Generative Models
(This time without GANs)

June 3rd, 2021

Slides & Figures credits:
Assaf Shocher’s Slides, Introduction to Computer Vision 2020
Objective - Reminder

Goal: Find θ s.t. $\log \left(p_\theta (x^{(i)}) \right)$ is as high as possible
Latent Space Mapping Approach - Reminder
GANs - Reminder

\[
\mathcal{L}_{GAN} = \min_G \max_D \mathbb{E}_{x \sim p_{data}} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_z} \left[\log(1 - D(G(z))) \right]
\]
Pros & Cons - GANs

• Pros:
 • Very high quality results
 • Fast inference

• Cons:
 • Difficult training
 • Evaluation is problematic
 • Using auxiliary methods: FID, IS
 • Mode collapse
Today – Generating Without GANs

• Autoencoders
• Variational Autoencoders
• VQ-VAE + VA-VAE2
• IMLE
Autoencoders

AE does not transform one *pre-determined* distribution to another!
Variational Autoencoders (Kingma&Welling 14’)

Encourage $p(z) \sim \mathcal{N}(0,1)$ by KL divergence:

$$\sum_{i=1}^{n} \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$$
Also check out the scale!
Probabilistic Interpretation

Goal: make \(\log(p_{\theta}(x^{(i)})) \) as high as possible

Using Bayes rule:

\[
p_{\theta}(x) = \frac{p_{\theta}(x|z)p_{\theta}(z)}{p_{\theta}(z|x)} \sim \mathcal{N}(0, 1)
\]

Sample \(z \) from \(z \mid x \sim \mathcal{N}(\mu_z|x, \Sigma_z|x) \)

Sample \(x \mid z \sim \mathcal{N}(\mu_x|z, \Sigma_x|z) \)
Probabilistic Interpretation

\[\log p_\theta(x^{(i)}) = \text{Jacobian} \]

VAEs optimize a lower bound of the log likelihood

Slide credit: Stanford cs231n
Generate Data
Vector-Quantized (VQ) VAE (van den-Oord 2018)
Vector-Quantized (VQ) VAE

\[\mathcal{L}_{\text{rec}} = \| \hat{x} - x \|_2^2 \quad \mathcal{L}_{\text{commit}} = \| E(x) - \text{sgn}(Q(x)) \|_2^2 \quad \mathcal{L}_{\text{codebook}} = \| \text{sgn}(E(x)) - Q(x) \|_2^2 \]

Quantization is non-differentiable!
VQ-VAE Reconstructions

Real Reconstructed
Sampling New Instances

Training an autoregressive model to find $p(z)$

AutoRegressive Model (e.g. RNN)
Sampling New Instances

Once trained, use it to generate new decoder inputs

AutoRegressive Model (e.g. RNN)
Sampling New Instances - Results
VQ-VAE2
(Razavi & Van den-Oord 2019)

Codebook 1

Codebook 2

Global Structure

Fine details and textures
VQ-VAE2 – Sampling New Instances

Training two autoregressive models to find $p(z)$
VQ-VAE2 – Generation

Once both trained, use them to generate new decoder inputs
VQ-VAE2 – Results
VQ-VAE2 – Results
(\sim)VQ-VAE + Transformers: DALL-E

Ramesh et al., 2021

Teapot in the shape of a rubik’s cube

Soap-dispenser in the shape of a doughnut

Store front with ‘pytorch’
Implicit Maximum Likelihood Estimation (IMLE)
Li&Malik 2018

• GAN: All outputs should fool the discriminator
• Prone to mode collapse
Squares are data examples; circles are samples.

After training discriminator: highlighted regions are classified as real.

Generative Adversarial Nets

GANs only care about making each *sample* similar to some *data example*; it does not care about whether each *data example* is similar to some *sample*.

1809.09087, 2018
Implicit Maximum Likelihood Estimation (IMLE)
Li&Malik 2018

• GAN: All outputs should fool the discriminator
 • Close to some data point!
• IMLE: All data points should have close outputs

Avoiding mode collapse, easier training
IMLE - Method

Squares are data examples; circles are samples.

K. Li and J. Malik. Implicit Maximum Likelihood Estimation. arXiv:

1809.09087, 2018
Find the nearest sample to each data example.

1809.09087, 2018
Nearest samples are found.

IMLE - Method

Pull sample towards data example.

IMLE - Results
Summary

Alternatives to GANs (overcoming some of the problems):
• Autoencoders
• Variational Autoencoders
• VQ-VAE
• IMLE
Main principle:
In each scale, output patches belong to the distribution of input patches.
Diverse images generated from a single image

Source Image

Ours

SinGAN
QUESTIONS?