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Sparse and Low-Rank Decomposition

I Optimize over communication, computation and storage resources in mobile big data systems

P1 : minimize
X∈RK×K

L(X ) + λR(X )

subject to rank(X ) = r .

–L is a smooth convex loss function; R is a
non-smooth (possibly non-convex) sparsity inducing
function
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I We will focus on the family that the conventional convex relaxation approaches (e.g., nuclear-norm relaxation) are
inapplicable!

Example I: Topological Interference Alignment

I Topological interference alignment problem in partially connected K -user interference network [1]

P1 : minimize
X∈RK×K

rank(X )

subject to Xii = 1,∀i = 1, . . . ,K ,

Xij = 0,∀i 6= j , (i , j) ∈ V .
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–V is the index set of connected transceiver pairs
I The well-known nuclear norm relaxation approach fails: always return identity matrix.
I Key conclusion: DoF = 1/rank(X)

Example II: Network Topology Control

I Network topology control problem in the partially connected K -user interference network [2]

P2 : minimize
X∈RK×K

‖X‖0

subject to Xii = 1,∀i = 1, . . . ,K ,

rank(X ) = r .

–‖X‖0: # side information for network connectivity,
storage and computation load
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I The widely used mixed `1-norm and nuclear norm convex penalty relaxation approach is inapplicable!

Example III: User Admission Control

I User admission control problem in the communication, caching and distributed computing networks [3]

P3 : maximize
X∈RK×K

‖diag(X )‖0

subject to Xij = 0,∀i 6= j , (i , j) ∈ V ,
rank(X ) = r .
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I A simple `1-norm relaxation approach yields the objective unbounded and non-convex

Smoothed Regularized Sparsity Inducing Functions

I To find a good sparsity pattern, we propose a smoothed regularized version of the problems P1, P2 and P3 as a
smooth fixed-rank optimization problem P.
. For problem P1, we have L(X ) =

∑
i(Xii − 1)2 +

∑
(i ,j)∈V X

2
ij and λ = 0.

–Riemannian pursuit: alternatively perform fixed-rank optimization and rank updating
. For problem P2, we have L(X ) =

∑
i(Xii − 1)2, Rε(X ) = ‖X‖1,ε, and λ ≥ 0.

. For problem P3, we have L(X ) =
∑

(i ,j)∈V X
2
ij , Rε(X ) = ρ‖diag(X )‖2

2 − ‖diag(X )‖1,ε

–λ, ρ ≥ 0, ρ‖diag(X )‖2
2 serves the purpose of bounding the overall objective function

0

0.1

2

0.2

0.3

0.4

1 2

0.5

0.6

0.7

1
0

0.8

0.9

0

1

-1
-1

-2 -2

The non-convex regularized sparsity induc-
ing function: f (z) = ‖z‖1 − 0.5‖z‖2

2.

Algorithm: Matrix Manifold Optimization

I Solve fixed-rank problem P by Riemannian optimization
–Generalize Euclidean gradien (Hessian) to Riemannian gradient (Hessian)

Riemannian Gradient Euclidean Gradient 

Retraction Operator 

Experiment Results

I Performance of algorithms on problems P2 and P2
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(a) Network control (lower is better).
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(b) Computation time.

1 2 3 4 5 6 7 8
Rank

2

3

4

5

6

7

8

A
d
m

it
te

d
 U

s
e
rs

SManopt
BFGD

(c) User control (higher is better).
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(d) Computation time.
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