A two-dimensional decomposition approach for matrix completion through gossip

Mukul Bhutani and Bamdev Mishra

Problem

Approximating a matrix by decomposing it into two low rank factor matrices. Used in recommendation systems.

\[X = U W^T \]

Challenges:
- Large matrix dims (e.g: netflix dataset: \(\sim 18000 \times 4800000 \)).
- Efficient computations needed.
- Privacy and security concerns!!

Previous Work

1. Generally treated as an optimization problem; solved using gradient search [1, 2].
2. Parallel versions of gradient search still require a central server [3, 4].
3. [5] followed \(X = U W^T \) such that each row of \(X \) and \(U \) is stored in different nodes. A public matrix \(W \) is exchanged between the nodes. Random walks are done to bring convergence in \(W \). However, here too a single agent takes care of the complete row.

Our Decomposition Pattern

1. \(X \) is decomposed into a \(p \times q \) dimensional rectangular grid of blocks.
2. Each \(X_{ij} \) can then be factored as \(U_{ij} W_{ij}^T \) as usual.
3. Each block just gossips with its neighbors and tries to reach to a consensus.
4. rows => consensus in \(U \) & each column => consensus for \(W \).
5. All these \(U \)s and \(W \)s combined together to form the universal \(U \) and \(W \).
6. This communication pattern leads to groups of blocks (\(S_{upper} \) & \(S_{lower} \)) which can be thought of as gossiping.

Problem Formulation

- Model as optimization problem. Objective function derived by analyzing \(S_{upper} \) and \(S_{lower} \).
- For \(S_{upper} \), for blocks \((i, j)\) and \((i+1, j)\) convergence in \(W_s \); for the blocks \((i, j)\) and \((i, j+1)\) \(\Rightarrow\) convergence in \(U_s \).
- Cost of a structure as comprising of two components: \(f \) and \(d \).
- \(f \Rightarrow\) measures how close it is to the original matrix.
- \(d \Rightarrow\) measures consensus between two adjacent \(U_s \)s (denoted as \(d^U \)) and \(W_s \)s (denoted as \(d^W \)).

For a structure pivoted at \((i, j)\):

\[f_{ij} = \|X_{ij} - U_{ij} W_{ij}^T\|_F^2, \quad d_{ij}^U = \|U_{ij} - U_{ij+1}\|_F^2, \quad \text{and} \quad d_{ij}^W = \|W_{ij} - W_{ij+1}\|_F^2. \]

Consequently, the total cost \((g)\) for a structure turns out to be:

\[g_{ij}^{upper} = f_{ij} + f_{ij+1} + f_{i+1,j} + \rho \|U_{ij} - U_{ij+1}\|_F^2 + \rho \|W_{ij} - W_{ij+1}\|_F^2, \]

where \(\rho \) is the weight factor. For \(S_{lower} \), we can derive the costs in similar fashion. For decomposition of \(X \) into \(p \times q \) end goal: minimize the sum of costs for all \(S_{upper} \)s and \(S_{lower} \)s possible, i.e.,

\[\min_{U_{ij}, W_{ij}} \sum_{i=1, j=1}^{p,q} g_{ij}^{upper} + g_{ij}^{lower} + \lambda \|U_{ij}\|_F^2 + \lambda \|W_{ij}\|_F^2, \]

\(\lambda \) is the regularization parameter added according to [6].

Algorithm

Algorithm 1: Basic update algorithm via SGD

input: Decomposed blocks for \(X \) and rank \(r \).
output: \(U_s, W_s \).

\[\begin{align*}
1. & \text{Initialize all } U_s \text{ and } W_s. \\
2. & \text{while convergence is not reached do} \\
3. & \quad S_{upper} = \text{randomly pick a valid structure.} \\
4. & \quad [U_s, W_s] = \text{updateThroughSGD}([X_s, S_{extractor}]). \\
5. & \quad \text{Check for convergence.} \\
6. & \text{end}
\end{align*} \]

Note: The number of times a particular structure may be selected is not equal for all and hence a normalization constant should be appropriately multiplied. See paper for details.

Experimentation: real datasets

RMSE on some popular datasets.

<table>
<thead>
<tr>
<th>Number of blocks (p \times q)</th>
<th>Rank (2 \times 2)</th>
<th>(3 \times 3)</th>
<th>(4 \times 4)</th>
<th>(5 \times 5)</th>
<th>(10 \times 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieLens 1 million</td>
<td>5</td>
<td>0.87</td>
<td>0.99</td>
<td>1.04</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.86</td>
<td>0.99</td>
<td>1.03</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.86</td>
<td>0.99</td>
<td>1.03</td>
<td>0.99</td>
</tr>
<tr>
<td>Netflix</td>
<td>5</td>
<td>1.03</td>
<td>0.98</td>
<td>1.13</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.00</td>
<td>0.98</td>
<td>1.14</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>1.00</td>
<td>1.11</td>
<td>1.16</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Experimentation: synthetic datasets

Empirical proof of convergence of the algorithm. Cost as function of number of iterations.

<table>
<thead>
<tr>
<th>(p \times q) (dimensions of decomposed grid)</th>
<th>(\text{Expt#1})</th>
<th>(\text{Expt#2})</th>
<th>(\text{Expt#3})</th>
<th>(\text{Expt#4})</th>
<th>(\text{Expt#5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(500 \times 500)</td>
<td></td>
</tr>
<tr>
<td>(500 \times 500)</td>
<td></td>
</tr>
<tr>
<td>(5 \times 5)</td>
<td>(6 \times 6)</td>
<td>(5 \times 5)</td>
<td>(5 \times 5)</td>
<td>(5 \times 5)</td>
<td></td>
</tr>
<tr>
<td>NumIterations</td>
<td>(\text{Exp1})</td>
<td>(\text{Exp2})</td>
<td>(\text{Exp3})</td>
<td>(\text{Exp4})</td>
<td>(\text{Exp5})</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1.45e+05</td>
<td>1.45e+05</td>
<td>1.45e+05</td>
<td>1.44e+05</td>
<td>6.42e+05</td>
</tr>
<tr>
<td>80000</td>
<td>6.92e+03</td>
<td>1.32e+01</td>
<td>1.40e+00</td>
<td>1.47e+02</td>
<td>1.26e+05</td>
</tr>
<tr>
<td>160000</td>
<td>9.46e+06</td>
<td>7.65e+05</td>
<td>1.44e+04</td>
<td>9.94e+05</td>
<td>2.53e+06</td>
</tr>
<tr>
<td>240000</td>
<td>1.07e+05</td>
<td>1.25e+05</td>
<td>1.04e+02</td>
<td>2.58e+03</td>
<td>8.62e+05</td>
</tr>
<tr>
<td>260000</td>
<td>1.21e+05</td>
<td>4.41e+05</td>
<td>7.99e-02</td>
<td>7.36e-02</td>
<td></td>
</tr>
<tr>
<td>280000</td>
<td>1.93e+05</td>
<td>9.28e+05</td>
<td>2.09e-02</td>
<td>9.24e-03</td>
<td></td>
</tr>
<tr>
<td>300000</td>
<td>2.09e+05</td>
<td>6.44e-03</td>
<td>6.44e-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400000</td>
<td>convergence</td>
<td>convergence</td>
<td>convergence</td>
<td>convergence</td>
<td>convergence</td>
</tr>
</tbody>
</table>

References