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Problem
Approximating a matrix by decomposing it into
two low rank factor matrices. Used in recommen-
dation systems.

X = U W>

m× n m× r

r × n

r � m,n

Challenges:

• Large matrix dims (e.g: netflix dataset:
∼ 18000× 480000).
• Efficient computations needed.
• Privacy and security concerns!!

Previous Work
1. Generally treated as an optimization prob-

lem; solved using gradient search [1, 2].

2. Parallel versions of gradient search still re-
quire a central server [3, 4].

3. [5] followed X = UW> such that each row
of X and U is stored in different nodes. A
public matrix W is exchanged between the
nodes. Random walks are done to bring
convergence in W. However, here too a sin-
gle agent takes care of the complete row.

Our Decomposition Pattern
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Example Decomposition

1. X is decomposed into a p×q dimensional rectan-
gular grid of blocks.

2. Each Xij can then be factored as Uij W>
ij as

usual.
3. Each block just gossips with its neighbors and

tries to reach to a consensus.
4. rows => consensus in U & each column => con-

sensus for W.
5. All these Us and Ws combined together to from

the universal U and W.
6. This communication pattern leads to groups of

blocks (Supper& S lower) which can be thought of
as gossiping.

Problem Formulation
• Model as optimization problem. Objective function derived by analyzing Supperand S lower.
• For Supper, for blocks (i, j) and (i+ 1, j) convergence in Ws ; for the blocks (i, j) and (i, j + 1) =>

convergence in Us.
• Cost of a structure as comprising of two components: f and d.
• f => measures how close it is to the original matrix .
• d => measures consensus between two adjacent Us (denoted as dU ) or Ws (denoted as dW ).

For a structure pivoted at (i, j):

fij =
∥∥Xij −UijW

>
ij

∥∥2
F
, dUij = ‖Uij −Uij+1‖2F , and dWij = ‖Wij −Wi+1j‖2F ,

Consequently, the the total cost (g) for a structure turns out to be:

gupperij = fij + fi+1j + fij+1 + ρ ‖Uij −Uij+1‖2F + ρ ‖Wij −Wi+1j‖2F .

where ρ is the weight factor. For S lower, we can derive the costs in similar fashion. For decomposition of
X into p× q end goal: minimize the sum of costs for all Supperand S lowerpossible, i.e.,

min
Uij ,Wij

p,q∑
i=1,j=1

gupperij + glower
ij + λ ‖Uij‖2F + λ ‖Wij‖2F ,

λ is the regularization parameter added according to [6].

Experimentation: real datasets
RMSE on some popular datasets.

Number of blocks p× q

Rank 2× 2 3× 3 4× 4 5× 5 10× 10

MovieLens 1 million
5 0.87 0.99 1.04 0.99 1.13

10 0.86 0.99 1.03 1.00 1.22
15 0.86 0.99 1.03 0.99 1.34

MovieLens 20 million
5 0.95 0.92 0.93 0.99 1.01

10 0.96 0.93 0.93 1.02 1.11
15 0.96 0.94 0.93 1.05 1.24

Netflix
5 1.03 0.98 1.13 1.06 1.02

10 1.00 0.98 1.14 1.02 1.02
15 1.00 1.11 1.16 1.02 1.03

Algorithm

Algorithm 1: Basic update algorithm via
SGD

input : Decomposed blocks for X and rank r.
output: Us, Ws.

1 Initialize all Us and Ws.
2 while convergence is not reached do
3 Sstruct= randomly pick a valid structure.
4 [Us, Ws] = updateThroughSGD(Xs, Sstruct).
5 Check for convergence.
6 end

Note: The number of times a particular structure
may be selected is not equal for all and hence a
normalization constant should be appropriately
multiplied. See paper for details.
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Experiments: synthetic datasets
Empirical proof of convergence of the algorithm. Cost as function of number of iterations.

Exp#1 Exp#2 Exp#3 Exp#4 Exp#5
m× n (input matrix dimensions) 500× 500 500× 500 500× 500 500× 500 5000× 5000

p× q (dimensions of decomposed grid) 4× 4 4× 5 5× 5 6× 6 5× 5

NumIterations

0 1.45e+05 1.45e+05 1.45e+05 1.44e+05 6.42e+05
80000 6.92e-03 1.32e-01 1.45e+00 4.74e+02 1.26e+05
160000 9.62e-06 7.65e-05 1.44e-04 9.94e-01 2.83e+02
240000 convergence 1.07e-05 1.25e-05 1.04e-02 2.85e-01
260000 convergence 1.21e-05 4.41e-03 7.39e-02
280000 convergence 1.96e-03 2.09e-02
300000 9.28e-04 6.44e-03
400000 convergence convergence


