Code: 9EC-02E

Register	720-021						
Number	E	C	1	3	0	0	6

I Semester Diploma Examination, Nov./Dec. 2013

DIGITAL ELECTRONICS

7	lime :	3 Hours]	
	Note:	 (i) Section – I is compulsory. (ii) Answer any two full questions from Sections – II, III & 	
		SECTION-I	
1.	(a)	(i) In positive logic 5V is considered as (ii) The octal equivalent of 101710112 is (iii) Number of flip flops used for Mod-12 counter are (iv) In the K-map, if all the 1's in a group are overlapped by such group is called as (v) In unsaturated logic family the transistor is used in	$5 \times 1 = 5$ other groups, then region.
	(b)		5
2.	(a)	What is ASCII code? Mention its applications.	
	(b)	Perform the following operations:	9
		(i) Convert Decimal 928 into Hexa decimal.	
		(ii) Convert Hexa decimal 7AC . 39 to the Binary.	
		(iii) Subtract 1101 from 1111 using 2's complement.	
	(c)	Convert gray code 100110 to its Binary.	2
ECC	018		[Turn over

(a) State and prove Demorgan's theorem.

Write the expression for the following table using SOP & simply it using

		_		-
A	B	C	D	Y
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0

4. (a) Write the features of BCD & convert decimal 76 to BCD number.(b) List the features of TTL family.	
(b) List the features of 111 family.	
Admiry.	4
(c) Write the logic symbol expression and tout all s	5
(c) Write the logic symbol, expression and truth table for the universal gates.	6

SECTION - III

With gate level circuit, Truth Table explain 2 bit magnitude comparator. 5. Explain the working of full adder with logic diagram and truth table. 7

Explain with neat circuit and Truth table the working of Decimal to BCD 6. encoder.

(b) With expression state the Boolean laws

- (i) Commutative law
- (ii) Associative law
- (iii) Distributive law
- List the applications of multiplexer. (c)

Define Priority Encoder. (a)

- Explain the working of 1:4 demultiplexer with logic circuit & Truth Table. (b)
- Explain the working of 4-bit parallel adder with logic circuit. (c)

8

6

2

2

7

6

9EC-02E

SECTION - IV

- With logic circuit and Truth table, explain the operation of clocked R S fli (a) & mention its disadvantages.
 - What is Race around condition? In which flip flop it is overcome? (b)
 - List the applications of flip/flop. (c)
- 9. Explain the working of 4 bit Parallel In Serial Out (PISO) with logic diagra (a) Truth Table.
 - Construct 4 bit Ring counter. Explain the working with Truth table & Tir (b) diagram.
- Compare Synchronous & Asynchronous counter. 10. (a)
 - Realize Mod 6 counter with neat diagram and Truth Table. (b)
 - Construct 4 bit ripple counter & explain its working with Truth Table & Tim (c) diagram.