Centre Number									Examination Number							
			\cdot													

EXAMINATIONS COUNCIL OF ZAMBIA

Examination for General Certificate of Education Ordinary Level

Science
 Paper 1

Additional Material(s):

Electronic calculator (non programmable) and / or Mathematical tables
Graph paper
Soft clean eraser
Soft pencil (type B or HB is recommended)

Time 2 hours

Marks: 85

Instructions to Candidates

1 Write the centre number and your examination number on every page of this question paper and on the separate Answer Booklet/paper provided.
2 There are three sections in this paper.
(i) Section A

There are twenty questions in this section. Answer all questions. For each question, there are four possible answers, A, B, C and D. Choose the one you consider correct and record your choice by marking it with a cross (X) on the answer grid provided on the question paper.
(ii) Section B

Answer all questions. Write your answers in the spaces provided on the question paper.
Read yery carefully the instructions on the answer sheet.
(iii) Section C

Answer any two questions. Write your answer on a separate answer booklet provided.

Information for candidates

1 Any rough working should be done in this question paper.
2 At the end of the examination:
(i) Fasten the separate answer booklet/papers used securely to the question paper.
(ii) Circle the numbers of the section C questions you have answered in the grid below.

Candidate's Use	Examiner's Use
Section A	EGCEGCEGCEGCEGC GCFGCFGCEGCEGCE
Section B	GCEGCEGCEG
Section C EGC 1	EGCEGCEGCE
2	GCEGCE
3	
Total	CEGCEGCEGCEG

3 The Periodic Table is printed on page 18.
4 Cell phones are not allowed in the examination room.
5 Do not open this booklet until you are told to do so.

Page 2 of 19

ANSWER GRID FOR SECTION A

Put a cross (\mathbf{X}) on the letter indicating your choice of answer.

1	A	B	C	D

$\mathbf{2}$	A	B	C	D

3	A	B	C	D

4	A	B	C	D

$\mathbf{5}$	A	B	C	D

6	A	B	C	D

7	A	B	C	D

8	A	B	C	D

9	A	B	C	D

10	A	B	C	D

11	A	B	C	D

12	A	B	C	D

13	A	B	C	D

14	A	B	C	D

15	A	B	C	D

16	A	B	C	D

17	A	B	C	D

18	A	B	C	D

19	A	B	C	D

20	A	B	C	D

Centre Number		Examination Number										

SECTION A [20 marks]

Answer all the questions on the answer grid provided.
A1 How many significant figures are there in the number 0.050200 ?
A 2 ,
B 3 .
C 5
D 6

A2 A stone of mass 400 g is lowered into a measuring cylinder containing water. The water level rises from $300 \mathrm{~cm}^{3}$ to $500 \mathrm{~cm}^{3}$. What is the density of the stone?
A $\quad 0.50 \mathrm{~g} / \mathrm{cm}^{3}$
B $\quad 0.80 \mathrm{~g} / \mathrm{cm}^{3}$
C $\quad 1.33 \mathrm{~g} / \mathrm{cm}^{3}$
D $\quad 2.00 \mathrm{~g} / \mathrm{cm}^{3}$
A3 The graph below shows the speed of an athlete during a race.

What is the distance travelled by the athlete?
A 50 m
B 65 m
C $\quad 75 \mathrm{~m}$
D 90 m
A4 A 4 kg brick is dropped from the top of a building whose height is 30 m . What is the velocity with which it reaches the ground?

A $\quad 7.5 \mathrm{~m} / \mathrm{s} \mathrm{L}$
B $\quad 24.5 \mathrm{~m} / \mathrm{s}$
C $120.0 \mathrm{~m} / \mathrm{s}$.
D $\quad 1200.0 \mathrm{~m} / \mathrm{s}$

Page 4 of 19

A5 The diagram below shows an object moving with a constant velocity when a force E of 30 N is applied.

What is the value of the opposing force \mathbf{F} ?
A 0 N
B $\quad 15 \mathrm{~N}$
C 30 N
D 300 N
A6 A 60 N object is placed on a uniform bar that was balanced at its mid-point as shown in the diagram below.

Which of the following will rebalance the beam?

		Magnitude of force
A	Position of force	
B	30 N	60 cm to the left of the pivot
C	30 N	60 cm to the right of the pivot
D	45 N	45 cm to the right of the pivot
	90 N	20 cm to the left of the pivot

A7 A motor is used to pull a 10 kg box along a 5 meter long incline to the top of the decline as shown in the diagram below.

Ignoring all frictional forces, determine the work done against gravity in pulling the box from the foot of the incline to the top of the decline. (Take g as $10 \mathrm{~N} / \mathrm{kg}$)
A 40J
B 50 J
C 400J
D 500J

Page 5 of 19

A8 A girl whose mass is 50 kg climbs a ladder of height 8 m in 10 seconds. What is the power developed by the girl?
A 40W
B 400 W
C 500 W
D 5000 W
A9 A machine with a velocity ratio of 6 requires 800 J of work to raise a load of 60 kg through a vertical distance of 1 m .

Find the efficiency of the machine.
A 0.45
B 0.75
C $\quad 4.5$
D $\quad 75.0$
A10 The diagrams below show the length of mercury threads at the ice and steam points.

What will be the temperature if the length of the mercury thread is 25 mm ?
A $\quad 5^{\circ} \mathrm{C}$
B $\quad 8^{\circ} \mathrm{C}$
C $\quad 33^{\circ} \mathrm{C}$
D $\quad 50^{\circ} \mathrm{C}$

Page 6 of 19

Centre Number										Examination Number						
		\cdot														

A11 The diagram below shows a cylinder with a gas trapped inside at a constant temperature. The length of the gas column is 50 cm and the pressure of the gas is 20 Pa .

If the piston is pushed a distance of 30 cm inside, what is the new pressure of the gas?
A 8 Pa
B 12 Pa
C 30 Pa
D 50 Pa
A12 Which of the following correctly gives the properties of a sound wave?

	Nature	Speed in air
A	Longitudinal	$340 \mathrm{~m} / \mathrm{s}$
B	Longitudinal	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C	Transverse	$340 \mathrm{~m} / \mathrm{s}$
D	Transverse	$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

A13 The diagram below shows the movement of a ray of light from air to plastic.

Which ratio is the refractive index of air?
A $\frac{\operatorname{Sin} 45^{\circ}}{\operatorname{Sin} 60^{\circ}}$
B $\frac{\operatorname{Sin} 45^{\circ}}{\operatorname{Sin} 30^{\circ}}$
C $\frac{\operatorname{Sin} 30^{\circ}}{\operatorname{Sin} 45^{\circ}}$
D $\frac{\operatorname{Sin} 60^{\circ}}{\operatorname{Sin} 45^{\circ}}$

	Cantesumer	Eamamamumber

Page 7 of 19
A14 The diagram below shows the main sections of the electromagnetic spectrum in order of increasing frequency.

Which of the following is an application used by \mathbf{Q} ?
A Sterilisation
B Satellite television
C Killing cancerous cells
D Television remote controller
A15 The diagram below shows a coil in a magnetic field, connected to a DC supply.

As the current I flows in the coil, in which direction will the coil rotate and what must be connected to parts \mathbf{R} and \mathbf{T} ?

	Direction of rotation of coil	Part Connected to \mathbf{R} and \mathbf{T}
A	Clockwise	Split-ring commutator
B	Clockwise	Slip-rings
Cy	Anticlockwise	Split-ring commutator
D	Anticlockwise	Slip-rings

A16 The diagram below illustrates what happens when metal balls \mathbf{H}, \mathbf{J} and \mathbf{K} suspended by insulating threads are brought closer to each other.

If the charge on \mathbf{H} is positive, what charges are on ball \mathbf{J} and \mathbf{K} ?

J

A Negative
B Negative
C Positive
D Negative

K
Positive
Negative
Negative
Positive

A17 Two resistors are connected in a circuit as shown in the diagram below.

Which labelled ammeter has the highest current reading?
A W
B X
C Y
D Z
A18 What is the cost of running a 100W lamp for 30 minutes if electrical energy costs K10 per unit.

A K0.05
B K0.50
C K30.0
D K300.0
A19 The following can be used in detecting alpha particles, beta particles and gamma rays.
1 Photographic film
2 Diffusion cloud chamber
3 G-m tube
4 Spark-counter
Which of the above cannot be used to detect beta particles and gamma rays?
A 4
B 1 and 4
C 2 and 4
D 1, 2 and 3
A20 A radioactive source which has a half-life of 1 hour gives a count rate of 100 counts per second at the start of an experiment and 25 counts per second at the end.

How long in hours did the experiment take?
A 1
B 2
C 3
D 4

Centre Number									Examination Number						

Section B [45 marks]
Answer all questions in this section.
Write your answers in the spaces provided on the question paper.
B1 An object of mass 75 kg on earth is taken to the moon where the gravitational field strength is $1.6 \mathrm{~N} / \mathrm{kg}$.
(a) What is the mass of the object on the moon?
\qquad
(b) Calculate the weight of the object on the moon.

Weight:
(c) Give two differences between mass and weight.
(i) \qquad
(ii) \qquad
[Total: 5 marks]
B2 A bullet of mass 50 g moving with an initial speed of $500 \mathrm{~m} / \mathrm{s}$ penetrates a wall and comes to rest in 0.2 seconds.
(a) Calculate the deceleration of the bullet over the 0.2 seconds.

Centre Number		Examination Number											

(b) Determine the retarding force acting on the bullet.

Force:

B3 Figure B3.1 below shows a pulley systems.

Figure B3.1
(a) State the velocity ratio of the pulley shown in figure B3.1 above.
\qquad
(b) If the efficiency of the pulley is 75%, what is its M.A?
M. A:
(c) If the load is 120 N , what is the size of the effort?

(d) What work is done by the effort if the load is lifted 0.5 m ?

Work done:
[Total: 7 marks]
B4 Waves travel at a speed of $30 \mathrm{~m} / \mathrm{s}$ through a medium. If 10 waves pass through a point per second,
(a) calculate the
(i) frequency of the wave,

Frequency:
(ii) wavelength of the wave.

Wavelength:
(b) What does loudness of a sound depend on?
\qquad

Page 12 of 19

B5 Figure B5.1 below shows a ray of light moving from one medium to another.

Figure B5.1
(a) Find the angle of refraction.

Angle of refraction:
(b) Calculate the refractive index of medium \mathbf{B}.

Refractive index
(c) Which of the two media is denser than the other?
\qquad

B6 Figure B6.1 shows an object \mathbf{O} placed in front of a thin converging lens of focal point \mathbf{F}.

Figure B6.1
(a) Complete the ray diagram to locate the position of the image formed by the converging lens.
(b) State the characteristics of the image formed.
\qquad
(c) Calculate the magnification of the lens.

Magnification:
[Total: 5 marks]
B7 A step-up transformer increases the voltage of an a.c. supply from 110 V to 220 V . The primary coil dissipates a power of 1.1 kW and the transformer has an efficiency of 100%.
(a) If the number of turns in the primary coil is 400 , how many turns are in the secondary coil?

Page 14 of 19

| Centre Number | | | Examination Number | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | . | | | | | | | | |

(b) How much current flows in the
(i) primary coil,

> Ip:
\qquad
(ii) secondary coil?

Is:

[Total: 6 marks]
B8 Figure B8.1 below shows two pairs of 3.0Ω resistors connected to a 6.0 V battery.

Figure B8.1
Calculate the
(a) resistance in the circuit between \mathbf{M} and \mathbf{N},

Resistance:
(b) current through the battery,

Page 15 of 19
(c) power developed in the battery.

B9 Radioactive iodine is used to treat tumours of the thyroid gland. It decays by emitting beta particles and gamma radiation.

The beta emitting process is represented by the following equation:

$$
{ }_{53}^{131} \mathrm{I} \rightarrow{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Xe}+{ }_{-1}^{0} \mathrm{e}
$$

(a) What is the nucleon number of the new nucleus Xe formed?

Nucleon Number:
(b) The half-life of iodine-131 is 8 days. The total dose of iodine given to a patient initially emits 4×10^{8} rays per second.
How many gamma rays does the total dose of iodine emit each second after 24 days?

Page 16 of 19

Centre Number	Examination Number										
		.									

Section C [20 marks]

Answer any two (2) questions from this section. Write your answers in the separate Answer Booklet provided.

C1 (a) (i) Explain the term absolute zero temperature.
(ii) State Charles' law.
(b) The table C1.1 below displays results of temperature against volume of air at a constant pressure of 720 mm Hg .

Temp $\left({ }^{\circ} \mathrm{C}\right)$	17	28	39	60	80	100
Volume $\left(\mathrm{cm}^{3}\right)$	7.5	7.9	8.1	8.7	9.1	9.6
Temp (K)						

Table C1.1

(i) Copy and complete the table above.
(ii) Plot a graph of volume $\left(\mathrm{cm}^{3}\right)$ against temperature (K).
(iii) From the graph, determine the volume of the air when the temperature was $77^{\circ} \mathrm{C}$.
[Total: 10 marks]
C2 Figure C2.1 below shows how a solar heater on a house roof is used to warm up water for a house.

Figure C2.1

Centre Number									Examination Number						

Page 17 of 19
(a) Why is the panel in the solar heater black?
(b) Why is there an insulating layer behind the panel?
(c) How does the water in the tank get heated?
(d) On average, each square metre of the solar panel receives 1000 Joules of energy from the sun every second. Using this information, calculate the power input in kilowatts of the panel if its surface area is $2 \mathrm{~m}^{2}$.
(e) The solar heater in the diagram has an efficiency of 60% (it wastes 40% of the solar energy it receives). What area of panel would be needed to deliver heat at the same rate, on average, as a 3 kW immersion heater?
[Total: 10 marks]

C3 A radioactive substance \mathbf{B} has a half-life of 4 years and undergoes radioactivity by giving out beta (β) radiation.
(a) Which of the containers aluminium, thin plastic or lead, lined would you use to safely store substance \mathbf{B} ?
(b) Copy and complete the table C3.1

Date	Mass of original radioactive substance left
1 July 2008	8 kg
1 July 2012	
1 July 2020	

Table C3.1

Centre Number	Examination Number										
		\cdot									

(c) A Geiger counter was used to measure the activity (in counts per minute) from a radioactive sample in the laboratory over a period of years. Over this period, the background radiation was regularly measured at 4 counts/minute.

Table C3.2 shows the results.

Time in years	0	1	2	3	4	5	6
Recorded activities in counts/min	124	80	52	34	23	16	12
Activity due to sample alone	120						8

Table C3.2
(i) Copy and complete the table C3.2 on the activity of the sample alone.
(ii) Explain what is meant by background radiation.
(iii) Plot a graph of the values for activity due to the sample alone against the time.
(iv) Using your graph determine the half-life of the substance.
Page 19 of 19
oup

