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An Investigation of Factored Regression Missing Data Methods for Multilevel
Models with Cross-Level Interactions

Brian T. Kellera and Craig K. Endersb

aThe University of Texas at Austin; bThe University of California, Los Angeles

ABSTRACT
A growing body of literature has focused on missing data methods that factorize the joint
distribution into a part representing the analysis model of interest and a part representing
the distributions of the incomplete predictors. Relatively little is known about the utility of
this method for multilevel models with interactive effects. This study presents a series of
Monte Carlo computer simulations that investigates Bayesian and multiple imputation strat-
egies based on factored regressions. When the model’s distributional assumptions are satis-
fied, these methods generally produce nearly unbiased estimates and good coverage, with
few exceptions. Severe misspecifications that arise from substantially non-normal distribu-
tions can introduce biased estimates and poor coverage. Follow-up simulations suggest that
a Yeo–Johnson transformation can mitigate these biases. A real data example illustrates the
methodology, and the paper suggests several avenues for future research.
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Missing data; multiple
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Over the last few decades, a large body of research
has accumulated supporting the use of multiple
imputation as an appropriate method to handle miss-
ing data. Despite being introduced over thirty years
ago, methodologists have only investigated and fine-
tuned multiple imputation’s ability to handle interac-
tions and other nonlinear terms in the last decade. An
early recommendation was to treat incomplete prod-
uct terms as if they were “just another variable” to be
imputed using standard methods for normally distrib-
uted data (Allison, 2002; von Hippel, 2009). However,
subsequent studies have shown that this approach
requires the same missing completely at random
assumption as older deletion methods, and it will
introduce bias under the less restrictive missing at
random assumption required by modern missing data
estimators (Bartlett et al., 2015; Enders et al., 2014;
L€udtke et al., 2020b; Seaman et al., 2012; Zhang &
Wang, 2017).

More recently, advances have been made in gener-
ating imputations for nonlinear effects by factorizing
the joint distribution into a part representing the ana-
lysis model of interest and a part representing the dis-
tributions of the incomplete predictors. Various
names have referred to this approach in the literature
(e.g., substantive-compatible imputation, sequential
specification, model-based imputation), but we will

refer to it simply as factored regression imputation.
While the idea of using factored regression models
dates back to early literature (Ibrahim, 1990; Ibrahim
et al., 2002; Lipsitz & Ibrahim, 1996), it wasn’t until
more recently that this method was applied to incom-
plete interactive effects (Bartlett et al., 2015; Du et al.,
2022; Enders et al., 2020; Erler et al., 2016; Goldstein
et al., 2014; L€udtke et al., 2020b; Zhang & Wang,
2017) and subsequently became accessible to research-
ers via software packages (Bartlett et al., 2021; Keller
& Enders, 2021; Quartagno & Carpenter, 2020;
Robitzsch & L€udke, 2021). Virtually across the board,
the literature shows that factored regression methods
produce approximately unbiased estimates while
requiring less strict assumptions than the earlier "just
another variable" approach. This study attempts to
extend our knowledge about these important models.

Relative to other topics in the missing data litera-
ture, much less is known about the behavior of the
factored regression approach to fitting multilevel
models with interactive effects. In the biostatistics lit-
erature, Erler et al. (2016) investigated cross-level
interactions with a small simulation that didn’t vary
important features like sample size and intraclass cor-
relation. Several studies considered factored-regression
specification for random coefficient models (Enders
et al., 2020; Enders et al., 2018; Erler et al., 2019;
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Grund et al., 2018), and the most comprehensive
study of interactive effects to date is a recent paper by
Grund et al. (2021). These authors investigated multi-
level multiple imputation strategies for moderated
regression models where the interacting predictors
were linearly or non-linearly related to one another.
Following the main findings from the single-level
regression literature (e.g., Bartlett et al., 2015; L€udtke
et al., 2020b; Zhang & Wang, 2017), their simulation
studies showed that, when correctly specified, multiple
imputation models based on factored regressions hold
great promise for multilevel models with incomplete
interactive effects.

Despite a growing body of literature supporting
their use, our current knowledge about factored
regression models is deficient on multiple fronts.
Existing studies have primarily focused on ideal con-
ditions where the multilevel model’s distributional
assumptions are strictly satisfied. For example, no
research to date has considered the impact of skewed
and kurtotic data on factored regression’s multilevel
parameter recovery. Two studies have investigated this
issue in the context of single-level moderated regres-
sion models (L€udtke et al., 2020a, 2020b), but distri-
butional violations are considerably more complex
with multilevel models, which could have non-nor-
mally distributed residuals in either the within- or
between-cluster part of the model. Our study is the
first to investigate this issue, and we use simulations
to examine the possibility of modeling skewed predic-
tors with a Yeo–Johnson transformation (Yeo &
Johnson, 2000), a potential solution for non-normal
data proposed in the single-level imputation literature
(L€udtke et al., 2020b).

A second major limitation of the existing litera-
ture is that it focuses almost entirely on multilevel
multiple imputation, almost at the exclusion of
Bayesian inference. In the complete-data literature
there has been a growing interest in Bayesian multi-
level models, especially with applications involving
smaller sample size conditions (Asparouhov &
Muth�en, 2021a; Liu et al., 2016; McNeish, 2016a,
2016b; McNeish & Stapleton, 2016). From a practical
perspective, Bayesian inference is convenient because
the researcher simply fits a multilevel model to the
observed data and summarizes the resulting posterior
distributions without having to perform the extra
steps of reanalyzing the data and pooling estimates
and standard errors. However, Bayesian estimation
with incomplete data is quite different from its com-
plete-data counterpart because incomplete predictor
variables require additional regression models with

their own distributional assumptions and requisite
priors. As such, evaluating Bayesian inference and
comparing it to the newer "gold standard" multiple
imputation models is a major thrust and contribution
of this paper. An important issue here is the choice
of prior distribution for the level-2 covariance matrix,
which can substantially impact estimates and infer-
ence. We investigate several off-the-shelf Wishart prior
distributions, and we describe a new separation strat-
egy that introduces distinct prior distributions on
each level-2 variance component and the random
effect correlations. The parameterization we outline
here is similar to other separation strategies proposed
in the literature (Barnard et al., 2000; Merkle &
Rosseel, 2018), and a comparable method has shown
promise in simulation studies with single-level latent
curve models (Liu et al., 2016). A major contribution
of this paper is to describe and evaluate this new sep-
aration prior for multilevel analyses.

The structure of this paper is as follows. We begin
by discussing factored regression specifications and
their application to a cross-level interaction with ran-
dom slopes. Next, we provide a conceptual overview
of constructing the Markov chain Monte Carlo
(MCMC) sampler for drawing parameters and gener-
ating imputations. Next, we describe five different
Monte Carlo simulations that investigate factored
regression specifications. Finally, we include a sub-
stantive example applying this method to real data.

Conventional imputation schemes

Historically, multiple imputation was developed to gen-
erate complete data sets for large-scale survey data
(Rubin, 1987; Rubin, 2004). In part due to computa-
tional restrictions of its era, the goal was often to pro-
vide data sets that could then be used for a wide range
of secondary analyses across multiple research teams.
We will refer to this traditional approach to multiple
imputation as agnostic imputation, as the imputations
need to be flexible enough to support a range of
different analyses, but they are not generated to be
mathematically consistent with one particular ana-
lysis model.

Generally, the agnostic imputation approach gener-
ates samples from the posterior predictive density of
the unobserved variables conditional on the observed
variables. Symbolically, this idea is

f V Mð ÞjV Oð Þ
� �

(1)

where f �ð Þ represents a generic density (e.g., a normal
curve), V Mð Þ represents the set of variables with

2 B. T. KELLER AND C. K. ENDERS



incomplete observations for a particular individual,
V Oð Þ represents the set of fully observed variables, and
V is the set of all variables. Note that this representa-
tion makes no distinction between analysis variables,
predictor variables, and auxiliary variables. For
example, if an outcome measure is incomplete, it
would be part of the set; conversely, if the outcome is
complete, it would be in the set.

As a heuristic, one can think of Equation 1 as
analogous to a regression problem involving the pre-
diction of the missing variables given the fully
observed variables, with imputations sampled from a
distribution based upon the regression model parame-
ters. Importantly, the imputation regression model
need not be the same as the analysis model, and it
usually isn’t under an agnostic scheme; this is an
important point of contrast with factored regression
specifications, which tailor missing data handling
around a particular analysis. Joint model imputation
(Asparouhov & Muth�en, 2010b; Carpenter et al., 2011;
Goldstein et al., 2009; Schafer, 2001; Schafer & Yucel,
2002; Yucel, 2008, 2011) and fully conditional specifi-
cation (Enders et al., 2018; van Buuren, 2011) are the
two major frameworks for implementing Equation 1
with multilevel data. The former uses a mean vector
and covariance matrix as the basis for imputation,
whereas the latter uses round robin regression equa-
tions where each incomplete variable is regressed on
all other variables. Enders et al. (2016) provide an
overview of these methods.

Factored regression specifications for two-
level models

As mentioned previously, the factored regression spe-
cification factorizes a joint distribution into a part
representing the analysis model of interest and a part
representing the distributions of the incomplete pre-
dictors. To illustrate, consider an analysis involving an
outcome variable Y and two predictors, X and Z. The
trivariate joint distribution factors into the product of
multiple distributions, each corresponding to a regres-
sion model. There are two predominant factorizations
suggested in the literature. The first factorizes the
joint distribution into the product of a univariate dis-
tribution for the analysis model and a joint distribu-
tion for the predictors (Enders et al., 2020; Keller &
Enders, 2021). Applied to the trivariate example, the
factorization is

f Y ,X,Zð Þ ¼ f YjX,Zð Þ � f X,Zð Þ (2)

where the leftmost term is the multivariate distribu-
tion of all three variables, the first term to the right of

the equals sign is a density that corresponds to the
analysis model, and the rightmost term is the joint
distribution of the predictors (e.g., a bivariate normal
distribution). Continuing to factorize the predictor
distribution leads to the so-called sequential specifica-
tion that instead uses a set of univariate distributions
to represent the distributions of the incomplete pre-
dictors (Erler et al., 2019; Erler et al., 2016; L€udtke
et al., 2020b).

f Y ,X,Zð Þ ¼ f YjX,Zð Þ � f XjZð Þ � f Zð Þ (3)

The two specifications are equivalent in some situa-
tions but different in others.

To illustrate factorized specifications more con-
cretely, we focus on their application to a two-level
hierarchical linear model with a cross-level interaction
(i.e., the product of a level-1 and level-2 predictor).
The analysis model is given as follows

yij ¼ b0 þ u0j
� �þ b1 þ u1j

� �
xij þ b2zj þ b3xijzj þ eij ¼ ŷij þ eij

u0j
u1j

� �
� N2

0
0

� �
,Ru ¼ r2u0 ru0u1

ru0u1 r2u1

" # !

eij � N 0,r2e
� �

(4)

where yij is the dependent variable with observation i
nested in cluster j, xij is the level-1 predictor value for
that observation, and zj is the level-2 moderator score
for cluster j. The u0j and u1j terms are level-2 random
effects that are multivariate normal with means of
zero and an unstructured covariance matrix, Ru: For
our discussion, we assume that the observed data sat-
isfy the missing at random mechanism and the
parameters associated with the cause of missingness
are distinct from the analysis model parameters (i.e.,
ignorability; Rubin, 1976). However, this assumption
is unnecessary as the factorization scheme readily
extends to nonignorable mechanisms (Du
et al., 2022).

As discussed previously, the conditional density
f YjX,Zð Þ in Equations 2 and 3 corresponds to the
focal analysis model and the corresponding distribu-
tional assumptions for the outcome (i.e., Y is condi-
tionally normal given the predictors and random
effects). More concretely, the density is given by the
conditional normal distribution implied by the cross-
level analysis model from Equation 4

f YjX,Zð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2e

p exp � 1
2

yij � ŷij
r2e

 !2
2
4

3
5 ¼ N1 ŷij, r

2
e

� �
(5)

where ŷij is the predicted value from Equation 4, and
N1 denotes a normal distribution function with a
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conditional mean and variance as its arguments. The
outcome variable’s distribution is common to
Equations 2 and 3, but the two factorizations apply
different models to the predictors.

Joint model specification for predictors

Returning to Equation 2, the f X,Zð Þ term corresponds
to a within- and between-level multivariate normal
distribution for the predictors (Enders et al., 2020;
Keller & Du, 2019). The within-cluster model for X
describes the distribution of the level-1 scores around
their level-2 latent group means, and the between-
cluster model for X and Z is a bivariate normal
distribution for the means and level-2 scores. These
densities are

xij � N1 lXj, r
2
wX

� �
lXj
zj

� �
� N2 l ¼ lX

lZ

� �
,Rb ¼ r2bX rbXZ

rbZX r2bZ

� �	 
 (6)

where lXj is the latent group mean of X for cluster j,
r2wX is the within-cluster variance, l is a vector of
grand means, and Rb is an unstructured between-clus-
ter covariance matrix that defines the relationship
between the latent cluster means and the level-2 pre-
dictor. Importantly, the expressions in Equation 6 are
not posterior predictive distributions that generates
imputations, as those distributions also rely on the
model-implied distribution of Y.

The joint model parameterization for predictor var-
iables has several advantages, chief among them is
computational efficiency because the multivariate dis-
tribution can be recast as a fully conditional specifica-
tion problem where each predictor is regressed on all
others (Bartlett et al., 2015; Enders et al., 2020; Keller
& Enders, 2021). Second, in the context of Bayesian
estimation and posterior inference, the joint model
specification facilitates both grand mean centering and
latent group mean centering—a vital step in most
multilevel analyses—because the Markov chain Monte
Carlo (MCMC) algorithm yields estimates of these
quantities at every iteration (Enders & Keller, 2019).
Finally, this model readily accommodates binary,
ordinal, and nominal predictors using a latent
response variable (probit regression) formulation. The
primary downside of this specification is that it does
not allow nonlinear relations among predictors or
non-normal continuous distributions.

Sequential specification for predictors

Alternatively, we can also model the density f X,Zð Þ
by using the chain rule to factor the joint distribution
as a sequence of univariate conditional models, as in
Equation 3. Applied to the cross-level interaction
model, the conditional distributions are both normal,
as follows.

f XjZð Þ ¼ N1 c0 þ c1zj þ g0j, r2wX
� �

f Zð Þ ¼ N1 lZ , r
2
bZ

� � (7)

Considering the conditional distribution of the level-1
predictor, c0 þ c1zj þ g0j is the predicted value from a
random intercept regression model X regressed on Z,
and r2wX is the within-cluster residual variance. The
f Zð Þ term translates into an intercept only regression
model with a mean and between-cluster variance, lZ
and r2bZ, respectively. It is important to reiterate that
these expressions are not the posterior predictive dis-
tributions that generate imputations, as those distribu-
tions also condition on the model-implied distribution
of Y.

The main advantages of the sequential approach is
that it can offer more flexibility in modeling the asso-
ciation between X and Z (Grund et al., 2021b; L€udtke
et al., 2020b). For example, a researcher might posit
that a nonlinear relationship between X and Z exists
and would like to model this explicitly. By using the
sequential approach, we could easily model said nonli-
nearity by adding a polynomial term to the random
intercept model that defines the f XjZð Þ density
(L€udtke et al., 2020b). Additionally, the sequential
specification allows non-normal continuous variables
to be modeled using a Yeo–Johnson transformation
(Yeo & Johnson, 2000), which is an extension of the
popular Box–Cox transformation. In context of
Bayesian estimation and posterior inference, the
sequential specification may be more limiting because
the group and grand means needed for centering are
not always explicit model parameters (a feature that is
not necessary for conducting multiple imputation).

Categorical predictors

Either factored regression specification allow for cat-
egorical predictor variables. We describe the proced-
ure for a binary covariate using the latent response
formulation (Agresti, 2012; Albert & Chib, 1993;
Johnson & Albert, 1999), and this framework also
accommodates ordinal and multicategorical nominal
predictors (Enders et al., 2018; Goldstein et al., 2009).
The binary probit model imagines discrete responses
as originating from an underlying normally

4 B. T. KELLER AND C. K. ENDERS



distributed latent variable with a single fixed thresh-
old, s ¼ 0, dividing the latent variable distribution
into the discrete observations; participants with latent
scores below the threshold have a discrete value of 0,
and cases with latent responses above the threshold
have values of 1. To illustrate how the probit model
applies to the joint and sequential models, imagine
that Z is now a level-2 dummy code with scores of 0
and 1. We denote the underlying latent response vari-
able as Z�. The link between Z and Z� is as follows.

zj ¼ 1 if z�j > 0
0 otherwise

�
(8)

Using a probit model with normally distributed
latent scores yields models that maintain the same
general structure as those for continuous predictors.
For example, when Z is binary, the between-cluster
model from Equation 6 is

lXj
z�j

" #
� N2 l ¼ lX

lZ

� �
,Rb ¼ r2bX rbXZ

rbZX 1

� �	 


(9)

where lXj and z�j are both level-2 latent variables, and
r2bZ ¼ 1 in the lower diagonal of Rb indicates that the
variance is fixed for identification, and the fixed
threshold identifies the mean structure. Similarly, the
sequential specification’s between-cluster model from
Equation 7 is an empty regression model for Z� with
the variance again fixed at 1 for identification, and the
within-cluster model is unchanged.

f Zð Þ ¼ N1 lZ� , 1ð Þ (10)

In both parameterizations, the Z dummy code appears
on the right side of the focal regression and thus the
conditional mean of the normal distribution in
Equation 5. Finally, the sequential specification also
accommodates logistic covariate models using the
P�olya-Gamma specification described by Polson et al.
(2013) and Asparouhov and Muth�en (2021b), but we
focus on the latent response formulation because of
its computational efficiency.

Distributions of missing values

In a factored regression specification, the distributions
of missing values are a function of every model in
which an incomplete variable appears. To replace
missing outcome scores, MCMC samples imputations
from the normal distribution in Equation 5, condi-
tional on the current parameter values and random
effects. In the sequential specification in Equation 3,
the level-1 predictor X appears in the conditional

mean of Y’s normal distribution from Equation 5, and
it functions as an outcome in its regression model
and density in Equation 7. Symbolically, the condi-
tional distribution of X given all other analysis varia-
bles is the product of two normal distributions.

f XjY , Zð Þ / f YjX,Zð Þ � f XjZð Þ
¼ N1 ŷij, r

2
e

� �
� N1 c0 þ c1zj þ g0j, r

2
wX

� �
(11)

The resulting function is also normal distribution, the
mean and variance of which depend on both the ana-
lysis and predictor model parameters (Enders et al.,
2020, Eq. 20). Importantly, the presence of a product
term in the imputation model introduces a heterosce-
dastic variance parameter, such that the normal distri-
bution’s spread depends on the product term, cluster
j‘s random slope residual and its value on the moder-
ator variable (Enders et al., 2020, Eq. 8).

Turning to the level-2 predictor Z, this variable
appears in the conditional mean of the Y and X den-
sities, and it is the outcome in the empty level-2
model on bottom line of Equation 7. Symbolically, the
conditional distribution of Z given all other
analysis variables is the product of three normal dis-
tributions

f Ruð Þ / Ruj j� df0þVþ1ð Þ=2exp � 1
2
tr S0Ru

�1
� �	 


¼ N1ðlZ, r2bZÞ �
Qnj

i¼1 N1ðŷij,r2eÞ � N1ðc0 þ c1zj þ g0j, r2wXÞ
(12)

where the densities for the Y and X models are a
product over all observations within a cluster, which
are assumed independent after conditioning on the
random effects.

Finally, when Z is a binary predictor, the latent
responses are missing data that require imputation.
For cases with observed Z responses, MCMC samples
Z� values from a truncated normal distribution; when
Z¼ 0, the algorithm samples negative imputations for
Z� (i.e., latent scores fall below the fixed threshold),
and it otherwise samples positive imputations if Z¼ 1.
For cases where Z is missing, the Z� are drawn from
an unconstrained normal distribution. Like its con-
tinuous counterpart, the posterior predictive distribu-
tion of missing Z� values is proportional to the triple
product in Equation 10, where r2bZ is fixed at 1 to
identify the latent response variable’s metric. The pro-
cedure naturally produces a discrete impute by com-
paring each Z� to the fixed threshold.

MULTIVARIATE BEHAVIORAL RESEARCH 5



Prior distributions for the level-2
covariance matrix

As noted previously, the choice of prior specification
for the level-2 covariance matrix can impact one’s
results. The inverse Wishart distribution is a popular
choice of conjugate prior, the form of which is

f Ruð Þ / Ruj j� df0þVþ1ð Þ=2 exp � 1
2
tr S0Ru

�1
� �	 


(13)

where the hyperparameters S0 and df0 are a sum of
squares and cross-products matrix and degrees of
freedom, respectively. Roughly speaking, the hyper-
parameters encode a prior guess about the random
effect covariance matrix, and the degrees of freedom
parameter is essentially the number of imaginary
level-2 units assigned to that matrix. Assigning S0 ¼ 0
and df0 ¼ V� 1 gives the multivariate sibling of the
Jeffreys prior (Gelman et al., 2014), and other com-
mon choices include S0 ¼ I and df0 ¼ V, S0 ¼ I and
df0 ¼ Vþ 1, and an improper prior with df0 ¼
�V� 1 (Asparouhov & Muth�en, 2010a; Lunn et al.,
2013). The hyperparameters can also be estimated
from the data (Casella, 2001; Darnieder, 2011;
McNeish, 2016b); however, data driven priors typically
do not account for incomplete data. A limitation of
the inverse Wishart prior is that it can’t disentangle
variances and covariances (Gelman, 2006; Grimm
et al., 2016; Muth�en & Asparouhov, 2012), and this
one-size-fits-all characteristic of the prior can intro-
duce bias in small samples (McNeish, 2016a, 2016b).

A major thrust of this paper is to describe and
evaluate a separation-type strategy that treats each
element of the level-2 covariance matrix as a distinct

parameter with its own prior. Extending ideas from
Merkle and Rosseel (2018) to the multilevel context,
we define the u0j and u1j from Equation 4 as level-2
latent variables, and we use a phantom latent variable
to induce their correlation. To illustrate the main
ideas, Figure 1 shows a pair of path diagrams. The
inferential model in panel (A) corresponds to the focal
analysis from Equation 4, and the working model in
panel (B) reflects a specification that decouples the
random effect correlation from the variance compo-
nents. In panel (B), the level-2 phantom variable, D,
can be viewed as a proxy for the correlation, and the
additional augmented parameters in the working
model—k1, k2, r2�u0 , and r2�u1—are deterministic func-
tions that preserve the random effect correlation.

Essentially, the procedure works as follows. First,
MCMC samples random effects that condition the
working model parameters, including the phantom
variable correlation. In turn, the inferential model’s
regression coefficients, level-1 residual variance, and
level-2 variances all condition on these random
effects. Importantly, MCMC treats each level-2 vari-
ance component as a distinct parameter with its own
prior, and conditioning on correlated random effects
produces variance estimates that reflect the working
model’s phantom variable-induced correlation. Finally,
the level-2 variances enter the working model via the
augmented parameters, and MCMC updates the
residual correlation and phantom variable scores.
Following Merkle and Rosseel (2018), we use a posi-
tively skewed inverse gamma prior with shape and
scale parameters a¼ 1 and b¼ 0.5 (or equivalently,
hyperparameters dfp ¼ 2 and Sp ¼ 1), and we use a
beta prior distribution for the correlation with both

Figure 1. Path diagram of a multilevel model with a separation prior specification.
Note: Panel A is the path diagram of the inferential model corresponding to Equation 4. Panel B is the path diagram of the work-
ing model with a level-2 latent phantom variable (D). Parameters k1, k2, r2�u0 , and r2�u1 are deterministically computed based on
the equations given in the online supplemental material. Conjoining paths represent the deterministic multiplication of
the variables.
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shape parameters set to 1 (i.e., a flat prior over most
of the correlation’s �1 to þ1 range). Interested read-
ers can find a more technical summary of the MCMC
estimation steps and conditional distributions in
Section A of the online supplemental material.

Non-normal continuous predictors

In addition to incomplete categorical predictors,
researchers often are faced with non-normally distrib-
uted continuous incomplete predictors. The multilevel
complete data literature suggests that fixed and ran-
dom effect parameters tend to be robust to violations
of the distributional assumptions (Grilli &
Rampichini, 2015; Jacqmin-Gadda et al., 2007; Maas
& Hox, 2004a, 2004b; McCulloch & Neuhaus, 2011;
Schielzeth et al., 2020; Verbeke & Lesaffre, 1996).
However, these studies have focused on misspecifica-
tion in the outcome model’s distributional assump-
tions, not the predictor models, where parameter
estimates are not of inferential interest. Instead, these
predictor models aim to provide predictions when
simulation imputations from the posterior predictive
distribution. In the context of complete data out-
comes, Schielzeth et al. (2020) found that violations of
the random effect distribution resulted in poor esti-
mates of specific random effects (i.e., the cluster
residual), which are required for multilevel imput-
ation. Thus, despite multilevel model’s robustness to
distributional violations for parameter inferences, it
may be important to attempt to handle the non-nor-
mality in predictor’s distributions.

The literature suggests several solutions to account-
ing for non-normally distributed variables, including
copula-based (Gomes et al., 2019; Hollenbach et al.,
2021; K€a€arik, 2006; K€a€arik & K€a€arik, 2009; Robbins
et al., 2013) and transformation-based approaches
(Goldstein et al., 2009; L€udtke et al., 2020b). Thus far,
copula-based approaches have focused on agnostic
imputation schemes because they generally focus on
modeling and imputing the unobserved variables con-
ditional on the observed variables. In the context of
multilevel data, Goldstein et al. (2009) discussed (but
not studied in detail) the imputation of continuous
non-normal responses using the Box–Cox transform-
ation (Box & Cox, 1964) and argued that their
approach is a multilevel extension of a Gaussian cop-
ula approach (p. 194, Section 5.3). A significant limi-
tation of the Box-Cox transformation is that values
must be positive. Because of this limitation, Yeo and
Johnson (2000) proposed a transformation with simi-
lar properties to a Box–Cox transformation for

positive values and accommodates negative values.
The Yeo–Johnson transformation has shown promise
when paired with single-level factored regression spec-
ifications (L€udtke et al., 2020b). We focus on the
Yeo–Johnson transformation because it is available in
software programs (e.g., Blimp and the R package
mdmb; Keller & Enders, 2021; Robitzsch & L€udke,
2021) and readily extends to multilevel models.

The Yeo–Johnson procedure models a predictor, X,
using a normalized proxy, X�, with a mean and vari-
ance, lX� and r2X� , respectively. The procedure uses
the Yeo–Johnson transformation to link the proxy to
the observed variable:

hkðXÞ ¼
X þ 1ð Þk � 1

� �
=k ifX � 0 and k 6¼ 0

ln ðX þ 1Þ ifX � 0 and k ¼ 0

� �X þ 1ð Þ2�k � 1
� �

=ð2� kÞ ifX < 0 and k 6¼ 2
� ln �X þ 1ð Þ ifX < 0 and k ¼ 2

8>>>><
>>>>:

(14)

where k is a shape parameter and hk Xð Þ ¼ X�:
Importantly, the above power transformations sub-
sume several common functions, including inverse,
logarithmic, square root, identity function (i.e.,
hk¼1 Xð Þ ¼ X:), and Box-Cox transformations, the lat-
ter of which was discussed but not studied in detail
by Goldstein et al. (2009).

The additional k parameters must also be sampled,
and details of this procedure are supplied in the
Technical Appendix provided as part of the online
supplemental material (Section A). Finally, imputa-
tions for missing observations are sampled from their
appropriate factored conditional distributions (see
equations 11 and 12) with the substitution of the
models in Equation 14.

Returning to the sequential specification for pre-
dictor variables, the untransformed covariates appear
in the focal regression from Equation 4, and the
f XjZð Þ and f Zð Þ terms in Equation 7 change to reflect
the conditional distributions of the normalized scores.

f X�jZð Þ ¼ N1 c0 þ c1zj þ g0j, r2wX�
� �

f Z�ð Þ ¼ N1 lZ� , r2bZ�
� � (15)

The additional k parameters must also be sampled,
and details of this procedure are supplied in the
Technical Appendix provided as part of the online
supplemental material (Section A). Finally, imputa-
tions for missing observations are sampled from their
appropriate factored conditional distributions (see
equations 11 and 12) with the substitution of the
models in Equation 15.
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MCMC estimation

This section briefly summarizes the MCMC estima-
tion steps for the factored regression. While MCMC
methods provide several ways of sampling imputations
and parameters, we use a Gibbs sampler to break the
complex multivariate distribution of the unknowns
into separate conditional parts. For some quantities
with nonstandard or intractable distributions, we use
a Metropolis-Hastings step within the Gibbs sampler
(Gelman et al., 2014; Hastings, 1970; Lynch, 2007).
The following steps provide a conceptual recipe for
the sampling procedure, and the online supplement
(Section A) includes a detailed technical appendix that
gives a complete summary of the estimation steps,
including the full conditional distributions for
each parameter.

1. Sample the focal regression model’s slope coeffi-
cients, conditional on the current data, random
effects, and level-1 residual variance.

2. Sample the level-2 random effects, conditional on
the current data and model parameters. With an
inverse Wishart prior for the level-2 covariance
matrix, sampling follows standard multivariate
normal expressions from the literature (Browne,
1998; Draper, 2008). With a separation-type prior,
the random effect imputations condition on the
inferential (focal) and working models in
Figure 1.

3. Sample the level-1 residual variance, conditional
on the current data, coefficients, and ran-
dom effects.

4. Sample the level-2 covariance matrix, conditional
on the current random effects. With an inverse
Wishart prior for the level-2 covariance matrix,
Ru is sampled in a single step. With a separation-
type prior specification, the level-2 variance com-
ponents and the random effect correlation are
sampled in separate steps, as described previously.

5. For each incomplete predictor, sample the slope
coefficients, random effects (if measured at level-
1), between-cluster variance (if measured at level-
1), and residual variance. These sampling steps
rely on the same conditional distributions used to
estimate the focal regression model. When apply-
ing the Yeo–Johnson procedure, the predictor’s
model also includes a shape parameter.

6. For each incomplete variable, sample imputations
from the posterior predictive distribution. The
distribution’s center and spread depends on every
model that features the incomplete variable, as
described previously.

The MCMC algorithm simultaneously generates
model parameters for Bayesian inference and multiple
imputations. When using the former, the collection of
parameter values obtained from the T iterations fol-
lowing the burn-in period estimate marginal posterior
distributions, the center and spread of which are
analogous to frequentist point estimates and standard
errors. In this scenario, the imputations from each
iteration t are simply a means to an end, which is to
fill-in the data to simplify the estimation of parame-
ters. In contrast, a multiple imputation analysis
requires a small collection M imputed data sets (e.g.,
20 or more; Graham et al., 2007) from the MCMC
process. The researcher then fits the multilevel model
of interest—the same model specified in f YjX,Zð Þ—to
each data set and then uses Rubin’s (1987) pooling
rules to obtain point estimates and standard errors.
As noted previously, the literature to date has focused
almost entirely on multiple imputation, and a major
thrust of this study is to evaluate Bayesian inference
and compare it to multiple imputation.

Computer simulation studies

This section outlines the five computer simulation
studies that investigate factored regression specifica-
tions for multilevel models with cross-level interac-
tions. As a worst-case baseline, we also include the
multilevel extension of the just-another-variable
imputation method that treats the cross-level product
as a normally distributed level-1 variable. All five
simulations used the analysis model given in
Equation 4. The dependent variable was complete,
and missing values on both predictors followed a
missing at random mechanism with Y as the cause of
missingness.

Simulations 1 and 2 investigated conditions where
factored regression specifications described earlier cor-
rectly model the predictor distributions. More specif-
ically, Simulation 1 investigated a continuous level-2
predictor, and Simulation 2 investigated a binary
level-2 predictor. The multiple imputation aspects of
Simulation 1 is comparable to Grund et al. (2021), but
we additionally investigate Bayesian estimation and
inference, we explore the effect of different prior dis-
tributions for the random effect covariance matrix.
For the remaining three simulations, we systematically
investigated the impact of misspecifying a distribution
in one of the predictor models. Simulation 3 investi-
gated a misspecification where the normal distribution
for lXj in Equation 6 is applied to a highly skewed
and kurtotic set of latent group means that follows a
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one degree of freedom chi-square distribution.
Simulation 4 investigated a different between-cluster
misspecification where the normal distribution for Z
in Equation 6 or 7 is applied to a highly skewed and
kurtotic level-2 predictor that follows a one degree of
freedom chi-square distribution. Finally, Simulation 5
investigated a misspecification where the within-clus-
ter normal distribution in the top expression of
Equation 6 is applied to a level-1 predictor with
highly skewed and kurtotic within-cluster residuals
that follows a one degree of freedom chi-square distri-
bution. We chose this chi-square distribution to
induce extreme distributional misspecifications that
likely represent an upper bound for what researchers
might encounter in applied practice. Previous studies
have not examined the robustness of factored regres-
sion specifications to such conditions in this context.
For Simulations 4 and 5, we also investigate the possi-
bility of applying a Yeo–Johnson transformation (Yeo
& Johnson, 2000) proposed in the single-level imput-
ation literature (L€udtke et al., 2020b).

Overview of simulation conditions

Each simulation had four between-subjects factors:
within-cluster sample size (nj ¼ 5, 15, and 25),
number of clusters (J¼ 25, 50, and 200), intraclass
correlation (ICC ¼ 0.10 and 0.50), and missing data
rate (15%, and 30%). Each study used 2,000 replica-
tions for each of the 36 conditions. For Simulation
2, we also included a condition where we investi-
gated two sets of category proportions for the bin-
ary level-2 predictor: a 80/20 split and 50/50 split of
0 s and 1 s.

The conditions were chosen based on a review of
guidelines from the literature, published Monte Carlo
studies, generalizability to typical social science data,
and considerations to methodological interests (e.g.,
evaluating behavior with small and large sample sizes).
For example, Maas and Hox (2005) suggested that
within cluster sample of nj ¼ 30 is the norm for level-
1 in educational research; thus, we chose to vary the
within cluster sample size at varying amounts under
nj ¼ 30. For number of level-2 clusters, Maas and
Hox (2005) suggested that 50 clusters are common in
educational research, and Kreft and de Leeuw (1998)
recommend a minimum of 30 clusters. Finally, the
200 clusters condition allowed us to investigate the
large sample properties of the factored regression spe-
cification and how it might differ between imputation
and Bayes posterior medians. Turning to the ICC con-
dition, we chose ICC’s that are representative of

published research (Gulliford et al., 1999; Hedges &
Hedberg, 2007; Murray & Blistein, 2003); thus, we
chose an ICC of 0.10 to constitute a value for cross-
sectional data, and an ICC of 0.50 to constitute a
value for repeated measures data. The missing data
rates we used represent a moderate and large amount
of missing data (i.e., 15% and 30% on both predictors,
respectively). The 15% condition is a threshold where
traditional fully conditional specification begins to
show biases (Enders et al., 2018; Enders et al., 2018;
Grund et al., 2018), and the 30% condition should
reveal distortions.

For all simulations, we set the population value of
b0 to equal to 10 and set the population means of X
and Z to equal 0. In addition, we fixed the total vari-
ance of X and Z to 1 (when Z was continuous) and
set the population variance of Y equal to 100. For the
analysis model’s random effects, we set the covariance
between the random intercepts and slopes (i.e., ru0u1 )
to a value corresponding to a correlation equal to
0.30. We specified the random slope variance (i.e.,
r2u1 ) to account for 5% of the within-cluster outcome
variance (Rights & Sterba, 2019). For the correlation
structure, the slope coefficients were derived after set-
ting the population correlations among all variables
equal to 0.40, and the cross-level product term’s slope
was derived by setting its bivariate association with Y
equal to 0.15. In the online supplemental material
(Section F), we show the true multilevel model param-
eters for each condition, and provide a detailed
description of their derivation.

Data generation

We generated the data using R programming language
for statistical computing (R Core Team, 2020). To
generate the predictors, we used the following equa-
tions, where lX ¼ lZ ¼ 0.

xij ¼ lXj þ rijðXÞ
lXj ¼ lX þ rjðXÞ
z�j ¼ lZ þ rjðZÞ

(16)

The distributions of the variables depend on the simu-
lation condition. For Simulation 1, we use the distri-
butions given in Equation 8, where zj ¼ z�j : For
Simulation 2, the rjðZÞ term is on the latent response
metric, and z�j is converted to a binary variable using
the function given in Equation 10. For Simulations 3,
the rjðXÞ residuals were generated based on a trans-
formed one degree of freedom chi-square variable. To
illustrate, the data generation for Simulation 3 was
created with the following expressions
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rijðXÞ � N 0, r2wX
� �

lXj
zj

� �
¼ lX

lZ

� �
þ d�j Xð Þ

d�
j Zð Þ�1ffiffi

2
p

� �
L

	 
T

d�j Xð Þ � N 0, 1ð Þ
d�j Zð Þ ¼ v2 1ð Þ

(17)

where L is the Cholesky decomposition of Rb, the
between-cluster covariance matrix from Equation 8.
To generate the data, we drew pairs of normal and
chi-square variates for each cluster, d�j Xð Þ and the d�j Zð Þ,
respectively. The row vector to the left of L scales the
variables to have a mean of 0 and a variance of 1,
then multiplying scores by the Cholesky decompos-
ition of the Rb matrix induces the desired correlation
and scaling. In Simulation 4, d�j Xð Þ and d�j Zð Þ switched
roles, such that d�j Xð Þ became the rescaled chi-square
variate. Finally, in Simulation 5, both d�j Xð Þ and d�j Zð Þ
were normally distributed variables, and rijðXÞ was a
rescaled chi-square variate with a mean of 0 and vari-
ance equal to r2wX:

After generating the predictor scores and random
effects, we generated Y scores by substituting these
quantities into the analysis model from Equation 4
along with the derived population parameters. Finally,
to generate data that are missing at random, we gen-
erated predictive probabilities of missingness using a
logistic model with Y predicting a binary missing data
indicator. The intercept parameter was specified to
create the desired amount of missing data, and the
logistic slope was derived as a positive value (i.e.,
missingness rates increased with the values of Y) that
produced a pseudo-R2 (McKelvey & Zavoina, 1975)
equal to 0.50 (i.e., a very strong selection mechanism
that would certainly induce bias when using listwise
deletion). For X and Z, binary missing data indicators
were first sampled from a binomial distribution with
success rates equal to the predicted probabilities, and
missing values were induced if the indicator score
equaled 1.

Model fitting

Multiple imputations (i.e., both for factored regression
imputation and just-another-variable imputation based
on fully conditional specification) were generated
using version 3 of Blimp software package (Keller &
Enders, 2021).1 For each replication, we generated
10,000 posterior draws after a 10,000 burn-in interval
from a single chain. These values were chosen after

assessing potential scale reduction factor diagnostics
(Gelman & Rubin, 1992) from a sample of artificial
data sets from various conditions, and we include
simulation-specific convergence information in the
online supplemental material (Section D). Ten impu-
tations were generated by saving a data set after every
1,000th iteration following the burn-in period. We
then used restricted maximum likelihood estimation
(McNeish, 2017) with R and the lme4 package (Bates
et al., 2021) to fit the analysis model from Equation 4
to each filled-in data set. All estimates and standard
errors were pooled using the mitml R package (Grund
et al., 2021).

As discussed previously, the factored regression
specification also generates Bayesian posterior summa-
ries, and a major goal of this study is to evaluate
Bayesian inference and compare it to gold standard
factored imputation methods. Our simulation investi-
gated both the joint model and sequential specifica-
tion for the predictors. There is no reason to expect
these methods to differ in this context, and our simu-
lations confirmed that expectation. In the interest of
space, we report the Bayesian results for the sequential
specification because this approach accommodates the
Yeo–Johnson (2000) transformation for skewed varia-
bles. The real data analysis example illustrates the
joint model specification for predictors.

As a consequence of adopting a Bayesian approach
to multiple imputation, we must also invoke prior dis-
tributions for the parameters in the analysis model
and the supporting predictors models. As noted ear-
lier, we adopt noninformative (flat) priors for regres-
sion coefficients and grand means, and we use inverse
gamma priors for the focal model’s residual variance
and the residual variances in the supporting predictor
models. These choices are not nearly as consequential
as the prior distribution for the level-2 covariance
matrix of the random effects (the Ru matrix in
Equation 4); it is well documented that Ru is sensitive
to prior specifications (see Gelman & Hill, 2007,
Chapters 13 and 17 for discussion), and this sensitiv-
ity is exasperated by a small number of level-2 sam-
pling units. We investigated two common
noninformative inverse Wishart priors. The first is
more informative because it adds the number of
matrix dimensions plus 1 to the degrees of freedom,
and it adds an identity matrix to the sum of squares
and cross-products. The second is less informative
because it subtracts the same value from the degrees
of freedom and adds nothing to the sum of squares
and cross-products. The Blimp software refers to these
options as "prior1" and "prior2," respectively. We also

1Similar model-fitting procedures are available in the R package mdmb
(Robitzsch & L€udtke, 2021).
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investigated the separation-type strategy described ear-
lier that specifies unique priors on the individual ran-
dom effect variances and their correlation.

Outcome measures

For all five simulations, we focused on two outcome
measurements: percent bias and confidence interval
coverage. The latter was only calculated for the fixed
effects estimates because the literature suggests that
symmetric, normal-theory confidence intervals are
inappropriate for variance parameters (Maas & Hox,
2005; Snijders & Bosker, 2012). We defined percent
bias as

percent bias ¼ average estimateð Þ � true parameterð Þ
true parameterð Þ � 100

(18)

and confidence interval coverage as

95% C: I: coverage

¼ number of replications with population parameter in C: I:ð Þ
total number of replicationsð Þ :

(19)

For Bayesian inference, the average estimate in the
bias expression is the average posterior median, and
coverage values were based on 95% credible intervals
rather than confidence intervals. The posterior mean
and mode could also be used, but we chose the
median because it is the default point estimate in
common software programs (Asparouhov & Muth�en,
2010a; Gelman et al., 2015), and thus would be the
summary most researchers would use in practice."
These measures were calculated for all simulations
and all condition within each simulation. As men-
tioned previously, complete-data estimates served as a
baseline against which to compare other methods, as
multilevel model parameters are not automatically free
of bias. To facilitate interpretation, we used rules of
thumb to assess the practical impact of bias and
coverage; for percent bias the literature sometimes
recommends that the bias should not exceed 10%
(Kaplan, 1988), and we adopted Bradley’s (1978)
“liberal” criterion for coverage rates between 0.925
and 0.975.

Results

For all five simulations, we present a subset of results
that illustrates the main findings. We focus on the 30%
missing data condition because it would reveal each
method’s bias-inducing tendencies. For all simulations,
the absolute values of the listwise deletion biases were

consistently above 20%, suggesting that the missing at
random selection mechanism was strong enough to
induce nonresponse bias if not handled appropriately.
We include the complete set of simulation conditions,
including the severely biased listwise deletion and just-
another-variable results, in the online supplemental
material (Section K through Section V).

In the interest of space, we have presented the
main findings of the simulation in tables, but we have
also included trellis plots that we found helpful in
deciphering the results. These plots are in Section B
of the online supplemental material and provide a
graphical depiction of the findings discussed through-
out the results section.

Simulation 1: normally distributed predictors

To streamline the presentation, we first identified the
prior distribution that provided the best parameter
recovery with Bayesian inference, and we then compared
that "winner" to its multiple imputations estimates. The
effect of prior distributions tends to be much less pro-
nounced when analyzing filled-in data sets, so we sought
to keep that aspect of the comparison constant.

To begin, Table 1 gives the percentage bias values
for the three different covariance matrix priors. The
top half of the table illustrates the effects of varying the
level-1 sample size while holding the level-2 sample
size constant at J¼ 50, and the bottom half illustrates
the effects of varying the level-2 sample size while
holding the within-cluster sample size constant at nj ¼
15. Not surprisingly, the choice of prior was most
impactful on the variance–covariance matrix estimates.
The graphs show that the separation prior was consist-
ently superior to the inverse Wishart priors, as the ran-
dom intercept and slope variance estimates generally
exhibited minimal bias less than 10% in absolute value.
The notable exception occurred in the design cell with
nj ¼ 5 observations per cluster and J¼ 50 level-2 units,
where the random slope variance for this prior was
positively biased. The apparent downside of the separ-
ation prior is that covariance parameter estimates
exhibited large negative bias values of about 30% (i.e.,
estimates closer to 0).2 We suspect that most research-
ers would view correlation bias as a reasonable tradeoff
for getting good estimates of the variance components.
As such, we focus on the separation prior going for-
ward. As mentioned previously, the prior choice was

2The separation prior parameterizes the random effect structure as a
correlation and two variances. To provide comparability with the other
priors, the covariance was computed by multiplying the estimated
correlation at each iteration by the square root of the product of
the variances.
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much less noticeable when analyzing multiple imputa-
tions, so we sought to keep this aspect of the
Bayes–imputation comparison constant.

Turning to the comparison of Bayesian estimation
(BAY; based on the separation prior) and factored
regression multiple imputation (IMP; also based on
the separation prior), the Simulation 1 rows of Tables
2 and 3 give the percentage bias values for the regres-
sion slopes holding level-1 and level-2 constant,
respectively. Complete-data estimates (CMP) are given
as a comparison, as these represent a best-case scen-
ario for restricted maximum likelihood estimation.
The Bayesian and multiple imputation estimates gen-
erally tracked closely with the complete-data estimates.
Turning to the level-2 covariance matrix, the
Simulation 1 rows of Tables 4 and 5 give the percent-
age bias values for the regression slopes holding level-
1 and level-2 constant, respectively. The largest differ-
ences occurred in the design cell with nj ¼ 5 observa-
tions per cluster and J¼ 50 level-2 units, where the
complete-data estimates were more accurate. In most

cases, there was very little difference between Bayesian
estimation and multiple imputation. The notable
exception was the covariance between the random
intercepts and slopes, where the Bayes estimates
exhibited greater bias. However, the tables do not tell
the whole story, as Bayesian estimates of the covari-
ance had dramatically smaller mean squared errors
(multiple imputation mean squared errors were gener-
ally 25% to 50% larger). From a practical perspective,
this means that the biased Bayesian estimates were
closer to the true value, on average, despite their
negative bias.

Although not displayed but available in the online
supplemental material (Section B), the coverage
results were somewhat unremarkable. Coverage val-
ues generally fell between 92.5% and 97.5%
(Bradley’s liberal criterion). When the ICC ¼ 0.50,
Bayesian coverage values improved slightly as the
number of level-2 units increased, but this trend was
very subtle and likely wouldn’t be considered practic-
ally significant.

Table 1. Comparing the posterior medians based on priors with 30% missing data rate for simulation 1.
L1 ¼ 5; L2 ¼ 50 L1 ¼ 15; L2 ¼ 50 L1 ¼ 25; L2 ¼ 50

ICC W1 W2 SEP W1 W2 SEP W1 W2 SEP

0.1 b0 –1.71 –0.57 –1.29 –1.19 –0.60 –0.97 –0.91 –0.47 –0.74
b1 –5.74 –7.23 –5.60 –0.50 –0.98 –0.96 0.01 –0.47 –0.63
b2 6.14 –10.06 –2.50 –5.21 –13.89 –7.26 –5.40 –10.04 –3.56
b3 –7.17 –15.15 –9.96 –1.99 –6.88 –3.20 –1.44 –5.27 –2.64
r2u0 –55.16 73.83 1.80 –22.98 28.61 1.66 –13.35 22.08 2.06
r2u1 –46.34 150.54 31.81 –34.72 45.68 3.67 –24.17 32.10 4.12

ru0 , u1 –70.03 –26.29 –79.73 –7.72 11.40 –46.06 5.08 19.40 –30.46
r2e 5.96 –2.55 –0.30 2.71 0.28 0.46 1.39 0.28 0.19

0.5 b0 –1.31 –0.17 –0.89 –0.99 –0.34 –0.80 –0.95 –0.43 –0.83
b1 –4.77 –6.31 –5.59 –0.85 –1.22 –2.02 –0.25 –0.42 –1.06
b2 –7.49 –14.93 –9.78 –5.16 –10.60 –4.66 –5.52 –9.25 –3.45
b3 –8.15 –14.49 –7.78 –2.89 –7.97 –3.88 –2.64 –7.27 –3.89
r2u0 –5.54 18.72 2.70 –1.12 16.82 3.34 –0.58 16.86 3.89
r2u1 –43.29 145.05 28.64 –44.37 46.06 0.75 –26.78 32.53 2.06

ru0 , u1 –30.03 –8.50 –60.09 –6.90 14.38 –34.67 –6.18 13.81 –26.67
r2e 4.50 –0.46 0.07 2.28 0.24 0.49 0.99 0.10 0.13

L1 ¼ 15; L2 ¼ 25 L1 ¼ 15; L2 ¼ 50 L1 ¼ 15; L2 ¼ 200

ICC W1 W2 SEP W1 W2 SEP W1 W2 SEP

0.1 b0 –1.93 –0.82 –1.53 –1.19 –0.60 –0.97 –0.11 0.03 –0.07
b1 –1.09 –1.69 –1.12 –0.50 –0.98 –0.96 0.27 –0.24 –0.27
b2 –6.63 –20.61 –11.32 –5.21 –13.89 –7.26 –2.85 –3.99 –1.84
b3 –5.43 –12.29 –6.67 –1.99 –6.88 –3.20 –0.02 –1.46 –0.55
r2u0 –35.20 73.85 4.25 –22.98 28.61 1.66 –5.78 6.06 0.49
r2u1 –38.79 117.92 11.26 –34.72 45.68 3.67 –15.42 8.72 0.29

ru0 , u1 –32.83 28.12 –63.38 –7.72 11.40 –46.06 8.15 5.08 –14.57
r2e 2.88 –0.01 0.33 2.71 0.28 0.46 0.86 0.10 0.09

0.5 b0 –1.92 –0.57 –1.37 –0.99 –0.34 –0.80 –0.07 0.11 –0.04
b1 –2.43 –2.86 –3.28 –0.85 –1.22 –2.02 0.10 –0.03 –0.37
b2 –4.55 –12.80 –4.76 –5.16 –10.60 –4.66 –0.43 –1.74 0.01
b3 –7.47 –13.93 –7.38 –2.89 –7.97 –3.88 0.96 –0.64 0.48
r2u0 –5.23 41.92 7.63 –1.12 16.82 3.34 –0.05 3.84 0.85
r2u1 –44.45 117.75 6.93 –44.37 46.06 0.75 –14.15 9.71 0.10

ru0 , u1 –18.46 24.99 –53.71 –6.90 14.38 –34.67 –1.62 3.55 –10.93
r2e 2.74 0.49 0.71 2.28 0.24 0.49 0.66 0.13 0.18

Note: The values are percent bias (Equation 18) for all parameters in Simulation 1 and compare the inverse Wishart with df ¼ d þ 1 prior (W1), the inverse
Wishart with df ¼ d � 1 prior (W2), and the separation prior (SEP). The top half of the table varies level-1 sample size holding level-2 sample size at 50,
and the bottom half of the table varies level-2 sample size, holding level-1 at 15. Percent bias values with a magnitude greater than 10% are bolded.
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Simulation 2: binary level-2 predictor

Turning to Simulation 2, recall that the level-2 moder-
ator was a binary dummy code with either a 50/50 or
80/20 split of 0 s and 1 s, respectively. The Simulation
2 rows of Tables 2 to 5 provide the results for the two
split conditions for the three estimators (complete-
data, Bayesian, and factored multiple imputation).
Tables 2 and 3 provide the percentage bias for the
regression slopes, and Tables 4 and 5 provide percent-
age bias for the level-2 covariance matrix parameters.

The main new finding of this study is that the
level-2 dummy code’s lower-order effect was sensitive
to the number of level-2 units, although the accuracy
of b2 was also dependent on the category proportions.

When there was a 50/50 split between categories, fac-
tored regression imputation had acceptable estimates
(approximately 10% bias) with 50 level-2 clusters and
25 level-1 units; however, larger level-2 sample sizes
were needed to achieve the same reduction in bias
when the categorical predictor had an 80/20 split of
0 s and 1 s. Importantly, the cross-level interaction
effect was effectively unbiased in most cases. One not-
able finding on this cross-level interaction effect was
the ICC, where the cross-level interaction was particu-
larly biased in the 80/20 split with ICC ¼ 0.1 condi-
tions. This effect was only unbiased in the largest
level-2 sample size condition; however, to reiterate
that this is for a 30% missing data rate at level-2 units
with a rather extreme binary split. Random effect

Table 2. Percent bias by level-1 sample sizes for regression slopes with 30% missing data rate.
L1 ¼ 5; L2 ¼ 50 L1 ¼ 15; L2 ¼ 50 L1 ¼ 25; L2 ¼ 50

ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 b1 –0.93 –5.65 –5.60 0.06 –0.95 –0.96 –0.19 –0.69 –0.63
b2 4.08 –2.11 –2.50 –3.24 –7.43 –7.26 –0.97 –3.74 –3.56
b3 –1.91 –9.73 –9.96 –0.52 –2.84 –3.20 0.27 –3.02 –2.64

0.5 b1 –0.03 –5.63 –5.59 –0.20 –2.04 –2.02 –0.22 –1.11 –1.06
b2 –1.25 –9.10 –9.78 –0.85 –4.75 –4.66 0.22 –3.74 –3.45
b3 0.82 –8.26 –7.78 –0.90 –4.10 –3.88 –1.72 –3.74 –3.89

Sim 2 0.1 b1 0.50 –3.23 –3.27 0.00 –1.93 –1.94 0.38 –0.98 –0.95
50/50 b2 8.81 –12.89 –11.70 0.67 –19.34 –19.26 –0.78 –18.82 –18.83

b3 –0.04 0.25 –0.22 –0.36 –1.17 –1.10 –0.71 –1.29 –1.24
0.5 b1 –0.31 –4.47 –4.50 0.15 –1.78 –1.78 0.08 –1.62 –1.58

b2 –0.51 –12.61 –13.48 –1.24 –14.12 –13.69 1.03 –10.53 –11.13
b3 0.26 –0.32 –0.15 –0.35 –1.25 –0.98 0.08 0.34 0.25

Sim 2 0.1 b1 1.16 –2.55 –2.53 –0.31 –1.56 –1.56 0.35 –0.56 –0.57
80/20 b2 8.79 –23.20 –21.21 –3.47 –34.49 –33.82 –0.51 –29.41 –29.33

b3 –7.13 –39.49 –38.88 2.65 –15.10 –15.50 –2.70 –15.83 –13.80
0.5 b1 –0.30 –5.33 –5.45 0.09 –1.78 –1.77 0.36 –1.24 –1.25

b2 1.17 –20.03 –20.12 0.22 –21.94 –21.66 0.39 –18.87 –18.64
b3 –1.44 –17.07 –15.60 –0.97 –7.70 –7.66 –1.42 –3.74 –3.55

Sim 3 0.1 b1 –0.11 –3.45 –3.13 –0.06 –1.06 –0.93 0.03 0.29 0.38
b2 0.86 –9.91 –9.41 0.53 0.12 –0.37 –1.45 –3.40 –3.20
b3 1.01 –11.62 –11.74 0.71 –5.22 –5.33 0.37 –3.61 –3.57

0.5 b1 0.42 –5.88 –5.73 –0.15 –2.42 –2.49 –0.14 –1.53 –1.59
b2 –1.05 –3.70 –3.42 2.03 –4.05 –3.79 –1.99 –7.19 –6.88
b3 –2.07 –52.24 –51.65 2.85 –15.97 –17.67 –3.31 –24.72 –24.20

Sim 4 0.1 b1 –0.50 –4.77 –4.73 0.10 –0.58 –0.52 –0.08 0.22 0.29
b2 2.51 –14.01 –15.00 –1.31 –9.07 –8.94 –0.40 –5.40 –4.95
b3 –1.84 –12.85 –11.70 0.18 –3.19 –3.16 –0.45 –2.99 –2.98

0.5 b1 0.05 –4.92 –4.97 –0.56 –1.96 –1.96 0.26 0.42 0.46
b2 0.87 –5.52 –5.87 1.82 –1.37 –1.62 –0.78 –2.88 –3.09
b3 0.11 –4.49 –5.00 –0.88 –1.73 –1.72 0.08 1.32 0.96

Sim 5 0.1 b1 0.47 6.89 6.74 –0.27 12.21 12.12 –0.41 13.09 13.02
b2 0.13 –14.32 –14.81 0.25 –3.83 –3.67 –1.00 –3.88 –4.54
b3 –3.41 3.33 3.64 2.17 31.36 31.30 0.02 29.34 29.31

0.5 b1 0.01 –1.13 –1.23 –0.07 4.78 4.54 0.19 7.34 7.22
b2 –1.09 –10.40 –10.45 –0.35 –9.53 –9.40 0.26 –8.96 –8.63
b3 –1.76 2.08 2.27 –0.21 17.52 17.89 –0.43 18.80 18.52

Sim 5 0.1 b1 –0.30 1.00 1.63 0.23 –0.75 –0.54 0.15 –0.75 –0.61
Reversed b2 1.54 –1.73 –1.74 1.54 2.81 2.68 0.68 4.04 4.06

b3 –0.53 –13.69 –13.41 0.29 –12.41 –12.19 –0.19 –12.84 –12.82
0.5 b1 0.31 3.80 4.09 0.26 3.07 3.17 0.27 3.08 3.15

b2 –0.03 –4.35 –4.34 0.48 –1.92 –2.03 –0.63 –2.76 –2.93
b3 0.02 –7.26 –7.49 –0.32 –9.90 –9.88 0.14 –10.36 –10.24

Note: The values are percent bias (Equation 18) for the regression coefficients as a function of level-1 sample size while holding level-2 sample size con-
stant for complete data estimates (CMP), bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a magnitude
greater than 10% are bolded.
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estimates were consistent with the first simulation,
with nothing new to highlight. Finally, coverage values
also largely mimicked the findings of Simulation 1, so
we point interested readers to the online supplement.

Simulation 3: non-normal latent means at level-2

For Simulation 3, the marginal distribution of the
level-2 latent group means was a single degree of free-
dom chi-square that was rescaled to the desired mean
and variance (0 and r2bX , respectively). The main pur-
pose of this simulation was to investigate a misspecifi-
cation where the normal distribution for lXj in
Equation 6 is applied to skewed and kurtotic latent

group means. This misspecification is interesting to
consider because there is currently no obvious solution
to the problem. For example, the Yeo–Johnson trans-
formation (Yeo & Johnson, 2000) that we consider in
the next two simulations is appropriate for manifest
variables, but no analog currently exists for non-normal
latent variables. Note that the level-2 moderator was
normally distributed, as it was in the first simulation.

Tables 2 to 5 give the percentage bias values for
each estimator in the Simulation 3 rows. The main
new finding of this study is that non-normal latent
means primarily impacted the interaction coefficient.
Moreover, bias depended on the level-2 sample size,
particularly in the ICC ¼ 0.50 conditions. Although

Table 3. Percent bias by level-2 sample sizes for regression slopes with 30% missing data rate.
L1 ¼ 15; L2 ¼ 25 L1 ¼ 15; L2 ¼ 50 L1 ¼ 15; L2 ¼ 200

ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 b1 0.28 –1.15 –1.12 0.06 –0.95 –0.96 0.06 –0.25 –0.27
b2 –0.12 –10.67 –11.32 –3.24 –7.43 –7.26 –1.13 –1.80 –1.84
b3 0.31 –6.65 –6.67 –0.52 –2.84 –3.20 0.21 –0.53 –0.55

0.5 b1 0.03 –3.27 –3.28 –0.20 –2.04 –2.02 0.35 –0.39 –0.37
b2 1.55 –4.42 –4.76 –0.85 –4.75 –4.66 0.12 0.01 0.01
b3 –0.70 –6.86 –7.38 –0.90 –4.10 –3.88 0.78 0.55 0.48

Sim 2 0.1 b1 0.09 –2.85 –2.82 0.00 –1.93 –1.94 0.02 –0.50 –0.49
50/50 b2 –2.45 –34.46 –34.55 0.67 –19.34 –19.26 0.22 –7.98 –8.06

b3 0.32 0.26 0.06 –0.36 –1.17 –1.10 0.00 –0.70 –0.74
0.5 b1 0.05 –3.35 –3.53 0.15 –1.78 –1.78 0.01 –0.28 –0.30

b2 –1.93 –21.54 –22.93 –1.24 –14.12 –13.69 1.23 –2.87 –2.91
b3 –0.01 0.27 0.57 –0.35 –1.25 –0.98 0.25 –0.45 –0.39

Sim 2 0.1 b1 0.07 –2.02 –2.04 –0.31 –1.56 –1.56 0.05 –0.24 –0.24
80/20 b2 –5.24 –46.66 –45.80 –3.47 –34.49 –33.82 –0.11 –11.15 –10.83

b3 2.64 –22.89 –23.14 2.65 –15.10 –15.50 –0.27 –8.50 –8.01
0.5 b1 0.48 –3.41 –3.34 0.09 –1.78 –1.77 0.15 –0.35 –0.39

b2 –7.39 –38.77 –37.67 0.22 –21.94 –21.66 1.07 –6.26 –6.39
b3 –3.01 –6.27 –6.42 –0.97 –7.70 –7.66 –0.14 –1.45 –1.12

Sim 3 0.1 b1 –0.91 –2.82 –2.64 –0.06 –1.06 –0.93 0.01 0.53 0.59
b2 2.09 –10.49 –10.26 0.53 0.12 –0.37 0.26 7.57 7.56
b3 1.60 –9.38 –8.89 0.71 –5.22 –5.33 0.10 2.49 2.39

0.5 b1 –0.43 –4.71 –4.74 –0.15 –2.42 –2.49 0.23 –0.03 –0.04
b2 1.76 –11.29 –11.36 2.03 –4.05 –3.79 –0.10 4.67 4.57
b3 1.96 –34.66 –36.51 2.85 –15.97 –17.67 2.26 –7.33 –7.61

Sim 4 0.1 b1 –0.27 –2.00 –2.23 0.10 –0.58 –0.52 0.27 0.39 0.41
b2 –0.93 –14.00 –14.27 –1.31 –9.07 –8.94 0.54 0.94 0.80
b3 0.82 –6.61 –7.33 0.18 –3.19 –3.16 0.29 –1.41 –1.46

0.5 b1 –0.13 –3.35 –3.31 –0.56 –1.96 –1.96 0.17 0.45 0.39
b2 –0.62 –6.62 –6.60 1.82 –1.37 –1.62 –0.75 0.46 0.68
b3 0.34 –6.24 –6.49 –0.88 –1.73 –1.72 –0.57 1.24 1.41

Sim 5 0.1 b1 –0.60 7.08 6.88 –0.27 12.21 12.12 –0.11 16.20 16.17
b2 2.26 –5.39 –4.82 0.25 –3.83 –3.67 0.37 –2.30 –2.51
b3 –0.96 15.93 16.57 2.17 31.36 31.30 0.42 31.69 31.95

0.5 b1 0.15 2.16 1.96 –0.07 4.78 4.54 –0.05 8.17 8.10
b2 –1.61 –14.79 –14.64 –0.35 –9.53 –9.40 –0.62 –6.77 –6.71
b3 0.65 11.10 11.43 –0.21 17.52 17.89 –0.08 21.93 21.82

Sim 5 0.1 b1 –0.73 –0.89 –0.67 0.23 –0.75 –0.54 0.05 –1.14 –1.02
Reversed b2 0.88 –1.34 –1.17 1.54 2.81 2.68 0.44 4.66 4.58

b3 –0.30 –13.88 –13.83 0.29 –12.41 –12.19 –0.29 –12.43 –12.31
0.5 b1 –0.02 3.50 3.59 0.26 3.07 3.17 0.04 2.81 2.83

b2 0.10 –4.68 –4.64 0.48 –1.92 –2.03 0.17 –0.55 –0.51
b3 –1.64 –8.53 –8.34 –0.32 –9.90 –9.88 0.43 –9.70 –9.62

Note: The values are percent bias (Equation 18) for the regression coefficients as a function of level-2 sample size while holding level-1 sample size con-
stant for complete data estimates (CMP), bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a magnitude
greater than 10% are bolded.
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we know of no studies that have considered consist-
ency properties in this context, the simulation results
suggest that estimates might be consistent under this
misspecification, as b3’s bias decreased as the level-2
sample size increased; reading from left to right in
Table 3, the estimates exhibited large biases when
J¼ 25 that dropped below 10% when J¼ 200.
Examining a wider range of level-2 sample sizes could
identify the more precise point at which asymptotic
properties take hold (if they do). Random effect esti-
mates were consistent with the first two simulations,
with nothing new to highlight. Finally, coverage values
largely mimic the findings of Simulation 1, so we
point interested readers to the online supplement.

Simulation 4: non-normal level-2 predictor

For Simulation 4, the marginal distribution of the
level-2 moderator was a single degree of freedom chi-
square that was rescaled to the desired mean and vari-
ance (0 and r2bZ , respectively). The main purpose of
this simulation was to investigate a misspecification
where the normal distribution for Z in Equation 6 is
applied to a skewed and kurtotic moderator. The
Simulation 3 section of Tables 2 to 5 give the percent-
age bias values for the three estimators.

The main new finding of this study is that non-nor-
mality primarily impacted the moderator’s lower-order
slope, and the interaction coefficient generally exhibited

Table 4. Percent bias by level-1 sample sizes for variance parameters with 30% missing data rate.
L1 ¼ 5; L2 ¼ 50 L1 ¼ 15; L2 ¼ 50 L1 ¼ 25; L2 ¼ 50

ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 r2u0 7.82 –1.36 1.80 0.42 –2.25 1.66 –0.04 –2.13 2.06
r2u1 9.20 22.74 31.81 –0.98 –0.25 3.67 0.66 0.06 4.12

ru0 , u1 –3.10 –40.13 –79.73 –1.55 –13.89 –46.06 –0.84 –6.21 –30.46
0.5 r2u0 –0.45 –2.18 2.70 –0.31 –1.31 3.34 0.19 –0.59 3.89

r2u1 5.55 20.07 28.64 –0.83 –1.97 0.75 0.40 –0.92 2.06
ru0 , u1 –0.44 –30.06 –60.09 0.46 –12.00 –34.67 –2.94 –10.08 –26.67

Sim 2 0.1 r2u0 6.21 –3.96 –1.77 –0.38 –2.97 0.56 –0.01 –1.49 2.67
50/50 r2u1 8.59 21.46 28.70 –1.66 –2.22 0.98 –0.53 –0.67 3.13

ru0 , u1 –8.22 –54.42 –85.39 –0.23 –29.30 –56.05 –0.77 –21.74 –41.83
0.5 r2u0 –1.31 –3.17 1.64 0.34 –0.26 4.40 0.35 –0.22 4.30

r2u1 4.44 15.08 21.05 0.44 –0.29 1.13 1.29 1.42 3.88
ru0 , u1 –0.34 –46.70 –70.22 2.58 –23.53 –42.47 1.96 –16.88 –32.61

Sim 2 0.1 r2u0 6.40 –3.12 –1.46 –0.42 –3.12 0.46 0.16 –2.02 1.89
80/20 r2u1 10.41 19.64 27.95 –1.42 –3.91 –0.46 –0.68 –2.75 0.88

ru0 , u1 –5.45 –49.13 –82.92 0.09 –17.83 –49.76 –1.19 –14.19 –36.92
0.5 r2u0 –1.07 –3.99 0.75 0.25 –0.61 3.89 0.35 –1.07 3.43

r2u1 5.12 13.60 19.27 0.76 –2.07 –0.71 1.19 –1.61 1.39
ru0 , u1 1.00 –41.83 –68.65 2.56 –17.53 –39.25 1.89 –13.51 –30.09

Sim 3 0.1 r2u0 9.05 3.11 6.99 0.55 –1.49 2.08 –0.60 –1.82 2.41
r2u1 9.25 22.17 30.68 0.16 0.04 4.35 0.85 –0.59 3.50

ru0 , u1 –6.94 –33.69 –78.30 –1.39 –11.78 –46.18 0.67 –4.36 –29.92
0.5 r2u0 1.01 1.05 5.50 0.27 1.51 6.00 –0.11 0.40 4.73

r2u1 9.23 26.57 35.47 0.68 –0.90 1.95 –1.01 –4.40 –1.81
ru0 , u1 4.29 –28.20 –57.91 1.96 –11.85 –34.70 –0.91 –9.98 –28.22

Sim 4 0.1 r2u0 9.22 2.94 5.79 0.86 –1.62 2.53 –0.57 –1.27 3.12
r2u1 11.00 28.78 35.85 –0.15 3.29 7.66 0.41 6.52 11.10

ru0 , u1 –8.88 –40.13 –78.28 –0.81 –5.47 –38.74 1.08 2.89 –22.79
0.5 r2u0 –0.92 –1.28 3.49 –0.05 0.17 5.01 0.83 1.44 6.03

r2u1 7.88 28.86 37.96 –0.73 2.73 5.54 –0.96 5.06 8.82
ru0 , u1 0.28 –25.15 –56.27 –3.47 –7.51 –30.34 1.41 3.23 –15.24

Sim 5 0.1 r2u0 3.17 –7.39 –1.27 1.73 –3.98 –0.07 –0.17 –2.33 2.48
r2u1 7.71 223.33 245.80 2.43 148.17 161.26 –0.68 121.42 133.39

ru0 , u1 –10.92 68.50 –22.70 1.78 75.41 18.74 0.04 76.54 36.27
0.5 r2u0 –0.50 –5.46 –1.01 0.62 –2.73 1.64 –0.43 –3.20 1.11

r2u1 9.63 110.63 127.61 1.02 77.82 84.33 0.63 69.30 75.51
ru0 , u1 –1.01 –16.68 –48.27 2.14 6.58 –17.64 –2.15 12.14 –8.45

Sim 5 0.1 r2u0 0.60 1.42 4.21 –0.30 –0.08 3.90 –0.89 –0.32 3.90
Reversed r2u1 7.04 0.55 14.58 0.22 –19.40 –14.30 –0.48 –22.25 –17.79

ru0 , u1 –7.21 24.20 –50.38 0.09 14.05 –24.98 –0.79 11.89 –14.61
0.5 r2u0 –0.78 –0.09 4.20 0.97 3.06 7.68 –0.63 1.13 5.64

r2u1 7.91 1.77 14.36 0.42 –16.06 –11.70 –0.10 –17.73 –13.78
ru0 , u1 0.91 12.31 –30.77 –0.91 9.48 –14.55 0.23 10.34 –8.14

Note: The values are percent bias (Equation 18) for the random effect variance parameter as a function of level-1 sample size while holding level-2 sam-
ple size constant for complete data estimates (CMP), bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a
magnitude greater than 10% are bolded.
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little or no bias. The ICC again played a role, although
this time bias values were largest in the ICC ¼ 0.10
condition. The simulation results again suggest that
estimates might be consistent under this misspecifica-
tion, as b2 ’s bias decreased as the level-2 sample size
increased; reading from left to right in Table 3, bias
values dropped below 10% when J¼ 50 and were
effectively zero when J¼ 200. Random effect estimates
were consistent with the first two simulations, with
nothing new to highlight. Finally, coverage values
largely mimic the findings of Simulation 1, so we point
interested readers to the online supplement.

As discussed earlier, one advantage of using a
sequential predictor model is that it is straightforward

to accommodate non-normal continuous conditional
distributions. In the single-level regression context,
L€udtke et al. (2020b) proposed the Yeo–Johnson (Yeo
& Johnson, 2000) power transformation for non-nor-
mal data. We conducted a follow-up simulation that
applied the Yeo–Johnson transformation to the non-
normal level-2 variable. Importantly, these analyses
are still misspecified because the Yeo–Johnson trans-
formation is tasked with approximating the true data-
generating distribution, which is a chi-square. Our
goal for this simulation is to mimic applied practice
where a researcher, without knowledge of the true
population distribution, would inappropriately apply a
Yeo–Johnson transformation. Because the single

Table 5. Percent bias by level-2 sample sizes for variance parameters with 30% missing data rate.
L1 ¼ 15; L2 ¼ 25 L1 ¼ 15; L2 ¼ 50 L1 ¼ 15; L2 ¼ 200

ICC CMP BAY IMP CMP BAY IMP CMP BAY IMP

Sim 1 0.1 r2u0 1.36 –3.68 4.25 0.42 –2.25 1.66 0.18 –0.46 0.49
r2u1 1.22 2.32 11.26 –0.98 –0.25 3.67 –0.65 –0.71 0.29

ru0 , u1 –4.98 –21.74 –63.38 –1.55 –13.89 –46.06 0.59 –2.56 –14.57
0.5 r2u0 –0.46 –2.20 7.63 –0.31 –1.31 3.34 0.06 –0.26 0.85

r2u1 2.44 –0.69 6.93 –0.83 –1.97 0.75 0.55 –0.28 0.10
ru0 , u1 1.24 –22.35 –53.71 0.46 –12.00 –34.67 1.08 –3.99 –10.93

Sim 2 0.1 r2u0 0.76 –3.69 3.68 –0.38 –2.97 0.56 –0.26 –0.63 0.25
50/50 r2u1 2.29 2.57 11.07 –1.66 –2.22 0.98 –0.26 –1.00 –0.18

ru0 , u1 –3.90 –41.23 –73.50 –0.23 –29.30 –56.05 0.59 –10.21 –20.99
0.5 r2u0 –0.92 –2.72 7.18 0.34 –0.26 4.40 0.38 0.37 1.48

r2u1 –0.76 –0.84 4.91 0.44 –0.29 1.13 0.57 –0.37 –0.25
ru0 , u1 –2.55 –39.59 –65.18 2.58 –23.53 –42.47 0.08 –7.52 –14.34

Sim 2 0.1 r2u0 1.85 –2.03 5.44 –0.42 –3.12 0.46 –0.23 –0.73 0.12
80/20 r2u1 2.81 0.30 8.86 –1.42 –3.91 –0.46 –0.24 –1.13 –0.35

ru0 , u1 –0.88 –27.59 –67.43 0.09 –17.83 –49.76 0.53 –6.04 –17.26
0.5 r2u0 –0.80 –2.98 6.72 0.25 –0.61 3.89 0.39 –0.03 1.08

r2u1 –0.80 –2.86 2.11 0.76 –2.07 –0.71 0.58 –1.04 –0.74
ru0 , u1 –1.29 –34.59 –61.76 2.56 –17.53 –39.25 0.08 –6.40 –13.60

Sim 3 0.1 r2u0 2.81 –2.94 4.63 0.55 –1.49 2.08 –0.10 1.47 2.40
r2u1 2.04 1.88 10.41 0.16 0.04 4.35 0.29 1.75 2.87

ru0 , u1 –1.48 –17.94 –63.52 –1.39 –11.78 –46.18 0.86 2.46 –10.50
0.5 r2u0 0.66 0.48 10.14 0.27 1.51 6.00 0.12 1.78 2.84

r2u1 1.31 –1.58 4.18 0.68 –0.90 1.95 0.69 1.97 2.44
ru0 , u1 0.72 –25.34 –57.16 1.96 –11.85 –34.70 0.16 2.38 –5.76

Sim 4 0.1 r2u0 0.75 –4.32 3.31 0.86 –1.62 2.53 0.68 0.31 1.33
r2u1 1.50 7.77 17.32 –0.15 3.29 7.66 –0.49 6.31 7.41

ru0 , u1 –0.15 –16.93 –59.89 –0.81 –5.47 –38.74 0.01 4.28 –7.93
0.5 r2u0 –0.05 –0.94 9.03 –0.05 0.17 5.01 0.15 1.15 2.27

r2u1 2.10 6.51 14.63 –0.73 2.73 5.54 0.39 6.90 7.58
ru0 , u1 3.00 –14.12 –47.28 –3.47 –7.51 –30.34 0.35 6.58 –1.35

Sim 5 0.1 r2u0 –0.71 –8.08 –0.63 1.73 –3.98 –0.07 0.63 –0.92 0.51
r2u1 3.94 150.32 174.09 2.43 148.17 161.26 0.56 138.54 142.54

ru0 , u1 –0.91 58.82 –16.59 1.78 75.41 18.74 0.77 99.54 79.53
0.5 r2u0 –1.68 –5.46 3.81 0.62 –2.73 1.64 0.28 –2.77 –1.77

r2u1 3.36 90.37 106.83 1.02 77.82 84.33 0.30 74.43 75.84
ru0 , u1 0.64 –6.76 –42.94 2.14 6.58 –17.64 1.36 24.10 15.68

Sim 5 0.1 r2u0 0.97 –1.67 6.01 –0.30 –0.08 3.90 0.36 4.58 5.86
Reversed r2u1 0.90 –17.45 –7.62 0.22 –19.40 –14.30 0.51 –20.39 –18.51

ru0 , u1 1.79 9.16 –44.36 0.09 14.05 –24.98 2.18 26.66 12.73
0.5 r2u0 –0.17 2.62 12.24 0.97 3.06 7.68 –0.06 1.62 2.68

r2u1 0.38 –16.02 –7.58 0.42 –16.06 –11.70 0.59 –16.36 –15.24
ru0 , u1 –6.38 2.95 –33.91 –0.91 9.48 –14.55 0.96 14.29 6.94

Note: The values are percent bias (Equation 18) for the random effect variance parameter as a function of level-2 sample size while holding level-1 sam-
ple size constant for complete data estimates (CMP), bayesian estimation (BAY), and factored regression imputation (IMP). Percent bias values with a
magnitude greater than 10% are bolded.
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degree of freedom chi-square distribution is arguably
a worse-case scenario misspecification (skewness and
excess kurtosis values were approximately 2.8 and 12),
the follow-up simulations varied the shape of the
moderator’s distribution using chi-square variables
with degrees of freedom values equal to 2 (skewness
� 2, kurtosis � 6), 5 (skewness � 1.26, kurtosis �
2.40), 10 (skewness � .90, kurtosis � 1.19), and 15
(skewness � .73, kurtosis � .79). For this simulation,
we fixed the level-1 and level-2 sample sizes at values
that exhibited the most bias, nj ¼ 15 and J¼ 25.

Figure 2 shows trellis plots of Bayesian estimation
with and without the Yeo–Johnson transformation (it
is also possible to use multiple imputation with the
transformation, but we exclude these results in the
interest of space) and the tabular results are offered in
the online supplemental (Section C). Although the bias
values generally aren’t very extreme to begin with, the
figure shows that the Yeo–Johnson transformation did
not reduce bias. In fact, percentage bias values for the
transformation were somewhat larger than the untrans-
formed results. We attribute this seemingly counterin-
tuitive finding to the fact that the level-2 sample size is

very small at J¼ 253, which makes it difficult to esti-
mate the shape parameter (e.g., even a single outlying
observation could exert substantial influence on the
transformation); therefore, a more informative prior on
the shape parameter may be required.

Simulation 5: non-normal within-cluster variance

For Simulation 5, recall that the distribution of the
within-cluster residuals was a single degree of freedom
chi-square that was rescaled to the desired mean and
variance (0 and r2wX, respectively). The main purpose
of this simulation was to investigate a misspecification
where the within-cluster normal distribution in the top
expression of Equation 6 is applied to a level-1 pre-
dictor with skewed and kurtotic within-cluster resid-
uals. Tables 2 to 5 give the percentage bias values for
each estimator in the Simulation 5 rows.

Figure 2. Bias for Bayesian estimation with varying degrees of non-normal level-2 moderator.
Note: Trellis plots displaying percentage bias values from Bayesian estimation with a Yeo-Johnson transformation (£) applied to a
level-2 predictor with varying degrees of non-normality. Complete-data estimates (	) from restricted maximum likelihood and
Bayesian estimation without the transformation (�) are shown as a comparison. The within-cluster sample size is 15 and the number
of level-2 clusters is 25. Values are truncated to ±30 bias. The sample sizes were chosen based on the conditions with observed bias.

3We also investigated the J¼ 50 condition and included this figure in
Section I of the online supplemental material; however, the findings were
essentially the same, and the regression slopes for the normal distribution
model were unbiased in all conditions.
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The main new finding of this study is that within-
cluster non-normality affected both the interaction
coefficient and the random slope variance estimates;
percentage bias values of 20% (in absolute value) were
typical for the former, and the random slope bias val-
ues ranged between 80% to over 200%. Unlike
Simulations 3 and 4, bias did not decrease as the sam-
ple size increased. To better understand the large ran-
dom slope bias, we examined within-cluster regression
of Y on X for several level-2 units. Because the miss-
ing data selection mechanism was defined such that
higher Y values were more likely to have missing X
observations, the bulk of missing values were in the
sparsely populated upper tail of X’s distribution. The
scatterplots revealed that the deleted points had high
leverage, flattening the within-cluster slopes. Replacing
these values with less extreme imputations in the
middle of the distribution (a consequence of the
normality assumption) dramatically increased the
within-cluster slopes and their variability. The online
supplement (Section J) shows exemplar scatterplots
that illustrate this point.

To investigate the impact of the missing data selec-
tion mechanism, we ran a follow-up simulation that
reversed the sign of the relationship between Y and X.
This operation created a missing at random selection
mechanism that retained values in the upper tail of X’s
distribution and instead removed values from the large
peak at the low end of the distribution. The "Sim 5
Reversed" rows of Tables 2 to 5 give the percentage
bias from the follow-up simulation. Comparing the ori-
ginal data generation to the reversed relationship, one
can see that the magnitude of the bias in both the
cross-level interaction coefficient and random slope
variance decreased drastically. In addition, the direction
of the bias also changed from positive to negative.
These results highlight that it is important to consider
the functional form of the missing data mechanism
when considering the impact of model misspecifica-
tions with asymmetrical distributions.

Simulation 5 is another example where the
Yeo–Johnson transformation could potentially miti-
gate the negative impact of non-normal data.
Following the procedure from Simulation 4, we again

Figure 3. Bias for Bayesian estimation with varying degrees of non-normal level-1 residual.
Note: Trellis plots displaying percentage bias values from Bayesian estimation with a Yeo-Johnson transformation (£) applied to a
level-1 predictor with varying degrees of within-cluster non-normality. Complete-data estimates (	) from restricted maximum likeli-
hood and Bayesian estimation without the transformation (�) are shown as a comparison. The within-cluster sample size is 15
and the number of level-2 clusters is 50. The separation prior was used for both methods. Values are truncated to ±30 bias. The
sample sizes were chosen based on the conditions with observed bias.

18 B. T. KELLER AND C. K. ENDERS



performed follow-up simulations varied the shape of
the within-cluster residual distribution using chi-
square variables with degrees of freedom values equal
to 2 (skewness � 2, kurtosis � 6), 5 (skewness �
1.26, kurtosis � 2.40), 10 (skewness � .90, kurtosis �
1.19), and 15 (skewness � .73, kurtosis � .79). For
this simulation, we again fixed the level-1 and level-2
sample sizes at values that might be typical in applied
practice, nj ¼ 15 and J¼ 50. To reiterate, these analy-
ses are misspecified because the Yeo–Johnson density
only approximates the true data-generating distribu-
tion. Again, our goal is to mimic a situation where a
researcher would inappropriately apply this transform-
ation without knowledge of the true population
distribution.

Figure 3 shows trellis plots of Bayesian estimation
with and without the Yeo–Johnson transformation (it
is also possible to use multiple imputation with the
transformation, but we exclude these results in the
interest of space). The figure shows that the Yeo–-
Johnson transformation effectively reduced bias, espe-
cially for the fixed effects, where percentage values
were generally below 10%. The transformation also
improved estimates of the random slope variance,
which exhibited bias values of 10% or lower when the
residual distribution was a chi-square with 2 degrees
of freedom (skewness � 2, kurtosis � 6). Unsurpris-
ingly, bias associated with the untransformed results
decreased as the chi-square distribution’s degrees of
freedom (and thus non-normality) decreased. Consid-
ered as a whole, these results are encouraging given
that Yeo–Johnson transformation was not the true
data-generating function. We attribute the good per-

formance of the Yeo–Johnson transformation in this
simulation to the fact that the number of level-1 units
is large, which improves the accuracy of the
shape parameter.

Real data example

The data for the example are from an organizational
study with nj ¼ 6 employees nested within J¼ 105
workgroups or teams. The analysis features a construct
known as leader–member exchange

(employee–supervisor relationship quality) as a within-
team predictor of employee empowerment, the effect of
which is moderated by team-level leadership climate
(Aguinis et al., 2013; Chen et al., 2007). This interpret-
ation is achieved by centering the predictor at itera-
tively-sampled latent group means. Although we did
not investigate such a model in the simulations, we
also include the leader–member exchange latent group
means and their between-cluster interaction with the
team-level moderator, and we use a self-reported bio-
logical sex dummy code (0¼ female, 1¼male) and
team-level cohesion rating as level-1 and level-2 covari-
ates, respectively.

empowerij ¼ b0 þ u0j
� �þ b1 þ u1j

� �
lmxij � lLMXj
� �

þ b2 lLMXj � lLMXjð Þ
þ b3 climatej � lCLIMATE

� �
þ b4 lLMXj � lLMXð Þ climatej � lCLIMATE

� �
þb5 lmxij � lLMXj

� �
climatej � lCLIMATE

� �
þ b6 maleij

� �þ b7 cohesionj
� �þ eij

(20)

About 16.2% and 4.1% of the individual-level
empowerment and leader–member exchange scores
are missing, respectively, and 9.5% and 5.7% of the
team-level climate and cohesion scores are missing.

A joint specification for the predictors is ideally
suited for a Bayesian analysis because the latent group
means (Hamaker & Muth�en, 2020; L€udtke et al.,
2008) and grand means are explicit model parameters
in the supporting predictor models. The factorization
for this approach is as follows.

The asterisk superscript indicates that the sex
dummy code appears as a latent response variable in
the multivariate predictor distribution. Although treat-
ing a binary nominal predictor like biological sex as
an ordinal latent response variable may seem odd, the
multinomial probit model for multicategorical data is
identical to the ordinal probit model in this case
(Goldstein et al., 2009). An even simpler parameter-
ization treats the incomplete predictors as multivariate
normal, conditional on the complete biological
sex code.

f ðEMPOWER, LMX,CLIMATE,MALE,COHESIONÞ ¼
f EMPOWER j LMX,CLIMATE,MALE,COHESIONð Þ

f LMX,CLIMATE,MALE�,COHESIONð Þ
(21)

MULTIVARIATE BEHAVIORAL RESEARCH 19



The strength of a sequential specification is that it
accommodates some configurations of non-normal
variables via the Yeo–Johnson transformation (Yeo &
Johnson, 2000). We do not use it here because the
latent group and grand means needed for centering
are not byproducts of estimation. However, one could
use the procedure to create non-normal multiple
imputations and center at the manifest means of the
imputed data. The most natural way to order variables
in a sequential specification is by level, so the level-2
variables are factored last.

In our experience, ordering predictors such that
any transformed variables appear in one of the right-
most factorizations usually facilitates convergence, as
does centering the non-normal variable at its median.

We fit the above model using the same three prior
distributions from the simulations. For multiple
imputation, we created M¼ 100 filled-in data sets by
saving the imputations every 200 iterations across two
separate chains. We set the burn-in periods conserva-
tively to 20,000 after inspecting the potential scale
reduction factor (Gelman & Rubin, 1992) diagnostic
from preliminary runs; the inverse Wishart priors

required a 5,000 iteration burn-in period, whereas the
separation prior required closer to 10,000 initial
cycles. We used Blimp 3 (Keller & Enders, 2021) to
implement Bayesian estimation and model-based mul-
tiple imputation. After creating the multiple imputa-
tions, we centered the leader–member exchange scores
at the imputed latent group means and centered all
other variables at the grand means of the filled-in
data sets. Finally, we used the R package mitml
(Grund et al., 2021) to fit the random coefficient
model to each data set and pool the resulting esti-

mates and standard errors. The raw data and analysis
scripts for the joint and sequential specifications are
available on GitHub (https://github.com/blimp-stats/
FACTORED-REGRESSION-WITH-CROSS-LEVEL-
INTERACTIONS). In addition, Section D of the online
supplemental shows a Blimp script that implements
the separation prior. The script also generates multiple
imputations for a frequentist analysis along with esti-
mates of the latent group means needed for centering.
Interested readers can consult Keller and Enders
(2022) for additional details about specific commands.

Table 6 gives the posterior summaries for the three
Bayesian analyses and factored regression multiple
imputation results from the separation prior. The first
two columns are inverse Wishart priors: the prior in
the first column should be more informative because
it adds to the data’s degrees of freedom, whereas the
prior in the second column should be less informative
because it subtracts from it. Consistent with the simu-
lation results, the choice of prior distribution had a
noticeable impact on intercept and slope variances;
differences in the intercept variance were between
approximately 0.35 and 1.35 posterior standard devi-
ation units, and differences in the slope variance were
between 0.26 and 0.78 standard deviation units. It is
important to highlight that this example most aligns
with the ICC ¼ .10 and nj ¼ 5 conditions, a situation
where none of the priors and estimators were optimal.

With a larger number of level-1 units, our simula-
tion results would predict that the separation prior
should produce superior estimates of the intercept
and slope variance, but our results say much less
about which method is "best" with this particular

f ðEMPOWER, LMX,CLIMATE,MALE,COHESIONÞ ¼
f EMPOWER j LMX,CLIMATE,MALE,COHESIONð Þf MALE� j LMX,CLIMATE,COHESIONð Þ�

f LMX j CLIMATE,COHESIONð Þ � f COHESION j CLIMATEð Þ � f CLIMATEð Þ
(22)

Table 6. Bayesian and multiple imputation results from the
real data analysis example.

Bayesian Prior Specification

Wishart 1 Wishart 2 Separation Imputation

Parameter Med. SD Med. SD Med. SD Est. SE

Intercept b0 26.78 0.84 26.73 0.87 26.77 0.83 26.74 0.86
LMXw b1 0.66 0.08 0.66 0.08 0.66 0.08 0.66 0.08
LMXb b2 0.11 0.34 0.15 0.31 0.12 0.32 0.08 0.34
Climate b3 0.20 0.06 0.20 0.06 0.20 0.06 0.20 0.05
LMXw � Climate b4 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02
LMXb � Climate b5 –0.05 0.08 –0.03 0.07 –0.05 0.08 –0.06 0.08
Male code b6 1.70 0.33 1.70 0.33 1.72 0.33 1.69 0.33
Cohesion b7 0.21 0.16 0.20 0.17 0.21 0.16 0.22 0.17
Intercept Var. r2u0 0.39 0.30 0.81 0.54 0.28 0.24 0.42 —
Covariance ru0u1 –0.04 0.10 –0.07 0.15 0.002 0.06 �0.06 —
Slope Var. r2u1 0.20 0.08 0.19 0.09 0.22 0.07 0.19 —
Residual Var. r2e 11.96 0.86 12.01 0.90 12.07 0.88 12.05 —

Rights and Sterba (2019) R2 Effect Sizes
Fixed effects b .310 .038 .304 .039 .301 .039 .305 —
Intercept Var. r2u0 .019 .014 .038 .025 .013 .011 .021 —
Slope Var. r2u1 .081 .028 .073 .033 .097 .031 .076 —

Note: Bayes estimates were based on the posterior median (Med.) and
posterior standard deviation (SD). Imputation estimates (Est.) and stand-
ard errors (SE) were based on 100 imputations using the separation
specification.
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configuration. From a practical perspective, a
researcher might approach this uncertainty by pre-
senting a sensitivity analysis that considers the stabil-
ity of the model’s conclusions across different prior
distributions. To facilitate such a comparison, Table 6
also reports Rights and Sterba (2019) effect sizes for
the fixed effects, random intercepts, and random
slopes; Blimp automatically reports these variance
explained statistics with a Wishart prior, and the code
in Section D of the online supplemental illustrates
how to obtain these quantities with the separation
prior. As one might expect, the variance explained by
the fixed effects was virtually unaffected by the choice
of prior, but the R2 statistics for the random effects
were more variable; as a proportion of the total
model-implied outcome variance, the random inter-
cept variance estimates ranged from R2 ¼ .013 to
.038, and the random slope effect sizes ranged from
R2 ¼ .031 to .081. Gauging whether the effect size dif-
ferences are meaningfully is somewhat subjective, but
we believe these quantities convey the impact of the
prior distributions on a more practical metric than
the raw variance components. Online supplemental
documents are an ideal vehicle for reporting alternate
sets of results like those in Table 6.

Discussion

A large body of research supports the use of multiple
imputation as a method to handle missing data.
Despite being a mature methodology, methodologists
have only investigated and fine-tuned multiple impu-
tation’s ability to handle interactions and other non-
linear terms in the last decade. This is usually
achieved with some type of factored regression specifi-
cation that factorizes the joint distribution of the ana-
lysis variables into a primary part representing the
analysis model of interest and a secondary part repre-
senting the distributions of the incomplete predictors.
A growing body of recent research supports these
methods (Bartlett et al., 2015; Enders et al., 2020;
Erler et al., 2019; Grund et al., 2021; L€udtke et al.,
2020a; L€udtke et al., 2020b; Zhang & Wang, 2017),
and our study adds to this growing knowledge base.

The first two simulations examined ideal circum-
stances where the model used to generate the data
matched the true data-generating model. A major
contribution of these studies is the focus on Bayesian
inference with a novel separation strategy that
imposes unique priors on the random effect variances
and their correlation. This approach parameterizes the
random intercepts and random slopes as correlated

phantom latent variables following a specification
described by Merkle and Rosseel (2018, p. 8), but it is
conceptually equivalent to other separation priors sug-
gested in the literature (Barnard et al., 2000; Liu et al.,
2016). Overall, our simulations generally supported
the separation prior in the multilevel context, as the
strategy reduced the bias in the variance components
relative to inverse Wishart priors. An apparent down-
side of the separation prior is that it systematically
underestimates the correlation between the random
intercepts and slopes, although the mean squared
error of this parameter was substantially smaller than
that of multiple imputation (i.e., Bayesian estimates
were closer to the true value, on average, despite
their bias).

Another major contribution of the paper was the
application of the Yeo–Johnson transformation to
non-normal predictors. Both Simulations 3 and 4
investigated forms of between-cluster non-normality.
Simulation 3 considered the case where the level-1
predictor’s latent group means were non-normally dis-
tributed, and Simulation 4 examined a non-normal
level-2 predictor. In Simulation 3, non-normal latent
means affected the recovery of the interaction slope
coefficient, whereas the non-normal moderator in
Simulation 4 primarily impacted the variable’s lower-
order slope. We also conducted a follow-up to
Simulation 4 that considered the Yeo–Johnson trans-
formation, but the procedure was ineffective at
decreasing bias. We attribute this finding to the fact
that the level-2 sample size was very small (J¼ 25
clusters), making it difficult to estimate the shape par-
ameter accurately. It is also important to note that the
transformation was misspecified, as it did not match
the true data-generating function. Future studies
should consider continuous non-normal variables gen-
erated via a Yeo–Johnson transformation.

Finally, Simulation 5 investigated a misspecification
where the level-1 predictor’s within-cluster residuals
were non-normal. This type of non-normality had a
rather catastrophic impact on the slope variance esti-
mates, which were substantially overestimated.
However, follow-up simulations revealed that this bias
was largely due to the missing data process, which
culled values from the sparse upper tail of the within-
cluster distribution, as removing missing values from
the distribution’s dense lower tail dramatically
reduced bias. This simulation also investigated the
Yeo–Johnson transformation and found that it was
generally effective, even though it only approximated
the true data-generating function. This finding is
important because it suggests that the procedure may
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hold promise for applied practice where the popula-
tion distribution functions are virtually never known.

Considered as a whole, our simulations suggest that
there is no reason to prefer Bayesian estimation to
multiple imputation (or vice versa) because the two
procedures are effectively equivalent (setting aside
their important philosophical differences). That said,
there may be practical reasons to choose one over the
other. For example, Bayesian inference is arguably
simpler because estimation happens in one stage
rather than two, as required by multiple imputation.
This is an important practical advantage that positions
Bayesian estimation as a potential replacement for
maximum likelihood estimation, another single-stage
method that is not yet well-suited for these types of
analysis problems. Although Bayesian estimation read-
ily accommodates auxiliary variables as additional
endogenous variables in the factored regression speci-
fication (Keller & Enders, 2022, Chapter 4), one might
instead prefer multiple imputation because auxiliary
variables can simply be added as additional covariates
in the imputation model and ignored in the subse-
quent analysis phase (L€udtke et al., 2020b).
Frequentist analyses may also be more normative in
some disciplines.

The simulation studies had features that potentially
limit their generalizability. First, we only investigated
an analysis model with one predictor at level-1, one
predictor at level-2, and a cross-level interaction
between the predictors. The basic premise of our
study could be expanded to other multilevel inter-
action effects (e.g., a within-cluster interaction involv-
ing a pair of level-1 variables; a between-cluster
interaction involving the group means and the level-2
predictor; Preacher et al., 2010), nonlinear polyno-
mials (e.g., quadratic models), or even combinations
of both. Second, we focused on an analysis model
where the dependent variable was complete and nor-
mally distributed. Future simulations could investigate
categorical outcomes, as the factored regression pro-
cedure readily accommodates binary, ordinal, multica-
tegorical, and even count outcomes. Third, future
studies could consider different forms of misspecifica-
tions (e.g., nonlinear relationships among predictors)
and different types of missing data mechanisms.
Simulation 5 underscores the importance of this
future direction, as the deletion process we used pro-
duced a worse-case scenario that is virtually impos-
sible to model correctly. Finally, future studies are
needed that thoroughly investigate the application of
the Yeo–Johnson transformation to multilevel models.

Our study provided an initial foray into this topic, but
more research is needed.

In conclusion, the simulation results illustrate the
flexibility and limitations of the factored regression
specification for multilevel data with cross-level inter-
action effects. The five simulations illustrated instan-
ces where the method was largely robust to model
misspecifications and revealed situations where it was
vulnerable. At its worst, factored regression was still
far superior to ad hoc methods such as just-another-
variable imputation (see online supplemental mater-
ial). Consistent with the growing body of literature,
this study offers broad support for factored regression
models, but additional research is needed to under-
stand its behavior, especially with non-normal con-
tinuous variables and the promising Yeo–Johnson
transformation.
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