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ABSTRACT
Low rank tensor completion is a well studied problem and has appli-
cations in various fields. However, in many real world applications
the data is dynamic, i.e., new data arrives at different time intervals.
As a result, the tensors used to represent the data grow in size.
Besides the tensors, in many real world scenarios, side informa-
tion is also available in the form of matrices which also grow in
size with time. The problem of predicting missing values in the
dynamically growing tensor is called dynamic tensor completion.
Most of the previous work in dynamic tensor completion make an
assumption that the tensor grows only in one mode. To the best
of our Knowledge, there is no previous work which incorporates
side information with dynamic tensor completion. We bridge this
gap in this paper by proposing a dynamic tensor completion frame-
work called Side Information infused Incremental Tensor Analysis
(SIITA), which incorporates side information and works for general
incremental tensors. We also show how non-negative constraints
can be incorporated with SIITA, which is essential for mining in-
terpretable latent clusters. We carry out extensive experiments on
multiple real world datasets to demonstrate the effectiveness of
SIITA in various different settings.
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1 INTRODUCTION
Low rank tensor completion is a well-studied problem and has
various applications in the fields of recommendation systems [30],
link-prediction [4], compressed sensing [3], to name a few. Majority
of the previous works focus on solving the problem in a static
setting [6, 8, 14]. However, most of the real world data is dynamic,
for example in an onlinemovie recommendation system the number
of users and movies increase with time. It is prohibitively expensive
to use the static algorithms for dynamic data. Therefore, there has
been an increasing interest in developing algorithms for dynamic
low-rank tensor completion [13, 18, 27].

Usually in many real world scenarios, besides the tensor data,
additional side information is also available, e.g., in the form of
matrices. In the dynamic scenarios, the side information grows with
time as well. For instance, movie-genre information in the movie
recommendation etc. There has been considerable amount of work
in incorporating side information into tensor completion [7, 21].
However, the previous works on incorporating side information
deal with the static setting. In this paper, we propose a dynamic low-
rank tensor completion model that incorporates side information
growing with time.

Most of the current dynamic tensor completion algorithms work
in the streaming scenario, i.e., the case where the tensor grows
only in one mode, which is usually the time mode. In this case, the
side information is a static matrix. Multi-aspect streaming scenario
[5, 27], on the other hand, is a more general framework, where the
tensor grows in all the modes of the tensor. In this setting, the side
information matrices also grow. Figure 1 illustrates the difference
between streaming and multi-aspect streaming scenarios with side
information.

Besides side information, incorporating nonnegative constraints
into tensor decomposition is desirable in an unsupervised setting.
Nonnegativity is essential for discovering interpretable clusters
[10, 20]. Nonnegative tensor learning is explored for applications
in computer vision [15, 25], unsupervised induction of relation
schemas [23], to name a few. Several algorithms for online Non-
negative Matrix Factorization (NMF) exist in the literature [17, 34],
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(a) Streaming tensor sequence with
side information.

(b) Multi-aspect streaming tensor
sequence with side information.

Figure 1: Illustration of streaming and multi-aspect stream-
ing sequences with side information. The blue block repre-
sents the tensor at time step and the green block represents
the side information. The blocks in grey represent the data
at previous time steps. For easy understanding, we show side
information along only one mode.

but algorithms for nonnegative online tensor decomposition with
side information are not explored to the best of our knowledge. We
also fill this gap by showing how nonnegative constraints can be
enforced on the decomposition learned by our proposed framework
SIITA.

In this paper, weworkwith themore general multi-aspect stream-
ing scenario and make the following contributions:

• Formally define the problem ofmulti-aspect streaming tensor
completion with side information.
• Propose a Tucker based framework Side Information infused
Incremental Tensor Analysis(SIITA) for the problem of multi-
aspect streaming tensor completion with side information.
We employ a stochastic gradient descent (SGD) based algo-
rithm for solving the optimization problem.
• Incorporate nonnegative constraints with SIITA for discov-
ering the underlying clusters in unsupervised setting.
• Demonstrate the effectiveness of SIITA using extensive ex-
perimental analysis on multiple real-world datasets in all the
settings.

The organization of the paper is as follows. In Section 3, we
introduce the definition of multi-aspect streaming tensor sequence
with side information and discuss our proposed framework SIITA
in Section 4. We also discuss how nonnegative constraints can be
incorporated into SIITA in Section 4. The experiments are shown
in Section 5, where SIITA performs effectively in various settings.
All our codes are implemented in Matlab, and can be found at
https://madhavcsa.github.io/.

2 RELATEDWORK
Dynamic Tensor Completion: Sun et al. [28, 29] propose multi-
ple Higher order SVD based algorithms, namely Dynamic Tensor
Analysis (DTA), Streaming Tensor Analysis (STA) and Window-
based Tensor Analysis (WTA) for the streaming scenario. Nion and
Sidiropoulos [24] propose two adaptive online algorithms for CP de-
composition of 3-order tensors. Yu et al. [33] propose an accelerated
online algorithm for Tucker factorization in streaming scenario,

while an accelerated online algorithm for CP decomposition is
developed in [35].

A significant amount of research work is carried out for dy-
namic tensor decompositions, but work focusing on the problem
of dynamic tensor completion is relatively less explored. Work by
Mardani et al. [18] can be considered a pioneering work in dynamic
tensor completion. They propose a streaming tensor completion
algorithm based on CP decomposition. Recent work by Kasai [13]
is an accelerated second order Stochastic Gradient Descent (SGD)
algorithm for streaming tensor completion based on CP decomposi-
tion. Fanaee-T and Gama [5] introduces the problem of multi-aspect
streaming tensor analysis by proposing a histogram based algo-
rithm. Recent work by Song et al. [27] is a more general framework
for multi-aspect streaming tensor completion.

Tensor Completion with Auxiliary Information: Acar et al.
[1] propose a Coupled Matrix Tensor Factorization (CMTF) ap-
proach for incorporating additional side information, similar ideas
are also explored in [2] for factorization on hadoop and in [4] for
link prediction in heterogeneous data. Narita et al. [21] propose
with-in mode and cross-mode regularization methods for incorpo-
rating similarity side information matrices into factorization. Based
on similar ideas, Ge et al. [7] propose AirCP, a CP-based tensor
completion algorithm.

Welling and Weber [31] propose nonnegative tensor decmposi-
ton by incorporating nonnegative constraints into CP decomposi-
tion. Nonnegative CP decomposition is explored for applications
in computer vision in [25]. Algorithms for nonnegative Tucker
decomposition are proposed in [15] and for sparse nonnegative
Tucker decomposition are proposed in [19]. However, to the best
our knowledge, nonnegative tensor decomposition algorithms do
not exist for dynamic settings, a gap we fill in this paper.

Inductive framework for matrix completion with side informa-
tion is proposed in [11, 22, 26], which has not been explored for
tensor completion to the best of our knowledge. In this paper, we
propose an online inductive framework for multi-aspect streaming
tensor completion.

Table 1 provides details about the differences between our pro-
posed SIITA and various baseline tensor completion algorithms.

3 PRELIMINARIES
AnN th -order orN -mode tensor is anN -way array.We use boldface
calligraphic letters to represent tensors (e.g.,𝒳 ), boldface uppercase
to represent matrices (e.g., U), and boldface lowercase to represent
vectors (e.g., v).𝒳 [i1, · · · ,iN ] represents the entry of𝒳 indexed
by [i1, · · · ,iN ].

Definition 1 (Coupled Tensor and Matrix) [27]: A matrix and
a tensor are called coupled if they share a mode. For example, a
user ×movie × time tensor and amovie ×дenre matrix are coupled
along the movie mode.
Definition 2 (Tensor Sequence) [27]: A sequence of N th -order
tensors𝒳 (1) , . . . ,𝒳 (t ) , . . . is called a tensor sequence denoted as
{𝒳 (t ) }, where each𝒳 (t ) ∈ RI

t
1 ×I

t
2 ×...×I

t
N at time instance t .

Definition 3 (Multi-aspect streaming Tensor Sequence) [27]:
A tensor sequence of N th -order tensors {𝒳 (t ) } is called a multi-
aspect streaming tensor sequence if for any t ∈ Z+, 𝒳 (t−1) ∈
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Table 1: Summary of different tensor streaming algorithms.

Property TeCPSGD[18] OLSTEC [13] MAST [27] AirCP [7] SIITA (this paper)

Streaming ✓ ✓ ✓ ✓
Multi-Aspect Streaming ✓ ✓
Side Information ✓ ✓
Sparse Solution ✓

RI
t−1
1 ×I t−12 ×...×I t−1N is the sub-tensor of 𝒳 (t ) ∈ RI

t
1 ×I

t
2 ×...×I

t
N , i.e.,

𝒳 (t−1) ⊆ 𝒳 (t ) , where I t−1i ≤ I ti , ∀1 ≤ i ≤ N .

Here, t increases with time, and 𝒳 (t ) is the snapshot tensor of this
sequence at time t .
Definition 4 (Multi-aspect streaming Tensor Sequence with
Side Information) : Given a time instance t , let A(t )

i ∈ RI
t
i ×Mi

be a side information (SI) matrix corresponding to the ith mode of
𝒳 (t ) (i.e., rows of A(t )

i are coupled along ith mode of𝒳 (t ) ). While
the number of rows in the SI matrices along a particular mode i
may increase over time, the number of columns remain the same,
i.e.,Mi is not dependent on time. In particular, we have,

A(t )
i =



A(t−1)
i
∆
(t )
i


, where ∆(t )

i ∈ R
[I (t )i −I

(t−1)
i ]×Mi .

Putting side information matrices of all the modes together, we
get the side information set A (t ) ,

A (t ) = {A(t )
1 , . . . ,A

(t )
N }.

Given anN th -ordermulti-aspect streaming tensor sequence {𝒳 (t ) },
we define a multi-aspect streaming tensor sequence with side in-
formation as {(𝒳 (t ) ,A (t ) )}.

We note that all modes may not have side information available.
In such cases, an identity matrix of appropriate size may be used
as A(t )

i , i.e., A(t )
i = II

t
i ×I

t
i , whereMi = I ti .

The problem of multi-aspect streaming tensor completion with
side information is formally defined as follows:

Problem Definition: Given a multi-aspect streaming tensor se-
quence with side information {(𝒳 (t ) ,A (t ) )}, the goal is to predict
the missing values in𝒳 (t ) by utilizing only entries in the relative
complement 𝒳 (t ) \ 𝒳 (t−1) and the available side information
A (t ) .

4 PROPOSED FRAMEWORK SIITA
In this section, we discuss the proposed framework SIITA for the
problem of multi-aspect streaming tensor completion with side in-
formation. Let {(𝒳 (t ) ,A (t ) )} be an N th -order multi-aspect stream-
ing tensor sequence with side information. Assuming that, at every
time step, 𝒳 (t )[i1,i2, · · · ,iN ] are only observed for some indices
[i1,i2, · · · ,iN ] ∈ Ω, where Ω is a subset of the complete set of
indices [i1,i2, · · · ,iN ]. Let the sparsity operator PΩ be defined as:

PΩ[i1,i2, · · · ,iN ] =



𝒳 [i1, · · · ,iN ], if [i1, · · · ,iN ] ∈ Ω
0, otherwise.

Tucker tensor decomposition [16], is a form of higher-order PCA
for tensors. It decomposes anN th -order tensor𝒳 into a core tensor

multiplied by a matrix along each mode as follows

𝒳 ≈ 𝒢 ×1 U1 ×2 U2 ×3 · · ·UN ,

where, Ui ∈ R
Ii×ri ,i = 1 : N are the factor matrices and can

be thought of as principal components in each mode. The ten-
sor 𝒢 ∈ Rr1×r2×···rN is called the core tensor, which shows the
interaction between different components. (r1,r2, · · · ,rN ) is the
(multilinear) rank of the tensor. The i-mode matrix product of a
tensor 𝒳 ∈ RI1×I2×···IN with a matrix P ∈ Rr×Ii is denoted by
𝒳 ×i P, more details can be found in [16]. The standard approach
of incorporating side information while learning factor matrices in
Tucker decomposition is by using an additive term as a regularizer
[21]. However, in an online setting the additive side information
term poses challenges as the side information matrices are also
dynamic. Therefore, we propose the following fixed-rank inductive
framework for recovering missing values in𝒳 (t ) , at every time step
t :

min
𝒢∈Rr1×. . .×rN

Ui ∈RMi ×ri ,i=1:N

F (𝒳 (t ) ,A (t ) ,𝒢, {Ui }i=1:N ), (1)

where

F (𝒳 (t ) ,A (t ) ,𝒢, {Un }i=1:N ) =





PΩ (𝒳
(t ) ) − PΩ (𝒢 ×1 A

(t )
1 U1 ×2 . . . ×N A(t )

N UN )





2

F

+ λд ∥𝒢∥2F +
N∑
i=1

λi ∥Ui ∥
2
F . (2)

∥·∥F is the Frobenius norm, λд > 0 and λi > 0,i = 1 : N are
the regularization weights. Conceptually, the inductive framework
models the ratings of the tensor as a weighted scalar product of
the side information matrices. Note that (1) is a generalization of
the inductive matrix completion framework [11, 22, 26], which has
been effective in many applications.

The inductive tensor framework has two-fold benefits over the
typical approach of incorporating side information as an additive
term. The use of AiUi terms in the factorization reduces the di-
mensionality of variables from Ui ∈ R

Ii×ri to Ui ∈ R
Mi×ri and

typically Mi ≪ Ii . As a result, computational time required for
computing the gradients and updating the variables decreases re-
markably. Similar to [15], we define

U(\n)
i =

[
A(t )
i−1Ui−1 ⊗ . . . ⊗ A(t )

1 U1 ⊗ . . . ⊗

A(t )
N UN ⊗ . . . ⊗ A(t )

i+1Ui+1
]
,

which collects Kronecker products of mode matrices except for
AiUi in a backward cyclic manner.



The gradients for (1) wrtUi for i = 1 : N and𝒢 can be computed
as following:

∂F

∂Ui
= −(A(t )

i )⊤ℛ(t )
(i )U

(\n)
i 𝒢⊤(i ) + 2λiUi

∂F

∂𝒢
= −ℛ(t ) ×1 (A

(t )
1 U1)

⊤ ×2 . . . ×N (A(t )
N UN )⊤

+ 2λд𝒢,

(3)

where

ℛ(t ) = 𝒳 (t ) − 𝒢 ×1 A(t )
1 U1 ×2 . . . ×N A(t )

N UN .

By updating the variables using gradients given in (3), we can
recover the missing entries in𝒳 (t ) at every time step t , however
that is equivalent to performing a static tensor completion at every
time step. Therefore, we need an incremental scheme for updating
the variables. Let U(t )

i and 𝒢 (t ) represent the variables at time step
t , then

F (𝒳 (t ) ,A (t ) ,𝒢 (t−1) , {U(t−1)
i }i=1:N ) =

F (𝒳 (t−1) ,A (t−1) ,𝒢 (t−1) , {U(t−1)
i }i=1:N ) +

F (𝒳 (∆t ) ,A (∆t ) ,𝒢 (t−1) , {U(t−1)
i }i=1:N ),

(4)

since𝒳 (t−1) is recovered at the time step t-1, the problem is equiv-
alent to using only F (∆t ) = F (𝒳 (∆t ) ,A (∆t ) ,𝒢 (t−1) , {U(t−1)

i }i=1:N )
for updating the variables at time step t .

We propose to use the following approach to update the variables
at every time step t , i.e.,

U(t )
i = U(t−1)

i − γ ∂F (∆t )

∂U(t−1)
i

,i = 1 : N

𝒢 (t ) = 𝒢 (t−1) − γ ∂F (∆t )

∂𝒢 (t−1) ,
(5)

where γ is the step size for the gradients.ℛ(∆t ) , needed for com-
puting the gradients of F (∆t ) , is given by

ℛ(∆t ) = 𝒳 (∆t ) − 𝒢 (t−1) ×1 A
(∆t )
1 U(t−1)

1 ×2 . . .

×NA(∆t )
N U(t−1)

N .
(6)

Algorithm 1 summarizes the procedure described above. The
computational cost of implementing Algorithm 1 depends on the
update of the variables (5) and the computations in (6). The cost
of computing ℛ(∆t ) is O (

∑
i IiMiri + |Ω |r1 . . . rN ). The cost of

performing the updates (5) is O ( |Ω |r1 . . . rN +
∑
i Miri ). Over-

all, at every time step, the computational cost of Algorithm 1 is
O (K (

∑
i IiMiri + |Ω |r1 . . . rN )).

Extension to the nonnegative case: NN-SIITA
We now discuss how nonnegative constraints can be incorporated
into the decomposition learned by SIITA. Nonnegative constraints
allow the factor of the tensor to be interpretable.

We denote SIITA with nonnegative constraints with NN-SIITA.
At every time step t in the multi-aspect streaming setting, we seek
to learn the following decomposition:

min
𝒢∈Rr1×. . .×rN+

Ui ∈R
Mi ×ri
+ ,i=1:N

F (𝒳 (t ) ,A (t ) ,𝒢, {Ui }i=1:N ), (7)

where F (·) is as given in (2).

Algorithm 1: Proposed SIITA Algorithm
Input : {𝒳 (t ), A (t ) }, λi , i = 1 : N , (r1, . . . , rN )

1 Randomly initialize U(0)
i ∈ R

Mi×ri , i = 1 : N and
𝒢 (0) ∈ Rri×. . .×rN ;

2 for t = 1, 2, . . . do
3 U(t )0

i B U(t−1)
i , i = 1 : N ;

4 𝒢 (t )0 B 𝒢 (t−1) ;
5 for k = 1:K do
6 Computeℛ(∆t ) from (6) using U(t )k−1

i , i = 1 : N and
𝒢 (t )k−1 ;

7 Compute ∂F (∆t )

∂U(t )k−1
i

for i = 1 : N from (3);

8 Update U(t )k
i using ∂F (∆t )

∂U(t )k−1
i

and U(t )k−1
i in (5) ;

9 Compute ∂F (∆t )

∂𝒢 (t )k−1
from (3);

10 Update 𝒢 (t )k using 𝒢 (t )k−1 and ∂F (∆t )

∂𝒢 (t )k−1
in (5);

11 end

12 U(t )
i B U(t )K

i ;
13 𝒢 (t ) B 𝒢 (t )K ;
14 end

Return :U(t )
i , i = 1 : N ,𝒢 (t ) .

We employ a projected gradient descent based algorithm for
solving the optimization problem in (7). We follow the same incre-
mental update scheme discussed in Algorithm 1, however we use a
projection operator defined below for updating the variables. For
NN-SIITA, (5) is replaced with

U(t )
i = Π+[U

(t−1)
i − γ ∂F (∆t )

∂U(t−1)
i

],i = 1 : N

𝒢 (t ) = Π+[𝒢 (t−1) − γ ∂F (∆t )

∂𝒢 (t−1) ],

where Π+ is the element-wise projection operator defined as

Π+[xi ] =



xi , if xi > 0
0, otherwise.

The projection operator maps a point back to the feasible region
ensuring that the factor matrices and the core tensor are always
nonnegative with iterations.

5 EXPERIMENTS
We evaluate SIITA against other state-of-the-art baselines in two
dynamic settings viz., (1) multi-aspect streaming setting (Section
5.1), and (2) traditional streaming setting (Section 5.2). We then
evaluate effectiveness of SIITA in the non-streaming batch setting
(Section 5.3). We analyze the effect of different types of side in-
formation in Section 5.4. Finally, we evaluate the performance of
NN-SIITA in the unsupervised setting in Section 5.5.

Datasets: Datasets used in the experiments are summarized in
Table 2.MovieLens 100K [9] is a standard movie recommendation
dataset. YELP is a downsampled version of the YELP(Full) dataset
[12]. The YELP(Full) review dataset consists of 70K (user) × 15K
(business) × 108 (year-month) tensor, and a side information matrix
of size 15K (business) × 68 (city). We select a subset of this dataset
for comparisons as the considered baselines algorithms cannot
scale to the full dataset. We note that SIITA, our proposed method,



Table 2: Summary of datasets used in the paper. The start-
ing size and increment size given in the table are for Multi-
Aspect Streaming setting. For Streaming setting, the tensor
grows in the third dimension, one slice at every time step.

MovieLens 100K YELP

Modes user × movie ×
week

user × business ×
year-month

Tensor Size 943×1682×31 1000×992×93

Starting size 19×34×2 20×20×2

Increment step 19, 34, 1 20, 20, 2

Sideinfo matrix 1682 (movie) × 19
(genre)

992 (business) ×
56 (city)

Table 3: Test RMSE (lower is better) averaged across all the
time steps in the multi-aspect streaming tensor sequence
setting (Definition 4) for MAST and SIITA. SIITA, the pro-
posed method, outperforms MAST for all the datasets. Sec-
tion 5.1 provides more details.

Dataset Missing% Rank MAST SIITA

MovieLens
100K

20%
3 1.60 1.23
5 1.53 1.29
10 1.48 2.49

50%
3 1.74 1.28
5 1.75 1.29
10 1.64 2.55

80%
3 2.03 1.59
5 1.98 1.61
10 2.02 2.96

YELP

20%
3 1.90 1.43
5 1.92 1.54
10 1.93 4.03

50%
3 1.94 1.51
5 1.94 1.67
10 1.96 4.04

80%
3 1.97 1.71
5 1.97 1.61
10 1.97 3.49

doesn’t have such scalability concerns. In Section 5.4, we show that
SIITA scales to datasets of much larger sizes. In order to create
YELP out of YELP(Full), we select the top frequent 1000 users and
top 1000 frequent businesses and create the corresponding tensor
and side information matrix. After the sampling, we obtain a tensor
of size 1000 (user) × 992 (business) × 93 (year-month) and a side
information matrix of dimensions 992 (business) × 56 (city).

5.1 Multi-Aspect Streaming Setting
We first analyze the model in the multi-aspect streaming setting,
for which we consider MAST [27] as a state-of-the-art baseline.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time Step

T
e

s
t 

R
M

S
E

 

 

SIITA
MAST

(a) MovieLens 100K
(20% Missing)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

Time Step

T
e

s
t 

R
M

S
E

 

 

(b) YELP
(20% Missing)

Figure 2: Evolution of test RMSE of MAST and SIITA with
each time step. For both the datasets, SIITA attains a stable
performance after a few time steps, while the performance
of MAST degrades with every time step. Refer to Section 5.1.
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Figure 3: Runtime comparison between MAST and SIITA at
every time step. SIITA is significantly faster than MAST. Re-
fer to Section 5.1.

MAST [27]: MAST is a dynamic low-rank tensor completion al-
gorithm, which enforces nuclear norm regularization on the de-
composition matrices of CP. A tensor-based Alternating Direction
Method of Multipliers is used for solving the optimization problem.

We experiment with the MovieLens 100K and YELP datasets.
Since the third mode is time in both the datasets, i.e., (week) in
MovieLens 100K and (year-month) in YELP, one way to simulate the
multi-aspect streaming sequence (Definition 3) is by considering
every slice in third-mode as one time step in the sequence, and
letting the tensor grow along other two modes with every time
step, similar to the ladder structure given in [27, Section 3.3]. Note
that this is different from the traditional streaming setting, where
the tensor only grows in time mode while the other two modes
remain fixed. In contrast, in the multi-aspect setting here, there
can be new users joining the system within the same month but on
different days or different movies getting released on different days
in the same week etc. Therefore in our simulations, we consider
the third mode as any normal mode and generate a more general
multi-aspect streaming tensor sequence, the details are given in
Table 2. The parameters for MAST are set based on the guidelines
provided in [27, Section 4.3].

We compute the root mean square error on test data (test RMSE;
lower is better) at every time step and report the test RMSE aver-
aged across all the time steps in Table 3.We perform experiments on
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Figure 4: Evolution of Test RMSE of TeCPSGD, OLSTEC and
SIITA with each time step. In both datasets, SIITA performs
significantly better than the baseline algorithms in the pure
streaming setting. Refer to Section 5.2 for more details.
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Figure 5: Runtime comparison between TeCPSGD, OLSTEC
and SIITA. SIITA is able to exploit sparsity in the data and
is much faster. Refer to Section 5.2 for more details.

multiple train-test splits for each dataset. We vary the test percent-
age, denoted byMissing% in Table 3, and the rank of decomposition,
denoted by Rank for both the datasets. For every (Missing%, Rank)
combination, we run both models on ten random train-test splits
and report the average. For SIITA, Rank = r in Table 3 represents
the Tucker-rank (r ,r ,r ).

In Table 3, the proposed SIITA achieves better results than MAST.
Figure 2 shows the plots for test RMSE at every time step. Since
SIITA handles the sparsity in the data effectively, as a result SIITA
is significantly faster than MAST, which can be seen from Figure 3.
Overall, we find that SIITA, the proposed method, is more effective
and faster compared to MAST in the multi-aspect streaming setting.

5.2 Streaming Setting
In this section, we simulate the pure streaming setting by letting the
tensor grow only in the third mode at every time step. The number
of time steps for each dataset in this setting is the dimension of
the third mode, i.e., 31 for MovieLens 100K and 93 for YELP. We
compare the performance of SIITA with TeCPSGD and OLSTEC
algorithms in the streaming setting.
TeCPSGD [18]: TeCPSGD is an online Stochastic Gradient Descent
based algorithm for recovering missing data in streaming tensors.

Table 4: Test RMSE averaged across all the time steps in the
streaming setting for TeCPSGD, OLSTEC, a state-of-the-art
streaming tensor completion algorithm, and SIITA. SIITA
outperforms the baseline algorithms significantly. See Sec-
tion 5.2 for more details.

Dataset Missing% Rank TeCPSGD OLSTEC SIITA

MovieLens
100K

20%
3 3.39 5.46 1.53
5 3.35 4.65 1.54
10 3.19 4.96 1.71

50%
3 3.55 8.39 1.63
5 3.40 6.73 1.64
10 3.23 3.66 1.73

80%
3 3.78 3.82 1.79
5 3.77 3.80 1.75
10 3.84 4.34 2.47

YELP

20%
3 4.55 4.04 1.45
5 4.79 4.04 1.59
10 5.17 4.03 2.85

50%
3 4.67 4.03 1.55
5 5.03 4.03 1.67
10 5.25 4.03 2.69

80%
3 4.99 4.02 1.73
5 5.17 4.02 1.78
10 5.31 4.01 2.62

This algorithm is based on PARAFAC decomposition. TeCPSGD is
the first proper tensor completion algorithm in the dynamic setting.
OLSTEC [13]: OLSTEC is an online tensor tracking algorithm for
partially observed data streams corrupted by noise. OLSTEC is a
second order stochastic gradient descent algorithm based on CP
decomposition exploiting recursive least squares. OLSTEC is the
state-of-the-art for streaming tensor completion.

We report test RMSE, averaged across all time steps, for both
MovieLens 100K and YELP datasets. Similar to the multi-aspect
streaming setting, we run all the algorithms for multiple train-
test splits. For each split, we run all the algorithms with different
ranks. For every (Missing%, Rank) combination, we run all the
algorithms on ten random train-test splits and report the average.
SIITA significantly outperforms all the baselines in this setting, as
shown in Table 4. Figure 4 shows the average test RMSE of every
algorithm at every time step. From Figure 5 it can be seen that SIITA
takes much less time compared to other algorithms. The spikes in
the plots suggest that the particular slices are relatively less sparse.

5.3 Batch Setting
Even though our primary focus is on proposing an algorithm for
the multi-aspect streaming setting, SIITA can be run as a tensor
completion algorithm with side information in the batch (i.e., non
streaming) setting. To run in batch setting, we set K = 1 in Algo-
rithm 1 and run for multiple passes over the data. In this setting,
AirCP [7] is the current state-of-the-art algorithm which is also
capable of handling side information. We consider AirCP as the
baseline in this section. The main focus of this setting is to demon-
strate that SIITA incorporates the side information effectively.



Table 5: Mean Test RMSE across multiple train-test splits in
the Batch setting. SIITA achieves lower test RMSE on both
the datasets compared to AirCP, a state-of-the-art algorithm
for this setting. Refer to Section 5.3 for details.

Dataset Missing% Rank AirCP SIITA

MovieLens
100K

20%
3 3.351 1.534
5 3.687 1.678
10 3.797 2.791

50%
3 3.303 1.580
5 3.711 1.585
10 3.894 2.449

80%
3 3.883 1.554
5 3.997 1.654
10 3.791 3.979

YELP

20%
3 1.094 1.052
5 1.086 1.056
10 1.077 1.181

50%
3 1.096 1.097
5 1.095 1.059
10 1.719 1.599

80%
3 1.219 1.199
5 1.118 1.156
10 2.210 2.153

AirCP [7]: AirCP is a CP based tensor completion algorithm pro-
posed for recovering the spatio-temporal dynamics of onlinememes.
This algorithm incorporates auxiliary information from memes, lo-
cations and times. An alternative direction method of multipliers
(ADMM) based algorithm is employed for solving the optimiza-
tion. AirCP expects the side information matrices to be similarity
matrices and takes input the Laplacian of the similarity matrices.
However, in the datasets we experiment with, the side informa-
tion is available as feature matrices. Therefore, we consider the
covariance matrices AiA⊤i as similarity matrices.

We run both algorithms till convergence and report test RMSE.
For each dataset, we experiment with different levels of test set sizes,
and for each such level, we run our experiments on 10 random splits.
We report the mean test RMSE per train-test percentage split. We
run our experiments with multiple ranks of factorization. Results
are shown in Table 5, where we observe that SIITA achieves better
results. Note that the rank for SIITA is the Tucker rank, i.e., rank =
3. This implies a factorization rank of (3, 3, 3) for SIITA.

Remark: Since all the baselines considered for various settings
are CP based, we only compare for CP tensor rank. From Tables 3,
4 and 5 it can be seen that the performance suffers for rank = 10.
However, when we run SIITA with a rank = (10, 10, 2) we achieve
a lower test RMSE.

5.4 Analyzing Merits of Side Information
Our goal in this paper is to propose a flexible framework using
which side information may be easily incorporated during incre-
mental tensor completion, especially in the multi-aspect streaming
setting. Our proposed method, SIITA, is motivated by this need. In
order to evaluate merits of different types of side information on

Table 6: Test RMSE averaged acrossmultiple train-test splits
in the Multi-Aspect Streaming setting, analyzing the merits
of side information. See Section 5.4 for more details.

Dataset Missing% Rank SIITA (w/o SI) SIITA

MovieLens
100K

20%
3 1.19 1.23
5 1.19 1.29
10 2.69 2.49

50%
3 1.25 1.28
5 1.25 1.29
10 3.28 2.55

80%
3 1.45 1.59
5 1.42 1.61
10 2.11 2.96

YELP

20%
3 1.44 1.43
5 1.48 1.54
10 3.90 4.03

50%
3 1.57 1.51
5 1.62 1.67
10 5.48 4.04

80%
3 1.75 1.71
5 1.67 1.61
10 5.28 3.49

Table 7: Test RMSE averaged acrossmultiple train-test splits
in the streaming setting, analyzing the merits of side infor-
mation. See Section 5.4 for more details.

Dataset Missing% Rank SIITA (w/o SI) SIITA

MovieLens
100K

20%
3 1.46 1.53
5 1.53 1.54
10 1.55 1.71

50%
3 1.58 1.63
5 1.67 1.64
10 1.56 1.73

80%
3 1.76 1.79
5 1.74 1.75
10 2.31 2.47

YELP

20%
3 1.46 1.45
5 1.62 1.59
10 2.82 2.85

50%
3 1.57 1.55
5 1.69 1.67
10 2.54 2.67

80%
3 1.76 1.73
5 1.80 1.78
10 2.25 2.62

SIITA, we report several experiments where performances of SIITA
with and without various types of side information are compared.

Single Side Information: In the first experiment, we compare
SIITA with and without side information (by setting side informa-
tion to identity; see Section 3). We run the experiments in both
multi-aspect streaming and streaming settings. Table 6 reports the
mean test RMSE of SIITA and SIITA (w/o SI), which stands for
running SIITA without side information, for both datasets in multi-
aspect streaming setting. ForMovieLens 100K, SIITA achieves better
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Figure 6: Evolution of test RMSE with every time step in the
multi-aspect streaming setting for SIITA and SIITA (w/o SI).
See Section 5.4 for more details.
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Figure 7: Runtime comparison between SIITA and SIITA
(w/o SI) in the multi-aspect streaming setting. See Section
5.4 for more details.
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Figure 8: Evolution of test RMSE with every time step in the
streaming setting for SIITA and SIITA(w/o SI). See Section
5.4 for more details.

performance without side information. Whereas for YELP, SIITA
performs better with side information. Figure 6 shows the evolution
of test RMSE at every time step. Figure 7 shows the runtime of SI-
ITA when run with and without side information. SIITA runs faster
in the presence of side information. Table 7 reports the mean test
RMSE for both the datasets in the streaming setting. Similar to the
multi-aspect streaming setting, SIITA achieves better performance
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Figure 9: Runtime comparison between SIITA and SIITA
(w/o SI) in the Streaming setting. See Section 5.4 for more
details.
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Figure 10: Investigating the merits of side information for
MovieLens 1M dataset in themulti-aspect streaming setting.
Side information along the user mode is the most useful for
tensor completion. See Section 5.4 for more details.
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Figure 11: Investigating the merits of side information for
the MovieLens 1M dataset in the batch setting. Side infor-
mation along the user mode is the most useful for tensor
completion. See Section 5.4 for more details.

without side information for MovieLens 100K dataset and with side
information for YELP dataset. Figure 8 shows the test RMSE of
SIITA against time steps, with and without side information. Figure
9 shows the runtime at every time step.

Multi Side Information: In all the datasets and experiments
considered so far, side information along only one mode is available
to SIITA. In this next experiment, we consider the setting where side
information alongmultiple modes are available. For this experiment,
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Figure 12: Average-Purity of clusters learned by NN-SIITA
and NN-SIITA (w/o SI) in the unsupervised setting. For both
datasets, side information helps in learning purer clusters.
See Section 5.5 for more details.

we consider the MovieLens 1M [9] dataset, a standard dataset
of 1 million movie ratings. This dataset consists of a 6040 (user) ×
3952 (movie) × 149 (week) tensor, along with two side information
matrices: a 6040 (user) × 21 (occupation) matrix, and a 3952 (movie)
× 18 (genre) matrix.

Note that among all themethods considered in the paper, SIITA is
the only method which scales to the size of MovieLens 1M datasets.

We create four variants of the dataset. The first one with the
tensor and all the side information matrices denoted by MovieLens
1M, the second one with the tensor and only the side information
along the movie mode denoted by MovieLens 1M (movie mode).
Similarly, MovieLens (user mode) with only user mode side infor-
mation, and finally MovieLens 1M (no si) with only the tensor and
no side information.

We run SIITA in multi-aspect streaming and batch modes for
all the four variants. Test RMSE at every time step in the multi-
aspect streaming setting is shown in Figure 10(a). Evolution of Test
RMSE (lower is better) against epochs are shown in Figure 11(a) in
batch mode. From Figures 10(a) and 11(a), it is evident that the vari-
ant MovieLens 1M (user mode) achieves best overall performance,
implying that the side information along the user mode is more
useful for tensor completion in this dataset. However, MovieLens
1M (movie mode) achieves poorer performance than other variants
implying that movie-mode side information is not useful for tensor
completion in this case. This is also the only side information mode
available to SIITA during the MovieLens 100K experiments in Ta-
bles 6 and 7. This sub-optimal side information may be a reason for
SIITA’s diminished performance when using side information for
MovieLens100K dataset. From the runtime comparisons in Figures
11 (b) and 10(b), we observe that MovieLens 1M (where both types
of side information are available) takes the least time, while the
variant MovieLens 1M (no si) takes the most time to run. This is a
benefit we derive from the inductive framework, where in the pres-
ence of useful side information, SIITA not only helps in achieving
better performance but also runs faster.

5.5 Unsupervised Setting
In this section, we consider an unsupervised setting with the aim
to discover underlying clusters of the items, like movies in the
MovieLens 100K dataset and businesses in the YELP dataset, from a
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Figure 13: Evolution of mean average-purity withw for NN-
SIITA and NN-SIITA (w/o SI) for both MovieLens 100K and
YELP datasets. See Section 5.5 for more details.

sequence of sparse tensors. It is desirable to mine clusters such that
similar items are grouped together. Nonnegative constraints are
essential for mining interpretable clusters [10, 20]. For this set of
experiments, we consider the nonnegative version of SIITA denoted
by NN-SIITA. We investigate whether side information helps in
discovering more coherent clusters of items in both datasets.

We run our experiments in the multi-aspect streaming setting. At
every time step, we compute Purity of clusters and report average-
Purity. Purity of a cluster is defined as the percentage of the cluster
that is coherent. For example, in MovieLens 100K, a cluster of
movies is 100% pure if all the movies belong to the same genre
and 50% pure if only half of the cluster belong to the same genre.
Formally, let clusters of items along mode-i are desired, let ri be
the rank of factorization along mode-i . Every column of the matrix
AiUi is considered a distribution of the items, the top-w items of
the distribution represent a cluster. For p-th cluster, i.e., cluster
representing column p of the matrix AiUi , letwp items among the
top-w items belong to the same category, Purity and average-Purity
are defined as follows:

Purity(p) = wp/w ,

average-Purity =
1
ri

ri∑
p=1

Purity(p).

Note that Purity is computed per cluster, while average-Purity is
computed for a set of clusters. Higher average-Purity indicates a
better clustering.

We report average-Purity at every time step for both the datasets.
We run NN-SIITA with and without side information. Figure 12
shows average-Purity at every time step for MovieLens 100K and
YELP datasets. It is clear from Figure 12 that for both the datasets
side information helps in discovering better clusters. We compute
the Purity for MovieLens 100K dataset based on the genre infor-
mation of the movies and for the YELP dataset we compute Purity
based on the geographic locations of the businesses. Table 8 shows
some example clusters learned by NN-SIITA. For MovieLens 100K
dataset, each movie can belong to multiple genres. For computing
the Purity, we consider the most common genre for all the movies
in a cluster. Results shown in Figure 12 are forw = 5. However, we
also varyw between 5 and 25 and report the mean average-Purity,
which is obtained by computing the mean across all the time steps



Table 8: Example clusters learned by NN-SIITA for MovieLens 100K and YELP datasets. The first column is an example of a
pure cluster and the second column is an example of noisy cluster. See Section 5.5 for more details.

Cluster (Action, Adventure, Sci-Fi) Cluster (Noisy)

MovieLens100K

Movie Genres Movie Genres
The Empire Strikes Back (1980) Action, Adventure, Sci-Fi, Drama, Romance Toy Story (1995) Animation, Children’s, Comedy
Heavy Metal (1981) Action, Adventure, Sci-Fi, Animation, Horror From Dusk Till Dawn (1996) Action, Comedy, Crime, Horror, Thriller
Star Wars (1977) Action, Adventure, Sci-Fi, Romance, War Mighty Aphrodite (1995) Comedy
Return of the Jedi (1983) Action, Adventure, Sci-Fi, Romance, War Apollo 13 (1995) Action, Drama, Thriller
Men in Black (1997) Action, Adventure, Sci-Fi, Comedy Crimson Tide (1995) Drama, Thriller, War

Cluster (Phoenix) Cluster (Noisy)

YELP

Business Location Business Location
Hana Japanese Eatery Phoenix The Wigman Litchfield Park
Herberger Theater Center Phoenix Hitching Post 2 Gold Canyon
Scramble A Breakfast Joint Phoenix Freddys Frozen Custard & Steak-

burgers
Glendale

The Arrogant Butcher Phoenix Costco Avondale
FEZ Phoenix Hana Japanese Eatery Phoenix

in the multi-aspect streaming setting. As can be seen from Figure
13, having side information helps in learning better clusters for all
the values ofw . For MovieLens 100K, the results reported are with a
factorization rank of (3,7,3) and for YELP, the rank of factorization
is (5,7,3). Since this is an unsupervised setting, note that we use
the entire data for factorization, i.e., there is no train-test split.

6 CONCLUSION
We propose an inductive framework for incorporating side informa-
tion for tensor completion in standard and multi-aspect streaming
settings. The proposed framework can also be used in the batch set-
ting. Given a completely new dataset with side information along
multiple modes, SIITA can be used to analyze the merits of different
side information for tensor completion. Besides performing better,
SIITA is also significantly faster than state-of-the-art algorithms.
We also propose NN-SIITA for handling nonnegative constraints
and show how it can be used for mining interpretable clusters. Our
experiments confirm the effectiveness of SIITA in many instances.
In future, we plan to extend our proposed framework to handle
missing side information problem instances [32].
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