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Abstract

The thesis addresses the question of how option pricing can be improved using
machine learning techniques. The focus is on the modelling of volatility, the cen-
tral determinant of an option price, using artificial neural networks. This is done
explicitly as a volatility forecast and its accuracy evaluated. In addition, its use in
option pricing is tested and compared with a direction option pricing approach.

A review of existing literature demonstrated a lack of clarity with respect to
the model development methodology used in the area. This issue is discussed and
finally addressed along with a consolidation of the various modelling approaches
undertaken previously by researchers in the field. To this end, a consistent process
is developed to guide the specific model development.

Previous research has focused on index options, i.e. a single time series and
some options related to it. The aim of the research presented here was to extend
this to equity options, taking into consideration the particular characteristics of
the underlying and the options.

The research focuses on the Australian equity option market before and after
the global financial crisis. The results suggest that in the market and over the time
frame studied, an explicit volatility model combined with existing deterministic
models is preferable.

Beyond the specific results of the study, a detailed discussion of the limitations
and methodological issues is presented. These relate not only to the methodology
used here but the various choices and tradeoffs faced whenever machine learning
techniques are used for volatility or option price modelling. Academic insight
as well as practical applications depend critically on the understanding of these
choices.
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Chapter 1

Introduction

1.1 Background and Motivation
Since the introduction of modern portfolio theory five decades ago, the founda-
tions were laid for the development of increasingly sophisticated financial instru-
ments, markets and valuation models. The insights gained over this period have
contributed substantially to the increase in efficiencies in modern economies and
the businesses operating in them. They also contributed, however, to a number
of challenges for businesses, finance and investment professionals, and individual
consumers and individual clients.

The increase in our understanding of finance allowed researchers and practition-
ers to develop increasingly complex models to value instruments, allocate funds
and manage principal-agent problems to varying degrees. The valuation tools are
of particular interest for the purpose of this thesis. A major advantage has been
the possibility of creating financial securities that are customised to the particu-
lar needs of individual clients, whether they are funds, businesses or individuals.
They provide significant gains in the efficiency with which funds are allocated.

This development was further supported by an effort towards deregulation,
particularly since the 1980s. Deregulating financial markets was a prerequisite
to the introduction of new instruments, market mechanisms and distribution of
information and products.

The increases in complexity and distribution, however, required significant in-
vestments in automation. The number of transactions as well as the speed at
which they are settled would not be possible without computer support. The
same is true for the valuation of securities. They typically require significant de-
velopment of models for forecasting and pricing of securities, optimisation of fund
allocation as well as accurate and timely performance measurement and reporting.



2 Chapter 1 Introduction

The success of any financial service provider, business or major individual client
critically depends on the systems to perform these functions including develop-
ment of such computer systems and researchers developing the models on which
they are based.

Sophistication, deregulation and automation had another effect on the field
of finance: a considerable increase in competition. Banks, who used to be the
major providers of financial services together with insurance companies, no longer
hold such a significant position in the market. Funds, whether they are mutual
funds representing individual savers, businesses, pension funds,2 as well as hedge
funds, large individual investors control significant amounts of capital and exert
considerable influence.

All market participants compete for access to and control of a limited number
of investment opportunities. In their search for return, or more formally the right
risk-return trade-off, they rely on a large number of models to forecast and value
individual cash-flows and measure their associated risks. The competitive nature
and the significant transparency of financial markets when compared to markets
for real assets requires continuous improvement in model accuracy and refinement
of both models and processes.

While there are many benefits of such progress, there are, however, several prob-
lems. It is commonly argued that the Global Financial Crisis (GFC) of 2007–2011
has its roots in the lack of regulatory supervision as a result of deregulation, inap-
propriate strategies to address principal-agency problems, especially with respect
to the remuneration of finance professionals in several areas of the finance indus-
try. Lastly, an over-reliance on the strictly mathematical models used to value
securities without consideration of their limitations both theoretical as well as
practical ones is understood to have been a factor as well. This is particularly
true with respect to assumptions made on the return process of real estate in the
United States of America (USA) and the risk associated with the investment in
sovereign debt issued by members of the European Monetary Union (EMU).

Regardless of the merits of deregulation and its effects, the market structure
that has emerged resulted, amongst other trends, in the development of a market
for derivatives over the past twenty years that is active, broad with respect to
geography, industries and firms, and accessible to even individual investors. The

2In Australia, these would typically be in the form of Superannuation Funds. Self-managed
superannuation funds would be treated like individual investors for the purpose of this discus-
sion.
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aforementioned improvements in transactional efficiency and valuation accuracy
are of great importance to them.

1.2 Research Goals and Hypotheses
The research presented in this thesis was motivated by a desire to address some of
the challenges users of derivative securities face, in particular, challenges relating
to the pricing of options. The principal problems faced are those of determining
the correct price based on the value of the security, either to be ready to enter a
transaction at a price more favourable than the one determined (as a price maker)
or to decide whether an advertised price is sufficiently favourable (as a price taker)
to enter a transaction. A second issue is the monitoring of the portfolio and the
management of open positions, i.e. a decision whether to close out a position at
any given point in time.

In both cases a prudent investor would take not only the individual trans-
action or instrument into consideration but the portfolio as a whole. Since this
requires knowledge of all existing positions or their underlying position-generating
strategy, such strategies are not typically subject to academic research. It is also
difficult to generalise beyond the strategy under consideration limiting research
to the processes leading to such decisions and the availability of suitable models
to aid decision makers in them.

A final point of mostly practical concern are transaction management and set-
tlement issues. These will not be discussed in any detail here for two reasons in
particular: firstly, they are largely determined by the individual situation and in-
ternal organisation of the firm as well as the regulatory environment and market
structure. Secondly, these areas are for the most part subject to efficiency gains
rather than gaining additional insights, model development or any other area of
academic research.

Instead, the research focuses on the first and arguably the most important
step in the process: the valuation of options for the purpose of pricing them in
organised markets. This specifically excludes the valuation for purposes other than
market transactions, e.g. valuation for tax purposes or related-party transactions.
It also excludes any transaction occurring in the over-the-counter market.

In the process, the focus will be on the valuation of equity options in the Aus-
tralian market. Australia has one of the most active equity markets and a signifi-
cant option market given the country’s relatively small size. While the exclusion
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of the over-the-counter market limits the research to only a fraction of the total
market in such instruments, it nevertheless restricts it to the more conservative
subset. The organised market is particularly transparent and the (near) absence
of counter-party risk limits valuation to the actual cash-flows, their incidence
(timing), magnitude (amount) and risk.

The valuation is only one part of the pricing process. In addition to determining
the fair value of the instruments, it is also important to consider the market’s
assessment of the value. In that sense the pricing and valuation may, and typically
do, differ.

Another aspect of the research results from a particular feature of option val-
uation. While the value, and consequently the price, of an option depends on a
number of variables, one, the future volatility of the underlying security, is of par-
ticular importance. The valuation problem is therefore also a forecasting problem.
The two cannot be separated.

The final component determining the research direction are recent developments
towards less prescriptive models for valuation purposes. This results from a variety
of developments such as the trend towards increasing automation, higher trans-
action volumes, greater competition and more complex securities. This largely
led to a greater focus on data-driven approaches as well as models that can be
developed within fairly short time-frames.3

It is also likely that the experiences gained during the GFC will lead to even
more focus on data-driven modelling. There is greater awareness today than up
until 2007 that theoretical return distributions are insufficient to describe security
returns. An exacerbating factor is the wider availability of data and the faster
and thus easier processing of large data sets in an automated fashion.

As will be discussed in subsequent chapters, the focus of research in this area
has been on artificial neural networks. While alternative machine learning tech-
niques are available to researchers and practitioners, artificial neural networks are
particularly well-suited to the type of data found in financial markets, such as
large data sets of noisy data with non-linear relationships between the variables.

The question resulting from these developments is therefore if machine learning
techniques, notably artificial neural networks (ANNs) can be used to enhance the
models used for pricing Australian equity options or even replace them entirely.

3Short development periods are largely the result of models becoming irrelevant in the face
of competition in even decreasing periods themselves. It is therefore necessary to develop models
replacing existing ones to respond to the market pressures. While this is largely true for trading
systems; these systems typically rely at least in part on valuation models themselves.
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The following hypotheses should be seen in the context of this market definition,
i.e. they relate to the Australian equity options market, a point that will not be
reiterated for the purpose of clarity and brevity.

The problem can be approached in two different ways. The option pricing could
be improved by using a better value for the volatility input or the pricing can
be substituted with an ANN. The former is expressed in the following working
hypothesis:4

Hypothesis 1 ANNs can forecast volatility more accurately than traditional
models.

The hypothesis is based both on prior research as well as the understanding that
volatility is a more complex process than many other time series thus lending
itself to non-parametric estimation and forecasting techniques.

An important aspect of the hypothesis is the focus on option pricing. As will
become clear when discussing the existing volatility forecasting models, there is
no such thing as the best model. Instead, there is at least one suitable model for any
particular intended use of volatility. Since the focus of the research is on option
pricing, the intended use of the volatility is clear. This also has implications for
the performance measure used.

The alternative approach to using machine learning techniques for option pric-
ing is the direct one:

Hypothesis 2 Option prices based on ANN models outperform those generated
using a traditional pricing model with respect to market prices.

Instead of forecasting volatility explicitly and assuming constancy of the value,
the forecast is embedded in the pricing function as it is represented by the ANN.
There is some loss of utility in this approach as the volatility forecast is not visible
and therefore not accessible. It cannot be observed, reported, such as to a client
or regulator, or constrained – though it is unclear if that would of benefit to any
particular user– before being passed to the pricing function. The volatility could
be extracted from the resulting price, however, using an existing pricing model if
any of these points are of concern to the user of such a model.

It can be argued that the latter approach is necessarily better than the former.
Given a particular data set, fitting the ANN directly should lead to a result that

4Corresponding test hypotheses 𝐻0 will be introduced in Chapter 3.
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cannot be worse, at least in-sample, than the volatility forecast followed by the
pricing function.

This argument does not necessarily hold out-of-sample as the pricing function
may impose constraints on the ultimate price in a way the ANN cannot.

Equally, Hypothesis 1 does not represent a prerequisite to Hypothesis 2. If
Hypothesis 1 cannot be supported, i.e. its corresponding 𝐻0 cannot be disproved,
it would not necessarily preclude Hypothesis 2 from being true. The pricing model
may be misspecified itself and an otherwise good forecast may not lead to a better
price if it fails to compensate for, or even exacerbates, the problem.

Finally, a question arises whether the separation of the two problems can be
achieved and if this can combine the various benefits, i.e. to have an explicit
volatility forecast as well as out-performance due to the use of an ANN for option
pricing. This is in contrast to an integrated ANN that does not attempt to model
volatility directly. The issue of separability is further discussed in Chapter 3.

The first approach may be preferable to some users of machine learning tech-
niques, particularly in a transition phase. Given their black-box nature, ANNs
as well as many other techniques applied in various fields of study have long
suffered from a lack of acceptance. Being able to observe at least some of the
internal mechanisms, in this case intermediate results, without a loss of perfor-
mance would be helpful. The fitting of a model so complex is likely to prove
difficult.

On the other hand, the argument provided earlier does hold here as well: the
pricing ANN should not systematically do worse than the single fitting model as it
has access to all components and an additional volatility-forecasting ANN, which
can be ignored, in principle. This depends on the nature of the volatility-related
input, however, a point elaborated on further below. If a conflict occurs, the
best-performing model is likely to be used except for educational uses, given the
market pressures.

To answer these questions the thesis is organised as follows: Chapter 2 reviews
in detail the literature regarding volatility forecasting, option pricing and ma-
chine learning. Some background is given first about the structure of the market
and terminology to provide a context for the discussion that follows. A sum-
mary is provided detailing not only the major research gaps but also discussing
some inherent epistemological limitations of research in this area. The discussion
covers the two main areas, the financial background and the machine learning
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background separately first with details at the point of convergence discussed in
greater detail in section 2.5.

Given the interdisciplinary nature of the research, a brief description of princi-
ples, terminology, and notation is given in the literature review in sections 2.1–2.4.
The central review of literature is presented in section 2.5 onwards.

Based on the literature review, a methodology for testing the hypotheses is
developed and presented in detail in Chapter 3. Of particular importance in that
context will be the measurement of performance and the statistics used to com-
pare different models. Equally important, however, is the way the network train-
ing is structured. This represents an innovative approach to addressing problems
of a similar nature, i.e. the simultaneous as opposed to the step-wise solving of
related estimation and forecasting problems.

Chapter 4 presents the general characteristics of the data used for the research,
the intermediate results of the various simulation and testing steps and provides
a detailed summary of overall results.

The last chapter, Chapter 5, concludes with a summary of the results and offers
an explanation of their implications for the individual hypotheses as well as the
implications for the research field as a whole. An outline of a research agenda is
provided at the end, which is derived from the insights gained through the course
of this research.

1.3 Research Contributions
In the process of developing a methodology and analysing the results, several out-
comes can be observed that contribute to the existing body of knowledge. These
fall into two broad categories. Firstly, a number of methodological contributions
are made by the research presented in the following chapters, notably Chapter 3:

• Previous research on machine learning and option pricing is largely limited
to individual time series, in particular index value series. In the following
chapters, this is extended to panel data, i.e. a data set with a cross-sectional
as well as a time series component. There are several implications for the
design of the ANN, the preparation of training and testing data, and most
importantly for the evaluation of the results.

• Not only was past research focused almost exclusively on simple time series,
it was also predominantly driven by a singular objective. Research exists on
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volatility forecasting and other research on option pricing but the two are
typically dealt with separately. The problem of pricing options, however,
requires a comprehensive analysis of at least those two components, which
is developed further below.

Secondly, contributions are made through empirical results, in particular the fol-
lowing:

• The question of usefulness of machine learning for the purpose of pricing
equity options using actual data is examined whereas past research focuses
almost exclusively on index options with equity options or synthetic data
sets far less commonly investigated.

• Equally limited is the existing body of knowledge with respect to the trans-
fer of knowledge from pricing options using machine learning techniques
from the USA to Australia.

• The question of whether volatility forecasts can be improved through the
use of ANNs has not been answered in the past with respect to option
pricing. While general forecastibility has been examined and answered, the
issue of applicability to option pricing is novel, especially with respect to
Australian equity options.

Chapter 5 discusses the contributions in greater detail and with respect to the
hypotheses and how they are derived from the empirical results.



Chapter 2

Literature Review

2.1 Overview

2.1.1 The Australian Equity and Option Markets

This chapter provides an overview of previous research in the area with particular
focus on machine learning models for derivatives pricing. However, a brief intro-
duction to the pricing of futures and options is given as well as brief discussion of
existing volatility models – all without the use of any machine learning methods.
The principal motivation is to clarify terminology and discuss the competing,
i.e. benchmark models and methods as they are frequently used. In addition, it
provides a context for the development of the methodology as it is introduced in
this thesis. A summary of the market, its securities, and particular features will
be provided.

Those familiar with option pricing may wish to skip sections 2.1 (this section)
through 2.3, and those familiar with machine learning section 2.4, respectively.

As noted before the objective of the study is an investigation into the use of
machine learning techniques for Australian equity options. The Australian equity
market shares many of its characteristics with the equity markets of other large
developed countries, though it is certainly smaller and somewhat more concen-
trated in certain industries such as mining and agriculture traditionally. There
is also considerable concentration within the financial services sector5 and some
other regulated industries. The structure and notably the regulatory framework
are not substantially different from those of many other countries.

5This fact will be of some importance in later chapters when discussing interest rates, the
impact of the GFC and the data set being used.
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Equity represents fractional ownership of a company and it gives the share-
holder a number of rights. In the context of this thesis, the following rights are
of particular interest:

Shareholders are entitled to receive their fractional share of the dividend pay-
outs. Australia’s tax system makes use of franking credits to avoid the issue of
double taxation of income at the corporate and investor level. Individual share-
holders receive franking credit along with the dividends which is then included
in calculating their income tax.

If a company ceases operating, any proceeds are to be distributed to share-
holders. As a residual claim to the assets of the firm, the shareholders are only
entitled to receive proceeds after claims of other creditors are met. As this implies
that the company is not managed as a going concern, it is typically not a central
element of economic analysis.

Since shareholders own a fraction of a company they may have an interest to
maintain their current level of partial ownership. In the event of new issues or
other corporate actions that may dilute their fractional ownership, they have
the right to access those issues first. While this right may be important to some
investors, it may be waived or is traded separately by many.

Finally, a shareholder is also entitled to vote at the (annual) general meeting,
this includes votes on particular topics as well as those affecting the appointment
of directors of the company.

All of the above rights will play some role in the following discussion and the
methodological design of the study. Only the first, dividend rights, will be mod-
elled directly, however. Special or liquidation dividends are not considered, how-
ever, nor is the dilution of fractional ownership beyond the usual adjustments of
price series discussed below.

Multiple classes of shares are not a significant part of the investment universe
within Australia. A notable exception are Instalment securities of Telstra, a re-
sult of the privatisation of the previously government-owned telecommunications
company. Equity-linked securities, especially rights offerings and other securities
with deferred delivery features are also traded from time to time.

Australia’s primary exchange is the Australian Securities Exchange (ASX),
which resulted from a merger of the Australian Stock Exchange and the Sydney
Futures Exchange and offers a trading environment for equity securities and their
derivatives. Regional exchanges do exist but are of limited relevance. Since the
middle of 2000, Standard and Poor’s provide stock indices covering the Australian
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equity market and dividing it in a number of strata. Their S&P/ASX index range
is based on criteria such as market capitalisation, liquidity, domicile, as well as
additional consideration regarding the stability of the constituent set. The most
concentrated set is the S&P/ASX 20, while the S&P/ASX 200 and S&P/ASX 300
are the primary investment and broader market index, respectively. The number
in the index name represents the approximate number of companies and thus
securities included at any one time.

As mentioned, the ASX is not only a venue for trading equity securities but
also for trading their derivatives. These include options with fixed terms, flexible
options with negotiated terms, and futures contracts. All such derivatives are
subject to central clearing and as is common for exchange-traded derivatives, the
counter-party risk is reduced through novation, i.e. by structuring the contracts
so that the clearing company is the counter-party to the market participants. Due
to their size, contractual arrangements and regulation, such arrangements limit
the likelihood and impact of defaults of any one party.

Among such arrangements is a requirement to post and maintain margins.
While this feature is common in futures-markets, it is not as prevalent in the case
of trading options as the exercise of an option and thus the obligation to deliver
the underlying is uncertain, as will be discussed below. Parties to such derivatives
contracts are required to provide sufficient funds (collateral) to satisfy the clearing
company that they will be able to deliver as and when delivery of the security or
cash is due.

2.1.2 Principles of Financial Modelling

Financial models and the time-series analysis underlying many of them is based
on three interrelated principles that are of relevance here: the law of one price (the
no-arbitrage condition), market efficiency, and the equality of price and value.

The core idea of all financial models is that two securities should have the
same price if they represent the same value to their owner. Arbitrage should not
be possible, i.e. the trading of the two securities should not yield an economic
profit. Indeed, if one security was priced higher than the second, even though
they represent the same value, an investor could sell the former, cash the pro-
ceeds and reinvest them in the latter and retain the difference. Naturally, such
trading activity would increase the supply of the first and the demand for the
second security, driving prices to one another until no such difference exists any
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longer. The consequence is that trading activity brings about arbitrage and the
no-arbitrage condition can only be met if there are investors looking for and
acting upon actual arbitrage opportunities.

This leaves open the question of how arbitrage opportunities are found and
what they are based on, i.e. how individuals identify situations where arbitrage
opportunities exist.

This has natural implications for the characterisation of the whole market.
Following Roberts (1967) (as cited in Campbell, Lo, and MacKinlay, 1997), a
distinction is made and a hypothesis formulated about actual markets rather than
model assumptions, with respect to the extent to which they permit arbitrage
and the information set that can, or more specifically cannot, be exploited to
generate economic profits. A market is considered to be efficient if no arbitrage
opportunities exist.

A distinction is typically made following Fama (1970) and Fama (1991): A
market is considered weak-form efficient if no economic profits can be made based
on past price series; this includes all information related to prices, such as the
returns series as well. In a semistrong-form efficient market, no economic profits
are achievable by acting on publicly available information. Since price series are
one such source, semistrong-form efficient markets also cover weak-form efficient
ones. This also includes, however, any kind of information about the company’s
accounts, balance sheet, income statement, statement of cash flows, management
or any other communication made by or about the firm in a public forum. The
strongest claim would be that markets are strong-form efficient. Here, even private
information cannot lead to economic profits as it too has been priced in typically
through arbitrage by insiders.

While no particular view is taken in this thesis regarding the actual level of
efficiency of markets, it is worth noting that the use of econometric models as
well as machine learning techniques is typically based on the implicit, or more
rarely explicit, assumption that markets are not efficient and that information
discovery and resulting arbitrage trade is possible. In a purely efficient market,
no such study would be required nor would it be worthwhile as no additional profit
can be generated to compensate for the additional cost of conducting the research.
A position is unnecessary in part since demonstrating superior performance of
an alternative model could in principle be explained by the fact that standard
assumptions of the default model are not met and that the market may still
price assets rationally and efficiently under modified (and realistic) assumptions.
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Equally, a failure to demonstrate a superior model may represent a failure to
document that the existing model is inappropriate or that the market may be
efficient but does not demonstrate either. For a detailed discussion, the reader is
referred to the extensive literature on the epistemological issues of research into
market efficiency. The research presented here focuses instead on the merits of
the particular modelling techniques outlined below and related methodological
concerns.

Finally, the previous concepts are applicable to a single security. Since it repre-
sents claims against future cash flows, those claims and the price paid represent
the two assets. In equilibrium, i.e. when markets are efficient and no arbitrage
opportunities exist, the price of the securities should just equal the value of the
security (the claims against cash flows). The identity can be read either way. One
can either calculate the value of a security and assert that the amount also equals
its fair price. Alternatively, the price can be observed and the value be asserted
as equalling that particular amount if one is willing to make the assumption of
an equilibrium.

All three concepts but especially the first and third are critically important for
the valuation of derivatives and the methodological discussion below. In order to
be useful, an additional supporting assumption is made, however: frictionless and
unconstrained trading. It is typically assumed that there are no limitations, reg-
ulatory or economic in nature, to act on information and to buy or sell securities,
or create new securities where necessary. In particular, transactions are assumed
to take place in a tax-free environment (at the margin) and that there are no
constraints to shorting securities, i.e. to selling without owning them. These as-
sumptions are made in this thesis as well, in particular the absence of transaction
cost and taxes, when explicitly modelling cash flow patterns. By design, the ANNs
may capture some effects resulting from market deviations from the assumptions
implicitly. No information is, however, provided to them for this purpose.

2.2 Options Pricing

2.2.1 Forwards and Futures

In order to discuss the valuation of options, it is necessary to briefly discuss
forward and futures contracts. A forward contract is an agreement between two
parties to buy (and sell, respectively) an asset at a future point in time 𝑇 at a
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price 𝐾 agreed upon today, i.e. at 𝑡 = 0. Since the price at that future point in
time may, and typically will, be different, the parties benefit or lose out on the
transaction depending on whether they are the buyer or the seller, and whether
the future price is above or below the delivery price. The parties agree to settle
the contract at the future time by paying 𝐾 to the seller, and delivering the
asset(s) to the buyer. Typically a contract covers a larger number of assets of the
same type, the quantity is referred to as the contract size.

While a forward contract (in short: a forward) is any contract of this nature,
a futures contract (in short: a future) is the standardised version. The specific
details of their standardisation are country and asset-specific, although they fol-
low generally the same pattern. The contract size is chosen to be small enough
to be useful to a large number of potential market participants, while being large
enough to make trading economical. The choice of delivery dates is made with a
similar trade-off in mind, however, in the case of physical assets, especially agri-
cultural ones, additional constraints may exist due to the harvesting or breeding
cycle. Similarly, commodities forward and futures contracts need to specify the
location of delivery if it is a physical delivery, a significant question considering
transportation cost related to the securities.

The valuation of a forward is fairly simple given that the contract simply defers
delivery and payment for the future (see Hull, 2008, for a detailed discussion on
which the following notation is based). The price of a future 𝐹0 today (𝑡 = 0),
based on arbitrage arguments is:

𝐹0 = 𝑆0𝑒𝑟𝑇 (2.1)

If the equation were not to hold, a trader could buy (sell) the forward contract
and sell (buy) the asset, whose price is 𝑆0 and make a profit from the difference. 𝑟
is the risk-free rate, the rate at which proceeds from a sale can be reinvested and
at which one can borrow funds. This assumes that no further income is associated
with holding the asset. This is not true in every case; additional income in form
of interest or dividend payments is a possibility among other sources. Depending
on whether such income is a discrete payment 𝐼 or a rate 𝑞, the forward price is
one of:

𝐹0 = (𝑆0 − 𝐼)𝑒𝑟𝑇 (2.2)

𝐹0 = 𝑆0𝑒(𝑟−𝑞)𝑇 (2.3)
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The value of a long forward contract 𝑓 based on the no-arbitrage assumption is:

𝑓 = (𝐹0 − 𝐾)𝑒−𝑟𝑇 (2.4)

since the value of two forwards with delivery price of 𝐹0 and 𝐾 has to be the
discounted price difference at maturity (𝐹0 − 𝐾). From 2.1–2.4 follows that the
value of a long forward contract is:

𝑓 = 𝑆0 − 𝐾𝑒−𝑟𝑇 no income (2.5)

𝑓 = 𝑆0 − 𝐼 − 𝐾𝑒−𝑟𝑇 payment of 𝐼 (2.6)

𝑓 = 𝑆0𝑒−𝑞𝑇 − 𝐾𝑒−𝑟𝑇 income yield 𝑞 (2.7)

A comprehensive discussion of pricing options including related literature in the
following section is given by Hull (2008).

In addition to its standardisation, the futures contract has a second impor-
tant feature that applies to Australian options as well. Futures contracts are not
between the ultimate buyer and the ultimate seller, instead, they are between
each party and the clearing house as mentioned before. In addition to reducing
counter-party risk, to the degree that it is eliminated for all practical purposes,
this has the effect of daily mark-to-market. The value of the future is determined
as per the above discussions and the margin requirements set. Both parties must
pledge certain amounts of capital, as set by the clearing house to reduce the de-
fault risk to the clearing house. The margin typically consists of two elements,
an initial margin at the creation of the position and a maintenance margin that
results from changes in the underlying asset price. Additional funds but also a
reduction of funds may be needed or possible as a result. It should be noted that
margin requirements do not affect the return to an investor since the investor is
still entitled to any proceeds from the funds in the margin account. These restric-
tions do not typically apply to over-the-counter (OTC) derivatives, i.e. forward
contracts.

Finally, forwards and futures may not be settled by delivering the actual un-
derlying but rather paying cash. Any such agreement forms part of the contract
and is most common for index futures, where no actual delivery is possible given
the nature of the underlying asset.
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2.2.2 Options Characteristics

As is well known (for more details see, e.g. Hull, 2008, or any other textbook
for those unfamiliar with the financial aspect of the thesis), while forward or
futures contracts are contractual commitments to settle at maturity, options are
substantially more flexible. An option represents the right but not an obligation
to the buyer to buy or sell the underlying asset at a future point in time and
a predetermined price. To the seller, the contract is an obligation to deliver if
the buyer chooses to exercise their right. The underlying asset can be any asset,
financial or real. In the latter case, the asset may represent a course of action to
be taken, a common occurrence in corporate finance.

If the buyer has the right to buy the underlying asset, the option is a call
option. If, on the other hand, the right is one of selling the asset to the writer of
the option (the seller of the options contract), the option is a put option.

Further distinctions are made subject to the nature of the underlying con-
tract, the timing of exercise and the way the price is determined. Options cover
a large variety of assets but those on futures, especially index and commodities
futures, and equity securities are particularly common in context of exchange-
traded derivatives. Options without payment in cash but rather a swapping of
assets (swaptions), options on interest rates and fixed-income securities are also
frequently used.

In regards to the timing of exercise, a common but by no means only distinction
is made between European-style and American-style exercise. European-style ex-
ercise give the option buyer the right to exercise the option at a single future point
in time. On the other hand, American-style exercise offers such a right up until
a future point in time. The choice of exercise is largely determined by market
conventions but can have significant implications on their valuation. In addition
to the two styles discussed here, various alternative exist, with a range of exercise
patterns.

The question arises how the price at delivery is determined. The simplest and
most common case for exchange-traded options (ETOs) is the use of a fixed,
pre-set price, the strike price. A common alternative in certain markets is the use
of the average price over the life of the option using various formulae.

Options that do not follow the simple pattern of European- or American-style
exercise and a single delivery price are referred to as exotic options and are largely
beyond the discussion of this thesis but will play a minor role in discussion of
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volatility models. These are almost exclusively traded OTC resulting generally in
a lack of data availability, price transparency and potentially significant counter-
party risk.

A final note on terminology: an option that has value to its holder is called an
in-the-money (ITM) option, in the case of a call (put) this occurs when the current
price is above (below) the strike price. An out-of-the-money (OTM) option is the
reverse, it represents an option that has currently no value if executed and an
at-the-money (ATM) option being the marginal case where strike and current
price are equal.

2.2.3 Pricing of European-style Options

Options with European-style exercise are sufficiently simple to allow for a closed-
form solution following analytical approaches. While numerical methods are
equally applicable, the closed-form solution to these derivatives has become one
of the foundations of modern finance.

Black and Scholes (1973) and Merton (1973) derived the pricing model based
on the crucial no-arbitrage assumption, which will be referred to from here on
as the Black-Scholes-Merton (BSM) model. The following discussion is based on
Hull (2008) and Haug (2007). The price at time 𝑡 = 0 of a European call 𝑐 and
a European 𝑝 is:

𝑐 = 𝑆0𝑒−𝑞𝑇 N(𝑑1) − 𝐾𝑒−𝑟𝑇 N(𝑑2) (2.8)

𝑝 = 𝐾𝑒−𝑟𝑇 N(−𝑑2) − 𝑆0𝑒−𝑞𝑇 N(−𝑑1) (2.9)

where

𝑑1 =
ln (𝑆0/𝐾) + 󰙃𝑟 − 𝑞 + 𝜎2/2󰙄 𝑇

𝜎
√

𝑇

𝑑2 =
ln (𝑆0/𝐾) + 󰙃𝑟 − 𝑞 − 𝜎2/2󰙄 𝑇

𝜎
√

𝑇
= 𝑑1 − 𝜎

√
𝑇

using the notation by Hull (2008):

𝑆0 is the stock price at the time of pricing (“today”),

𝐾 the strike price similar to that of a futures contract above,

𝑇 the time to expiration,

𝑞 the dividend yield,
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𝜎 the (annual) volatility, and

𝑟 the risk-free rate as before.

𝑁(⋅) represents the cumulative standardised normal distribution. Note that 𝑑1

and 𝑑2 are shorthand parameters; their subscripts do not refer to future points in
time. The additional considerations to make in the case of equity options is that
they represent existing stock so no dilution occurs and the absence of dividend
payments. Instead of individual payments (Merton, 1973) modified the formula
to account for a diffusion process and the result is the use of 𝑞 as a dividend
yield rather than individual payments. He also points out that the model is ho-
mogeneous with respect to the underlying price and the strike price, a property
exploited frequently in ANN-based pricing.

Alternatively, Hull (2008, p. 298–299) points out that “European options can
be analyzed by assuming that the stock price is the sum of two components: a
riskless component that corresponds to the known dividends during the life of
the option and a risky component” and that “[t]he Black-Scholes formula is […]
correct if 𝑆0 is equal to the risky component of the stock price and 𝜎 is the
volatility of the process followed by the risky component.”

It is worth noting that the above pricing formulas are similar to those for
futures given their common basis in models based on the no-arbitrage condition.
In particular, equation 2.8 is equivalent to equation 2.7 of a long forward both
representing a purchase. The difference is in the uncertainty of exercise of the
option subject to the price behaviour versus the certainty of delivery in the case
of the forward.

The above formulas do not apply, however, to futures options. While Australian
options are spot options, i.e. delivery is of the actual stock, other markets use
futures to be delivered, which in turn are for the purchase (sale) of the underlying
stock. Black (1976) showed that the pricing results in similar formulas, however,
in that the dividend yield 𝑞 is to be substituted with the risk-free rate in equation
2.8.

A final complication arises from the fact that some exchanges use futures-style
margining for options in a way similar to that discussed in section 2.2.1. This
includes the Sydney Futures Exchange (SFE) (before its merger with the ASX)
and currently the ASX (Lajbcygier, 2004, among others by the same author) The
margining of the option premium results in a further adjustment of the formula
of the model by Black (1976). Under the usual assumptions of those models, the
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risk-free rate is effectively set to 𝑟 = 0 (Haug, 2007; Lieu, 1990). The pricing of
options with futures-style margining was introduced by Asay (1982). Lieu (1990)
shows that the interest rate effectively disappears from the pricing Black-Scholes
formula and argues that early exercise is no longer relevant resulting in both ex-
ercise types to be priced in the same way (see Lajbcygier et al., 1996, for an
example of using the European-style pricing for American-style exercise). Kuo
(1993) extends this model to accommodate actual cash flows resulting from the
marking-to-market inherent in margining and their financing by market partici-
pants. Finally, Chen and Scott (1993) show that the findings by Lieu (1990) apply
more generally and confirm that early exercise is not beneficial.

As White (2000b) points out, however not only do the authors ignore marking-
to-market (a criticism similar to Kuo’s) but also that the models only apply
to non-coupon bearing securities. This focus on transaction cost is particularly
noteworthy given the suggestion by Dumas, Fleming, and Whaley (1996) that
the problems with the Black-Scholes model as it is applied in practice may not
be due to a misspecification but a mismatch between supply of and demand for
certain options after the market ‘crash’ of 1987.

Various authors contributed additional adjustments to the BSM model, in par-
ticular, to account for a number of deviations from the assumptions made therein.
A summary discussion of the most significant adjustments with relevant references
is provided by Haug (2007, chapter 6).

2.2.4 Pricing of American-style Options

The pricing of options with American-style exercise generally follows the mod-
elling of those of European-style (Hull, 2008; Haug, 2007). There are two signifi-
cant differences that influence the choice of pricing model. Firstly, the presence of
early exercise renders analytical approaches less useful, limiting them to special
circumstances or as only approximate solutions. Secondly, the pricing of calls and
puts diverges further beyond the differences in the case of the BSM model or
other approaches to European options.

There are four principle ways of pricing options with American-style exercise:

1. closed-form pricing of call options,

2. closed-form approximations to pricing call or put options,

3. tree-based models, and
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4. simulation-based approaches.

The approach pursued in this thesis falls in the last category but will be treated
separately given the significantly different assumptions and process.

As will be discussed in the following section, early exercise is not optimal for
calls on assets that do not pay income. In the context of this thesis, it would not
be optimal to exercise a call if the company does not, or rather is not expected to,
pay dividends. In such cases, the American call can be treated like a European
one and priced accordingly. In any case, the same parameters are used in the
pricing models: 𝑆0, 𝐾, 𝜎, 𝑇 , 𝑟, and either 𝑞 or 𝐷𝑡 depending on the nature of the
dividend model. Continuing the use of the notation by Hull (2008), the American
call is referred to as 𝐶 and the corresponding put as 𝑃 .

All alternatives to this approach are ultimately approximations due to either the
nature of their assumptions or due to the way they are implemented. Closed-form
approximations exploit the fact that the early exercise is optimal only just before
the dividend payout, in a practical context the ex-dividend date rather than the
payment date. They further simplify dividend payments as a yield similar to the
yield used in the previous sections on futures and European options.

The model by Barone-Adesi and Whaley (1987) is of practical importance ac-
cording to Haug (2007) and is based on a quadratic approximation after determin-
ing critical values for the underlying prices. An alternative model by Bjerksund
and Stensland (2002) is considered somewhat better by Haug (2007) and uses
two exercise boundaries over time. The approximation models have the substan-
tial benefit of being very fast when calculating prices and when computing the
corresponding derivatives (see the following section). Their major disadvantage
is the use of a dividend yield instead of modelling discrete dividends as they are
expected to occur.

Tree-based models allow for the explicit modelling of discrete dividends and
consequently allow for an accurate pricing of a large variety of options. The
structure and evolution of the trees varies by model but is based on the current
price of the underlying and moving through time. At each node the price is deter-
mined and exercise decisions (if applicable) are made. The values are aggregated
back towards the root of the tree to determine the price of the option. The most
common model is the binomial method by Cox, Ross, and Rubinstein (1979) and
Rendleman and Bartter (1979) and is typically referred to as the Cox-Rubinstein-
Ross (CRR) model. Despite it being relatively old, it remains among the most
widely used (Haug, 2007). If the steps are chosen sufficiently small and there-
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fore sufficiently many, the model converges to the BSM model for the European
option.

The concept of a binomial tree, i.e. a tree whose nodes have exactly two child
nodes, is also closely related to risk-neutral valuation. It is notable, and entirely a
function of the no-arbitrage condition, that the expected return of the underlying
asset does not feature in any of the models mentioned so far and does not in any
other model. This simplifies modelling and interpretation. Alternatives to the
binomial method exist such as the trinomial tree (Boyle, 1986), which introduces
a no-change state in addition to the up and down movements in the binomial
tree, or implied tree models.

The latter are of great practical importance albeit not for the simple options.
They are worth mentioning, however, due to their particular relationship with
volatility models. As discussed previously, volatility is one of the parameters of the
pricing model and typically the critical one due to the relatively high sensitivity
of the option price to changes in volatility but also because it is the one most
difficult to estimate (𝑆0, 𝐾 and 𝑇 being known and 𝑟 being either irrelevant or
fairly constant over short periods of time). Implied tree models (Dupire, 1994;
Derman and Kani, 1994; Rubinstein, 1994) use the implied volatility observed
in ETOs to price exotic OTC options. The structure and pricing mechanisms
are similar to the standard binomial and trinomial trees. The benefit is that
the volatility and therefore future expectations from a large number of market
participants are aggregated and used in markets where no such information exists
or is difficult to get. In addition, pricing exotic options and ‘vanilla’ options (i.e.
simple exercise patterns such as the European-style exercise) using the same
implied volatilities is in itself a case of arbitrage pricing. The price attached to a
particular volatility expectation is the same if the implied tree model is used as
in the “vanilla” options thus extending the modelling approach to within-asset
class pricing.

While tree-based models are more accurate with respect to dividend payments
if executed correctly, they are computationally expensive and the accuracy can
be compromised due to numerical issues, i.e. rounding errors and stability, as well
as trade-offs between convergence and execution speed.

Lastly, simulation-based models involve the generation of suitable samples from
known (joint) distributions of underlying asset prices. Monte-Carlo methods are
frequently used when needed but they suffer from even more significant compu-
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tational problems than the tree-based models. The use of many machine learning
techniques, notably ANNs, also falls in this category.

2.2.5 Option Greeks and Additional Considerations

While the option price is of obvious interest to those seeking to trade options
to ensure their assumptions about the future behaviour of the asset are properly
reflected, the options’ derivatives are of even greater importance. This is partic-
ularly true in the case of hedging, i.e. taking positions to reduce the risk to the
overall portfolio. The major sensitivities of European-style options used for risk
management are (Hull, 2008, p. 360):

Δ𝑐 = 𝜕𝑐
𝜕𝑆

Δ𝑝 = 𝜕𝑝
𝜕𝑆

Γ = 𝜕2𝑐
𝜕𝑆2 = 𝜕2𝑝

𝜕𝑆2

V = 𝜕𝑐
𝜕𝜎

= 𝜕𝑝
𝜕𝜎

In addition to Δ (Delta) and Γ (Gamma), which measure the sensitivity to the
changes in the underlying prices, and ‘Vega’ (V), which measures the sensitivity
to changes in volatility, sensitivity to the passing of time (Θ) and to changes in
the interest rate (Ρ) are of some importance. Θ is a natural result of trading, Ρ is
generally considered to be somewhat less important. Γ and V are also symmetric,
i.e. they are identical for the call and the put. Due to their importance for risk
management, it is highly desirable for any pricing model to be able to determine
the sensitivities easily as well. They are easy to calculate for closed-form models
and can typically be approximated for numerical approaches. As will be discussed
further below, the sensitivities can also be used as performance metrics for the
pricing function.

A last consideration with respect to the properties of option prices (Hull, 2008)
and consequently constraints in the non-parametric fitting (see below) are various
relationships between parameters. Firstly, option prices face upper bounds, irre-
spective of whether they are European- or American-style. Call options cannot
be more expensive than the current price of the asset for if they were, it would
be cheaper to buy the asset at the current time instead of paying a premium in
excess of the asset price and purchase the asset later at an additional (positive)
cost.
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Equally, put options cannot be more expensive than the strike price. The argu-
ment is the same, only a loss could be achieved by buying the put and exercising
the option. This implies that if a situation of this kind were to arise, simple ar-
bitrage could yield a profit by selling the option and taking the opposite position
in the stock today (the direction would depend on whether it is a call or a put).
This is excluded based on the no-arbitrage assumption or would disappear from
the market place as a result of arbitrage activity:

𝑐 ≤ 𝑆0, 𝐶 ≤ 𝑆0, 𝑝 ≤ 𝐾, and 𝑃 ≤ 𝐾 (2.10)

An additional boundary exists for European puts; these cannot be worth more
than the discounted strike price as this is the only time the option can be exer-
cised. Given that the American put can be exercised at any point until then, the
argument does not apply to an American put:

𝑝 ≤ 𝐾𝑒−𝑟𝑇 (2.11)

Lower boundaries also exist. While Hull (2008) uses an arbitrage argument,
there is an alternative point to make: consider a long (short) future, an agreement
to buy (sell) an asset at a future point in time for price 𝐾 given the current
price of 𝑆0. Equation 2.5 showed that the price of such a futures contract is
𝑓𝑙 = 𝑆0 − 𝐾𝑒−𝑟𝑇 (𝑓𝑠 = −𝑓𝑙, respectively). Since an otherwise equal option can
result in the same purchase (sale) but with the additional value to the option
holder of being able to chose whether to exercise or not, the option cannot be
cheaper than the corresponding futures value. The option also cannot be cheaper
than being free. In the absence of dividends (note that equation 2.5 was used, the
no-income case) the lower boundaries are thus:

𝑐 ≥ max (𝑆0 − 𝐾𝑒−𝑟𝑇 , 0) and 𝑝 ≥ max (𝐾𝑒−𝑟𝑇 − 𝑆0, 0) (2.12)

and since the American option can be exercised immediately, it also follows that

𝑃 ≥ 𝐾 − 𝑆0 (2.13)

If additional flexibility (optionality) gives rise to a lower boundary, it also follows
that American options cannot be cheaper than their corresponding European
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ones:
𝐶 ≥ 𝑐 and 𝑃 ≥ 𝑝 (2.14)

Finally an important relationship exists between a European call and a Euro-
pean put with identical features, namely (Hull, 2008):

𝑐 − 𝑝 = 𝑆0 − 𝐾𝑒−𝑟𝑇 (2.15)

allowing for the creation of synthetic positions in one through a combination of
the three remaining assets with 𝐾𝑒−𝑟𝑇 representing a cash position. In the case
of American options and in the presence of dividends the relationships are as
follows:

𝑐 − 𝑝 + 𝐷 = 𝑆0 − 𝐾𝑒−𝑟𝑇 (2.16)

𝑆0 − 𝐷 − 𝐾 ≤ 𝐶 − 𝑃 ≤ 𝑆0 − 𝐾𝑒−𝑟𝑇 (2.17)

A consequence of the various relationships is that early exercise is never optimal
for an American call except just before the ex-dividend date and it is optimal for
an American put whenever the current stock price is sufficiently low.

Finally, as time approaches expiry, the option price of ITM call options should
converge towards the nominal difference between the strike price and the current
price and an OTM call option should approach a value of 𝑐 = 0.

2.3 Volatility Models

2.3.1 Overview of Modelling Approaches

As mentioned previously, the option contract specifies the underlying, the time
to maturity, and the delivery price – in addition to the lot size and various other
details. The valuation requires knowledge of three other variables, however: the
current price of the underlying, the risk-free rate, and the volatility of returns.
While the former two components are observable, volatility is the one element of
the valuation model that is not determined nor is it easily observed. Its estimation
is consequently the focus of both academic research and practitioners’ modelling
efforts.

Volatility modelling is complicated by the fact that volatility – in the way it
is defined in these models, i.e. as standard deviation 𝜎 – is used in various areas
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of finance. It is therefore impossible to give a comprehensive overview of models,
techniques, and approaches. In addition to its use in derivatives pricing, volatility
is central to most asset pricing models where it is the, or at least one of various,
measures of risk. Equilibrium returns are, consequently, subject to the riskiness
of the asset. The estimation of future risk is an integral part of valuing financial
assets. This extends to the modelling of covariance for portfolio management as
well as the measuring – though not the forecasting – of volatility for performance
measurement and attribution purposes.

Limiting the volatility modelling to derivatives pricing still leaves a considerable
amount of models. However, they can be grouped by their basic assumptions and
level of sophistication, which leads to the following categories:

• historical volatility,

• stochastic volatility,

• volatility term-structure and volatility surface models (including local
volatility), and

• non-parametric volatility, volatility term-structure and surface models.

These will be summarised in this and the following sections excluding, however,
non-parametric models, which will be discussed in section 2.5.2.

2.3.2 Historical Volatility

Historical volatility makes few assumptions regarding the source or changes in
volatility levels. It is limited to assuming that past volatility is the best estimate
of future volatility and constitutes a naïve approach. It implies that volatility is
constant as well, at least as far as the forecasting horizon is concerned.

Despite its limited set of assumptions, historical volatility models still require
a number of parameters:

• What is the time frame over which to measure (past) volatility?

• What is the frequency at which to sample, e.g. daily, weekly, monthly?

• Which time series should be used and how is volatility to be calculated, i.e.
what formula to use?

• What adjustments need to be to made?
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The first two questions are somewhat related given that a sufficient sample
size is required to achieve meaningful estimates, i.e. to minimise the impact of
noise. Treating the two independently, however, the question of the time frame is
common to most approaches and a clear answer is not given in the literature. The
choice appears to be a function of the specific and implicit assumptions made by
researchers of what constitutes a sufficient data set.

The common goal is to choose a time frame that reflects the current or future
volatility level and not to include observations so old as to be no longer relevant to
the security, such as would result from corporate restructurings leading to changes
in the risk-level, for example. This question is significant for option pricing as
options available for trading vary in time to maturity. If a functional dependency
between the observation time frame and the forecasting horizon is assumed or
suspected, a single time frame is clearly not feasible.

Similar to choices of the time frame, the choice of frequency appears to depend
on the personal preferences of researchers in addition to the objectives of any par-
ticular study. A clear preference for any one choice does not emerge from the liter-
ature. This is in part due to the conflicting evidence from theoretical research on
the one hand and practitioners’ experiences. Poon and Granger (2003) comment
on this pointing out that “[i]n general, volatility forecast accuracy improves as
data sampling frequency increases relative to forecast horizon [(Andersen, Boller-
slev, and Lange, 1999)].”

It is noteworthy, as discussed by the same authors, that Figlewski (1997) found
that long-term forecasts benefit from aggregation, i.e. from lower sampling fre-
quencies. This in turn is contrary to the theoretical discussion by Drost and
Nijman (1993), who show that aggregation should preserve the features of the
volatility process. Poon and Granger (2003) stress, however, that “it is well known
that this is not the case in practice […and that t]his further complicates any at-
tempt to generalize volatility patterns and forecasting results.” In light of these
findings and the conclusions by these widely-cited authors, the question arises
if any results from previous literature are applicable to a specific problem or if
they are rather of interest with respect to the process they follow. The estimation
and evaluation methodologies rather than the resulting findings are the likely
contribution of volatility modelling research.

The above discussions regarding aggregation, sampling frequency and time
frame are of some importance to the historical volatility models as well as to
the stochastic volatility models. They both typically assume a single observation,
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i.e. a single price or return, on which to base the volatility estimate. This single
variable approach is only one of the choices, however. It is commonly applied
to the closing price of a day, week, or month. The volatility is calculated as the
standard deviation of (log-)returns over the sampling period.

Alternatively, the trading ranges can be used, a technique used more frequently
prior to the availability of high-frequency data. Parkinson (1980) proposed a
volatility measure based on the high and low observation instead of the closing
price, assuming prior aggregation. Garman and Klass (1980) on the other hand
propose a combination of the trading range and the close where the range is used
as the current observation and the change in closing prices as the reference point.
All these suffer from various problems, however, and none appear to be used
frequently. For a discussion and related literature see Haug (2007).

2.3.3 Stochastic Volatility and the ARCH-Family of Models

Despite the various choices and adjustments in the process of developing a histor-
ical volatility model, they are fairly simple, parsimonious, and well-behaved. Over
time, researchers realised, however, that they cannot reflect various features that
are frequently (over time and across asset classes) present in observed volatility:
heteroscedasticity, volatility clustering, and surprisingly long memory of volatility
shocks.

In response to this and the more general view by finance professionals that
volatility represents an asset in its own right, led to the development of more
complex models that address both the forecasting power as well as the statistical
properties of the model and its estimation procedures. The two notable classes
are stochastic volatility (SV) models and autoregressive conditional heteroscedas-
ticity (ARCH) models (Engle, 1982), in particular. While neither is particularly
new, they are still actively researched and it is beyond the scope of this review to
discuss them in any detail. The purpose is to introduce them only to the degree
necessary for a reference model implementation.

Relaxing the assumption of constant volatility allows for the modelling of any
number of models depending on the nature of the stochastic process underlying
volatility. The models assume a constant mean and an error component, which
follows a pre-specified stochastic process. This allows for the modelling of the
asset returns. The difference is in the structure of the error term. It can be
of a particular functional form (typically as differential equations) to account
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for the various stylised facts, e.g. Heston (1993), Cox (1975) for the constant
elasticity of variance (CEV) model, or Hagan et al. (2002) for the stochastic
alpha beta rho (SABR) model. More commonly, researchers follow the traditional
approach of a combination of moving averages and autoregressive components.
The ARCH model only uses the latter, the generalised autoregressive conditional
heteroscedasticity (GARCH) uses both components (Bollerslev, 1986), here using
the notation by Poon and Granger (2003):

𝑟𝑡 = 𝜇 + 𝜖𝑡 (2.18)

𝜖𝑡 = 󰞎ℎ𝑡𝑠𝑡 (2.19)

ℎ𝑡 = 𝜔 +
𝑞

󰞉
𝑘=1

𝛼𝑘𝜖2
𝑡−𝑘 +

𝑝

󰞉
𝑗=1

𝛽𝑗ℎ𝑡−𝑗 (2.20)

ARCH(𝑞) only uses the first two terms of ℎ𝑡 in equation 2.20 while GARCH(𝑝, 𝑞)
follows the full specification as above. Further ARCH-family models exist to re-
flect particular features such as asymmetric responses to shocks.

The comprehensive review by Poon and Granger (2003), which is also discussed
by Poon and Granger (2007), revealed that implied volatility is usually better than
models from the ARCH-family (referred to there as GARCH) but the difference
is not as clear in the case of historical volatility compared with implied volatility
and even less so when comparing historical and ARCH-family models concluding
“as a rule of thumb, historical volatility methods work equally well compared
with more sophisticated ARCH class and SV models” (Poon and Granger, 2003).

The authors stress that it is critical to understand the objective of the volatil-
ity model and choose selection criteria accordingly. They also emphasised that
different models may work better or worse depending on the asset being studied.
Finally, the review reveals that the GARCH(1, 1) model is among the most com-
mon in the ARCH family (where parameters are given at all), a point also made
across the wider literature.

2.3.4 Volatility Adjustments

Regardless of the choice of parameters, a number of adjustments may have to be
made to the volatility estimate to arrive at a suitable parameter for option pricing.
The first and most significant adjustment, numerically, is the adjustment for the
time frame. Option pricing formulas use the annual volatility by convention. It is
therefore necessary to state volatility in annual terms irrespective of the chosen
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sampling frequency. The adjustment can be stated in terms of the number of
sampling periods in a typical year or in terms of the length each sample covers:

𝜎 = 𝜎𝑠

√
𝑁 = 𝜎𝑠√

𝜏
(2.21)

where 𝑁 is the number of trading days (weeks, months, periods) per year when
sampling at daily (weekly, monthly, any particular) frequency and 𝜏 the length
of a sample as a fractional year 𝜏 = 1

𝑁 (Hull, 2008; Haug, 2007).
In addition to frequency adjustments, additional corrections may have to be

made to arrive at an accurate volatility estimate. These additional adjustments
are model-specific in that they are meant to correct for particular assumptions
of the option pricing model rather than for the volatility as such. It is therefore
important to be clear about the purpose of the volatility model. This is true in
more general terms as Poon and Granger (2007) explain in detail.

The issue of dividends in option pricing has been discussed before. As is pointed
out above, one possibility is to separate the problem into two component, a riskless
and a risky one. The volatility needs to be adjusted in this case to correct for
the additional cash flow. In the case of such a presence of dividends, the common
practice is that the BSM model requires an adjustment to the volatility estimate
by a factor of

𝑆0
𝑆0 − 𝐷

(2.22)

where 𝐷 represents the present value of dividends (Hull, 2008, p. 298, footnote
12) and 𝑆0 the price of the underlying. This is the necessary adjustment in the
presence of cash dividends.

The adjustment is needed as the dividend represents an additional benefit to
the owner of the stock (see the discussion at the beginning of the chapter). The
treatment of stock dividends is different as they do not represent additional value
but instead add to the number of shares held but not (if done proportionately) to
the fractional share of ownership. Depending on the nature of the issue and their
source, different adjustments may have to be made to the option price. These
are typically excluded from discussions of option pricing and indeed from their
implementation (including various models in MATLAB). This literature review
like the thesis as a whole do not address the question of stock dividends – or
warrants for the same reason.
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The asymmetry in dealing with dividends is only one example. As discussed
in detail in Australian Securities Exchange (2010) and Australian Securities Ex-
change (2012), various events are treated quite differently. While ordinary divi-
dends do not result in contractual adjustments, special dividends as well as a large
variety of corporate action events result in adjustment of the contract and are
consequently irrelevant for pricing purposes. These do not add to the uncertainty
and consequently to the value of options.

Haug (2007) compares a variety of adjustment methods (for the purpose of
dividend payments) for both European and American options and concludes that
the above volatility adjustment performs poorly. The author shows that none of
the computationally simple methods performs well across a variety of parameters.
In particular the timing of dividend payments throughout the life of the option
is frequently a source for mispricings. Only the computationally more expensive
methods perform well6 but the author also points out that the above adjustment
is frequently used by practitioners.

Additional adjustments, especially those for different number of days (of the
underlying and the interest payments) are discussed by Haug (2007). Gatheral
(2006) points out a related issue of preventing arbitrage in such cases. Neither
issue is of significance here but these imply some limitations of the methodology
introduced in the next chapter.

The statements regarding time frame, frequency and adjustments apply not
only to historical but also stochastic volatility models as well. In particular, they
too require a conversion to annual equivalents of the volatility measure.

2.3.5 Volatility Term Structure and Surface Models

Assuming, for the following discussion, that a volatility model has been found, i.e.
a method for forecasting volatility over at least a short forward period is possible
with sufficient expected success, the question arises how to apply the volatility
model to option pricing. Two issues need to be addressed: what adjustment is
needed for the various levels of time to expiry of a set of options, and secondly,
how is the estimate to be adjusted for varying strike prices. The problems can be
discussed independently or simultaneously.

6A particular model proposed by the same author and others is also included but it too re-
quires a numerical evaluation in at least some cases despite not being as expensive as traditional
models.
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The time-varying nature of volatility was one of the motivating factors for the
development of ARCH-models. It is for the same reason that a single estimate
cannot be applied to options with varying time to expiry (assuming a constant
strike price). The volatility to be used for pricing needs to match that of the
relevant period. One possibility is to develop a sufficient number of forecasting
models for the various possible forward periods but this is likely infeasible. In the
case of ARCH models, Poon and Granger (2003) suggests an iterative procedure
to arrive at additional forecasts.

In general terms, a way of converting between different forward periods would
be desirable. The relationship between the time to expiry and the volatility is
referred to as the volatility term structure. Recognising this, Haug and Haug
(1996) (as cited in Haug, 2007) show that the implied forward volatility reflects
the informational content of the term structure embedded in the base volatilities.
The corresponding model according to Haug (2007) is:

𝜎𝐹 = 󰞑𝜎2
2𝑇2 − 𝜎2

1𝑇1
𝑇2 − 𝑇1

(2.23)

and there is a lower boundary for

𝜎2 = 𝜎1󰞑𝑇1
𝑇2

(2.24)

under the usual assumptions and suitable conditions, in particular that 𝑇2 > 𝑇1.
Since it is only the lower boundary it does not necessarily represent the best
estimate but a useful starting point if only one volatility is given but another
needed (over a longer time frame but fully covering the first).

Another option is to use the local volatility. Gatheral (2006) shows that the
implied volatility can then7 be found based on stochastic volatility models and
notes

“So sometimes it’s possible to fit the term structure of the at-the-
money volatility with a stochastic volatility model, but it’s never pos-
sible to fit the term structure of the volatility skew for short expira-
tions. That’s one reason why practitioners prefer local volatility mod-
els: a stochastic volatility model with time-homogeneous parameters

7The author uses a single example to show that it is possible to infer the Black-Scholes
implied volatility from local volatilities using the Heston model.
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cannot fit market prices! Perhaps an extended stochastic volatility
model with correlated jumps in stock price and volatility […] might
fit better. But how would traders choose their input parameters?”
(Gatheral, 2006, p. 39-40)

A similar problem exists in the case of varying strike prices. Here too, a func-
tional relationship is needed between a single volatility estimate and the volatil-
ities to be used for pricing. The latter need to reflect the misspecification of the
pricing model and are thus model-specific. In the case of the Black-Scholes model,
non-normality is one such significant deviation and its implications are discussed
by Hull (2008). This gives rise to the well-known volatility smile. Explicit mod-
elling appears relatively rarely in the literature; Gatheral (2004) proposes one
such model with four parameters in addition to a volatility forecast for a given
time to expiry.

The solution discussed by Hull (2008) is to use an adjustment table. One would
start with a single forecast and find the appropriate volatility for a given time to
expiry and strike level. Formally, one needs:

𝜎𝑡(𝐾, 𝑇 ) = 𝑓(𝜎𝑡, 𝐾, 𝑇 ) (2.25)

The table of adjustment factors in Hull (2008) is one such way and may be more
broadly applied once it is stated in terms of the discounted strike or forward price.
In either case a general relationship is assumed to hold over time.

One possible solution is to infer the functional form from other instruments.
This is exactly the previously discussed implied tree method. Here a local volatil-
ity is inferred, local as it is specific to a particular state or node in the tree 𝜎𝐿(𝑆, 𝑡).
Instead of inferring volatility from single estimate to the volatility surface, the
surface is inferred from existing prices in related (vanilla) options and applied to
the instruments to be priced (exotic options). This process is discussed in great
detail by Gatheral (2006). The approach requires an independent security, how-
ever, as the implied volatility from one security cannot be used for pricing of the
same security8. The local volatility approach and the related models are thus not
particularly useful for the original research questions. Nonetheless, they illustrate

8It is possible to use the implied volatility but the result would be the same price as observed
in the previous transaction adjusted only by Δ and the result of passage of time. If every market
participant acted this way, no additional information would be reflected in the prices. Additional
information needs to be added through the trading activity itself or through parameter updates
by some participants, however.
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the usefulness of such an approach for specific securities. It also demonstrates the
fairly large number of parameters needed even in the case of analytical models.

Given that the Heston model parameters, in particular, move slowly over time
(Gatheral, 2006), the model may in principle be useful even when the condition
of independent securities is not met. A related approach is the combination of
modelling the volatility smile and fitting it across expiration times using splines
as discussed by Gatheral (2006).

Finally, some researchers attempted to model volatility through functional
forms of varying complexity, in particular with attempts at introducing inter-
action terms. While no standard model has emerged so far, a frequently cited
set of functions is the one by Dumas, Fleming, and Whaley (1996), and Peña,
Rubio, and Serna (1999). The author introduced a number of functions including
quadratic terms to model the curvature of the smile.

What is common to all these models is that the number of parameters is fairly
large and the fitting procedure is not trivial. Gatheral’s concern about the ability
to find a fitted model is of particular significance as it highlights the importance
of the problem as well as the practical limitations. In an environment such as
this, non-parametric models may be more suitable as neither the functional form
nor the parameters need to be determined. Instead, both elements are inferred
from the data. This problem like the earlier ones may thus benefit from machine
learning techniques.

2.4 Machine Learning
Machine learning techniques have become increasingly important tools in both
research and development work in academia and the wider industry. Its founda-
tions can be found in research into artificial intelligence, i.e. the replication and
ultimately extension of intelligence with all its aspects at least similar to the ones
of humans. The goal, which is still the long-term vision of many researchers in the
area is to replicate at least the behaviour of human beings using computers. The
goal quickly proved overly ambitious given hardware and theoretical limitations.

In recent years, machine learning has become a sub-discipline aimed at sup-
porting decision makers or even replacing them entirely in specific industries and
certain roles. To this end, knowledge representation and inference models have
been developed in addition to processes and methodologies for their development
and embedding in the business process and the organisation as a whole.
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The focus of the thesis is exclusively on how option pricing decisions can be
aided using such techniques, which modelling approaches are suitable, and how
such models are built and fitted to improve results.

Common to all machine learning techniques is their empirical nature. Rather
than making assumptions as is frequently done in academic research, and infer-
ring particular models from them, machine learning focuses on observed data
in various forms and the models are designed so that they maximise the use of
existing evidence for future decisions.

The models can be classified (e.g. Vanstone and Hahn, 2010) by operating
principle, e.g. expert systems, case-based reasoning, swarm intelligence models,
ANNs, or meta-learners such as genetic algorithms. Alternatively, they can be or-
ganised by problem type, e.g. classification and time-series analysis. The former
requires assigning distinct labels presented to the model, the latter are a special
case of regression problems, not unlike those studied in statistics. Both problem
types are of some significance in option pricing. One possible application of clas-
sification is the decision of whether to exercise an (American) option early. This
would require a predictive classification model. Time-series analysis is the central
topic of this thesis and will be discussed in more detail in this and the following
sections.

A large number of learning models exist for regression problems (see, for ex-
ample, Hastie, Tibshirani, and Friedman, 2009). Most, though not all, are also
applicable to the special case of time-series analysis. Among the most frequently
used in financial research are ANNs. This class of techniques has a number of
benefits, while not unique are fairly rare, and will be discussed at the end of this
section.

As the name implies Artificial Neural Networks are an attempt at replicating
a mechanism observed in nature. They were inspired by the structure and func-
tioning of the brain, including that of humans. In a substantially simplified view,
the brain resembles a very large network with their nodes (neurons, i.e. cells)
interconnected with each other through links or edges (synapses in the biological
context). Through chemical and electrical processing, signals are passed from one
node to another. The signalling results and is in turn dependent on the excitement
level. Through the complex interaction of these signals, thought and behaviour
emerge in the individual.

Replicating a human brain, apart from ethical and other philosophical issues,
is currently not possible even at a basic technological level due to its size and
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complexity, i.e. the number of nodes and the high degree of interconnectedness.
Simpler networks can be built, however, and several models have been proposed
in the literature. By far the most common, and in many ways simplest, is the
single-layer perceptron (SLP).

It consists of an input layer, a hidden layer, and an output layer. The inde-
pendent variables represent the input vector and each value is provided to the
network at one of the input layer nodes, each node consequently represents an
explanatory variable. The desired output is determined as the value of the output
layer nodes. In the case of regression, only one such node exists, typically. The
hidden layer represents internal states. As the name implies, the values are not
typically available for inspection nor, as will be discussed further, can they be
interpreted in any meaningful way.

As an extension multiple hidden layers are possible, the general case of the
multi-layer perceptron (MLP). Regardless of the total number of layers, each
node is connected to all nodes in the previous and all in the following layer. This
implies the absence of loops and is not true for all other network types.

The perceptron is a supervised learning technique. In order to build a model
for the set problem, a number of samples need to be given to the network in
learning mode. The inputs and outputs are provided and the network is trained.
During training the network is evaluated. The initial values are used and weights,
which are attached to the edges using randomised initial values, are applied to
them. Furthermore, an activation function, which is often of the sigmoidal type,
is applied to the combined value. This in turn is passed to the next layer.

In the output layer, the identity function is typically used, i.e. the weighted
average represents the output value. During learning, the resulting value is com-
pared to the provided output, the target value, and an error is calculated. This
error is then used to modify the weights in the opposite direction throughout
the network. This process is repeated for each sample, and possibly for several
epochs. The resulting weights reflect a non-linear combination of the inputs of
arbitrary complexity. This is only limited by the architecture of the network (for
a formal discussion see Hastie, Tibshirani, and Friedman, 2009).

Networks of this particular kind are also called feedforward-backpropagation
networks since evaluation is done in only one direction (forward) and weights
are modified by a traversing the network in reverse direction (backpropagation).
Alternative algorithms with better convergence characteristics exist as well.
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Alternative architectures allow for loops in the network design or apply less
strict structural limitations on the architecture. A common deviation is to sub-
stitute the sigmoidal transfer function with a radial basis.

ANNs have a number of benefits but users also face a number of problems
in developing models and applying them successfully in a practice. Their prin-
cipal advantage is that they are ‘universal approximators.’ The models can fit
any continuous function, including those with non-linear features. This finding
was proven by Cybenko (1989) (see also Irie, 1988; White, 1988; Funahashi,
1989). The author limited the discussion to particular features, a limitation that
Hornik, Stinchcombe, and White (1989) showed is not necessary. Instead, the
universal approximator property is shown to result from the general architecture
and training process. These proofs are highly significant as they show that any
sufficiently large network will approximate a given function arbitrarily well. The
limitations stem only from architecture choices and data quality. Furthermore,
Hornik, Stinchcombe, and White (1990) showed that this does not only apply to
the function itself but also to its derivatives. Given the practical importance of
the option greeks, this insight explains some of the interest in the use of ANNs
in financial research.

The approximation properties make ANNs excellent predictors given sufficient
high-quality data. Despite these benefits, a number of disadvantages exist that
are a consequence of the great flexibility of the technique. Firstly, the models de-
rived from the data have no explanatory power. It is not possible to attribute the
prediction quality to any particular attribute or set of attributes. In fact, it is not
even clear if any particular attribute contributes anything to the final outcome,
i.e. to the classification or regression output. Unlike standard regression mod-
els, which allow for statistical tests of the significance of individual parameters
(variable weights), no such mechanism exists in the case of neural networks. The
resulting model is therefore a black-box. The inability to understand the inner
workings has traditionally contributed to significant scepticism and resulted in
their use largely in environments of high competition and an absence of competing
models. Over time, some methods have been developed for the removal of irrel-
evant inputs and increasing explanatory power, largely through rule extraction
(e.g. Baesens et al., 2003, for financial applications).

Secondly, the proofs by the various authors only demonstrated that the network
can approximate any particular function but no standard architecture or process
for choosing an architecture exists. The choice of input variables, the number and
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size of hidden layers, the choice of learning parameters, pre- and post-processing
steps are still left to individual users with little guidance other than by reviewing
successful (rarely failed) implementations in related areas of research or use. This
is a particular problem for the choice of architecture and the learning process. A
similar problem exists in regards to the chosen input variables but since this is
domain-specific, the selection of variables needs to be made for any approach and
is thus not specific to ANNs.

Significant problems arise especially from the sensitivity of the model weights
to the initial weights. The nonconvexity of the error function results in multiple
minima and thus in the risk of getting trapped in one of them during learning.
One suggestion (e.g. Hastie, Tibshirani, and Friedman, 2009) is to train networks
multiple times with different initial weights. This is a common approach in such
situations. Vanstone (2005) does not solve the problem explicitly but combines
the issue with the question of the size of the hidden layer. The author starts
at ⌈

√
𝑛 ⌉ hidden nodes where 𝑛 is the number of input variables, repeating the

process with increasing hidden layer size and stopping when the utility fails to
increase further. It is important to note that the author splits the error measure
in two components, one for training the network and one for model selection. The
stopping is subject to the latter constraint, which in the case of that particular
research is the benefit of the network for trading.

The alternative and textbook approach is to be “guided by background knowl-
edge and experimentation” (Hastie, Tibshirani, and Friedman, 2009) although
the authors provide some basic advice of using between 5 and 100 nodes. Based
on the work by Kolmogorov (1957, among others), which proved the existence of
a universal approximator, a maximum of 2𝑛 + 1 nodes are needed for the hidden
layer (Vanstone, 2005).

2.5 Financial Applications of Machine Learning

2.5.1 Option Pricing

Overview

Following the significant developments in ANN research, various researchers
started applying the technique to financial problems including option pricing.
The extensive but not exhaustive review focuses on the series of innovations while
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also reporting variable and parameter choices. A unified notation is used in the
presentation where possible, which is based on the previous sections rather than
using the symbols as they appear in the various publications. Dates are given
in international format and network specifications are given as 𝑥–𝑦–𝑧 with 𝑥 in-
put nodes, 𝑦 hidden nodes, and 𝑧 output nodes. Training methods, parameters,
and even input variables are frequently missing in the literature but are included
where available .

The review is organised as follows: Early studies are presented first in largely
chronological order as these set the standard for the modelling and statistical
evaluation of option pricing models outside the classical financial literature. This
is followed by a discussion of various modelling approaches and a separate subsec-
tion for exotic options. Finally, Australian studies and research focused primarily
on methodological advances is summarised. Research on option pricing with a
significant focus on the underlying volatility measure is discussed in the section
on volatility forecasting after this section.

Research into machine learning techniques and option pricing and to an even
greater extent into volatility forecasting does not appear to follow a clear path.
Consequently, most articles are combinations of methodological changes, insights
into particular markets, and technological outcomes. They are organised here by
their major contribution from the perspective of this thesis.

Early International Evidence

Among the earliest uses of ANNs are those by Malliaris and Salchenberger (1993a)
(see also Malliaris and Salchenberger, 1993b). They find that neural networks
can indeed be used for option pricing. They test this on S&P 100 index options,
using daily observations between 1990–01–01 and 1990–06–30, the 3-month Trea-
sury bill for the risk-free rate, and the ATM implied volatility. In addition to the
usual five parameters of the pricing model, the lagged index value and the lagged
option price are used. Networks with varying sizes are trained for five points in
time with a minimum history of 30 days and a testing time frame of two weeks.
Their rationale is that this allows the capturing of the volatility dynamics. Their
results suggest that there are pricing biases for both approaches but that the
ANN produces generally lower pricing errors. They also note that the results are
sensitive to choices of model architecture and parameters having used a learning
rate of 0.9 and momentum of 0.6 with a sigmoidal activation function. The au-
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thors note that combinations and in particular the use of the ANN to a pricing
function in a next step may be beneficial. An important point made is that they
“would not expect to achieve results that are significantly different than those of
Black-Scholes if many traders are using the Black-Scholes model and the market
prices reflect their strategies.”

Hutchinson, Lo, and Poggio (1994) apply three nonparametric pricing models,
projection pursuit, the radial-basis function network, and the MLP network, to
option pricing and hedging (see also Hutchinson, 1994). The MLP training is
done in on-line, rather than batch mode, and gradient descent. As discussed be-
fore, price-homogeneity is an important property and by exploiting this property
and assuming constant volatility and the risk-free rate, the authors reduce the
functional form to only two parameters 𝑆𝑡/𝐾 and 𝑇 to estimate 𝑐/𝐾. Using 𝑅2,
the average hedging error (AHE), i.e. the present value of the absolute devia-
tions of a replicating portfolio, and a combined measure of mean and variance
analogous to the definition of the mean squared error of a predictor in statistics
𝜈, they find that the techniques work well for synthetic data, where the MLP is
chosen to have four hidden nodes. Furthermore, they tested the same approach
using real data, S&P 500 index call options between 1987–01 and 1991-12, fit-
ting the models on each of the first nine of ten sub-periods, and testing them in
the subsequent one. Volatility is based on the 60-day historical estimate and the
3-month Treasury bill is used again for the risk-free rate. Here too, they find that
the models outperform the Black-Scholes (BS) formula for pricing and hedging.
An important concern identified is that additional predictors and statistical tests
are needed for future research.

An early deviation from using call options was the working paper by Kelly
(1994), who investigated the pricing of American put options on four major (by
volume) US companies’ common stock. The study period was fairly short with
only 1369 observations between 1993–10–01 and 1994–04–13. Using a one-year
historical volatility estimate (but reporting similar results for alternative time-
frames) and the 3-month Treasury bill for the risk-free rate, the ANN explains
99.6 % of the variability and thus much higher than the competing CRR model.
The author also demonstrates that the ANN can be used for hedging.

Barucci, Cherubini, and Landi (1996) expand on their earlier work (Barucci,
Cherubini, and Landi, 1995) on the use of ANNs to approximate partial differ-
ential equations under the no-arbitrage conditions using the Galerkin technique
(see original articles for details). The demonstrate how to allow for stochastic
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volatility and in particular for the modelling of the volatility smile. They also
note, based on analytical considerations, that “the approximating solution […]
can be looked at as a NN with one hidden layer augmented by a linear term,
i.e. a direct input output connection.” This is similar to what was observed ear-
lier empirically by Malliaris and Salchenberger (1993b). Their approximation is
𝑐(𝑆, 𝑇 ) = 𝑆 − ∑𝑁+1

𝑖=0 𝑤𝑖(𝑇 )Φ𝑖(𝑆), the latter term representing the weighted trial
functions introduced by the authors. The article further demonstrates the ap-
proach using an example “inspired to the S&P 500 options market” but the au-
thors stress that no attempt at learning the critical parameters for stochastic
volatility from market data had been made.

Herrmann and Narr (1997) further explore the non-parametric pricing models
in the German market and using intraday data. They use put and call options on
the Deutscher Aktienindex (DAX) (European-style German stock index options
traded at the Deutsche Termin Börse) between 1995–01–01 and 1995–12–31 (with
certain observations excluded, see the paper for details). The Frankfurt Interbank
Offer rates were used for the risk-free rate and the implied volatility index for
the DAX (VDAX). Like Hutchinson, Lo, and Poggio (1994), the authors used
a synthetic data set but only to determine the suitability and MLP network
complexity required. They confirm prior research that ANNs are able to price
options better (more accurately) than the BS formula and are able to implicitly
model the derivatives with some notable deviations from the closed form with
regard to Ρ and V, they speculate that this may be due to correlations between
the variables.

Qi and Maddala (1996) extend earlier work on pricing S&P 500 index options
by including open interest as an input variable. They use only a short period of
time (1994–12–01 to 1995–01–19) of daily data, the three month treasury bill as
a proxy for the risk-free rate and the volatility over the past 106 days. Instead
of a simple split, they apply five-fold cross-validation. They train feedforward
networks with a single hidden layer using five input variables (excluding volatility
but including open interest for network training) by first experimenting with
various network sizes concluding five nodes to be appropriate. The data is first
normalised, the learning rate set to 0.05 and momentum to 0.95. Learning is
stopped after 15 000 epochs with additional constraints to weight updates. They
report small improvements over the BS formula. By analysing the actual weights
in the network, the authors argue that the network reflects the typical economic
relationships and that open interest is an “important factor” in pricing. They also
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note that 𝑅2 is a better performance measure as it is not affected by the variance
of the target variable.

Lachtermacher and Rodrigues Gaspar (1996) studied the uses of ANNs in
the Brazilian market. Sampling TELEBRÁS data between 1994–10–04 and
1994–11–30, the underlying price data, volatility of the stock returns over the
22 previous periods. The “futures market interest rate” was used as a proxy for
the risk-free rate. Like Qi and Maddala (1996), the authors used cross-validation
for training a network with two hidden nodes in a single layer, using a learning
rate of 0.1 and momentum of 0.9. The size of the hidden layer was increased twice
by one node each time to determine the appropriate network size and find that
three hidden nodes results in the best overall fit.

White (2000b) (also White, 2000a, from where some results are reported and
which is thus not discussed separately here) models the option pricing function
using Genetic Adaptive Neural Networks and adopts a methodology to allow for
learning simulated as well as observed data. The author focuses on a particular
feature of the LIFFE, which similar to the SFE and now the ASX uses futures-
style margining for options. The options are Eurodollar futures options between
1994–01–04 and 1994–07–29. The network uses the future rate, strike, maturity
and volatility (60-day historical estimate) as inputs and predicts either the call
or put price in any network. Rather than using traditional back-propagation, a
genetically-optimised network is trained. Based on the mean squared error (MSE),
the best network (for real data) is one with 18 hidden nodes after significant fit-
ting of the data (no improvement in sum of squared errors and additional 30 000
generations). The performance was measured against market rates and compared
with the adjusted model by Chen and Scott (1993). The author points out that
the use of historical volatility represents a “naïve” model comparison but also
points to evidence by White, Hatfield, and Dorsey (1998) that still shows signifi-
cantly improved performance. Like other studies, this one attempts to overcome
some of the disadvantages of the black-box nature of ANNs, here by studying
the sensitivity to changes in variables (essentially testing for the sign and of the
greeks and the curvature in some cases). Finally, the author tests if additional
inputs, moneyness and the 3-month Eurodollar interest rate, can contribute to
pricing performance, which can be supported.9 Regarding the use of the risk-free
rate the author concludes that “[a]t the time of this writing, very few studies have

9The author retains the network complexity, i.e. the number of hidden nodes, despite in-
creasing the potential model complexity for comparison reasons.
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addressed this type of option [,with future-style margining, and that t]he studies
that have pertained to this issue disagree as to whether or not a risk-free rate
should be included in the option pricing model.” The author points out that the
agreement is that if payment is required by both, the rate should be dropped.

Another study on LIFFE-traded options is presented by Raberto et al. (2000).
They introduce as input |𝑆−𝐾|

𝑇 to model the smile in addition to the usual 𝑆
𝐾

and 𝑇 showing graphically a good match to observed prices after training the
estimator on synthetic data.

With assumptions similar to those in the original article by Hutchinson, Lo,
and Poggio (1994), Yao, Li, and Tan (2000) limit input variables to moneyness,
time-to-expiry and the risk-free rate. Thus volatility is strictly implied and as-
sumed constant for the training, validation, and test set. Various network sizes
are tested starting at half the number of inputs with a step-wise increment of
1. Using Nikkei 225 index call options trading at the Singapore International
Monetary Exchange between 1995–01–04 and 1995–12–29, they find as did pre-
vious researchers that the ANNs can outperform the BS formula in particular for
non-ATM options. They also find that time-indexing improves performance (with
respect to normalised mean squared error (NMSE)) but suggest that volatility
does not need to be modelled separately.

Healy et al. (2002) study LIFFE FTSE 100 index futures options between 1992
and 1997. They deliberately do not assume homogeneity and find that the bid-ask
spread as a proxy for transaction cost and open interest have explanatory power
while volume does not. In particular, the bid-ask spread has greater explanatory
power than the risk-free rate, using the 90-day Libor rate. They use implied
volatility and eleven hidden nodes for the network but despite the use of market
rates and volatility conclude that performance is not constant over time thus
raising the question of how long a model derived from market prices is useful.

Adding to the international evidence, Amilon (2003) tests the usefulness of
ANNs in the Swedish stock index option market, focusing on calls between
1997-06 and 1999-03 excluding April and May each year due to concerns regarding
dividend-adjustments made to the index during that period. The risk-free rate is
the 90-day local treasury bill. In addition to the usual parameters, time-to-expiry
is measured in trading and calendar dates separately. As mentioned above, var-
ious adjustments to closed-form pricing models exist, including corrections for
differing day-counts between the risky asset and the risk-free one. The adjust-
ment is, however, made to the rate itself rather than an additional parameter
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directly. Homogeneity is assumed and the bid and ask prices are estimated sep-
arately. Furthermore, five lagged index values are used as inputs instead of only
the current one as well as two historical volatility estimates based on 10 and 30
past returns respectively. The hyperbolic tangent is used for the hidden layer ac-
tivation functions, and the logistic function for the output layer. Another unusual
choice is regarding the partitioning. For each year the first four months are used
for training, the following two for validation and one more month for testing, this
is repeated by moving forward by a month but keeping the starting point of the
training period the same thus expanding the training set. This ultimately yields
non-overlapping testing sets, however.

Carverhill and Cheuk (2003) studies S&P 500 index futures options (calls and
puts). Departing from prior studies, homogeneity is assumed but the ratio re-
versed (𝐾/𝑆), the risk-free rate interpolated using market data (Libor and Eu-
rodollar futures) and several networks trained using weighted average past data
with sampling at weekly frequency to avoid day-of-week effects. The modelling is
approached by separating the pricing from the estimation of the derivatives, the
greeks. Three hidden nodes are used in either case but the network estimating the
greeks, has two outputs, Δ and V. The results show improvements with respect
to the volatility in hedging, i.e. better hedging, than the reference model (CRR).

Modelling Stochastic Processes and Risk-Neutral Pricing

Given the strong foundation of derivatives pricing in stochastic calculus, several
authors have attempted to gain insights by combining these areas.

According to Schittenkopf and Dorffner (2001), for example, the use of mixture
density networks, which approximate the conditional density function as a mix-
ture of Gaussians is a viable alternative to the standard pricing function.10 Their
parameters are estimated using MLPs with a single input, the time to expiry 𝑇 .
The functional form used in the transformation of MLP to density ensures both
positive priors and non-negative variances. This constraint is particularly useful
given that nonparametric approaches can often result in any output, even those
without meaning in the domain being studied. The authors test two network spec-
ifications of varying complexity using FTSE 100 data (from the United Kingdom).
They use intraday transactional observations from 1993–01–04 to 1997–10–22 but
restrict it to near-the-money options with ordinary volatility levels not expiring

10This approach is suitable in the risk-neutral valuation framework.
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in the near future. Their results show that the networks are better than both
the traditional Black-Scholes formula as well as one adjusted for higher moments
(especially skewness and kurtosis). This holds for pricing and hedging errors.

A similar approach is taken by Healy et al. (2007). Studying LIFFE FTSE 100
put options (European and American), the authors infer the risk-neutral densities.
Using a 5–11–1 architecture option prices were estimated permitting differentia-
tion to arrive at the densities. The results are found to be unbiased with respect
to the price at expiration but biased with respect to realised volatility.

Extended ANN Models and Support Vector Machines

Zapart (2002) approaches the problem not by estimating the risk-neutral densities
but rather the evolution of prices. Using wavelets and a neural network, the author
models local volatility over time, which is then used in a binomial tree. Studying
the options on three United States of America (US) companies, hedging risk
is determined and shown to be lower for the combined wavelet-ANN model (five
hidden nodes) than the BS formula between 2001–08 and 2002–01. Zapart (2003a)
extends this data set to 2002–07 and 53 companies again in the US demonstrating
how such a network can be used for trading, in this particular case to creating
delta-hedged portfolios with a single threshold parameter. Finally, Zapart (2003b)
extends the original approach (Zapart, 2002) by using genetic algorithms to find a
suitable network, a particularly time-consuming task considering that each time
series is to be modelled by a separate network (not unlike GARCH volatility
modelling).

Montagna et al. (2003) use a synthetic data set of European and American
options. The authors study a path-integral algorithm for pricing first and apply
radial basis function (RBF) networks to the prices derived using this algorithm.
The authors find that both approaches can be very useful for pricing options and
that the ANN results depend “as expected” on the choice of the spread (training)
parameter and the number of observations used for training. They generally find
a very low deviation of the ANN-based results from the reference model. Morelli
et al. (2004) extended this research focusing on the differences between the RBF
and MLP models with respect to pricing and the estimation of option greeks.
They find that the RBF approach is much faster and thus more suitable for
“preliminary checks” while the MLP performs better in the long run but is more
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expensive to develop (with respect to training time). As in the previous article,
a synthetic data set was used and the error terms used for comparison.

Bennell and Sutcliffe (2004) follow the standard approach of focusing on
FTSE 100 European call options traded at the LIFFE between 1998–01–01 and
1999–03–31. They compared a MLP-based model and the reference BSM formula.
Unique to the research is the use of the dividend yield, for which they retrieved
the historical yield from DataStream as a proxy for the forward-looking annu-
alised dividend yield. The authors used the usual option pricing inputs as well
as open interest and daily volume, both of which were eliminated as candidate
inputs in the process, and the homogeneity hint, whose impact was studied in
various ways. The authors also experimented with a number of different network
sizes. The data was partitioned such that the first quarter of 1999 constituted
the test set, the earlier data used for training with one third used for cross-
validation. An extensive set of performance statistics was used comprising 𝑅2,
mean error (ME), mean absolute error (MAE), mean percentage error (MPE),
and MSE. Similar to previous research (including that discussed in the subsequent
section), the authors find mixed results. The BSM model is generally better while
the MLP performs comparably in the restricted region, i.e. when limiting the set
to near-ATM options expiring within just under a year. On balance, the authors
conclude that the ANN solution is superior to the BSM one considering that the
restricted set does not impose a significant constraint with respect to the number
of observations excluded.

While most authors consider improvements of pricing accuracy the goal, Choi
et al. (2004) focus on the actual learning algorithm. The authors compare five
different learning algorithms for ANNs to their own algorithm, which approaches
training as a minimisation problem using a regularisation parameter (“Glob-
ally Regularized Neural Network”). Using the Korean Stock Exchange’s KOSPI
European-style index options for the year 2000, the authors find large improve-
ments with respect to generalisation (i.e. lower test errors) and faster training.

Further research into various training methods and models was published by
Dindar and Marwala (2004), and Dindar (2004). The authors compared MLP and
RBF networks as well as a number of committees of networks and particle-swarm
optimisation. Using data from the “South African Foreign Exchange”11 covering

11The references to this exchange may be wrong. While it could not be verified fully, it is
likely that the South African Futures Exchange was meant. This is supported by subsequent
research with a common co-author as well as the links provided in the references section of the
thesis and the articles.
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the years 2001–2003. The data consisted of the usual stock and option data as
well as the “market to market,” high and low prices. The authors applied cross-
validation though it is not clear if a separate out-of-sample set was used or what
option terms were, and whether the volatility parameter was implied volatility.
Focusing on the technical aspects the authors found that a circular committee
approach leads to the best performance with respect to the error metric while the
best RBF and MLP networks performed relatively well, too. Importantly, they
note that the performance of the MLPs tends to be more stable across models.
Given the difficulties of finding a well-performing network, this insight is partic-
ularly relevant to ANN-related research in option pricing as local minima and
highly sensitive results are generally of little value.

Using the same data set and limiting investigation to the futures and options
of the All Share Index Pires (2005) (see also Pires and Marwala, 2004; Pires and
Marwala, 2005) compared Baysian MLPs and support vector machines (SVMs),
and comparing the Baysian approach to the maximum likelihood method. Based
on the ME and the maximum error, the author concludes that the SVMs outper-
form the MLPs regardless of the method and the differences can be very large.

Promising results were also reported by Hamid and Habib (2005) using S&P 500
index options between March 1983 and June 1995. Since the underlying were in-
dex futures, the Black (1976) model was used as a reference point and to extract
implied volatilities. The authors compare prices and implied volatilities for the
nearest call option at specified expiry dates with respect to the reference model
and report t-test, MAE, and root (of) mean squared error (RMSE) for the differ-
ent models. Unlike other studies, they find that ANN has some difficulties at
very short maturities. As they do not provide the futures volatility as an input
they speculate that the data may be too noisy to infer the function in that re-
gion for this data set. Note that many studies that do exclude data because of
fitting problems, do so at the very long maturities and typically find a good fit
for shorter periods.

Another comparison of models is given by Liang, Zhang, and Yang (2006). The
authors limit their investigation to four stocks of the Hong Kong market during
March through July 2005. The authors propose a hybrid model, which does not
use the usual option pricing inputs but rather four different pricing functions (bi-
nomial model, the BS formula, the finite difference, and the Monte-Carlo model).
The actual input is the difference between those functions and the mean pricing
result on a particular day. The resulting hybrid model is therefore an ensemble
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(committee) estimator of the constituent models. The number of hidden neurons
of the resulting neural network has some impact on the results. The sliding win-
dow, which determines which observations are used for training for the purpose
of pricing for a particular day is considered an important parameter choice. The
model is thus not fixed for the period but is modified over it. This is in contrast
to many, if not all, previous research, which limits training to a single period or
relatively few periods. Due to the large number of combinations of parameters,
no details are provided here. Liang, Zhang, and Li (2009) extend this work using
related but different data to forecast option prices. To this end they add a sliding
window of past prices as input and modify the BS, finite difference and Monte-
Carlo methods, which are used in combination with a linear neural network. They
report lower forecast errors for the MLP relative to the linear neural networks.
Among the outcomes is that the length of the sliding window has a large impact
on the linear model but less so on the non-linear ones.

Liang et al. (2009) further extend the earlier work using a larger data set from
2006–01–01 to 2007–12–31. As in the earlier study (Liang, Zhang, and Yang,
2006), a hybrid model is developed based on the three statistical methods. In
addition to the combination of the three methods, an MLP, and an SVM (for
regression rather than classification) are applied. Again several sliding window
lengths are used. The authors conclude that forecasting can be improved and
that the order (from poorest to best) model is: linear neural network, MLP, and
SVM (with differences being relatively small). The relative (to the previous day),
mispricing error is used as the metric.

A similar rolling method is applied by Mitra (2006), confirming conclusions
reached in other markets, including several Asian markets, for the Indian stock
market. The study covers the call options on the Nifty (National Stock Exchange)
between 2004–05–28 and 2005–06–30 and uses a 60-day historical volatility as a
proxy for future volatility. The results using a network with two hidden nodes
show a reduction of the error term by about 50 % in-sample and out-of-sample
and across error metrics (sum of squared errors (SSE), RMSE, total absolute
error, MAE).

This research is extended and confirmed by Mitra (2012) using data from
2008–07–01 to 2011–06–30. A paired t-test comparing the BS model and the
ANN model shows them to be significantly different at the 1 %-level.

The dynamic complexity of the option pricing problem is well understood and
the sliding window models are only one way of addressing them. Teddy, Lai, and
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Quek (2006) (for more detail see also Teddy, Lai, and Quek, 2008) proposes an
alternative model inspired – as the ANN itself – by the human brain. The proposed
model uses the weighted Gaussian neighbourhood output for activation. The new
model fails to outperform a 3–8–1 MLP model using the RMSE of the mispricing
of British Pound–US Dollar foreign exchange futures call options traded on the
Chicago Mercentile Exchange (CME). The authors stress, however, that the new
model allows for the extraction of discrete pricing rules, which they claim is very
difficult for traditional MLPs. Furthermore, they show how the model (without
comparison to alternatives) can produce risk-free portfolios from trading system
using mispriced options.

Kakati (2008) makes a similar point regarding an alternative model that has
at least some explanatory power. In this article an adaptive neuro-fuzzy system
(commonly abbreviated ANFIS) is proposed and compared to the BS model. In
line with the existing body of knowledge, the model outperforms the traditional
pricing model but also a simple ANN. This is demonstrated using 40 American-
style call options on seven Indian stocks. Volatility is estimated using GARCH
models, 60-day historical volatility as well as implied volatility. The author also
adopts the homogeneity hint.

The results of the study are interesting in several ways. Firstly, the ANN is
only rarely the best model, which is surprising given past evidence, and even
the BS model outperforms when used with implied volatility. Given how implied
volatility is derived, this may not be surprising. However, the ANFIS approach
generally outperforms the competing models under all volatility measures.

Quek, Pasquier, and Kumar (2008) also consider an alternative network struc-
ture, RBF using Monte-Carlo Evaluation Selection to determine the input set. In
addition to the usual steps, the authors also use the predicted values to compute
a theoretical portfolio returns series from a trading model (delta hedging). Of the
input variables tested, open, close, high, low and the previous two open prices are
reported to be relevant. Two instruments are investigated, gold and the British
Pound-US Dollar futures and options, covering the period of 2000–2002 (gold)
and 2002–10 to 2003–06 (currency, respectively). Unusually for option pricing, the
authors develop the networks to make a directional and price prediction forecast
using an MLP, an Elman recurrent network, a special fuzzy-neural network, and
the innovation model. The latter is a modified recurrent network with a modi-
fied learning algorithm. The Elman network performed better than the MLP; the
fuzzy-neural network had generally poor prediction ability. The methods were
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chosen due to the limited amount of data and the authors conclude that their
proposed model outperforms the MLP and the Elman network leading to an ac-
curacy of up to 90 %. This work is further extended by Tung and Quek (2011),
who introduce an evolving fuzzy rule set and related trading system for trading
volatility based on the novel approach.

Hybrid Models

Andreou, Charalambous, and Martzoukos (2002) compare standard ANNs to hy-
brid versions, which estimate not the option price but the difference between
observed price and the BSM model each under the assumption of homogeneity
with respect to the strike price. They determine the optimal network configura-
tions and input parameters by simulation of rolling (and overlapping) four-month
training and six-month testing periods. They find that the non-parametric models
outperform the BSM model for S&P 500 European call options between 1998–05
and 2000-12 with respect to the median absolute error (MdAE). Unlike other
researchers, they use interpolated risk-free rate, an adjusted moneyness measure,
and three measures of volatility, 30- and 60-day historical volatility as well as the
Chicago Board Options Exchange Volatility Index (VIX) for each model.

Extending this research Andreou, Charalambous, and Martzoukos (2006) esti-
mate the networks using the Huber function, training and testing a large number
of networks over a wide range of parameters of the Huber function. They find
that for the period between 1998–04 and 2001–08, the use of the Huber function
instead of least squares during training is beneficial. In addition to modifying the
training process, various alternative volatility models are considered, principally
focusing on implied volatility. The least-squares-based networks underperform the
parametric ones, however, unless the Huber-function is used. The hybrid networks
outperform even under the common least-squares procedure.

In later research, the authors return to the least-squares estimation procedure,
however (Andreou, Charalambous, and Martzoukos, 2008). They extend the data
set back to 1998–01 and create ten rolling sets of data for training, validation,
and testing. Using the 60-day and implied volatility index, and dividend-adjusted
moneyness, they compare the hybrid networks with the traditional BS and the
model by Corrado and Su (1996). Andreou, Charalambous, and Martzoukos
(2008) find that hybrid BS-ANN performs best when contract-specific param-
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eters are given. Finally, they conclude that hedging profits depend on the level of
transaction-cost and suggest that some inefficiencies may still exist in the market.

Andreou, Charalambous, and Martzoukos (2010) extend prior work on hybrid
networks and the use of the deterministic volatility function (DVF) for reference
models to price European call options on the S&P 500 index between 2002–01
and 2004–08. Splitting the data into twelve months training, two for validation,
and one month for testing, with rolling partitions but non-overlapping test sets,
allows for continuous re-estimation of parameters (both the parametric reference
models and the non-parametric innovation models). The ANNs are further mod-
ified by adding a parametric pricing function as a fourth layer to a standard
single-hidden-layer perceptron so that “the network structure embeds knowledge
from the parametric model during estimation (thus resulting in a semi-parametric
option pricing method).” The resulting models, which use the dividend yield and
in the case of ANNs a dividend-adjusted moneyness measure, are shown to be
comparable to models of stochastic volatility with jumps with respect to the cho-
sen error measure (notably RMSE but also reporting MAE and MdAE). They do
not generally and unconditionally outperform those but do outperform the con-
ventional pricing formulas (BS and CS). The authors re-iterate the importance
of choosing functions for hedging based on their hedging results and note merely
their pricing performance, i.e. the performance metric needs to be aligned with
the intended use of the model. The specific enhancements within the model are
with respect to volatility, skewness, and kurtosis.

Departing from prior research into ANN use, Andreou, Charalambous, and
Martzoukos (2009) use SVM regression for option pricing and find positive re-
sults in the case of hybrid models, which use not average volatility but volatility
from a DVF. The data used consists of the typical observation with an inter-
polated risk-free rate and daily option prices (using bid-ask midpoints) between
2003–02 to 2004–08. The use of a DVF, however, is important since it allows for
contract-specific volatility estimates.

Charalambous and Martzoukos (2005) study the applicability of ANNs to two
option pricing problems using a hybrid approach similar to the one proposed
in the methodology section of this thesis. The authors use synthetic data sets
for financial and real options and build a simple 20-hidden-nodes ANN, as well
as a hybrid network using the numerical option pricing model as the baseline
model while one fits the difference. Studying the MSE, MAE, and the maximum
absolute error of the networks as well as the numerical pricing model as a reference
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point, they conclude that the hybrid approach is superior, especially for the very
large network and is slightly better even for a very small 2-hidden-nodes network
compared to the reference model.

A similar approach is taken by Blynski and Faseruk (2006). Again the hybrid
model as the difference between the target value and the baseline model is devel-
oped. The authors use a wider range of performance metrics, however, 𝑅2, ME,
MAE, mean absolute percentage error (MAPE), NMSE, and MSE. They split
the Chicago Board of Exchange OEX index call options data between 1986 and
June 1993 into 60 % training, 20 % validation, and 20 % testing data and removed
non-representative data. As previous authors, including the research discussed in
the next section, they find some support for the use of ANNs. A two-stage hy-
brid model, which estimates implied volatility and applies Lajbcygier’s hybrid
approach discussed below, fails to improve the outcome. At least for this market,
the researchers conclude that the market appears to be efficient with respect to
pricing such options. In particular they find that using the implied volatility, the
BS model is fairly good by comparison.12

A similar model is developed by Amornwattana, Enke, and Dagli (2007). Two
ANNs are trained one estimating the implied volatility, the second pricing the
difference between the observed price and the reference BS model. For compari-
son, a model using historical volatility instead of the first network is used, which
has a window size of 90 days. The model is tested on five stocks that are members
of the DJIA from 2002–07–01 to 2002–10–15, where the October data was used
for out-of-sample evaluation. Unusual for option pricing evaluation, the authors
calculated various non-parametric tests and scores using the MAE and MSE
series: the Wilcoxon test, median, Van der Waerden and Savage scores. These
demonstrate that the lower errors (compared to the reference model using BS
and historic volatility (HV), and the network learning the difference between the
observation and the BS value) are also statistically significant in many cases.

Saxena (2008) follows the standard methodology for hybrid models, using the
ANN to learn the additional price relative to the baseline BS model. They
test this on the S&P CNX Nifty index (India) options between 2005–11–01
and 2007–01–25, using a one year historical volatility and exploiting price-
homogeneity. Following the splitting of data into 40 % for training, 30 % for vali-
dation, and the remainder for testing, the usual statistics 𝑅2, ME, MAE, MPE,

12The authors do not discuss methodological issues arising from the use of implied volatility
derived from the same model to which it is applied in a later step, however.
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and MSE are calculated and the hybrid model outperforms the baseline model
with respect to each of them.

A different approach to hybrid models is the one proposed by Ko (2009). Instead
of combining the machine learning technique with an underlying pricing function,
a (neural) regression model is developed, which combines various input networks
in a single functional form similar to committee models. The input variables are
the BS inputs and the experiments were conducted using index future options
from the Taiwan Futures Exchange. The options are European-style and data
was collected for the period 2005–01–03 to 2006–12–31, of which 80 % was used
for training, the remainder for testing. A learning rate of 0.1 and two hidden
layers with six neurons each, was used for each network. The study concludes
that the model is superior to the BS model with respect to the average absolute
delta-hedging error.

Not all evidence is supportive of the use of ANN. Gradojevic and Kukolj (2011),
for example, concludes that a parametric model based on fuzzy rule-based system
is no worse than a non-parametric feedforward network using European-style
S&P 500 index call options for the period of 1987 to 1993 (by expiry date). No
model can be said to be better than the other using the Diebold-Mariano test
statistic. This is despite using a network with a hint similar to prior research,
which typically found hints to improve results and lead to improved performance.

Applications to Exotic Options Pricing and Non-Equity Securities

Extending the use of ANNs to more complex options, Lu and Ohta (2003a) and
Lu and Ohta (2003b) generate a synthetic data set based on a number of as-
sumptions informed by NYSE options. The authors study the applicability of
machine learning to the pricing of complex power and rainbow options and mod-
ify the standard approach of training the networks using the contract inputs and
volatility parameters by supplementing the input data set with a pricing hint
based on digital contracts, i.e. pricing based on the binomial model. They show
using Monte-Carlo simulations that the hinting improves pricing performance
measured as the RMSE and stress that the approach can be generalised to a
variety of complex options.

Using LIFFE data as well, Xu et al. (2004) generate a synthetic data set of
barrier option data points based on the European-style actual observations. The
authors build two different models, who differ in the exclusion vs. inclusion of the
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trading date as an input, which did not appear to lead to better results. They
find based on the 𝑅2 and paired t-tests that ANNs can be a valuable tool for
option pricing and that no additional steps had to be taken to address the barrier
feature of the options.

Another application outside the equity (index) options is presented by Leung,
Chen, and Mancha (2009). The authors compare MLP and general regression
neural network as well as a number of projection models and the BS formula.
These are applied to foreign exchange futurees options for the British Pound,
the Canadian Dollar and the Japanese Yen as traded on the CME covering the
period of 1990–01 to 2002–12 (in sample) and 2003–01 to 2006–12 (out-of-sample).
Subject to transaction cost, the general regression model is generally best. This
is also supported by pairwise comparisons of trading returns using the bootstrap
method. Furthermore, an ensemble (i.e. a committee) model combining the two
machine learning techniques shows a lower coefficient of variation of returns than
each model individually, which is not surprising givne past statistical literature.
This is, however, economically important as variability is risk in this context.

Chen and Sutcliffe (2012) (see also Chen and Sutcliffe, 2011) investigate the use
of hybrid ANNs and compare it to the model by Black (1976). The data set covers
NYSE LIFFE tick data for short sterling (British Pound) call and put options and
the relevant futures for the period of 2005–01–04 and 2006–12–29. The authors
test a simple model pricing the option and one pricing the difference between
the reference model and the observation separately. In addition, two different
strategies of calculating the hedging requirements are proposed, calculated based
on the priced option, or as the target variable of either of the networks. Paired
t-tests are used to compare the pricing differences. Based on the MSE, MAE, ME
of pricing and hedging, the authors conclude that ANNs can be used successfully
for interest rate options with the hybrid model strictly better, and the simple
network better or no worse than the traditional model.

Evidence for Australian Index Futures Options

Lajbcygier et al. (1996) focused on the use of ANNs for pricing American-style
index futures options (SPI futures options) in the Australian market. Using end-
of-day option prices between January 1993 and December 1994, the latest prior
intraday underlying price, the 90-day bank bill as a proxy for the risk-free rate
and a volatility estimate similar to Hutchinson, Lo, and Poggio (1994). In re-
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gards to the latter, the authors point out that the original article (Hutchinson,
Lo, and Poggio, 1994) contained an error, which, according to the authors, was
acknowledged in private communication but was not present in the actual imple-
mentation. The resulting networks assume price-homogeneity and are evaluated
using 𝑅2, normalised root mean squared error (NRMSE), and MAPE. Similar to
Hutchinson, Lo, and Poggio (1994), the authors (dealing with only one underly-
ing) use two configurations, one with a reduced set of input variables (moneyness
and time to expiry), the other with the full specification of all four parameters.
The data set was further split into a training and test set (20 %), with the test set
formed randomly from all observations. The authors conclude that the neural net-
works can be beneficial in at least some cases, notably in the reduced region (10 %
around ATM and for expiry no longer than one fifth of a year) but they do not
show substantial improvements over the benchmark methods, the Black-Scholes
and the Barone-Adesi/Whaley formulas. They also note the surprising finding
that the Black-Scholes model fits the Australian data extremely well when com-
pared to the US case (Hutchinson, Lo, and Poggio, 1994) especially considering
that it is not directly applicable to American-style options.13

Lajbcygier and Connor (1997a) concentrate on small data set of intraday SPI
options in 1993 (see also Lajbcygier and Connor, 1997b). Using the first six
months for training with again 20 % of data reserved for cross-validation, the
authors train a 3–15–1 network similar to the networks before with two notable
innovations: Following their prior research (Lajbcygier and Flitman, 1996) they
train not a direct pricing network but hybrid model, which generates the price as
the difference between the modified BS formula and a trained ANN model. In do-
ing so they implement the suggestion by Malliaris and Salchenberger (1993a) and
a functional form common in forecasting problems (e.g. volatility forecasting as
pointed out by Poon and Granger, 2003) and not dissimilar from the one used by
Barucci, Cherubini, and Landi (1996). Furthermore, they use a weighted implied
volatility (IV) scheme to derive a volatility estimate acknowledging problems with
this approach in general terms (see the article for details or Poon and Granger,
2003, for a more general discussion). Finally, they use bootstrapping to infer
confidence intervals, and bootstrapping and bagging to address model bias.14 In
doing so they address earlier concerns by researchers given that the error terms

13Note that early exercise is not meaningful for non-dividend paying securities in any case
as per the earlier discussion.

14A detailed discussion of the theoretical foundations and implementation notes regarding
the two techniques can be found in Hastie, Tibshirani, and Friedman (2009).
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of such pricing models often do not meet the assumptions of standard statistical
tests. The objective is to infer points of mispricing and thus profitable trades.
They conclude that bootstrap bias reduction is superior to bagging in the case of
option pricing and that the error appear greater near the boundaries, notably at
the very short maturities.

In a later paper (Lajbcygier, 2003a), the author re-examines the same data set
as in Lajbcygier et al. (1996) adding statistical tests to determine which models
are better than others using dependent t-tests on the test set, which again is a
random 20 % of the data in both the reduced and the full region. The indepen-
dent t-tests are used to compare the distribution (not the pair-wise comparison)
of the absolute errors between the reduced and full region in the test set to deter-
mine any differences between them. Their statistical findings support the earlier
evidence that ANN-based models lead to significantly improved pricing in the
economically important (restricted) region. In the full region only the largest
network appears competitive. Furthermore, the networks are not substantially
different from one another. The authors highlight again the surprisingly good
fit of the Black-Scholes formula compared to the Barone-Adesi/Whaley model
suggesting that the argument by Lieu (1990) holds in Australia.

Finally, Lajbcygier (2004) attempts to address pricing biases found in earlier
research (Lajbcygier and Connor, 1997a) near the boundary (see also Lajbcy-
gier, 2003b). Some of those were discussed earlier in section 2.2.5. In particular,
Lajbcygier (2004) modifies the learning algorithm such that the hybrid model
(Lajbcygier and Connor, 1997a) yields meaningful results as one approaches ex-
piry 𝑇 = 0, moneyness is close to 0, or volatility (again using the weighted implied
standard deviation) approaches 0. In all three cases, the neural network should
return 0 (recall that it represents a penalty over the closed-form modified Black
model). For the three years studied, 1993–1995, the authors find statistically sig-
nificant and much improved behaviour of the pricing function near the boundaries
as a result from the constraints. The author suggests further research studying
the use of bootstrap methods in combination with constraints, the combination
with alternative models, such as SV, and exogenous variables.

Methodological Advances

Anders, Korn, and Schmitt (1998) demonstrate how the network architecture
can be derived based on a two-step process of slowly increasing the number of



56 Chapter 2 Literature Review

nodes and then decreasing the connections based on statistical tests. They use
the DAX index call options (European-style) between of 1994 with all transac-
tions between 11:00 and 11:30 using minutely data. Furthermore, unusual ob-
servations (violating boundary conditions, or situations near the boundary) were
excluded. The risk-free rate is derived by interpolation of interbank lending rates
at various maturities. Two volatility estimates, 30-day HV, and IV (using the
VDAX), are investigated. The resulting networks (without closed-form model as
a hint), are not fully connected and have three hidden nodes. Once the BS result
is provided to the output node, the network collapses further leaving only money-
ness and time-to-expiry as additional variables.15 The authors conclude that the
statistical techniques used for configuration can help with the pricing accuracy
preserving the usual relationships between variables as suggested by theoretical
considerations (option greeks). Notably, the index level has predictive power when
combined with historical volatility.

A related problem is the dynamic structure of the network. Instead of deter-
mining the network structure at the time of development, the structure is fixed
but the parameters are allowed to change over time (non-stationarity). Ormoneit
(1999) shows that Kalman filters can be used to influence the weight updates
in ANNs and applies this to option pricing. The use of Kalman filters is not
new; Niranjan (1996), for example, demonstrated how they can be used to model
volatility and the risk-free rate. In contrast, Ormoneit allows for continuous up-
dates of network weights but imposes a penalty (regularisation) using Kalman
filters. The strategy is tested using DAX index call options between 1997–03 and
1997–12, all of which expiring at the end of the period. A constant risk-free rate
of 𝑙𝑛(1.05) is assumed and various fixed, previous implied, or historical volatility
of the futures contract are used in combination with the reference model, the
Black-Scholes formula. They find that the networks perform very well with re-
spect to the hedging error but not as well for pricing. The problem appeared to
be near expiry and the author attributes it to limited complexity of the model to
accommodate the boundary condition. Like Lajbcygier (2004), Ormoneit modifies
the network but in this case by switching to an activation function and related
evaluation along the network path that are consistent with the risk-neutral pric-
ing approach and reflect the boundary condition. This results in improved pricing
and hedging.

15Note that this is identical to the standard specification of the volatility surface.



2.5 Financial Applications of Machine Learning 57

In another study regarding network design and its relationship to the option
pricing problem Galindo-Flores (1999) builds 13 920 candidates to determine the
characteristics of several machine learning techniques, classification and regres-
sion trees (CART) decision trees, feedforward ANN, 𝑘-nearest neighbour, and
ordinary least squares (OLS) regression, and their parameter choices. The author
suggests that it is difficult to decide a priori, which technique should be used and
how the models are to be constructed (i.e. parameter choices). In particular, the
neural networks used for option pricing use three input and one output node (as
in Hutchinson, Lo, and Poggio, 1994) with six and 18 hidden nodes in two models
generated for comparison. Focusing on structural risk (Vapnik, 1995) and using a
synthetic pricing data set under the usual assumptions of constant interest rate
and volatility, it is found that ANNs offer the best performance especially when
the sample size is larger, OLS being preferable when the sample size is restricted.
The ANN-specific finding is that the modified Newton method in combination
with the larger network (3–18–1), and a large number of iterations (450) is pre-
ferred. The author cautions against generalisation, however, as the data set is
simplified, ‘less nonlinear.’

Garcia and Gençay (2000) show how to exploit one of the assumptions normally
made in option pricing, and in pricing securities generally. As discussed before,
the pricing function is considered homogeneous with respect to the price and
strike of the underlying.16 Using European-style S&P 500 index call options (and
initially a synthetic data set) from 1987–01 to 1994–10, they demonstrate that
splitting the pricing function (homogeneity hint) into two components one driven
by moneyness 𝑆

𝐾 and one by time-to-maturity, leads to better out-of-sample pric-
ing. They train networks of varying complexity (up to 10 hidden nodes) in the
first half of each year, select the network based on the third quarter, and test the
results in the last quarter. Diebold-Mariano (DM) statistic and the mean squared
prediction error (MSPE) are used for pricing evaluation. They also point out that
the hedging performance needs to be considered in the network selection process
rather than being used simply after the best network with respect to pricing be
chosen.

An alternative methodological improvement is suggested by Gençay and Qi
(2001). The authors test the effect of regularisation techniques, in particular
Bayesian regularisation, early stopping, and bagging in the context of non-

16Note that at least one study (Anders, Korn, and Schmitt, 1998) indicates that the price
level of the underlying (an index) has some limited predictive power.
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parametric option pricing. They use S&P 500 call options between 1988–01 and
1993–12. In addition to the pricing data, the three-month T-bill is used as a proxy
for the risk-free rate, and a three month moving sample of volatility is used. The
results are compared to a neural network without special considerations during
training. Each year is split into training set (first half), validation (third quarter),
and test set (fourth quarter). The authors stress the shortcomings of splitting the
data set in this way. To test whether improvements were made, the mean squared
prediction error and the average hedging error are presented along with a measure
combining mean and variance 𝜈 = 󰞎𝜇2 + 𝜎2; the authors also apply the DM test
statistic and the Wilcoxon signed rank (WS) test.

Gençay and Salih (2003) further investigates these results using S&P 500 in-
dex options between 1988–01 and 1993–10, adding also the Bayesian information
criterion (BIC) as an alternative to the regularisation techniques and studying
in particular, the relationships between input variables and mispricing between
ANN and BS models. They find that much of the bias found in the BS model is
eliminated by the use of ANN. They follow the partitioning scheme of the pre-
vious article discussed and use historical volatility matching time-to-expiry but
not less than 22 observations.

Dugas et al. (2001) Dugas et al. (also 2009) further show that in a process
similar to the two previous studies, alternative approximators can be used, which
benefit from the derivatives. While the approach is different from the ones seen
before (Lajbcygier, 2004; Choi et al., 2004; Ormoneit, 1999), it relies on a different
functional form and the neural network is used as a benchmark. They apply this
to S&P 500 European index call options between 1988 and 1993. They find that
the use of such knowledge is beneficial for forecasting, especially generalising, in
reducing the MSE.

Focusing on synthetic European call options data in the presence of dividends
(as a continuous yield), Le Roux and Du Toit (2001) confirm that the pricing
function can be learned but were unable to find an optimal network architecture
despite testing a fairly large range of designs, one or two hidden layers, and for
the single hidden layer between six and 24 hidden nodes.

An alternative to the use of Kalman filters above is given by Ghosn and
Bengio (2002). Instead of building a single network and allowing for parameter
drift in some way, a number of models are built simultaneously with somewhat
different parameters. Those parameters are however constrained and those con-
straints form the “domain-specific bias.” Using European call options related to
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the S&P 500 index between 1987 and 1993, the multi-task method (i.e. the in-
novation model) almost always outperforms the traditional single network. The
models assume homogeneity and vary in terms of the time frame used for training.
Unrelated to the main question, the author points out, however, that very long
timeframes (1250 days) lead to poor performance. Instead a two-input network
is used subsequently, which is the solution Hutchinson, Lo, and Poggio (1994)
arrived at by assuming constant volatility over the whole period.

An alternative to the bootstrapping for inference (Lajbcygier and Connor,
1997a) is the three-phase process introduced by Healy et al. (2003) as well as
Healy et al. (2004). The authors demonstrate how, by training an additional net-
work on what is the validation data set for the primary one to be analysed to
infer confidence limits. They demonstrate its use on LIFFE FTSE 100 options
pricing using ANNs.

Huang and Wu (2006b), and Huang and Wu (2006a) (see also Huang, 2008)
compare a number of hybrid models but rather than combining machine learning
techniques and the reference model only, they combine filters and an additional
model to the problem, i.e. Monte-Carlo filters and Unscented Kalman filters,
respectively. Using the same data set, call and put options from the Taiwan
Futures Exchange between 2004–09–16 and 2005–06–14. they find that the hybrid
model using Monte-Carlo filters (and Unscented Kalman filters, respectively) and
SVMs outperform competing hybrid models, including a combination of an ANN
with the respective filter. Very little information is given on the fitting procedures,
however. The authors focused on minimising the RMSE.

Traditional models also underperformed relative to a ‘hyperparameterised’
model proposed by Jung, Kim, and Lee (2006). The model selects parameters
using a neural network kernel for pricing and implied volatility as the relevant
input parameter in addition to the usual set. The risk-free rate was not used as
it changed little during the study period. Testing the model on the Korea Stock
Exchange KOSPI 200 index for the year 2000, the model results in lower errors
than the competing MLPs with various learning algorithms as well as the BS
model and an RBF network. This was true in the training and test subset.

Another way of deriving the network configuration is through the use of evolu-
tionary algorithms. Wang (2006) tests this approach, where the network size and
connectedness is determined by an evolutionary algorithm followed by training.
The resulting network is tested in Taiwan using two warrants with the same un-
derlying security and a two-month sample period of 2000–02–10 to 2000–04-06
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using daily data. Using a delta-hedging strategy, the proposed model nearly dou-
bles the profit from the trading compared to the BSM model.

Lee et al. (2007) also report positive results in regards to using particle swarm
optimisation (similar to Dindar and Marwala, 2004; Dindar, 2004). Unlike Wang
(2006), it is not neural networks but the model itself that is determined. The au-
thors find it preferable to genetic algorithms Wang (conceptually similar to 2006)
when estimating implied volatility of Korean KOSPI 200 call options between
2005–02–27 and 2005–03–10.

One of the few to address the specific question of network configuration without
introducing a new training algorithm or optimisation technique are Thomaidis,
Tzastoudis, and Dounias (2007). For the specific purpose of option pricing, the au-
thors suggest various processes a researcher can follow. In particular they suggest
that the process should be informed by statistical tests or metrics. The process is
principally based on Lagrange Multiplier tests and information criteria such as
Akaike information criterion (AIC) for the simple-to-complex version. Neurons
are added until their marginal contribution falls below a particular (probability
or information criterion) threshold.

Alternatively, they suggest starting with a large model and tentatively removing
neurons, testing for its marginal contribution. In essence the process is similar
to step-wise regression with the exception that the tests are intended to allow
for non-linearity and the steps taken are specific to the architecture of neural
networks.

The authors test their methodologies using European-style S&P 500 equity op-
tion contracts for the period of 2002–05–17 to 2002–07–29. They find that the
simple-to-complex models perform better in terms of fit and generalisation.

Quek, Pasquier, and Kumar (2008) provides some additional guidance on the
topic. Citing prior research the authors note that some heuristics do not work
and raises the issue, which may affect the prior article’s methodology, i.e. that
pruning may work only if all variables are normalised. This may not apply in all
cases and care needs to be taken as variables are redundant at 0 only if that is
the case.

Despite considerable research in this area, it is noteworthy that the two points
of interest identified by Hutchinson, Lo, and Poggio (1994), additional pricing
information (variables) and performance metrics, little progress has been made
in both areas. Instead, the rather technical details of the model development
process and data-specific concerns have remained the primary focus of attention.
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It may well be that the former cannot be addressed until a better understanding
of the latter has been achieved.

2.5.2 Volatility Modelling

Overview

As discussed previously, volatility modelling is a central part of many finance-
related activities. Even a limited discussion of competing models would require
more space that is reasonable for the development of the methodology in the next
chapter. Instead of providing a detailed discussion, the focus is on three aspects,
which will be reviewed in sequence:

1. option pricing with special consideration for the volatility input,

2. ANN-based forecasts, and

3. hybrid models.

Option Pricing Models with Special Consideration for the Volatility Input

Meissner and Kawano (2001) combined the pricing networks with a (modified)
GARCH(1, 1) volatility estimate assuming homogeneity. Importantly, they test
whether a single network for various underlying securities, and individual net-
works (one per underlying) outperform the reference model (BS). They confirm
both using options on 10 US stocks from 1999–05–01 to 2000–01–31, excluding
various observations based on a number of criteria. The results show, among oth-
ers, that the MLP and GRNN outperform the reference model. As other studies,
they too report large differences in architectures, ranging from 8 to 18 hidden
nodes for per-underlying networks (in one case with two hidden layers).

Pande and Sahu (2006) approaches the volatility estimation problem embed-
ded in ANN-based option pricing differently. Rather than limiting the choice to
historical volatility or using implied volatility, a principal components analysis is
conducted. A number of potential candidate models are provided; the results of
this step are not reported. The output vector is then an input to the option pric-
ing problem using fairly small networks of three to five hidden nodes. These are
compared using correlation, ME, and MSE. Using data provided by BSE India
on Satyam Stock, two thirds of which were used for training, the authors report
results consistent with findings in other markets, i.e. that the BS formula is fairly
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good, and here better, at pricing ITM options, and ANNs are better in cases of
OTM options.

Tzastoudis, Thomaidis, and Dounias (2006) improve the fit through two ap-
proaches, firstly, they simplify the functional form by converting part of the prob-
lem to the forward price (note that this conversion was discussed in chapter 2
in the context of future pricing and the dividend adjustment sometimes made).
Secondly, the study infers the volatility surface in the form of a price multiplier
as a function of moneyness and time-to-expiry on two distinct days and uses a
45-day historical volatility as a proxy. The data set consisting of European-style
options on the S&P 500 index on 2002–05–08 (in-sample) and 2002–07–19 (out-
of-sample, respectively). The resulting networks, which are modest in size having
between one and five hidden nodes, captured some of the prominent features of
the options. However, an additional weighting scheme for the MSE gives greater
weight to options near ATM levels. Interestingly, the best networks out-of-sample
were those with very few hidden nodes. The resulting hybrid models outperform
the BS model as had been reported previously.

As discussed before, Lee et al. (2007) applies particle swarm optimisation to
the implied volatility estimate using Korean data.

Tseng et al. (2008) compare two different GARCH models in combination
with artificial neural networks, the standard EGARCH and a modified Grey-
EGARCH. Applied to Taiwan Futures Exchange index options (2005–01–03 to
2006–12–29), of which 70 % was used for training (the authors term it a “fore-
casting model”). The results are mixed, depending on the error measure though
they favour the proposed Grey-EGARCH model.

Similar results on the same data set are reported by Wang (2009a) with
three competing underlying volatility models: GARCH, GJR-GARCH, and
Grey-GJR-GARCH. Here too, the quality varies across error measures but the
GARCH-based model generally underperforms. The authors conclude on balance
that the Grey-GJR-GARCH volatility leads to better results in the context of
ANNs.

A similar study was conducted by Wang (2011), who compared a novel hybrid
stochastic volatility with jump and support vector regression model on the one
hand, with several competing models. These included support vector regression
with stochastic volatility, with GARCH-based volatility estimates, the Garman-
Kohlhagen pricing model, and an ANN . The options being studied were currency
options on Australian Dollar, Euro, Japanese Yen and British Pound (all vs. the
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US Dollar) during 2009. The author conclude that the proposed model outper-
forms the others but also that the ANN is preferred over the traditional model.

The review of volatility forecasting literature using machine learning techniques
is less exhaustive given the large number of publications. Instead, the review aims
to cover a wide range of different approaches with respect to variables, modelling
parameters, and design choices. As in the previous section, the notation is again
largely standardised.

Gonzalez Miranda and Burgess (1995) study European Ibex 35 options fore-
casting hourly changes using an integrated modelling approach as argued in this
thesis before, expected the ANN to outperform on the full set given the nature
of the learning process without this holding true necessarily for the reduced set,
an argument similar to the one in the introductory section of this thesis. They
also find that momentum is reflected and that changes in the implied volatility
appear to be a function of the strike state without, however, providing additional
details.

Carelli, Silani, and Stella (2000) approaches the option pricing problem in a
way very similar to the this thesis focussing on network selection, however. The
authors introduce a complex procedure to guide in the (feedforward) network
design. Using USD/DEM call and put options, they model the volatility surface
as a local volatility surface. They conclude that the process is helpful especially
in the presence of limited data and, as the discussion of local volatility above
showed, that the pricing assumptions made by market participants could be used
for pricing related instruments, the no-arbitrage argument.

Wang et al. (2012) (see also Wang, 2009b) offer one of the most comprehensive
studies of volatility modelling for option pricing albeit with the aim of forecast-
ing a price. They study historical volatility (30 trading days), implied volatility, a
deterministic volatility function using a quadratic form similar to Dumas, Flem-
ing, and Whaley (1996), and Peña, Rubio, and Serna (1999) (this is a function
of moneyness only instead of the volatility surface), GARCH and GM-GARCH
models (Grey-Model GARCH). Based on these models backpropagation networks
are fitted to the intraday call and put option prices for TXO (TAIEX options).
In addition to the various volatility models, an adjustment is made by using the
index future instead of the spot value due to the difference in dividend handling.
The time period included the full years 2008–2009 thus specifically including the
GFC. Networks are trained for various sub-periods and the total period though
testing errors across various time periods are not reported, only the author’s



64 Chapter 2 Literature Review

own performance ratio metric (for RMSE, MAE, and MAPE) by sub-period. The
authors conclude that the choice of activation has no significant impact on per-
formance, more neurons (tested up to 4) are preferable over fewer. They also
add that there was a drop in performance from 2008 to 2009 suggesting that
characteristics of the time-series changed over the course of the GFC. There is
insufficient data presented in the article, however, to understand the impact of
the GFC on generalisation and more broadly model fit across a range of models.
The discrete volatility function is second best, implied volatility is preferred. As
suggested in the econometrics literature, the GARCH-style models fail to outper-
form historical volatility in this study as well. These results are not consistent
with those by Wang (2009b), who compares a number of volatility models using
2003–2004 data concluding that the best models are of of the GARCH-family.
The methodology is otherwise similar if less complex.

ANN-based Volatility Forecasting

Among the earlier studies, Malliaris and Salchenberger (1996), and Donaldson
and Kamstra (1997) stand out. Malliaris and Salchenberger (1996) uses a sim-
ilar approach as in the case of option pricing and studies the implied volatility
of S&P 100 index futures options for 1992. The explanatory variables are thus
the lagged volatility, current volatility, closing price, time to expiry, additional
volatility at different forward times, put open interest, as well as combined prices
of options and market prices. The latter implicitly modelling the relationships
between option prices and the prices of the underlying securities discussed above.

Donaldson and Kamstra (1997) compare various models as well as an ANN
using S&P 500, Toronto Stock Exchange Composite Index, Japan’s NIKKEI, and
London’s FTSE index between 1969–01–01 and 1990–12–31. The authors report
that neural networks with lagged unexpected returns as inputs can be useful in
forecasting volatility. Importantly, they find that there “may be important differ-
ences between the processes driving returns volatility in the four countries [they]
study.” This is a conclusion Lajbcygier also reached with respect to ANN-based
option pricing compared with the US.

Hu and Tsoukalas (1999) compare various ARCH-based models and simple
statistical models to an ANN combining the former as well as an averaging model,
i.e. creating an ensemble learner in a way. They find that it does not improve
results generally though it does perform better with respect to mean absolute



2.5 Financial Applications of Machine Learning 65

error (instead of the square residuals) and “behaves well in the crisis period [of
1993].”

Consistent with previous results and using option straddles for evaluation pur-
poses, Dunis and Huang (2002) find that recurrent neural networks outperform
traditional models as well as model combinations at forecasting volatility. The
study covers British Pound and Japanese Yen exchange rates (each against the
US Dollar) between 1993–12 and 2000–05. The input vector covers “exchange rate
volatilities […], the evolution of important stock and commodity prices, and, […],
the evolution of the yield curve. In addition to the usual RMSE, MAE, Theil’s
U, and the percentage of correct directional forecast are evaluated for forecasting
accuracy evaluation in addition to the Wald test statistic. The trading strategy
using straddles assumed fixed holding periods and included transaction cost.

Using lagged returns of US Dollar/Deutsche Mark (DM) exchange rates between
1980–01–01 and 2000–01–01, Gavrishchaka and Ganguli (2003) studies the use of
SVMs. The authors conclude that the SVM can be used to model the long memory
of the volatility processes in particular, and outperforms traditional GARCH
models.

Dash, Hanumara, and Kajiji (2003) use a larger data set including also the US
Dollar rates against the Japanese Yen and the Swiss Franc and hourly quotes
during 1999 (and a limited set for Deutsche Mark quotes). The inputs to the
networks include currency data, yield curve data, and GARCH data, which also
serves as a reference model. The actual subset used for any model is found using
genetic optimisation or a special algorithm. The results are largely consistent
with prior literature, i.e. That improvements above the GARCH model can be
made using specific networks. The actual performance, and here the inclusion of
specific inputs, is to some degree specific to particular securities.

Positive results are reported by Hamid and Iqbal (2004) with respect to fore-
casting S&P 500 index future volatility (several contracts) between 1984–02–01
and 1994–01–31 when compared to the implied volatility of the Barone-Adesi
and Whaley model. The study implements multiple forecasting horizons and uses
non-overlapping data. The explanatory variables are two index values, lagged
futures on the index and seven commodities, an exchange rate (Japanese Yen),
and several points on the yield curve. The selection is based on correlation and
the “relative contribution coefficient.” In addition to the usual MAE and RMSE
statistics, the Mann-Whitney test is used for comparison.
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Kim, Lee, and Lee (2006) use an alternative method for training RBF networks.
Two networks are trained first to model the local volatility, then to minimise the
pricing error of the first stage network. Lower pricing and hedging errors are
reported for 1995 S&P 500 index European call options.

While not using ANNs, Audrino and Colangelo (2010) model the implied volatil-
ity surface using a semi-parametric technique, regression tress. They use Op-
tion Metrics’ Ivy database with S&P 500 index options between 1996–01–04 and
2003–08–29. Given that a surface is evaluated, they suggest using not only the
daily and overall SSE but also a weighted metric, “the daily and the overall aver-
aged empirical criteria.” They also experiment with a number of predictor vari-
ables, notably the yield curve, and option-price related data based on a discrete-
time reference pricing model. For the specific technique applied, moneyness and
time to expiry are the most important factors, with leading and lagging factors
playing a smaller role. The authors conclude that the approach leads to the best
model of volatility surface dynamics and that it may even be used when there are
structural breaks.

According to Mantri, Gahan, and Nayak (2010), ANNs are no different in
their ability to forecast stock market volatility compared to GARCH, EGARCH,
IGARCH, and GJR-GARCH models. Using the open, high, low, close values (or
only the close) of two Indian index series (BSE and NIFTY), the ANN forecasts
are less volatile but using analysis of variance (ANOVA) to compare the annual
observations, no difference could be found. The data covered the years 1995 to
2008 and only the annual observations were used for the statistical analysis.

A combination of SVM and GARCH is introduced by Chen, Härdle, and Jeong
(2010). This approach is found in later discussions on the topic. An SVM is
fitted to the modified returns series and conditional standard deviation in an
iterative way. This is conceptually similar to traditional recurrent networks or
time-delayed feedforward networks. Using MAE, directional accuracy measures,
and the Diebold-Mariano test for differences in MAE on daily British Pound
(against the US Dollar) exchange rates, NYSE composite index forecasts (both
2004 to 2007), and a synthetic data set, the authors conclude that MLP with an
additional feedback connection and recurrent SVM GARCH models outperform
alternative ones in one-period ahead forecasts.

Ou and Wang (2010a) compares standard GARCH, EGARCH and GJR mod-
els to least-squares SVMs. They term this a hybrid approach though it is struc-
tured differently from what is considered ‘hybrid’ here. The authors estimate the
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GARCH parameters using SVMs. Apart from finding that these combined mod-
els perform better generally, the authors stress that they are more robust to the
changes brought about by the GFC. The data covers the stock market index of
each of Singapore, the Philippines and Kuala Lumpur comparing the years 2007
and 2008 directly.

Ou and Wang (2010b) and Hossain and Nasser (2011) compare such support
vector machines and related models for forecasting volatility. Studying the Shang-
hai Composite Index between 2001 and 2006, and the Bombay Stock Exchange
(2006–10–05 to 2010–11-01) and NIKKEI 225 (2001–01–04 to 2010–11–01) re-
spectively, the authors compare the standard GARCH model to support vector
machines (for regression) and relevance vector machines (a probabilistic version
of SVM). Importantly, for the methodology developed below, the models are
structured similar to the GARCH-model. They use past observations of returns
and residuals of the GARCH-form model to predict the next observation. Ou and
Wang (2010b) finds that the relevance vector machine performs best and the stan-
dard GARCH model worst, the SVM models are relatively good as well. Hossain
and Nasser (2011) add that the ARMA-GARCH model is superior to GARCH
but more importantly that the vector machine models are the only ones meeting
robustness criteria. This is surprising given the strong theoretical foundation of
GARCH.

Ahn et al. (2012) employ a strategy of repeated training and testing using
overlapping periods, and option implied volatility and greeks, to forecast future
implied volatility for the KOSPI 200 (Korean index) ATM options successfully.

Hybrid Models for Volatility Forecasting

As mentioned before, one of the difficulties of using ANNs is the identification of
input variables, not least because many statistical techniques, which are used for
this purpose, assume linearity, which is precisely the limitation an ANN is meant
to overcome. Hyup Roh (2007) makes an important contribution. In addition to
comparing a pure ANN model and three hybrid techniques, the contribution of
various input variables to the forecast is presented. The study focuses on the
KOSPI 200 index volatility and it’s 22-day forward estimate. The factors, whose
contribution are determined are the square return, return, volume, index level
(current and previous), two government interest rates (at 3 month and 1 year
maturities), open interest, premium average, contract volume, the previous day’s
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squared volatility or similar estimates depending on the model, i.e. the last term
varies with the model that is combined to form the hybrid network. The resulting
hybrid model (a combination of ANN and exponential GARCH (EGARCH)) is
found to have greater predictive power with respect to volatility and directional
forecast.

Aragones, Blanco, and Estevez (2007) simplify the inputs to an RBF network,
and consequently to an equivalent MLP, to the implied volatility and 11-day mo-
mentum of the IBEX–30 index and its futures for a number of sub-periods. To
determine the quality of the forecasts, the authors used linear regression of pre-
dicted volatility and observed volatility. They find that the RBF model adds value
above the implied volatility estimate and that this is true even in the presence of
external shocks.

A different form of hybrid models, at least in the context of volatility modelling
and option pricing is that proposed by Chang (2006), and Chang and Tsai (2008).
In both cases two competing models are built, one of which is a non-parametric
one, and their results are combined using a weighting learned from data using
a machine learning technique. The models are a fuzzy neural system and an
non-linear GARCH model combined using support vector regression (SVR), and
a combination of an SVR and the Grey Model and GARCH modelling using
an ANN, respectively. Using index data of four major equity markets and data
from London International Financial Futures and Options Exchange (LIFFE),
they find that the use of machine learning leads to better predictions while the
combined model performs especially well.

Andreou, Charalambous, and Martzoukos (2010) study the fitting of deter-
ministic volatility regression functions using neural networks. They are function
modelling the volatility surface. Similar to Dumas, Fleming, and Whaley (1996),
or Peña, Rubio, and Serna (1999), a number of functions are suggested, the most
complex one being quadratic with an interaction term. An ordinary ANN is used
with an additional layer containing the parametric pricing function. This allows
for the training of the network to configure the parametric model, i.e. to sup-
ply the parameters accordingly. Using S&P 500 index call options for 2002–01 to
2004–08, the authors conclude that the proposed model are preferable. They also
note that if the model is chosen according to its hedging performance, it per-
forms better at this function than one chosen according to pricing accuracy. This
supports earlier results and implies that the decision criterion is critical when
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choosing amongst competing models. Of the parametric models the stochastic
volatility with jump model is best.

Hybrid models can also be formed directly from a time-series, an approach
adopted by Tung and Quek (2011). They train a fuzzy-neural network based on
implied and historical volatility. It is a time-delayed network with the last ten
observations used to forecast the next observation in the same series. The authors
also develop a methodology for creating a trading system based on such volatility
forecasts using the a particular options strategy, a straddle, and technical indica-
tors. They test it successfully in the Hong Kong market but unfortunately only
with data between 2002 and 2006 thus not including the GFC.

Finally, Hajizadeh et al. (2012) combines the insights of previous research by
several authors and compares several GARCH (including GJR-GARCH) and
EGARCH models as well as two hybrid ones. S&P 500 data between 1998–01–02
and 2009–08–31 was used with a forecast of 10 and 15 days forward. The hy-
brid ANN models combine the best-performing underlying model, EGARCH(3,
3), with a number of explanatory variables identified using a correlation analysis.
They were the index price, the NASDAQ price, the Dow Jones price, 1-day lagged
volatility, 3- and 6- month daily treasury yield, index squared return, volatility
using the preferred model and the traded volume. Of the two hybrid models, the
first is a simple hybrid network similar to those seen before, the second one in-
cludes added time series, which were created based on the statistical properties
of the actual series. A split ratio for network modelling of 70 %–20 %–10 %. Both
hybrid models and especially the second one outperform the statistical models on
all error measures ME, RMSE, MAE, and MAPE.

2.6 Open Research Problems
The above literature review has demonstrated a persistent research interest in
the use of machine learning techniques in finance and in derivatives pricing and
volatility modelling in particular. This is not surprising given the competitive
nature of the industry and the difficulties decision makers face on an ongoing
basis. The volatility forecasting literature is even more extensive then what is
discussed in the previous sections.

A significant number of questions have been left unanswered so far, or addressed
only superficially:
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• No prior research has been conducted on Australian equity options even
though the literature regarding Australian index options is quite extensive.
The question arises if the limited evidence regarding equity options, espe-
cially in the presence of dividends is transferable to:

– the Australian market and

– the post-GFC period beyond some preliminary findings resulting from
overlapping periods, and no conclusions regarding the applicability
post-GFC have been reached. Only some of the later publications such
as Wang et al. (2012) address the issue of the GFC though not specifi-
cally its impact.

• Furthermore, little systematic analysis has been conducted regarding the
interaction of option pricing and volatility modelling when either or both use
machine learning. This is especially true for the modelling of the volatility
surface or even just the volatility term structure.

• Despite (or possibly because of) the general difficulties of attribution and
the lack of explanatory power of ANNs, relatively little prior research has
been conducted with regard to the benefits of a volatility model as opposed
to a direct pricing mechanism. Some exceptions to this were discussed in
section 2.5.2.

The research throughout this thesis aims to address these shortcomings of the
prior literature by focusing on the specific hypotheses stated in chapter 1.

In addition to these questions, others will be left for future research, further
discussed in 5.3, but they impact the methodology design to some degree and are
thus stated explicitly:

• Despite extensive research over the past few decades, surprisingly little
progress has been made with respect to the design of ANNs, their archi-
tecture and their learning process (except with respect to regularisation,
bagging and boosting) which are now fairly well-understood. It is therefore
difficult to replicate designs or form a justifiable view of whether a partic-
ular design is good especially when it fails to perform as expected. In the
absence of clear general principles, the failure may be due to the user or a
result of the data; it is difficult to form an opinion in this case.
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• A reference model for the volatility surface is also missing from the literature
unless one is willing to use the local volatility models. This is particularly
true for vanilla options where it is not possible to find a source from which
to infer the volatilities.





Chapter 3

Methodology

3.1 Model Development and Experimental Design

3.1.1 Overview

Answering the questions identified in the previous chapter requires a dual ap-
proach to the option pricing problem. Firstly, an appropriate volatility forecasting
model needs to be found with the quality metric subject to various assumptions.
Secondly, the pricing model problem needs investigation with respect to the relia-
bility of the pricing mechanism. Identifying the two components individually does
not necessarily lead to an improved model to support pricing decisions. As dis-
cussed in the previous chapter, such a model may simply lead to better forecasts
with similar or even inferior results with respect to pricing.

Thirdly, due to the interaction effects evidenced by the very existence of volatil-
ity surface models, an evaluation of the combined effect is needed. This allows for
the identification of the likely source of any improvement, whether the volatility
forecasts need improvement, the pricing mechanism, or if the problems are inter-
dependent to the degree that they are inherently inseparable. This is conceptually
the same consideration as Hull’s integrated Black-Scholes and GARCH formula.

The problem is further complicated by the variety of markets and market con-
ditions under which prior research has been conducted and the question naturally
arises to what degree such research and the resulting design decisions are transfer-
able to the market of interest here. Some of those assumptions and decisions have
been discussed previously; in this section a detailed description of the method-
ological issues and design choices is given.

The remainder of this section discusses the model design and variable choices,
how they were derived and the way of interaction between the various models. A
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Figure 3.1: Overview of models used including implied volatility models, which
are used for evaluation only. 𝜎, 𝜎𝑀,𝑇 , and 𝐶 superscripts indicate the
significant model difference, i.e. the first model that is different in the
process.
Market data used as input variables is discussed in greater detail in
subsequent sections of this chapter.

brief description of the data collection process follows along with a more detailed
explanation of the implementation, especially with respect to the architecture
and learning process of the ANNs. An overview of evaluation metrics is given and
the chapter concludes with some critical remarks and epistemological questions
that remain.

Figure 3.1 gives an overview of the methodology outlining the essential models,
explanatory and explained variables for each model. The ultimate goal is to iden-
tify whether the benefits of using ANNs exist in the current Australian equity
options market insofar as they are applied to pricing. This notably excludes the
analysis of decision support for whether and when to exercise options, specific
trading, investment, hedging, or market making strategies, etc. The focus is prin-
cipally on the general applicability of the technique to pricing and therefore on
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their average performance with respect to some metric. Of particular and specific
interest is if and how ANNs can improve the option pricing process, whether it is
through a better volatility forecast as the most significant input, through a better
pricing mechanism when presented with a volatility forecast or if the performance
improvement is due to the combined effects of forecasting and pricing.

3.1.2 Volatility Forecast (Hypothesis 1)

The objective of the volatility forecast, the first step in the research process, is to
correctly forecast the realised volatility between the current point in time and the
time of expiry of the option. Evidently, only one such value is ultimately correct.
Equally, only one number can be the expected value, or the best estimate for
the volatility. Consequently, there should be only a single volatility forecast for
any stock and time to expiry. Deriving the best estimate is a classic forecasting
problem and as the literature review showed, is typically derived from past obser-
vations of volatility. It is principally possible to consider additional attributes to
aid the forecasting. In particular exogenous shocks should be expected and may
be modelled. Little evidence for the benefit or even a consensus on a basic set
of such attributes could be found. By far the most prevalent models are those
limiting their analysis to the past return series alone.

The baseline ANN is one using only historical volatility of varying past periods
to allow for long memory effects as well as short-term deviations of volatility from
its long-term mean. This provides sufficient flexibility to the learning network to
respond by adjusting the result in favour of long or short-term volatility depending
on the circumstances.

For clarity, the following notation will be used to refer to any model:

𝑓name
𝜃 ∶ ⃗𝑥 ↦ 𝑦 or 𝑓name

𝜃 ( ⃗𝑥) = 𝑦 (3.1)

where ‘name’ is the model name, 𝑦 refers to the desired output, 𝜃 to the model
specification, and ⃗𝑥 to the input vector. Three particular types of model classes
are introduced and using the above notation, results in them to be one of:

𝜎(…) for volatility forecasts

𝜎(𝑀 = 𝑆0
𝐾 , 𝑇 , …) for volatility surfaces

𝐶(…) for (call) option prices
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Figure 3.2: ANN-based (Daily) Volatility Model

The baseline volatility network (see Figure 3.2) is thus:

𝜎ANNd ∶ (𝜎110, 𝜎60, 𝜎20, 𝜎5, 𝑟𝑡, 𝑟2
𝑡 ) ↦ 𝜎

√
𝑁 (3.2)

the network provides the annualised volatility (see equation 2.21) forecast based
on the past 𝑛 days of historical volatility, the last return observation, and its
squared value. The inclusion of the previous five day volatility is largely due to
what appears to be common practice by professionals to use a single week’s worth
of observations. As Haug (2007) points out, this is a very unreliable measure, the
number of observations is far too low to yield a meaningful result. A transition
to intraday data is an alternative, whether such a move would be beneficial is
unclear, however. Here the goal is to build a simple reference ANN-based model
without any particular attempt at optimising. The high noise ratio in the last
component typically results in the output to be independent from that particular
input variable.

As is apparent from the review by Poon and Granger (2003), the evaluation is
based on a variety of proxies for the volatility including realised volatility over a
range of forward periods. The argument made with respect to the wide confidence
interval in the 𝜎5 input, also applies to the target value. This is both true during
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the learning where a value is presented as well as to the error calculated during
model evaluation.

A four-week time frame is used for the forward period. There is no particular
reason for the choice, as there are typically no particular reasons for such choices
in past literature. Four weeks is sufficiently long to allow for a reasonable amount
of data – albeit not as the conventional 30 observations used in statistics – but
short enough to test the response of the model to temporary fluctuations. The
average time to maturity of options considered, starting either at the time of
creation or at the time of first sale, or indeed at any other point in time of
significance (by volume, open interest, etc.) are all alternative choices. In the
absence of additional criteria or more specific objectives of the decision maker,
the shortest period is used for consistency with the reference models. Furthermore,
time-weighted volatility or volatility weighted by option “greeks” could be used
but they too are most useful if a specific objective is pursued.

As with traditional econometric models, the forecast at 𝑡 is based on the pre-
vious data only and is thus applicable to any pricing and evaluation at 𝑡 and not
𝑡 + 1. This means that no additional delay needs to be used for a valid model.
This is also true for the networks trained while the actual implementation differs
slightly. Due to the way time is represented, the implementation uses all data up
to and including the current day, i.e. including the closing price of the current
day. When synchronising time series across models, the one day (specifically one
business day) lagged volatility measure is used for pricing options. This ensures
that volatility estimates are known at the beginning of the trading day and based
on the previous close and earlier information.

The literature review demonstrated that past studies used a number of ad-
ditional variables for the input. Given the focus on index volatility, these often
referred to related indices. No such information is included here. There are a num-
ber of methodological reasons for their omission. Firstly, determining a related
time series is less clear for an equity security. While a related (benchmark) index
could be chosen, it is not clear why any or a particular index should be a suitable
input.

Secondly, unless the same inputs are presented to the competing models, it
is not clear if the different model form or the additional inputs are the driver
for varying performance. Such comparisons would have to include ARCH-style
models with exogenous variables and regression models using historical volatility
along with the enhanced ANNs. This is a question left for future research (see
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section 5.3). The use of the risk-free rate, i.e. a government bond yield as a proxy,
is particularly difficult. It is certainly justifiable on the grounds of being a proxy
for investor’s risk-preferences.

Thirdly, using it in the context of volatility forecasting implies its use in the
subsequent pricing step, where it is – under the assumptions made here – incorrect
due to the margining regime.

The choice of forward period is only relevant with respect to the evaluation of
volatility models on their own. Once a volatility estimate is needed for option
pricing, the period would have to match that of the time to expiry. As explained
before, an individual model for each such period may have to be built, or the one
period model applied iteratively as was suggested for the GARCH model. This is
feasible in the case of GARCH models as these are combined forecasts of return
and volatility. This approach fails in the case of direct volatility forecasts using an
ANN. This requires particular attention when choosing the time frame for which
to measure realised volatility and when comparing different models for selection
purposes.

The models are built for panel data, i.e. training includes data over the in-
sample period and across several securities. This is benchmarked against stan-
dard econometric models, specifically historical long- and short-term historical
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volatility 𝜎HVL and 𝜎HVS (see Figure 3.3, both corresponding to the long and
near-short-term specification of the ANN-based model), and the GARCH(1, 1)
model 𝜎GARCH(see Figure 3.4). Those were chosen as representative of frequently
used models in research and practice based on the review literature. They, and
the GARCH model in particular, do not necessarily represent good models in
absolute terms but sufficiently well-understood models to serve as benchmarks.
They are also used in prior ANN volatility forecasting research.

Note that the historical and GARCH(1, 1) models return volatility for the
specific sampling frequency 𝜎𝑠 requiring the usual adjustment (see equation 2.21)
to arrive at annualised volatility 𝜎. This is done implicitly in the case of the
neural networks. For this reason, the networks are also presented with annualised
volatility but not annualised returns.

Hypothesis 1 can then be answered by comparing the competing models:

• ANN-based (Daily) Volatility Model 𝜎ANNd,

• Long-run Historical Volatility Model 𝜎HVL,

• Short-run Historical Volatility Model 𝜎HVS, and

• GARCH(1, 1)-based Volatility Model 𝜎GARCH

by comparison to the realised volatility over the fixed time frame as specified
in the ANN-based models (including applying the GARCH model repeatedly to
arrive at a comparable time frame). Days of historical volatility refers to the
number of deviations from the mean evaluated and the number of underlying
returns is thus greater by one.

3.1.3 Option Pricing (Hypothesis 2)

The resulting volatility models allow for a comparison of simple forecast but not
for the forecast for purposes of option pricing due to the fact that the volatility
surface is not flat (a plane parallel to that given by the strike and time-to-expiry
axes). Instead the surface needs to be derived based on the fixed-period volatility
forecasts at time 𝑡.

The process is more complex in the case of the GARCH model and the simple
volatility forecasts. Here a transform is needed and a function similar to those
by Dumas, Fleming, and Whaley (1996), Peña, Rubio, and Serna (1999), or An-
dreou, Charalambous, and Martzoukos (2010) are used. The models are labelled
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𝜎fit
𝑀,𝑇 (𝑀, 𝑇 , ⋅), where the last parameter represents the volatility forecast as per

any of the competing models above:

𝛽0 + 𝛽1𝑀 + 𝛽2𝑀2 + 𝛽3𝑀𝑇 + 𝛽4𝑇 2 + 𝛽5𝑇 (3.3)

The parameters are found by OLS regression. For practical purposes, the volatility
will be set to 0 (similar to the lower bound in the literature mentioned above)
where the regression leads to negative values. Unlike those authors, the question
that arises here is how to integrate the reference volatility forecast. Apart from
adding it as another explanatory variable and fitting more parameters, including
those of additional interaction terms, two options are available, which do not
require a larger set of parameters:

• the surface is considered the additional volatility, relative to the reference
forecast and thus 𝛽0 in the regression formula is substituted with 𝜎 + 𝛽0;

• the surface is the relevant scaling function, i.e. points on the surface repre-
sent factors, which are to be applied to the reference volatility forecast.

The former resembles the – usually successful – hybrid learning approaches, which
use a reference model as a base and learn the difference. The latter is similar to
some adjustments that are made by practitioners using tables to modify point
forecasts for use in parametric models. Furthermore, this preserves the shape of
the surface when there are changes to its level, the latter is chosen:

𝜎fit
𝑀,𝑇 (𝑀, 𝑇 , 𝜎) ∶ 𝛽0 + 𝛽1𝑀 + 𝛽2𝑀2 + 𝛽3𝑀𝑇 + 𝛽4𝑇 2 + 𝛽5𝑇 =

𝜎𝑀,𝑇

𝜎
(3.4)

There is no valid reason for limiting the ANN to forecasting volatility for a single
time to expiry or level of moneyness, however. Given the flexibility they offer, it
is equally valid, and potentially beneficial to derive the volatility surface directly
from the ordinary volatility forecasting inputs and the additional parameters of
moneyness and time-to-expiry. The resulting model specification is:

𝜎ANNs
𝑀,𝑇 ∶ (𝑀, 𝑇 , 𝜎110, 𝜎60, 𝜎20, 𝜎5, 𝑟𝑡, 𝑟2

𝑡 ) ↦ 𝜎𝑀,𝑇 (3.5)

shown in Figure 3.5
This is exactly 𝜎ANNd with the two additional parameters. The reason for using

𝑀 = 𝑆/𝐾 lies in the assumed homogeneity as discussed by Garcia and Gençay
(1998) as well as Garcia and Gençay (2000) in regards to option pricing and is
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Figure 3.5: ANN-based Volatility Surface Model

chosen here too for consistency reasons. This allows for a direct comparison of
the resulting option prices to those of the direct pricing network.

Hypothesis 2 could then be answered by comparison of these models in regards
to their fit to the implied volatility surface or at the money but with varying
time-to-expiry, to realised volatility.

The selection criteria and the underlying error measures and statistical inference
methods used are discussed later in this chapter. In regards to the option pricing
model, it shall suffice to note here that the appropriate choice between the two
sets depends on the objective of the user of such a model. If the goal is trading
highly-liquid options, the former will be sufficient as this limits the modelling to
ATM options, or those relatively close to it, in most cases. If the question is of a
more general nature, as is the case in this thesis, the second approach is needed as
it covers ATM, ITM, as well as OTM options equally. The comparison of implied
volatility surfaces, rather than observations on them, is thus the valid choice for
this thesis.
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While an evaluation of implied volatility surfaces is a possibility, Hypothesis
2 can also be answered by determining which model results in a better option
price. Since the hypothesis only refers to superiority of the ANN-based model over
traditional models, not all models previously discussed need to be evaluated here.
Instead it is sufficient to evaluate the ANN models and the reference model using
the best volatility forecast, the surface derived by the fitting procedure above and
applied to the option price. This has the additional benefit of limiting the impact
of sparse data on the surface as more liquid regions also have more observations
attached to them. A surface-to-surface comparison may cause problems of both
theoretical and practical nature.

Regardless of which network is the best to be chosen for this purpose, a single
reference model for the option pricing needs to be chosen. Several possibilities
exist:

• The (modified) Black-Scholes formula could be used. Despite the options
of interest being equity options with American-style exercise, the formula
provides a simple reference point that is likely close to the actual option
values. As pointed out previously, the European-style option price is the
lower boundary of the American-style option with otherwise identical fea-
tures. This fact together with the absence of dividends, which would justify
early exercise for calls, are the main reasons for this particular choice by
Lajbcygier (2003b), for example. The argument is weaker for pure equity
options due to the presence of dividends.

• The CRR model is feasible and a common choice in cases of American-style
exercise. It has the previously discussed benefit of pricing the dividend
stream correctly as well. It is computationally expensive however, and it’s
iterative nature requires additional choices with respect to the number of
steps. The additional accuracy of the model as such is easily undermined by
a lack of convergence due to too few steps. The trade-off between accuracy
and speed, which is a consideration in a practical context, is not easily
resolved.

• The Haug-Haug-Lewis (HHL) model (Haug, Haug, and Lewis, 2003), which
is also applicable in the presence of discrete dividends, is even more costly
with respect to processing time.
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• If the discrete dividends are considered proportional to the price, i.e. they
can be expressed as a yield but paid at discrete intervals, the method by
Villiger (2006) can be used to approximate the price of an American call.

• Finally, approximation models such as that by Barone-Adesi and Whaley
(1987) is used frequently in practice according to Haug (2007), it allows
for a cost-of-carry to be specified as a continuous yield to allow for the
inclusion of dividend benefits. The same author also notes that the Bjerk-
sund and Stensland (2002) model is an even better approximation, it is a
suitable alternative to Barone-Adesi/Whaley one with the same simplifying
assumption.

With the consideration of dividends being one of the contributions of the re-
search, the first of the options is not a suitable choice. Among the remaining
options, the choice depends partially on what assumptions and simplifications
should be made. While the CRR approach is the most realistic, it is only benefi-
cial if the payments are known. While this can be assumed for research purposes,
especially in countries and for industries that offer comparatively stable dividend
streams, the model by Villiger (2006) may be preferable if dividend payments are
not known or preference is to be given to the assumption of a constant yield. On
balance, and in large part due to the comment on its frequent practical use17, the
Bjerksund and Stensland model is used for this thesis. This requires a conversion
of the dividend payments to a cost-of-carry rate.

The notation is modified to reflect the choice resulting in 𝐶 ref referring to the
Bjerksund and Stensland approximation for the price of an American call option
with the usual parameters including the dividend yield.

Finally, Figure 3.6 shows the additional model required for Hypothesis 2. It is
designed to answer the question whether there is a benefit to splitting the problem
into two parts, one for volatility modelling (as above) and the other for option
pricing, or whether the two are best integrated given a parsimonious specification:

𝐶 ANN ∶ (𝜎110, 𝜎60, 𝜎20, 𝜎5, 𝑟𝑡, 𝑟2
𝑡 , 𝑀, 𝑇 , 𝑞) ↦ 𝐶. (3.6)

The innovation is the model replacing 𝐶 ref (in Figure 3.1). It represents an
option pricing model as previous models. Instead of supplying a volatility forecast,

17The additional benefit and direct consequence of its popularity is that the model is already
implemented in MATLAB.



84 Chapter 3 Methodology

Historical
Volatility 𝜎110

Historical
Volatility 𝜎60

Historical
Volatility 𝜎20

Historical
Volatility 𝜎5

Return 𝑟𝑡

ANN-based
Pricing Model for
an American Call

Option 𝐶 ANN

Option price
𝐶 ANN

Squared Return 𝑟2
𝑡

Moneyness 𝑀

Time to expiry 𝑇

Dividend 𝑞

Figure 3.6: ANN-based Pricing Model for an American Call Option



3.1 Model Development and Experimental Design 85

the inputs used for the volatility forecast in 𝜎ANNs
𝑀,𝑇 are supplied directly to the

pricing function. Here another benefit of the use of the various approximation
models, including the one used for the reference model, becomes apparent. Just
as in the case of the homogeneity hint used even for volatility forecasting, here the
use of the dividend yield allows for a direct comparison of models. Were the CRR
model be chosen for the option pricing, any over- or under-performance could not
be attributed easily to the pricing function as such. Rather, it may be the result
of more realistic or more commonly used representations of the dividend stream
that are driving the performance. By using the yield in both, the issue is avoided
altogether although the same would be true if the discrete dividend yield were
used.

Supplying the dividends directly, in the form of discrete payments, is not easily
achieved as the representation of this information is not clearly defined. A divi-
dend stream consists of two vectors, one of dates, one of payment amounts. For
each sample, these vectors may be of varying length. Such models would require
additional assumptions and conventions regarding the minimum and maximum
number of payments to be modelled and permitted in the network as well as a de-
cision of how fewer than the maximum number of dividends are to be represented
to the network.

The models designs, as they are chosen avoid these issues entirely and permit
direct comparisons and evaluation of models.

All pricing models presented so far differ in the way they represent volatility,
as a single input or as a combination of constituent attributes. Volatility is only
one factor, however. The typical definition of such formulas includes, at a mini-
mum, the traditional 5-tuple: current price, strike price, the risk-free rate, time
to expiry, and volatility. Thus the remaining four inputs need to be supplied as
well. As Garcia and Gençay (1998) and Garcia and Gençay (2000) point out,
however, it is beneficial to represent the first two parameters as a ratio, rather
than as individual attributes. Instead of supplying current and strike price as in-
dividual values, moneyness is calculated and used in the formulas. Conceptually,
this means scaling the option not to one unit of ownership but to one unit of
money at the time of exercise. This also means that the option price needs to be
divided by the strike price 𝐾. No further adjustments are needed. In particular,
since volatility represents volatility of a rate of return and return is independent
of the level, no adjustment is required.
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The latter points to an important assumption in the process presented by Garcia
and Gençay (1998) and Garcia and Gençay (2000). It assumes homogeneity with
respect to the price. The stock price level in this case is assumed to be unrelated
to the return and pricing process. This is a natural assumption considering the
principles of financial modelling covered in the previous chapter. In particular,
the number of shares outstanding is arbitrary and so is the fractional value.
It is the combination of units held and the price of a single unit that matters.
There is one important consideration, however. Many market participants believe
that there are price levels of some significance, these are treated as support and
resistance lines or in other more complex ways. If their views were true or if
they believed they are, there may be, if briefly, a relationship between the price
and the return or at least it would offer an opportunity for such a relationship
to emerge. In accepting the homogeneity hint as proposed by the authors and
used by researchers subsequently, one rejects the existence or significance of that
particular effect.

3.2 Data Scope and Sources
All data related to options with the exception of that set covering the underlying
prices and index membership for the data filter (see below) has been retrieved
from the Thomson Reuters TickHistory Database provided by Securities Industry
Research Centre of Asia-Pacific (SIRCA) (2010–2012). The data was requested
in two stages in 2010 and 2012 for an extended set. All equity and equity-linked
options data was retrieved including reference data, which covers symbology and
reference data changes. The latter refers to the changes in contract details as
they occur. Individual transactions were requested and the request verified. A
number of securities could not be retrieved though this is almost exclusively the
result of failing to retrieve test data which need to be excluded from the data
set in any case. This test subset does not represent actual market data and does
consequently not qualify for inclusion. The few remaining failed series relate to
instruments that would not have qualified for inclusion under the rules (see below
for the definition of the candidate set).

The data covers individual transactions and in the case of the first data set also
quotes. The quotes were discarded along with reports of implied volatility. The
implied volatility reported by the database refers to regulatory implied volatil-
ity, which according to Australian Securities Exchange (2010) is published in
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response to price changes for the purpose of informing participants about margin
requirements and not for pricing purposes.

The latest reference data and transaction information was retained and con-
verted from text format to binary representation as explained below.

Equity data was retrieved from two sources but both through Securities Indus-
try Research Centre of Asia-Pacific (SIRCA) (2010–2012). Current prices were re-
trieved at 5-minute intervals from Thomson Reuters TickHistory including addi-
tional data relating to the securities and their symbology. Although the database
also provides the dividend and corporate action data, it was decided to use the
CRD database from Securities Industry Research Centre of Asia-Pacific (SIRCA)
(2010–2012) and use the pre-calculated dilution factors to adjust returns. The use
of the existing formula and implementation allow in principle for replication and
it is assumed that the research character of the database implies additional prior
scrutiny of the adjustment methodology as well as the underlying data.18

The equity data was restricted to the members of the Standard and Poor’s
(S&P) ASX 20 index membership on June 30, 2007 excluding the special Telstra
equity security but including the standard Telstra shares (TLS). The data covers
the sampling period of July 2000 to June 2011. During processing, the data was
synchronised, i.e. equity and options data aligned. Since the equity data consti-
tutes the most constrained set, it also defines the overall data set resulting in
samples only over that period and only for members of the index on the given
date.

Unlike some research conducted in the past, there has been no attempt at
fitting models repeatedly. Consequently, no rolling-window subsets of data were
created and no update to the candidate set, i.e. the investment universe to which
the models are applied, needed to be made. It should be noted that the indices
published for Australia are designed such as to have few constituent changes
among other criteria (Standard and Poor’s, 2011).

18In research unrelated to this dissertation, the author’s supervisor and the author investi-
gated pricing differences resulting from varying adjustments or base data across databases to
decide on a particular source of data for research. Pricing differences did exist but they were
usually quite small and did not raise concerns in that context.
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Figure 3.7: Schematic Overview of the Model Development and Processing
Workflow

3.3 Model Fitting and Testing

3.3.1 Simulation Implementation

The simulations were largely implemented in MATLAB; in particular, the training
and evaluation of neural networks was done using the Neural Network toolbox.

The data was imported from the text files retrieved from the data providers and
converted to binary format to avoid multiple parsing and cumulative rounding
errors. Preprocessing focused on the removal of duplicate observations.
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The following steps are necessary to process data, implement, and run or sim-
ulate the models (see Figure 3.7 for a schematic illustration):19

1. Parsing and importing of data, including removal of unnecessary and du-
plicate entries;

2. Creation of a complete equity subset including returns;

3. Consolidation of option reference data, such as strike price, time to expiry,
etc. and transaction data to yield a complete option pricing data set as a
set of observation vectors;

4. Synchronisation of daily and intra-day data through the use of lookup in-
dexes;

5. For each hypothesis:

a) Splitting of the data set into in-sample and out-of-sample subsets so
all fitting (statistical models) and training (ANNs) can be done within
the in-sample set and all evaluation in the out-of-sample set;

b) Fitting and applying of the volatility forecast models (Hypothesis 1),
the volatility surface (Hypotheses 1 and 2), and option pricing models;
networks are trained using the in-sample data set only (Hypotheses 1
and 2);

c) Evaluation of the resulting models, applying the volatility forecast-
ing models, the deterministic volatility (adjustment) function (surface
model), or networks using out-of-sample data;

6. Computed summary statistics generating and formatting tables and plots
(see Chapter 4).

The first two steps are largely self-explanatory and mainly aimed at enabling
further steps and improving processing time in later stages. It is critical that
during synchronisation no bias is introduced. Time-series offsets need to be chosen
such that at any point in time a decision is made (or is simulated to be made),
it is based only on available information, this implies strict time precedence.

19The steps do not represent a strict sequence due to varying dependencies of the selected
models and some steps were done out of the specified order. For example, comparisons between
in-sample and out-of-sample results can be made without reference to competing models and
were thus partially done at the time the models were fitted.
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There is one exception in the case of option pricing and specific to derivatives
markets. Given that theoretical pricing models are based on arbitrage arguments,
the process is conceptually symmetrical. The no-arbitrage situation can be cre-
ated by the equity price moving in response to the option price or vice versa.
Given the high liquidity of the equity market and the more restrictive regulatory
environment in derivatives trading, the standard time-ordering was used regard-
less. The price of the underlying was observed and the price of the option based
on it. The reverse was not investigated or simulated. Under the assumption that
equity markets drive derivatives markets, no look-ahead bias results from this
treatment. 20

The data was then split into in-sample and out-of sample data. The same cut-off
point was used for the split as for the index membership date. This treatment
is equivalent to assuming that the decision to use the ANNs was made on June
30, 2007 and that all simulation as well as the investment universe they are
based on, were run at that point in time. The date is in all likelihood the most
conservative of cut-off points as it splits the data set not only into in-sample
versus out-of-sample but also marks the end of a particularly good and stable
economic period and the beginning of the GFC.

Using the in-sample data set only, the GARCH models were fitted using stan-
dard parameters and a specification of GARCH(1, 1). The GARCH volatility
model is then synchronised again with the main data set. The resulting set is a
full in-sample set.

An adjustment is needed with respect to volatility. As pointed out in the lit-
erature review, the volatility in the pricing model needs to be stated in terms of
annual volatility requiring the usual adjustment. This can be done during volatil-
ity modelling or during pricing. As a matter of convention and convenience, the
adjustment is made before reporting volatility forecasts, i.e. volatility forecasts
represent annualised 𝑝-period forward volatility in all tables and figures.

The simulation, time series creation and synchronisation steps were then re-
peated using the fixed model parameters for all models (including GARCH, IV,
volatility surface, ANN). The results were stored for later retrieval, statistics cal-
culated (see 3.4 for evaluation methodology and Chapter 4 for results) and tables
as well as figures created.

20This approach is not sufficient if it is assumed that there is an interaction, i.e. a mutual
influence, and it is not heavily biased in favour of the equity market.
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Figure 3.8: Schematic ANN Architecture

3.3.2 ANN Training

The training phase of the networks is particularly difficult given the large number
of open questions that remain in the area, especially with respect to architecture,
learning algorithms and their parameters, and finally the training process. As was
alluded to before, this research follows Vanstone (2005) as well as Vanstone and
Hahn (2010). Due to different objectives and software, it needs to be adjusted.

The original process requires the definition of input parameters, preparation
of data (the software used in the research performs standardisation of the input
range automatically), and initial network design choices. The network starts with
⌈
√

𝑛 ⌉ hidden nodes in a single hidden layer for 𝑛 input variables (Figure 3.8
provides an example of the starting network architecture for a 𝑛 = 4 network).
A network is trained and the in-sample results stored along with the network
parameters. The process is repeated until the in-sample results fail to improve.
Each learning cycle is limited in length by a maximum number of epochs, i.e. data
presentations to the network, without improvement. The authors also provide
some guidance regarding the training parameters, which determine the speed
with which weights are updated and learning takes place but also potentially
limits the search for improved performance by especially fast conversion to a
local minimum.

The problem of local minima is particularly acute for ANNs. Not only is it likely
to find a local minimum instead of the global one but the lack of explanatory
power limits the understanding of the resulting model. Decision makers cannot,
therefore, detect such problems even when they otherwise have considerable do-
main knowledge and intuition for the problem. The suggestion is to train many
networks and choose the best with respect to some metric.
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The problem is avoided to some degree by following the process discussed be-
fore. The approach already provides for iterations and thus for opportunities to
escape local minima. This comes at a price of choosing a less parsimonious model
than needed. An additional iteration may not improve the results because of the
additional hidden node but rather because of the different starting point. This
network would be chosen even though the same or similar result could have been
found with a smaller number of hidden nodes. The process does, however, provide
an opportunity to arrive at fairly parsimonious models by its design compared
with some other alternatives.

The Levenberg-Marquardt back-propagation algorithm was used in conjuction
with the MSE performance metric. The hidden layer used the sigmoidal and the
output layer the linear transfer function.

The methodology by Thomaidis, Tzastoudis, and Dounias (2007) discussed be-
fore was considered as well but ultimately rejected for the following reasons.
Firstly, there appears to be little research following this specific process. Sec-
ondly, it is not clear where to start. While the different steps are outlined, it is
not clear if starting with one neuron or variable instead of another one leads to
different results and how such problems can be detected or corrected for.

Thirdly, the process does not address the issue of local minima and thus addi-
tional training is required in any case. Finally, it is so far unclear if the methodol-
ogy is sufficient to account for non-linearities both in the process and in the statis-
tics and metrics used. It should be noted that the use of well-defined statistics and
a clear process is extremely attractive from both a research and a practitioner’s
perspective and should be investigated further.

3.3.3 ANN Model Selection

The iterative approach requires two steps in addition to the network design and
learning parameter choices. Firstly, the question arises which network to choose
for any particular estimation or forecasting problem. Secondly, it requires a de-
termination of whether the particular model chosen is sufficiently better – with
respect to the same or a different metric – than an existing competing model.
While the latter is discussed in greater detail in the next section, the former is
largely straight-forward.

Once a set of networks has been trained and a stopping criterion (for the in-
between models stopping, not the within-model training stopping) applied, the
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resulting model needs to be constructed. If multiple networks are trained for any
particular design, this choice is a dual one of choosing between network designs
and between within-design networks. Since the simple process by Vanstone (2005)
is used, this complication does not apply.

The same process also requires the choosing of the best network from the various
designs. Assuming the error metric is appropriate for the application domain, the
best network provides the best fit to the data. It is also possible, however, that
such an approach leads to overfitting and that the error metric used for stopping
and evaluation is not consistent with the ultimate use of the model. The metric for
design choice may, therefore, be different from the one used for training. Following
Vanstone (2005) and other researchers as discussed in the literature review, the
network design with the best performance is used and no additional distinction
is made with respect to error metrics.

These issues are common and not unique to ANNs but are potentially more
significant given the universal approximation ability. In principle, the best-
performing network may also be the one most sensitive to structural changes
and may perform particularly poorly out-of-sample. It is not a foregone conclu-
sion to use the best network if such an effect is anticipated. Further, the problem
is not eliminated through regularisation or similar approaches as these are still
within the given data set. It may thus be beneficial to determine, where possible,
such sensitivity and use it in determining the best of the chosen networks, best
not with respect to an error metric but best with respect to the wider set of
performance constraints.

Even in the presence of such analysis, it is not clear that a single network even
should be sought or whether a combination of networks along the development
path may be superior. Combining forecasts is a common approach in statistics
and econometrics and Poon and Granger (2003) point out one application of a
learner regression in a purely econometric framework.

No attempts have been made in regards to the analysis of sensitivity or combin-
ing networks in option pricing previously and the number as well as the interde-
pendency of choices require a separate analysis of the issue. Instead of introducing
several innovations at the same time, only a single network is chosen, the best
with respect to the same error metric as is used for training using the process by
Tan. However, the total number of parameters will be reported along with the er-
ror metrics to enable at least a basic discussion of the complexity of the networks,
which is the principle cause of overfitting. This allows for the determination of
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measures of parsimony and aids in the second step, the question of whether to
choose the ANN or a standard model as discussed next.

3.4 Model Evaluation and Comparisons
Measuring forecasting and pricing errors is central to model development and
evaluation. They are used for the following purposes:

• The regression error of the network needs to be determined for each sample
presented to the network during training in order to determine how the
weights need to be modified in order to minimise the average error (see
3.3.2).

• If several networks are trained simultaneously either to determine a suitable
network architecture or to avoid the issue of local minima, an error measure
is needed to choose one from amongst those models (see 3.3.3).

• A model needs to be chosen among a set of competing (benchmark) models
or a combination of such models. This can be based fully or partly on the
forecasting or estimation error.

Common to all is the need to determine what metric to use and the data it is
applied to, i.e. which error of what. Table 3.1 shows the standard definitions of
common error formulas as found in the literature (see Chapter 2).

Due to the frequent use in (linear) regression and generally favourable statisti-
cal and numerical properties, it is not surprising that the MSE is frequently used

Acronym Name Formula

MSE mean squared error 1
𝑛

𝑛

󰞉
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2

RMSE root (of) mean squared error
√

MSE

MAE mean absolute error 1
𝑛

𝑛

󰞉
𝑖=1

|𝑥𝑖 − 𝑦𝑖|

MAPE mean absolute percentage error 1
𝑛

𝑛

󰞉
𝑖=1

󰝆𝑥𝑖
𝑦𝑖

− 1󰝆

Table 3.1: Definitions of Error Metrics of Forecast or Estimate 𝑥𝑖 and Observation
𝑦𝑖
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during ANN training and as discussed above for network selection as well. It does
have two main problems, however, it penalises large errors significantly (due to
the squaring) and it is difficult to interpret with a squared unit. This is similar to
a problem found in expressing volatility as 𝜎2 and for the same reason, the posi-
tive root is often reported instead. While MSE is used for network development
purposes, the results reported in the following chapter will therefore represent the
RMSE instead.

The use of the absolute measures and in particular of MAPE is frequently
found as it is not sensitive to the level of the estimate nor does it focus as much
on large errors, which may be due to outliers. Neither issue is likely to exist in the
methodological framework used in this thesis: The use of the homogeneity hint
combined with the data preparation steps are expected – and indeed are designed
– to result in a data set that is not sensitive to price levels. In the case of volatility
forecasting, the principal variables are rates and while large differences may exist
within as well as between time series, they are not expected to be so frequent and
so significant to cause problems. It can also be argued that the greater penalty
for large errors is beneficial in the case of option pricing. This is a security class
typically used for hedging, large unexpected events are thus of particular concern.

All average error metrics are reported, principally to allow for comparisons
with prior studies but only the MSE is used for decision making in the presence
of competing models. The model with the lowest error is the preferred one.

Even with the measure decided, the question remains the error of what is to be
calculated and used. In the case of the first and last hypotheses, no distinction
need be made. The variable being forecast (estimated) is also the variable of
interest, the error is thus between the forecast (estimation, respectively) and the
actual observation.

When evaluating the remaining hypothesis, the question is subtler. The question
is if the volatility forecast results in a better option price. The question thus is
whether the goal should be to minimise the forecasting error (all forecasting
errors), to minimise the pricing error resulting from the forecasts (all pricing
errors), or if the forecasting error is to be minimised during training but the
model chosen based on pricing errors (mixed metrics).

The first allows for a consistent treatment of error metrics between the first
and the second hypothesis while the second allows for a consistent treatment be-
tween the second and the third (with respect to error measures). The third choice
appears particularly suited to accommodate the competing goals. While super-
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ficially advantageous, the alternative is not particularly convincing, however. If
the goal is to ultimately minimise the pricing error, then the forecasting error
should be used for training purposes. Unless the two metrics are such that they
always result in the same outcome, in which case the decision maker would be
indifferent between them, choosing the mixed approach will yield pricing errors
not smaller than the all-pricing-error approach (ignoring for the purpose of the
argument the issue of local minima).

Therefore, the question of what to measure the error of needs to be answered by
focusing on the specific research goal. The motivation of the research is to arrive
at an appropriate decision making process for option pricing21. This supports the
use of all-pricing errors in principle but not from a purely procedural perspective.

As pointed out in the discussion of time series alignment and look-ahead bias,
the view taken in this thesis is that the underlying security prices are observed
and the option prices built upon them on the basis of a volatility forecast. The
question to answer is whether the volatility forecasting can be improved to result
in better pricing. It is thus necessary to compare the volatility forecasting with
a volatility surface model and both compete for use in pricing. Since both are
volatility forecasts they need to be evaluated on this basis using the same error
measures.

It should also be noted that the pricing error measure is not rejected here on
the basis of inconsistency between the benchmark model and the ANN model.
The benchmark model is based on implied volatility and thus implicitly on option
prices. It would be valid to compare it to an ANN that is trained to minimise
pricing error resulting from volatility forecasts.

All error metrics discussed are only useful for comparing relative benefits of
models. Two additional questions need to be answered, whether the differences
are statistically significant and what their benefits are relative to the problem or
to the competing model.

Since the objective in all cases is to determine if the mean error is significantly
different from another set, the ANOVA framework is used. Based on the vari-
ance of the sample, it allows for the determination of the probability of observing
difference in means by chance only. Where applicable ANOVA is used simulta-

21This point implies that either approach is valid depending on one’s perspective. If the focus
is on outcome rather than process, the use of all-pricing-errors is likely beneficial as it offers
the opportunity to learn the ‘right’ forecasting model strictly for pricing. The view taken here
is that the volatility forecast drives the pricing and the regression is thus biased towards the
beginning of the process rather than its end.



3.5 Theoretical and Practical Limitations 97

neously for multiple models, rather than pairwise, to reduce the compounding of
errors.

ANOVA results are reported but not used for model choice. Instead they are
used to draw conclusions at the end not guide in the development.

3.5 Theoretical and Practical Limitations
The methodology introduced in this chapter is designed to answer the particular
research questions raised in this thesis. Several limitations apply, however, both
with respect to answering these questions and to applying it to broader research
questions.

Regarding the specific research questions expressed in the hypotheses of Chap-
ter 1, the methodology is limited to a step-wise model development process. This
sequential approach simplifies development and decision making ensuring a rea-
sonable basis for the final choices and resulting beliefs but does not necessarily
account for all the complexity inherent in the problem.

In particular, when applying the result of one hypothesis as an input to the
next, the non-linearity of the problem may result in the best choice of an input
model to be a suboptimal choices of the integrated model. This may be the
result of varying sensitivity of model outputs to parameters as in the discussion
of error measures. An integrated approach would be preferable but is likely to
require an investigation of all – or at least many – combinations of models for
input parameters. This is not unique to the presented methodology but a general
problem in option pricing as well as other areas of financial research and partly
motivation for this research.

Not only would such research be considerably more complex and time-
consuming, it is also more likely to be biased, in particular by means of data
mining, and requires more sophisticated statistical tests to avoid inference errors.
The present methodology is not free of those but being limited to a single uni-
directional development process using decision criteria as they have been used in
the prior literature, the current process is more robust.

Another limitation results from the large number of choices of variables, sam-
pling method, parameters, and benchmark models. While each has been defended
based on their use in previous literature or common practice and discussed in
the context of the methodology development, generalisation beyond the existing
data set is not fully defensible. This is especially true with respect to volatil-
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ity modelling and when attempting to extrapolate to other markets, whether by
geography, liquidity, underlying assets, or other criteria.

This limits the research outcomes strictly to the securities, and a regulatory and
economic environment similar to the one studied. The use of out-of-sample data
allows for generalisation over time to some degree. It is the process, however, that
is central to the research, which may also prove useful for practitioners attempting
to replicate and extend this methodology to suit their particular needs.

More significant limitations exist when such attempts beyond the data set and
research goals of this thesis are made. No attempts have been made, in particular,
to improve hedging performance or to simply evaluate it. Some error metrics
exist for this purpose (see 2.5.1) in part as the general ability of ANNs has
been demonstrated. If hedging is central to the research or trading activity, the
methodology needs to be adjusted accordingly. The research outcomes reported
in the next chapter do not necessarily apply to such questions.

Secondly, if alternative benchmark models exist that are considered superior
for a particular application, these need to be added at the appropriate stage.
Benchmark models were chosen largely based on prior literature and consistency
with the stated research goals (thus excluding, notably, local volatility models).
They do not necessarily represent the best available model for the problem but a
common and well-understood alternative.

Finally, the process cannot help to explain why ANNs typically improve perfor-
mance. The methodology is only designed such as to provide a first step towards
answering which area of modelling, i.e. volatility forecasting, volatility surface
modelling, or option pricing, improve results but not why or how such improve-
ments are achieved.



Chapter 4

Analysis of Data

4.1 Overview
In this chapter the intermediate statistics of the simulations and their results are
reported. The presentation is structured along the development process of the
various models, i.e. from left to right in Figure 3.1.

The chapter is organised as follows: general data characteristics are presented,
including a number of pre-tests required for analysis. This is followed by training
and testing results of the various networks and error terms of the parametric
models used for comparison for volatility forecasts, volatility surface models, and
option pricing models.

For each stage, the data characteristics and fitting of data is reported. This is
followed by a comparison of models and a comparison of performance between
in-sample data and the out-of sample set.

When individual securities are reported, their latest symbol in the sampling
period is used.

4.2 General Characteristics of the Data Set
The data set consists of broadly two subsets as explained above: equity data, and
option data. Each also contains reference data such as the names of securities,
adjustments to be made and the contract information for options, i.e. strike price,
expiry date.

These data sets were imported and synchronised with adjustments for changes
of the symbol and other related data. Further subsampling was applied at the
appropriate stages and is detailed below.
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Security 𝝈 ARCH-test Q-test
p statistic p statistic

AMP 0.0202 0.6531 0.2020 0.0009b 10.9630
ANZ 0.0121 0.8725 0.0257 0.6858 0.1637
BHP 0.0176 0.0007b 11.3656 0.6787 0.1716
BXB 0.0185 0.5725 0.3185 0.0653 3.3973
CBA 0.0101 0.0000b 59.2177 0.0531 3.7411
CGJ 0.0148 0.0411a 4.1720 0.9334 0.0070
FGL 0.0120 0.0241a 5.0861 0.8393 0.0411
MQG 0.0151 0.0000b 39.6275 0.0003b 12.8271
NAB 0.0114 0.0117a 6.3540 0.9928 0.0001
QBE 0.0259 0.0000b 229.9609 0.0000b 44.2125
RIN 0.0172 0.0724 3.2279 0.3508 0.8706
RIO 0.0160 0.0001b 15.6079 0.3135 1.0158
SGB 0.0100 0.1367 2.2147 0.9969 0.0000
SUN 0.0128 0.0000b 116.8904 0.1441 2.1334
TLS 0.0117 0.0000b 120.7925 0.3325 0.9390
WBC 0.0106 0.0000b 28.5261 0.2444 1.3552
WDC 0.1836 0.5216 0.4108 0.9804 0.0006
WES 0.0138 0.0000b 18.1731 0.4774 0.5049
WOW 0.0116 0.0000b 44.2569 0.9264 0.0085
WPL 0.0157 0.0000b 72.1385 0.4209 0.6478

Table 4.1: Descriptive and Test Statistics for Underlying Equity Securities for the
In-sample Period. Significance at the 5% (1%) level is indicated by a

(b).

The data covers the period 2000–01–01 to 2011-06-30 and is split into three
parts. The first year, 2000, is used to compute cumulative dividends and the
resulting yield. It is also used to compute initial historical volatility if applica-
ble. Furthermore, the first year’s 252 trading days were used as the basis for the
annualisation in all subsequent years. The following period up to and includ-
ing 2007–06–30 was used to fit models or train the networks, respectively. The
remaining data, including the GFC period was used for out-of-sample testing.

For the purpose of volatility forecasting, the problem consists of a set of time se-
ries. Each needs to be analysed separately for the historical volatility and GARCH
model. The latter is only useful in the presence of anomalies. In particular, En-
gle’s ARCH test and the Ljung-Box-Q test are applied to the series to test for
heteroscedasticity and residual auto-correlation, respectively. The results can be
found in Table 4.1.
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The null hypothesis of no heteroscedasticity, is frequently rejected, as is the
null hypothesis that no autocorrelation exists at lag 1. As can be expected, the
confidence in the various tests varies but it is equally obvious that the series do not
meet the conditions normally defined for time series. While it would be possible to
fit a separate model (of separate classes) to each series, any summary conclusion
requires the testing of defined models. Therefore, no varying lags were used and
standard GARCH(1, 1) models fitted to the in-sample data and subsequently
applied to out-of sample data.

Due to the nature of the option pricing data set, descriptive statistics are not
meaningful. The data set is a subset of all qualifying options, i.e. across strikes and
maturities for qualifying underlying securities. Only call options were considered
and only reported trades, rather than including bids and asks. The following
discussion of specific networks also covers the definition of ’qualifying’ as there
are minor variations across the models.

4.3 Volatility Forecast Evaluation
Volatility forecasts form the largest subset of models by type. A model is fitted
to each security’s time series with the exception of the ANN, which is fitted to
the panel data, i.e. over time and across series. There were 31 109 observations
in the in-sample set for the ANN, which counts individual returns rather than
aligned and padded series, and 17 282 observations in the out-of-sample set.

The two historical volatility models, whose parameters were chosen a priori,
were applied to the data set without any modifications or limitations other than
that the first observation was chosen such that it started one window length (look-
back period) from the first observation. Missing data (due to trading inactivity)
was ignored and the volatility estimate is thus based on the available data dur-
ing the period and as such with fewer observations than would be expected had
there been no trading inactivity. Given the high liquidity of the chosen index’s
constituents, this is not a major concern. A summary of the error terms of the
volatility models can be found in Tables 4.2, 4.3, 4.4, and 4.5.

It is evident that the forecast errors for these models differ greatly. The reasons
for these differences are not the subject of this research but it should be noted
that a number of securities are not part of the data set throughout the whole
sample period due to changes to their trading status. In particular, observations
are missing at the beginning of the period for RIN and WDC, and at its end for
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Security MSE RMSE MAE MAPE

AMP 0.046 409 0.215 428 0.114 905 0.455 103
ANZ 0.012 810 0.113 179 0.061 759 0.376 628
BHP 0.007 399 0.086 016 0.066 517 0.253 556
BXB 0.023 849 0.154 430 0.091 919 0.375 067
CBA 0.002 307 0.048 032 0.035 048 0.246 015
CGJ 0.012 849 0.113 353 0.079 456 0.404 967
FGL 0.003 621 0.060 176 0.045 630 0.263 175
MQG 0.007 904 0.088 905 0.067 332 0.325 238
NAB 0.006 350 0.079 685 0.052 554 0.336 557
QBE 0.165 122 0.406 352 0.145 280 0.471 545
RIN 0.019 066 0.138 079 0.090 678 0.520 687
RIO 0.004 590 0.067 748 0.053 082 0.230 020
SGB 0.002 089 0.045 701 0.034 016 0.238 276
SUN 0.005 909 0.076 871 0.057 495 0.345 141
TLS 0.004 352 0.065 973 0.049 328 0.305 120
WBC 0.002 230 0.047 222 0.037 559 0.245 667
WDC 0.001 773 0.042 113 0.030 013 0.185 251
WES 0.006 570 0.081 055 0.055 343 0.288 805
WOW 0.002 811 0.053 016 0.041 396 0.252 252
WPL 0.004 911 0.070 079 0.052 440 0.238 587

Table 4.2: 𝜎HVL Error Measures (In-sample)

Security MSE RMSE MAE MAPE

AMP 0.017 287 0.131 481 0.098 264 0.320 481
ANZ 0.016 250 0.127 477 0.095 893 0.292 509
BHP 0.028 462 0.168 707 0.113 394 0.301 902
BXB 0.018 219 0.134 977 0.100 205 0.300 722
CBA 0.015 399 0.124 094 0.092 821 0.331 675
CGJ 0.012 082 0.109 918 0.091 609
FGL 0.007 372 0.085 863 0.065 477 0.311 015
MQG 0.065 423 0.255 780 0.163 911 0.347 660
NAB 0.020 252 0.142 309 0.101 347 0.320 014
QBE 0.014 649 0.121 035 0.093 862 0.320 653
RIN 0.005 167 0.071 883 0.063 062
RIO 0.075 203 0.274 232 0.178 697 0.369 869
SGB 0.034 529 0.185 821 0.142 876
SUN 0.029 430 0.171 552 0.119 433 0.307 283
TLS 0.007 512 0.086 673 0.066 530 0.310 338
WBC 0.014 313 0.119 636 0.090 693 0.310 063
WDC 0.020 157 0.141 974 0.097 207 0.294 923
WES 0.024 495 0.156 507 0.104 294 0.321 403
WOW 0.006 798 0.082 448 0.057 904 0.272 287
WPL 0.019 830 0.140 818 0.103 527 0.341 464

Table 4.3: 𝜎HVL Error Measures (Out-of-sample)
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Security MSE RMSE MAE MAPE

AMP 0.060 641 0.246 254 0.116 348 0.421 352
ANZ 0.015 555 0.124 721 0.061 345 0.332 640
BHP 0.007 463 0.086 391 0.064 406 0.237 159
BXB 0.036 076 0.189 937 0.105 387 0.411 807
CBA 0.003 009 0.054 851 0.040 917 0.272 438
CGJ 0.017 641 0.132 821 0.086 911 0.426 005
FGL 0.004 301 0.065 585 0.050 564 0.282 137
MQG 0.011 690 0.108 120 0.075 176 0.330 861
NAB 0.006 734 0.082 063 0.054 081 0.322 541
QBE 0.158 775 0.398 466 0.115 437 0.305 474
RIN 0.022 132 0.148 768 0.084 845 0.419 757
RIO 0.005 577 0.074 678 0.058 513 0.248 220
SGB 0.002 718 0.052 130 0.038 383 0.255 050
SUN 0.007 177 0.084 720 0.062 310 0.348 837
TLS 0.005 899 0.076 805 0.054 105 0.315 450
WBC 0.002 874 0.053 611 0.042 134 0.264 211
WDC 0.002 229 0.047 217 0.037 430 0.247 467
WES 0.008 405 0.091 681 0.061 617 0.299 844
WOW 0.003 690 0.060 741 0.045 854 0.273 301
WPL 0.007 892 0.088 838 0.064 695 0.277 516

Table 4.4: 𝜎HVS Error Measures (In-sample)

Security MSE RMSE MAE MAPE

AMP 0.017 971 0.134 055 0.094 851 0.298 839
ANZ 0.017 461 0.132 140 0.093 274 0.286 768
BHP 0.019 501 0.139 646 0.092 628 0.255 326
BXB 0.024 831 0.157 579 0.120 295 0.349 621
CBA 0.012 682 0.112 616 0.078 896 0.271 314
CGJ 0.019 639 0.140 141 0.124 504
FGL 0.009 419 0.097 052 0.074 733 0.325 052
MQG 0.064 407 0.253 785 0.156 490 0.311 511
NAB 0.020 292 0.142 451 0.100 066 0.304 185
QBE 0.017 347 0.131 707 0.100 336 0.349 427
RIN 0.001 619 0.040 233 0.032 287
RIO 0.057 615 0.240 030 0.151 237 0.323 903
SGB 0.049 761 0.223 071 0.173 599
SUN 0.031 511 0.177 514 0.113 052 0.289 859
TLS 0.010 917 0.104 482 0.075 755 0.331 569
WBC 0.011 509 0.107 280 0.077 395 0.257 963
WDC 0.019 442 0.139 433 0.096 610 0.281 898
WES 0.018 734 0.136 870 0.091 483 0.287 988
WOW 0.007 185 0.084 765 0.056 871 0.256 846
WPL 0.018 095 0.134 519 0.100 830 0.327 101

Table 4.5: 𝜎HVS Error Measures (Out-of-sample)
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Security MSE RMSE MAE MAPE

AMP 0.070 312 0.265 164 0.158 077 0.720 824
ANZ 0.010 646 0.103 177 0.073 451 0.510 458
BHP 0.005 261 0.072 530 0.054 715 0.216 818
BXB 0.045 220 0.212 650 0.139 452 0.657 664
CBA 0.002 148 0.046 343 0.035 746 0.256 122
CGJ 0.013 810 0.117 516 0.094 558 0.569 583
FGL 0.003 141 0.056 045 0.044 376 0.264 481
MQG 0.007 560 0.086 949 0.069 187 0.350 923
NAB 0.004 935 0.070 253 0.048 952 0.345 262
QBE 0.145 906 0.381 976 0.141 370 0.506 385
RIN 0.013 715 0.117 109 0.078 333 0.445 397
RIO 0.003 988 0.063 152 0.049 457 0.221 775
SGB 0.001 847 0.042 977 0.031 779 0.225 496
SUN 0.005 317 0.072 915 0.054 429 0.339 646
TLS 0.004 404 0.066 360 0.048 802 0.334 940
WBC 0.002 022 0.044 967 0.035 201 0.235 933
WDC 0.083 837 0.289 547 0.284 264 1.995 850
WES 0.006 251 0.079 063 0.054 902 0.289 230
WOW 0.002 650 0.051 477 0.038 837 0.247 094
WPL 0.004 847 0.069 620 0.053 842 0.258 854

Table 4.6: 𝜎GARCH Error Measures (In-sample)

CGJ, RIN, and SGB. For these securities, changes affecting the whole market
do not affect their average forecasting errors if the security was not yet or is no
longer traded at that time. The identification of regime changes and the resulting
forecastibility is beyond the scope of this research. Therefore, no exclusions or
adjustments were made in this regard.

Following the application of the historical volatility model, the GARCH mod-
els were fitted. Any missing values were removed in this instance as well. Since
historical volatility models and GARCH models treat missing values somewhat
differently, percentage errors are undefined (due to a target value of 0) for differ-
ent observations. The resulting models (see Appendix A for details on the model
specifications) were applied to the time series in-sample and out-of sample. Tables
4.6 and 4.7 show the in-sample (out-of-sample) results for individual securities.
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Security MSE RMSE MAE MAPE

AMP 0.024 155 0.155 419 0.128 849 0.500 790
ANZ 0.038 243 0.195 557 0.132 509 0.332 137
BHP 0.017 921 0.133 869 0.090 801 0.251 694
BXB 0.029 714 0.172 378 0.131 208 0.431 612
CBA 0.012 902 0.113 589 0.075 391 0.229 388
CGJ 0.009 699 0.098 486 0.083 717
FGL 0.007 164 0.084 643 0.065 112 0.284 687
MQG 0.089 619 0.299 365 0.190 709 0.328 158
NAB 0.023 614 0.153 667 0.100 572 0.265 519
QBE 0.020 247 0.142 291 0.110 576 0.420 060
RIN 0.031 456 0.177 358 0.173 921
RIO 0.049 783 0.223 121 0.136 985 0.270 578
SGB 0.045 998 0.214 471 0.160 264
SUN 0.036 029 0.189 812 0.117 715 0.259 397
TLS 0.008 304 0.091 125 0.065 045 0.268 010
WBC 0.015 846 0.125 882 0.087 729 0.248 772
WDC 0.076 008 0.275 696 0.231 361 0.989 084
WES 0.016 655 0.129 055 0.087 327 0.277 711
WOW 0.006 099 0.078 093 0.051 504 0.250 133
WPL 0.028 195 0.167 913 0.116 362 0.350 788

Table 4.7: 𝜎GARCH Error Measures (Out-of-sample)

The network training followed the process described in the previous chapter.
Prior to training, all variables are modified to fit into a fixed interval. Figures 4.1
and 4.2 show the original values and their ranges, outliers are compressed at the
extremes.22 These plots, like all other box plots in this chapter, show the central
half of the data inside each box. It is unsurprising that the value range of volatility
observations is different for the out-of-sample data. As would be expected, the
GFC led to an increase of volatility. The general characteristics of the inputs are,
however, similar.

The validation set was used to choose the best configuration. The best network
configuration for volatility forecasting was the one with four nodes in the hidden
layer, whose training record is shown in Figure 4.3. Figure 4.4 shows the error
terms of the various models in-sample. This includes not only the validation but
also the training set, i.e. the complete in-sample data set. While the mean error
showed in the plot was lower, this was the result of the network’s tendency to
overfit and the error in the validation set was slightly higher than the next smaller

22Plots in this chapter typically treat the lower and upper 2.5 % value ranges as extreme
values, which are compressed (with markers) or removed (without markers). Plots showing the
full data set are so marked.



106 Chapter 4 Analysis of Data

Figure 4.1: Characteristics of Variable Value Ranges (In-sample) for 𝜎ANNd

Figure 4.2: Characteristics of Variable Value Ranges (Out-of-sample) for 𝜎ANNd
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Figure 4.3: 𝜎ANNd Training Record

design. As a result the network with four nodes was chosen. However, it is evident
that the differences between the network designs are very small.

An interesting observation can be made when examining the relationship be-
tween target values and network outputs. Figure 4.5 shows the two variables and
a regression line is included. Figure 4.6 shows only the central 95 % of the value
range (see Figures 4.7 and 4.8 show the same for the out-of-sample set).

In both instances, the network appears to average the forecast, overestimating
at low target values and underestimating at high values. Whether this is due to a
larger than expected number of outliers, whether this is a feature of the data set,
or whether it is the lack of additional explanatory variables is not the focus of this
research. It should be noted, however, that this behaviour may not be desirable
for all applications. The distribution of observations in Figures 4.7 and 4.8 is
particularly interesting as it not only shows this effect but it also appears to show a
distictive shape. It may thus be possible to improve performance by transforming
data or changing the modelling parameters. Since the use of the out-of-sample set
for modelling decisions would change its character as an out-of-sample set, this
line of research was not pursued further. It may be of general interest for future
research, however.
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Figure 4.4: Error Distribution of Trained Network Architectures for 𝜎ANNd

(In-sample)

Figure 4.5: Target and Output Values for the 𝜎ANNd In-sample Data
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Figure 4.6: Target and Output Values for the 𝜎ANNd In-sample Data (Without
Outliers)

Figure 4.7: Target and Output Values for the 𝜎ANNd Out-of-sample Data
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Figure 4.8: Target and Output Values for the 𝜎ANNd Out-of-sample Data (With-
out Outliers)

The first hypothesis suggest that ANNs can forecast volatility more accurately.
This appears to be the case for the combined data set (all securities) in the
in-sample period as shown in Table 4.8. The ANN shows lower errors regardless
of the measure. However, the results of the out-of-sample period (Table 4.9) are
not consistent with this view. The network either overfits the data or a structural
shift caused a change in model ranks. Two other aspects are noteworthy. Firstly,
the GARCH model is among the worst of those tested regardless of the error
measure and period, which is broadly consistent with past literature. Secondly,
the out-of-sample period favours the model with the shorter lookback period,
which could indicate a more unstable environment.

𝝈 Model MSE RMSE MAE MAPE
HVL 0.017 596 0.132 649 0.063 544 0.317 710
HVS 0.019 975 0.141 334 0.066 497 0.314 571
GARCH 0.020 287 0.142 433 0.073 716 0.405 985
ANNd 0.011 853 0.108 870 0.053 966 0.275 371

Table 4.8: Comparison of Error Measures across Volatility Forecasting Models
(In-sample)
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𝝈 Model MSE RMSE MAE MAPE
HVL 0.023 738 0.154 070 0.103 287
HVS 0.022 817 0.151 054 0.100 134
GARCH 0.029 671 0.172 252 0.113 770
ANNd 0.030 579 0.174 867 0.100 451

Table 4.9: Comparison of Error Measures across Volatility Forecasting Models
(Out-of-sample)

Source SS df MS F p
Groups 22.73 3 7.5761 442.5410 4.9288 × 10−286

Error 2138.94 124 941 0.0171
Total 2161.67 124 944

Table 4.10: ANOVA of Volatility Forecasting Errors (In-sample)

To determine the statistical significance of these results, Table 4.10, reports the
ANOVA results. The difference between at least one pair is significant and Table
4.11 shows the pair-wise model comparisons indicating significant rows. The table
shows the lower end of the confidence interval, the mean of group differences, and
the upper end of the confidence interval. The null hypothesis of no difference, i.e. a
difference of 0, cannot be rejected when zero is inside the confidence interval. The
tests show that only the combination of 𝜎HVS and the ANN are not significantly
different at the 5 % level. The differences are very small, however, from a practical
perspective, which is illustrated in Figure 4.9. The large sample size allows for
the findings of relatively minor effects. It is important to note, in particular when
ranking the models, that the above tables use the mean squared error while the
ANOVA tables and box plots use the observed forecasting (and later pricing)
errors, their means, and the difference between their means. The MSE is useful
as it does not allow for one error to reduce the impact of another in the opposite
direction and is thus used for network training and model estimation. That is also
the reason it was used as the performance measure during development. However,
the question of the following analysis is what the characteristics of an average
model prediction are.

The differences are larger showing significance between all groups in the out-
of-sample period. Tables 4.12 and 4.13 report the equivalent statistics for this
subset, and a visual comparison in Figure 4.10.
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Model Model Low Mean High Comment
HVL HVS 0.0075 0.0102 0.0129 sign.
HVL GARCH −0.0261 −0.0234 −0.0207 sign.
HVL ANNd 0.0062 0.0088 0.0115 sign.
HVS GARCH −0.0363 −0.0336 −0.0309 sign.
HVS ANNd −0.0041 −0.0014 0.0013
GARCH ANNd 0.0295 0.0322 0.0349 sign.

Table 4.11: Multiple Comparison of Volatility Forecasting Models (In-sample)

Figure 4.9: Comparison of Volatility Forecasting Errors (In-sample)

Source SS df MS F p
Groups 42.37 3 14.1234 546.6610 0
Error 1788.89 69 241 0.0258
Total 1831.26 69 244

Table 4.12: ANOVA of Volatility Forecasting Errors (Out-of-sample)
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Model Model Low Mean High Comment
HVL HVS 0.0071 0.0116 0.0160 sign.
HVL GARCH 0.0261 0.0305 0.0350 sign.
HVL ANNd 0.0609 0.0653 0.0698 sign.
HVS GARCH 0.0145 0.0189 0.0234 sign.
HVS ANNd 0.0493 0.0538 0.0582 sign.
GARCH ANNd 0.0304 0.0348 0.0393 sign.

Table 4.13: Multiple Comparison of Volatility Forecasting Models
(Out-of-sample)

Figure 4.10: Comparison of Volatility Forecasting Errors (Out-of-sample)
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Figure 4.11: Comparison of 𝜎HVL Errors Applied to In-sample and Out-of-sample
Data

Based on the in-sample results, one would have used the ANN and in this
regard the hypothesis was correct. It does not hold, however, when tested in a
new set and in changed circumstances. This raises the question of stability of
the models generally. When comparing the in-sample and out-of-sample errors
for each model, the user of a model would prefer to see no significant difference
between them, i.e. the model applies equally well in either period.

The more complex models, 𝜎GARCH (Table 4.16 and Figure 4.13) and 𝜎ANNd

(Table 4.17 and Figure 4.14), show a significant difference between in-sample and
out-of sample errors. The same is not true for the simple models 𝜎HVL (Table 4.14
and Figure 4.11) and 𝜎HVS (Table 4.15 and Figure 4.12), which suggests that their
forecasting characteristics have not changed significantly in the transition from
the in-sample to the out-of-sample set. All models show a much wider range of
forecasting errors in the out-of-sample set, which was expected considering the
period it covered as well as the nature of any out-of-sample testing.
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Source SS df MS F p
Groups 0.00 1 0.0012 0.0630 0.8019
Error 953.63 48 465 0.0197
Total 953.63 48 466

Table 4.14: ANOVA of 𝜎HVL In-sample and Out-of-sample Errors

Figure 4.12: Comparison of 𝜎HVS Errors Applied to In-sample and Out-of-sample
Data

Source SS df MS F p
Groups 0.01 1 0.0111 0.5313 0.4661
Error 1020.95 48 645 0.0210
Total 1020.96 48 646

Table 4.15: ANOVA of 𝜎HVS In-sample and Out-of-sample Errors
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Figure 4.13: Comparison of 𝜎GARCH Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 32.03 1 32.0283 1408.1100 8.0446 × 10−304

Error 1107.33 48 683 0.0227
Total 1139.36 48 684

Table 4.16: ANOVA of 𝜎GARCH In-sample and Out-of-sample Errors
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Figure 4.14: Comparison of 𝜎ANNd Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 35.04 1 35.0449 2004.6300 0
Error 845.94 48 389 0.0175
Total 880.98 48 390

Table 4.17: ANOVA of 𝜎ANNd In-sample and Out-of-sample Errors
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4.4 Volatility Surface Fitting
The next two steps are to address the second hypothesis. For this reason, this
section will report results only and conclusions will be discussed in the following
section in the context of pricing options.

Additional data was synchronised with the option prices, including the underly-
ing security reference, the strike price, and the expiry date. These were taken from
relevant fields, data update events and the description field. The approximate ex-
piry date was also taken by inference from the trading symbol to determine if
any of the update events is applicable. In particular, any data was not applied
more than 5 years forward as trading symbols can be re-used over longer periods.
Furthermore, the dividend yield was calculated as the continuous yield of the
previous year’s sum of interim and final cash dividends relative to the current
price of the underlying. Special dividends were not considered. This is updated
each period with only the information a market participant would have received
at the time taken into consideration.

In order to fit a volatility surface, the quadratic model is fitted using robust
linear regression. This requires the implied volatility as used by the option pric-
ing (reference) model in the next step. A small subsample of similar order of
magnitude as the forecasting model was thus taken from all qualifying options
with complete information (expiry date, strike price, underlying security). Quali-
fying options were those, whose underlying security is one of the securities listed
previously.

The subsample comprised 51 814 in-sample and 46 768 out-of-sample records
initially (see Tables 4.17 and 4.44 for a comparison of the total number of ob-
servations used for volatility forecasting and option pricing). While representing
only a fraction of all trades, the long sampling period and the inclusion of several
underlying securities results in a sizeable data set. More importantly, however,
the use of individual trades during the day does not impose a ‘special’ meaning
onto the final trade, and is not biased where such a significance (of the last trade
of a day) may exist. Instead, it represents any transaction during the trading day
regardless of its timing.

Finally, two types of exclusion critera are applied. Firstly, if the implied volatil-
ity could not be calculated, the observation was removed from these models.
Secondly, a small number of securities with 𝑀 greater than 5 or those with an
option price larger than the strike were removed. The latter should not find a
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Value SE t p
(Intercept) 3.0965 0.0274 113.01 0
𝑀 −5.6255 0.0523 −107.52 0
𝑇 0.9824 0.0298 32.94 2.1668 × 10−235

𝑀𝑇 −0.7727 0.0282 −27.43 2.2345 × 10−164

𝑀2 3.6312 0.0288 126.29 0
𝑇 2 −0.0282 0.0029 −9.64 5.6076 × 10−22

Table 4.18: Volatility Surface Model Parameters for 𝜎HVL
𝑀,𝑇

Value SE t p
(Intercept) 0.4480 0.0370 12.10 1.1325 × 10−33

𝑀 −0.6262 0.0707 −8.86 8.2597 × 10−19

𝑇 1.2770 0.0403 31.69 3.0362 × 10−218

𝑀𝑇 −1.0653 0.0381 −27.99 4.9112 × 10−171

𝑀2 1.3446 0.0388 34.62 2.0880 × 10−259

𝑇 2 −0.0329 0.0040 −8.33 8.1324 × 10−17

Table 4.19: Volatility Surface Model Parameters for 𝜎HVS
𝑀,𝑇

Value SE t p
(Intercept) 5.1333 0.0247 207.94 0
𝑀 −9.5323 0.0471 −202.22 0
𝑇 0.5940 0.0269 22.11 8.9661 × 10−108

𝑀𝑇 −0.5157 0.0254 −20.32 2.2516 × 10−91

𝑀2 5.4243 0.0259 209.39 0
𝑇 2 0.0018 0.0026 0.70 0.4846

Table 4.20: Volatility Surface Model Parameters for 𝜎GARCH
𝑀,𝑇

buyer since it would be cheaper to buy the underlying security rather than buy-
ing the option for the same price and having to pay for the underlying again later.
This removed 20 in-sample observations, and 45 out-of-sample, respectively from
each model. After the removal of observations missing implied volatility, 48 846
in-sample records were applied and the models tested on 41 897 out-of-sample
records. ANNs models further remove incomplete observations, which result from
the lagged historical volatility time series.

Once the data was prepared, the model parameters were estimated. Tables 4.18
to 4.21 show the model parameters and probability values.
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Value SE t p
(Intercept) 5.4782 0.0215 255.39 0
𝑀 −10.3374 0.0410 −252.38 0
𝑇 0.7543 0.0233 32.30 1.4992 × 10−226

𝑀𝑇 −0.6066 0.0221 −27.50 2.8361 × 10−165

𝑀2 5.9548 0.0225 264.54 0
𝑇 2 −0.0147 0.0023 −6.41 1.4416 × 10−10

Table 4.21: Volatility Surface Model Parameters for 𝜎ANNd
𝑀,𝑇

Figure 4.15: Sample 𝜎HVL
𝑀,𝑇 Volatility Surface (Multiplier)

Figures 4.15 to 4.18 show the fitted surface models. The range is chosen near
price-strike equality and for a relatively short time frame. The surface represents
correction factors to the underlying volatility forecast. Considering that same
implied volatility values were used in fitting all models, they show significant
differences in shape. It is important to note that the value of each of these surfaces
has to be considered in the context of the underlying volatility model. For this
reason, the evaluation includes volatility modelling errors, rather than errors in
factor levels.
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Figure 4.16: Sample 𝜎HVS
𝑀,𝑇 Volatility Surface (Multiplier)

Figure 4.17: Sample 𝜎GARCH
𝑀,𝑇 Volatility Surface (Multiplier)
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Figure 4.18: Sample 𝜎ANNd
𝑀,𝑇 Volatility Surface (Multiplier)

Using the same implied volatility estimates as the target values, an ANN was
trained. The variable value ranges are shown in Figures 4.19 and 4.20. They show
similar characteristics of the input values except for the generally higher volatility
levels in the out-of-sample set (see above), and a number of outliers in the lower
range of the moneyness values. The network training terminated very early (see
Figure 4.22) when the network with four hidden nodes failed to improve results.
Thus the smallest network with three nodes was chosen. The training record is
shown in Figure 4.21, which shows the expected decrease in the error terms.
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Figure 4.19: Characteristics of Variable Value Ranges (In-sample) for 𝜎ANNs
𝑀,𝑇

Figure 4.20: Characteristics of Variable Value Ranges (Out-of-sample) for 𝜎ANNs
𝑀,𝑇
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Figure 4.21: 𝜎ANNs
𝑀,𝑇 Training Record

Figure 4.22: Error Distribution of Trained Network Architectures for 𝜎ANNs
𝑀,𝑇

(In-sample)
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The plots of actual compared to output values show a similar pattern as before.
Focusing on the central data range Figures 4.23 and 4.24 already show a greater
difference and tendency towards an average value. This further demonstrates
the need for additional research; the same argument against basing modelling
decisions on out-of-sample results applies, however.

Similar to volatility forecasting, the volatility surface models need to be com-
pared to each other and with respect to their ability to generalise beyond the
training set.

It is evident that the network models are preferable compared with the alter-
native models (see Tables 4.22 and tab:r:d:err:models:o:s), not only with respect
to their MSE and other metrics but also with regard to the location and dis-
tribution of the prediction error (see Tables 4.24, 4.25, 4.26, and 4.27). More
important than the fact that the volatility forecasting network rather than the
surface model appears strongest in the out-of-sample period is the fact that the
volatility forecasting model combined with a regression model offers multipliers
such that the errors of implied volatility are in a narrower range (see Figure 4.25).
This remains true even in the out-of-sample data set (see Figure 4.26.

Figure 4.23: Target and Output Values for the 𝜎ANNs
𝑀,𝑇 In-sample Data (Without

Outliers)
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Figure 4.24: Target and Output Values for the 𝜎ANNs
𝑀,𝑇 Out-of-sample Data (With-

out Outliers)

𝝈𝐌,𝐓 Model MSE RMSE MAE MAPE

HVL 0.048 439 0.220 089 0.057 709 0.189 387
HVS 0.062 097 0.249 192 0.071 288 0.241 269
GARCH 0.051 221 0.226 320 0.059 271 0.196 969
ANNd 0.040 245 0.200 612 0.047 450 0.151 263
ANNs 0.011 468 0.107 086 0.045 948 0.178 562

Table 4.22: Comparison of Error Measures across Volatility Surface Models
(In-sample)

𝝈𝐌,𝐓 Model MSE RMSE MAE MAPE

HVL 0.030 358 0.174 235 0.092 886 0.239 364
HVS 0.036 675 0.191 508 0.101 733 0.263 480
GARCH 0.032 894 0.181 366 0.093 804 0.231 255
ANNd 0.029 049 0.170 437 0.077 960 0.178 584
ANNs 0.029 989 0.173 174 0.087 149 0.206 772

Table 4.23: Comparison of Error Measures across Volatility Surface Models
(Out-of-sample)
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Source SS df MS F p
Groups 4.93 4 1.2333 28.9261 4.4733 × 10−24

Error 10 407.30 244 104 0.0426
Total 10 412.20 244 108

Table 4.24: ANOVA of Volatility Surface Errors (In-sample)

Model Model Low Mean High Comment
HVL HVS −0.0101 −0.0065 −0.0029 sign.
HVL GARCH −0.0066 −0.0030 0.0006
HVL ANNd 0.0027 0.0063 0.0099 sign.
HVL ANNs −0.0084 −0.0047 −0.0011 sign.
HVS GARCH −0.0001 0.0035 0.0071
HVS ANNd 0.0092 0.0128 0.0164 sign.
HVS ANNs −0.0019 0.0018 0.0054
GARCH ANNd 0.0057 0.0093 0.0129 sign.
GARCH ANNs −0.0054 −0.0017 0.0019
ANNd ANNs −0.0147 −0.0111 −0.0075 sign.

Table 4.25: Multiple Comparison of Volatility Surface Models (In-sample)

Source SS df MS F p
Groups 287.81 4 71.9512 2387.0200 0
Error 6314.28 209 480 0.0301
Total 6602.09 209 484

Table 4.26: ANOVA of Volatility Surface Errors (Out-of-sample)

Model Model Low Mean High Comment
HVL HVS −0.0056 −0.0023 0.0009
HVL GARCH 0.0635 0.0667 0.0700 sign.
HVL ANNd 0.0691 0.0724 0.0757 sign.
HVL ANNs 0.0790 0.0823 0.0855 sign.
HVS GARCH 0.0658 0.0691 0.0723 sign.
HVS ANNd 0.0715 0.0747 0.0780 sign.
HVS ANNs 0.0813 0.0846 0.0879 sign.
GARCH ANNd 0.0024 0.0057 0.0090 sign.
GARCH ANNs 0.0123 0.0155 0.0188 sign.
ANNd ANNs 0.0066 0.0098 0.0131 sign.

Table 4.27: Multiple Comparison of Volatility Surface Models (Out-of-sample)
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Figure 4.25: Comparison of Volatility Surface Errors (In-sample)

Figure 4.26: Comparison of Volatility Surface Errors (Out-of-sample)
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As in the previous section, volatility surface models perform worse and signifi-
cantly differently out-of-sample. Evidence can be found in Figures 4.27 to 4.31,
as well as Tables 4.28 to 4.32. The difference between the two sample periods and
the sample size are together large enough to reject the null hypothesis that they
are the same across all models.

Figure 4.27: Comparison of 𝜎HVL
𝑀,𝑇 Errors Applied to In-sample and Out-of-sample

Data

Source SS df MS F p
Groups 28.22 1 28.2238 710.7330 5.5602 × 10−156

Error 3601.85 90 702 0.0397
Total 3630.08 90 703

Table 4.28: ANOVA of 𝜎HVL
𝑀,𝑇 In-sample and Out-of-sample Errors
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Figure 4.28: Comparison of 𝜎HVS
𝑀,𝑇 Errors Applied to In-sample and Out-of-sample

Data

Source SS df MS F p
Groups 21.96 1 21.9621 439.6230 2.2289 × 10−97

Error 4532.93 90 737 0.0500
Total 4554.89 90 738

Table 4.29: ANOVA of 𝜎HVS
𝑀,𝑇 In-sample and Out-of-sample Errors
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Figure 4.29: Comparison of 𝜎GARCH
𝑀,𝑇 Errors Applied to In-sample and Out-of-

sample Data

Source SS df MS F p
Groups 26.61 1 26.6070 633.1610 3.0924 × 10−139

Error 3813.16 90 741 0.0420
Total 3839.77 90 742

Table 4.30: ANOVA of 𝜎GARCH
𝑀,𝑇 In-sample and Out-of-sample Errors
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Figure 4.30: Comparison of 𝜎ANNd
𝑀,𝑇 Errors Applied to In-sample and Out-of-

sample Data

Source SS df MS F p
Groups 21.27 1 21.2677 625.2450 1.5860 × 10−137

Error 3085.23 90 702 0.0340
Total 3106.50 90 703

Table 4.31: ANOVA of 𝜎ANNd
𝑀,𝑇 In-sample and Out-of-sample Errors
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Figure 4.31: Comparison of 𝜎ANNs
𝑀,𝑇 Errors Applied to In-sample and Out-of-sample

Data

Source SS df MS F p
Groups 60.08 1 60.0767 3227.3600 0
Error 1688.40 90 702 0.0186
Total 1748.48 90 703

Table 4.32: ANOVA of 𝜎ANNs
𝑀,𝑇 In-sample and Out-of-sample Errors
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4.5 Option Pricing Evaluation
In the previous step, models from the first stage were applied to yield an en-
hanced model for the volatility surface model, i.e. a correction or modifier, which
is applied to the underlying volatility forecast. The evaluation of option pric-
ing models follows the same process. The underlying models were used to price
options. Observed option prices serve as the target values.

The data set is the same as in the previous step with two small changes. Firstly,
the pricing function (Bjerksund and Stensland, 2002) requires strictly positive
dividend yield. Where the yield was 0, it was replaced with the smallest positive
floating point value, that could be represented by hardware architecture. Secondly,
just as some implied volatilities could not be found, some options could not
be priced. These observations were ignored by the statistical functions during
evaluation. This did not affect the full ANN model.

In addition to these consideration, a transformation to the output of the ANN
was necessary. All models except for the full machine learning model result in
a price as their final output. Consistent with prior literature, the network is,
however, trained to learn the option price per unit of money not unit of stock. This
was achieved by dividing by the strike price. In order to allow for comparisons,
the process was reversed before statistics were calculated. The network output
was thus multiplied by the applicable strike price and the resulting option price
was used for evaluation.

The additional model in this step is the full ANN. It is based on all previous
inputs; no additions were made beyond those in moving from the underlying
(volatility forecasting) to the option (volatility surface). The training process
is the same as in the previous stages of modelling. The network went through
two states during training as is visible in the training record 4.34. Note that
the last of the parameters in Figures 4.32 and 4.33 represent the price of the
option divided by the strike and that this process was reversed for the purpose
of the following analysis. Four network architectures were trained and evaluated
using the validation set and the network with six hidden nodes failed to improve
performance so the network with five hidden nodes was chosen (see Figure 4.35
for a comparison of error terms).

Comparing the results shows that the resulting neural network does not per-
form well. The existing networks, on the other hand combine very well with the
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Figure 4.32: Characteristics of Variable Value Ranges (In-sample) for 𝐶 ANN

Figure 4.33: Characteristics of Variable Value Ranges (Out-of-sample) for 𝐶 ANN
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Figure 4.34: 𝐶 ANN Training Record

Figure 4.35: Error Distribution of Trained Network Architectures for 𝐶 ANN

(In-sample)
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𝐂 Model MSE RMSE MAE MAPE
HVL 0.055 505 0.235 594 0.109 127 0.252 030
HVS 0.101 411 0.318 450 0.150 484 0.332 511
GARCH 0.072 472 0.269 206 0.111 781 0.274 537
ANNd 0.056 563 0.237 830 0.089 010 0.200 126
ANNs 0.086 734 0.294 507 0.115 556 0.245 223
ANN 3.400 510 1.844 050 0.169 881 1.346 040

Table 4.33: Comparison of Error Measures across Option Pricing Models
(In-sample)

𝐂 Model MSE RMSE MAE MAPE
HVL 0.744 880 0.863 064 0.319 320 0.429 064
HVS 0.976 326 0.988 092 0.357 043 0.438 967
GARCH 0.660 226 0.812 543 0.274 976 0.404 852
ANNd 0.369 346 0.607 739 0.215 487 0.283 973
ANNs 0.450 993 0.671 560 0.263 247 0.309 993
ANN 24.383 300 4.937 940 1.296 070 4.789 660

Table 4.34: Comparison of Error Measures across Option Pricing Models
(Out-of-sample)

reference pricing model and the volatility surface model. Tables 4.33 and 4.34
summarise the error statistics.

Figure 4.38 reveals that it is a certain type of option that particularly affects
the results. These options largely characterised by their low option value relative
to their strike (the plots show the data after multiplying by the strike again)
and they are typically overpriced by the network; the effect is not visible in the
core set (see Figure 4.39) suggesting it is an outlier effect. This only applies to
the out-of-sample data (see Figure 4.38), however, and does not explain the poor
results more generally (see Figures 4.36 and 4.37 for comparison).

The remaining networks, which use the same input data do not show poor
performance. Rather, they perform very well in both subsets. It is noteworthy,
however, that all models perform much worse out-of-sample.
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Figure 4.36: Target and Output Values for the 𝐶 ANN In-sample Data

Figure 4.37: Target and Output Values for the 𝐶 ANN In-sample Data (Without
Outliers)



4.5 Option Pricing Evaluation 139

Figure 4.38: Target and Output Values for the 𝐶 ANN Out-of-sample Data

Figure 4.39: Target and Output Values for the 𝐶 ANN Out-of-sample Data (With-
out Outliers)
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Source SS df MS F p
Groups 108.02 5 21.6035 32.4450 3.3945 × 10−33

Error 193 677 290 873 0.6658
Total 193 785 290 878

Table 4.35: ANOVA of Option Pricing Errors (In-sample)

Model Model Low Mean High Comment
HVL HVS −0.0421 −0.0271 −0.0120 sign.
HVL GARCH −0.0061 0.0089 0.0240
HVL ANNd −0.0027 0.0123 0.0273
HVL ANNs 0.0068 0.0218 0.0369 sign.
HVL ANN 0.0197 0.0344 0.0492 sign.
HVS GARCH 0.0210 0.0360 0.0511 sign.
HVS ANNd 0.0243 0.0394 0.0544 sign.
HVS ANNs 0.0339 0.0489 0.0640 sign.
HVS ANN 0.0468 0.0615 0.0763 sign.
GARCH ANNd −0.0117 0.0033 0.0184
GARCH ANNs −0.0021 0.0129 0.0279
GARCH ANN 0.0107 0.0255 0.0402 sign.
ANNd ANNs −0.0055 0.0096 0.0246
ANNd ANN 0.0074 0.0222 0.0369 sign.
ANNs ANN −0.0022 0.0126 0.0273

Table 4.36: Multiple Comparison of Option Pricing Models (In-sample)

Source SS df MS F p
Groups 30 478.10 5 6095.61 1258.1000 0
Error 1.23 × 106 254 700 4.85
Total 1.26 × 106 254 705

Table 4.37: ANOVA of Option Pricing Errors (Out-of-sample)
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Model Model Low Mean High Comment
HVL HVS −0.0541 −0.0106 0.0329
HVL GARCH 0.2058 0.2493 0.2927 sign.
HVL ANNd 0.2218 0.2653 0.3088 sign.
HVL ANNs 0.3009 0.3444 0.3878 sign.
HVL ANN −0.6984 −0.6561 −0.6138 sign.
HVS GARCH 0.2163 0.2598 0.3033 sign.
HVS ANNd 0.2324 0.2759 0.3194 sign.
HVS ANNs 0.3114 0.3549 0.3984 sign.
HVS ANN −0.6878 −0.6456 −0.6033 sign.
GARCH ANNd −0.0275 0.0160 0.0595
GARCH ANNs 0.0516 0.0951 0.1386 sign.
GARCH ANN −0.9477 −0.9054 −0.8631 sign.
ANNd ANNs 0.0356 0.0791 0.1226 sign.
ANNd ANN −0.9637 −0.9214 −0.8791 sign.
ANNs ANN −1.0428 −1.0005 −0.9582 sign.

Table 4.38: Multiple Comparison of Option Pricing Models (Out-of-sample)

Figure 4.40: Comparison of Option Pricing Errors (In-sample)
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Figure 4.41: Comparison of Option Pricing Errors (Out-of-sample)

As in the previous stages, here too the comparison of errors reveals significant
difference, again in part due to the large number of observations. Comparisons
across models (see Figures 4.40 and 4.41) and across subsets (see Figures 4.42
to 4.47) show that models have significant differences and behave differently in the
later period (out-of-sample). Of the models evaluated, the 𝐶 ANNd model performs
best and shows the lowest inter-quartile range.

Unlike in the previous steps, the pair-wise comparison results are more mixed.
While the 𝐶 ANNd and 𝐶 ANNs models are better, their means are not significantly
different from that of the 𝐶 GARCH model in-sample (see Table 4.36) and the best
performing model 𝐶 ANNd is not significantly different from it in the out-of-sample
period (see Table 4.38) despite the lower error forecasting errors (see Table 4.34).
Both outperform the remaining choices, however, and are significantly different.
This and the narrower range of errors (ignoring outliers), suggests 𝐶 ANNd is the
preferred model followed by 𝐶 ANNs.

Similar to the previous forecasting and surface models, the difference between
the in-sample and out-of-sample period are quite large and significant. Tables 4.39
to 4.44 show very high levels of significance, i.e. very low p-values. This is also
evident in the corresponding box plots in Figures 4.42 to 4.47. Any performance
one would have expected based on the in-sample period, would not have been
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Figure 4.42: Comparison of 𝐶 HVL Errors Applied to In-sample and Out-of-sample
Data

Source SS df MS F p
Groups 689.55 1 689.5450 1923.7900 0
Error 32 054.40 89 430 0.3584
Total 32 744 89 431

Table 4.39: ANOVA of 𝐶 HVL In-sample and Out-of-sample Errors

achieved out-of-sample. As the range of input variables discussed above showed,
volatility was different (larger) in the out-of-sample period compared to the in-
sample set.
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Figure 4.43: Comparison of 𝐶 HVS Errors Applied to In-sample and Out-of-sample
Data

Source SS df MS F p
Groups 566.24 1 566.2370 1160.8900 8.1147 × 10−253

Error 43 619.80 89 429 0.4878
Total 44 186.10 89 430

Table 4.40: ANOVA of 𝐶 HVS In-sample and Out-of-sample Errors
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Figure 4.44: Comparison of 𝐶 GARCH Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 91.90 1 91.9005 266.7760 6.9889 × 10−60

Error 30 807.30 89 430 0.3445
Total 30 899.20 89 431

Table 4.41: ANOVA of 𝐶 GARCH In-sample and Out-of-sample Errors
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Figure 4.45: Comparison of 𝐶 ANNd Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 131.70 1 131.6970 659.6120 6.1125 × 10−145

Error 17 846.40 89 385 0.1997
Total 17 978.10 89 386

Table 4.42: ANOVA of 𝐶 ANNd In-sample and Out-of-sample Errors
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Figure 4.46: Comparison of 𝐶 ANNs Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 477.27 1 477.2740 1942.0600 0
Error 21 976.50 89 424 0.2458
Total 22 453.80 89 425

Table 4.43: ANOVA of 𝐶 ANNs In-sample and Out-of-sample Errors
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Figure 4.47: Comparison of 𝐶 ANN Errors Applied to In-sample and Out-of-
sample Data

Source SS df MS F p
Groups 18 441.20 1 18 441.20 1417.1700 6.1278 × 10−308

Error 1.28 × 106 98 475 13.01
Total 1.30 × 106 98 476

Table 4.44: ANOVA of 𝐶 ANN In-sample and Out-of-sample Errors
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4.6 Summary and Implications
The results presented in this chapter demonstrate the applicability of ANNs to
both volatility modelling and option pricing. The greatest benefits are achieved by
focusing on a combination of machine learning techniques and formal modelling.
The importance of a formal model to supplement the data-driven approach may
be domain-specific, however. Past research has already shown that some markets
may benefit more from the addition of ANNs than others.

Interestingly, the models do not show consistency in performance when com-
bined with other techniques. This lack of consistency and the poor fit of the
𝐶 ANN model may also be a function of the absence of further explanatory vari-
ables. In addition to the historical volatility estimates, past return observations
were used as they were shown to be beneficial. Only in the case of index options
does prior research offer guidance for additional variables. Those could be used
with econometric models too, however.

The fact that the best model was an ANN but that it was not trained for the
specific target and yet outperforms the models trained for that one purpose is
puzzling and leads to a number of research questions for the future. Such research
would be particularly valuable since the models were specifically structured such
that they share a common variable set, enlarged only when changing the ob-
jective. The underperforming network had as much information available as the
well-performing one. This raises the question whether structural knowledge can
be learned by relatively simple networks.

It is also possible that the volatility forecasting ANN was simply more appro-
priate for the post-GFC period. The shorter period historical volatility model also
performed well out-of-sample.

While possible future directions for researchers are summarised in the next
chapter, the research has a number of implications for practitioners:

• The use of machine learning techniques should be considered. While there
is no guarantee that this will produce benefits to a business, it is quite
possible that such benefits exist in outcome or process.

• Generalisation is particularly problematic even for relatively constrained,
theory-driven models. Unexpected events can have a significant impact on
the outcomes and may lead to models with limited or no value for practical
purposes. Care should thus be taken in the development and application of
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any model by monitoring the continuing applicability of a model to market
behaviour.

• Modelling knowledge is difficult to transfer from one domain to the other
and even from one market to another.
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Conclusion

5.1 Summary of Results and Implications for the
Hypotheses

The results as presented in the previous chapter allow for a number of summary
conclusions. In regards to the working hypotheses proposed in Chapter 3, a num-
ber of direction conclusions can be reached.

Hypothesis 1 ANNs can forecast volatility more accurately than traditional
models.

The evidence presented in the previous chapter offers some support for this
hypothesis. It is certainly possible for volatility forecasting to benefit from non-
parametric models. The size of the contribution will depend on the nature of the
time series. A judgement needs to be made by the user of the model as to whether
the benefits of fitting justify the loss in explanatory power of the model compared
to the close-form solutions available through the models of the ARCH-family.

It should be noted that this conclusion is reached in the context of the modelling
limitations discussed previously. In particular, additional explanatory variables
may help as may rolling-fit (see below for a more detailed discussion).

Hypothesis 2 Option prices based on ANN models outperform those generated
using a traditional pricing model with respect to market prices.

In regards to the option pricing, the results are clearer. Option pricing does
benefit from the use of non-parametric cases even in the case of Australian equity
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options. Given the relatively modest and conditional benefits demonstrated by
Lajbcygier for index options, this is an important finding as it broadens the
investment universe to which machine learning appears to be applicable.

While support for the use can be found in principle, the means by which this
is achieved, remain an open question and this clearly requires more research.

However, the networks performed well out-of-sample, which was a particularly
difficult period.

5.2 Summary of Contributions
These results demonstrate a certain level of usefulness of ANNs for the purpose
of volatility forecasting in general, an aspect that is well understood but also for
the specific purpose of valuing and pricing options, one of the contributions of
this thesis. At least with respect to the data set used here, the additional effort
of training a number of ANNs and calculating options prices based on the ANN
output is beneficial.

Although additional research is required as to the possibility of generalising be-
yond the specific data set, it is a valuable research outcome as the data covered
one of the most difficult times for markets in general and covers a market that is
structurally transparent, liquid and regulated enough to provide a valid bench-
mark for many other options markets, while also being on the conservative side
of the market efficiency argument. Particular features, especially the mandatory
and regulated pension (superannuation) system and the collateral requirements
could have a negative impact on the transferability of results to other markets,
however.

Another contribution is the observation that the single-step appears to be infe-
rior. This would indicate that any benefits are derived primarily from the volatility
forecast rather than the alternative pricing function. This question was the main
reason for developing a three-level methodology, to locate the area where progress
can be made.

It was also observed that the techniques that have proved to be useful for index
option valuation in the past are also helpful when pricing equity options. This
outcome was by no means obvious as pointed out before. The fact that there
is both a change in the type of security that is used as the underlying as well
as a change in option structure, i.e. a change in the exercise right, required an
empirical analysis to determine whether results of past research apply here too.
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The final empirical contribution relates to the applicability of the comparatively
large body of knowledge relating to the USA to the Australian market. As shown
above, the results support the hypothesis that machine learning can improve
volatility forecasting and option pricing in the Australian equity options market.
The results for the US market are consequently less likely to result from particular
market microstructure, regulatory or other country-specific aspects.

While each of the above is a valuable contribution in its own right, the value of
the empirical results as a whole is particularly important. The results show that
machine learning, while shown to work for index options in several markets, can
prove to be a valuable tool in option pricing. Care must be taken in the cases and
circumstances discussed before and some limitations exist for the application of
the methodology used in this research thesis.

In addition to contributions to empirical research, there are also two aspects
relating to purely theoretical aspects. Firstly, a viable methodology for extending
single time series index option fitting and testing is introduced throughout this
thesis and its effectiveness demonstrated for Australian equity options. The panel
data approach for options is still somewhat limited and future research will be
discussed in the following section. However, the methodology can be used suc-
cessfully to determine the quality of competing black-box models in the presence
of interrelated securities.

The second theoretical contribution is closely related but distinct. In addition
to the use of panel data, another novel extension to the testing methodology is
introduced. It is well understood within the econometrics field that the quality
of the volatility model is related to its objective, i.e. the best model is only the
best for a particular purpose in the presence of uncertainty. No clear distinction
is made in the literature in this regard. The particular way of formulating the two
hypotheses in this thesis combined with the strict methodology developed in it,
allows for the fitting and selecting of an appropriate volatility and option pricing
function, in combination or independently, with the well-defined and common
objective of improving option pricing. This allowed for the specific conclusions
to be reached but also for the question to be asked why the combination of
volatility forecasting ANN and standard models proves so useful. Without a clear
separation of the two aspects, this would not have been possible.
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5.3 Future Research
The research outcomes and the process leading to them raise a number of ques-
tions, many of which are potentially of great interest to either academics or
practitioners. While some have been alluded to in Chapters 2 and 3, others will
be introduced in this section.

This thesis followed White (2000b) in regards to the choice of the risk-free
rate in the presence of margin requirements. As the author pointed out then,
the choice of adjustment depends on the assumptions one makes and to the best
of the thesis’ author’s knowledge, no settlement on the issue has been reached
in the literature. This is complicated further by the varied rules across markets
and over time governing margin requirements and their implementation. Further
research is required both on a theoretical level, i.e. which adjustments to make
under what circumstances, and also empirically, i.e. in what way they affect op-
tion pricing in practice. This may affect not only the closed-form solutions and
approximation methods but also how pricing models are created using machine
learning techniques.

While the issue ultimately did not have impact the choices of the research (as-
suming a rate of 0), one of the operationally trivial but theoretically important
questions is the question of what to use as a proxy for the risk-free rate. Only for
the USA is there a somewhat stronger consensus. While there are some overviews
of the choices that are made, it would be of significant value to a large number
of researchers in academia and in commercial research organisations and depart-
ments, to have access to an extensive review of such choices. The choice obviously
depends on the country – or possibly in the case of the EMU on a broader polit-
ical grouping – but also on the type of research (e.g. security valuation, market
efficiency), the research objective (e.g. academic or commercial, theory develop-
ment or empirical discovery), the time frame and possibly others. A review of
past research should be supplemented by a summary of the proxies used at major
organisations and by data providers and trading platforms.

A similar situation exists with respect to sampling frequencies of time series.
Various researchers hold individual beliefs about which sampling frequency is
sufficiently low to avoid market microstructure effects. While it is likely that there
is no clear point but a continuum, occasional comments in various publications
suggest that at least some critical values are observable. Clearly when trading is
not continuous as in the foreign exchange markets, one natural window size is the
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length of the trading day and possibly of one week. The question remains whether
there are equally useful if not equally clear window sizes at higher frequencies.

The broader question therefore is whether and where market microstructure
effects end, what sampling frequencies are typically used in which areas of re-
search within finance and how these can be accounted and corrected for. While
such research exists for individual asset classes and individual markets, a broader
theoretical framework would be desirable. The same applies to the required sam-
ple sizes when a continuous time series is not strictly needed. While it is generally
preferable to use more rather than less data, there are at least practical limits
to this. In addition, inference is difficult for extremely large data sets, where any
difference (random or not) appears significant at reasonable significance levels.

Despite extensive research in machine learning, there still appears to be no
consensus about the various choices and strategies used to select size and ar-
chitecture, parameters, learning and evaluation functions, and the meta-learning
strategy for ANNs. A decision support system, or a process that results in such a
system if these are domain-specific, requires additional research. This is particu-
larly true for the meta-learning strategy, i.e. how to select a starting architecture,
how to modify it and when to stop. Individual approaches exist such as the one
employed in this thesis but also some for self-configuring networks. It is possible
that a different network architecture and a different treatment of data results in
a pricing network outperforming the volatility forecasting network. A systematic
approach to modelling problems in this context is needed to address any issues
that arise but also to rule out the possibility of incorrect network architecture in
any particular case.

Additional research appears to be needed in this area despite those, i.e. research
beyond an extensive review of the literature. Even if self-configuring networks are
an option for a particular problem, the question remains whether any of those
approaches can be generalised to option pricing and if so, how the most suitable
method is to be determined in the context of option pricing and the presence of
time-varying parameters.

Furthermore, it is not clear what the limits of machine learning are. Can all
structural and functional relationships inherently be modelled and what are the
requirements for the process and model.

In addition to these questions, which are intended to broaden the perspective
of the researcher, extending it beyond the question being researched, there are
several problems and research questions that relate more narrowly to the re-
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search outcomes of this thesis. As a natural extension of the research conducted
and presented here, it may prove helpful to apply the same principles to addi-
tional markets and instruments. The question also arises what to attribute the
outperformance to.

From a purely theoretical perspective, there is little room for improvements
through the use of machine learning techniques. It should be limited to fore-
casting volatility and compensating for model misspecifications. The question
is thus what market or return process characteristics offer opportunities for al-
ternative pricing mechanisms in particular. For example, would such techniques
apply to emerging markets as well? The question is significant not merely because
of improved pricing functions. Rather, the factors that determine the potential
for improvement may also be proxies or even causes for market-related risks for
academics or opportunities for excess return generation for practitioners.

On a related point, to the extent that improvements to the pricing functions can
be made, it is worth testing if they could be exploited in the context of trading
systems and whether they are economically viable strategies in the medium or
long term. This would require a significantly different methodological approach
as the focus is not on hedging, i.e. the risk perspective, but on return generation.

Another question relates to the use of input variables. The thesis is intentionally
limited to those variables that are known and understood to play a role in option
pricing as well as historical measures of volatility of the underlying security. Ad-
ditional variables may exist that would improve the option pricing. Even those
taking a very narrow view of the option pricing mechanism, may find it useful to
consider additional input variables, not as input to the option pricing itself but
to the volatility forecast that it implies. Factors relating to the expected risk of
individual firms, industries or the market as a whole may be worth looking into.
The resulting models could be benchmarked against econometric ones from the
family of ARCH models with exogenous variables. One candidate variable is the
VIX, though it is not clear which markets it can be used for.

This point is of special importance given the methodological limitations of the
volatility forecasting models discussed before. Past research often include addi-
tional time series as explanatory variables. Given their focus on index volatility,
the choice of what to include is somewhat easier to make. However, it also affects
the reference model for a valid comparison. As discussed, it would not be pos-
sible to conclude that the neural network or any other model is better than an
alternative one unless both had access to the same information set, i.e. all else
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was equal. ARCH-style models with exogenous variables are certainly one way
to make such a comparison in addition to simple regression models using histori-
cal volatility and a number of predictors. Equally, an extension of past volatility
research into autoregressive neural networks into option pricing could lead to
interesting results.

Finally, it would be of considerable interest – though somewhat related to the
question about meta-learning strategies – if other machine learning techniques
such as SVM regression outperform ANNs in this particular domain and whether
they are easier to fit to existing volatility and option data.
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Appendix A

GARCH Model Specifications

The following tables summaries the model specification of the fitted GARCH(1, 1)
models including the conditional mean constant (C), the conditional variance
(K), and the GARCH and ARCH terms. In addition to the parameter values, the
standard errors (SE) and t-statistics (t) are reported.

AMP Value SE t

C 0.0002 0.0003 0.5892
K 1.9209 × 10−5 2.2871 × 10−6 8.3985
GARCH 0.7359 0.0188 39.0778
ARCH 0.2641 0.0194 13.6398

ANZ Value SE t

C 0.0016 0.0003 5.4501
K 7.3118 × 10−5 5.8229 × 10−6 12.5570
GARCH 0.2634 0.0455 5.7859
ARCH 0.3397 0.0550 6.1720

BHP Value SE t

C 0.0012 0.0004 2.9871
K 8.7124 × 10−6 3.2465 × 10−6 2.6836
GARCH 0.9135 0.0168 54.4378
ARCH 0.0596 0.0091 6.5501
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BXB Value SE t

C 0.0007 0.0003 2.0608
K 1.7473 × 10−5 2.1097 × 10−6 8.2819
GARCH 0.7678 0.0182 42.3044
ARCH 0.2322 0.0204 11.3957

CBA Value SE t

C 0.0007 0.0002 3.1895
K 3.1700 × 10−6 8.5430 × 10−7 3.7107
GARCH 0.8858 0.0186 47.7470
ARCH 0.0827 0.0129 6.4331

CGJ Value SE t

C 0.0004 0.0002 1.6147
K 0.0002 6.5848 × 10−6 23.3010
GARCH 0 0.0356 0
ARCH 0.4170 0.0159 26.2239

FGL Value SE t

C 0.0003 0.0003 1.2352
K 2.7529 × 10−6 7.0557 × 10−7 3.9016
GARCH 0.9292 0.0113 82.2604
ARCH 0.0524 0.0078 6.7116

MQG Value SE t

C 0.0013 0.0004 3.5899
K 2.6140 × 10−5 4.1957 × 10−6 6.2302
GARCH 0.7694 0.0322 23.8641
ARCH 0.1195 0.0180 6.6561

NAB Value SE t

C 0.0006 0.0003 2.2476
K 8.2778 × 10−6 1.3237 × 10−6 6.2537
GARCH 0.8287 0.0215 38.6281
ARCH 0.1115 0.0099 11.2991



177

QBE Value SE t

C 0.0016 0.0003 5.1791
K 1.2398 × 10−5 3.0076 × 10−6 4.1223
GARCH 0.7713 0.0206 37.4108
ARCH 0.2287 0.0133 17.2011

RIN Value SE t

C 0.0008 0.0005 1.8602
K 0.0002 8.6192 × 10−6 21.9865
GARCH 0 0.0223 0
ARCH 0.3545 0.0210 16.9169

RIO Value SE t

C 0.0009 0.0004 2.4686
K 5.2402 × 10−6 2.1147 × 10−6 2.4780
GARCH 0.9097 0.0177 51.3468
ARCH 0.0706 0.0136 5.2021

SGB Value SE t

C 0.0008 0.0002 3.4032
K 2.0097 × 10−6 5.9153 × 10−7 3.3975
GARCH 0.9440 0.0091 103.1870
ARCH 0.0360 0.0068 5.2612

SUN Value SE t

C 0.0008 0.0003 2.8540
K 1.0107 × 10−5 1.9521 × 10−6 5.1773
GARCH 0.8210 0.0179 45.8350
ARCH 0.1220 0.0121 10.0795

TLS Value SE t

C 0.0001 0.0002 0.5348
K 1.4205 × 10−5 2.4751 × 10−6 5.7393
GARCH 0.7383 0.0249 29.6654
ARCH 0.1681 0.0136 12.3975
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WBC Value SE t

C 0.0008 0.0002 3.2745
K 5.8446 × 10−6 1.5840 × 10−6 3.6898
GARCH 0.8571 0.0242 35.4337
ARCH 0.0912 0.0157 5.7924

WDC Value SE t

C 0.0006 0.0003 1.8913
K 7.0120 × 10−5 4.0116 × 10−6 17.4792
GARCH 3.0280 × 10−6 0.0049 0.0006
ARCH 1.0000 0.0036 274.2910

WES Value SE t

C 0.0008 0.0003 2.5874
K 1.1107 × 10−6 3.8227 × 10−7 2.9055
GARCH 0.9576 0.0054 176.3950
ARCH 0.0386 0.0051 7.5275

WOW Value SE t

C 0.0007 0.0003 2.8515
K 2.9186 × 10−6 7.4501 × 10−7 3.9176
GARCH 0.9250 0.0128 72.2025
ARCH 0.0540 0.0094 5.7268

WPL Value SE t

C 0.0008 0.0004 2.1814
K 3.0376 × 10−5 8.0633 × 10−6 3.7671
GARCH 0.8094 0.0471 17.1671
ARCH 0.0675 0.0164 4.1068
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