Discussion of “The Real Effects of Liquidity During the Financial Crisis: Evidence from Automobiles”

Gabriel Chodorow-Reich
Harvard University and NBER

AEA Annual Meeting
January 5, 2015
OVERVIEW

1. Background and BMR story.
2. Most convincing result.
3. Puzzling result.
4. Quantitative importance.
New auto sales collapse in 2008-09.
Existing literature finds strong cross-sectional relationship between decline in auto sales and 2006 debt to income, house price decline, etc. (Mian, Rao and Sufi QJE 2013).
BMR document cross-sectional variation in auto financing.
Money market fund liability runs

MMF demand for ABCP↓

Captive auto finance company borrowing costs ↑

Consumer auto financing costs ↑

Auto sales ↓
A priori plausible?

- GMAC LLC, Ford Credit 6th and 7th heaviest users of CPFF in January 2009, Chrysler Financial Services 18th.

- But CPFF already available in Jan-09, and TALF begins lending against new auto ABS in Mar-09.

- Capital losses could also explain lending contraction.
 - GMAC had substantial exposure to subprime real estate.

- Paper contains nice narrative evidence that financing shock mattered.
MOST CONVINCING RESULT

- Specification:

\[\Delta \ln Q_{imst} = \alpha_{is} + \alpha_m + \beta s_{imst-1} + \epsilon_{imst}. \]

- \(Q_{imst} \): New cars purchased in county \(i \), of make \(m \) in segment \(s \), financed by type \(f \in \{ \text{captive, non-captive} \} \), at time \(t \).

- \(s_{imst-1} \): captive finance share for segment \(s \) and make \(m \) in county \(i \) at time \(t - 1 \).

- County-segment and make fixed effects are powerful control.

- Example: [decline in GM sales in mid-size cars in county \(i \) relative to national decline in GM sales] relative to [decline in Ford sales in mid-size cars in county \(i \) relative to national decline in Ford sales] as function of [captive share of GM mid-size cars in county \(i \) relative to average GM captive share] relative to [captive share of Ford mid-size cars in county \(i \) relative to average Ford captive share].
Make, county, segment, and segment*county fixed effects

<table>
<thead>
<tr>
<th></th>
<th>All transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captive dependence</td>
<td>-0.0262*</td>
</tr>
<tr>
<td></td>
<td>(0.0145)</td>
</tr>
<tr>
<td>Brand market share</td>
<td>0.0412</td>
</tr>
<tr>
<td></td>
<td>(0.0250)</td>
</tr>
<tr>
<td>Obs</td>
<td>32,872</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.718</td>
</tr>
</tbody>
</table>
Puzzling result

- Specification:

\[
\Delta \ln Q_{it}^c = \beta_0^c + \beta_1^c s_{it-1} + X_{it}' \beta_3^c + \varepsilon_{it}^c.
\]

- Dependent variable is log change in cars financed by captives, not total cars sold.
Focus on collapse:
\(\Delta \text{car sales}_i (2009 - 2008)\)

<table>
<thead>
<tr>
<th></th>
<th>Captive financed transactions</th>
<th>Non-Captive financed transactions</th>
<th>All transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captive dependence</td>
<td>-0.532***</td>
<td>0.461**</td>
<td>-0.138**</td>
</tr>
<tr>
<td></td>
<td>(0.118)</td>
<td>(0.182)</td>
<td>(0.0584)</td>
</tr>
<tr>
<td>Obs</td>
<td>2,849</td>
<td>2,849</td>
<td>2,849</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.775</td>
<td>0.710</td>
<td>0.684</td>
</tr>
</tbody>
</table>

Controls: race, income, population, inequality, auto employment, credit score, state fixed effects
PUZZLING RESULT

- Specification:

\[\Delta \ln Q_{it}^c = \beta_0^c + \beta_1^c s_{it-1} + X_{it}' \beta_3^c + \epsilon_{it}^c. \]

- Dependent variable is log change in cars financed by captives, not total cars sold.
Puzzling result

- Specification:

\[\Delta \ln Q_{it}^c = \beta_0^c + \beta_1^c s_{it-1} + X'_{it} \beta_3^c + \varepsilon_{it}^c. \]

- Dependent variable is log change in cars financed by captives, not total cars sold.

- \(\beta_1^c < 0. \)

- Suppose cost increase results in captive sales falling by \(D\% \) in every county. Then \(\beta_1^c = 0. \)

- Standard model with competitive lenders \(\implies \) smaller decline in captive-financed auto sales in counties with larger initial share, \(\beta_2^c > 0. \)

- Intuition is general: same % decline generates larger general equilibrium disruption in places where initial market share is higher.
MODEL WITH COMPETITIVE LENDERS

- Captive finance company \(c \), non-captive \(n \), areas indexed by \(i \).
- Upward sloping credit supply:

\[
\begin{align*}
 r_{it}^c &= \alpha_t^c + \gamma \left(\ln Q_{it}^c - \ln \bar{Q}_i^c \right), \\
 r_{it}^n &= \alpha_t^n + \gamma \left(\ln Q_{it}^n - \ln \bar{Q}_i^n \right).
\end{align*}
\]

- \(r_{it}^f \): financing rate offered in area \(i \) by type \(f \in \{c, n\} \).
- \(\alpha_t^f \): national cost of funds for type \(f \in \{c, n\} \).
- \(\bar{Q}_i^f \): area-specific target sales. Interpret as sales infrastructure.
- \(\gamma > 0 \): When sales rise above the target, interest rate increases.
- Captive pricing advantage if \(\alpha_t^c < \alpha_t^n \) or \(\bar{Q}_i^c > \bar{Q}_i^n \).

- Downward sloping credit demand:

\[
\ln Q_{it} = \pi_{it}^0 - \pi^1 r_{it}.
\]

- Bertrand competition over interest rate in each area.
Higher market share → steeper demand curve → reduce supply by less.

Economics of why this doesn’t hold in the data are interesting:

- Dealer floor plan financing harder to substitute than retail financing and captive floor plan financing correlated with captive retail financing.
- Transitory shocks to captive finance share and mean reversion.
- Other?
I buy the bottom line result that they identify an effect of a credit supply shock.

More on the economics would be useful. Why do captive-financed sales fall more in areas with a larger initial captive finance share?

Assessing the quantitative magnitude is crucial. Is this a small or big part of the huge decline in auto sales?
Appendix slides
Model Solution

- Bertrand competition over interest rates:
 \[Q_{it}^n = \kappa_t \left[\frac{\bar{Q}_i^n}{\bar{Q}_i^c} \right] Q_{it}^c, \quad \kappa_t \equiv \exp \left[\frac{\alpha_t^c - \alpha_t^n}{\gamma} \right]. \]

- Equilibrium in car market:
 \[Q_{it} = Q_{it}^c + Q_{it}^n \quad \forall i. \]

- Market share \(s_{it} \):
 \[s_{it} \equiv \frac{Q_{it}^c}{Q_{it}} = \frac{\bar{Q}_i^c}{\bar{Q}_i^c + \kappa_t \bar{Q}_i^n}. \]

- Solution for quantities:
 \[
 \ln Q_{it}^c = \left[1 + \pi^1 \gamma \right]^{-1} \left[\pi_{it}^0 - \pi^1 (\alpha^c_t - \gamma \ln \bar{Q}_i^c) + \ln s_{it} \right], \\
 \ln Q_{it} = \left[1 + \pi^1 \gamma \right]^{-1} \left[\pi_{it}^0 - \pi^1 (\alpha^c_t - \gamma \ln \bar{Q}_i^c) \right] - \pi^1 \gamma \left[1 + \pi^1 \gamma \right]^{-1} \ln s_{it}, \\
 \ln Q_{it}^n = \ln Q_{it} + \ln(1 - s_{it}).
 \]
\[
\Delta \ln Q_{it} = \left[1 + \pi^1 \gamma\right]^{-1} \left[\Delta \pi^0_{it} - \pi^1 \Delta \alpha^c_t + \Delta \ln s_{it}\right] - \Delta \ln s_{it} \\
\approx \left[1 + \pi^1 \gamma\right]^{-1} \left[\Delta \pi^0_{it} - \pi^1 \Delta \alpha^c_t\right] - \frac{\pi^1 \gamma}{1 + \pi^1 \gamma} [s_{it-1} - 1] \left[\frac{\Delta \kappa_t}{\kappa_{t-1}}\right] \\
= \beta_0 + \beta_2 s_{it-1} + \varepsilon_i,
\]

where:

- \(\beta_0 \equiv -\pi^1 \left[1 + \pi^1 \gamma\right]^{-1} \left[\Delta \alpha^c_t - \gamma \left[\frac{\Delta \kappa_t}{\kappa_{t-1}}\right]\right]\): national shock to captive finance cost of credit;
- \(\beta_2 \equiv -\frac{\pi^1 \gamma}{1 + \pi^1 \gamma} \left[\frac{\Delta \kappa_t}{\kappa_{t-1}}\right] < 0\);
- \(\varepsilon^c_i \equiv \left[1 + \pi^1 \gamma\right]^{-1} \Delta \pi^0_{it}\): county-specific demand shock;
- \(\Delta \ln s_{it} \approx [s_{it-1} - 1] \left[\frac{\Delta \kappa_t}{\kappa_{t-1}}\right]\): first order approximation around \(\kappa_t = \kappa_{t-1}\).
Regression equation, captive-financed autos

\[
\Delta \ln Q_{it}^c = [1 + \pi^1 \gamma]^{-1} [\Delta \pi_{it}^0 - \pi^1 \Delta \alpha_t^c + \Delta \ln s_{it}]
\approx [1 + \pi^1 \gamma]^{-1} [\Delta \pi_{it}^0 - \pi^1 \Delta \alpha_t^c + [s_{it-1} - 1] \left[\frac{\Delta \kappa_t}{\kappa_{t-1}} \right]]
= \beta_0^c + \beta_2^c s_{it-1} + \varepsilon_i^c,
\]

where:

- \(\beta_0^c \equiv - [1 + \pi^1 \gamma]^{-1} \left[\pi^1 \Delta \alpha_t^c + \left[\frac{\Delta \kappa_t}{\kappa_{t-1}} \right] \right] < 0 \): national shock to captive finance cost of credit;
- \(\beta_2^c \equiv [1 + \pi^1 \gamma]^{-1} \left[\frac{\Delta \kappa_t}{\kappa_{t-1}} \right] > 0 \);
- \(\varepsilon_i^c \equiv [1 + \pi^1 \gamma]^{-1} \Delta \pi_{it}^0 \): county-specific demand shock;
- \(\Delta \ln s_{it} \approx [s_{it-1} - 1] \left[\frac{\Delta \kappa_t}{\kappa_{t-1}} \right] \): first order approximation around \(\kappa_t = \kappa_{t-1} \).
Quantitative Importance

- Total sales fall 23.5 log points from 2008 to 2009.
- Coefficient in total sales specification: 1 sd increase in captive dependence \Rightarrow 1.5-2.5% fewer total sales.
- Similar magnitude to effect of household balance sheets in 2008-09:

<table>
<thead>
<tr>
<th>Dep.var.: $\Delta \ln[\text{car purchases}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-09</td>
</tr>
<tr>
<td>Housing net worth shock</td>
</tr>
<tr>
<td>2006 debt to income</td>
</tr>
<tr>
<td>Estimator</td>
</tr>
<tr>
<td>Demographic controls</td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>Observations</td>
</tr>
</tbody>
</table>

Displayed right hand side variables normalized to have unit variance.

- Similar magnitude to effect of credit availability on employment in Chodorow-Reich (2014): 1 sd $\Rightarrow \approx$ 2% lower employment.