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Fig. 1. Examples of two extremely challenging non-stationary textures (middle column), synthesized by our method (left and right). Note that our method
succeeds in reproducing and extending the global structure and trends present in the input exemplars.

The real world exhibits an abundance of non-stationary textures. Examples
include textures with large scale structures, as well as spatially variant and
inhomogeneous textures. While existing example-based texture synthesis
methods can cope well with stationary textures, non-stationary textures still
pose a considerable challenge, which remains unresolved. In this paper, we
propose a new approach for example-based non-stationary texture synthesis.
Our approach uses a generative adversarial network (GAN), trained to double
the spatial extent of texture blocks extracted from a specific texture exemplar.
Once trained, the fully convolutional generator is able to expand the size of
the entire exemplar, as well as of any of its sub-blocks. We demonstrate that
this conceptually simple approach is highly effective for capturing large scale
structures, as well as other non-stationary attributes of the input exemplar.
As a result, it can cope with challenging textures, which, to our knowledge,
no other existing method can handle.
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1 INTRODUCTION

Example-based texture synthesis has been an active area of research
for over two decades. However, despite excellent results for many
classes of textures, example-based synthesis of significantly non-
stationary textures remains an open problem. Examples of non-
stationary textures include textures with large-scale irregular struc-
tures, or ones that exhibit spatial variance in various attributes, such
as color, local orientation, and local scale. Inhomogeneous textures,
such as weathered surfaces are another challenging example of
non-stationarity. Several challenging non-stationary examples are
shown in Figures 1 and 2.

During the previous decade, stitching-based [Efros and Freeman
2001; Kwatra et al. 2003] and optimization-based [Kwatra et al. 2005;
Wexler et al. 2007] approaches have established themselves as highly
effective for example-based texture synthesis. More recently, deep
learning based approaches for texture synthesis have begun to gain
popularity. However, Figure 7 demonstrates that none of the ex-
isting state-of-the-art methods are able to successfully cope with
significantly non-stationary input exemplars. Depending on the
assumptions of each method, the results are either stationary or
periodic, failing to mimic the large-scale structure and spatially
variant attributes of the exemplars.
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Fig. 2. Four non-stationary textures (middle) and our synthesis results (left and right). Again, the global structure present in the input exemplars is preserved
and extended in our results. For example, in the leaf texture, additional veins appear, whose orientation and spacing is consistent with the input.

The fundamental goal of example-based texture synthesis is to
generate a texture, usually larger than the input, that faithfully
captures all the visual characteristics of the exemplar, yet is nei-
ther identical to it, nor exhibits obvious unnatural looking artifacts.
Given this goal, a major challenge of non-stationary texture syn-
thesis lies in preserving the large-scale structures present in the
exemplar. Consider, for example, the nearly co-centric wood rings in
the right example in Figure 1; reproducing this structure is essential
for maintaining the visual similarity of the outcome to the input,
and preserving the natural appearance of wood. Additionally, it is
crucial to reproduce the manner in which local patterns vary across
the spatial domain, such as the changes in scale in the left example
in Figure 1. These requirements are challenging for existing meth-
ods, most of which operate by enforcing similarity of local patterns
and/or of certain global statistics to those of the exemplar.

In this work, we propose a new method for example-based synthe-
sis of non-stationary textures, which uses a generative adversarial
network (GAN) for this purpose. Conceptually, our approach is,
in fact, extremely simple. The goal of the generator network is to
learn how to expand (double the spatial extent) an arbitrary texture
block cropped from the exemplar, such that expanded result is visu-
ally similar to a containing exemplar block of the appropriate size.
The visual similarity between the expanded block and an actual
containing block is assessed using a discriminator network. The
discriminator is trained (in parallel to the generator) to distinguish
between actual larger blocks from the exemplar and those produced
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by the generator. This self-supervised adversarial training takes
place for each specific texture exemplar. Once trained, the fully con-
volutional generator may be used to generate extended textures up
to double the original exemplar’s size, that visually closely resemble
the exemplar. Even larger textures may be synthesized by feeding
the generator with its own output.

Our approach also supports texture transfer: when a generator
trained using a certain texture exemplar is fed with a pattern taken
from another image or texture, the resulting synthesized texture
follows the large scale structure from the input pattern.

At first glance, our approach may resemble deep super-resolution
approaches, such as SRGAN [Ledig et al. 2016]. Note, however, that
super-resolution aims to enhance (sharpen) the already existing
content of an image patch or block. In contrast, our approach learns
to inject new content! This is evident in the examples of our results
shown in Figures 1 and 2: all these results exhibit more elements
(feathers, wood rings, leaf veins, tiles, etc.) than present in the input
exemplar. Unlike in super-resolution, the size and spacing of the
elements remains similar to the input, but additional elements are
added without obvious repetition of the original ones.

In summary, through a variety of results and comparisons, we
show that using a conceptually simple adversarial training strategy,
we are able to cope with an unprecedented array of highly non-
stationary textures, which to our knowledge none of the currently
existing methods are able to handle.



2 RELATED WORK

We begin with a brief review of classical example-based texture
synthesis methods, followed by a more detailed discussion of recent
deep learning based approaches. In either category, the existing
methods are unable to cope with highly inhomogeneous textures,
or textures that exhibit large scale or global structures.

2.1 Classical approaches

Example-based texture synthesis has been extensively researched
for over twenty years, and we refer the reader to Wei et al. [2009] for
a comprehensive survey. The most effective approaches have been
non-parametric methods, which include pixel-based methods [Efros
and Leung 1999; Wei and Levoy 2000], stitching-based methods
[Efros and Freeman 2001; Kwatra et al. 2003], optimization-based
methods [Kwatra et al. 2005; Wexler et al. 2007], and appearance-
space texture synthesis [Lefebvre and Hoppe 2006].

Image melding [Darabi et al. 2012] unifies and generalizes patch-
based synthesis and texture optimization, while Kaspar et al. [2015]
describe a self-tuning texture optimization approach, which uses
image melding with automatically generated and weighted guidance
channels. These guidance channels are designed to help reproduce
the middle-scale structures present in the texture exemplar. How-
ever, as demonstrated in Figure 7, this state-of-the-art classical ap-
proach is unable to capture and reproduce the large-scale or global
structure that may be present in the exemplar.

In general, while classical non-parametric methods are typically
able to reproduce small scale structure, they assume a stationary
Markov Random Field (MRF) model, making it difficult for them
to cope with highly inhomogeneous textures, which violate this
assumption. Thus, control of large scale structure and inhomogene-
ity has typically required user-provided or automatically generated
guidance maps (e.g., [Hertzmann et al. 2001; Rosenberger et al. 2009;
Zhang et al. 2003; Zhou et al. 2017]). We are not aware of any
classical example-based texture synthesis method capable of auto-
matically coping with challenging non-stationary exemplars, such
as the ones shown in Figures 1 and 2.

Certain classes of global structures can be handled by classical
texture synthesis approaches. For example, Liu et al. [2004] analyze
near-regular textures and explicitly model their geometric and pho-
tometric deviations from a regular tiling. In contrast, our approach
does not make any assumptions regarding the structure, nor does it
attempt to analyze it. Yet, with the same deep architecture and train-
ing strategy, we are also able to synthesize regular and near-regular
textures, as demonstrated in Figure 3.

2.2 Deep Learning based approaches

Gatys et al. [2015a] were, to our knowledge, the first to use a deep
neural network for example-based texture synthesis. They charac-
terize an input texture by a collection of Gram matrices, each defined
by inner products between feature channels at a certain convolution
layer of a pre-trained image classification network (in their case
VGG-19 [Simonyan and Zisserman 2014]). An image input to the
network is then iteratively optimized (using back-propagation) so as
to minimize a loss function defined as a sum of weighted differences
between its Gram matrices and those of the original exemplar.
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Fig. 3. Our method can also be successfully applied to stationary, regular,
near-regular, or stochastic textures.

The loss function of Gatys et al. [2015a], often referred to as Gram
loss or style loss (in the context of neural style transfer [Gatys et al.
2015b]), is unable to capture well regularities and larger structures
in the texture. Sendik and Cohen-Or [2017] address this deficiency
by introducing structural energy, based on deep inter-feature cor-
relations. This approach considerably improves synthesis quality
for textures with regular structure, but still can not deal with non-
stationary structures.

Gatys et al. [2015b] extend their Gram-based texture synthesis
approach to perform artistic style transfer. To achieve this, a content
loss term is added to the Gram-based style loss. This approach still
requires iterative optimization to obtain each result. Ulyanov et
al. [2016] and Johnson et al. [2016] both propose a fast implemen-
tation of Gatys et al’s texture synthesis and style transfer using a
single feed-forward pass through a network trained for a specific
texture (style). The idea is to move the computational burden to the
learning stage: a generator network is trained by using a pre-trained
descriptor network (also referred to as loss network) based on VGG-19
in place of a loss function. The quality of the results is comparable
to Gatys et al., while the synthesis itself is extremely fast, once the
network has been trained. In Figure 7 we compare our results to
those of Ulyanov et al. (TextureNets), which can also be viewed as a
comparison with Gatys et al. [2015b] and Johnson et al. [2016].

Several works have utilized Generative Adversarial Networks
(GANS) to perform texture synthesis and style transfer.

Li and Wand [2016] introduce Markovian Generative Adversarial
Networks (MGANS). Rather than capturing style with global statis-
tics, their generator network is trained using a discriminator which
examines statistics of Markovian neural patches, i.e., local patches
on feature maps extracted by a pre-trained VGG network, thereby
imposing a Markov Random Field prior. As in other style transfer
approaches, explicit layout constraints may also be imposed via a
“content” image provided as additional input.
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Jetchev et al. [2016] also utilize GANSs for texture synthesis, where
texture patches are generated from random noise, and patches of
the same size as the generated output are randomly selected from
the exemplar as the ground truth for adversarial training. However,
their method failed to produce high quality textures consistently.
Bergmann et al. [2017] extend this approach by introducing a pe-
riodic function into the input noise, which enables synthesizing
periodic textures with high quality. However, the approach, referred
to as PSGAN, is limited to periodic textures and thus is not applicable
to most real-world textures, as demonstrated in Figure 7.

Isola et al. [2016] demonstrate the effectiveness of GANs for
a variety of image-to-image translation tasks. Zhu et al. [2017]
introduce CycleGANSs, where the translation network can be trained
with unpaired training data. In these tasks, the input and output
differ in appearance, but correspond to different renderings of the
same underlying structure. This is not the case in our approach,
where the goal is to extend the global structure of the exemplar.
We do so by introducing new instances of local patterns, which are
similar, but not identical, to those present in the exemplar.

3 OUR APPROACH

We begin this section with an overview of our approach, followed
by a more detailed explanation of the network architectures used
and the training procedure.

Our approach is very simple conceptually: given that our ultimate
goal is to generate larger instances that perceptually resemble a
smaller input texture exemplar, the main idea is to teach a fully
convolutional generator network how to do just that. The approach
is depicted by the diagram in Figure 4. More specifically, given a kxk
source block S cropped from the input exemplar, the generator must
learn to produce a 2k X 2k output, which is perceptually similar to
an enclosing target block T of the latter size. Note that this training
procedure is self-supervised: the ground truth extended texture
blocks are taken directly from the input texture. Since the generator
is a fully-convolutional network, once it has been trained, we can
apply it onto the entire input exemplar, or a sufficiently large portion
thereof, to generate a texture that is larger than the input (up to
double its size).

It is well known that pixel-based metrics, such as Ly or Ly are
not well suited for assessing the perceptual differences between
images. This is even more true when the goal is to compare different
instances of the same texture, which are the output of texture syn-
thesis algorithms. On the other hand, recent work has shown the
effectiveness of adversarial training and GANS for a variety of image
synthesis tasks [Isola et al. 2017; Ledig et al. 2016; Zhu et al. 2017],
including texture synthesis [Bergmann et al. 2017; Li and Wand
2016]. Thus, we also adopt an adversarial training approach to train
our generator. In other words, our generator G is trained alongside
with a discriminator D [Goodfellow et al. 2014]. The discriminator
D is trained to classify whether a 2k x 2k texture block is real (a
crop from the input exemplar) or fake (synthesized by G).

In our approach, a dedicated GAN must be trained for each in-
put exemplar, which takes considerable computational resources.
But once the fully-convolutional generator has been trained, large
texture blocks may be synthesized from smaller ones in a single
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Fig. 5. Architecture of our generator and discriminator. The number of
feature channels and the spatial resolution of feature maps are respectively
specified on the top of and under each block, while the kernel sizes are
specified in the central yellow regions.

forward pass through the network, which is extremely fast when
the network runs on the GPU. The size of the k X k source blocks
that we use during the training stage should be chosen large enough
to capture the non-stationary behavior across the input exemplar.
On the other hand, it should be small enough relative to the size of
the exemplar, so that we can extract a sufficient number of different
2k x 2k target blocks to train the network. In our current imple-
mentation we set k = 128, and our exemplars are typically of size
600 X 400.

Network architecture

As explained earlier, we would like to model the generator as a fully-
convolutional deep neural network. Using a fully-convolutional
network allows us to apply the generator to arbitrary-sized inputs
at test time, and reduces the number of parameters, compared to
networks with fully connected layers. Network depth is important
both for the expressive power of the generator, and for increasing the
receptive field of the network’s neurons. Since our goal is to capture
large-scale non-stationary behavior across the source texture block,
at some level of the network the receptive field should approach
the size of the source block. This may be effectively achieved by
introducing a chain of residual blocks [He et al. 2016].

A generator architecture that satisfies our requirements was, in
fact, already proposed by Johnson et al. [2016], who demonstrated
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Fig. 6. Visualization of feature maps output by the middle part of our generator. Besides the intermediate results of residual blocks (from resblock_1 to
resblock_6) we also visualize the final output of encoding stage (relu), and the feature map output by the first convolution layer of the decoder (conv).

While the leaf (top), bricks (middle) and wood ring (bottom) textures have very different large-scale structures, it may be observed that all of the new structures
emerge in the course of the residual block chain. The creation of new structures is typically complete before the end of the chain, as evidenced by the similarity

between the resblock_5 and resblock_6 feature maps.

its effectiveness for neural style transfer and for super-resolution.
The same generator was later successfully used by Zhu et al. [2017]
for a variety of unpaired image-to-image translation tasks. Neural
style transfer is closely related to texture synthesis; thus, we adopt
a similar architecture for our generator.

The architecture of the generator is shown in the diagram in
Figure 5. The network consists of three convolution layers, two of
which use stride-2 convolutions that reduce the spatial dimensions
of the input. These three layers are followed by a sequence of six
residual blocks [He et al. 2016]. The receptive field of the neurons
at the end of the residual chain is 109 X 109, i.e., close to the size of
our training source blocks. From this point onward, we first double
the number of channels, after which the spatial dimensions are
doubled three times via strided deconvolution layers, yielding twice
the original spatial resolution. Finally, the multi-channel result of
this process is combined back into three image channels. Similarly
to previous work we use batch normalization after each convolution,
except the last one.

Figure 6 visualizes the feature maps output by the residual blocks
of our generator. Through this visualization, we can gain a better
understanding of how the generator works. The different activa-
tion maps after the downsampling stages (relu) reveal that they
encode details at various scales and orientations. No new large scale
structures appear to be present yet. The situation is different by
the end of the residual chain (resblock_6), where we can see that
the number of the large scale structures (leaf veins, bricks or wood
rings) has roughly doubled. Thus, the residual blocks appear to be
responsible for introducing new large scale structures. This makes
a lot of sense, since each residual block is capable of spatially trans-
forming its input (via its two convolution layers), and adding the
transformed result to its input. It appears that a chain of such blocks
is capable of learning which structures, among those present in the
chain’s input, should be replicated, and how the resulting replicas
should be spatially transformed before they are recombined with
the original pattern. For example, for the leaf texture, it is capable

of learning that the leaf vein structures should be shifted horizon-
tally after replication, while for the wood rings texture it learns
to shift the replicated rings radially. In either case, the amount of
large scale structure is roughly doubled. However, when a genera-
tor trained on a certain texture is applied to an input consisting of
completely different structures, these structures are not replicated,
as demonstrated by the results in Figure 15.

While Johnson et al. [2016] employ a loss network, which is
used to compute the style loss and content loss functions of Gatys
et al. [2015b], we require a loss function with more sensitivity to
spatial arrangement of texture elements and their spatially variant
appearance. Thus, we adopt the PatchGAN discriminator [Isola et al.
2017; Ledig et al. 2016; Li and Wand 2016; Zhu et al. 2017] instead.
The discriminator architecture is shown in Figure 5 (bottom right).
This fully-convolutional network halves the spatial resolution of
the input four times, while doubling the number of channels. The
neurons at the sixth layer may be viewed as texture descriptors of
length 512, representing overlapping texture patches of size 142x142
in the input. Each of these 512-dimensional descriptors is then
projected into a scalar (using a 1 X 1 convolution, followed by a
sigmoid), and the resulting 2D pattern is classified as real or fake
using binary cross-entropy.

Training procedure

Our training process follows the one outlined in the pioneering
work of Goodfellow et al. [2014]: we repeatedly alternate between
performing a single training iteration on the discriminator D, and
a single training iteration on the generator G. In each training
iteration, we randomly select one 256 X 256 target block T from
the exemplar to serve as the ground truth, as well as a random
128 x 128 source block S, contained in T, which is fed as input to
the generator. For maximum utilization of the available data we
choose to not set aside a validation or a test set. Nevertheless, our
results show that the network is able to plausibly expand unseen
input texture blocks that are different in both size and content from
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those encountered during training, and it is easy to see that it does
not merely memorize patterns. It is also capable of texture transfer,
as demonstrated in Figure 15.

In addition to the standard adversarial loss function [Goodfellow
et al. 2014] L4, we use two additional loss terms: Lq loss L, and
style loss L [Gatys et al. 2015a]:

Liotal = Ladv + Al-ELl + AZLStylE’ (1)

where 1; = 100 and A2 = 1. As we shall demonstrate in our ablation
study in Section 4.3, the adversarial loss appears to be the main
workhorse, while the other two terms help stabilize the training and
slightly reduce artifacts.

Following Gatys et al. [2015a], we compute the style loss using
a pre-trained (on ImageNet) VGG-19 model, and compute Gram
matrices for the ReLU activated feature maps output by the relul_1,
relu2_1, relu3_1, relu4_1, and relu5_1 layers. The weights used
to sum up the corresponding Gram losses are set to 0.244, 0.061,
0.015, 0.004, and 0.004, respectively. More specifically, they are given
by 1000/(64 x 64), 1000/(128 x 128), 1000/(256 x 256), 1000/(512 x
512), and 1000/(512 x 512).

We choose Adam [Kingma and Ba 2014] as our optimization
method with momentum set to 0.5, and train our models for up to
100,000 iterations. Learning rate is set to 0.0002 initially and kept
unchanged for the first 50,000 iterations. Then, the learning rate
linearly decays to zero over the remaining 50,000 iterations. Weights
of convolutional layers are initialized from a Gaussian distribution
with mean 0 and standard deviation 0.02. We train and test all our
models on an NVIDIA Titan Xp GPU with 12GB of GPU memory.

4 RESULTS

Our approach was implemented using PyTorch, building on pub-
licly available existing implementations of its various components.
Generators were trained for a variety of input exemplars of sizes
around 600x400 pixels. Training our GAN on an exemplar of this
size takes about 5 hours for 100,000 iterations on a PC equipped
with a NVIDIA Titan Xp GPU with 12GB memory. In many cases
the results no longer improve after around 36,000 iterations (under 2
hours). Our implementation, as well as our trained models and other
supplementary materials, are all available on the project page!.

Once the generator has been trained it takes only 4-5 milliseconds
to double the size of a 600x400 texture, since this requires only a
single feed-forward pass through the generator.

A few of our synthesis results from challenging non-stationary
texture exemplars exhibiting irregular large-scale structures and in-
homogeneities are shown in Figures 1 and 2. In all of these examples,
the global structure present in the input exemplars is successfully
captured and extended by our method. Of course, our method is also
applicable to more stationary textures as well, including textures
with regular, near-regular, or stochastic structures. Four examples
of our results on such textures are shown in Figure 3. Results for
additional textures are included in the supplementary material.

Lhttp://vee.szu.edu.cn/research/2018/TexSyn
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4.1 Comparison

Figure 7 compares our results with those produced by a number of
state-of-the-art methods. The first column shows the input exem-
plars, which include both non-stationary and stationary textures.
Our results are shown in the second column. The third column
shows results produced by self-tuning texture optimization [Kaspar
et al. 2015], which is a representative of classical optimization-based
texture synthesis methods. The next four columns show results
produced by several recent deep learning based approaches: Tex-
tureNets by Ulyanov et al. [2016], a feed-forward version of the
method proposed by Gatys et al. [2015a]; DeepCor by Sendik and
Cohen-Or [2017] improves upon Gatys et al.s approach by intro-
ducing a deep correlations loss that enables better handling of large
scale regular structures; MGANSs of Li and Wand [2016], the first
texture synthesis method to use adversarial training, employing a
discriminator that examines statistics of local patches; and PSGAN
of Bergmann et al. [2017], which learns to convert periodic noise
into texture patches sampled from the exemplar.

These comparisons demonstrate that our approach is able to han-
dle large-scale non-stationarity much better than existing methods,
while for stationary or homogeneous textures, we produce compara-
ble results to the state-of-the-art approaches. Additional comparison
results are contained in our supplementary materials.

In terms of computation times, the self-tuning method [Kaspar
et al. 2015] takes about 20 minutes per result; the deep learning
based methods take between 1 hour of training per exemplar with
TextureNets [Ulyanov et al. 2016], to 12 hours of training an PSGAN
[Bergmann et al. 2017], and up to 8 hours for each result using
Deep Correlations [Sendik and Cohen-Or 2017]. Thus, while the
training time of our method is much slower than the time it takes
to synthesize a single texture with a classical method, it is far from
being the slowest among the deep-learning based methods.

4.2 Diversification

It is important for a texture synthesis algorithm to be able to produce
a diverse collection of results from a single input exemplar. Since our
method does not generate textures from a random seed or noise, we
have explored a number of alternatives for diversifying the output.
The simplest approach is to simply feed different subwindows of
the exemplar as input to be expanded by our generator. Since the
appearance across non-stationary exemplars varies greatly, crop-
ping and expanding different windows may result in quite different
results. This is demonstrated in Figure 8, which shows two different
512x512 synthesis results for each exemplar, obtained by taking two
random 256X256 crops as input.

For exemplars with a more stochastic and stationary nature, with-
out a clear global structure, it is also possible to diversify the results
by reshuffling or perturbing the source texture. Specifically, for suf-
ficiently stationary textures, we have been able to produce a wide
variety of synthesis results by reshuffling the exemplar’s content.
Figure 9 shows three exemplars, each of which was split into 4x4
tiles, which were randomly reshuffled each time before feeding into
the generator to yield different results. We have also experimented
with adding Perlin noise to both stationary and non-stationary exem-
plars. We found that the changes among different results generated
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Fig. 7. Comparisons to several state-of-the-art texture synthesis methods. For each texture, the results from left to right are respectively produced by our

method, Self-tuning of Kaspar et al.[2015], TextureNets of Ulyanov et al.[2016], DeepCor of Sendik and Cohen-Or [2017], MGANSs of Li and Wand[2016], and
PSGAN of Bergmann et al. [2017].
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Fig. 8. Diversification by cropping. For each source texture (left in each triplet), we randomly crop two 256x256 sub-regions from the source texture after

training, to generate different expansion results on size 512x512.

Fig. 9. Diversification by tile shuffling. The exemplar used to train the generator (leftmost column) is divided into tiles, which are randomly reshuffled before

feeding into the generator, yielding different results.

in this manner are more moderate, and are best presented using
animated sequences; we include a number of such animations in
our supplementary materials.

4.3 Self evaluation

Ablation study. Figure 10 shows the results of an ablation study
that we carried out in order to verify the importance of the various
loss terms in Equation 1. We first train the generator with the adver-
sarial loss switched off, i.e., without adversarial training. In this case,
the generator fails to properly expand the input texture: no new
large scale structures are introduced in the leaf example, and the
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smaller scale structures are not reproduced faithfully. Next, we turn
on adversarial training and experiment with different combinations
of the other two loss terms, including: adversarial loss only, adversar-
ial and L1 loss, adversarial and style loss, and the combination of all
three terms. The visual differences between results achieved using
these different combinations are quite subtle. Clearly, the adversarial
loss plays a key role in our approach, as it alone already produces
good results. Nevertheless, some noise and artifacts are present,
which are reduced by adding the L; loss. However, this also causes
oversmoothing of local details in some areas. In contrast, style loss
enhances details, but at the same time introduces artifacts into the
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Fig. 10. Ablation study on two textures shown in Figure 2. The leftmost column shows the expansion results without adversarial training, and the remaining
columns show results of using different combinations of loss terms with adversarial loss switched on. The full results of adversarial expansion are shown in the
middle row, while the top & bottom rows zoom into the blue and red framed windows indicated in the middle row. For high-resolution full image results,

please refer to our supplementary materials.

16X16

142X142 574x574

286Xx286

Fig. 11. Comparison of PatchGANs with different receptive fields, ranging from 16x16 to 574x574, corresponding to 3 to 8 convolutional layers in the
discriminator. Adding layers increases the receptive field (i.e., the patch size) of PatchGAN, which makes it possible for the discriminator to examine larger
structures. However, as may be seen above, very large patch sizes seem to cause the discriminator to pay less attention to local details. We use a patch size of

142X 142 in our results.

structures and causes some color distortions. The combination of
all three terms, yields the best results, in our experience.

Discriminator patch size. The PatchGAN discriminator used in our
approach is fully convolutional. Thus, it can be adjusted to examine
texture patches of different sizes by changing the number of its
resolution-reducing convolutional levels. We experimented with
PatchGANSs of six different sizes (ranging from 16 to 574). Results
for two textures are shown in Figure 11. Our results on these and
other textures consistently indicate that the best texture expansions
are obtained using a 142x142 PatchGAN.

Synthesis stability. Kaspar et al. [2015] proposed an interesting
stress test to evaluate the stability of a synthesis algorithm, which
consists of feeding an algorithm with its own output as the input
exemplar. Since our approach doubles the size of its input at every
stage, we conducted a modified version of this test, where after each
synthesis result is obtained, we randomly crop from the result a
block of the same size as the original input and feed it back to our
method. Note that we keep applying the same generator, without
any re-training or fine-tuning. Figure 12 shows the results of five
synthesis generations on two textures. Obviously, since in this pro-
cess we essentially zoom-in on a portion of the original texture, the
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Fig. 12. Stress test #1. Given a source texture (leftmost column), we double its size using our method. Then we randomly crop a region of the same size as the
source texture from the expansion result, and expand it again without any further training. The above crop-expansion cycle is repeated 4 times. We can see
that the final result (rightmost column) is still very sharp and natural looking, attesting to the stability of our method.

32 ]

Fig. 13. Extreme expansion. Having trained a generator on the source exemplar (left), we feed it with a small cropped texture block (64x64 pixels), and feed
the expanded result back into the generator. Five such cycles produce a 2048x2048 result. Six different crops from this result are shown in the bottom row.

global structure changes accordingly. However, it may be seen that
the smaller scale texture elements remain sharp and faithful to their
shapes in the original exemplar.

Extreme expansion. Given that our method can expand the source
texture up to twice its size, by repeating the expansion one can
synthesize very large results. Figure 14 shows the result of expanding
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the wood rings exemplar by a factor of four (by expanding once more
the result shown in Figure 1 using the same trained model). The
result successfully maintains the radial structure of the wood rings.
Figure 13 shows a more extreme expansion result, where starting
from a 64x64 patch, it is expanded to x32 of its original size via five
expansion cycles. All of the cycles use the same model trained on the
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Fig. 14. Expansion of the wood ring texture to a size four times larger than the exemplar by repeating the expansion twice, resulting in a 2400x1504 texture.
The synthesis adds additional wood rings while preserving their local appearance, as well as their global radial structure.

original exemplar. Two additional multi-cycle expansion examples
can be seen in our supplementary materials.

4.4 Texture Transfer

Texture transfer is a process where a given example texture is applied
to another image, guided by various properties of the latter. Early
work [Efros and Freeman 2001; Hertzmann et al. 2001] performed
texture transfer based on the brightness of the target image. Artistic
style transfer [Gatys et al. 2015b] may be viewed as texture transfer

guided by a more sophisticated analysis of the target’s content.

Our approach, may be used without any modification to produce
synthesized textures that follow the large scale structure of a guiding
image. This is achieved simply by feeding the guiding image as input
to a trained generator. A collection of texture transfer results is
shown in Figure 15. The resolution of these results is twice that of the
guiding images. In this case, however, no new large scale structures
are produced, since the generator was not trained to extend the
structures present in the guidance image. Since our generator is
not trained to extract high-level semantic information from the
input image, we find that this approach is not well suited for artistic
style transfer. However, Figure 15 demonstrates its usefulness for
synthesis of textures that follow a certain large-scale pattern.

5 SUMMARY

We have presented an example-based texture synthesis method ca-
pable of expanding an exemplar texture, while faithfully preserving
the global structures therein. This is achieved by training a gener-
ative adversarial network, whose generator learns how to expand
small subwindows of the exemplar to the larger texture windows
containing them. A variety of results demonstrate that, through
such adversarial training, the generator is able to faithfully repro-
duce local patterns, as well as their global arrangements. Although
a dedicated generator must be trained for each exemplar, once it
is trained, synthesis is extremely fast, requiring only a single feed-
forward pass through the generator network. The trained model is
stable enough for repeated application, enabling generating diverse
results of different sizes.

Training time is a limitation of our approach, although it is faster
than previous GAN-based synthesis approaches. It would be useful
to find a reliable stopping criterion for the training: at the moment,
we train our models for 100,000 iterations, although in many cases
the results no longer improve after 36,000 iterations or so.

In terms of result quality, artifacts tend to emerge in the vicinity
of borders and corners, as may be seen in Figure 16. This may be
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Fig. 15. Texture transfer. By feeding generators trained using the texture exemplars in the top row with guiding images in the leftmost column we synthesize
textures that adapt to the large scale structures present in the guiding images. Note that we can even input a simple user sketch or pure random noise (Perlin
noise) and generate satisfactory results as shown in the last two rows.

attributed to fewer training examples in these areas, and possibly
also related to the padding performed by the convolution layers.
Figure 17 shows two failure cases of our method. These failures
may still be attributed to limited training examples. For example,
for the stone tiles texture, all the tiles are quite large and distinct. So
is the singularity at the center of the sunflower texture. In general,
if the generator has not seen enough examples of a particular large
scale structure or pattern during training, it cannot be expected to
correctly reproduce and/or extend such structures during test time.

ACM Trans. Graph., Vol. 37, No. 4, Article 49. Publication date: August 2018.

The network does not learn some kind of a high-level representation
of the texture; it only learns how to extend commonly occurring
patterns. In the future, we would like to address this issue. It might
be facilitated by training on multiple textures of the same class.
With richer data we may possibly train a more powerful model for
generalized texture synthesis tasks.



Fig. 17. Failure cases of our method. For the stone tiles texture, our method
failed to learn its large scale structure (left). While for the sunflower, our
method failed to reproduce the singularity at the center (right).
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