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LIQUIDATION IN LIMIT ORDER BOOKS WITH CONTROLLED INTENSITY
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We consider a framework for solving optimal liquidation problems in limit order
books. In particular, order arrivals are modeled as a point process whose intensity
depends on the liquidation price. We set up a stochastic control problem in which the
goal is to maximize the expected revenue from liquidating the entire position held.
We solve this optimal liquidation problem for power-law and exponential-decay order
book models explicitly and discuss several extensions. We also consider the continuous
selling (or fluid) limit when the trading units are ever smaller and the intensity is ever
larger. This limit provides an analytical approximation to the value function and the
optimal solution. Using techniques from viscosity solutions we show that the discrete
state problem and its optimal solution converge to the corresponding quantities in the
continuous selling limit uniformly on compacts.

KEY WORDS: Limit order books, controlled intensity, optimal control of point processes, optimal
control of queueing networks, fluid limit.

1. INTRODUCTION

Liquidation of large securities positions has emerged as an important problem in financial
mathematics, linking together models of market microstructure and control theory. In
this paper, we consider an investor who liquidates a position through limit orders placed
in a limit order book (LOB). The investor does so by choosing the price of the limit
order; the higher the price of the limit order, the smaller the probability that it would be
filled. The objective of the investor is to come up with an optimal limit order strategy
that maximizes her expected revenue by date T .

Our model for the above problem is based on a point-process view of LOBs, which
treats liquidation as a sequence of discrete events, i.e., order matches. More precisely,
we assume that the investor effectively controls the frequency of her trades by choosing
the spread s above the current bid price Pt. The trade intensity is controlled as �(s)
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and when a trade occurs, the investor generates a liquidation profit of s. Similar setups
have been proposed in Avellaneda and Stoikov (2008), Cont, Stoikov, and Talreja (2010),
Cont and De Larrard (2010) and rely essentially on a queueing system representation of
LOBs.

A crucial modeling difference is whether execution takes place through market or
limit orders. If investor trades via market orders, she necessarily encounters price impact
through “eating away” a portion of the LOB. The precise price impact depends on the
shape of the LOB, as well as its resilience. Conversely, there is no transactions or fill risk
as market orders execute instantaneously. This point of view is taken in, for example,
Obizhaeva and Wang (2005), Alfonsi, Fruth, and Schied (2010), and Alfonsi and Schied
(2010). On the other hand, if the investor trades through limit orders, liquidation depends
on being “lifted” by a sufficiently large market order, leading to substantial fill risk that
again depends on the shape and depth of the LOB. The fill risk is related to the concept
of virtual price impact (Weber and Rosenow 2005) and is the focus of our model here.
Related approaches to trading via limit orders can be found in Avellaneda and Stoikov
(2008), Cartea and Jaimungal (2010), Guéant, Lehalle, and Tapia (2011), and Guilbaud
and Pham (2011). Also, in our previous work Bayraktar and Ludkovski (2011), we
considered the same LOB as here but with an uncontrolled trade intensity and temporary
price impact from order size.

Ideally, a fully specified model will reconcile the two approaches above, as well as
consider the underlying risk preferences of the investor. This is especially important for
dealing with simultaneous trading on multiple exchanges; see the very recent preprints
Kratz and Schoeneborn (2010), Klöck, Schied, and Sun (2011), as well as Section 5.5. A
full treatment of this problem will be the subject of a separate paper.

Our starting point is a discrete-state problem for an investor holding n shares of an
illiquid asset, n ∈ N. Since practically speaking n is often large (on the order of hundreds
of thousands), we also investigate the fluid limit of our setup. On a technical level, the
fluid limit provides asymptotic results for the discrete-state problem (see Remark 3.6),
which is the main focus of our paper.

On a formal level, our control problem is equivalent to a controlled death process and
is closely related to fluid approximations of some queueing problems. We refer to Bäuerle
(2000, 2001, 2002), Day (2011), Piunovskiy (2009), Piunovskiy and Zhang (2011) and
references therein for the most relevant strand of this rich literature. In contrast with the
previous literature, which uses probabilistic arguments, we utilize viscosity techniques to
show convergence (both of the value functions and the corresponding optimal controls)
from the discrete- to the continuous-state problems.

An investor holds n shares of an asset. Let (Pt)t≥0 be the bid price process for the
underlying asset. Let r ≥ 0 be the risk-free rate. We assume that e−rtPt is a martingale with
respect to the optimization measure P on a filtered probability space (�,F, (Gt)). This
assumption is consistent with standard market microstructure models; see, for example,
Alfonsi and Schied (2010). Let �t be the (controlled) intensity of order fill, and let
st ≥ 0 be the spread between the bid price and the limit order of the investor. Denote
by Nt the G-adapted counting process of order fills and τ k the corresponding arrival
times,

Nt =
∑

k

1{τk≤t}.

Then Nt − ∫ t
0 �s ds is a martingale and expected revenue is
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E

[
n∑

i=1

e−rτi (Pτi + sτi 1{τi ≤T})

]
.(1.1)

We assume that the investor has a deadline date T ≤ +∞ by which all trades must be
completed. Remaining shares are liquidated at zero profit at T .

To introduce the liquidation control, we assume that �t = �(st), so that the intensity
of order fills is a function of the offered spread above the bid price. Moreover, we assume
that the bid price P is unaffected by the limit orders created via (st). Since e−rtPt is a
martingale, the first term in (1.1) is independent of τ i. Indeed, E[

∑n
i=1 e−rτi Pτi ] = n P0

and we may ignore P in the subsequent analysis.
We define

V(n, T) := sup
(st)∈ST

E

[
n∑

i=1

e−rτi sτi 1{τi ≤T}

]
(1.2)

= sup
(st)∈ST

E

[∫ T∧τ (X)

0
e−rtst d Nt

]
= sup

(st)∈ST

E

[∫ T∧τ (X)

0
e−rtst�(st) dt

]
,(1.3)

where

τ (X) := inf{t ≥ 0 : Xt = 0}
is the time of liquidation. Here, Xt := X0 − Nt, with X0 = n, is a “death” (or inventory)
process with intensity �(st). Note that T in (1.2) represents time-to-maturity and ST

is the collection of F-adapted controls, st ≥ 0 with Ft := σ (Ns : s ≤ t). The boundary
conditions on V are V (n, 0) = 0 ∀n (terminal condition in time) and V (0, T) = 0 ∀ T
(exhaustion).

REMARK 1.1. Our model is related to the LOB setup of Avellaneda and Stoikov (2008),
which assumes that limit orders are “lifted” through sufficiently large market buy orders.
Namely, a market buy order of size q, hits all limit sell orders that are within I(q) of
the best bid. Assuming that buy market orders arrive in the form of a Poisson random
measure on R+ × R+ with arrival intensity λ̄dt and volume (mark) distribution f (dq),
q ≥ 0, a sell limit order at a given spread u is lifted with probability P(I(q) > u). By the
thinning lemma on Poisson processes, such matching buy orders form a Poisson pro-
cess with intensity λ̄

∫ ∞
I−1(u) f (dq). Empirical studies suggest a power-law depth function

f (dq) ∝ q−1−adq (Avellaneda and Stoikov 2008) and therefore if �(0) < ∞, we can view
our model within the Avellaneda and Stoikov (2008) framework, �(s) ∝ [I−1(s)]−a, with
I−1 the virtual price impact function (Weber and Rosenow 2005).

As in Bäuerle and Rieder (2009), the above control problem can be transformed into
a discrete-time Markov decision problem and the classical results from Bertsekas and
Shreve (1978, ch. 8) can be used to prove a dynamic programming principle. Using the
latter result one can show that the value function is a viscosity solution of

−VT + sup
s≥0

�(s)
[
V(n − 1, T) − V(n, T) + s

] − r V(n, T) = 0,(1.4)

with boundary conditions V (0, T) = V (n, 0) = 0 and VT denoting partial derivative with
respect to time-to-expiration. Standard results also imply that an optimal control can
be taken of Markov feedback type, s∗

t = s(X∗
t , T − t). However, in most of the examples
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below we will obtain explicit solutions to this dynamic programming equation. Then a
verification lemma can be used to justify that the solution of (1.4) is indeed the value
function.

The optimization problem described in (1.2) is simplified but highly tractable. In
most of the examples below, we are able to obtain closed-form solutions which provide
direct insight into the relationship between the LOB model and its depth function and the
investor’s liquidation strategy. In Section 2, we give an explicit solution for (1.2) in the case
of a power-law intensity control �(s). Section 3 then studies convergence of the discrete
problem (1.4) to its continuous-state fluid limit. Our key Theorem 3.2, complemented
by Proposition 3.4 and Corollary 3.5, gives a full account of this convergence using
techniques from viscosity solutions of nonlinear partial differential equations (PDE).
In Section 4 we return to (1.2) for the case where �(s) is of exponential shape; we
are again able to provide several closed-form solutions. Finally, Section 5 considers
several extensions and numerical illustrations of (1.2), including generic �(s), which
shed additional light on the problem structure.

2. POWER-LAW LIMIT ORDER BOOKS

In this section, we assume that incoming buy orders have a power-law distribution for
the spread, �(s) = λ

sα for some α > 1. It can be observed from the computations below
that if α ≤ 1, then no optimal control exists. Similar assumption was made (and justified
empirically) by Avellaneda and Stoikov (2008) who write that in realistic markets α ∈
[1.5, 3].

PROPOSITION 2.1. Assume that �(s) = λs−α with boundary conditions V (0, T) = V (n,
0) = 0 for all n. Then the solution of (1.4) and the optimal spread are, respectively

V(n, T) = cn(1 − e−rαT)1/α, s∗(n, T) =
(

λ

αrcn

)1/(α−1)

· (1 − e−rαT)1/α,(2.1)

with cn satisfying the recursion

rcn = Aαλ(cn − cn−1)1−α, n ≥ 1, c0 = 0,(2.2)

where

Aα := (α − 1)α−1

αα
.(2.3)

REMARK 2.2. Note that V is “concave” in n in the sense that

V(n + 1, T) − V(n, T) ≤ V(n, T) − V(n − 1, T),

i.e., its linear interpolation in n is concave in the usual sense. This follows immediately
from (2.2) since

cn+1 − cn =
(

rcn+1

λAα

)1/(1−α)

≤
(

rcn

λAα

)1/(1−α)

= cn − cn−1,

where the inequality follows from the fact that cn (or V (n, T)) is increasing in n. The
latter follows directly from (1.2).
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Also observe from (2.1) and (2.2) that

s∗(n, T) = α

α − 1
(V(n, T) − V(n − 1, T)),

which implies that n �→ s∗(n, T) is a decreasing function, because n �→ V (n, T) is
“concave.” One can also think of s∗ as the derivative of the linear interpolation of V
in n.

Proof . With the power law assumption (1.4) reduces to

−VT + sup
s

λ

sα
(V(n − 1, T) − V(n, T) + s) − r V = 0,(2.4)

and therefore the candidate optimal policy is t �→ s∗(Xt, T − t) in which s∗(n, T) =
α

α−1 (V(n, T) − V(n − 1, T)). To begin solving this equation, we start with n = 1. Since
V (0, T) = 0 for all T , we obtain for V = V (1, T)

−VT + AαλV1−α − r V = 0.

This is a separable ordinary differential equation (ODE) which simplifies to

T + C =
∫ · Vα−1

Aαλ − r Vα
dV.

Using the boundary condition V (1, 0) = 0 we integrate to obtain

log(Aαλ − r Vα) = −rα(T + C) ⇐⇒ V(1, T) =
{

Aαλ

r
(1 − e−rαT)

}1/α

.

Considering the equation for general n > 1 we therefore make the ansatz V (n, T) =
cn(1 − e−rαT )1/α and plugging into (2.4) the relation (2.2) follows. �

REMARK 2.3. If no discounting is present r = 0, one can verify that the solution of
(1.4) is V (n, T) = dnT1/α, where the sequence (dn) satisfies the recursion

dn = λ

(
α − 1

α

)α−1

(dn − dn−1)1−α, d0 = 0.

This result can also be obtained by taking the limit r → 0 in (2.1), (2.2).
Fixing X0 = n, the inter-trade intervals σ i := τ i − τ i−1, i ≤ n have survival functions

given by

P(σi > t|τi−1) = exp
(

−
∫ t

0
�(s∗(n − i + 1, T − τi−1 − s)) ds

)
.

Noting that �(s∗(n, T)) = C(n)
1−e−rαT for some constant C(n), it follows that∫ ε

0 �(s∗(n, T)) dT = +∞ for all n and ε and therefore P(σi ≤ T − τi−1) = 1 for all
i ≤ n. We conclude that even though there is no direct penalty if some orders remain at
T , with probability one, the full inventory is liquidated by T , X∗

T = 0 P-a.s. In particular,
the problem with a hard liquidation constraint V (x, 0) = −M1{x≥0} for any liquidation
penalty M ≥ 0 will have the same solution as in Proposition 2.1.
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2.1. Infinite Horizon

As the execution horizon T grows, the investor faces a weaker liquidation constraint.
Nevertheless, she still prefers to sell earlier than later due to the discount parameter r
that incentivizes faster liquidation. For the limit T → ∞ we obtain an infinite-horizon
model whereby strategies are time-homogenous.

Taking T → ∞ in (2.1) we find that V (n) = cn and s∗(n) = λ1/(α−1)(αrcn)1/(1−α). To
understand how quickly execution takes place let us introduce expected time to liquidate
S(n) which is defined to be S(n) := E[τ (X∗)|X∗

0 = n], in which X∗ is the death process
whose intensity at time t is �(s∗(X∗

t )) (representing optimally controlled inventory at t).
When the inventory is X∗

t = n, liquidation occurs at rate �(s∗(n)), so that the interval
until the next trade has an exponential distribution with mean 1/�(s∗(n)). It follows that

S(n) =
n∑

j=1

�(s∗( j ))−1 = λ1/(α−1)
n∑

j=1

(αrc j )−α/(α−1).(2.5)

3. CONTINUOUS SELLING LIMIT

To better understand the results of Proposition 2.1 we consider a limiting continuous
model. Let us denote the number of shares initially held by x.

We first introduce a sequence of discrete control problems that converge to the con-
tinuous selling limit. For 0 < 	 ≤ 1, consider the problem where shares are sold at 	

increments and the intensity of order fills is �	(s) := �(s)/	. We will denote by X	 the
“death” process with this intensity and decrements of size 	. Then the resulting value
function

V	(x, T) := sup
(st)∈ST

E

[x/	∑
i=1

e−rτi 	 · sτi 1{τi ≤T}

]

= sup
(st)∈ST

E

[∫ T∧τ (X	)

0
e−rtst�(st) dt

]
,

(3.1)

x ∈ {0, 	, 2	, . . . }, T ∈ R+ would satisfy

−V	
T + sup

s≥0

λ

sα	
(V	(x − 	, T) − V	(x, T) + s	) − r V	 = 0(3.2)

in viscosity sense.
Let us consider the first-order PDE

−vT + sup
s≥0

λ
s − vx

sα
− rv = 0,(3.3)

which can be written as

−vT + Aαλv1−α
x − rv = 0,
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with boundary conditions v(x, 0) = v(0, T) = 0. The solution of (3.3) has the following
deterministic control representation

v(x, T) = sup
(st)∈ST

∫ T∧τ (X(0),x)

0

λ

sα−1
t

e−rtdt,(3.4)

where dX (0),x
t = −λs−α

t dt, X(0),x
0 = x. In fact, the solution of (3.3) is explicitly given by

v(x, T) =
(

λ

rα

)1/α

x(α−1)/α(1 − e−rαT)1/α.(3.5)

We denote the optimizer in (3.3) by s(0)(x, T), which is explicitly given by

s(0)(x, T) =
(

λ

αr

)1/α 1
x1/α

(1 − e−rαT)1/α.

REMARK 3.1. Plugging the optimizer back into the dynamics for X (0),x we obtain that

dX (0),x
t = − αr X(0),x

t

1 − e−rα(T−t)
dt,

which can be explicitly solved as

X(0),x
t = x exp

(
−

∫ t

0

αr
1 − e−αr (T−u)

du
)

.(3.6)

Observe that the function t �→ X(0),x
t is strictly decreasing and strictly convex with

X(0),x
T = 0.
Let x ∈ R+ be fixed and let us consider all the collections {0, 	, 2	, . . . } of grids that

contain x as an element. In the next result, we will show that as 	 → 0 then V	(x) →
v(x). In fact, the next result shows that this convergence is uniform on compacts.

THEOREM 3.2. As 	 → 0, V	 → v uniformly on compact sets.

Proof . Let us consider the regularized stochastic control problem

V	,k(x, T) := sup
(st)∈Sk

T

E

[x/	∑
i=1

e−rτi 	 · sτi 1{τi ≤T}

]
, x ∈ {0, 	, 2	, . . .},(3.7)

where Sk
T := {s ∈ ST : st ∈ [1/k, k]}, k > 1. Using a representation similar to the one in

(3.1) and using the lower bound on the controls s ∈ Sk
T, it can be seen that

V	,k(x, T) ≤ λ

r
kα−1.(3.8)

We will follow the arguments of Barles and Souganidis (1991) in the proof of their
Theorem 2.1 (also see theorem 4.1 on page 334 of Fleming and Soner 2006) to show that
V	,k converges uniformly on compacts to the unique viscosity solution of

−vk
T + sup

s∈[1/k,k]
λ

s − vk
x

sα
− rvk = 0, vk(x, 0) = 0.(3.9)
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Let v̄ k and vk be defined by:

v̄ k(x, T) := lim sup
δ→0

lim sup
	→0

sup{V	,k(y, S) : |x − y| + |T − S| ≤ δ, y ∈ {0, 	, . . .}},

vk(x, T) := lim inf
δ→0

lim inf
	→0

inf{V	,k(y, S) : |x − y| + |T − S| ≤ δ, y ∈ {0, 	, . . .}}.

By definition we have that vk ≤ vk ≤ v̄ k and that vk is lower semi-continuous, and v̄ k

is upper semi-continuous; see for example, proposition 5.2.1 of Bardi and Capuzzo-
Dolcetta (1997). We will show that v̄ k is a subsolution and that vk is a supersolution
of (3.9). It follows from theorem 5.4.20 in Bardi and Capuzzo-Dolcetta (1997) that a
comparison result holds for this PDE (the compactness of the control space is required
in order to apply this result). This comparison theorem would then imply that v̄ k ≤ vk.
As a result, vk = v̄ k = vk is the unique continuous viscosity solution of (3.9). This fact
together with the way the functions v̄ k and vk are defined also imply the local uniform
convergence of V	,k to vk. (For a similar argument see page 35 of Crandall, Ishii, and
Lions (1992).)

We now prove that v̄ k is a viscosity subsolution of (3.9); the fact that vk is a viscosity
supersolution follows similarly. Let (x0, T0) be a local maximum of v̄ k − φ for some test
function φ ∈ C1,1. Without loss of generality, we will assume that (x0, T0) is a strict local
maximum and that v̄ k(x0, T0) = φ(x0, T0), and φ ≥ 2 λ

r kα−1 outside the ball B(x0, T0; r),
where r > 0 is chosen so that (x0, T0) is the maximum of v̄ k − φ on B(x0, T0; r). Thanks to
the choice of the test function outside this ball, (x0, T0) is in fact a global maximum of the
function v̄ k − φ and it is attained on B(x0, T0; r). (This is where the uniform boundedness
assumption in (3.8) is used.)

Let (x	, T	) ∈ {0, 	, . . .} × R+ be a point at which V	,k − φ attains its (global)
maximum. It follows from the definition of v̄ k and the fact that (x0, T0) is a strict global
maximum of v̄ k − φ that there exists a sequence 	n → 0 such that (x	n , T	n ) → (x0, T0),
V	n ,k − φ attains its global maximum at that point and V	n ,k(x	n , T	n ) → v̄ k(x0, T0).
From the global maximality

V	n ,k(x, T) − V	n ,k(x	n , T	n ) ≤ φ(x, T) − φ(x	n , T	n ).

Moreover, it can be argued as in Bäuerle and Rieder (2009) using the discrete dynamic
programming principle (see Bertsekas and Shreve 1978) that V	n ,k satisfies

−V	n ,k
T + sup

s∈[1/k,k]

λ

sα	n
(V	n ,k(x	n − 	n, T	n ) − V	n ,k(x	n , T	n ) + s	n) − r V	n ,k = 0

in the viscosity sense. Then

−φT + sup
s∈[1/k,k]

λ

sα	n
(φ(x	n − 	n, T	n ) − φ(x	n , T	n ) + s	n) − rφ + r (φ − V	n ,k) ≥ 0.

Taking the limit as 	n → 0 we obtain from this equation that

−φT(x0, T0) + sup
s∈[1/k,k]

λ

sα
(s − φx(x0, T0)) − rφ(x0, T0) ≥ 0,

which proves the subsolution property of v̄ k. Here, we exchange the limit in 	n and the
supremum with respect to s using proposition 7.32 in Bertsekas and Shreve (1978) which
we can apply thanks to the compactness of the control space.
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It follows again from theorem 5.4.20 in Bardi and Capuzzo-Dolcetta (1997) that the
unique solution of (3.9) is given by

vk(x, T) = sup
(st)∈ST

∫ T∧τ (X(k),x)

0

λe−rt

((st ∨ 1/k) ∧ k)α−1
dt,(3.10)

where dX (k),x
t = −λ/((st ∨ 1/k) ∧ k)αdt, X(k),x

0 = x. We will show that vk converges point-
wise to v :

lim
k→∞

vk(x, T) = sup
k

sup
(st)∈ST

∫ T∧τ (X(k),x)

0

λe−rt

((st ∨ 1/k) ∧ k)α−1
dt

= sup
(st)∈ST

sup
k

∫ T∧τ (X(k),x)

0

λe−rt

((st ∨ 1/k) ∧ k)α−1
dt

≥ sup
(st)∈ST

∫ T∧τ (X)

0

λe−rt

sα−1
t

dt = v(x, T),

where the inequality follows from the lower semi-continuity of the map X �→ τ (X);
see lemma 5 in Day (2011). On the other hand, since v is a supersolution of (3.9), the
comparison result theorem 5.4.20 in Bardi and Capuzzo-Dolcetta (1997) implies that vk

≤ v for each k, and as a result

lim
k→∞

vk(x, T) ≤ v(x, T).

Combining the last two inequalities, we obtain the pointwise convergence of vk to v .
Pointwise convergence, on the other hand, implies uniform convergence on compacts
due to Dini’s theorem, since we already know that v is a continuous function of its
arguments, and that vk is an increasing sequence of functions. The latter fact follows
from the fact that vk+1 is a supersolution of the PDE vk satisfies. �

REMARK 3.3. Results somewhat similar to Theorem 3.2 appeared in Bäuerle (2000,
2001, 2002); Day (2011); Piunovskiy (2009); Piunovskiy and Zhang (2011) which are on
the optimal control of queueing networks. (Among these papers only Day 2011 consid-
ered optimal time-to-empty queueing control problems.) To prove Theorem 3.2 we used
a completely different approach than the above literature, which had relied on probabilis-
tic arguments. Our approach relies in contrast on the analytical approximation ideas of
Barles and Souganidis (1991). We see the prelimit control problem as the discretization
(only in the space variable but not in the time variable) of the “fluid limit” first-order
nonlinear PDE (3.3) and rely on convergence of the approximation schemes to the vis-
cosity solutions of such nonlinear PDEs. This approach could be fruitful in general in
proving “fluid limit” results associated to controlled queueing networks.

The following is a strengthening of Theorem 3.2 which is an interesting result in its
own right.

PROPOSITION 3.4. For any sequence (	k) with 	k = δ2−k, we have V	k ↑ v as k → ∞.
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Proof . We show that for any 	 > 0, V2	 ≤ V	. Due to the factoring of T and x in
Proposition 2.1, it suffices to establish this result on the infinite horizon where strategies
are constant between trading times.

Fix ε > 0 and let s2	 be an ε-optimal strategy for V2	. This policy is defined over x ∈
{0, 2	, 4	, . . . }. We will recursively construct a policy s	 over the domain x ∈ {0, 	,
2	, . . . } that outperforms s2	. The dynamic programming principle implies that

V2	(2n	) ≤ E[e−rτ1 [2s2	(2n	)	 + V2	((2n − 2)	)] + ε

= �(s2	(2n	))
�(s2	(2n	)) + r

{2s2	(2n	)	 + V2	((2n − 2)	)} + ε.

Similarly, given the liquidation strategy s	 and corresponding trading times τ̃i , the re-
sulting expected profits denoted as Ṽ	(x), x ∈ {0, 	, 2	, . . . } satisfy for y = 2n	,

Ṽ	(y) = E[e−r τ̃1 s	(y)	 + e−r τ̃2{s	(y − 	)	 + Ṽ	(y − 2	)}]

= 2�(s	(y))
2�(s	(y)) + r

{
s	(y)	 + 2�(s	(y − 	))

2�(s	(y − 	)) + r
[s	(y − 	)	 + Ṽ	(y − 2	)]

}
.

Given s2n ≡ s2	(2n	) we prove below that there exists u ∈ R+, such that

�(s2n)
�(s2n) + r

(2s2n	 + V) ≤ 2�(u)
2�(u) + r

{
u	 + 2�(u)

2�(u) + r
(u	 + V)

}
,(3.11)

for any V ≥ 0. This would establish V	(2n	) ≥ Ṽ	(2n	) ≥ V2	(2n	) − ε by induction
on n after setting s	(2n	) = s	((2n − 1)	) = u. Since ε is arbitrary, the statement of
the proposition would then follow. Note that in the above construction, the 	-investor
trading in smaller increments and twice as much, uses the same spread u to trade when
her inventory is 2n	 or (2n − 1)	.

Let z2 := �(s2n )
�(s2n )+r and define u implicitly through 2�(u)

2�(u)+r := z < 1. Solving for s2n and
u in terms of z and using �(s) = λs−α we obtain

s2n =
(

λ(1 − z2)
rz2

)α−1

>

(
2λ(1 − z)

rz

)α−1

= u.

Observe that by construction

�(s2n)
�(s2n) + r

= 4�(u)2

(2�(u) + r )2
,

so that the Laplace transform at r of the duration to execute two trades by the 	-
investor is equal to the Laplace transform at r of the duration to execute one trade by
the 2	-investor. Using this fact, (3.11) is equivalent to

2�(s2n)
�(s2n) + r

s2n ≤ 2�(u)
2�(u) + r

{
u + 2�(u)

2�(u) + r
u
}

⇐⇒ 2z2s2n ≤ z(1 + z)u.
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Since α > 1 and the terms on both sides of the above inequality are positive, we may raise
both sides to the α-power and plug-in the expressions for s2n and u to find

(2z2)αsα
2n − zα(1 + z)αuα = (2z2)α

λ(1 − z2)
rz2

− zα(1 + z)α
2λ(1 − z)

rz

= 2λr−1(1 − z)(1 + z)zα−1[(2z)α−1 − (1 + z)α−1] < 0,

where the last inequality follows since z < 1 and α > 1. This shows that (3.11) holds and
concludes the proof of the proposition. �

Next, we show that the strategies also converge thanks to the concavity of all the
functions involved.

COROLLARY 3.5. Let us denote by s(	) the pointwise optimizer in (3.2). Then we have
that s(	)(x, T) → s(0)(x, T). (Here, x is fixed and we take the limit over the grids that pass
through x.)

Proof . On the one hand, as in Remark 2.2 we can think of s(	) as something propor-
tional to the left derivative of the linear interpolation of V	, denoted by V̂	, which is
increasing and concave. On the other hand, s(0) is proportional to the derivative of the
concave differentiable function v . By theorem 24.5 on page 233 of Rockafellar (1997) it
however follows that for any x > 0,

|D−
x V̂	(x, T) − vx(x, T)| ≤ ε

for small enough 	, where D−
x denotes the left derivative operator with respect to x. �

REMARK 3.6. Theorem 3.2 tells us about the asymptotics of cn in (2.2):

cn ∼
(

λ

rα

)1/α

n(α−1)/α as n → ∞.

Corollary 3.5 can be used to find out the marginal price asymptotics in Proposition 2.1:

s∗(n, T) ∼
(

λ

αr

)1/α 1
n1/α

as n → ∞.(3.12)

Clearly, the spread will go to zero as n → ∞. But here we are able to obtain the rate of
convergence to zero as a function of the remaining inventory.

For time to execution on infinite horizon we have for τ1 = inf{t : Xt ≤ x1} and
S(x1, x2) := E[τ1|X0 = x2] that

S(x1, x2) =
∫ x2

x1

1
�(s(0)(u))

du,(3.13)

since intuitively when inventory is of size u, the expected time to liquidate an infinitesimal
quantity du is inversely proportional to the current trading rate �(s(0)(u)). Plugging in
s(0)(u) = ( λ

αru )1/α we obtain �(s(0)(u)) = αru or S(x1, x2) = 1
αr log( x2

x1
) which shows that

orders are filled in logarithmic time (as x1 → 0 the remainder is executed arbitrarily
slow).
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4. EXPONENTIAL-DECAY ORDER BOOKS

The power-law order book implies that trades can be made arbitrarily quickly as the
spread goes to zero: lims→0�(s) = +∞. Also, it gives a relatively good chance of executing
trades deep in the book, i.e., when s is large. For less liquid markets, both of these features
might not be realistic. Accordingly, we consider an exponential-decay LOB, with

�(s) = λe−κs, κ > 0,(4.1)

where κ controls the exponential depth of the book and λ = �(0) is the order intensity
at the bid price. The optimization problem for the spread is now of the form

sup
s≥0

λ e−κs(V(n − 1) − V(n) + s),

which leads to the candidate optimizer s∗(n) = 1
κ

+ (V(n) − V(n − 1)). We observe that
s∗ is bounded away from zero so no trades are ever placed close to the bid.

4.1. Finite Horizon

With a finite horizon and no discounting we obtain the following closed-form solutions
to the execution problem.

PROPOSITION 4.1. Consider again V	(x, T) defined in (3.1) with boundary condition
V	(x, 0) = V	(0, T) = 0, r = 0 and �(s) given in (4.1). Then for x = n	,

V	(x, T) = 	

κ
log

⎛
⎝ n∑

j=0

1
j !

(
λT
	e

) j
⎞
⎠ ,(4.2)

and

s∗(n	, T) = 1
κ

⎛
⎜⎜⎜⎜⎜⎝1 + log

⎛
⎜⎜⎜⎜⎜⎝1 +

(λT)n

(	e)nn!
n−1∑
j=0

(λT) j

(	e) j j !

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ .

As 	↘ 0, V	(n	, T) → v(x, T) uniformly on compacts, where v(x, T) solves the nonlinear
first-order PDE

vT(x, T) = λ

κ
e−1−κvx(x,T),(4.3)

with boundary conditions v(0, T) = v(x, 0) = 0. The solution to this PDE satisfies

x
κ

log
(

λ

x
T

)
≤ v(x, T) ≤ λ

κe
T.(4.4)

REMARK 4.2. In the above notation x is the number of shares, which is fixed across
the problems. When we are taking the continuous liquidation limit, we let 	↓0, the size
of trading units, while taking the number of units n as n	 = x, for x constant.
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Proof . V	(n	, T) satisfies the HJB equation

−∂T V	(n	, T) + sups≥0 λ	−1e−κs(V	((n − 1)	, T) − V	(n, T) + s	) = 0,

which can be written as

∂T V	(n	, T) = λ

κ	
exp

(−1 + 	−1κ(V	((n − 1)	, T) − V	(n, T))
)
.(4.5)

Letting B := λ
κe , integrating and using V	(·, 0) ≡ 0 we find for n = 1 that

V	(	, T) = 	

κ
log(1 + Bκ	−1T).(4.6)

Iterating over n the separable ODE for V	(n, ·) in (4.5) we obtain (4.2). The expression
for the optimal spread follows from s∗(n	, T) = 1

κ
+ V	(n	)−V	((n−1)	)

	
.

The proof that as 	 ↓ 0, V	(n	, T) → v(x, T) uniformly on compacts can be proven
as in Theorem 3.2.

Observe that both bounds in (4.4) satisfy (4.3). To prove the lower bound, let us
introduce the following function:

Ṽ	(x, T) = 	

κ
log

(
1
n!

(
λT
	e

)n)
.

Clearly, Ṽ	 ≤ V	. From Stirling’s formula we know that

n! ∼
√

2πn
(n

e

)n
,

where we use ∼ to indicate that the ratio of the left- to the right-hand side converges
to 1 as n → ∞. As a result, Ṽ	(x, T) ∼ x/κ log(λT/x), recalling that x = n	. Now
the lower bound in (4.4) follows since v(x, T) ≥ lim	↓0 Ṽ	. We could have provided an
alternative proof using a comparison theorem for the first-order nonlinear PDE (4.3)
since in fact x/κlog (λT/x) also satisfies this PDE with a smaller boundary value at T =
0. We preferred to be more constructive in our proof.

The fact that λT/(κe) is an upper bound on v follows directly from the observation
that vT ≤ λ/(κe) (recalling that v is increasing in x) and that v(x, 0) = 0. �

REMARK 4.3. Since the trading rate is bounded �(s∗) ≤ λe−1, for x > λe−1T the full
inventory cannot be liquidated by horizon T . Therefore, in the region D := {(x, T) : x >

λe−1T}, v is independent of x and the upper bound is tight: v(x, T) = λ
κe T on D.

REMARK 4.4. Here, we will determine the shape of t → X(0),x
t in Remark 3.1 for the

exponential order books. First,

dX (0),x
t = −�

(
s
(
X(0),x

t , T − t
))

dt,(4.7)

where � is given by (4.1). On the other hand, s(X(0),x
t , T − t) = 1

κ
+ vx(X(0),x

t , T − t).
Using this relationship, along with (4.3), which implies that t �→ s(X(0),x

t , T − t) is a
constant function (let us denote that value by s∗), it follows from (4.7) that

d2 X(0),x
t

dt2
= 0, t ∈ [0, T],
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i.e., t �→ X(0),x
t , t ∈ [0, T ], is a strictly decreasing linear function. In fact, one can compute

s∗ by maximizing the value function (3.4) (after replacing power rate with exponential)
over constant spreads (since the optimal spread is known to be a constant). This yields
that s∗ = 1

κ
log

(
λT
x

)
if λT/x ≥ e. Otherwise s∗ = 1/κ. The expression for the optimal

spread and (4.7) in turn imply that if x ≤ λe−1T , X(0),x
t = x(1 − t

T ) (which is 0 at T) and
if x > λe−1T we have that X(0),x

t = x − λt/e (which remains strictly positive at T).

4.2. Infinite Horizon

We also have closed-form expressions for the infinite horizon case.

PROPOSITION 4.5. For exponential-decay LOB with T = +∞ and discounting rate r >

0 we have

V	(x) = 	

κ
W

(
λr−1	−1 exp

(
κ

V	(x − 	)
	

− 1
))

, x ∈ {0, 	, . . .},(4.8)

with V	(0) = 0, where W is the Lambert-W function (or the double-log function defined
as z = W(y) for zez = y).

As 	 ↓ 0, V	(x) → v(x) uniformly on compacts where

li
(

eκrv(x)
λ

)
= −er x

λ
,(4.9)

and li (y) := ∫ y
0

1
log t dt is the logarithmic integral function.

Proof . The HJB equation for V	(x) is

−r V	(x) + sup
s≥0

λ	−1e−κs (
V	(x − 	) − V	(x) + s	

) = 0.

Using the optimizer s(	) = 1
κ

+ V	(x)−V	(x−	)
	

we reduce to

V	(x) = λ	

κr
exp

(
−1 + κ

V	(x − 	) − V	(x)
	

)
,

which has closed-form solution given by equation (4.8). Arguments similar to Theorem
3.2 imply that V	 → v uniformly on compacts and the continuous inventory limit satisfies

−rv(x) + sup
s≥0

λe−κs(s − v ′(x)) = 0.(4.10)

Solving for v ′ we obtain

v ′(x) = − 1
κ

{
1 + log

(
κrv(x)

λ

)}
.

The last nonlinear first-order ODE has closed-form solution given in (4.9). Asymptoti-
cally limx→∞ v(x) = λ

κre and the optimal spread is

s(0)(x) = 1
κ

{
log

(
λ

κrv(x)

)}
.(4.11) �
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FIGURE 4.1. Optimal controls for power-law and exponential-decay order books. We
take r = 0.1 and depth functions �(s) ∈ {s−2, s−3, e1−s}, which have been normalized
such that �(1) = 1 in all three cases. The plot shows the resulting fluid limit spreads
s(0)(x).

We note that since v is increasing in x, x �→ s(0)(x) in (4.11) is decreasing and so v
is concave. As before, limx→0s(0)(x) = +∞ so the control space remains unbounded,
however the pay-off rate s(0)�(s(0)) is bounded. Moreover, a direct check verifies that V	

and v are inversely proportional to the exponential depth parameter κ, i.e., doubling κ

(making the order book more shallow) halves V	 and v , and correspondingly halves the
optimal spreads s(	) and s(0).

Figure 4.1 graphically illustrates the difference between exponential-decay and power-
law LOBs. As observed, for an exponential LOB, s∗ is bounded away from zero, while
limx→∞s∗(x) = 0 in power LOBs. Moreover, while limx↓0s(0)(x) = +∞ in any LOB,
the rate is much slower in an exponential LOB (due to thinner tail for large spreads)
compared to power-LOB.

5. DISCUSSION AND FURTHER EXTENSIONS

5.1. Numerical Example: Convergence to the Fluid Limit

To illustrate the convergence to the fluid limit consider the problem of selling up to
x = 5 blocks of shares in a power-law LOB with �(s) = s−2. We suppose that a block
corresponds to 100 shares and that the minimal trading unit is either 5 or 1 shares, i.e.,
	 = 0.05 and 	 = 0.01, respectively. For a fixed 	, we can easily compute V	(x = n	)
or v(x) using the results in Section 2. Figure 5.1 illustrates the percent difference between
V	 and the fluid limit v . As shown in Proposition 3.4, V	 is decreasing in 	 and
lim	↓0 V	 = v . We observe that the convergence is quite rapid in x.
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FIGURE 5.1. Convergence to the fluid limit. Left panel: the ratio between discrete and
continuous V	(x)/v(x) for 	 = 0.05 and 	 = 0.01. Additionally, we plot Ṽ	/V	 as
defined in equation (5.1). Right panel: ratio of the fluid limit optimal control s(0)(x) to
the discrete s(	)(x) for 	 ∈ {0.01, 0.05}.

The right panel of Figure 5.1 shows that the controls themselves are also very close.
We observe that s(	) ↘ s(0). Note that here we are essentially comparing s(0) with its right-
sided Riemann-sum approximation, since s(	)(x) corresponds to the spread charged for
all shares in [x, x − 	) while s(0)(x) corresponds to the marginal spread at x. Accordingly,
better approximations, such as š(	)(x) := 1

	

∫ x
x−	

s(0)(u) du, would make the discrete and
fluid controls even closer.

Given the simple expression for the fluid limit control s(0)(x), a useful approximation
is to use a discretized version of s(0) as an approximately optimal control for V	. Let

Ṽ	(x) := E

[x/	∑
i=1

e−rτi s(0)(x − i	)

]
, x ∈ {0, 	, 2	, . . .},(5.1)

represent the expected gains from a discrete strategy which uses a spread of s(0)((n − i)	)
for the ith trade of size 	. In the left panel of Figure 5.1 we see that this approximation
is excellent for V	 even for moderate values of x (less than 1% difference for 	 = 0.01
and x > 1).

5.2. Execution Curves

A popular way of describing a trade execution algorithm is through the execution
curve t �→ Xt/X0, see, e.g., Almgren (2000, 2003); Guéant et al. (2011). In our model
with execution risk, Xt is a random variable, and we will therefore consider the natural
analogue of average execution curve E(x, t) := E[X∗,x

t ], where X∗,x is the remaining
inventory at t ≤ T starting with initial condition X∗,x

0 = x . The baseline case where
Ē(x, t) = x(1 − t/T) is linear, corresponds to “linear price impact” or zero-risk-aversion
in Almgren (2000) and implies that the average trading rate is constant.

For notational convenience we temporarily fix 	 = 1. Recall that

d X∗,x
t = −�

(
s∗(X∗,x

t , T − t
))

dt + d Mt,

where (Mt) is a martingale (the compensated order departure process), which implies by
an application of Itô’s formula that (E(x, t))∞x=0 satisfies the system of inhomogenous
linear ODEs



LIQUIDATION IN LIMIT ORDER BOOKS WITH CONTROLLED INTENSITY 643

FIGURE 5.2. Execution curves for different power-law books. We take X0 = 6, r = 0.1,
T = 1, and depth functions �(s) ∈ {s−2, s−4}. Left panel: average inventory E(x, t) as
a function of time t. Right panel: average trading rate as a function of time.

d E(x, t)
dt

= �(s∗(x, T − t))(E(x − 1, t) − E(x, t)), E(x, 0) = x,

with E(0, t) ≡ 0. Any finite collection of these ODEs can be solved analytically using
integrating factors, or numerically with any standard solver.

Thus, whenever we have an explicit formula for the optimal spread s∗(n, T), E(x, t) is
also available analytically (or more practically as a solution of an ODE). For the case of
power-law order books, we obtain from Proposition 2.1 that

�(s∗(k, T − t)) = λ− 1
α−1 (αrck)α/(α−1)

1 − exp(−αr (T − t))
.

We observe that depending on the parameter values (in particular initial inventory k vis-
à-vis order shape α), �(s∗(k, T)) could be smaller or bigger than k/T , i.e., the ordering
between the initial trading rate and constant trading is ambiguous. At the other end, as
t → T , the spread s∗(k, t) goes to zero and consequently limt→T dE(x, t)/dt = −∞.

Figure 5.2 shows that as α increases, the shape of t �→ E(x, t) changes substantially. In
particular for large α (corresponding to “thinner” power laws), the execution curve has
an S-shape, with trading rate high in the beginning and end of the time interval. On the
other hand, for α small, the execution curve lies entirely above the baseline, i.e., the limit
order trader consistently executes slower. This occurs due to the two competing effects of
trying to extract profit (which slows execution) and the time decay, i.e., the need to make
the deadline which speeds up trading. We observe that when the LOB is deep (small α),
the profit effect dominates; this is a new phenomenon compared to most existing models,
such as Guéant et al. (2011).

Finally, as a comparison, Figure 5.2 also shows the deterministic case t �→ X(0),x
t , see

(3.6). In the latter case, t �→ X(0),x
t is strictly convex, which contrasts strongly with the

pre-limit situation. As 	 → 0, execution risk vanishes and the discounting effect takes
over, making the investor sell more in the beginning. Indeed, in the fluid limit the investor
can smoothly drive X (0),x to zero, while for 	 > 0, P(X∗,x

t > 0) > 0 for any t < T , but
X∗,x

T = 0 since dE(x, t)/dt|t=T− = −∞.
In the exponential order book case with no discounting, we observe that the trading

rate �(s∗(n, T − t)) is independent of the depth parameter κ. Moreover, numerical exper-
iments suggest that E(x, t) is (slightly) convex in t, i.e., the trading rate is monotonically
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decreasing in time. This agrees with the classical results of Almgren (2000). Finally, we
recall that Remark 4.4 shows that in the fluid limit, the execution rate is constant over
time, and t �→ X (0),x is linear. This occurs because (X(0),x

t , t) is the characteristic curve of
the PDE given by (4.3). This phenomenon resembles the constant trading rate in Alfonsi
et al. (2010) who studied (continuous) trading through market orders only, with the LOB
depth function driving the price impact mechanism. Again, we find a sharp dichotomy
between the deterministic limit where X(0),x

T = 0 for x ≤ λe−1T and the stochastic version
where E(x, T) > 0 strictly for all x > 0.

5.3. General Order Book Depth Functions

Our basic setting can be readily extended to allow for more sophisticated or complex
models. Below we review several such extensions; for ease of presentation we treat them
in the stationary infinite-horizon setting.

Let us revisit the optimal execution problem for a generic order book depth function
�(s). In general, there are no closed-form expressions for V (n) and the continuous fluid
limit v(x) becomes a useful analytic tool to understand the solution structure. In that
regard, both Theorem 3.2 and Corollary 3.5 continue to hold under some reasonable
assumptions on the intensity function �.

THEOREM 5.1. Consider the optimal liquidation problem on infinite horizon with a general
intensity depth function �. Then the statements of Theorem 3.2 hold, and if we further
assume that the function x �→ �(x) is decreasing and that

�(x)�′′(x)
(�′(x))2

< 2, ∀x ∈ R+,(5.2)

then both V	 and v are concave, the corresponding controls s(	) and s(0) are decreasing and
the conclusion of Corollary 3.5 still holds.

REMARK 5.2. For power-law LOBs, condition (5.2) holds precisely when α > 1, while
for exponential LOBs it always holds. Both of these order books have decreasing intensity
functions.

Proof . The proof of Theorem 3.2 can be done without much change since we did not
make use of any special properties of �(s) there. We will prove the stated concavity and
monotonicity properties from which the statement of Corollary 3.5 follows immediately
as before.

By time-stationarity between trading dates the controls are constant and the dynamic
programming principle until the first jump time for V	(x) gives

V	(x) = sup
s≥0

∫ ∞

0

�(s)
	

e−(�(s)	−1+r )t(s	 + V	(x − 	)) dt

= sup
s≥0

�(s)
�(s) + r	

(s	 + V	(x − 	)).

Differentiating the right-hand side with respect to s, the first-order condition for s∗ ≡
s(	)(x) is
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r�′(s∗)(s∗	 + V	(x − 	)) + �(s∗)(�(s∗) + r	) = 0

⇐⇒ r V	(x − 	) = −rs∗	 − �(s∗)
�′(s∗)

(�(s∗) + r	) := F(s∗).

V	 is non-decreasing; therefore, if the derivative of F is negative, then s(	)(x) decreases
in x. Explicitly,

F ′(s∗) = − (r	 + �(s∗))
[

2 − ��′′

(�′)2
(s∗)

]
< 0 ⇐⇒ 2 >

�(s∗)�′′(s∗)
(�′(s∗))2

.(5.3)

Thus, (5.2) is sufficient for x �→ s∗(x) to be decreasing. Under this assumption and the
assumption that � is decreasing we would have that x �→ �(s∗(x))

�(s∗(x))+r	
is increasing, and as

a result

V	(x) − V	(x − 	) = �(s∗(x))
�(s∗(x)) + r	

(s∗(x)	 + V	(x − 	))

− �(s∗(x − 	))
�(s∗(x − 	)) + r	

(s∗(x − 	)	 + V	(x − 2	))

≤ �(s∗(x))
�(s∗(x)) + r	

{s∗(x − 	)	 + V	(x − 	) − s∗(x − 	)	 − V	(x − 2	)}

≤ V	(x − 	) − V	(x − 2	),

so that V	 is concave.
Concavity of V	 on the other hand implies the concavity of v . This is thanks to the

first assertion of the theorem from which we know that V	 converges to v uniformly on
compacts. Next we will show that s is a decreasing function. The value function v satisfies
the first-order PDE:

sup
s≥0

�(s)(s − v ′) − rv = 0, v(0) = 0.

Optimizing over s yields

v ′(x) = s(0)(x) + �(s(0)(x))
�′(s(0)(x))

.

Hence v is concave if and only if the right-hand side above is a decreasing function of x.
However, it follows from (5.2) that the function

y �→ y + �(y)
�′(y)

, y ∈ R+,

is increasing. As a result the concavity of v , which we have already shown, is equivalent
to x �→s(0)(x) decreasing. �

5.4. Regime Switching Market Liquidity

Empirical evidence suggests that market liquidity is not constant (Cartea and Jaimun-
gal 2010). As a first step toward capturing more complex liquidity behavior, we consider
a simple regime-switching model for market activity level in the power-law LOBs. More
precisely, suppose that arrival rates are modulated by a two-state Markov chain M with
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states {0, 1}, 0 representing an active market and 1 representing a slow market. We will
denote the transition rate from 0 to 1 by θ0, and the transition rate from 1 to 0 by θ1.
Under regime 0, the arrival rates of the orders are �0(s) = λ0/sα, and under regime 1,
the arrival rates of the orders are �1(s) = λ1/sα. We will take λ0 > λ1. We assume that M
is observed and known by market participants.

Denote by U(n) (respectively W (n)) the infinite-horizon value function for an inventory
of n shares under the active (resp. slow) market regime. The value functions satisfy the
following system of equations:

Aαλ0[U(n) − U(n − 1)]1−α − rU(n) + θ0[W(n) − U(n)] = 0,

Aαλ1[W(n) − W(n − 1)]1−α − r W(n) + θ1[U(n) − W(n)] = 0,

with terminal condition U(0) = W (0) = 0. The continuous selling approximation of
these functions, which we denote by u and w , respectively satisfy the following system of
ODEs: {

Aαλ0u1−α
x − (r + θ0)u(x) + θ0w(x) = 0,

Aαλ1w1−α
x − (r + θ1)w(x) + θ1u(x) = 0,

(5.4)

with u(0) = w(0) = 0.

PROPOSITION 5.3. The solutions to (5.4) are u(x) = c∗
0 xp and w(x) = c∗

1 xp where p =
(α − 1)/α and

(
λ1

rα

)1/α

< c∗
1 < c∗

0 <

(
λ0

rα

)1/α

.(5.5)

Observe that the bounds in (5.5) correspond to the single-regime solutions given in (3.5)
with T = +∞.

Proof . We begin with an ansatz of u(x) = c0xp and w(x) = c1xp with p given in the
statement of the proposition. Comparing with (5.4), the coefficients c0 and c1 need to
satisfy

Aαλ0 p1−αc1−α
0 − (r + θ0)c0 + θ0c1 = 0,

Aαλ1 p1−αc1−α
1 − (r + θ1)c1 + θ1c0 = 0.

Re-writing as

c0 = r + θ1

θ1
c1 − λ1

αθ1
c1−α

1 ,

c1 = r + θ0

θ0
c0 − λ0

αθ0
c1−α

0 ,

(5.6)

it easily follows that this system of equations has a unique solution (c∗
0, c∗

1). Indeed, c0

as a function of c1 is strictly increasing and goes from −∞ at c1 = 0 to ∞ and c1 = ∞.
Similarly, c1 as a function of c0 is also strictly increasing from −∞ at c0 = 0 to ∞ at c0 =
∞. It directly follows from these facts that these two curves intersect and do so at only
one point. Moreover, the identity function c0 = c1 intersects the first function (5.6) first,
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FIGURE 5.3. Regime switching model. We take α0 = 2, λ0 = 1.5, λ1 = 0.5, and r = 0.1.
The regime-switching rates are equal θ0 = θ1 = θ .

and the second function in the same equation last. This proves the ordering in (5.5) and
concludes the proof. �

Proposition 5.3 shows that the asking spread will always be higher under the active
market regime when the order book is deeper.

Figure 5.3 illustrates the impact of multiple liquidity regimes. We take λ0 = 1.5, λ1

= 0.5 so that trade intensity is tripled in the active regime. We plot c∗
i as a function of

θ0 = θ1 = θ for r = 0.1 and α = 2. As θ → 0, we have c∗
i →

√
0.5λi r−1, while as θ → ∞,

c∗
i →

√
1
2r

λ0+λ1
2 the fast-switching limit.

5.5. Two-Exchange Multi-Scale Model

Another possibility is to consider an investor trading on multiple venues. For example,
suppose the investor can liquidate her holdings through two different exchanges, with
each exchange possessing its own LOB. To distinguish the two exchanges, we suppose that
on exchange C(ontinuous) the orders are infinitesimally small, but on exchange L(arge)
they are of large but finite size relative to the total order size. More precisely, we assume
that in the continuous limit, the exchange C orders are infinitesimal, but exchange L
orders are of size δ. If the remaining inventory is less than x we assume that the next
trade on exchange L will liquidate the entire x. In other words, actual trades on exchange
L are of size min (δ, x).

To keep the model tractable, we assume that each exchange has power-law depth with
identical depth parameter α > 1. The resulting time-stationary value function v(x) solves

sup
s0≥0

λ0
s0 − vx

sα
0

+ sup
s1≥0

λ1
(δ ∧ x)s1 − (v(x) − v((x − δ)+))

sα
1

− rv = 0, v(0) = 0.(5.7)
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Plugging in the first-order optimizers leads to

Aαλ0v ′(x)1−α + Aαλ1(x ∧ δ)α(v(x) − v((x − δ)+))1−α − rv = 0, v(0) = 0.(5.8)

LEMMA 5.4. There is a unique solution to (5.8).

Proof . Equation (5.8) is a first-order nonlinear delay ODE and can be solved by
successive patching. Namely, first solve the ODE

Aαλ0v ′
(0)(x)1−α + Aαλ1xα(v(0)(x))1−α − rv(0) = 0,(5.9)

with v (0)(0) = 0 on [0, δ]. We then solve

Aαλ0v ′
(1)(x)1−α + Aαλ1δ

α(v(1)(x) − v(0)(x − δ))1−α − rv(1) = 0(5.10)

on [δ, 2δ] with initial condition v (1)(δ) = v (0)(δ). In (5.10) we treat v (0) as a source term,
observing that v (0)(x − δ) with x ∈ [δ, 2δ] has already been computed before. Proceeding
in this fashion, we finally set v(x) = v (n)(x) for x ∈ [nδ, (n + 1)δ] to recover the global
solution. On each of the intervals [nδ, (n + 1)δ] the corresponding ODE has a locally
Lipschitz driver so classical results give existence/uniqueness of solution v (n). �

REMARK 5.5. Numerical computation of the solution of (5.9) should be handled with
care since v ′

(0)(0) = ∞. We get around this singularity using the following observation:
For x small enough, the benefit of large orders is negligible since the probability of getting
a large order is very small. Therefore, close to zero, v(x) � v0(x) = ( λ0

αr )1/αx
α−1
α from (3.5).

We also remark that the solution to (5.9) is in general no longer concave, with concavity
likely to fail around the knots δ, 2δ, . . ., where the derivative v ′ does not exist.

Typically, trading intensity on the small-order exchange is several magnitudes larger
than via the big trades (done through, e.g., a proprietary dark pool, see, e.g., Klöck et al.
(2011) where a single large dark pool trade liquidates the entire position), so λ0 � λ1.
Fixing the time-scale as λ0 = 1, we are therefore led to consider an asymptotic expansion
in small λ1. Formally, let λ1 = λ̄ε for ε small and consider a power series expansion in ε,

v(x) = v0(x) + εv1(x) + ε2v2(x) + · · · ,

Plugging into (5.8) and matching powers of ε we find that v0(x) solves the 1-exchange
problem of (3.5), so that v0(x) = ( λ0

αr )1/αx
α−1
α . Next,

Aαα(1 − α)r xv ′
1(x) + Aαλ̄(δ ∧ x)α

(
λ0

αr

) 1−α
α

(
x

α−1
α − (x − δ)

α−1
α+

)1−α

− rv1(x) = 0.

This is a first-order linear ODE with nonconstant coefficients and therefore v1(x) can be
expressed in closed form using integrating factors as

v1(x) =

⎧⎪⎨
⎪⎩

C1x2−α−1
, x ≤ δ,

x−Bα ·
∫ x

0
C2 yBα+α−1

(
y

α−1
α − (y − δ)

α−1
α

)1−α

dy, x > δ,
(5.11)

with C1 = λ̄αr
(1−α) ( λ0

αr )(1−α)/α 1
Bα−2+α−1 , C2 = Aαλ̄δα Bα( λ0

αr )(1−α)/α and Bα = αα−1

(α−1)α . The latter
integral only involves powers of y and can be easily computed numerically. Similarly, the
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equations for higher-order terms are again first-order linear ODEs and so v2, etc., can
be written iteratively in closed form.
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BÄUERLE, N. (2001): Discounted Stochastic Fluid Programs, Math. Oper. Res. 26(2), 401–420.
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GUÉANT, O., C.-A. LEHALLE, and J. F. TAPIA (2011): Optimal Portfolio Liquidation with Limit
Orders. Available as Arxiv preprint arXiv:1106.3279.



650 E. BAYRAKTAR AND M. LUDKOVSKI

GUILBAUD, F., and H. PHAM (2011): Optimal High Frequency Trading with Limit and Market
Orders. Available at SSRN: http://ssrn.com/abstract=1871969. Accessed April 19, 2012.
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In financial markets, liquidity is not constant over time but exhibits strong sea-
sonal patterns. In this paper, we consider a limit order book model that allows for
time-dependent, deterministic depth and resilience of the book and determine opti-
mal portfolio liquidation strategies. In a first model variant, we propose a trading-
dependent spread that increases when market orders are matched against the order
book. In this model, no price manipulation occurs and the optimal strategy is of
the wait region/buy region type often encountered in singular control problems. In a
second model, we assume that there is no spread in the order book. Under this assump-
tion, we find that price manipulation can occur, depending on the model parameters.
Even in the absence of classical price manipulation, there may be transaction triggered
price manipulation. In specific cases, we can state the optimal strategy in closed form.

KEY WORDS: market impact model, optimal order execution, limit order book, resilience, time-
varying liquidity, price manipulation, transaction-triggered price manipulation.

1. INTRODUCTION

Empirical investigations have demonstrated that liquidity varies over time. In particular,
deterministic time-of-day and day-of-week liquidity patterns have been found in most
markets, see, e.g., Chordia, Roll, and Subrahmanyam (2001), Kempf and Mayston (2008),
and Lorenz and Osterrieder (2009). In spite of these findings, the academic literature on
optimal trade execution usually assumes constant liquidity during the trading time hori-
zon. In this paper, we relax this assumption and analyze the effects of deterministically1

varying liquidity on optimal trade execution for a risk-neutral investor. We characterize
optimal strategies in terms of a trade region and a wait region and find that optimal
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trading strategies depend on the expected pattern of time-dependent liquidity. In the case
of extreme changes in liquidity, it can even be optimal to entirely refrain from trading
in periods of low liquidity. Incorporating such patterns in trade execution models can
hence lower transaction costs.

Time-dependent liquidity can potentially lead to price manipulation. In periods of
low liquidity, a trader could buy the asset and push market prices up significantly; in
a subsequent period of higher liquidity, he might be able to unwind this long position
without depressing market prices to their original level, leaving the trader with a profit
after such a round-trip trade. In reality, such round-trip trades are often not profitable due
to the bid-ask spread: once the trader starts buying the asset in large quantities, the spread
widens, resulting in a large cost for the trader when unwinding the position. We propose
a model with trading-dependent spread and demonstrate that price manipulation does
not exist in this model in spite of time-dependent liquidity. In a similar model with fixed
zero spread, we find that price manipulation or transaction-triggered price manipulation
(a term recently coined by Alfonsi, Schied, and Slynko 2011 and Gatheral, Schied, and
Slynko 2012) can be a consequence of time-dependent liquidity. Phenomena of such type,
i.e., existence of “illusory arbitrages,” which disappear when bid-ask spread is taken into
account, are also observed in different modeling approaches (see, e.g., section 5.1 in
Madan and Schoutens 2011).

Our liquidity model is based on the limit order book market model of Obizhaeva and
Wang (2006), which models both depth and resilience of the order book explicitly. The
instantaneously available liquidity in the order book is described by the depth. Market
orders issued by the large investor are matched with this liquidity, which increases the
spread. Over time, incoming limit orders replenish the order book and reduce the spread;
the speed of this process is determined by the resilience. In our paper, we generalize
the model of Obizhaeva and Wang (2006) in that both depth and resilience can be
independently time-dependent. In relation to the problem of optimal trade execution,
we show that there is a time-dependent optimal ratio of remaining order size to bid-ask
spread: If the actual ratio is larger than the optimal ratio, then the trader is in the “trade
region” and it is optimal to reduce the ratio by executing a part of the total order. If
the actual ratio is smaller than the optimal ratio, then the trader is in the “wait region”
and it is optimal to wait for the spread to be reduced by future incoming limit orders
before continuing to trade. We will see that allowing for time-varying liquidity parameters
brings qualitatively new phenomena into the picture. For instance, it can happen that
it is optimal to wait regardless of how big the remaining position is, while this cannot
happen in the framework of Obizhaeva and Wang (2006).

Building on empirical investigations of the market impact of large transactions, a
number of theoretical models of illiquid markets have emerged. One part of these market
microstructure models focuses on the underlying mechanisms for illiquidity effects, e.g.,
Kyle (1985) and Easley and O’Hara (1987). We follow a second line that takes the
liquidity effects as given and derives optimal trading strategies within such a stylized
model market. Two broad types of market models have been proposed for this purpose.
First, several models assume an instantaneous price impact, e.g., Bertsimas and Lo
(1998), Almgren and Chriss (2001), and Almgren (2003). The instantaneous price impact
typically combines depth and resilience of the market into one stylized quantity. Time-
dependent liquidity in this setting then leads to executing the constant liquidity strategy
in volume time or liquidity time, and no qualitatively new features occur. In a second
group of models, resilience is finite and depth and resilience are separately modeled,
e.g., Bouchaud et al. (2004), Obizhaeva and Wang (2006), Alfonsi, Fruth, and Schied
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(2010), and Predoiu, Shaikhet, and Shreve (2011). Our model falls into this last group.
Allowing for independently time-dependent depth and resilience leads to higher technical
complexity, but allows us to capture a wider range of real-world phenomena.

The remainder of this paper is structured as follows. In the next section, we introduce
the market model and formulate an optimization problem. In Section 3, we show that
this model is free of price manipulation, which allows us to simplify the model setup and
the optimization problem in Section 4. Before we state our main results on existence,
uniqueness, and characterization of the optimal trading strategy in Sections 6–7, we first
provide some elementary properties, like the dimension reduction of our control problem,
in Section 5. Section 6 discusses the case where trading is constrained to discrete time
and Section 7 contains the continuous time case. In Section 8, we investigate under which
conditions price manipulation occurs in a zero spread model. In some special cases, we
can calculate optimal strategies in closed form for our main model as well as for the zero
spread model of Section 8; we provide some examples in Section 9. Section 10 concludes.

2. MODEL DESCRIPTION

In order to attack the problem of optimal trade execution under time-varying liquidity,
we first need to specify a price impact model in Section 2.1. Our model is based on
the work of Obizhaeva and Wang (2006), but allows for time-varying order book depth
and resilience. Furthermore, we explicitly model both sides of the limit order book and
thus can allow for strategies that buy and sell at different points in time. After having
introduced the limit order book model, we specify the trader’s objectives in Section 2.2.

2.1. Limit Order Book and Price Impact

Trading at most public exchanges is executed through a limit order book, which is a
collection of the limit orders of all market participants in an electronic market. Each
limit order has the number of shares that the market participant wants to trade, and a
price per share attached to it. The price represents a minimal price in case of a sell and
a maximal price in case of a buy order. Compared to a limit order, a market order does
not have an attached price per share, but instead is executed immediately against the
best limit orders waiting in the book. Thus, there is a trade-off between price saving and
immediacy when using limit and market orders. We refer the reader to Cont, Stoikov,
and Talreja (2010) for a more comprehensive introduction to limit order books.

In this paper, we consider a one-asset model that derives its price dynamics from a
limit order book that is exposed to repeated market orders of a large investor (sometimes
referred to as the trader). The goal of the investor is to use market orders2 in order to
purchase a large amount x of shares within a certain time period [0, T ], where T typically
ranges from a few hours up to a few trading days. Without loss of generality, we assume
that the investor needs to purchase the asset (the sell case is symmetrical), and hence first
describe how buy market orders interact with the ask side of the order book (i.e., with the
sell limit orders contained in the limit order book). Subsequently, we turn to the impact

2On this macroscopic time scale, the restriction to market orders is not severe. A subsequent consideration
of small time windows including limit order trading is common practice in banks. See Naujokat and Westray
(2011) for a discussion of a large investor execution problem where both market and limit orders are allowed.
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of buy market orders on the bid side and of sell market orders on both sides of the limit
order book.

Suppose first that the trader is not active. We assume that the corresponding unaffected
best ask price Au (i.e., the lowest ask price in the limit order book) is a càdlàg martingale
on a given filtered probability space (�,F, (Ft)t∈[0,T],P ) satisfying the usual conditions.
This unaffected price process is capturing all external price changes including those due
to news as well as due to trading of noise traders and informed traders. Our model
includes in particular the case of the Bachelier model Au

t = Au
0 + σ WA

t with a (Ft)-
Brownian motion W A, as considered in Obizhaeva and Wang (2006). It also includes
the driftless geometric Brownian motion Au

t = Au
0 exp(σ WA

t − 1
2σ 2t), which avoids the

counterintuitive negative prices of the Bachelier model. Moreover, we can allow for jumps
in the dynamics of Au.

We now describe the shape of the limit order book, i.e., the pattern of ask prices in the
order book. We follow Obizhaeva and Wang (2006) and assume a block-shaped order
book: The number of shares offered at prices in the interval [Au

t , Au
t + �A] is given by

qt · �A with qt > 0 being the order book height (see Figure 2.1 for a graphical illustration).
Alfonsi et al. (2010) and Predoiu et al. (2011) consider order books that are not block-
shaped and conclude that the optimal execution strategy of the investor is robust with
respect to the order book shape. In our model, we allow the order book depth qt to be
time-dependent. As mentioned above, various empirical studies have demonstrated the
time-varying features of liquidity, including order book depth. In theoretical models,
however, liquidity is still usually assumed to be constant in time. To our knowledge,
first attempts to nonconstant liquidity in portfolio liquidation problems have only been
considered so far in extensions of the Almgren and Chriss (2001) model such as Kim and
Boyd (2008) and Almgren (2009). In this modeling framework, price impact is purely
temporary and several of the aspects of this paper do not surface.

Let us now turn to the interaction of the investor’s trading with the order book. At
time t, the best ask At might differ from the unaffected best ask Au

t due to previous
trades of the investor. Define Dt := At − Au

t as the price impact or extra spread caused
by the past actions of the trader. Suppose that the trader places a buy market order
of ξ t > 0 shares. This market order consumes all the shares offered at prices between the
ask price At just prior to order execution and At+ immediately after order execution. At+
is given by (At+ − At) · qt = ξ t and we obtain

Dt+ = Dt + ξt/qt.

See Figure 2.1 for a graphical illustration.
It is a well-established empirical fact that the price impact D exhibits resilience over

time. We assume that the immediate impact ξ t/qt can be split into a temporary impact
component Ktξ t that decays to zero and a permanent impact component γ ξ t with

γ + Kt = q−1
t .

We assume that the temporary impact decays exponentially with a fixed time-dependent,
deterministic recovery rate ρt > 0. The price impact at time s ≥ t of a buy market order
ξ t > 0 placed at time t is assumed to be

γ ξt + Kte− ∫ s
t ρu duξt.
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FIGURE 2.1. Snapshot of the block-shaped order book model at time t.

Notice that this temporary impact model is different from the one which is used, e.g.,
in Almgren and Chriss (2001) and Almgren (2003). It slowly decays to zero instead of
vanishing immediately and thus prices depend on previous trades. Obizhaeva and Wang
(2006) limit their analysis to a constant decay rate ρt ≡ ρ, but suggest the extension
to time-dependent ρt. Weiss (2010) considers exponential resilience and shows that the
results of Alfonsi et al. (2010) and in particular Obizhaeva and Wang (2006) can be
adapted when the recovery rate depends on the extra spread D caused by the large
investor. Gatheral (2010) considers more general deterministic decay functions than the
exponential one in a model with a potentially nonlinear price impact and discusses which
combinations of decay function and price impact yield “no arbitrage,” i.e., nonnegative
expected costs of a round trip. Alfonsi et al. (2011) study the optimal execution problem
for more general deterministic decay functions than the exponential one in a model with
constant order book height. For the calibration of resilience, see Large (2007) and for a
discussion of a stochastic recovery rate ρ, we refer to Fruth (2011).

Let us now discuss the impact of market buy orders on the bid side of the limit order
book. According to the mechanics of the limit order book, a single market buy order ξ t

directly influences the best ask At+, but does not influence the best bid price Bt+ = Bt

immediately. The best ask At+ recovers over time (in the absence of any other trading from
the investor) on average to At + γ ξ t. In reality, market orders only lead to a temporary
widening of the spread. In order to close the spread, Bt needs to move up by γ ξ t over time
and converge to Bt + γ ξ t, i.e., the buy market order ξ t influences the future evolution
of B. We assume that B converges to this new level exponentially with the same rate ρt.
The price impact on the best bid Bs at time s ≥ t of a buy market order ξ t > 0 placed at
time t is hence

γ
(
1 − e− ∫ s

t ρu du)ξt.

We assume that the impact of sell market orders is symmetrical to that of buy market
orders. It should be noted that our model deviates from the existing literature by explicitly
modeling both sides of the order book with a trading-dependent spread. For example,
Obizhaeva and Wang (2006) only model one side of the order book and restrict trading
to this side of the book.

Alfonsi et al. (2011), Gatheral et al. (2012), and Gatheral, Schied, and Slynko (2011),
on the other hand, allow for trading on both sides of the order book, but assume that



656 A. FRUTH, T. SCHÖNEBORN, AND M. URUSOV

there is no spread, i.e., they assume Au = Bu for unaffected best ask and best bid prices,
and that the best bid moves up instantaneously when a market buy order is matched with
the ask side of the book. They find that under this assumption, the model parameters (for
example, the decay kernel) need to fulfill certain conditions, otherwise price manipulation
arises. We will revisit this topic in Sections 3 and 8.

We can now summarize the dynamics of the best ask At and best bid Bt for general
trading strategies in continuous time. Let � and �̃ be increasing processes that describe
the number of shares which the investor bought, respectively, sold from time 0 until time
t. We then have

At = Au
t + Dt,

Bt = Bu
t − Et,

where

Dt = D0e− ∫ t
0 ρs ds +

∫
[0,t)

(
γ + Kse− ∫ t

s ρu du)d�s

−
∫

[0,t)
γ
(
1 − e− ∫ t

s ρu du)d�̃s, t ∈ [0, T+],

(2.1)

Et = E0e− ∫ t
0 ρs ds +

∫
[0,t)

(
γ + Kse− ∫ t

s ρu du)d�̃s

−
∫

[0,t)
γ
(
1 − e− ∫ t

s ρu du)d�s, t ∈ [0, T+],

(2.2)

with some given nonnegative initial price impacts D0 ≥ 0 and E0 ≥ 0.

ASSUMPTION 2.1 (Basic assumptions on �, �̃, Au, Bu, K, and ρ).
Throughout this paper, we assume the following:

• The set of admissible strategies is given as

Ã0 : = {(�, �̃) : � × [0, T+] → [0, ∞)2 | � and �̃ are (Ft) − adapted

nondecreasing bounded càglàd processes with (�0, �̃0) = (0, 0)}.

Note that (�, �̃) may have jumps. In particular, trading in rates and impulse trades
are allowed.

• The unaffected best ask price process Au is a càdlàg H1-martingale with a deterministic
starting point Au

0 , i.e.,

E
√

[Au, Au ]T < ∞, or, equivalently, E sup
t∈[0,T]

∣∣Au
t

∣∣ < ∞.

The same condition holds for the unaffected best bid price Bu . Furthermore, Bu
t ≤ Au

t
for all t ∈ [0, T ].

• The price impact coefficient K: [0, T ] → (0, ∞) is a deterministic strictly positive
bounded Borel function.

• The resilience speed ρ : [0, T ] → (0, ∞) is a deterministic strictly positive Lebesgue
integrable function.
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REMARK 2.2.

(i) The purchasing component � of a strategy from Ã0 consists of a left continuous
nondecreasing process (�t)t∈[0,T ] and an additional random variable �T+ with
��T := �T+ − �T ≥ 0 being the last purchase of the strategy. Similarly, for t ∈
[0, T ], we use the notation ��t := �t+ − �t. The same conventions apply for the
selling component �̃.

(ii) The processes D and E depend on (�, �̃), although this is not explicitly marked in
their notation.

(iii) As it is often done in the literature on optimal portfolio execution, �, �̃, D, and E
are assumed to be càglàd processes. In (2.1), the possibility t = T + is by convention
understood as

DT+ = D0e− ∫ T
0 ρs ds +

∫
[0,T]

(
γ + Kse− ∫ T

s ρu du)d�s −
∫

[0,T]
γ e− ∫ T

s ρu dud�̃s .

A similar convention applies to all other formulas of such type. Furthermore, the
integrals of the form

∫
[0,t)

Ksd�s or
∫

[0,t]
Ksd�s

are understood as pathwise Lebesgue–Stieltjes integrals, i.e., Lebesgue integrals
with respect to the measure with the distribution function s 	→ �s+.

(iv) In the sequel, we need to apply stochastic analysis (e.g., integration by parts or Ito’s
formula) to càglàd processes of finite variation and/or standard semimartingales.
This will always be done as follows: if U is a càglàd process of finite variation,
we first consider the process U+ defined by U+

t := Ut+ and then apply standard
formulas from stochastic analysis to it. An example (which will be often used in
proofs) is provided in Appendix A.

2.2. Optimization Problem

Let us go ahead by describing the cost-minimization problem of the trader. When
placing a single buy market order of size ξ t ≥ 0 at time t, he purchases at prices Au

t + d,
with d ranging from Dt to Dt+, see Figure 2.1. Due to the block-shaped limit order book,
the total costs of the buy market order amount to

(
Au

t + Dt
)
ξt + Dt+ − Dt

2
ξt = (Au

t + Dt
)
ξt + ξ 2

t

2qt
= ξt

(
At + ξt

2qt

)
.

Thus, the total costs of the buy market order are the number of shares ξ t times the average
price per share (At + ξt

2qt
). More generally, the total costs of a strategy (�, �̃) ∈ Ã0 are

given by the formula

C(�, �̃) :=
∫

[0,T]

(
At + ��t

2qt

)
d�t −

∫
[0,T]

(
Bt − ��̃t

2qt

)
d�̃t

(recall Remark 2.2.i) for the definitions of �� and ��̃).
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We now collect all admissible strategies that build up a position of x ∈ [0, ∞) shares
until time T in the set

Ã0(x) := {(�, �̃) ∈ Ã0 | �T+ − �̃T+ = x a.s.}.

Our aim is to minimize the expected execution costs

inf
(�,�̃)∈Ã0(x)

E C(�, �̃).(2.3)

We hence consider the large investor to be risk-neutral and explicitly allow for his optimal
strategy to consist of both buy and sell orders. In the next section, we will see that in our
model, it is never optimal to submit sell orders when the overall goal is the purchase of
x > 0 shares.

Let us finally note that problem (2.3) with x ∈ (−∞, 0] is the problem of maximizing
the expected proceeds from liquidation of |x| shares and, due to symmetry in modeling
ask and bid sides, can be considered similarly to problem (2.3) with x ∈ [0, ∞).

3. MARKET MANIPULATION

Market manipulation has been a concern for price impact models for some time. We now
define the counterparts in our model of the notions of price manipulation in the sense of
Huberman and Stanzl (2004)3 and of transaction-triggered price manipulation in the sense
of Alfonsi et al. (2011) and Gatheral et al. (2012). Note that in defining these notions in
our model, we explicitly account for the possibility of D0 and E0 being nonzero.

DEFINITION 3.1. A round trip is a strategy from Ã0(0). A price manipulation strategy is
a round trip (�, �̃) ∈ Ã0(0) with strictly negative expected execution costs E C(�, �̃) < 0.
A market impact model (represented by Au, Bu, K, and ρ) admits price manipulation if
there exist D0 ≥ 0, E0 ≥ 0, and (�, �̃) ∈ Ã0(0) with E C(�, �̃) < 0.

DEFINITION 3.2. A market impact model (represented by Au, Bu, K, and ρ) admits
transaction-triggered price manipulation if the expected execution costs of a buy (or sell)
program can be decreased by intermediate sell (respectively, buy) trades. More precisely,
this means that there exist x ∈ [0, ∞), D0 ≥ 0, E0 ≥ 0, and (�0, �̃0) ∈ Ã0(x) with

E C(�0, �̃0) < inf{E C(�, 0) | (�, 0) ∈ Ã0(x)},(3.1)

or there exist x ∈ (−∞, 0], D0 ≥ 0, E0 ≥ 0, and (�0, �̃0) ∈ Ã0(x) with

E C(�0, �̃0) < inf{E C(0, �̃) | (0, �̃) ∈ Ã0(x)}.(3.2)

Clearly, if a model admits price manipulation, then it admits transaction-triggered
price manipulation. But transaction-triggered price manipulation can be present even if
price manipulation does not exist in a model. This situation has been demonstrated in
limit order book models with zero bid-ask spread by Schöneborn (2008) (chapter 9) in
a multiagent setting and by Alfonsi et al. (2011) in a setting with nonexponential decay
of price impact. In this section, we will show that the limit order book model introduced

3This definition should not be confused with other definitions of price manipulation such as the one in
Kyle and Viswanathan (2008).
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in Section 2 is free from both classical and transaction-triggered price manipulation. In
Section 8, we will revisit this topic for a different (but related) limit order book model.

Before attacking the main question of price manipulation in Proposition 3.4, we con-
sider the expected execution costs of a pure purchasing strategy and verify in Proposition
3.3 that the costs resulting from changes in the unaffected best ask price are zero and
that the costs due to permanent impact are the same for all strategies.

PROPOSITION 3.3. Let (�, 0) ∈ Ã0(x) (i.e., �̃ ≡ 0) with x ∈ [0, ∞). Then

EC(�, 0) = E

[∫
[0,T]

(
At + ��t

2qt

)
d�t

]

= Au
0 x + γ

2
x2 + E

[∫
[0,T]

(
Dγ=0

t + Kt

2
��t

)
d�t

]
,

(3.3)

with

Dγ=0
t := D0e− ∫ t

0 ρs ds +
∫

[0,t)
Kse− ∫ t

s ρu dud�s, t ∈ [0, T+].(3.4)

Proof. We start by looking at the expected costs caused by the unaffected best ask
price martingale. Using (A.1) with U := �, Z := Au, the facts that � is bounded and that
Au is an H1-martingale yield

E

[∫
[0,T]

Au
t d�t

]
= E

[
Au

T�T+ − Au
0 �0

] = Au
0 x.(3.5)

Let us now turn to the simplification of our optimization problem due to permanent
impact. To this end, we differentiate between the temporary price impact Dγ=0

t and the
total price impact Dt = Dγ=0

t + γ�t that we get by adding the permanent impact. Notice
that �̃ ≡ 0. We can then write

E

[∫
[0,T]

(
Au

t + Dt + ��t

2qt

)
d�t

]

= Au
0 x + E

[∫
[0,T]

(
Dγ=0

t + γ�t + γ + Kt

2
��t

)
d�t

]

= Au
0 x + E

[∫
[0,T]

(
Dγ=0

t + Kt

2
��t

)
d�t

]
+ γE

[∫
[0,T]

(
�t + ��t

2

)
d�t

]
.

The assertion follows, since integration by parts for càglàd processes (see (A.2) with
U = V := �) and �0 = 0, �T+ = x yield

∫
[0,T]

(
�t + ��t

2

)
d�t = �2

T+ − �2
0

2
= x2

2
.(3.6) �

We can now proceed to prove that our model is free of price manipulation and
transaction-triggered price manipulation.

PROPOSITION 3.4 (Absence of transaction-triggered price manipulation). In the model
of Section 2, there is no transaction-triggered price manipulation. In particular, there is no
price manipulation.
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Proof. Consider x ∈ [0, ∞) and (�, �̃) ∈ Ã0(x). Making use of

Bt = Bu
t − Et ≤ Au

t − Et ≤ Au
t + γ (�t − �̃t)

yields

E

[∫
[0,T]

(
At + ��t

2qt

)
d�t

]
− E

[∫
[0,T]

(
Bt − ��̃t

2qt

)
d�̃t

]

≥ E

[∫
[0,T]

(
Au

t + γ�t + Dγ=0
t − γ �̃t + γ

2
��t + Kt

2
��t

)
d�t

]

−E

[∫
[0,T]

(
Au

t + γ�t − γ �̃t − γ

2
��̃t − Kt

2
��̃t

)
d�̃t

]

≥ E

[∫
[0,T]

Au
t d(�t − �̃t)

]

+ γE

[∫
[0,T]

(
�t − �̃t + ��t

2

)
d�t +

∫
[0,T]

(
�̃t − �t + ��̃t

2

)
d�̃t

]

+E

[∫
[0,T]

(
Dγ=0

t + Kt

2
��t

)
d�t

]
.

Analogously to (3.5), the first of these terms equals Au
0 x since �, �̃ are bounded and

Au is an H1-martingale. For the second one, we do integration by parts (use (A.2) three
times) to deduce∫

[0,T]
(2�t + ��t)d�t +

∫
[0,T]

(2�̃t + ��̃t)d�̃t − 2
∫

[0,T]
�̃td�t − 2

∫
[0,T]

�td�̃t

= �2
T+ + �̃2

T+ − 2�T+�̃T+ − 2
∫

[0,T]
�̃td�t + 2

∫
[0,T]

�̃t+d�t ≥ (�T+ − �̃T+)2 = x2.

Summarizing, we get

EC(�, �̃) = E

[∫
[0,T]

(
At + ��t

2qt

)
d�t −

∫
[0,T]

(
Bt − ��̃t

2qt

)
d�̃t

]

≥ Au
0 x + γ

2
x2 + E

[∫
[0,T]

(
Dγ=0

t + Kt

2
��t

)
d�t

]

≥ Au
0 x + γ

2
x2 + E

[∫
[0,T]

(
Dγ=0

t + Kt

2
��̌t

)
d�̌t

]

= EC(�̌, 0),

where we considered the pure purchasing strategy (�̌, 0) ∈ Ã0(x) defined by

�̌t :=
{

�t if �t ≤ x

x otherwise

}

(note that the last equality is due to Proposition 3.3). Thus, (3.1) does not occur. By a
similar reasoning, (3.2) does not occur as well. �
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The central economic insight captured in the previous proposition is that price ma-
nipulation strategies can be severely penalized by a widening spread. This idea can easily
be applied to different variations of our model, for example, to nonexponential decay
kernels as in Gatheral et al. (2012).

4. REDUCTION OF THE OPTIMIZATION PROBLEM

Due to Propositions 3.3 and 3.4, we can significantly simplify the optimization problem
(2.3). Let us fix x ∈ [0, ∞). Then, it is enough to minimize the expectation in the right-
hand side of (3.3) over the pure purchasing strategies that build up the position of x
shares until time T . That is to say, the problem in general reduces to that with Au ≡ 0,
γ = 0, �̃ ≡ 0. Moreover, due to (3.3) and (3.4) and the fact that K and ρ are deterministic
functions, it is enough to minimize over deterministic purchasing strategies. We are going
to formulate the simplified optimization problem, where we now consider a general initial
time t ∈ [0, T ] because we will use dynamic programming afterward.

Let us define the following simplified control sets only containing deterministic pur-
chasing strategies:

At := {� : [t, T+] → [0, ∞) | � is a deterministic

nondecreasing càglàd function with �t = 0},
At(x) := {� ∈ At | �T+ = x}.

As above, a strategy from At consists of a left continuous nondecreasing function
(�s)s∈[t,T ] and an additional value �T+ ∈ [0, ∞) with ��T := �T+ − �T ≥ 0 being
the last purchase of the strategy. For any fixed t ∈ [0, T ] and δ ∈ [0, ∞), we define the
cost functionJ(t, δ, ·) : At → [0, ∞) as

J(�) := J(t, δ, �) :=
∫

[t,T]

(
Ds + Ks

2
��s

)
d�s,(4.1)

where

Ds := δe− ∫ s
t ρu du +

∫
[t,s)

Kue− ∫ s
u ρr dr d�u, s ∈ [t, T+].(4.2)

The cost function J represents the total temporary impact costs of the strategy � on the
time interval [t, T ] when the initial price impact Dt = δ. Observe that J is well-defined
and finite due to Assumption 2.1.

Let us now define the value function for continuous trading timeU : [0, T ] × [0, ∞)2 →
[0, ∞) as

U(t, δ, x) := inf
�∈At(x)

J(t, δ, �).(4.3)

We also want to discuss discrete trading time, i.e., when trading is only allowed at given
times

0 = t0 < t1 < · · · < tN = T.
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Define ñ(t) := inf{n = 0, . . . , N|tn ≥ t}. We then have to constrain our strategy sets to

AN
t := {� ∈ At | �s = 0 on [t, tñ(t)],

�s = �tn+ on (tn, tn+1] for n = ñ(t), . . . , N − 1} ⊂ At,

AN
t (x) := {

� ∈ AN
t

∣∣�T+ = x
} ⊂ At(x),

and the value function for discrete trading time becomes

U N(t, δ, x) := inf
�∈AN

t (x)
J(t, δ, �) ≥ U(t, δ, x).(4.4)

Note that the optimization problems in continuous time (4.3) and in discrete time
(4.4) only refer to the ask side of the limit order book. The results for optimal trading
strategies that we derive in the following sections are hence applicable not only to the
specific limit order book model introduced in Section 2, but also to any model that
excludes transaction-triggered price manipulation and where the ask price evolution for
pure buying strategies is identical to the ask price evolution in our model. This includes,
for example, models with different depth of the bid and ask sides of the limit order book,
or different resiliences of the two sides of the book.

We close this section with the following simple result, which shows that our problem
is economically sensible.

LEMMA 4.1 (Splitting argument). Doing two separate trades ξα, ξβ > 0 at the same
times has the same effect as trading at once ξ := ξα + ξβ , i.e., both alternatives incur the
same impact costs and the same impact Ds+.

Proof. The impact costs are in both cases(
Ds + Ks

2
ξ

)
ξ = Ds(ξα + ξβ ) + Ks

2

(
ξ 2
α + 2ξαξβ + ξ 2

β

)

=
(

Ds + Ks

2
ξα

)
ξα +

(
Ds + Ksξα + Ks

2
ξβ

)
ξβ,

and the impact Ds+ = Ds + Ks(ξα + ξβ) after the trade is the same in both cases as
well. �

5. PREPARATIONS

In this section, we first show that in our model, optimal strategies are linear in (δ, x),
which allows us to reduce the dimensionality of our problem from three dimensions to
two dimensions. Thereafter, we introduce the concept of WR-BR structure in Section 5.2,
which appropriately describes the value function and optimal execution strategies in our
model as we will see in Sections 6 and 7. Finally, we establish some elementary properties
of the value function and optimal strategies in Section 5.3.

In this entire section, we usually refer only to the continuous time setting, for example,
to the value function U . We refer to the discrete-time setting only when there is some-
thing there to be added explicitly. But all of the statements in this section hold both in
continuous time (i.e., for U) and in discrete time (i.e., for UN), and we will later use them
in both situations.
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5.1. Dimension Reduction of the Value Function

In this section, we prove a scaling property of the value function that helps us to reduce
the dimension of our optimization problem. Our approach exploits both the block shape
of the limit order book and the exponential decay of price impact, and hence does not
generalize easily to more general dynamics of D as, e.g., in Predoiu et al. (2011). We
formulate the result for continuous time, although it also holds for discrete time.

LEMMA 5.1 (Optimal strategies scale linearly). For all a ∈ [0, ∞), we have

U(t, aδ, ax) = a2U(t, δ, x).(5.1)

Furthermore, if �∗ ∈ At(x) is optimal for U(t, δ, x), then a�∗ ∈ At(ax) is optimal for U(t,
aδ, ax).

Proof. The assertion is clear for a = 0. For any a ∈ (0, ∞) and � ∈ At, we get from
(4.1) and (4.2) that

J(t, aδ, a�) = a2 J(t, δ, �).(5.2)

Let �∗ ∈ At(x) be optimal for U(t, δ, x) and �̄ ∈ At(ax) be optimal for U(t, aδ, ax). If
no such optimal strategies exist, the same arguments can be performed with minimizing
sequences of strategies. Using (5.2) two times and the optimality of �∗, �̄, we get

J(t, aδ, �̄) ≤ J(t, aδ, a�∗) = a2 J(t, δ, �∗) ≤ a2 J
(

t, δ,
1
a

�̄

)
= J(t, aδ, �̄).

Hence, all inequalities are equalities. Therefore, a�∗ is optimal for U(t, aδ, ax) and (5.1)
holds. �

For δ > 0, we can take a = 1
δ

and apply Lemma 5.1 to get

U(t, δ, x) = δ2U
(

t, 1,
x
δ

)
= δ2V(t, y) with

y := x
δ
,

V(t, y) := U(t, 1, y), V(T, y) = y + KT

2
y2, V(t, 0) ≡ 0.

(5.3)

In this way, we are able to reduce our three-dimensional value function U defined in (4.3)
to a two-dimensional function V . That is U(t, δfix, x) for some δfix > 0 or U(t, δ, xfix)
for some xfix > 0 already determines the entire value function.4 Instead of keeping track
of the values x and δ separately, only the ratio of them is important. It should be noted,
however, that the function V itself is not necessarily the value function of a modified
optimization problem. In a similar way, we define the function VN through the function
UN .

4In the following, we will often analyze the function V in order to derive properties of U . Technically, this
does not directly allow us to draw conclusions for U(t, 0, x), where δ = 0, since in this case, y = x/δ is not
defined. The extension of our proofs to the possibility δ = 0, however, is straightforward using continuity
arguments (see Proposition 5.5 below) or alternatively by analyzing Ṽ(t, ỹ) := U(t, ỹ, 1).



664 A. FRUTH, T. SCHÖNEBORN, AND M. URUSOV

FIGURE 5.1. The δ-x-plane for fixed time t.

5.2. Introduction to Buy and Wait Regions

Let us consider an investor who at time t needs to purchase a position of x > 0 in
the remaining time until T and is facing a limit order book dislocated by Dt = δ ≥ 0.
Any trade ξ t at time t is decreasing the number of shares that are still to be bought, but
is increasing D at the same time (see Figure 5.1 for a graphical representation). In the
δ-x plane, the investor can hence move downward and to the right. Note that due to the
absence of transaction-triggered price manipulation (as shown in Proposition 3.4), any
intermediate sell orders are suboptimal and hence will not be considered.

Intuitively, one might expect the large investor to behave as follows: If there are many
shares x left to be bought and the price deviation δ is small, then the large investor
would buy some shares immediately. In the opposite situation, i.e., small x and large δ,
he would defer trading and wait for a decrease of the price deviation due to resilience.
We might hence conjecture that the δ-x-plane is divided by a time-dependent barrier into
one buy region above and one wait region below the barrier. Based on the linear scaling
of optimal strategies (Lemma 5.1), we know that if (δ, x) is in the buy region at time
t, then, for any a > 0, (aδ, ax) is also in the buy region. The barrier between the buy
and wait regions therefore has to be a straight line through the origin and the buy and
sell region can be characterized in terms of the ratio y = x

δ
. In this section, we formally

introduce the buy and wait regions and the barrier function. In Sections 6 and 7, we
prove that such a barrier exists for discrete and continuous trading time, respectively. In
contrast to the case of a time-varying but deterministic illiquidity K considered in this
paper, for stochastic K, this barrier conjecture holds true in many, but not all cases, see
Fruth (2011).

We first define the buy and wait regions and subsequently define the barrier function.
Based on the above scaling argument, we can limit our attention to points (1, y) where
δ = 1, since for a point (δ, x) with δ > 0, we can instead consider the point (1, x/δ).

DEFINITION 5.2 (Buy and wait region). For any t ∈ [0, T ], we define the inner buy
region as

Brt :=
{

y ∈ (0, ∞) | ∃ξ ∈ (0, y) : U(t, 1, y) = U (t, 1 + Ktξ, y − ξ ) +
(

1 + Kt

2
ξ

)
ξ

}
,

and call the following sets the buy region and wait region at time t:

BRt := Brt, WRt := [0, ∞) \ Brt

(the bar means closure in R).
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FIGURE 5.2. Schematic illustration of the buy and wait regions in continuous time.

The inner buy region at time t hence consists of all values y such that immediate buying
at the state (1, y) is value preserving. The wait region, on the other hand, contains all
values y such that any nonzero purchase at (1, y) destroys value. Let us note that BrT =
(0, ∞), BRT = [0, ∞), and WRT = {0}.

Regarding Definition 5.2, the following comment is in order. We do not claim in this
definition that Brt is an open set. A priori one might imagine, say, the set (10, 20] as the
inner buy region at some time point. But what we can say from the outset is that, due
to the splitting argument (see Lemma 4.1), Brt is in any case a union of (not necessarily
open) intervals or the empty set.

The wait region/buy region conjecture can now be formalized as follows.

DEFINITION 5.3 (WR-BR structure). The value function U has WR-BR structure if
there exists a barrier function

c : [0, T] → [0, ∞]

such that for all t ∈ [0, T ],

Brt = (c(t), ∞)

with the convention (∞, ∞) := ∅. For the value function UN in discrete time to have
WR-BR structure, we only consider t ∈ {t0 , . . . , tN} and set cN(t) = ∞ for t�∈{t0 , . . . , tN}.

Let us note that we always have c(T) = 0. Below, we will see that it is indeed possible to
have c(t) = ∞, i.e., at time t, any strictly positive trade is suboptimal no matter at which
state we start. For c(t) < ∞, having WR-BR structure means that BRt ∩ WRt = {c(t)}.
Figure 5.2 illustrates the situation in continuous time.

Thus, up to now we have the following intuition. An optimal strategy is suggested by
the barrier function whenever the value function has WR-BR structure. If the position
of the large investor at time t satisfies x

δ
> c(t), then the portfolio is in the buy region. We

then expect that it is optimal to execute the largest discrete trade ξ ∈ (0, x) such that the
new ratio of remaining shares over price deviation x−ξ

δ+Ktξ
is still in the buy region, i.e., the

optimal trade is

ξ ∗ = x − c(t)δ
1 + Ktc(t)

,

which is equivalent to

c(t) = x − ξ ∗

δ + Ktξ ∗ .
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Notice that the ratio term x−ξ

δ+Ktξ
is strictly decreasing in ξ . Consequently, trades have the

effect of reducing the ratio as indicated in Figure 5.2, while the resilience effect increases
it. That is, one trades just enough shares to keep the ratio y below the barrier.5

In Figure 5.2, we demonstrate an intuitive case where the barrier decreases over time,
i.e., buying becomes more aggressive as the investor runs out of time. This intuitive
feature, however, does not need to hold for all possible evolutions of K and ρ as we will
see, e.g., in Figure 6.1.

Below, we will see that the intuition presented above always works in discrete time:
namely, the value function UN always has WR-BR structure, there exists a unique optimal
strategy, which is of the type “trade to the barrier when the ratio is in the buy region, do
not trade when it is in the wait region” (see Section 6). In continuous time, the situation
is more delicate. It may happen, for example, that the value function U has WR-BR
structure, but the strategy consisting in trading toward the barrier is not optimal (see
the example in the beginning of Section 7, where an optimal strategy does not exist).
However, if the illiquidity K is continuous, there exists an optimal strategy, and, under
additional technical assumptions, it is unique (see Section 7). Moreover, if K and ρ are
smooth and satisfy some further technical conditions, we have explicit formulas for the
barrier and the optimal strategy (see Section 9).

5.3. Some Properties of the Value Function and Buy and Wait Regions

We first state comparative statics satisfied by both the continuous and the discrete time
value function. The value function is increasing in t, δ, x, and the price impact coefficient
K as well as decreasing with respect to the resilience speed function.

PROPOSITION 5.4 (Comparative statics for the value function).

(a) The value function is nondecreasing in t, δ, x.
(b) Fix t ∈ [0, T ]. Assume that 0 < Ǩs ≤ K̂s for all s ∈ [t, T ]. Then, the value function

corresponding to Ǩ is less than or equal to the one corresponding to K̂ .
(c) Fix t ∈ [0, T ]. Assume that 0 < ρ̌s ≤ ρ̂s for all s ∈ [t, T ]. Then, the value function

corresponding to ρ̂ is less than or equal to the one corresponding to ρ̌.

Proof. The proof is straightforward.

PROPOSITION 5.5 (Continuity of the value function). For each t ∈ [0, T ], the functions

U(t, ·, ·) : [0, ∞)2 → [0, ∞) and V(t, ·) : [0, ∞) → [0, ∞)

are continuous.

Proof. Due to Lemma 5.1, it is enough to prove that the function U(t, ·, ·) is continuous.
Let us fix t ∈ [0, T ], x ≥ 0, 0 ≤ δ1 < δ2, ε > 0 and take a strategy �ε ∈ At(x) such that

J(t, δ1, �
ε) < U(t, δ1, x) + ε.

5Intuitively, this implies that apart from a possible initial and final impulse trade, optimal buying occurs
in infinitesimal amounts, provided that c is continuous in t on [0, T). For diffusive K as in Fruth (2011), this
would lead to singular optimal controls.
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For i = 1, 2, we define

Di
s := δi e− ∫ s

t ρu du +
∫

[t,s)
Kue− ∫ s

u ρr dr d�ε
u, s ∈ [t, T+].

Using Proposition 5.4, we get

U(t, δ1, x) ≤ U(t, δ2, x) ≤
∫

[t,T]

(
D2

s + Ks

2
��ε

s

)
d�ε

s

≤
∫

[t,T]

(
D1

s + Ks

2
��ε

s

)
d�ε

s + (δ2 − δ1)x

= J(t, δ1, �
ε) + (δ2 − δ1)x < U(t, δ1, x) + ε + (δ2 − δ1)x.

Thus, for each fixed t ∈ [0, T ] and x ≥ 0, the function U(t, ·, x) is continuous on [0, ∞).
For t ∈ [0, T ], δ ≥ 0 and x > 0, by Lemma 5.1, we have

U(t, δ, x) = x2U(t, δ/x, 1),

hence, the function U(t, ·, ·) is continuous on [0, ∞) × (0, ∞). Considering the strategy
of buying the whole position x at time t, we get

U(t, δ, x) ≤
(

δ + Kt

2
x
)

x → 0
x↘0

= U(t, δ, 0),

i.e., the function U(t, ·, ·) is also continuous on [0, ∞) × {0}. This concludes the
proof. �

PROPOSITION 5.6 (Trading never completes early). For all t ∈ [0, T), δ ∈ [0, ∞) and x
∈ (0, ∞), the value function satisfies

U(t, δ, x) <

(
δ + Kt

2
x
)

x,

i.e., it is never optimal to buy the whole remaining position at any time t ∈ [0, T).

Proof. For ε ∈ [0, x], define the strategies �ε ∈ At(x) that buy (x − ε) shares at t and
ε shares at T . The corresponding costs are

J (t, δ, �ε) =
(

δ + Kt

2
(x − ε)

)
(x − ε) +

(
(δ + Kt[x − ε]) e− ∫ T

t ρs ds + KT

2
ε

)
ε.

Clearly,

U(t, δ, x) ≤ J(t, δ, �0) =
(

δ + Kt

2
x
)

x,

but we never have equality since

∂

∂ε
J(t, δ, �ε)

∣∣∣∣
ε=0

= −(1 − e− ∫ T
t ρs ds)(Ktx + δ) < 0. �

As discussed above, we always have BrT = (0, ∞) and WRT = {0}. In two following
propositions, we discuss Brt (equivalently, WRt) for t ∈ [0, T).
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PROPOSITION 5.7 (Wait region near 0). Assume that the value function U has WR-BR
structure with the barrier c. Then, for any t ∈ [0, T), c(t) ∈ (0, ∞](equivalently, there exists
ε > 0 such that [0, ε)⊂WRt).

Proof. We need to exclude the possibility c(t) = 0, i.e., Brt = (0, ∞). But if Brt = (0,
∞), we get by Proposition 5.5 that for any y > 0,

V(t, y) =
(

1 + Kt

2
y
)

y,

which contradicts Proposition 5.6. �
The following result illustrates that the barrier can be infinite.

PROPOSITION 5.8 (Infinite barrier). Assume that there exists 0 ≤ t1 < t2 ≤ T such that

Kse− ∫ t2
s ρu du > Kt2 for all s ∈ [t1, t2).

Then, Brs = ∅ for s ∈ [t1, t2).

In particular, if the assumption of Proposition 5.8 holds with t1 = 0 and t2 = T , then
the value function has WR-BR structure and the barrier is infinite except at terminal
time T .

Proof. For any s ∈ [t1, t2), δ ∈ [0, ∞), x ∈ (0, ∞), and � ∈ As(x) with �t2 > 0, we get
the following by applying (4.2), the assumption of the proposition, monotonicity of J in
δ, and integration by parts as in (3.6)

J(s, δ, �) =
∫

[s,t2)

(
Du + Ku

2
��u

)
d�u + J(t2, Dt2 , (�u − �t2 )u∈[t2,T+])

≥
∫

[s,t2)

(
δe− ∫ u

s ρr dr +
∫

[s,u)
Kr e− ∫ u

r ρw dw d�r + Ku

2
��u

)
d�u

+ J
(
t2, δe− ∫ t2

s ρu du + Kt2�t2 , (�u − �t2 )u∈[t2,T+]
)

>

(
δe− ∫ t2

s ρu du + Kt2

2
�t2

)
�t2 + J

(
t2, δe− ∫ t2

s ρu du + Kt2�t2 , (�u − �t2 )u∈[t2,T+]
)
.

That is, it is strictly suboptimal to trade on [s, t2). In particular, Brs = ∅. �
Proposition 5.8 can be extended in the following way.

PROPOSITION 5.9 (Infinite barrier, extended version). Let K be continuous and assume
that there exists 0 ≤ t1 < t2 ≤ T such that

Kt1 e− ∫ t2
t1

ρu du
> Kt2 .

Then, Brt1 = ∅.

Proof. Define t̃ as the minimal value of the set

argmin
t∈[t1,t2]

Kte
∫ t

0 ρu du
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with t̃ being well-defined due to the continuity of K. Then, we know that t̃ > t1. By
definition of t̃, we have that for all t ∈ [t1, t̃)

Kte
∫ t

0 ρu du > Kt̃e
∫ t̃

0 ρu du,

and hence,

Kte− ∫ t̃
t ρu du > Kt̃.

By Proposition 5.8, we can conclude that Brt = ∅ for all t ∈ [t1, t̃) and hence in particular
for t = t1. �

6. DISCRETE TIME

In this section, we show that the optimal execution problem in discrete time has WR-
BR structure. Let us first rephrase the problem in the discrete time setting and define
Kn := Ktn , Dn := Dtn , and ξn := ��tn for n = 0 , . . . , N. The optimization problem (4.3)
can then be expressed as

U N(tn, δ, x) = inf
ξ j ∈[0,x]∑

ξ j =x

N∑
j=n

(
Dj + K j

2
ξ j

)
ξ j ,(6.1)

with Dn = δ and Dj+1 = (Dj + Kjξ j)aj, where

a j := exp

(
−
∫ tj+1

tj

ρsds

)
.(6.2)

Recall the dimension reduction from Lemma 5.1

U N(tn, δ, x) = δ2VN
(

tn,
x
δ

)
with VN(tn, y) := U N(tn, 1, y).

The following theorem establishes the WR-BR structure in discrete time.

THEOREM 6.1 (Discrete time: WR-BR structure). In discrete time, there exists a unique
optimal strategy, and the value function UN has WR-BR structure with some barrier
function cN . Furthermore, VN(tn, ·) : [0, ∞) → [0, ∞) has the following properties for n =
0 , . . . , N.

(i) It is continuously differentiable.
(ii) It is piecewise quadratic, i.e., there exists M ∈ N, constants (αi, β i, γ i)i=1 , ... , M and

0 < y1 < y2 < · · · < yM = ∞ such that

VN(tn, y) = αm(y) y2 + βm(y) y + γm(y),

for the index function m : [0, ∞) → {1 , . . . , M} with m(y) := min {i | y ≤ yi}.
(iii) The coefficients (αi, β i, γ i)i=1 , ... , M from (ii) satisfy the inequalities

αi , βi > 0,

4αiγi + βi − β2
i ≥ 0,

yi−1βi + 2γi ≥ 0.

(6.3)
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The properties (i)–(iii) of VN included in the above theorem will be exploited in the
backward induction proof of the WR-BR structure. The piecewise quadratic nature of
the value function occurs, since the price impact D is affined in the trade size and is
multiplied by the trade size in the value function (6.1). Let us, however, note that the
value function in continuous time is no longer piecewise quadratic.

We prove Theorem 6.1 by backward induction. As a preparation, we investigate the
relationship of the function VN at times tn and tn+1. They are linked by the dynamic
programming principle:

VN(tn, y) = min
ξ∈[0,y]

{(
1 + Kn

2
ξ

)
ξ + U N(tn+1, (1 + Knξ )an, y − ξ )

}

= min
ξ∈[0,y]

{(
1 + Kn

2
ξ

)
ξ + (1 + Knξ )2a2

n VN
(

tn+1,
y − ξ

(1 + Knξ )an

)}
.

(6.4)

Instead of focusing on the optimal trade ξ , we can alternatively look for the optimal new
ratio η(ξ ) := y−ξ

1+Knξ
of remaining shares over price deviation. Note that η is decreasing

in the trade size ξ and bounded between zero (if the entire position is traded at once)
and the current ratio y (if nothing is traded). A straightforward calculation confirms that
(6.4) is equivalent to

VN(tn, y) = 1
2Kn

[
(1 + Kn y)2 min

η∈[0,y]
LN(tn, η) − 1

]
,(6.5)

where

LN(tn, η) := 1 + 2Kna2
n VN

(
tn+1, ηa−1

n

)
(1 + Knη)2

.(6.6)

Note that in (6.5), the minimization is taken over η instead of ξ . Furthermore, the
function LN depends on η, but not on y or ξ separately. In the sequel, the function LN

will be essential in several arguments. The following lemma will be used in the proof of
Theorem 6.1.

LEMMA 6.2. Let a ∈ (0, 1), κ > 0 and let the function v : [0, ∞) → [0, ∞) satisfy (i),
(ii), and (iii) given in Theorem 6.1. Then, the following statements hold true.

(a) There exists c∗ ∈ [0, ∞] such that

L(y) := 1 + 2κa2v(ya−1)
(1 + κy)2

, y ∈ [0, ∞),

is strictly decreasing for y ∈ [0, c∗) and strictly increasing for y ∈ (c∗, ∞).
(b) The function

ṽ(y) :=

⎧⎪⎨
⎪⎩

1
2κ

[(1 + κy)2 L(c∗) − 1] if y > c∗

a2v(ya−1) otherwise

⎫⎪⎬
⎪⎭

again satisfies (i), (ii), and (iii) with possibly different coefficients.

Proof of Theorem 6.1. We proceed by backward induction. Notice that VN(tN, y) =
(1 + KN

2 y)y fulfills (i), (ii), and (iii) with M = 1, α1 = KN
2 , β1 = 1, γ1 = 0. Let us consider
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the induction step from tn+1 to tn. We are going to use Lemma 6.2 for a = an, κ = Kn,
v = VN(tn+1, ·). We then have that L = LN(tn, ·) and we obtain c∗ as the unique minimum
of LN(tn, ·) from Lemma 6.2(a). From (6.5), we see that the unique optimal value for η is
given by

η∗ := argmin
η∈[0,y]

1
2Kn

[(1 + Kn y)2 LN(tn, η) − 1] = min{y, c∗},

and accordingly that the unique optimal trade is given by

ξ ∗ := ξ (η∗) = max
{

0,
y − cn

1 + Kncn

}
.

Therefore, we have a unique optimal strategy and the value function has WR-BR struc-
ture with cN(tn) := c∗. Plugging ξ ∗ into (6.4) and applying the definition of VN yields
VN(tn, y) = ṽ(y). Lemma 6.2(b) now concludes the induction step. �

Proof of Lemma 6.2. (a) The function L is continuously differentiable with

L′(y) = 2κ

(1 + κy)3
l(y),

l(y) := y(2αm(ya−1) − κβm(ya−1)a) + (βm(ya−1)a − 2κγm(ya−1)a2 − 1).

(6.7)

First of all, we show that there is no interval where L is constant. Assume that there
would be an interval where l is zero, i.e., there exists i ∈ {1 , . . . , M} such that (2αi −
κβ ia) = 0 and (β ia − 2κγ ia2 − 1) = 0. Solving these equations for α, respectively, γ

yields

4αiγi + a−1βi − β2
i = 0.

This is a contradiction to (6.3).
Let us assume l(y̌) > 0 for some y̌ ∈ [0, ∞) with j := m(y̌a−1). We are done if we can

conclude l(ŷ) > 0 for all ŷ ∈ [y̌, ∞). Because of the continuity of l, it is sufficient to show
that L keeps increasing on [y̌, yj ], i.e., we need to show l(ŷ) > 0 for all ŷ ∈ [y̌, yj ]. Due
to the form of l, this is guaranteed when 2αj − κβ ja > 0. Let us suppose that this term
would be negative, which is equivalent to 2α jβ

−1
j a−1 ≤ κ. Together with the inequalities

from (6.3), one gets

al(y̌) = −κ a(y̌a−1β j + 2γ j ) + (2y̌a−1α j + β j − a−1)

≤ −2α jβ
−1
j (y̌a−1β j + 2γ j ) + (2y̌a−1α j + β j − a−1)

= − 1
β j

(
4α jγ j + β j a−1 − β2

j

)
< 0.

This is a contradiction to l(y̌) > 0.
(b) If c∗ is finite, the function ṽ is continuously differentiable at c∗ since a brief

calculation shows that ṽ ′(c∗−) = ṽ ′(c∗+) is equivalent to l(c∗) = 0. We have

ṽ(y) = α̃m̃(y) y2 + β̃m̃(y) y + γ̃ m̃(y),
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i.e., ṽ is piecewise quadratic with M̃ = 1 + m(c∗a−1), ỹM̃−1 := c∗, ỹi := yi a for i =
1, . . . , M̃ − 2 and

α̃M̃ = κ

2
L(c∗) > 0, β̃ M̃ = L(c∗) > 0, γ̃ M̃ = L(c∗) − 1

2κ
,

α̃i = αi > 0, β̃ i = aβi > 0, γ̃ i = a2γi for i = 1, . . . , M̃ − 1.

(6.8)

We therefore get

4α̃i γ̃ i + β̃ i − β̃2
i =

{
0 if i = M̃

a2
(
4αiγi + a−1βi − β2

i

)
otherwise

}
≥ 0.

It remains to show that ṽ also inherits the last inequality in (6.3) from v . For y ≤ c∗,

yβ̃m̃(y) + 2γ̃ m̃(y) = a2(ya−1βm(ya−1) + 2γm(ya−1)) ≥ 0.

Due to ṽ being continuously differentiable in c∗, we get

α̃M̃(c∗)2 + β̃ M̃c∗ + γ̃ M̃ = α̃M̃−1(c∗)2 + β̃ M̃−1c∗ + γ̃ M̃−1,

2α̃M̃c∗ + β̃ M̃ = 2α̃M̃−1c∗ + β̃ M̃−1.

Taking two times the first equation and subtracting c∗ times, the second equation yields

c∗β̃ M̃ + 2γ̃ M̃ = c∗β̃ M̃−1 + 2γ̃ M̃−1.

Since we already know that the right-hand side is positive, also yβ̃ M̃ + 2γ̃ M̃ ≥ 0 for all
y > c∗. �

We need the following lemma as a preparation for the WR-BR proof in continuous
time.

LEMMA 6.3. Let K be continuous. Then, at least one of two following statements is true:

• The function y 	→ LN(0, y) is convex on [0, cN(0)).
• The continuous time buy region is simply Br0 = ∅, i.e., c(0) = ∞.

We stress that the first statement in this lemma concerns discrete time, while the second
one concerns the continuous time optimization problem.

Proof. Recall that the definition of LN(0, ·) from (6.6) contains VN(t1, ·) which is con-
tinuously differentiable and piecewise quadratic with coefficients (αi, β i, γ i). Analogously
to (6.7), it turns out that

∂

∂y
LN(0, y) = 2K0

(1 + K0 y)3

[
y
(

2α
m(ye

∫ t1
0 ρs ds )

− K0β
m(ye

∫ t1
0 ρs ds )

e− ∫ t1
0 ρs ds

)

+
(

β
m(ye

∫ t1
0 ρs ds )

e− ∫ t1
0 ρs ds + 2K0γ

m(ye
∫ t1
0 ρs ds )

e−2
∫ t1

0 ρs ds − 1
)]

.

We distinguish between two cases. First, assume that all i satisfy (2αi − K0βi e− ∫ t1
0 ρs ds) ≥

0. Then, ∂
∂y LN(0, ·) must be increasing on [0, cN(0)) as desired, since LN(0, ·) is decreasing

on this interval as we know from Lemma 6.2.
Assume to the contrary that there exists i such that (2αi − K0βi e− ∫ t1

0 ρs ds) < 0. Recall
how αi and β i are actually computed in the backward induction of Theorem 6.1. In each
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induction step, Lemma 6.2 is used and the coefficients α̃M̃, β̃ M̃ get updated in (6.8). It
gets clear that there exists n ∈ {1 , . . . , N} such that

2αi − K0βi e− ∫ t1
0 ρs ds = (Ktn − K0e− ∫ tn

0 ρs ds)LN(tn, cN(tn)).

We get the resilience multiplier e− ∫ tn
0 ρs ds due to the adjustment β̃ i = aβi from the second

line of (6.8). Due to LN being positive, it follows that

Ktn < K0 e− ∫ tn
0 ρs ds .

FIGURE 6.1. Illustration of the numerically computed barrier (cN(tn))n=0 , ... , N and the
corresponding optimal strategy (��tn )n=0,...,N in discrete time for T = 1, N = 10, x =
100, δ = 0, ρ = 2 (left-hand side), and ρ = 10 (right-hand side). We used K1

t ≡ 0.7,
K2

t = 1 − 0.6t, and K3
t = 1 − 2.4(t − 0.5)2 as the given evolution of the illiquidity.
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That is, for this choice of K, it cannot be optimal to trade at t = 0 as we see from
Proposition 5.9. Hence, the buy region at t = 0 is the empty set for both discrete and
continuous time. �

The proof of Theorem 6.1 is constructive. It not only establishes the existence of a
unique barrier, but also provides means to calculate the barrier numerically through the
following recursive algorithm.

Initialize value function VN(tN, y) =
(

1 + KN

2
y
)

y

For n = N − 1, . . . , 0

Set LN(tn, y) := 1 + 2Kna2
n VN

(
tn+1, ya−1

n

)
(1 + Kn y)2

Compute cN(tn) := cn := argmin
y≥0

LN(tn, y)

Set VN(tn, y) :=

⎧⎪⎨
⎪⎩

1
2Kn

[(1 + Kn y)2 LN(tn, cn) − 1] if y > cn

a2
n VN(tn+1, ya−1

n ) otherwise

⎫⎪⎬
⎪⎭

We close this section with a numerical example. Figure 6.1 was generated using the
above numerical scheme and illustrates the optimal barrier and trading strategy for several
example definitions of K and ρ. For constant K, we recover the Obizhaeva and Wang
(2006) “bathtub” strategy with impulse trades of the same size at the beginning and end
of the trading horizon and trading with constant speed in between. The corresponding
barrier is a decreasing straight line as we will explicitly see for continuous time in Example
9.5. For high values of the resilience ρ, the barriers have the typical decreasing shape, i.e.,
the buy region increases if less time to maturity remains. For low values of the resilience
ρ, the barrier must not be decreasing and can even be infinite, i.e., the buy region is the
empty set, as illustrated for K3 with less liquidity in the middle than in the beginning and
the end of the trading horizon.

7. CONTINUOUS TIME

We now turn to the continuous time setting. In Section 7.1, we discuss existence of optimal
strategies using Helly’s compactness theorem and a uniqueness result using convexity of
the value function. Thereafter, in Section 7.2, we prove that the WR-BR result from
Section 6 carries over to continuous time.

7.1. Existence of an Optimal Strategy

In continuous time, existence of an optimal strategy is not guaranteed in general. For
instance, consider a constant resilience ρt ≡ ρ > 0 and the price impact parameter K
following the Dirichlet-type function

Kt =
{

1 for t rational
2 for t irrational

}
.(7.1)
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In order to analyze model (7.1), let us first recall that in the model with a constant
price impact Kt ≡ κ > 0, there exists a unique optimal strategy, which has a nontrivial
absolutely continuous component (see Obizhaeva and Wang 2006 or Example 9.5 below
for explicit formulas). Approximating this strategy by strategies trading only at rational
time points, we get that the value function in model (7.1) coincides with the value function
for the price impact Kt ≡ 1. But there is no strategy in model (7.1) attaining this value
because the nontrivial absolutely continuous component of the unique optimal strategy
for Kt ≡ 1 will count with price impact 2 instead of 1 in the total costs. Thus, there is no
optimal strategy in model (7.1).6

We can therefore hope to prove existence of optimal strategies only under additional
conditions on the model parameters. In all of Section 7, we will assume that K is contin-
uous; the following theorem asserts that this is a sufficient condition for existence of an
optimal strategy.

THEOREM 7.1 (Continuous time: existence). Let K : [0, T ] → (0, ∞) be continuous.
Then, there exists an optimal strategy �∗ ∈ At(x), i.e.,

J (t, δ, �∗) = inf
�∈At(x)

J (t, δ, �) .

In the proof, we construct an optimal strategy as the limit of a sequence of (possibly
suboptimal) strategies. Before we can turn to the proof itself, we need to establish that
strategy convergence leads to cost convergence.

PROPOSITION 7.2 (Costs are continuous in the strategy, K continuous). Let K : [0,
T ] → (0, ∞) be continuous and let �̄, (�n) be strategies in At(x) with �n w→ �̄, i.e.,
limn→∞ �n

s = �̄s for every point s ∈ [t, T ] of continuity of �̄ (i.e., �nconverges weakly to
�̄). Then,

|J(t, δ, �̄) − J(t, δ, �n)| −−−→
n→∞ 0.

Note that Proposition 7.2 does not hold when K has a jump. To prove Proposition 7.2,
we first show in Lemma 7.3 that the convergence of the price impact processes fol-
lows from the weak convergence of the corresponding strategies. We then conclude in
Lemma 7.5 that Proposition 7.2 holds for absolutely continuous K. This finally leads to
Proposition 7.2 covering all continuous K.

LEMMA 7.3 (Price impact process is continuous in the strategy). Let K: [0, T ] → (0,
∞) be continuous and let �̄, (�n) be strategies in At(x) with �n w→ �̄.

Then, limn→∞ Dn
s = D̄s for s = T + and for every point s ∈ [t, T ] of continuity of �̄.

Proof. Recall equation (4.2)

Ds =
∫

[t,s)
Kue− ∫ s

u ρr dr d�u + δe− ∫ s
t ρu du,

which holds for s = T + and s ∈ [t, T ]. Due to the weak convergence (note that the total
mass is preserved, i.e., �̄T+ = �n

T+ = x, since �̄, �n ∈ At(x)) and the integrand being

6Let us, however, note that the value function here has WR-BR structure with the barrier from Example
9.5 with κ = 1.
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continuous in u, the assertion follows for s = T+. Due to the weak convergence, we
also have that for all s ∈ [t, T ] with ��̄s = 0 and fs(u) := Kue− ∫ s

u ρr dr I[t,s)(u) (i.e., f s is
continuous d�̄-a.e.)

Dn
s =

∫
[t,T]

fs(u)d�n
u + δe− ∫ s

t ρu du −−−→
n→∞

∫
[t,T]

fs(u)d�̄u + δe− ∫ s
t ρu du = D̄s . �

LEMMA 7.4 (Costs rewritten in terms of the price impact process). Let K : [0, T ] →
(0, ∞) be absolutely continuous, i.e., Ks = K0 + ∫ s

0 μu du. Then,

J(t, δ, �) = 1
2

[
D2

T+
KT

− δ2

Kt
+
∫

[t,T]

(
2ρs

Ks
+ μs

K2
s

)
D2

s ds

]
.(7.2)

Proof. Applying

d�s = d Ds + ρs Dsds
Ks

, ��s = �Ds

Ks

yields

J(t, δ, �) =
∫

[t,T]

(
Ds + Ks

2
��s

)
d�s

=
∫

[t,T]

Ds + 1
2
�Ds

Ks
d Ds +

∫
[t,T]

ρs D2
s

Ks
ds +

∫
[t,T]

1
2
�Dsρs Ds

Ks
ds.

In this expression, the last term is zero since D has only countably many jumps. Us-
ing integration by parts for càglàd processes, namely (A.2) with U := D, V := D

K , and
d( Ds

Ks
) = 1

Ks
d Ds + Dsd( 1

Ks
), we can write

∫
[t,T]

Ds

Ks
d Ds = 1

2

⎡
⎣D2

T+
KT

− δ2

Kt
−
∫

[t,T]
D2

s d
(

1
Ks

)
−
∑

s∈[t,T]

(�Ds)2

Ks

⎤
⎦ .

Plugging in d( 1
Ks

) = − μs
K2

s
ds yields (7.2) as desired. �

The following result is a direct consequence of Lemma 7.3 and Lemma 7.4.

LEMMA 7.5 (Costs are continuous in the strategy, K absolutely continuous). Let
K : [0, T ] → (0, ∞) be absolutely continuous and �̄, (�n) be strategies in At(x) with
�n w→ �̄. Then

|J(t, δ, �̄) − J(t, δ, �n)| −−−→
n→∞ 0.

Proof of Proposition 7.2. We use a proof by contradiction and suppose there exists a
subsequence

(
n j
) ⊂ N such that

lim
j→∞

∫
[t,T]

(
Dn j

s + Ks

2
��

n j
s

)
d�

n j
s �=

∫
[t,T]

(
D̄s + Ks

2
��̄s

)
d�̄s,
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where the limit on the left-hand side exists. Without loss of generality, assume

lim
j→∞

∫
[t,T]

(
Dn j

s + Ks

2
��

n j
s

)
d�

n j
s <

∫
[t,T]

(
D̄s + Ks

2
��̄s

)
d�̄s .(7.3)

We now want to bring Lemma 7.5 into play. For ε > 0, we denote by Kε : [t, T ] → (0, ∞)
an absolutely continuous function such that maxs∈[t,T]

∣∣Kε
s − Ks

∣∣ ≤ ε. For � ∈ At(x),

∣∣∣∣
∫

[t,T]

(
Dε

s + Kε
s

2
��s

)
d�s −

∫
[t,T]

(
Ds + Ks

2
��s

)
d�s

∣∣∣∣
≤
∫

[t,T]

(
|Dε

s − Ds | + 1
2
|Kε

s − Ks |��s

)
d�s ≤ 3

2
x2ε.

We therefore get from (7.3) that there exists ε > 0 such that

lim sup
j→∞

∫
[t,T]

(
Dn j ,ε

s + Kε
s

2
��

n j
s

)
d�

n j
s <

∫
[t,T]

(
D̄ε

s + Kε
s

2
��̄s

)
d�̄s .

This is a contradiction to Lemma 7.5. �
We can now conclude the proof of the existence Theorem 7.1.

Proof of Theorem 7.1. Let (�n) ⊂ At(x) be a minimizing sequence. Due to the mono-
tonicity of the considered strategies, we can use Helly’s Theorem in the form of theorem
2, section 2, chapter III of Shiryaev (1995), which also holds for left continuous processes
and on [t, T ] instead of (−∞, ∞). It guarantees the existence of a deterministic �̄ ∈ At(x)
and a subsequence (n j ) ⊂ N such that (�n j ) converges weakly to �̄. Note that we can
always force �̄T+ to be x, since weak convergence does not require that �

n j

T converges to
�̄T whenever �̄ has a jump at T . Due to Proposition 7.2, we can conclude that

U(t, δ, x) = lim
j→∞

J(t, δ, �n j ) = J(t, δ, �̄). �
The price impact process D is affine in the corresponding strategy �. That is, in the

case when K is not decreasing too quickly, Lemma 7.4 guarantees that the cost term J is
strictly convex in the strategy �. Therefore, we get the following uniqueness result.

THEOREM 7.6. (Continuous time: uniqueness). Let K : [0, T ] → (0, ∞) be absolutely
continuous, i.e., Ks = K0 + ∫ s

0 μudu, and additionally

μs + 2ρs Ks > 0 a.e. on [0, T] with respect to the Lebesgue measure.

Then, there exists a unique optimal strategy.

7.2. WR-BR Structure

For continuous K, we have now established existence and (under additional conditions)
uniqueness of the optimal strategy. Let us now turn to the value function in continuous
time and demonstrate that it has WR-BR structure, consistent with our findings in
discrete time.
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THEOREM 7.7 (Continuous time: WR-BR structure). Let K : [0, T ] → (0, ∞) be
continuous. Then, the value function has WR-BR structure.

We are going to deduce the structural result for the continuous time setting by using
our discrete-time result. First, we show that the discrete time value function converges to
the continuous time value function. Without loss of generality, we set t = 0.

LEMMA 7.8 (The discrete time value function converges to the continuous time one).
Let K : [0, T ] → (0, ∞) be continuous and consider an equidistant time grid with N trading
intervals. Then

lim
N→∞

VN(0, y) = V(0, y).

Proof. Due to Theorem 7.1, there exists a continuous time optimal strategy �∗ ∈
A0(y). Approximate it suitably via step functions �N ∈ AN

0 (y). Then

V(0, y) = J(0, 1, �∗) = lim
N→∞

J(0, 1, �N) ≥ lim sup
N→∞

VN(0, y).

The inequality V(0, y) ≤ lim inf N→∞ VN(0, y) is immediate. �
Proof of Theorem 7.7. By the same change of variable from ξ to η that was used in

Section 6, we can transform the optimal trade equation

V(0, y) = min
ξ∈[0,y]

{(
1 + K0

2
ξ

)
ξ + (1 + K0ξ )2V

(
0,

y − ξ

1 + K0ξ

)}

into the optimal barrier equation

V(0, y) = 1
2K0

[
(1 + K0 y)2 min

η∈[0,y]
L(0, η) − 1

]
,(7.4)

where

L(0, y) := L(y) := 1 + 2K0V(0, y)
(1 + K0 y)2

.(7.5)

Now it follows from (7.4) and (7.5) that

min
η∈[0,y]

L(η) = L(y),

in particular, the function L is nonincreasing in y. Define

L̃N(y) := min
η∈[0,y]

LN(0, η),

which is a nonincreasing positive function. If for some N, the function y 	→ LN(0, y) is
not convex on [0, cN(0)), then the second alternative in Lemma 6.3 holds, i.e., we have
WR-BR structure with c(0) = ∞. Thus, below, we assume that for any N, the function
y 	→ LN(0, y) is convex on [0, cN(0)); hence, by Lemma 6.2 (a) and Theorem 6.1, the
function L̃N is convex on [0, ∞). Moreover, by rearranging (6.5), we obtain that

L̃N(y) = 1 + 2K0VN(0, y)
(1 + K0 y)2

.
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Hence, L̃N converges pointwise to L as N → ∞ by Lemma 7.8 and (7.5). Therefore, L is
also convex.

Due to L being nonincreasing and convex, there exists a unique c∗ ∈ [0, ∞] such that
L is strictly decreasing for y ∈ [0, c∗) and constant for y ∈ (c∗, ∞). One can now conclude
that for all y > c∗ and η ∈ (c∗, y), setting ξ := y−η

1+K0η
, i.e., η = y−ξ

1+K0ξ
, and using (7.5) and

L(y) = L(η), we have

V(0, y) = 1
2K0

[(1 + K0 y)2 L(y) − 1]

= 1
2K0

[(1 + K0 y)2 L(η) − 1]

= 1
2K0

[(1 + K0 y)2 L
(

y − ξ

1 + K0ξ

)
− 1].

We now use the definition of L from (7.5) once again to get

V(0, y) =
(

1 + K0

2
ξ

)
ξ + (1 + K0ξ )2V

(
0,

y − ξ

1 + K0ξ

)
.(7.6)

Therefore, (c∗, ∞) ⊂ Br0. In case of c∗ > 0, consider y ≤ c∗, take any η ∈ [0, y), and
set ξ := y−η

1+K0η
. Then, a similar calculation using that L(y) < L(η) shows that V (0, y)

is strictly smaller than the right-hand side of (7.6). Hence, Br0 = (c∗, ∞). Thus, we get
WR-BR structure with c(0) = c∗ ∈ [0, ∞] as desired. �

In Section 9, we will investigate the value function, barrier function, and optimal
trading strategies for several example specifications of K and ρ.

8. ZERO SPREAD AND PRICE MANIPULATION

In the model introduced in Section 2, we assumed a trading-dependent spread between
the best ask At and best bid Bt. This has allowed us to exclude both forms of price
manipulation in Section 3. An alternative assumption that is often made in limit order
book models is to disregard the bid-ask spread and to assume At = Bt, see, for example,
Huberman and Stanzl (2004), Gatheral (2010), Alfonsi et al. (2011), and Gatheral et al.
(2012). The canonical extension of these models to our framework including time-varying
liquidity is the following.

ASSUMPTION 8.1. In the zero spread model, we have the unaffected price Su, which is a
càdlàg H1-martingale with a deterministic starting point Su

0 , and assume that the best bid
and ask are equal and given by A�

t = B�
t = Su

t + D�
t with

D�
t = D�

0 e− ∫ t
0 ρs ds +

∫
[0,t)

Kse− ∫ t
s ρu du(d�s − d�̃s), t ∈ [0, T+],(8.1)

where D�
0 ∈ R is the initial value for the price impact. For convenience, we will furthermore

assume that K : [0, T ] → (0, ∞) is twice continuously differentiable and ρ: [0, T ] → (0,
∞) is continuously differentiable.

As opposed to this zero spread model, the model introduced in Section 2 will be
referred to as the dynamic spread model in the sequel. In this section, we study price
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manipulation and optimal execution in the zero spread model. In particular, we provide
explicit formulas for optimal strategies. This, in turn, will be used in the next section
to study explicitly several examples both in the dynamic spread and in the zero spread
model.

We have excluded permanent impact from the definition above (γ = 0). It can easily
be included, but, like in the dynamic spread model, proves to be irrelevant for optimal
strategies and price manipulation. Note that for pure buying strategies (�̃ ≡ 0), the zero
spread model is identical to the model introduced in Section 2. The difference between
the two models is that if sell orders occur, then they are executed at the same price as the
ask price. Furthermore, buy and sell orders impact this price symmetrically. We can hence
consider the net trading strategy �� := � − �̃ instead of buy orders � and sell orders �̃

separately. The simplification of the stochastic optimization problem of Section 2.2 to a
deterministic problem in Section 4 applies similarly to the zero spread model defined in
Assumption 8.1. Thus, for any fixed x ∈ R, we define the sets of strategies

A� := {�� : [0, T+] → R | �� is a deterministic càglàd

function of finite variation with �
�
0 = 0},

A�(x) := {
�� ∈ A�∣∣��

T+ = x
}
.

Strategies from A�(x) allow buying and selling and build up the position of x shares until
time T . We further define the cost function J� : R × A� → R as

J�(��) := J(δ, ��) :=
∫

[0,T]

(
D�

s + Ks

2
���

s

)
d��

s ,

where D� is given by (8.1) with D�
0 = δ. The function J� represents the total temporary

impact costs7 in the zero spread model of the strategy �� on the time interval [0, T ] when
the initial price impact D�

0 = δ. Observe that J� is well-defined and finite because K is
bounded, which, in turn, follows from Assumption 8.1. The value function U� : R2 → R
is then given as

U�(δ, x) := inf
��∈A�(x)

J�(δ, ��).(8.2)

The zero spread model admits price manipulation if, for D�
0 = 0, there is a profitable

round trip, i.e., there is �� ∈ A�(0) with J�(0, ��) < 0. The zero spread model admits
transaction-triggered price manipulation if, for D�

0 = 0, the execution costs of a buy (or
sell) program can be decreased by intermediate sell (respectively, buy) trades (more
precisely, this should be formulated like in Definition 3.2).

REMARK 8.2. The conceptual difference with Section 3 is that we require D�
0 = 0 in

these definitions. The reason is that even in “sensible” zero spread models (that do not
admit both types of price manipulation according to definitions above), we typically have
profitable round trips whenever D�

0 �= 0. In the zero spread model, the case D�
0 �= 0 can

be interpreted as that the market price is not in its equilibrium state in the beginning.
In the absence of trading, the process (D�

t ) approaches zero due to the resilience; hence,
both best ask and best bid price processes (A�

t ) and (B�
t ) (which are equal) approach their

7In the case of liquidation of shares (i.e., �
�
T+ < 0), the word “costs” should be understood as “minus

proceeds from the liquidation.”
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evolution in the equilibrium (Su
t ). The knowledge of this “direction of deviation from Su”

plus the fact that both buy and sell orders are executed at the same price8 clearly allow
us to construct profitable round trips. For instance, in the Obizhaeva–Wang-type model
with a constant price impact Kt ≡ κ > 0, the strategy

��
s := − D�

0

2κ
I(0,ε](s), s ∈ [0, T+],

where ε ∈ (0, T ] is a profitable round trip whenever D�
0 �= 0, as can be checked by a

straightforward calculation.

Let us first discuss classical price manipulation in the zero spread model. If the liquidity
in the order book rises too fast (K falls too quickly), then a simple pump and dump
strategy becomes attractive. In the initial low liquidity regime (high K), buying a large
amount of shares increases the price significantly. Quickly thereafter liquidity increases.
Then, the position can be liquidated with little impact at this elevated price, leaving the
trader with a profit. The following result formalizes this line of thought.

PROPOSITION 8.3 (Price manipulation in the zero spread model). Assume the zero
spread model of Assumption 8.1 and that

K ′
t + 2ρt Kt < 0 for some t ∈ [0, T).

Then price manipulation occurs and, for any δ, x ∈ R, there is no optimal strategy in problem
(8.2).

Proof. By the assumption of the theorem,

K ′
t = lim

ε↘0

Kt+ε − Kt

ε
< −2ρt Kt = lim

ε↘0

Kt
(
2e− ∫ t+ε

t ρu du − 1
)− Kt

ε
,

hence, for a sufficiently small ε > 0, we have

Kt+ε < Kt
(
2e− ∫ t+ε

t ρu du − 1
)
.(8.3)

Let us consider the round trip ��m ∈ A�(0), which buys 1 share at time t and sells it at
time t + ε, i.e.,

��m
s := I(t,t+ε](s), s ∈ [0, T+].

A straightforward computation shows that, for D�
0 = 0, the cost of such a round trip is

J�(0, ��m) = Kt + Kt+ε

2
− Kte− ∫ t+ε

t ρu du .

Due to (8.3), J�(0, ��m) < 0. Thus, price manipulation occurs.
Let us fix δ, x ∈ R, consider a strategy �� ∈ A�(x), and, for any z ∈ R, define

��z := �� + z��m.

Then, ��z ∈ A�(x) and we have

8Let us observe that this does not apply to the dynamic spread model of Section 2, where we have different
processes D and E for the deviations of the best ask and best bid prices from the unaffected ones due to the
previous trades.
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J�(δ, ��z) = c0z2 + c1z + c2

with c0 = J�(0, ��m) < 0 and some constants c1 and c2. Since z is arbitrary, we get U�(δ,
x) = −∞. An optimal strategy in this situation would be a strategy from A�(x) with the
cost −∞. But for any strategy ��, its cost J�(δ, ��) is finite as discussed above; hence,
there is no optimal strategy in problem (8.2). �

Interestingly, the condition K ′
t + 2ρt Kt < 0 for some t in Proposition 8.3 is not sym-

metric; quickly falling K leads to price manipulation, but quickly rising K does not.
If K ′

t + 2ρt Kt ≥ 0 holds at all points in time, then the situation remains unclear so far.
In their model, Alfonsi et al. (2011) and Gatheral et al. (2012) have shown that even in
the absence of profitable round-trip trades, we might still be facing transaction-triggered
price manipulation. This can happen also in our zero spread model. The following
theorem provides explicit formulas for optimal strategies and leads to a characterization
of transaction-triggered price manipulation.

THEOREM 8.4 (Optimal strategies in the zero spread model). Assume the zero spread
model of Assumption 8.1 and that K ′

t + 2ρt Kt > 0 on [0, T ]. Define

ft := K ′
t + ρt Kt

K ′
t + 2ρt Kt

, t ∈ [0, T].(8.4)

Then, for any δ, x ∈ R, the strategy ��∗ given by the formulas

��
�∗
0 = δ� f0

K0
− δ

K0
, d�

�∗
t = δ� f ′

t + ρt ft

Kt
dt, ��

�∗
T = δ� 1 − fT

KT
,(8.5)

with δ� := 1
c (x + δ

K0
) and

c :=
∫ T

0

f ′
t + ρt ft

Kt
dt + f0

K0
+ 1 − fT

KT
> 0(8.6)

is the unique optimal strategy in problem (8.2). Furthermore, we have

U�(δ, x) = J�(δ, ��∗) = (δ�)2
(∫ T

0
(K ′

t + 2ρt Kt)
f 2
t

2K2
t

dt + 1
2KT

)
− δ2

2K0
.(8.7)

COROLLARY 8.5 (Transaction-triggered price manipulation in the zero spread model).
Under the assumptions of Theorem 8.4, price manipulation does not occur. Furthermore,
transaction-triggered price manipulation occurs if and only if f 0 < 0 or f ′

t + ρt ft < 0 for
some t ∈ [0, T ].

Proof. Using (8.5) with δ = 0, we immediately get that price manipulation does not oc-
cur. Noting further that f T < 1, we obtain that transaction-triggered price manipulation
occurs if and only if either f 0 < 0 or f ′

t + ρt ft < 0 for some t ∈ [0, T ]. �
We can summarize Proposition 8.3 and Corollary 8.5 as follows. If K ′

t + 2ρt Kt < 0 for
some t, i.e., liquidity grows very rapidly, then price manipulation (and hence transaction-
triggered price manipulation) occurs. If K ′

t + 2ρt Kt > 0 everywhere, but f 0 < 0 or f ′
t +

ρt ft < 0 for some t, i.e., liquidity grows fast but not quite as fast, then price manipulation
does not occur, but transaction-triggered price manipulation occurs. If K ′

t + 2ρt Kt > 0
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FIGURE 8.1. In Example 1, we consider Kt = sin (2.5t) + 0.1 and Kt = sin (10t) + 4 in
Example 2. The other parameters are T = 1, ρ = 2, and x = 100, δ = 0. The plots at
the bottom illustrate the corresponding optimal strategies ��∗ from (8.5).

everywhere, f 0 ≥ 0 and f ′
t + ρt ft ≥ 0 everywhere, i.e., liquidity never grows too fast, then

neither form of price manipulation occurs and an investor wishing to purchase should
only submit buy orders to the market. Figure 8.1 illustrates optimal transaction-triggered
price manipulation strategies. In Example 1, the liquidity 1

K is slightly growing at the end
of the trading horizon, which makes the optimal strategy ��∗ nonmonotonic. As can be
seen in Example 2, the number of shares held by the large investor can become negative
although the overall goal is to buy a positive amount of shares.

In the proof of Theorem 8.4, we are going to exploit the fact that there is a
one-to-one correspondence between �� and D�. We rewrite the cost term, which is
essentially

∫ T
0 D�

t d�
�
t , in terms of the deviation process D� by applying

d�
�
t = d D�

t + ρt D�
t dt

Kt
,(8.8)

and get the following result.

LEMMA 8.6 (Costs rewritten in terms of the price impact process). Under
Assumption 8.1, for any δ ∈ R and �� ∈ A�, we have

J�(δ, ��) = 1
2

[(
D�

T+
)2

KT
− δ2

K0
+
∫

[0,T]
(K ′

t + 2ρt Kt)

(
D�

t
)2

K2
t

dt

]
.(8.9)

The formal proof, where one needs to take into account possible jumps of ��, is similar
to that of Lemma 7.4.

Similar to Bank and Becherer (2009) and as explained in Gregory and Lin (1996), we
can now use the Euler–Lagrange formalism to find necessary conditions on the optimal
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D�. Under our assumptions, these conditions turn out to be sufficient and the optimal D�

directly gives us an optimal ��. We obtained the formulas in Theorem 8.4 by pretending
that D� is smooth and then solving the Euler–Lagrange equation for D�. While there is
no solution in a strict sense (because the optimal D� has jumps at times 0 and T), we
obtained our formulas by approximating a function D� with jumps by smooth functions.
Although we used the Euler–Lagrange approach to obtain the formulas in Theorem 8.4,
we do not use it in the proof; instead, we prove by direct verification that the strategy
��∗ is optimal in the whole class A�(x).

First, we need an approximation argument. For x ∈ R, let us define the set of strategies
A�c(x) ⊂ A�(x) with impulse trades at t = 0 and t = T only:

A�c(x) := {�� ∈ A�(x) | �� is continuous on (0, T)}.

We will also need a notation for a similar set of monotonic strategies, i.e., for y ∈ [0, ∞),
we define

Ac
0(y) := {� ∈ A0(y) | � is continuous on (0, T)}.

LEMMA 8.7 (Approximation by continuous strategies). Assume the zero spread model
of Assumption 8.1. Then, for any δ, x ∈ R,

U�(δ, x) := inf
��∈A�(x)

J�(δ, ��) = inf
��∈A�c(x)

J�(δ,��).(8.10)

Proof. Let us take any �� ∈ A�(x) and find �, �̃ ∈ A0 such that �� = � − �̃. We set
y := �T+ ∈ [0, ∞), ỹ := �̃T+ ∈ [0, ∞) so that x = y − ỹ. Below, we will show that

∃ �n ∈ Ac
0(y), �̃n ∈ Ac

0(ỹ) such that �n w−→ �, �̃n w−→ �̃.(8.11)

Let us define ��n := �n − �̃n ∈ A�c(x). It follows from (8.1) and the weak convergence
of the strategies that the price impact D�n

t corresponding to ��n converges to the price
impact D�

t corresponding to �� for t = T + and for every point t ∈ [0, T ], where both �

and �̃ are continuous (i.e., the convergence of price impact functions holds at T+ and
everywhere on [0, T ] except at most a countable set). By (8.9), we get J�(δ, ��n) → J�(δ,
��) as n → ∞. Since �� ∈ A�(x) was arbitrary, we obtain (8.10).

It remains to prove (8.11). Clearly, it is enough to consider some � ∈ A0(y) and to
construct �n ∈ Ac

0(y) weakly convergent to �. Let P denote the class of all probability
measures P on ([0, T],B([0, T])) and

Pc = {P ∈ P|P({s}) = 0 for all s ∈ (0, T)}.

The formula P ([0, s)) := �s
y , s ∈ [0, T ], with � ∈ A0(y), provides a one-to-one corre-

spondence between A0(y) and P , where Ac
0(y) is mapped on Pc. Thus, it is enough to

show that any probability measure P ∈ P can be weakly approximated by probability
measures from Pc. To this end, let us consider independent random variables ψ and ζ

such that Law(ψ) = P and Law(ζ ) is continuous. For any n ∈ N, we define

ψn :=
((

ψ + ζ

n

)
∨ 0
)

∧ T.
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Then

Qn := Law(ψn) ∈ Pc

and Qn
w→ P as n → ∞ because ψn → ψ a.s. This concludes the proof. �

LEMMA 8.8. Assume K ′
t + 2ρt Kt > 0 on [0, T ] and define

χ (t) :=
∫ t

0

f ′
s + ρs fs

Ks
dt + f0

K0
+ 1 − ft

Kt
.

Then, χ (t) > 0 for all t ∈ [0, T ]. In particular, c = χ (T) > 0.

Proof. We have

χ (0) = 1
K0

> 0.

Furthermore,

χ ′(t) = f ′
t + ρt ft

Kt
+ − f ′

t Kt − (1 − ft)K ′
t

K2
t

= ρ2
t

K ′
t + 2ρt Kt

> 0. �
Proof of Theorem 8.4 We first note that c from (8.6) is strictly positive by Lemma 8.8.

Also, note that if an optimal strategy in (8.2) exists, then it is unique in the class A�(x)
because the function ��	→J�(δ, ��) is strictly convex on A� (this is due to (8.9) and the
assumption K ′

t + 2ρt Kt > 0 on [0, T ]).
For the strategy ��∗ given in (8.5), we have �

�∗
T+ = x as desired. This follows from the

formula for δ�. Let us further observe that ��∗ corresponds to the deviation process

D�∗
0 = δ, D�∗

t = δ� ft on (0, T], D�∗
T+ = δ�,(8.12)

which immediately follows from (8.8) (direct computation using (8.1) is somewhat longer).
A straightforward calculation gives

J�(δ, ��∗) = (δ�)2
(∫ T

0
ft

f ′
t + ρt ft

Kt
dt + f 2

0

2K0
+ 1 − f 2

T

2KT

)
− δ2

2K0
.(8.13)

Using integration by parts, we get∫ T

0

ft f ′
t

Kt
dt = 1

2

[
f 2
T

KT
− f 2

0

K0
+
∫ T

0

f 2
t

K2
t

K ′
t dt
]

.

Substituting this into (8.13), we get that J�(δ, ��∗) equals the right-hand side of (8.7).
It remains to prove optimality of ��∗. Due to Lemma 8.7, it is enough to prove that

��∗ is optimal in the class A�c(x), which we do below. In terms of D�∗, the corresponding
trading costs are

J�(δ, ��∗) =
∫

(0,T)
D�∗

t d�
�∗
t +

(
δ + K0

2
��

�∗
0

)
��

�∗
0 +

(
D�∗

T + KT

2
��

�∗
T

)
��

�∗
T

=
∫

(0,T)

D�∗
t

Kt
d D�∗

t +
∫

(0,T)

ρt
(
D�∗

t
)2

Kt
dt +

(
D�∗

0+
)2 − δ2

2K0
+
(
D�∗

T+
)2 − (D�∗

T

)2
2KT

.
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Let us now look at alternative strategies �̂ ∈ A�c
0 (x) with corresponding D̂ = D�∗ + h

and show that these alternative strategies cause higher trading costs than ��∗. That is, in
the following, we work with functions h : [0, T+] → R, which are of bounded variation
and continuous on (0, T) with h0 = 0, hT = limt↗T ht and a finite limit h0+ (so that there
are possibly jumps (h0+ − h0), (hT+ − hT) ∈ R). Using

��̂0 = ��
�∗
0 + h0+

K0
, d�̂t = d�

�∗
t + dht + ρthtdt

Kt
, ��̂T = ��

�∗
T + hT+ − hT

KT
,

a straightforward calculation yields

J�(δ, �̂) =
∫

(0,T)
D̂td�̂t +

(
δ + K0

2
��̂0

)
��̂0 +

(
D̂T + KT

2
��̂T

)
��̂T

= J�(δ, ��∗) + �J1 + �J2,

�J1 :=
∫

(0,T)

2ρt D�∗
t ht

Kt
dt +

∫
(0,T)

ht

Kt
d D�∗

t +
∫

(0,T)

D�∗
t

Kt
dht

+ D�∗
0+h0+
K0

+ D�∗
T+hT+ − D�∗

T hT

KT
,

�J2 :=
∫

(0,T)

ρth2
t

Kt
dt +

∫
(0,T)

ht

Kt
dht + h2

0+
2K0

+ h2
T+ − h2

T

2KT
.

Notice that we collect all terms containing D�∗ in �J1. We are now going to finish the
proof by showing that �J1 = 0 and �J2 > 0 if h does not vanish.

Let us first rewrite �J1 exploiting the fact that D�∗
t = δ� ft, use integration by parts,

the definition of f and again integration by parts to get

�J1 = δ�
{∫

(0,T)

2ρt ftht

Kt
dt +

∫
(0,T)

ht

Kt
d ft +

∫
(0,T)

ft

Kt
dht + f0h0+

K0
+ hT+ − fThT

KT

}

= δ�
{∫

(0,T)

2ρt Kt + K ′
t

K2
t

fthtdt + hT+
KT

}

= δ�
{∫

(0,T)

ρtht

Kt
dt + hT+

KT
+
∫

(0,T)

K ′
t

Kt
htdt

}

= δ�
{∫

(0,T)

ρtht

Kt
dt +

∫
(0,T)

1
Kt

dht + h0+
K0

+ hT+ − hT

KT

}
.

Clearly, �J1 = 0 whenever δ� = 0. If δ� �= 0, we have

x =
∫

(0,T)
d�̂t + ��̂0 + ��̂T

=
(∫

(0,T)
d�

�∗
t + ��

�∗
0 + ��

�∗
T

)
+
(∫

(0,T)

ρtht

Kt
dt +

∫
(0,T)

1
Kt

dht + h0+
K0

+ hT+ − hT

KT

)

= x + �J1

δ� .
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Therefore, �J1 = 0. Hence, J�(δ, �̂) − J�(δ, ��∗) = �J2. Applying integration by parts
to the dht integral yields

�J2 =
∫

(0,T)

h2
t

2Kt

(
2ρt + K ′

t

Kt

)
dt + h2

T+
2KT

.

Due to the assumption K ′
t + 2ρt Kt > 0 on [0, T ], we get that �J2 is positive as

desired. �
REMARK 8.9. At this point, it is natural to discuss the connection between our zero

spread model and the zero spread model of Alfonsi et al. (2011) and Gatheral et al.
(2012) (the former paper deals with discrete time, the latter one with continuous time).
In that model, the price impact at time t > s of the trade ξ s at time s equals ξ sG(t − s),
where G is called the decay kernel. In what follows we abbreviate this modeling approach
by AGSS.

In our zero spread model, the price impact at time t > s of the trade ξ s at time s equals
ξs Kse− ∫ t

s ρu du (when D�
0 = 0). Here, we excluded permanent impact like in (8.1). If we

had constant price impact coefficient Kt ≡ κ and constant resilience ρt ≡ ρ (Obizhaeva–
Wang with zero spread), then our model would be a particular case of AGSS with
G(t − s) = κe−ρ(t−s). But since our liquidity parameters are time-varying, our model is
not a particular case of AGSS.

To summarize: AGSS and our model can be viewed as generalizations of the
Obizhaeva–Wang model in different directions. AGSS study general (not only expo-
nential) decay kernels in a time-homogeneous framework, while we study a time-
inhomogeneous framework (with exponential resilience). AGSS focus on optimal ex-
ecution with general decay kernels and study that decay kernels give us viable models,
while we study implications of intraday liquidity patterns on optimal execution and price
manipulation.

9. EXAMPLES

Let us now turn to explicit examples of dynamics of the price impact parameter K and the
resilience ρ. We can use the formulas derived in the previous section to calculate optimal
trading strategies in problem (8.2) in the zero spread model. We also want to investigate
optimal strategies in problem (4.3) in the dynamic spread model introduced in Section 2.
In (4.3), we considered a general initial time t ∈ [0, T ]. Without loss of generality, below,
we will consider initial time 0 for both models, e.g., we will mean the function U(0, ·,·)
when speaking about the value function in the dynamic spread model. Further, in the
dynamic spread model, we had a nonnegative initial value δ for the deviation of the
best ask price from its unaffected level and considered strategies with the overall goal
to buy a nonnegative number of shares x. That is, we will consider δ, x ∈ [0, ∞) in this
section when speaking about either model. It is clear that strategy (8.5) is optimal also
in the dynamic spread model whenever it does not contain selling. Thus, Theorem 8.4,
applied with δ, x ∈ [0, ∞), provides us with formulas for the value function and optimal
strategy also in the dynamic spread model whenever there is no transaction-triggered
price manipulation in the zero spread model (see Corollary 8.5) and δ is sufficiently close
to 0 (so that ��

�∗
0 given by the first formula in (8.5) is still nonnegative). Furthermore,

in this case, we get an explicit formula for the barrier function of Definition 5.3.
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PROPOSITION 9.1 (Closed-form optimal barrier in the dynamic spread model). Assume
the dynamic spread model of Section 2 and that K : [0, T ] → (0, ∞) is twice continuously
differentiable and ρ: [0, T ] → (0, ∞) is continuously differentiable. Let

K ′
t + 2ρt Kt > 0 on [0, T], f0 ≥ 0 and f ′

t + ρt ft ≥ 0 on [0, T],(9.1)

where f is defined in (8.4). Then, the barrier function of Definition 5.3 is explicitly given by

c(t) = 1
ft

(∫ T

t

f ′
s + ρs fs

Ks
ds + 1 − fT

KT

)
, t ∈ [0, T), c(T) = 0.(9.2)

Furthermore, for any x ∈ [0, ∞) and δ ∈ [0, x
c(0) ], there is a unique optimal strategy in the

problem U(0, δ, x) (see (4.3)) and it is given by formula (8.5) in Theorem 8.4, and the
value function U(0, δ, x) equals the right-hand side of (8.7).

REMARK 9.2. (Comments to (9.2))

(i) First, let us note that (9.1) implies f t ≥ 0 on [0, T ] (see Lemma 9.3 below). Hence,
the right-hand side of (9.2) has the form a/b with a > 0 (note that f T < 1) and
b ≥ 0, i.e., c(t) ∈ (0, ∞] for t ∈ [0, T). The case c(t) = ∞ can occur (see, e.g.,
Example 9.6 with ν = −1).

(ii) Let us further observe that

lim
t↗T

c(t) = 1 − fT

fT KT
∈ (0, ∞],

i.e., the barrier always jumps at T .

Proof of Proposition 9.1. Let us first notice that c from (8.6) is strictly positive by
Lemma 8.8 so that Theorem 8.4 applies. Further, it follows from (9.1) that in the zero
spread model with such functions K and ρ, there is no transaction-triggered price ma-
nipulation. Hence, for any x > 0, the optimal strategy ��∗ from (8.5) with δ = 0 in the
problem U�(0, x) will also be optimal in the problem U(0, 0, x). Let us recall that the

value c(0) of the barrier is the ratio x−��
�∗
0

D�∗
0+

for the optimal strategy ��∗ in the problem

U(0, 0, x) and the corresponding D�∗ (with D�∗
0 = 0). Thus, we get

c(0) = x − ��
�∗
0

K0��
�∗
0

= 1
f0

(∫ T

0

f ′
s + ρs fs

Ks
ds + 1 − fT

KT

)
.

A similar reasoning applies to an arbitrary t ∈ [0, T). Recall that we always have c(T) =
0. Finally, for δ > 0, under condition (9.1), formula (8.5) for the zero spread model will
give the optimal strategy in the problem U(0, δ, x) (i.e., for the dynamic spread model) if
and only if ��

�∗
0 ≥ 0. Solving this inequality with respect to δ, we get δ ≤ x

c(0) (note that
δ� from (8.5) also depends on δ). �

Condition (9.1) ensures the applicability of Theorem 8.4 and additionally excludes
transaction-triggered price manipulation in the zero spread model (see Corollary 8.5).
The following result provides an equivalent form for this condition, which we will use
below when studying specific examples.
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LEMMA 9.3 (An equivalent form for condition (9.1)). Assume that K : [0, T ] → (0, ∞)
is twice continuously differentiable and ρ : [0, T ] → (0, ∞) is continuously differentiable.
Then, condition (9.1) is equivalent to

K ′
t + ρt Kt ≥ 0 on [0, T] and f ′

t + ρt ft ≥ 0 on [0, T].(9.3)

Proof. Clearly, (9.3) implies (9.1). Let us prove the converse. Suppose (9.1) is satisfied
and K ′

s + ρs Ks < 0 for some s ∈ [0, T ]. Then, there exists [u, v ] ⊂ [0, T ] such that u < v ,
f u = 0 and f t < 0 on (u, v ]. By the mean value theorem, there exists w ∈ (u, v) such that
f ′
w = ( fv − fu)/(v − u). Thus, we get f ′

w < 0 and f w < 0, which contradicts the condition
f ′
t + ρt ft ≥ 0 on [0, T ]. �
When we have transaction-triggered price manipulation in the zero spread model,

optimal strategies in the dynamic spread model are different from the ones given in
Theorem 8.4. The following proposition deals with the case of K ′

t + ρt Kt < 0 for some t
(cf. with (9.3)).

PROPOSITION 9.4 (Wait if decrease of K outweighs resilience). Assume the dynamic
spread model of Section 2. Let, for some t ∈ [0, T), K be continuously differentiable at t
and ρ continuous at t with K ′

t + ρt Kt < 0. Then, Brt = ∅, i.e., c(t) = ∞.

Proof. Since K ′ + ρK is continuous at t, we have K ′
s + ρs Ks < 0 on an interval around

t. Then, there exists ε > 0 such that Kse− ∫ t+ε

s ρu du > Kt+ε for all s ∈ [t, t + ε). By Proposition
5.8, it is not optimal to trade at t. �

Let us finally illustrate our results by discussing several examples. For simplicity, take
constant resilience ρ > 0. Then, condition (9.3) takes the form

K ′
t + ρKt ≥ 0 on [0, T] and K ′′

t + 3ρK ′
t + 2ρ2 Kt ≥ 0 on [0, T].(9.4)

A sufficient condition for (9.4), which is sometimes convenient (e.g., in Example 9.6
below), is

K ′
t + ρKt ≥ 0 on [0, T] and K ′′

t + ρK ′
t ≥ 0 on [0, T].

In all examples below, we consider δ = 0 and x ∈ [0, ∞).

EXAMPLE 9.5. (Constant price impact Kt ≡ κ > 0). Assume that the price impact
Kt ≡ κ > 0 is constant. Clearly, condition (9.4) is satisfied, so we can use formula (8.5)
to get the optimal strategy in both models. We have ft ≡ 1

2 and δ� = 2κx
ρT+2 . The optimal

strategy in both the dynamic and zero spread models is given by the formula

��0 = ��T = x
ρT + 2

, d�t = xρ

ρT + 2
dt,

which recovers the results from Obizhaeva and Wang (2006). The large investor trades
with constant speed on (0, T) and consumes all fresh limit sell orders entering the book
due to resilience in such a way that the corresponding deviation process Dt is constant
on (0, T ] (see (8.12) and note that f t is constant). The barrier is linearly decreasing in
time (see (9.2)):



690 A. FRUTH, T. SCHÖNEBORN, AND M. URUSOV

FIGURE 9.1. Constant price impact (T = 1, ρ = 2, κ = 1, x = 100, δ = 0).

c(t) = 1 + ρ(T − t)
κ

, t ∈ [0, T), c(T) = 0.

Let us finally note that the optimal strategy does not depend on κ, while the barrier
depends on κ. See Figure 9.1 for an illustration.

EXAMPLE 9.6 (Exponential price impact Kt = κeνρt, κ > 0, ν ∈ R \ {0}). Assume that
the price impact Kt = κeνρt is growing or falling exponentially with ν ∈ R \ {0} being
the slope of the exponential price impact relative to the resilience. The case ν = 0 was
studied in the previous example. We exclude this case here because some expressions
below will take the form 0/0 when ν = 0 (however, the limits of these expressions as ν →
0 will recover the corresponding formulas from the previous example). Condition (9.4)
is satisfied if and only if ν ≥ −1. We first consider the case ν ≥ −1. We have

ft ≡ ν + 1
ν + 2

and δ� = xκν(ν + 2)
(ν + 1)2 − e−νρT

.

In particular, like in the previous example, the large investor trades in such a way that
the deviation process Dt is constant on (0, T ]. The optimal strategy in both the dynamic
and zero spread models is given by the formula

��0 = xν(ν + 1)
(ν + 1)2 − e−νρT

, d�t = xν(ν + 1)
(ν + 1)2 − e−νρT

ρe−νρt dt,

��T = xν

(ν + 1)2 − e−νρT
e−νρT.

We see that, for ν = −1, it is optimal to buy the entire order at T . Vice versa, the initial
trade ��0 approaches x as ν↗∞. The barrier is given by the formula

c(t) = (ν + 1)e−νρt − e−νρT

κν(ν + 1)
, t ∈ [0, T), c(T) = 0

(in particular, c(t) = ∞ for t ∈ [0, T) if ν = −1 and the barrier is finite everywhere if ν >

−1). For each ν > −1, the barrier is decreasing in t, i.e., buying becomes more aggressive
as the investor runs out of time. Furthermore, one can check that for each t ∈ [0, T),
the barrier is decreasing in ν. That is, the greater is ν, the larger is the buy region since
it is less attractive to wait. Like in the previous example, the optimal strategy does not
depend on κ, while the barrier depends on κ.
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FIGURE 9.2. Exponential price impact (T = 1, ρ = 2, κ = 1, x = 100, δ = 0, ν = 0.5,
and −1.5 (dashed)).

Let us now consider the case ν < −1. In the zero spread model, transaction-triggered
price manipulation occurs for ν ∈ (−2, −1) (one checks that the assumptions of Theorem
8.4 are satisfied) and classical price manipulation occurs for ν < −2 (see Proposition 8.3).
In the dynamic spread model, for ν < −1, it is optimal to trade the entire order at T
because Kte−ρ(T−t) > KT for all t ∈ [0, T) (see Proposition 5.8). Thus, in the case ν < −1,
we have c(t) = ∞ for t ∈ [0, T).

See Figure 9.2 for an illustration.

EXAMPLE 9.7 (Straight-line price impact Kt = κ + mt, κ > 0, m > − κ
T ). Assume

that the price impact Kt = κ + mt changes linearly over time. The condition m > − κ
T

ensures that K is everywhere strictly positive. Condition (9.4) is satisfied if and only if
m ≥ − 2ρκ

3+2ρT . Note that − 2ρκ

3+2ρT > − κ
T . Let us first assume that m ≥ − 2ρκ

3+2ρT . In this case,
the optimal strategy in both the dynamic and zero spread models is given by the formulas

��0 = 2m(m + κρ)x
(m + 2κρ)m̃

, d�t = 2mκρ2 (2κρ + m(3 + 2ρt)) x

(m + 2κρ + 2mρt)2 m̃
dt,

��T = 2mκρx
(m + 2κρ + 2mρT)m̃

with m̃ := 2m + κρ log
(

m + 2κρ + 2mρT
m + 2κρ

)
.

The barrier is given by the formula

c(t) = ρ

2m − (m + 2κρ + 2mρt) log
(

m + 2κρ + 2mρt
m + 2κρ + 2mρT

)
2m(m + κρ + mρt)

.

In the zero spread model, transaction-triggered price manipulation occurs for m ∈
(− 2ρκ

1+2ρT , − 2ρκ

3+2ρT ) (see Theorem 8.4) and classical price manipulation occurs for m ∈
(− κ

T , − 2ρκ

1+2ρT ) (see Proposition 8.3). In the dynamic spread model, we can check by
Proposition 5.8 that it is optimal to trade the entire order at T for

m ∈
(
− κ

T
, − κ

T
(1 − e−ρT)

)

(see Lemma B.1). We observe that − κ
T (1 − e−ρT) < − 2ρκ

3+2ρT (see Lemma B.2). Let us
finally note that the presented methods do not allow us to calculate the optimal strategy
in closed form in the dynamic spread model for m ∈ [− κ

T (1 − e−ρT), − 2ρκ

3+2ρT ), but we
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FIGURE 9.3. Straight-line price impact (T = 1, ρ = 2, κ = 1, x = 100, δ = 0, m = 0.5,
and −0.7 (dashed)).

can approximate it numerically in discrete time (see, e.g., the case with Kt = 1 − 0.6 t,
ρ = 2, and T = 1 in Figure 6.1).

See Figure 9.3 for an illustration.

10. CONCLUSION

Time-varying liquidity is a fundamental property of financial markets. Its implication for
optimal liquidation in limit order book markets is the focus of this paper. We find that a
model with a dynamic, trading influenced spread is very robust and free of two types of
price manipulation. We prove that value functions and optimal liquidation strategies in
this model are of wait-region/buy-region type, which is often encountered in problems
of singular control. In the literature on optimal trade execution in limit order books, the
spread is often assumed to be zero. Under this assumption, we show that time-varying
liquidity can lead to classical as well as transaction-triggered price manipulation. For
both dynamic and zero spread assumptions, we derive closed-form solutions for optimal
strategies and provide several examples.

APPENDIX A: INTEGRATION BY PARTS FOR CÀGLÀD PROCESSES

In various proofs in this paper, we need to apply stochastic analysis (e.g., integration
by parts or Ito’s formula) to càglàd processes of finite variation and/or standard semi-
martingales. As noted in Section 2, this is always done as follows: if U is a càglàd process
of finite variation, we first consider the process U+ defined by U+

t := Ut+ and then apply
standard formulas from stochastic analysis to it. As an example of such a procedure, we
provide the following lemma, which is often applied in the proofs in this paper.

LEMMA A.1 (Integration by parts). Let U = (Ut)t∈[0,T+] and V = (Vt)t∈[0,T+] be càglàd
processes of finite variation and Z a semimartingale (in particular càdlàg), which may have
a jump at 0. For t ∈ [0, T ], we have

Ut+ Zt = U0 Z0− +
∫

[0,t]
Usd Zs +

∫
[0,t]

ZsdUs,(A.1)

Ut+Vt+ = U0V0 +
∫

[0,t]
UsdVs +

∫
[0,t]

Vs+dUs .(A.2)
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Proof. Let X and Y be càdlàg processes (possibly having a jump at 0) with X being a
semimartingale and Y a finite variation process. By proposition I.4.49(a) in Jacod and
Shiryaev (2003), which is a variant of integration by parts for the case where one of the
semimartingales is of finite variation,

XtYt = X0−Y0− +
∫

[0,t]
Ys−d Xs +

∫
[0,t]

XsdYs, t ∈ [0, T].(A.3)

Equation (A.1) is a particular case of (A.3) applied to X := Z, Y := U+ and equation (A.2)
is a particular case of (A.3) applied to X := V+, Y := U+, where U+

t := Ut+ and
V+

t := Vt+. �
APPENDIX B: TECHNICAL LEMMAS USED IN EXAMPLE 9.7

Below, we use the notation of Example 9.7.

LEMMA B.1. For m ∈ (− κ
T , − κ

T (1 − e−ρT)), we have

(κ + mt)e−ρ(T−t) > κ + mT, t ∈ [0, T),(B.1)

i.e., Proposition 5.8 applies.

Proof. Inequality (B.1) is equivalent to

m < −κ(1 − e−ρ(T−t))
T − te−ρ(T−t)

.

The assertion now follows from our assumption on m. To see this, we need to show that

− κ

T
(1 − e−ρT) ≤ −κ(1 − e−ρ(T−t))

T − te−ρ(T−t)
,

which, in turn, is equivalent to

g(t) := 1 − e−ρ(T−t)

T − te−ρ(T−t)
≤ 1 − e−ρT

T
= g(0).

This is a true statement since 1 − x ≤ e−x for all x ∈ R and therefore

g′(t) = 1 − ρ(T − t) − e−ρ(T−t)

eρ(T−t)(T − te−ρ(T−t))2
≤ 0. �

LEMMA B.2. We have − κ
T (1 − e−ρT) < − 2ρκ

3+2ρT .

Proof. The statement reduces to proving that 2ρT
3+2ρT < 1 − e−ρT. Setting x := ρT > 0,

we see that it is enough to establish that e−x < 3
3+2x , which is true as, clearly, ex > 1 +

2
3 x. �
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694 A. FRUTH, T. SCHÖNEBORN, AND M. URUSOV

ALFONSI, A., A. SCHIED, and A. SLYNKO (2011): Order Book Resilience, Price Manipulation,
and the Positive Portfolio Problem, Preprint.

ALMGREN, R. F. (2003): Optimal Execution with Nonlinear Impact Functions and Trading-
Enhanced Risk, Appl. Math. Finance 10, 1–18.

ALMGREN, R. F. (2009): Optimal Trading in a Dynamic Market, Preprint.

ALMGREN, R. F., and N. CHRISS (2001): Optimal Execution of Portfolio Transactions, J. Risk 3,
5–40.

BANK, P., and D. BECHERER (2009): Talk: Optimal Portfolio Liquidation with Resilient Asset
Prices, Liquidity-Modelling Conference, Oxford.

BERTSIMAS, D., and A. LO (1998): Optimal Control of Execution Costs, J. Financ. Markets 1,
1–50.

BOUCHAUD, J. P., Y. GEFEN, M. POTTERS, and M. WYART (2004): Fluctuations and Response
in Financial Markets: The Subtle Nature of “Random” Price Changes, Quant. Finance 4,
176–190.

CHORDIA, T., R. ROLL, and A. SUBRAHMANYAM (2001): Market Liquidity and Trading Activity,
J. Finance 56, 501–530.

CONT, R., S. STOIKOV, and R. TALREJA (2010): A Stochastic Model for Order Book Dynamics,
Oper. Res. 58, 217–224.

EASLEY, D., and M. O’HARA (1987): Price, Trade Size, and Information in Securities Markets,
J. Financ. Econ. 19, 69–90.
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OPTIMAL LIQUIDATION IN A LIMIT ORDER BOOK FOR A
RISK-AVERSE INVESTOR

ARNE LØKKA

London School of Economics

In a limit order book model with exponential resilience, general shape function, and
an unaffected stock price following the Bachelier model, we consider the problem of
optimal liquidation for an investor with constant absolute risk aversion. We show that
the problem can be reduced to a two-dimensional deterministic problem which involves
no buy orders. We derive an explicit expression for the value function and the optimal
liquidation strategy. The analysis is complicated by the fact that the intervention
boundary, which determines the optimal liquidation strategy, is discontinuous if there
are levels in the limit order book with relatively little market depth. Despite this
complication, the equation for the intervention boundary is fairly simple. We show
that the optimal liquidation strategy possesses the natural properties one would expect,
and provide an explicit example for the case where the limit order book has a constant
shape function.

KEY WORDS: limit order book, optimal liquidation, optimal execution, CARA utility, singular
control, discontinuous intervention boundary.

1. INTRODUCTION

The growing popularity of algorithmic execution has resulted in an increasing interest
in asset price models incorporating illiquidity and optimal execution of large orders. A
brief history of the growth of algorithmic execution can be found in Aldridge (2010),
which also provides an overview of current market practice and common models. These
models tend to be based on the investor’s trading rate, like the Almgren and Chriss (1999)
model, or to be variations of the limit order book model of Obizhaeva and Wang (2005).

Bertsimas and Lo (1998) introduced a class of discrete time models for asset prices
incorporating illiquidity effects, and used dynamic programming to derive the strategy
which minimizes the expected cost of trading. Almgren and Chriss (1999, 2001) addressed
the problem of maximizing the expected revenue of trading, taking into account its
variance. Almgren (2003) generalized the model of Almgren and Chriss (1999, 2001) to
incorporate nonlinear impact functions. Gatheral (2010) further generalized the Almgren
model (2003) to incorporate a decay kernel and provide conditions for existence and
absence of price manipulation strategies. Based on the model of Almgren (2003) with
a linear impact factor, Schied and Schöneborn (2009) study the problem of optimal
liquidation of a large stock position for an investor aiming to maximize the expected
utility of their cash position at the end of time, and compare the qualitative behavior of
the optimal strategy for different utility functions in case of increasing and decreasing
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prices. They relate their results to the strategies corresponding to the various criteria
discussed in Kissell and Malamut (2005), which involves different benchmark price
targets. The models listed above have in common that the underlying price process is
based on the Bachelier model, with an additional impact depending on the transactions
made by a large trader who wants to purchase or sell a large number of shares. There
is a permanent effect depending on the size of the trade, and a temporary effect on the
stock price depending on the time derivative of the large trader’s position in the stock.
The problem of finding the optimal liquidation or purchase strategy typically takes the
form as the solution to an Euler–Lagrange equation.

Obizhaeva and Wang (2005) introduced a limit order book model, which specifies the
stochastic dynamics of limit orders and the best offered bid and ask price. The cost of
purchasing or selling shares thus depends on the limit orders and the behavior of the best
offered bid and ask price as orders eat into the limit order book, as well as the resilience
of the limit order book, which specifies how the best offered bid and ask prices recover
after orders have been executed. Alfonsi, Fruth, and Schied (2010) generalize the limit
order book model of Obizhaeva and Wang to allow more general shape functions, and
provide two slightly different ways to model resilience. Predoiu, Shaikhet, and Shreve
(2011) introduce a one-sided limit order book model where the shape of the limit orders
are given in terms of a measure. Alfonsi and Schied (2010) and Alfonsi, Schied, and
Slynko (2012) provide conditions for the absence of price manipulation strategies in limit
order books and models related to that of Gatheral (2010). Gatheral, Schied, and Slynko
(2011) introduce a limit order book with a general resilience function and provide a
comparison between such models and that of Gatheral (2010). Schied, Schöneborn, and
Tehranchi (2010) provide a connection between the maximization criterion of Almgren
and Chriss (1999, 2001) and maximization of expected constant absolute risk aversion
(CARA) utility. They also show that if the risk of the stock price is given in terms of a
Lévy process and if there is a certain additive structure between the risk and the trading
cost, then the optimal strategy for an investor with CARA utility is deterministic.

In this paper, we adopt a limit order book model with a general shape function and
exponential resilience rate as in Alfonsi et al. (2010), where the stochastic dynamics of
the nonaffected stock price follows the Bachelier model, and consider a large investor
with constant absolute risk aversion who wants to liquidate his share position without
time constraints. This model for the dynamics of the risky asset can be viewed as the limit
order book equivalent to the models of Almgren and Chriss (1999), Almgren (2003), and
Gatheral (2010). We do not explicitly model the ask orders and best ask price, but assume
that the best bid price and bid orders are unaffected by the investor’s buy orders and that
the unaffected bid price process provides a lower bound for the best offered ask price.
The utility maximization problem that we consider can be viewed as a limit order book
version of the problem considered by Schied and Schöneborn (2009), provided that the
investor has constant absolute risk aversion. Based on the ideas in Schied et al. (2010),
we prove that the optimal strategy is deterministic and involves no buy orders. Moreover,
the maximum expected utility is strictly negative and can be expressed in terms of the
value function of a certain two-dimensional optimal control problem.

Under fairly mild condition on the shape function of the limit order book, we derive
an explicit solution to the optimal liquidation problem for a general shape function.
The optimal strategy turns out to differ from the corresponding optimal strategy in the
Almgren (2003) model. Depending on the investor’s past trading history, the optimal
liquidation strategy involves an initial block trade and then continuously sell shares,
or first wait for a certain amount of time to let the limit order book recover, and then
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continuously sell shares. If there are levels in the limit order book with relatively little
market depth, there are periods where it is optimal to wait in order for the best bid price
to recover from the level with relatively little depth. To the best of the author’s knowledge,
this Markovian dependence on the investor’s past trading history and corresponding state
of the limit order book has not previously been explicitly explored, and in the Almgren
model (2004) there is no such dependence since the returns in this case do not depend on
the investor’s past trading history. Also, the optimal liquidation strategy in models based
on the trading rate, like the Almgren (2003) model, does not involve any block trades. It
is therefore interesting to note that the optimal liquidation strategy for the large investor
in a limit order book model typically consists of an initial block trade.

In order to derive the optimal liquidation strategy for the large investor, we derive an
explicit solution to the Hamilton–Jacobi–Bellman equation corresponding to the value
function of the reduced deterministic optimization problem. The Hamilton–Jacobi–
Bellman equation takes the form of a free boundary problem, where it turns out that
the boundary can be discontinuous. The discontinuities happen when there are levels in
the limit order book with relatively little market depth. While the discontinuities of the
intervention boundary complicates the analysis and proofs, the equation for the boundary
takes a fairly simple form. The optimal strategy then essentially consists of trading in
such a way that the state process, which consists of the number of shares held and the
current state of the limit order book, remains on the boundary at all times. We also show
that the optimal strategy possesses the natural properties one would expect, e.g., that
an increased depth implies faster liquidation, increased volatility of the unaffected stock
price implies faster liquidation, and an increased risk aversion implies faster liquidation.

At the end, we provide an example of a limit order book with a constant shape function,
and compare the optimal liquidation strategy to that provided in Schied and Schöneborn
(2009) for the Almgren model with a linear impact function.

2. MODEL SPECIFICATION AND PROBLEM FORMULATION

We adopt the limit order book model of Alfonsi et al. (2010) with an unaffected best bid
price process following the Bachelier model. However, instead of modeling the full limit
order book, we explicitly model the bid order book and assume that the unaffected bid
price provides a lower bound for the best ask price and that the bid prices are unaffected
by the large investor’s buy orders. These assumptions are satisfied in the full limit order
book model. We show that under these assumptions, the optimal liquidation strategy
does not involve any buy orders.

Let (�,F, (Ft), P) be a complete filtered probability space satisfying the usual condi-
tions and supporting a one-dimensional Brownian motion W, and set

R
+ = [0, ∞) and R

− = (−∞, 0].

We consider the following set of admissible liquidation strategies for the large investor.

DEFINITION 2.1. For y ∈ R
+, let A(y) denote the set of all pairs (X, Y), where X and Y

are (Ft)-adapted, càdlàg processes, X is nondecreasing and Y is nonincreasing, X0− = 0
and Y0− = y, and ∫ ∞

0
‖Xt + Yt‖2

L∞(�) dt < ∞.(2.1)
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The nonnegative quantity Xt represents the number of shares bought over the time
interval [0, t], Yt − y represents the number of shares sold over the time interval [0, t],
and Xt + Yt is the net position in shares held at time t. Denote by A−

D(y) the set of
all deterministic strategies (X, Y) ∈ A(y) with X = 0. Thus, we can identify A−

D(y) with
the set of deterministic càdlàg, nonincreasing processes with values in [0, y] satisfying
Y0− = y and ∫ ∞

0
|Yt|2 dt < ∞.(2.2)

The unaffected bid process B0 is assumed to follow the Bachelier model, that is

B0
t = b + σ Wt, t ≥ 0,

where b > 0 is the bid price at time 0 and σ > 0 is the volatility. The interpretation
of the unaffected bid process B0 is that if the large investor makes no trades, then the
best offered bid price at time t is B0

t . The Bachelier model may seem simplistic, but the
Bachelier model is widely used in the optimal liquidation literature (see, e.g., Almgren
and Criss 1999; Kissell and Malamut 2005; Schied and Schöneborn 2009; and Gatheral
2010). We do not explicitly model the ask prices, but make the following assumption:

ASSUMPTION 2.2. The bid prices are unaffected by the large investor’s buy orders and
the best unaffected bid price provides a lower bound for the best ask price.

In particular, we note that the full limit order book in Obizhaeva and Wang (2005),
Alfonsi et al. (2010), and Gatheral et al. (2011), all satisfy this assumption.

There are two other components which together specify the limit order book model.
One is the shape function, which we denote by φ, and the other is the resilience rate, which
describes how the market recovers. The shape function φ is static, and the connection
between the shape function φ and the bid prices in the limit order book is that, at time t,
the number of bids at price Bt + x is equal to φ(x) dx, where x ≤ 0, provided the investor
has not made any large trades before time t. We impose the following condition on the
shape function:

ASSUMPTION 2.3. The shape function φ : R
− → (0, φmax] is continuous.

Let BY
t denote the best bid price offered at time t if the large investor follows a

liquidation strategy (X, Y) ∈ A(y). As the notation suggests, the best offered bid price
depends on the past history of the strategy Y, but according to Assumption 2.2, does not
depend on the buy strategy X. We assume that BY is a càdlàg process. Denote by DY the
spread process given by

DY
t = BY

t − B0
t , t ≥ 0,

i.e., the spread between the best offered bid price and the unaffected bid price if the large
investor adopts a liquidation strategy Y. If the large trader adopts a strategy Y which
consists of selling a number 	Yt = Yt − Yt− of shares at time t, then the effect of this
on the best offered bid price is that the new spread changes from DY

t− to DY
t , where DY

t
satisfies ∫ DY

t

DY
t−

φ(u) du = 	Yt.
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This corresponds to the best bid orders being executed in order to match the large trader’s
sales order of −	Yt number of shares. In order to ease notation, introduce the functions
� : R

− → R
− and ψ : R

− → R
− by

�(x) =
∫ x

0
φ(u) du and ψ(z) = �−1(z).(2.3)

The inverse of � is well defined since � is strictly increasing, due to the assumption that
φ takes strictly positive values. From the assumptions made on the properties of φ in
Assumption 2.3, it follows that ψ : R

− → R
− is an increasing C1(R−) function satisfying

ψ(0) = 0,(2.4)

there exists δ > 0 such that ψ ′(z) ≥ δ, for all z ∈ R
−,(2.5)

there exists C > 0 and ε > 0 such that ψ ′(z) ≤ C, for all z ∈ (−ε, 0].(2.6)

As in Alfonsi et al. (2010) and Obizhaeva and Wang (2005), we assume that the limit
order book has an exponential resilience rate, which means that the limit order book
recovers at an exponential rate. Introduce the process ZY given by

ZY
t = ze−λt +

∫ t

0
e−λ(t−s) dYs, t ≥ 0,(2.7)

where z ≤ 0 is the initial value of ZY at time 0 and λ > 0 is the resilience speed. For future
reference, note that ZY is the unique càdlàg solution to

d ZY
t = −λZY

t− dt + dYt, ZY
0 = z ∈ R

−.(2.8)

The process ZY captures how the large investor’s implementation of the liquidation
strategy Y affects the best offered bid price and how this recovers over time through the
relation

ZY
t = �

(
DY

t

)
,

where DY
t is the spread at time t. The initial state z therefore provides the initial state

of the limit order book, which takes into account the past trading history of the large
investor. In the literature, the letter E is often used rather than Z to denote the process
ZY, since it represent the part of the order book which is “eaten up.” With reference to
the definition of the spread process DY and (2.3), the best offered bid price BY

t , at time
t, is given by

BY
t = B0

t + ψ
(
ZY

t

)
,(2.9)

if the large investor use the liquidation strategy Y.
So far we have described how the large investor’s trading affects the best offered bid

price, but not how this affects the large investor’s cash position. Suppose that the large
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investor’s initial cash position is c and that he implements a strategy (X, Y) ∈ A(y) which
consists of a number of block sales, i.e., Y is a decreasing step function and X is zero.
Then, the large investor’s cash position at time T > 0 is

CT(X, Y) = c −
∑

0≤t≤T

∫ 	Yt

0

{
B0

t + ψ
(
ZY

t− + x
)}

dx,(2.10)

which corresponds to the best bids offered at all times being executed first so as to match
the large trader’s sales orders. Let Yc denote the continuous part of Y, as defined in, e.g.,
Protter (1990). If the large trader implements a continuous sales strategy Y = Yc with
no buy orders, then his cash position at time T > 0 is given by the Lebesgue–Stieltjes
integral

∫ T

0
BY

t− dYt.(2.11)

By assumption the best ask prices are greater than or equal to the unaffected bid prices,
from which it follows that the cost of purchasing the shares at the best offered ask prices
is greater than or equal to purchasing the shares at the unaffected bid prices. In view of
(2.10) and (2.11), we therefore conclude that if the large investor’s initial cash position
is c and he uses a liquidation strategy (X, Y) ∈ A(y), his cash position at time T > 0
satisfies

CT(X, Y) ≤ c −
∫ T

0
BY

t− dYc
t −

∑
0≤t≤T

∫ 	Yt

0

{
B0

t + ψ
(
ZY

t− + x
)}

dx

−
∫ T

0
B0

t d Xt,

(2.12)

where we have equality in (2.12) if X = 0. We note that (2.12) can be viewed as a version
of proposition 2.22 in Alfonsi and Schied (2010).

We assume that the large trader has constant absolute risk aversion, an initial cash
position c, and an initial position in the stock consisting of y number of shares. We further
assume that the large trader wants to maximize the expected utility of his cash position at
the end of time. In mathematical terms, the large investor’s optimal liquidation problem
is

sup
(X,Y)∈A(y)

E[U(C∞(X, Y))],(2.13)

where the utility function U is given by

U(c) = −e−Ac, A > 0.

This can be seen as the limit order book equivalent formulation of the optimal liquidation
problem studied by Schied and Schöneborn (2009), but restricted to the case of large
investors with constant absolute risk aversion.
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3. PRELIMINARY OBSERVATIONS AND PROBLEM SIMPLIFICATION

Our approach to solving the utility maximization problem (2.13) is to first show that
the problem can be reduced to a deterministic optimization problem involving only
liquidation strategies in A−

D(y). This reduction of the problem is based on the ideas in
Schied et al. (2010), who proved that if the market has a certain structure and the investor
has a constant absolute risk aversion, the optimal strategy is deterministic.

Let (X, Y) ∈ A(y) be an admissible liquidation strategy. Then, it follows from (2.12)
that

CT(X, Y) ≤ c + by − B0
T(XT + YT) +

∫ T

0
(Xt− + Yt−)σ dWt − FT(Y),(3.1)

where F is given by

FT(Y) =
∫ T

0
ψ
(
ZY

t−
)

dYc
t +

∑
0≤t≤T

∫ 	Yt

0
ψ
(
ZY

t− + x
)

dx,(3.2)

and where we have equality in (3.1) if X = 0. It follows from (2.1) that B0
T(XT + YT)

tends to 0 in L1(P) as T → ∞, and that∫ ∞

0
(Xt− + Yt−)σ dWt

is a well-defined random variable with expectation 0 and finite variance. Also note that
FT(Y) is an increasing function of T, and therefore F∞(Y) is well defined, possibly being
equal to +∞. Thus, F∞ is a function from the set of càdlàg, nonincreasing functions into
the extended nonnegative real numbers. We conclude that

C∞(X, Y) ≤ c + by +
∫ ∞

0
(Xt− + Yt−)σ dWt − F∞(Y),(3.3)

where we have equality in (3.3) if X = 0. Also note that

C∞(X, Y) ≤ c + by +
∫ ∞

0
(Xt− + Yt−)σ dWt,

from which it follows that the market is arbitrage-free. In particular, there does not exist
any price manipulation strategies (see Huberman and Stanzl 2004; Alfonsi and Schied
2010; or Gatheral 2010). We have the following monotonicity result for the function F
and deterministic strategies:

LEMMA 3.1. Let F be given by (3.2) and (X, Y) ∈ A(y) be any deterministic liquidation
strategy. Then there exists a strategy Ỹ ∈ A−

D(y) such that∫ ∞

0
(Xt− + Yt−)2 dt ≥

∫ ∞

0
Ỹ2

t− dt and F∞(Y) ≥ F∞(Ỹ).

Proof. Let ξ be a càdlàg, nonincreasing function satisfying ξ0− = 0. Then,

ZY+ξ
t − ZY

t = −λ

∫ t

0

(
ZY+ξ

u− − ZY
u−
)

du + ξt,
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from which it follows that ZY+ξ
t ≤ ZY

t , for all t ≥ 0. Therefore,

F∞(Y + ξ ) =
∫ ∞

0
ψ
(
ZY+ξ

t−
)

dYc
t +

∫ ∞

0
ψ
(
ZY+ξ

t−
)

dξ c
t

+
∑
t≥0

∫ 	Yt

0
ψ
(
ZY+ξ

t− + x
)

dx +
∑
t≥0

∫ 	Yt+	ξt

	Yt

ψ
(
ZY+ξ

t− + x
)

dx

≥
∫ ∞

0
ψ
(
ZY

t−
)

dYc
t +

∑
t≥0

∫ 	Yt

0
ψ
(
ZY

t− + x
)

dx

= F∞(Y),

by the monotonicity of ψ . Thus, if Y ≤ Ỹ then F∞(Y) ≥ F∞(Ỹ). Let (X, Y) ∈ A(y) be a
deterministic strategy, and define Ỹt = max{0, Yt} and X̃ = 0. Then, the strategy (X̃, Ỹ)
is in A−

D(y), and since Y ≤ Ỹ and∫ ∞

0
(Xt− + Yt−)2 dt ≥

∫ ∞

0
Ỹ2

t− dt,

the result follows. �
Let (X, Y) ∈ A(y) and define the process M by

Mt = exp
(

−σ A
∫ t

0
(Xs− + Ys−) dWs − 1

2
σ 2 A2

∫ t

0
(Xs− + Ys−)2 ds

)
.

From the assumption (2.1), it follows that M is a martingale closed by M∞ (see, e.g.,
Protter 1990). We can therefore define a probability measure P̃ by

dP̃

dP
= M∞.

Based on the ideas of theorem 2.8 in Schied et al. (2010), (3.3), and Lemma 3.1, we
calculate

sup
(X,Y)∈A(y)

E[U(C∞(X, Y))]

(∗)≤ −e−A(c+by) inf
(X,Y)∈A(y)

E

[
exp

(
−A

∫ ∞

0
(Xt− + Yt−)σ dWt + AF∞(Y)

)]
= −e−A(c+by) inf

(X,Y)∈A(y)
E

[
M∞ exp

(
1
2
σ 2 A2

∫ ∞

0
(Xt− + Yt−)2 dt + AF∞(Y)

)]
= −e−A(c+by) inf

(X,Y)∈A(y)
Ẽ

[
exp

(
1
2
σ 2 A2

∫ ∞

0
(Xt− + Yt−)2 dt + AF∞(Y)

)]
= −e−A(c+by) exp

(
inf

Y∈A−
D(y)

{
1
2
σ 2 A2

∫ ∞

0
(Xt− + Yt−)2 dt + AF∞(Y)

})
,

(3.4)

where (∗) holds with equality for strategies (X, Y) ∈ A(y) with X = 0. In particular, (∗)
in (3.4) holds with equality for strategies Y ∈ A−

D(y). The last step in (3.4) follows from
Jensen’s inequality and Lemma 3.1. We have therefore reduced the utility maximiza-
tion problem (2.13) to an optimization problem involving only deterministic liquidation
strategies which involve no buy orders.
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In order to derive a Hamilton–Jacobi–Bellman equation for the value function of the
optimization problem, we want to obtain an expression for F∞ which is more convenient
for this purpose. As a first step toward this, the next result expresses the cash position at
a time T > 0 corresponding to a liquidation strategy that involves no buy orders.

LEMMA 3.2. For every initial cash position c and liquidation strategy (X, Y) ∈ A(y)
satisfying X = 0, the large investor’s cash position at time T > 0 is given by

CT(Y) = c + B0
0−Y0− −

∫ ZY
0−−Y0−

ZY
0−

ψ(s) ds − B0
TYT +

∫ ZY
T−YT

ZY
T

ψ(s) ds

+
∫ T

0
Yt− dB0

t +
∫ T

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
) }

dt.

(3.5)

The expression for the cash position at time T in Lemma 3.2 should be of independent
interest. It can be used to derive the Hamilton–Jacobi–Bellman equation for the optimal
liquidation problem with a finite time-horizon and a general utility function. Our idea
is similar to the idea in Schied and Schöneborn (2009), which consists of rewriting the
expression for the cash position at the end of time in such a way that you make use of
the assumption that the stock position at the end of time is zero. The next result makes
use of Lemma 3.2 and provides an expression for the cash position at the end of time in
accordance with this idea.

LEMMA 3.3. Assume that the large investor’s initial cash position is c and that the large
investor uses a liquidation strategy (X, Y) ∈ A(y), with X = 0. Then, the large investor’s
cash position at the end of time is

C∞(Y) = c + by −
∫ z−y

z
ψ(s) ds

+
∫ ∞

0
σYt− dWt +

∫ ∞

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt,
(3.6)

where b = B0
0 and z = ZY

0−. Moreover,

0 ≤
∫ ∞

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt ≤
∫ z−y

z
ψ(s) ds.(3.7)

The various terms in (3.6), for the cash position at the end of time, all have economic
interpretations. The term

c + by −
∫ z−y

z
ψ(s) ds

corresponds to the cash position of the large investor after immediate liquidation of the
entire position in risky assets. The term∫ ∞

0
σYt− dWt
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represents the risk of the large investor’s cash position at the end of time if the stock
position is not liquidated immediately, and∫ ∞

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt

represents the gain to the large investor’s cash position for not liquidating immediately.

REMARK 3.4. From the bounds established in the proof of Lemma (3.6), it follows
that if Yn is a sequence of liquidation strategies in A−

D(y) such that Yn converges to
Y ∈ A−

D(y) in total variation, then C∞(Yn) converges to C∞(Y) in L1(P). This shows
that the limit order book model exhibits a certain robustness. For instance, given a
sequence of absolutely continuous liquidation strategies converging to a liquidation
strategy consisting of block trades, the corresponding cash position of the absolutely
continuous strategy will converge to the cash position corresponding to that consisting
of the block trades. This differs completely from the situation in the supply curve models
of Cetin, Jarrow, and Protter (2004) and Bank and Baum (2004).

For strategies Y ∈ A−
D(y), (3.3) takes the form

C∞(Y) = c + by +
∫ ∞

0
σYt− dWt − F∞(Y),

and by comparing this expression for C∞(Y) with the expression for C∞(Y) in Lemma
3.3, we conclude that

F∞(Y) =
∫ z−y

z
ψ(s) ds +

∫ ∞

0
λZY

t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}

dt.(3.8)

From the calculations in (3.4) and equation (3.8), it follows that the optimization problem
(2.13) takes the form

sup
(X,Y)∈A(y)

E[U(C∞(X, Y))] = − exp
(

−A(c + by) + A
∫ z−y

z
ψ(s) ds

)
exp(AV(y, z)),

(3.9)

where

V(y, z) = inf
Y∈A−

D(y)

∫ ∞

0
λYt−

(
aYt− + ZY

t−
ψ(ZY

t−) − ψ(ZY
t− − Yt−)

Yt−

)
dt,(3.10)

with a = σ 2 A
2λ

and z = ZY
0−. Thus, we have reduced the original utility optimization prob-

lem to (3.10). Moreover, from assumption (2.2) and Lemma 3.3, it follows that V given
by (3.10) is well defined and real valued.

REMARK 3.5. Observe that from Lemma 3.3, it follows that for a liquidation strategy
Y ∈ A−

D(y),

E[C∞(Y)] = c + by −
∫ z−y

z
ψ(s) ds +

∫ ∞

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt
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and

Var(C∞(Y)) =
∫ ∞

0
σ 2Y2

t− dt.

Therefore, the right-hand side of (3.10), with a = σ 2 A
2λ

, can be written

c + by −
∫ z−y

z
ψ(s) ds + inf

Y∈A−
D(y)

{
A
2

Var(C∞(Y)) − E[C∞(Y)]
}

,

which corresponds to the Almgren and Chriss (1999) criterion. Schied et al. (2010) proved
that this relationship between the Almgren and Chriss criterion and CARA utility holds
also in the more general setting where the unaffected price process follows a Lévy process.

4. THE SOLUTION TO THE OPTIMIZATION PROBLEM

Our next aim is to derive an explicit solution to the optimization problem (3.10), which
will be based on the principle of dynamic programming. With reference to the general
theory of optimal control (see, e.g., Fleming and Soner 1993), the Hamilton–Jacobi–
Bellman equation corresponding to V given by (3.10) takes the form

max{zvz(y, z) − ay2 − z(ψ(z) − ψ(z − y)), max
0≤	≤y

v(y, z) − v(y − 	, z − 	)} = 0,
(4.1)

with associated boundary condition v(0, z) = 0, for all z ≤ 0. Formally, we can obtain
equation (4.1) as follows. As we are optimizing over deterministic selling strategies (no
buy orders), there are only two choices; to sell a number 	 > 0 of shares or to wait.
Given a state (y, z), it may or may not be optimal to sell a number 	 of shares, hence

v(y, z) ≤ v(y − 	, z − 	)(4.2)

as the sale of 	 number of shares decrease the number of shares held from y to y − 	
and the state of the limit order book from z to z − 	. The inequality (4.2) should hold
for all 0 ≤ 	 ≤ y, which implies that

max
0≤	≤y

{v(y, z) − v(y − 	, z − 	)} ≤ 0.(4.3)

On the other hand, it may or may not be optimal to wait for a period of time 	t > 0,
hence

(4.4)

v(y, z) ≤ v(y, Z	t) +
∫ 	t

0
λy
(

ay + Zu−
ψ(Zu−) − ψ(Zu− − y)

y

)
du

= v(y, z) +
∫ 	t

0

{
λy
(

ay + Zu−
ψ(Zu−) − ψ(Zu− − y)

y

)
− vz(y, Zu−)λZu−

}
du,
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where Zu = ze−λu , for 0 ≤ u ≤ 	t. By multiplying inequality (4.4) by (	t)−1 and letting
	t tend to 0, we obtain

zvz(y, z) − ay2 − z{ψ(z) − ψ(z − y)} ≤ 0.(4.5)

Since it is optimal to either sell a certain number of shares or wait, we must have equality
in either (4.3) or (4.5), and we obtain (4.1).

For this type of singular optimal control problem, the optimal strategy can be char-
acterized by two disjoint sets Ds and Dw , where the union of Ds and Dw is equal to the
state space R

+ × R
−. These sets satisfy

max
0≤	≤y

{v(y, z) − v(y − 	, z − 	)} = 0, for (y, z) ∈ Ds,

zvz(y, z) − ay2 − z{ψ(z) − ψ(z − y)} = 0, for (y, z) ∈ Dw .
(4.6)

If (y, z) ∈ Ds , then the optimal strategy consists of making an immediate sale of 	 number
of shares, where 	 is such that (y − 	, z − 	) is on the nearest boundary between Ds and
Dw (or the line y = 0). If (y, z) ∈ Dw , then the optimal strategy consists of waiting until
the first time (y, ze−λt) is on the boundary between Ds and Dw , as the limit order book
recovers at an exponential rate λ. If (y, z) is on the boundary between Ds and Dw , then
the optimal strategy consists of taking minimal action to ensure that the state process
(Yt, ZY

t ) remains on the boundary.
The simplest case is when Ds and Dw are separated by a function h, i.e., (y, z) ∈ Ds if

z ≥ h(y) and (y, z) ∈ Dw if z < h(y) (or vice versa). Since

λy
(

ay + z
ψ(z) − ψ(z − y)

y

)
(4.7)

is positive if z is large (i.e., close to zero) compared to y, and increasingly negative for
small values of z, it is natural that (y, z) ∈ Ds if z ≥ h(y) and (y, z) ∈ Dw if z < h(y). It
turns out that this indeed is the case, and that the boundary between Ds and Dw can be
described by a strictly decreasing càdlàg function h : R

+ → R
− satisfying h(0) = 0 and

limy→∞ h(y) = −∞, and that we should be looking for a function v satisfying

vy(y, z) + vz(y, z) = 0, for z ≥ h(y),(4.8)

zvz(y, z) − ay2 − z(ψ(z) − ψ(z − y)) ≤ 0, for z > h(y),(4.9)

and

zvz(y, z) − ay2 − z(ψ(z) − ψ(z − y)) = 0, for z ≤ h(y),(4.10)

D+
y v(y, z) + vz(y, z) ≤ 0, for z < h(y),(4.11)

where

D+
y v(y, z) = lim

ε→0+

1
ε

(v(y + ε, z) − v(y, z)).(4.12)

Let us examine in more detail the strategy corresponding to the case where Ds and Dw

are described by an intervention boundary function h. Given a strictly decreasing càdlàg
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FIGURE 4.1. Illustration of the strategy Yh corresponding to h.

function h : R
+ → R

− satisfying h(0) = 0 and limy→∞ h(y) = −∞, and corresponding
sets Ds and Dw given by (y, z) ∈ Ds if z ≥ h(y) and (y, z) ∈ Dw if z < h(y), we might
ask whether the corresponding liquidation strategy, denoted by Yh , exists. For future
reference, introduce the following functions related to h:

γh(y) = h(y) − y, for y ∈ R
+,(4.13)

ρh(z) = z − h−1(z), for z ∈ R
−,(4.14)

h−1(z) = sup{y ∈ R
+ : h(y) ≥ z}, for z ∈ R

−,(4.15)

γ −1
h (z) = sup{y ∈ R

+ : γh(y) ≥ z}, for z ∈ R
−,(4.16)

and let ρ−1
h denote the inverse of ρh . We can then observe that if (y, z) ∈ Ds , then the

strategy Yh corresponding to the intervention boundary described by h, will consist of
making an initial sale of 	 number of share such that (y − 	, z − 	) is on the graph of
h (see Figure 4.1). Hence, we want (y − 	, z − 	) = (h−1(z − 	), z − 	). With ZYh

0− = z
and ZYh

0 = z − 	, we see that this equation is equivalent to

ρh
(
ZYh

0

) = ZYh

0 − h−1(ZYh

0

) = z − y,

from which it follows that ZYh

0 = ρ−1
h (z − y) and 	 = z − ρ−1

h (z − y). For future refer-
ence, we can also observe that ρ−1

h (x) = x + γ −1
h (x), for x ∈ R

−. Hence, the number 	 of
shares can also be expressed by 	 = y − γ −1

h (z − y). If (y, z) ∈ Dw , i.e., z < h(y), then
the strategy Yh consists in waiting until the state process (Yh

t , ZYh

t ) is on the graph of h
(see Figure 4.1). While no action is taken, Yh

t = y and ZYh

t = ze−λt, from which it follows
that the first time tw that the state process is on the graph of h is given by the equation
ze−λtw = h(y). Once the state process (Yh, ZYh

) is on the graph of h, the strategy Yh

consists of taking minimal action such that the state process remains on the graph of h
(see Figure 4.1). This implies that (Yh

t , ZYh

t ) = (h−1(ZYh

t ), ZYh

t ). With reference to (2.8),
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this implies that ZYh
should solve

d ZYh

t = −λZYh

t− dt + dh−1(ZYh

t

)
,

which is equivalent to

dρh
(
ZYh

t

) = −λZYh

t− dt.

The following result establishes the existence and uniqueness of such a strategy Yh for a
given intervention boundary function h.

LEMMA 4.1. Let (y, z) ∈ R
+ × R

− and let h : R
+ → R

− be a strictly decreasing càdlàg
function satisfying h(0) = 0 and limy→∞ h(y) = −∞, let h−1 and γ −1

h be given by (4.15)
and (4.16). Set

tw =
{

0, if z ≥ h(y),

λ−1{ln(−z) − ln(−h(y))}, if z < h(y),
(4.17)

and let Yh denote the decreasing càdlàg liquidation strategy with the following description:
� If z ≥ h(y), then immediately sell y − γ −1

h (z − y) number of shares. This block trade
ensures that Yh

0 = h−1(ZYh

0 ). Then continuously sell shares so that Yh
t = h−1(ZYh

t ), for
all t ≥ 0.

� If z < h(y), then do nothing until time tw . The time tw has the property that y =
h−1(ZYh

tw ). Then, continuously sell shares so that Yh
t = h−1(ZYh

t ), for all t ≥ tw .

Such a strategy Yh exists and is unique. In particular,

Yh
t = h−1(ZYh

t ), for t ≥ tw ,(4.18)

and ZYh
is the unique solution to

ZYh

t = ZYh

tw − h−1(ZYh

tw ) −
∫ t

tw
λZYh

u du + h−1
(

ZYh

t

)
,(4.19)

where

ZYh
tw = h(y), if z < h(y), and ZYh

tw = z − y + γ −1
h (z − y), if z ≥ h(y).(4.20)

If tw > 0, then Yh
t = y and ZYh

t = ze−λt, for 0 ≤ t ≤ tw .

The next result concerns the relative speed of liquidation corresponding to two different
intervention boundaries. In particular, we will need this result later in order to prove that
our candidate for the optimal strategy is admissible.

LEMMA 4.2. Let h1, h2 : R
+ → R

− be strictly decreasing càdlàg functions satisfying
h1(0) = h2(0) = 0 and limy→∞ h1(y) = limy→∞ h1(y) = −∞. Denote by Yh1 and Yh2 the
strategies defined in Lemma 4.1 by (4.18)–(4.19) corresponding to h1 and h2, respectively.
If h1 ≤ h2 then Yh1 ≤ Yh2 . In particular, if there exists C > 0 and ε > 0 such that h(y) ≤
−Cy for all y < ε, then Yh ∈ A−

D(y).

In order to obtain an explicit expression for the value function of our problem, we
progress by deriving an explicit expression for the performance associated with a strategy
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Yh , given an arbitrary intervention boundary function h. For an initial state (y, z) and
strategy Yh , with associated bid order book state process ZYh

, define the performance
function Jh by

Jh(y, z) =
∫ ∞

0
λYh

t−

(
aYh

t− + ZYh

t−
ψ
(
ZYh

t−
)− ψ

(
ZYh

t− − Yh
t−
)

Yh
t−

)
dt,(4.21)

where Yh
0− = y and ZYh

0− = z. Also, define

Ih(z) = Jh(h−1(z), z), for z ∈ R
−,

which corresponds to the performance of the strategy Yh if the initial state is on the
graph of h. If the initial state (y, z) is such that z ≥ h(y) then the strategy Yh consists of
an initial sale of y − γ −1

h (z − y) = z − ρ−1
h (z − y) number of shares, and the state after

the block sale is (Yh
0 , ZYh

0 ) = (h−1(ρ−1
h (z − y)), ρ−1

h (z − y)), where γ −1
h and ρh are given

by (4.16) and (4.14), respectively. Hence,

Jh(y, z) = Ih
(
ρ−1

h (z − y)
)
, for z ≥ h(y).(4.22)

Thus, if we obtain an explicit expression for Ih , we have an explicit expression for Jh(y, z),
for all z ≥ h(y). For an initial state (y, z) = (h−1(z), z), the liquidation strategy Yh satisfies
(Yh

t , ZYh

t ) = (h−1(ZYh

t ), ZYh

t ), for all t ≥ 0. Therefore,

Ih(z) =
∫ ∞

0

(
aλ
(
h−1(ZYh

t−
))2 + λZYh

t−
{
ψ
(
ZYh

t−
)− ψ

(
ρh
(
ZYh

t−
))})

dt, ZYh

0− = z.

With reference to (2.8), we note that formally,

dt = −dρh
(
ZYh

t

)
λZYh

t−
,

and hence

Ih(z) = −
∫ ∞

0

a
(
h−1

(
ZYh

t−
))2

ZYh

t−
dρh

(
ZYh

t

)+
∫ ∞

0
ψ
(
ρh
(
ZYh

t−
))

dρh
(
ZYh

t

)
−
∫ ∞

0
ψ
(
ZYh

t−
)

dρh
(
ZYh

t

)
= −

∫ ∞

0

a
(
γ −1

h

(
ρh
(
ZYh

t−
)))2

ρ−1
h

(
ρh
(
ZYh

t−
)) dρh

(
ZYh

t

)+
∫ ∞

0
ψ
(
ρh
(
ZYh

t−
))

dρh
(
ZYh

t

)
−
∫ ∞

0
ψ
(
ρ−1

h

(
ρh(ZYh

t− )
))

dρh
(
ZYh

t

)
=
∫ ρh (z)

0

(
a
(
γ −1

h (u)
)2

ρ−1
h (u)

+ ψ
(
ρ−1

h (u)
)− ψ(u)

)
du,
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where we have used that γ −1
h (ρ−1

h (x)) = h−1(x), for x ∈ R
−. With reference to (4.22) we

conclude that

Jh(y, z) =
∫ z−y

0

(
a
(
γ −1

h (u)
)2

ρ−1
h (u)

+ ψ
(
ρ−1

h (u)
)− ψ(u)

)
du, for z ≥ h(y).(4.23)

In order to obtain an expression for Jh(y, z) for z < h(y), we note that the strategy Yh

consists of waiting until the first time tw for which (Yh
tw , ZYh

tw ) is on the graph of h, where
Yh

t = y and ZYh

t = ze−λt, for 0 ≤ t ≤ tw . Therefore, tw = λ−1 ln(z/h(y)), and

Jh(y, z) =
∫ tw

0
λy
(

ay + ze−λt ψ(ze−λt) − ψ(ze−λt − y)
y

)
dt + Ih(h(y))

= ay2 ln
(

z
h(y)

)
+
∫ h(y)−y

z−y
ψ(u) du −

∫ h(y)

z
ψ(u) du

+
∫ h(y)−y

0

(
a
(
γ −1

h (u)
)2

ρ−1
h (u)

+ ψ
(
ρ−1

h (u)
)− ψ(u)

)
du, for z < h(y).

While this provides an explicit expression for Jh(y, z), it is not obvious from this expres-
sion that it is continuous in y (and has a one-sided derivative with respect to y), as h is
only a càdlàg function. However, we can calculate that∫ γh (y)

0

(
a
(
γ −1

h (u)
)2

ρ−1
h (u)

+ ψ
(
ρ−1

h (u)
))

du =
∫ y

0

(
au2

h(u−)
+ ψ(h(u−))

)
dγ c

h (u)

+
∑

0≤u≤y

au2 ln
(

h(u)
h(u−)

)
+

∑
0≤u≤y

∫ h(u)

h(u−)
ψ(s) ds.

From this expression, as well as∫ h(y)

0
ψ(u) du =

∫ y

0
ψ(u) dhc(u) +

∑
0≤u≤y

∫ h(u)

h(u−)
ψ(s) ds,

and

ay2 ln(−h(y)) =
∫ y

0
2au ln(h(u−)) du +

∫ y

0

au2

h(u−)
dhc(u) +

∑
0≤u≤y

au2 ln
(

h(u)
h(u−)

)
,

it follows that the performance function Jh(y, z) admits the expression

Jh(y, z) = ay2 ln(−z) +
∫ z

z−y
ψ(u) du

−
∫ y

0

(
au2

h(u)
+ ψ(h(u)) + 2au ln(−h(u))

)
du. for z < h(y).

The next result provides an explicit equation for the intervention boundary function h and
the corresponding value function which solves equation (4.1) with associated boundary
condition v(0, z) = 0, for all z ∈ R

−.
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PROPOSITION 4.3. For y ∈ R
+, define the function (·; y) : R

− → R by

(x; y) = ψ(x) + ay2

x
+ 2ay ln(−x),

and let h = h(y) be the smallest h ∈ R
− satisfying

max
x≤0

(x; y) = (h(y); y).(4.24)

This defines a unique strictly decreasing càdlàg function h : R
+ → R

− satisfying h(0) = 0
and limy→∞ h(y) = −∞, and in particular

ψ ′(h(y))h(y)2 + 2ayh(y) − ay2 = 0, for all y ∈ R
+.(4.25)

Let γ −1
h , ρh, and ρ−1

h be the functions defined in (4.16) and (4.14). Then, v : R
+ × R

− →
R

− given by

v(y, z) =
∫ z−y

0

(
a
(
γ −1

h (s)
)2

ρ−1
h (s)

+ ψ
(
ρ−1

h (s)
)− ψ(s)

)
ds, for z ≥ h(y),(4.26)

and

v(y, z) = ay2 ln(−z) +
∫ z

z−y
ψ(s) ds

−
∫ y

0

(
as2

h(s)
+ ψ(h(s)) + 2as ln(−h(s))

)
ds, for z < h(y)

(4.27)

is a C0,1(R+ × R
−) function which solves equation (4.1) with the boundary condition

v(0, z) = 0, for all z ∈ R
−. In particular, v satisfies (4.8)–(4.11). Moreover, D+

y v : R
+ ×

R
− → R is continuous in z and càdlàg in y, and v is continuously differentiable with respect

to y, for z ≥ h(y).

Based on the expression for the performance function Jh(y, z) and the principle of
smooth fit, it follows that the intervention boundary function h should satisfy (4.25).
However, (4.25) does not necessarily have a unique solution and the value function does
not in general satisfy the smoothness principle. Based on the observation that

D+
y v(y, z) + vz(y, z) = (z; y) − (h(y); y), for z < h(y),

and with reference to (4.11), equation (4.24) is a natural candidate.
The following result states that the function v given by (4.26) and (4.27) is equal to

the value function V given by (3.10), that the strategy Yh corresponding to h given by
(4.24) is an optimal liquidation strategy, and hence provides the solution to the utility
maximization problem (2.13).

THEOREM 4.4. Let the large investor’s risk aversion be A, the volatility of the nonaffected
asset price be σ and let the resilience rate be λ. Set a = σ 2 A

2λ
and let h denote the smallest

solution to (4.24), let v be given by (4.26) and (4.27), and let V be given by (3.10). Then,
v = V and

sup
(X,Y)∈A(y)

E[U(C∞(X, Y))] = − exp
(

−A(c + by) + A
∫ z−y

z
ψ(s) ds

)
exp(Av(y, z)),
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where z = ZY
0− is the initial state of the bid order book. The optimal strategy Y∗ is equal to

Yh ∈ A−
D(y), where Yh is the strategy given by (4.18)–(4.20) in Lemma 4.1 corresponding

to h, with Yh
0− = y.

As a corollary, we obtain that the optimal liquidation strategy possesses all the proper-
ties one would expect, like increased limit order depth implies faster liquidation, increased
volatility of the unaffected stock price implies faster liquidation, and increased risk aver-
sion implies faster liquidation.

COROLLARY 4.5. Let Y∗
1 ∈ A−

D(y) be the strategy which attains the optimality in (2.13)
given a shape function φ1, and let Y∗

2 ∈ A−
D(y) denote the strategy which attains the opti-

mality in (2.13) given a shape function φ2. Then, φ1 ≤ φ2 implies Y∗
1 ≥ Y∗

2 , provided the
volatility σ , the resilience rate λ, and the large investor’s risk aversion A is the same.

Let Y∗
1 ∈ A−

D(y) be the strategy which attains the optimality in (2.13) given volatility σ1

and risk aversion A1, and let Y∗
2 ∈ A−

D(y) denote the strategy which attains the optimality in
(2.13) given volatility σ2 and risk aversion A2. Then, σ 2

1 A1 ≤ σ 2
2 A2 implies that Y∗

1 ≥ Y∗
2 ,

provided that the shape function φ and the resilience rate λ is the same.

Proof. Observe that φ1 ≤ φ2 implies that ψ ′
1 ≥ ψ ′

2, and hence ψ1 ≤ ψ2. It follows that
h1 ≥ h2, where h1 and h2 denote smallest solution to (4.24) corresponding to ψ1 and ψ2,
respectively. The result then follows from Lemma 4.2.

Notice that a1 ≤ a2 implies that h1 ≥ h2, where h1 and h2 denote the smallest solution
to (4.24) corresponding to a1 and a2, respectively. The result then follows from Lemma
4.2. �

The next example shows that if the shape function φ is constant, and hence ψ is a
linear function, the solution to equation (4.1) is a linear function, and the corresponding
optimal strategy takes an even simpler form. In this case, the impact of the large trader’s
strategy is linear, so it is natural to compare the results with the corresponding strategy
for the Almgren and Chriss (1999) model with an infinite horizon as in Schied and
Schöneborn (2009).

EXAMPLE. Suppose that the shape function φ of the limit order book is constant, i.e.,
φ = c, for some c > 0. Let the large investor’s risk aversion be A, the volatility of the
unaffected stock price be σ , let the resilience rate be λ and set a = σ 2 A

2λ
. Observe that for

all y ∈ R
+, equation (4.25) has a unique solution h = h(y) given by

h(y) = −κy,

where κ = ac + √
a2c2 + ac. It follows that this function h is the unique solution to

equation (4.24), and therefore defines the optimal intervention boundary. Moreover, we
can observe that

h−1(z) = − 1
κ

z, γ −1
h (z) = − 1

κ + 1
z, and ρ−1

h (z) = κ

κ + 1
z.

With reference to (4.26) and (4.27), it follows from Proposition 4.3 that

v(y, z) = ac − κ

2cκ(κ + 1)
(y − z)2, if z ≥ −κy,
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and

v(y, z) = ac(κ + 1) + κ(κ − 1)
2cκ

y2 + zy
c

+ ay2 ln
(−z

κy

)
, if z < −κy

is a C1,1(R+ × R
−) solution to equation (4.1) with boundary condition v(0, z) = 0, for

all z ≤ 0. Equation (4.19) takes the form

ZYh

t = ZYh

tw + 1
κ

ZYh

tw −
∫ t

tw
λZu− du − 1

κ
ZYh

t , for t ≥ tw ,

from which it follows that

ZYh

t = ZYh

tw exp
(

−t
λκ

κ + 1

)
, for t ≥ tw .

Therefore, the strategy Y∗ ∈ A−
D(y) which attains the optimality in (2.13) is as follows:

(a) if z ≥ −κy, then immediately sell κy+z
1+κ

number of shares, i.e., Y∗
0 − y = − κy+z

1+κ
,

and then continuously sell shares according to

Y∗
t = y − z

κ + 1
exp

(
−t

λκ

1 + κ

)
, for t ≥ 0;

(b) if z < −κy, then do nothing until time tw = λ−1{ln(−z) − ln(κy)}, and then con-
tinuously sell shares according to

Y∗
t = y exp

(
−(t − tw )

λκ

1 + κ

)
, for t ≥ tw .

It is natural to compare our result for the limit order book with constant shape function
with the optimal liquidation strategy in the Almgren and Chriss (1999) model. In this
model, the stock price dynamics are

Pt = P0 + σ Wt + α(Yt − Y0) + βẎt,(4.28)

where Yt denotes the number of shares held by the large investor at time t, and where the
process Y is absolutely continuous with density Ẏ, i.e.,

Yt = y +
∫ t

0
Ẏu du.

The parameter α ≥ 0 is a parameter for the level of permanent impact of the large
investor’s trading, and the parameter β ≥ 0 describes the temporary impact of the large
investor’s trading. The optimal liquidation strategy for a large investor with an initial
position of y number of shares is

Y∗
t = y exp

⎛⎝−t

√
σ 2 A
2β

⎞⎠ , t ≥ 0

(see Schied and Schöneborn 2009), if the large investor has constant absolute risk aversion
A and aims to maximize his cash position at the end of time. We can observe that
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the optimal strategy in the limit order book model and the optimal strategy in the
Almgren and Chriss (1999) model look similar, as in both models liquidation follows an
exponential function. Yet, there are two aspects which make the strategies different. In
the limit order book model, the optimal strategy depends on the past history of the large
investor, while in the Almgren model there is no such dependence since future returns
are unaffected by the large investor’s past trades. Also, in the limit order book model,
the optimal strategy typically consist of an initial block trade, while in the Almgren and
Chriss model the optimal strategy is absolutely continuous. However, as pointed out by
an anonymous referee, we can recover the optimal liquidation strategy for the Almgren
and Chriss model by taking the limit as λ → ∞ with c = c(λ) = 1

βλ
. Thus, as the resilience

rate tends to infinity, the quantity available in the limit order book decreases such that
the cost of trading has a finite limit. More specifically, since

lim
x→0+

x + √
x2 + x√
x

= 1,

we calculate that

lim
λ→∞

λκ (λ) = lim
λ→∞

λ

√
σ 2 A
2λ

c(λ) =
√

σ 2 A
2β

.

In the limit as λ → ∞, the state process Z is identically equal to 0. Therefore, if we let
Y∗,λ denote the optimal strategy described in (a) and (b) corresponding to λ, we conclude
that

lim
λ→∞

Y∗,λ
t = lim

λ→∞
y

κ (λ) + 1
exp

(
−t

λκ (λ)

1 + κ (λ)

)
= y exp

⎛⎝−t

√
σ 2 A
2β

⎞⎠ ,

which is the optimal strategy in the Almgren and Chriss model. To explain this result,
we can note that if Y is an admissible liquidation strategy which has the form

Ẏt =
m∑

n=1

qn1[τn ,τn+1)(t)

for stopping times 0 ≤ τ1 < τ2 · · · < τm+1 and random variables q1, . . . , qm+1, where qn

is Fτn -measurable, then

lim
λ→∞

BY
t = B0

t + lim
λ→∞

ZY,λ
t

c(λ)

= B0
t + lim

λ→∞
βλe−λt

∫ t

0
eλs Ẏs ds

= B0
t +

m∑
n=1

βqn lim
λ→∞

(
eλ(min{τn+1,t}−t) − eλ(min{τn ,t}−t))

= B0
t + βẎt,

which is the Almgren and Chriss model with permanent impact factor α equal to zero.
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5. PROOFS OF RESULTS

Proof of Lemma 3.2. With reference to equation (2.12) we calculate

CT(Y) = c −
∫ T

0
BY

t− dYc
t −

∑
0≤t≤T

∫ 	Yt

0

{
B0

t + ψ
(
ZY

t− + x
)}

dx

= c −
∫ T

0
BY

t− dYc
t −

∑
0≤t≤T

BY
t−	Yt −

∑
0≤t≤T

∫ 	Yt

0

{
ψ
(
ZY

t− + x
)− ψ

(
ZY

t−
)}

dx

= c −
∫ T

0
BY

t− dYt −
∑

0≤t≤T

∫ 	Yt

0

{
ψ
(
ZY

t− + x
)− ψ(ZY

t−)
}

dx.

(5.1)

Since Y is a càdlàg process of finite variation, it follows from theorems II.26 and II.28 in
Protter (1990) that the quadratic covariation [BY, Y] between BY and Y is

[BY, Y]T =
∑

0≤t≤T

{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}	Yt.

Hence,

BY
T YT − BY

0−Y0− =
∫ T

0
BY

t− dYt +
∫ T

0
Yt− d BY

t

+
∑

0≤t≤T

{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}	Yt.

(5.2)

With reference to the dynamics of BY given by (2.9),∫ T

0
Yt− d BY

t =
∫ T

0
σYt− dWt −

∫ T

0
λZY

t−ψ ′(ZY
t−
)
Yt− dt

+
∫ T

0
ψ ′(ZY

t−
)
Yt− dYc

t +
∑

0≤t≤T

Yt−
{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}

.

(5.3)

Equation (5.2) provides an expression for
∫ T

0 BY
t− dYt, which combined with (5.1) and

(5.3) imply

CT(Y) = c − BY
T YT + BY

0−Y0− +
∫ T

0
σYt− dWt −

∫ T

0
λZY

t−ψ ′(ZY
t−
)
Yt− dt

+
∫ T

0
ψ ′(ZY

t−
)
Yt− dYc

t +
∑

0≤t≤T

Yt−
{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}

−
∑

0≤t≤T

∫ 	Yt

0

{
ψ
(
ZY

t− + x
)− ψ

(
ZY

t−
)}

dx

+
∑

0≤t≤T

{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}	Yt.

(5.4)

Define the function f : R
+ × R

− → R
2 by

f (y, z) = yψ(z) +
∫ z−y

z
ψ(s) ds.
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Then by Itô’s formula,

f
(
YT, ZY

T

) = f
(
Y0−, ZY

0−
)+

∫ T

0
ψ ′(ZY

t−
)
Yt− dYc

t

−
∫ T

0
λZY

t−ψ ′(ZY
t−
)
Yt− dt −

∫ T

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt

+
∑

0≤t≤T

Yt−
{
ψ
(
ZY

t− + 	Yt
)− ψ

(
ZY

t−
)}+

∑
0≤t≤T

ψ
(
ZY

t− + 	Yt
)	Yt

+
∑

0≤t≤T

∫ ZY
t−

ZY
t−+	Yt

ψ(s) ds.

This provides an expression for
∫ T

0 ψ ′(ZY
t−)Yt dYc

t , which inserted in (5.4) implies that

CT(Y) = c − BY
T YT + BY

0−Y0− + f
(
YT, ZY

T

)− f
(
Y0−, ZY

0−
)

+
∫ T

0
σYt− dWt +

∫ T

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt,

from which the result follows. �
Proof of Lemma 3.3. With reference to the expression for the large investor’s cash

position at time T > 0 obtained in Lemma 3.2, we first note that z − y ≤ ZY
t ≤ 0, for all

t ≥ 0. Therefore,

lim
T→∞

(
YT ZY

T +
∫ ZY

T−YT

ZY
T

ψ(s) ds

)
= 0

almost surely and in L1(P). By the Cauchy–Schwartz inequality, we calculate that

lim
T→∞

E
[∣∣BY

T YT
∣∣] ≤ σ

(
lim

T→∞
E
[
TY2

T

])1/2

= 0,(5.5)

since (2.2) implies

lim
t→∞ E

[
tY2

t

] = 0.(5.6)

The convergence of
∫∞

0 σYt− dWt follows from (2.2) and the Itô isometry. In order to
establish the inequalities (3.7), observe that B0 ≥ BY, for every (X, Y) ∈ A(y). Since Y is
decreasing, it follows that

CT(Y) ≤ c −
∫ T

0
B0

t dYt = c + B0
0−Y0− − B0

TYT +
∫ T

0
σYt− dWt.

By similar arguments as in (5.5), B0
TYT converges to 0 in L1(P) as T → ∞. Since

λZY
t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)} ≥ 0, t ≥ 0,

we conclude that the inequalities (3.7) hold and that the integral∫ ∞

0
λZY

t−
{
ψ
(
ZY

t− − Yt−
)− ψ

(
ZY

t−
)}

dt
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is almost surely convergent. �

Proof of Lemma 4.1. Let Z(z) be the set of continuous functions Z : R
+ → [z −

h−1(z), 0] satisfying Z0 = z and limt→∞ Zt = 0, where z ∈ R
−. We consider Z(z) as a

subset of C0(R), i.e., the space of all real-valued continuous functions vanishing at
infinity, equipped with the uniform topology. Observe that Z(z) is a convex set, and
by the Ascoli–Arzelà theorem (see, e.g., Folland 1984) it follows that Z(z) is compact.
Introduce the function �z given by

(�z(Z))t =
{

z − h−1(z) − ∫ t
0 λZu du + h−1(Zt), for 0 ≤ t ≤ t̄,

0, for t > t̄,

where

t̄ = inf
{

t ≥ 0 : z − h−1(z) −
∫ t

0
λZu du + h−1(Zt) = 0

}
.

Since h−1 is continuous and decreasing, it follows that �z : Z(z) → Z(z) is continuous.
The Schauder–Tychonoff fixed point theorem (see, e.g., Rudin 1991) therefore guarantees
the existence of a Z ∈ Z(z) such that Z = �z(Z). We want to show that such a Z is unique.
Assume that Z(1) = �z(Z(1)) and Z(2) = �z(Z(2)), where Z(1), Z(2) ∈ Z(z) and Z(1)

t = Z(2)
t

for 0 ≤ t ≤ t1, and Z(1)
t < Z(2)

t for t1 < t < t2. Then for t1 < t < t2,

Z(1)
t = z − h−1(z) −

∫ t

0
λZ(1)

u + h−1(Z(1)
t
)

> z − h−1(z) −
∫ t

0
λZ(2)

u + h−1(Z(2)
t
)

= Z(2)
t ,

which contradicts the assumption that Z(1)
t < Z(2)

t for t1 < t < t2. We conclude that
there exists a unique Z ∈ Z(z) such that Z = �z(Z). Moreover, since the function
z → z − h−1(z) is strictly increasing for z ∈ R

− and t → z − h−1(z) − ∫ t
0 λZu du is strictly

increasing as long as Zt < 0, it follows that the solution to Z = �z(Z) is strictly increasing
while Zt < 0.

Suppose that z ≥ h(y), and let ZYh
be given by (4.19) and (4.20). The existence and

uniqueness of such a ZYh
follows from the previous part of the proof. We calculate that

h−1(ξ + γ −1
h (ξ )

) = γ −1
h (ξ ), for all ξ ∈ R

−,

and therefore

h−1(ZYh

0

) = h−1(z − y + γ −1
h (z − y)

) = γ −1
h (z − y) = Yh

0 ,

as required. With reference to (4.18) and (4.19), we have that

ZYh

t = ZYh

0 − h−1(ZYh

0

)−
∫ t

0
λZYh

u du + h−1(ZYh

t

)
= ZYh

0 −
∫ t

0
λZYh

u du + Yh
t − Yh

0 ,

(5.7)
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since z ≥ h(Y) is equivalent to tw = 0, and Yh
t = h−1(ZYh

t ). Equation (5.7) shows that
ZYh

satisfies (2.8), and we conclude that Yh is the unique process with the property
that Yh

t = h−1(ZYh

t ), for all t ≥ 0. Also note that from the first part of the proof, t →
ZYh

t is continuous and decreasing for t > 0, which combined with the monotonicity
and continuity of h−1 imply that Yh is càdlàg and decreasing. Hence, Yh is the unique
decreasing càdlàg process satisfying the description given in part (a).

Suppose that z < h(y), and let Yh be given by (4.18)–(4.20). Then

ZYh

t = ze−λt, for 0 ≤ t ≤ tw ,(5.8)

and ZYh

tw = h(y) = limt→tw ZYh

t , which correspond to the description given in part (b).
With reference to (4.18)–(4.20), we have that

ZYh

t = h(y) − y −
∫ t

tw
λZYh

u du + h−1(ZYh

t )

= h(y) −
∫ t

tw
λZYh

u du + Yh
t − Yh

0

for t ≥ tw . Since Yh
t = y = h−1(h(y)) and ZYh

is given by (5.8) for 0 ≤ t < tw , it follows
that

ZYh

t = z −
∫ t

0
λZYh

u du + Yh
t − Yh

0

for t ≥ 0, which verifies that ZYh
satisfies (2.8), and Yh

t = h−1(ZYh

t ), for all t ≥ tw . We
conclude that Yh is the unique decreasing càdlàg process as described in part (b). �

Proof of Lemma 4.2. Let th1
w and th2

w be given by (4.17), corresponding to h1 and
h2, respectively. If z < h1(y) then Yh1

t = Yh2
t for 0 ≤ t ≤ th1

w and Yh1
t ≤ Yh2

t for th1
w ≤ t ≤

th2
w . If h1(y) ≤ z < h2(y) then Yh1

t ≤ Yh2
t for 0 = th1

w ≤ t ≤ th2
w . Also, if z ≥ h2(y), then

th1
w = th2

w = 0 and Yh1
0 ≤ Yh2

0 . We want to show that {t ≥ 0 : Yh1
t > Yh2

t } = ∅. In order to
get a contradiction, suppose that

t1 = inf
{
t ≥ 0 : Yh1

t > Yh2
t

}
< ∞ and define t2 = inf

{
t ∧ ∞ ≥ t1 : Yh1

t ≤ Yh2
t

}
.

By the previous observations t1 > tw , and by continuity of Yh1
t and Yh2

t , for t > 0, it
follows that t1 < t2. The monotonicity of h1 and h2 imply that if Yh1

t > Yh2
t then

ZYh1

t ≤ h1
(
Yh1

t − )
< h1

(
Yh2

t

) ≤ h2
(
Yh2

t

) ≤ ZYh2

t ,(5.9)

and if ZYh1

t < ZYh2

t then

Yh1
t = h−1

1

(
ZYh1

t

)
> h−1

1

(
ZYh2

t

) ≥ h−1
2

(
ZYh2

t

) = Yh2
t .(5.10)
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With reference to (4.18) and (4.19), we have that for t1 < t < t2,

ZYh1

t = ZYh1

t1 − Yh1
t1 −

∫ t

t1
λZYh1

u du + h−1
1

(
ZYh1

t

)
≥ ZYh1

t1 − Yh1
t1 −

∫ t

t1
λZYh1

u du + h−1
2

(
ZYh1

t

)
> ZYh1

t1 − Yh1
t1 −

∫ t

t1
λZYh2

u du + h−1
2

(
ZYh2

t

)
≥ ZYh2

t1 − Yh2
t1 −

∫ t

t1
λZYh2

u du + h−1
2

(
ZYh2

t

)
= ZYh2

t ,

(5.11)

where the last equality is due to Yh1
t1 = Yh2

t1 , (5.9) and (5.10), which imply that ZYh1

t1 ≥ ZYh2

t1 .
However, in view of (5.9) and (5.10), the inequality (5.11) contradicts the definition of t1.
Thus, we conclude that Yh1 ≤ Yh2 .

Let h̄ : R
+ → R

− be given by h̄(y) = −Cy, for C > 0, and let Yh̄ denote the cor-
responding strategy given by (4.18)–(4.20) in Lemma 4.1. Then (4.19) takes the form

ZYh̄

t = ZYh̄

tw + 1
C

ZYh̄

tw −
∫ t

tw
λZYh̄

u du − 1
C

ZYh̄

t ,

which has a unique solution

ZYh̄

t = ZYh̄

tw exp
(

−t
λC

1 + C

)
, for t ≥ tw .

Also, (4.20) takes the form

ZYh̄

tw = −Cy, if z < −Cy and ZYh̄

tw = (z − y)
C

1 + C
, if z ≥ −Cy.

Therefore, the strategy Yh̄ is given by

Yh̄
t = − z − y

1 + C
exp

(
−t

λC
1 + C

)
, for t ≥ 0, if z ≥ −Cy,(5.12)

and

Yh̄
t = y exp

(
−(t − tw )

λC
1 + C

)
, for t ≥ tw , if z < −Cy,(5.13)

where tw = λ−1{ln(−z) − ln(Cy)}, if z < −Cy. Since tw < ∞, for all (y, z) ∈ R
+ × R

− and
the right-hand side of (5.12) and (5.13) are square integrable, it follows that Yh̄ ∈ A−

D(y),
for all initial positions Yh̄

0− = y.
Assume that there exists C > 0 and ε > 0 such that h(y) ≤ −Cy, for 0 ≤ y < ε. Then,

for every y0 ∈ R
+, there exists Cy0 > 0 such that h(y) ≤ −Cy0 y, for all 0 ≤ y ≤ y0. Also

observe that the strategy Yh given by (4.18)–(4.20) in Lemma 4.1, with initial position
Yh

0− = y0 ∈ R
+, is completely determined by the values of h(y) for 0 ≤ y ≤ y0. Therefore,

if h1 and h2 are two functions satisfying h1(y) = h2(y), for 0 ≤ y ≤ y0, then Yh1 = Yh2

if the initial position Yh1
0− = Yh2

0− = y is less than or equal to y0. With reference to the
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previous parts of the proof, we therefore conclude that Yh ∈ A−
D(y) for all initial positions

Yh
0− = y. �

Proof of Proposition 4.3. First note that for y > 0, the properties of ψ given in (2.4)–
(2.6) imply that

lim
x→−∞ (x; y) = −∞ and lim

x→0
(x; y) = −∞.

Moreover, (x; y) is continuously differentiable in x and y, for all x < 0 and y > 0. We
conclude that h = h(y) defined as the smallest solution to (4.24) is well defined and that h
must satisfy (4.25). Moreover, ψ is strictly increasing and (x; 0) = ψ(x), which implies
that h(0) = 0. Let h̄ = h̄(y) denote the largest solution to (4.25), and define L : R

+ ×
R

− → R
+ by L(h, y) = ay2 − 2ayh and H : R

− → R
+ by H(h) = ψ ′(h)h2. Since H is

continuous and limy→∞ L(h, y) = ∞, for all h ∈ R
−, it follows that limy→∞ h̄(y) = −∞.

Since h ≤ h̄, we conclude that limy→∞ h(y) = −∞.
For 	 > 0, y ∈ R

+ and x ∈ R
−, we calculate that

(x; y + 	) − (x; y) =
∫ y+	

y
2a
{u

x
+ ln(−x)

}
du,

and

d
dx

[(x; y + 	) − (x; y)] =
∫ y+	

y
2a
{

1
x

− u
x2

}
du < 0.(5.14)

We want to show that h(y) is strictly decreasing as a function of y. In order to get a
contradiction, suppose that there exists y ∈ R

+ and 	 > 0 such that h(y + 	) ≥ h(y).
With reference to (5.14), this implies that

(h(y + 	); y + 	) − (h(y + 	); y) < (h(y); y + 	) − (h(y); y).

However, this contradicts the definition of h, which implies that

(h(y + 	); y + 	) ≥ (h(y); y + 	) and (h(y); y) ≥ (h(y + 	); y).

We conclude that h is strictly decreasing. The definition of h = h(y) as the smallest
solution to (4.24) implies that h is càdlàg.

Introduce the function Q : R
+ × R

− → R given by

Q(y, z) =
∫ z−y

0

(
a
(
γ −1

h (s)
)2

ρ−1
h (s)

+ ψ
(
ρ−1

h (s)
)− ψ(s)

)
ds

−
{

ay2 ln(−z) +
∫ z

z−y
ψ(s) ds −

∫ y

0

(
as2

h(s)
+ ψ(h(s)) + 2as ln(−h(s))

)
ds
}

,

which is the difference between the expression for v given by (4.26) and the expression
for v given by (4.27). We calculate that

Qz(y, z) = a
(
γ −1

h (z − y)
)2

ρ−1
h (z − y)

+ ψ
(
ρ−1

h (z − y)
)− ψ(z − y) −

{
ay2

z
+ ψ(z) − ψ(z − y)

}
,
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which we observe is a continuous function of (y, z). Moreover, in view of the observation

γ −1
h (z − h−1(z)) = sup{y ≥ 0 : γh(y) ≥ z − h−1(z)} = h−1(z),

it follows that Qz(h−1(z), z) = 0, for all z ∈ R
−. We further calculate that

D+
y Q(y, z) = −a

(
γ −1

h (z − y)
)2

ρ−1
h (z − y)

− ψ
(
ρ−1

h (z − y)
)+ ψ(z − y)

−
{
− ay2

h(y)
+ ψ(z − y) − ψ(h(y)) + 2ay{ln(−z) − ln(−h(y))}

}
,

and observe that the function D+
y Q(y, z) is continuous in z and càdlàg in y. Since

ρ−1
h (h(y) − y) = h(y), it follows that D+

y Q(y, h(y)) = 0, for all y ∈ R
+. Moreover,

Q(0, 0) = 0 and hence

Q(y, h(y)) =
∫ y

0
Qz(u, h(u)) dh(u) +

∫ y

0
D+

y Q(u, h(u)) du = 0, for all y ∈ R
+,

and we conclude that

Q
(
h−1(z), z

) = 0, for all z ∈ R
−,

since Qz(h−1(z), z) = 0, for all z ∈ R
− implies that Qz(y, h(y)) = 0, for all y ∈ R

+. From
the properties of the function Q given above, we conclude that v ∈ C0,1(R+ × R

−) and
that D+

y v(y, z) is continuous in z and càdlàg in y. Moreover, straightforward calculations
show that v is continuously differentiable with respect to y for z ≥ h(y).

Standard calculations show that v satisfies (4.8) and (4.10). In order to verify that v
satisfies (4.9), we calculate that

zvz(y, z) − ay2 − z{ψ(z) − ψ(z − y)}

= −ay2 + z

{
a
(
γ −1

h (z − y)
)2

ρ−1
h (z − y))

+ ψ
(
ρ−1

h (z − y)
)− ψ(z)

}
(5.15)

for z ≥ h(y). Set s = ρ−1
h (z − y), which is equivalent to z − y = ρh(s). As ρ−1

h is
an increasing function and y ≥ h−1(z) is equivalent to z − y ≤ ρh(z), it follows that
y ≥ h−1(z) if and only if s ≤ z. Since γ −1

h (z − y) = γ −1
h (ρh(s)) = h−1(s), it follows from

(5.15) that

sup
y≥h−1(z)

{zvz(y, z) − ay2 − z{ψ(z) − ψ(z − y)}} = z inf
s≤z

G(s; z),(5.16)

where

G(s; z) = a(h−1(s))2

s
− a(z − ρh(s))2

z
+ ψ(s) − ψ(z).
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In particular, observe that G(z; z) = 0. We calculate that

0 = G(s; z) +
∫ z

s
−a(h−1(u))2

u2
du +

∫ z

s

2ah−1(u)
u

dh−1(u)

−
∫ z

s

2a
z

{z − u + h−1(u)} d(h−1(u) − u) −
∫ z

s
ψ ′(u) du

= G(s; z) −
∫ z

s

(
ψ ′(u) + a(h−1(u))2

u2
− 2ah−1(u)

u

)
du

+
∫ z

s
2a
{

h−1(u)
(

1
u

− 1
z

)
+
(

u
z

− 1
)}

d(h−1(u) − u)

= G(s; z) −
∫ h(h−1(s)−)

s

(
ψ ′(u) + a(h−1(s))2

u2
− 2ah−1(s)

u

)
du

−
∫ z

h(h−1(z))

(
ψ ′(u) + a(h−1(z))2

u2
− 2ah−1(z)

u

)
du

+
∫ z

s
2a
{

h−1(u)
(

1
u

− 1
z

)
+
(

u
z

− 1
)}

d(h−1(u) − u),

(5.17)

since h−1(u) is constant for h(h−1(ξ )) ≤ u ≤ h(h−1(ξ )−), for any ξ ∈ R
− and

∫ h(h−1(z))

h(h−1(s)−)

(
ψ ′(u) + a(h−1(s))2

u2
− 2ah−1(s)

u

)
du = 0

for any s ≤ z ≤ 0, by the definition of h and the continuity of , which implies that
(h(h−1(s)−); h−1(s)) = (h(h−1(s)); h−1(s)), for every s ∈ R

−. Also observe that

−
∫ h(h−1(s)−)

s

(
ψ ′(u) + a(h−1(s))2

u2
− 2ah−1(s)

u

)
du = (s; h−1(s)) − 

(
h(h−1(s)); h−1(s)

)
,

which is negative by the optimality of h. Since s ≤ z and u → h−1(u) − u is strictly
decreasing, it follows from (5.17) that

0 ≤ G(s; z) −
∫ z

h(h−1(z))

(
ψ ′(u) + a(h−1(z))2

u2
− 2ah−1(z)

u

)
du

+
∫ z

h(h−1(z))
2a
{

h−1(u)
(

1
u

− 1
z

)
+
(

u
z

− 1
)}

d(h−1(u) − u)

= G(s; z) + ψ(h(h−1(z))) − ψ(z)

+
∫ z

h(h−1(z))

{
2a
(

h−1(z)
z

+ 1
)

− a(h−1(z))2

u2
− 2au

z

}
du

≤ G(s; z),

(5.18)

since ψ is strictly increasing, h(h−1(z)) ≤ z and

2a
(

h−1(z)
z

+ 1
)

− a(h−1(z))2

u2
− 2au

z
≤ 2ah−1(z)

z
< 0, for u ≤ z.
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With reference to (5.16) and (5.18), we conclude that v satisfies (4.9). Finally, we need to
show that v satisfies (4.11). We calculate that

D+
y v(y, z) + vz(y, z) = ay2

(
1
z

− 1
h(y)

)
+ ψ(z) − ψ(h(y)) + 2ay ln

(
z

h(y)

)
= (z; y) − (h(y); y)

≤ 0

(5.19)

by the definition of h. �

Proof of Theorem 4.4. Let δ be a nonnegative C∞(R) function with support in [0, 1]
satisfying

∫ 1
0 δ(x) dx = 1, and define a sequence of functions {δn}∞n=1 by

δn(s) = n δ(ns), s ≥ 0.

We modify v to obtain a sequence of function {v (n)}∞n=1, given by

v (n)(y, z) =
∫ 1

0
v(y + s, z) δn(s) ds.

Then, v (n) ∈ C1,1(R+ × R
−), for all n ∈ N, and

v(y, z) = lim
n→∞ v (n)(y, z),

vz(y, z) = lim
n→∞ v (n)

z (y, z),

D+
y v(y, z) = lim

n→∞ v (n)
y (y, z),

where the last equality is due to D+
y v(y, z) being càdlàg in y. Moreover, for every (y0, z0) ∈

R
+ × R

− there exists a K > 0 such that

|v (n)(y, z)| ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N,(5.20)

|v (n)
z (y, z)| ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N,(5.21)

|v (n)
y (y, z)| ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N.(5.22)

Then

v (n)(YT, ZY
T

)+
∫ T

0

{
λaY2

t− + λZY
t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}}

dt

= v (n)(y, z) +
∫ T

0

{
v (n)

y

(
Yt−, ZY

t−
)+ v (n)

z

(
Yt−, ZY

t−
)}

dYc
t

+
∑

0≤t≤T

{
v (n)(Yt− + 	Yt, ZY

t− + 	Yt
)− v (n)(Yt−, ZY

t−
)}

−λ

∫ T

0

{
ZY

t−v (n)
z

(
Yt−, ZY

t−
)− aY2

t− − ZY
t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}}

dt

(5.23)
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for all Y ∈ A−
D(y). For every ε > 0 and Y ∈ A−

D(y) there exists t0 ∈ R
+ such that Yt ≤ ε,

for all t ≥ t0. Therefore,

|ZY
t | ≤ ∣∣ZY

t0 e−λ(t−t0)
∣∣+ ∣∣∣∣∫ t

t0
e−λ(t−s) dYs

∣∣∣∣ ≤ |ZY
t0 | e−λ(t−t0) + ε,

from which it follows that ZY
t tends to 0 as t → ∞. With reference to (2.8), we therefore

conclude that ∫ ∞

0
|ZY

t | dt = |z − y|
λ

.(5.24)

With reference to (5.21), (5.22), and (5.24), we calculate that∫ ∞

0
sup
n∈N

∣∣ZY
t−
(
v (n)

z

(
Yt−, ZY

t−
)− {

ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)})∣∣ dt ≤ K + C1

λ
|z − y|

for some constant C1 > 0 which may depend on the initial conditions y and z. Similarly,

∫ ∞

0
sup
n∈N

∣∣v (n)
y

(
Yt−, ZY

t−
)+ v (n)

z

(
Yt−, ZY

t−
)∣∣ d(−Yc

t ) ≤ 2Ky

and ∑
0≤t≤∞

sup
n∈N

∣∣v (n)(Yt− + 	Yt, ZY
t− + 	Yt

)− v (n)(Yt−, ZY
t−
)∣∣ ≤ 2Ky.

Hence, by (5.23) and the dominated convergence theorem, we obtain that∫ ∞

0

{
λaY2

t− + λZY
t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}}

dt

= v(y, z) +
∫ ∞

0

{
D+

y v
(
Yt−, ZY

t−
)+ vz

(
Yt−, ZY

t−
)}

dYc
t

+
∑
t≥0

{
v
(
Yt− + 	Yt, ZY

t− + 	Yt
)− v

(
Yt−, ZY

t−
)}

−λ

∫ ∞

0

{
ZY

t−vz
(
Yt−, ZY

t−
)− aY2

t− − ZY
t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}}

dt

(5.25)

for any Y ∈ A−
D(y), by taking the limits as n → ∞ and T → ∞, and noting that v(YT, ZY

T)
tends to 0 as T → ∞ due to the boundary condition v(0, z) = 0. Since according to
Proposition 4.3, v satisfies (4.8)–(4.11), it follows that∫ ∞

0

{
λaY2

t− + λZY
t−
{
ψ
(
ZY

t−
)− ψ

(
ZY

t− − Yt−
)}}

dt ≥ v(y, z),(5.26)

and thus V ≥ v .
With reference to Assumption 2.3 and (2.6), it follows that there exists C > 0 and ε > 0

such that h(y) ≥ −Cy, for −ε ≤ y ≤ 0, where h denotes the smallest solution to (4.24).
According to Lemma 4.2, we therefore have Y∗ = Yh ∈ A−

D(y), for all initial positions
Y∗

0− = y. We want to show that (5.26) holds with equality for Y∗. Observe that 	Y∗
t < 0

only if t = 0 and z > h(y), in which case 	Y∗
0 is such that after the jump, Y∗

0 = h−1(ZY∗
0 ).
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With reference to (4.8) and Proposition 4.3, we have that vy(y, z) + vz(y, z) = 0, for
z ≥ h(y). Therefore,∑

t≥0

{
v
(
Y∗

t− + 	Y∗
t , ZY∗

t− + 	Y∗
t

)− v
(
Y∗

t−, ZY∗
t−
)} = 0.(5.27)

If z < h(y) then Y∗
t = y, for 0 ≤ t ≤ tw , where tw is as defined in Lemma 4.1. Also

ZY∗
t = ze−λt, for 0 ≤ t ≤ tw .

Moreover ZY∗
t < h(y), for t < tw , and ZY∗

tw = h(y). With reference to (4.10) and Proposi-
tion 4.3, it follows that∫ tw

0

{
ZY∗

t−vz
(
Y∗

t−, ZY∗
t−
)− a(Y∗

t−)2 − ZY∗
t−
{
ψ
(
ZY∗

t−
)− ψ

(
ZY∗

t− − Y∗
t−
)}}

dt = 0.

By definition Y∗
t = h−1(ZY∗

t ), for t ≥ tw . According to Proposition 4.3, v satisfies (4.8),
therefore ∫ ∞

tw

{
D+

y v
(
Y∗

t−, ZY∗
t−
)+ vz

(
Y∗

t−, ZY∗
t−
)}

d(Y∗
t )c = 0.

Moreover, since v satisfies (4.10), therefore∫ ∞

tw

{
ZY∗

t−vz
(
Y∗

t−, ZY∗
t−
)− a(Y∗

t−)2 − ZY∗
t−
{
ψ
(
ZY∗

t−
)− ψ

(
ZY∗

t− − Y∗
t−
)}}

dt = 0.

With reference to (5.25), we therefore conclude that v = V and that Y∗ = Yh ∈ A−
D(y)

is an admissible optimal liquidation strategy for the optimization problem (3.10). The
result then follows from (3.9). �
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ADMISSIBILITY OF GENERIC MARKET MODELS OF FORWARD SWAP
RATES

LIBO LI AND MAREK RUTKOWSKI

University of Sydney

Our main goal is to re-examine and extend certain results from the papers by
Galluccio et al. and Pietersz and van Regenmortel. We establish several results pro-
viding alternate necessary and sufficient conditions for admissibility of a family of
forward swaps, that is, the property that it is supported by a (positive) family of bonds
associated with the underlying tenor structure. We also derive the generic expression
for the joint dynamics of a family of forward swap rates under a single probability
measure and we show that these dynamics are uniquely determined by a selection of
volatility processes with respect to the set of driving martingales.

KEY WORDS: forward swap rate, market model, Libor, admissibility.

1. INTRODUCTION

Our main goal is to re-examine the admissibility problem for an arbitrary family of
forward swaps. This issue was previously studied in Galluccio et al. (2007) (see also
Pietersz and Regenmortel 2006 for the related study of a special case) who attempted
to provide necessary and sufficient conditions for a family of forward swaps to have the
ability to underpin an arbitrage-free model of the term structure of interest rates with
a finite tenor structure. Additionally, we will also examine an extension of this problem
to the situation when the payments dates of forward swaps are chosen to be only some
of the tenor structure dates between the start date of a swap and its maturity date.
This generalization is motivated by the case where some forward swaps (typically, of
shorter maturities) have quarterly payments, whereas for some other swaps (with longer
maturities) the payments are exchanged according to the semiannual schedule.

Let T = {T0, . . . , Tn} with 0 < T0 < T1 < · · · < Tn−1 < Tn be a fixed sequence of dates
representing the complete tenor structure for all forward swaps under consideration. For
every i = 1, . . . , n, we write ai = Ti − Ti−1 to denote the length of the ith accrual period.
Let B(t, Ti) stand for the price of the unit zero-coupon bond maturing at Ti. Unless stated
otherwise, it is assumed that for every i = 0, . . . , n the bond price B(t, Ti), t ∈ [0, Ti],
is governed by a positive stochastic process with the obvious terminal condition B(Ti,
Ti) = 1.

Let S = {S1, . . . , Sl} be an arbitrary family of l distinct fixed-for-floating forward
swaps associated with the tenor structure T , in the sense that any reset or settlement
date for any swap Sj in S belongs to T . For concreteness, we assume throughout that
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the frequencies of fixed and floating payments are the same. As commonly assumed, we
postulate that the floating leg payments are specified by the level of the LIBOR at each
reset date and payments are exchanged at the next settlement date. The forward swap rate
κ j for the standard forward swap Sj, which starts at Ts j and matures at Tm j , is well known
to be given by the following expression (see, for instance, section 13.1 in Musiela and
Rutkowski 2005)

κ
j

t = κ
s j ,m j
t := B(t, Ts j ) − B(t, Tm j )

m j∑
i=s j +1

ai B(t, Ti )

= Ps j ,m j
t

As j ,m j
t

, ∀ t ∈ [0, Ts j ],(1.1)

where we denote

Ps j ,m j
t := B(t, Ts j ) − B(t, Tm j ), ∀ t ∈ [0, Ts j ],(1.2)

and

As j ,m j
t :=

m j∑
i=s j +1

ai B(t, Ti ), ∀ t ∈ [0, Ts j +1].(1.3)

The process As j ,m j is usually called the swap annuity or the swap numéraire for the
forward swap Sj, although some authors prefer the term level process. In practical ap-
plications, it is also referred to as the present value of the basis point of the swap.
The dates Ts j , Ts j +1, . . . , Tm j −1 are then the reset dates for the forward swap Sj, whereas
the dates Ts j +1, Ts j +2, . . . , Tm j are settlement dates. Therefore, the collection of dates
Ts j , Ts j +1, . . . , Tm j represents the reset/settlement dates in the forward swap Sj. It is a
simple observation that these dates are the only relevant dates for the (standard) forward
swap Sj.

REMARK 1.1. In what follows, we will consider a more general set-up, in which the
start date Ts j is the first reset date and the maturity date Tm j is the last settlement date
in the forward swap Sj. Other reset/settlement dates in a forward swap Sj can be chosen
freely from the set of dates Ti ∈ T that satisfy Ts j < Ti < Tm j . Then all reset/settlement
dates in the forward swap Sj will be simply referred to as the relevant dates in Sj. They
can also be seen as the tenor structure generated by the forward swap Sj; this observation
justifies the use of the symbol T (Sj ). In the general case, we write

κ
j

t = κ
s j ,m j
t = B(t, Ts j ) − B(t, Tm j )∑

i∈A j

ãi B(t, Ti )
= Ps j ,m j

t

As j ,m j
t

, ∀ t ∈ [0, Ts j ],(1.4)

where A j is the set of indices of all settlement dates in the swap Sj and ãi represents the
ith adjusted accrual period. For instance, if a forward swap Sj has only one settlement
date, specifically, its maturity date, then T (Sj ) = {Ts j , Tm j } and A j = {m j }. Furthermore,
equation (1.4) becomes

κ
j

t = B(t, Ts j ) − B(t, Tm j )

ãm j B(t, Tm j )
,
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where ãm j = Tm j − Ts j = ∑m j

i=s j +1 ai ; this corresponds to the forward LIBOR (see equa-
tion (1.10)) If all the dates from T between the start and maturity dates are the settlement
dates for a given forward swap, the contract is referred to as a standard forward swap.

Let us select the bond maturing at some date Tb ∈ T as a bond numéraire and let us
denote by Bb the family of the deflated bond prices

Bb := {
Bb(t, Ti ) = B(t, Ti )/B(t, Tb), i = 0, . . . , n

}
.

In terms of the deflated bond prices Bb(t, Ti), for the standard forward swap we obtain

κ
s j ,m j
t = Bb(t, Ts j ) − Bb(t, Tm j )

m j∑
i=s j +1

ai Bb(t, Ti )

= Pb,s j ,m j
t

Ab,s j ,m j
t

, ∀ t ∈ [0, Ts j ∧ Tb],(1.5)

where we write

Pb,s j ,m j
t = Bb(t, Ts j ) − Bb(t, Tm j ), ∀ t ∈ [0, Ts j ∧ Tb],(1.6)

and

Ab,s j ,m j
t =

m j∑
i=s j +1

ai Bb(t, Ti ), ∀ t ∈ [0, Ts j +1 ∧ Tb].(1.7)

We call the process Ab,s j ,m j the deflated swap annuity or deflated swap numéraire. As
we shall see in what follows, the (deflated) swap numéraires are crucial objects in the
specification of the Radon–Nikodým densities for swap measures under which forward
swap rates are (local) martingales.

REMARK 1.2. Note that the choice of a bond numéraire is arbitrary, in the sense that
one may take the bond price B(t, Tb) for any maturity date Tb ∈ T to play this role. It
will be rather clear that the results presented in the sequel do not depend on a particular
choice of a bond numéraire, but only provided that all bond prices are either assumed or
shown to follow positive processes.

We are in a position to describe the main problems considered in this work. We
are interested in deriving the joint dynamics of forward swap rates associated with
a family S = {S1, . . . , Sl} of forward swaps, as well as in checking whether these dy-
namics are supported by the existence of a (unique) family of deflated bond prices
Bb = {Bb(t, Ti ), i = 1, . . . , n} for some choice (or all choices) of a bond numéraire.

We will thus deal with two related problems, which can be informally described as
follows:

• Under which assumptions on a family S can a model of forward swap rates be
supported by the existence of an arbitrage-free term structure model consistent with
swap rates, where by a term structure model we mean the joint dynamics of positive
deflated bond prices?

• Under which assumptions on a family S are the joint dynamics of a family of
forward swap rates uniquely specified under a single probability measure in terms of
respective volatility processes?
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The issues related to the above two questions are studied in Sections 2 and 3, respec-
tively. In both cases, the method hinges on a formulation of a suitable “inverse problem”
and a thorough examination of its well-posedness. Specifically, to provide an answer to
the first question, we investigate the existence of a unique and nonzero (or strictly posi-
tive) solution to the inverse problem for deflated bond prices when the forward swap rates
are treated as “observables”. This is called hereafter the inverse problem (IP.1) and the
well-posedness of the problem (IP.1) is referred to as the (weak) T -admissibility of a fam-
ily S. Several alternative necessary and/or sufficient conditions for the well-posedness of
the problem (IP.1) are provided in Theorem 2.33 and Propositions 2.36 and 2.37.

It is worthwhile to stress that our conditions differ from these provided in Galluccio
et al. (2007), who focused on the existence of “cycles” in a given family of forward
swaps, whereas our necessary and/or sufficient conditions have a completely different
character. It should be acknowledged, however, that a detailed analysis of their work was
the original motivation for this research. In fact, we show by means of counter-examples
that the main result in Galluccio et al. (2007) is defective and thus the present paper
could also be seen as a partial correction to their result.

For the second above-mentioned question, we introduce and examine the correspond-
ing inverse problem for swap annuities, termed the inverse problem (IP.2), and the re-
lated concept of the (weak) A-admissibility (see Definition 3.2). It will be shown that
the (weak) T -admissibility implies the (weak) A-admissibility (see Lemma 3.3), but
the converse does not hold, as we demonstrate by means of a counterexample (see
Example 3.4).

Finally, we describe in Section 3.2 a general methodology for the explicit computation
of the joint dynamics of forward swap rates, which is aimed to cover all potentially
interesting cases of A-admissible families of forward swaps. For the sake of generality,
we examine the set-up of a model driven by semimartingales; for most practical purposes
this abstract framework can be easily specified to the case of a model driven by a multi-
dimensional correlated Brownian motions (or jump-diffusion processes). We illustrate
this approach by means of Example 3.11.

It should be acknowledged that the research presented in this work is by no means
complete and in fact some related problems remain still open. Firstly, various market
models similar to forward swap rate models can also be formally derived for certain
families of forward CDS spreads and LIBORs. For preliminary studies of extended
market models of this kind, the interested reader is referred to Brigo (2008) and Li and
Rutkowski (2011). To the best of our knowledge, the issues of either T - orA-admissibility
of a joint family of forward swap rates and forward CDS spreads were not systematically
examined in the existing literature, however, and thus these issues remain largely open.

Secondly, and more importantly, the recent credit crisis has dramatically changed
the way in which practitioners discount future payoffs. The revised approach to the
discounting convention resulted also in an essential change in the way in which valu-
ation of interest rate derivatives is performed and, as a consequence, it also reignited
interest in term structure modeling. The standard formulae considered in this paper
can be extended to cover the new perception of the market, as explained in recent pa-
pers by Bianchetti (2009, 2010), Bianchetti and Carlicchi (2011), Fujii et al. (2009a,b),
Kijima et al. (2009), Mercurio (2009), Moreni and Pallavicini (2010), and Pallavicini and
Tarenghi (2009). According to the new pricing paradigm of fixed-for-floating interest
rate swaps and other related contracts such as swaptions, a single discounting curve used
in the traditional approach should be replaced by (at least) two yield curves: the first
one is used to specify the level of future floating cash flows, whereas the second one
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(a proxy for the risk-free interest rate) is used for discounting of fixed and floating cash
flows. According to this extended swap valuation methodology, formula (1.4) should be
modified as follows (see, for instance, formula (9) in Kijima et al. 2009 or page 15 in
Mercurio 2009)

κ̂
j

t = κ̂
s j ,m j
t :=

∑
i∈A j

ãi B̂(t, Ti )L̃i (t)

∑
i∈A j

ãi B̂(t, Ti )
,(1.8)

where L̃i (t) represents the forward LIBOR over the relevant accrual period, as computed
from the risky LIBOR curve, and B̂(t, Ti ) is a judiciously chosen market risk-free yield
curve, such as the OIS (Overnight Index Swap) yield curve. The OIS is a fixed-for-floating
interest rate swap which pays periodically the daily compounded overnight rate, instead
of the LIBOR. Since the overnight (collateral) rate can be seen as risk-free, the forward
swap rate corresponding to the OIS is still given by expression (1.4), where B(t, Ti) is
interpreted as the price of a risk-free (for instance, collateralized) zero-coupon bond.
For more details on the choice of relevant market rates for each currency, the interested
reader may consult, for instance, Fujii et al. (2009a,b) or Moreni and Pallavicini (2010).
Regarding the LIBOR, one can make the modeling postulate that the forward LIBOR
L̃i , as seen at time t for the period [Ti−1, Ti], can be formally given by the following
expression:

L̃i (t) = B̃(t, Ti−1) − B̃(t, Ti )

ãi B̃(t, Ti )
,(1.9)

where the quantities B̃(t, Ti ), i = 0, . . . , n, are aimed to represent the implicit LIBOR
yield curve. It is worth noting that (1.4) can also be represented as follows:

κ
j

t = κ
s j ,m j
t =

∑
i∈A j

ãi B(t, Ti )Li (t)

∑
i∈A j

ãi B(t, Ti )
,

where the forward LIBOR Li(t) is given by the traditional pre-crisis formula, that is,

Li (t) = B(t, Ti−1) − B(t, Ti )
ãi B(t, Ti )

.(1.10)

A comparison of (1.4) and (1.8) makes it clear that the two expressions coincide when
the equality B̂(t, Ti ) = B(t, Ti ) holds and the forward LIBOR is given by (1.10), so that,
as expected, the new approach reduces to the classic one when all rates are nonrisky. We
do not deal with default-risky rates here, so the issues related to admissible families of
forward swap rates given by the generic expression (1.8) are left for future research.

2. ADMISSIBLE FAMILIES OF FORWARD SWAP RATES

In this section, we address the issue whether a given family of forward swap rates is
supported by the existence of the implied family of deflated bond prices. This corresponds
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to the inverse problem examined by Galluccio et al. (2007), which can be informally stated
as follows:

• Provide necessary and sufficient conditions for a given family of forward swap
rates S = {S1, . . . , Sl} and the corresponding (diffusion-type) swap rate processes
{κ1, . . . , κ l} to uniquely specify a family of nonzero deflated bond prices Bb =
{Bb(t, T0), . . . , Bb(t, Tn)} for any choice of b ∈ {0, . . . , n}.

2.1. Linear Systems Associated with Forward Swaps

Let us note that for a given familyBn = {Bn(t, Ti ), i = 0, . . . , n} of stochastic processes
representing the deflated bond prices when B(t, Tn) is the numéraire bond, we can
uniquely determine the forward swap rate κs j ,m j for any start Ts j and maturity Tm j dates
from the tenor structure T . This simple observation paves the way for the most commonly
used direct approach to modeling of forward swap rates, in which one starts by choosing a
term structure model and subsequently derives the joint dynamics of a family of forward
swap rates of interest.

It is also clear that each forward swap rate κs j ,m j generates a linear equation in which
deflated bond prices can be seen as “unknowns.” Specifically, one obtains the following
swap equation associated with the forward swap Sj and the numéraire bond B(t, Tb)

−Bb(t, Ts j ) +
m j −1∑

i=s j +1

κ
s j ,m j
t ai Bb(t, Ti ) + (

1 + κ
s j ,m j
t

)
am j Bb(t, Tm j ) = 0.(2.1)

In this context, the following inverse problem arises in a natural way: describe all families
of forward swaps associated with the tenor structure T such that the corresponding
family of forward swap rates uniquely specifies the associated family of nonzero (and
preferably strictly positive) deflated bond prices.

To formally address the above-mentioned inverse problem, we identify a forward swap
Sj with the corresponding swap equation, in which a generic value κ j of the forward
swap rate κs j ,m j plays the role of a parameter. Let us now introduce some notation. For
a fixed b, let xi stand for a generic value of the deflated bond price Bb(t, Ti) and let κ j

be a generic value of the forward swap rate κ
j

t := κ
s j ,m j
t . Since xi and κ j are aimed to

represent generic values of the corresponding processes in a yet unspecified stochastic
model, we have that (x0, . . . , xn) ∈ Rn+1 and (κ1, . . . , κl ) ∈ Rl , in general. Since the bond
B(t, Tb) is chosen to be the numéraire asset, it is clear, by the definition of the deflated
bond price, that the variable xb satisfies xb = 1 and thus it is more adequate to consider
a generic value (x0, . . . , xb−1, xb+1, . . . , xn) ∈ Rn . Using this notation, we may represent
equation (1.5) as follows, for every j = 1, . . . , l,

κ j = xs j − xm j

m j∑
i=s j +1

ai xi

.(2.2)

For brevity, we write cj,i = κ jai and c̃ j ,m j = (1 + κ j )am j , so that equation (2.1) becomes

−xs j +
m j −1∑

i=s j +1

c j ,i xi + c̃ j ,m j xm j = 0.(2.3)
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DEFINITION 2.1. For a given familyS = {S1, . . . , Sl} of forward swaps and any fixed b ∈
{0, . . . , n}, the associated linear system (2.3) parametrized by a vector (κ1, . . . , κl ) ∈ Rl ,
is denoted as

Cb(κ1, . . . , κl )xb = eb(κ1, . . . , κl ),

where xb = (x0, . . . , xb−1, xb+1, . . . , xn) is the vector of unknowns and the vector
eb(κ1, . . . , κl ) belongs to Rl .

The matrix Cb(κ1, . . . , κ l) and the vector eb(κ1, . . . , κl ) depend on the vector
(κ1, . . . , κl ) ∈ Rl . To alleviate notation, we shall frequently suppress the variables κ1, . . . ,
κ l, however, and we will simply write Cb and eb.

As already mentioned in Remark 1.1, we will also consider more general forward swaps
for which the actual payment dates constitute merely a subset of the collection of all dates
between the start and maturity dates. In that case, the sum in the denominator of (2.2)
is taken over some dates between Ts j +1 and Tm j only. Furthermore, the coefficients ai are
suitably adjusted to represent the length of times between the consecutive payment dates,
and a modified version of equation (2.3) is easily derived, so that Definition 2.1 covers
this general set-up as well. For instance, if a forward swap Sj settles at its maturity date
only, then equation (2.2) becomes

κ j = xs j − xm j

ãm j xm j

,

where ã j = Tm j − Ts j = ∑m j

i=s j +1 ai . The following definition is also tailored to cover the
whole spectrum of cases considered in this work.

DEFINITION 2.2. A date Ti ∈ T is a relevant date for the swap Sj whenever Ti =
Ts j , Ti = Tm j , or the term cj,i is nonzero. We write T (Sj ) to denote the set of all relevant
dates for the swap Sj and we set T0(Sj ) = {Ts j , Tm j }.

The following notation will be useful:
T0(S) – the set of all start/maturity dates for the forward swaps from a family S, that

is,

T0(S) =
l⋃

j=1

T0(Sj ) =
l⋃

j=1

{Ts j , Tm j }.

T (S) – the set of all relevant dates for the forward swaps from a family S, that is,

T (S) =
l⋃

j=1

T (Sj ).

It is clear that a date Ti does not belong to T (S) whenever the corresponding column of
the matrix Cb has all entries equal to zero. Manifestly, the nonuniqueness of a solution
to the inverse problem holds in that case, since the deflated bond price Bb(t, Ti) cannot
be retrieved. This is indeed trivial since the variable xi does not appear in any equation in
the linear system Cbxb = eb. In what follows, we only consider families S that generate
the tenor structure T , in the sense that T = T (S).
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2.2. Graph Theory Terminology

Before proceeding to the detailed analysis of the inverse problem, we need first to recall
some basic graph theory terminology, which will be employed in what follows. We also
provide some preliminary results concerning the existence of a cycle in a graph, which is
formally associated with a family of forward swap rates. For an in-depth introduction to
the graph theory, the interested reader may consult the monograph by Bollobás (1979).

DEFINITION 2.3. A graph G is an ordered pair of disjoint sets (V , E) such that E is a
subset of the set of unordered pairs of V . The set V is called the vertex set and E is called
the edge set.

DEFINITION 2.4.

(i) Two vertices v1 and v2 are said to be adjacent if there exists an edge e ∈ E such that
e is the unordered pair {v1, v2}.

(ii) A path is a finite sequence of vertices such that each of the vertices is adjacent to
the next vertex in the sequence.

(iii) A cycle is a path such that the start vertex and end vertex are the same.
(iv) A graph G is said to be connected if there exists a path between any two vertices.
(v) A graph G is acyclic if no cycles exist.

The next result is borrowed from Bollobás (1979); it is in fact produced by combining
theorem 4 on page 7 and exercise 9 on page 23 therein.

THEOREM 2.5. The following statements are equivalent for a graph G with m vertices:

(i) G is a minimal connected graph, that is, G is connected and if {x, y} ∈ E then G −
{x, y} is disconnected,

(ii) G is a maximal acyclic graph, that is, G is acyclic and if x and y any nonadjacent
vertices of G then the graph G + {x, y} contain a cycle,

(iii) G is connected and has m − 1 edges,
(iv) G is acyclic and has m − 1 edges.

Let S be a family consisting of l swaps on the complete tenor structure T =
{T0, T1, . . . , Tn}. As previously introduced, the set T0(S) is the set of all start or ma-
turity dates of swaps in S. To translate our set-up into graph theory terminology, we
regard the set T0(S) as a vertex set. A swap Sj ∈ S which start at Ts j and matures at
Tm j is characterized by the pair of elements {Ts j , Tm j }. This characterization allows us to
regard S as the edge set. Note that we only need to deal here with graphs that have a
finite number of vertices.

DEFINITION 2.6. The graph of S is the vertex and edge pair given as (T0(S),S). It is
clear that the graph of S has l edges and at most n + 1 vertices.

As will be elaborated on in Section 2.4 (see, in particular, Remark 2.17), the
(non)existence of a cycle in the graph of S does not seem to be of primary inter-
est in the study of T -admissibility of a family S. However, in order to re-examine
proposition 2.1 in Galluccio et al. (2007), we will first present some basic properties of
the graph of S directly related to the (non)existence of a cycle in this graph. The first
lemma in this vein is a straightforward consequence of Theorem 2.5.
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LEMMA 2.7. Let S = {S1, . . . , Sl} be any family of swaps with T (S) = T . If l > n then
there exists a cycle in the graph of S.

The next auxiliary result deals with the acyclic case.

LEMMA 2.8. Let S = {S1, . . . , Sn} be a family of n swaps with T (S) = T . If there are
no cycles in the graph of S then each date from the tenor structure T is either the start date
or the maturity date of some swap Sj from S, that is, then the equality T0(S) = T holds.

Proof . Let us assume that there exists a date Tk ∈ T which does not belong to T0(S).
Then there exists a family S̃ comprising of n swaps and such that T0(S̃) = {T0 < · · · <

Tk−1 < Tk+1 < · · · < Tn}. Indeed, to obtain S̃ from S, it suffices to delete the date Tk

from all swap equations. Hence, by Lemma 2.7, a cycle necessarily exists in the family S̃
and thus also in S. �

The last auxiliary result furnishes a simple, but useful, observation.

LEMMA 2.9. Assume that l = n and the graph S is connected. Then T0(S) = T and thus
there are no cycles in S.

2.3. Inverse Problem for Deflated Bonds

We are in a position to formalize the inverse problem for the deflated bond prices and
the related concepts of admissibility of a family S. Note that the term “almost every”
refers throughout to the Lebesgue measure on the respective space Rl (or Rl

+).

Inverse Problem (IP.1): A family S = {S1, . . . , Sl} admits a solution to the inverse
problem (IP.1) if for any b ∈ {0, . . . , n} and for almost every (κ1, . . . , κl ) ∈ Rl there exists
a solution xb ∈ Rn to the linear system Cb(κ1, . . . , κl )xb = eb(κ1, . . . , κl ) associated with
S.

Galluccio et al. (2007) prefer to deal directly with the stochastic linear systemCbBb = eb

where Cb is the matrix of stochastic processes obtained by replacing the variables (κ1, . . . ,
κ l) by diffusion-type forward swap rate processes κ j = κs j ,m j , j = 1, . . . , l and the un-
knowns (x0, . . . , xb−1, xb+1, . . . , xn) ∈ Rn are replaced by the (unknown) deflated bond
price processes Bb(t, Ti), i = 0, . . . , b − 1, b + 1, . . . , n. To the best of our understand-
ing, they work under the tacit assumption that for any t ∈ (0, T0] the random variable
(κ1

t , . . . , κ l
t ) has a strictly positive joint probability density function on (Rl ,B(Rl )), so

that the probability distribution of (κ1
t , . . . , κ l

t ) has the full support Rl . In these circum-
stances, the inverse problem (IP.1) introduced above appears to be equivalent to the
inverse problem studied by Galluccio et al. (2007).

The following definition reflects the idea of admissibility of a family of forward swaps,
as proposed by Galluccio et al. (2007). It is based on the inverse problem (IP.1), but it also
refers to some additional features of a solution to this problem, such as its uniqueness
and positivity.

DEFINITION 2.10. We say that a family S of forward swaps associated with T is weakly
T -admissible if for any choice of b ∈ {0, . . . , n} the following property holds: for almost
every (κ1, . . . , κl ) ∈ Rl there exists a unique nonzero solution xb ∈ Rn to the linear system
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Cb(κ1, . . . , κl )xb = eb(κ1, . . . , κl ) associated with S. If, in addition, the solution is strictly
positive for almost every (κ1, . . . , κl ) ∈ Rl

+ then we say that a family S is T -admissible.

We write A to denote the class of all families of forward swaps that are weakly T -
admissible, whereas A stands for the class of all families that are T -admissible.

REMARK 2.11. The property of T -admissibility is the strongest form of invertibility,
which appears to be the most convenient from the viewpoint of further applications. If
it holds then the Radon–Nikodým densities for various swap measures can be computed
from the family Bb and expressed in terms of the underlying forward swap rates. Con-
sequently, in that case it will be easy to derive the joint dynamics of forward swap rates
under a single probability measure. In addition, these dynamics will be supported by an
arbitrage-free model of positive deflated bond prices.

Before proceeding, let us comment on the approach presented in the paper by
Galluccio et al. (2007). In Galluccio et al. (2007), the authors formalize the concept
of admissibility of a family S through the following definition that corresponds to
Definition 2.2 in Galluccio et al. (2007). For an overview of the relevant terminology
from the graph theory, we refer to Section 2.2.

DEFINITION 2.12. A family S of forward swaps associated with T is admissible if the
following conditions are satisfied:

(i) the number of forward swaps in S equals n, that is, l = n,
(ii) any date Ti ∈ T coincides with the reset/settlement date of at least one forward

swap from S,
(iii) there are no cycles (also called degenerate subsets in Galluccio et al. 2007) in S.

The main theoretical result in Galluccio et al. (2007) states that the admissibility of S,
in the sense of Definition 2.12, is a necessary and sufficient condition for the following
property: a set of nonzero deflated bond prices associated with S exists and is unique, P -
a.s., for any choice of the bond numéraire and any generic process (κ1, . . . , κ l) for forward
swap rates. In other words, the main result in Galluccio et al. (2007) (see proposition 2.1
therein) establishes the equivalence between the admissibility of S and the existence of a
unique solution to their inverse problem, P -a.s.

As we shall argue in what follows, however, this result is not true, in general. As a
consequence, we observe that Definition 2.12 of admissibility of a family S could be
misleading, since it implicitly hinges on the validity of proposition 2.1 in Galluccio et al.
(2007). It is our understanding that the method of proof of proposition 2.1 in Galluccio
et al. (2007) hinges on the following conjectures:

• If the number l of forward swaps in S differs from n then either there is no solution
to the linear system Cbxb = eb or the nonuniqueness of a solution holds. Therefore,
the necessary requirement is that Cb should be a square matrix, so that l = n.

• If l = n, but a cycle exists in S (see Section 2.2), then the rows in the matrix Cb are
linearly dependent, and thus the rank of Cb is less than n, at least for a certain choice
of b ∈ {0, . . . , n}. Consequently, there is no guarantee that a solution to the linear
system Cbxb = eb exists, for almost all realizations of forward swap rates and for an
arbitrary choice of B(t, Tb) as a numéraire bond.
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• Otherwise, that is, when l = n and there are no cycles in S then, for any choice of b ∈
{0, . . . , n}, the rows in the matrix Cb are linearly independent and thus the matrix
Cb is nonsingular, for almost all realizations of forward swap rates. Consequently,
the unique solution to Cbxb = eb exists with probability one for any diffusion-type
dynamics of forward swap rates. Moreover, for almost all realizations of forward
swap rates, the solution xb is nonzero, meaning that xi �= 0 for every i = 0, . . . , n
(recall that xb = 1).

We note that the proof of Proposition 2.1 in Galluccio et al. (2007) suffers from the
following shortcomings:

• First, the proof of the sufficiency clause is based on the argument that if the first
column has only one nonzero entry then the row vectors are linearly independent.
This is, of course, not true in general (it seems that the authors assume that the
coefficients in the linear combination should all be nonzero, whereas in fact it suffices
that not all of them vanish). A similar argument is used when there a several nonzero
entries.

• Second, the proof of the necessity clause is based on the observation that the sum of
equations corresponding to the upper and lower paths in a cycle yields an equation
of a special shape. This fact does not prove, however, that the row vectors are
linearly dependent, as was claimed in Galluccio et al. (2007). To illustrate this
point, we present below an example of a family S with a cycle for which for any
choice of b ∈ {0, . . . , n} the corresponding matrix Cb is nonsingular, for almost all
(κ1, . . . , κl ) ∈ Rl .

EXAMPLE 2.13. The following simple counter-example shows that a family S with a
cycle can be weakly T -admissible. Let n = 3 and let (sj, mj), j = 1, 2, 3 be given as (0, 2),
(2, 3), and (0, 3), respectively. The swaps S1 and S2 yield the path (T0, T3) and this path
is also given by the swap S3, so that a cycle (T0, T0) is present. For b = 0, we obtain the
following linear system

C0x0 =

⎡
⎢⎢⎣

c1,1 c̃1,2 0

0 −1 c̃2,3

c3,1 c3,2 c̃3,3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ = e0.

One can check by direct computations that, for any choice of b ∈ {0, 1, 2, 3}, the following
properties hold:

(i) for almost all (κ1, κ2, κ3) ∈ R3, the matrix Cb is nonsingular and
(ii) for almost all (κ1, κ2, κ3) ∈ R3, the unique solution xb has all entries nonzero.

We conclude that the considered family S is not admissible, in the sense of Definition
2.12, but it satisfies Definition 2.10 of the weak T -admissibility. This example makes it
clear that the necessity clause in proposition 2.1 in Galluccio et al. (2007) is incorrect.
We will later comment on the sufficiency clause in proposition 2.1 in that paper.

Let us conclude this subsection by mentioning that although Galluccio et al. (2007)
examine the admissibility of a family of forward swaps with respect to the tenor structure
T in the context of the construction of swap market models, they remain silent on the joint
dynamics of forward swaps, and they focus instead on the dynamics of each forward swap
rate under the corresponding swap martingale measure. However, one can infer from the
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discussion in Section 2 in Galluccio et al. (2007) that when a family S is admissible
then one can specify the model by choosing arbitrarily the volatilities in formula (2.2)
in Galluccio et al. (2007). The implicit goal is to obtain a generic arbitrage-free model
supported by the unique family of nonzero deflated bond prices. We will return to this
issue in Section 3.2.

2.4. Weak Admissibility of Forward Swaps

The purpose of this subsection is to provide necessary and sufficient conditions for
a family of forward swaps to be weakly T -admissible. We postulate throughout that a
family S of forward swaps is such that the equality T (S) = T holds. Equivalently, for
an arbitrary choice of b ∈ {0, . . . , n} there is no null column in the matrix Cb associated
with S.

2.4.1. Preliminary Results. Before examining various forms of admissibility, let us
quickly note that the following property holds.

LEMMA 2.14. Let us fix (κ1, . . . , κl ) ∈ Rl . The following properties are equivalent:

(i) the system Cb(κ1, . . . , κl )xb = eb(κ1, . . . , κl ) has a nonzero solution for some b ∈
{0, . . . , n},

(ii) the system Cb(κ1, . . . , κl )xb = eb(κ1, . . . , κl ) has a nonzero solution for all b ∈
{0, . . . , n}.

Proof . (i) ⇒ (ii) If a nonzero solution exists for a particular b, then for any b̃ ∈ {0, . . . n}
the solution to the system Cb̃x̃b = eb̃ can be obtained by taking the ratios of the solution
to the system Cbxb = eb. This argument corresponds to the simple observation that to
obtain the deflated bond prices for any other choice of a numéraire bond, one may use
the equality

Bb̃(t, Ti ) = Bb(t, Ti )
Bb(t, T̃b)

, ∀ b̃ �= b.

The implication (ii) ⇒ (i) is obvious. �
As we have already seen from Example 2.13, the nonexistence of a cycle is not a

necessary condition for the weak T -admissibility of a family of swaps. We therefore
introduce the concept of (T , b)-inadmissibility, which will prove useful in the sequel.

DEFINITION 2.15. Let us fix b ∈ {0, . . . , n}. A subset S̃ of a family S of swaps is said
to be (T , b)-inadmissible if the number of swaps in S̃ is strictly greater than the number
of dates in T (S̃) \ {Tb}. We denote by M0 the class of all families of swaps that do not
contain a (T , b)-inadmissible subset for every b ∈ {0, . . . , n}.

Note that the number of dates in T (S̃) \ {Tb} is equal to the number of all variables
from the set x0, . . . , xb−1, xb+1, . . . , xn that are associated with a given subset S̃.

The following properties can be checked by inspection:

(a) if a subset S̃ is (T , b)-inadmissible for some b such that Tb ∈ T (S̃) then it is also
(T , b̃)-inadmissible for any b̃ such that T̃b ∈ T (S̃).
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(b) if a subset S̃ is (T , b)-inadmissible for some b such that Tb /∈ T (S̃) then it is also
(T , b̃)-inadmissible for any b̃ ∈ {0, . . . , n}.

EXAMPLE 2.16. The family S introduced in Example 2.13 represents a cycle, denoted
as Sc, which is not a (T , b)-inadmissible family for any choice of b ∈ {0, . . . , 3}. Indeed,
we have here Sc = S and T (Sc) = T (S) = T . Hence, for any b ∈ {0, . . . , 3}, the number
of dates in the set T (Sc) \ {Tb} is equal to 3 and thus it always coincides with the number
of forward swaps in Sc.

REMARK 2.17. The existence a (T , b)-inadmissible cycle Sc for some b ∈ {0, . . . , n}
implies the existence of a (T , b̃)-inadmissible subset S̃ for some b̃ ∈ {0, . . . , n} (simply
take b = b̃). Note, however, that the existence of a (T , b̃)-inadmissible subset S̃ for some
b̃ ∈ {0, . . . , n} does not imply the existence of a (T , b)-inadmissible cycle Sc, in general.
This feature can be illustrated through the following counter-example.

EXAMPLE 2.18. The forward swaps that we will consider here are standard forward
swaps, so that all dates between the starting date and maturity date are settlement
dates. Let S̃ be equal to S1

c ∪ S2
c , where S1

c = {S0 = {T0, T3}, S1 = {T0, T4}, S2 = {T3, T4}}
and S2

c = {S3 = {T1, T2}, S4 = {T2, T5}, S5 = {T1, T5}}. It is easy to see that S̃ is a (T , b)-
inadmissible subset for every b = {0, . . . , 5}. However, the only cycles S1

c and S2
c in the

family S̃ are clearly not (T , b)-inadmissible cycles for any b = {0, . . . , 5}.

We denote by C (Nc, resp.) the class of all families of forward swaps that contain (do
not contain, resp.) a cycle.

PROPOSITION 2.19. The existence of a (T , b)-inadmissible subset for some b implies the
existence of a cycle. In particular, the strict inclusion Nc � M0 holds.

Proof . By definition, there exists a subset of swaps S̃ such that the number of relevant
dates (variables) is strictly less than the number of swaps in the S̃. Now, let us consider the
graph (T0(S̃), S̃). Since S̃ is a (T , b)-inadmissible subset, the number of edges is strictly
greater than the number of vertices. By Theorem 2.5, there must exist a cycle (any other
relevant date that is not in T (S̃), but falls between the smallest and largest date in T (S̃),
manifestly stretches a cycle). We conclude that the inclusion Nc ⊂ M0 holds. However,
from Example 2.13, we deduce that the inclusion is in fact strict. �

In view of Proposition 2.19, the condition of the nonexistence of a cycle in S is stronger
than the assumption of the nonexistence of a (T , b)-inadmissible subset, which will be
shown to be a necessary condition for the weak T -admissibility (see Proposition 2.21).
Recall also that Example 2.13 describes a weakly T -admissible family S that contains a
cycle. We thus see that the nonexistence of a cycle is not a necessary condition for the
weak T -admissibility, that is, the class A is not included in Nc.

The question whether the nonexistence of a cycle is a sufficient condition for the weak
T -admissibility, that is, whether Nc � A (note that Example 2.13 shows that Nc �= A)
remains open (see Question 2.34).

2.4.2. Necessary Conditions for the Weak T -Admissibility. Our goal is to show that
the property that a family S belongs to the class M0 is a necessary condition for the
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weak T -admissibility of a family S. Unfortunately, it appears that this condition is not
sufficient for the weak T -admissibility and thus further studies will be needed.

We continue the study of the class M0. By a vertical block in a matrix, we mean any
collection of its rows in which the number of nonnull columns is less than the number
of rows. According to the standard terminology of linear algebra, a “vertical block”
represents an overdetermined subsystem. However, for brevity, we prefer to use a more
intuitive term vertical block. By a permutation of the matrix Cb we mean a finite number
of either row or column swaps (or both) performed on the matrix Cb.

LEMMA 2.20. Let us fix some b ∈ {0, . . . , n}. The following properties are equivalent:

(i) there exists a (T , b)-inadmissible subset S̃,
(ii) there exists a vertical block in the matrix Cb after some permutation.

Proof . It is clear that any (T , b)-inadmissible subset S corresponds, after a suitable
permutation, to a vertical block, so that (i) implies (ii). The converse follows immediately
from the definition of a (T , b)-inadmissible subset. �

The following result shows that the existence of a (T , b)-inadmissible subset in S
implies the nonexistence of a unique solution to Cbxb = eb, at least for a certain b ∈
{0, . . . , n}.

PROPOSITION 2.21. If a family S contains a (T , b)-inadmissible subset S̃ for some b ∈
{0, . . . , n} then S is not weakly T -admissible. Consequently, the inclusion A ⊂ M0 is valid.

Proof . It suffices to focus on the variables corresponding to the dates from the set
T (S̃) \ Tb, where b is such that the subset S̃ is (T , b)-inadmissible.

If Tb /∈ T (S̃) then these variables need to satisfy an overdetermined homogeneous
linear system. We then deal with the following two subcases:

(i) if the determinant of a square subsystem is a nonzero rational function then the
null solution is the unique solution to the particular subset of unknowns,

(ii) the determinant of a square subsystem is zero and thus the solution either fails to
exist or is not unique.

Therefore, we see that in both cases the family S is not weakly T -admissible.
If, on the contrary, Tb ∈ T (S̃) then these variables need to satisfy a nonhomogeneous

linear system in which the number of equations is larger than the number of variables.
Then by changing the date Tb to some date T̃b /∈ T (S̃), we obtain once again a homo-
geneous linear system, in which the number of equations is at least equal to the number
of variables. Therefore, we are back in either case (i) or case (ii) (note that if all dates
are already in T (S̃), that is, when T = T (S̃), we can add one more date to T in order to
perform this step). �

It is important to observe that the inclusion A ⊂ M0 is in fact strict, that is, A � M0,
in general. Specifically, for any n ≥ 2 there exists a family S of forward swaps such that
S ∈ Ac ∩ M0 (e.g., it is fairly easy to produce an example of a family with a cycle, which
is not weakly T -admissible). We thus conclude that the property that a family S belongs
to the class M0 is a necessary, but not sufficient, condition for the weak T -admissibility
of a family S.
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As a preliminary step toward identification of a sufficient condition for the weak T -
admissibility of a family S, we establish a simple result furnishing a stronger necessary
condition.

LEMMA 2.22. If for some b ∈ {0, . . . , n}, the linear system Cbxb = eb associated with S
has a vertical block after a finite number of row operations then the family of forward swaps
S is not weakly T -admissible.

Proof . Suppose that after a finite number of row operations there exists a vertical
block and either:

(i) the vertical block forms a homogeneous overdetermined subsystem or
(ii) the vertical block forms a nonhomogeneous overdetermined subsystem.

In case (i), if any square subsystem has nonzero determinant then the null solution is
the unique solution to the subsystem. If, on the contrary, any square subsystem has zero
determinant then the original matrix is not invertible.

In case (ii), one can adjust the choice of a numéraire bond. By picking B(t, T̃b) such
that xb is not in the overdetermined subsystem, the nonhomogeneous overdetermined
subsystem becomes a homogeneous overdetermined subsystem and we are back in case
(i) (similar argument applies if the subsystem is square) and we conclude that the family
S is not weakly T -admissible. �

An l × n matrix (l ≤ n) is said to be diagonalizable if there exists a permutation such
that the diagonal entries of an l × l sub-matrix are nonzero. In our set-up, we may also
formulate the following definition.

DEFINITION 2.23. For a fixed b ∈ {0, . . . , n}, we say that the matrix Cb is diagonalizable
if there exists a permutation of Cb such that all entries on the first diagonal of Cb are
nonzero. We denote by D the class of all families of forward swaps such that the matrix
Cb is diagonalizable, for all b ∈ {0, . . . , n}.

The proof of the following result is deferred to the Appendix.

PROPOSITION 2.24. The following properties are equivalent, for any fixed b ∈ {0, . . . , n}:

(i) the matrix Cb is diagonalizable,
(ii) there is no (T , b)-inadmissible subset S̃ in S.

Consequently, the equality D = M0 holds.

Recall that, by Lemma 2.20, the existence of a vertical block in the matrix Cb is
equivalent to the existence of a (T , b)-inadmissible subset S̃. Let us then suppose that for
some b there exists a vertical block in Cb after some permutation of variables. It is worth
noting that then it may still be true that the matrix Cb can be diagonalized for another
choice of b.

EXAMPLE 2.25. Unfortunately, it may also happen that the matrix Cb is diagonalizable
for every b ∈ {0, . . . , n}, but it fails to have a nonzero determinant for some b ∈ {0, . . . , n}.
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To illustrate this claim, let us consider the following family of standard forward swaps:

S = {S1 = {T0, T4}, S2 = {T0, T5}, S3 = {T0, T6}, S4 = {T4, T5},
S5 = {T5, T6}, S6 = {T1, T3}}.

Then, for every b ∈ {0, 1, 2, 3, 4, 5, 6}, the matrix Cb associated with the family S can
be checked to be diagonalizable. However, the determinant of the matrix C6 vanishes
identically, since we have that

C6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 a1κ1 a2κ1 a3κ1 1 + a4κ1 0

−1 a1κ2 a2κ2 a3κ2 a4κ2 1 + a5κ2

−1 a1κ3 a2κ3 a3κ3 a4κ3 a5κ3

0 0 0 0 −1 1 + a5κ4

0 0 0 0 0 −1

0 1 a2κ6 1 + a3κ6 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, e6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

1 + a6κ3

0

1 + a6κ5

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easy to see that the fourth column can be written as linear combinations of the
second and third columns. This implies, of course, that the determinant of C6 vanishes
identically, and thus we conclude that the diagonalizability of the matrix Cb for every b is
not a sufficient condition for the weak T -admissibility of a family of forward swaps. Put
another way, the property that S belongs to D does not imply that S is in A. Since we
already know that A ⊂ M0 (see Proposition 2.21) and D = M0 (from Proposition 2.24),
we conclude that A � M0.

In what follows, by an internal date of a forward swap we mean a relevant date that is
neither the start nor the maturity date in a given swap.

DEFINITION 2.26. A family of forward swaps S is said to have an inadmissible subset
if it has the following characteristics: there exist k dates for some k ≥ 2 such that

(i) they are internal dates to at least two swaps and
(ii) they are relevant to at most k − 2 other swaps.

We denote by M1 the class of all families of forward swaps that do not contain an
inadmissible subset.

The next result furnishes a necessary condition for the weak T -admissibility of a
family S.

PROPOSITION 2.27. The nonexistence of inadmissible subsets is necessary for a family of
swaps to be weakly T -admissible, so that A ⊆ M1.

Proof . Suppose a family of forward swaps S has an inadmissible subset. To show that
S is not weakly T -admissible, we pick b outside of those k internal dates and concentrate
on those k internal dates (as usual, represented by the columns in Cb). Without loss of
generality, we may pick one column as the pivot column and perform column operations
to eliminate other columns. As a consequence, we will end up with the subsystem without
the pivot column, which consists of k − 1 columns and at most k − 2 nonzero rows.
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This gives the linear dependence of the columns. The following example will make this
argument more explicit; a moment’s reflection will show the generality of our reasoning.
To illustrate the method, we focus on columns number two, three, and four in the matrix
in Example 2.25

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1κ1 a2κ1 a3κ1

a1κ2 a2κ2 a3κ2

a1κ3 a2κ3 a3κ3

0 0 0

0 0 0

1 a2κ6 1 + a3κ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c2 = a2
a1

c1 − c2
—————–→
c3 = a3

a1
c1 − c3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1κ1 0 0

a1κ2 0 0

a1κ3 0 0

0 0 0

0 0 0

1 a2κ6 − a2
a1

1 + a3κ6 − a3
a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is now clear that the columns are linearly dependent. By definition, this implies this
family of swap is not weakly T -admissible. �

PROPOSITION 2.28. The existence of an inadmissible subset implies the existence of a
cycle, so that Mc

1 ⊂ C. Moreover, the strict inclusion Nc � M1 holds, in general.

Proof . By definition of the class Mc
1, there exist k internal dates such that at most k −

2 swaps either start or mature on those k internal dates. Therefore, there must be at least
n − k + 2 swaps starting and maturing outside the k internal dates. If one consider the
graph of S without those k internal dates, it is a graph with n − k vertices and at least
n − k + 2 edges and thus, by Theorem 2.5, a cycle necessarily exists in S. Hence, the
inclusion Mc

1 ⊂ C is valid. For the second inclusion, we also observe that Proposition
2.27 yields A ⊆ M1, whereas Example 2.13 describes a family S with n = 3 belonging to
A ∩ C. This also means that Mc

1 � C, in general. �
2.4.3. Sufficient Conditions for the Weak T -Admissibility. Throughout this section,

we set l = n and we consider an arbitrary family S = {S1, . . . , Sn} of forward swaps. Our
next goal is to provide a sufficient condition for the weak T -admissibility of a family S,
that is, the existence and uniqueness of a nonzero solution to the linear system Cbxb = eb,
for an arbitrary choice of b ∈ {0, . . . , n}, for almost every (κ1, . . . , κn) ∈ Rn .

DEFINITION 2.29. We denote by D the class of all diagonalizable families S of n
forward swaps such that the diagonalizability property of the matrix Cb is preserved
under elementary row operations, for all b ∈ {0, . . . , n}.

REMARK 2.30. From Example 2.25, we see that the diagonalizability of the matrix Cb

is not preserved under column operations. Since the row rank and column rank of any
matrix are the same, for simplicity, we decided to work with row operations in the above
definition.

It is fair to acknowledge that although the class D is suitable to give a necessary and
sufficient condition for the weak T -admissibility, it may be difficult to check whether a
given family S does indeed belong to the class D or not.
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PROPOSITION 2.31.

(i) If a family S belongs to D then S is weakly T -admissible and thus the inclusion
D ⊂ A is valid.

(ii) The converse inclusion A ⊂ D holds as well.

Consequently, the equality A = D is true.

Proof . We first prove (i), that is, we establish a sufficient condition for the weak
T -admissibility of S. By assumption, a family S is in D and thus the matrix Cb is
diagonalizable for every b ∈ {0, . . . , n}. Therefore, for a fixed b ∈ {0, . . . , n}, the matrix
Cb can be diagonalized. Next, we take the first row as the pivot row and we eliminate
the entries below the first diagonal and, by the assumption that S belongs to D, the
sub-matrix is again diagonalizable. The procedure then continues with the second row
becoming the pivot row, so that the entries below the second diagonal are eliminated. At
each stage, the assumption that diagonalizability is preserved is used to diagonalize the
matrix after each row operation. After completing this procedure, we obtain a matrix in
row echelon form with the diagonals consisting of nonzero rational functions in variables
κ1, . . . , κn. It is then easy to see that the determinant is nonzero, for almost all generic
values of (κ1, . . . , κn) ∈ Rn . This ends the proof of the inclusion D ⊂ A.

For part (ii), we need to show that A ⊂ D. We already know from Propositions 2.21
and 2.24 that the inclusion A ⊂ D holds. It thus suffices to show that D

c ∩ A = ∅. To
this end, we will argue by contradiction. Let us then assume that the diagonalizability
property is not preserved under elementary row operations for all b ∈ {0, . . . , n}, but
the linear system Cbxb = eb associated with S has a unique nonzero solution for any
choice of b. The first condition implies that for some b̃ ∈ {0, . . . , n}, the matrix Cb̃ is
no longer diagonalizable (that is, there exists a vertical block) after a finite number of
elementary row operations. Using Lemma 2.22, we conclude that the family S is not
weakly T -admissible. However, we also know that the solution of the linear system is
invariant under elementary row operations and thus we arrive at the contradiction. �

REMARK 2.32. We emphasize once again that it is important to assume that, for all b ∈
{0, . . . , n}, the matrix Cb belongs to D, that is, the diagonalization property is invariant
under elementary row operations. The weaker assumption that for all b ∈ {0, . . . , n},
the matrix Cb is diagonalizable is not sufficient for the weak T -admissibility, as was
illustrated through Example 2.25.

We will now summarize the results regarding the weak T -admissibility of a family
S obtained so far. For the reader’s convenience, we recall the notation for the relevant
classes of families S of forward swaps:

A – weakly T -admissible families;
C – families that contain a cycle;
Nc – families that do not contain a cycle;
D – families such that the matrix Cb is diagonalizable, for all b ∈ {0, . . . , n};
M0 – families that do not contain a (T , b)-inadmissible subset, for all b ∈ {0, . . . , n};
M1 – families that do not contain an inadmissible subset;
D – families from D for which the diagonalization property of Cb is preserved under
elementary row operations, for all b ∈ {0, . . . , n}.
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THEOREM 2.33. Let T = {T0, . . . , Tn} be a fixed tenor structure. We consider the class
of all families S = {S1, . . . , Sn} of forward swaps associated with T . Then the following
properties hold:

(i) A = D � D = M0;
(ii) A ⊂ D ∩ M1 ⊂ D = M0;

(iii) Nc � D = M0 and Nc � M1;
(iv) A ∩ C �= ∅.

Proof . It suffices to put together the partial results established thus far:

(i) it suffices to combine Propositions 2.21, 2.24, and 2.31 with Example 2.25;
(ii) the first inclusion follows from Propositions 2.21 and 2.27; the second is obvious;

(iii) Propositions 2.19 and 2.24 yield the first part in (iii); the second part follows from
Proposition 2.28;

(iv) Example 2.13 describes a family S with n = 3 belonging to A ∩ C. �
Recall that we have argued that can (non)existence of a cycle is not of primary interest,

as opposed to the (non)existence of a (T , b)-admissible subset. As already mentioned,
when analyzing the necessity clause, Galluccio et al. (2007) failed to realize that not
every cycle is a (T , b)-inadmissible subset. Unfortunately, the sufficiency clause in the
main result in Galluccio et al. (2007) remains still unclear to us, since we were unable to
either establish the inclusion Nc � A or invalidate it by means of a counterexample. This
motivates us to formulate the following problem which, to the best of our knowledge,
remains open.

QUESTION 2.34. Is the nonexistence of a cycle in a family of forward swapsS a sufficient
condition for the weak T -admissibility of S, i.e., does the inclusion Nc � A hold true?

Alternatively, one may attempt to answer the following question.

QUESTION 2.35. Is the diagonalizability property of a family of forward swaps S, when
combined with the nonexistence of an inadmissible subset, a sufficient condition for the
weak T -admissibility of S, i.e., does the inclusion D ∩ M1 ⊂ A hold true?

In view of part (ii) in Theorem 2.33, we see that if the answer to Question 2.35 is
positive, then one obtains in fact the equality A = D ∩ M1. Hence, in view of part (iii)
in Theorem 2.33, the answer to Question 2.34 would be positive as well.

2.5. T -Admissibility of Forward Swaps

We continue working under the assumption that l = n. Recall that, by Definition
2.10, a family of forward swaps is T -admissible, if it is weakly T -admissible and the
solution to the linear system associated with that family is strictly positive for all generic
values of (κ1, . . . , κn) ∈ Rn

+. In this section, we will give conditions for which a weakly
T -admissible family is T -admissible.

The proof of Proposition 2.36 follows rather closely the proof of the sufficiency clause
in Theorem 1 of Pietersz and Regenmortel (2006). It is important to point out, however,
that their result furnishes the sufficient and necessary conditions for the existence of
deflated bonds when one is given a family of swaps that enjoys the property that no
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two swaps start on the same date. The set-up examined in Pietersz and Regenmortel
(2006) is thus different from ours and the positivity of the deflated bond prices in their
paper was simply obtained as a by-product of the existence of deflated bond prices up
to the bonds’ maturity dates. One can observe that in fact the assumption of positivity
of the deflated bond prices was not used at all in the proof of the necessity clause in
theorem 1 in Pietersz and Regenmortel (2006). For this reason, we need to re-examine
the necessity clause. For the reader’s convenience, we first give the proof of the sufficiency
clause.

PROPOSITION 2.36. Assume that a family S of forward swaps is weakly T -admissible. If
no two swaps start on the same date then a family S is T -admissible.

Proof . It is sufficient to demonstrate that a positive solution exists for b = n. Assuming
that no two forward swaps start on the same date, one can arrange the rows of the matrix
Cn so that it becomes an upper triangular matrix with nonzero entries on the diagonal.
It is thus clear that the family S is weakly T -admissible. We will establish the positivity
of solution by induction and back substitution. By picking b = n, we have Bn(t, Tn) =
1, which is strictly positive and greater or equal to 1. Let us assume that Bn(t, Tj) ≥ 1
for all j > i. We would like to show Bn(t, Ti) ≥ 1 is positive for all generic values of
(κ1, . . . κn) ∈ Rn

+. By the back substitution algorithm, we obtain

Bn(t, Ti ) = κi

mi∑
j=i+1

a j Bn(t, Tj ) + Bn(t, Tmi ), a j ≥ 0, ∀ j = {i , . . . , m j }.(2.4)

Next, by the induction hypothesis and the assumption that (κ1, . . . κn) ∈ Rn
+, the following

holds

κi

mi∑
j=i+1

a j Bn(t, Tj ) ≥ 0, Bn(t, Tmi ) ≥ 1.

It now follows easily from (2.4) that Bn(t, Ti) ≥ 1 for almost all generic values of
(κ1, . . . , κn) ∈ Rn

+. Note that it was important to assume that the matrix was upper-
triangular with nonzero diagonal, since otherwise the back substitution algorithm would
not apply. �

Our next goal is to establish a partial converse of Proposition 2.36. For this purpose,
we need to introduce an additional property of a family S.

Property (A). A family of forward swaps S is said to satisfy Property (A) if for any
two forward swaps Si and Sk from S such that Tsi = Tsk and Tmk < Tmi , we have that
T (Sk) ⊂ T (Si ).

The proof of the next result is relegated to the Appendix.

PROPOSITION 2.37. If a family S is T -admissible and satisfies Property (A) then no two
swaps in S starting on the same date exist.

Let us point out that Property (A) is crucial for the proof of the above proposition. Of
course, this assumption is satisfied in the case of standard forward swaps. We now give
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an example of a family with two forward swaps starting at the same date, for which the
solution is strictly positive.

EXAMPLE 2.38. Consider the family S = {S1 = {T0, T2}, S2 = {T1, T3}, S3 = {T0, T3}}.
Then the associated linear system for b = 0 is given by

C0x0 =

⎡
⎢⎢⎣

0 1 + ã2κ1 0

−1 0 1 + ã3κ2

0 0 1 + ã3κ3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1

0

1

⎤
⎥⎥⎦ = e0.

It is easy to see that this family of forward swaps does not satisfy Property (A). By solving
the above system, we obtain the unique solution

x0 =

⎡
⎢⎢⎢⎣

1 + ã3κ2

1 + ã3κ3

(1 + ã2κ1)−1

(1 + ã3κ3)−1

⎤
⎥⎥⎥⎦ .

From the form of the solution, it is also readily seen that the deflated bonds prices are
strictly positive for all generic values of (κ1, κ2, κ3) ∈ R3

+.

3. ADMISSIBLE MARKET MODELS OF FORWARD SWAP RATES

In this section, we will examine the second issue mentioned in the Introduction, that
is, the problem whether the joint dynamics of a given family of forward swap rates is
uniquely determined. To this end, we will focus on the Radon–Nikodým densities of
the corresponding family of forward swap measures. The crucial object in the study of
forward swap measures is in turn the swap numéraire, that is, the denominator appearing
in the definition of the forward swap rate. For a detailed analysis of some special cases
of models considered in this section, such as the LIBOR market model and the market
model for co-terminal swaps, we refer to Brace et al. (1997), Davis and Mataix-Pastor
(2007), Jamshidian (1997, 1999, 2008), Musiela and Rutkowski (1997), Rutkowski (1999)
(see also, chapters 12 and 13 in the monograph by Musiela and Rutkowski 2005 and the
references therein). Due to space limitations, we will not deal here either with any partic-
ular examples of market models of forward swap rates, or with other related questions,
such as the issue of positivity of rates whose dynamics are not directly postulated, but
are implicitly given by a specification of a market model for a certain family S of forward
swaps (that is, the out-of-sample swap rates).

3.1. Inverse Problem for Swap Annuities

Recall that by a forward swap, we mean the start date Ts j , the maturity date Tm j as
well as a pair Ps j ,m j

t , As j ,m j of processes that are given by (1.2) and (1.3), respectively. The
strictly positive process As j ,m j is called the swap numéraire for the jth forward swap. The
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forward swap rate κ j is defined as follows:

κ
j

t = κ
s j ,m j
t = Ps j ,m j

t

As j ,m j
t

, ∀ t ∈ [0, Ts j ].(3.1)

As before, we consider a finite family S = {S1, . . . , Sl} of forward swaps.

DEFINITION 3.1. For any j, d ∈ {1, . . . , l}, the annuity deflated swap numéraire is given
by

Ãd, j
t := As j ,m j

t

Asd ,md
t

, ∀ t ∈ [0, Ts j ∧ Tsd ].(3.2)

One should take note here that the annuity deflated swap numéraire process Ãd, j is in
fact the process of our primary interest, since it will later on act as the Radon–Nikodým
density process in the specification of the joint dynamics of forward swap rates κ1, . . . ,
κ l under a single probability measure. This observation motivates us to formulate the
following inverse problem for annuity deflated swap numéraires: provide conditions under
which the family of processes Ãd, j , as specified by equations (1.2), (1.3), (3.1), and (3.2),
admit a unique representation in terms of forward swap rates κ1, . . . , κ l only. In essence,
we would like to eliminate bond prices from (1.2), (1.3), (3.1), and (3.2) to express Ãd, j

in terms of fixed, but arbitrary, parameters κ1, . . . , κ l.
Recall that the deflated swap annuity is given by (see (1.7))

Ab,s j ,m j
t := As j ,m j

t

B(t, Tb)
=

∑
i∈A j

ãi Bb(t, Ti ),(3.3)

where A j is the set of all indices corresponding to settlement dates in the forward swap
Sj. Hence (3.2) can also be represented as follows:

Ãd, j
t =

∑
i∈A j

ãi Bb(t, Ti )

∑
k∈Ad

ãk Bb(t, Tk)
= Ab,s j ,m j

t

Ab,sd ,md
t

, ∀ t ∈ [0, Tb ∧ Ts j ∧ Tsd ],(3.4)

where the second equality is clear since the deflated swap annuity Ab,s j ,m j
t is defined by

the equality Ab,s j ,m j
t := As j ,m j

t /B(t, Tb), for any choice of b ∈ {0, . . . , n}. In addition, we
write

P̃d, j
t := Ps j ,m j

t

Asd ,md
t

= B(t, Ts j ) − B(t, Tm j )∑
k∈Ad

ãk B(t, Tk)
= Bb(t, Ts j ) − Bb(t, Tm j )∑

k∈Ad

ãk Bb(t, Tk)
,

so that (3.1) yields, for every t ∈ [0, Tb ∧ Ts j ∧ Tsd ],

κ
j

t = κ
s j ,m j
t = P̃d, j

t

Ãd, j
t

= Bb(t, Ts j ) − Bb(t, Tm j )

Ãd, j
t

∑
k∈Ad

ãk Bb(t, Tk)
.
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Using the notation for generic values of stochastic processes appearing in the formula
above, we get

κ j = xs j − xm j

αd, j

∑
k∈Ad

ãkxk

, j = 1, . . . , l,(3.5)

and

αd, j =

∑
i∈A j

ãi xi

∑
k∈Ad

ãkxk

, d, j = 1, . . . , l.(3.6)

Inverse Problem (IP.2): We say that a family S = {S1, . . . , Sl} admits a solution to the
inverse problem (IP.2) if, every d, j ∈ {1, . . . , l}, the annuity deflated swap numéraire Ãd, j

t
can be uniquely expressed as a function of forward swap rates κ1

t , . . . , κ l
t . More formally,

for any fixed d ∈ {1, . . . , l} and for almost all (κ1, . . . , κl ) ∈ Rl , the system of equations
(3.5) and (3.6) can be solved for (αd,1, . . . , αd,l) and a unique solution is given in terms
of (κ1, . . . , κ l) only, i.e., it does not depend explicitly on variables x0, . . . , xn.

The following definition describes the class of families of forward swaps possessing
desirable properties from the viewpoint of dynamical properties of a market model.

DEFINITION 3.2. We say that a family S of forward swaps associated with T is weakly
A-admissible if for any choice of d ∈ {1, . . . , l} the following property holds: for almost
every (κ1, . . . , κl ) ∈ Rl there exists a unique nonzero solution (αd,1, . . . , αd,l ) ∈ Rl to the
system of equations (3.5) associated with S and it is given in terms of (κ1, . . . , κ l) only.
If, in addition, the solution is strictly positive for almost every (κ1, . . . , κl ) ∈ Rl

+ then we
say that a family S is A-admissible.

We will now examine the relationship between the concepts of the (weak) T -
admissibility and (weak) A-admissibility. Lemma 3.3 shows that the (weak) T -
admissibility of a family S implies its (weak) A-admissibility; the converse does not
hold, however, as will be demonstrated by means of a counter-example (see Example
3.4).

LEMMA 3.3. The (weak) T -admissibility of a family S implies its (weak) A-
admissibility.

Proof . If the family S is weakly T -admissible then the uniqueness of a solution to
the inverse problem (IP.1) holds and the unique vector of nonzero deflated bond prices
x̄b admits a representation in terms of (κ1, . . . , κl ) ∈ Rl . Consequently, in view of (3.4),
we conclude that S is weakly A-admissible. Furthermore, if S is T -admissible then for
almost every (κ1, . . . , κl ) ∈ Rl

+ the solution to the inverse problem (IP.1) is strictly positive
and thus αd,j = αd,j(κ1, . . . , κ l) is strictly positive as well. �

EXAMPLE 3.4. It is worth stressing that the weak T -admissibility is not a necessary
condition for the weak A-admissibility of a family S, since it is possible to produce an
example of a family of forward swaps, which is weaklyA-admissible, but fails to be weakly
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T -admissible. For this purpose, we set n = 3 and we consider the standard forward swaps
S1 = {T0, T4}, S2 = {T0, T3}, and S3 = {T2, T3}. The linear system associated with
the family S = {S1, S2, S3} for b = 0 reads

⎡
⎢⎣

a1κ1 a2κ1 a3κ1 1 + a4κ1

a1κ2 a2κ2 1 + a3κ2 0

0 0 −1 1 + a4κ3

⎤
⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

1

1

0

⎤
⎥⎦.

A general solution to the corresponding inverse problem (IP.1) is thus given by

x0 =

⎡
⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (−a2κ1γ − a2κ1a4κ3γ + a2κ2γ + a2κ1κ2a4γ ) + a4κ3 − a3κ1 + a3κ2 − a3κ1a4κ3 + a3a4κ3κ2 − a4κ1

(−κ1 − κ1a4κ3 + κ2 + κ2a4κ1) a1

γ

− (1 + a4κ3) (κ1 − κ2)
−κ1 − κ1a4κ3 + κ2 + κ2a4κ1

− κ1 − κ2

−κ1 − κ1a4κ3 + κ2 + κ2a4κ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where γ is a generic value of the deflated bond price B0(t, T2). It is thus clear that the
family S is not weakly T -admissible, since the required uniqueness of a solution to the
system C0x0 = e0 does not hold.

We will now show that the family S is weakly A-admissible. To this end, we substitute
a solution into the deflated swap annuity equation (1.7) (or, equivalently, (3.3)), to obtain
the following expressions for generic values α0,s j ,m j , j = 1, 2, 3 of A0,s j ,m j

t , j = 1, 2, 3

α0,s1,m1 = a4 (−κ3 + κ2)
−κ1 − κ1a4κ3 + κ2 + κ2a4κ1

,

α0,s2,m2 = a4 (−κ3 + κ1)
−κ1 − κ1a4κ3 + κ2 + κ2a4κ1

,

α0,s3,m3 = − κ1 − κ2

−κ1 − κ1a4κ3 + κ2 + κ2a4κ1
.

We conclude that the deflated swap annuities can be uniquely expressed as functions of
forward swaps rates (κ1, κ2, κ3) ∈ R3 and thus, in view of (3.4), it is now easy to see that
the considered family of forward swaps is indeed weakly A-admissible.

Let us now consider a family of forward swaps S = {S1, . . . , Sl}, which admits a
nonzero (but possibly nonunique) solution to the inverse problem (IP.1) for some b. This
means that the following equalities hold for some functions gb,k and gb,k

j :

xk = gb,k(κ1, . . . , κl ) +
i∑

j=1

gb,k
j (κ1, . . . , κl )xn j , ∀ Tk ∈ T ,(3.7)

where the variables xn1 , . . . , xni correspond to the sub-family of deflated bond prices
which parameterize the solution to the linear system associated with S. By substituting
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equation (3.7) into equation (3.3), we arrive at the following equalities:

αb,s j ,m j = g̃b, j (κ1, . . . , κl ) +
i∑

k=1

g̃b, j
k (κ1, . . . , κl )xnk(3.8)

for certain functions g̃b, j and g̃b, j
k . It is obvious that, independently of the choice of b,

the annuity deflated swap numeráire can now be expressed as follows:

αd, j =
g̃b, j (κ1, . . . , κl ) +

i∑
k=1

g̃b, j
k (κ1, . . . , κl )xnk

g̃b,d (κ1, . . . , κl ) +
i∑

k=1

g̃b,d
k (κ1, . . . , κl )xnk

.(3.9)

We observe that the family S is weakly A-admissible, provided that equation (3.9) can
be reduced to obtain

αd, j = Gd, j (κ1, . . . , κl )(3.10)

for some nonzero rational functions Gd, j : Rl → R. However, if the parameterizing
family of bond prices cannot be completely eliminated from (3.9) for some annu-
ity deflated swap numéraire αd,j then the family of annuity deflated swap numéraires
Ãd, j , d, j = 1, . . . , l is not uniquely determined by the forward swap rates, which in turn
means the family S of forward swaps fails to be weakly A-admissible.

3.2. Dynamics of Forward Swap Rates

We consider here a family of forward swap rate processes {κ1, . . . , κ l}. Our goal is to
show that, under mild conditions imposed on a family of forward swap rate processes,
their joint dynamics are uniquely specified by a family of volatility processes with respect
to some spanning martingales. We first recall some results from stochastic calculus, which
will be used in what follows.

3.2.1. Girsanov’s Transforms. Throughout this section, the multidimensional Itô in-
tegral should be interpreted as the vector stochastic integral (see, for instance, Shiryaev
and Cherny 2002). Let us first quote a general version of the Girsanov theorem (see, for
instance, Brémaud and Yor 1978 or theorem 9.4.4.1 in Jeanblanc et al. 2009).

PROPOSITION 3.5. Let P̃ and P be equivalent probability measures on (�,FT) with the
Radon–Nikodým density process

Zt = dP̃
dP

∣∣∣
Ft

, ∀ t ∈ [0, T].(3.11)

Suppose that M is a (P ,F)-local martingale. Then the process

M̃t = Mt −
∫

(0,t]

1
Zs

d[Z, M]s

is a (P̃ ,F)-local martingale.
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Let Mloc(P ) (M(P ), resp.) stand for the class of all (P ,F)-local martingales ((P ,F)-
martingales, resp.). Assume that Z is a strictly positive (P ,F)-local martingale such that
Z0 = 1. Also let an equivalent probability measure P̃ be given by (3.11). Then the linear
map �Z : Mloc(P ) → Mloc(P̃ ) given by the formula

�Z(M) = Mt −
∫

(0,t]

1
Zs

d[Z, M]s, ∀ M ∈ Mloc(P ),(3.12)

is called the Girsanov transform associated with the Radon–Nikodým density process Z.
By the symmetry of the problem, the process Z−1 is the Radon–Nikodým density of P
with respect to P̃ . The corresponding Girsanov transform �Z−1 : Mloc(P̃ ) → Mloc(P )
associated with Z−1 is thus given by the formula

�Z−1 (M̃) = M̃t −
∫

(0,t]
Zs d[Z−1, M̃]s, ∀ M̃ ∈ Mloc(P̃ ).

PROPOSITION 3.6. Let P̃ be a probability measure equivalent to P on (�,FT) with the
Radon–Nikodým density process Z. Then for any (P̃ ,F)-local martingale Ñ there exists a
(P ,F)-local martingale N̂ such that

Ñt = N̂t −
∫

(0,t]

1
Zs

d[Z, N̂]s .(3.13)

The process N̂ is given by the formula

N̂t = Ñ0 +
∫

(0,t]

1
Zs−

d Ls −
∫

(0,t]

Ls−
Z2

s−
d Zs,(3.14)

where we denote L = ÑZ.

From Proposition 3.6, it follows immediately that the process N̂ given by (3.14) belongs
to the set (�Z)−1(Ñ). In fact, we have that N̂ = (�Z)−1(Ñ), as the following well-known
result shows.

LEMMA 3.7. Let Ñ be any (P̃ ,F)-local martingale and let the process N̂ be given by
formula (3.14) with L = ÑZ. Then the process N̂ is also given by the following expression:

N̂t = Ñt −
∫

(0,t]
Zs d[Z−1, Ñ]s .(3.15)

The linear map �Z : Mloc(P ) → Mloc(P̃ ) is bijective and the inverse map (�Z)−1 :
Mloc(P̃ ) → Mloc(P ) satisfies (�Z)−1 = �Z−1 .

Let us finally recall the following standard lemma.

LEMMA 3.8. Let (�,F,F ,P ) be a filtered probability space and let for any j = 1, . . . , l
the process Zj be a strictly positive (P ,F)-martingale with EP (Z0) = 1. Then for any fixed
T > 0 and for each j = 1, . . . , l, there exists a probability measure P j equivalent to P on
(�,FT) with the Radon–Nikodým density process given by

dP j

dP

∣∣∣
Ft

= Zj
t , ∀ t ∈ [0, T].(3.16)
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3.2.2. Construction of a Generic Market Model. We are in a position to examine a
general framework under which it is possible to derive the joint dynamics of a family of
forward swap rates. In the financial interpretation of the next condition, the processes
κ1, . . . , κ l are aimed to represent forward swap rates for a family of forward swaps S,
whereas the processes Z1, . . . , Zl will play the role of Radon–Nikodým densities of swap
martingale measures with respect to the underlying probability measure P (in a practical
implementation, P is typically chosen to be one of the swap martingale measures).

ASSUMPTION 3.9. We are given a filtered probability space (�,F,F ,P ). We postulate
that the F-adapted processes κ1, . . . , κ l and Z1, . . . , Zl satisfy the following conditions, for
every j = 1, . . . , l,

(i) the process Zj is a strictly positive (P ,F)-martingale with EP (Zj
0 ) = 1,

(ii) the process κ jZj is a (P ,F)-martingale,
(iii) the process Zj is given as a function of some subset of the family κ1, . . . , κ l ; specifically,

there exists a subset {κn1 , . . . , κ
nl j } of the full collection {κ1, . . . , κ l} of forward swap

rates and a function f j : Rl j → R of class C2 such that Zj = f j (κn1 , . . . , κ
nl j ).

Parts (i) and (ii) in Assumption 3.9, when combined with Lemma 3.8, yield the existence
of a family of probability measures P 1, . . . ,P l , equivalent to P on (�,FT) for some fixed
T > 0, such that the process κ j is a (P j ,F)-martingale for every j = 1, . . . , l, and this
in turn implies that κ j is a (P ,F)-semimartingale. Let us remark that the probability
measure P j is called the jth swap martingale measure.

We deduce from part (iii) that the continuous martingale part of Zj, denoted by Zj,c,
admits the following integral representation:

Zj ,c
t = Zj

0 +
l j∑

i=1

∫ t

0

∂ f j

∂xi

(
κn1

s , . . . , κ
nl j
s

)
dκni ,c

s ,(3.17)

where κ i,c stands for the continuous martingale part of κ i. To establish equality (3.17), it
suffices to apply the Itô formula and use the properties of the stochastic integral.

We will argue that, under the standing Assumption 3.9, the semimartingale decom-
position of κ j can be uniquely specified under P by the choice of the initial values, the
volatility processes and the driving martingale, which is henceforth denoted by M. For
the purpose of an explicit construction of the model for processes κ1, . . . , κ l, we thus
start by selecting an Rk-valued (P ,F)-martingale M = (M1, . . . , Mk) and we define the
process κ j under P j as follows, for every j = 1, . . . , l,

κ
j

t = κ
j

0 +
∫

(0,t]
κ

j
s−σ j

s · d� j (M)s,(3.18)

where σ j is the Rk-valued volatility process and the (P j ,F)-martingale � j(M) equals (see
(3.12))

� j (M)t = Mt −
∫

(0,t]

1

Zj
s

d[Zj ,c, Mc]s −
∑

0<s≤t

1

Zj
s
	Zi

s	Ms .(3.19)
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PROPOSITION 3.10. Under Assumption 3.9, if the processes κ1, . . . , κ l satisfy (3.18) and
(3.19) then for every j = 1, . . . , l the dynamics of κ j are

dκ
j

t =
k∑

v=1

κ
j

t−σ
j ,v

t d Mv
t − 1

f j
(
κ

n1
t , . . . , κ

nl j
t

)
l j∑

i=1

∂ f j

∂xi

(
κn1

t , . . . , κ
nl j
t

)

×
k∑

v,m=1

κ
j

t κ
ni
t σ

j ,v
t σ

ni ,m
t d[Mv,c, Mm,c]t − κ

j
t−

Zj
t

	Zj
t

k∑
v=1

σ
j ,v

t 	Mv
t .

(3.20)

Proof . In view of formulae (3.18) and (3.19), it is clear that the continuous martingale
part of κ j can be expressed as follows:

κ
j ,c

t = κ
j

0 +
∫

(0,t]
κ j

s σ j
s · d Mc

s ,

and thus we infer from (3.17) that the continuous martingale part Zj,c of Zj admits the
following representation:

Zj ,c
t = Zj

0 +
l j∑

i=1

∫
(0,t]

∂ f j

∂xi

(
κn1

s , . . . , κ
nl j
s

)
κni

s σ ni
s · d Mc

s .(3.21)

This allows us to express the process � j(M) in terms of M, the processes κ1, . . . , κn, their
volatilities, and the matrix [Mc]. To be more specific, we deduce from (3.19) and (3.21)
that (note that [Mm,c, Mc] is an Rk-valued process)

� j (M)t = Mt −
∫

(0,t]

1

f j
(
κ

n1
s , . . . , κ

nl j
s

)
l j∑

i=1

∂ f j

∂xi

(
κn1

s , . . . , κ
nl j
s

) k∑
m=1

κni
s σ ni ,m

s d[Mm,c, Mc]s

−
∑

0<s≤t

1

Zj
s
	Zj

s 	Ms,

(3.22)

where Zj
s = f j (κn1

s , . . . , κ
nl j
s ) and

	Zj
s = f j

(
κn1

s , . . . , κ
nl j
s

) − f j
(
κ

n1
s−, . . . , κ

nl j
s−

)
.

By combining (3.18) with (3.22), we arrive at formula (3.20). We thus conclude that,
under Assumption 3.9, by choosing the driving (P ,F)-martingale M and the volatility
processes σ 1, . . . , σ l in formula (3.18), we completely specify the joint dynamics of
processes κ1, . . . , κ l under P . �

Note that when using Proposition 3.10 we do not postulate that a model of forward
swap rates is already given; in fact, the goal of this result was to describe a general
approach to constructing such a model starting from some multi-dimensional driving
martingale M = (M1, . . . , Mk) and arbitrarily chosen Rk-valued volatility processes
σ 1, . . . , σ l (of course, we should ensure that the stochastic integrals appearing in (3.20)
are well defined). Typically, a probability measure P is selected to be one of the swap
martingale measures P j . Therefore, condition (iii) in Assumption 3.9 is a consequence of
theA-admissibility of a familyS. This observation explains why we focused on the inverse
problem (IP.2) and the resulting concept of A-admissibility. Intuitively, an A-admissible
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family of forward swaps is self-consistent, meaning that the joint dynamics of forward
swap rate processes κ1, . . . , κ l are entirely determined by the choice of volatilities and
driving martingales.

EXAMPLE 3.11. We consider the set-up introduced in Example 2.38. Our goal is to
specify the joint dynamics of the family of forward swap rates (κ1, κ2, κ3) under a single
probability measure. To this end, we assume that we are given a family of volatility
processes σ

i , j
t for i, j = 1, 2, 3 and a three-dimensional Brownian motion (W 1, W 2, W 3)

defined on a filtered probability space (�,F,F ,P ), with the correlation structure given
by d〈Wi , Wj 〉t = ρ

i , j
t dt. We first recall that the family S considered in Example 2.38 was

shown to be T -admissible and thus, by Lemma 3.3, it is also A-admissible.

The swap annuities in this example are given by: A0,2
t = ã2 B(t, T2), A1,3

t = ã3 B(t, T3)
and A0,3

t = ã3 B(t, T3). Hence the annuity deflated swap numéraires for d = 3 are given
by Ã3,2

t = Ã3,3
t = 1 and

Ã3,1
t = ã2 B(t, T2)

ã3 B(t, T3)
= ã2 B0(t, T2)

ã3 B0(t, T3)
.

To derive the joint dynamics of (κ1, κ2, κ3), we postulate that the probability measure
P is such that the process κ3 is a (P ,F)-martingale, so that P = P 3, and we define the
probability measures dP i = Zi dP for i = 1, 2, where the Radon–Nikodým density Z2 =
1 and the Radon–Nikodým density process Z1 is given by

Z1
t = 1

c1
Ã3,1

t = 1
c1

A0,2

A1,3
= 1

c1

ã2 B0(t, T2)
ã3 B0(t, T3)

,

where c1 is a normalizing constant. Using the computations of Example 2.38, we see that

Z1
t = f1

(
κ1

t , κ2
t , κ3

t

) = 1
c1

ã2
(
1 + ã3κ

3
t

)
ã3

(
1 + ã2κ

1
t
) ,

and thus Z1 is a strictly positive process provided that the forward swap rates κ1 and κ3

are strictly positive (the latter property is not obvious a priori, but it will follow from
equations (3.23) and (3.24)). To apply equation (3.20), we first compute the first-order
partial derivatives

∂ f1

∂x1

(
κ1

t , κ2
t , κ3

t

) = 1
c1

ã2
2

(
1 + ã3κ

3
t

)
ã3

(
1 + ã2κ

1
t
)2 ,

∂ f1

∂x3

(
κ1

t , κ2
t , κ3

t

) = 1
c1

ã2(
1 + ã2κ

1
t
) .

Using equation (3.20), we conclude that the dynamics of the process κ1 under the forward
swap measure P 3 are given by

dκ1
t =

3∑
i=1

κ1
t σ 1,i

t dWi
t + ã3

(
1 + ã2κ

1
t

)
ã2

(
1 + ã3κ

3
t
) ã2

2

(
1 + ã3κ

3
t

)
ã3

(
1 + ã2κ

1
t
)2

3∑
i , j=1

(
κ1

t

)2
σ 1,i

t σ
1, j
t d〈Wi , Wj 〉t

− ã3
(
1 + ã2κ

1
t

)
ã2

(
1 + ã3κ

3
t
) ã2(

1 + ã2κ
1
t
) 3∑

i , j=1

κ1
t κ3

t σ 1,i
t σ

3, j
t d〈Wi , Wj 〉t,
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that is,

dκ1
t =

3∑
i=1

κ1
t σ 1,i

t dWi
t + ã2

1 + ã2κ
1
t

3∑
i , j=1

(
κ1

t

)2
σ 1,i

t σ
1, j
t ρ

i , j
t dt

− ã3

1 + ã3κ
3
t

3∑
i , j=1

κ1
t κ3

t σ 1,i
t σ

3, j
t ρ

i , j
t dt,

while the processes κ2 and κ3 are governed under P 3 by

dκ2
t =

3∑
i=1

κ2
t σ 2,i

t dWi
t , dκ3

t =
3∑

i=1

κ3
t σ 3,i

t dWi
t .(3.23)

The last formula holds, since the Radon–Nikodým density Z2 is identically one. This
peculiar feature comes from the fact that the swaps S2 and S3 in Example 3.4 only differ
by the start date and both have a unique settlement date T3. Moreover, one can check
that the process Z1 is indeed a strictly positive (P ,F)-martingale and under P 1 we have
that

dκ1
t =

3∑
i=1

κ1
t σ 1,i

t dW̃i
t ,(3.24)

where (W̃1, W̃2, W̃3) is a Brownian motion under P 1 with the same correlation struc-
ture as the underlying Brownian motion (W 1, W 2, W 3). We note that for i = 1, 2, 3
the processes κ i are strictly positive under P = P 3, since the process κ i is a stochastic
exponential under P i for each i = 1, 2, 3, and the probability measures P i are equivalent
to each other.

Let us conclude this section by pointing out that the weak A-admissibility (see
Example 3.4 for such family) is not sufficient for specification of the joint dynamics
since, on the one hand, we cannot guarantee that the Radon–Nikodým density processes
are strictly positive and, on the other hand, if one were able to derive some model of
the joint dynamics of forward swap rates, it is likely to be inconsistent in the sense that,
without additional assumptions, the swap annuities could fail to be positive. For more
details and explicit examples of applications of Proposition 3.10 in the context of market
models of CDS spreads, the interested reader is referred to Li and Rutkowski (2011).

APPENDIX

In the Appendix, we provide the proofs of Propositions 2.24 and 2.37.

A.1. Proof of Proposition 2.24

(i) ⇒ (ii). Let us first assume that Cb is diagonalizable. We need to show that there
is no (T , b)-inadmissible subset S̃. Let us consider the diagonalized version of Cb and
let us take any subset S̃ of S. If the subset has k elements then the number of variables
associated with S̃ is at least equal to k, since the number of distinct nonzero terms
corresponding to S̃ that come from the diagonal of Cb equals k. One can also argue that
if a vertical block exists in Cb then, by inspection, the matrix cannot be diagonalized.
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(ii) ⇒ (i). The proof of the implication (ii) ⇒ (i) in Proposition 2.24, which is presented
here, hinges on the inductive argument. An alternative proof, based on a more explicit
algorithm for a fixed number of forward swaps, is also available from the authors upon
request.

Let us now assume that (ii) holds so that there is no (T , b)-inadmissible subset S̃ of
S. We will proceed by induction. Suppose that the implication (ii) ⇒ (i) is true for any
(l − 1) × (n − 1) matrix. We will argue by contradiction. Suppose that (ii) holds, but
Cb cannot be diagonalized. This means that for every nonzero term c1,1, . . . , c1,d in the
first row, the (l − 1) × (n − 1) sub-matrix obtained from Cb by deleting the first row
and the column corresponding to nonzero term cannot be diagonalized (without loss of
generality, we assume here that the entries c1,1, . . . , c1,d in Cb are nonzero and c1,d+1 =
· · · = c1,n = 0 for some d ∈ {1, . . . , n}. Indeed, if for some nonzero c1,j the (l − 1) × (n
− 1) sub-matrix can be diagonalized then, obviously, the matrix can be diagonalized as
well.)

Therefore, by the inductive assumption, for any i = 1, . . . , d there exists a subset S̃i of
“shorter” swaps (that is, forward swaps without the variable xd) which is not admissible
with respect to the reduced set of variables (dates). For each i = 1, . . . , d, we select the
subset S̃i with the least number of elements. Let ki be the number of swaps in S̃i . Then
the number of the corresponding variables ni (dates) is less than ki, that is ni ≤ ki − 1.

We will argue that by taking the union ∪d
i=1S̃i of the corresponding “longer” swaps and

by adding the first row (i.e., the first “longer” swap) we will produce a (T , b)-inadmissible
subset S̃ of S. This will mean that a contradiction arises since we have assumed that (ii)
holds.

Let us first examine the special case when the sets S̃i are pairwise disjoint. Then the
above conclusion is rather obvious, since in the union ∪d

i=1S̃i the number of forward swaps
equals

∑d
i=1 ki , whereas the number of variables is given by the following expression:

d∑
i=1

ni ≤
d∑

i=1

ki − d.

By supplementing the first row (i.e., the first swap) we obtain a family S̃ with
∑d

i=1 ki + 1
swaps in which the number of variables is less or equal to

∑d
i=1 ki (we have to add d

variables that come from the first swap).
Let us now consider the general case, where an overlap between S̃i and S̃ j may occur.

We will now argue by induction with respect to i = 1, . . . , d. Suppose that for some
v ≤ d − 1 the number of swaps in ∪v

i=1S̃i is greater or equal to the number of variables
corresponding to ∪v

i=1S̃i plus v . We argue that the number of swaps in ∪v+1
i=1 S̃i is greater

or equal to the number of variables corresponding to ∪v+1
i=1 S̃i plus v + 1. If some swaps

from S̃v+1 are already in ∪v
i=1S̃i , they do not add any new variables (except for, perhaps,

some of the variables x1, . . . , xd).
Let us then suppose that there are g swaps that are in S̃v+1, but not in ∪v

i=1S̃i . The
number of new variables corresponding to these swaps is no more than g − 1; we use here
the property that we have chosen the subset S̃v+1 with the least number of elements, so
that the number of variables corresponding to kv+1 − g swaps that are already in ∪v

i=1S̃i

equals at least kv+1 − g and the total number of variables corresponding to S̃v+1 is no
more than kv+1 − 1. Therefore, the number of swaps has grown by g and the number of
variables by g − 1, as desired (plus, perhaps, some of the variables x1, . . . , xd).
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By induction with respect to i = 1, . . . , d, we conclude that the number of swaps in
∪d

i=1S̃i is greater or equal to the number of variables corresponding to ∪d
i=1S̃i plus d. By

supplementing the first row (first swap) we obtain a family S̃ in which the total number
of swaps is strictly greater than the number of variables (dates). This completes the proof
of the lemma. �

A.2. Proof of Proposition 2.37

We work here under the assumption that l = n and we assume that the family S is
T -admissible and satisfies Property (A). This implies, in particular, that S is weakly T -
admissible and the solution to the linear system Cbxb = eb is strictly positive for almost
all generic values of (κ1, . . . , κn) ∈ Rn

+. As usual, we denote byAi the indices of settlement
dates of the forward swap Si and let Ãi := Ai \ {mi }. Our goal is to show that no two
forward swaps start on the same date. Suppose, on the contrary, that there exist two
forward swaps, Sk and Si say, starting on the same date, so that Tsk = Tsi = Ts for some
s.

By rearranging the forward swap equations generated by Sk and Si, we obtain

Bn(t, Ts) = Bn(t, Tmi ) + κ i
t

∑
j∈Ai

a j Bn(t, Tj )(A.1)

and

Bn(t, Tmk) =
Bn(t, Ts) − κk

t

∑
j∈Ãk

a j Bn(t, Tj )

(
1 + amkκ

k
t
) .(A.2)

After substituting (A.2) into (A.1), we get

xs = xmi (1 + ami κi ) + κi

∑
j∈Ãi \{mk}

a j xj +
amkκi xs − amkκkκi

∑
j∈Ãk

a j xj

(1 + amkκk)
,

where we use the shorthand notation κ j = κ
j

t and xj = Bn(t, Tj). By rearranging the
above equality, we obtain

(1 + amkκk − amkκi )xs = (1 + amkκk)(1 + ami κi )xmi + (1 + amkκk)κi

∑
j∈Ãi \{mk}

a j xj

− amkκiκk

∑
j∈Ãk

a j xj .
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Consequently,

(1 + amkκk − amkκi )xs = (1 + ami κi )(1 + amkκk)xmi + (1 + amkκk)κi

∑
j∈Ãi \Ak

a j xj

+ κi ((1 + amkκk) − amkκk)
∑

j∈Ãi ∩Ãk

a j xj − amkκiκk

∑
j∈Ãk\Ãi

a j xj

= (1 + ami κi )(1 + amkκk)xmi + (1 + amkκk)κi

∑
j∈Ãi \Ak

a j xj

+ κi

∑
j∈Ãi ∩Ãk

a j xj − amkκiκk

∑
j∈Ãk\Ãi

a j xj .

Under the assumption that T (Sl ) ⊂ T (Si ), we have that Ãi ∩ Ãk = Ãk and

amkκiκk

∑
j∈Ãk\Ãi

a j xj = 0.

This in turn yields the following equality

(1 + amkκk − amkκi )xs = (1 + ami κi )(1 + amkκk)xmi + (1 + amkκk)κi

∑
j∈Ãi \Ak

a j xj

+ κi

∑
j∈Ãk

a j xj .

We thus conclude that xs is given by

xs =
(1 + ami κi )(1 + amkκk)xmi + (1 + amkκk)κi

∑
j∈Ãi \Ak

a j xj + κi

∑
j∈Ãi ∩Ãk

a j xj

1 + amkκk − amkκi
.

Assume that (κ1, . . . , κn) ∈ Rn
+ and xi ∈ R+ for every i �= s. Then the deflated bond price

xs = Bn(t, Ts) is strictly positive if and only if 1 + amkκk − amkκi > 0. This contradicts
the assumption that S is T (S)-admissible, since it is not true that xs is strictly positive
for almost all generic values of (κ1, . . . , κn) ∈ Rn

+. �
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Several approximations have been proposed in the literature for the pricing of
European-style swaptions under multifactor term structure models. However, none
of them provides an estimate for the inherent approximation error. Until now, only
the Edgeworth expansion technique of Collin-Dufresne and Goldstein is able to char-
acterize the order of the approximation error. Under a multifactor HJM Gaussian
framework, this paper proposes a new approximation for European-style swaptions,
which is able to set bounds on the magnitude of the approximation error and is based
on the conditioning approach initiated by Curran and Rogers and Shi. All the pro-
posed pricing bounds will arise as a simple by-product of the Nielsen and Sandmann
setup, and will be shown to provide a better accuracy–efficiency trade-off than all the
approximations already proposed in the literature.

KEY WORDS: Gaussian HJM multifactor models, European-style swaptions, conditioning approach,
rank 1 approximation, lognormal approximation, stochastic duration, Edgeworth expansion, hyper-
plane approximation, low-variance martingale approximation.

1. INTRODUCTION

The main purpose of the present paper is to offer a fast and extremely accurate analyt-
ical approximation for European-style swaptions under a multifactor Gaussian Heath,
Jarrow, and Morton (1992)—HJM, hereafter—framework.

European-style swaptions are essentially options on coupon-bearing bonds, that is, on
a portfolio of pure discount bonds. Under several single-factor term structure models,1

a European-style swaption can be valued analytically through its decomposition into a
portfolio of options on zero-coupon bonds—see, for instance, Jamshidian (1989) under
the Vasiček (1977) model, or Longstaff (1993) for the Cox, Ingersoll, and Ross (1985)
setup. However, under a (more realistic) multifactor term structure framework, no exact
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closed-form solution has ever been found for European-style swaptions, because the
optimal exercise boundary involves a nonlinear function of several random variables,
whose joint probability density is unknown.

Since European-style swaptions are among the most widely traded fixed-income deriva-
tives, it is not surprising that several pricing approximations have been proposed in
the literature. El Karoui and Rochet (1989) obtained an analytical approximation for
European-style options on coupon-bearing bonds, under a multifactor Gaussian HJM
model, by using a proportionality assumption. Such assumption enables the exercise
boundary to be expressed as a monotonic function of a univariate normal random vari-
able and is equivalent to the rank 1 approximation suggested by Brace and Musiela
(1994). Still under the same framework, Pang (1996) approximates the probability dis-
tribution of the underlying coupon-bearing bond by a lognormal distribution, which
has the same first two moments. Although it is well known that the sum of lognormal
random variables is not lognormally distributed, the price of a coupon bond weighs
mostly its last pure discount bond price component (i.e., the one associated with the
redemption of the bond’s face value and with the payment of the last coupon). There-
fore, the intuition behind the lognormal approximation proposed by Pang (1996) is that
the probability distribution of the coupon-bearing bond price should essentially depend
upon the probabilistic behavior of its last component, which is lognormally distributed
for the Gaussian framework considered.

A completely different approach was undertaken by Wei (1997), for single-factor
models, and developed by Munk (1999), for any multifactor term structure model. These
authors approximate the price of a European-style option on a coupon-bearing bond by
a multiple of the price of a European-style option on a zero-coupon bond with maturity
equal to the stochastic duration2 of the coupon-bearing bond (and with an adjusted
strike price). A similar approach is also pursued by Schrager and Pelsser (2006), since
these authors approximate the affine dynamics of the swap rate (under the relevant swap
measure) by replacing some (low variance) martingales by their expectations.

Under the Duffie and Kan (1996) general affine class of interest rate models, Singleton
and Umantsev (2002) approximate directly the optimal exercise boundary through a
linear function of the model’s factors, which enables all the relevant exercise probabilities
to be computed through the Fourier transform method of Duffie, Pan, and Singleton
(2000, Proposition 2).3 The basic idea is to use a hyperplane to approximate only the
segment of the concave exercise boundary where the density of the state variables is
mostly concentrated. For an A2(2) specification, these authors outperform the stochastic
duration approach, both in terms of accuracy and speed.4

All the previous approximation schemes are uncontrolled in the sense that the order or
magnitude of the approximation error is unknown. The only exception corresponds to
the Edgeworth expansion technique, applied by Collin-Dufresne and Goldstein (2002)
to the family of affine term structure models, and extended by Collin-Dufresne and

2The stochastic duration of a coupon-bearing bond can be defined as the maturity of a pure discount
bond with the same instantaneous variance of relative price changes.

3Moreover, the numerical (and time-consuming) solution of the complex-valued ordinary differential
equations stated in Duffie, Pan, and Singleton (2000, equations 2.5 and 2.6) can also be avoided through the
Gaussian approximation and the Gauss–Hermite quadrature approach proposed by Joslin (2010, appendix
B). However, under the Gaussian framework adopted in this paper, such approximation is unnecessary
because the transition density function of the model’s factors is known in closed form.

4Note that any n-factor affine term structure model can be cast (through an appropriate invariant
transformation) into the Am(n) canonical formulation of Dai and Singleton (2000, definition 1), where m
(≤n) is the number of state variables driving the factor’s variances.
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Goldstein (2003) to the HJM and to the random field affine frameworks. As long as the
moments of the underlying coupon-bearing bond can be obtained analytically (under
all the necessary forward measures), the corresponding probability density functions can
be approximated through a (truncated) cumulant expansion, whose highest order term
characterizes the order of the approximation error. Through Monte Carlo experiments,
these authors have reported an accuracy level that is much higher than the one associated
with earlier applications of Edgeworth series expansions to the pricing of Asian options—
see, for example, Turnbull and Wakeman (1991). Since the Edgeworth expansion is a series
expansion about the normal distribution, the authors argue that it seems natural that its
accuracy increases for underlying assets characterized by lower volatility regimes, as it is
the case for interest rates (when compared against the equity market).

The novel approximation for European-style swaptions proposed in this paper is based
on the conditioning approach initiated by Curran (1994) and Rogers and Shi (1995) in
the context of Asian option pricing, and extended by Nielsen and Sandmann (2002) to
a stochastic interest rate setting. This new pricing approach is restricted to a multifactor
HJM Gaussian setup, but should be faster to implement than the Edgeworth expansion
technique, and will provide explicit (and tight) bounds for the approximation error.

The analytical tractability provided by the multifactor Gaussian—but not necessarily
Markovian or time homogeneous—HJM term structure model proposed is obtained
at the expense of an important theoretical drawback: interest rates are assumed to be
normally distributed, and can therefore attain negative values with positive probability.
But even though the no-arbitrage Gaussian setup adopted in this paper is more restrictive
than, for instance, the more general affine framework used by Collin-Dufresne and
Goldstein (2003), the extremely accurate pricing solutions to be proposed in this paper can
always be used as control variates for more general diffusion pricing models. Moreover
and following, for instance Nunes, Clewlow, and Hodges (1999, theorem 1) or Kristensen
and Mele (2011, definition 1), the Gaussian pricing formulae offered in this paper can
also be used as the (most accurate) zero-order term of the perturbed or Taylor series
expansion pricing solution associated to a more general affine term structure model.
However, the extension to stochastic volatility term structure models is outside the scope
of the present paper, whose contribution is, nevertheless, the derivation of an extremely
accurate and controlled approximation for European-style swaptions under a multifactor
Gaussian HJM framework.5

The Gaussian framework adopted also offers a common ground for the comparison
of all alternative pricing methods. Since the conditioning approach proposed will pro-
vide extremely tight bounds for the approximation error, it will be possible to compare
rigorously the accuracy and efficiency of all the approximations already proposed in the
literature for European-style swaptions. The alternative approximations have been com-
pared in the literature against benchmark prices obtained through Monte Carlo studies
that involve different levels of accuracy. For instance, Collin-Dufresne and Goldstein
(2002, page 16) run 2 × 106 simulations, whereas Schrager and Pelsser (2006, page 689)
simulate only 500,000 paths, all using standard variance reduction techniques. Based
on a much more demanding setting—involving 109 simulations, coupled with antithetic
variates—to produce the Monte Carlo proxy of the exact swaption price, this paper will

5Following Nunes et al. (1999, equation 14) or Kristensen and Mele (2011, equation 17), the higher order
(although less significant) terms of the perturbed or Taylor series stochastic volatility expansion must be
obtained through the nontrivial differentiation of the proposed Gaussian pricing solution with respect to
the vector of state variables. Such extension is left for future research.
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show that the conditioning approach significantly improves upon the existing literature
in both speed and accuracy.

Next sections are organized as follows. Section 2 summarizes the multifactor Gaussian
HJM model adopted. Section 3 uses the conditioning approach to derive explicit lower
and upper bounds for the price of European-style swaptions. Section 4 runs several
Monte Carlo experiments to compare the accuracy and efficiency of these explicit pricing
solutions against all the approximations already proposed in the literature. The main
conclusion, stated in Section 5, is that the conditioning approach offers the best accuracy–
efficiency trade-off for the pricing of European-style swaptions.

2. MULTIFACTOR GAUSSIAN HJM MODEL

We consider a stochastic intertemporal economy defined on a finite trading interval
T = [t0, τ ], for some fixed time τ > t0. Uncertainty is represented by a filtered probability
space (�,F,Q), where all the information accruing to all the agents in the economy is
described by the augmented, right continuous, and complete filtration F ={Ft : t ∈ T }
generated through the standard Brownian motion WQ(t) ∈ Rn , initialized at zero and
defined under Q. The probability measure Q represents the martingale measure obtained
when the “money market account” is taken as the numéraire of the economy underlying
the model under analysis.6

The Gaussian HJM model under use can be formulated in terms of pure discount
bond prices, which are assumed to evolve through time (under measure Q) according to
the following stochastic differential equation:

dP(t, T)
P(t, T)

= r (t) dt + σ (t, T)′ · dWQ(t),(2.1)

where P(t, T) represents the time-t price of a (unit face value) zero-coupon bond expiring
at time T , for all T ∈ T and t ∈ [t0, T ], r(t) is the time-t instantaneous spot rate, and “·”
denotes the inner product in Rn . The n-dimensional adapted volatility function σ (·, T) :
[t0, T] → Rn is assumed to be deterministic and to satisfy the usual mild measurability
and integrability requirements—as stated, for instance, in Lamberton and Lapeyre (1996,
theorem 3.5.5)—as well as the “pull-to-par” boundary condition σ (u, u) = 0 ∈ Rn, ∀u ∈
[t0, T].

Using, for instance, Nunes (2004, proposition 2.2), it is well known that equation (2.1)
yields the following solution, for any arbitrary forward measure Qc:

P(Ta, Tb) = P(t0, Tb)
P(t0, Ta)

exp
{
−1

2
g(t0, Ta, Tb) + l(t0, Ta, Tb, Tc)

+
∫ Ta

t0
[σ (s, Tb) − σ (s, Ta)]′ · dWQc (s)

}
,

(2.2)

for t0 ≤ Ta ≤ Tb and Tc ≥ t0, with7

g(t0, Ta, Tb) :=
∫ Ta

t0
‖σ (s, Tb) − σ (s, Ta)‖2ds,(2.3)

6Meaning that the relative prices of all assets with respect to the numéraire given by a “money market
account” are Q-martingales.

7‖·‖ denotes the Euclidean norm in Rn .
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l(t0, Ta, Tb, Tc) :=
∫ Ta

t0
[σ (s, Tb) − σ (s, Ta)]′ · [σ (s, Tc) − σ (s, Ta)] ds,(2.4)

and where

dWQc (t) = dWQ(t) − σ (t, Tc) dt

is also a vector of standard Brownian motion increments in Rn —with the same standard
filtration as dWQ(t) —but defined under the Qc forward measure, which arises if the
numéraire is changed to a zero-coupon bond with maturity at time Tc, and is defined
through the Radon–Nikodým derivative

dQc

dQ

∣∣∣∣Ft = exp
[∫ t

t0
σ (s, Tc)′ · dWQ(s) − 1

2

∫ t

t0
‖σ (s, Tc)‖2ds

]
.

3. CONDITIONING APPROACH

This section adapts the conditioning approach of Nielsen and Sandmann (2002) to the
valuation of European-style receiver swaptions, that is European-style put options on a
swap rate. More precisely,8

DEFINITION 3.1. The terminal payoff of a European-style receiver swaption with strike
rate C, maturity at date T0 (≥t0), and on an interest rate swap (IRS) with a unit nominal
value and reset dates T0 < · · · < TN0−1 is equal to

[C − y0,N0 (T0)]+
N0∑

i=1

τi P(T0, Ti ),(3.1)

where τ i is the year fraction between Ti−1 and Ti (under some market daycount conven-
tion), and

y0,N0 (T0) = 1 − P(T0, TN0 )
N0∑

i=1

τi P(T0, Ti )

(3.2)

is the time-T0 spot swap rate.

Definition 3.1 assumes, as is common market practice, that the swaption maturity co-
incides with the first reset date of the underlying IRS (i.e., time T0). Therefore, combining
expressions (3.1) and (3.2), and as shown, for instance, by Singleton and Umantsev (2002,
equation 5.2), the terminal payoff of the T0 × TN0 receiver swaption can be rewritten as[

C
N0∑

i=1

τi P(T0, Ti ) + P(T0, TN0 ) − 1

]+

,(3.3)

8European-style payer swaptions can be priced through the payer–receiver swaption parity stated, for
instance, in Longstaff, Santa-Clara, and Schwartz (2001, page 2073): a long position in a European-style
receiver swaption and a short position in a European-style payer swaption (with the same strike rate and
tenor structure) is equivalent to a receiver forward swap with start date at the maturity date of the swaptions
and fixed interest rate equal to the strike rate.
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which corresponds to the terminal value of a European-style call with strike equal to the
unit nominal value, with maturity at time T0 , and on a coupon-bearing bond promising
N0 cash flows of value Cτi + 1{i=N0} at times Ti (with i = 1 , . . . , N0), where 1{A} is the
indicator function of set A.

For simplicity, the pricing bounds derived in the next lines will be specified for
European-style calls on a coupon-bearing bond. Given the equivalence between ex-
pressions (3.1) and (3.3), the valuation formulas obtained are also applied, in Section 4,
to the pricing of European-style receiver swaptions.

3.1. Lower Bound

Denote by ct0 [B(t0); X; T0] the time-t0 fair price of a European-style call with strike
X , expiry date at time T0 (≥t0), and on a coupon-bearing bond with present value
B(t0). Following Geman, El Karoui, and Rochet (1995), and since Q0 is assumed to be a
martingale measure with respect to the numéraire P(t0, T0), then9

ct0 [B(t0); X; T0] = P(t0, T0)EQ0{[B(t0) − X]+|Ft0}.(3.4)

As in Rogers and Shi (1995), let Z ∈ R be any FT0 -measurable random variable. From
the law of iterative expectations and using Jensen’s inequality,

ct0 [B(t0); X; T0] = P(t0, T0)EQ0{EQ0 [(B(t0) − X)+|Z]|Ft0}
≥ cl

t0 [B(t0); X; T0],

(3.5)

where

cl
t0 [B(t0); X; T0] := P(t0, T0)EQ0{[EQ0 (B(t0)|Z) − X]+|Ft0}(3.6)

defines a lower bound for the true call option price. The next proposition provides an
explicit solution for the conditional expectation on the right-hand side of equation (3.6),
by assuming a standard normal distribution for the conditioning variable. Later—in
Proposition 3.6—the conditioning variable Z will be completely defined in order to
minimize the inherent approximation error.

PROPOSITION 3.2. Under the Gaussian HJM model (2.1), the time-t0 price of a
European-style call with strike X , with maturity at time T0 (≥t0), and on a coupon-bearing
bond with present value B(t0) and generating N0 cash flows of value ki (i = 1 , . . . , N0) at
times T1 < · · · < TN0 (with T1 ≥ T0), is bounded from below by

cl
t0 [B(t0); X; T0] = P(t0, T0)

×EQ0

⎧⎨⎩
[

N0∑
i=1

ki
P(t0, Ti )
P(t0, T0)

exp
(

−1
2

m(t0, T0, Ti )2 + m(t0, T0, Ti )Z
)

− X

]+∣∣∣∣∣∣Ft0

⎫⎬⎭ ,

(3.7)

9EQc (Y|Ft0 ) denotes the expected value of the random variable Y , conditional on Ft0 , and computed
under the equivalent martingale measure Qc .
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where Z�N1(0, 1) and10

m(t0, T0, Ti ) := EQ0

{
Z
∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣Ft0

}
.(3.8)

Proof . Since N0 cash flows ki (i = 1 , . . . , N0) will be generated by the underlying
coupon bond between the option’s expiry date (T0) and the bond’s maturity date (TN0 ),
then

EQ0 [B(t0)|Z] = EQ0

[
N0∑

i=1

ki P(T0, Ti )

∣∣∣∣∣ Z

]

=
N0∑

i=1

kiEQ0 [P(T0, Ti )|Z].

(3.9)

The conditional expectation of each discount factor follows from equation (2.2), with Ta

= Tc = T0 and Tb = Ti:

EQ0 [P(T0, Ti )|Z] = P(t0, Ti )
P(t0, T0)

exp
[
−1

2
g(t0, T0, Ti )

]
EQ0

{
exp

[∫ T0

t0
(σ (s, Ti ) − σ (s, T0))′ · dWQ0 (s)

]∣∣∣∣ Z
}

.

(3.10)

Assuming that Z possesses a standard univariate normal distribution, since∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s) � N1(0, g(t0, T0, Ti )),

and following, for instance, Mood, Graybill, and Boes (1974, page 167), then∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣ Z � N1(m(t0, T0, Ti )Z, v(Ti , Ti )2),(3.11)

with

v(Ti , Ti )2 := g(t0, T0, Ti ) − m(t0, T0, Ti )2,(3.12)

and where the deterministic function m(t0, T0, Ti) is defined by the covariance (3.8).
Applying result (3.11) and attending to the definition of the moment generating func-

tion of a normal random variable, equation (3.10) becomes

EQ0 [P(T0, Ti )|Z] = P(t0, Ti )
P(t0, T0)

exp
[
−1

2
m(t0, T0, Ti )2 + m(t0, T0, Ti )Z

]
.(3.13)

Combining equations (3.6), (3.9), and (3.13), the lower bound (3.7) follows immediately
for the call price. �

Note that the quasi-analytical pricing solution (3.7) still involves a single integration
over the domain of Z. In order to obtain an explicit solution for equation (3.7), and

10Hereafter, the notation Y�N1(μ, σ 2) is intended to mean that the one-dimensional random variable
Y is normally distributed, with mean μ and variance σ 2.
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following Nielsen and Sandmann (2002), we consider the following family {P,N ,M} of
disjoint sets such that P ∪ N ∪ M = {1, . . . , N0} ≡ D:

P := {i ∈ D : m(t0, T0, Ti ) > 0},(3.14)

N := {i ∈ D : m(t0, T0, Ti ) < 0},(3.15)

and

M := {i ∈ D : m(t0, T0, Ti ) = 0}.(3.16)

Hence, equation (3.7) can be rewritten as

cl
t0 [B(t0); X; T0] = P(t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P(t0, Ti )
P(t0, T0)

fi (Z) − X̂

]+∣∣∣∣∣Ft0

}
,(3.17)

where

X̂ := X −
∑
i∈M

ki
P(t0, Ti )
P(t0, T0)

,(3.18)

and

fi (Z) := exp
(

−1
2

m(t0, T0, Ti )2 + m(t0, T0, Ti )Z
)

.(3.19)

Since ki and P(t0,Ti )
P(t0,T0) are positive and because all functions fi(Z) are convex, for all values

of i, then equation ∑
i∈P∪N

ki
P(t0, Ti )
P(t0, T0)

fi (Z) = X̂(3.20)

possesses either zero, one or two solutions in Z. Similarly to Nielsen and Sandmann
(2002, Definition 1),

DEFINITION 3.3. Let the two possible solutions of equation (3.20) be represented by
z∗ and z∗, where z∗ ≤ z∗.

• If P = ∅ but N = ∅, then define the unique solution by z∗ and set z∗ = −∞.
• If P = ∅ but N = ∅, then define the unique solution by z∗ and set z∗ = ∞.
• If P = ∅ and N = ∅, then either two solutions z∗ and z∗ exist or no solution exists

and z∗ = z∗ = ∞.

PROPOSITION 3.4. Under the assumptions of Proposition 3.2,

cl
t0 [B(t0); X; T0] =

∑
i∈P∪N

ki P(t0, Ti )�[z∗ − m(t0, T0, Ti )] − X̂P(t0, T0)�(z∗)

+
∑

i∈P∪N
ki P(t0, Ti )�[m(t0, T0, Ti ) − z∗] − X̂P(t0, T0)�(−z∗),

(3.21)

where �(·) represents the cumulative density function of the univariate standard normal
distribution, X̂ is defined by equation (3.18), while z∗ and z∗ are given by Definition 3.3.
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Proof . Applying Definition 3.3, equation (3.17) can be restated as

cl
t0 [B(t0); X; T0] = P(t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P(t0, Ti )
P(t0, T0)

fi (Z) − X̂

]
1{Z≤z∗}

∣∣∣∣∣Ft0

}

+ P(t0, T0)EQ0

{[ ∑
i∈P∪N

ki
P(t0, Ti )
P(t0, T0)

fi (Z) − X̂

]
1{Z≥z∗}

∣∣∣∣∣Ft0

}
.

(3.22)

Since Z�N1(0, 1) and using equation (3.19), equation (3.22) yields

cl
t0 [B(t0); X; T0]

=
∑

i∈P∪N
ki P(t0, Ti )

∫ z∗

−∞

1√
2π

exp
{
−1

2
[z − m(t0, T0, Ti )]2

}
dz − X̂P(t0, T0)�(z∗)

+
∑

i∈P∪N
ki P(t0, Ti )

∫ ∞

z∗

1√
2π

exp
{
−1

2
[z − m(t0, T0, Ti )]2

}
dz − X̂P(t0, T0)�(−z∗),

and equation (3.21) follows immediately. �
Instead of the method proposed by Nielsen and Sandmann (2002) that relies on

the numerical solution of equation (3.20), one could also have solved equation (3.7)
through Lord (2006, theorem 1). However, and if the covariance function m(t0, T0,
Ti) is not monotone in Ti, Lord (2006, theorem 1) would require the numerical and
time-consuming minimization of the function EQ0 ( B(t0)| Z).

The pricing solution (3.21) will only become a completely explicit solution after the
specification of the conditioning random variable Z, which will define the deterministic
function m(t0, T0, Ti). For that purpose, and following Rogers and Shi (1995) and Nielsen
and Sandmann (2002), the minimization of the approximation error will be pursued.

3.2. Upper Bound

Following Rogers and Shi (1995, equation 3.5),

EQ0{EQ0 [(B(t0) − X)+|Z] − [EQ0 (B(t0)|Z) − X]+|Ft0} ≤ 1
2
EQ0{

√
var[B(t0)|Z]|Ft0},

(3.23)

where

var[B(t0)|Z] := EQ0{[B(t0) − EQ0 (B(t0)|Z)]2|Z}(3.24)

represents the conditional variance of the time-T0 underlying coupon bond price. There-
fore,

PROPOSITION 3.5. Under the Gaussian HJM model (2.1), the time-t0 price of a
European-style call with strike X , with maturity at time T0 (≥t0), and on a coupon-bearing
bond with present value B(t0) and generating N0 cash flows of value ki (i = 1 , . . . , N0) at
times T1 < · · · < TN0 (with T1 ≥ T0), is bounded from above by

cu
t0 [B(t0); X; T0] = cl

t0 [B(t0); X; T0] + εt0 [B(t0); X; T0],(3.25)
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where the lower bound cl
t0 [B(t0); X; T0] is given by Proposition 3.4 and the implicit approxi-

mation error is defined by

εt0 [B(t0); X; T0] := 1
2

P(t0, T0)
√
EQ0{var[B(t0)|Z]|Ft0},(3.26)

with

EQ0{var[B(t0)|Z]|Ft0} =
N0∑

i=1

N0∑
j=1

ki kj
P(t0, Ti )P(t0, Tj )

P(t0, T0)2

× {exp[l(t0, T0, Ti , Tj )] − exp[m(t0, T0, Ti )m(t0, T0, Tj )]}.

(3.27)

Proof . Multiplying both sides of inequality (3.23) by the discount factor P(t0, T0) and
applying Cauchy–Schwarz inequality, as in Nielsen and Sandmann (2002), then

ct0 [B(t0); X; T0] − cl
t0 [B(t0); X; T0] ≤ 1

2
P(t0, T0)

√
EQ0{var[B(t0)|Z]|Ft0},

and equations (3.25) and (3.26) follow.
Concerning the conditional variance, equations (2.2) and (3.13) yield

B(t0) − EQ0 (B(t0)|Z)

=
N0∑

i=1

ki
P(T0, Ti )
P(t0, T0)

{
exp

[
−1

2
g(t0, T0, Ti ) +

∫ T0

t0
(σ (s, Ti ) − σ (s, T0))′ · dWQ0 (s)

]
− exp

[
−1

2
m(t0, T0, Ti )2 + m(t0, T0, Ti )Z

]}
.

Applying definition (3.24) and using the conditional probability distribution (3.11), then

var[B(t0)|Z] =
N0∑

i=1

N0∑
j=1

ki kj
P(t0, Ti )P(t0, Tj )

P(t0, T0)2
{exp[v(Ti , Tj )2] − 1}

× exp
{
[m(t0, T0, Ti ) + m(t0, T0, Tj )]Z − 1

2

[
m(t0, T0, Ti )2 + m(t0, T0, Tj )2]},

(3.28)

where

v(Ti , Tj )2 := l(t0, T0, Ti , Tj ) − m(t0, T0, Ti )m(t0, T0, Tj )(3.29)

corresponds to the conditional covariance between
∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s)

and
∫ T0

t0
[σ (s, Tj ) − σ (s, T0)]′ · dWQ0 (s). Taking expectations of both sides of equa-

tion (3.28), and since Z�N1(0, 1), the analytical solution (3.27) arises. �
Proposition 3.5 shows that with the purpose of minimizing the option’ approximation

error, Z shall be chosen in order to reduce the quantity (3.27). The next proposition
provides a first-order approximation for the (unknown) arg minZ EQ0{var[B(t0)|Z]|Ft0}.
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PROPOSITION 3.6. Under the Gaussian HJM model (2.1), if

Z := 1
α

N0∑
i=1

ki
P(t0, Ti )
P(t0, T0)

∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s),(3.30)

with

α2 :=
N0∑

i=1

N0∑
j=1

ki kj
P(t0, Ti )P(t0, Tj )

P(t0, T0)2
l(t0, T0, Ti , Tj ),(3.31)

then

Z � N1(0, 1),(3.32)

m(t0, T0, Ti ) = 1
α

N0∑
j=1

kj
P(t0, Tj )
P(t0, T0)

l(t0, T0, Tj , Ti ),(3.33)

and

EQ0{var[B(t0)|Z]|Ft0} ≈ 0.(3.34)

Proof . From equation (3.31), since α2 = EQ0 [(αZ)2|Ft0 ], with Z defined through
equation (3.30), then condition (3.32) is verified.

Using definition (3.8), then

m(t0, T0, Ti ) = 1
α

N0∑
j=1

kj
P(t0, Tj )
P(t0, T0)

EQ0

{∫ T0

t0
[σ (s, Tj ) − σ (s, T0)]′ · dWQ0 (s)

×
∫ T0

t0
[σ (s, Ti ) − σ (s, T0)]′ · dWQ0 (s)

∣∣∣∣Ft0

}
,

which yields equation (3.33) after considering definition (2.4).
Finally, applying the first-order approximation exp (x) ≈ 1 + x to equation (3.27), then

EQ0{var[B(t0)|Z]|Ft0} ≈
N0∑

i=1

N0∑
j=1

ki kj
P(t0, Ti )P(t0, Tj )

P(t0, T0)2

× {l(t0, T0, Ti , Tj ) − m(t0, T0, Ti )m(t0, T0, Tj )}.

(3.35)

Moreover and using the analytical solutions (3.31) and (3.33), it follows that

m(t0, T0, Ti ) m(t0, T0, Tj )

=

⎡⎣ N0∑
p=1

kp
P(t0, Tp)
P(t0, T0)

l(t0, T0, Tp, Ti )

⎤⎦⎡⎣ N0∑
q=1

kq
P(t0, Tq )
P(t0, T0)

l(t0, T0, Tq , Tj )

⎤⎦
N0∑

p=1

N0∑
q=1

kpkq
P(t0, Tp)P(t0, Tq )

P(t0, T0)2
l(t0, T0, Tp, Tq )

.
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Therefore,

N0∑
i=1

N0∑
j=1

ki kj
P(t0, Ti )P(t0, Tj )

P(t0, T0)2
m(t0, T0, Ti )m(t0, T0, Tj )

=

N0∑
p=1

N0∑
i=1

kpki
P(t0, Tp)P(t0, Ti )

P(t0, T0)2
l(t0, T0, Tp, Ti )

N0∑
p=1

N0∑
q=1

kpkq
P(t0, Tp)P(t0, Tq )

P(t0, T0)2
l(t0, T0, Tp, Tq )

×
⎡⎣ N0∑

q=1

N0∑
j=1

kqkj
P(t0, Tq )P(t0, Tj )

P(t0, T0)2
l(t0, T0, Tq , Tj )

⎤⎦
=

N0∑
i=1

N0∑
j=1

ki kj
P(T0, Ti )P(T0, Tj )

P(t0, T0)2
l(t0, T0, Ti , Tj ),

where the second equality follows by replacing i with q in the numerator of the second
line and q with i in the third line. Consequently, the right-hand side of equation (3.35)
becomes equal to zero, i.e., result (3.34) is obtained. �

4. NUMERICAL ANALYSIS

The purpose of the numerical experiments contained in this section is to compare the
accuracy–efficiency performance of the conditioning approach against the rank 1 ap-
proximation of Brace and Musiela (1994), the lognormal approximation of Pang (1996),
the stochastic duration approach of Munk (1999), the Edgeworth expansion technique
of Collin-Dufresne and Goldstein (2002), the hyperplane approximation of Singleton
and Umantsev (2002), and the low-variance martingale method of Schrager and Pelsser
(2006).

Even though the pricing bounds proposed in Section 3 are applicable to the more
general class of HJM Gaussian term structure models, and in order to compare all the
approximations proposed in the literature for European-style swaptions, all numerical
examples will be run under the nested n-factor affine A0(n) specification that is required
by both the hyperplane and the low-variance approximations. More precisely, a Gauss–
Markov and time-inhomogeneous version of the Duffie and Kan (1996) model will be
considered, which specifies the short-term interest rate r(t) as an affine function of the
model’s factors:

r (t) = f + G ′ · Y(t),(4.1)

where f ∈ R and G ∈ Rn are the model’s parameters, while Y(t) ∈ Rn denotes the time-
t vector of state variables. Additionally, the state variables are assumed to follow a
multivariate and time-inhomogeneous elastic random walk:

dY(t) = (a · Y(t) + b) dt + 	 · dWQ(t),(4.2)

where a, 	 ∈ Rn×n , and b ∈ Rn are the model’s parameters.
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Given the affine specifications adopted for the drift and the instantaneous variance of
the stochastic differential equation (4.2), it is easy to show—see, for instance, Langetieg
(1980, equations 30, 32, and 33)—that pure discount bond prices are exponential-affine
functions of the state variables:

P(t, T) = exp[A(t, T) + B(t, T)′ · Y(t)],(4.3)

where

B(t, T)′ = G ′ · a−1 · [In − ea(T−t)],(4.4)

A(t, T) = (T − t)(G ′ · a−1 · b − f ) + B(t, T)′ · a−1 · [b + 	 · 	′ · (a−1)′ · G]

+ 1
2

G ′ · a−1 · [(T − t)	 · 	′ + 
(t, T)] · (a−1)′ · G,

(4.5)

and


(t, T) :=
∫ T

t
ea(T−s) · 	 · 	′ · ea′(T−s)ds,(4.6)

with In ∈ Rn×n denoting an identity matrix. Note that equations (4.4) and (4.5) assume
that matrix a is nonsingular. If this is not the case, functions A(t, T) and B(t, T) can always
be obtained through the more general solutions described in Lund (1994, appendix A).
Moreover, function 
(t, T) can be computed explicitly from Langetieg (1980, footnote
23), as long as matrix a is diagonalizable; otherwise, it is always possible to evaluate

(t, T) numerically using Padé approximations with scaling and squaring, based on Van
Loan (1978, Theorem 1).

Using the diffusion process (4.2), applying Itô’s lemma to equation (4.3), and consider-
ing the stochastic differential equation (2.1), it is easy to show that the A0(n) specification
adopted can be cast into the more general Gaussian HJM model presented in Section 2,
as long as two conditions are met:

σ (t, T) = 	′ · B(t, T);(4.7)

and the discount function initially “observed” in the market must be replaced by equa-
tion (4.3). Adopting these two conditions, the pricing solutions proposed in Section 3
will be used under the nested A0(n) specification, and function l(t0, Ta, Tb, Tc) will be
computed explicitly—see Appendix A.

Table 4.1 values at-the-money-forward (ATMF) European-style swaptions, using dif-
ferent valuation approaches, and under the three-factor Gaussian and affine model spec-
ified in Collin-Dufresne and Goldstein (2002, exhibit 1) or Schrager and Pelsser (2006,
table 4.1), i.e., for f = 6%, G ′ = [1 1 1], Y(t) = [1% 0.5% −2%], a =
diag{−1, −0.2, −0.5}, b′ = [ 0 0 0 ], and 	 = diag{1%, 0.5%, 0.2%} · L, where L is
the lower triangular matrix obtained from the Cholesky decomposition of a (3 × 3)
correlation matrix R, with R12 = −0.2, R13 = −0.1, and R23 = 0.3. Four different option
maturities (of 1, 2 , 5, and 10 years) and eight different swap maturities (of 1, 2, 5, 10, 15,
20, 25, and 30 years) are considered, yielding a total of 32 swaptions.

Since there is no exact pricing solution in the literature for European-style swaptions
under multifactor term structure models, the accuracy of each alternative valuation ap-
proach is measured by its percentage error with respect to a proxy of the exact swaption
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price. Such a proxy is obtained through Monte Carlo simulation, using the exact proba-
bility distribution of the state variables at the maturity date of the swaption contract—as
described in Appendix B. All Monte Carlo experiments are run over 109 paths, and using
standard antithetic variables. Consequently, for all the 32 swaptions valued, the ratio be-
tween the standard error and the Monte Carlo price estimate (labeled as the percentage
standard error) is always below 0.3 basis points.

The Monte Carlo simulations were run under version 1.9.4.13 of GNU Pascal and
on an Intel Xeon 3.33 GHz processor with 12 GB of RAM memory, whereas all the
approximations tested (from the fourth to the last column of Table 4.1) were implemented
through Matlab (R2010a). All nonlinear equations involved in the implementation of
the conditioning approach, the rank 1 approximation, the stochastic duration approach,
or the hyperplane approximation were solved through the built-in function “fsolve” of
Matlab.11

The lower bound (3.21) provided by the conditioning approach proposed is the most
accurate approximation tested: It yields a mean absolute percentage pricing error (MAPE,
henceforth) of only 0.14 basis points, which is even smaller than the Monte Carlo per-
centage standard error. Moreover, the tight upper bound shown on the fifth column of
Table 4.1 also provides a sharp forecast for the maximum approximation error attached
to the conditioning approach: On average, the maximum absolute percentage pricing
error associated to the lower bound approximation is equal to only 3.96 basis points (i.e.,
0.0410%–0.0014% ).

For ATMF swaptions, the low-variance martingale approach of Schrager and Pelsser
(2006), the lognormal approximation, and the hyperplane approximation of Singleton
and Umantsev (2002)—which is implemented at a 1% significance level—are almost
as accurate as the conditioning approach.12 Additionally, the low-variance martingale
approach is also the most efficient approximation: The whole set of 32 swaptions contracts
is priced under a CPU time of only 0.29 seconds.

The Edgeworth expansion method of Collin-Dufresne and Goldstein (2002) is the
most time-consuming approximation tested: It takes more than 1,903 seconds to price
all the 32 swaptions. Since the mth moment of the probability distribution of the model’s
factors Y (T0) requires the computation of (N0)m terms (where N0 represents the number
of cash flow payment dates of the underlying swap), then the inefficiency of the Edgeworth
expansion increases with the time to maturity of the underlying interest rate swap: For
instance, the CPU times associated to the 10 × 1 and the 10 × 30 swaptions are equal to
0.033 and 239.37 seconds, respectively. Given the inefficiency of the Edgeworth expansion
for long maturity swaps and following, for instance, Chu and Kwok (2007, page 382), the

11All programming codes and data used in this paper are available in the following URL:
http://home.iscte.pt/∼ jpvn/weblinks/CodesJPNandPP.zip.

12Note that equation (A.3) of Schrager and Pelsser (2006, page 692) contains a typo and has been replaced
by

σn,N =

√√√√√ M∑
i=1

	̂2
(i i )

(
C̃(i )

n,N
)2 [ e2A(i i )Tn − 1

2A(i i )

]
+ 2

M∑
i=1

M∑
j=i+1

ρi j 	̂(i i )	̂( j j )C̃
(i )
n,NC̃( j )

n,N

[
e[A(i i )+A( j j ) ]Tn − 1

A(i i ) + A( j j )

]
,

using the notation of the original paper.
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Taylor series expansion of the log-characteristic function of Y (T0) is truncated only up
to the third order.13

Overall, the less accurate methods are the rank 1 approximation, and the stochastic du-
ration approach: Their average absolute percentage errors are about 200 and 118 times
higher, respectively, than the MAPE associated to the lower bound of the condition-
ing approach. Moreover, these two approximations systematically overvalue the ATMF
swaption contracts under analysis since their reported (positive) mean percentage errors
are consistently identical to the corresponding MAPE. Nevertheless, and since swaptions
are usually quoted in flat yield volatilities,14 the penultimate line of Table 4.1 recomputes
the mean absolute errors of each analytical approximation in terms of the Black (1976)
flat yield volatility implicit to each swaption price. As expected, the error differences
among all pricing methods are now less pronounced: All mean absolute volatility errors
are lower than 1 basis point, and hence, are also clearly within the typical bid-ask spreads
observed in the swaptions market.15

The most challenging setup to test the accuracy of all the competing pricing approxi-
mations corresponds to the valuation of out-the-money-forward (OTMF) swaption con-
tracts, i.e., option contracts with zero intrinsic value. For this purpose, Table 4.2 prices
OTMF European-style swaptions under the three-factor Gaussian and affine model
adopted in Table 4.1, and for two different strikes that are set at 85% and 90% of the
current forward swap rate. Three different option maturities (of 1, 2, and 5 years) and six
different swap maturities (of 1, 2, 5, 10, 20, and 30 years) are considered, yielding a total
of 36 swaptions.

Percentage pricing errors are computed, under different analytical approximations, for
only 27 out of the whole set of 36 swaption contracts. For nine of the swaption contracts
considered, the Monte Carlo price estimate is so close to zero (and its standard error
is so large) that the percentage pricing errors would not be meaningful for any of the
analytical approximations tested. All the nine contracts with missing pricing errors in
Table 4.2 possess Monte Carlo price estimates below 10−6 as well as percentage standard
errors above 0.3%.

As before, the lower bound of the conditioning approach yields the most precise
approximation for OTMF swaptions, with a MAPE of only 2.18 basis points. However,
and specially for swaptions on long-dated swaps (with a time to maturity of 10 or more
years), the upper bound is so loose that it can no longer serve as an indicator for the
error of the approximation.

Similarly to Table 4.1, the low-variance approximation of Schrager and Pelsser (2006)
is still the fastest pricing methodology (with a CPU time of only 0.27 seconds), but now

13Note that equations (26) and (30) of Collin-Dufresne and Goldstein (2002, page 16) contain a typo and
have been replaced by

B0(τ ) = −δτ + 1
2

∑
i , j

σi σ j ρi j

κi κ j
[τ − Bκi (τ ) − Bκ j (τ ) + Bκi +κ j (τ )],

and

M(τ ) =
∑
i , j

σi σ j ρi j

κ j
Fi

[
Bκi (τ ) − e−κ j (W−T) − e−κi τ−κ j (W−t)

κi + κ j

]
+ 1

2

∑
i , j

σi σ j ρi j Fi Fj Bκi +κ j (τ ),

respectively, using the notation of the original paper.
14I.e., under the usual “market” assumption of lognormally distributed forward swap rates.
15For instance, in 2011, the average bid-ask spread of US ATMF European-style swaptions (for the

maturities and tenors described in the first column of Table 4.1) ranged between 30 and 67 basis points—
data collected daily from Bloomberg between January 01, 2011 and December 31, 2011.



PRICING SWAPTIONS UNDER MULTIFACTOR GAUSSIAN HJM MODELS 779

T
A

B
L

E
4.

2
P

ri
ce

s
of

O
T

M
F

E
ur

op
ea

n-
St

yl
e

R
ec

ei
ve

r
Sw

ap
ti

on
s

on
P

la
in

-V
an

ill
a

In
te

re
st

R
at

e
Sw

ap
s

w
it

h
Se

m
ia

nn
ua

lC
as

h
F

lo
w

s
an

d
un

de
r

a
T

hr
ee

-F
ac

to
r

G
au

ss
-M

ar
ko

v
H

JM
M

od
el

P
er

ce
nt

ag
e

P
ri

ci
ng

E
rr

or
s

of
A

na
ly

ti
ca

lA
pp

ro
xi

m
at

io
ns

M
on

te
C

ar
lo

C
A

B
ou

nd
s

Sw
ap

ti
on

×
Sw

ap
P

ri
ce

%
SE

L
ow

er
U

pp
er

LV
A

H
A

E
E

SD
L

A
R

1A

P
an

el
A

:S
w

ap
ti

on
s

qu
ot

ed
at

85
%

of
th

e
fo

rw
ar

d
sw

ap
ra

te
1

×
1

0.
00

01
54

0.
01

11
%

0.
01

97
%

0.
02

55
%

1.
07

49
%

0.
01

99
%

0.
00

75
%

0.
09

13
%

0.
01

17
%

0.
04

88
%

1
×

2
0.

00
01

03
0.

01
67

%
−0

.0
00

9%
0.

09
41

%
1.

88
74

%
0.

00
70

%
0.

06
03

%
0.

31
09

%
−0

.0
70

7%
0.

29
50

%
1

×
5

0.
00

00
13

0.
05

43
%

−0
.1

41
2%

7.
35

71
%

6.
93

17
%

0.
31

34
%

4.
33

18
%

−0
.3

88
6%

−0
.9

91
7%

2.
60

53
%

1
×

10
0.

00
00

00
0.

49
28

%
–

–
–

–
–

–
–

–
1

×
20

0.
00

00
00

72
.5

13
2%

–
–

–
–

–
–

–
–

1
×

30
0.

00
00

00
N

A
–

–
–

–
–

–
–

–

2
×

1
0.

00
02

77
0.

00
89

%
0.

00
09

%
0.

00
47

%
0.

89
82

%
0.

00
12

%
−0

.0
20

6%
0.

11
94

%
−0

.0
06

5%
0.

02
42

%
2

×
2

0.
00

02
54

0.
01

17
%

0.
01

50
%

0.
06

74
%

1.
47

57
%

0.
02

33
%

−0
.0

24
2%

0.
48

51
%

−0
.0

46
2%

0.
21

99
%

2
×

5
0.

00
00

82
0.

02
52

%
0.

01
15

%
1.

61
28

%
4.

84
10

%
0.

38
09

%
1.

49
67

%
0.

35
86

%
−0

.6
44

3%
1.

53
82

%
2

×
10

0.
00

00
05

0.
10

10
%

−0
.0

29
0%

65
.5

14
0%

21
.0

19
0%

3.
03

52
%

24
.1

31
9%

−1
.8

66
2%

−3
.2

95
5%

4.
29

96
%

2
×

20
0.

00
00

00
2.

25
76

%
–

–
–

–
–

–
–

–
2

×
30

0.
00

00
00

23
.4

07
9%

–
–

–
–

–
–

–
–

5
×

1
0.

00
03

73
0.

00
76

%
0.

00
57

%
0.

00
91

%
0.

81
07

%
0.

00
60

%
−0

.0
21

1%
0.

13
88

%
−0

.0
01

6%
0.

02
35

%
5

×
2

0.
00

04
22

0.
00

93
%

−0
.0

06
2%

0.
02

86
%

1.
19

62
%

0.
00

25
%

−0
.0

91
4%

0.
50

94
%

−0
.0

62
5%

0.
13

00
%

5
×

5
0.

00
02

40
0.

01
56

%
0.

01
42

%
0.

61
21

%
3.

58
97

%
0.

32
48

%
0.

26
54

%
0.

75
78

%
−0

.5
16

7%
0.

85
44

%
5

×
10

0.
00

00
40

0.
03

99
%

−0
.0

15
3%

9.
25

30
%

14
.4

55
8%

2.
30

50
%

10
.4

05
7%

−0
.2

69
1%

−2
.4

44
4%

2.
13

06
%

5
×

20
0.

00
00

01
0.

30
67

%
–

–
–

–
–

–
–

–
5

×
30

0.
00

00
00

1.
57

01
%

–
–

–
–

–
–

–
–

(c
on

ti
nu

ed
)



780 J. P. VIDAL NUNES AND P. M. SILVA PRAZERES

T
A

B
L

E
4.

2
C

on
ti

nu
ed

P
er

ce
nt

ag
e

P
ri

ci
ng

E
rr

or
s

of
A

na
ly

ti
ca

lA
pp

ro
xi

m
at

io
ns

M
on

te
C

ar
lo

C
A

B
ou

nd
s

Sw
ap

ti
on

×
Sw

ap
P

ri
ce

%
SE

L
ow

er
U

pp
er

LV
A

H
A

E
E

SD
L

A
R

1A

P
an

el
B

:S
w

ap
ti

on
s

qu
ot

ed
at

90
%

of
th

e
fo

rw
ar

d
sw

ap
ra

te
1

×
1

0.
00

04
37

0.
00

67
%

−0
.0

03
9%

−0
.0

01
9%

0.
45

71
%

−0
.0

03
7%

−0
.0

15
0%

0.
04

76
%

−0
.0

07
5%

0.
01

64
%

1
×

2
0.

00
04

32
0.

00
85

%
−0

.0
06

4%
0.

01
75

%
0.

77
05

%
−0

.0
03

0%
−0

.0
44

5%
0.

21
24

%
−0

.0
36

6%
0.

18
72

%
1

×
5

0.
00

01
85

0.
01

59
%

−0
.0

12
4%

0.
54

69
%

2.
57

83
%

0.
16

43
%

0.
10

77
%

0.
01

49
%

−0
.3

42
7%

1.
59

81
%

1
×

10
0.

00
00

23
0.

04
60

%
−0

.0
51

9%
11

.6
61

5%
10

.4
28

1%
1.

44
25

%
5.

39
39

%
−1

.3
53

1%
−1

.6
90

2%
4.

58
59

%
1

×
20

0.
00

00
00

0.
42

29
%

–
–

–
–

–
–

–
–

1
×

30
0.

00
00

00
2.

40
67

%
–

–
–

–
–

–
–

–

2
×

1
0.

00
06

42
0.

00
58

%
−0

.0
02

0%
−0

.0
00

1%
0.

40
63

%
−0

.0
01

8%
−0

.0
14

0%
0.

08
54

%
−0

.0
05

5%
0.

01
49

%
2

×
2

0.
00

07
58

0.
00

69
%

0.
00

74
%

0.
02

59
%

0.
63

97
%

0.
01

12
%

−0
.0

38
7%

0.
34

38
%

−0
.0

20
4%

0.
14

83
%

2
×

5
0.

00
05

23
0.

01
06

%
0.

01
65

%
0.

28
26

%
1.

90
30

%
0.

16
84

%
−0

.1
35

9%
0.

37
38

%
−0

.2
52

4%
0.

96
71

%
2

×
10

0.
00

01
43

0.
02

16
%

−0
.0

18
3%

2.
48

87
%

7.
11

71
%

1.
11

53
%

1.
48

61
%

−0
.4

12
4%

−1
.2

30
4%

2.
40

83
%

2
×

20
0.

00
00

07
0.

08
90

%
0.

02
65

%
67

.5
23

2%
32

.4
35

5%
4.

42
50

%
24

.2
70

4%
−2

.6
39

6%
−4

.0
46

0%
5.

09
62

%
2

×
30

0.
00

00
01

0.
26

61
%

0.
06

30
%

70
0.

04
88

%
69

.2
66

8%
7.

39
14

%
59

.6
13

1%
−4

.7
58

7%
−6

.6
44

3%
7.

08
60

%

5
×

1
0.

00
07

56
0.

00
53

%
−0

.0
03

8%
−0

.0
02

0%
0.

37
44

%
−0

.0
03

6%
−0

.0
16

8%
0.

09
73

%
−0

.0
07

4%
0.

00
95

%
5

×
2

0.
00

10
10

0.
00

60
%

0.
01

90
%

0.
03

44
%

0.
56

24
%

0.
02

32
%

−0
.0

31
4%

0.
40

12
%

−0
.0

07
6%

0.
11

67
%

5
×

5
0.

00
09

38
0.

00
82

%
−0

.0
10

0%
0.

15
11

%
1.

46
90

%
0.

12
44

%
−0

.2
61

7%
0.

59
70

%
−0

.2
38

7%
0.

54
24

%
5

×
10

0.
00

04
08

0.
01

36
%

−0
.0

11
4%

0.
93

70
%

5.
26

59
%

0.
88

92
%

−0
.0

27
1%

0.
34

07
%

−0
.9

56
7%

1.
26

40
%

5
×

20
0.

00
00

53
0.

03
60

%
−0

.0
26

5%
9.

93
83

%
22

.0
73

1%
3.

25
70

%
9.

98
60

%
−0

.7
64

4%
−3

.0
19

4%
2.

44
97

%
5

×
30

0.
00

00
11

0.
07

53
%

0.
05

11
%

49
.4

81
4%

44
.4

24
0%

5.
43

28
%

30
.0

07
0%

−1
.8

02
4%

−4
.7

93
0%

3.
38

77
%

(c
on

ti
nu

ed
)



PRICING SWAPTIONS UNDER MULTIFACTOR GAUSSIAN HJM MODELS 781

T
A

B
L

E
4.

2
C

on
ti

nu
ed

P
er

ce
nt

ag
e

P
ri

ci
ng

E
rr

or
s

of
A

na
ly

ti
ca

lA
pp

ro
xi

m
at

io
ns

M
on

te
C

ar
lo

C
A

B
ou

nd
s

Sw
ap

ti
on

×
Sw

ap
P

ri
ce

%
SE

L
ow

er
U

pp
er

LV
A

H
A

E
E

SD
L

A
R

1A

P
an

el
B

:S
w

ap
ti

on
s

qu
ot

ed
at

90
%

of
th

e
fo

rw
ar

d
sw

ap
ra

te
M

P
E

−0
.0

03
3%

34
.3

59
7%

9.
56

86
%

1.
14

27
%

6.
32

67
%

−0
.3

32
2%

−1
.1

61
7%

1.
55

73
%

M
A

P
E

0.
02

18
%

34
.3

60
0%

9.
56

86
%

1.
14

36
%

6.
38

17
%

0.
72

37
%

1.
16

26
%

1.
55

73
%

M
A

E
vo

l.
0.

00
02

%
0.

03
19

%
0.

03
11

%
0.

00
30

%
0.

01
31

%
0.

00
41

%
0.

00
37

%
0.

00
67

%
C

P
U

(s
ec

.)
17

5,
02

4.
62

5.
48

0.
27

15
.4

0
1,

90
6.

56
0.

57
2.

93
0.

60

T
hi

s
ta

bl
e

va
lu

es
36

O
T

M
F

E
ur

op
ea

n-
st

yl
e

sw
ap

ti
on

s
un

de
r

th
e

th
re

e-
fa

ct
or

G
au

ss
ia

n
an

d
af

fin
e

m
od

el
sp

ec
ifi

ed
in

T
ab

le
4.

1.
T

he
fir

st
co

lu
m

n
sh

ow
s

th
e

m
at

ur
it

y
(i

n
ye

ar
s)

of
th

e
sw

ap
ti

on
co

nt
ra

ct
an

d
of

it
s

un
de

rl
yi

ng
sw

ap
.

T
he

se
co

nd
an

d
th

ir
d

co
lu

m
ns

co
nt

ai
n

th
e

M
on

te
C

ar
lo

op
ti

on
pr

ic
e

es
ti

m
at

e
an

d
it

s
pe

rc
en

ta
ge

st
an

da
rd

er
ro

r
(%

SE
)

ob
ta

in
ed

us
in

g
10

9
pa

th
s,

st
an

da
rd

an
ti

th
et

ic
va

ri
ab

le
s,

an
d

th
e

ex
ac

t
pr

ob
ab

ili
ty

di
st

ri
bu

ti
on

of
th

e
st

at
e

va
ri

ab
le

s
at

th
e

m
at

ur
it

y
da

te
of

th
e

sw
ap

ti
on

co
nt

ra
ct

.T
he

%
SE

th
at

ar
e

no
t

av
ai

la
bl

e
(N

A
)

co
rr

es
po

nd
to

M
on

te
C

ar
lo

pr
ic

e
es

ti
m

at
es

th
at

ar
e

eq
ua

lt
o

ze
ro

.T
he

bo
un

ds
pr

ov
id

ed
by

th
e

co
nd

it
io

ni
ng

ap
pr

oa
ch

(C
A

)i
n

P
ro

po
si

ti
on

s
3.

4
an

d
3.

5
ar

e
im

pl
em

en
te

d
in

th
e

fo
ur

th
an

d
fif

th
co

lu
m

ns
.T

he
si

xt
h

co
lu

m
n

co
nt

ai
ns

th
e

lo
w

-v
ar

ia
nc

e
m

ar
ti

ng
al

e
ap

pr
ox

im
at

io
n

(L
V

A
)

of
Sc

hr
ag

er
an

d
P

el
ss

er
(2

00
6)

.T
he

hy
pe

rp
la

ne
ap

pr
ox

im
at

io
n

of
Si

ng
le

to
n

an
d

U
m

an
ts

ev
(2

00
2)

is
im

pl
em

en
te

d
at

a
1%

si
gn

ifi
ca

nc
e

le
ve

l
in

th
e

se
ve

nt
h

co
lu

m
n.

T
he

ei
gh

th
co

lu
m

n
pr

es
en

ts
th

e
E

dg
ew

or
th

ex
pa

ns
io

n
(E

E
)

m
et

ho
d

of
C

ol
lin

-D
uf

re
sn

e
an

d
G

ol
ds

te
in

(2
00

2)
us

in
g

a
th

ir
d-

or
de

r
ap

pr
ox

im
at

io
n

fo
r

th
e

lo
g-

ch
ar

ac
te

ri
st

ic
fu

nc
ti

on
of

th
e

te
rm

in
al

st
at

e
ve

ct
or

.T
he

la
st

th
re

e
co

lu
m

ns
co

nt
ai

n
th

e
pe

rc
en

ta
ge

pr
ic

in
g

er
ro

rs
ge

ne
ra

te
d

by
th

e
st

oc
ha

st
ic

du
ra

ti
on

(S
D

)
ap

pr
oa

ch
of

M
un

k
(1

99
9)

,
th

e
lo

gn
or

m
al

ap
pr

ox
im

at
io

n
(L

A
)

of
P

an
g

(1
99

6)
,

an
d

th
e

ra
nk

1
ap

pr
ox

im
at

io
n

(R
1A

)
of

B
ra

ce
an

d
M

us
ie

la
(1

99
4)

.T
he

la
st

fo
ur

lin
es

re
po

rt
m

ea
n

pe
rc

en
ta

ge
pr

ic
in

g
er

ro
rs

(M
P

E
),

m
ea

n
ab

so
lu

te
pe

rc
en

ta
ge

pr
ic

in
g

er
ro

rs
(M

A
P

E
),

m
ea

n
ab

so
lu

te
vo

la
ti

lit
y

er
ro

rs
(M

A
E

vo
l.)

,a
nd

co
m

pu
ta

ti
on

ti
m

es
(i

n
se

co
nd

s)
.A

ll
pe

rc
en

ta
ge

er
ro

rs
ar

e
co

m
pu

te
d

ag
ai

ns
t

th
e

M
on

te
C

ar
lo

pr
ic

e
es

ti
m

at
e,

ex
ce

pt
fo

r
th

e
ni

ne
co

nt
ra

ct
s

w
it

h
pe

rc
en

ta
ge

st
an

da
rd

er
ro

rs
ab

ov
e

0.
3%

.



782 J. P. VIDAL NUNES AND P. M. SILVA PRAZERES

this is also the most inaccurate approximation tested—yielding an average percentage
error above 9.56%. The sixth column of Table 4.2 shows that the significant upward bias
of the low-variance approximation is mainly due to the large pricing errors attached to
the swaption contracts on 20 and 30 years’ interest rate swaps, which were not considered
in Schrager and Pelsser (2006, table 6.2). However, and since these swaption contracts
with long-term tenors possess small dollar values, the penultimate line of Table 4.2 shows
that the corresponding mean absolute Black (1976) flat yield volatility errors are only
around 3 basis points.

Again, the Edgeworth expansion technique is the most time-consuming approximation
tested as well as one of the less accurate pricing methods: It yields a CPU time of 1,
906.56 seconds and a MAPE of 6.38%. Overall, the low-variance approximation and
the Edgeworth expansion technique are both dominated by the hyperplane approach,
and even by the simpler rank 1, lognormal and stochastic duration approximations: For
instance, the stochastic duration approach combines a CPU time of only 0.57 seconds
with a MAPE of 0.72%. Nevertheless, note that the mean absolute error of the Munk
(1999) approach is still 33 times higher than the MAPE reported by the lower bound of
the conditioning method.

Table 4.3 shows that differences in accuracy among the alternative analytical approx-
imations tested are much less pronounced for in-the-money-forward (ITMF) swaption
contracts. Table 4.3 prices ITMF European-style swaptions under the same three-factor
Gaussian and affine model already adopted in Tables 4.1 and 4.2, and for two different
strikes that are set at 110% and 115% of the current forward swap rate. Similarly to
Table 4.2, three different option maturities (of 1, 2, and 5 years) and six different swap
maturities (of 1, 2, 5, 10, 20, and 30 years) are considered, yielding a total of 36 swaptions.

Once again, the lower bound of the conditioning approach is the most accurate val-
uation method with a MAPE of only 0.02 basis points. Moreover, the conditioning
approach also offers tight error bounds since the upper bound on the swaption prices is
even smaller than most of the price estimates produced by the alternative approximations
tested: Its MAPE of 0.52 basis points is only above the average pricing errors associated
to the hyperplane, the lognormal, and the Edgeworth approximations.

As before, the low-variance approximation—that is still the fastest valuation method—
is also the less accurate approach, yielding an average percentage error of −2.12 basis
points (that corresponds to a mean absolute volatility error of 4.34 basis points). However,
and in contrast with Table 4.2, the low-variance approximation consistently underprices
ITMF swaptions since its mean percentage error and MAPE are exactly symmetrical.

Finally, a word of caution must be said about the accuracy of the proxy used for the
exact price of the swaption contracts. Tables 4.1, 4.2, and 4.3 show that some of the
percentage errors computed for the lower (upper) bound of the conditioning approach
are slightly positive (negative), meaning that the Monte Carlo price estimate can be, for
some contracts, slightly below or above the exact lower or upper price bound, respec-
tively. Nevertheless, and given the large number of simulations run, the average pricing
errors (over all swaption contacts in Tables 4.1, 4.2, and 4.3) are always nonpositive
(nonnegative) for the lower (upper) bound of the conditioning approach.16

16One way to avoid the noise introduced by the Monte Carlo estimates would be to consider a single-factor
Gaussian term structure model, because an exact analytical pricing solution for European-style swaptions
is provided by Jamshidian (1989). This approach is followed, for instance, by Schrager and Pelsser (2006,
table 4.2). However, such a test would be redundant in our case, because it is easy to show—following El
Karoui and Rochet (1989, page 22)—that the upper and lower bounds of the conditioning approach collapse
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Note that this (small) bias occurs even though the Monte Carlo price estimates are
produced using a large number of simulations (109 paths), antithetic variables, and the
exact probability distribution of the state variables at the maturity date of the swaption
contract, which is, to the authors knowledge, the most demanding setting already used
in the literature on the pricing of swaption contracts. Therefore, one should expect this
Monte Carlo bias to be even more relevant in the previous literature on the pricing
of European-style swaptions; for instance, Schrager and Pelsser (2006, page 689) test
their low-variance approximation using only 500,000 Monte Carlo simulations. The use,
in this paper, of a more demanding Monte Carlo setting, and the inclusion of longer
swaption contracts (with 5 and 10 years of time to maturity) on long-term interest rate
swaps (namely on 20 and 30 years’ swaps) explains the novel findings with respect to the
previous literature concerning the inaccuracy of the low-variance, and of the Edgeworth
approximations for OTMF contracts.

5. CONCLUSIONS

This paper offers two contributions to the literature on swaptions pricing. First, it de-
rives a new analytical approximation for European-style swaptions under a multifactor
Gauss–Markov framework, using the conditioning approach proposed by Curran (1994),
Rogers and Shi (1995), and Nielsen and Sandmann (2002). Second, a comprehensive
and rigorous Monte Carlo study is run to compare, in terms of efficiency and accuracy,
all the approximations already proposed in the literature for European-style swaptions
under multifactor term structure models.

The numerical results obtained show that the exact lower bound of the swaption price
provided by the conditioning approach is the most accurate pricing method for ATMF,
OTMF, and ITMF contracts. Moreover, the conditioning approach proposed in this
paper also offers tight bounds for the approximation error, because the analytical lower
and upper bounds proposed in Propositions 3.4 and 3.5 are usually very close to each
other (except for some deep OTMF contracts).

By contrast, the low-variance martingale method of Schrager and Pelsser (2006) —
which is the fastest pricing approach tested—and the Edgeworth expansion yield the
highest pricing errors for OTMF swaption contracts. The latter approach proposed
by Collin-Dufresne and Goldstein (2002) is also extremely time-consuming for swaption
contracts on long-term swaps. The hyperplane approximation of Singleton and Umantsev
(2002) is more accurate and faster than the Edgeworth expansion technique, but still less
accurate and slower than the proposed conditioning approach. Finally, the simpler rank
1, lognormal, and stochastic duration approximations are also very fast to implement
but, nevertheless, still much less accurate than the lower bound of the conditioning
approach.

APPENDIX A: FUNCTION l(t0, Ta, Tb, Tc) UNDER THE A0(n)
SPECIFICATION

Under the nestedA0(n) specification, function l(t0, Ta, Tb, Tc) can be computed explicitly.
For this purpose, equations (2.4) and (4.7) yield:

into the exact swaption price under any single-factor Gauss–Markov and time-homogeneous term structure
model.
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l(t0, Ta, Tb, Tc)

= G ′ · a−1 ·
∫ Ta

t0
[ea(Ta−s) − ea(Tb−s)]′ · 	 · 	′ · [ea′(Ta−s) − ea′(Tc−s)] ds · (a−1)′ · G.

(A.1)

Using definition (4.6), equation (A.1) can be restated as

l(t0, Ta, Tb, Tc) = G ′ · a−1 · [
(t0, Ta) − 
(t0, Ta) · ea′(Tc−Ta ) − ea(Tb−Ta ) · 
(t0, Ta)

+ ea(Tb−Ta ) · 
(t0, Ta) · ea′(Tc−Ta )] · (a−1)′ · G

= B(Ta, Tb)′ · 
(t0, Ta) · B(Ta, Tc),

(A.2)

where the last line follows from equation (4.4).

APPENDIX B: MONTE CARLO SIMULATION

To implement equation (3.4) through Monte Carlo simulation, it is necessary to rewrite
the stochastic differential equation (4.2) under the forward probability measure Q0.
For this purpose, considering equation (4.7) and using, for instance, Nunes (2004,
equation 2.9), it follows that

dWQ0 (t) = dWQ(t) − 	′ · B(t, T0) dt(B.1)

is also a vector of standard Brownian motion increments in Rn and under the forward
measure Q0. Hence, equations (4.2) and (B.1) imply that

dY(t) = [a · Y(t) + b + 	 · 	′ · B(t, T0)] dt + 	 · dWQ0 (t).(B.2)

Applying Itô’s lemma to e−at · Y (t) and using definition (4.4), the following strong
solution is obtained for the stochastic differential equation (B.2):

Y(t0) = ea(T0−t0) · Y(t0) + [ea(T0−t0) − In ] · a−1 · [b + 	 · 	′ · (a−1)′ · G]

− 
(t0, T0) · (a−1)′ · G +
∫ T0

t0
ea(T0−u) · 	 · dWQ0 (u).

(B.3)

Equation (B.3) yields the exact probability distribution of the state vector Y (T0) after
noting that Arnold (1992, corollary 4.5.6) implies that the Itô’s integral

∫ T0

t0
ea(T0−u) · 	 ·

dWQ0 (u) possesses a n-dimensional normal distribution with zero mean and variance–
covariance matrix equal to 
(t0, T0). The Itô’s integral is simulated by generating n nor-
mally distributed deviates with zero mean and unit variance—through routines “ran3”
and “gasdev” of Press, Flannery, Teukolsky, and Vetterling (1994)—that are then corre-
lated using the Cholesky decomposition of matrix 
(t0, T0).

REFERENCES

ARNOLD, L. (1992): Stochastic Differential Equations: Theory and Applications, Malabar: Krieger
Publishing Company.

BLACK, F. (1976): The Pricing of Commodity Contracts, J. Financ. Econ. 3, 167–179.



788 J. P. VIDAL NUNES AND P. M. SILVA PRAZERES

BRACE, A., and M. MUSIELA (1994): A Multifactor Gauss Markov Implementation of Heath,
Jarrow, and Morton, Math. Finance 4, 259–283.

CHU, C., and Y. KWOK (2007): Valuation of Guaranteed Annuity Options in Affine Term
Structure Models, Int. J. Theor. Appl. Finance 10, 363–387.

COLLIN-DUFRESNE, P., and R. GOLDSTEIN (2002): Pricing Swaptions within an Affine Frame-
work, J. Derivat. 10, 9–26.

COLLIN-DUFRESNE, P., and R. GOLDSTEIN (2003): Generalizing the Affine Framework to HJM
and Random Field Models, Working Paper, Carnegie Mellon University and Washington
University.

COX, J., J. INGERSOLL, and S. ROSS (1985): A Theory of the Term Structure of Interest Rates,
Econometrica 53, 385–407.

CURRAN, M. (1994): Valuing Asian and Portfolio Options by Conditioning on the Geometric
Mean Price, Manag. Sci. 40, 1705–1711.

DAI, Q., and K. SINGLETON (2000): Specification Analysis of Affine Term Structure Models, J.
Finance 55, 1943–1978.

DUFFIE, D., and R. KAN (1996): A Yield-Factor Model of Interest Rates, Math. Finance 6,
379–406.

DUFFIE, D., J. PAN, and K. SINGLETON (2000): Transform Analysis and Asset Pricing for Affine
Jump-Diffusions, Econometrica 68, 1343–1376.

EL KAROUI, N., and J.-C. ROCHET (1989): A Pricing Formula for Options on Coupon Bonds,
Working Paper 72, SEEDS.

GEMAN, H., N. El KAROUI, and J.-C. ROCHET (1995): Changes of Numéraire, Changes of
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SWAPTION PRICING IN AFFINE AND OTHER MODELS

DON H. KIM

Board of Governors of the Federal Reserve System

This paper shows that Singleton and Umantsev’s method for swaption pricing in
affine models can be simplified and extended to other models. Two alternative meth-
ods for approximating the option exercise boundary are introduced: one based on
the multivariate Taylor series expansion, and the other based on duration-matched
zero-coupon bond approximation. Applied to affine models and quadratic-Gaussian
models, these methods are found to give accurate swaption prices.

KEY WORDS: swaptions, coupon bond options, affine models, quadratic-Gaussian models.

1. INTRODUCTION

In recent years there has been considerable interest in joint modeling of interest rates
and interest rate derivatives within a time-consistent no-arbitrage term structure model.1

The empirical investigation in this area has often used interest rate cap data (e.g., Li and
Zhao 2006; Almeida, Graveline, and Joslin 2011), as popular time-consistent models like
affine models lead to relatively simple pricing of zero-coupon bond options (caps are a
collection of zero-coupon bond options). Swaptions are also a popular and important
interest-rate derivative security, but they are seldom used,2 most likely because swaptions,
effectively being an option on a coupon bond, do not have a simple pricing formula in
affine and other models in a multifactor setting, hence empirical study with swaptions is
computationally more involved. For some questions of interest, such as the cap-swaption
relative pricing puzzle,3 one cannot avoid using swaption data.

In the case of affine models, several approximate methods for pricing swaptions are
known, including the methods of Munk (1999),4 Singleton and Umantsev (2002), Collin-
Dufresne and Goldstein (2002), and Schrager and Pelsser (2006). Among these, the
method of Singleton and Umantsev (2002, henceforth SU) has an advantage that it
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acknowledged. The opinions expressed in this paper are those of the author and do not necessarily reflect
the views of the Board of Governors of the Federal Reserve System.
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1 By time-consistent models, we mean term structure models in which the model parameters do not change

over time and the yield and volatility variations are captured by state variables. Compared to Heath, Jarrow,
and Morton (1992)-type models (including the popular Libor Market Models) which are recalibrated every
day, time-consistent models with small number of state variables may fit yields and interest rate derivative
prices less accurately, but they can address questions that the HJM-type models cannot (due to the fact
that the yield curve is an exogenous input in those models). Some recent efforts like Heidari and Wu (2009)
aim at the middle ground, by retaining time-consistent features while capturing both bond yields and bond
derivative prices well.

2 Some exceptions include Jagannathan, Kaplin, and Sun (2003) and Joslin (2010).
3 See, for example, Longstaff, Santa-Clara, and Schwartz (2002).
4 Munk’s method is a generalization of Wei’s (1997) method to multifactor settings.
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yields accurate swaption prices for a wide range of strikes (including substantially out-
of-money cases).5

However, as Schrager and Pelsser (2006, henceforth SP) have pointed out, the SU
method also has some drawbacks, namely that (1) SU’s procedure for obtaining the
approximate boundary requires knowing the probability density function of the state
variables, which is not available in closed-form for general affine models (though it is
available for the 2-factor Cox–Ingersoll–Ross (CIR) model that SU used for illustration)
and that (2) one needs as many Fourier inversions as there are cash flows in the swaption
contract. These features can make the SU method much more time-consuming than
other methods such as Munk (1999) and SP (2006).6

In this paper, we show that the “drawbacks” of the SU method can be overcome to a
large extent. We retain SU’s (2002) key idea of approximating the exercise boundary, but
use a different method for obtaining the approximate boundary that does not require
the knowledge of the probability density function. In addition, we show that it is not
necessary to compute the Fourier inversion (T-forward measure probability) for all
cash flow dates T . Since the T-forward measure probabilities are a smooth monotonic
function of T , with the computation of T-forward measure probabilities at 5 ∼ 6 values of
T one can evaluate accurately all the necessary probabilities by interpolation. With these
modifications, the computation of swaption prices would be only about 2 ∼ 3 times more
time-consuming than Munk’s (1999) stochastic duration approach (for a substantial gain
in accuracy).

To approximate the exercise boundary, we propose two alternative methods: one is to
approximate the boundary using the multivariate Taylor series expansion of the log price
around a suitably chosen state vector. Another is to use the boundary implied by a zero-
coupon bond of a suitably chosen “effective maturity.” With the latter approximation,
there are several possible choices of the effective maturity; we explore using the stochastic
duration of Cox, Ingersoll, and Ross (1979) as well as the simpler duration concepts due
to Fisher and Weil (1979) and Macaulay. We show that the Taylor series approximation
and the zero-coupon bond approximation with stochastic duration lead to accurate
results for the entire range of strikes of practical interest, and provide a discussion of why
the method of approximating the boundary works so well.

Another contribution of this paper is to show that the method of approximating the
exercise boundary can be also applied to models beyond the affine class. Although it was
not clear how SU’s (2002) original approximation could be extended to other models, the
Taylor series approximation and the zero-coupon bond approximation in this paper allow
straightforward applications to other models (that have tractable pricing of zero-coupon
bond options). We demonstrate this in the setting of quadratic-Gaussian (QG) models.
QG models are a well-known class of term structure models, and at times have distinct
advantages over affine models, but the existing literature has not studied swaption pricing
within QG models.

The rest of the paper is organized as follows. In Section 2, after briefly reviewing
the relevant literature on swaption pricing, we discuss our methods in general terms.
In particular, the two methods for approximating the boundary—Taylor series method

5 Most of the available methods generate out-of-the-money swaption prices that are not very accurate.
For example, the method of Collin-Dufresne and Goldstein (2002) is based on the Edgeworth expansion
which can work poorly in the tail regions of the distribution, and the method of Schrager and Pelsser (2006)
also becomes notably less accurate for out-of-the-money options.

6 As SP (2006) note, the method of Collin-Dufresne and Goldstein (2002) is also time-consuming in
general affine models (that do not have a closed-form solution for bond prices).
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(Approximation A) and the zero-coupon bond method (Approximation B)—are ex-
plained. In Section 3, we discuss the implementation of the methods in the case of affine
models. A specific illustration is given in the setting of the 2-factor CIR model, and fur-
ther test of the performance of the methods is done using the three affine model settings
of Schrager and Pelsser (2006). In Section 4, we discuss the implementation in the case of
QG models, and present an illustration with a 2-factor QG model. Section 5 concludes.

2. SWAPTION PRICING

2.1. Review of the Relevant Literature

A swaption is an option to get into an interest rate swap contract. To fix notation,
let t0 be the swaption expiration date, and let t1, t2, . . . , tN be the cash flow dates (swap
payment dates). The tenor (swap maturity at time t0) is thus tN − t0, and the option
maturity is t0 − t at time t. For simplicity, we shall assume that the intervals t1 − t0, t2 −
t1, . . . , are the same, and denote the interval by δt.

Note that the time t value of the swap contract to the payer side with fixed rate K is
given by

V pay(t, {ti }N
i=1; K

) = Z(t, t0) −
[

Kδt
N−1∑
i=1

Z(t, ti ) + (1 + Kδt)Z(t, tN)

]
,(2.1)

where Z(t, T) is the time t price of a zero-coupon bond maturing at time T (with face
value of 1), i.e., a zero-coupon bond with time-to-maturity T − t. (Note that Z(t, t) =
1). The fixed rate which makes the value of the swap zero (forward swap rate) is given by

K f (t) = Z(t, t0) − Z(t, tN)

δt
N∑

i=1

Z(t, ti )

.(2.2)

ATMF (at-the-money-forward) swaptions are swaptions with fixed rate given by K =
Kf (t).

The time t price of the payer swaption with fixed rate (strike rate) K is simply

Spay(t; K) = Et
[
e− ∫ t0

t r (xs ) ds max[V pay(t0, {ti }N
i=1; K), 0]

]
,(2.3)

where Et denotes the time-t conditional expectation in the risk-neutral measure, and rt

= r(xt) is the short rate at time t, where xt denotes the n-dimensional vector of state
variables in the term structure model (n-factor model). Different term structure models
have different specification of r(xt) and/or different dynamics of the xt vector. Note that
the zero-coupon bond price Z(t, T) is given by Z(t, T) = Et[e− ∫ T

t r (xs ) ds].
Note that (2.3) can be written as

Spay(t; K) = Et
[
e− ∫ t0

t r (xs )ds max[1 − P(t0, {ti }N
i=1; K), 0]

]
,(2.4)
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where

P
(
t0, {ti }N

i=1; K
) =

N∑
i=1

ci Z(t0, ti ),

ci ≡ Kδt, i = 1, . . . , N − 1

cN ≡ 1 + Kδt.

(2.5)

In other words, P(t0, {ti }N
i=1; K) is the time t0 price of a coupon bond with cash flows

{ci }N
i=1 at {ti }N

i=1.7 Since P(t0, {ti }N
i=1; K) depends on the state vector at time t0, we shall

also denote it simply as P(xt0 ).
Using the T-forward measure (with Radon–Nikodym derivative dPT/dP =

exp(− ∫ T
t rsds)/Z(t, T)), it is straightforward to show that (2.4) can be transformed

to

Spay(t; K) = Z(t, t0)Et0
t [IP(xt0 )<1] −

N∑
i=1

ci Z(t, ti )E
ti
t [IP(xt0 )<1],(2.6)

where ET
t denotes the time t conditional expectation under the T-forward measure, and

I(·) is the indicator function. By the definition of the indicator function, (2.6) can be also
written as

Spay(t; K) = Z(t, t0)P t0
t [P(xt0 ) < 1] −

N∑
i=1

ci Z(t, ti )P
ti
t [P(xt0 ) < 1],(2.7)

where PT
t (A) denotes the time t conditional probability in the T-forward measure of the

event A happening.
For most multifactor models, the probability PT

t [P(xt0 ) < 1] cannot be computed
exactly, and some approximation is necessary. Equation (2.7) is the starting point of the
approximation of SU (2002) as well as Collin-Dufresne and Goldstein (2002). SP (2006)
on the other hand starts from an equivalent formulation

Spay(t; K) = E
Q̃(t0,{ti }N

i=1)
t

[
max

[
V pay(t0, {ti }N

i=1; K), 0
]]

,(2.8)

where the superscript Q̃(t0, {ti }N
i=1) denotes the swap-measure; their approach tries to find

a tractable approximate dynamics of the bond price under the swap measure.8

SU’s (2002) approach is based on their observation that in the case of affine models
the exercise boundary P(xt0 ) − 1 = 0 can be well approximated by a simpler boundary

b · xt0 − a = 0,(2.9)

therefore PT
t [P(xt0 ) < 1] in (2.7) is approximated as PT

t [b · xt0 < a], which can be com-
puted via Fourier inversion.

The specific procedure SU (2002) gave for obtaining a and b is somewhat complicated.
In their illustration with a 2-factor CIR model, they use f (xt0,2 | xt), the conditional
probability density function (pdf) of the 2nd element of the state vector, to find an

7 As equation (2.5) makes it clear, a payer swaption is a put option on a coupon bond. The call option
version is called a receiver swaption. Since call option pricing and put option pricing are analogous, we shall
focus on payer swaptions in this paper.

8 See also Heidari, Hirsa, and Madan (2007) for an application of this “approximate dynamics” approach.
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appropriate lower bound xmin
t0,2 and upper bound xmax

t0,2 (between which the pdf has most
of the weight), and then the equation P(xt0 ) − 1 is solved to find the corresponding xt0,1

elements. The straight line connecting (xmin
t0,1 , xmin

t0,2 ) and (xmax
t0,1 , xmax

t0,2 ) gives the coefficients
a and b. For a model with more than 2-factors, SU remark that a similar procedure can
be done with least squares fitting.

As SP (2006) note, SU’s method for obtaining the exercise boundary uses information
about the pdf of at least one element of the state vector xt0 . This is available for the 2-factor
CIR model that SU used for illustration, but not all affine models have a closed-form pdf.
For example, an A2(2) model (according to Dai and Singleton’s 2000 classification) with
nonzero off-diagonal feedback matrix does not have a closed-form expression for the pdf.
Furthermore, it is not clear how to carry over SU’s method for obtaining the approximate
boundary to the case of swaption pricing in other models like the QG model.

2.2. New Boundary Approximations

In this paper, we propose two simpler methods for exercise boundary approximation,
which can be also straightforwardly extended to models beyond the affine class.

Approximation A (Taylor series approximation). Note that P(xt0 ) can be written as

P(xt0 ) =
(

N∑
i=1

ci

)
N∑

i=1

wi e−(ti −t0)Y(xt0 ,ti −t0),(2.10)

where the weights wi’s are defined as wi = ci/(
∑N

j=1 c j ), and Y(xt0 , ti − t0) is the time t0

value of the yield on a zero-coupon bond with time-to-maturity of ti − t0. Thus,

log P(xt0 ) = const. + log

(
N∑

i=1

wi e−(ti −t0)Y(xt0 ,ti −t0)

)

= const. −
N∑

i=1

(ti − t0)wi Y(xt0 , ti − t0) + convexity correction.

(2.11)

In the case of affine models, Y(xt0 , ti − t0) is an affine function of xt0 for all ti − t0, thus
log P(xt0 ) is an approximately affine function. Therefore, first-order Taylor expansion of
log P(xt0 ) around a point on the true boundary, say x∗, can provide a good approximation.
In other words, we can approximate the boundary condition P(xt0 ) = 1 (i.e., log P(xt0 ) =
0) with

∂x log P(x∗) · (xt0 − x∗) = 0(2.12)

(since log P(x∗) = 0). This can be further simplified as

∂x P(x∗) · (xt0 − x∗) = 0,(2.13)

in other words, we have

a = ∂x P(x∗) · x∗, b = ∂x P(x∗)(2.14)

in (2.9).
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On the other hand, in the case of QG models, all zero-coupon yields are quadratic
functions of the state vector, therefore, log P(xt0 ) is an approximately quadratic function
of xt0 . Therefore, we can take the Taylor expansion of log P(xt0 ) up to the second order:

∂x log P(x∗) · (xt0 − x∗) + 1
2

(xt0 − x∗)′∂x∂x′ log P(x∗)(xt0 − x∗) = 0,(2.15)

which can be simplified as

∂x P(x∗) · (xt0 − x∗) + 1
2

(xt0 − x∗)′
(

∂x∂x′ P(x∗) − ∂x P(x∗)∂x′ P(x∗)
P(x∗)

)
(xt0 − x∗) = 0.

(2.16)

In other words, we can approximate the condition P(xt0 ) − 1 = 0 with

a + b · xt0 + x′
t0 Cxt0 = 0,(2.17)

where

a = −∂x P(x∗) · x∗ + 1
2

x∗′
(∂x∂x′ P(x∗) − P(x∗)−1∂x P(x∗)(∂x P(x∗))′)x∗

b = ∂x P(x∗) − (∂x∂x′ P(x∗) − P(x∗)−1∂x P(x∗)(∂x P(x∗))′)x∗

C = 1
2

(∂x∂x′ P(x∗) − P(x∗)−1∂x P(x∗)(∂x P(x∗))′).

(2.18)

Note that the boundary of the form (2.17) leads to a tractable Fourier inversion compu-
tation of PT

t [·] for QG models, i.e., PT
t [P(xt0 ) < 1] ≈ PT

t [a + b · xt0 + x′
to Cxt0 < 0].

A good choice of x∗ for PT
t [·] would be the point on the line (surface) P(xt0 ) − 1 = 0

at which the value of the pdf f T(xt0 | xt) is the largest ( f T(xt0 | xt) denotes the conditional
probability density function of xt0 in the T-forward measure). This is schematically
illustrated in Figure 2.1 for a 2-factor affine model case. The ellipse-like objects denote
the locus of x1 and x2 values which have the same pdf value; the smaller the object,
the higher the probability density it represents. The solid line represents the boundary
equation P(x) = 1. The * symbol on this line is x∗; this is the tangent point of an equi-pdf
locus and the line P(x) − 1 = 0. The nice thing about the Taylor expansion around this
x∗ is that the approximation is very accurate in the part of the line P(x) − 1 = 0 where it
matters most (in the sense that the density is highest).

In practice, except for special cases, the pdf f T(xt0 | xt) is not available in closed-form.
To overcome this problem, we can define x∗ as

x∗ = argmin
x

{
1
2

(x − ET[xt0 | xt])′(VarT[xt0 | xt])−1(x − ET[xt0 | xt]) : P(x) − 1 = 0
}
.(2.19)

In other words, we approximate f T(xt0 | xt) by a multivariate normal distribution with
mean ET[xt0 | xt] and variance–covariance matrix VarT[xt0 | xt].

We can further simplify the procedure by approximating the T-forward measure
moments with risk-neutral moments, i.e., ET[xt0 | xt] ≈ E[xt0 | xt] and VarT(xt0 | xt) ≈
Var(xt0 | xt). Thus we have

x∗ = argmin
x

{
1
2

(x − E[xt0 | xt])′(Var[xt0 | xt])−1(x − E[xt0 | xt]) : P(x) − 1 = 0
}

.(2.20)

Note that for models like the affine class and QG class, E[xt0 | xt] and Var[xt0 | xt] are
available in closed-form, whereas we would need to solve a system of ODEs (Riccati
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FIGURE 2.1. Schematic illustration of the x∗ vector, the equi-pdf loci, and the affine
model boundary.

system) to obtain ET[xt0 | xt] and VarT[xt0 | xt]. Furthermore, with the formulation (2.20),
the exercise boundary does not depend on T , therefore the same boundary can be used
for evaluating all probabilities P ti

t [·] (i = 0, 1, . . . , N) in (2.7). In this paper, we shall thus
use (2.20) to obtain x∗. To handle the constrained optimization in (2.20), one can solve
the nonlinear equation[

x − E[xt0 | xt] + η Var[xt0 | xt]∂x P(x)

P(x) − 1

]
= 0(n+1)×1,(2.21)

where η is a Lagrange multiplier. This nonlinear system for (x, η) can be solved quickly
with Newton’s method.9

Approximation B (zero-coupon bond approximation). Another way to approximate
the boundary is to use the boundary implied by a zero-coupon bond of a suitable maturity.
The idea is to find at time t a zero-coupon bond that has risk characteristics similar to
the coupon bond

P
(
t, {ti }N

i=1; K
) =

N∑
i=1

ci Z(t, ti ),(2.22)

where ci’s were given in (2.5). (Note that at time t0, the price of this coupon bond becomes
P(t0, {ti }N

i=1; K), the object considered in the above Taylor series approximation.)
An obvious choice for the zero-coupon bond maturity would be the stochastic duration

of P(t, {ti }N
i=1; K). The stochastic duration Ds(t) is defined as the zero-coupon bond

maturity that leads to the same relative volatility as the coupon bond, i.e., Ds(t) is

9 Newton’s method with analytical Jacobian and with (x = E[xt0 | xt ], η = 0) as the starting guess was
found to converge to the solution within 5∼ 6 iterations.
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implicitly given by the equation

(
d Z(t, t + Ds(t))
Z(t, t + Ds(t))

)2

=
(

dP
(
t, {ti }N

i=1; K
)

P
(
t, {ti }N

i=1; K
)
)2

.(2.23)

Though the stochastic duration has a sounder theoretical basis, one can also consider
other possibilities which are simpler. These include the Fisher–Weil duration

DFW(t) =
(

N∑
t=1

(ti − t)ci Z(t, ti )

)/
P
(
t, {ti }N

i=1; K
)
,(2.24)

and Macaulay’s duration

DM(t) =
(

N∑
t=1

(ti − t)ci e−(ti −t)y

)/
P
(
t, {ti }N

i=1; K
)
,(2.25)

where y is the solution of the equation P(t, {ti }N
i=1; K) =∑N

i=1 ci e−(ti −t)y.
With one of these duration measures (Ds, DFW , DM), we can approximate the time t0

price of the coupon bond as

P
(
t0, {ti }N

i=1; K
) ≈ ξ Z(t0, t + D(t)),(2.26)

where ξ ≡ P(t, {ti }N
i=1; K)/Z(t, t + D(t)). Therefore, the boundary equation P(xt0 ) − 1 =

0 can be approximated as ξZ(t0, t + D(t)) − 1 = 0, which is equivalent to

log Z(t0, t + D(t)) + log(ξ ) = 0.(2.27)

Note that log Z(t0, t + D(t)) is an affine function of xt0 in the case of affine models and
a quadratic function of xt0 in the case of QG models. Therefore, the “zero-coupon bond
approximation” (2.27) gives the desired form of the boundary equation ((2.9) for affine
models and (2.17) for QG models). In summary, we can approximate PT

t [P(xt0 ) < 1] as
PT

t [ξ Z(t0, t + D(t)) < 1].

2.3. The T-dependence of PT

To compute the swaption price in (2.7), one needs to evaluate the T-forward measure
probability PT

t [·] at T = t0, t1, . . . , tN . For a swaption with a long tenor, this can entail
quite a lot of evaluations (1 + (tN − t0)/δt evaluations). These probabilities are typically
evaluated with numerical Fourier inversion, which can be time-consuming.

One can however avoid performing the 1 + (tN − t0)/δt Fourier inversions. As we
shall argue below, PT

t [·] is a smooth, monotonically decreasing function of T . Therefore,
computing PT

t [·] at 5 ∼ 6 values of T in the interval [t0, tN ] would be sufficient to get an
accurate interpolation formula for PT

t [·], from which all the necessary probabilities can
be evaluated.

For concreteness, let us focus on Approximation B (zero-coupon bond approximation).
In this case we are dealing with PT

t [ξ Z(t0, t + D(t)) < 1], which can be also written
PT

t [Y(xt0 , �) > k], with � = t + D(t) − t0 and k = log (ξ )/(t + D(t) − t0); recall that
Y(xt0 , τ ) is the zero-coupon yield at time t0 with time-to-maturity τ . We can make a
heuristic argument that (∂/∂T)PT

t [Y(xt0 , �) > k] < 0 for all T , as follows:



798 D. H. KIM

Note that (∂/∂T)PT
t [Y(xt0 , �) > k] can be expressed as

∂

∂T
PT

t [Y(xt0 , �) > k] = ∂

∂T

(
Z(t, T)−1Et[e− ∫ T

t rs dsIY(xt0 ,�)>k]
)

= Et
[
e− ∫ T

t rs dsrT
]
Et
[
e− ∫ T

t rs dsIY(xt0 ,�)>k
]

Z(t, T)2
− Et

[
e− ∫ T

t rs dsrT IY(xt0 ,�)>k
]

Z(t, T)

= ET
t [rT]ET

t [IY(xt0 ,�)>k] − ET
t [rT IY(xt0 ,�)>k]

= −covT
t (rT, IY(xt0 ,�)>k).

(2.28)

In general we would expect rT and Y(xt0 , �) to be positively correlated, thus
−covT

t (rT, IY(xt0 ,�)>k) < 0 as well, i.e., PT
t [Y(xt0 , �) > k] is expected to be a decreasing

function of T for all T . In view of the simple behavior of the function PT
t [Y(xt0 ,�) > k],

its cubic-spline interpolation based on its values at a small number of T values will
give accurate swaption prices. We also expect that the interpolation approach will work
similarly well in the case of Approximation A (Taylor series approximation).

2.4. Comparison with Munk (1999)

Our Approximation B with Ds(t) (stochastic duration) as D(t) may appear similar to
Munk’s (1999) stochastic duration method. It is thus instructive to compare the two.
Munk’s approach completely equates one unit of coupon bond P(t, {ti }N

i=1; K) with ξ

units of zero coupon bond Z(t, t + Ds(t)). Thus, Munk’s (1999) formula for the payer
swaption is given by

Spay(t; K) = ξEt
[
e− ∫ t0

t rs ds max[ξ−1 − Z(t0, t + Ds(t)), 0]
]

= Z(t, t0)P t0
t [ξ Z(t0, t + Ds(t)) < 1]

− P
(
t, {ti }N

i=1; K
)
P t+Ds (t)

t [ξ Z(t0, t + Ds(t)) < 1].

(2.29)

On the other hand, our Approximation B uses stochastic duration (or another duration
measure) only for approximating the boundary. This leads to the payer swaption price
formula

Spay(t; K) = Z(t, t0)P t0
t [ξ Z(t0, t + Ds(t)) < 1]

−
N∑

i=1

ci Z(t, ti )P
ti
t [ξ Z(t0, t + Ds(t)) < 1].

(2.30)

It may not be clear that (2.30), which can have a lot of terms in the summation, gives
a more accurate result than (2.29). But note that (2.30) can be also written as

Spay(t; K) = Et
[
e− ∫ t0

t r (xs )ds(1 − P(xt0 ))Iξ Z(t0,t+Ds (t))<1
]
,(2.31)

which differs from the “true” expression just by the argument in the indicator function
(the true expression has IP(xt0 )<1 instead). Thus, the error in the approximate formula
(2.30) is simply

Et
[
e− ∫ t0

t r (xs )ds(1 − P(xt0 ))(Iξ Z(t0,t+Ds (t))<1 − IP(xt0 )<1)
]
.(2.32)
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The only nonzero contribution to this expression is from the part where Iξ Z(t0,t+Ds (t))<1 �=
IP(xt0 )<1. Geometrically, this corresponds to the region between the true boundary and

the approximate boundary. But in this region, the factor e− ∫ t0
t rs ds(1 − P(xt0 )) must be

fairly small, since 1 − P(xt0 ) = 0 on the true boundary, so the expression (2.32) can be
quite small. Thus, even if the individual probabilities P ti

t were not very accurate (i.e., even
if the errors P ti

t [ξ Z(t0, t + Ds(t)) < 1] − P ti
t [P(xt0 ) < 1] were not small in magnitude),

equation (2.30) could still give an accurate value of the swaption, i.e., the errors in P ti
t

cancel out to a large degree. The same logic applies to Approximation A (Taylor series
approximation), and we can expect it to produce very accurate swaption prices.

Note also that (2.30) can be expressed as

Spay(t; K) = Z(t, t0)P t0
t [ξ Z(t0, t + Ds(t)) < 1]

− P
(
t, {ti }N

i=1; K
) N∑

i=1

ωiP
ti
t [ξ Z(t0, t + Ds(t)) < 1],

(2.33)

where ωi = ciZ(t, ti)/(
∑

jcjZ(t, tj)). This takes the same form as (2.29), except that
P t+Ds (t)

t [ξ Z(t0, t + Ds(t)) < 1] is replaced by
∑N

i=1 ωiP
ti
t [ξ Z(t0, t + Ds(t)) < 1]. In other

words, Munk (1999) approximates the weighted average of functions (
∑

i ωiP ti ) as a
function of an average (P t+Ds (t)).10 Therefore, the difference between (2.29) and (2.30)
can be viewed as a convexity effect. For out-of-money options, PT

t ’s will be small (hence
close to the zero-bound), thus the convexity feature in PT

t (as a function of T) will be
more pronounced. Therefore the (relative) discrepancy between Munk’s (1999) method
and Approximation B with stochastic duration is likely to be the largest in out-of-the-
money options.

3. SWAPTION PRICING IN AFFINE MODELS

3.1. General Affine Models

In the general version of affine models, due to Duffie and Kan (1996), we have

r (xt) = ar + br · xt,(3.1)

where ar is a constant and br is an n-dimensional constant vector. The n-dimensional
vector of state variables xt has the risk-neutral dynamics given by11

dxt = K(θ − xt) dt + 
(xt) dW t,(3.2)

where K is n × n constant matrix, θ is a constant n-vector, W t is an n-dimensional vector
of standard Brownian motions, and 
(xt) is an n × n matrix function of xt such that

(
(xt)
(xt)′)i j = hi j + H′
i j xt,(3.3)

where hij is a constant (scalar), and Hij is a constant n-vector.

10 Munk’s (1999) approximation can be thus viewed as consisting of two approximations: approximating
the exercise boundary, and approximating an average of functions as a function of an average. Note that
when D(t) = Ds(t), the two average concepts are different. But if the Fisher–Weil duration is used (i.e., D(t)
= DFW (t)), the two average concepts are the same, since DFW (t) =∑iωi(ti − t) (where ωi is the same as the
ωi in (2.33)).

11 Since the P-measure (physical measure) dynamics is not needed for pricing, in this paper we shall specify
only the Q-measure (risk-neutral) measure dynamics. Therefore, all the model parameters are risk-neutral
parameters, unless otherwise stated.
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The conditional expectation and the variance–covariance matrix of the state vector
(which are used in Approximation A) are available in closed-form in affine models. The
Appendix provides an expression for E[xT |xt] and Var[xT |xt] ((A.11) and (A.16), or
(A.17) and (A.20)) that is valid for all affine models (including the case of nondiagonal
K matrix and the case in which K has complex eigenvalues).

It is well known that the zero-coupon bond price Z(t, T) in this model is given by12

Z(t, T) = exp(A(T − t) + B(T − t) · xt),(3.4)

where A(τ ), B(τ ) are solutions of

dA(τ )
dτ

= −ar − (Kθ )′ B(τ ) + 1
2

∑
i , j

Bi (τ )hi j Bj (τ )

dB(τ )
dτ

= −br + K′ B(τ ) + 1
2

∑
i , j

Bi (τ )Hi j Bj (τ )

(3.5)

with the boundary conditions A(0) = 0 and B(0) = 0n×1.
Both in the case of the Taylor series approximation and the zero-coupon bond

approximation, we need to evaluate the expression PT
t [b · xt0 < a]. In the case of

Approximation A, the coefficients a, b are given by (2.14), which involves the functions
P(x), ∂xP(x), given by

P(x) =
N∑

i=1

ci eA(ti −t0)+B(ti −t0)′x,

∂x P(x) =
N∑

i=1

ci B(ti − t0) eA(ti −t0)+B(ti −t0)′x.

(3.6)

In the case of Approximation B, we have, from (2.27),

a = −A(t + D(t) − t0) − log(ξ )

b = B(t + D(t) − t0).

(3.7)

The stochastic duration Ds(t) for affine models is given by the solution of the nonlinear
equation

B(Ds)
(xt)
(xt)′ B(Ds)′ =
(

N∑
i=1

ωi B(ti − t)

)′


(xt)
(xt)′
(

N∑
i=1

ωi B(ti − t)

)
,(3.8)

where ωi = ciZ(t, ti)/(
∑

jcjZ(t, tj)). For general affine models (which do not have closed-
form expression for B), the nonlinear equation (3.8) for Ds can be time-consuming to
solve. One can speed up the computation by using an interpolation to compute the
left-hand side based on precomputed values of B(τ )
(xt)
(xt)′B(τ )′ at τ = {ti − t}N

i=1.
The T-forward measure probability PT

t [b · xt0 < a] can be expressed as an inverse
Fourier transform of the T-forward measure characteristic function of b · xt0 , which we

12 See, e.g., Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000).
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shall refer to as f T
t (z). Using the Levy inversion formula we have

PT
t [b · xt0 < a] = 1

2
− 1

π

∫ ∞

0
dz

Im( f T
t (z)e−i za)

z
.(3.9)

Note that the characteristic function f T
t (z) is given by

f T
t (z) = ET

t

[
exp(i z b · xt0 )

] = Z(t, T)−1Et
[
e− ∫ T

t rs dseizb·xt0
]

= Z(t, T)−1Et
[
e− ∫ t0

t rs dseA(T−t0)+(i zb+B(T−t0))·xt0
]
.

(3.10)

It is well known that the expectation in (3.10) is an exponential affine function of xt (see,
e.g., Duffie et al. 2000). In the end, we have

f T
t (z) = exp(Ã(t0 − t; T − t0, z) − A(T − t) + (B̃(t0 − t; T − t0, z) − B(T − t)) · xt),

(3.11)

where Ã(t0 − t; T − t, z) and B̃(t0 − t; T − t, z) are solutions of the same Riccati equa-
tion (3.5), now with boundary conditions Ã(0; T − t0, z) = A(T − t0) and B̃(0; T −
t0, z) = i zb + B(T − t0).

3.2. Two-Factor CIR Model Illustration

To illustrate the application of the method of Section 2 to affine models, let us use
the 2-factor CIR model, as in SU (2002), Collin-Dufresne and Goldstein (2002), and SP
(2006). Note that in multifactor CIR models the bond price (3.5) and the characteristic
function (3.10) have closed-form expressions, given, for example, in Collin-Dufresne and
Goldstein (2002).

To test the performance of the method in a realistic setting, we shall use the parameters
obtained from an actual econometric estimation, specifically that of Duffie and Singleton
(1997). These parameters are given by

ar = −0.58, br = [1, 1]′, K =
[

0.5080 0

0 −0.0010

]
, θ =

[
0.4005

−0.7740

]

hi j = 0 (∀ i , j ), H11 =
[

0.0232

0

]
, H22 =

[
0

0.0192

]
, H12 = H21 = 02×1.

(3.12)

Note that [K]22 is negative, which implies a nonstationary (explosive) risk-neutral dy-
namics; hence the risk-neutral unconditional mean of xt does not exist. We shall take
xt = [0.374, 0.258]′, which is the estimated physical unconditional mean.

Table 3.1 shows the swaption prices for tenors of 2, 5, 10 years and option maturities
of 1, 2, 5 years. The strike rate K is chosen as (ATMF-1.5%, ATMF-0.75%, ATMF,
ATMF+0.75%, ATMF+1.5%), where ATMF is the at-the-money forward swap rate
(equation (2.2)). The interval δt is set to 1/2.

We compare the results based on five methods: Munk’s (1991) stochastic duration
method (“Munk”), Approximation A (“A”), Approximation B with stochastic duration
(“B-sd”), Approximation B with Fisher–Weil duration (“B-FW”),13 and the Monte Carlo

13 We have also examined the use of Macaulay duration. The results were similar to the Fisher–Weil
duration, hence omitted for brevity.
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TABLE 3.1
Upper Panel, Middle Panel, and Lower Panel Give the Swaption Prices (in basis

points) for 1-Year, 2-Year, and 5-Year Option Maturities, Respectively, in a 2-Factor
CIR Model

Method Tenor ATMF-1.5% ATMF-0.75% ATMF ATMF+0.75% ATMF+1.5%

MC 2 271.35 (0.03) 165.62 (0.05) 85.84 (0.06) 36.50 (0.05) 12.38 (0.03)
5 598.05 (0.04) 352.29 (0.08) 169.27 (0.12) 63.15 (0.09) 17.59 (0.05)

10 991.68 (0.04) 574.54 (0.12) 265.51 (0.18) 92.33 (0.14) 23.09 (0.07)
A 2 271.31 165.61 85.87 36.53 12.40

5 598.02 352.31 169.42 63.24 17.66
10 991.66 574.57 265.78 92.45 23.18

B-sd 2 271.31 165.60 85.87 36.52 12.40
5 598.01 352.28 169.38 63.20 17.64

10 991.62 574.48 265.65 92.36 23.13
B-FW 2 271.31 165.60 85.87 36.52 12.40

5 598.01 352.29 169.39 63.21 17.63
10 991.63 574.48 265.67 92.37 23.12

Munk 2 271.32 165.64 85.93 36.59 12.46
5 597.97 352.36 169.72 63.68 18.00

10 990.91 573.80 266.17 93.93 24.46

MC 2 267.33 (0.04) 177.16 (0.06) 106.68 (0.08) 57.64 (0.07) 27.64 (0.05)
5 582.96 (0.07) 376.01 (0.12) 216.48 (0.15) 109.47 (0.13) 47.98 (0.09)

10 960.77 (0.09) 611.74 (0.16) 344.45 (0.22) 168.40 (0.20) 70.48 (0.14)
A 2 267.38 177.30 106.89 57.82 27.77

5 583.02 376.23 216.88 109.78 48.17
10 960.79 611.98 344.95 168.78 70.69

B-sd 2 267.38 177.30 106.89 57.82 27.77
5 583.00 376.20 216.83 109.74 48.14

10 960.73 611.87 344.81 168.68 70.63
B-FW 2 267.38 177.30 106.89 57.82 27.77

5 583.00 376.20 216.84 109.74 48.14
10 960.73 611.87 344.83 168.70 70.63

Munk 2 267.43 177.39 107.02 57.97 27.90
5 583.00 376.46 217.46 110.63 49.03

10 959.17 611.01 345.75 171.29 73.71

MC 2 240.14 (0.05) 176.38 (0.07) 123.87 (0.08) 82.89 (0.08) 52.71 (0.07)
5 521.94 (0.09) 378.55 (0.13) 261.40 (0.16) 171.21 (0.16) 106.06 (0.14)

10 857.04 (0.11) 617.66 (0.18) 422.88 (0.23) 273.96 (0.24) 167.47 (0.21)
A 2 240.13 176.35 123.83 82.86 52.69

5 521.97 378.53 261.36 171.18 106.05
10 857.12 617.67 422.85 273.93 167.45

B-sd 2 240.13 176.35 123.83 82.86 52.69
5 521.95 378.51 261.33 171.15 106.02

10 857.04 617.55 422.71 273.82 167.39
B-FW 2 240.13 176.35 123.83 82.86 52.69

5 521.95 378.51 261.33 171.15 106.02
10 857.03 617.55 422.72 273.84 167.40

Munk 2 240.22 176.49 124.02 83.08 52.92
5 521.93 378.87 262.16 172.40 107.54

10 854.34 616.51 424.09 277.61 172.86

Note: The Monte Carlo errors are given in parentheses.
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FIGURE 3.1. (a): The true boundary (solid line) and the boundary based on Approx-
imation A (dashed line). The * symbol denotes the location of x∗. (b): The boundary
based on Approximation B-sd (dashed line).

method (“MC”). Monte Carlo results are taken as a proxy for the true swaption price. The
Monte Carlo values are computed using 1,000,000 simulations with standard variance
reduction technique (antithetic variates), and dt is discretized as 1/250.14

In Approximations A and B, for the 5-year and 10-year tenors we use the cubic-spline
interpolation based on the evaluation of PT

t at T = t0 + (j/m)(tN − t0), where j = 0,
1, . . . , m and m = 4 (as discussed in Section 2.3).

Both Approximation A (Taylor series approximation) and Approximation B (zero-
coupon bond approximation) were found to give accurate swaption prices for the entire
range of strikes considered. For example, for the 2-year (option-) maturity, 10-year-tenor
swaption, Approximation A gives the price of 960.79 and 70.69 for ATMF-1.5% and
ATMF+1.5%, respectively, while the MC values are 960.77 and 70.48. With Approxi-
mation B, both B-sd and B-FW gave similarly accurate results. These results (A, B-sd,
B-FW) are notably more accurate than Munk’s (1999) stochastic duration method, which
gave 957.71 and 73.71.

We now take a closer look, by comparing the exercise boundaries implied by Approx-
imation A and Approximation B with stochastic duration (B-sd). Figure 3.1(a) and (b)
show the Approximation A boundary and the Approximation B-sd boundary, respec-
tively, for 2-year-maturity, 10-year tenor, and strike rate K = 6%. The true boundary is
also plotted in both Figure 3.1(a) and (b) for comparison. Remarkably, the two bound-
aries (A boundary and B-sd boundary) differ significantly, despite the fact that both
produce similarly accurate swaption prices as we have seen in Table 3.1: The A bound-
ary is quite similar to the true boundary, while the B-sd boundary intersects the true
boundary with a visible angle. Two things explain why the B-sd approximation still gives

14 With this setting, the MC results had an excellent match with the exact results in the case of the 1-factor
Vasicek model, which has a closed-form solution for swaption prices (see, e.g., Jamshidian 1989; Brigo and
Mercurio 2001, p. 102).
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FIGURE 3.2. Plots of PT
t (P(xt0 ) < 1) as a function of T − t0, for Approximation A and

Approximation B-sd.

accurate swaption prices: (1) it can be seen that the B-sd boundary intersects the true
boundary at a point very close to x∗, therefore the most important part of the bound-
ary is reasonably well approximated, and (2) more importantly, even if the individual
probabilities P ti

t deviated significantly from the true values, the errors in P ti
t would cancel

out to a large extent in the formula for the swaption price (equation (2.7)), as we have
discussed in Section 2.4.

Figure 3.2 shows the probabilities PT
t [P(xt0 ) < 1] as a function of T − t0 in the case

of the 2-year-maturity, 10-year-tenor ATMF swaption for both Approximation A and
Approximation B-sd. The function PT is indeed smooth and monotonically decreasing
(as discussed in Section 2.3), but the gap between the PT

t [·] for A and the PT
t [·] for B-sd

is also notable. The relative difference between the A and B-sd probabilities is about 1%
(as can be seen from the figure), which is much larger than the relative difference between
the A and B-sd swaption prices (344.95 vs. 344.81), indicating a substantial degree of
cancellation of errors. This robustness (the fact that one can obtain an accurate swaption
price with an inaccurate evaluation of probabilities) is an attractive feature of the exercise
boundary approximation approach.

3.3. Comparison with Schrager and Pelsser (2006)

Here, we provide additional evidence on the quality of Approximations A and B
applied to affine models. We use three parameter/state-vector settings examined by SP
(2006): a 1-factor affine-Gaussian model (Vasicek model), a 3-factor affine-Gaussian
model, and a 2-factor CIR model. In the notation of the present paper, they are given as
follows.
One-factor affine-Gaussian model:

ar = 0, br = 1, K = 0.05, θ = 0.05, h = 0.012, H = 0, xt = 0.05.(3.13)
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Three-factor affine-Gaussian model:

ar = 0.06, br =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ , K =

⎡
⎢⎢⎣

1 0 0

0 0.2 0

0 0 0.5

⎤
⎥⎥⎦ , θ =

⎡
⎢⎢⎣

0

0

0

⎤
⎥⎥⎦ ,

h = 10−4

⎡
⎢⎢⎣

1.00 −0.10 −0.02

−0.10 0.25 0.03

−0.02 0.03 0.04

⎤
⎥⎥⎦ , Hi j = 02×1(∀i , j ), xt =

⎡
⎢⎢⎣

0.01

0.005

−0.02

⎤
⎥⎥⎦ .

(3.14)

Two-factor CIR model:

ar = 0.02, br =
[

1

1

]
, K =

[
0.2 0

0 0.2

]
, θ =

[
0.03

0.01

]
, h = 02×2,

H11 =
[

0.042

0

]
, H22 =

[
0

0.022

]
, H12 = H21 = 02×1, xt =

[
0.04

0.02

]
.

(3.15)

We note incidentally that in the case of affine-Gaussian models (e.g., equations (3.13)
and (3.14)), the object PT

t [b · xt0 < a] needed for Approximations A and B is available in
closed-form because the T-forward measure distribution of xt0 is still normal. Specifically,
we have

PT
t [b · xt0 < a] = N((a − b′ET[xt0 | xt])/

√
b′Var[xt0 | xt]b )

ET[xt0 | xt] = E[xt0 | xt] + (Var[xt0 | xt]e−(T−t0)K′ − K−1(In×n − e−(t0−t)K)h)K−1′
br

E[xt0 | xt] = e−(t0−t)K(xt − θ ) + θ

vec(Var[xt0 | xt]) = ((In×n ⊗ K) + (K ⊗ In×n))−1vec(h − e−(t0−t)Kh e−(t0−t)K′
),

(3.16)

where N( · ) denotes the standard normal cdf, and the expression eX with square matrix
X denotes the matrix exponential, vec(X) denotes the vectorization of the matrix X , and
the symbol ⊗ denotes the Kronecker product.

Tables 3.2–3.4 display the results for the 1-factor affine-Gaussian model (3.13), three-
factor affine-Gaussian model (3.14), and the 2-factor CIR model (3.15), respectively.
These tables give the payer swaption prices for option maturities of 1, 2, 5 years and
tenors of 1, 2, 5, 10 years (same maturities and tenors as in SP 2006). As Schrager
and Pelsser (2006) do, we examine the ATM case (strike=ATMF), as well as an ITM
case (strike=0.85ATMF) and an OTM case (strike=1.15ATMF). The interval between
cash flows (δt) is set to 1/2 (i.e., 6 months). For 5-year and 10-year tenors, the same
interpolation of PT as in Section 3.2 was used. Because a simple closed-form formula
for swaption price is available in the case of the 1-factor affine-Gaussian model (recall
footnote 14), the exact prices are given in Table 3.2 for comparison with Approximations
A and B; on the other hand, in Tables 3.3 and 3.4 the Monte Carlo prices (with error
estimates) are given for comparison.

As can be seen in Tables 3.2–3.4, the performance of Approximations A and B-
sd is excellent in all three cases examined ((3.13), (3.14), and (3.15)) for all option
maturities, tenors, and strikes (ATM, ITM, OTM). Note that in the case of the 1-factor
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TABLE 3.2
Upper Panel, Middle Panel, and Lower Panel Give the Swaption Prices (in basis

points) for 1-Year, 2-Year, and 5-Year Option Maturities, Respectively, in a 1-Factor
Affine-Gaussian Model (Vasicek model) for Tenors of 1-Year, 2-Year, 5-Year, and

10-Year

Method Strike 1-year 2-year 5-year 10-year

Exact ITM 80.59 155.87 353.28 605.66
ATM 35.67 67.95 147.65 238.27
OTM 11.25 20.78 41.39 58.74

A ITM 80.59 155.87 353.28 605.66
ATM 35.67 67.95 147.65 238.27
OTM 11.25 20.78 41.39 58.74

B-sd ITM 80.59 155.87 353.28 605.66
ATM 35.67 67.95 147.65 238.27
OTM 11.25 20.78 41.39 58.74

B-FW ITM 80.59 155.87 353.28 605.62
ATM 35.67 67.95 147.65 238.27
OTM 11.25 20.78 41.39 58.69

Exact ITM 86.86 167.45 376.20 637.30
ATM 46.84 89.23 193.96 313.24
OTM 21.17 39.55 81.33 121.06

A ITM 86.86 167.45 376.20 637.30
ATM 46.84 89.23 193.96 313.24
OTM 21.17 39.55 81.33 121.06

B-sd ITM 86.86 167.45 376.20 637.30
ATM 46.84 89.23 193.96 313.24
OTM 21.17 39.55 81.33 121.06

B-FW ITM 86.86 167.45 376.20 637.26
ATM 46.84 89.23 193.96 313.24
OTM 21.17 39.55 81.33 121.03

Exact ITM 91.40 175.62 391.03 654.44
ATM 59.50 113.41 246.88 399.67
OTM 35.82 67.53 142.40 220.01

A ITM 91.40 175.62 391.03 654.44
ATM 59.50 113.41 246.88 399.67
OTM 35.82 67.53 142.40 220.01

B-sd ITM 91.40 175.62 391.03 654.43
ATM 59.50 113.41 246.87 399.66
OTM 35.82 67.53 142.40 220.00

B-FW ITM 91.40 175.62 391.03 654.40
ATM 59.50 113.41 246.87 399.67
OTM 35.82 67.53 142.40 220.00

Note: “ATM” denotes strike rate set at ATMF, “ITM” denotes the strike rate of
0.85ATMF, and “OTM” denotes the strike rate of 1.15ATMF.



SWAPTION PRICING IN AFFINE AND OTHER MODELS 807

TABLE 3.3
Upper Panel, Middle Panel, and Lower Panel Give the Swaption Prices (in basis

points) for 1-Year, 2-Year, and 5-Year Option Maturities, Respectively, in a 3-Factor
Affine Gaussian Model for Tenors of 1-Year, 2-Year, 5-Year, and 10-Year

Method Strike 1-year 2-year 5-year 10-year

MC ITM 79.45 (0.01) 154.57 (0.00) 361.49 (0.00) 637.00 (0.00)
ATM 20.83 (0.02) 33.14 (0.02) 53.35 (0.04) 65.63 (0.05)
OTM 1.57 (0.01) 1.07 (0.01) 0.15 (0.00) 0.00 (0.00)

A ITM 79.44 154.56 361.47 636.98
ATM 20.82 33.12 53.31 65.54
OTM 1.57 1.06 0.15 0.00

B-sd ITM 79.44 154.56 361.47 636.98
ATM 20.82 33.12 53.30 65.53
OTM 1.57 1.06 0.15 0.00

B-FW ITM 79.44 154.56 361.47 636.98
ATM 20.82 33.12 53.31 65.54
OTM 1.57 1.06 0.14 −0.00

MC ITM 78.41 (0.01) 150.93 (0.01) 346.33 (0.01) 604.87 (0.01)
ATM 23.54 (0.02) 38.42 (0.03) 63.67 (0.05) 79.05 (0.06)
OTM 2.81 (0.01) 2.60 (0.01) 0.90 (0.01) 0.08 (0.00)

A ITM 78.40 150.91 346.28 604.81
ATM 23.55 38.43 63.68 79.03
OTM 2.82 2.61 0.90 0.08

B-sd ITM 78.40 150.91 346.27 604.81
ATM 23.55 38.43 63.68 79.02
OTM 2.82 2.61 0.90 0.07

B-FW ITM 78.40 150.91 346.27 604.79
ATM 23.55 38.43 63.68 79.03
OTM 2.82 2.61 0.89 0.03

MC ITM 69.45 (0.01) 131.96 (0.01) 295.18 (0.01) 508.86 (0.01)
ATM 23.21 (0.02) 38.73 (0.03) 65.69 (0.05) 82.17 (0.06)
OTM 3.79 (0.01) 4.31 (0.01) 2.56 (0.01) 0.51 (0.01)

A ITM 69.44 131.95 295.16 508.84
ATM 23.21 38.72 65.68 82.13
OTM 3.79 4.32 2.57 0.51

B-sd ITM 69.44 131.95 295.16 508.84
ATM 23.21 38.72 65.68 82.13
OTM 3.79 4.32 2.57 0.51

B-FW ITM 69.44 131.95 295.15 508.77
ATM 23.21 38.72 65.68 82.13
OTM 3.79 4.32 2.54 0.39

Notes: “ATM” denotes strike rate set at ATMF, “ITM” denotes the strike rate of
0.85ATMF, and “OTM” denotes the strike rate of 1.15ATMF. Monte Carlo errors are
given in parentheses.
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TABLE 3.4
Upper Panel, Middle Panel, and Lower Panel Give the Swaption Prices (in basis

points) for 1-Year, 2-Year, and 5-Year Option Maturities, Respectively, in a 2-Factor
CIR Model for Tenors of 1-Year, 2-Year, 5-Year, and 10-Year

Method Strike 1-year 2-year 5-year 10-year

MC ITM 100.92 (0.01) 190.57 (0.01) 410.88 (0.01) 675.43 (0.01)
ATM 24.90 (0.02) 43.83 (0.04) 77.71 (0.06) 98.30 (0.08)
OTM 1.95 (0.01) 2.69 (0.01) 2.17 (0.01) 0.67 (0.01)

A ITM 101.12 190.59 410.91 675.48
ATM 24.75 43.82 77.70 98.28
OTM 1.89 2.69 2.16 0.67

B-sd ITM 101.12 190.59 410.91 675.48
ATM 24.75 43.82 77.70 98.28
OTM 1.89 2.69 2.16 0.67

B-FW ITM 101.12 190.59 410.90 675.45
ATM 24.75 43.82 77.70 98.28
OTM 1.89 2.69 2.13 0.50

MC ITM 92.40 (0.01) 174.12 (0.02) 374.67 (0.02) 618.30 (0.02)
ATM 29.41 (0.02) 51.79 (0.04) 91.94 (0.07) 116.30 (0.09)
OTM 5.06 (0.01) 7.55 (0.02) 7.84 (0.03) 3.88 (0.02)

A ITM 92.43 174.14 374.71 618.35
ATM 29.40 51.75 91.86 116.19
OTM 5.02 7.56 7.86 3.88

B-sd ITM 92.43 174.14 374.71 618.35
ATM 29.40 51.75 91.86 116.19
OTM 5.02 7.56 7.86 3.88

B-FW ITM 92.43 174.14 374.69 618.21
ATM 29.40 51.75 91.86 116.19
OTM 5.02 7.55 7.81 3.55

MC ITM 72.03 (0.02) 135.72 (0.03) 292.63 (0.03) 487.37 (0.03)
ATM 28.44 (0.02) 50.18 (0.04) 89.29 (0.07) 112.95 (0.09)
OTM 8.18 (0.02) 12.77 (0.03) 15.33 (0.04) 9.76 (0.03)

A ITM 72.03 135.75 292.70 487.44
ATM 28.47 50.19 89.30 112.96
OTM 8.18 12.78 15.34 9.77

B-sd ITM 72.03 135.75 292.70 487.44
ATM 28.47 50.19 89.30 112.96
OTM 8.18 12.78 15.34 9.77

B-FW ITM 72.03 135.75 292.67 487.23
ATM 28.47 50.19 89.30 112.96
OTM 8.18 12.78 15.31 9.44

Notes: “ATM” denotes strike rate set at ATMF, “ITM” denotes the strike rate of
0.85ATMF, and “OTM” denotes the strike rate of 1.15ATMF. Monte Carlo errors are
given in parentheses.
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affine-Gaussian model, Approximation A leads to the exact value of PT
t [P(xt0 ) < 1],

since the exercise boundary is just a point in the 1-factor case (while the boundary is a
line in the 2-factor case and a surface in the case of 3 or more factors). Therefore, the
result of Approximation A is identical to the exact value for tenors of 1-year and 2-year
(which do not involve the interpolation of PT). For tenors of 5-year and 10-year, the
exact values and Approximation A values can differ due to an interpolation error, but as
can be seen in Table 3.2, this error is so small that the numbers are identical up to the
last significant digit used here (two digits below the decimal) for all option maturities
(1-year, 2-year, and 5-year). As can be also seen in Table 3.2, Approximation B-sd also
led to an excellent agreement with the exact values, while Approximation B-FW’s results
were slightly less accurate. (For example, the swaption with 2-year option maturity and
10-year tenor has the price of 121.03 according to Approximation B-FW, while the exact
formula, Approximation A, and Approximation B-sd all give 121.06.) The examination
of the 3-factor affine-Gaussian results (Table 3.3) and the 2-factor CIR results (Table 3.4)
leads to the same qualitative conclusion about the performance of Approximations A,
B-sd, and B-FW.

Comparing the accuracy of Approximations A and B-sd with the method of SP (2006),
it can be seen that Approximations A and B-sd are more accurate. With Approximations
A and B-sd, the absolute error magnitudes never exceed 0.2 basis point in any of the
cases, and typically the errors are much smaller than that. SP’s (2006) method leads to
absolute errors whose magnitude often exceeds 0.2 basis point in the case of the 1-factor
Vasicek model (SP 2006, table 4.2) for OTM and ITM options, reaching numbers as
high as 1.99 basis points for OTM options and 2.71 basis points for ITM options. In the
case of the 2-factor CIR model, SP (2006, table 6.1) generate error magnitude as large
as 0.71 basis points (OTM, 5-year maturity and 10-year tenor). Qualitative differences
in absolute errors between the methods of this paper (Approximations A, B-sd) and SP’s
(2006) method also translate to qualitative differences in the magnitude of relative pricing
errors as well, particularly with OTM options.

As regards the computation speed, it is not easy to compare the speed of various
proposed methods, since one may not be able to say that each method under compari-
son has been fully “optimally” programmed. However, here we can make a conservative
statement about the speed of Approximation B-sd in comparison with Munk’s (1999)
stochastic duration method, since the same computational elements are involved: the
determination of the stochastic duration (which amounts to the determination of the
exercise boundary in Approximation B-sd), and the evaluation of terms of the form
PT

t [b · xt0 < a]. In general, the evaluation of the PT terms is going to be the most time-
consuming step (though in the case of the 1-factor and 3-factor affine-Gaussian models
considered in this subsection, there is a closed-form expression for it). In the case of
Munk’s stochastic duration method one needs two evaluations of PT (at T = t0 and T =
t + Ds), while in the case of the Approximation B-sd used in this subsection, one needs
at most five evaluations of PT; recall that an interpolation based on five values gave
highly accurate results. Therefore, the computation time for Approximation B-sd would
be no more than 2.5 times that of Munk’s stochastic duration method. In the case of Ap-
proximation A, the procedure for determining the option exercise boundary is different,
but the rest of the steps are the same as Approximation B-sd. As noted in footnote 9,
the process for determining the exercise boundary for Approximation A is pretty fast,
therefore we would expect Approximation A to be comparable to Approximation B-sd in
speed.
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According to SP’s (2006) estimation of computational speed (in their table 6.3), the
computation time for the SP method is about 2.3–2.5 times that of Munk’s stochastic
duration method, which would imply that Approximations A and B-sd in this paper are
comparable to SP’s (2006) method in terms of speed.

4. SWAPTION PRICING IN QG MODELS

4.1. General QG Models

To illustrate the application of the methods of this paper to swaption pricing in non-
affine models, we shall use QG models. The general QG model is given by

r (xt) = ar + br · xt + x′
tCr xt,(4.1)

where ar is a constant, br is an n-dimensional vector of constants, and Cr is an n ×
n constant symmetric matrix. The n-dimensional state vector xt has the risk-neutral
dynamics

dxt = K(θ − xt) dt + 
 dW t,(4.2)

where θ is an n-dimensional constant vector, K, 
 are n × n constant matrices, and W t

is an n-dimensional vector of standard Brownian motions.
Note that the xt dynamics is a special case of (3.2), with hij = (

′)ij, Hij = 0n×1 ∀ i, j.

Therefore E[xT |xt] and Var[xT |xt] for the QG model are again available in closed-form.
(See (A.11) and (A.16) in the Appendix; alternatively, one can use the expression for
E[xT |xt] and Var[xT |xt] in (3.16).)

It is well known that the zero-coupon bond price Z(t, T) in this model is given by15

Z(t, T) = exp(A(T − t) + B(T − t) · xt + x′
tC(T − t)xt),(4.3)

where A(τ ), B(τ ), C(τ ) are the solution of the Riccati equation

dA(τ )
dτ

= (Kθ )′ B(τ ) + 1
2

tr((2C(τ ) + B(τ )B(τ )′)

′) − ar

dB(τ )
dτ

= −K′ B(τ ) + 2C(τ )Kθ + 2C(τ )

′ B(τ ) − br

dC(τ )
dτ

= −(K′C(τ ) + C(τ )K) + 2C(τ )

′C(τ ) − Cr ,

(4.4)

with boundary condition A(0) = 0, B(0) = 0n×1, C(0) = 0n×n.
In the case of Approximation A, the coefficients a, b, C for the approximation

PT
t [P(xt0 ) < 1] ≈ PT

t [a + b · xt0 + x′
t0 C xt0 < 0] is given by (2.18), which involves func-

15 See, e.g., Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002).
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tions P(x), ∂x P(x), ∂x∂x′ P(x), given by

P(x) =
N∑

i=1

ci eA(ti −t0)+B(ti −t0)·x+x′C(ti −t0)x,

∂x P(x) =
N∑

i=1

ci eA(ti −t0)+B(ti −t0)·x+x′C(ti −t0)x(B(ti − t0) + 2C(ti − t0)x),

∂x∂x′ P(x) =
N∑

i=1

ci eA(ti −t0)+B(ti −t0)·x+x′C(ti −t0)x(2C(ti − t0)

+ (B(ti − t0) + 2C(ti − t0)x)(B(ti − t0) + 2C(ti − t0)x)′).

(4.5)

In the case of Approximation B, we have

a = A(t + D(t) − t0) + log(ξ )

b = B(t + D(t) − t0)

C = C(t + D(t) − t0).

(4.6)

If the stochastic duration Ds(t) is used (D(t) = Ds(t)), it can be computed as the solution
of the equation

(B(Ds) + 2C(Ds)xt)′

′(B(Ds) + 2C(Ds)xt) =(
N∑

i=1

ωi (B(ti − t) + 2C(ti − t)xt)

)′



′
(

N∑
i=1

ωi (B(ti − t) + 2C(ti − t)xt)

)
,

(4.7)

where ωi = ciZ(t, ti)/(
∑

jcjZ(t, tj)). Again, as in the case of affine models (equation (3.8)),
one can speed up the solution of (4.7) by computing the left-hand side using an interpo-
lation formula based on precomputed values of (B(τ ) + 2C(τ )xt)′

′(B(τ ) + 2C(τ )xt)
at τ = {ti − t}N

i=1.
To compute PT

t [a + b · xt0 + x′
t0 Cxt0 < 0], again we use the Levy inversion formula

PT
t [a + b · xt0 + x′

t0 Cxt0 < 0] = 1
2

− 1
π

∫ ∞

0
dz

Im
(

f T
t (z)

)
z

.(4.8)

The T-forward measure characteristic function f T
t (z) is given by

f T
t (z) = ET

t

[
eiz(a+b·xt0 +x′

t0
Cxt0 )]

= Z(t, T)−1Et
[
e− ∫ T

t rs dseiz(a+b·xt0 +x′
t0

Cxt0 )]
= Z(t, T)−1Et

[
e− ∫ t0

t rs dse(A(T−t0)+i za)+(B(T−t0)+i zb)·xt0 +x′
t0

(C(T−t0)+i zC)xt0
]

= eÃ(t0−t;T−t0,z)−A(T−t)+(B̃(t0−t;T−t0,z)−B(T−t))·xt+x′
t(C̃(t0−t;T−t0,z)−C(T−t))xt ,

(4.9)

where Ã(τ ; T − t0, z), B̃(τ ; T − t0, z), C̃(τ ; T − t0, z) are the solution of the Riccati equa-
tions (4.4), with boundary conditions Ã(0; T − t0, z) = A(T − t0) + i za, B̃(0; T − t0, z) =
B(T − t0) + i zb, C̃(0; T − t0, z) = C(T − t0) + i zC.
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4.2. Two-Factor QG Model Illustration

Let us now apply the methods to the swaption pricing in the general 2-factor QG
model, with parameters from an estimation in Kim (2007):

ar = 0.0444, br =
[

0

0

]
, Cr =

[
1 0.4412

0.4412 −1

]
,

K =
[−0.0541 0.0361

−1.2113 0.4376

]
, θ =

[
0.1932

0.1421

]
, 
 =

[
0.0145 0

0 0.0236

]
.

(4.10)

We set the state vector xt = [0.1690, −0.0501]′, which is the estimated long-run physical
mean.

Note that Cr is not a positive-definite matrix; more specifically it has one negative
eigenvalue and one positive eigenvalue.16 Thus, for low maturities, C(τ ) (in equation (4.3))
is not positive-definite, but it turns out that C(τ ) becomes positive definite for large
enough τ .

These parameters therefore allow us to examine the swaption pricing for quite different
boundary shapes: For short tenors, the boundary equation P(x) − 1 = 0 is approximately
a hyperbola, while for long tenors it is approximately an ellipse. This is illustrated in Figure
4.1. The boundary curve P(x) − 1 = 0, with K = 8%, is shown in Figure 4.1(a, b), (c, d),
and (e, f) for tenors of 2-year, 5-year, and 10-year, respectively.

The approximate boundary based on Approximation A is shown in Figure 4.1(a), (c),
and (e). The * point again denotes x∗, given by (2.20). The approximate boundary based
on Approximation B with stochastic duration (B-sd) is shown in Figure 4.1(b), (d), and
(f). It can be seen that both A and B-sd match the true boundary P(x) − 1 = 0 very
well at least in the neighborhood of x∗. Away from x∗, the approximate boundaries can
deviate from the true boundary a lot. A striking example is the case of the 5-year tenor in
Figure 4.1(d): the true boundary is ellipse-like, but the boundary based on Approximation
B-sd is a hyperbola. This, however, is not necessarily a problem, since the contribution
of those parts with large mismatch is very small.

Table 4.1 shows the swaption prices for tenors of 2, 5, 10 years and option maturities of
1, 2, 5 years, based on five different methods: the Monte Carlo simulation, Approxima-
tion A, Approximation B with stochastic duration, Approximation B with Fisher–Weil
duration, and Munk’s (1999) stochastic duration approximation.

As in affine model illustrations in Section 3.2, δt was set to 1/2, and for the 5-year and
10-year tenors we use the cubic-spline interpolation based on the evaluation of PT

t at T
= t0 + (j/m)(tN − t0), where j = 0, 1, . . . , m and m = 4 (for Approximations A and B).

Again, as in Section 3.2, the strike rates are chosen as (ATMF-1.5%, ATMF-0.75%,
ATMF, ATMF+0.75%, ATMF+1.5%). Note that how much the strike is out-of-money
(or in-the-money) depends on the volatility. The parameters for the QG model illustration
(equation (4.10)) imply less volatile interest rates than the 2-factor CIR model parameters
in Section 3.2 (equation (3.12));17 therefore, the strike of ATMF+1.5% in this section is

16 This makes nominal short rate no longer positive-definite, but one gains additional flexibility to
fit interest rate dynamics (compared to the positive-definite case). This is analogous to the mixed-sign
multifactor CIR model of Backus et al. (2001), who find that it fits data better than the standard n-factor
CIR model.

17 The estimation in Kim (2007) is based on a later period sample, which had less volatile interest rates
than Duffie and Singleton (1997).
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TABLE 4.1
Upper Panel, Middle Panel, and Lower Panel Give the Swaption Prices for 1-Year,

2-Year, and 5-Year Option Maturities, Respectively, in a 2-Factor QG Model

Method Tenor ATMF−1.5% ATMF−0.75% ATMF ATMF+0.75% ATMF+1.5%

MC 2 255.46 (0.01) 138.47 (0.02) 52.28 (0.04) 11.84 (0.02) 1.46 (0.01)
5 567.72 (0.02) 304.40 (0.03) 106.36 (0.07) 17.86 (0.04) 1.02 (0.01)

10 943.25 (0.04) 494.64 (0.03) 148.30 (0.09) 12.20 (0.03) 0.04 (0.00)
A 2 255.43 138.48 52.33 11.87 1.47

5 567.67 304.42 106.45 17.92 1.02
10 943.16 494.69 148.55 12.32 0.04

B-sd 2 255.43 138.48 52.33 11.87 1.47
5 567.66 304.41 106.44 17.92 1.01

10 943.11 494.66 148.49 12.32 −0.00
B-FW 2 255.43 138.48 52.33 11.87 1.47

5 567.66 304.40 106.44 17.89 0.97
10 943.10 494.49 148.53 11.89 −0.15

Munk 2 255.41 138.40 52.25 11.86 1.48
5 567.38 303.59 106.02 18.37 1.21

10 942.54 492.38 147.75 14.12 0.17

MC 2 240.36 (0.02) 140.50 (0.03) 65.81 (0.05) 23.12 (0.04) 5.81 (0.02)
5 532.17 (0.03) 304.37 (0.04) 130.23 (0.08) 34.68 (0.05) 4.43 (0.02)

10 880.43 (0.07) 488.21 (0.03) 182.48 (0.09) 28.13 (0.05) 0.30 (0.00)
A 2 240.34 140.44 65.71 23.06 5.78

5 532.21 304.31 130.08 34.60 4.40
10 880.59 488.27 182.41 28.14 0.30

B-sd 2 240.34 140.44 65.71 23.06 5.78
5 532.20 304.31 130.06 34.59 4.39

10 880.52 488.26 182.32 28.14 0.09
B-FW 2 240.34 140.44 65.71 23.06 5.78

5 532.20 304.29 130.07 34.58 4.31
10 880.48 488.09 182.38 27.84 −0.32

Munk 2 240.25 140.29 65.59 23.04 5.82
5 531.25 302.89 129.45 35.36 5.10

10 878.30 484.58 181.36 31.37 1.09

MC 2 198.10 (0.03) 124.42 (0.03) 65.92 (0.04) 27.59 (0.03) 8.59 (0.02)
5 438.24 (0.06) 268.77 (0.04) 130.24 (0.05) 39.95 (0.05) 5.04 (0.02)

10 724.44 (0.12) 432.84 (0.07) 190.77 (0.05) 36.27 (0.04) 0.24 (0.00)
A 2 198.09 124.40 65.91 27.58 8.58

5 438.21 268.75 130.21 39.92 5.04
10 724.40 432.83 190.72 36.24 0.24

B-sd 2 198.09 124.40 65.91 27.58 8.58
5 438.20 268.74 130.18 39.90 4.99

10 724.39 432.80 190.63 36.16 −0.07
B-FW 2 198.09 124.40 65.91 27.58 8.58

5 438.20 268.73 130.19 39.91 4.93
10 724.32 432.73 190.69 36.12 −0.34

Munk 2 197.94 124.25 65.84 27.65 8.71
5 436.88 267.41 129.80 41.18 6.25

10 721.63 430.23 190.44 40.04 0.99

Note: The Monte Carlo errors are given in parentheses.
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FIGURE 4.1. True exercise boundaries (solid line) and approximate boundaries (dashed
line). (a) 2-year tenor, Approximation A. (b) 2-year tenor, Approximation B-sd. (c) 5-
year tenor, Approximation A. (d) 5-year tenor, Approximation B-sd. (e) 10-year tenor,
Approximation A. (f) 10-year tenor, Approximation B-sd.

more deeply out-of-money than ATMF+1.5% in Section 3.2. This can be also seen from
the fact that the swaption prices for the strike of ATMF+1.5% are very small, e.g., for
the 1-year-maturity, 10-year-tenor swaption, the price at ATMF+1.5% is only 0.04 basis
points.

As can be seen in Table 4.1, the results based on Approximation A have an impressive
match with those based on Monte Carlo simulation for the entire range of option maturi-
ties (1, 2, 5 years), tenors (2, 5, 10 years), and strikes (from ATMF-1.5% to ATMF+1.5%)
considered in this paper. Approximation B with stochastic duration (B-sd) has a similarly
good performance, except for the case of the 10-year tenor and the strike of ATMF+1.5%,
where it generates negative option prices for the option maturities of 1-year and 5-year.
This is not likely to be a serious problem, since these options are not likely to exist (trade)
in practice; they are too deep out-of-money, as noted earlier.
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Approximation B with Fisher–Weil duration (B-FW) also yields very accurate results.
But in some cases (low-price out-of-money options), its results are not as accurate as
Approximation B with stochastic duration. For example, the swaption price for the 10-
year tenor and the strike of ATMF + 0.75% is (11.89, 27.84) for (1-year, 2-year) option
maturity for Approximation B-FW. On the other hand, the corresponding numbers for
Approximation B-sd are (12.32, 28.14), which is much closer to the Monte Carlo value
of (12.20, 28.13). In any case, even Approximation B-FW is much more accurate than
the Munk’s (1990) stochastic duration method, which generates the corresponding price
of (14.12, 31.37). Approximations A and B have been also tested with other parameters
and state vectors; these tests led to similarly good conclusions about the performance of
Approximations A and B.

5. CONCLUDING REMARKS

In this paper, we have explored several modifications of SU’s (2002) method of approx-
imating the exercise boundary so that (1) the method does not require the knowledge
of the pdf, and (2) it is easily generalized and applied to models beyond the affine class.
Among these modifications, we find that the Taylor series method (Approximation A)
performs very well across the entire option maturities, tenors, and strikes considered. The
zero-coupon bond approximation with stochastic duration (Approximation B-sd) also
performed similarly well, except at moneyness levels that are so deeply out-of-the-money
as to be practically irrelevant. The methods work very well partly because the errors in
the evaluation of T-forward measure probabilities PT

t [P(xt0 ) < 1] cancel out to a large
extent. For applications beyond the affine class, we have focused on QG models and
found that the methods of this paper (Approximations A and B-sd) work well for QG
models too; we can expect the methods to have broad applicability to yet other models,
as long as they have a tractable formula for the zero-coupon bond option price.

APPENDIX: CONDITIONAL MEAN AND VARIANCE IN AFFINE
MODELS

In this appendix, we derive the expression for the conditional first and second moments
of the state vector in affine models (needed for Approximation A). More specifically, we
evaluate E[xT |xt] and Var[xT |xt] for the n-dimensional vector process

dxt = (Kθ − Kxt) dt + 
(xt) dW t,(A.1)

where (
(xt)
(xt)′)i j ≡ hi j + H′
i j xt. (W t is an n-dimensional vector of independent Brow-

nian motions,K is an n × n constant matrix,Kθ and Hij (i, j = 1, . . . , n) are n-dimensional
constant vectors, and hij (i, j = 1, . . . , n) is a scalar.) We allow for as general K matrix
as possible, e.g., K could be noninvertible, nondiagonal, or nonstationary. It could also
have complex eigenvalues.18

We use the fact that the matrix exponential eKt (≡ In×n + Kt + (1/2)K2t2 + · · ·) has
the property that d(eKt) = KeKtdt = eKtKdt. Using the Ito’s lemma, we have

d(eKtxt) = KeKtxtdt + eKtdxt.(A.2)

18 An equivalent expression for E[xT |xt] and Var[xT |xt] has been derived by Fisher and Gilles (1996),
with a different notation for the specification of the 
(xt)
(xt)′ matrix.
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Substituting in dxt, we have

d(eKtxt) = eKtKθdt + eKt
(xt) dW t.(A.3)

Integrating this expression from t to T , we have

eKTxT − eKtxt =
(∫ T

t
eKsds

)
Kθ +

∫ T

t
eKs
(xs) dW s .(A.4)

Therefore,

xT = e−K(T−t)xt +
(∫ T

t
e−K(T−s)ds

)
Kθ +

∫ T

t
e−K(T−s)
(xs) dW s .(A.5)

From this, the conditional mean is immediately obtained:

E[xT | xt] = e−K(T−t)xt +
(∫ T

t
e−K(T−s)ds

)
Kθ.(A.6)

The conditional variance–covariance matrix is

Var[xT | xt] =
∫ T

t
e−K(T−s)E[
(xs)
(xs)′ | xt]e−K′(T−s) ds.(A.7)

We shall now consider the case of invertible K matrix and the case of noninvertible K
matrix separately.

Invertible K matrix: If K is an invertible matrix, the integral in (A.6) is easily done,
and we have

E[xT | xt] = e−K(T−t)(xt − θ ) + θ.(A.8)

The matrix exponential in (A.8) can be evaluated by diagonalizing the K matrix,

K = U D([γ1, . . . , γn ]′) U−1,(A.9)

where D(x) denotes a diagonal matrix whose diagonal elements are the vector x, γ i’s are
the eigenvalues of K, and U is a matrix whose columns are eigenvectors of K. Using the
fact that

eKt = eU D([γ1,...,γn ]′) U−1t

= In×n + tU D([γ1, . . . , γn ]′) U−1 + 1
2

t2U D2([γ1, . . . , γn ]′) U−1 + · · ·

= UD([eγ1t, . . . , eγn t]′)U−1,

(A.10)

we have

E[xT | xt] = UD(
[
e−γ1(T−t), . . . , e−γn (T−t)]′)U−1(xt − θ ) + θ.(A.11)

To evaluate the conditional variance–covariance matrix, again we use the diagonal-
ization of the K matrix (equation (A.9)). Straightforward calculation shows that the
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elements of the matrix Var[xT |xt] are given by

(Var[xT | xt])i j =∑
p,q,l,m

∫ T
t ds Ui p e−γp(T−s)(U−1)pl (E[
(xs)
(xs)′ | xt])lm(U−1′

)mqe−γq (T−s)(U ′)q j .

(A.12)

Since

(E[
(xs)
(xs)′ | xt])lm = hlm + H′
lmE[xs | xt]

= hlm + H′
lmθ + H′

lmUD(
[
e−γ1(s−t), . . . , e−γn (s−t)]′)U−1(xt − θ ),

(A.13)

we have

(Var[xT | xt])i j =
∑

p,q,l,m

Ui ppq (U−1)pl�lm(U−1′
)mq (U ′)q j

+
∑

p,q,l,m,k

Ui p(k)pq (U−1)pl (�k)lm(U−1′
)mq (U ′)q j

(A.14)

where we have defined n × n symmetric matrices �, �k, , k (k = 1, . . . , n) as

�i j = hi j + H′
i jθ,

(�k)i j = (H′
i j U)k(U−1(xt − θ ))k,

i j = 1 − e−(γi +γ j )(T−t)

γi + γ j

(k)i j = e−γk(T−t) − e−(γi +γ j )(T−t)

γi + γ j − γk
.

(A.15)

In the expression for �k, the notation (v)k denotes the kth element of the vector v .
Equation (A.14) can be written more simply in matrix notation as

Var[xT | xt] = U

(
((U−1�U−1′

) ◦ ) +
n∑

k=1

((U−1�kU−1′
) ◦ k)

)
U ′,(A.16)

where the circle ◦ denotes the Hadamard product (entry-wise multiplication). Note that
this formula is valid regardless of whether K has all-real eigenvalues or not.19

NoninvertibleK matrix: If the matrixK is not invertible,20 at least one of its eigenvalues
is zero, and the long-run mean θ is not defined. To obtain E[xT |xt] in this case, we
start from (A.6), and evaluate the matrix integral using the diagonalized form of K

19 If K has complex eigenvalues, the matrix U is also complex. In this case, the formula (A.16) still gives
the correct answer, but note that U ′ is the transpose matrix, not the Hermitian conjugate matrix. (In some
packages like matlab, the notation U ′ gives the Hermitian conjugate matrix when U is complex.)

20 A prominent example of a noninvertible K matrix is the affine stochastic volatility model of stock
prices, as in Duffie et al. (2000).
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(equation (A.9)). This gives

E[xT | xt] = UD([e−γ1(T−t), . . . , e−γn (T−t)]′)U−1xt

+ UD

([∫ T

t
e−γ1(T−s)ds, . . . ,

∫ T

t
e−γn (T−s)ds

]′)
U−1Kθ.

(A.17)

The integral in (A.17) is

∫ T

t
e−γi (T−s)ds =

{
(T − t) (γi = 0)

(1 − e−γi (T−t))/γi (γi �= 0).
(A.18)

To obtain Var[xT |xt], we proceed as in the case of the invertible K matrix, except that
instead of (A.13), we have

(E[
(xs)
(xs)′ | xt])lm = hlm + H′
lmUD([e−γ1(s−t), . . . , e−γn (s−t)]′)U−1xt

− H′
lmUD

([∫ s

t
e−γ1(u−t)du, . . . ,

∫ s

t
e−γn (u−t)du

]′)
U−1Kθ.

(A.19)

It is then straightforward to show that

Var[xT | xt] = U

(
(U−1�aU−1′

) ◦ a +
n∑

k=1

((U−1�b
kU−1′

) ◦ b
k − (U−1�c

kU−1′
) ◦ c

k)

)
U ′,

(A.20)

where the n × n symmetric matrices �a, �b
k, �

c
k, a, b

k, 
c
k (k = 1, . . . , n) are defined as

(�a)i j = hi j ,

(�b
k)i j = (H′

i j U)k(U−1xt)k,

(�c
k)i j = (H′

i j U)k(U−1Kθ )k,

(a)i j =
∫ T

t
e−(γi +γ j )(T−s)ds,

(b
k)i j =

∫ T

t
e−(γi +γ j )(T−s)−γk(s−t)ds,

(c
k)i j =

∫ T

t
e−(γi +γ j )(T−s)

(∫ s

t
e−γk(u−t)du

)
ds.

(A.21)

The integrals in (A.21) have different expressions, depending on whether γ k = 0 or not,
whether γ i + γ j = 0 or not, and whether γ k = γ i + γ j or not:21

(a)i j =

⎧⎪⎨
⎪⎩

T − t (γi + γ j = 0)

1 − e−(γi +γ j )(T−t)

γi + γ j
(γi + γ j �= 0)

(A.22)

21 Note that the situation γ i + γ j = 0 would occur when i = j and γ i = 0, and the situation γ k = γ i +
γ j would occur when i = k and γ j = 0 or j = k and γ i = 0.
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(b
k)i j =

⎧⎪⎨
⎪⎩

e−γk(T−t)(T − t) (γi + γ j = γk)

e−γk(T−t) − e−(γi +γ j )(T−t)

γi + γ j − γk
(γi + γ j �= γk)

(A.23)

(c
k)i j =

⎧⎪⎪⎨
⎪⎪⎩

(T − t)2/2 (γk = 0, γi + γ j = 0)

(e−(γi +γ j )(T−t) + (γi + γ j )(T − t) − 1)/(γi + γ j )2 (γk = 0, γi + γ j �= 0)

((a)i j − (b
k)i j )/γk (γk �= 0).

(A.24)
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We develop a theory of robust pricing and hedging of a weighted variance swap given
market prices for a finite number of co-maturing put options. We assume the put option
prices do not admit arbitrage and deduce no-arbitrage bounds on the weighted variance
swap along with super- and sub-replicating strategies that enforce them. We find that
market quotes for variance swaps are surprisingly close to the model-free lower bounds
we determine. We solve the problem by transforming it into an analogous question
for a European option with a convex payoff. The lower bound becomes a problem
in semi-infinite linear programming which we solve in detail. The upper bound is
explicit. We work in a model-independent and probability-free setup. In particular,
we use and extend Föllmer’s pathwise stochastic calculus. Appropriate notions of
arbitrage and admissibility are introduced. This allows us to establish the usual hedging
relation between the variance swap and the “log contract” and similar connections for
weighted variance swaps. Our results take the form of a FTAP: we show that the
absence of (weak) arbitrage is equivalent to the existence of a classical model which
reproduces the observed prices via risk-neutral expectations of discounted payoffs.

KEY WORDS: weighted variance swap, weak arbitrage, arbitrage conditions, model-independent
bounds, pathwise Itô calculus, semi-infinite linear programming, fundamental theorem of asset pricing,
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1. INTRODUCTION

In the practice of quantitative finance, the risks of “model error” are by now univer-
sally appreciated. Different models, each perfectly calibrated to market prices of a set of
liquidly traded instruments, may give widely different prices for contracts outside the cal-
ibration set. The implied hedging strategies, even for contracts within the calibration set,
can vary from accurate to useless, depending on how well the model captures the sample
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path behavior of the hedging instruments. This fundamental problem has motivated a
large body of research ranging from asset pricing through portfolio optimization, risk
management to macroeconomics (see, e.g., Cont 2006; Föllmer et al. 2009; Acciaio et al.
2011; Hansen and Sargent 2010 and the references therein). Another stream of literature,
to which this paper is a contribution, develops a robust approach to mathematical fi-
nance, see Hobson (1998), Davis and Hobson (2007), Cox and Obłój (2011a). In contrast
to the classical approach, no probabilistic setup is assumed. Instead we suppose we are
given current market quotes for the underlying assets and some liquidly traded options.
We are interested in no-arbitrage bounds on a price of an option implied by this market
information. Further, we want to understand if, and how, such bounds may be enforced,
in a model-independent way, through hedging.

In this paper, we consider robust pricing and hedging of a weighted variance swap
when prices of a finite number of co-maturing put options are given. If (St, t ∈ [0, T ])
denotes the price of a financial asset, the weighted realized variance is defined as

RVT =
n∑

i=1

h
(
Sti

) (
log

Sti

Sti−1

)2

,(1.1)

where ti is a pre-specified sequence of times 0 = t0 < t1 < · · · < tn = T , in practice
often daily sampling, and h is a given weight function. A weighted variance swap is a
forward contract in which cash amounts equal to A × RVT and A× PRV

T are exchanged
at time T , where A is the dollar value of one variance point and PRV

T is the variance
swap “price,” agreed at time 0. Three representative cases considered in this paper are
the plain vanilla variance swap h(s) ≡ 1, the corridor variance swap h(s) = 1I (s) where I is
a possibly semi-infinite interval in R+, and the gamma swap in which h(s) = s. The reader
can consult Gatheral (2006) for information about variance swaps and more extended
discussion of the basic facts presented below. In this section we restrict the discussion to
the vanilla variance swap; we return to the other contracts in Section 4.

In the classical approach, if we model St under a risk-neutral measure Q as1 St =
Ft exp(Xt − 1

2 〈X〉t), where Ft is the forward price (assumed to be continuous and of
bounded variation) and Xt is a continuous martingale with quadratic variation process
〈X〉t, then St is a continuous semimartingale and

log
Sti

Sti−1

= (g(ti ) − g(ti−1)) + (
Xti − Xti−1

)
,

with g(t) = log(Fti ) − 1
2 〈X〉ti . For m = 1, 2. . . let {sm

i , i = 0, . . . , km} be the ordered set of
stopping times in [0, T ] containing the times ti together with times τm

0 = 0, τm
k = inf{t >

τm
k−1 : |Xt − Xτm

k−1
| > 2−m} wherever these are smaller than T . If RVm

T denotes the realized
variance computed as in (1.1) but using the times sm

i , then RVm
T → 〈X〉T = 〈log S〉T

almost surely, see Rogers and Williams (2000), theorem IV.30.1. For this reason, most of
the pricing literature on realized variance studies the continuous-time limit 〈X〉T rather
than the finite sum (1.1) and we continue the tradition in this paper.

The key insight into the analysis of variance derivatives in the continuous limit was
provided by Neuberger (1994). We outline the arguments here, see Section 4 for all the
details. With St as above and f a C2 function, it follows from the general Itô formula

1For example, St = (e(r−q)t S0)(eσ Wt− 1
2 σ 2t) in the Black–Scholes model, with the conventional notation.
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that Y t = f (St) is a continuous semimartingale with d〈Y〉t = (f ′(St))2d〈S〉t. In particular,
with the above notation

d(log St) = 1
St

dSt − 1

2S2
t
d〈S〉t = 1

St
dSt − 1

2
d〈log S〉t,

so that

〈log S〉T = 2
∫ T

0

1
St

dSt − 2 log(ST/S0)(1.2)

This shows that the realized variation is replicated by a portfolio consisting of a self-
financing trading strategy that invests a constant $2DT in the underlying asset S together
with a European option whose exercise value at time T is λ(ST ) = −2log (ST /FT ). Here
DT is the time-T discount factor. Assuming that the stochastic integral is a martingale,
(1.2) shows that the risk-neutral value of the variance swap rate PRV

T is

PRV
T = E[〈log S〉T] = −2E[log(ST/FT)] = 2

1
DT

Plog,(1.3)

that is, the variance swap rate is equal to the forward value Plog /DT of two “log
contracts”—European options with exercise value −log (ST /FT ), a convex function of
ST . (1.3) gives us a way to evaluate PRV

T in any given model. The next step is to rephrase
Plog in terms of call and put prices only.

Recall that for a convex function f : R+ → R the recipe f ′′(a, b] = f ′
+(b) − f ′

+(a)
defines a positive measure f ′′(dx) on B(R+), equal to f ′′(x)dx if f is C2. We then have the
Taylor formula

f (x) = f (x0) + f ′
+(x0)(x − x0) +

∫ x0

0
(y − x)+ν(dy) +

∫ ∞

x0

(x − y)+ f ′′(dy).(1.4)

Applying this formula with x = ST , x0 = FT and f (s) = log (s/S0), and combining with
(1.2) gives

1
2
〈log S〉T =

∫ T

0

1
St

dSt − log(FT/S0) + 1 − ST/FT

+
∫ FT

0

(K − ST)+

K2
dK +

∫ ∞

FT

(ST − K)+

K2
dK .

(1.5)

Assuming that puts and calls are available for all strikes K ∈ R+ at traded prices PK , CK ,
(1.5) provides a perfect hedge for the realized variance in terms of self-financing dynamic
trading in the underlying (the first four terms) and a static portfolio of puts and calls and
hence uniquely specifies the variance swap rate PRV

T as

PRV
T = 2

DT

∫ ∞

0

1
K2

(
PK 1(K≤FT ) + CK 1(K>FT )

)
dK .(1.6)

Our objective in this paper is to investigate the situation where, as in reality, puts and
calls are available at only a finite number of strikes. In this case we cannot expect to get
a unique value for PRV

T as in (1.6). However, from (1.2) we expect to obtain arbitrage
bounds on PRV

T from bounds on the value of the log contract—a European option whose
exercise value is the convex function −log (ST /FT ). It will turn out that the weighted
variance swaps we consider are associated in a similar way with other convex functions.
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In Davis and Hobson (2007) conditions were stated under which a given set of prices
(P1 , . . . , Pn) for put options with strikes (K1 , . . . , Kn) all maturing at the same time T is
consistent with absence of arbitrage. Thus the first essential question we have to answer
is: given a set of put prices consistent with absence of arbitrage and a convex function λT ,
what is the range of prices Pλ for a European option with exercise value λT (ST ) such that
this option does not introduce arbitrage when traded in addition to the existing puts? We
answer this question in Section 3 following a statement of the standing assumptions and
a summary of the Davis and Hobson (2007) results in Section 2.

The basic technique in Section 3 is to apply the duality theory of semi-infinite linear
programming to obtain the values of the most expensive sub-replicating portfolio and
the cheapest super-replicating portfolio, where the portfolios in question contain static
positions in the put options and dynamic trading in the underlying asset. The results for
the lower and upper bounds are given in Propositions 3.1 and 3.5, respectively. (Often,
in particular in the case of plain vanilla variance swaps, the upper bound is infinite.)
For completeness, we state and prove the fundamental Karlin-Isii duality theorem in an
appendix, Appendix A. With these results in hand, the arbitrage conditions are stated
and proved in Theorem 3.6.

In this first part of the paper—Sections 2 and 3—we are concerned exclusively with
European options whose exercise value depends only on the asset price ST at the common
exercise time T . In this case the sample path properties of {St, t ∈ [0, T ]} play no role
and the only relevant feature of a “model” is the marginal distribution of ST . For this
reason we make no assumptions about the sample paths. When we come to the second
part of the paper, Sections 4 and 5, analyzing weighted variance swaps, then of course
the sample path properties are of fundamental importance. Our minimal assumption is
that {St, t ∈ [0, T ]} is continuous in t. However, this is not enough to make sense out of
the problem. The connection between the variance swap and the “log contract,” given at
(1.2), is based on stochastic calculus, assuming that St is a continuous semimartingale.
In our case the starting point is simply a set of prices. No model is provided, but we
have to define what we mean by the continuous-time limit of the realized variance and by
continuous-time trading. An appropriate framework is the pathwise stochastic calculus
of Föllmer (1981) where the quadratic variation and an Itô-like integral are defined for
a certain subset Q of the space of continuous functions C[0, T ]. Then (1.2) holds for
S(·) ∈ Q and we have the connection we sought between variance swap and log contract.
For weighted variance swaps the same connection exists, replacing “−log ” by some
other convex function λT , as long as the latter is C2. In the case of the corridor variance
swap, however, λ′′

T is discontinuous and we need to restrict ourselves to a smaller class of
paths L for which the Itô formula is valid for functions in the Sobolev space W2. All of
this is consistent with models in which St is a continuous semimartingale, because then
P {ω : S(·, ω) ∈ L} = 1. We discuss these matters in a separate appendix, Appendix B.

With these preliminaries in hand we formulate and prove, in Section 4, the main result
of the paper, Theorem 4.3, giving conditions under which the quoted price of a weighted
variance swap is consistent with the prices of existing calls and puts in the market,
assuming the latter are arbitrage-free. When the conditions fail there is a weak arbitrage,
and we identify strategies that realize it.

In mathematical finance it is generally the case that option bounds based on super-
and sub-replication are of limited value because the gap is too wide. However, here we
know that as the number of put options increases then in the limit there is only one price,
namely, for a vanilla variance swap, the number PRV

T of (1.6), so we may expect that in a
market containing a reasonable number of liquidly traded puts the bounds will be tight.
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In Section 5, we present data from the S&P 500 index options market which shows that
our computed lower bounds are surprisingly close to the quoted variance swap prices.

This paper leaves many related questions unanswered. In particular we would like to
know what happens when there is more than one exercise time T , and how the results
are affected if we allow jumps in the price path. The latter question is considered in the
small time-to-expiry limit in the recent paper Keller-Ressel and Muhle-Karbe (2013).
A paper more in the spirit of ours, but taking a complementary approach, is Hobson
and Klimmek (2011) (HK). In our paper the variance swap payoff is defined by the
continuous-time limit, and we assume that prices of a finite number of traded put and/or
call prices are known. By contrast, HK deal with the real variance swap contract (i.e.,
discrete sampling) but assume that put and call prices are known for all strikes K ∈ R+,
so in practice the results will depend on how the traded prices are interpolated and
extrapolated to create the whole volatility surface. Importantly, HK allow for jumps in
the price process; this is indeed the main focus of their work. The price bounds they obtain
are sharp in the continuous-sampling limit. Combining our methods with those of HK
would be an interesting, and possibly quite challenging, direction for future research, see
Remark 4.6 below.

Exact pricing formulas for a wide variety of contracts on discretely sampled realized
variance, in a general Lévy process setting, are provided in Crosby and Davis (2011).

2. PROBLEM FORMULATION

Let (St, t ∈ [0, T ]) be the price of a traded financial asset, which is assumed nonnegative:
St ∈ R+ = [0, ∞). In addition to this underlying asset, various derivative securities as
detailed below are also traded. All of these derivatives are European contracts maturing
at the same time T . The present time is 0. We make the following standing assumptions
as in Davis and Hobson (2007):

(i) The market is frictionless: assets can be traded in arbitrary amounts, short or long,
without transaction costs, and the interest rates for borrowing and lending are the
same.

(ii) There is no interest rate volatility. We denote by Dt the market discount factor for
time t, i.e., the price at time 0 of a zero-coupon bond maturing at t.

(iii) There is a uniquely defined forward price Ft for delivery of one unit of the asset at
time t. This will be the case if the asset pays no dividends or if, for example, it has
a deterministic dividend yield. We let �t denote the number of shares that will be
owned at time t if dividend income is re-invested in shares; then F0 = S0 and Ft =
S0/(Dt�t) for t > 0.

We suppose that n put options with strikes 0 < K1 < · · · < Kn and maturity T are
traded, at time-0 prices P1 , . . . , Pn. In Davis and Hobson (2007), the arbitrage relations
among these prices were investigated. The facts are as follows. A static portfolio X is
simply a linear combination of the traded assets, with weights π1 , . . . , πn, φ, ψ on the
options, on the underlying asset and on cash respectively, it being assumed that dividend
income is re-invested in shares. The value of the portfolio at maturity is

XT =
n∑

i=1

πi [Ki − ST]+ + φ�T ST + ψ D−1
T(2.1)



826 M. DAVIS, J. OBŁÓJ, AND V. RAVAL

and the set-up cost at time 0 is

X0 =
n∑

i=1

πi Pi + φS0 + ψ.(2.2)

Note that it does not make any sense a priori to speak about Xt—the value of the
portfolio at any intermediate time—as this is not determined by the market input and
we do not assume the options are quoted in the market at intermediate dates t ∈ (0, T).
To make sense to statements like “XT is nonnegative” we need to specify the universe
of scenarios we consider. Later, in Section 4, this will mean the space of possible paths
(St: t ≤ T). However here, because we only allow static trading as in (2.1), we essentially
look at a one-period model and we just need to specify the possible range of values for
ST and we suppose that ST may take any value in [0, ∞).

A model M is a filtered probability space (�,F = (Ft)t∈[0,T],P ) together with a positive
F-adapted process (St)t∈[0,T ] such that S0 coincides with the given time-0 asset price. Given
market prices of options, we say that M is a market model for these options if Mt =
St/Ft is an F-martingale (in particular, St is integrable) and the market prices equal to
the P–expectations of discounted payoffs. In particular, M is a market model for put
options if Pi = DTE[Ki − ST]+ for i = 1 , . . . , n. We simply say that M is a market model
if the set of market options with given prices is clear from the context. It follows that
in a market model we have joint dynamics on [0, T ] of all assets’ prices such that the
initial prices agree with the market quotes and the discounted prices are martingales.
By the (easy part of the) First Fundamental Theorem of Asset Pricing (Delbaen and
Schachermayer 1994) the dynamics do not admit arbitrage.

Our main interest is in the existence of a market model and we want to characterize it
in terms of the given market quoted prices. This requires notions of arbitrage in absence
of a model. We say that there is model-independent arbitrage if one can form a portfolio
with a negative setup cost and a nonnegative payoff. There is weak arbitrage if for any
model there is a static portfolio (π1 , . . . , πn, φ, ψ) such that X0 ≤ 0 but P (XT ≥ 0) = 1
and P [XT > 0] > 0. In particular, a model independent arbitrage is a special case of
weak arbitrage, as in Cox and Obłój (2011b). Throughout the paper, we say that prices
are consistent with absence of arbitrage when they do not admit a weak arbitrage.

It is convenient at this point to move to normalized units. If for i = 1 , . . . , n we define

pi = Pi

DT FT
, ki = Ki

FT
,(2.3)

then, in a market model, we have Pi = DT FTE[Ki/FT − MT]+ and hence

pi = E[ki − MT]+.

Also, we can harmlessly introduce another put option with strike k0 = 0 and price p0 =
0. Let n = max{i : pi = 0}, n = inf{i : pi = ki − 1}(= +∞ if {· · ·} = ∅) and K = [kn, kn̄ ],
where it is hereafter understood as K = [kn, ∞) if n̄ = ∞.

The main result of Davis and Hobson (2007, thm. 3.1), which we now recall, says that
there is no weak arbitrage if and only if there exists a market model. The conditions are
illustrated in Figure 2.1.

PROPOSITION 2.1. Let r : [0, kn ] → R+ be the linear interpolant of the points (ki, pi),
i = 0 , . . . , n. Then there exists a market model if and only if r(·) is a nonnegative, convex,
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FIGURE 2.1. Normalized put prices (ki, pi) consistent with absence of arbitrage. An
additional put with price r = 0 and strike k ∈ [0, α] does not introduce arbitrage.

increasing function such that r(0) = 0, r(k) ≥ [k − 1]+ and r ′
−(kn∧n) < 1, where r ′

− denotes
the left-hand derivative. If these conditions hold except that n̄ = ∞ and r ′

−(kn) = 1 then
there is weak arbitrage. Otherwise there is a model-independent arbitrage. Furthermore,
if a market model exists then one may choose it so that the distribution of ST has finite
support.

REMARKS.

(i) In Davis and Hobson (2007), the case of call options was studied. The result stated
here follows by put-call parity, valid in view of our frictionless markets assumption.
The normalized call price is ci = pi + 1 − ki.

(ii) Of course, no put option would be quoted at zero price, so in applications n = 0
always. As will be seen below, it is useful for analysis to include the artificial case
n > 0.

Throughout the rest of the paper, we assume that the put option prices (P1 , . . . , Pn) do
not admit a weak arbitrage and hence there exists a market model consistent with the put
prices. Let M be a market model and let μ be the distribution of MT in this model. Then
μ satisfies ∫

R+
1 μ(dx) = 1(2.4a)

∫
R+

x μ(dx) = 1(2.4b)

∫
R+

[ki − x]+μ(dx) = pi , i = 1, . . . , n.(2.4c)

Conversely, given a probability measure μ on R+ which satisfies the above we can
construct a market model M such that μ is the distribution of MT . For example, let
(�,F ,P , (Wt)t∈R+ ) be the Wiener space. By the Skorokhod embedding theorem (cf.
Obłój 2004), there is a stopping time τ such that W τ ∼ μ and (W τ∧t) is a uniformly
integrable martingale. It follows that we can put Mt = 1 + W τ∧(t/(T−t)) for t ∈ [0, T). This
argument shows that the search for a market model reduces to a search for a measure μ

satisfying 2.4. We will denote by MP the set of measures μ satisfying the conditions 2.4.

LEMMA 2.2. For any μ ∈ MP, μ(R+\K) = 0.
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Proof. That μ[0, kn) = 0 when n > 0 follows from (2.4c) with i = n. When n̄ ≤ n
we have cn̄ = 0, i.e., there is a free call option with strike kn̄ and we conclude that
μ(kn̄, ∞) = 0. �

The question we wish to address is whether, when prices of additional options are
quoted, consistency with absence of arbitrage is maintained. As discussed in Section 1,
we start by considering the case where one extra option is included, a European option
maturing at T with convex payoff.

3. HEDGING CONVEX PAYOFFS

Suppose that, in addition to the n put options, a European option is offered at price Pλ

at time 0, with exercise value λT (ST ) at time T , where λT is a convex function. We can
obtain lower and upper bounds on the price of λT by constructing sub-replicating and
super-replicating static portfolios in the other traded assets. These bounds are given in
Sections 3.1 and 3.2, respectively and are combined in Section 3.3 to obtain the arbitrage
conditions on the price Pλ.

We work in normalized units throughout, that is, the static portfolios have time-T
values that are linear combinations of cash, underlying MT and option exercise values
[ki − MT ]+. The prices of units of these components at time 0 are DT , DT and DT pi,
respectively, where a unit of cash is $1. Indeed, to price MT observe that $1 invested in
the underlying at time 0 yields �T ST /S0 = ST /FT DT = MT /DT at time T . To achieve
a consistent normalization for λT we define the convex function λ as

λ(x) = 1
FT

λT(FT x).(3.1)

In a market model M we have Pλ = DTE[λT(ST)] = DT FTE[λ(MT)], so the normalized
price is

pλ = Pλ

DT FT
= E[λ(MT)]

and the cost for delivering a payoff λ(MT ) is DT pλ.

3.1. Lower Bound

A sub-replicating portfolio is a static portfolio formed at time 0 such that its value at
time T is majorized by λ(MT ) for all values of MT . Obviously, a necessary condition
for absence of model independent arbitrage is that DT pλ be not less than the set-up cost
of any sub-replicating portfolio. It turns out that the options ki with i ≤ n or i ≥ n̄ are
redundant, so the assets in the portfolio are indexed by k = 1 , . . . , m where

m = (n + 1) ∧ n̄ − n + 1

and the time-T values of these assets, as functions of x = MT are

a1(x) = 1 (Cash)

a2(x) = x (Underlying)

ai+2(x) = [kn+i − x]+, i = 1, . . . , m − 2 (Options).

(3.2)
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We let a(x) be the m-vector with components ak(x). Note that am(x) is equal to [kn̄−1 − x]+

if n̄ ≤ n and to [kn − x]+ otherwise. The set-up costs for the components in (3.2), as
observed above, are DT , DT and DT pn+i , respectively. The corresponding forward prices
are as in 2.4:

b1 = 1

b2 = 1

bi+2 = pn+i , i = 1, . . . , m − 2.

(3.3)

We let b denote the m-vector of the forward prices. A static portfolio is defined by a
vector y whose kth component is the number of units of the kth asset in the portfolio.
The forward set-up cost is yT b and the value at T is yT a(MT).

With this notation, the problem of determining the most expensive sub-replicating
portfolio is equivalent to solving the (primal) semi-infinite linear program

PLB : sup
y∈Rm

yT b subject to yT a(x) ≤ λ(x) ∀x ∈ K.

The constraints are enforced only for x ∈ K. If n > 0 [n̄ ≤ n] we have a free put with
strike kn [call with strike kn̄ ] and, because λ is convex, we can extend the sub-replicating
portfolio to all of R+ at no cost.

The key result here is the basic duality theorem of semi-infinite linear programming,
due to Isii (1960) and Karlin, see Karlin and Studden (1966). This theorem, stated as
Theorem A.1, and its proof are given in Appendix A. The dual program corresponding
to PLB is

DLB : inf
μ∈M

∫
K

λ(x)μ(dx) subject to
∫

K
a(x)μ(dx) = b0,

where M is the set of Borel measures such that each ai is integrable. The constraints
in DLB can be expressed as μ satisfying 2.4 for n < i < n̄. This is simply equivalent to
μ ∈ MP because, as shown in Lemma 2.2, any μ ∈ MP has support in K. Let VL

P and
VL

D be the values of the primal and dual problems, respectively. It is a general and easily
proved fact that VL

P ≤ VL
D . The “duality gap” is VL

D − VL
P . The Karlin–Isii theorem gives

conditions under which there is no duality gap and we have existence in PLB.

PROPOSITION 3.1. We suppose as above that λ(x) is a convex function on R+, finite for all
x > 0, and that (ki, pi) is a set of normalized put option strike and price pairs which do not
admit a weak arbitrage. If λ(x) is unbounded as x → 0 and n = 0 then we further assume
that p1/k1 < p2/k2. Then VL

D = VL
P and there exists a maximizing vector ŷ. The most

expensive sub-replicating portfolio of a European option with payoff λT (ST ) at maturity T
is the static portfolio X † as in (2.1) with weights ψ† = FT DT ŷ1, φ

† = ŷ2/�T, π
†
n+i = ŷ2+i

for i = 1 , . . . , m − 2 and π
†
i = 0 otherwise. For this portfolio, X†

0 = DT FT VL
D .

If there is existence in the dual problem DLB then there is an optimal measure μ† which is
a finite linear combination of Dirac measures μ† = ∑m

j=1 w jδxj (dx) such that each interval
[kj, kj+1) contains at most one point xj. For this measure

μ†({x}) > 0 ⇒ X†
T

∣∣
ST=FT x =

n∑
i=1

π
†
i [Ki − FT x]+ + φ†�T FT x + ψ†D−1

T = λT(FT x).

(3.4)
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Proof. The first part of the proposition is an application of Theorem A.1. The primal
problem PLB is feasible because any support line corresponds to a portfolio (containing no
options). The functions a1 , . . . , am are linearly independent. Recall from Proposition 2.1
that if {(ki, pi)} do not admit weak arbitrage then there is a measure μ satisfying the
conditions 2.4 and such that μ is a finite weighted sum of Dirac measures. It follows
that

∫
R+ |λ(x)|μ(dx) < ∞ unless one of the Dirac measures is placed at x = 0 and λ

is unbounded at zero. If n > 0 then there is no mass on the interval [0, n), hence none
at zero. When n = 0 we always have p1/k1 ≤ p2/k2. If p1/k1 = p2/k2 then the payoff
[k2 − MT ]+ − k2[k1 − MT ]+/k1 has null cost and is strictly positive on (0, k2). Because
p1 > 0 there must be some mass to the left of k1, and this mass must be placed at 0, else
there is an arbitrage opportunity. But then

∫
λdμ = +∞ and VL

D = +∞. The condition
in the proposition excludes this case. In every other case there is a realizing measure μ

such that μ({0}) = 0. Indeed, if p1/k1 < p2/k2 then the extended set of put prices {(k, 0),
(k1, p1) , . . . , (kn, pn)} is consistent with absence of arbitrage if k ∈ [0, α], where α = (k1p2

− k2p1)/(p2 − p1) (see Figure 2.1). Any model realizing these prices puts weight 0 on the
interval [0, k). Thus VL

D is finite under the conditions we have stated. It remains to verify
that the vector b belongs to the interior of the moment cone Mm defined at (A.1). For
this, it suffices to note that for all i such that ki ∈ (kn, kn̄) it holds that [ki − 1]+ < pi < ki,
and so the condition is satisfied. We now conclude from Theorem A.1 that VL

P = VL
D and

that we have existence in the primal problem. The expressions for ψ† etc. follow from the
relationships (2.3) between normalized and un-normalized prices.

Assume now that the dual problem has a solution. Any optimal measure μ† ∈ MP

satisfies ∫
K

λ(x)μ†(dx) = inf
μ∈MP

{∫
K

λ(x)μ(dx)
}

.

Recall K = [kn, kn̄ ] and partition K into intervals In+1, . . . , In̄∧n+1 defined by

Ii = [ki−1, ki ) for i = n + 1, . . . n̄ ∧ n and In̄∧n+1 = [kn̄∧n, kn̄),

so In̄∧n+1 = ∅ if n̄ ≤ n. Lemma 3.2 below asserts that we may take μ† atomic with at
most one atom in each of the intervals I i. By definition the optimal subhedging portfolio
X † satisfies X†

T ≤ λT(ST) while our duality result shows that the μ† expectations of
these random variables coincide. Hence X†

T = λT(ST) a.s. for MT = ST /FT distributed
according to μ†, and (3.4) follows. �

LEMMA 3.2. Let μ ∈ MP and suppose
∫

K|λ(x)|μ(dx) < ∞. Define

Iμ = {i ≤ n̄ ∧ n + 1|μ(Ii ) > 0}.(3.5)

Now let μ′ be the measure

μ′ =
∑
i∈Iμ

μ(Ii )δxi ,

in which δx denotes the Dirac measure at x, and for an index i ∈ I, xi =
∫

Ii
xdμ(x)

μ(Ii )
. Then

μ′ ∈ MP and ∫
K

λ(x)μ′(dx) ≤
∫

K
λ(x)μ(dx).(3.6)
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Proof of lemma: The inequality (3.6) follows from the conditional Jensen inequality.
A direct computation shows that μ′ satisfies 2.4, so that μ′ ∈ MP. �

It remains now to understand when there is existence in the dual problem. We exclude
the case when λT is affine on some [z, ∞) which is tedious. We characterize the existence
of a dual minimizer in terms of properties of the solution to the primal problem and
also present a set of sufficient conditions. Of the conditions given, (i) would never be
encountered in practice (it implies the existence of free call options) and (iii), (iv) de-
pend only on the function λT and not on the put prices Pi. The examples presented in
Section 3.1.1 show that if these conditions fail there may still be existence, but this will
now depend on the Pi. Condition (ii) is closer to being necessary and sufficient, but is
not stated in terms of the basic data of the problem.

PROPOSITION 3.3. Assume λT is not affine on some half-line [z, ∞). Then,in the setup of
Proposition 3.1, the existence of a minimizer in the dual problem DLB fails if and only if

n̄ = ∞ and X†
T

∣∣
ST=s = φ†�Ts + ψ†D−1

T < λT(s), for all s ≥ Kn .(3.7)

In particular, each of the following is a sufficient condition for existence of a minimizer in
DLB:

(i) n̄ < ∞;
(ii) we have

X†
T

∣∣
ST=Kn

= φ†�T Kn + ψ†D−1
T < λT(Kn) and lim

s→∞ λT(s) − φ†�Ts = ∞;

(3.8)

(iii) for any y < λT (Kn) there is some x > Kn such that the point (Kn, y) lies on a support
line to λT at x;

(iv) λT satisfies ∫ ∞

0
xλ′′

T(dx) = +∞.(3.9)

Proof. We consider two cases.
Case 1: n̄ ≤ n, i.e., condition (i) holds. In this case the support of any measure μ ∈ MP

is contained in the finite union In+1 ∪ · · · ∪ In̄ of bounded intervals, and
∑n̄

i=n+1 μ(Ii ) = 1.
Further, pn̄−1 > kn̄ − 1 and (2.4b) together imply that μ(In̄) > 0. Let μj, j = 1, 2, . . . be
a sequence of measures such that∫

K
λ(x)μ j (dx) → inf

μ∈MP

{∫
K

λ(x)μ(dx)
}

as j → ∞.

By Lemma 3.2, we may and do assume that each μj is atomic with at most one atom
per interval. We denote wi

j = μ j (Ii ) and let xi
j denote the location of the atom in I i. For

definiteness, let xi
j = �, where � is some isolated point, if μj has no atom in I i, i.e., if

wi
j = 0. Let A be the set of indices i such that xi

j converges to � as j → ∞, i.e., xi
j �= �

for only finitely many j, and let B be the complementary set of indices. Then there exists
j∗ such that

∑
i∈B wi

j = 1 for j > j∗. Because the wi
j and xi

j are contained in compact
intervals there exists a subsequence jk, k = 1, 2 . . . and points wi

∗, xi
∗ such that wi

jk → wi
∗
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and xi
jk → xi

∗ as k → ∞. It is clear that
∑

i∈B wi
∗ = 1 and that

VL
D = lim

k→∞

∫
K

λ(x)μ jk(dx) =
∫

K
λ(x)μ†(dx)

where μ†(dx) = ∑
i∈B wi

∗δxi∗ (dx). Similarly, the integrals of 1, x and [ki − x]+ converge,
so μ† ∈ MP. Finally, because the intervals I i are open on the right, it is possible that
xi

∗ ∈ Ii+1. If also xi+1
∗ ∈ Ii+1 we can invoke Lemma 3.2 to conclude that this 2-point

distribution in I i+1 can be replaced by a 1-point distribution without increasing the
integral. Thus μ† retains the property of being an atomic measure with at most one
atom per interval. We have existence in the dual problem and, by the arguments above,
X†

T = λT(ST) dμ†-a.s.
Case 2: n̄ = ∞. Let X†

T(s) denote the payoff of the portfolio X † at time T when ST = s.
Suppose that a minimizer μ† exists in DLB, which we may take as atomic. Because n̄ = ∞
there exists x ∈ (kn, ∞) such that μ†({x}) > 0 and hence, by (3.4), X†

T(FT x) = λ(FT x).
This shows that (3.7) fails because FT x > Kn.

It remains to show the converse: that if n̄ = ∞ but (3.7) fails then a minimizer μ† ex-
ists. Given our assumption on λT , if (3.7) fails then K† := sup{s ≥ 0 : X†

T(s) = λT(s)} ∈
[Kn, ∞). We continue with analysis similar to Case 1 above. Here we have intervals
In, . . . , In covering Kn = [kn, kn), but also a further interval In+1 = [kn, ∞) which does
not necessarily have zero mass. Because In+1 is unbounded, the argument above needs
some modification. We take a minimizing sequence of point mass measures μj as in
Case 1. If xn+1

j converge (on a subsequence) to a finite xn+1
∗ then we can restrict our

attention to a compact [0, xn+1
∗ + 1] and everything works as in Case 1 above. Sup-

pose to the contrary that lim inf xn+1
j = ∞, as j → ∞. We first apply the arguments in

Case 1 to the sequence μ̃ j of restrictions of μj to Kn . Everything is the same as above except
that now

∑
i w i

j ≤ 1. A subsequence converges to a sub-probability measure μ̃† on Kn ,
equal to a weighted sum of Dirac measures as above. Define μ† = μ̃† if ι1 ≡ μ̃†(Kn) = 1
and otherwise μ† = μ̃† + (1 − ι1)δx, where x ∈ In+1 is to be determined. Whatever the
value of x, μ† satisfies conditions (2.4a) and (2.4c) (the put values depend only on μ̃†).

Because μ j ∈ MP,
∑n+1

i=1 wi
j x

i
j = 1 and in particular

1 −
n∑

i=1

wi
j x

i
j ≥ wn+1

j kn .

Taking the limit along the subsequence we conclude that

1 −
n∑

i=1

wi
∗xi

∗ ≥ kn

(
1 −

n∑
i=1

wi
∗

)
= kn(1 − ι1).(3.10)

By the convergence argument of Case 1, ι2 ≡ ∫ kn

0 xμ†(dx) ≤ 1. If ι1 < 1 we have only to
choose x = (1 − ι2)/(1 − ι1) to ensure that the “forward” condition (2.4b) is also satisfied.
The inequality (3.10) guarantees that x ≥ kn. Thus μ† ∈ MP and, because n̄ = ∞, x >

kn and hence K† > Kn.
We now show that the complementary case ι1 = 1 contradicts K† ∈ [Kn, ∞). Indeed,

if ι1 = 1 we have, because n̄ = ∞,

kn − 1 < pn =
∫ ∞

0
[kn − x]+μ†(dx) =

∫ kn

0
(kn − x)μ†(dx) = kn −

n∑
i=1

wi
∗xi

∗ .
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Observe that then

wn+1
j xn+1

j = 1 −
n∑

i=1

wi
j x

i
j −−−→

j→∞
1 −

n∑
i=1

wi
∗xi

∗ = pn − kn + 1 > 0.(3.11)

Because K† ∈ [Kn, ∞), taking γ = λ′
T(K† + 1) − X†

T
′
(K† + 1) = λ′

T(K† + 1) − φ†�T > 0,
we have

λT(s) − X†
T(s) ≥ γ (s − K† + 1), ∀s ≥ K† + 1.(3.12)

Define now a new function λ̃T by

λ̃T(s) = λT(s)1s≤K† + (
φ†�Ts + ψ†D−1

T

)
1s>K†

so that we have X† ≤ λ̃T(ST) ≤ λT(ST) and, by definition, for ST > K† we have X† =
λ̃T(ST) < λT(ST). It follows that X † is also the most expensive subreplicating portfolio
for λ̃T(s) and hence the primal and dual problems for λ and for λ̃(x) = 1

FT
λ̃T(FT x) have

all the same value. Writing this explicitly and using (3.12) and(3.11) gives:

0 = lim
j→∞

∫ ∞

0
(λ(x) − λ̃(x))μ j (dx) = lim

j→∞
(
λ
(
xn+1

j

) − λ̃
(
xn+1

j

))
wn+1

j

≥ lim
j→∞

γ
(
xn+1

j − K† − 1
)
wn+1

j = γ (pn − kn + 1) > 0,

a contradiction.
We turn to showing that each of (i)–(iv) is sufficient for existence of a dual minimizer

μ†.2 Obviously n̄ < ∞ is sufficient as observed above. We now show that either of (ii)
or (iii) implies that K† ∈ [Kn, ∞) and that (3.12) holds. In the light of the arguments
above, this will be sufficient. X†

T(s) is linear on [Kn, ∞) and λT is convex hence the
difference of the two either converges to a constant or diverges to infinity. In the latter
case the difference grows quicker than a linear function, more precisely (3.12) holds.
The former case is explicitly excluded in (ii) and is contradictory with (iii) as the line
�(s) := φ†�Ts + ψ†D−1

T + limu→∞(λT(u) − X†
T(u)) is asymptotically tangential to λT (s)

as s → ∞ and hence the condition in (iii) is violated for any y < �(Kn). In particular, it
follows that K† < Kn then we can add to X † a positive number of call options with strike
Kn and obtain a subreplicating portfolio with an initial cost strictly larger (recall that
n̄ = ∞) than X † which contradicts the optimality of X †. This completes the proof that
either (ii) or (iii) is sufficient for existence.

Finally, we argue that (iii) and (iv) are equivalent. In (iii) the point x satisfies

λT(x) + ξ (Kn − x) = y, for some ξ ∈ [λ′
T(x−), λ′

T(x+)].

This equation has a solution x for all y < λT (Kn) if and only if limx→∞ λT(x) − xλ′
T(x) =

−∞. The equivalence with (iv) follows integrating by parts∫ ∞

Kn

xλ′′
T(dx) = (xλ′

T(x) − λT(x))|∞Kn
. �

2In fact for this part of the Proposition, we do not need to impose any additional conditions on λT apart
from convexity.
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FIGURE 3.1. Most expensive subhedging portfolios for λ(x) = 1/x given a single put
option with strike 1.2 and prices p = 0.4, 0.6, 0.7.

TABLE 3.1
Data for Figure 2.1

p x0 x1 value ψ φ w0 w1

0.4 0.75 3 1.2222 0.6667 −0.1111 0.8889 0.1111
0.6 0.6 - 1.6667 0 0 1.00 -
0.7 0.5 - 2.00 −0.8 0 1.00 -

3.1.1. Examples with one put option. We consider now examples in which just one put
option price is specified. We illustrate different cases when existence in the dual problem
holds or fails. For simplicity assume all prices are normalized, i.e., DT = FT = 1, and
we are given only a single put option with strike k = 1.2. The convex function takes the
form λ(x) = 1/x + axb. Computation of the most expensive sub-hedging portfolio can
be done by a simple search procedure.

Consider first the case a = 0, so that λ(x) = 1/x. The results are shown in Figure 3.1
with data shown in Table 3.1: p is the put price, x0, x1 the points of tangency, w0, w1

the implied probability weights on x0, x1 and ψ , φ the units of, respectively, cash and
forward in the portfolio.

p = 0.4 is a “regular” case: we have tangent lines at x0, x1 and the solution to the
dual problem puts weights 8/9, 1/9 respectively on these points. As p increases it is
advantageous to include more puts in the portfolio, so x1 increases. At p = 0.6 we
reach a boundary case where ψ = φ = 0, and the put is correctly priced by the Dirac
measure with weight 1 at x0 = 0.6 = k/2. Obviously, this measure does not correctly
price the forward, but it does correctly price the portfolio because φ = 0. When p > 0.6,
the only way to increase the put component further is to take ψ < 0 (and then clearly
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FIGURE 3.2. The most expensive subhedging portfolio (upper dashed line) for λ(x) =
1/x + 0.25x given a single put option with strike 1.2 and price p = 0.7. The lower
dashed line is the portfolio priced at

∫
λ(x)μ†(dx) which is suboptimal.

the optimal value of φ is 0). When p = 0.7 the optimal value is ψ = −0.8 and we find
that in this and every other such case the implied weight is w0 = 1, as the general theory
predicts.

Next, take a = 0.25, b = 1, so that λ(x) = 1/x + 0.25x, has its minimum at x = 2
and is asymptotically linear. We take p = 0.7. Taking the expectation with respect to the
limiting measure μ† gives the value of the lower sub-hedge in Figure 3.2, but this is not
optimal: we can add a maximum number 0.25 of call options, which have positive value,
giving the upper sub-hedge in Figure 3.2. This is optimal, but does not correspond to
any dual measure.

Finally, let a = 0.0625, b = 2, giving λ(x) = 1/x + 0.0625x2. The minimum is still at
x = 2 but λ is asymptotically quadratic. This function satisfies condition (iii) of Propo-
sition 3.3 and there is dual existence for every arbitrage-free value of p. The optimal
portfolio for p = 0.7 is shown in Figure 3.3.

3.2. Upper Bound

To compute the cheapest super-replicating portfolio we have to solve the linear program

PUB : inf
y∈Rm

yT b subject to yT a(x) ≥ λ(x) ∀x ∈ K.

The corresponding dual program is

DUB : sup
μ∈M

∫
K

λ(x)μ(dx) subject to
∫

K
a(x)μ(dx) = b,
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FIGURE 3.3. Most expensive subhedging portfolios for λ(x) = 1/x + 0.0625x2 given a
single put option with strike 1.2 and price p = 0.7.

where, by Lemma 2.2, we may replace K by R+. By (1.4) we have for x ∈ R+

λ(x) = λ(1) + λ′(1+)(x − 1) +
∫

(0,1]
[k − x]+λ′′(dk) +

∫
(1,∞)

[x − k]+λ′′(dk).

Consider μ ∈ MP and let pμ(k) = ∫
[k − x]+μ(dx), cμ(k) = ∫

[x − k]+μ(dk) be the
(normalized) prices of puts and calls. Integrating the above against μ gives

∫
λ(x)μ(dx) = λ(1) +

∫
(0,1]

pμ(k)λ′′(dk) +
∫

(1,∞)
cμ(k)λ′′(dk).(3.13)

Recall that cμ(k) = pμ(k) + 1 − k and hence maximizing in cμ(k) or in pμ(k) is the same.
pμ(k) is a convex function dominated by the linear interpolation of points (ki, pi), i =
0, 1 , . . . , n, extended to the right of (kn, pn) with slope 1. Because we assume the given
put prices do not admit weak arbitrage, it follows from Davis and Hobson (2007) (see
also Proposition 2.1 above) that this upper bound is attained either exactly or in the
limit. More precisely, if n̄ = ∞ one can take μz ∈ MP supported on {kn, , . . . , , kn, z},
for z large enough, which attain the upper bound on [0, kn] and asymptotically induce
the upper bound on (kn, ∞) as z → ∞. It follows from (3.13) that the value of the dual
problem is VU

D = limz→∞
∫

K λ(x)μz(dx). If n̄ ≤ n one can take z = kn̄ and μkn̄ attains the
upper bound. It follows from (3.13) that then VU

D = ∫
K λ(x)μkn̄ (dx).

From this observation, one expects that y̌—the solution to the primal problem—will
correspond to a (normalized) portfolio y̌T a(x) which linearly interpolates (ki, λ(ki)),
i = kn, . . . , n ∧ n̄ and (if n̄ = ∞) extends linearly to the right as to dominate λ(k). The
function x �→ yT a(x) is piecewise linear with a finite number of pieces and no such
function can majorize the convex function λ overR+ unless λ(0) <∞ and λ′(∞) = γ <∞.
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In general we impose:

(a) n > 0 or (n = 0 and λ(0) < ∞) and

(b) n̄ ≤ n or (n̄ = ∞ and λ′(∞) < ∞) .
(3.14)

We have the following result.

PROPOSITION 3.4. If condition (3.14) holds then there exists a solution y̌ to the
linear program PUB. The function y̌T a(x) is the linear interpolation of the points
(kn, λ(kn)), , . . . , (kn∧n̄, λ(kn∧n̄)) together with, if n̄ = ∞, the line l(x) = y̌T a(kn) + (x −
kn)λ′(∞) for x ≥ kn. Primal and dual problem have the same value VP

U = VD
U and the

existence of a maximizer in the dual problem fails if and only if n̄ = ∞ and λ is not affine
on [kn, ∞).

If the condition (3.14) is not satisfied, there is no feasible solution and VD
U = ∞.

Proof. As argued above, (3.14) is a necessary condition for existence of a feasible
solution. Suppose, for example, that n̄ = ∞ = λ′(∞). Then (z − kn)μz({z}) = cn and
hence zμz({z}) → cn as z → ∞. Together with λ′(∞) = ∞ this implies that VD

U = ∞.
Other cases are similar.

Suppose (3.14) holds and first consider the case when n̄ = ∞. λ is bounded on [kn, kn ]
and the linear interpolation is well defined as is the extension beyond kn. Further, there
exists some constant δ such that y̌T a(x) − λ(x) ≤ δ for all x ∈ R+. The weight y̌2+ j on
the jth put option is the change in slope at kn+ j , the “underlying” weight y2 is equal to γ ,
and at x = kn we have λn = y̌1 + y̌2kn , so the “cash” weight is y̌1 = λn − knγ . The value
of the objective function is, by definition,

y̌T b =
∫
R+

y̌T a(x)μ(dx),

for any μ ∈ MP. In particular, because y̌T a(ki ) = λ(ki ), taking z large enough, we have

y̌T b0 =
∫
R+

y̌T a(x)μz(dx) =
n̄∑

i=n

λ(ki )μz({ki }) + y̌T a(z)μz({z})

=
∫
R+

λ(x)μz(dx) + (y̌T a(z) − λ(z))μz({z}) ≤
∫
R+

λ(x)μz(dx) + δμ({z}).

(3.15)

Recall that
∫

xμz(dx) = 1 and in particular μ({z}) → 0 as z → ∞. Taking the limit as
z →∞ in the above, we conclude that y̌T b0 ≤ VU

D . The basic inequality VU
D ≤ VU

P between
the primal and dual values then implies that y̌ is optimal for PUB and VU

D = VU
P . The

existence of the solution to DUB fails unless there exists z ≥ kn with y̌T a(z) = λ(z), which
happens if and only if λ(z) is affine on [kn, ∞).

When n̄ ≤ n the arguments are analogous, except that now we need to ensure yT a(x) ≥
λ(x) only for x ∈ K = [kn, kn̄ ]. The dual problem has a maximizer as observed in the
remarks above the Proposition. The primal problem also has a solution y̌ but it is not
unique. Indeed, let y0 = (−kn, 1, 0, . . . , 0, 1) and observe that y0T b = 0 and y0T a(x) ≡
0 for x ∈ K. In consequence, we can add to y̌ multiples of y0 without affecting its
performance for PUB. �
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We can now summarize the results for the cheapest super-replicating portfolio as in
(2.1), (2.2). The difference with the above is that we need to ensure super-replication for
all possible values of ST and not only for ST ∈ [Kn, Kn̄ ]. Because the payoff XT , as a
function of ST , is piecewise linear with a finite number of pieces it is necessary that λT

satisfies

λT(0) < ∞ and λ′
T(∞) = γ < ∞.(3.16)

Under this condition, the above results show that the cheapest super-replicating portfolio
has a payoff which linearly interpolates (Ki, λT (Ki)), i = 0 , . . . , n and extends to the right
of Kn with slope λ′

T(∞).

PROPOSITION 3.5. If (3.16) holds then there is a cheapest super-replicating portfolio
(ψ∗, φ∗, π∗

i ) of the European option with payoff λT (ST ) whose initial price is

X∗
0 = sup

z
DT

∫
R+

λT(FT x)μz(dx).

The underlying component is φ∗ = γ�T , the cash component is ψ∗ = DT (λT (Kn) − γ Kn),
and the option components are

π∗
i = λT(K j+1) − λT(K j )

K j+1 − K j
− λT(K j ) − λT(K j−1)

K j − K j−1
.

If condition (3.16) is not satisfied, there is no super-replicating portfolio.

3.3. Arbitrage Conditions

With the above results in hand we can state the arbitrage relationships when a European
option whose exercise value at T is a convex function λT (ST ) can be traded at time 0 at
price Pλ in a market where there already exist traded put options, whose prices Pi are in
themselves consistent with absence of arbitrage. Recalling the notation of Propositions 3.1
and 3.5, X†

0 and X∗
0 are respectively the setup costs of the most expensive sub-replicating

and cheapest super-replicating portfolios, with X∗
0 = +∞ when no super-replicating

portfolio exists.

THEOREM 3.6. Assume the put prices do not admit a weak arbitrage. Consider a convex
function λT and suppose that if λT is affine on some half–line [z, ∞) then it is strictly convex
on [0, z). The following are equivalent:

(1) The prices Pλ, P1 , . . . , Pn do not admit a weak arbitrage.
(2) There exists a market model for put options in which Pλ = DTE[λT(ST)].
(3) The following condition (3.17) holds and either Pλ ∈ (X†

0, X∗
0), or Pλ = X†

0 and
existence holds in DLB, or Pλ = X∗

0 < ∞ and existence holds in DUB.

P2 >
K2

K1
P1 if n = 0 and λ is unbounded at the origin.(3.17)

If (3.17) holds and Pλ /∈ [X
†

0, X∗
0 ] then there is a model-independent arbitrage. If (3.17)

holds and Pλ = X†
0 or X∗

0 and existence fails in DLB or in DUB, respectively, or if (3.17)
fails, then there is a weak arbitrage.
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REMARK 3.7. We note that the robust pricing and hedging problem solved above is
essentially invariant if λT is modified by an affine factor. More precisely, if we consider
a European option with payoff λ1

T(ST) = λT(ST) + φST + ψ and let Pλ1 denote its price
then the prices P1 , . . . , Pn, Pλ are consistent with absence of arbitrage if and only if
P1, . . . , Pn, Pλ1 = Pλ + φS0/�T + ψ DT are.

Proof. Suppose first that condition (3.17) holds. We saw in the proof of Proposition 3.1
that this condition (under its equivalent form p2 > (k2/k1)p1) guarantees the existence
of a sub-replicating portfolio with value X†

0. If Pλ ∈ (X†
0, X∗

0) then there exists ε > 0
such that Pλ ∈ (X†

0 + ε, X∗
0 − ε) and, because there is no duality gap, there are measures

μ1, μ2 ∈ MP such that DTEμ1 [λT(ST)] < X†
0 + ε and DTEμ2 [λT(ST)] > X∗

0 − ε. A convex
combination μ of μ1 and μ2 then satisfies DTEμ[λT(ST)] = Pλ and one constructs a
market model, for example by using Skorokhod embedding as explained in Section 2
above. If existence holds in DLB then it was shown in the proof of Proposition 3.1 that
the minimizing measure μ† satisfies

X†
0 = DT

∫
K

λT(FT x)μ†(dx),

so that if Pλ = X†
0 then μ† is a martingale measure that consistently prices the convex

payoff λT and the given set of put options. The same argument applies on the upper
bound side.

Next, suppose that condition (3.17) holds and Pλ = X†
0 but no minimizing measure

μ exists in DLB. Let M be a model and μ̂ the distribution of ST under M. We can,
at zero initial cost, buy λT (ST ) and sell the portfolio X†

T and this strategy realizes an
arbitrage under M if μ̂({λT(ST) > X†

T}) > 0. Suppose now that μ̂({λT(ST) > X†
T}) = 0

and consider two cases. First, if λT is not affine on some [z, ∞) then, by Proposition 3.3,
n̄ = ∞ and λT(ST) > X†

T for ST ≥ Kn so that in particular μ̂([Kn, ∞)) = 0. A strategy of
going short a call option with strike Kn (which has strictly positive price because n̄ = ∞)
gives an arbitrage because ST < Kn a.s. in M. Second, suppose that λ′′

T(x) ≡ 0 for x ≥ z
but λ′′

T(x) > 0 for x < z. If μ̂([Kn, ∞)) = 0 then we construct the arbitrage as previously
so suppose this does not hold. Recall the atomic measure μ† defined in Case 2 in the
proof of Proposition 3.3 and that ι1 = 1 as we do not have existence of a minimizer
for the dual problem. λ(x) in (3.1) is strictly convex on [0, z̃) and linear on [z̃, ∞) with
z̃ = z/FT. It is not hard to see that μ† has to have an atom in some x∗

n ∈ (kn−1, kn) and
that either z̃ = x∗

n or else z̃ ≥ kn . Otherwise we could modify μ† to obtain a minimizer for
the dual problem. Strict convexity of λT on [0, z) implies that there exist at most n points
s1 , . . . , sm such that si ∈ (Ki−1, Ki) and λT (ST ) strictly dominates X†

T for other values of
ST ≤ z and hence μ̂([0, z)) = μ̂({s1, . . . , sn}). It follows that support of μ† is a subset of
{s1/FT, . . . , sn/FT = x∗

n }. Let ψ > 0 and consider a portfolio Y with

YT = YT(ST) =
n∑

i=1

γi (Ki − ST)+ + ψ, such that YT(s j ) = 0, j = 1, . . . n.

This uniquely specifies γi ∈ R. The payoff of Y is simply a zigzag line with kinks in
Ki, zero in each si and equal to ψ for ST ≥ Kn. It follows that μ̂{YT ≥ 0} = 1 and
μ̂{YT > 0} > 0 as μ̂([Kn, ∞)) > 0. However μ† prices all put options correctly so that
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the initial price of Y is

Y0 =
n∑

i=1

γi Pi + DTψ = DT

n∑
i=1

γi

∫ ki

0
(Ki − FTm)μ†(dm) + DTψ

= DT

∫ kn

0

(
n∑

i=1

γi (Ki − FTm)+ + ψ

)
μ†(dm) = DT

∫ kn

0
YT(FTm)μ†(dm) = 0,

(3.18)

by construction of Y because μ†({s1/FT , . . . , sn/FT}) = 1 as remarked above, and where
we used ι1 = 1. It follows that Y is an arbitrage strategy in M.

Now suppose that condition (3.17) holds and Pλ = X∗
0 < ∞ and there is no maximizing

measure in the dual problem DUB. Then, by Proposition 3.4, n̄ = ∞ and λT(ST) < X∗
T

for ST > Kn. Straightforward arguments as in the first case above show that there is a
weak arbitrage.

Finally, if Pλ < X†
0 a model independent arbitrage is given by buying the European

option with payoff λT (ST ) and selling the subheding portfolio. This initial cost is negative
while the payoff, because X † subhedges λT (ST ), is nonnegative. If Pλ > X∗

0 we go short
in the option and long in the superhedge.

Now suppose (3.17) does not hold, so that P2/K2 = P1/K1 (this is the only case
other than (3.17) consistent with absence of arbitrage among the put options). Consider
portfolios with exercise values

H1(ST) = [K2 − ST]+ − K2

K1
[K1 − ST]+

H2(ST) = λT(ST) − λT(K2) − λ′
0(K2)(ST − K2)

− 1
P1

(Pλ − λ(K2) − λ′
0(FT − K2)) [K1 − ST]+,

where λ′
0 denotes the left derivative. The setup cost for each of these is zero, and H1(s)

> 0 for s ∈ (0, K2) while H2(s) → ∞ as s → 0. There is a number θ ≥ 0 such that H(s)
= θH1(s) + H2(s) > 0 for s ∈ (0, K2). Weak arbitrage is realized by a portfolio whose
exercise value depends on a given model M and is specified via

XT(ST) =
{

−[K2 − ST]+ if P [ST ∈ [0, K2)] = 0

H(ST) if P [ST ∈ [0, K2)] > 0.

This completes the proof. �

4. WEIGHTED VARIANCE SWAPS

We come now to the second part of the paper where we consider weighted variance swaps.
The main idea, as indicated in the Introduction, is to show that a weighted variance swap
contract is equivalent to a European option with a convex payoff and hence their prices
have to be equal. The equivalence here means that the difference of the two derivatives
may be replicated through trading in a model-independent way. In order to formalize
this we need to define (continuous) trading in absence of a model, i.e., in absence of a
fixed probability space. This poses technical difficulties as we need to define pathwise
stochastic integrals.
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One possibility is to define stochastic integrals as limits of discrete sums. The resulting
object may depend on the sequence of partitions used to define the limit. This approach
was used in Bick and Willinger (1994) who interpreted the difference resulting from
different sequences of partitions as broker’s method of implementing continuous-time
trading order. They were then interested in what happens if they apply the pricing-
through-replication arguments on the set of paths with a fixed (σ 2) realized quadratic
variation and wanted to recover Black-Scholes pricing and hedging. However for our
purposes the ideas of Bick and Willinger (1994) are not suitable. We are interested in a
much wider set of paths and then the replication of a weighted variance swap combining
trading and a position in a European option would depend on the “broker” (i.e., sequence
of partitions used). Instead, as in Lyons (1995), we propose an approach inspired by
the work of Föllmer (1981). We restrict the attention to paths which admit quadratic
variation or pathwise local time. For such paths we can develop pathwise stochastic
calculus including Itô and Tanaka formulae. As this subject is self-contained and of
independent interest we isolate it in Appendix B. Insightful discussions of this topic are
found in Bick and Willinger (1994) and Lyons (1995).

To the standing assumptions (i)–(iii) of Section 2 we add another one:
(iv) (St : t ≤ T) ∈ L+ – the set of strictly positive, continuous functions on [0, T ] which

admit a finite, non-zero, quadratic variation and a pathwise local time, as formally defined
in Definitions B.1, B.3 and Proposition B.4 of Appendix B.

Thus, our idea for the framework, as opposed to fixing a specific modelM, is to assume
we are given a set of possible paths for the price process: (St : t ≤ T) ∈ P . This could
be, for example, the space of continuous nonnegative functions, the space of functions
with finite non-zero quadratic variation, or the space of continuous functions with a
constant fixed realized volatility. The choice of P is supposed to reflect our beliefs about
characteristics of price dynamics as well as modeling assumptions we are willing to take.
Our choice above, P = L+, is primarily dictated by the necessity to develop a pathwise
stochastic calculus. It would be interesting to understand if an appropriate notion of
no-arbitrage implies (iv). A recent paper of Vovk (2011), based on a game-theoretic
approach to probability, suggests one may exclude paths with infinite quadratic variation
through a no-arbitrage-like restriction, an interesting avenue for further investigation.

We introduce now a continuous time analogue of the weighted realized variance (1.1).
Namely, we consider a market in which, in addition to finite family of put options as
above, a w-weighted variance swap is traded. It is specified by its payoff at maturity T :

RVw
T − PRV(w)

T :=
∫ T

0
w(St/Ft)d〈log S〉t − PRV(w)

T ,(4.1)

where PRV(w)
T is the swap rate, and has null entry cost at time 0. The above simplifies

(1.1) in two ways. First, similarly to the classical works on variance swaps going back
to Neuberger (1994), we consider a continuously and not discretely sampled variance
swap which is easier to analyze with tools of stochastic calculus. Secondly, the weighting
in (1.1) is a function of the asset price h(Sti ) and in (4.1) it is a function of the ratio of
the actual and the forward prices w(St/Ft). This departure from the market contract
definition is unfortunate but apparently necessary to apply our techniques. In practice,
if ŵ(St) is the function appearing in the contract definition we would apply our results
with w(x) = ŵ(S0x), so that w(St/Ft) = ŵ((S0/Ft)St). Because maturity times are short
and, at present, interest rates are low, we have S0/Ft ≈ 1. See below and Section 5 for
further remarks.
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Our assumption (iv) and Proposition B.6 imply that (log St, t ≤ T) ∈ L. Theorem B.5
implies that (4.1) is well defined as long as w ∈ L2

loc, we can integrate with respect to St

or Mt and obtain an Itô formula. This leads to the following representation.

LEMMA 4.1. Let w : R+ → [0, ∞) be a locally square integrable function and consider
a convex C1 function λw with λ′′

w (a) = w(a)
a2 . The extended Itô formula (B.1) then holds and

reads

λw (MT) = λw (1) +
∫ T

0
λ′

w (Mu)dMu + 1
2

∫
[0,T]

w(Mu)d〈ln M〉u .(4.2)

The function λw is specified up to an addition of an affine component which does not
affect pricing or hedging problems for a European option with payoff λw, see Remark
3.7 above. In what follows we assume that w and λw are fixed. Three motivating choices
of w , as discussed in the Introduction, and the corresponding functions λw, are:

(1) Realized variance swap: w ≡ 1 and λw(x) = −ln (x). In this case there is of course
no distinction between w and the contract function ŵ .

(2) Corridor variance swap: w(x) = 1(0,a)(x) or w(x) = 1(a,∞)(x), where 0 < a < ∞
and

λw (x) =
(
− ln

( x
a

)
+ x

a
− 1

)
w(x).

Here we would take a = b/S0 if the contract corridor is (0, b) or (b, ∞)
(3) Gamma swap: w(x) = S0x and λw(x) = S0(xln (x) − x).

Clearly, (4.2) suggests that we should consider portfolios which trade dynamically and
this will allow us to link w-weighted realized variance RVw

T with a European option with
a convex payoff λw. Note however that it is sufficient to allow only for relatively simple
dynamic trading where the holdings in the asset only depend on asset’s current price.
More precisely, we extend the definition of portfolio X from static portfolios as in (2.1)-
(2.2) to a class of dynamic portfolios. We still have a static position in traded options.
These are options with given market prices at time zero and include n put options but
could also include another European option, a weighted variance swap or other options.
At time t we also hold �tφ(Mt) assets St and ψ t/Dt in cash. The portfolio is self-financing
on (0, T ] so that

ψt := φ(M0)S0 + ψ(0, S0) +
∫ t

0
φ(Mu)dMu − �tφ(Mt)St Dt, t ∈ (0, T],(4.3)

and where φ is implicitly assumed continuous and with a locally square integrable weak
derivative so that the integral above is well defined, cf. Theorem B.5. We further assume
that there exist: a linear combination of options traded at time zero with total payoff
Z = Z(St: t ≤ T), a convex function G and constants φ̃, ψ̃ such that

�tφ(Mt)St + ψt/Dt ≥ Z − G(Mt)/Dt + φ̃�t St + ψ̃/Dt, ∀t ≤ T.(4.4)

Such a portfolio X is called admissible. Observe that, in absence of a model, the usual
integrability of Z is replaced by having finite price at time zero. In the classical setting,
the admissibility of a trading strategy may depend on the model. Here admissibility of
a strategy X may depend on which options are assumed to trade in the market. The
presence of the term G(Mt) on the right-hand side will become clear from the proof of
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Theorem 4.3 below. It allows us to enlarge the space of admissible portfolios for which
Lemma 4.2 below holds.

The two notions of arbitrage introduced in Section 2 are consequently extended by
allowing not only static portfolios but possibly dynamic admissible portfolios as above.
All the previous results remain valid with the extended notions of arbitrage. Indeed, if
given prices admit no dynamic weak arbitrage then in particular they admit no static
weak arbitrage. And for the reverse, we have the following general result.

LEMMA 4.2. Suppose that we are given prices for a finite family of co-maturing options.3

If a market model M exists for these options then any admissible strategy X satisfies
E[DT XT] ≤ X0. In particular, the prices do not admit a weak arbitrage.

Proof. Let M be a market model and X be an admissible strategy. We have XT = Z1 +
Y T , where Z1 is a linear combination of payoffs of traded options and Y t = �tφ(Mt)St

+ ψ t/Dt satisfies (4.4). Using (4.3) it follows that

DtYt = φ(1)S0 + ψ(0, S0) +
∫ t

0
φ(Mu)dMu ≥ Dt Z − G(Mt) + φ̃+S0 Mt + ψ̃.

We may assume that G ≥ 0, it suffices to replace G by G+. M is a market model and in
particular Z is an integrable random variable. Because the traditional stochastic integral
and our pathwise stochastic integral coincide a.s. in M, see Theorem B.7, we conclude
that DtY t is a local martingale and so is Nt := DtYt − φ̃+S0 Mt. We will argue that this
implies ENt ≤ N0. Let ρn be the localizing sequence for N so that ENt∧ρn = N0. In what
follows all the limits are taken as n →∞. Fatou’s lemma shows thatEN+

t ≤ lim inf EN+
t∧ρn

and EN−
t ≤ lim inf EN−

t∧ρn
. By Jensen’s inequality the process G(Mt) is a submartingale,

in particular the expectation is increasing and EG(Mt) ≤ EG(MT) which is finite because
M is a market model. Using the Fatou lemma we have

limEG(Mt∧ρn ) ≤ EG(Mt) = E lim inf G(Mt∧ρn ) ≤ lim inf EG(Mt∧ρn ),

showing that limEG(Mt∧ρn ) = EG(Mt). Observe that Nt is bounded below by Z̃ −
G(Mt), where Z̃ is an integrable random variable and G is convex. Using Fatou’s lemma
again we can write

EG(Mt)+ + EZ̃− − lim inf EN−
t∧ρn

= lim inf E[G(Mt∧ρn )+ + Z̃− − N−
t∧ρn

]

≥ E[G(Mt)+ + Z̃− − N−
t ]

which combined with the above gives EN−
t = lim inf EN−

t∧ρn
and in consequence ENt ≤

lim inf ENt∧ρn = N0, as required. This shows that E[DTYT] ≤ Y0. Because in a market
model expectations of discounted payoffs of the traded options coincide with their initial
prices it follows that E[DT XT] ≤ X0 ≤ 0. In particular if XT ≥ 0 and X0 ≤ 0 then XT =
0 a.s. and the prices do not admit a weak arbitrage. �

Having extended the notions of (admissible) trading strategy and arbitrage, we can
now state the main theorem concerning robust pricing of weighted variance swaps. It is
essentially a consequence of the hedging relation (4.2) and the results of Section 3.

3These could include European as well as exotic options.
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THEOREM 4.3. Suppose in the market which satisfies assumptions (i)–(iv) the following
are traded at time zero: n put options with prices Pi, a w–weighted variance swap with payoff
(4.1) and a European option with payoff λT (ST ) = FTλw(MT ) and price Pλw . Assuming
the put prices do not admit a weak arbitrage, the following are equivalent

1. The “option” prices (European options and weighted variance swap) do not admit a
weak arbitrage.

2. P1, . . . , Pn, Pλw do not admit a weak arbitrage and

PRV(w)
T = 2Pλw

DT FT
− 2λw (1).(4.5)

3. A market model for all n + 2 options exists.

REMARK 4.4. It is true that under (4.5) a market model for P1, . . . , Pn, PRV(w)
T exists

if and only if a market model for P1, . . . , Pn, Pλw exists. By Theorem 3.6, this is yet
equivalent to P1, . . . , Pn, Pλw being consistent with absence of arbitrage. However it is not
clear if this is equivalent to P1, . . . , Pn, PRV(w)

T being consistent with absence of arbitrage.
This is because the portfolio of the variance swap and dynamic trading necessary to
synthesize −λT (ST ) payoff may not be admissible when λT (ST ) is not a traded option.

REMARK 4.5. The formulation of Theorem 4.3 involves no-arbitrage prices but these
are enforced via robust hedging strategies detailed in the proof. They involve the European
option with payoff λT (ST ) which in practice may not be traded and should be super-/
sub-replicated using Propositions 3.1 and 3.4.

REMARK 4.6. It would be interesting to combine our study with the results of Hobson
and Klimmek (2011) (HK) already alluded to in the Introduction. We note however
that this may not be straightforward because the European option constituting the static
part of the hedge in HK need not be convex and the variance kernels we consider
are not necessarily monotone (in the terminology of HK), for example the Gamma
swap y(log (y/x))2. Finally we note that the bounds in HK are attained by models where
quadratic variation is generated entirely by a single large jump which is a radical departure
from the assumption of continuous paths. Whether it is possible to obtain sharper bounds
which only work for “reasonable” discontinuous paths is an interesting problem. We leave
these challenges to future research.

Proof. We first show that 2=⇒3. Suppose that P1, . . . , Pn, Pλw do not admit a weak
arbitrage and letMbe a market model which prices correctly the n puts and the additional
European option with payoff λT (ST ). Note that, from the proof of Theorem 3.6, M
exists and may be taken to satisfy (i)–(iv). Consider the Itô formula (4.2) evaluated
at τn ∧ T = inf{t ≥ 0 : Mt /∈ (1/n, n)} ∧ T instead of T . The continuous function λ′

w is
bounded on (1/n, n), the stochastic integral is a true martingale and taking expectations
we obtain

E[λw (Mτn∧T)] = λw (1) + 1
2
E

[∫ τn∧T

0
w(Mu)d〈M〉u

]
.

Subject to adding an affine function to λw we may assume that λw ≥ 0. Jensen’s inequality
shows that λw (Mτn∧T), n ≥ 2, is a submartingale. Together with the Fatou lemma this
shows that the left-hand side converges to E[λw (MT)] as n → ∞. Applying the monotone
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convergence theorem to the right-hand side we obtain

E[λw (MT)] = λw (1) + 1
2
E

[
RVw

T

]
,

where either both quantities are finite or infinite. Because M is a market model for
puts and λT (ST ), we have E[λw (MT)] = Pλw /(DT FT). Combining (4.5) with the above it
follows that E[RVw

T − PRV(w)
T ] = 0 and hence M is a market model for puts, λT (ST ) and

the w–wighted variance swap.
Lemma 4.2 implies that 3=⇒1. We note also that, if we have a market model M for all

the puts, λw(ST ) option and the w–wighted variance swap then by the above (4.5) holds.
Then Lemma 4.2 also implies that 3=⇒2.

It remains to argue that 1=⇒2, i.e., that if P1, . . . , Pn, Pλw are consistent with absence
of arbitrage but (4.5) fails then there is a weak arbitrage. Consider a portfolio X with no
put options, ψ(0, S0) = 2DT(λw (1) − S0λ

′
w (1)) + DT PRV(w)

T and φ(m) = 2DTλ′
w (m). The

setup cost of X is X0 = DT(PRV(w)
T + 2λw (1)). By assumption, λw is C1 with λ′′

w (x) =
w(x)/x2 ∈ L2

loc so that can apply Theorem B.5. Then, using (4.3) and (4.2) we obtain

Xt = �tφ(Mt)St + ψt/Dt = φ(S0)S0/Dt + ψ(0, S0)/Dt + 1
Dt

∫ t

0
φ(Mu)dMu

= DT

Dt

(
2λw (1) + 2

∫ t

0
λ′

w (Mu)dMu + PRV(w)
T

)

= 2DT

Dt
λw (Mt) − DT

Dt

∫
[0,t]

w(Su)d〈ln M〉u + DT

Dt
PRV(w)

T .

Observing that 1 ≥ DT /Dt ≥ DT and
∫

[0,t]w(Su)d〈ln M〉u is increasing in t it follows that
both X and −X are admissible. Suppose first that

PRV(w)
T <

2Pλw

DT FT
− 2λw (1).(4.6)

Consider the following portfolio Y : short 2/FT options with payoff λT (ST ), long port-
folio X and long a w–weighted variance swap. Y is admissible, the initial cost is

Y0 = −2Pλw /FT + X0 = −2Pλw /FT + DT
(
PRV(w)

T + 2λw (1)
)

< 0,

while Y T = 0 and hence we have a model independent arbitrage. If a reverse inequality
holds in (4.6) then the arbitrage is attained by −Y . �

5. COMPUTATION AND COMPARISON WITH MARKET DATA

5.1. Solving the Lower Bound Dual Problem

When one of the sufficient conditions given in Proposition 3.3 is satisfied, for existence
in the lower bound dual problem, then this problem can be solved by a dynamic pro-
gramming algorithm. We briefly outline this here, referring the reader to Raval (2010)
for complete details. For simplicity, we restrict attention to the practically relevant case
n = 0, n̄ = ∞. Of course, once the dual problem is solved, the maximal sub-hedging
portfolio is immediately determined.
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The measure μ† to be determined satisfies∫
λ(x)μ†(dx) = inf

μ∈MP

{∫
R+

λ(x)μ(dx)
}

,

and we recall from Lemma 3.2 that we can restrict our search to measures of the form
μ(dx) = ∑n+1

i=1 wiδχi (dx) where χ i ∈ [ki−1, ki), wi ≥ 0,
∑

iw i = 1. We denote ζ 0 = 0 and,
for i ≥ 1, ζi = ∑i

1 w j , the cumulative weight on the interval [0, ki). For consistency of
the put prices r1 , . . . , rn with absence of arbitrage, Proposition 2.1 dictates that

ζi ∈ Ai =
[

ri − ri−1

ki − ki−1
,

ri+1 − ri

ki+1 − ki

]
for 1 ≤ i < n

and

ζn ∈ An =
[

rn − rn−1

kn − kn−1
, 1

]
.

Given ζ = (ζ 1 , . . . , ζ n) (the final weight is of course wn+1 = 1 − ζ n), the positions χ i are
determined by pricing the put options. We find that when ζ i−1 < ζ i

χi = χi (ζi−1, ζi ) = ki + ζi−1(ki − ki−1) − (ri − ri−1)
ζi − ζi−1

for i = 1, . . . , n,

χn+1 = χn+1(ζn) = kn + 1 + rn − kn

1 − ζn
.

The measure corresponding to policy ζ is thus

n∑
i=1

(ζi − ζi−1)δχi (ζi−1,ζi ) + (1 − ζn)δχn+1(ζn ).(5.1)

It follows that the minimization problem infμ∈MP

∫
K λ(x)μ(dx) has the same value as

v0 = inf
ζ1∈A1

. . . inf
ζn∈An

{ n∑
i=1

(ζi − ζi−1)λ(χi (ζi−1, ζi )) + (1 − ζn)λ(χn+1(ζn))
}
.(5.2)

We can solve this by backwards recursion as follows. Define

Vn(ζn) = (1 − ζn)χn+1(ζn)

Vj (ζ j ) = inf
ζ j+1∈Aj+1, ζ j+1≥ζ j

{(ζ j+1 − ζ j )λ(χi (ζ j , ζ j+1)) + Vj+1(ζ j+1)}, j = n − 1, . . . , 0.

(5.3)

Then V0(0) = v0. For a practical implementation one has only to discretize the sets Aj,
and then (5.3) reduces to a discrete-time, discrete-state dynamic program in which the
minimization at each step is just a search over a finite number of points.

5.2. Market Data

The vanilla variance swap is actively traded in the over-the-counter (OTC) markets.
We have collected variance swap and European option data on the S&P 500 index from
the recent past. Using put option prices, the lower arbitrage-bound for the variance swap
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TABLE 5.1
Historical Variance Swap (VS) Quotes for the S&P 500 Index and the Lower Bound

(LB) for It, Implied by the Bid Prices of Liquid European Put Options with the Same
Maturity.

Term Quote date VS quote LB # puts Libor

2M 21/04/2008 21.24 20.10 50 2.79
2M 21/07/2008 22.98 22.51 50 2.79
2M 20/10/2008 48.78 46.58 93 4.06
2M 20/01/2009 52.88 47.68 82 1.21

3M 31/03/2008 25.87 23.59 42 2.78
3M 20/06/2008 22.99 21.21 46 2.76
3M 19/09/2008 26.78 25.68 67 3.12
3M 19/12/2008 45.93 45.38 112 1.82
3M 20/12/2008 45.93 65.81 137 1.82

6M 24/03/2008 25.81 25.34 33 2.68
6M 20/06/2008 23.38 23.20 38 3.10

The units for the variance price and LB are volatility percentage points, 100 ×
√

PVS
T ,

and M stands for months. The european option price data is courtesy of UBS invest-
ment bank, and the variance-swap data was provided by peter carr.

rate is computed in each case, and summarized in Table 5.1. One sees that the traded price
of the variance swap frequently lies very close to the lower bound. Nonetheless, under
our standing assumptions of frictionless markets, all but one of the prices were consistent
with absence of arbitrage. The crash in October 2008 of the S&P 500, and indeed the
financial markets in general, gave rise to significant increase in expected variance, which
can be seen in the cross-section of data studied. One data point, the 3-month contract on
December 20, 2008 lies below our lower bound and, at first sight, appears to represent
an arbitrage opportunity. However, this data point should probably be discarded. First,
practitioners tell us that this was a day of extreme disruption in the market, and indeed the
final column of Table 5.1, giving the number of traded put prices used in the calculations,
shows that December 19 and 20 were far from typical days. Second, the fact that the
quotes for 19 and 20 December are exactly the same makes it almost certain that the
figure for 20 December is a stale quote, not a genuine trade. It is a positive point of our
method that we are able to pick up such periods of market dislocation, just from the raw
price data.

A further point relates to our discussion in Section 4 about the weight function w and
its relation to the contract weight ŵ . This is a moot point here, because w = ŵ = 1, but
note from the final column in Table 5.1 that Libor rates are generally around 3% (albeit
with some outliers), while the S&P 500 dividend yield increased from around 2.0% to
around 3.1% over the course of 2008. Because the rate closely matches the dividend yield
we have Ft = S0 to a close approximation for t up to a few months.

APPENDIX A: THE KARLIN & ISII THEOREM

Let a1 , . . . , am, f be real-valued, continuous functions on K ⊂ Rd and let M denote
the collection of all finite Borel measures μ on K fulfilling the integrability conditions
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∫
K |ai (x)|μ(dx) < ∞ for i = 1 , . . . , m. For a fixed vector b = (b1, . . . , bm)T , and letting

a(x) = (a1(x), . . . , am(x))T for x ∈ K, consider the optimization problem

(P) : sup
y∈Rm

yT b s.t. yT a(x) ≤ f (x) ∀x ∈ K.

Now, define

(D) : inf
μ∈M

∫
K

f (x)μ(dx) s.t.
∫

K
a(x)μ(dx) = b,

where the constraint should be interpreted as
∫

K ai (x)μ(dx) = bi , i = 1, . . . , m. The val-
ues of the problems (P) and (D) will respectively be denoted by V (P) and V (D). Finally,
Mm ⊂ Rm will denote the moment cone defined by

Mm =
{

b̃ = (b̃1, . . . , b̃m)T | b̃i =
∫

K
ai (x)μ(dx), i = 1, . . . , m, μ ∈ M

}
.(A.1)

THEOREM A.1. Suppose

1. a1 , . . . , am are linearly independent over K,
2. b is an interior point of Mm, and
3. V (D) is finite.

Then V (P) = V (D) and (P) has a solution.

REMARKS.

(i) The beauty in the Karlin & Isii theorem is that the proof draws upon no more
than a finite dimensional separating hyperplane theorem. Proofs can be found in
Glashoff (1979) and Karlin and Studden (1966, chapter XII, section 2). We follow
the latter below.

(ii) Condition 1 of the theorem ensures that the moment cone Mm of (A.1) is m-
dimensional, i.e., not contained in some lower-dimensional hyperplane.

Proof of Theorem A.1. Define the enlarged moment cone

M =
{

b̃ = (b̃1, . . . , b̃m+1)T : b̃ =
∫

K

(
a(x)

f (x)

)
μ(dx), μ ∈ M

}
,

and let M̄ denote its closure. Then M̄ is a closed convex cone and, moreover, the vector
(b1 , . . . , bm, V (D)) lies on its boundary. There exists a supporting hyperplane to M̄
through this vector, specified by real constants {zi }m+1

1 not all zero, such that

m∑
i=1

zi bi + zm+1V(D) = 0(A.2)

and

m+1∑
i=1

zi b̃i ≥ 0, ∀b̃ ∈ M̄.(A.3)
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In particular, on considering Dirac measures, one has

m∑
i=1

zi ai (x) + zm+1 f (x) ≥ 0, ∀x ∈ K.(A.4)

We now show that zm+1 > 0. Indeed, for any δ > 0, the vector (b1 , . . . , bm, V (D) − δ) lies
in the half-space complementary to (A.3). Therefore

m∑
i=1

zi bi + zm+1(V(D) − δ) < 0, ∀δ > 0.

This clearly implies zm+1 ≥ 0. However, zm+1 = 0 is not possible, because this would
contradict the assumption that b lies in the interior Mm, which is m dimensional. Thus,
it must be that zm+1 > 0. Then from (A.4), it follows that

f (x) ≥
m∑

i=1

ŷi ai (x),

where ŷi := −zi/zm+1 for i = 1 , . . . , m. Then (A.2) becomes

V(D) =
m∑

i=1

ŷi bi ,

and this completes the proof. �

APPENDIX B: PATHWISE STOCHASTIC CALCULUS

This section describes a non-probabilistic approach to stochastic calculus, due to Föllmer
(1981), that will enable us to define the continuous-time limit of the finite sums (1.1)
defining the realized variance, without having to assume that the realized price function
t�→St is a sample function of a semimartingale defined on some probability space.

For T > 0 let T = [0, T] with Borel sets BT . A partition is a finite, ordered sequence
of times π = {0 = t0 < t1 < · · · < tk = T} with mesh size m(π ) = max 1≤j≤k(tj − tj−1). We
fix a nested sequence of partitions {πn, n = 1, 2, . . .} such that limn→∞m(πn) = 0. All
statements below relate to this specific sequence. An obvious choice would be the set of
dyadic partitions tn

j = j T/2n, j = 0, . . . , 2n, n = 1, 2, . . . .

DEFINITION B.1. A continuous function X : T → R has the quadratic variation property
if the sequence of measures on (T ,BT )

μn =
∑
tj ∈πn

(X(tj+1) − X(tj ))2δtj

(where δt denotes the Dirac measure at t) converges weakly to a measure μ, possibly along
some sub-sequence. The distribution function of μ is denoted 〈X〉t, and we denote by Q the
set of continuous functions having the quadratic variation property.
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THEOREM B.2. (Föllmer 1981). For X ∈ Q and f ∈ C2, the limit∫ t

0
f ′(Xs)dXs := lim

n→∞

∑
tj ∈πn

f ′(Xtj )(Xtj+1 − Xtj )

is well defined and satisfies the pathwise Itô formula:

f (Xt) − f (X0) =
∫ t

0
f ′(Xs)dXs + 1

2

∫ t

0
f ′′(Xs)d〈X〉s .(B.1)

Proof. (Sketch). The proof proceeds by writing the expansion

f (Xt) − f (X0) =
∑

j

f ′(Xtj

)(
Xtj+1 − Xtj

)

+ 1
2

∑
j

f ′′(Xtj

)(
Xtj+1 − Xtj

)2 +
∑

j

R
(
Xtj , Xtj+1

)
(B.2)

where R(a, b) ≤ φ(|b − a|)(b − a)2 with φ an increasing function, φ(c) → 0 as c →
0. As m(π ) → 0, the third term on the right of (B.2) converges to 0 and the second
term converges to the second term in (B.1). This shows that the first term converges,
so that essentially the “pathwise stochastic integral” is defined by (B.1) for arbitrary C1

functions f ′. �
An important remark is that Xt, being continuous, achieves its minimum and maximum

X∗, X∗ in [0, T ], so only the values of f in the compact interval [X∗, X∗] (depending on
the path X) are relevant in (B.1).

For the applications in Section 4 we need an “Itô formula” valid when f ′′ is merely
locally integrable, rather than continuous as it is in (B.1). In the theory of continuous
semimartingales, such an extension proceeds via local time and the Tanaka formula—
see theorem VI.1.2 of Rogers and Williams (2000). Here we present a pathwise version,
following the diploma thesis of Wuermli (1980). For a C2 function f we have f (b) =
f (a) + ∫ b

a f ′(y)dy, and applying the same formula to f ′ we obtain

f (b) − f (a) =
∫ b

a

(
f ′(a) +

∫ y

a
f ′′(u)du

)
dy = f ′(a)(b − a) +

∫ b

a
(b − u) f ′′(u)du

= f ′(a)(b − a) +
∫ ∞

−∞
1[a∧b,a∨b](u)|b − u| f ′′(u)du.

Hence for any partition π = {tj} of [0, t] we have the identity

f (Xt) − f (X0) =
∑

j

f ′(Xtj )(Xtj+1 − Xtj ) +
∫ ∞

−∞

∑
j

(
1[Xmin

j ,Xmax
j ](u)|Xtj+1 − u|

)
f ′′(du),

(B.3)

where Xmin
j = min{Xtj , Xtj+1} and Xmax

j = max{Xtj , Xtj+1}. We define

Lπ
t (u) = 2

∑
j

1[Xmin
j ,Xmax

j ](u)|Xtj+1 − u|,(B.4)

and note that Lπ
t (u) = 0 for u �∈(X∗, X∗).
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DEFINITION B.3. Let L be the set of continuous paths on [0, T ] such that the discrete
pathwise local time Lπn

t (u) converges weakly in L2(du) to a limit Lt(·), for each t ∈ [0, T ].

PROPOSITION B.4. L ⊂ Q. For X ∈ L and t ∈ [0, T ] we have the occupation density
formula ∫

A
Lt(u)du =

∫ t

0
1A(Xs)d〈X〉s, A ∈ B(R).(B.5)

Proof. Suppose X ∈ L, and let πn be a sequence of partitions of [0, T ] with m(πn) →
0. From (B.3) we have, for f ∈ C2 and t ∈ [0, T ],

f (Xt̃n ) − f (X0) −
∑

j

f ′(Xtj

)(
Xtj+1 − Xtj

) = 1
2

∫ ∞

−∞
Lπn

t (u) f ′′(u)du,(B.6)

where t̃n is the nearest partition point in πn to t. As n → ∞, the first term on the left
of (B.6) converges to f (Xt) and, because f ′′ ∈ L2([X∗, X∗], du), X ∈ L implies that the
right-hand side converges to (1/2)

∫
Lt(u)f ′′(u)du. Hence the “integral” term on the left

of (B.6) also converges to, say, It. If we take f (x) = x2 then the left-hand side of (B.6) is
equal to ∑

j :tj+1≤t̃n

X2
tj+1

− X2
tj

− 2Xtj

(
Xtj+1 − Xtj

) =
∑

j :tj+1≤t̃n

(
Xtj+1 − Xtj

)2
,

showing that (a) X ∈ Q and (b) It = ∫ t
0 f ′(Xs)d Xs , the Föllmer integral of Theorem B.2.

It now follows from (B.6) that∫ ∞

−∞
Lt(u) f ′′(u)du =

∫ t

0
f ′′(Xs)d〈X〉s,(B.7)

i.e., for any continuous function g we have∫ ∞

−∞
Lt(u)g(u)du =

∫ t

0
g(Xs)d〈X〉s .

Approximating the indicator function 1A by continuous functions and using the mono-
tone convergence theorem, we obtain (B.5). �

For the next result, let W2 be the set of functions f in C1(R) such that f ′ is weakly
differentiable with derivative f ′′ in L2

loc(R).

THEOREM B.5. If X ∈ L the Föllmer integral extends in such a way that the pathwise
Ito formula (B.1) is valid for f ∈ W2.

Proof. Let φ be a mollifier function, a nonnegative C∞ function on R such that
φ(x) = 0 for |x| > 1 and

∫
φ(x)dx = 1, define φn(x) = nφ(nx) and let f n(x) = ∫

f (x −
y)φn(y)dy. Then fn, f ′

n converge pointwise to f , f ′ and f ′′
n → f ′′ weakly in L2. From

Proposition B.4 we know that X ∈ Q and as f n ∈ C2 we have, using (B.1) and (B.7),

fn(Xt) − fn(X0) =
∫ t

0
f ′
n(Xs)dXs + 1

2

∫ ∞

−∞
Lt(u) f ′′

n (u)du.
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As n → ∞, the left-hand side converges to f (Xt) − f (X0) and the second term on the
right converges to 1

2

∫ ∞
−∞ Lt(u) f ′′(u)du, and we can define∫ t

0
f ′
n(Xs)dXs = lim

n→∞

{
fn(Xt) − fn(X0) − 1

2

∫ ∞

−∞
Lt(u) f ′′

n (u)du
}

.

It now follows from Proposition B.4 that the Itô formula (B.1) holds for this extended
integral. �

We need one further result.

PROPOSITION B.6. Let X ∈ L and let f : R → R be a monotone C2 function. Then
Y = f (X) ∈ L and the pathwise local times are related by

LY
t (u) = | f ′( f −1(u))| LX

t ( f −1(u)).(B.8)

Proof. We assume f is increasing—the argument is the same if it is decreasing—and
denote v = f −1(u), so u = f (v). For the partition πn we have for fixed t ∈ T , from (B.4),

LY,πn
t (u) =

∑
j

1{ f (Xmin
n, j )≤ f (v)≤ f (Xmax

n, j )}
∣∣ f

(
Xtn

j+1

) − f (v)
∣∣

=
∑

j

1{Xmin
n, j )≤v≤Xmax

n, j )}

∣∣∣∣ f ′(v)
(
Xtn

j+1
− v

)) + 1
2

f ′′(ξ )
(
Xtn

j+1
− v

)2
∣∣∣∣

= f ′(v)
∑

j

1{Xmin
n, j )≤v≤Xmax

n, j )}

∣∣∣∣Xtn
j+1

− v + f ′′

2 f ′
(
Xtn

j+1
− v

)2
∣∣∣∣

(B.9)

for ξ between v and Xtn
j+1

. Noting that f ′′(ξ )/2f ′(v) is bounded for ξ , v ∈ [X∗, X∗] and that
limn→∞ max j |X(tn

j+1) − X(tn
j )| = 0, we easily conclude that if X ∈ L then the expression

at (B.9) converges in L2(dv) to f ′(v)LX
t (v), so that Y ∈ L with local time given by

(B.8). �
We note that in the above result it suffices to assume that f is defined on [X∗, X∗].

This allows us to apply the Proposition for f = log and and stock price trajectories in
Section 4. Indeed, from (B.8) we obtain the elegant formula

Llog X
t (u) = e−u LX

t (eu).

Finally, we build the connection between the pathwise calculus and the classical Itô
(stochastic) calculus.

THEOREM B.7. Let (Xt, t ∈ [0, T ]) be a continuous semimartingale on some complete
probability space (�,F,P ). Then there is a set N ∈ F such that P N = 0 and for ω �∈ N
the path t�→X(t, ω) belongs to L (and hence to Q), and Lt(u) defined in Definition B.3
coincides with the semimartingale local time of Xt at u.

Proof. First, Xt ∈ Q a.s. Indeed, theorem IV.1.3 of Revuz and Yor (1994) asserts that
discrete approximations to the quadratic variation always converge in probability, so a
sub-sequence converges almost surely, showing that Xt ∈ Q in accordance with Definition
B.1. It is shown by Föllmer (1981) that the Itô integral and the pathwise integral defined by
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(B.1) coincide almost surely. Every semimartingale St has an associated local time which
satisfies the occupation density formula (B.5). It remains to show that with probability
1 the discrete approximations Lπ

t defined by (B.4) converge in L2(du). This is proved in
Wuermli (1980), by detailed estimates which we cannot include here. �
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OBŁÓJ, J. (2004): The Skorokhod Embedding Problem and Its Offspring, Prob. Surv. 1, 321–392.

RAVAL, V. (2010): Arbitrage Bounds for Prices of Options on Realized Variance, Ph.D. thesis,
University of London (Imperial College).

REVUZ, D., and M. YOR (1994): Continuous Martingales and Brownian Motion, Berlin: Springer-
Verlag.

ROGERS, L. C. G., and D. WILLIAMS (2000): Diffusions, Markov Processes, and Martingales, Vol.
2, Cambridge, UK: Cambridge University Press.

SONDERMANN, D. (2006): Introduction to Stochastic Calculus for Finance: A New Didactic
Approach, vol. 579 of Lecture Notes in Economics and Mathematical Systemtems. Berlin:
Springer-Verlag.

VOVK, V. (2012): Continuous-Time Trading and the Emergence of Probability, Finance Stoch.
16(4): 561–609.

WUERMLI, M. (1980): Lokalzeiten für Martingale, unpublished diploma thesis supervised by
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CLOSED FORM PRICING FORMULAS FOR DISCRETELY SAMPLED
GENERALIZED VARIANCE SWAPS

WENDONG ZHENG AND YUE KUEN KWOK

Hong Kong University of Science and Technology

Most of the existing pricing models of variance derivative products assume contin-
uous sampling of the realized variance processes, though actual contractual specifica-
tions compute the realized variance based on sampling at discrete times. We present
a general analytic approach for pricing discretely sampled generalized variance swaps
under the stochastic volatility models with simultaneous jumps in the asset price and
variance processes. The resulting pricing formula of the gamma swap is in closed form
while those of the corridor variance swaps and conditional variance swaps take the form
of one-dimensional Fourier integrals. We also verify through analytic calculations the
convergence of the asymptotic limit of the pricing formulas of the discretely sampled
generalized variance swaps under vanishing sampling interval to the analytic pricing
formulas of the continuously sampled counterparts. The proposed methodology can
be applied to any affine model and other higher moments swaps as well. We examine
the exposure to convexity (volatility of variance) and skew (correlation between the
equity returns and variance process) of these discretely sampled generalized variance
swaps. We explore the impact on the fair strike prices of these exotic variance swaps
with respect to different sets of parameter values, like varying sampling frequencies,
jump intensity, and width of the monitoring corridor.

KEY WORDS: generalized variance swaps, stochastic volatility models, Fourier transform, discrete
sampling.

1. INTRODUCTION

Volatility measures the standard deviation of the logarithm of returns of an underlying
asset, thus it gives a measure of the risk of holding that asset. Volatility risk has drawn
a wider attention in the financial markets in recent years, especially after the global
financial crisis. Volatility trading becomes an important topic of risk management. In a
bearish market environment, volatility typically stays at a high level, so holding a long
position of volatility may be useful in hedging an equity portfolio. Indeed, volatility can
be viewed as an asset class in its own right. Investors may use volatility derivatives to
perform directional trading of volatility levels, say, trading the spread between the realized
and implied volatility levels, or hedging an implicit volatility exposure. These volatility
derivatives are investment tools for investors with specific views on the future market
volatility or with particular risk exposures by allowing them to deal with these views or
risks without taking a direct position in the underlying asset and/or delta-hedging their
position (Brockhaus and Long 2000).
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Volatility products can be generally classified into two types. The historical-variance-
based volatility derivatives include products whose payoff depends on the realized
variance of the underlying asset. Another class of volatility products are the implied-
volatility-based products, like the VIX futures traded in the Chicago Board Options
Exchange (CBOE). The VIX stands for the CBOE Volatility Index, and it measures the
30-day expected future volatility of the S&P 500 index (Carr and Wu 2006). In recent
years, the third generation of volatility products, which are known as the generalized
variance swaps, including the corridor variance swaps, conditional variance swaps, and
gamma swaps, have gained wider popularity as volatility trading instruments. These ex-
otic variance swaps can offer investors a more finely tuned volatility exposure than the
traditional variance swaps (see the review articles by Carr and Lewis 2004; Bouzoubaa
and Osseiran 2010; Lee 2010). Their product specifications and potential uses in hedging
or betting the various forms of volatility exposures will be presented in later sections. One
of the objectives of this paper is to present a systematic and efficient analytic approach for
pricing these discretely sampled generalized variance swaps under the stochastic volatility
models with simultaneous jumps in the asset price and variance processes.

Assuming that the stock prices evolve without jumps, Neuberger (1994) shows how
a continuously sampled variance swap can be theoretically equivalent to a dynamically
adjusted constant dollar exposure to the stock, in combination with a static long po-
sition in a portfolio of options and a forward contract that replicate the payoff of a
log contract. Carr and Madan (1998) propose various methods of trading the realized
volatility, like taking a static position in options, delta-hedging an option position, etc.
They demonstrate that the delta-hedged option approach exhibits a large amount of
path dependency in the underlying in the final profit/loss. On the other hand, volatility
derivatives are shown to provide the pure exposure to realized market volatility without
an inherent price path dependency. Demeterfi et al. (1999) provide a nice review on the
pricing behavior and theory of both variance and volatility swaps.

As a common approximation assumption in the pricing models of volatility deriva-
tives in the literature, the discretely sampled realized variance in the actual contractual
specification is approximated by a continuously sampled variance (as quantified by the
quadratic variation of the log asset price process). For some volatility products, it occurs
that the assumption of continuous sampling falls short of providing pricing results with
sufficient accuracy when the actual discrete sampling becomes less frequent. Since it
is not so straightforward to estimate the approximation errors in a unified framework,
practitioners trading on contracts that are based on the realized variance with a low
sampling frequency cannot properly assess the pricing errors caused by the continuous
sampling assumption. A review on the replication errors for the discretely monitored
variance swaps can be found in Carr and Lee (2009). Keller-Ressel and Muhle-Karbe
(2010) discuss the rate of convergence of the approximation of the realized variance via
the notion of quadratic variation and examine the errors of the approximation in pricing
short-dated options with nonlinear payoffs.

There have been numerous papers that consider pricing variance product contracts on
the discretely sampled realized variance. Little and Pant (2001) develop a finite differ-
ence approach for the valuation of the discretely sampled variance swaps in an extended
Black–Scholes framework with a local volatility function. They adopt an effective nu-
merical technique to capture the jumps in the realized variance across the sampling
dates. Windcliff, Forsyth, and Vetzal (2006) improve the pricing algorithm for the dis-
cretely sampled volatility derivatives by allowing jumps in the asset price process. Using
the Monte Carlo simulation method, Broadie and Jain (2008) investigate the effect of
discrete sampling and asset price jumps on the fair strike prices of variance and volatility
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swaps under various stochastic volatility models. Carr and Lee (2009) consider the repli-
cation of discretely sampled variance products (including exotic path dependent payoff
structures) using options, futures, and bonds with the same sampling frequency as that
of the variance products. Itkin and Carr (2010) use a forward characteristic function
approach to price discretely monitored variance and volatility swaps under various Lévy
models with stochastic time change. Crosby and Davis (2011) consider the pricing of gen-
eralized variance swaps, such as self-quantoed variance swaps, gamma swaps, skewness
swaps, and proportional variance swaps under the time-changed Lévy processes. They
show that the prices of discretely monitored variance swaps and their generalizations all
converge to the prices of continuously monitored counterparts as O(1/N), where N is
the number of monitoring instants. Sepp (2011) analyzes the impact of discrete sampling
on the pricing of options on the realized variance under Heston’s stochastic volatility
model. He proposes a method of mixing the discrete variance in a log-normal model
and the quadratic variance in a stochastic volatility model that approximates well the
distribution of the discrete variation. Drimus and Farkas (2010) show that conditioning
on the realization of the instantaneous variance process, the residual randomness aris-
ing from discrete sampling follows a normal distribution. They also provide a practical
analysis of the greeks sensitivity of options on discretely sampled variance. Following
the Little-Pant pricing formulation, Zhu and Lian (2011) manage to derive closed form
pricing formulas for the vanilla variance swaps under Heston’s stochastic volatility model
for the underlying asset price process by solving a coupled system of partial differential
equations. Lian (2010) extends the above analytic pricing approach to the underlying
asset price process that allows stochastic volatility with simultaneous jumps in both the
asset price and variance process (SVSJ model). The success of analytic tractability in the
Zhu–Lian approach lies on the exponential affine structure of the SVSJ model, where
the corresponding analytic formulas of the marginal characteristic functions can be de-
rived. When the payoff structures of the variance swap contracts become more exotic,
like those of the corridor variance swaps, conditional variance swaps, and gamma swaps,
the knowledge of the marginal characteristic functions alone may not be enough in the
derivation of the corresponding closed form pricing formulas. Instead, the joint moment
generating function plays a vital role in deriving the pricing formulas for exotic variance
swaps.

In this paper, we propose a general analytic approach for pricing various types of
discretely sampled generalized variance swaps, thanks to the availability of the analytical
expression of the joint moment generating function of the underlying processes. The ana-
lytic derivation of the associated moment generating function under the SVSJ model can
be accomplished via the solution to a Riccati system of ordinary differential equations.
Provided that the payoff function of a generalized variance swap can be transformed
into an exponential function of the state variables, closed form or semianalytic (in terms
of one-dimensional Fourier integrals) pricing formula of the derivative product can be
derived. Duffie, Pan, and Singleton (2000) and Chacko and Das (2002) demonstrate the
versatility of this analytic approach in pricing various types of fixed income derivatives.
These papers explore various invariant properties of the solutions to the Riccati systems
and manage to express the pricing formulas in terms of these solutions. Sepp (2007)
applies similar techniques to price continuously sampled variance derivatives and con-
ditional variance swaps via the derivation of the analytic representation of the Green
function associated with the governing partial integral-differential equation under the
SVSJ model.

This paper is organized as follows. In the next section, we present the formulation of
the SVSJ model with a discussion on various possible extensions of the underlying joint
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dynamics of the asset returns and its variance. Thanks to the exponential affine structures
of the SVSJ model, we manage to obtain an analytic representation of the corresponding
joint moment generating function by solving a Riccati system of ordinary differential
equations. In Section 3, we present the product specification and potential uses of various
generalized variance swaps. We then show how to derive the closed form pricing formula
of each of these discretely sampled generalized variance swaps under the SVSJ model.
The continuously sampled gamma swap is known to provide a constant share gamma
exposure. We illustrate how this gamma exposure property is modified under discrete
sampling. The pricing of the conditional variance swap requires the computation of the
expected occupation time of the asset price within a specified corridor. For the formulas
of the fair strikes of the discretely monitored variance swaps and gamma swaps, we take
the asymptotic limit by letting the sampling interval approach zero and illustrate that
one can recover the same set of formulas of their continuously sampled counterparts
(Sepp 2008). Also, we manage to obtain the pricing formulas of corridor and conditional
variance swaps under continuous sampling. In Section 4, we report the numerical tests
that examine the convergence of the fair strike prices with increasing sampling frequencies
to the fair strike price of the continuously sampled counterparts. Our numerical tests
show that an almost linear rate of convergence with respect to the sampling interval
of the fair strike price under discrete sampling to that under continuously sampling is
revealed for variance swaps. However, such convergence behavior may not always be
observed for other exotic variance swaps. We also examine the exposure to convexity
(volatility of variance), skew (correlation between equity returns and variance process),
and jump intensities of these exotic swap products under the more realistic framework
of discrete sampling of the realized variance. The fair strike prices in these generalized
variance swaps are shown to be dependent on their contractual specifications. Summary
and conclusive remarks are presented in the last section.

2. STOCHASTIC VOLATILITY MODELS WITH SIMULTANEOUS JUMPS
AND JOINT MOMENT GENERATING FUNCTION

There have been numerous empirical studies on the dynamics of asset returns that illus-
trate evidence for both jumps in the price level and its volatility. A prominent continuous
time model that has been widely adopted is the affine simultaneous jump model (Duffie
et al. 2000) where the asset return and its variance follow the jump-diffusion process for
which the drift, covariance, and jump intensities are assumed to have an affine depen-
dence on the state vector. The analytic pricing under the affine simultaneous jump model
can be performed by solving the corresponding Riccati system of ordinary differential
equations (Chacko and Das 2002).

In this paper, we adopt the following stochastic volatility model with simultaneous
jumps (SVSJ) to describe the joint dynamics of the stock price St and its instantaneous
variance Vt. Under the risk neutral pricing measure Q, the joint dynamics of St and Vt

assumes the form:⎧⎪⎨
⎪⎩

dSt

St
= (r − d − λm) dt +

√
Vt dWS

t + (eJS − 1) dNt,

dVt = κ(θ − Vt) dt + ε
√

Vt dWV
t + JVdNt,

(2.1)

where WS
t and WV

t are a pair of correlated standard Brownian motions with dWS
t dWV

t =
ρ dt, and Nt is a Poisson process with constant intensity λ that is independent of the
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two Brownian motions. Here, ρ is the constant correlation coefficient. We let JS and
JV denote the random jump size of the log price and variance, respectively, and these
random jump sizes are assumed to be independent of WS

t , WV
t , and Nt. Also, we let

r and d denote the riskless interest rate and the constant dividend yield, respectively,
and m = EQ

t [eJS − 1]. Throughout the paper, all the expectation calculations EQ
t [ · ] are

performed under the risk neutral pricing measure Q and conditional on filtration Ft

at the current time t. In the sequel, we suppress the superscript and subscript in the
expectation operator for notational convenience.

It is well known that jumps in the stock price provide a more realistic description of
the short-term behavior of the stock price dynamics while jumps in the variance give
the more accurate modeling of the volatility skew. Various empirical studies reveal that
jumps in the price level and variance in general occur together, and they are strongly
interdependent and have opposite sign. One may argue that the above SVSJ model
with specific affine forms of the parameter functions may be somewhat restrictive. Some
recent nonparametric studies of the high frequency movements in stock market volatility
reveal that volatility may follow quite different forms of jump behavior (Todorov and
Tauchen 2010). Various extended versions of the stochastic volatility models have also
been proposed. For example, Kangro, Parna, and Sepp (2004) propose to generalize the
intensity of the Poisson process to be a nonreverting stochastic process. Carr and Wu
(2007) assume stochastic hazard rate for the Poisson process, where the stochastic hazard
rate parameter is assumed to be the sum of the instantaneous variance and a latent risk
factor that follows a diffusion process with mean reversion drift rate. Cont and Kokholm
(2008) model directly the forward variance swap rates for a discrete tenor of maturities,
somewhat analogous to the LIBOR market model in interest rates modeling. In some
of these extended models, analytic tractability that is similar to the SVSJ model can
be maintained though the analytic procedures tend to become more involved. In this
paper, we illustrate the set of analytic procedures of deriving the pricing formulas of
discretely sampled exotic variance products under the popular SVSJ model and relegate
the research on analytic pricing methods under other types of stochastic volatility models
to future works.

2.1. Joint Moment Generating Function

For convenience, we let Xt = ln St. The joint moment generating function of the joint
process Xt and Vt is defined to be

E[exp(φXT + bVT + γ )],

where φ, b, and γ are constant parameters. Let U(Xt, Vt, t) denote the nondiscounted
time-t value of a contingent claim with the terminal payoff function: U(XT , VT , T),
where T is the maturity date. By adopting the temporal variable, τ = T − t, it can be
deduced from the Feynman–Kac theorem that U(X , V , τ ) is governed by the following
partial integral-differential equation (PIDE):

∂U
∂τ

=
(

r − d − mλ − V
2

)
∂U
∂ X

+ κ(θ − V)
∂U
∂V

+ V
2

∂2U
∂ X2

+ ε2V
2

∂2U
∂V2

+ ρεV
∂2U

∂ X∂V
+ λE[U(X + JS, V + JV, τ ) − U(X, V, τ )].

(2.2)
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The terminal payoff function of the contingent claim becomes the initial condition of the
PIDE. Note that the joint moment generating function (MGF) can be regarded as the
time-t forward value of the contingent claim with the terminal payoff: exp (φXT + bVT

+ γ ), so the MGF also satisfies PIDE (2.2).
Using the analytic procedures similar to those in interest rate derivatives pricing under

the stochastic volatility with simultaneous jumps model (Chacko and Das 2002), analytic
solution to the joint MGF can be obtained by solving a Riccati system of ordinary
differential equations. Due to the exotic payoff structure of the generalized variance
swaps, analytic form of the joint MGF is required in deriving analytic pricing formulas
for these discretely sampled variance products. As a remark, it suffices to use the marginal
MGFs to price discretely sampled vanilla variance swaps (Zhu and Lian 2011) due to
their simpler payoff structure. Once the joint MGF is known, the respective marginal
MGF can be obtained easily by setting the irrelevant parameters in the joint MGF to
be zero. For example, the marginal MGF with respect to the state variable V can be
obtained by setting φ = γ = 0.

Thanks to the affine structure in the SVSJ model, U(X , V , τ ) admits an analytic
solution of the following form (Duffie et al. 2000):

U(X, V, τ ) = exp(φX + B(�; τ, q)V + �(�; τ, q) + (�; τ, q)),(2.3)

where the parameter functions B(�; τ, q), �(�; τ, q), and (�; τ, q) satisfy the following
Riccati system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ B
∂τ

= −1
2

(φ − φ2) − (κ − ρεφ)B + ε2

2
B2,

∂�

∂τ
= (r − d)φ + κθB,

∂

∂τ
= λ

(
E[exp(φJS + BJV) − 1] − mφ

)
,

(2.4)

with the initial conditions: B(0) = b, �(0) = γ , and (0) = 0. Here, q = (φ b γ )T and we
use � to indicate the dependence of these parameter functions on the model parameters
in the SVSJ model. One has to specify the distributions for JS and JV in order to obtain
a complete solution to these parameter functions. For example, suppose we assume that
JV ∼ exp (1/η) (exponential distribution with parameter rate 1/η) and JS follows:

JS | JV ∼ Normal(ν + ρJ JV, δ2),

that is the Gaussian distribution with mean ν + ρJJV and variance δ2, we obtain

m = E[eJS − 1] = eν+δ2/2

1 − ηρJ
− 1,(2.5)

provided that ηρJ < 1. Under the above assumption on JS and JV , the parameter
functions can be found to be
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(�; τ, q) = b(ξ−e−ζ τ + ξ+) − (φ − φ2)(1 − e−ζ τ )
(ξ+ + ε2b)e−ζ τ + ξ− − ε2b

,

�(�; τ, q) = (r − d)φτ + γ − κθ

ε2

[
ξ+τ + 2 ln

(ξ+ + ε2b)e−ζ τ + ξ− − ε2b
2ζ

]
,

(�; τ, q) = −λ(mφ + 1)τ + λeφν+δ2φ2/2
[

k2

k4
τ − 1

ζ

(
k1

k3
− k2

k4

)
ln

k3e−ζ τ + k4

k3 + k4

]
,

(2.6)

with q = (φ b γ )T and

ζ =
√

(κ − ρεφ)2 + ε2(φ − φ2),

ξ± = ζ ∓ (κ − ρεφ),

k1 = ξ+ + ε2b,

k2 = ξ− − ε2b,

k3 = (1 − φρJη)k1 − η(φ − φ2 + ξ−b),

k4 = (1 − φρJη)k2 + η(φ − φ2 − ξ+b).

The derivation of the parameter functions in equation (2.6) is provided in Appendix A.
Once the joint MGF is available, an effective analytic pricing approach can be constructed
to derive the pricing formulas of the various types of discretely sampled generalized
variance swaps. As an illustration, we demonstrate how the pricing formula of the vanilla
variance swap can be readily derived. Let the sampling dates be denoted by 0 = t0 < t1 <

· · · < tN = T . On the maturity date T , the payoff of the vanilla variance swap is defined
to be

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

− K,

where K is the strike price of the variance swap and A is the annualized factor (say, we
take A = 252 for daily sampling). We write �tk = tk − tk−1 and express the time interval
tk−1 − t0 simply as tk−1 since t0 is taken to be zero. The pricing problem amounts to
finding the fair strike price K such that the value of the vanilla variance swap at initiation
is zero. The fair strike price K is then given by

K = E

[
A
N

N∑
k=1

(
ln

Stk

Stk−1

)2
]

.

We now show how to evaluate each term in the above summation. Using the known ana-
lytic expression of the marginal MGFs, we apply the tower rule in conditional expectation
to obtain the expectation of a typical term as follows:
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E

[(
ln

Stk

Stk−1

)2
]

= E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )

]∣∣∣∣
φ=0

= ∂2

∂φ2
E
[
E
[
eφXtk

∣∣Xtk−1 , Vtk−1

]
e−φXtk−1

]∣∣
φ=0

= ∂2

∂φ2
E
[
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=0

= ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣
φ=0,

where q1 = (φ 0 0)T, and

q2 =

⎛
⎜⎝

0

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

The fair strike price of the variance swap is then given by

KV(T, N) = A
N

N∑
k=1

∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

.(2.7)

Note that the derivation procedure is less involved compared to the pricing approach
used by Zhu and Lian (2011).

2.2. Asymptotic Limit of Vanishing Sampling Interval

It would be instructive to examine whether we can deduce the formula for the fair
strike price of the continuously sampled variance swap by taking the asymptotic limit as
�t → 0, where �t = max k�tk, in formula (2.7). By expanding the parameter functions
B, �, and  in powers of �tk and taking �t → 0 subsequently, we manage to obtain the
following closed form formula for the fair strike of the continuously sampled variance
swap:

KV(T, ∞) = 1
T

{
1 − e−κT

κ
V0 − λη

κ2
(1 − e−κT − κT)

+ λ
[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]T + θ

κ
(κT − 1 + e−κT)

}
,

(2.8)

where we have used the convention A
N = 1

T . The above formula is in agreement with
a similar pricing formula in Sepp (2008). The proof of formula (2.8) is presented in
Appendix B.

In the next section, we illustrate how to generalize the above pricing approach to find
the pricing formulas for the various types of generalized variance swaps.

3. GENERALIZED VARIANCE SWAPS

Vanilla variance swaps are known to be the appropriate instruments to provide investors
with pure volatility exposure. In recent years, various types of generalized variance swaps
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have been introduced in the financial markets to enhance volatility trading by providing
asymmetric bets or hedges on volatility. Given a tenor structure {t0, t1, . . ., tN} as before,
the generalized realized variance over the period [t0, tN ] is defined to be

A
N

N∑
k=1

wk

(
ln

Stk

Stk−1

)2

,

where wk is some discrete weight process chosen so as to target a specific form of volatility
exposure. In this section, analytic pricing of discretely sampled gamma swaps, corridor
variance swaps, and conditional variance swaps would be considered. For each type of
these exotic variance products, we start with the description of their product nature and
potential uses in volatility trading and hedging.

3.1. Gamma Swaps

In a gamma swap, the weight wk is chosen to be
Stk
St0

, k = 1, 2, . . . , N. Accordingly, the
terminal payoff of the gamma swap is defined by

A
N

N∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

− K .

The motivation of choosing the weight to be the underlying level is to provide the
embedded damping of the large downside variance when the stock price falls close to zero.
This feature serves to protect the swap seller from crash risk, thus provides an advantage
over the noncapped variance swaps. Another motivation is related to variance dispersion
trade, which refers to trading the difference between the realized index volatility and
the market-cap weighted sum of the realized volatilities of its constituents. Gamma
swaps provide better means to trade dispersion than vanilla variance swaps since the risk
associated with changes in weights of the constituent stocks over the life of the variance
swap is reduced (Jacquier and Slaoui 2010).

To find the analytic fair strike price of a discretely sampled gamma swap, we compute
the expectation of a typical term in the floating leg of the gamma swap as follows:

E

[
Stk

St0

(
ln

Stk

Stk−1

)2
]

= e−X0 E
[
eXtk−Xtk−1 (Xtk − Xtk−1 )2eXtk−1

]

= e−X0 E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )+Xtk−1

]∣∣∣∣
φ=1

= e−X0
∂2

∂φ2
E
[
E
[
eφXtk

∣∣Xtk−1 , Vtk−1

]
e(1−φ)Xtk−1

]∣∣
φ=1

= e−X0
∂2

∂φ2
E
[
eXtk−1 +B(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=1

= ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=1

,

where q1 = (φ 0 0)T, and
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q2 =

⎛
⎜⎝

1

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

In the above derivation procedure, we have made use of the analytic form of the joint
moment generating function of Xt and Vt. The fair strike price of the gamma swap is then
given by

K�(T, N) = A
N

N∑
k=1

∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣∣
φ=1

,(3.1)

which is seen to have no dependence on the initial price level St0 .
It is well known that the gamma exposure of vanilla variance swaps is insensitive to

the underlying level of share price (Demeterifi et al. 1999), a property known as constant
cash gamma exposure. Suppose an investor is interested in the gamma exposure in the
number of portfolio units rather than the initial cash value of the portfolio, the gamma
swaps provide constant share gamma exposure by choosing weights that are set equal to
the underlying level at the sampling dates. The proof of this property of constant (almost
constant) share gamma exposure for the continuously (discretely) sampled gamma swaps
is shown below.

3.1.1. Constant Share Gamma Exposure. We would like to compute the share gamma
exposure of an in-progress gamma swap at time t, where ti−1 < t ≤ ti, i ≥ 1. The share
gamma is defined to be

�S = �St := ∂2Vt

∂S 2
t

St,(3.2)

where � is the usual greek gamma of a derivative product with value function Vt. Consider
a hedging portfolio � whose differential change of value is given by

d� = �dSt + 1
2
�(dSt)2.

Since dSt is in proportion to the share price St, the “cash gamma” of the derivative �S2
t

is in units of dollars. After normalizing the cash gamma by the share price, the resulting
quantity �St is in units of shares and hence it is called the “share gamma.” To compute
the share gamma of a discretely sampled gamma swap, it is necessary to find the time-t
value of the gamma swap as follows:

Vt = e−r (tN−t)

{
A
N

i−1∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

+ A
N

Et

[
Sti

St0

(
ln

Sti

Sti−1

)2
]

+ A
N

Et

[
N∑

k=i+1

Stk

St0

(
ln

Stk

Stk−1

)2
]

− K�(T, N)

}
(3.3)
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= e−r (tN−t)

{
A
N

i−1∑
k=1

Stk

St0

(
ln

Stk

Stk−1

)2

+ A
N

Sti−1

St0

× ∂2

∂φ2

[(
St

Sti−1

)φ

eB(�;ti −t,q1)Vt+�(�;ti −t,q1)+(�;ti −t,q1)

]∣∣∣∣∣
φ=1

+ A
N

St

St0

×
N∑

k=i+1

∂2

∂φ2
eB(�;tk−1−t,q2)Vt+�(�;tk−1−t,q2)+(�;tk−1−t,q2)

∣∣∣∣∣
φ=1

− K�(T, N)

⎫⎬
⎭ ,

where q1 = (φ 0 0)T, and

q2 =

⎛
⎜⎝

1

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

By differentiating equation (3.3) with respect to St twice and multiplying by St, we obtain
the share gamma as follows:

�S = e−r (tN−t) A
N

2
St0

[(
ln

St

Sti−1

+ 1
)

F(1) + F ′(1)
]

,(3.4a)

where

F(φ) = eB(�;ti −t,q1)Vt+�(�;ti −t,q1)+(�;ti −t,q1).

The dependence of �S on St appears in the term ln St
Sti−1

. Suppose we take the limit of
continuous sampling, St → Sti−1 , we then obtain

�S → e−r (tN−t) A
N

2
St0

.(3.4b)

The above limit has no dependence on St, so it verifies the property of constant gamma
exposure under continuous sampling. A similar result has been obtained by Jacquier and
Slaoui (2010) using a replication argument.

3.1.2. Fair Strike Prices of Continuously Monitored Gamma Swaps. By following a
similar procedure of taking the limit of vanishing sampling time interval (see Appendix B),
we can obtain the following closed form formula for the fair strike price of a continuously
monitored gamma swap

K�(T, ∞) = 1
T

[(
V0 − κθ

κ − ρε
− C2

)
e(r−d−κ+ρε)T − 1
r − d − κ + ρε

+
(

κθ

κ − ρε
+ C1 + C2

)
e(r−d)T − 1

r − d

]
,

(3.5)
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where

C1 = λeν+δ2/2

1 − ρJη

[(
ν + δ2 + ρJη

1 − ρJη

)2

+ δ2 +
(

ρJη

1 − ρJη

)2
]

,

C2 = ληeν+δ2/2

(1 − ρJη)2(κ − ρε)
.

3.2. Corridor Variance Swaps

A corridor variance swap differs from the vanilla variance swap in that the underlying
price must fall inside a specified corridor (L, U ] (L ≥ 0, U < ∞), in order for its squared
return to be included in the floating leg of the corridor variance swap. For a discretely
sampled corridor variance swap with the tenor 0 = t0 < t1 < t2 < · · · < tN = T , suppose
the corridor is monitored on the underlying price at the old time level tk−1 for the kth
squared log return, the floating leg with the corridor (L, U ] is given by

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{L<Stk−1 ≤U}.

Here, 1{ · } denotes the indicator function. Corridor variance swaps with a one-sided
barrier are also widely traded in the financial markets, where the downside-variance swap
and upside-variance swap can be obtained by taking L = 0 and U → ∞, respectively. As
further generalizations, one can choose to have the corridor monitored on the underlying
price at the new time level tk (Sepp 2007) or even at both time levels (Carr and Lewis
2004).

Corridor variance swaps allow the investors to take their views on the implied volatility
skew. Suppose the implied volatility skew is expected to steepen, the investor may benefit
from buying a downside-variance swap and selling an upside-variance swap if this view
is realized. Also, investors seeking crash protection may buy the downside-variance swap
since it can provide almost the same level of crash protection as the vanilla variance swap
but at a lower premium.

It suffices to consider pricing downside-variance swaps alone since the payoffs of
downside-variance swaps of varying values of the upper barrier are sufficient to span all
different payoffs of various corridor variance swaps. We would like to find the fair strike
price of a downside-variance swap with an upper barrier U whose payoff at maturity T
is given by

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K .

Let us consider the expectation calculation of a typical term:

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]
= E

[
E
[

∂2

∂φ2
eφ(Xtk−Xtk−1 )

∣∣∣∣ Xtk−1 , Vtk−1

]
1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

= E
[

∂2

∂φ2
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

= ∂2

∂φ2
E
[
eB(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)1{Xtk−1 ≤ln U}

]∣∣∣∣
φ=0

,

(3.6)
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where q1 = (φ 0 0)T. For k = 1, the above expectation is readily seen to be

E

[(
ln

St1

St0

)2

1{St0 ≤U}

]
= ∂2

∂φ2
eB(�;�t1,q1)V0+�(�;�t1,q1)+(�;�t1,q1)1{X0≤ln U}

∣∣∣∣∣
φ=0

.(3.7a)

For k ≥ 2, the evaluation of expectation in formula (3.6) requires the representation of
the indicator function 1{Xtk−1 ≤ln U} in terms of an inverse Fourier transform integral. As a
result, formula (3.6) can be expressed in terms of a Fourier integral as follows:

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]
= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,

(3.7b)

where w = wr + iwi, u = ln U , and

Fk(w) = ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

, k ≥ 2,

with

q2 =

⎛
⎜⎝

−iw

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎠ .

The above Fourier integral is regular provided that wi is appropriately chosen to lie
within (−∞, 0). The proof of equation (3.7b) is presented in Appendix C. The fair strike
price of the downside-variance swap is then given by

KD(T, N) = A
N

⎡
⎢⎢⎢⎢⎢⎣

∂2

∂φ2
eB(�;�t1,q1)V0+�(�;�t1,q1)+(�;�t1,q1)1{X0≤ln U}

∣∣∣∣
φ=0

+ ewi (X0−u)

π

∫ ∞

0
Re

⎛
⎜⎜⎜⎜⎜⎝e−iwr (X0−u)

N∑
k=2

Fk(wr + iwi )

iwr − wi

⎞
⎟⎟⎟⎟⎟⎠ dwr

⎤
⎥⎥⎥⎥⎥⎦ .

(3.8)

The evaluation of the Fourier integral in equation (3.8) can be effected by adopting the
fast Fourier transform (FFT) algorithm. Actually, by following a similar FFT calculation
approach as in Carr and Madan (1999), one can produce the fair strike prices for all
downside-variance swaps with varying values of the upper barrier using one single FFT
calculation.

3.2.1. An Alternative Definition for the Corridor Variance. We have considered the
discretely sampled downside-variance swaps with the breaching of the downside corridor
(0, U ] being monitored on the stock price at the old time level. However, there is an
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alternative definition in the literature, where the floating leg payoff is defined to be

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk≤U}.

In this new definition, the breaching of the downside corridor for the kth squared log
return is monitored on the stock price at the new time level. For k = 1, 2, . . ., N, by
following a similar procedure as shown in equation (3.6), we manage to obtain

E

[(
ln

Stk

Stk−1

)2

1{Stk≤U}

]
= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr ,(3.9)

where w = wr + iwi, wi is chosen to lie in (−∞, 0) as before, u = ln U , and

Fk(w) = ∂2

∂φ2
eB(�;tk−1,q2)V0+�(�;tk−1,q2)+(�;tk−1,q2)

∣∣∣∣
φ=0

,

with q1 = (φ − iw 0 0)T and

q2 =

⎛
⎜⎜⎝

−iw

B(�; �tk, q1)

�(�; �tk, q1) + (�; �tk, q1)

⎞
⎟⎟⎠ .

In Section 4, we will investigate the impact of the alternative definition on the fair strike
price of a downside-variance swap.

3.2.2. Fair Strike Prices for Continuously Monitored Downside-Variance Swaps. By
taking the asymptotic limit of vanishing sampling time interval, the fair strike price of
the continuously sampled downside-variance swaps is given by (see Appendix B)

KD(T, ∞) = ewi (X0−u)

Tπ

∫ ∞

0

∫ T

0
Re
(

e−iwr (X0−u) F(wr + iwi , t)
iwr − wi

)
dt dwr ,(3.10)

where

F(w, t) = eB0(−iw,t)V0+�0(−iw,t)+0(−iw,t){B1(−iw, t)V0 + �1(−iw, t) + 1(−iw, t)

+ λ
[
(ν + ρJη)2 + δ2 + ρ2

Jη
2]},

and the coefficient functions B0(−iw , t), B1(−iw , t), �0(−iw , t), �1(−iw , t), 0(−iw , t),
and 1(−iw , t) are defined in Appendix B [see equation (B.3)].

3.3. Conditional Variance Swaps

A conditional variance swap is similar to a corridor variance swap, though they differ
in the following two aspects:

(i) The accumulated sum of squared returns is divided by the number of observations
D that the underlying asset price stays within the corridor instead of the total
number of sampling observations N.

(ii) The final payoff to the holder is scaled by the ratio D/N.
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Let K be the strike price of a conditional downside-variance swap and K ′ be the strike
price of its corridor variance swap counterpart. The holder’s payoff of the conditional
downside-variance swap with corridor’s upper barrier U is given by

D
N

[
A
D

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K

]
=
[

A
N

N∑
k=1

(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U} − K ′
]

+
(

K ′ − K
D
N

)
,

(3.11)

where D =∑N
k=1 1{Stk−1 ≤U}.

The above formula reveals that the conditional variance swap can be decomposed into
a corridor variance swap with the same upper barrier plus a range accrual note. Since we
have shown how to find the fair strike price of a downside-variance swap, it suffices to
compute the expected number of the sampling dates at which the underlying stock price
stays below the upper barrier U . For a typical term in E[

∑N
k=1 1{Stk−1 ≤U}], the expectation

calculation involves

E[1{Sk−1≤U}] = E[1{Xk−1≤u}], where u = ln U.

Following similar calculations as in Section 3.1.1, we obtain

E[1{Xk−1≤u}] = ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Gk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,(3.12)

where wi ∈ (−∞, 0) and

Gk(w) = eB(�;tk−1,q1)V0+�(�;tk−1,q1)+(�;tk−1,q1),

with q1 = (−iw 0 0)T. Similarly, the numerical evaluation of the above Fourier integral
can be done via the FFT algorithm. Finally, the fair strike price of the conditional
downside-variance swap is given by

KC(T, N) = KD(T, N)

⎡
⎢⎢⎢⎢⎢⎣

1{X0≤u}
N

+ ewi (X0−u)

π N

∫ ∞

0
Re

⎛
⎜⎜⎜⎜⎜⎝e−iwr (X0−u)

N∑
k=2

Gk(wr + iwi )

iwr − wi

⎞
⎟⎟⎟⎟⎟⎠dwr

⎤
⎥⎥⎥⎥⎥⎦

−1

.

(3.13)

The payoff of a conditional variance swap counts only the sampling dates at which
the realized variance does accumulate (conditional on the underlying price lying within
the corridor). Compared to the corridor variance swaps, the conditional variance swaps
are structured specifically for investors who would like to be exposed only to volatility
risk within a prespecified corridor. In a corridor variance swap, the actual amount of
the occupation time that the underlying price falls within the corridor over the whole
life of the swap has a significant effect on the profit and loss to its holder. However, the
conditional variance swap is immunized from this risk since only the realized variance
within the corridor matters. Indeed, the decomposition formula (3.11) shows that the
holder of a conditional variance swap receives compensation from the range accrual note
when the occupation time attains a lower value leading to a lower payoff in the corridor
variance swap counterpart.
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3.3.1. Fair Strike Prices for Continuously Monitored Conditional Variance Swaps. The
fair strike price of the continuously sampled conditional downside-variance swap is
related to that of the downside-variance swap presented in the previous section. The
analytical representation formula is given by

KC(T, ∞) = KD(T, ∞)
[

ewi (X0−u)

πT

∫ ∞

0

∫ T

0
Re
(

e−iwr (X0−u) G(wr + iwi , t)
iwr − wi

)
dt dwr

]−1

,

(3.14)

where

G(w, t) = eB(�;t,q1)V0+�(�;t,q1)+(�;t,q1),

with q1 = (−iw 0 0)T.

4. NUMERICAL TESTS

In this section, we report the numerical calculations that were performed for testing accu-
racy of the analytic pricing formulas obtained for the various types of discretely sampled
generalized variance swaps. We examine the impact of the sampling frequency of the re-
alized variance on the fair strike prices of the discretely sampled variance swaps, gamma
swaps, corridor variance swaps, and conditional variance swaps, and the convergence of
the fair strike prices to those of their continuously monitored counterparts. In particular,
we used different sets of model parameters in the numerical calculations in order to have
a more comprehensive view of the behavior of convergence to the continuous limits.
To show the sensitivity of the fair strike prices of these discretely sampled generalized
variance swaps to different model parameters, we provide various plots of the fair strike
prices against three key model parameters, namely, correlation coefficient, volatility of
variance, and jump intensity. Finally, we investigate the impact of the corridor conven-
tion (whether breaching of the corridor is monitored on the stock price at the old time
level or new time level) on the pricing of the weekly sampled downside-variance swaps
with varying values of the maturity date. In our numerical examples, we adopted the set
of parameter values shown in Table 4.1 that are calibrated to S&P 500 option prices on
November 2, 1993 (Duffie et al. 2000) as our basic set of parameter values. In addition,
we take r = 3.19%, d = 0, S0 = 1, and assume the number of trading days in 1 year
to be 252. Unless otherwise stated, we consider 1-year swap contracts so that A = N
(T = 1) and take U = 1 as the upper barrier of the downside corridor in the corridor and
conditional variance swaps.

TABLE 4.1
The Basic Set of Parameter Values of the SVSJ Model

κ 3.46 ν −0.086
θ (0.0894)2 η 0.05
ε 0.14 λ 0.47
ρ −0.82 ρJ −0.38√

V0 0.087 δ 0.0001
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4.1. Impact of Sampling Frequency

First, we present numerical results that explore the convergence behavior of the fair
strike prices of different types of discretely monitored generalized variance swaps under
varying sampling frequencies. In Table 4.2, we report the fair strike prices of the vanilla
variance swaps, gamma swaps, downside-variance swaps, and conditional downside-
variance swaps with varying sampling frequencies and different values of the correlation
coefficient ρ. The choice of ρ = −1 infers the scenario where the market is highly lever-
aged as the asset return has perfect negative correlation with its variance while the less
negative correlation coefficient ρ = −0.3 represents the market condition with mild
leverage effect. The choice of ρ = −0.82 is taken from Table 4.1 (based on calibration
from actual data of option prices). The values of the fair strike prices are all presented
in variance points, which is the expected realized variance multiplied by 1002. The fair
strike prices for these discretely sampled generalized variance swaps are numerically cal-
culated using the closed form pricing formulas derived in previous sections [see equations
(2.7), (3.1), (3.8), and (3.13)]. The fair strike prices of the continuously sampled general-
ized variance swaps, corresponding to N = ∞, are computed using the formulas (2.8),
(3.5), (3.10), and (3.14) that are deduced by our asymptotic analysis. It is seen from Ta-
ble 4.2 that the fair strike prices of all variance swap products (with the exception of the
continuously sampled variance swaps) have dependence on ρ. The variance swaps and
gamma swaps are seen to be less sensitive to ρ for any sampling frequency specification
when compared to the downside-variance and conditional downside-variance swaps. As
N → ∞ (vanishing sampling interval), all the fair strike prices of the discretely sampled
generalized variance swaps converge to those of their continuously sampled counterparts.
The good agreement between these numerical values of fair strike prices provide a check
for accuracy of all these analytic pricing formulas. As an interesting observation of the

TABLE 4.2
Comparison of the Numerical Values of the Fair Strike Prices of Variance Swaps,
Gamma Swaps, Downside-Variance Swaps, and Conditional Downside-Variance

Swaps with Varying Sampling Frequencies and Different Values of the Correlation
Coefficient ρ. Here, N is the Number of Return Samples within 1 year

Sampling N = 4 N = 12 N = 26 N = 52 N = 252 N = ∞
frequency quarterly monthly biweekly weekly daily continuous

Variance ρ = −1 187.0839 183.4365 182.2551 181.7172 181.2759 181.1590
swaps ρ = −0.82 186.7823 183.3154 182.1961 181.6870 181.2695 181.1590

ρ = −0.3 185.9113 182.9654 182.0257 181.5998 181.2512 181.1590
Gamma ρ = −1 170.1311 169.2752 169.2176 169.2203 169.2350 169.2407
swaps ρ = −0.82 171.0131 169.9908 169.8749 169.8504 169.8426 169.8423

ρ = −0.3 173.6134 172.0962 171.8081 171.7036 171.6293 171.6113
Downside ρ = −1 111.5139 102.5147 101.3211 101.0009 100.8345 100.8043
variance ρ = −0.82 110.5369 101.0294 99.6504 99.2447 99.0083 98.9599
swaps ρ = −0.3 107.8140 96.8144 94.8855 94.2254 93.7809 93.6779
Conditional ρ = −1 216.8810 250.5501 265.4668 272.9108 279.2977 281.0162
variance ρ = −0.82 213.6660 244.5615 258.3023 265.1702 271.0668 272.6579
swaps ρ = −0.3 204.5881 227.7824 238.2826 243.5650 248.1260 249.3580
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pattern of convergence of the fair strike prices with respect to sampling frequency, the
convergence can be from above or below. To present a better visual view on the conver-
gence behavior of the four types of generalized variance swaps, we show various plots
of the percentage difference in the fair strike price against varying values of sampling
interval �t (in units of year) for different sets of model parameters (see Figure 4.1).
The percentage difference, as a measurement of the discretization effect, is defined to be
100( K(�t)

K(0) − 1). Here, K(�t) is the fair strike price with sampling interval �t and K(0) is
the corresponding continuous limit of �t → 0+. Among the four curves of percentage
difference in fair strike plotted for each product, the curve labeled “basic” is obtained
based on the basic set of model parameters in Table 4.1. The curve labeled “ρ = −1”
is computed by changing the parameter value of ρ to −1 while keeping other model
parameters unchanged, and similar interpretation for the other two curves labeled “ε =
0.25” and “λ = 0.6.” It is observed that the impact of sampling frequency on the fair
strike prices for most generalized variance swaps is small for the chosen range of �t
(the lowest sampling frequency being weekly in the plots). In particular, the fair strike
prices of the gamma swaps show the least sensitivity to sampling frequency which may

FIGURE 4.1. Plot of the percentage difference in the fair strike prices of various dis-
cretely sampled generalized variance swaps against sampling time interval �t (in units
of year): (a) variance swaps, (b) gamma swaps, (c) downside-variance swaps, and (d)
conditional downside-variance swaps. The convergence of the fair strike prices to the
continuous limit can be from above or below with vanishing sampling interval. For
most cases, the convergence trend is “almost linear” [with a few exceptions, like the
curves in (b) and (c)].
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be possibly related to the constant share gamma property. An exception to insensitivity
to sampling frequency is shown by the conditional downside-variance swap. This is not
surprising since its fair strike price is equal to that of a downside-variance swap rescaled
by N/E[D], where E[D] is the expected number of observations that the asset price falls
within the corridor. The sensitivity to sampling frequency is then somehow enlarged by
the rescaling factor.

The plots in Figure 4.2(a) and (d) show that the fair strike prices of the vanilla
variance swaps and conditional downside-variance swaps exhibit an almost linear rate
of convergence. However, careful observation of the plots in Figure 4.2(b) and (c) of the
fair strike prices of the gamma swaps and downside-variance swaps reveal some convex
curvature in the curves. This convexity behavior is not in good agreement with the results
reported in the literature. The numerical tests performed by Broadie and Jain (2008) reveal
a linear rate of convergence of vanilla variance swaps under various stochastic volatility
models of the asset price process. Under the time-changed Lévy processes, Crosby and
Davis (2011) manage to establish mathematically (under certain assumptions) the linear

FIGURE 4.2. Plot of the fair strike of various discretely sampled generalized variance
swaps against (a) correlation coefficient, ρ; (b) volatility of variance, ε; (c) jump in-
tensity, λ. The variance swap products are variance swap (labeled as “vs”), gamma
swap (labeled as “gs”), downside-variance swap (labeled as “dvs”), and conditional
downside-variance swap (labeled as “cvs”). The fair strike prices of the conditional
downside-variance swaps exhibit the highest sensitivity to model parameter values.
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rate of convergence of various generalized variance swaps. However, due to the limitation
of their approach, they have neither been able to perform a similar analysis for the
generalized variance swaps with corridor restriction on the realized variance, nor make
the same conclusion under the general asset price dynamics, say the SVSJ model. Our
numerical results provide exceptions that the property of the linear convergence may not
be always valid for discretely sampled generalized variance swaps.

4.2. Sensitivity of Fair Strike Prices to Key Model Parameters

Next, we examine the sensitivity of the fair strike price of various weekly sampled gen-
eralized variance swaps on the following key model parameters: (i) correlation coefficient
ρ, (ii) volatility of variance ε, and (iii) jump intensity λ. The comparison of the fair strike
prices of various generalized variance swaps with varying values of the above model
parameters are shown in Figure 4.2. These plots reveal the different degrees of impact
on the fair strike prices of different types of generalized variance swaps with respect to
these three model parameters.

Figure 4.2(a) shows that the fair strike price of the conditional downside-variance
swap has the highest sensitivity to ρ, followed by that of the downside-variance swap.
Moreover, the fair strike prices of the downside-variance swap and conditional downside-
variance swap tend to increase as ρ becomes more negative. To explain this phenomenon
by an intuitive argument, we observe that when the leverage effect becomes stronger it
is more likely that the spike of volatility is accompanied by a plunge in the asset price.
The fair strike prices of the variance swap and gamma swap exhibit less sensitivity to ρ.
For the variance swap, insensitivity to ρ is not surprising since its continuously sampled
counterpart has no dependence on ρ. In the event of volatility running high, the gamma
swap assigns lower weights to the sampled values of higher realized variance due to the
decline in the underlying asset price in view of the negative correlation. This explains the
slight drop in the fair strike price of the gamma swap when ρ becomes more negative.

Figure 4.2(b) shows that the fair strike price of the conditional downside-variance
swap is most sensitive to ε, followed by that of the downside-variance swap. Normally,
we expect that a higher ε would lead to a higher level of accumulation of the realized
variance as in the case of the downside-variance swap or conditional downside-variance
swap. Again, the vanilla variance swap exhibits insensitivity to ε as the fair strike price of
its continuously sampled counterpart does not depend on ε. The dependence of the fair
strike price on ε for the gamma swap is reversed, which may be attributed to the use of a
negative value of correlation in the numerical calculations. Given a negative correlation,
it is more likely for the asset price to sink when the variance process is more volatile.

Various earlier papers (e.g., Broadie and Jain 2008) report the strong dependence of
the fair strike prices of variance swaps on jumps. The jumps in the underlying price and
variance under the SVSJ model can be characterized by a set of jump parameters, namely,
λ, ν, η, ρJ , and δ. The jump intensity λ is considered to be the most crucial parameter.
In our calculations, we take ν and ρJ to be negative. As a result, each jump would most
likely lead to a decline in the underlying asset price. Actually, a larger value of λ leads to
a higher chance of crash in the underlying asset price. Figure 4.2(c) shows how the fair
strike prices of various swap products change with varying values of λ. All these four
types of swap products are seen to show high sensitivity to λ. The conditional downside-
variance swap is most sensitive to λ, followed by the variance swap, gamma swap, and
then downside-variance swap. The least sensitivity to λ of the downside-variance swap
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may be attributed to an offsetting effect since a spike of the underlying asset price may
result from a potential positive jump.

4.3. Impact of Upper Barrier of Corridor and Breaching Convention
on Downside-Variance Swaps

Finally, we investigate the impact on the fair strike prices of the discretely sampled
downside-variance swaps with varying values of the corridor’s upper barrier and different
maturities.

In Figure 4.3(a) and (b), we show the plot of the fair strike price of the weekly
sampled downside-variance swap with varying values of the corridor’s upper barrier U
and different maturities. The plots shown in Figure 4.3(a) and (b) reveal the significant
impact of the choice of upper barrier U and corridor breaching convention on the fair
strike prices of the downside-variance swaps, in particular when U is chosen close to
the current stock price S0 (inferred from the steep slopes there). The difference in the
fair strike prices of the two different types of downside-variance swaps, corresponding to
the corridor’s upper barrier U being monitored on the stock price at the old time level
(“convention 1”) or new time level (“convention 2”), can be quite substantial when the
upper barrier is close to the current stock price S0 (set equal to 1). Moreover, the fair
strike prices of the swap contracts with the corridor monitored at the new time level are
consistently larger than those of the swap contracts having the corridor monitored at the
old time level. The difference in the fair strike prices vanishes when U is set extremely low
or high. For downside-variance swaps with shorter maturity of half a year, the difference
in the fair strike prices based on the two different breaching conventions can be more
profound.

FIGURE 4.3. Comparison of the fair strike prices of the weekly sampled downside-
variance swaps with varying values of the corridor’s upper barrier when breaching of
the corridor is monitored on the stock price at the old time level (“convention 1”) or
new time level (“convention 2”). The difference in the fair strike prices is shown to
be more profound for downside-variance swaps with shorter maturities (comparing
downside-variance swap contracts with maturities of one year and half a year).
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5. CONCLUSION

In this paper, we demonstrate an analytic approach of deriving closed form pricing
formulas of various types of discretely sampled generalized variance swaps under the
dynamics of stochastic volatility with simultaneous jumps in the underlying asset price
and its variance. The success of the analytic approach relies on the availability of the ana-
lytic expression of the joint moment generating function of the SVSJ model. We manage
to derive analytic pricing formulas for the gamma swaps, corridor variance swaps, and
conditional variance swaps. The last two types of generalized variance swaps with corri-
dor constraints have their terminal payoffs dependent on the stochastic occupation time
during which the underlying asset price lies within a specified corridor. The semianalytic
pricing formulas for the corridor and conditional variance swaps are expressed in terms
of Fourier integrals. The numerical evaluation of these Fourier integrals can be performed
effectively, thanks to the fast Fourier transform algorithm. We also demonstrate through
analytic asymptotic analysis that the pricing formulas of the discretely monitored gen-
eralized variance swaps converge to those of their continuously monitored counterparts.
Though this paper is focused on pricing discretely monitored generalized variance swaps
under the SVSJ framework, the analytic procedure can be applied to any affine model of
the underlying asset price and payoff structures of higher moments swaps.

We performed numerical evaluation of these pricing formulas to examine the impact
of sampling frequency on the fair strike prices of the gamma swaps, corridor variance
swaps, and conditional variance swaps. We present various plots that demonstrate the
convergence of the fair strike prices of the discretely monitored generalized variance swaps
to those of their continuously monitored counterparts, and illustrate the sensitivity of the
fair strike price to different choices of model parameter values in the SVSJ model. The
fair strike prices of these generalized variance swaps are seen to be more sensitive to the
contractual terms in the swap contracts and the choices of model parameter values. For
example, there may exist significant difference in the fair strike prices of the downside-
variance swaps with respect to whether the stock price of the old time level or new time
level is used when the corridor feature is monitored. Our studies show that the impact of
sampling frequency on the fair strike price can be quite insignificant for some types of
generalized variance swaps, like the gamma swaps. Interestingly, the convergence of the
fair strike prices with vanishing sampling interval to those of the continuously monitored
counterparts can be from above or below and the linear convergence property may not
be always valid for discretely sampled generalized variance swaps.

APPENDIX A: DERIVATION OF EQUATION (2.6)

A.1. Solution for B(τ ) := B(�; τ, q)

Note that B(τ ) is governed by a nonlinear differential equation. To find the solution,
we introduce the following transformation, where

B(τ ) = − 2
ε2

E′(τ )
E(τ )

,

which leads to the following linear differential equation:

E′′(τ ) + (κ − ρεφ)E′(τ ) − 1
4
ε2(φ − φ2)E(τ ) = 0.
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The initial condition B(0) = b gives the derived initial condition for E(τ ), where E′(0) =
− ε2b

2 E(0). Solving the equation for E(τ ), we obtain

E(τ ) = E(0)
[

(ξ+ + ε2b)
2ζ

e− 1
2 ξ−τ + (ξ− − ε2b)

2ζ
e

1
2 ξ+τ

]
,

which then gives

B(τ ) = b(ξ−e−ζ τ + ξ+) − (φ − φ2)(1 − e−ζ τ )
(ξ+ + ε2b)e−ζ τ + ξ− − ε2b

.

A.2. Solutions for �(τ ) and (τ )

Given the solution B(τ ), it is relatively easy to obtain �(τ ) by direct integration as
shown below:

�(τ ) = γ + (r − d)φτ + κθ

∫ τ

0
B(u) du

= γ + (r − d)φτ − 2κθ

ε2
ln

E(τ )
E(0)

= (r − d)φτ + γ − κθ

ε2

[
ξ+τ + 2ln

(ξ+ + ε2b)e−ζ τ + ξ− − ε2b
2ζ

]
.

The evaluation of (τ ) requires an expectation calculation followed by integration, where

(τ ) = −λ(mφ + 1)τ + λ

∫ τ

0
E[exp(φJS + B(u)JV)] du.

We employ the iterated expectation as follows:

E[exp(φJS + B(u)JV)] = E[E[exp(φJS + B(u)JV)]|JV ]

= E

[
eB(u)JV

√
2πδ

∫ ∞

−∞
exp

(
φx − (x − ν − ρJ JV)2

2δ2

)
dx

]

= exp
(

φν + δ2φ2

2

)
E[exp([ρJφ + B(u)]JV)]

= exp
(

φν + δ2φ2

2

)∫ ∞

0

1
η

exp
(

[ρJφ + B(u)]y − y
η

)
dy

= exp
(

φν + δ2φ2

2

)
1

1 − [ρJφ + B(u)]η
,

where the final integration step requires the technical condition: Re(ρJφ + B(u))η < 1.
Since η is generally small, this requirement is usually fulfilled. Finally, we perform the
integration as follows:

∫ τ

0

1
1 − [ρJφ + B(u)]η

du =
∫ τ

0

k1e−ζu + k2

k3e−ζu + k4
du = k2

k4
τ − 1

ζ

(
k1

k3
− k2

k4

)
ln

k3e−ζ τ + k4

k3 + k4
,
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where

k1 = ξ+ + ε2b, k2 = ξ− − ε2b,

k3 = (1 − φρJη)k1 − η(φ − φ2 + ξ−b),

k4 = (1 − φρJη)k2 + η(φ − φ2 − ξ+b).

In actual implementation, it may be necessary to consider the following two degenerate
cases. Suppose k3 = 0, then the integral becomes∫ τ

0

1
1 − [ρJφ + B(u)]η

du = k2

k4
τ − k1

k4

e−ζ τ − 1
ζ

,

and when k4 = 0, the integral takes the form:∫ τ

0

1
1 − [ρJφ + B(u)]η

du = k1

k3
τ + k2

k3

eζ τ − 1
ζ

.

APPENDIX B: PROOF OF FORMULAS (2.8), (3.5), AND (3.10)

For notational convenience, we write B�tk as B(�; �tk, q1), and similar interpretation
for other parameter functions �(�; �tk, q1) and (�; �tk, q1). When q1 = (α 0 0)T, we
expand B�tk , ��tk , and �tk in powers of �tk, where

B�tk = 1
2

(α2 − α)�tk + O
(
�t2

k

)
,

��tk = (r − d)α�tk + O
(
�t2

k

)
,

�tk = −λ(mα + 1)�tk + λeαν+δ2α2/2

1 − αρJη
�tk + O

(
�t2

k

)
.

Also, we write Btk−1 as B(�; tk−1, q2), and similar notational interpretation for �tk−1 and
tk−1 . Now, we expand Btk−1 , �tk−1 , and tk−1 in powers of B�tk , ��tk , and �tk , and keep
only the linear terms. This gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Btk−1 = (φ2 − φ)(1 − e−ζtk−1 )
ξ+e−ζtk−1 + ξ−

+
{

ξ−e−ζtk−1 + ξ+
ξ+e−ζtk−1 + ξ−

+ (φ2 − φ)
[

(1 − e−ζtk−1 )ε
ξ+e−ζtk−1 + ξ−

]2
}

B�tk

�tk−1 = (r − d)φtk−1 − κθ

ε2

(
ξ+tk−1 + 2 ln

ξ+e−ζtk−1 + ξ−
2ζ

)

+ 2κθ (1 − e−ζtk−1 )
ξ+e−ζtk−1 + ξ−

B�tk + ��tk + �tk

tk−1 = λε2 exp
(

φν + δ2φ2

2

)[
tk−1

J2
− 2η

J1 J2
ln

ξ+ J1e−ζtk−1 + ξ− J2

2ε2ζ (1 − φρJη)

]
− λ(mφ + 1)tk−1

−2ηλε2

J1 J2
exp

(
φν + δ2φ2

2

)[
ε2(J1e−ζtk−1 − J2)
ξ+ J1e−ζtk−1 + ξ− J2

+ η

1 − φρJη

]
B�tk,

(B.1)

where ζ , ξ+, and ξ− are defined in equation (2.6) and

J1 = (1 − φρJη)ε2 − ηξ−, J2 = (1 − φρJη)ε2 + ηξ+.
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In the above expansion procedure, we manage to maintain first-order accuracy with
respect to �tk. The second-order derivative of exp(Btk−1 V0 + �tk−1 + tk−1 ) [see equa-
tion (2.7)] with respect to α can be expressed as

∂2

∂α2
eBtk−1 V0+�tk−1 +tk−1 = eBtk−1 V0+�tk−1 +tk−1

(
V0

∂2 Btk−1

∂α2
+ ∂2�tk−1

∂α2
+ ∂2tk−1

∂α2

)
+ O

(
�t2

k

)
.

(B.2)

For the variance swap, we set φ = 0 in Btk−1 , �tk−1 , and tk−1 in equation (B.2). By
substituting all the relations between B�tk , ��tk , �tk , Btk−1 , �tk−1 , and tk−1 , and setting
α = 0, we obtain

∂2

∂α2
eBtk−1 V0+�tk−1 +tk−1

∣∣∣∣
α=0

=
{

e−κtk−1 V0 + λη

κ
(1 − e−κtk−1 ) + λ

[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]

+ θ (1 − e−κtk−1 )
}

�tk + O
(
�t2

k

)
.

The fair strike price of the variance swap with N sampling dates is then given by

KV(T, N) = 1
T

N∑
k=1

{
e−κtk−1 V0 + λη

κ
(1 − e−κtk−1 ) + λ

[
δ2 + ρ2

Jη
2 + (ν + ρJη)2]

+ θ (1 − e−κtk−1 )
}

�tk + O(�t2),

where �t = max 1≤k≤N�tk. The principal term in the above expression is a Riemann left
sum which converges to formula (2.8) by taking the limit �t → 0.

For the gamma swap, we set φ = 1 in equation (B.2). By repeating similar calculations
as above, we can obtain the pricing formula (3.5).

For notational convenience, we express the relations in equation (B.1) in terms of the
coefficient functions B0(φ, tk−1), B1(φ, tk−1), �0(φ, tk−1), �1(φ, tk−1), 0(φ, tk−1), and
1(φ, tk−1) as follows:⎧⎪⎪⎨

⎪⎪⎩
Btk−1 = B0(φ, tk−1) + B1(φ, tk−1)B�tk,

�tk−1 = �0(φ, tk−1) + �1(φ, tk−1)B�tk + ��tk + �tk,

tk−1 = 0(φ, tk−1) + 1(φ, tk−1)B�tk .

(B.3)

To derive the fair strike price of the continuously sampled downside-variance swap, we set
φ = −iw in equation (B.2). Again, by repeating a similar asymptotic analysis as above, we
obtain the fair strike price of the continuously sampled conditional downside-variance
swap in formula (3.10).

APPENDIX C: PROOF OF EQUATION (3.7b)

We consider the generalized Fourier transform of the indicator function 1{Xtk−1 ≤u} visu-
alized as a function of u, where

∫ ∞

−∞
1{Xtk−1 ≤u}e−iuw du =

∫ ∞

Xtk−1

e−iuw du = e−iXtk−1 w

iw
.
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Here, the Fourier transform variable w is taken to be complex and we write w = wr +
iwi. Provided that wi is appropriately chosen to lie within (−∞, 0), the above general-
ized Fourier transform exists. By taking the corresponding generalized inverse Fourier
transform, we obtain

1{Xtk−1 ≤u} = 1
2π

∫ ∞

−∞
eiuw e−iXtk−1 w

iw
dwr .

This analytic representation of the indicator function expressed in terms of a generalized
Fourier integral is then substituted into equation (3.6). By interchanging the order of
performing integration with the two operations of differentiation and expectation, we
manage to obtain

E

[(
ln

Stk

Stk−1

)2

1{Stk−1 ≤U}

]

= 1
2π

∫ ∞

−∞

∂2

∂φ2
E
[
e−iw Xtk−1 +B(�;�tk,q1)Vtk−1 +�(�;�tk,q1)+(�;�tk,q1)]∣∣

φ=0

eiuw

iw
dwr

= ewi (X0−u)

π

∫ ∞

0
Re
(

e−iwr (X0−u) Fk(wr + iwi )
iwr − wi

)
dwr , k ≥ 2,

as shown in equation (3.7b).
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