gives that

EQ
z [ϕ(ZT−t)] =

∫ ∞

0
ϕ(Kx) f (x)dx =

∫ ∞

0
ϕ(y) f (y/K)

1
K

dy

=
∫ ∞

0
ϕ(y)

1
2K

e−y/(2K)−λ/2 yω/2(λK)−ω/2 Iω

(√
λy
K

)
dy.

(C.17)
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Thus, if the infinite sum and the integral commute, as proven later, from the definition of
τ (t), βn and (C.16), it follows that

∞∑
n=0

τ (t)nβnψn(z) =
∞∑

n=0

τ (t)nψn(z)
∫ ∞

0
ϕ(y)ψn(y)m̂(y) dy

=
∫ ∞

0
ϕ(y)m̂(y)

∞∑
n=0

ψn(y)ψn(z)τ (t)n

=
∫ ∞

0
ϕ(y)m̂(y)

�(1 + ω)
1 − τ (t)

(yzτ (t))−ω/2 exp
(

−τ (t)(y + z)
1 − τ (t)

)

× Iω

(√
4yzτ (t)

(1 − τ (t))2

)
dy.

(C.18)

Therefore, the result holds if the integrands in (C.17) and (C.18) are the same. Thus, it
suffices to show that

ϕ(y)
1

2K
e−y/(2K)−λ/2 yω/2(λK)−ω/2 Iω

(√
λy
K

)

= ϕ(y)m̂(y)
�(1 + ω)
1 − τ (t)

(yzτ (t))−ω/2 exp
(

−τ (t)(y + z)
1 − τ (t)

)
Iω

(√
4yzτ (t)

(1 − τ (t))2

)

= ϕ(y)
1 − τ (t)

e−y/(1−τ (t)) yω/2(zτ (t))−ω/2 exp
(

− τ (t)z
1 − τ (t)

)
Iω

(√
4yzτ (t)

(1 − τ (t))2

)
,

(C.19)

where the last line comes from plugging in for m̂ = 1
�(1+ω) yωe−y and collecting terms. By

(C.14) and (C.13), it follows that

λy
K

= 4yzτ (t)
(1 − τ (t))2

, 2K = 1 − τ (t),
λ

2
= τ (t)z

1 − τ (t)
, λK = τ (t)z.

Plugging these equalities into the right-hand side of (C.19) gives the desired result

ϕ(y)
1

2K
e−y/(2K) yω/2(λK)−ω/2 exp (−λ/2) Iω

(√
λy
K

)
.

It remains to prove that in (C.18) the infinite sum and the integral commute. To see this,
for each integer M and a fixed z > 0, set

fM(y) = 1
ϕ(y)

M∑
n=0

τ (t)nψn(z)ψn(y).

Thus, if the integral and infinite sum commute,

lim
M↑∞

∫ ∞

0
fM(y)ϕ2(y)m̂(y) dy =

∫ ∞

0

(
lim

M↑∞
fM(y)

)
ϕ2(y)m̂(y) dy.



820 P. GUASONI AND S. ROBERTSON

Since ϕ ∈ L2((0, ∞), m̂), it suffices to show that

sup
M∈N

∫ ∞

0
f 2

M(y)ϕ2(y)m̂(y) dy < ∞.

Indeed, if this is the case, then ( fM)M∈N is bounded in L2, hence uniformly integrable, for
the finite measure ϕ2m̂. To this end, the orthonormality of (ψn) in L2((0, ∞), m̂) implies
that

∫ ∞

0
f 2

M(y)ϕ2(y)m̂(y) dy =
M∑

n=0

τ 2nψ2
n (z) ≤

∞∑
n=0

τ 2nψ2
n (z)

and the right-hand side is finite, in view of the explicit formula in (C.16). �

Proof of Lemma 4.4. By applying Lemma C.1 for

f (y) = φ(y), g(z) = ψ(z),

it follows that φ satisfies (4.4) for some λ ∈ R if and only if ψ satisfies (4.8) for η = K1λ

+ K2. As for the respective L2 norms, since

φ(y)m(y)1/2 =
√

ζψ(ζ y)m̂(ζ y)1/2

with m from (4.3) (normalized to be a probability measure) and m̂ from (4.7) it follows
that ∫ ∞

0
φ(y)2m(y) dy =

∫ ∞

0
ζψ(ζ y)2m̂(ζ y) dy =

∫ ∞

0
ψ(z)2m̂(z) dz.

Thus, φ ∈ L2((0, ∞), m) if and only if ψ ∈ L2((0, ∞), m̂) and they have the same
norm. �

Proof of Lemma 4.5. We first show that v in (4.13) is a strictly positive C1,2((0, T) ×
(0, ∞)) solution to the PDE in (2.18) (equivalently, the PDE in (2.20)), specified to
the model in (4.1). Equations (4.6), (4.7), (4.10), and (4.11) imply that for any y > 0,
at z = ζy

v(t, y) =
∞∑

n=0

e−λn (T−t)αnφn(y) = eK2/K1(T−t)ϕ(z)−1
∞∑

n=0

e−n
√

�(T−t)αnψn(z).(C.20)

Set

w(t, z) =
∞∑

n=0

e−n
√

�(T−t)αnψn(z)(C.21)

so that (C.20) becomes

v(t, y) = eK2/K1(T−t)ϕ(z)−1w(t, z).(C.22)

Applying Lemma C.1 to

λ = 0, f (t, y) = v(t, y), g(t, z) = w(t, z)eK2/K1(T−t),
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it follows that v(t, y) solves (2.20) if and only if w(t, z) solves (note K1 = 1/
√

�)

wt + √
�zwzz + √

�(1 + ω − z)wz = 0 (t, z) ∈ (0, T) × (0, ∞),

w(T, z) = ϕ(z) z ∈ (0, ∞).

(C.23)

For the operator L from (C.10), rewrite now (C.23) as

wt + Lw = 0 (t, z) ∈ (0, T) × (0, ∞),

w(T, z) = ϕ(z) z ∈ (0, ∞).

Since ϕ ∈ L2((0, ∞), m̂), Lemma C.3 implies that

w(t, z) =
∞∑

n=0

e−n
√

�(T−t)αnψn(z) = EQ
z [ϕ(ZT−t)] .(C.24)

Proposition D.2 applies if, for any T > 0

sup
0≤t≤T

EQ
z [ϕ(ZT−t)] < ∞.

To see this, note that, under Assumptions 4.1 and 4.2 for the operator L in (C.10), it
follows from equations (4.3), (4.7), (4.11), and (C.1) that there is a constant K such that

Lϕ(z) ≤ Kϕ(z).

Therefore,

∂t(eK(T−t)ϕ(z)) + L(eK(T−t)ϕ(z)) ≤ 0

and hence using Itô’s formula and Fatou’s lemma it follows that

sup
0≤t≤T

EQ
z [ϕ(ZT−t)] ≤ eKTϕ(z) < ∞.

Thus, Proposition D.2 implies that w satisfies (C.23). Because ϕ is strictly positive, so are
v and w . Next, to see that v satisfies the convergence relation in (4.14), note that (C.22)
implies that, at z = ζy,

vy(t, y)
v(t, y)

= ζ

(
wz(t, z)
w(t, z)

− ϕ̇(z)
ϕ(z)

)
.(C.25)

Now, (4.9) implies that ψ0(z) = 1. Also, (4.6) and (4.11) imply that φ0(y) = ϕ(z)−1 at z =
ζy, and hence

vy(t, y)
v(t, y)

− φ̇0(y)
φ0(y)

= ζ
wz(t, z)
w(t, z)

= ζ

(
wz(t, z)
w(t, z)

− ψ̇0(z)
ψ0(z)

)

and thus (4.14) follows if

lim
T↑∞

wz(t, z)
w(t, z)

= ψ̇0(z)
ψ0(z)

(C.26)
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holds for all (t, z) ∈ (0, ∞) × (0, ∞). Set wM by

w M(t, z) =
M∑

n=0

τ (t)nαnψn(z).

(C.26) will follow if wM and ẇ M locally (in z) converge uniformly as M ↑ ∞. Repeating
the argument at the beginning of the proof of Lemma C.3, it follows that, for t < T ,
wM(t, z) converges uniformly in z on compact subsets of (0, ∞). To see the convergence
of ẇ M(t, z), recall the recurrence relation for the Laguerre polynomials (Hille 1926):

zψ̇n = (n + 1)ψn+1 − (n + 1 + ω − z)ψn .(C.27)

This relation yields, for each z > 0,

ẇ M(t, z) = 1
z

M∑
n=0

τ (t)nαn ((n + 1)ψn+1(z) − (n + 1 + ω − z)ψn(z))

= 1
z

M∑
n=0

αnτ (t)n(n + 1)ψn+1(z)

− 1
z

M∑
n=0

(
τ (t)nnαnψn(z) − 1

z
(1 + ω − z)wm(t, z)

)
.

It has already been shown that wM converges uniformly in z on compact subsets of
(0, ∞). As for the other two sums

M∑
n=0

αnτ (t)n(n + 1)ψn+1(z) =
∞∑

n=0

γnψn(z) γ0 = 0, γn = nαn−1τ (t)n−1, n = 1, 2, . . . ,

M∑
n=0

τ (t)nnαnψn(z) =
∞∑

n=0

γnψn(z) γn = nαnτ (t)n, n = 0, 1, . . . .

Thus, Parseval’s equality and
√

� > 0 imply that (C.8) holds for any s > 0 uniformly for
t ∈ (0, T − ε) for any ε > 0. Thus, ẇm converges uniformly for z on compact subsets of
(0, ∞), and for t < T − ε for any ε > 0. Using the local uniform convergence of wM and
ẇ M, it follows that

lim
T↑∞

wz(t, z)
w(t, z)

= lim
T↑∞

∞∑
n=0

τ (t)nαnψ̇n(z)

∞∑
n=0

τ (t)nαnψn(z)

= lim
T↑∞

α0ψ̇0(z) +
∞∑

n=1

τ (t)nαnψ̇n(z)

α0ψ0(z) +
∞∑

n=1

τ (t)nαnψn(z)
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and thus it suffices to show that

lim
T↑∞

lim
M↑∞

M∑
n=1

τ (t)nαnψ̇n(z) = 0 and lim
T↑∞

lim
M↑∞

∞∑
n=1

τ (t)nαnψn(z) = 0.

We prove the first limit, the second one being analogous. Fix t, z > 0, and let T̃ be such
that t < T̃ < T. By the local uniform convergence of ẇ M for T̃ instead of T , for any
ε > 0 there is a Mε such that m, M > Mε imply that

max
N=m,...,M

∣∣∣∣∣
N∑

n=m

e−n
√

�(T̃−t)αnψ̇n(z)

∣∣∣∣∣ < ε.

Thus, Lemma B.2 with γn = e−n
√

θ (T−T̃) and hn = e−n
√

�(T̃−t)αnψ̇n(z) implies that

lim
T↑∞

lim
M↑∞

∣∣∣∣∣
M∑

n=1

τ (t)nαnψ̇n(z)

∣∣∣∣∣ ≤ lim
T↑∞

lim
M↑∞

∣∣∣∣∣∣
M∑

n=Mε+1

τ (t)nαnψ̇n(z)

∣∣∣∣∣∣
= lim

T↑∞
lim

M↑∞

∣∣∣∣∣∣
M∑

n=Mε+1

e−n
√

�(T−T̃)e−n
√

�(T̃−t)αnψ̇n(z)

∣∣∣∣∣∣
≤ lim

T↑∞
e−(Mε+1)

√
�(T−T̃) max

N=m,...,M

∣∣∣∣∣
N∑

n=m

e−n
√

�(T̃−t)αnψ̇n(z)

∣∣∣∣∣
≤ ε lim

T↑∞
e−(Mε+1)

√
�(T−T̃)

= 0.

Now we prove that the value function V (x, t, y) equals xp

p v(t, y)δ using Lemma A.3. It
has already been shown that v satisfies the PDE in (A.1) specified to (4.1). Thus, it only
remains to prove that the model P̂T satisfies Assumption A.2. Specified to the model in
(4.1), P̂T takes the form:

dRt = 1
1 − p

(
σν0 + σν1Yt + δYtσρa

vy

v
(t, Yt)

)
dt +

√
Ytσd Zt,

dY t =
(

α + a2

2
− βYt + a2Yt

vy

v
(t, Yt)

)
dt + a

√
YtdW t.

Note that it suffices to prove there is a weak solution for the second SDE involving Y . If
this is the case, there is a weak solution for Y , B, where B is an n-dimensional Brownian
Motion independent of Y . Then, setting Z = ρW + ρ̄B and defining R accordingly will
result in a weak solution for R, Y .

Regarding Y , first note that there is a weak solution to the SDE:

d Zt =
√

� (1 + ω − Zt) dt +
√

2
√

�
√

ZtdW t.

Indeed, the operator L associated to this solution is given in (C.10) in Lemma C.3. Let
(Qz)z>0 denote the solution to the martingale problem for L on (0, ∞). From Proposition
D.2 and (C.24) it follows that w(t, Zt)/w(0, z), 0 ≤ t ≤ T is a Qz martingale and
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w(t, Zt)
w(0, z)

= E
(∫ ·

0

√
2
√

�
√

Zs
wz

w
(t, Zs) dW t

)
t
.

Therefore, by Girsanov’s theorem, there is a weak solution to the SDE:

dZt =
(√

�(1 + ω) −
√

�Zt + 2
√

�Zt
wz

w
(t, Zt)

)
dt +

√
2
√

�
√

Zt dW t.(C.28)

Now, using (4.11) and (C.1) it follows that

dZt =
(

ζ

(
α + a2

2

)
− βZt + a2ζ Zt

(
wz

w
(t, Zt) − ϕ̇

ϕ
(Zt)

))
dt + a

√
ζ
√

Zt dW t.

Using (C.25) it follows that

dZt =
(

ζ

(
α + a2

2

)
− βZt + a2 Zt

vy

v
(t, Zt/ζ )

)
dt + a

√
ζ
√

Zt dW t.

Setting Y = Z/ζ it follows that

dY t =
(

α + a2

2
− βYt + a2Yt

vy

v
(t, Yt)

)
dt + a

√
Yt dW t.

Therefore, there is a weak solution for Y , and hence (R, Y ), with P̂T dynamics. It remains
to show the static fund separation in (4.15). By (4.6), and the relation ψ0 = 1, it follows
that

φ̇0(y)
φ0(y)

= −ζ
ϕ̇(ζ y)
ϕ(ζ y)

.

Plugging in for ϕ̇/ϕ according to (4.11) and (C.1) gives

φ̇0(y)
φ0(y)

= −ζ
ϕ̇(ζ y)
ϕ(ζ y)

=
√

� − α

a2
× 1

y
+ β − √

�

a2
× 1,

and (C.1) again yields (4.15). �

APPENDIX D: EXTENSION OF THE FEYNMAN-KAČ FORMULA

Let E = (α, β), −∞ ≤ α < β ≤ ∞ be an open interval in R, and Cm,α(E,Rd ) the class of
Rd -valued continuous maps on E whose mth derivative is uniformly α-Hölder continuous
on compact subsets of E. Set Cm(E,Rd ) = Cm,0(E,Rd ). �d = C([0, ∞),Rd ) denotes the
space of continuous paths from [0, ∞) to Rd , endowed with the Borel σ -algebra F . For
notational simplicity �1 = �.

The following extension of the Feynman–Kač formula, proved in Guasoni et al. (2011),
is needed for the proofs of Theorem 3.5 and Theorem 4.5. Because Proposition D.2 is
used in a number of contexts the A and b in Assumption D.1 and Proposition D.2 are
not necessarily the same A and b as in (2.2)–(2.3).

ASSUMPTION D.1. Let γ ∈ (0, 1], A ∈ C2,γ (E); A(z) > 0, z ∈ E and b ∈ C1,γ (E,R).
Assume there exists a solution (Qz)z∈E to the martingale problem for L on E where L is
given by
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L = 1
2

A(z)
d2

dz2
+ b(z)

d
dz

.

Let Z denote the coordinate mapping process.

PROPOSITION D.2. Let Assumption D.1 hold. Let f ∈ C2(E); f (z) > 0, z ∈ E be such
that for any T > 0 and z ∈ E

sup
0≤t≤T

EQ
z [ f (ZT−t)] < ∞.(D.1)

Then the function h(t, z): (0, T) × E �→(0, ∞) defined by

h(t, z) = EQ
z [ f (ZT−t)]

is in C1,2((0, T) × E) and satisfies the following differential expression and terminal
condition:

∂th(t, z) + Lh(t, z) = 0 (t, z) ∈ (0, T) × E,

h(T, z) = f (z) z ∈ E.

(D.2)

Furthermore, h(t, Zt)/h(0, z) is a Qz martingale for all z ∈ E.
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A GENERAL EQUILIBRIUM MODEL OF A MULTIFIRM MORAL-HAZARD
ECONOMY WITH FINANCIAL MARKETS
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We present a general equilibrium model of a moral-hazard economy with many firms
and financial markets, where stocks and bonds are traded. Contrary to the principal-
agent literature, we argue that optimal contracting in an infinite economy is not about
a tradeoff between risk sharing and incentives, but it is all about incentives. Even when
the economy is finite, optimal contracts do not depend on principals’ risk aversion,
but on market prices of risks. We also show that optimal contracting does not require
relative performance evaluation, that the second best risk-free interest rate is lower
than that of the first best, and that the second-best equity premium can be higher or
lower than that of the first best. Moral hazard can contribute to the resolution of the
risk-free rate puzzle. Its potential to explain the equity premium puzzle is examined.

KEY WORDS: moral hazard, general equilibrium, optimal contract, relative performance evaluation,
equity premium, interest rate.

1. INTRODUCTION

We present an equilibrium model of product and financial markets for a moral-hazard
economy with (infinitely/finitely) many firms which produce numeraire goods. In spite
of the importance of moral hazard effects on multiasset economies as we witnessed from
the recent subprime mortgage crisis, little is known about properties of equilibria beyond
their existence. In particular, interactions of financial markets and agency problems are
poorly understood. Our model enables us to examine equilibrium effects of moral hazard
on such popular fundamental financial economic issues as optimal contracts, relative
performance measure, real investment decisions, portfolio decisions, interest rates, and
equity premia.

One may epitomize main results in the existing optimal contracting literature as fol-
lows: (1) optimal contracting is a tradeoff between risk sharing and incentives (see
Stiglitz 1974; Shavell 1979); and (2) the performance measure for optimal contracting
should be constructed based on relative performance evaluation (RPE) (see Lazear and
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Rosen 1981; Holmstrom 1982; Green and Stokey 1983; Nalebuff and Stiglitz 1983; and
recently Ou-Yang 2005). The RPE measure is to reward the agent for performance, but
not for luck, and typically consists of signals for unobservable agent effort/decisions,
being independent of systematic risks such as interest rate risks, exchange rate risks, and
market-wide productivity shocks.

We argue that optimal contracting in an infinitely large economy with financial markets
is not about a tradeoff between risk sharing and incentives, but all about incentives. In a
finite economy with financial markets, the risk sharing role of each contract still matters,
which is consistent with the literature on partial equilibrium agency models. However,
unlike the literature, we find that the extent of risk sharing through optimal contracting
in the finite economy directly depends on the market price of the unique risk of the firm,
not on the principal’s (shareholders’) risk aversion. As the economy grows, the market
price of each unique risk converges to zero, and the optimal contract becomes free from
the role of risk sharing, and is only left with incentives issues.

Each agent’s incentives are determined by his aggregate risk exposure resulting not
only from the contract but from his financial portfolio position. Thus, the principal faces
a fundamental challenge in optimal contracting. Given any contract, if the agent were
allowed to privately trade stocks in financial markets including the stock of the firm
under his own management, he could always undo incentives intended by the contract
through financial transactions. Hence, without proper restrictions on the agent’s financial
transactions, the principal’s desired optimum cannot be achieved in general. One way for
her to attain her optimum is to forbid the agent to trade/short-sell the stock of her firm.
(In this case, he may still be allowed to freely trade bonds and all other stocks.)

Under this trading restriction, we show that an optimal compensation contract should
optimally depend on the unique risk of the firm which the agent manages. What is striking
is that in an economy with financial markets, the optimal contract can still remain to
be optimal even when nonperformance-related risks such as the systematic risk of the
market and unique risks of all other firms are added into the contract, as long as the
agent is compensated for those additional risks at market-determined risk-premia. In
other words, the principal’s optimum would not be affected by adding/removing those
extra risks at market determined risk premia to/from an already optimal contract. A
corollary to this result is that in the presence of financial markets, the RPE emphasized
in the standard principal-agent literature becomes irrelevant.

Given the above-mentioned properties of optimal contracts, we investigate implications
of moral hazard on asset prices and interest rates. We show that right after signing an
optimal compensation contract, each principal optimally unloads her entire real-asset
position through financial transactions, and holds the market portfolio, and each agent
holds the market portfolio less the stock of the firm under his own management. In a finite
economy, this difference in portfolio decisions by principals and agents competitively
affects market prices of idiosyncratic risks, but not the market price of the systematic
risk. In the limit of the finite economy, as is the case with the first-best economy, market
prices of idiosyncratic risks in the second best approach zero, and eventually only the
systematic risk matters.

The market prices of risks and interest rates influence the costs of capital for real
investment and thus consumption decisions, which in turn affect the market prices of
risks and interest rates, in equilibrium. Taking this mutual interaction into account, we
show that the second best interest rate is less than that of the first best, and that the
second best equity premium is higher (lower) than that of the first best if and only if the
second-best equilibrium real investment level is lower (higher) than that of the first-best
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equilibrium. In other words, in equilibrium, moral hazard decreases interest rates but it
can increase or decrease the equity premium. These comparisons are qualitatively the
same as those of the single-firm economy of Sung and Wan (2009) although each firm
in this paper exerts no direct influence on the market price of market/systematic risk,
whereas the single firm in Sung and Wan does. For intuitions about comparison results
on interest rates and equity premium, interested readers are referred to that paper.

However, these comparisons of the first- and second-best risk-free rates and equity
premia may not be directly related to the well-known Weil’s (1989) risk-free and Mehra-
Prescott’s (1985) equity premium puzzles. The reason is that economic situations leading
to the comparisons and to the puzzles are different. The puzzles are concerned with the
level of the representative investor’s risk aversion given observed risk-free rates, equity
premia, and volatilities of the market portfolio, whereas our foregoing comparisons result
from examining equilibrium risk-free rates, equity premia, and volatilities of the market
portfolio, given risk-aversion levels of principals and agents.

Recast in terms of economic settings in the literature on the two puzzles, our above-
mentioned equilibrium effects imply that moral hazard can help explain the low risk-free
rate puzzle, but it cannot contribute to the resolution of the equity premium puzzle.
Consider two economies: one is first best and the other second best. Suppose they
happen to support the same risk-free rates. Recall that the interest rate in equilibrium is
the marginal rate of substitution (MRS) between current and future certainty-equivalent
consumption. If the degrees of risk aversion were the same, the second-best interest rate
would be lower than that of the first best. In order to increase the second-best interest
rate to the level of the first best, the MRS has to be increased, which can be achieved
by lowering investors’ (the principal’s) risk aversion. Hence, our moral-hazard economy
helps explain the low risk-free rate puzzle.

On the other hand, if the return volatilities of the market portfolios of the classical (first
best) and moral-hazard economies were the same, investors in both economies would
price the market risks in financial markets in exactly the same way, independently of the
presence of moral hazard occurring in product markets. This inability of moral hazard
to help explain the equity premium puzzle is in contrast with results in the literature.
See Kahn (1990) and Kocherlakota and Pistaferri (2009) for moral hazard resulting
in a high equity premium, and Kocherlakota (1998) for moral hazard causing a low
equity premium. Thus, the moral-hazard effect on the equity premium may still remain
unresolved. We leave this issue for future research.1

All the above results are obtained based on the linearity of optimal contracts for
our continuous-time moral-hazard economy with product and financial markets that
is presented in Appendix G. The product markets are modeled using the well-known
Holmstrom and Milgrom’s (1987) moral-hazard economy with all individuals exhibiting
constant absolute risk aversion (CARA), and the financial markets are borrowed from
the asset-pricing literature. Holmstrom and Milgrom show that the optimal contract is
a linear function of the outcome. However, it is well known that any deviation from the
Holmstrom–Milgrom setting may cause the failure of the linearity result. For example,
if the contract is subject to limited liability which requires a lower bound for the agent

1It is well known that a classical economy with the representative investor with a utility function exhibiting
habit persistence can result in a high-equilibrium equity premium. See Constantinides (1990). Thus, our low
equilibrium risk-free rate under moral hazard seems to suggest a potential to explain the low risk-free rate
and high equity premium simultaneously if the moral-hazard economy consists of individuals with habit
persistent preferences.
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compensation, then linear contracts can no longer be optimal. Moreover, it is not a priori
clear whether the optimal contract still remains to be linear if the economy has financial
markets as well as product markets. In Appendix G, we show that the Holmstrom–
Milgrom linearity result still holds even in the presence of financial markets. Intuitively,
we obtain this linearity again. The reason is that individuals with CARA preferences
can undo undesired complexities in their overall wealth distribution generated from
both product and financial markets through financial transactions affecting both the
mean and variance of their financial wealth, to the extent that their resulting (self-
financing) overall wealth process can be expressed in the form of arithmetic Brownian
motion. Consequently, as seen in Sung (1995), Holmstrom and Milgrom’s stationarity
is still preserved, resulting in linear contracts. Our linearity result not only extends the
Holmstrom–Milgrom linearity to financial markets, but enables us to solve moral hazard
problems complicated with financial transactions in closed forms.

In terms of the model, our paper can be positioned in the literature on general equilib-
rium under moral hazard. Prescott and Townsend (1984) present a general equilibrium
model of moral hazard where a central planner designs contracts for all agents, and ar-
gue that a constrained competitive equilibrium can exist and implement a (constrained)
Pareto-efficient allocation. Extensions of Prescott-Townsend’s seminal work include Bisin
and Gottardi (1999) and Zame (2007). Citanna and Villanacci (2002) incorporate con-
tracting problems into a general equilibrium framework for an economy with commodity
markets but without financial markets, and show the existence of equilibria. Danthine
and Donaldson (2007) model a principal-agent economy in general equilibrium from a
growth theoretic perspective to examine the structure of first-best contracts. Magill and
Quinzii (2005) argue that the second-best competitive equilibrium can be Pareto optimal
only when principals are risk neutral. This paper is closest to Citanna and Villanacci, but
unlike them, our model allows financial markets and enables us to examine properties of
equilibria.

Our results are also related to the literature on RPE. In the literature, theoretical
effects of financial markets on RPE are somewhat mixed. Maug (2000) argues that if
the manager of the firm can trade on assets other than his own company’s stock, then
there are typically no or only small roles for RPE. Garvey and Milbourn (2003) claim
that if there are hedging costs, the optimal level of RPE is determined by equalizing
marginal hedging costs to the principal and agent.2 Ou-Yang (2005) shows that if she
is risk averse, the principal puts less emphasis on RPE than she would if she were risk
neutral. Neither Maug nor Garvey and Milbourn explicitly consider financial markets,
but Ou-Yang incorporates financial markets in his partial equilibrium model of asset
pricing and moral hazard. On the other hand, Chiappori and Salanié (2002) in a survey
article point out an empirical bewilderment known as “the RPE puzzle” in the literature,
by stating that “firms do not seem to use relative performance evaluation of managers
very much.” In our general equilibrium model, our irrelevance result may help explain

2Garvey and Milbourn argue that the sensitivity of the contract becomes independent of systematic
risks contained in the performance measure, provided that the manager can hedge systematic risks without
affecting his expected wealth. If hedging (costly) affects individuals’ expected wealth levels, the sensitivity
decreases as the level of systematics risk in the performance measure increases. Ignoring portfolio choice
problems, the authors also argue that the optimal level of RPE equalizes marginal hedging costs between
shareholders and the manager. However, we argue that in the presence of financial markets, the sensitivity
is not affected at all by the extent of RPE, and the RPE is irrelevant in optimal contracting, even when
hedging (systematic risk) affects individuals’ expected wealth levels.
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this puzzle and supports Maug’s results even without his assumption on the agent trading
restriction.

This paper is organized as follows: The next section describes the economy with both
product and capital/financial markets. In Section 3 we restate the expected utilities of
principals and agents in terms of their certainty equivalent wealth levels, which will be
used in later sections to simplify their problems using change of variables. Section 4
presents first-best solutions which will be used to compare with second-best solutions.
Second-best solutions are provided in Section 5 where we show main results of the paper
including the irrelevance of RPE and risk-sharing role of compensation contracts in
the presence of financial markets. Then, in Section 6 we compare the first- and second-
best solutions in terms of interest rates, equity premia, and real investment levels. Then,
our equilibrium results are related to the well-known risk-free rate and equity premium
puzzles. Finally, Section 7 briefly summarizes the results of the paper.

2. THE ECONOMY

Consider a risky economy with two dates 0 and 1 and with probability space (�, P0,B),
where � ≡ R, P0 is a probability distribution function, and B is the augmented
Borel sigma algebra.3 There are N risky production opportunities in the economy
to produce numeraire perishable consumption goods. The sources of uncertainty are
from an (N + 1)-vector of independent standard normal random variables, denoted by
B̃0 := (B̃1, . . . , B̃N, B̃c)�, where � indicates the transpose. Each production unit is ini-
tially owned by a principal (she) who hires an agent (he) for production. We assume
that no principal initially owns and no agent works for more than one unit, and that no
principal can be an agent, vice versa. In addition, our economy allows all individuals
to trade in financial markets where stocks and bonds are traded, as will be seen shortly.
Since it takes a lot of symbols for us to describe both product and financial markets
complicated with agency problems, a table of notation used in this paper is provided in
Appendix A, in case readers may want to refer to it when reading the paper.

We assume all principals and agents have time-additive CARA preferences. In particu-
lar, CARA coefficients of principal i and agent i are γP and γA, respectively. That is, there
are N identical principals and N identical agents. Later it shall be seen that the aggregate
risk tolerance τ of each firm (or the representative firm) turns out to be important in the
determination of asset prices in the financial markets, where

τ := 1
γA

+ 1
γP

.

Individual ki ’s utility Uki of consumption cki = (cki
0 , cki

1 ) ∈ R2, for k = P, A and i =
1, . . . , N, is represented by the sum of two CARA utility functions as follows:

Uki (cki ) = − exp
(−γkcki

0

)− exp
(−γkcki

1

)
.

At time 0, each agent i is endowed with MA(∈ R) units of perishable numeraire goods.
Each principal i , endowed with MP(∈ R), establishes a firm by making an irreversible
investment of Ii (≥ 0) in her production opportunity and hires agent i by signing a
contract (Ci , Ki ) where Ci is an B-measurable compensation scheme, and Ki (⊂ RN+1)

3The model described in this section is a simplified version of the continuous-time model that is outlined
in Appendix G.
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denotes a restriction on the agent’s financial transactions. More description about Ki

will be provided later.

2.1. Product and Financial Markets

The accounting/liquidation value of firm i at date 1 before compensation to the agent,
denoted by D̃i is given by

D̃i = D0 + f (Ii )[σu B̃i + σc B̃c] = D0 + �i B̃0,(2.1)

where σu, σc > 0, D0 ∈ R, and �i = (0, . . . , σu f (Ii ), 0, . . . , 0, σc f (Ii )). One may call
σc B̃c the market/common risk and σu B̃i the unique risk of firm i . We assume that
D̃i is public information at date 1, and f (I) = Iα with α < 1

2 . Later it will be seen that
the assumption α < 1

2 ensures the production of cashflows to exhibit decreasing returns
to scale in real investment I. Note that the N production units in our economy are iden-
tical (in distribution) to each other. In addition, there is a pure financial asset/contract
which pays at time 1

Ỹ = A+ σY B̃c,(2.2)

where A ∈ R and σY > 0. Since it is a financial asset, this asset will be priced to be in
zero net supply in equilibrium.

Given compensation schedule Ci , agent i exerts effort μi (> 0) incurring a private cost
of δ

2μ2
i , where μi lies in a compact subset of R. Here, δ(> 0) is a parameter for agent-

effort efficiency: the higher the value of δ, the higher the cost the agent has to incur to
increase μi . All agents’ effort {μ = (μ1, . . . , μN)} jointly changes the probability measure
of {D̃i , i = 1, . . . , N} from P0 to Pμ such that4

dPμ

dP0 = exp
{
−1

2
‖�−1l‖2 + (�−1l)� B̃0

}
,

where l(μ) = [ f (I1)μ1, . . . , f (IN)μN, 0]�,

� =

⎡⎢⎢⎢⎢⎢⎢⎣

f (I1)σu 0 . . . 0 f (I1)σc

0 f (I2)σu 0 . . . f (I2)σc

. . . . . . . . . . . . . . . .

0 0 . . . f (IN)σu f (IN)σc

0 0 . . . . . . σY

⎤⎥⎥⎥⎥⎥⎥⎦,

4Let η := (D̃1 − D0, . . . , D̃N − D0, Ỹ − A)�. Then η is multivariate-normally distributed with its proba-
bility density function given by (2π

√
det���)−1 exp[−(1/2)(η�(���)−1η]. If the distribution is shifted to

its new mean l(μ), (which is equivalent to moving the mean of B0 by �−1l(μ)), then, the density function
will change to (2π

√
det���)−1 exp[−(1/2)((η − l(μ))�(���)−1(η − l(μ))]. That is, after the change of its

mean, η is distributed with its probability density (2π
√

det���)−1 exp[−(1/2)(η�(���)−1η] dPμ

dP0 .
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and

�−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f (I)σu

0 . . . 0 − σc

σuσY

0
1

f (I)σu
0 . . . − σc

σuσY

. . . . . . . . . . . . . . . .

0 0 . . .
1

f (I)σu
− σc

σuσY

0 0 0 . . .
1
σY

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then under Pμ,

D̃i = D0 + f (Ii )
[
μi + σu B̃μ

i + σc B̃c
]
,(2.3)

and B̃μ = B̃0 − �−1l is an (N + 1)-vector of independent standard normal random
variables. Note that given the structure of �−1l, agent i affects the probability distribution
of unique risks B̃i , i = 1, . . . , N, but no agents can influence that of the market risk B̃c.
In particular, the distribution of B̃c under P0 remains unaffected under Pμ.

We assume that Pμ is neither observable nor verifiable. (This kind of setup is called
the weak formulation. See Schättler and Sung 1993.) Each agent i can observe his
own effort level μi , but cannot observe other agents’ effort levels μ−i , where μ−i :=
(μ1, . . . , μi−1, μi+1, . . . , μN). We also assume all agents are Nash game players. Namely,
given a contract (Ci , Ki ), agent i chooses an effort level μi and a financial portfolio
process to maximize his expected utility of compensation net of the cost of effort, as if all
other agents’ decisions had already been made and his decisions would not affect other
agents’ decisions.

Without loss of generality, we assume that contracts Ci , i = 1, . . . , N, are given in the
following affine form in B̃0:5

Ci = ai +
N+1∑
j=1

βi j B̃ j = ai + (β i )� B̃0,(2.4)

where ai ∈ R is for fixed payment, (β i )� B̃0 is for performance based compensation
subject to some noise, and β i := (βi1, . . . βic)� ∈ RN+1 is an (N + 1)-vector of contract
sensitivities to (N + 1) risk sources B̃0. By convention, we let βi ,N+1 = βic, and B̃N+1 =
B̃c.

The date-1 cash flow (2.3) can be interpreted as an outcome that can be affected by
both the agent’s effort μ and the principal’s real investment/project selection decision,
I. We believe that this feature of our model is important when we compare asset prices
between moral-hazard and classical economies, because moral hazard problems can
affect not only the expected dollar-productivity but dollar-risk levels of real assets on
which stock prices critically depend. Before describing full-fledged details of contracting

5One can show that optimal contracts are indeed linear in a continuous-time model which is analogous
to the discrete-time model of this paper. Our continuous-time model in Appendix G incorporates financial
markets into the well-known Holmstrom–Milgrom’s economy. See Appendix G where the intuition of the
linearity is provided.
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problems between principals and agents (which shall be given in Section 2.2), we need to
understand financial markets.

In addition to product markets described above, there are financial markets where
N + 1 risky assets as well as a bond are traded. The N + 1 risky assets consist of N
stocks and one risky financial asset. The stock market emerges right after principals and
agents sign on their contracts, as each principal issues one share to the public based on
her residual claim, D̃i − Ci . The stock price of asset i at time t is denoted by Si

t , for
i = 1, . . . , N + 1 and t = 0, 1. We assume Si

0 ≥ I, i = 1, . . . , N, in equilibrium, because
otherwise principal i ’s problem is not meaningful as she decides not to produce.

The market prices of stocks depend on investors’ beliefs on agents’ optimal effort
levels. Let their beliefs be {μ∗} and the one-plus risk-free rate of return be R. We assume
that in equilibrium, the beliefs are fulfilled, and prices of all assets traded in financial
markets satisfy the following linear pricing rule:6

Si
1 = RSi

0 +
N+1∑

j

σ S
i jθ j +

N+1∑
j

σ S
i j B̃μ∗

j ,(2.5)

where θ j is the market price of risk for the j th risk source, i.e., B̃μ∗
j ; σ S

i j is the dollar
volatility of stock i caused by the j th risk source; θN+1 = θc and B̃μ∗

N+1 = B̃c by conven-
tion. Note that this linear pricing rule is consistent with the Ross arbitrage pricing model
(1976), or the Ross APT. In other words, no-arbitrage implies this linear pricing rule.7

On the other hand, by the definition of stock, we have Si
1 = D̃i − Ci .

Let �S denote an (N + 1) × (N + 1) dollar-price volatility matrix of N + 1 risky assets,
i.e., the i -th row of �S is σ S

i = (σ S
i1, . . . , σ

S
ic), i = 1, . . . , N + 1. Thus, Si

1 = RS0 + σ S
i θ +

σ S
i B̃μ∗

, where θ := (θ1, . . . , θc)�. Or

Si
1 = RSi

0 + σ S
i B̃θ ,(2.6)

where B̃θ := B̃μ∗ + θ . This equation is also consistent with the well-known no-arbitrage
condition: Under Pθ that makes B̃θ a standard Brownian motion, the expected rate of
return on the stock is equal to the risk-free rate, and Pθ itself becomes the risk-neutral
probability.

6Since we cannot guarantee D1 > C1 in this paper, the stock price is not necessarily positive. Negative
stock prices are frequently found for tractability reasons in the asset-pricing as well as microstructure
literature. See, for instance, Wang (1993) and Kyle (1985). If we require D1 > C1, then optimal C1 will not
be linear, and comparisons between the first and second-best economies will be too complex to generate
meaningful economics.

7Recall that in the economy, there are N + 1 risk sources, (B̃μ∗
j , j = 1, . . . , N + 1). Let the rate of return

on stock i be r̃i which can be written as follows: r̃i = r f +∑N
j=1(r̃i j − r f ), where r f is the risk-free rate of

return, and (r̃i j − r f ) is the realized risk premium due to the exposure of the stock to the j th risk B̃μ∗
j . Let

r̃i j = ri j + σ S
i j B̃μ∗

j where ri j = Eμ∗
[r̃i j ]. Then

r̃i = r f +
N∑

j=1

(ri j − r f )

σ S
i j

σ S
i j +

N∑
j=1

σ S
i j B̃μ∗

j .

By the Ross APT, no-arbitrage implies that
(ri j −r f )

σ S
i j

(= θ j ) is equalized across all assets.
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2.2. Contracting Problems

Right after capital investments and their initial consumptions, both principals and
agents can trade in stocks and a bond in the financial markets. Let W Pi

t , W Ai
t , t = 0, 1,

be wealth levels of principal i and agent i resulted from financial market transactions at
time t. Initial wealth levels for financial market transactions after capital investment Ii

and their initial consumptions (cPi
0 , cAi

0 ) are as follows:

W Pi
0 = MP − Ii − cPi

0 ,(2.7)

W Ai
0 = MA − cAi

0 .(2.8)

Let πki = (πki1, . . . , πki ,N+1)�, k = P, A, be an (N + 1)-vector of shares of the N + 1
risky assets held by individual ki in addition to the individual’s initial positions on risky
assets. For ki = Ai , the agent starts with zero risky assets at time 0, and thus π Ai represents
his total position on the N + 1 risky assets at time 1, whereas for ki = Pi , the principal
initially holds one share of stock i , and thus her total position on the risky assets at time
1 is π Pi plus one share of stock i , i.e., (πPi1, . . . , πPi ,i−1, πPii + 1, πPi ,i+1, . . . , πPi ,N+1)�.

Then, the principal’s and agent’s self-financed wealth at time 1 are

W Pi
1 = W Pi

0 R + (π Pi )��SB̃θ ,(2.9)

W Ai
1 = W Ai

0 R + (π Ai )��SB̃θ .(2.10)

We allow principal i to impose restrictions on agent i ’s risky-asset transactions, by
choosing sets Kk

i ’s, k = 1, . . . , N + 1.
For the remainder of the paper, we use F and S as superscripts or subscripts on

various variables to denote “the first best” and “the second best,” whenever clarity is
desired. Given capital market variables (RF , θ F ), principal i ’s first-best problem is stated
as follows:

PROBLEM 1 (The First Best). Given {μ−i }, each principal chooses (Ci , Ii , cPi
0 , cAi

0 ,

μi , π Pi , π Ai ) and trading restriction Ki to

max Eμ
[− exp

{−γPcPi
0

}− exp
{−γP

(
W Pi

1 + D̃i − Ci
)}]

,

s.t. W Pi
1 = W Pi

0 R + (π Pi )��SB̃θ , W Pi
0 = MP − cPi

0 − Ii ,

W Ai
1 = W Ai

0 R + (π Ai )��SB̃θ , W Ai
0 = MA − cAi

0 ,

π Ai ∈ arg max
π̃ Ai

Eμ

[
− exp

{
−γA

(
W Ai

1 + Ci − δ

2
μ2

i

)}]
,

s.t. W Ai
1 = W Ai

0 R + (π̃ Ai )��SB̃θ , W Ai
0 = MA − cAi

0 ,

Eμ

[
− exp

{−γAcAi
0

}− exp
{
−γA

(
W Ai

1 + Ci − δ

2
μ2

i

)}]
≥ L.

The first and second constraints are for self-financing financial wealth levels of the
principal and agent in the presence of financial markets, the third is the agent’s port-
folio choice problem, and the fourth is the participation constraint where the agent’s
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reservation utility level L is assumed to be exogenously given in the labor market.8 In this
paper, all results hold except Proposition 6.2 for which we assume that L is determined
in such a way that the net present value (NPV) of the principal’s real investment is equal
to zero.

The principal’s second best problem is as follows:

PROBLEM 2 (The Second Best). Given {μ−i }, each principal chooses (Ci , Ii , cPi
0 , cAi

0 ,

μi , π
Pi , π Ai ) and trading constraint Ki to

max Eμ
[− exp

{−γPcPi
0

}− exp
{−γP

(
W Pi

1 + D̃i − Ci
)}]

,

s.t. W Pi
1 = W Pi

0 R + (π Pi )��SB̃θ , W Pi
0 = MP − cPi

0 − Ii ,

W Ai
1 = W Ai

0 R + (π Ai )��SB̃θ , W Ai
0 = MA − cAi

0 ,

(π Ai , μi ) ∈ arg max
π̃ Ai ,μ̃i

Eμ

[
− exp

{
−γA

(
W Ai

1 + Ci − δ

2
μ̃2

i

)}]
,

s.t. W Ai
1 = W Ai

0 R + (π̃ Ai )��SB̃θ , W Ai
0 = MA − cAi

0 ,

Eμ

[
− exp

{−γAcAi
0

}− exp
{
−γA

(
W Ai

1 + Ci − δ

2
μ2

i

)}]
≥ L.

The main difference between the first- and second-best problems lies in the third
constraint called the incentive compatibility condition which describes how the agent
chooses not only his financial portfolio but his effort level. Both the principal and agent
are allowed to observe all outcomes {Di , i = 1, . . . , N} and Y. However, principal i
cannot observe and verify (μi , μ

−i ). The reservation utility level L is again exogenously
determined in the labor market. In the second best world, if the agent buys out the firm
and manages it by himself, the agency problem will disappear. We, however, assume that
the agent prefers to stay as an agent rather than buy out the firm. This assumption can
be justified if σu , the idiosyncratic risk parameter of the firm, is sufficiently high.9

8Note that the principal’s wealth level at time 1 is WPi
1 + D̃i − Ci . This does not however mean she is

holding the initial real asset until the terminal date. She can always unload the initial real asset position using
her financial accountWPi

1 . One can equivalently write the principal’s terminal utility as − exp{−γPWPi
1 } and

WPi
0 = MP − cPi

0 − Ii + Eθ [R−1(D̃i − Ci )], without affecting results in this paper. In fact, in equilibrium,
each principal liquidates her real-asset position right after the contract is signed and then holds the market
portfolio and the risk-free asset. Consequently, in equilibrium, the diffuse ownership of each stock will arise.
This point shall be made clear in Proposition 5.5.

9If the agent buys out the firm 100% equity-financed, then it eliminates the agency problem, but results
in forcing himself to hold a seriously undiversified portfolio, as his entire asset-portfolio becomes highly
exposed to the idiosyncratic risk of one real asset. If σu is sufficiently high, then it can be too costly for
the agent to hold the undiversified portfolio, as his expected utility level with the 100% equity-financed
purchase becomes lower than L. Consequently, it can happen that he prefers not to buy out the firm. If he
leverage-buys out the firm, the agent will suffer from an even higher cost of nondiversification due to the
well-known financial leverage effect. If he holds a partial ownership, then the same agency problem as in the
paper will occur.
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2.3. Equilibrium

Market clearing conditions in this paper can be summarized as follows:

N∑
i=1

D̃i =
N∑

i=1

(
cPi

1 + cAi
1

)
(2.11)

N∑
i=1

(π Pi + π Ai ) = 0,(2.12)

N(MA + MP) =
N∑

i=1

(
cAi

0 + cPi
0 + Ii + W Pi

0 + W Ai
0

)
.(2.13)

Condition (2.11) is to clear the market at time 1 by equating the aggregate realized
production to the aggregate consumption; condition (2.12) to clear stock (risky asset)
markets; and condition (2.13) to clear the bond market at time 0 by equating the aggregate
source to its aggregate use of endowment.10

Since cPi
1 = W Pi

1 + D̃i − Ci and cAi
1 = W Ai

1 + Ci , condition (2.11) implies

0 =
N∑

i=1

(
W Pi

1 + W Ai
1

)
.(2.14)

On the other hand, by the self-financing budget constraints (2.9) and (2.10), and the
stock market clearing condition (2.12), we also have

N∑
i=1

(
W Pi

0 + W Ai
0

) = 0.(2.15)

Applying (2.15) to the initial bond market clearing condition, we have

N(MA + MP) =
N∑

i=1

(
cAi

0 + cPi
0 + Ii

)
.

By the symmetry of all production units in the economy, we have for all i ,

MA + MP = cAi
0 + cPi

0 + Ii .(2.16)

In this paper, we examine economies where both product and capital markets simul-
taneously equilibrate. The equilibria in the paper are defined as follows:

DEFINITION 2.1 (Second-best equilibrium). The tuple (θ, R; Ci , π
Pi , π Ai , Ii , μi , i =

1, . . . , N) is called the second-best equilibrium if it satisfies the following conditions.

(i) Securities prices admit no arbitrage opportunities: in particular, securities prices
satisfy (2.6) for all i = 1, . . . , N + 1.

10A caution is in order. The condition (2.12) does not mean that the net supply of each stock is zero
share. Recall that π only counts shares traded in financial markets, without counting initial positions held
by principals. If all positions created both in financial and product markets are counted together, the net
supply of each stock will turn out to be one share.
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(ii) Given (θ1, R) and {μ−i }, principal i chooses (Ci , Ii , cPi
0 , cAi

0 , μi , π
Pi , π Ai ) to solve

Problem 2,
(iii) Markets clear:

a. The stock market clears, i.e.,
∑N

i=1(π Ai + π Pi ) = 0.
b. The bond market clears, i.e., M = cAi

0 + cPi
0 + Ii .

The definition of the first-best equilibrium is the same as Definition 2.1, except that in
the first best, principal i solves Problem 1.

3. EXPECTED UTILITY

Before proceeding to our investigation of the first- and second-best equilibria, we express
expected utilities of principals and agents in terms of their certainty equivalent wealth
levels, which shall be used repeatedly in later sections.

3.1. The Agent’s Expected Utility

In the first best, agent i chooses (cAi
0 , π Ai ) given μi , whereas in the second best, he

chooses (cAi
0 , π Ai , μi ), in order to

max Eμ

[
− exp

{−γAcAi
0

}− exp
{
−γA

(
W Ai

1 + Ci − δ

2
μ2

i

)}]
s.t. W Ai

1 = R
(
MA − cAi

0

)+ (π Ai )��SB̃θ .

Let V Ai
0 be the certainty equivalent of the agent’s expected utility over future cashflows.

Then,

− exp
{−γAV Ai

0

} ≡ Eμ

[
− exp

{
−γA

(
W Ai

1 + ai + (β i )� B̃0 − δ

2
μ2

i

)}]
,

and by the participation constraint, we have V Ai
0 = − 1

γA
ln(−L − e−γAcAi

0 ).
A straightforward application of the moment generating function property of normal

random variables to the agent’s expected utility reveals that the structure of both the
first- and second-best optimal (linear) contracts are necessarily given as follows:

PROPOSITION 3.1. Both the first- and second-best contracts in equilibrium can be repre-
sented in the following form:

Ci = − 1
γA

ln
(−L − e−γAcAi

0
)− R

(
MA − cAi

0

)+ (β i )� B0

+
[

δ

2
μ2

i + γA

2
‖β i + (�S)�π Ai‖2 − (π Ai )��Sθ − (β i )��−1l

]
.(3.1)

In the first best, this representation is constrained by the following condition from the agent’s
portfolio choice problem:

π Ai ∈ arg max
π̃ Ai ∈Ki

{
−γA

2
‖β i + (�S)�π Ai‖2 + (π Ai )��Sθ

}
.(3.2)
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In the second best, the representation is constrained not only by condition (3.2), but by the
following incentive compatibility condition:

μi = 1
δσu

[β i + (�S)�π Ai ]i ,(3.3)

where the subscript i denotes the i -th component of the vector.

COROLLARY 3.2. Suppose that �S is invertible, and that the agent is allowed to freely
trade all financial assets including all stocks. Then, the agent’s portfolio choice constraint
(3.2) implies the following condition:

θ

γA
= β i + (�S)�π Ai .(3.4)

Proposition 3.1 helps simplify Problems 1 and 2, and Corollary 3.2 will be useful when
we later discuss an implementability issue. For both the first- and second-best optimal
contracting, Proposition 3.1 implies that the principal may, without loss of generality,
only consider the class of salary functions given in the form of (3.1), and that the third
constraint of Problem 1 can be replaced with expression (3.2), and the same constraint
of Problem 2 with two expressions (3.2) and (3.3).

3.2. The Principal’s Expected Utility

Let VPi
0 be the principal’s certainty equivalent wealth at time 0:

− exp
(−γPVPi

0

) = Eμ
[− exp

{−γP
(
W Pi

1 + D̃i − Ci
)}]

.

Define

ξ Pi = (�S)�π Pi − β i ,

ξ Ai = (�S)�π Ai + β i .

Then, ξ Pi and ξ Ai denote aggregate risk positions held by the principal and agent,
respectively, resulting from their financial portfolios and the compensation contract.

PROPOSITION 3.3. Given the contract representation in Proposition 3.1, VPi
0 can be

expressed as follows:

VPi
0 = D0 + �i�−1l + 1

γA
ln
(−L − e−γAcAi

0
)+ R

(
W Pi

0 + MA − cAi
0

)
(3.5)

− γP

2
‖(ξ Pi )� + �i‖2 − δ

2
μ2

i − γA

2
‖ξ Ai‖2 + (ξ Pi + ξ Ai )�θ.

Note that in the principal’s certainty equivalent wealth (3.5), terms involving π Pi , π Ai

and β i in Problems 1 and 2 and Proposition 3.1 are replaced with ξ Pi and ξ Ai . The reason
is that in the presence of financial markets, both the principal and agent are concerned
with aggregate risks resulting from their portfolio positions and the contract, and their
aggregate risk positions are ξ Pi and ξ Ai .
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4. THE FIRST BEST

Propositions 3.1 and 3.3 imply that principal i ’s first-best problem can be restated as
follows:

PROBLEM 1′. Choose (cPi
0 , cAi

0 , Ii , ξ
Pi , ξ Ai , μi , Ki ) to

max − exp
{− γPcPi

0

}− exp
{− γ i

PVPi
0

}
,

s.t. VPi
0 = D0 + �i�−1l + 1

γA
ln
(−L − e−γAcAi

0
)+ R

(
W Pi

0 + MA − cAi
0

)
−γP

2
‖(ξ Pi )� + �i‖2 − δ

2
μ2

i − γA

2
‖ξ Ai‖2 + (ξ Pi + ξ Ai )�θ,

π Ai ∈ arg max
π̃ Ai ∈Ki

{
−γA

2
‖β i + (�S)�π̃ Ai‖2 + (π̃ Ai )��Sθ

}
.

Now, the principal’s problem is to choose her aggregate risk positions ξ Pi , rather than
choose π Pi and β i (or Ci ) separately, subject to the agent portfolio choice constraint.
We first solve this principal’s problem ignoring the agent portfolio choice constraint, i.e.,
imposing no restrictions on Ki . Then, we show that in the first best, the constraint is not
binding: That is, no conflicts of interests arise between the principal and agent over the
agent’s portfolio choice.11

The principal’s certainty equivalent wealth (3.5) implies that the first-order conditions
(FOCs) with respect to μi , ξ Pi and ξ Ai , i = 1, . . . , N, to maximize VPi

0 are as follows:

δμi = f (Ii ),(4.1)

θ − γP((�i )� + ξ Pi ) = 0,(4.2)

θ − γAξ Ai = 0.(4.3)

The FOC (4.3) describes the agent’s choice of ξ Ai that the principal wishes the agent to
choose, and it coincides with the agent’s optimal choice condition (3.2), or his FOC (3.4).
Thus, in the first best, there does not arise conflicts of interest in the agent’s portfolio
choice, even when the agent is allowed to freely trade securities in financial markets.

4.1. Market Clearing

As the principal’s original problem is transformed into that of choosing (ξ Ai , ξ Pi )
among other things, it is necessary to express relevant market clearing conditions in

11In the first best, the agent is always committed to exert the effort level as desired/instructed by the
principal, as long as the contract satisfies the participation constraint. No incentive or implementability
issues, but only participation issues exist. Thus, in the first best, only a risk-sharing problem can remain. A
linear contract can serve a risk-sharing role in the absence of financial markets. In the presence of financial
markets, first-best contracts do not need to depend on the outcome at all, because the agent can always
optimally choose his risk exposure in the financial markets. In particular, constant contracts as well as
linear contracts can be optimal when the agent is allowed to trade in financial markets. As can be seen in
Proposition 3.1, the contract sensitivity β in the first best can be any real number, as long as it satisfies
equations (3.1) and (3.2).
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terms of (ξ Ai , ξ Pi ). Assuming that �S is invertible, one can see that the market clearing
condition

∑N
i=1(π Ai + π Pi ) = 0 is equivalently restated in terms of ξ ’s as follows:

N∑
i=1

(ξ Ai + ξ Pi ) = 0,(4.4)

where 0 is an (N + 1)-vector of zeros.
Given the principal’s FOCs (4.2) and (4.3), the market clearing condition (4.4) imme-

diately implies equilibrium market prices of risks θ are as follows:

PROPOSITION 4.1. Assume �S is invertible. The stock market uniquely clears when the
vector of market prices of risks θ is given as follow:

θk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f (Ik) σu

Nτ
, k �= N + 1

σc

Nτ

N∑
i=1

f (Ii ), k = N + 1.

(4.5)

REMARK. Using the symmetry and taking the limit as N → ∞, we have

θk =
⎧⎨⎩

0, k �= N + 1
σc

τ
f (I), k = N + 1.

(4.6)

The zero market prices of risks for k �= N + 1 result from the fact that all unique risks
are completely diversifiable in the limit as N → ∞.

With θk given as in (4.5), the principal’s certainty equivalent wealth can be further
simplified as follows.

VPi
0 = R

(
Mi

P + Mi
A − cAi

0 − cPi
0

)+ 1
γA

ln
(−L − e−γAcAi

0
)+ G F B

i (I, θ ),

G F B
i (I, θ ) = D0 +

(
θ2

2γP
+ θ2

2γA

)
− RIi + 1

2δ
f 2(Ii ) − [ f (Ii )σuθi + f (Ii )σcθc],

and the principal’s expected utility now becomes −e−γPcPi
0 − e−γP VPi

0 . The FOCs for the
utility maximization are

exp
{−γP

(
cPi

0 − VPi
0

)} = R,(4.7)

exp
{−γA

(
cAi

0 − V Ai
0

)} = R,(4.8)

1
δ

f (Ii ) f ′(Ii ) = R + f ′(Ii )[σuθi + σcθc].(4.9)

The first two FOCs simply confirm the well-known fact that the interest rate R in
equilibrium is determined in such a way that the marginal rates of substitution between
current and certainty equivalent of future consumption are equalized across all principals
and agents. The last FOC also confirms that the marginal product equals (one plus) the
marginal cost of capital. The RHS is the (one plus) marginal cost of capital which is
equal to (one plus) the sum of risk-free rate and marginal risk premium.
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Substituting (4.5) back into the FOC (4.9), we have

R = ακF I2α−1
i ,(4.10)

where

κF := 1
δ

− σ 2
u

Nτ
− σ 2

c

τ
.(4.11)

The RHS of equation (4.10) is the (one plus) marginal certainty-equivalent dollar growth
rate, which critically depends on parameter κF . Since 2α − 1 < 0, equation (4.10) con-
firms a simple intuition that the higher the interest rate, the lower the real investment
level. This equation will turn out to be very useful in comparing the second-best to the
first-best solutions.

However, in order to completely understand the real investment decision in equilib-
rium, we still need to know equilibrium interest rate R. Recall that market clearing at
time 0 implies, by the symmetry, MP + MA = I + cP

0 + cA
0 for all i . Then, the market

clearing at time 0 and FOCs (4.7) to (4.9) imply that in equilibrium, interest rate R, and
the market price of risk θ should be related to each other as in the following proposition:

PROPOSITION 4.2. In equilibrium, the first-best pair (R, θ ) satisfies the following market
clearing condition:

MA + MP − D0 = I(R, θ ) − τ ln (R) + κF

2
f 2(I(R, θ )),(4.12)

where I(R, θ ) ∈ arg max Ī G F B( Ī; θ ), and θ satisfies (4.5).

Then, condition (4.12) turns out to be the same as that of the single-firm economy in
Sung and Wan (2009), except that parameter κF is slightly modified. Therefore, implica-
tions for the single-firm economy still hold for our many-firms economy. Both equations
(4.10) and (4.12) determine the principal’s real investment decision in equilibrium. Later,
these two equations will be extensively utilized to compare the second-best solutions to
the first-best benchmarks. Next, we turn to the second-best case.

5. THE SECOND BEST

In the second best, the principal’s certainty equivalent wealth (3.5) is subject to the
incentive compatibility constraint μi = 1

δσu
ξAii , where ξAii denotes the i -th component of

ξ Ai . Substituting this constraint into (3.5), we restate the principal’s second-best problem
as follows:

PROBLEM 2′. Choose (cPi
0 , cAi

0 , Ii , {ξ Pi , ξ Ai }, Ki ) to

max − exp
{−γPcPi

0

}− exp
{−γPVPi

0

}
s.t. VPi

0 = D0 + �i�−1l + 1
γA

ln
(−L − e−γAcAi

0
)+ R

(
W Pi

0 + MA − cAi
0

)
−γP

2
‖(ξ Pi )� + �i‖2 − 1

2δσ 2
u

(ξAii )2 − γA

2
‖ξ Ai‖2 + (ξ Pi + ξ Ai )�θ,

π Ai ∈ arg max
π̃ Ai ∈Ki

{
−γA

2
‖β i + (�S)�π̃ Ai‖2 + (π̃ Ai )��Sθ

}
.
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As was the case with the first best, we first ignore the agent’s portfolio choice problem.
However, unlike the first-best case, we shall show that conflicts of interests arise between
the principal and agent about optimal portfolios for the agent, that is, the constraint
on the agent portfolio choice is binding. After maximizing VPi

0 without the portfolio
choice constraint, or condition (3.2), we find proper restrictions on Ki (⊂ RN+1) under
which the principal’s optimum can be implemented/supported, i.e., under which the
agent optimally chooses his portfolios the way the principal wishes him to choose.

The FOCs for the principal’s problem 2′ with respect to ξ Pi and ξ Ai are as follows:

ξPik =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θk

γP
, k �= i , N + 1

θi

γP
− σu f (Ii ), k = i

θc

γP
− σc f (Ii ), k = N + 1,

(5.1)

ξAik =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θk

γA
, k �= i

δσ 2
u

1 + γAδσ 2
u

(
θi + f (Ii )

δσu

)
, k = i ,

(5.2)

where ξPik is the principal’s aggregate risk position on the k-th unique risk B̃k, and ξAik

is the agent’s aggregate risk position that the principal wants the agent to maintain on
the kth unique risk source.

As compared with the agent’s desired choice expressed in (3.4), the FOC (5.2) suggests
that the principal’s optimal choice of ξAik is identical to that of the agent for all k �= i , but
that for k = i , agent i wishes to choose ξAii = θi

γA
, whereas the principal wants the agent to

choose ξAii = δσ 2
u

1+γAδσ 2
u

(θi + f (Ii )
δσu

). We shall show in Section 5.2 that the principal’s desired
ξAii can be implemented by imposing a restriction on the agent’s stock transactions, and
thus that the agent’s optimal effort is

μ = 1
δσu

ξAii = σu

1 + γAδσ 2
u

(
θi + f (Ii )

δσu

)
.(5.3)

The structure of the optimal effort shall be discussed in more detail in Section 5.2.2.

5.1. Market Clearing

Again, assuming that �S is invertible,
∑N

i=1(π Ai + π Pi ) = 0 is equivalent to∑N
i=1(ξ Pi + ξ Ai ) = 0. Applying this market clearing condition to FOCs (5.1) and (5.2),

we have equilibrium market prices of risks as follows:

PROPOSITION 5.1. Assume that �S is invertible and that ξ Ai satisfying (5.2) is im-
plementable, i.e., the agent chooses his portfolio to satisfy (5.2). Then the stock market
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clearance implies that market prices of risks are uniquely given as follows:

θk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ 2

Aδσ 3
u f (Ik)

Nτ
(
γA
(
1 + γAδσ 2

u

))− 1
, k ≤ N

σc

Nτ

N∑
k=1

f (Ik) k = N + 1.

(5.4)

The proof is omitted as it is similar to that of Proposition 4.1. Note that the market
price of market risk is independent of individual firms’ productivity parameters. This
independence results from our assumption that no individual firms affect the distribution
(or the mean) of the market risk. Thus, given I, the market price of market risk becomes
identical to that of the first best. Unlike that of the first best, however, the market price
of each unique risk for finite N depends on corresponding individual firm’s productivity
parameters δ and f (I), which is consistent with the single-firm economy in Sung and Wan
(2009), where the single representative firm affects the risk of the economy. Nevertheless,
as N → ∞, all unique risks can be diversified away, and thus all market prices of those
unique risks approach zero, just as those of the first best do. In this case, the optimal agent
effort (5.3) converges to the same level as the one that is already known in the literature
for the case where the principal is risk neutral and there are no financial markets, i.e.,

μi = f (Ii )

δ
(
1 + γAδσ 2

u

) .
We shall discuss the reason for this convergence in Section 5.2.2.

With equations (5.1), (5.2), and (5.4), the principal’s certainty equivalent (remaining)
wealth right after her initial consumption becomes

VPi
0 = R

(
Mi

P + Mi
A − cAi

0 − cPi
0

)− V Ai
0 + GSB

i (Ii , θ ),

where

GSB
i (Ii , θ ) = D0 − RIi + τ

2
θ2 − σu f (Ii ) θi − σc f (Ii ) θc

− θ2
i

2γA
+ δσ 2

u

2
(
1 + γAδσ 2

u

) (θi + f (Ii )
δσu

)2

.

Thus, the principal’s expected utility at time 0 becomes −e−γPcPi
0 − e−γP VPi

0 , and the FOCs
with respect to (cPi

0 , cAi
0 , Ii ) are

R = exp
{−γP

(
cPi

0 − VPi
0

)}
,(5.5)

R = exp
{−γA

(
cAi

0 − V Ai
0

)}
,(5.6)

R + σu f ′(Ii )θi + σc f ′(Ii )θc = σu f ′(Ii )(
1 + γAδσ 2

u

) (θi + f (Ii )
δσu

)
.(5.7)

The FOCs (5.5) and (5.6) tell us that the interest rate is the MRS between current and
certainty-equivalent future consumption and that the MRS’s are equalized across all
principals and agents in the economy. The LHS of FOC (5.7) is the (one plus) marginal
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cost of capital and the RHS is the second-best marginal product of real investment. This
FOC implies

R = ακSI2α−1,(5.8)

where

κS := 1
δ

− γAσ 2
u(

1 + γAδσ 2
u

) [1 + γ 3
Aδ2σ 6

u

γANτ
(
1 + γAδσ 2

u

)− 1

]
− σ 2

c

τ
.(5.9)

Parameter κS is a measure of the second-best marginal certainty-equivalent dollar growth
rate of the principal’s wealth.

In Proposition 5.1, market clearing over time t ∈ (0, 1] implies (5.4). Now, recall that
market clearing at time 0 implies, by the symmetry, MP + MA = I + cP

0 + cA
0 for all i .

Then, with FOCs (5.5) and (5.6), the market clearing at time 0 implies that in equilibrium,
the interest rate R, and the market price of risk θ are related to each other as follows:

PROPOSITION 5.2. In equilibrium, the second best (R, θ ) satisfy the following market
clearing equation:

MP + MA − D0 = I(R, θ ) − τ ln(R) + κS

2
f 2(I(R, θ )).(5.10)

where I(R, θ ) ∈ arg max Ī GSB( Ī; θ ), and θ satisfies (5.4).

The principal’s second-best real investment decision satisfies both (5.8) and (5.10).
Later, we will compare these two equations with corresponding equations (4.10) and
(4.12) from the first-best case, to investigate moral hazard effects on the economy.

A comment is in order. The above FOCs and Proposition 5.2 suggest that the equilib-
rium interest rate R is independent of the agent’s reservation utility L. This independence
can be somewhat striking because one might conjecture that a change in L might bring
about changes in consumption plans of both the principal and agent, affecting the market
clearing condition and thus the resulting interest rate in equilibrium. This conjecture is
not true in our economy.

In order to obtain an intuition about the independence of the equilibrium interest
rate from L, we start with that of (μ, I). Note that the reservation utility level L does
not affect the CARA agent’s effort choice μ, and thus the marginal productivity of
the firm has to be independent of L. The optimal investment level is determined as the
marginal productivity equals the marginal cost of capital. Since the marginal productivity
depends on I, and the cost of capital is exogenous to both the principal and agent (in our
price-taking competitive equilibrium), optimal investment level I has to be independent
of L.

To see how R becomes independent of L, recall that given all equity premiums on
all investments in the economy, all CARA investors invest fixed dollar amounts in risky
assets, independently of L, and all remaining wealth after initial consumption is invested
in the risk-free asset, which is determined as the market clears. However, the CARA
preference again implies that the market clearing condition, MA + MP = I + cP

0 + cA
0 is

independent of L, as equations (4.12) and (5.10) suggest.
To see the independence of the market clearing condition, recall that individuals choose

current and future certainty-equivalent consumption, satisfying, for k = P, A,

exp
{−γk

(
ck

0 − Vk
0

)} = R.
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Now, consider a transfer of time 0 wealth �w from the principal to the agent. Then the
agent increases his current and future consumption by �cA

0 and �V A
0 , respectively, such

that �w = �cA
0 + (1/R)�V A

0 , and

exp
{−γA

(
cA′

0 − V A′
0

)} = R,

where cA′
0 := cA

0 + �cA
0 and V A′

0 := V A
0 + �V A

0 . This implies that �cA
0 = �V A

0 and thus
�cA

0 = (R/(1 + R))�w . Note that the wealth transfer leads to a change in L to L′ where
L′ = − exp(−γAcA′

0 )− exp(−γAV A′
0 ).

On the other hand, the principal decreases her wealth by �w , and her consumption
plan by (�cP

0 , �V A
0 ) such that �w = �cP

0 + (1/R)�VP
0 , and

exp
{−γP

(
cP′

0 − VP′
0

)} = R,

where cP′
0 := cP

0 − �cP
0 and VP′

0 := VP
0 − �VP

0 . This also implies �cP
0 = (R/(1 +

R))�w . Thus, the new market clearing condition after the wealth transfer is

MA + MP = I + cP′
0 + cA′

0 = I + cP
0 + cA

0 .

That is, a change in L does not affect the market clearing condition, and as a result, the
risk-free rate becomes independent of L. Hence, we can manage to express all important
decisions variables (μ, I, R, θ, �S) independently of L.12

5.2. Implementing the Principal’s Optimum

Recall that the original problems 1 and 2 with a set of choice variables (Ci
1, μ

i , π Ai , π Pi )
have been simplified to equivalent problems 1′ and 2′ with a new set of choice variables
(μi , ξ

Ai , ξ Pi ). As a result, each principal and agent in the new problems resolve their
risk-sharing and incentives issues by choosing (ξ Ai , ξ Pi ), whereas they do the same by
choosing (Ci

1, π
Ai , π Pi ) in the original problems. The reason why both formulations

remain to be equivalent in spite of the reduction of the number of variables is that each
principal and agent are only interested in their own aggregate risk positions resulting
from not only their compensation contracts but financial and real asset portfolios.

Nevertheless, there still remains a question of how to implement ξ Ai using original
variables (π Ai , β i ). Comparing FOC (5.2) to (3.4), one can see that both the principal
and agent agree on the choice of ξAik, for all k �= i . The agreement implies that contract
sensitivities {βik; ∀k, k �= i} except βi i affect neither the principal nor the agent’s expected
utility. The reason is that given an arbitrary set of sensitivities {βik; ∀k, k �= i}, the agent
can always undo them by using his financial market transactions to achieve his desired
{ξAik, ∀k, k �= i}, and the agent does so exactly the way the principal wishes the agent
to do.

However, conflicts of interest occur for the agent’s aggregate risk position in (the
unique risk of) stock i , because the principal’s desired position in ξAii does not agree
with that of the agent, as the comparison of FOC (5.2) to (3.4) suggests. Thus, principal
i wishes to figure out a way to make sure her agent chooses ξAii as desired by herself. The
principal may implement her desired ξAii by forcing the agent to choose a particular π Ai ,

12It is well known in the asst pricing literature that θ and �S do not depend on L from the beginning, as
they only depend on � and risk aversion.
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and assigning a contract with βi i such that

δσ 2
u

1 + γAδσ 2
u

(
θi + f (Ii )

δσu

)
= [(�S)�π Ai ]i + βi i .

However, in the real world, even when π Ai is observable, forcing the agent to choose
particular portfolio positions on all risky assets is practically impossible, partly because
the agent financial portfolio is a private property, or partly because actual observation
of the agent complete history of all stock transactions may require the principal to incur
unjustifiably high monitoring costs.

The monitoring cost problem can be greatly simplified with the following two popular
subclasses of compensation schemes for agent i : (1) RPE contracts that typically appear
in the standard principal-agent literature, and (2) total outcome-based contracts which
are more likely encountered in practice. For the first type,

β i =

⎧⎪⎨⎪⎩
βik = 0, for k �= i , N + 1,

βi i = δσ 2
u

1 + γAδσ 2
u

(
θi + f (Ii )

δσu

)
.

(5.11)

Each contract in this class depends at most on B̃i , the unique risk of his own stock, but
neither on unique risks of other firms nor on the market risk. Since B̃i = 1

σu f (I) {D1 −
σc f (I)B̃c}, one can view B̃i as a measure of the agent performance after adjusting for
relative performance. Thus, this type constitutes a class of RPE contracts.

For the second type,

β i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βik = 0, for k �= i , N + 1,

βi i = δσ 2
u

1 + γAδσ 2
u

(
θi + f (Ii )

δσu

)
,

βic = βi i
σc

σu
.

(5.12)

In this case, the incentive part of the contract is βi i B̃i + βic B̃c that is equal to βi i
σu f (Ii )

D1.
As a result, the performance measure is the total outcome D1 alone, and there is no
adjustment for relative performance.

We shall argue that both of the above two types of compensation schemes can be
equally optimal as long as the principal properly chooses a pair of (π Ai , β i ) to imple-
ment the principal’s optimal ξ Ai . To describe right pairs (π Ai , β i ) for the two classes
of compensation schemes, we need to understand the structure of �S, the stock price
volatility.

5.2.1. Equilibrium Stock Prices. In this subsection, we examine the stock price volatil-
ity when the incentive contract is given with its incentive part constrained to be
βi i B̃i + βic B̃c where βi i , βic ∈ R. This class encompasses the above-mentioned two sub-
classes of contracts as special cases. Then, it shall be seen that the structure of �S, the
stock-price volatility matrix, is greatly simplified.



848 J. SUNG AND X. WAN

PROPOSITION 5.3. Given a class of contracts with their incentive parts represented in the
form of βi i B̃i + βic B̃c where (βi i , βic) ∈ R2, the market price of stock i is given by

Si
1 = RSi

0 + (σu Iα − βi i )B̃θ
i + (σc Iα − βic)B̃θ

c ,

with the initial stock price being

(5.13)

Si
0 = (Mi

A − cAi
0

)+ R−1
[

D0 + (μ∗
i − σuθi − σcθc

)
Iα − V Ai

0 − δ

2

(
μ∗

i

)2 − γA

2
‖ξ Ai‖2 + ξ Aiθ

]
.

Thus, the matrix of volatilities of stocks is given as follows:

�S =

⎡⎢⎢⎢⎢⎢⎢⎣
σ S

11 0 . . . 0 σ S
1c

0 σ S
22 0 . . . σ S

2c
. . . . . . . . . . . . . . . .

0 0 . . . σ S
NN σ S

N,c

0 0 0 . . . σ S
cc

⎤⎥⎥⎥⎥⎥⎥⎦,(5.14)

where

σ S
ii := (σu Iα − βi i ) , σ S

ic := (σc Iα − βic) , and σ S
cc = σY.

Given a compensation contract with its incentive part given in the form of βi i B̃i +
βic B̃c where (βi i , βic) ∈ R2, the riskiness of residual claim D̃i − Ci depends only on two
Brownian motions, B̃i and B̃c. Since the stock price of each firm is the present value of
its residual claim which is only affected by two risk sources, B̃i and B̃c, it is intuitive that
the stock price volatility depends only on the same two risk sources. Thus, the matrix of
stock price volatilities is given in a diagonal form as that in (5.14).

5.2.2. Irrelevance of RPE Contracting in the Presence of Financial Markets. Given the
characterization of the matrix of stock price volatilities as in Proposition 5.3, we are
now ready to discuss how to implement the above-mentioned two types of compensation
schemes preserving desired incentives implied by the schemes.

PROPOSITION 5.4. Suppose a contract is given with its incentive part represented by
βi i B̃i + βic B̃c, where βi i = δσ 2

u
1+γAδσ 2

u
(θi + f (Ii )

δσu
) and βic ∈ R. Then, in equilibrium, principal

i can achieve her optimal ξ Ai , if and only if πAii = 0, i.e., she forbids agent i to trade stock
i .13

REMARK. One can also show that the agent would optimally maintain πAii = 0, if he is
forbidden to short-sell. Thus, in this paper, the trading restriction πAii = 0 is equivalent
to the short-selling restriction. See Sung and Wan (2009).

13Alternatively, the principal can achieve her optimum by providing a flat contract and requiring the
agent to maintain his financial portfolio to be consistent with her optimum, i.e., requiring the agent to hold

at least as many shares of stock i as πAii = 1
σu Iα

δσ 2
u

1+γAδσ 2
u

(θi + f (Ii )
δσu

). However, forcing the agent to choose a
particular portfolio may be realistically too costly.
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Proposition 5.4 also implies that when agent i is forbidden to trade stock i , both
compensation schemes given in (5.11) and (5.12) are optimal. That is, in the presence of
complete financial market, as long as βi i ’s of the two schemes are the same, it does not
matter to the principal’s wealth whether the scheme is given in a RPE form as in (5.11),
or just in a total outcome-based form as in (5.12). The reason is that, regardless of βic,
the agent can always undo/restructure the βic (systematic-risk) part of the compensa-
tion contract to his preference by trading financial assets including the N + 1-st asset.
Strikingly, the agent’s restructuring effort is also in the best interest of the principal.
Thus, it does not matter if the contract depends on B̃c or not. This result is in contrast
with a partial equilibrium result by Ou-Yang (2005), and provides an explanation of the
empirical puzzle presented by Chiappori and Salanié (2003) with their statement that
“firms do not seem to use relative performance evaluation of managers very much.”

There is another striking implication coming out of Proposition 5.4. Note that the
sensitivity βi i in (5.11) and (5.12) can be decomposed into two components, one for risk
sharing and the other for incentives. The first component is δσ 2

u
1+γAδσ 2

u
θi for risk-sharing,

and it directly depends on θi , the market price of unique risk of firm i , but not on γP,
the principal’s risk aversion. In the literature, the extent of risk sharing depends on the
principal’s risk aversion. In the presence of financial markets, however, risk sharing is
affected not by principal’s risk aversion, but by market prices of risks, because both the
principal and agent can undo and restructure their risks at market prices.

The second component is σu f (Ii )
1+γAδσ 2

u
for work incentives which the principal would like the

contract sensitivity to be, were she risk neutral and were not there financial markets. Note
that in our economy, as N → ∞, θi approaches zero and so does the first component of
the sensitivity. Thus, in our very large economy, the optimal contract sensitivity reduces
to the second component. That is, optimal contracting is, in the limit, only concerned
with incentives, and the risk sharing role of a contract can be completely ignored. The
reason is that in our infinite economy, all idiosyncratic risks are diversifiable, and the
risk-sharing of diversifiable idiosyncratic risks in an economy with financial markets is
not important.

This implication gives a justification of the frequent assumption in the standard
principal-agent literature that the principal is risk neutral. In the literature, the risk-
neutrality assumption is commonly defended by the argument, without a proof, that
the principal is well diversified, and thus she does not care about idiosyncratic risks.
Proposition 5.4 can serve as a proof for the practice.

To recapitulate, in the presence of financial markets, the optimal contract can ignore
both important issues in contracting: (1) RPE and (2) risk sharing. The existence of
complete financial markets obviates the necessity of not only RPE in optimal contracting,
whether the economy is finite or infinite, but also the risk-sharing role of contracts, if the
economy is large enough. In particular, βic affects neither incentives nor risk sharing.

5.2.3. Correlated Idiosyncratic Risks: A Remark. In the last section we have seen that
the performance measure for each agent does not have to be of RPE if the outcome is
correlated with traded assets. For this conclusion, we have assumed that all idiosyncratic
risks are independent of each other. Then, what if idiosyncratic risks are correlated? In
particular, what if the two firms i and j had B̃i and B̃ j correlated?

Then we can think of two cases: (1) a case when asset k is traded and (2) the other case
when the asset is not traded. In the former case, the same conclusion as in the paper still
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applies. That is, the optimal performance measure does not have to be of RPE, because
the agent voluntarily hedges the covariance risk in the financial markets. In the latter
case, the optimal measure has to be of RPE, as the existing literature suggests.

Suppose that outcomes of the two firms j and k have their idiosyncratic risks B̃ j and
B̃k correlated and are given as follows:

D̃ j = μ j + σ jc B̃c + σ j j B̃ j , and D̃k = μk + σkc B̃c + σkk B̃k,

where B̃c is the common market risk that is independent of the two idiosyncratic risks.
Also suppose that there is a financial asset for B̃c, but no financial assets are based on
the covariance of the two assets. Principals are concerned with D̃′

j and D̃′
k, where

D̃′
j = D̃ j − σ jc B̃c = μ j + σ j j B̃ j , and D̃′

k = D̃k − σkc B̃c = μk + σkk B̃k.

In this case, the optimal performance measure for firm j is D̃′
j − bD̃′

k, where b =
COV(D̃′

j ,D̃′
k)

VAR(D̃′
k)

, which is the variance minimizing performance measure. See Koo, Shim, and
Sung (2008). Of course this measure is a RPE metric. If asset k is traded, then agent j
will voluntarily minimize the compensation risk by taking an additional short position
in βb shares of asset k, where β is the contract sensitivity to D̃′

j or D̃ j . The reason is that
that even under moral hazard, the risk averse agent is always interested in minimizing
risks if he can do it at a zero NPV. See Sung (1995, proposition 3).

5.3. Equilibrium Portfolios

The next question is: given optimal contracts and proper restrictions on agents’ trading
activities, how would principals and agents manage in general their financial portfolios?

PROPOSITION 5.5. Suppose that each contract i , i = 1, . . . , N, is given with its incen-
tive part represented by βi i B̃i + βic B̃c, where βi i = δσ 2

u
1+γAδσ 2

u
(θi + f (Ii )

δσu
) and βic ∈ R. Then,

principal i ’s and agent i ’s optimal portfolios are as follows:

πPik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ S
kk

θk

γP
k �= i , N + 1

1

σ S
ii

θi

γP
− 1 k = i

1

σ S
Y

⎧⎨⎩
[

θc

γP
− (σc f (I) − βic)

]
−

N∑
j=1

πPi jσ
S
jc

⎫⎬⎭ k = N + 1,

πAik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

σ S
kk

θk

γA
k �= i , N + 1

0 k = i

1

σ S
Y

⎧⎨⎩
(

θc

γA
− βic

)
−

N∑
j=1

πAi jσ
S
jc

⎫⎬⎭ k = N + 1.
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Since the symmetry implies θi = θk, i , k = 1, . . . , N, Proposition 5.5 tells us how both
principals and agents manage their financial portfolios in financial markets. After signing
an optimal compensation contract, principal i optimally liquidates her entire real-asset
position and holds the market portfolio, i.e., an equally weighted portfolio of N stocks.
Consequently, the presence of financial markets naturally induces dispersed ownership
of public firms. In particular, while holding the market portfolio, principal i optimally
balances her exposure to the market risk B̃c relative to exposures to unique risks {B̃i ; i =
1, . . . , N} by using the (N + 1)-st asset, the pure financial asset in the economy.

On the other hand, agent i also uses the same financial asset to adjust his exposure
to the aggregate market risk resulting not only from his stock portfolio but from his
compensation contract. In particular, whatever βic is given, the agent always hedges
away the risk related to βic in financial markets until he achieves the optimal level of
exposure to the market risk. As a result, the agent’s optimal exposure to the market risk
ξAic remains the same regardless of βic. This agent behavior is consistent with implications
of Proposition 5.4, i.e., the irrelevance of the RPE in the presence of financial markets.

Moreover, the agent behavior on his portfolio formulation can be related to the litera-
ture on portfolio choice problems in the presence of unhedgable labor income risks. Our
result on the agent’s trading restriction is precisely consistent with the assumption by
Heaton and Lucas (1996) that “agents cannot write contracts contingent on future labor
income.” Under their agents’ trading restriction, Heaton and Lucas argue for “a sizable
equity premium only if transactions costs are larger or the assumed quantity of tradable
assets” is limited. In our model, the presence of labor income risk by itself gives no effect
on the equity premium. Thus, one can guess that the sizable equity premium in Heaton
and Lucas may have nothing to do with unhedgable labor income risks, and more to do
with other assumptions in their model such as short-sale constraints and transactions
costs.

6. COMPARISON OF FIRST- AND SECOND-BEST INTEREST RATES,
EQUITY PREMIA, AND REAL INVESTMENT

Given our characterizations of principals’ and agents’ optimal consumption and in-
vestment decisions, market clearing conditions can shed light on popular issues in the
literature: interest rates and equity premia. Sung and Wan (2009) investigate equilibrium
effects of moral hazard on these financial market variables in a single-firm economy. In
this section, we show that most of the results for the single-firm economy hold even for
our multifirm economy, whether the economy is composed of a finite or infinite number
of firms.

By Propositions 4.2 and 5.2, the first- and second-best interest rates and time 0 market
clearing conditions lead to the following relationships: for j = F, S,

Rj = ακ j I2α−1
j ,(6.1)

MP + MA − D0 = Ij − τ ln(Rj ) + κ j

2
f 2(Ij ).(6.2)

Rewriting this market clearing condition in terms of R, we have

M − D0 =
(

R
ακ

) 1
2α−1
[

1 +
(

R
2α

)]
− τ ln(R).
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Differentiating R with respect to κ, one can immediately see that ∂ R
∂κ

> 0. Since κS < κF ,
we have RS < RF . We summarize this result as below.

PROPOSITION 6.1. In our multifirm economy, the second-best interest rate is lower than
that of the first best.

Note that the productivity of the second-best economy is lower than that of the
first best. Thus, in anticipation of poor productivity, the marginal utility for future
consumption in the second best becomes high and investors would like to save for the
future, increasing the supply of capital which in turn drives the interest rate down.

On the other hand, the same market clearing condition in terms of I can be restated
as follows:

M − D0 + τ ln(ακ) = I + τ (1 − 2α) ln(I) + κ

2
I2α.(6.3)

This condition implies that the market clearing investment level I is a func-
tion of (κ; α, τ, M, D0) given (α, τ, M, D0). Note that given (α, τ, M, D0), function
I(κ; α, τ, M, D0) is strictly concave in κ, and there exist a unique κ∗ such that I achieves
its maximum at κ = κ∗ where

κ∗ := 2τ

I2α(κ∗)
.

Since κS < κF , we have the following conclusion.

PROPOSITION 6.2. In our multifirm economy, if κF ≤ κ∗, then IS < IF ; and if κS ≥ κ∗,
then IS > IF .

That is, moral hazard can result in underinvestment (overinvestment) problems if
profitability of production opportunities is sufficiently low (high). It is striking that pure
moral hazard problems can result in overinvestment, even in the absence of the well-
known empire building motivation proposed by Jensen (1986). In this paper, note that
the level of investment is affected not only by the profitability of production opportunities
but by the cost of capital, and the second-best cost of capital can be lower than that of
the first best. Overinvestment problems can occur in general equilibrium when the poor
profitability can be overcome by the lower cost of capital.

Finally, in order to compare equity premia of market portfolios in the first- and second-
best economies, note first that the expected terminal prices of stock i in both economies
are given in the following form:

Eμ[S1] = RS0 + [(σu Iα − βi i )θi + (σc Iα − βic)θc].

Thus, the risk premium on stock i is

Eμ[S1]
S0

− R = (σu Iα − βi i )θi + (σc Iα − βic)θc

S0
.(6.4)

We assume that the NPV of the production is zero in equilibrium, i.e., S0 = I. At time
0, the market portfolio is an equally weighted portfolio of N stocks. Suppose that all
compensation contracts are of RPE such that βic = 0, ∀i . Then, in our infinite economy,
the equity premium (on the market portfolio) denoted by νM

0 is, for k = F, S,

ν
M,k
0 = σc Iα−1θc = γPγA

γP + γA
σ 2

c I2α−1
k .
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PROPOSITION 6.3. Suppose that S0 = I, βic = 0, ∀i , and N → ∞. Then

ν
M,S
0 > (=, <) ν

M,F
0 , if and only if IS < (=, >)IF .

Although firms in this paper can never directly affect the systematic risk, (collective)
moral hazard occurring inside firms can contribute to an increase or a decrease in the
equity premium of the whole economy, because moral hazard affects real investment
levels and thus the aggregate volatility of the economy. In particular, the equity premium
in our infinite economy turns out to be equal to a risk premium on marginal market risk from
real investment. Since the marginal market risk ασc Iα−1 decreases with the amount of
real investment, one can easily see that the second-best equity premium becomes higher
(lower) than that of the first best if and only if there are underinvestment (overinvestment)
problems in the second best.

6.1. On the Risk-free Rate and Equity Premium Puzzles

Note that there is a subtle difference between economic situations leading to the above
equilibrium effects, and to the famous Mehra and Prescott’s (1985) equity premium
and Weil’s (1989) risk-free rate puzzles. Recall that the puzzles occur because classical
asset pricing models with reasonable levels of the representative agent’s risk aversion are
not able to justify observed high equity premia and low risk-free rates for the observed
volatilities of the market portfolio returns. That is, authors in the literature are concerned
with the level of the representative investor’s risk aversion, given the equity premium, the
risk-free rate and the volatility of the market portfolio, whereas our equilibrium effects
in the last section are concerned with the equilibrium equity premium, risk-free rate
and volatility, given levels of risk aversion of all economic agents, i.e., all principals and
agents.

Recast in terms of economic settings in the literature on the two puzzles, our equilib-
rium effects imply that moral hazard can help explain the low risk-free rate puzzle, but it
cannot contribute to the resolution of the equity premium puzzle. To see this, note that
for k = F, S, as N → ∞, ν

M,k
0 = σ k

Mθk
c , where σ k

S is the average return volatility of the
market portfolio over the whole period [0, 1] in the kth best economy which we define as
follows:

σ k
S ≡

√
var
(

Sk
1 − Sk

0

Sk
0

)
.

Suppose that one observes σM, S0(= I) and R, respectively, as the volatility of the
market portfolio, the stock price, and the risk-free rate. Then by (6.2), for j = F, S, R =
ακ j I2α−1. Thus, both the first- and second-best economies support the same observations
(σM, I, R), then we must have κF = κS. In order for this equality to hold, equations (4.11)
and (5.9) imply

σ 2
c

τF
= γ S

Aσ 2
u(

1 + γ S
Aδσ 2

u

) + σ 2
c

τS
.

This equation immediately implies that the second-best aggregate risk tolerance is higher
than that of the first best, i.e., τS > τF . (Note that the aggregate risk tolerance is analogous
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to the reciprocal of the representative investor’s risk aversion in the classical asset pricing
literature.) That is, in order to justify observations of (σM, S0(= I), R), the second-best
economy requires a lower level of risk aversion than the first-best economy does. This
result suggests that moral hazard can contribute to the resolution of the risk-free rate
puzzle.

Recall that the interest rate in equilibrium is the MRS between current and future
certainty-equivalent consumption. However, holding other things constant, we know
that the second-best risk-free rate is lower than the first best. Now suppose that both
economies are identical except for the existence of moral hazard and the principal’s
risk aversion level, and that the risk-free rates of the first- and second-best economies
are the same. Then, one can see that it is necessary to have the aggregate risk aversion
level in the second best be lower than that of the first best, in order to equalize both
economies in terms of the MRS. (Note that given a plan for current and certainty-
equivalent future consumption, the higher the risk aversion, the lower the interest
rate.)

In order to relate our equilibrium results to the equity premium puzzle, suppose that
one observes σM, S0(= I) and ν0, respectively, as the volatility of the market portfolio, the
stock price, and the risk premium. If the economy is under moral hazard, then ν0 = σMθ S

c
and by equation (5.4),

ν0

σM
= γ S

Aγ S
P

γ S
A + γ S

P
σc f (I),

where γ S
P and γ S

A are, respectively, the risk aversion levels of principals and agents sup-
porting the second-best economy characterized by σM, S0(= I) and ν0. If the economy is
free from moral hazard, then by equation (4.5),

ν0

σM
= γ F

A γ F
P

γ F
A + γ F

P
σc f (I),

where γ F
P and γ F

A are supporting risk aversion levels of principals and agents in the first
best.

Therefore, it is clear that the risk aversion levels supporting the observations must
be the same for both the first- and second-best economies. That is, moral hazard cannot
contribute to the resolution of the equity premium puzzle. The intuition behind this result is
straightforward. If the volatilities of the market portfolio returns were the same for both
the first- and second-best economies, i.e., σ F

M = σ S
M = σM, then investors would price the

market risk in exactly the same way as they do in the first best, independently of moral
hazard occurring in product markets.

Note that the inability of moral hazard alone to explain the equity premium puzzle is
in contrast with results in the literature. See Kahn (1990) and Kocherlakota and Pistaferri
(2009) for moral hazard resulting in a high equity premium, and Kocherlakota (1998)
for moral hazard causing a low equity premium.

7. CONCLUSION

We have presented a general equilibrium model of an economy with many firms in the
presence of moral hazard and financial markets. The economy distinguishes itself from
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the single-firm economy of Sung and Wan (2009) in that each firm can exert zero influence
on (the distribution of) market risks of the economy, although it affects that of a unique
risk.

We have argued that in the presence of financial markets, RPE is irrelevant in optimal
contracting, because given any compensation contracts, agents would optimally adjust
through financial transactions their exposures to risks that are not related to their job
performance, and their transactions do not affect principals’ wealth.

Our model has enabled us to reexamine the fundamental nature of optimal con-
tracting decisions. We have shown that in an economy with infinitely many firms,
optimal contracting decisions are not tradeoffs between risk sharing and incentives,
but all about incentives. That is, no consideration for risk sharing is necessary, be-
cause desired risk sharing is achieved by all individuals in the economy on their own
accounts.

Moreover, in our multifirm economy, the second-best risk-free rate is lower than that
of the first best. The second-best equity premium can be either higher or lower than
that of the first best, because not only underinvestment but overinvestment problems
can occur in the second best. These comparisons result from comparing a production
economy with financial market in the absence of moral hazard with the same economy
in the presence of moral hazard. (Note that with moral hazard introduced into the econ-
omy, equilibrium investment levels changes and so do equilibrium volatilities of assets.)
These results are about effects of moral hazard given a production economy with finan-
cial markets, but they are not about the well-known risk-free rate and equity premium
puzzles.

Recall that, for the equity premium puzzle in the literature, researchers take the
two important economic factors as exogenously given, namely, the volatility of mar-
ket portfolio returns and equity premium, and then they compute the risk aversion
level of the representative agent to make the two exogenously specified factors justi-
fied in equilibrium. However, in our moral-hazard economy, all volatilities are endoge-
nously determined. In order to relate our results to the puzzle, we have recast our
moral-hazard economy into the economic setting considered in the literature for the
puzzle. That is, we have considered the first- and second-best economies which yield
the same (hypothetically) observed levels of equity premium and market-portfolio re-
turn volatility, and compared first-best and second-best levels of risk aversion which
can support the observed equity premium and market-portfolio return volatility in
equilibrium.

We have shown that the same observed equity premium and volatility can only be
supported by the same level of the risk aversion, whether the economy is under moral
hazard or not. The reason is that investors would price the market risk in the exactly
the same way as they do in the first best, independently of moral hazard occurring in
product markets. Thus, we have argued that moral hazard cannot help explain the equity
premium puzzle, which is in contrast to what the literature suggests.

On the other hand, we have shown that moral hazard can contribute to the resolution of
the risk-free rate puzzle, because given observations of the volatility and risk-free rate, the
second-best economy requires a lower level of risk aversion to justify the observations
in equilibrium than does the first-best counterpart. The reason is that holding other
things constant including risk aversion, the marginal utility for future consumption in
the second best is higher than that of the first best, because of the anticipation of poor
productivity in the second best.
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APPENDIX A: TABLE OF NOTATION

B̃n := (B̃n
1, . . . , B̃n

N, B̃n
c )�, n = 0, μ, θ, (N + 1)-vector of independent standard

normal random variables under Pn .

Ci , managerial compensation of firm i .

D̃i , accounting value of firm i at time 1.

Ii , initial investment in firm i .

Ki , agent trading restriction.

Mk, k = P, A, endowments.

P0, Pμ, Pθ , probability measures under which B̃0, B̃μ and B̃θ , resp., are
(N + 1)-vectors of independent standard normal random variables.

R, one plus risk-free rate.

Si
0 , Si

1 , financial-market prices of stock i at time 0 and 1, resp.

Wki
t , the financial account balance of individual ki at time t, k = P, A, i = 1, . . . , N.

cki
t , individual ki ’s consumption at time t, k =, P, A, i = 1, . . . , N.

l(μ) := [ f (I1)μ1, . . . , f (IN)μN, 0]�.

α, production (decreasing) returns-to-scale parameter (< 1
2 ).

γk, k = P, A, CARA coefficients for principals and agents, respectively.

τ := 1/γA + 1/γP, the aggregate risk tolerance of each firm.

σu, an idiosyncratic-risk volatility parameter of each firm.

σc, a systematic-risk volatility parameter of each firm.

σY, a systematic-risk volatility parameter of the pure financial asset Y.

�i = (0, . . . σu Iα
i , 0, . . . , 0, σc Iα

i ), firm i ’s production volatility vector.

� := [�1, . . . , �N+1]�.

σ S
i j , stock i ’s price volatility atributable to the j th risk source, B̃μ∗

j .

�S
i , Stock i ’s (N + 1)-vector of price volatilities from (N + 1) risk sources,

�S = (�S
1 , . . . , �S

N, �S
Y)�, a (N + 1) × (N + 1) matrix.

μi , agent i ’s effort level.

δ, agent’s effort efficiency parameter.

β i := (βi1, . . . ., βi N, βi ,N+1)�, βi ,N+1 ≡ βic, contract sensitivity vector.

θ j , the market price of risk for the j th risk source, B̃μ∗
j .

θ = (θ1, . . . , θN, θc)�.

πki = (πki1, . . . , πki N, πki ,N+1), πki ,N+1 ≡ πkic, individual ki ’s financial portfolio position.

ξki = (ξki1, . . . , ξki N, ξkic)� k = P, A, individual k’s aggregate risk exposure.

ν
M,k
0 k = F, S, equity premium on the market portfolio. F : first best. S: second best.
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APPENDIX B: PROOF OF PROPOSITION 3.1

By substitution,

− exp
{−γAV Ai

0

}
≡ Eμ

[
− exp

{
−γA

(
R
(
MA − cAi

0

)+ (π Ai )��SBθ + ai + (β i )� B̃0 − δ

2
μ2

i

)}]
,

Note that

R
(
MA − cAi

0

)+ (π Ai )��SBθ + ai + (β i )� B̃0 − δ

2
μ2

i

= R
(
MA − cAi

0

)+ ai − δ

2
μ2

i + (π Ai )��S (�−1(l − l∗) + θ
)

+ (β i )��−1l + ((π Ai )��S + (β i )�)Bμ.

Thus,

V Ai
0 = R

(
MA − cAi

0

)+ ai − δ

2
μ2

i + (π Ai )��S{�−1(l − l∗) + θ}(B.1)

+ (β i )��−1l − γA

2
‖(π Ai )��S + (β i )�‖2.

The agent chooses π Ai in the first best, and (μi , π
Ai ) in the second best, to maximize

V Ai
0 . In particular, in the second best,

(μi , π
Ai ) ∈ arg max

μ̃,π̃ Ai
− δ

2
μ2

i + (π Ai )��S(�−1(l − l∗) + θ )

+ (β i )��−1l − γA

2
‖(π Ai )��S + (β i )�‖2,

which is presented in expressions (3.2) and (3.3). On the other hand, since l = l∗ in
equilibrium, the agent’s certainty equivalent (B.1) implies that

ai = V Ai
0 − R

(
MA − cAi

0

)+ δ

2
μ2

i − (π Ai )��Sθ − (β i )��−1l + γA

2
‖(π Ai )��S + (β i )�‖2,

and thus that Ci is given as in (3.1). �

APPENDIX C: PROOF OF PROPOSITION 4.1

By the market clearing condition (4.4), the FOCs (4.2) and (4.3) imply

N
(

1
γA

+ 1
γP

)
θ =

N∑
i=1

(�i )� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (I1)σu

f (I2)σu
...

f (IN)σu

σc

N∑
i=1

f (Ii )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and thus the statement follows. �
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APPENDIX D: PROOF OF PROPOSITION 5.3

Recall that with β ik = 0 for all k �= i , N + 1, each contract can be represented in the
following form:

Ci = V Ai
0 − R

(
Mi

A − cAi
0

)+ βi i B̃i + βic B̃c + δ

2
μ2

i + γA

2
‖ξ Ai‖2 − ξ Aiθ + (β i )�θ − βi iμi

σu
,

where V Ai
0 is a constant satisfying the participation constraint. Note that by the definition

of stock i , Si
1 = Di

1 − Ci
1 and that

D̃i − Ci = D0 + (σu f − βi i )B̃i + (σc f − βic)B̃c − V Ai
0 + R

(
Mi

A − cAi
0

)
−
[

δ

2
μ2

i + γA

2

∥∥ξ Ai
∥∥2 − ξ Aiθ + (β i )�θ − βi iμi

σu

]
,

= D0 + (σu f − βi i )
(

B̃μ∗
i + μ∗

i

σu

)
+ (σc f − βic)B̃μ∗

c − V Ai
0 + R

(
Mi

A − cAi
0

)
−
[

δ

2
μ2

i + γA

2
‖ξ Ai‖2 − ξ Aiθ + (β i )�θ − βi iμi

σu

]
.

Comparing this with the no-arbitrage pricing rule (2.5), we must have σ S
i j ≡ 0 for j �=

i , N + 1, and

σ S
ii = (σu Iα − βi i ), and σ S

i ,N+1 = (σc Iα − βic).

Similarly, one can show that σ S
N+1,N+1 = σY.

Moreover, by the pricing rule,

Eμ∗[
Si

1

] = RSi
0 + (σu Iα − βi i )θi + (σc Iα − βic)θc.

However,

Eμ∗
[D̃i − Ci ] = D0 + (σu f − βi i )

μ∗
i

σu
− V Ai

0 + R
(
Mi

A − cAi
0

)
−
[

δ

2
(μ∗

i )2 + γA

2

∥∥ξ Ai
∥∥2 − ξ Aiθ + (β i )�θ − βi i (μ∗

i )
σu

]
.

Therefore, the initial price of stock i is given as in (5.13). �

APPENDIX E: PROOF OF PROPOSITION 5.4

FOC (5.2) implies that the principal wishes the agent to choose his portfolio π Ai such that
ξAii = βi i , whereas the agent FOC (3.4) implies the agent wants to choose his portfolio
π Ai such that ξAii = θi

γA
. However, since βi i �= θi

γA
in equilibrium, the conflict between the

principal and agent must unavoidably arise, if the agent is allowed to freely trade all
stocks. Thus, in order to achieve her optimum, it is necessary for the principal to require
the agent to choose π Ai such that [(�S)�π Ai ]i = 0, because ξAii = βi i + [(�S)�π Ai ]i .
However, by Proposition 5.3, [(�S)�π Ai ]i = (σu Iα − βi i )πAii . Thus, the principal wishes
to have (σu Iα − βi i )πAii = 0. Since σu Iα − βi i > 0 in equilibrium, the principal achieves
the optimum if and only if πAii = 0.
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APPENDIX F: PROOF OF PROPOSITION 5.5

Given the form of contracts as in the statement, the stock price volatility matrix turns
out to be in the form of (5.14), and thus

(�S)�π Ai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πAi1σ
S
11

...
πAiiσ

S
ii

...

πAi ,N+1σ
S
Y +

N∑
j=1

πAi jσ
S
jc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

However, the definitions of ξ ’s and their optimal values imply

[(�S)�π Pi ]k = [ξ Pi + β i ]k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θk

γP
k �= i , N + 1,

θi

γP
− (σu f (Ii ) − βi i ) k = i ,

θc

γP
− (σc f (Ii ) − βic) k = N + 1,

[(�S)�π Ai ]k = [ξ Ai − β i ]k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θk

γA
k �= i , N + 1,

0 k = i ,

θc

γA
− βic k = N + 1.

Thus, the statement follows.

APPENDIX G: THE LINEARITY RESULT WITH A
CONTINUOUS-TIME MODEL

In this section, we introduce financial markets to the Holmstrom–Milgrom economy
and show that the Holmstrom–Milgrom linearity result still holds even in the presence
of financial markets. Since the first-best equilibrium is similar, we only consider the
second-best case. Let the accounting value of firm i at time t denoted by D̃i (t), and its
dynamics given by

d D̃i
t = �i d B̃

0
t , D̃i

0 = D0, 0 ≤ t ≤ 1,

where B̃0
t is an (N + 1)-vector of independent standard Brownian motions under measure

P0. Note that B̃0
1 and D̃i

1 correspond, respectively, to B̃0 and D̃i in our discrete-time
model. Also let all agents’ effort {μ = (μ1

t , . . . , μ
N
t )0≤t≤1} jointly change the probability

measure of {D̃i
t, i = 1, . . . , N} from P0 to Pμ such that

dPμ

dP0 = exp
{
−1

2

∫ 1

0
‖�−1lt‖2dt +

∫ 1

0
(�−1lt)�d B̃

0
t

}
,

where lt := ( f (I1)μ1
t , . . . , f (IN)μN

t , 0)�. However, Pμ is neither observable nor verifiable.
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Each agent i can observe his own effort level μi
t, but cannot observe other agents’ effort

levels μ−i
t , where μ−i

t := (μ1
t , . . . , μ

i−1
t , μi+1

t , . . . , μN
t ). Under Pμ, B̃μ

t = B̃0
t − ∫ t

0 �−1lsds
is an (N + 1)-vector of independent standard Brownian motions. Thus, under measure
Pμ,

D̃i (t) = D0 +
∫ t

0
f (Ii ) μi

sds +
∫ t

0
σud B̃

μ,i
s +

∫ t

0
σcd B̃

c
t .

The market prices of stocks depend on investors’ beliefs on agents’ effort levels. Let
their beliefs be {μ∗ (t)}0≤t≤1. Given the beliefs, the financial markets are complete under
probability space (�, Pμ∗

,Ft) with the risk-neutral measure Q such that

d Q
dPμ∗ = exp

{
−1

2

∫ 1

0
‖θt‖2dt −

∫ 1

0
θ�

t dBμ∗
t

}
.

Then, {θt} is an Ft-adapted (N + 1)-vector of real-valued market-price-of-risk processes.
Let Rt = ert where r is the short rate of the economy. Then R1(= er = R) is one plus
interest rate rate as defined in the text. Then the quantity R−1 d Q

dPμ∗ is called the pricing
kernel which is well known (and actually turns out) to be principals’ MRS between
current (time 0) and future (time 1) state-dependent consumption in equilibrium. Then
the martingale representation theorem implies that prices of all assets traded in financial
markets can be represented in the following linear form:

Si
t = Rt Si

0 +
∫ t

0
σ S

i (s) θsds +
∫ t

0
σ S

i (s) d B̃
μ∗

s .(G.1)

Assume θt is uniformly bounded. Under Q, again by the Girsanov theorem,

B̃θ
t = B̃μ∗

t +
∫ t

0
θsds

is an (N + 1)-vector of standard Brownian motions. Asset prices can be written as

Si
t = Rt Si

0 +
∫ t

0
σ S

i (s) d B̃
θ

s ,(G.2)

where σ S
i (s) = (σ S

i1(t), . . . , σ S
i N(t), σ S

i ,N+1(t),
)
.

Similarly, the principal’s and the agent’s wealth processes become

W Pi
t = RtW Pi

0 +
∫ t

0

(
π Pi

s

)�
�S

s d B̃
θ

s ,(G.3)

W Ai
t = RtW Ai

0 +
∫ t

0

(
π Ai

s

)�
�S

s d B̃
θ

s .(G.4)

We assume that π Aik
t ∈ Kk

i ⊂ R, where i = 1, . . . , N and k = 1, . . . , N + 1, and that
E[
∫ 1

0 ‖(π Pi
t )��S

t ‖2dt] < ∞ and E[
∫ 1

0 ‖(π Ai
t )��S

t ‖2dt] < ∞, excluding the well-known
doubling strategies in financial markets. We allow principal i to choose sets Kk

i ’s, k =
1, . . . , N + 1, in order to impose restrictions on agent i ’s risky-asset transactions. For
example, if Kk

i ≥ 0, then shortselling stock k by agent i is prohibited.
For the rest of the analysis of this section, we rely on the following Lemma.
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LEMMA G.1 (Representation of the certainty equivalent wealth). Let Vμ,π
t be the

certainty equivalent wealth at time t of the following conditional expected utility function:

− exp{−γ Vμ,π
t } = Eμ

[
− exp

{
−γ

(
η +

∫ 1

t
H(μs, πs)ds +

∫ 1

t
v�(μs, πs)d B̃

0
s

)}∣∣∣∣ Ft

]
,

where η is F1-measurable, and H and v are, respectively, scalar-valued and (N + 1)-
vector-valued functions. Assume that the expectation in this definition is well defined,
i.e., |Vμ,π

t | < ∞. Then, there exists a unique Ft-predictable and square integrable (N + 1)-
vector processes {Zt} such that Vμ,π

t can be represented in the following form:

Vμ,π
t = η −

∫ 1

t

Z�
s

γ
d B̃

0
s

+
∫ 1

t

(
H(μs, πs) +

(
Zs

γ
+ v(μs, πs)

)�
�−1l − γ

2

∥∥∥∥Zs

γ
+ v(μs, πs)

∥∥∥∥2
)

ds.

We utilize this Lemma to examine the necessary structure of optimal compensation
contract Ci

1. Note that agent i ’s expected utility at time t can be written as follows:

− exp
(−γAV Ai

t

)
:= Eμ

[
− exp

{
−γA

(
Ci

1 + RW Ai
0

+
∫ 1

t

(
π Ai

s

)�
�S

s d B̃
θ

s −
∫ 1

t

δ

2
μ2

i (s) ds
)} ∣∣∣∣ Ft

]
.

By Lemma G.1, the certainty equivalent wealth is

V Ai
t = RW Ai

0 + Ci
1 −

∫ 1

t

(
β i

s

)�
d B̃

0
s +

∫ 1

t

{(
π Ai

s

)�
�S

s

(
θs − �−1l∗s + �−1ls

)
− δ

2
μ2

i (s) + (β i
s

)�
�−1ls − γA

2

∥∥β i
s + (�S

s

)�
π Ai

s

∥∥2
}

ds.

Note that, in equilibrium, since the market correctly predicts the manager’s effort, we
have l∗t = lt. Thus, in equilibrium, if the agent chooses μi (t) given Ci

1, then Ci
1 can be

represented as follows:

Ci
1 = V Ai

0 − RW Ai
0 +

∫ 1

0

(
β i

t

)�
d B̃

0
t

+
∫ 1

0

[
δ

2
μ2

i (t) + γA

2
‖β i

t + (�S
t

)�
π Ai

t ‖2 − (π Ai
t

)�
�S

t θt − (β i
t

)�
�−1lt

]
dt.(G.5)

This equation gives a necessary condition for contracts to be optimal in the presence of
financial markets satisfying the participation constraint with certainty equivalent V Ai

0 .
However, this condition does not mean sufficiency for the optimality, as given Ci

1 in the
form of (G.5), the agent may not necessarily choose μi (t). In other words, not all Ci

1’s of
the form (G.5) are implementable.

The next lemma is about the implementability.

LEMMA G.2. Suppose a compensation contract Ci
1 is given to the agent in the form of

(G.5) with {μi
t}. Then the agent optimally chooses his effort level to be {μi

t} if and only if
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μi
t in (G.5) for Ci

1 satisfies, for 0 ≤ t ≤ 1 almost surely

μi
t = 1

δσu

[
β i

t + (�S
t

)�
π Ai

t

]
i ,(G.6)

or equivalently

μi
t ∈ arg max

μ̂

(
β i

t + (�S
t

)�
π Ai

t

)
�−1l̂ − δ

2
μ̂2

t .

Proof. The statement and its proof are similar to those of Schättler and Sung (1993,
theorem 4.2) except that this lemma has financial-market decision variable π Ai

t added.
Suppose that given Ci

1 in the form of (G.5) with {μi
t}, the agent chooses {μ̂t}0≤t≤1. Then,

the agent’s expected utility is

− exp{−γ V̂0} = Eμ̂

[
− exp

{
−γA

(
V Ai

0 +
∫ 1

0

γA

2
‖β i

t + (�S
t

)�
π Ai

t ‖2dt

+
∫ 1

0

(
β i

t + (�S
t

)�
π Ai

t

)�
d B̃

μ̂

t +
∫ 1

0

[
H
(
μ̂i

t; β
i
t , π

Ai
t ; �S

t , σu, μ
−i
t , δ

)
− H

(
μi ; β, π Ai ; �S, σu, μ

−i , δ
)]

dt
)}]

,

where

H(μi ; β, π Ai ; �S, σu, μ
−i , δ) := (β i + (�S)�π Ai )�−1l − δ

2
(μi )2.

Note that μi
t satisfying (G.6) uniquely maximizes H(μi ; βt, π

Ai
t ; �S

t , σu, μ
−i
t , δ) over μi .

Thus we have

− exp{−γ V̂0} ≤ Eμ̂

[
− exp

{
−γ

(
V Ai

0 +
∫ 1

0

γA

2

∥∥β i
t + (�S

t

)�
π Ai

t

∥∥2
dt

+
∫ 1

0

(
β i

t + (�S
t

)�
π Ai

t

)�
d B̃

μ̂

t

)}]
= − exp

(−γ V Ai
0

)
.

Thus, the agent’s expected utility − exp{−γ V̂0} is maximized if and only if μ̂i
t = μi

t almost
surely. ��

The representation (G.5) of compensation contracts, together with the implementabil-
ity condition (G.6), completely describes the class of all implementable contracts. Thus,
the principal only needs to choose a contract from this class. Suppose that the principal
chooses a contract Ci

1 from the class with (π Pi
t , π Ai

t , β i
t ). Let

ξ Pi
t = (�S

t

)�
π Pi

t − β i
t , ξ Ai

t = (�S
t

)�
π Ai

t + β i
t .

Recall that μi
t = 1

δσu
ξ Aii

t , where ξ Aii
t is the i th component of ξ Ai

t . Then, the principal’s
expected utility for the second period consumption can be expressed in terms of ξ Pi and
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ξ Ai , and it becomes Eμ[− exp{−γPVPi
1 }], where

VPi
1 = W Pi

1 + D̃i
1 − Ci

1,

= R
(
W Pi

0 + W Ai
0

)+ D0 − V Ai
0 +

∫ 1

0

((
ξ Pi

t

)� + �i )d B̃
μ

t

+
∫ 1

0

[(
ξ Pi

t

)+ ξ Ai
t

)�
θt − 1

2δσ 2
u

(
ξ Aii

t

)2 − γA

2

∥∥ξ Ai
t

∥∥2

+ (ξ Pi
t + β i

t

)�
�−1(lt − l∗t

)+ f (Ii )
δσu

ξ Aii
t

]
dt.

Thus, the principal’s problem can be restated as a problem of choosing (ξ Pi
t , ξ Ai

t ) to
maximize her expected utility.

Suppose (ξ Pi
t , ξ Ai

t ) are the optimal choice of the principal. Let VPi
0 be the principal’s

certainty equivalent such that − exp{−γPVPi
0 } = Eμ[− exp{−γPVPi

1 }]. Then, by Lemma
G.1, there exists a unique Ft-predictable and square integrable (N + 1)-vector process
{αi

t }0≤t≤1 such that VPi
0 has the following representation

VPi
0 = R

(
W Ai

0 + W Pi
0

)+ D0 − V Ai
0 −

∫ 1

0

(
αi

t

)�
d B̃

0
t(G.7)

+
∫ 1

0

[(
ξ Pi

t + ξ Ai
t

)�
θt − γP

2

∥∥αi
t + (�i )� + ξ Pi

t

∥∥2

−γA

2

∥∥ξ Ai
t

∥∥2 − 1
2δσ 2

u

(
ξ Aii

t

)2 + ((αi
t

)� + �i )�−1lt

]
dt.

LEMMA G.3. In equilibrium, given the representation (G.7) for VPi
0 ,
(
ξ Pi

t , ξ Ai
t

)
is optimal

if and only if, almost surely,

ξ Pik
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θk
t

γP
− αik

t , k �= i , N + 1

θ i
t

γP
− αi i

t − σu f (Ii ), k = i

θc

γP
− αi ,N+1

t − σc f (Ii ), k = N + 1,

or αi
t + ��

i + ξ Pi
t = θ

γP
(G.8)

ξ Aik
t =

⎧⎪⎪⎨⎪⎪⎩
θk

t

γA
, k �= i

δσ 2
u

1 + γAδσ 2
u

(
θ i

t + (αi i
t + σu f (Ii )

) 1
δσ 2

u

)
, k = i ,

(G.9)

μi∗
t = σu

1 + γAδσ 2
u

(
θ i

t + (αi i
t + σu f (Ii )

) 1
δσ 2

u

)
.(G.10)
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Proof. Consider an arbitrary admissible controls (ξ̂ Pi
t , ξ̂ Ai

t ). In equilibrium where
l∗ = l, the wealth at time 1 is

V̂Pi
1 = R

(
W Pi

0 + W Ai
0

)+ D0 − V Ai
0 +

∫ 1

0

((
ξ̂ Pi

t

)� + �i )d B̃
μ̂

t

+
∫ 1

0

[(
ξ̂ Pi

t + ξ̂ Ai
t

)�
θt − 1

2δσ 2
u

(
ξ̂ Aii

t

)2 − γA

2

∥∥ξ̂ Ai
t

∥∥2 + �i�−1l̂
]

dt.

Eliminating R (W Ai
0 + W Pi

0 ) + D0 − V Ai
0 from this equation using (G.7), we have

V̂Pi
1 = VPi

0 +
∫ 1

0

((
αi

t

)� + �i + (ξ̂ Pi
t

)�)
d B̃

μ̂

t

+
∫ 1

0

[(
ξ̂ Pi

t + ξ̂ Ai
t

)�
θt − 1

2δσ 2
u

(
ξ̂ Aii

t

)2 − γA

2

∥∥ξ̂ Ai
t

∥∥2 + ((αi
t

)� + �i )�−1l̂
]

dt

−
∫ 1

0

[(
ξ Pi

t + ξ Ai
t

)�
θt − γP

2

∥∥αi
t + (�i )� + ξ Pi

t

∥∥2

−γA

2

∥∥ξ Ai
t

∥∥2 − 1
2δσ 2

u

(
ξ Aii

t

)2 + ((αi
t

)� + �i )�−1lt

]
dt.

Define

H(α, θ, ξ P, ξ A) = (ξ P + ξ A)�θ − γP

2
‖α + (�i )� + ξ P‖2 − γA

2
‖ξ A‖2

− 1
2δσ 2

u
(ξ Aii )2 + ((αi )� + �i )�−1l.

Then, we have

V̂Pi
1 = VPi

0 +
∫ 1

0

[
H
(
αi

t , θt, ξ̂
Pi
t , ξ̂ Ai

t

)− H
(
αi

t , θt, ξ
Pi
t , ξ Ai

t

)]
dt

+
∫ 1

0

γP

2

∥∥αi
t + (�i )� + ξ̂ Pi

t

∥∥2
dt +

∫ 1

0

(
αi

t + (�i )� + ξ̂ Pi
t

)
dBμ̂

t .

Suppose that the pair (ξ Pi
t , ξ Ai

t ) maximizes H(αi
t , θt, ξ̄

Pi
t , ξ̄ Ai

t ) with respect to (ξ̄ Pi
t , ξ̄ Ai

t ).
Then, E[− exp{−γPV̂Pi

1 }] ≤ E[− exp{−γPVPi
1 }] = − exp(−γPVPi

0 ), and the equality
holds when (ξ̂ Pi

t , ξ̂ Ai
t ) = (ξ Pi

t , ξ Ai
t ) almost surely. Therefore, (ξ Pi

t , ξ Ai
t ) maximizes the

principal’s expected utility, and has to satisfy equations (G.8) to (G.9), which are the
first-order necessary conditions to maximize H(αi

t , θt, ξ̄
Pi
t , ξ̄ Ai

t ). The condition (G.10) is
the incentive compatibility condition for the principal’s second-best problem.

If there exists (VPi
0 , αi , ξ Pi , ξ Ai ) satisfying equations (G.7) to (G.10), then the optimal

expected utility of the principal is VPi
0 and any other admissible choice of (ξ̂ Pi , ξ̂ Ai )

cannot result in a larger expected utility at time 0 for the principal. Hence we prove
the sufficiency. We leave the existence and uniqueness of (VPi

0 , αi (s)) to the following
Lemma G.4. ��

LEMMA G.4. Given (θ (s))0≤s≤1, there exists unique (VPi
0 , αi , ξ Pi , ξ Ai ) satisfying (G.8)

to (G.10). Moreover, the unique αi is equal to 0 in equilibrium, where 0 is an (N + 1)-vector
of zeros.
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Proof. Plugging equations (G.8) to (G.10) into (G.7), after a tedious computation, we
have (G.8) reduced to

(G.11)

R
(
W Ai

0 + W Pi
0

)+ D0 − V Ai = VPi
0 +

∫ 1

0
H0(θt)dt

+
∫ 1

0

[
H1 (θt) αi i

t +
∫ 1

0
q
(
αi i

t

)2]
dt −

∫ 1

0
αi

t d B̃
0
t

where q is a strictly positive constant (in fact, q = (δσu)/(2(1 + γAδσ 2
u ))), and H1(θ ) and

H0(θ ) are deterministic functions of θ and independent of αi . We only need to show that
there exists a unique pair of (VPi , αi

s) given any uniformly bounded {θs}0≤s≤1. Define
B′

t = B0
t − ∫ t

0 H1(θs) ds. From the boundedness of θs , we know that B′
t is a Brownian

motion under measure P′

dP′

d P
= exp

{
−1

2

∫ 1

0
H2

1 (θt) dt +
∫ 1

0
H1(θs)d B̃

0
t

}
.

Define

Kt = VPi
0 +

∫ t

0
q
(
αi i

s

)2
ds −

∫ t

0
αi

sd B̃
′
s .

Then K0 = VPi
0 , and by (G.11), K1 = R(W Ai

0 + W Pi
0 ) + D0 − V Ai (0) + ∫ 1

0 H0(θs)ds. Ap-
plying Ito’s formula, we have de−q Ks = qe−q Kt αi

t d B̃
′
t. Hence, e−q Kt is a martingale under

measure P′. Then, we have E [e−q K1 dP′
d P ] = e−qVPi

, which implies

VPi
0 = − 1

q
log
{

E0
[

exp
{
−1

2

∫ 1

0
H2

1 (θt) dt +
∫ 1

0
H1 (θt) d B̃

0
t

−q
[

R
(
W Ai

0 + W Pi
0

)+ D0 − V Ai
0 −

∫ 1

0
H0(θs)ds

]}]}
.

To see the uniqueness of αi
s , note that by the martingale representation theorem, there

exists a unique �t such that

e−q Kt = e−qVPi +
∫ t

0
�sdB

′
s = E

′
t[e

−q K1 ].

Since de−q Kt = qe−q Kt αi
t dB′

t, the uniqueness of �t implies that we must uniquely have

�t = αi
t qe−q Kt .

This also implies the uniqueness of αi
s . Thus, for any uniformly bounded {θt}, there exists

a unique pair of (V Pi , {αi
t }).

For the second part of the statement, we first conjecture that in equilibrium, such
unique αi

t is 0 for all i , and then show this conjecture is true. From the market equilibrium
condition,

∑
i (ξ

Ai
t + ξ Pi

t ) = 0, and from equations (G.8) to (G.10), we know θt is a
deterministic function of αt which we denote by h(αt). Then h(αt) = h(0) under the
conjecture. By (G.11), VPi

0 is given by

VPi = R
(
W Ai

0 + W Pi
0

)+ D0 − V Ai −
∫ 1

0
H0(h(0))ds.(G.12)
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Hence, VPi with αi
t = 0 exists. Moreover, when αi

t = 0, equations (G.8) to (G.10) imply
that optimal (ξ Pi

t , ξ Ai
t , μi

t) exist and are constant over time in equilibrium. That is, when
αi

t = 0, (VPi , ξ Pi
t , ξ Ai

t , μi
t) constitute a solution to necessary conditions in equations

(G.8) to (G.10). Since the solution has to be unique by Lemma G.4, we have αi
t = 0 in

equilibrium, i.e., our conjecture is verified to be true. ��

Finally, recall that given a contract Ci
1, the agent is only concerned with aggregate

risk position ξ Ai
t . Since ξ Ai

t = (�S
t )�π Ai

t + β i
t , there is a degree of freedom in choosing

optimal (π Ai
t , β i

t ) given optimal ξ Ai
t . Thus, without loss of generality, we may let βs be

constant over time. Then, the compensation (G.5) is simplified to

Ci
1 = V Ai − RW Ai

0 + δ

2
μ2

i + γA

2
‖ξ Ai‖2 − ξ Aiθ − (β i )�[�−1l − θ ] + β i B̃0

1,

which is identical to the linear compensation contract under our discrete-time setup.
To see this linearity result intuitively, let us suppose that the market prices of risks are

constant over time. Then the principal’s time 1 utility in continuous-time model becomes

Eμ
[− exp

{
W Pi

1 + Di − Ci
}]

= Eμ

[
− exp

{
W Pi

0 R +
∫ 1

0

(
π Pi

t

)�
�Sd B̃θ + Di − Ci

}]
,

= Eμ

[
− exp

{
W Pi

0 R +
∫ 1

0

(
π Pi

t

)�
�S(d B̃

μ∗
+ θdt

)+ Di − Ci

}]
.

The first equality utilizes the self-financing condition. Note that μ = μ∗ in equilibrium,
and that there are extra terms in the exponent of the utility, in addition to the Holmstrom
and Milgrom’s term Di − Ci . When θ is a constant vector, these extra terms are simply
an arithmetic Brownian motion. Then our principal’s problem basically turns into the
same problem as in Holmstrom and Milgrom except that the principal chooses not only
(μ, Ci ) but π Pi and implicitly π Ai . Here, π Pi affects both the drift and volatility of the
exponent, which is similar to the case of observable volatility analyzed in Sung (1995).
The exponent of agent’s utility can also be expressed in terms of a arithmetic Brownian
motion with choice variables (μ, π Ai ). Since π Ai is observable, the principal can choose
it for the agent. Thus, under the assumption of constant market prices of risks and stock
volatilities, our contracting problem turns out to be a variation of the model in Sung
(1995) and thus we have the linearity of optimal contract again.
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We consider a continuous-time framework featuring a central bank, private agents,
and a financial market. The central bank’s objective is to maximize a functional,
which measures the classical trade-off between output and inflation over time plus
income from the sales of inflation-indexed bonds minus payments for the liabilities
that the inflation-indexed bonds produce at maturity. Private agents are assumed to
have adaptive expectations. The financial market is modeled in continuous-time Black–
Scholes–Merton style and financial agents are averse against inflation risk, attaching
an inflation risk premium to nominal bonds. Following this route, we explain demand
for inflation-indexed securities on the financial market from a no-arbitrage assump-
tion and derive pricing formulas for inflation-linked bonds and calls, which lead to a
supply-demand equilibrium. Furthermore, we study the consequences that the sales
of inflation-indexed securities have on the observed inflation rate and price level. Sim-
ilar to the study of Walsh, we find that the inflationary bias is significantly reduced,
and hence that markets for inflation-indexed bonds provide a mechanism to reduce
inflationary bias and increase central bank’s credibility.

KEY WORDS: monetary policy, inflationary bias, mechanisms, inflation-indexed securities.

1. INTRODUCTION

The first one-billion pounds 2% inflation-indexed UK Treasury bond was issued at par
on March 27, 1981, maturing in 1996. Today, inflation-indexed gilts comprise 27% of UK
government gilts outstanding by market value. The United States and France followed
the British example in 1997 and 1998, respectively, and in many other countries, including
Australia, Sweden, and Canada, inflation-indexed securities are now traded.1

The financial literature on pricing of inflation-indexed securities generally takes
inflation as exogenously given, and applies standard Black–Scholes-type theory or
the Heath–Jarrow–Morton approach to term structure modeling to develop pricing
formulas; see, for example, Jarrow and Yilderim (2003). These models do not fully
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recognize the central bank’s role in issuing inflation-indexed securities and the feed-
back effects on the central bank’s optimal monetary policy. Dynamic models that focus
on the central bank’s trade-off between output and inflation costs without presence of
inflation-indexed securities have been developed in the economic literature, since Barro
and Gordon (1983a, b) and Kydland and Prescott (1977).

It has been recognized that governments can reduce their borrowing costs by issuing
inflation-indexed securities and in this way avoid paying a costly inflation risk premium.
Gong and Remolona (1996) use US data to measure the inflation risk premium, obtaining
a figure of 100–300 basis points for a 5-year bond and 50–150 basis points for a 10-year
bond. Similar observations are made by Campbell and Shiller (1996) and Campbell,
Shiller, and Viceira (2009).

Further, it is generally agreed that the existence of indexed debt will help a government
to stabilize its real financing cost and thereby reduce the need for tax changes. Barro (1996)
argues that for an economy with no random fluctuations in government financing, the
ideal form of government debt would be inflation-indexed perpetual bonds, which would
provide a uniform stream of real coupons ad infinitum.

Finally, it has been recognized that the existence of indexed debt removes one of the
incentives for a government to adopt inflationary policies, namely, the possibility of
“cheating” the lender and reducing the real value of its outstanding liabilities. Indeed,
Hanke and Walters (1994) claim that one of the reasons why the US Treasury was rather
slow in issuing indexed bonds was to keep open the possibility of reducing the real value
of the Federal debt via inflation.2

The question of what effect inflation-indexed securities have on the trade-off between
inflation and output under a New Classical Phillips curve approach, however, seems to
be completely missing from the literature. The objective in this paper is to present and
analyze a rather simple framework, which captures the effect of introducing inflation-
indexed securities within a classical-game-theoretic framework featuring a central bank
and private agents, where the trade-off between output and inflation is characterized by a
New Classical Phillips curve. A motivation for our work has been given by Walsh (1995),
who suggested that in order to escape the socially inefficient high inflation equilibrium
within a repeated Barro and Gordon type framework, the central bank should be paid a
transfer payment by the government after each round. Walsh constructs the payment in
such a way, as to make it optimal for the central bank to only respond to the economy’s
shocks. He shows that the transfer payment p(π ) = t0 − λkπ gives the central bank an
appropriate incentive.

In our opinion, it is difficult to implement Walsh’s mechanism in reality. A binary
version of Walsh’s mechanism, which releases a central banker from his post if an inflation
target is not reached, may be implementable, but would likely be far from optimal. In
addition, we find that with regards to central bank independence, transfer payments from
the government to the central bank could be seen in a critical light. In this paper, we show
that markets for inflation-indexed securities can effectively fill the gap for a functional
and practically implementable Walsh-like mechanism.3 We show how inflation-indexed

2A different aspect of cheating speculation has been pointed out by Deacon et al. “An unscrupulous
finance minister might be tempted to shift the fiscal burden from sales taxes to income tax prior to an
indexed bond’s redemption date, solely to induce a fall in the CPI and thereby reduce the government’s
borrowing costs.”

3It follows from the previous paragraphs that in many countries, this mechanism is already in place.
However, its “mechanics” are not well understood and there seems to be plenty of scope in optimizing the
mechanism. This paper is a first step toward a better understanding of it.
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securities sold by the central bank on the financial market can create a similar transfer
payment as Walsh suggests and that the introduction of a market for inflation-indexed
securities to the classical modeling framework leaves the central bank, the private agents,
and the financial market participants better off. A Pareto improvement is obtained.
To make this analysis more interesting and to better meld with the existing financial
literature, we choose a continuous-time Black–Scholes–Merton-like framework in which
shocks are produced by a white noise process, i.e., the increments of a Brownian motion.
This enables us to apply classical stochastic optimal control theory and for a given
number N of inflation-indexed securities of a specific type issued, to derive analytic
formulas for the central bank’s price p(N), the central bank’s optimal monetary policy
π (N), and the private agent’s expected inflation level π e(N). The number N∗ of inflation-
indexed securities actually issued by the central bank is then determined from fitting the
central banks price to the arbitrage free price on the financial market. By doing this, it is
guaranteed that supply for inflation-indexed securities equals demand. As such a partial
equilibrium (p(N∗), N∗) is obtained.

We assume that private agents’ expectations follow an adaptive stochastic dynamics.
An alternative setup, featuring rational expectations but a dynamically more constrained
central bank, is presented in Ewald and Geissler (2012). In the case presented here, the
central bank is able to use incoming information at any time to adjust the inflation rate
fully dynamically, and given the limited speed at which the private agents can process new
incoming information, and the apparent information advantage of the central bank, we
feel that an adaptive expectations approach is justified and appropriate; see, for example,
Evans and Honkapohja (2001). At least heuristically, we can interpret the adaptive
dynamics as rational expectation obtained from a filtering argument, with private agents
having partial information.4

Adding to the financial literature, we note that to the best of our knowledge, this paper
presents the first pricing formulas for inflation-indexed securities in which monetary
policy is integrated.5

The remainder of this paper is organized as follows. The theoretical model is set up
and solved throughout Sections 2–6 while in Section 7, we present a number of numerical
results. The main conclusions are summarized in Section 8.

2. THE CENTRAL BANK AND ILBs

The New Classical Phillips Curve approach provides the relationship

yt = yn
t + a

(
πt − π e

t

)
(2.1)

among real output growth yt, natural real output growth yn
t , actual inflation πt, and

expected inflation π e
t . The central bank is tempted to increase inflation πt in order to

generate more output in the economy. In a first-order approximation, the central bank’s
accumulated gains (in real terms) over the time interval [t, T] following the policy πt are

4In discrete time, Pearlman, Currie, Levine (1986) provide a rigorous analysis that supports this inter-
pretation; however, no results for the continuous-time Brownian-motion-based case seem to appear in the
literature.

5The role of interest rates futures and swap markets in the context of monetary policy and financial stability
has been discussed in Driffil et al. (2006). These authors also start from a New Classical Phillips Curve
approach, but the model developed from then is substantially different. The type of securities considered is
different as well.
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given by

Yn
t ·

∫ T

t
a
(
πu − π e

u

)
du,

where Yn
t is (absolute) natural real output. In the following, we assume for simplicity

that Yn
t is constant. Alternatively, one can think of the central bank optimizing relative

to natural output. For notational simplicity and in order to avoid introducing an extra
parameter, we also keep writing a for the expression Yn

t · a, i.e., by default, we multiply
the Phillips curve slope parameter with the natural real output at a reference time.

On the other hand, high inflation causes social costs, which we assume to be quadratic
of type λ̃

2 π2
t . These costs are measured in real monetary terms too. The central bank’s

instantaneous benefit function is then derived from (2.1) subtracting social costs:

a
(
πt − π e

t

) − λ̃

2
π2

t = a
(

πt − π e
t − λ

2
π2

t

)
,(2.2)

with λ := λ̃
a . This type of benefit function is used in many of the now classical models,

see Barro and Gordon (1983a,b) for example.6 Note that in our setup, expression (2.2)
can be identified with an instantaneous monetary payoff in real terms. We take this point
of view in the remainder of this paper.

We assume that private agents build their expectation on the actual inflation rate,
following an adaptive learning process

dπ e
t = γ

(
πt − π e

t

)
dt,(2.3)

where the parameter γ is a measure for the speed of private agents adjustment from
expected inflation to actual inflation. Models of this form are well known in the literature
of learning and have been used in Phelps (1967), for example. For a general discussion,
see also Evans and Honkapohja (2001). More precisely, we assume that actual inflation
is given by

πt = ut + σ Ẇt,(2.4)

where ut is the inflation rate chosen by the central bank and Ẇt is a generalized white
noise process, i.e., the continuous analogue to an i.i.d. sequence of independent normal
distributed random variables in a discrete time model. The generalized white noise process
Ẇt satisfies the relationship

∫ t
0 Ẇsds = Wt with Wt a standard Brownian motion, which

will lead us into a Brownian-motion-based framework.7 Using this, substitution of (2.4)
into (2.3) leads to

dπ e
t = γ

(
ut − π e

t

)
dt + γ σdWt.(2.5)

The stochastic learning dynamics (2.5) may also be interpreted as the result of a
filtering process and interpreted in this way, it is related to rational expectations under
partial information. Within a discrete time framework, Pearlman, Currie, and Levine

6It is still used in much of the more recent literature, where (2.2) is interpreted as a linear quadratic
approximation of the equilibrium conditions under a deterministic steady state; compare Driffil et al.
(2006).

7See, for example, Oksendal (2000, p. 21) or Hida (1980).
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(1986) show how a discrete time version of (2.5) can be obtained from the assumption
of rational expectations under partial information. In continuous time under Brownian
uncertainty, this is far more complex, and up to this day not fully understood. As
Yannacopoulos (2008) demonstrates, the mathematical correct setup for continuous-time
rational expectation models under Brownian uncertainty is the framework of forward–
backward stochastic differential equations (FBSDEs). The problem considered in the
current paper, however, also involves a stochastic optimal control problem, an element
that is missing in Yannacopoulos (2008), and that significantly complicates things here.
The framework likely to evolve from a full rational expectation assumption is that of a
stochastic control problem for FBSDEs. It is not clear whether analytic solutions as in
the current paper could be obtained from such an assumption. We leave this interesting
problem open for future research.

For γ → ∞, the dynamics (2.5) formally approaches rational expectations8 and further
for finite γ , we obtain that limt→∞ E(π e

t ) = limt→∞ E(ut) if any of the two limits exist.
Additionally, we can assume that π e

0 = u0, i.e., we have rational expectations for the initial
inflation estimate. Taking all of the above into account, the proposed model is hence
not too far away from a full rational expectation model. Finally, Ewald and Geissler
(2012) present a full rational expectation framework for the case where the central bank’s
inflation policy is dynamically constrained and inflation-linked bonds (ILBs) are replaced
by inflation-linked calls. The results obtained there confirm the results obtained in the
following sections of the current paper under a full rational expectation hypothesis.

We note that the variance of Ẇt is infinite, and therefore in order to guarantee that
the instantaneous payoff function (2.2) has finite expectation, we have to replace π2

t ,
which would have been a more natural candidate otherwise, with u2

t . This is justified,
noticing that the infinite variance part of πt does not depend on ut and would affect the
instantaneous payoff functional (2.2) always in the same way, independent of what value
for ut is chosen. Hence, we do not really change the central bank’s optimization problem
by replacing π2

t with u2
t .9

We denote with r the central bank’s time preference parameter for measuring future
against current objectives. Note that, in general, r does not have to coincide with the
nominal market interest rate, which we will later denote by ri .

8Note though that an equilibrium obtained under (2.5) does not necessarily converge to a rational
expectation equilibrium, if γ → ∞.

9More precisely, for a small but not infinitesimally small time interval �t, in approximation, we have
πt = ut + σ �Wt

�t and substitution in (2.2) as well as taking expectations gives

E

(
a

(
πt − π e

t − λ

2
π2

t

))
= aE

(
ut + σ

�Wt

�t
− π e

t − λ

2

(
ut + σ

�Wt

�t

)2
)

= aE

(
ut − π e

t − λ

2
u2

t

)
+ aσE

(
�Wt

�t

)

− aσλE

(
ut

�Wt

�t

)
− aσ 2 λ

2
E

((
�Wt

�t

)2
)

= E

(
a

(
ut − π e

t − λ

2
u2

t

))
− aσ 2 λ

2
1

�t
,

as E ( �Wt
�t ) = 0 and E (ut

�Wt
�t ) = E (utEt ( �Wt

�t )) = 0. While the second term in the last line of equations
above tends to infinity for �t → 0, for each fixed �t, it is finite and independent of ut and hence does not
affect the optimization.
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Corresponding to the inflation rate πt is the price level Pt, which follows the dynamic

d Pt = Ptπtdt = Pt(utdt + σ dW t),(2.6)

with P0 = 1, i.e., the initial price level is normalized to 1. In this paper, we consider the
following inflation-indexed securities:

DEFINITION 2.1. An ILB with maturity time T issued at time s ∈ [0, T] is a financial
contract that pays off PT

Ps
Dollar at time T.

The contract in Definition 2.1 is idealized. Products traded in reality feature a slightly
more complicated payoff structure. For example, the final payment at maturity of a
Treasury Inflation Protected Security (TIPS) issued in the United States corresponds
to an inflation-linked call,10 while the payments prior to maturity, i.e., the coupons,
correspond to ILBs.11 For further details on the specifics of these contracts, we refer to
the website of the US Treasury.12 In terms of pricing of TIPS, it is standard to “strip” the
contracts into its individual components (i.e., bonds and calls) and price each of them
individually; see, for example, Jarrow and Yilderim (2003). Hence, treating ILBs and calls
as individual entities bears some justification. For a comprehensive overview about what
contracts are traded, we refer to Deacon et al. (2004).

Assuming that the central bank sells a number N of ILBs on the primary market,
which for simplicity we assume are all of the same maturity T and issued at the same
time s ∈ [0, T], the central bank enters a liability in terms of a dollar payment of N · PT

Ps

at time T. At time s, any of the individual ILBs can be structured into a zero coupon
bond Bs with face value 1 dollar and the inflation compensation PT−Ps

Ps
. We assume that

the market interest rate ri is deterministic, and hence an ordinary zero coupon bond is
valued at Bs = e−ri (T−s). We further assume that the central bank buys these zero coupon
bonds from private banks, which will take them out of the balance sheet of the central
bank. The inflation compensation of PT−Ps

Ps
Dollar, however, remains as the central bank’s

liability.
The central bank optimizes in real terms with reference to time s, which is when the

central bank makes the decision to sell a number N of ILBs on the market. The liability
in real terms with reference to time s for the central bank from selling a number N of
ILBs then becomes

−N
(

PT − Ps

Ps

)
·
(

PT

Ps

)−1

= −N
PT − Ps

PT
= −N

(
1 − Ps

PT

)
.(2.7)

The central bank’s instantaneous real term payoff (which is also in reference to time s)
is given by (2.2). This has to be accumulated over time and measured against the terminal
real term payoff from above. Its objective in this setup can hence be formulated as

10Which like a European call option is capped from below, keeping the upside potential.
11Other countries including the United Kingdom, Germany, France, Australia, and Sweden sell similar

products.
12Website of the US treasury at http://www.treasurydirect.gov/indiv/research/indepth/tips/res_tips_

rates.htm.
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V̂(t, π e, P; N) := max
uv

E

(
a

∫ T

t
e−r (v−t)

(
uv − π e

v − λ

2
u2

v

)
dv

− e−r (T−t) N
(

1 − Ps

PT

)∣∣∣∣ π e
t = π e, Pt = P

)
(2.8)

subject to (2.5) and (2.6). We assume for the moment that the number of ILBs N, which
appears as a parameter in the value function (2.8), is given. Nevertheless, in the following
sections, N will become a choice variable.13 Note that the case N = 0 corresponds to the
case where no ILBs are sold. Also, note that the discount factor e−r (T−t) in (2.8) comes
from the central bank’s time preference, and is not a priori a financial discount factor.
Mathematically, problem (2.8) represents a stochastic optimal control problem, which
we will approach by classical Hamilton–Jacobi–Bellman theory. This, however, is only
possible if t ≥ s as otherwise the stochastic state variable P will have to be evaluated at
two different times in the future, s and T, a constellation that does not adhere to the
standard HJB-framework and would be more difficult to handle. Nevertheless, to solve
the central bank’s decision problem at time s, we may assume without loss of generality
that t ≥ s, and hence Ps is a known constant at time t.

In order to obtain a compact analytical solution, we make the following simplifying
assumption:

1 − Ps

PT
≈ log

(
PT

Ps

)
.(2.9)

This approximation is valid for reasonable inflation rates of up to 8%. Using this
approximation, the optimal control problem of the central bank becomes

V(t, π e, P; N) := max
uv

E

(
a

∫ T

t
e−r (v−t)

(
uv − π e

v − λ

2
u2

v

)
dv(2.10)

− e−r (T−t) N log
(

PT

Ps

)∣∣∣∣ π e
t = π e, Pt = P

)

subject to (2.5) and (2.6). Note that V is still in terms of real money at time s and that
eventually we will be concerned with evaluating (2.10) at time t = s. In addition, note
that V(t, π e, P; 0) = V̂(t, π e, P; 0) and the quality of the approximation also depends on
the number N of ILBs sold.

For N > 0, in general, we have that V(s, π e, P; N) 	= V(s, π e, P; 0). Clearly, the central
bank would want to be appropriately compensated, and therefore charge a price for the
ILBs reflecting the difference V(s, π e, P; 0) − V(s, π e, P; N) as well as the value of the
zero coupon bond component. As V is in real terms, this then has to be converted
via the actual price level Ps at time s into nominal terms. We follow up on this in
Section 4 after discussing the effect of selling ILBs on the central banks optimal monetary
policy.

13To emphasize that N is not a state variable, we have separated it from the other variables with a
semicolon.
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3. OPTIMAL MONETARY POLICY WITH ILBs

In this section, we attempt to solve the central bank’s stochastic optimal control problem
(2.10). For convenience, we divide the value function V from (2.10) by the parameter a:
(3.1)

Ṽ(t, π e, P; N) := 1
a

V(t, π e, P, N)

= max
uv

E

(∫ T

t
e−r (v−t)

(
uv − π e

v − λ

2
u2

v

)
dv − e−r T N

a
log

(
PT

Ps

)∣∣∣∣ π e
t = π e, Pt = P

)

subject to (2.5) and (2.6). The Hamilton–Jacobi–Bellman equation is then given by

0 = max
u

(
u − π e − λ

2
u2 + u

(
γ Ṽπ e + ṼP P

) − γ Ṽπ e π e
)

+ 1
2
σ 2 (

ṼPP P2 + Ṽπ eπ e γ 2 + 2Ṽπ e P Pγ
) + Ṽt − r Ṽ,

and the optimal policy u∗ is obtained from the first-order condition

u∗ = 1
λ

(1 + γ Ṽπ e + ṼP P).

Substituting this into the PDE for the value function, we get

0 = 1
λ

(1 + γ Ṽπ e + ṼP P) − π e − 1
2λ

(1 + γ Ṽπ e + ṼP P)2(3.2)

+ 1
λ

(1 + γ Ṽπ e + ṼP P)(γ Ṽπ e + ṼP P)

− γ Ṽπ e π e + 1
2
σ 2(ṼPP P2 + Ṽπ eπ e γ 2 + 2Ṽπ e P Pγ ) + Ṽt − r Ṽ

= 1
2λ

(1 + γ Ṽπ e + ṼP P)2 − π e(1 + γ Ṽπ e )

+ 1
2
σ 2(ṼPP P2 + Ṽπ eπ e γ 2 + 2Ṽπ e P Pγ ) + Ṽt − r Ṽ.

The value function Ṽ has to satisfy (3.2) subject to the terminal condition

Ṽ(T, π e, P; N) = − N
a

log
(

P
Ps

)
.(3.3)

It is not hard to verify that a solution is given by

Ṽ(t, π e, P; N) = − N
a

log
(

P
Ps

)
e−r (T−t) + Atπ

e + Ct + Dt(N)(3.4)

with

At = 1
γ + r

(e−(γ+r )(T−t) − 1)(3.5)
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Ct = 1
λ(γ + r )2

[ r
2

(1 + e−r (T−t)) − re−(γ+r )(T−t)(3.6)

+ γ 2

2(2γ + r )
(e−r (T−t) − e−2(γ+r )(T−t))

]

Dt(N) = e−r (T−t)
[ N2

2a2λr
(1 − e−r (T−t)) + Nσ 2

2a
(T − t)(3.7)

− N
aλ(γ + r )2

(r (γ + r )(T − t) + γ (1 − e−(γ+r )(T−t)))].

For the optimal monetary policy given that N ILBs are sold, we therefore conclude

u∗
t (N) = 1

λ(γ + r )
· (γ e−(γ+r )(T−t) + r ) − Ne−r (T−t)

aλ
,(3.8)

for t ≥ s. Note that we do not look at how optimal monetary policy is affected before the
sale takes place, in other words, when the central bank has the (real) option to sell ILBs
at some given point in the future. We consider this and related problems in future work.

The case N = 0 corresponds to the case where the central bank does not sell any
ILBs; hence, we clearly see from (3.8) that the sale of ILBs causes the central bank to
aim for lower inflation. It is also noteworthy to say that the optimal strategy above is
deterministic and does not depend on feedback from π e

t or Pt, no matter whether ILBs
are sold or not. On the other hand, it crucially depends on the learning rate γ .

In the following, we denote the corresponding processes of inflation, expected infla-
tion, price level, etc., under the optimal monetary policy u∗

t with the superscript ∗. For
particular levels π e

s and Ps at time s, we have14

π∗
t (N) = 1

λ(γ + r )
+ (γ e−(γ+r )(T−t) + r ) − Ne−r (T−t)

aλ
+ σ Ẇt,(3.9)

(3.10)

π e∗
t (N) = π e

s e−γ (t−s) + γ 2e−(γ+r )Te−γ (t−s)

λ(γ + r )(2γ + r )
(e(2γ+r )t − e(2γ+r )s) + r

λ(γ + r )
(eγ t − eγ s)

− Nγ e−r Teγ (t−s)

aλ(r − γ )
(e(r−γ )t − e(r−γ )s) + γ σe−γ (t−s)

∫ t

s
eγ νdWν,

and

log P∗
t (N) = log Ps +

∫ t

s
πνdν − 1

2
σ 2(t − s)

= log Ps + γ

λ(γ + r )2
(e−(γ+r )(T−t) − e−(γ+r )(T−s)) + r (t − s)

λ(γ + r )

− N
aλr

(e−r (T−t) − e−r (T−s)) − 1
2
σ 2(t − s) + σ (Wt − Ws),(3.11)

with s ≤ t ≤ T.

14For r = γ , the expression Nγ e−r T eγ (t−s)

aλ(r−γ ) (e(r−γ )t − e(r−γ )s ) in π e∗
t (N) needs to be replaced by

Nγ e−r T eγ (t−s)

a (t − s).
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We conclude from (3.9), (3.10), and (3.11) that inflation, expected inflation, and price
level are all lower, when the central bank sells ILBs. Note that this inflation reduction
does not come at a cost to the central bank, as long as it charges a real price for the ILBs’
inflation compensation component that is larger than V(s,π e,Ps ,0)−V(s,π e,Ps ,N)

N per ILB. The
actual amount N of ILBs issued by the central bank will be determined in Section 6 from
a supply-demand equilibrium. To do so, we first consider the supply side and the demand
side individually in the next two sections.

4. CENTRAL BANK’S PRICING OF ILBs

Within the setup developed in the previous sections, we now derive a pricing formula for
ILBs, when demand N is given. This relationship will provide us with the supply curve
for ILBs. Let us first note that

Ṽ(t, π e, P; N) − Ṽ(t, π e, P; 0) = Dt(N) − N
a

e−r (T−t) log
(

P
Ps

)
,

with Dt(N) as defined in (3.7) and hence at time t = s when the current price level is
P = Ps

Ṽ(s, π e, Ps ; N) − Ṽ(s, π e, Ps ; 0) = Ds(N).(4.1)

To exclude expected deflation, which can hardly be a central bank’s objective, we need

log

(
Es

(
P∗

T(N)
)

Ps

)
≥ 0.(4.2)

From (3.11), it can be easily verified that

log

(
Es

(
P∗

T(N)
)

Ps

)
= γ

λ(γ + r )2
(1 − e−(γ+r )(T−s)) + r (T − s)

λ(γ + r )
− N

aλr
(1 − e−r (T−s)),

and therefore, we require

0 ≤ N ≤ ar
(1 − e−r (T−s))(γ + r )2

(r (γ + r )(T − s) + γ (1 − e−(γ+r )(T−s))).(4.3)

This is a condition on the maximum number of ILBs that the central bank can issue,
without intentionally causing deflation. We assume that condition (4.3) holds for the
remainder of this paper.

The loss in real terms per ILB issued by the central bank is given by

V(s, π e, P; 0) − V(s, π e, P; N)
N

= −a
Ds(N)

N
,

and therefore, the central bank’s (indifference) price in terms of nominal money at time
s for this component yields

Ps
V(s, π e, Ps, 0) − V(s, π e, Ps, N)

N
= −Ps

(
a

Ds(N)
N

)
.(4.4)

Expression (4.4) can be positive or negative. On top of this, however, the central bank
has to charge the price of the zero coupon bond component, leading to a minimum
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acceptable price for one ILB, given that N ILBs are issued by the central bank, of

ps(N) = e−ri (T−s) − Ps

(
a

Ds(N)
N

)
.

In reality, inflation-indexed securities are mostly sold in the form of auctions, single or
multiple price, where the central bank is setting a minimum acceptable price as above;
compare Deacon et al. (2004) or Price (1997). An auction framework in the context of
this paper, however, would turn out to be far too complex and difficult to handle, which
is why we assume here that the central bank earns normal profits only.15 The expression
for ps(N) above can be easily computed with help of equation (3.7), leading to

(4.5)

ps(N) = Ps

[
e−r (T−s)

(
1

λ(γ + r )2
[r (γ + r )(T − s) + γ (1 − e−(γ+r )(T−s))] − σ 2

2
(T − s)

)

− Ne−r (T−s)

2aλr
(1 − e−r (T−s))

]
+ e−ri (T−t).

The price of one ILB is therefore an affine linear function that is decreasing in the
number N of ILBs issued. The expression (4.5) can also be interpreted as the central
banks average cost curve. It is noteworthy that the price derived in (4.5) does not depend
on the current (expected) inflation rate. The reason for this is that in (3.4), the factor At

does not depend on N and hence cancels out in (2.2). However, it crucially depends on
private agents learning rate γ . This is intuitively clear since this parameter rather than
the actual level of expected inflation has an impact on the central bank’s policy. The price
also depends on the price level Ps at the time of the sale.

5. THE FINANCIAL MARKET

In the previous section, we have seen how the central bank would set the price for an ILB
depending on the number of ILBs issued. We now look at the demand side and consider
what agents acting on financial markets would be prepared to pay for the ILBs. To do so,
we need to set up a model for an underlying financial market which we assume to exist,
no matter whether ILBs are traded or not and sits on top of what has been introduced
in Section 2

We assume that nominal bonds are traded as primary assets and financial agents are
averse against inflation risk. Due to the stochastic price level (2.6), nominal bonds have
risky real returns and therefore carry an inflation risk premium. Let ri denote the nominal
interest rate and Bt the nominal value of the nominal bond, then the financial market in
primary assets is described by the two dynamics

d Bt = Btri dt,(5.1)

d Pt = Pt(utdt + σdWt).

The inflation risk premium I RP is then characterized by the relationship

I RP = Et

(
d(Bt/Pt)

Bt/Pt

)
− real return of ILB.(5.2)

15It could be argued as well that any excessive supernormal profits for the central bank resulting from
excessively high bids in single price auctions, from the perspective of the central bank, are random, and
hence cannot be accounted for strategically. In particular, the central bank does not act like a monopolist.
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Empirically, this inflation risk premium has been determined by Gong and Remolona
(1996) as well as Campbell et al. (2009) and lies in the range of 50–150 basis points for
5.1 year bonds. We will determine the price of the ILBs in a way that is consistent with
this.

Note that since the price level Pt is not a tradable asset, (5.1) as such describes an
incomplete market. Without ILBs, inflation risk cannot be fully hedged, which given
that financial agents are averse toward inflation risk is in principle enough to explain the
demand for ILBs. In an arbitrage-free framework, the actual level of ILBs demanded is
then determined by the equivalent martingale measure16 that financial agents impose. As
the market is incomplete, there is no unique such measure, but as we will see, a choice
of an equivalent martingale measure will correspond to a choice of an inflation risk
premium. For this, let

W̃t = Wt + θ t

be a Brownian motion under the chosen equivalent martingale measure P̃.17 Then,

d Pt = Pt((ut − σθ )dt + σdW̃t).

Given optimal behavior of the central bank when N ILBs are sold, the price-level process
(2.6) under the pricing measure appears as

P∗
T(N) = Pse

∫ T
s (u∗

v (N)−σθ− 1
2 σ 2)dv+∫ T

s σdW̃v .

Hence, denoting with Ẽs the expectation under the pricing measure P̃, conditioned on
information available at time s, the arbitrage-free price of one ILB sold at time s is given
by

p̃s(N) = e−ri (T−s)
Ẽs(P∗

T(N)) = Pse−ri (T−s)
Ẽs

(
e
∫ T

s (u∗
v (N)−σθ− 1

2 σ 2)dv+∫ T
s σdW̃v

)
= Pse−(ri +σθ )(T−s)e

∫ T
s u∗

v (N)dv .

Note that we used here that the optimal policy u∗ is deterministic, see (3.8). The integral
in the exponent can be easily computed as∫ T

s
u∗

v (N)dv = 1
λ(γ + r )2

[r (γ + r )(T − s) + γ (1 − e−(γ+r )(T−s))]

− N
aλr

(1 − e−r (T−s)).

The last formula covers the demand side, once the inflation risk premium is identified.
It is not difficult now to show that the (expected) real returns of the nominal bond resp.
the ILB are given by

Et

(
d(Bt/Pt)

Bt/Pt

)
= ri − u∗

t (N) + σ 2,

d(pt(N)/Pt)
(pt(N)/Pt)

= ri − u∗
t (N) + σθ,

16In other words, the pricing kernel.
17The measure P̃ or more precisely its density is obtained by the so-called Girsanov transformation.
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and therefore by using (5.2) that the inflation risk premium is given by

IRP = σ 2 − σθ.(5.3)

Adding ILBs with the price functional above completes the financial market, which
then guarantees that the secondary market is in a supply-demand equilibrium, compare
Karatzas and Shreve (1998, corollary 5.4, p. 173)18 and Karatzas (1997, proposition 3.4.1,
p. 65).

We now have formulas for the central bank’s price ps(N) (supply side) as well as the
private agent’s price p̃s(N) (demand side) and are ready to investigate for what N market
equilibrium in the primary market for ILBs is obtained, i.e., pt(N) = p̃t(N).

6. EQUILIBRIUM IN THE MARKET FOR ILBs

Concluding from the previous two sections, there will be excess demand from the private
sector for ILBs as long as ps(N) ≤ p̃s(N). The latter is equivalent to(

e−ri (T−s) − a Ps
Ds(N)

N

)
≤ e−ri (T−s)

Ẽs P∗
T(N)

= e−ri (T−s)e−σ
μ−ri
σS

(T−s)
Es P∗

T(N),

which, in turn, is equivalent to

0 ≤ e−ri (T−s)(
Ẽs P∗

T(N) − 1
) + Ps

(
aDs(N)

N

)
.(6.1)

Previously, we have seen that Ẽs P∗
T(N) = Pse

∫ T
s u∗

v (N)−σθdv and∫ T

s
u∗

v (N)dv = ηT−s − xT−s,(6.2)

with

ηT−s := 1
λ(γ + r )2

[r (γ + r )(T − s) + γ (1 − e−(γ+r )(T−s))]

xT−s := N
aλr

(1 − e−r (T−s)).

Further using (2.7) and the notation of ηT−s and xT−s introduced above, we can write

a
Ds(N)

N
= e−r (T−s)

[
1
2

xT−s + σ 2

2
(T − s) − ηT−s

]
,

and hence equality in equation (6.1) is equivalent to

(6.3)

0 = Pse−(ri +σρ)(T−s)eηT−s e−xT−s − e−ri (T−s) + Pse−r (T−s)
(

1
2

xT−s + σ 2

2
(T − s) − ηT−s

)
.

18First Edition, Chapter 4: Equilibrium in a Complete Market.
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We write (6.3) as

0 = e−xT−s + bxT−s − c,(6.4)

with

b = e−r (T−s)

2eηT−s e−(ri +σρ)(T−s)
,

c = 1
eηT−s e−(ri +σρ)(T−s)

[
e−ri (T−s)

Ps
+ e−r (T−s)

(
ηT−s − σ 2

2
(T − s)

)]
.

A solution of equation (6.4) is then given by

x1,2 = c
b

+ W

(
−e− c

b

b

)
= 2

Ps
e(r−ri )(T−s) + 2ηT−s − σ 2(T − s)(6.5)

+ W
(−2eηT−s e(r−ri −σρ)(T−s)eσ 2(T−s)− 2

Ps
e(r−ri )(T−s)−2ηT−s

)
,

where W denotes the Lambert W-function; see Abramowitz and Stegun (1965). The
subindices in x1,2 indicate that there are possibly two solutions. Mathematically, the
reason for this is that for arguments − exp(−1) < x < 0, the Lambert function delivers
two values instead of one. The two possible values for x correspond to two possible
values for N via the relationship − N

aλr (1 − e−r (T−s)) = x introduced earlier. We argue in
the following that economically, only the smaller of the two possible values is relevant.
For this, let f (x) denote the right-hand side of (6.4). Obviously, f is a convex function in
x with exactly one local minimum which we denote with x∗. Hence, there are solutions to
(6.4) if and only if f (x∗) ≤ 0. Furthermore, f is obviously increasing in x for all x ≥ x∗

and decreasing for all x ≤ x∗. If this is the case, let x1 ≤ x∗ ≤ x2 denote the roots of f
as given above. On the other hand (as seen before), there is always demand if f (x) ≥ 0
and hence once x ≥ x2 for any corresponding N, there will always be demand. However,
there will be no demand if N is such that x1 < x < x2, while there will be demand if
x ≤ x1. In that sense, the central bank can start issuing ILBs until N is such that x = x1

and a locally stable equilibrium is attained—i.e., as long as N does not jump to x = x2,
the bank cannot issue more ILBs. From this analysis, we conclude the following:

PROPOSITION 6.1. Let us denote with x1 the smaller of the two values in equation (3.5).
If x1 > 0, then the equilibrium quantity of ILBs (if issued at time s) is given by

N∗ = aλr
(1 − e−r T)

[
2
Ps

e(r−ri )(T−s) + 2ηT−s − σ 2(T − s)(6.6)

+ W
(−2eηT−s e(r−ri −σρ)(T−s)eσ 2(T−s)− 2

Ps
e(r−ri )(T−s)−2ηT−s

)]
,

where the value of the Lambert function is chosen as the smaller of the possibly two values.
The equilibrium price is determined by equation (4.5) as

ps(N∗) = Pse−(ri +σθ )(T−s)+ηT−s−xT−s .(6.7)

In general, it is not guaranteed that x1 ≥ 0. This depends on the parameters—it also
depends on the time to maturity T, which suggests that the central bank would need to
dynamically control the ILB supply. Note that while in our analysis, the time s at which
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the central bank can issue ILBs is arbitrary, the central bank can issue ILBs only once.
This, of course, does not mean that trade of ILBs terminates after the central bank has
issued the ILBs. To the contrary, ILBs will be traded on the secondary market among
private agents and priced within the arbitrage-free framework developed in Section 5.
These trades, however, will not feed back into inflation, and therefore do not affect
monetary policy.19 In an extension of the model presented here, one could, however,
allow the central bank to issue ILBs at different times consecutively and, in fact, let the
central bank choose these times. We leave this far more complicated analysis for future
research.

Compared to the classical case (i.e., N = 0), the equilibrium with ILBs features lower
inflation levels (equations (3.9) and (3.10)), while the central bank is fully compen-
sated (in real terms) through the income from the sales of ILBs (equation (4.4)). As
there is demand for ILBs on the financial market (i.e., p̃s(N) > 0), we observe that all
three parties, i.e., central bank, private agents, and financial agents, benefit from the
existence of a market for ILBs and that, in fact, a Pareto improvement as compared to
the case without a market for ILBs is obtained.

7. NUMERICAL RESULTS

Figure 7.1 shows the US Consumer Price Index (CPI-U), monthly from January 2009
until December 2011. From these data, we estimated the annual volatility of the price
level as σ = 0.0119. Assuming a nominal interest rate of ri = 0.03 and θ = −0.41, we
obtain an inflation risk premium of 50 basis points, comparing well with Gong and
Remolona (1996) and Campbell et al. (2009).

In order to compute the optimal inflation policy for the central bank and in conclusion
determine the equilibrium price and quantity of ILBs traded on the market, we choose
the following set of parameters:20 λ = 20, a = 1011,21 r = 0.1, and γ = 0.1. We are
considering ILBs, maturing at time T = 10 (years), which are sold by the central bank at
a time s ∈ [0, T]. For ease of notation, the price level at reference time s is normalized to
one. The following Figure 7.2 shows the central banks’ optimal inflation policy over the
10-year time period, after issuing the quantity N of ILBs at time s = 0.

We can clearly see that with an increasing quantity N of ILBs issued, the optimal
inflation rate is reduced. This effect is less prominent at the beginning of the period, from

19This does not mean that the secondary private market for inflation-indexed securities should be ignored
in general, neither has it been here. Financial intermediaries provide an essential service to the public in
selling inflation-indexed products. In fact, in the United Kingdom, the 1995 Pensions Act requires defined
benefit pension schemes to index pensions entitlements to retail price index inflation. These services are
indirectly accounted for in our model via the ILB pricing formulas (4.4) and (6.3), which prices inflation
risk, and hence also these services. Note, further, that most secondary issuers of inflation-indexed securities
buy these from the central bank in the first place. Quoting Deacon et al. (2004, p. 69): “Wojnilower (1997)
argues that the general lack of private sector issuance is because no company can make its indexing promise
credible; only governments can guarantee to be able to honor such promises.” We argue therefore that any
feedback effects from private sales of inflation-indexed securities on the central banks monetary policy can
only be marginally.

20See Section 2 for their interpretation.
21Note that the parameter a in our setup is the product of the slope of the Phillips curve and natural

real output. The slope of the New Keynesian Phillips Curve has been estimated in Schorfheide (2008) to be
in the range of 0.005–0.135, while UK GDP in 2011 lies at about 2.25 × 1012 in purchasing power parity
adjusted US Dollars. Picking a slope of 0.05, say, and multiplying it with 2.25 × 1012 will then give a value
of a in our model of about 1011.
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FIGURE 7.1. CPI-U, monthly from 2009 to 2011.

FIGURE 7.2. Optimal inflation policy u∗
t (N) over time t, given that N ILBs have been

sold.

about 3% to 1% at time t = 0 (in the case that N = 1011 ILBs are issued), but increases in
magnitude toward the end of the period, from about 5% to close to 0% at time t = 10. The
question of how many ILBs the central bank is able to sell depends on the demand from
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FIGURE 7.3. Supply-price function over time t for ILBs sold by the central bank. Price
level normalized to one.

financial agents of course. Figures 7.3 and 7.4 represent the supply- and demand-price
functions for ILBs as determined in Sections 4 and 5.

Note that the price of an ILB can, in principle, be higher than one, even if no coupons
are paid, if the expected inflation rate is larger than the nominal interest rate (i.e., negative
real interest rate, as observed in many countries at the moment). We will see that in our
model in equilibrium, this will only occur when the ILB is issued at a very late stage,
i.e., later than t = 8.5 years. Figures 7.5 and 7.6 show, respectively, the equilibrium price
and equilibrium quantity of ILBs. If issued at time s = 0, the central bank would sell
about 10 × 1010 for a price of 0.83 US dollars, a total monetary value of 83.4 billion
US dollars. If issued at a later time, the central bank will sell less ILBs for higher and
higher prices until the price trend reverses at about s = 9 years. This makes sense, of
course, as there is little to lose from inflation over short periods of time. Though note
that as s tends toward T, the quantity of ILBs issued does not approach 0, but a limit of
roughly 2 × 1010. Figure 7.5 also shows that if the central bank issues the ILBs at time
t = 8.5 or later, their price is larger than 1. The reason for this can be identified from
Figure 7.7: The equilibrium rate of inflation when ILBs are issued that late raises above
the nominal interest rate during the remainder of the period (second and third curve
from top), causing the real rate of interest to be negative. The top red curve in Figure
7.7 shows the central bank’s optimal inflation policy, when the central bank is not given
the opportunity to sell ILBs (i.e., no markets for ILBs). Comparing this to the bottom
blue curve, which shows the optimal inflation policy, given that the equilibrium quantity
of ILBs has been issued at time s = 0, we see that inflation is reduced from about 2.75%
to 1% at the beginning of the 10-year period and from about 5%–0.1% at the end of the
10-year period.
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FIGURE 7.4. Demand-price function over time t for ILBs, for financial agents who
attach an inflation risk premium of 50 bp to nominal bonds. Price level normalized to
one.

FIGURE 7.5. Equilibrium price function over time t for ILBs. Price level normalized
to one.
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FIGURE 7.6. Equilibrium quantity of ILBs sold as a function over time t.

FIGURE 7.7. Inflation in equilibrium over time when ILBs are issued at time t = 0
(lower blue curve), t = 1 (lower green curve), . . . , t = 9 (short upper orange curve),
and without issuing any ILBs (long upper red curve).
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The effect of ILBs on output gain from unexpected inflation over this period is mea-
sured by the term E (

∫ T
0 a

(
πt − π e

t

)
dt) that is part of the central banks utility function.22

This term can be computed analytically for the equilibrium policies, but the expression
is extremely long, so we omit it here. Numerically, using the previous set of parameters,
we obtain for the output gain without ILBs a value of (1.496 − 9.999 × π e∗

0 ) × 1010,
compared with a value of (1.364 − 9.999 × π e∗

0 ) × 1010 with ILBs. The output gain de-
pends, in fact, on the initial inflation expectation π e∗

0 . If we assume that in both cases,
with or without ILBs, π e∗

0 = 0.02, the inflation target of the Bank of England, than
output gain without ILBs accumulates to 1.296 × 1010 compared to 1.164 × 1010 with
ILBs. Hence, output gain from unexpected inflation over the 10-year period is reduced
by 11% if ILBs are issued.23 However, as indicated in Section 2 our rational expectation
interpretation of the initial inflation estimates π e∗

0 indicates that we need to use different
values for π e∗

0 , depending on whether there are markets for ILBs or not.24 Assuming
that π e∗

0 = u∗
0(0) = 0.0275 without ILBs and π e∗

0 = u∗
0(N∗) = 0.01 with ILBs (compare

Figure 7.7), we obtain for the output gain without ILBs the value of 1.221 × 1010 com-
pared with 1.264 × 1010 with ILBs. In this case therefore not only is inflation significantly
reduced with ILBs, but in addition, output gain is higher than without ILBs. The latter is
intuitive. As inflation expectations are generally lower with ILBs, potentially more can be
gained from unexpected inflation. In the latter case, we have a double benefit in welfare
terms from the existence of markets for ILBs, higher output gain and lower inflation.

8. CONCLUSIONS

We have studied the effect of markets for inflation-indexed bonds on the central bank’s
monetary policy. We presented a continuous-time model featuring a central bank, private
agents, and a financial market, in which the central bank can adjust inflation and in
addition can issue inflation-indexed securities, which it sells on the financial market.
Within this model, we have derived equilibrium prices and quantity for the inflation-
indexed bonds issued. We have shown that the introduction of inflation-indexed securities
sold by the central bank can reduce central bank’s inflationary bias, and that central bank,
private agents, as well as the financial agents in our model are better off with inflation-
indexed bonds than without. In this way, inflation-indexed bonds should be seen as
effective and powerful monetary policy instruments. From the financial derivatives point
of view, we have derived the first pricing formulas for inflation-indexed bonds within an
integrated framework, which includes the central bank as a significant component.
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