
Legend: An Agile DSL Toolset for Web Acceptance Testing

Tariq M. King, Gabriel Nunez, Dionny Santiago, Adam Cando, and Cody Mack
Ultimate Software Group, Inc.

2000 Ultimate Way
Weston, FL 33326, USA

{tariq_king, gabriel_nunez, dionny_santiago, adam_cando, cody_mack}
@ultimatesoftware.com

ABSTRACT
Agile development emphasizes collaborations among custom-
ers, business analysts, domain experts, developers, and test-
ers. However, the large scale and rapid pace of many agile
projects presents challenges during testing activities. Large
sets of test artifacts must be comprehensible and available
to various stakeholders, traceable to requirements, and eas-
ily maintainable as the software evolves. In this paper we
describe Legend, a toolset that leverages domain-specific
language to streamline functional testing in agile projects.
Some key features of the toolset include test template gen-
eration from user stories, model-based automation, test in-
ventory synchronization, and centralized test tagging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing Tools, Debugging Aids

General Terms
Languages, Verification, Documentation

Keywords
Software Testing, Test Automation, Domain-Specific Lan-
guages, Behavior-Driven Development, Agile Development

1. INTRODUCTION
During agile software development, requirements are tran-

sformed into working software through an iterative and in-
cremental process. Proponents of the agile movement place
emphasis on team interactions, working software, customer
collaboration, and responsiveness to change over other as-
pects of software development such as processes, documen-
tation, and rigid planning. The idea is that although there
is value in both sets of items, the former are valued more
than the latter.

Several practices have been devised to support using ag-
ile methods at various stages of the software lifecycle [2,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’14, July 21-25, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2645-2/14/07 ...$15.00.

10]. For example, during software specification it is com-
mon to formulate requirements as user stories written by
business analysts. Agile design and implementation prac-
tices include story-driven modeling and behavioral-driven
development (BDD) [2, 7, 8]. Agile testing involves having
all members of a self-organized team collaborate to ensure
the delivery of quality software that provides the desired
business value [10].

Adequate functional testing requires collaboration among
customers, business analysts, domain experts, developers,
and testers. Business analysts elicit customer needs and cap-
ture them as requirements with defined acceptance criteria.
Testers use the acceptance criteria to create test cases that
validate whether the software implementation satisfies the
needs of the customer. To facilitate regression testing, test
cases are typically encoded as scripts that can be interpreted
and executed by an automated testing tool.

In this paper, we describe a novel BDD toolset to help im-
prove functional testing in large-scale agile software projects.
The toolset, codenamed Legend, is built around a domain-
specific testing language designed to enable non-technical
stakeholders to read and write automated tests [9]. To com-
plement the toolset description, we discuss our motivating
challenges, background research, and related work.

2. CHALLENGES
Ultimate Software uses agile testing methodologies to vali-

date UltiPro – a cloud-based human capital management so-
lution [11]. In this section we describe the major challenges
experienced during functional testing of UltiPro, which have
motivated our research and tool development.

2.1 Test Comprehensibility
Prior to signing off on a given release, business analysts

must confirm that the software is working as expected under
various conditions. Running through the automated tests
that were developed is one way to assist this validation ac-
tivity. However, this can present a challenge if the auto-
mated tests are not written in a language that is easy to
understand. Many automated testing tools use a program-
ming language to define tests. As a result, the essence of
each test may be obscured by technical details, making it
difficult for non-technical analysts and domain experts to
leverage them during the software development process.

2.2 Test Traceability
Traceability between tests and the requirements being test-

ed is an important aspect of software engineering. Knowing

which tests are associated with each requirement helps an-
swer questions such as: (1) Is every requirement covered by
an adequate set of tests? If not, what are the gaps in cover-
age? (2) If a requirement changes, how many tests will be
affected by that change? and (3) If a test that previously
ran and passed is now failing, what features or requirements
do these tests actually exercise?

For agile software projects which emphasize responsive-
ness to change, establishing and maintaining traceability re-
lationships on a large scale can be challenging. Without
proper tooling, traceability links across user stories, docu-
mented tests, and automated test scripts can easily become
outdated. As the number of requirements and tests in the
project grow, the aforementioned questions become increas-
ingly difficult and eventually impossible to answer.

2.3 Test Documentation
To mitigate the comprehensibility challenge and promote

test reviews early in the development process, testers create
a set of documented test cases that describe the high-level
scenarios to be tested. For test management in large-scale
projects, documented tests are typically stored in a central-
ized test inventory or repository.

As the application evolves, testers must keep both the in-
ventory of documented tests and the source repository of
automated tests up-to-date. Maintaining both sets of arti-
facts in two separate places represents significant overhead
in large projects. The end result is that the documentation,
rather than the automation, becomes obsolete. This is be-
cause failing test automation is more visible to the business
than poorly maintained test documentation.

2.4 Test Selection
In projects where there are hundreds or even thousands

of test cases, the ability to filter and select a strict subset of
tests for execution is vital. To support test selection, many
tools provide mechanisms for tagging test cases with user-
defined categories. However, the tagging feature of these
tools tends to be general-purpose, allowing users to enter
any value for a given tag. This can be problematic and
lead to tests being excluded from a selection if: (1) different
tags are used for tests that should be in a single category,
i.e., synonyms; and (2) typographical errors are made when
tagging test cases because even a slight variation in spelling
will be treated as a new category.

2.5 Test Fragility
The way in which an automated test is written can im-

pact its ability to provide consistent results. One of the risks
with using a testing framework that lives in the context of a
programming language, is that test authors may start to use
programming constructs that make their tests less reliable.
For example, while it may be acceptable to use condition-
als, loops, and thread sleeps in program code, using these
constructs in test code introduces non-determinism. This
produces tests that exhibit different behavior on different
runs even though the system under test has not changed.

3. DOMAIN-SPECIFIC WEB TESTING
To tackle the aforementioned testing challenges, we de-

vised a novel, model-driven, test specification approach. Our
approach, presented in Santiago et al. [9], provides a method
for architecting a test specification and automation language

Figure 1: An automated test specification DSL.

that integrates with domain models. We applied our testing
approach to the domain of human capital management [11].

Domain-Specific Languages (DSLs) are special-purpose co-
mputing languages created to describe tasks in a particular
field. DSLs provide stakeholders with a common vocabulary
for describing application elements and behaviors. Using a
common language helps to improve communication in soft-
ware projects, and reduces the probability of errors that may
arise due to misunderstandings between stakeholders.

Figure 1 shows the major components of a DSL-based test-
ing language under our approach. These are: (1) Abstract
Test Commands – a set of action and assertion commands,
which apply input to and validate the output of the system
under test respectively; (2) Application and Configuration
Models – object-oriented abstractions of the web UI, along
with reusable test operations called macros, named using
domain terminology; and (3) Test Automation Tools and
Frameworks – programs and libraries for interacting with
the UI and persistent storage of the system under test.

The result of the approach is a well-designed DSL that
allows non-technical stakeholders to read and write auto-
mated tests, better engaging them in software testing ac-
tivities. Furthermore, the DSL serves as a focal point for
developing practical tools to support functional testing.

4. LEGEND
Our DSL-based testing toolset, codenamed Legend, was

developed in C# as a Visual Studio extension. User inter-
face elements were implemented using Windows Presenta-
tion Foundation [6], while workspace and compilation ser-
vices were realized via the Visual Studio SDK and Roslyn
.NET compiler platform [3, 4]. At the lower level, a selenium-
based framework called Echo is used for test execution [9].

4.1 Overview
Figure 2 provides a high-level overview of the Legend

workspace. The workspace consists of three major com-
ponents, which correspond to the labels in Figure 2: (a)
DSL Editor – a test authoring environment that facilitates
text editing, and includes features such as syntax coloring,
error highlighting, intelligent suggestions, block outlining,
tool tips, and breakpoints (b) Data Manager – a grid con-
trol for adding, removing, and updating different types of
test data; and (c) Test Explorer – a navigable tree control
for browsing, searching, organizing, and executing tests.

4.2 Features
The main features of Legend are: story linking and nav-

igation, test template generation, model-based automation,
test inventory synchronization, and centralized test tagging.

(a)

(b) (c)

Figure 2: Legend workspace components: (a) DSL Editor, (b) Data Manager, (c) Test Explorer.

4.2.1 Story Linking and Navigation
The DSL editor provides the user with the ability to link

one or more business requirements to a test suite. This is
achieved by entering a list of user story identifiers into the
Stories section of the Suite Information block (top of Fig-
ure 2a). Upon inputting a story identifier, Legend queries
the requirements inventory to ensure it is valid, and trans-
forms the identifier text into a clickable hyperlink. Clicking
the hyperlink opens a tab within the project workspace and
automatically navigates to the user story. To facilitate re-
quirements traceability, Legend requires that each test suite
be linked to at least one user story, otherwise a syntax error
is shown on the editor.

4.2.2 Test Template Generation
As part of the authoring experience, users can choose

to Create a New Legend Test from User Story. This fea-
ture prompts the user to enter the unique identifier for the
story under test. Legend then generates a template to aid
the user when writing automated tests against the business
requirements contained in the story. The result of test suite
template generation is a syntactically correct Legend test
file, pre-populated with the following information: (1) a set
of high-level test scenarios copied from the acceptance crite-
ria defined in the user story; (2) the author name extracted
from the active directory service of the organization, and (3)
a clickable hyperlink to the user story under test.

Test suites created in this manner are comprehensible by
all stakeholders because the high-level test steps are ex-
pressed using business language. Furthermore, the test suite

is automatically made traceable to the author and user story.

4.2.3 Model-Based Automation
High-level test steps can be refined with automation com-

mands in a stepwise fashion. On the line immediately fol-
lowing a test step, the author can use the By keyword to
indicate that he or she wishes to add a block of automated
test commands. Each automated test command acts upon
one or more elements that model the web application un-
der test. For example, on the third line of the Scenario

defined in the Tests block (Figure 2a), the token Login-

Page refers to a web page abstraction for the login screen
of UltiPro. Abstractions for web UI controls such as the
UsernameTextbox, PasswordTextbox and LoginButton are
further encapsulated within the LoginPage. Examples of au-
tomated test commands for interacting with these elements
include set and click.

Any data values specified in tests may be replaced with
formal parameters defined by prefixing a parameter name
with the @ symbol, e.g., @username. The actual values used
in parameterized tests are maintained in the Data Manager

window (Figure 2b). Recall that special types of domain-
specific automated test commands called macros are inte-
grated into Legend. Macros are reusable, user-defined test
commands that may have data associated with them. As
a result, the data manager window also serves to organize
the formal parameters and values passed into test macros.
Having a separate window for data management helps avoid
technical clutter in test automation.

The Legend toolset contains a DSL compiler that supports
the execution and debugging of automated tests. Tests are

executed via a context menu in the DSL editor, and the
user may set debugging breakpoints to suspend a test dur-
ing execution. Furthermore, the Legend DSL compiler en-
sures that test automation guidelines are always enforced.
In other words, since we have full control over the language
definition and formatting rules, we can fail compilation if
test documentation and coding standards are not met.

4.2.4 Test Inventory Synchronization
To facilitate searching, reviewing, and organizing docu-

mented tests outside of the authoring environment, Legend
seamlessly integrates with external test case inventory sys-
tems, e.g., Team Foundation Server, Zephyr [1, 5]. A context
menu within the DSL editor provides the test author with
an option for publishing the active test file to the inventory.
Legend then parses the test suite and inserts the test sce-
narios into the inventory via API calls. The first time a test
suite is published to the test inventory, new test case arti-
facts are created within the inventory. However, subsequent
synchronizations of the test suite triggers an update to the
existing artifacts stored in the inventory.

Legend provides a mechanism for directly viewing test in-
ventory artifacts from within the project workspace. The
test author can use this feature to confirm the synchroniza-
tion was successful, or view any comments that reviewers
post on the test cases in the inventory. Legend also makes
it easy for authors to request feedback on their test cases.
This is achieved through mechanisms for e-mailing or instant
messaging team members listed as authors.

4.2.5 Centralized Test Tagging
Challenges associated with test filtering and selection are

tackled by incorporating a centralized taxonomy of tags into
Legend. The DSL editor presents test authors with a list of
valid test categories that can be inserted into the Tags sec-
tion of the Suite Information block (Figure 2a). These
categories are then consumed by the Test Explorer com-
ponent (Figure 2c), which facilitates viewing test cases by
Tag, Author, or Project. While browsing tests in any of
these logical views, users can navigate directly to individual
test scenarios or selectively execute a subset of tests. During
test execution, the test explorer window provides real-time
visual feedback on which tests passed or failed.

5. RELATED WORK
Several behavioral-driven development (BDD) tools have

been developed to tie acceptance tests to business require-
ments [2, 7, 8, 10]. Most of these tools are general-purpose
and work by associating two sets of files – specifications and
test step definitions [2]. Test automation resides in the test
step definition files and are typically implemented in a tech-
nical language, limiting tool usage to technical users for writ-
ing automated tests. On the other hand, Legend combines
test specification and automation activities into a single,
non-technical, test authoring experience. The test automa-
tion language itself is english-like, allowing non-technical
stakeholders to read and write automated tests.

Similar to test template generation in Legend, SpecFlow
[7] and StoryQ [8] allow the shell of a test step definition file
to be automatically generated based on a given specification.
This is done by manually recreating the user story in a sep-
arate generation tool and/or code repository. We improve
upon this idea by: (1) embedding the template generation

process into a unified toolset, and (2) integrating the toolset
with a requirements inventory to reduce manual effort and
story duplication.

Legend also differs from the aforementioned tools in that
it leverages a DSL-based compiler to enforce test documen-
tation and automation standards. To the best of our knowl-
edge, the toolset described in this paper consists of the first
BDD framework to incorporate DSL checking into software
testing artifacts. Lastly, test documentation-to-inventory
synchronization is another aspect of our toolset that is not
provided by previously existing BDD frameworks.

6. CONCLUSION
This paper described Legend, a DSL toolset aimed at

streamlining functional testing in large-scale agile projects.
The Legend toolset has been applied in the context of test-
ing UltiPro [9, 11]. Support for other applications can be
achieved by creating domain models and plugging them into
the underlying framework. Future work calls for the devel-
opment of features for database interaction.

The authors would like to thank Sang Nguyen, Rui Lin,
Matt Wallick, and Robert Vanderwall for their contribu-
tions to this work. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors, and do not necessarily reflect the views of the Ul-
timate Software Group, Inc.

7. REFERENCES
[1] Atlassian. Zephyr for JIRA - Test Management, April

2014. https://marketplace.atlassian.com/
plugins/com.thed.zephyr.je.

[2] A. Hellesoy and M. Wynne. The Cucumber Book:
Behaviour-Driven Development for Testers and
Developers. Pragmatic Programmers. Pragmatic
Bookshelf, 2012.

[3] Microsoft Corporation. Roslyn Compiler, April 2014.
msdn.microsoft.com/en-us/vstudio/roslyn.aspx.

[4] Microsoft Corporation. Visual Studio, April 2014.
msdn.microsoft.com/en-us/library/bb166441.aspx.

[5] Microsoft Corporation. Visual Studio TFS, April 2014.
msdn.microsoft.com/en-us/vstudio/ff637362.aspx.

[6] Microsoft Corporation. Windows Presentation
Foundation, April 2014.
msdn.microsoft.com/en-us/library/ms754130.aspx.

[7] G. Nagy, J. Bandi, and C. Hassa. SpecFlow:
Pragmatic BDD for .NET, November 2009.
http://www.specflow.org/specflownew/ (July 2013).

[8] R. Fonseca-Ensor. StoryQ - Portable embedded BDD
framework for .NET 3.5, July 2010.
http://storyq.codeplex.com/ (April 2014).

[9] D. Santiago, A. Cando, C. Mack, G. Nunez,
T. Thomas, and T. M. King. Towards Domain-Specific
Testing Languages for Software-as-a-Service. In ACM-
IEEE MODELS 2013: Workshop on Model-Driven
Engineering for High Performance and Cloud
Computing, volume 1118, pages 43–52. CEUR, 2013.

[10] ThoughtWorks. Twist Agile Testing, April 2014.
http://www.thoughtworks.com/products/

twist-agile-testing.

[11] Ultimate Software. UltiPro Enterprise: Human
Resource Information Systems Solutions, April 2014.
www.ultimatesoftware.com/HRIS.

APPENDIX
This section contains a detailed set of demo steps and sample
artifacts for showcasing Legend.

A. DEMO STEPS
Step 1: Generate a new test suite template using accep-

tance criteria from a user story.

a) Add a New Legend Test from User Story
using the identifier of the sample user story.

b) Use the story hyperlink to compare the accep-
tance criteria with the generated test scenarios.

c) Attempt to link the test suite to a user story
that does not exist to show validation.

Step 2: Add an additional high-level test scenario to the
generated test suite.

a) Insert a new test scenario template via intel-
lisense by pressing CTRL+Space in the editor.

b) Fill in the scenario title and Given, When,
Then behavioral descriptions.

Step 3: Refine a high-level step with test automation.

a) Add the sample test automation to showcase
intellisense on application models.

b) Toggle the block outlining of the refined step
to show or hide the test automation details.

c) Replace string literals in test automation with
parameters and add rows to the data manager.

Step 4: Perform stepped execution of a test scenario.

a) Set a breakpoint on one of the test automation
commands.

b) Invoke the test runner on the corresponding
scenario block.

c) Click the Step Over button on the toolbar to
debug through the automated test.

Step 5: Publish tests to inventory and request a review.

a) Right-click within the editor and select Publish
to Test Inventory.

b) Confirm that the test suite was published by
selecting Go to Work Item.

c) Right-click the editor and select Copy Work
Item to Clipboard.

d) Add a reviewer to the authors list and send
them a message containing the work item link.

Step 6: Explore and execute tests based on search criteria.

a) Tag tests with categories from the built-in fea-
ture taxonomy.

b) Use the test explorer to group tests by tag,
author, and project.

c) Navigate directly to a test scenario by double-
clicking it in the test explorer tree structure.

d) Perform a selective regression test run by tag.

B. SAMPLE ARTIFACTS
UltiPro / ULTI-126101

Legend Sample User Story

Additional Test Scenario

Scenario: Deductions without employer amounts do not show on statement

 Given A deduction setup without employer amounts only

 And I login to UltiPro

 When I view my printed pay statement

 Then the deduction does not appear on the pay statement

Sample Test Automation

And I login to UltiPro

 By setting the LoginPage UserNameTextBox to @username

 And setting the PasswordTextBox to @password

 And clicking the LoginButton

Title Given When Then

Deductions with
employer amounts
show on statement

A deduction setup
with employer
amounts only and I
login to UltiPro

I view my
printed pay
statement

The deduction appears on the pay
statement and also shows on the
pay tab summary

Pay statements on
the web can be
saved to portable
document format

Downloads are
enabled for web
pay statements and
I login to UltiPro

I view my web
pay statement
and click
Download PDF

A file dialog should appear
prompting me to enter the disk
location where I want the pay
statement to be saved

Pay statements on
the web cannot be
saved if downloads
are disabled

Downloads are
disabled for web
pay statements and
I login to UltiPro

I view my web
pay statement
and click
Download PDF

No file dialog appears on the
screen because the Download PDF
button is disabled

Parameterized Test Data

username password

Dionny Ultimate

Adam Software

Cody People

Gabriel First

