1. 5070/21/M/J/16 Q A2d

A2(d)(i)	1 mark each for any two of:	2
	High melting point	
	Does not conduct electricity as a solid	
	Soluble in water	
	Conducts electricity as a molten liquid	
A2(d)(ii)	Magnesium (atom) loses 2 electrons (1)	2
	Sulfur (atom) gains 2 electrons (1)	

2. 5070/22/M/J/16 Q A2d

A2(d)(i)	 1 mark each for any two of: High melting point/high boiling point Does not conduct electricity as a solid Soluble in water Conducts electricity as a molten liquid 	2
A2(d)(ii)	Magnesium (atom) loses 2 electrons (1)	2
	Fluorine (molecule) gains 2 electrons/each fluorine atom gains an electron (1)	

3. 5070/21/0/N/16 Q A5c

A5(c)(i)	potassium (atom(s)) loses electron(s) (1) chlorine (atom(s)) gains electron(s) (1) so there are 8 electrons in outer shells of both ions (1)	3
A5(c)(ii)	One mark each for any two of :	2
	 high melting point/high boiling point dissolves in water does not conduct electricity when solid/conducts electricity when molten 	

4. 5070/22/0/N/16 Q A4 c,d

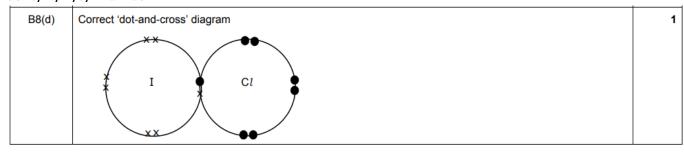
A4(c)	$\underline{atom(s)}$ with same \underline{number} of protons and different number of neutrons/ $\underline{atom(s)}$ of the same element with different \underline{number} of neutrons (1)	1
A4(d)	$I_2 + 2At^- \rightarrow At_2 + 2I^-(1)$	1

5. 5070/22/0/N/16 A5 d,

A5(d)	isotopes (1)	2	
	cobalt has greater proportion of heavier isotopes than nickel/nickel has lower proportion of lighter isotopes than nickel (1)		

6. 5070/22/0/N/16 A6 a,

A6(a)	electrons move (throughout the structure)/mobile electrons (1)	1


7.

A2(a)	sub-atomic particle	relative electric charge	relative mass	
	electron	-1	0 / 0.0005	
	neutron	0	1	
	proton	+1	1	
A2(b)(i)	One correct (0)			
A2(b)(ii)	Has more electrons that	n protons		
A2(b)(iii)	C and E (1)			
	Same number of proton	s but different number of neut	rons (1)	

8. 5070/21/M/J/17 Q A4a,d

A4(a)	Calcium ion is 2.8.8 (1)	2
	Chloride ion is 2.8.8 (1)	
A4(d)	lonic bonds / attraction between positive ions and negative ions (1)	2
	Idea of having many (strong) bonds – this mark is dependent on the correct bonding (1)	

9. 5070/21/M/J/17 Q B8d

10. 5070/21/M/J/17 Q B9c

B9(c)	Atoms do not need to gain or lose electrons / has a stable electronic arrangement	1	

11. 5070/22/M/J/17 Q A2

A2(a)				number of neutrons in	number of electrons in		6
		particle	atomic number	particle	particle		
		³⁵ C1	17	18	17 (1)		
		³⁷ C <i>l</i> (1)	17	20	17		
		³⁹ K ⁺	19	20 (1)	18		
		⁷⁹ Br ⁻	35 (1)	44	36		
		⁸¹ Br	35	46 (1)	35		
		⁸⁵ Rb ⁺ (1)	37	48	36		
A2(b)(i)			tons but different <u>numbe</u> ame element with differe		same atomic number but di	fferent	1
A2(b)(ii)	³⁵ Cl and ³⁷ Cl						1

12. 5070/22/M/J/17 Q A4a,c

A4(a)	Sodium ion: 2.8 (1) Oxide ion: 2.8 (1)	2
A(c)	lons move / mobile ions / ions free to move	1

13. 5070/21/0/N/17 A1b

A1(b)		number of electrons	number of neutrons
	³³ S	16 (1)	17 (1)
	²⁵ Mg ²⁺	10 (1)	13 (1)

14. 5070/21/0/N/17 A3a

A3(a)(i)	Any two of:	2
	reference to layers (1)	
	(layers) slide (1)	

15. 5070/21/0/N/17 Q B7a

B7(a)(i)	giant (molecular) structure / many covalent bonds (1)	2
	takes a lot of energy to break the bonds / needs a high temperature to break the bonds (1)	
B7(a)(ii)	Diamond has a giant covalent structure whereas tin has a metallic structure (1)	2
	because diamond or carbon has a much higher melting point OR diamond does not conduct electricity but tin does (1)	

16. 5070/22/0/N/17 A1b

A1(b)	⁴¹ K electrons 19 (1) neutrons 22 (1) electrons 10 (1) neutrons 9 (1)	4
-------	--	---

17. 5070/22/0/N/17 Q A2a,b,c

A2(a)	Arrangement: ordered / lattice / regular / layers / uniformly arranged / repeated pattern (1)	
	Type of force: electrostatic (1)	
A2(b)	Crystals: ions cannot move (1)	2
	Aqueous: ions can move (1)	
A2(c)	Magnesium ion 2,8 (1) Chloride ion 2,8,8 (1)	2

18. 5070/22/0/N/17 B7a,b

B7(a)(i)	Magnesium has strong bonding between positive ions / cations and electrons / magnesium is a giant structure (1)	2
	Sulfur is a simple molecule / weak forces between sulfur molecules (1)	
B7(a)(ii)	Magnesium has electrons which move (from place to place) (1)	2
	Sulfur does not have delocalised electrons / no mobile electrons / electrons don't move (1)	
B7(b)	Giant structure / many covalent bonds (1)	2
	Need high temperature / lot of energy to break the bonds (1)	

19. 5070/21/M/J/18 Q5c

5(c)(i)	correct 'dot-and-cross' diagram for silane (1)	1
	H Si Si Si H	
5(c)(ii)	has a simple (molecular or covalent) structure (1)	2
	weak intermolecular forces / van der Waals' forces between molecules / easy to overcome the forces between molecules / weak forces between molecules / easy to break attraction between molecules (1)	

20. 5070/22/M/J/18 Q 4b,c

4(b)					
	low melting point / low boiling point (1)				
	poor conductor of elec	tricity / poor cond	ductor of heat (1)		
	does not dissolve in wa	ater (1)			
4(c)	has a giant (ionic) structure	e (1)			
					1
	strong attraction between inforces between ions (1)	ons / difficult to b	reak attraction be	etween ions / lot of energy needed to overcome (strong) attractive	
4(d)		ons / difficult to b	reak attraction be	etween ions / lot of energy needed to overcome (strong) attractive	
4(d)	forces between ions (1)			etween ions / lot of energy needed to overcome (strong) attractive	
4(d)	forces between ions (1)	³⁰ P	³¹ P³⁻	etween ions / lot of energy needed to overcome (strong) attractive	
4(d)	forces between ions (1) particle number of electrons	³⁰ P 15	31 p 3- 15	etween ions / lot of energy needed to overcome (strong) attractive	

21. 5070/21/0/N/18 Q1

1(a)(i)	С	1
1(a)(ii)	D	1
1(a)(iii)	В	1
1(a)(iv)	A	1
1(a)(v)	D	1
1(b)(i)	20	1
1(b)(ii)	molecule containing two atoms	1

22. 5070/21/0/N/18 Q 5d(i)

		1	1
(d)(i)	2 pairs of bonding electrons in overlap area (1)	2	
	only 2 lone pairs on each oxygen atom (1)		
		d)(i) 2 pairs of bonding electrons in overlap area (1) only 2 lone pairs on each oxygen atom (1)	

23. 5070/22/0/N/18 Q1

	1	
1(a)(i)	E	1
1(a)(ii)	A	1
1(a)(iii)	С	1
1(a)(iv)	В	1
1(a)(v)	A	1
1(b)(i)	atoms with same number of protons but different number of neutrons / atoms with same atomic number but different mass number (1)	1
1(b)(ii)	44	1

24. 5070/22/0/N/18 Q5c

5(c)(i)	correct dot and cross diagram showing 3 pairs of bonding electrons and two non-bonding electrons (2)	2
	If two marks not scored, award one mark for one pair of bonding electrons in each of the three overlap areas	

25. 5070/21/M/J/19 Q1 AND Q2

1(a)	³⁹ ₂₀ Ca (1)	1
1(b)	35 CI (1)	1
1(c)	37 CI (1)	1
1(d)	²⁰ ₁₀ Ne (1)	1
1(e)	⁶⁴ Cu (1)	1

2(a)	all have 2 electrons in their outer shell (1)	1
2(b)	atomic radius is always increasing / the melting point goes up and down (1)	1
2(c)(i)	2.8 (1)	1
2(c)(ii)	negative electrode: $Mg^{2^+} + 2e^- \rightarrow Mg$ (1)	2
	positive electrode: $2Cl^- \rightarrow Cl_2 + 2e^-(1)$	

26. 5070/21/M/J/19 Q3

3(a)	high melting point / high boiling point / high density / (good) conductor of electricity / (good) conductor of heat / malleable / ductile / hard / strong / sonorous (1)	1
3(b)	coloured / variable oxidation state / catalyst (1)	1
3(c)	idea that there are atoms or ions of different size in steel (1)	2
	in steel the layers (of atoms, ions or particles) cannot move as easily (1)	

27. 5070/21/M/J/19 Q7e

7(e)	in solid ions cannot move (1)	2	
	in aqueous solution ions can move (1)		

28. 5070/21/M/J/19 Q8d

- 1				1
	8(d)	outer shell of phosphorus is correct (3 bond pairs with chlorine and 2 non-bonding electrons) (1)	2	
		rest of outer shells of all three chlorine atoms correct (1)		

29. 5070/21/M/J/19 Q9e

9(e)	sand is a giant molecule / giant covalent / macromolecule (1)	2
	has many strong bonds (that have to be broken or overcome) / needs lots of energy to break or overcome the many bonds / difficult to break the many bonds (1)	

30. 5070/22/M/J/19 Q1 Q2

1(a)	H ₂ S (1)	1
1(b)	MnO ₄ ⁻ (1)	1
1(c)	NH ₄ ⁺ (1)	1
2(a)(i)	0.155 – 0.190 (nm) (1)	1
2(a)(ii)	the melting point goes up and down (1)	1
2(b)	has many strong bonds (that have to be broken or overcome) / needs lots of energy to break or overcome many bonds (1)	1
2(c)(i)	aluminium oxide (dissolved) in (molten) cryolite (1)	1
2(c)(ii)	carbon / graphite (1)	1
2(c)(iii)	negative electrode: $Al^{3+} + 3e^- \rightarrow Al(1)$	2
	positive electrode: $2O^2 \rightarrow O_2 + 4e^-(1)$	
2(d)	At .	1
	because it loses electrons (1)	
2(e)	has a layer of oxide / aluminium oxide layer (1)	2
	layer is impermeable (to water) / coating is impermeable (to water) (1)	

31. 5070/22/M/J/19 Q3b

3(b)(i)	simple covalent molecule / simple covalent molecular (1)	1	
---------	--	---	--

32. 5070/22/M/J/19 Q7e

7(e)	in solid ions cannot move (1)	2
	in aqueous / solution ions can move (1)	

33. 5070/22/M/J/19 Q8d

1				
	8(d)	correct structure (1)	1	

34. 5070/22/M/J/19 Q9e

NO MARKSCHEME AVAILABLE

35. 5070/21/0/N/19 Q1

1(a)	P	1	
1(b)	Fe	1	
1(c)	Fe	1	
1(d)	Mg	1	
1(e)	С	1	

36. 5070/21/0/N/19 Q2

2(a)	Any two from	2	
	low melting point / low boiling point (1) low density (1) soft (1)		
2(b)	drawing of electronic structure of 2.8.1	1	ı

			_
2(d)	sodium (atom) loses electron(s) (1)	3	
	oxygen (atom or molecule) gains electron(s) (1)		
	two electrons gained by oxygen (atom) (1)		
2(e)(i)	high melting point / high boiling point / does not conduct electricity when solid / does conduct electricity when molten / does conduct electricity when in aqueous solution	1	

37. 5070/21/0/N/19 Q8

8(a)	electrons: 14 (1) neutrons: 16 (1) protons: 14 (1)	3
8(b)	$3Si + 2N_2 \rightarrow Si_3N_4$	1
8(c)(i)	Any two from:	2
	both have covalent bonds / covalent (lattice) (1)	
	both have giant structures (1)	
	tetrahedral arrangement of structure (1)	
8(c)(ii)	many strong bonds / strong bonding throughout the structure (1)	2
	needs a high temperature to break (all) the bonds / needs a lot of energy to break (all) the bonds (1)	
8(d)	SiO ₂ C ₄ H ₁₂	1
8(e)	pair of shared electrons between each of the 4 Cl atoms and central Si AND 6 non-bonding electrons around each chlorine	1

38. 5070/22/0/N/19 Q2

2(a)	Any two from:	2
	conducts electricity / conducts heat (1) malleable (1) ductile (1) shiny / lustrous (1)	
2(b)	electronic structure of 2.8.2	1
2(c)(i)	magnesium (atom) loses electron(s) (1)	3
	bromine (atom or molecule) gains electron (1)	
	two electrons transferred from magnesium (1)	
2(c)(ii)	high melting point / high boiling point (1)	1
	OR	
	does not conduct electricity when solid / conducts when molten / conducts in aqueous solution (1)	

39. 5070/22/0/N/19 Q8

8(a)(i)	electrons: 15 (1)	3	
	neutrons: 16 (1)		
	protons: 15 (1)		
8(a)(ii)	atoms with the same number of protons and different numbers of neutrons / atoms of the same element with different numbers of neutrons	1	
8(b)	$5KClO_3 + 6P \rightarrow 5KCl + 3P_2O_5$	1	

40. 5070/22/M/J/20 Q1

		1
1(a)	calcium chloride (1)	1
1(b)	ammonium chloride (1)	1
1(c)	silver chloride (1)	1
1(d)	hydrogen chloride (1)	1
1(e)	iron(III) chloride	1

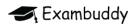
41. 5070/21/M/J/20 Q7

- 1				1
	7(e)	electrons cannot move / no mobile electrons	1	

42. 5070/22/M/J/20 Q6

- 1			
	6(d)	electrons cannot move / no mobile electrons (1)	1
	6(e)	H	2

43. 5070/22/M/J/20 Q7


ſ				ı
	7(d)	giant covalent (1)	1	ı

44. 5070/21/0/N/20 Q1

1(a)	silver nitrate	1
1(b)	silver nitrate	1
1(c)	magnesium carbonate	1
1(d)	lithium bromide	1
1(e)	methane	1

45. 5070/21/0/N/20 Q2

2(a)	carbon dioxide is a (simple) molecule and calcium carbide is ionic (1)	3
	for carbon dioxide: weak (attractive) forces between molecules / weak intermolecular forces(1)	
	for calcium carbide: strong (attractive) forces between ions (1)	

46. 5070/21/0/N/20 Q8

8(d)(i)	нн	1
	 :N:N:	
	н н	

47. 5070/21/0/N/20 Q9

9(b)	electrons:18 (1)	2
	neutrons: 24 (1)	

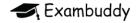
48. 5070/22/0/N/20 Q1

1(a)	ammonia	1
1(b)	copper(II) sulfate	1
1(c)	aluminium sulfate	1
1(d)	calcium carbonate	1
1(e)	potassium nitrate	1

49. 5070/22/0/N/20 Q2

2(a)	chlorine is a (simple) molecule and sodium chloride is ionic (1)	3
	for chlorine: weak (attractive) forces between molecules / weak intermolecular forces(1)	
	for sodium chloride: strong (attractive) forces between ions (1)	
2(b)	2,8,7	1

50. 5070/22/0/N/20 Q8


L				_
	8(c)	: Cl: S: Cl:	1	
- 1				ı

51. 5070/22/0/N/20 Q9

ľ	9(a)	electrons = 80 (1)	2
		neutrons = 125 (1)	

52. 5070/21/M/J/21 Q2

2(c) outer shell has 8 electrons 2(d)(i) 86 protons / 86 electrons / same electronic structure 2(d)(ii) radon-222 has two more neutrons / radon-220 has two fewer neutrons / radon-220 has 134 neutrons and radon-222 has 136 neutrons			
2(d)(ii) radon-222 has two more neutrons / radon-220 has two fewer neutrons / radon-220 has 134 neutrons and radon-222 has	2(c)	outer shell has 8 electrons	1
1 N /	2(d)(i)	86 protons / 86 electrons / same electronic structure	1
	2(d)(ii)		1

53. 5070/21/M/J/21 Q6

6(b) O X C X O

54. 5070/21/M/J/21 Q8

8(a)	five	1
8(b)	delocalised electrons	3
	closely packed positive ions (1)	
	delocalised electrons / sea of electrons (1)	
	strong electrostatic attraction between the (positive) ions and the electrons (1)	

55. 5070/22/M/J/21 Q2

2(c)(i)	same electronic structure / same electronic configuration	1	
2(c)(ii)	polonium-210 has one more neutron / polonium-209 has one less neutron / polonium-209 has 125 neutrons and polonium-210 has 126 neutrons	1	

56. 5070/22/M/J/21 Q4

4 (b)	zinc loses electrons and bromine gains electrons (1)	2	
	reference to (transfer of) two electrons (1)		

57. 5070/22/M/J/21 Q6

6(c)(ii)	× _N → N ●	1
	x ^{IV} X X	

58. 5070/22/M/J/21 Q8

٠,	,, 0, 22, 11	70721 00	
	8(a)(i)	six	1
	8(a)(ii)	four	1
	8(b)		3

59. 5070/21/0/N/21 Q5

5(d)	layers made of ions (1)	2	1
	layers slide (1)		

60. 5070/21/0/N/21 Q7

7(a)	Any two from:	2
	high melting point for Ag / high boiling point for Ag / ORA for K (1)	
	high density for Ag / ORA for K (1)	
	hard for Ag / soft for K (1)	
7(b)	protons: 47 (1)	3
	neutrons: 62 (1)	
	electrons: 46 (1)	

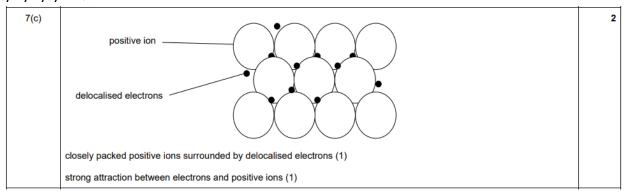
61. 5070/22/0/N/21 Q7

7(a)	Any two from:	2
	sodium conducts electricity / diamond does not conduct electricity (1)	
	sodium malleable / diamond brittle (1)	
	brittle (1)	
	sodium ductile / diamond not ductile (1)	
	sodium soft / diamond hard (1)	
7(b)	protons: 11 (1)	3
	neutrons: 12 (1)	
	electrons: 10 (1)	

62. 5070/22/0/N/21 Q10

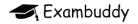
10(a)(i)	values between 6.00 and 9.50 (inclusive of these values)	1
10(a)(ii)	there is no trend (down the group)	1
10(b)(i)	R is an ionic structure / R has an ionic lattice / R is giant ionic (1)	4
	R bonds (throughout lattice) are strong (1) (dependent on the mention of ions / ionic for R)	
	S is a simple molecular structure / small molecule / simple molecule (1)	
	S weak forces between molecules (1)	

10(b)(ii)	ions can move / has mobile ions	1	
10(b)(iii)	3 pairs of bonding electrons between each H and P AND 2 non-bonding electrons on P	1	


63. 5070/21/M/J/22 Q2

2(a)	2, 8, 5	1
2(b)	boiling point has a trend / melting point does not have a trend	1
2(c)	melting point is below 1000 °C and boiling point is above 1000 °C / 1000 °C is between the melting point and the boiling point	1
2(d)(i)	correct dot-and-cross diagram	1
2(d)(ii)	weak intermolecular forces / intermolecular forces are easy to break or overcome	1

64. 5070/21/M/J/22 Q4


4(a)	18	1
4(b)	18	1
4(c)	⁴⁰ ₁₉ K	1
4(d)	loses one electron	1
4(e)(i)	lattice (structure) (1)	2
	strong attraction between positive and negative ions / strong electrostatic attraction between ions (1)	
4(e)(ii)	any two from:	2
	conducts electricity as a molten liquid (1) does not conduct electricity as a solid (1) dissolves in water (1)	

65. 5070/21/M/J/22 Q7

66. 5070/22/M/J/22 Q2

2(a)	2, 8, 6	1
2(b)	any value between 6.8 to 9.4 inclusive (g / cm³)	1
2(c)	liquid because melting point is below 200 °C and boiling point is above 200 °C / 200 °C is between the melting point and the boiling point	1
2(d)(i)	correct dot-and-cross diagram	1
2(d)(ii)	weak intermolecular forces / intermolecular forces are easy to break or overcome	1

For more topical question paper and revision notes visit $\it exambuddy.org$ 67. 5070/22/M/J/22~Q4

4(a)	79	1
4(b)	36	1
4(c)	⁴¹ Ca	1
4(d)	loses two electrons	1
4(e)(i)	in solid ions cannot move / in solid ions are in a lattice / in solid ions are fixed (1)	2
	in molten liquid ions can move (1)	
4(e)(ii)	high melting point/high boiling point (1)	2
	dissolves in water (1)	

68. 5070/22/M/J/22 Q8

8(b)(i)	delocalised electrons diagram showing closely packed positive ions surrounded by delocalised electrons (1)	2
	strong attraction between electrons and positive ions (1)	
8(b)(ii)	electrons can move / has mobile electrons	1

69. 5070/21/0/N/22 Q2

2(a)(i)	2 bonding pairs between the C atom and each O atom (1)	2
	4 non-bonded electrons on each O atom (1)	

70. 5070/21/0/N/22 Q5

5(e)(i)	the ions can move	1

71. 5070/21/0/N/22 Q8

8(a)	in pure metal the layers of atoms/ions can slide (1)	3
	in alloys there are different sized atoms/ions (1)	
	which stop the layers from sliding (1)	
8(b)	mercury < chromium < uranium < potassium	1
8(c)	number of electrons: 78 (1)	2
	number of neutrons: 119 (1)	

72. 5070/22/0/N/22 Q2

2(a)(i)	one bonding pair between two chlorine atoms (1)	2
	6 non-bonded electrons on each chlorine atom (1)	

73. 5070/22/0/N/22 Q5

5(c)(ii)	giant (ionic) structure / (ionic) lattice(1)	2	
	strong (forces of) attraction between (positive and negative) ions (1)		

74. 5070/22/0/N/22 Q8

8(a)	positive ion delocalised electrons	3
	closely packed positive ions (1)	
	(particles) surrounded by delocalised electrons (1)	
	strong attraction between electrons and positive ions (1)	
8(b)	nickel < zinc < cerium < rubidium	1
8(c)	number of electrons: 55 (1)	2
	number of neutrons: 82 (1)	