Centre Candidate
Number Number

Candidate Name

EXAMINATIONS COUNCIL OF ZAMBIA

Examination for School Certificate Ordinary Level

Chemistry

Paper 2 Theory

Friday

4 NOVEMBER 2016

Candidates answer on the question paper Additional Information: Mathematical tables/Calculators (non-programmable) Graph paper

Time 2 hours

Instructions to Candidates

Write your **name**, **centre number and candidate number** in the spaces at the top of this page and on any separate answer paper used.

There are twelve (12) questions in this paper.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any three questions.

Write your answers in the separate Answer Booklet provided.

At the end of the examination, fasten your Answer Booklets securely to the question paper.

Information for Candidates

The number of marks is shown in brackets [] at the end of each question or part question.

The **Periodic Table** is printed on page 12.

Cell phones are not allowed in the examination room.

FOR EXAMIN	IER'S USE
Section A	
Section B	
В9	
B10	
B11	
B12	
TOTAL	

5070/2

Page 2 of 12

Section A: [50 marks] Answer all questions in the spaces provided. A1 (a) One of the laboratory rules reads as follows: DO NOT EAT ANYTHING IN THE LABORATORY (i) Explain why this rule is important (ii) State one other laboratory safety rule. [3] (b) Important skills which a chemist needs to have include correct measurement of quantities and choosing correct pieces of apparatus/equipment for carrying out some experimental procedures. State the name of a piece of apparatus which can be used to (i) measure accurately a volume of 0.6cm³. (ii) measure the mass of a cooking oil sample. (iii) hold 50cm³ of solution during a chemical reaction. [3]

[Total 6]

As oil sample was added to aqueous copper (II) sulphate solution forming a brown mixture. The mixture was filtered using the experimental set up shown below.

(a)	State	the	
	(i)	name of the residue	
	(ii)	name of the filtrate	
	(iii)	colour of the filtrate	
			[3]
(b)	The c	copper (II) sulphate solution is a mixture of two compounds.	
	(i)	Name the two compounds present in the copper (II) sulphate solution.	
		and	
	(ii)	Describe in outline how the two compounds in the copper (II) sulphate solution can be separated.	
			[4]
		[То	tal 7]

Page 4 of 12

A4

A3 The diagrams show the nuclei of 5 different atoms.

•••)			0 0 0	
L		М	N	Р	Q
(a)	Whic	h atom has			
(E.2.)(E/)	(i)	an atomic	number of 4?		

	(ii)	mass num	ber of 7?		
			•••••		
(b)			and the state of t	the chemical forminuclei M and Q rea	ula of the compound acted.

(c)	What	type of bon	d is formed for	the reaction in (b)	above?

(d)	Whic	h two letters	represent nucle	ei of atoms which a	are isotopes?
					[Total
reacte meas After	ed with ured at crystal	the acid lea tr.t.p was pi lizing the res	aving a residue or roduced in the r	of copper. 1200cm eaction of zinc and hate solution, 10.7	oric acid and all the zi of hydrogen gas I dilute sulphuric acid 6g of hydrated zinc
	Write	a balanced	The state of the s		of zinc powder with
(a)	dilute	sulphuric ac	cid. Include stat	e symbols.	

Calculate	the percentage composition by	mass of the brass sample.
Calculate	the percentage yield of zinc su	lphate crystals.

Turnover

Page 6 of 12

A5	(a)		ne, chlorine, bromine and iodine are placed in the same Group of dic Table.	the
		(i)	State the common name used to describe elements in this Grou	p.
		(ii)	State the Group in which the elements are placed and explain very they are placed in that Group.	vhy
		(iii)	Which of the above named elements is a solid at room temperature and pressure?	
				[4]
	(b)		rine reacts with sodium bromide to give sodium chloride and line according to the equation below.	
		Cl _{2(g)}	+ $2NaBr_{(aq)} \rightarrow 2NaCl_{(aq)} + Br_{2(aq)}$	
		(i)	Explain why the above reaction is possible.	
		(ii)	What would be observed during this reaction?	

		(iii)	Construct an ionic equation for the reaction above.	
			······	[4]
			[Tot	tal 8]
			1.7.000	

A6 The diagram below shows an electrochemical cell made using zinc and iron dipped in dilute sulphuric acid.

(a)	Wha	t is the overall energy change which occurs in the electrochemical	cell?
		s this represent an endothermic or an exorthermic process?	
	•••••		
	*******		[2]
(b)	can t	ncrease the voltage of the above cell, either the zinc rod or the iron be replaced by another metal rod. Name a suitable metal which call in place of the	
	(i)	zinc rod.	
	(ii)	iron rod.	
			[2]
(c)	Write	e an equation for the reaction occurring at the iron electrode.	
			[1]
		[Tota	15]

Page 8 of 12

A7 16HCl_(aq) + 2KMnO_{4(aq)} \rightarrow 2MnCl_{2(s)} + 2KCl_(aq) + 5Cl_{2(g)} + 8H₂O₍₁₎

The equation above shows a redox reaction used to prepare chlorine gas in the laboratory.

(a)	What is meant by a redox reaction?

(b)	Calculate the oxidation number of chlorine in HCl and explain why a change from HCl to Cl ₂ is an oxidation process.	
		[2]
	***************************************	12

(c)	(i)	Calculate the oxidation number of manganese, Mn in KMnO ₄ and	
		MnCl ₂ .	

(ii) Is a change from KMnO₄ to MnCl₂ oxidation or reduction?

.....

[Total 6]

[3]

[1]

A8 The diagram below shows apparatus used to electrolyse concentrated potassium chloride.

Chemistry/5070/2/2016

	(a)	Sugg	est a suitable material for the electrodes	
		******	***************************************	[1]
	(b)	Write	an ionic equation to show the formation of gas	
		(i)	A	
		(ii)	В	[2]
	(c)		in why potassium metal is not formed at the cathode in this olysis.	

				[1]
	(d)		the overall equation for the electrolysis of concentrated aqueous sium chloride.	
		******		[1]
			[Total	al 5]
Secti	on B (30 ma	arks)	
Ansv	ver thr	ee qu	estions from this section.	
Write	e your	answ	ers in the Answer Booklet provided.	
В9	(a)		er (II) sulphate crystals can be prepared in the laboratory by reacter (II) carbonate with a dilute acid.	ting
		(i)	Name the dilute acid which reacts with copper (II) carbonate to form copper (II) sulphate.	
		(ii)	Write a balanced chemical equation with state symbols for the reaction.	
		(iii)	Describe the procedure for the preparation of copper (II) sulphate solution from copper (II) carbonate and the named acid in (i) above.	[5]
	(b)		be what is observed when an excess of sodium hydroxide solution to a solution containing copper(II) ions and name one product	
	(c)		be a chemical test to show the presence of sulphate ions in the	[3]
	(-)		on and state what would be observed.	[2]
			[Total	

B10 A student prepared a sample of sulphur dioxide in the laboratory by the action of dilute hydrochloric acid on sodium sulphite according to the equation below Na₂SO_{3(s)} + 2HCl_(aq) → 2NaCl_(aq) + H₂O_(l) + SO_{2(g)}
The diagram below shows the apparatus used.

- (a) (i) What is the purpose of concentrated sulphuric acid?
 - (ii) Describe a chemical test for sulphur dioxide.
 - (iii) Sulphur dioxide is one of the major pollutant gases of air. It dissolves in rain water in the presence of oxygen to form sulphuric acid making the rain acidic.

Write a balanced chemical equation for the formation of sulphuric acid by reaction of water with sulphur dioxide and atmospheric oxygen.

State one hazardous effect of acid rain on the environment. [5]

- (b) One of the uses of sulphur dioxide is in the manufacture of sulphuric acid. Sulphur dioxide is reacted with oxygen to form sulphur trioxide according to the equation $2SO_2(s) + O_2(g) \Longrightarrow 2SO_3(g) \Delta H = -385 \text{ KJ/mol}$
 - (i) State the conditions used in the Contact process to get a good yield of sulphur trioxide.
 - (ii) Describe how the sulphur trioxide is safely converted into sulphuric acid.
 - (iii) State one commercial use of sulphuric acid. [5]

[Total 10]

- B11 Common metals extracted in industry include aluminium, copper and zinc.
 - (a) Copy the table below and complete it by naming the main ore and method of extraction of the metal from the ore.

Element	Name of ore	Method of extraction
Aluminium		
Copper		
Zinc		

[3]

- (b) (i) Which of the metals in the table is quickly coated with an oxide layer when exposed to air making it unreactive?
 - (ii) Bronze is an alloy. Which two metals are alloyed to produce bronze?

[2]

[2]

(c) State two reasons why alloys are preferred to pure metals.

s and

- (d) Two of the metals in the table form oxides which react with acids and alkalis.
 - (i) What products are formed when the metal oxides react with an acid and an alkali?
 - (ii) Write an equation for the reaction when one of the metal oxides reacts with dilute hydrochloric acid. [3]

[Total 10]

B12 The structural formula of an ester is given below

- (a) (i) Describe how the above ester can be prepared in the laboratory by naming the reagents and the conditions needed for successful reaction.
 - (ii) What observation will confirm that an ester has been formed in the reaction? [5]
- (b) Terylene is a polyester formed from carboxylic acid and alcohol units.
 - (i) Name two monomers used to make terylene.
 - (ii) Draw the structural formula of terylene showing only four (4) monomer units.
 - (iii) State one use of terylene.

[5]

[Total 10] Turnover

DATA SHEET

The Periodic Table of the Elements

Group																Ī	
_	=											=	2	>	5	₹	0
							- I segration t									3	D.
Linum Linum	Be Be											E Bengar	Catton Catton	4 Z Mmger		Floring 9	
Z3 Sodium Sodium	Mg Mg											27 Auminium 13	28 Skon	Phosphorus	September 32	35.5 Clarent	
39 X Protession 19	Cascum Catchum	Scandium 27	22 Talentum 72 48	51 Venedam 23	CC Cr Cheomann 24	Mn Mangunese 25	8 2 E	52 C. Libert	55 Z S	Couper Couper 29	20 Znc 20c	Gallum 31	73 manum		+	80 Browne 36	84 Krypton 36
8 8 8 8 8	St. Stransfurn St.	98 × vunue	91 Zr Zhooniam 40	NSSSerm Masserm 41	Mo Molybdanum 42	Tonester			A STATE OF THE PARTY OF THE PAR	4.00	Cd Cadmum Cadmum 48			Sb Antenony 51	128 Te Tetturium 52	127 1 Udint 53	Xe Xe Xe
CS Caessum 55	137 Banum 86	La Lantenum 57	178 ###### 27	Ta Tarriohim 73	184 W Tungsten 74	Re Rhemann 75	190 Osmiam 76		195 Patrum 78	197 Au Sald 79	Hg Mecury 80		207 Pb lead	209 Bi Biemuth 83	Po Polonum 84	Att Astatine	R Sadon
Frandum 87	Radum Facture	Ac Activium 899															
90-10	*58-71 Lanthanoid series +90-103 Actinoid series	series		Ce Cerlum 58	Pr Pr Presendymum 59	Neodyman 60	Pm Promettern 61	Smartun 62	152 Europhim 63	157 Georgianu E 48	159 Tertarm 155	Dy Dyspmettum 66	Homen Homen 87	167 Er £rbum 68	Tatura Thatura	Yb Wiletian 70	Lu Luculum 71
Key	0 × 11	u = relative atomic mass X = atomic symbol b = pecton (atomic) number	number	752 Tonum 80	Protectivism 91	Unantum 92	Nephriur 93	P. Putoniu	Am American	5 8 B	Bk Bertalum 97	2 am 8	Es Ensteinism 99	Femilian 100	Md Nerodelevium 101	Notesia 102	Lewment 103

NA = 6.0 × 10²³/mol; 1F = 96500C. Chemistry/5070/2/2016

DOWNLOAD TEXTBOOKS FOR FREE!

www.eczpastpapers.xyz

INSTAGRAM: ECZPASTPAPERS

FACEBOOK: ECZPASTPAPERS

YOUTUBE: ECZPASTPAPERS