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ARE WIREFRAMES ESSENTIAL FOR GEOLOGICAL 

MODELLING?

Explicit modelling workflow

FIG 1 - Comparison between the traditional explicit modelling workflow 
(left) and the direct-to-block implicit modelling workflow (right). Greyed 
areas are time-consuming parts of the explicit modelling workflow. Note 

that the triangulation in the implicit workflow is only used for a visual check 
of the modelling and the wireframes are not used for the construction of the 

block model.
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Implicit modelling workflow
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FIG 2 - Two-dimensional section through a three-dimensional object showing: 
(A) prism volumes formed from triangular facets and the centroid of the object. 

The red volume is positive, the blue volume is negative and the sign of the 
volume depends on the location of the object’s centroid with respect to the 
facing of the triangular facet. Adding all volumes will give the total volume 

of the object. (B) Determining whether a point is located inside or outside the 
object is done by searching for the closest triangular facet and determining the 

sign of the triangular facet. If it is positive, as in the case of P1, it is inside; if 
it is negative, then it is outside (P2). (C) If a triangulation segment is missing, 

it cannot be determined if the point (P1) is within the object. (D) Implicit 
function can determine whether P1 is inside or outside the object simply by 

inputting the location (P1x, P1y, P1z) through function f(Waste-Ore). The sign 
of the returned value indicates the position of the point.

A

C

B

D



Chapter 3 | Geological Interpretation and Geological Modelling

250 Mineral Resource and Ore Reserve Estimation

P1
P1x P1y P1z

f
f P1

f f
then P1

P1

CASE STUDY – SAVAGE RIVER MAGNETITE 

DEPOSIT

FIG 3 - Geological setting and location of the Savage River magnetite deposit in north-west Tasmania.
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SAVAGE RIVER MINE EXPLICIT MODELLING 

WORKFLOW

Geological interpretation

Assay methods

2

Sectional interpretation

FIG 4 - Geology of the North Pit, Savage River magnetite deposit.
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Flitch interpretation

Wireframe construction

Time frame requirements for the explicit modelling 

workflow

SAVAGE RIVER MINE DIRECT-TO-BLOCK IMPLICIT 

MODELLING WORKFLOW

FIG 5 - Geological cross-section 9540 mN, Savage River magnetite deposit. 
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Implicit modelling of multiple categorical data

 et al

 et al
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Task Days (hours)

Data collation and plotting 40 cross-sections 2 (16)

Sectional interpretation 10 (80)

Sectional digitising 5 (40)

Slicing and plotting 110 flitch plans 1 (8)

Flitch interpretation 5 (40)

Flitch digitising 5 (40)

Wireframe modelling and validation 15 (120)

Total 43 days (344 hours)

TABLE 1
Explicit modelling workflow at Savage River magnetite mine. Time estimates 

are based on a five-day, eight-hour/day working week for one person working 
continuously, although different people may contribute in parallel to different 

stages of the modelling.

FIG 6 - (A - E) Multiple implicit functions representing five different contact 
relationships at the Savage River deposit. An idealised section viewing north 

(similar to Figure 5). The positive areas of the functions are shown in grey; 
white shows the negative areas. The functions are placed in order of precedence 
relating to geology. (F) Shows the final model taking overlapping relationships 

into account. L = low-grade ore; M = medium-grade ore; H = high-grade  
ore. Points P1 and P2 are discussed in the text.
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Savage River categorical implicit functions

Topography

f
f

Eastern contact fault
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Low-grade and medium- to high-grade ore contact

f
f

f

f

f
f

Medium-grade and high-grade ore contact
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Direct-to-block model output from implicit functions
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Time frame requirements for the implicit modelling 

workflow

Comparison between block model results

FIG 7 - An input point must be passed through the functions in this order of 
precedence to determine the category at any point (air, waste, or three of the 

ore grade categories). Obtaining a block model repeats this process at grid 
points to determine the proportion of each category within a block.

Task Minutes (hours)

Setting up project and import data 60 (1)

Defining the topography function f(Topo) 3 (0.05)

Defining the ECF function f(ECF) 60 (1)

Defining the waste-ore contact function 

f(Waste-Ore)

20 (0.33)

Defining the low-grade to medium and high-

grade contact function f(LOre-MHOre)

20 (0.33)

Defining the medium-grade to high-grade 

contact function f(MOre-HOre)

20 (0.33)

Percentage proportional equivolumetric block 

model (10 × 10 × 5 m)

660 (11)/165(2.75)

Subdivided block model (10 × 10 × 5 m and 

5 × 5 × 2.5 m)

720 (12)/180 (3)

Total 1563 minutes (26 hours) for single 

core CPU 528 minutes (8.8 hours) 

for a quad-core CPU

Notes: the last two tasks generating the block models require no human intervention and 

represent computational time only. The computation tasks were performed on a single core 

central processing unit (CPU), but an estimate for quad-core CPU is also shown. The savings in 

computational time is proportional to the number of CPU cores used for computing the block 

models. With a quad-core CPU, the block model computation can be brought down to one 

quarter of the time, thus reducing the total time taken from 26 hours to 8.8 hours. ECF – eastern 

contact fault.

TABLE 2
Implicit modelling workflow times for the North Pit Savage River magnetite 

mine data set. 

FIG 8 - Evaluation points weighting scheme for 3D integration to compute 
the proportion of categories within (A) 10 × 10 × 5 m blocks and 

(B) 5 × 5 × 2.5 m blocks. 
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CONCLUSIONS

 • Substantially reduced modelling time.

Category NP307 block model volume  

(% of total)

Direct-to-block equivolumetric  

(10 × 10 × 5 m) block model volume (% of total)

Direct-to-block multivolumetric (10 × 10 × 5 m, 

5 × 5 × 2.5 m) block model volume (% of total)

Waste 113.4 (63.4%) 136.6 (71.0%) 138.2 (71.8%)

Low-grade ore 12.2 (7.2%) 17.2 (8.9%) 16.2 (8.4%)

Medium-grade ore Not differentiated with high-grade ore 21.6 (11.2%) 20.6 (10.7%)

High-grade ore 42.8 (25.4%) 16.9 (8.8%) 17.4 (9.0%)

Total volume (× 106 m3) 168.4 of which 55.0 is ore 192.3 of which 55.7 is ore 192.3 of which 54.2 is ore

TABLE 3
Volumetric comparison of the block models for the entire study area. Volumes are expressed in million cubic metres. The high-grade ore in the 

NP307 model is a combination of medium- and high-grade ore.

FIG 9 - Vertical section at 9540 mN (same section as Figure 5). NP307 block model from (A) explicit modelling and (B) subblocked model from implicit modelling. 
Modelled categories shown are air (blue), waste (grey), low-grade ore (green), medium-grade ore (orange) and high-grade ore (red). In the NP307 model, the 

medium- and high-grade ore (red) is not distinguished. The data is trimmed to 60 m anisotropic distance from the drill hole data. Scale bar is 300 m.

A B
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 •

 • Superior accuracy.

 • Better incorporation of other data to reduce risk.

Category NP307 block model volume  

(% of total)

Direct-to-block equivolumetric  

(10 × 10 × 5 m) block model volume (% of total)

Direct-to-block multivolumetric (10 × 10 × 5 m, 

5 × 5 × 2.5 m) block model volume (% of total)

Waste 1.43 (22.5%) 1.60 (24.7%) 1.71 (26.2%)

Low-grade ore 0.38 (5.9%) 0.48 (7.4%) 0.41 (6.3%)

Medium-grade ore Not differentiated with high-grade ore 1.64 (25.2%) 1.60 (24.5%)

High-grade ore 4.56 (71.6%) 2.77 (42.6%) 2.80 (43.0%)

Total volume (× 106 m3) 6.37 of which 4.81 is ore 6.50 of which 4.89 is ore 6.52 of which 4.81 is ore

TABLE 4
Volumetric comparison of the block models for a smaller sample volume. The box extents are minimum (6655, 9540, -88) and maximum (6840, 9720, 100).  

Volumes are expressed in million cubic metres. The high-grade ore in the NP307 model is a combination of medium- and high-grade ore.

FIG 10 - Plan section at 0 mRL of the North Pit deposit (see Figure 4). NP307 block model from (A) explicit modelling and (B) subblocked model from implicit 
modelling. Modelled categories shown are waste (grey), low-grade ore (green), medium-grade ore (orange) and high-grade ore (red). In the NP307 model, the 

medium- and high-grade ore (red) is not distinguished. The data is trimmed to 60 m anisotropic distance from the drill hole data. Scale bar is 500 m.
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 • Rapid creation of alternative models.

AUTHORS’ NOTE
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FIG 11 - Block models compared in a small volume, with (A) NP307 explicit model output and (B) subblocked implicit model output. Block centroids  
are shown. Grade control data is not shown. Volumetric comparison of categories are summarised in Table 4. Scale bar is 300 m.
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