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Abstract

In this thesis, we consider the paradigm of training several related learning problems (tasks)

jointly. The goal is to synergize the related tasks by appropriate sharing of feature information

within them and obtain a better generalization across all the tasks (as compared to learning

them independently). A key concern while training multiple related tasks jointly is to learn

which feature information should be shared among which tasks. Either sharing unhelpful fea-

ture information among related tasks or sharing any information with unrelated tasks may result

in worsening of performance. The focus of this thesis revolves around this issue. Overall, we

present a family of regularized risk minimization based convex formulations, of increasing gen-

erality, for learning features (kernels) in various settings involving multiple tasks.

We begin with the question of which features to share among all the tasks. This popular

setting assumes that all the tasks are related and the aim here is to learn a common feature repre-

sentation shared by all the tasks. We pose this problem as that of learning a shared kernel. The

kernel based framework allows us to implicitly learn task correlations in generic inner product

feature spaces. The shared kernel is modeled as a linear combination of a given set of base

kernels, the Multiple Kernel Learning setting. We propose a mixed-norm based formulation for

learning the shared kernel as well as the prediction functions of all the tasks. We build on this

approach and proceed to learn the shared kernel in a couple of richer feature spaces. Firstly, we

consider a case where the tasks share low-dimensional subspaces lying in the induced feature

spaces of the base kernels. We pose this problem as a mixed Schatten-norm regularized for-

mulation that learns an optimal linear combination of such subspaces. Secondly, we consider

learning the shared kernel as a polynomial combination of base kernels. In this setup, the space

of possible combinations is exponential in the number of base kernels and we propose a graph

based regularizer to perform a clever search in this huge space.
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We next study the setting where all the tasks need not share a common feature representa-

tion. We develop a formulation that learns groups of related tasks in a given feature space. Each

group of tasks is represented by a kernel and the problem of learning groups of related tasks is

posed as a kernel learning problem. We generalize this setup and propose a formulation that

learns which feature spaces are shared among which groups of tasks. We show that the overall

performance improves considerably by learning this information.

We end this thesis by discussing our exploration on the problem of computing the kernel

selection path in the Multiple Kernel Learning (MKL) framework. Kernel selection path is

the variation in the classification accuracy as the fraction of selected kernels is varied from

null to unity. We study a generic family of MKL formulations and propose a methodology for

computing their kernel selection path efficiently.

In addition to the models developed for learning kernels for multiple tasks, derivations of

specialized dual formulations as well as the algorithms proposed for solving them efficiently

are also an important contribution of this thesis. In particular, solving mixed Schatten-norm

regularized problems as well as searching for optimal polynomial kernel combination in expo-

nentially large search space call for novel optimization methodologies. We show utility of the

proposed formulations in a few learning applications such as Rule Ensemble Learning where

the goal is to construct an ensemble of conjunctive propositional rules.
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Chapter 1

Introduction

In this thesis, we study settings that require learning multiple related prediction problems. As

a motivating example, consider the problem of recognizing handwritten characters of different

writers. Modeling the writing style of each writer may be viewed as a separate problem. One of

the simplest approaches for this setting is to pool the data of all the writers together and learn

a single prediction function. Since the model parameters learnt is common for all the writers,

this approach assumes that the writers have the same writing style. However, this assumption

is generally not true. Figure 1.1 shows a large variation in the letter ‘a’ written by 40 different

writers [101].

The writing style of people usually depend on factors like right or left handedness, hand-

eye co-ordination, motor control, vision, physical features, childhood education or environment,

etc. Hence, a more preferable solution is to learn a separate prediction function for each writer,

using only the writer-specific examples. In this methodology, all the prediction functions are

learnt independently. Though it seems to satisfy the concerns raised by the former alternative,

this approach rests on the assumption that sufficient amount of training examples are available

to learn the prediction functions having good generalization ability. This may not always be the

case since personalized data is usually scarce.

Note that both the above methodologies enjoy a distinct advantage. The former method

has more training examples to learn from while the latter learns writer-specific prediction func-

tions. Now consider a learning approach that learns writer-specific prediction functions but

shares relevant information among the problems during the training phase. The intuition be-
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Figure 1.1: The letter a written by 40 different people. This data was collected by Rob Kassel
at the MIT Spoken Language Systems Group.

hind information sharing is that the problems are related (all of them model handwriting styles)

and hence, they may exhibit certain commonalities. For example, all of them will give im-

portance to features like curvature of lines, number of strokes, contiguity of characters, etc.

Sharing information about such common features may lead to better models since such features

are learnt using the training examples of all the writers. In addition to the common features,

writer-specific characteristics like right or left handedness, motor control, etc., also exist. These

may influence the degree of importance given to the features in the writer-specific prediction

functions. This paradigm of learning several related tasks jointly is popularly known as Multi-

task Learning (MTL).

Multi-task Learning [29] aims at sharing the knowledge gained by several related tasks

during the training phase. A learning problem is termed as a task. The motive is to improve

the generalization achieved across all the tasks as compared to learning them independently.

An important precondition for MTL to give better results is that the tasks should be related. It

usually implies that some helpful correlations should exist among the tasks that allow the flow of

a positive knowledge transfer among the tasks during the training stage. For example, the tasks

may share a latent feature representation [18, 5, 8], common hyper-parameters [17, 63, 48], etc.

Sharing information among unrelated tasks may result in the loss of generalization ability and

worsening of performance [77, 82]. A detailed discussion on different kinds of task-relatedness

studied in the literature is presented in Chapter 2.1.

Multi-task learning setting is quite common in real world applications. We already dis-

cussed the handwriting recognition application above. As another example, consider the prob-
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lem of recognizing different objects. Let each task be that of identifying an object in the im-

ages. Note that the images of objects share a common set of features, perhaps those describing

lines, shapes, textures, etc., which are different from the input features described in pixels. It

is important to discover such shared feature representations that lead to improved recognition

ability [61, 122, 5]. Recommender systems for movies, book, etc., seek to predict a user’s

rating on new/unrated products. The underlying learning algorithm here needs to model the

user’s preferences. They employ techniques like collaborative filtering [141, 8, 87], which are

based on the common observation that users having similar rating history tend to share similar

views on new products. Hence, the preferences of several users are modeled jointly. In the

application of email spam filtering [132], classifying emails of a user as spam or not-spam is

a task. Since every user has a (slightly) different distribution over spam or not-spam emails,

each user requires a personalized spam classifier. However, some aspects of relevant or junk

emails are usually common across users (or groups of users) and can be learnt jointly. MTL

has also been employed in other learning domains like natural language processing [5, 67, 37],

computational biology [24, 152], web search ranking [31], etc. In addition, learning settings

like multi-label classification or multi-class classification may also be viewed under the MTL

framework wherein identifying examples associated with a label or class corresponds to a task.

As discussed above, MTL advocates sharing helpful information among related tasks.

Hence, a key challenge in MTL is to learn which feature information is to be shared among

which tasks. The focus of this thesis revolves around this issue. A large number of existing

works [5, 4, 9, 8, 144, 33, 92] assume that all the tasks share a common set of relevant features,

in the given (input) feature space. The quality of the final feature representation, in such setups,

depends on the quality of the given features. In this thesis, we propose to alleviate this risk

of employing low quality features by considering an enriched input space induced by multiple

base kernels. A kernel is a function that maps the given feature space to a generic inner product

feature space [113]. Hence, the feature learning problem may be equivalently posed as that of

learning a suitable kernel function. Much work has been done in the past on learning good qual-

ity kernel function for a single prediction task. However, to the best of our knowledge, limited

progress has been made on learning kernel functions for multiple tasks. Overall, we present a

family of regularized risk minimization based convex formulations, of increasing generality, for

3



learning kernels in various settings involving multiple tasks.

We begin with the question of which features to share among the tasks and explore the

problem of learning a common feature representation shared across all the tasks. We pose this

problem as that of learning a shared kernel function. This shared kernel is learnt as a sparse

linear combination of a given set of base kernels, the Multiple Kernel Learning setting. A

generic mixed-norm based multi-task learning formulation is proposed that learns the shared

kernel as well as the task specific prediction functions. We build on this setup and proceed to

learn a common feature representation in a couple of richer feature spaces. Firstly, we consider

the setting where the tasks share a latent feature space [29, 18, 8]. We model the latent feature

space as a linear combination of low-dimensional orthonormal transformation of the induced

feature spaces of the given base kernels. We pose the problem of learning this latent feature

space as a mixed Schatten-norm regularized formulation. Secondly, we explore the problem of

learning polynomial combination of the given base kernels. Such combinations may be encoded

in a directed acyclic graph (DAG). Note that this is a computationally challenging setting since

the size of such DAGs can become exponential in the number of base kernels. We model this

problem by a graph based regularizer that induces structured sparsity within the DAG. This

helps in developing an efficient algorithm to search such DAGs efficiently. The regularizer also

enables the proposed formulation to be employed in the application of Rule Ensemble Learning

where the goal is to construct an ensemble of conjunctive propositional rules.

The above setups assume that all the tasks share a common feature representation. How-

ever, this may not hold in real world applications [70]. Hence, we proceed to a more general

setup where it is not assumed that all the tasks are related. In addition, it is also unknown which

tasks are related.

We study the problem of learning with whom (tasks) to share the information with, in

a given feature space. Note that since feature space is given in this setting, the tasks share

information about their model parameters (task parameters) [48]. The information shared within

a group of tasks is represented by a kernel function and the problem is posed as a kernel learning

problem. We generalize this setup to the case where multiple candidate feature spaces are given

and any group of tasks may share a combination of such feature spaces. In particular, we

investigate the following setting: some relevant feature spaces are shared across few tasks. We
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propose a novel multi-task regularizer that leverages commonalities in feature space within sets

of tasks, wherever they exist, without paying the penalty when a set of tasks do not share any

feature space. Hence, we learn which feature spaces are shared among which tasks and show

that the overall performance improves considerably by learning this information.

We end this thesis by discussing our exploration on the problem of tuning p in the p-

norm Multiple Kernel Learning (MKL) framework, which is employed in the proposed MTL

formulations. The value of p governs the sparsity of the learnt feature space and tuning it for

the application at hand is essential for obtaining a good generalization performance. In our

experiments, we observed significant variation of performance of MKL based classifiers as p

is varied. A simple approach to select the most suitable p could be cross validation. However,

state-of-the-art MKL algorithms are too computationally expensive to be invoked hundreds of

times to determine the most appropriate p, especially on large scale data sets. We develop a

MKL formulation and algorithm that efficiently determine the kernel selection path — variation

of classification accuracy as the parameter p is varied from an initial value p0 > 1 to unity.

In addition to the models developed for feature induction in multi-task learning setups,

derivations of specialized dual formulations as well as the algorithms thereof for solving the

proposed models efficiently are also an important contribution of this thesis. In particular,

solving mixed Schatten-norm regularized problems as well as searching for optimal non-linear

kernel combination in an exponentially large space call for novel optimization methodologies.

The next section details the main contribution of this thesis.

1.1 Main Contributions

In this thesis, we make the following contributions in the field of Multi-task Learning and

Multiple Kernel Learning (MKL):

• A MKL based feature induction framework for multiple tasks is proposed. We pose the

problem of learning a shared feature representation among the tasks as that of learning

a shared kernel. The proposed formulation reduces the excessive dependency on good

quality input features by considering an enriched feature space induced by multiple base

kernels. Based on an input parameter, the proposed formulation induces varying degree
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of task-relatedness: a) all the tasks give the same importance to the selected kernels, and

b) the tasks share the same set of selected kernels. However, the relative importance of

the selected kernels may vary among the tasks.

• A multi-task learning formulation that learns a latent feature space shared by all the tasks.

It searches for a sparse linear combination of low-dimensional subspaces residing in the

induced feature spaces of the base kernels. The sparse combination constraint helps in dis-

carding the kernels (and corresponding feature spaces) that encourages noisy/low-quality

correlations among the tasks. The formulation is posed as a `1/`q≥1 mixed Schatten-norm

regularized problem. Such problems are non-standard in literature and call for novel opti-

mization methodologies. Hence, an efficient mirror descent [21, 19, 99] based algorithm

is proposed to solve the optimization problem.

• A framework for learning the kernel shared among multiple tasks as a polynomial combi-

nation of base kernels is proposed. This space of polynomial combination is exponential

in the number of base kernels. We propose a graph based regularizer that induces struc-

tured sparsity in this space, which is exploited by an efficient active set algorithm to

perform a clever search. We illustrate the efficacy of the proposed formulation in the

application of Rule Ensemble Learning, which aims at learning an optimal ensemble of

conjunctive rules.

• A multi-task learning formulation that learns kernels (feature spaces) shared by various

groups of tasks. It is not known beforehand which tasks share a feature space and hence

the proposed formulation explores the space of all possible groups of tasks. We propose

a novel multi-task regularizer that encodes the following important structure among the

groups of tasks leading to an efficient algorithm for solving it: if a group of tasks do not

share any kernel, then none of its superset shares any kernel. We show that the overall

performance improves considerably by learning which kernels are shared among which

tasks.

• We propose a novel conjecture which states that, for certain p-norm MKL formulations,

the number of base kernels selected in the optimal solution monotonically decreases as

6



p is decreased from an initial value to unity. We prove the conjecture, for a generic

family of kernel target alignment based formulations, and show that the kernel weights

themselves decay (grow) monotonically once they are below (above) a certain threshold

at optimality. This allows us to develop a path following algorithm that systematically

generates optimal kernel sets of decreasing size. The proposed algorithm sets certain

kernel weights directly to zero for potentially large intervals of p thereby significantly

reducing optimization costs while simultaneously providing approximation guarantees.

We empirically demonstrate the efficacy of our algorithm, both in terms of generalization

ability as well as time taken to compute the entire kernel selection path.

1.2 Outline

The rest of the thesis is organized as follows. In Chapter 2, we provide an overview of Multi-

task Learning setting, Multiple Kernel Learning framework and the mirror descent algorithm.

Chapter 3 describes our MKL based feature induction framework for multiple tasks. In Chap-

ter 4, we discuss our multi-task formulation that learns a latent feature space shared by all

the tasks. In Chapter 5, we present our work on learning non-linear kernel combinations for

multiple tasks and its application in Rule Ensemble Learning setting. Chapter 6 discusses our

multi-task formulation that learns which kernels are shared among which tasks. We present our

analysis of the kernel selection path for p-norm MKL formulation in Chapter 7. We conclude

by presenting a summary of this thesis and some conclusions in Chapter 8.
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Chapter 2

Background

In this chapter, we present a brief overview of Multi-task Learning (MTL), the Multiple Kernel

Learning (MKL) framework and the mirror descent algorithm.

2.1 Multi-task Learning

We begin by considering the standard supervised learning setup in which the goal is to learn

a function F that predicts an output y ∈ Y for a input x ∈ X . We are provided with a set of

observations (the training data): D = {(xi, yi),xi ∈ X , yi ∈ Y , i = 1, . . . ,m}. Here (xi, yi)

represents the ith input/output pair. It is desirable that the function F has a good generalization

over unseen data as well.

This setup is now extended to multiple tasks. Consider a set of learning tasks, T , such

that |T | = T . The training data for the tth task is denoted by: Dt = {(xti, yti),xti ∈ Xt, yti ∈

Yt, i = 1, . . . ,mt} ∀t = 1, . . . , T , where (xti, yti) represents the ith input/output pair of the tth

task. The aim is to learn a function Ft, corresponding to each task t ∈ T , that generalize well

over Dt and its underlying distribution.

One way to learn multiple tasks is to compute each Ft separately and independently. This

essentially implies that the tth task only has observations belonging to the setDt for guiding the

learning process. Note that in setups where the multiple tasks may be related, this methodology

does not exploit any existing task relatedness. Moreover, in domains where data is scarce for

several tasks, learning the decision functions (Ft ∀ t ∈ T ) independently may not yield a good
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generalization. Another approach could be to aggregate all the tasks and learn just a function

common for all the tasks. This is feasible in certain setups where the input spaces (Xt) and

the output spaces (Yt) are identical and all the tasks are homogeneous (for example all are

classification tasks or all are regression tasks). However, this methodology makes the setting

too simplistic as it may ignore the important differences among the underlying distributions of

the tasks.

Multi-task Learning (MTL) [29, 17, 18] paradigm advocates a middle path between the

above two extreme approaches for setups, when the given tasks are related. It aims to improve

the generalization performance by jointly learning a shared representation common across all

the tasks. At the same time, tasks specific representations are also learnt. As commented in one

of the earliest works on MTL [29] : Multitask Learning is an approach to inductive transfer

that improves generalization by using the domain information contained in the training signals

of related tasks as an inductive bias. Hence, in MTL, though each task learns its own distinct

prediction function, the search for the optimal Ft′ corresponding to task t′(∈ T ) is guided by

the training data of all the tasks (Dt ∀ t ∈ T ).

In this thesis, we consider affine decision functions for each task. Thus, Ft(x) = 〈ft, φ(x)〉−

bt, where ft is the task parameters, φ(·) is a feature map and bt is the bias term. In order to learn

the task parameters (and the bias terms), we employ the well-established approach of regular-

ized risk minimization [125] and consider the following problem:

min
ft,bt∀t∈T

Ω(f1, . . . , fT )2 + C
T∑
t=1

mt∑
i=1

V (Ft(xti), yti) (2.1)

where Ω(f1, . . . , fT )2 is a norm based regularizer, V (·, ·) is a suitable convex loss function (for

example the hinge loss or the square loss) andC > 0 is the regularization parameter. The choice

of regularizer (Ω(·)) depends on some prior knowledge of the relationship existing among the

tasks. In order to learn the tasks separately and independently1 in this setup, one may substitute:

Ω(f1, . . . , fT )2 =
∑

t Ω(ft)
2. In the following section, we provide a brief description of the

task-relatedness notions and the corresponding choice of regularizations employed in existing

works. Though the discussion will primarily be focused on the MTL setups based on 2.1, we

1The learning of tasks is independent except for the shared parameter C. This can also be overcome by em-

ploying task specific Ct instead of C in (2.1).
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will also discuss the relevant works in other discriminative or generative settings as well.

2.1.1 Modeling Task Relationship

An important precondition for MTL to improve the generalization performance is to have the

given tasks to be related. It essentially implies that some helpful correlations exist among the

tasks that enable them to help each other during the training/learning phase. Various notions

of task relatedness have been proposed in the existing works, with empirical success. Few

notions of task relatedness have also been shown to have a theoretical foundation as well. In the

following section, we provide a brief description of the existing task relatedness notions.

One of the most popular notions of task-relatedness employed in several works [18, 48, 68]

is as follows: the task parameters (ft) of all the tasks are assumed to be close to a common

(unknown) mean. This notion of task-relatedness originates from the hierarchical Bayesian

treatment of MTL [62, 63, 14, 139, 66]. A popular Bayesian approach to enforce this task

relatedness is to assume that the task parameters (ft ∀ t ∈ T ) are generated from a common

probability distribution (say Gaussian), having a mean h0 and covariance matrix Σ. The degree

of similarity among the task parameters is determined by the covariance matrix. From the

regularized risk minimization perspective, [48] proposed to entail the above task relatedness via

a regularizer that penalizes the distance of the task parameters from the mean. They proposed

to employ the following regularization:

Ω(f1, . . . , fT )2 = µ‖h0‖2
2 +

T∑
t=1

‖ht‖2
2 (2.2)

where ft = h0 + ht ∀ t = 1, . . . , T and µ > 0 is the parameter that controls the trade-off

between regularizing the mean vector h0 and the variance among the task parameters. It was

also shown by [48] that the above task relatedness can be encoded via a kernel. In the rest of

the thesis, we refer to this notion of task-relatedness as Close-by Task Parameters. Works such

as [47, 34] extend this notion to settings where a graph based structural relationship among the

tasks is also available as input.

Several works have also focused on learning a common feature representation that is

shared across all the tasks [29, 17, 14, 5, 20, 8]. Early works in this setting [17, 62, 63, 18, 14]

typically employed a Bayesian approach with neural network machinery to learn a set of ‘hidden
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features’ that are common across all the tasks. The hidden layer was learnt using the training

sample from all the tasks. They model the prediction function of the tth task as Ft(x) = f>t Bx,

where B is the matrix learnt via the hidden layer and is common across all the tasks. Expecta-

tion maximization algorithm is usually employed to learn the task parameters.

A similar setting in this regard is that the task parameters share a simultaneously sparse

structure: only a small number of input features are relevant for every task and the set of such

relevant features is common across all the tasks. In regularized risk minimization setting, this

is usually accomplished by a multi-task extension of the Group Lasso formulation [142] via

the `1/`2 block-norm [92, 102] or the `1/`∞ block-norm [124, 98]. Thus, with the prediction

function being Ft(x) = f>t x− bt, the regularizer employed is a `1/`q block-norm

Ω(f1, . . . , fT ) =
d∑
i=1

(
T∑
t=1

|fti|q
) 1

q

, (2.3)

where the input feature space is assumed to be d dimensional and fti denotes the ith parameter

variable of the tth task. In addition to sparse feature selection, the `1/`∞ block-norm also

promotes low variance among the task parameters.

Works such as [5, 144, 8] propose to search for a suitable low dimensional subspace of the

given input feature space, common across all the tasks. In particular, [5] considers the setting

where Xt = Rd and models the prediction function as Ft(x) = f>t x = w>t x + v>t Ux. Here U

is a (to be learnt) linear low dimensional map common across the tasks and is constrained to be

a matrix with orthonormal rows, i.e., UU> = I . Regularization over the tasks parameters wt

govern the extent of task relatedness among the tasks as lower value of
∑

t ‖wt‖2 imply greater

degree of subspace sharing. [144] employ a hierarchical Bayesian approach to model a similar

prediction function (as in [5]). In order to learn a low dimensional subspace, they propose to put

a super Gaussian distribution like the Laplace distribution over the columns of U . On the other

hand, [8] models the prediction function as Ft(x) = f>t Ux, where U ∈ Rd×d is a orthonormal

matrix that needs to be learnt. Hence, the feature map x → Ux may be viewed as a rotation

of the original orthonormal basis. In order to learn a low dimensional subspace, [8] employ

the `1/`2 block-norm regularization (2.3) over the task parameters (ft). Thus, a sparse feature

representation is learnt in the new transformed feature space.

The penalty (2.3) strictly enforces a common sparse structure on all the tasks — either a
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feature is selected for all the tasks or not selected for any task. This may be a bit too restrictive

in real world applications [70, 93, 151]. Recent works aim at developing models that promote a

more flexible sparsity structure among the task parameters. [78, 34] address the case when the

structure among the tasks can be represented as a tree or a graph. Such prior information may

be available in a few applications (such as the genetic association mapping in bio-informatics)

from the domain experts. They propose a graph-based group lasso regularizer for such a setting.

Though it obtains flexible pattern of sparsity, prior knowledge such as structure among the tasks

are usually unknown in most real world applications. A popular framework to obtain flexible

sparsity pattern is to employ decomposable task parameters and obtain the final sparsity pattern

as the superposition of the individual ones. For instance, [70] proposed to decompose task

parameters as ft = wt + vt ∀ t ∈ T , while [93] proposed ft = w � vt ∀ t ∈ T . The symbol

� represents element-wise product symbol. The parameters vt are learnt locally (from the task

specific examples) and the parameters w/wt are learnt globally (from the examples of all the

tasks). [70] employ the `1/`∞ block-norm regularization (2.3) over wt and `1-norm over vt. On

the other hand [93] regularize both set of parameters by `1-norm.

Recent works have attempted to model the co-variance among the task parameters (ft ∀ t ∈

T ) as well as co-variance among the feature loadings across tasks ([f1i, . . . , fT i] ∀ i) via matrix-

variate normal distribution [145, 147, 7]. In particular, [145] adopts the regularized risk mini-

mization framework, where both the co-variance matrices are learnt as sparse matrices. Learn-

ing sparse co-variance matrices help in avoiding overfitting by removing spurious correlations

among the tasks and among the features. [7] work upon a similar model in a hierarchical

Bayesian setting. In [72], maximum entropy discrimination framework is used to learn a com-

mon sparse feature representation over multiple tasks.

Clustered Multi-task Learning

In many applications, tasks may have a specialized group structure where models of tasks within

a group are strongly similar to each other and weakly similar to those outside the group. The

actual group structure of the tasks is not usually known apriori. For example, in application

related to face recognition of different people, we expect that faces of persons belonging to

same ethnicity/region/gender share more common characteristics [121]. Similarly, in genomics,
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organisms from same family (in terms of taxonomy) are expected to show more similar char-

acteristics/behavior [136]. We may also have situations where few of the tasks are ‘outliers’

(not related to any other task). In such cases, learning all tasks simultaneously may lead to loss

of generalization ability and worsening of performance [77, 82]. Many recent works have pro-

posed models for such a setting, known as Clustered Multi-task Learning (CMTL). Works such

as [139, 68] propose CMTL formulations that cluster tasks based on the notion of close by task

parameters. It implies that the tasks parameters (ft) of the tasks within a cluster are closer to

each other than to the tasks outside the cluster. [68] learn clusters of similar tasks via a convex

relaxation of K-means on the tasks while [139] learn clusters of tasks in a non-parametric hier-

archical Bayesian setting where the priors are drawn from the Dirichlet Process. [77] propose to

cluster tasks that share a low dimensional feature representation, the task relatedness definition

being similar to [8]. They formulate the problem of clustering tasks via mixed-integer program-

ming. Note that the methods [139, 68, 77] perform hard clustering, i.e., each task belong to only

one cluster. This may be a stringent constraint in many real world applications.

Recent works have also focused on learning overlapping groups of tasks. [82] model the

task parameters as a sparse linear combination of latent basis tasks, i.e. ft = Lst where columns

of matrix L represent the latent basis tasks. Both L and st (∀ t) are learnt and st are regularized

by sparsity inducing `1-norm. The degree of similarity between any two tasks t1 and t2 is

determined by the extent of overlap between the sparsity patterns of st1 and st2 . Tasks having

same sparsity pattern are interpreted as belonging to the same group.

2.2 Multiple Kernel Learning

Consider a learning problem like classification or regression and let its training data be denoted

by D = {(xi, yi), i = 1, . . . ,m | xi ∈ X , yi ∈ R ∀i}, (xi, yi) representing the ith input-output

pair. The aim is to learn an affine prediction function F (x) that generalizes well on unseen

data. Given a positive definite kernel k that induces a feature map φk(·), the prediction function

can be written as: F (x) = 〈f, φk(x)〉Hk − b. Here Hk is the Reproducing Kernel Hilbert

Space (RKHS) [113] associated with the kernel k, endowed with an inner product 〈·, ·〉Hk , and

f ∈ Hk, b ∈ R are the model parameters to be learnt. A popular framework to learn these model
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parameters is the regularized risk minimization [125], which considers the following problem

min
f∈Hk,b∈R

1

2
Ω(f)2 + C

m∑
i=1

`(yi, F (xi)) (2.4)

where Ω(·) is a norm based regularizer, ` : R× R→ R+ is a suitable convex loss function and

C is a regularization parameter. From the representer theorem [113], we know that the optimal

f has the following form f(·) =
∑m

i αik(·,xi) where α = (αi)
m
i=1 is a vector of coefficients to

be learnt. As an example, the support vector machine (SVM) [125] employs Ω(f) = ‖f‖Hk .

As can be observed from above, kernel definition plays a crucial role in defining the quality

of the solution obtained by solving (2.4). Hence learning a kernel suitable to the problem at hand

has been an active area of research over the past few years. One way of learning kernels is via the

Multiple Kernel Learning (MKL) framework [83, 12], in which the kernel k is learnt as a conic

combination of the given base kernels k1, . . . , kn: k =
∑n

i=1 ηik
i, ηi ≥ 0,∀ i = 1, . . . , n. Here

η = (ηi)
l
i=1 is a coefficient vector to be additionally learnt in the optimization problem (2.4). In

this setting, the feature map with respect to the kernel k is given by φk = (
√
ηiφki)

n
i=1 [see 108,

for details]. It is a weighted concatenation of feature maps induced by base kernels. Hence,

sparse kernel weights will result in a low dimensional φk. Some of the additional constraints

on η explored by the MKL research community are: `1-norm constraint [83, 12, 108], `p-

norm constraint (p > 1) [81, 128], etc. The `1-norm constraint over kernel weights results

in sparse kernel combination and this formulation is usually referred to as `1-MKL. Works such

as [118, 108, 69] have proposed efficient algorithms to solve `1-MKL formulation, employing

cutting planes or gradient descent based methods.

`p-norm Multiple Kernel Learning

Multiple Kernel Learning formulation with `p>1-norm constraint over the kernel weights is

commonly referred to as `p-MKL. It has received a lot of attention in the recent literature [39,

128, 104, 81, 103, 69]. As mentioned earlier, in this thesis, we have also employed the `p-MKL

framework to learn sparse combination of kernels (for multiple tasks). In this regard, note that

as `p norm (p > 1) rarely induces sparsity since it is differentiable [120]. However, as p→ 1, it

promotes only a few leading terms due to the high curvatures of such norms [119]. In order to

obtain sparse solutions in such cases, thresholding is a common strategy employed by the exist-
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ing `p-MKL (p > 1) algorithms such as SMO-MKL [128], OBSCURE [104], UFO-MKL [103]

and SPG-GMKL [69]. Hence, in the rest of the thesis, the sparsity inducing behavior of `p-MKL

is stated in this respect. We have also employed thresholding in our experiments.

2.2.1 Hierarchical Kernel Learning

This section introduces the notations and provides a brief description of the HKL setup and

formulation [11, 10]. Let the training data be denoted by D = {(xi, yi), i = 1, . . . ,m | xi ∈

X , yi ∈ R ∀i} where (xi, yi) represents the ith input-output pair. As mentioned earlier, in addi-

tion to the training data, a DAG and several base kernels embedded on the DAG are provided.

Let G(V , E) be the given DAG with V denoting the set of vertices and E denoting the set of

edges. The DAG structure entails relationships like parent, child, ancestor and descendant [38].

Let D(v) and A(v) represent the set of descendants and ancestors of the node v in the G. It is

assumed that both D(v) and A(v) include the node v. For any subset of nodesW ⊂ V , the hull

and sources ofW are defined as:

hull(W) =
⋃
w∈W

A(w), sources(W) = {w ∈ W | A(w) ∩W = {w}} .

Let |W| andWc denote the size and the complement ofW respectively. Let kv : X×X → R be

the positive definite kernel associated with the vertex v ∈ V . Let Hkv be its associated RKHS,

and φkv be the feature map induced by it. Given this, HKL employs the following prediction

function:

F (x) =
∑
v∈V

〈fv, φkv(x)〉Hkv − b,

which is an affine model parametrized by f ≡ (fv) v∈V , the tuple with entries as fv, v ∈ V ,

and b ∈ R. Some more notations follow: for any subset of nodesW ⊂ V , fW and φW denote

the tuples fW = (fv)v∈W and φW = (φv)v∈W respectively. In general, the entries in a vector

are referred to using an appropriate subscript, i.e., entries in u ∈ Rd are denoted by u1, . . . , ud

etc. 1 refers to an appropriately sized column vector with entries as unity. Y denotes the

diagonal matrix with entries as [y1, . . . , ym]. The kernels are denoted by the lower case ‘k’ and

the corresponding kernel matrices are denoted by the upper case ‘K’.
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HKL formulates the problem of learning the optimal prediction function F as the follow-

ing regularized risk minimization problem:

min
f,b

1

2

(∑
v∈V

dv‖fD(v)‖2

)2

+ C
m∑
i=1

` (yi, F (xi)) (2.5)

where

‖fD(v)‖2 =

 ∑
w∈D(v)

‖fw‖2

 1
2

∀ v ∈ V

Here, ` : R × R → R+ is a suitable convex loss function and (dv)v∈V are non-negative user-

specified parameters.

As is clear from (2.5), HKL employs a `1/`2 block-norm regularizer, which is known for

promoting group sparsity [142]. Its implications are discussed in the following. For most of

v ∈ V , ‖fD(v)‖2 = 0 at optimality due to the sparsity inducing nature of the `1-norm. Moreover,

(‖fD(v)‖2 = 0)⇒ (fw = 0 ∀ w ∈ D(v)). Thus, it is expected that most of the fv will be zero at

optimality. This implies that the optimal prediction function involves very few kernels. Under

mild conditions on the kernels (being strictly positive), it can be shown that this hierarchical

penalization induces the following sparsity pattern: (fv 6= 0)⇒ (fw 6= 0 ∀ w ∈ A(v)). In other

words, if the prediction function employs a kernel kv, then it has to employ all the kernels kw,

where w ∈ A(v).

[11] propose to solve the following equivalent variational formulation:

min
γ∈∆|V|,1

min
f,b

1

2

∑
w∈V

δw(γ)−1‖fw‖2 + C

m∑
i=1

` (yi, F (xi)) , (2.6)

where z ∈ ∆s,r ⇔ {z ∈ Rs | z ≥ 0,
∑s

i=1 z
r
i ≤ 1} and δw(γ)−1 =

∑
v∈A(w)

d2
v

γv
. From the rep-

resenter theorem [113], it follows that the effective kernel employed is: k =
∑

v∈V δv(γ)kv.

Because (2.6) performs an `1-norm regularization of γ, at optimality most of the γv = 0. More-

over, δv(γ), the weight for the kernel kv, is zero whenever γw = 0 for any w ∈ A(v). Thus,

HKL performs a sparse selection of kernels and can be understood as a specialization of the

MKL framework. More importantly, the sparsity pattern for the kernels has the following re-

striction: if a kernel is not selected then none of the kernels associated with its descendants are

selected, as (γv = 0) ⇒ (δw(γ) = 0 ∀ w ∈ D(v)). For the case of strictly positive kernels, it
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follows that a kernel is selected only if all the kernels associated with its ancestors are selected.

Clearly, this restriction may lead to a large number of kernels being selected.

Since the size of γ is same as that of V and since the optimal γ is known to be sparse, [11]

proposes an active-set algorithm [85] for solving the partial dual in (2.6). At each iteration of

the active-set algorithm, the minimization problem in (2.6) is solved with respect to only those

variables (γ) in the active set using the projected gradient descent algorithm.

The key advantage of HKL, as presented in [11], is that in performing non-linear fea-

ture selection. For example, consider the case where the input space is X = Rn and let I be

power set of {1, . . . , n}. Consider the following 2n kernels arranged on the usual subset lattice:

ki(x,x
′) = Πj∈ixjx

′
j ∀ i ∈ I . Now, HKL can be applied in this setup to select the promis-

ing sub-products of the input features over all possible sub-products. Please refer to [11] for

more such pragmatic examples of kernels and corresponding DAGs. The most interesting result

in [11] is that, in all these examples where the size of the DAG is exponentially large, the com-

putational complexity of the active-set algorithm is polynomial in the training set dimensions

and the active-set size. Importantly, the complexity is independent of |V|!

2.3 Mirror Descent Algorithm

This section presents the Mirror-Descent (MD) algorithm which is suitable for solving problems

of the form minx∈X f(x) where X is a convex compact set and f is a convex and Lipschitz

continuous function on X. It is assumed that an oracle which can compute the sub-gradient (∇f )

of f at any point in X is available (an oracle for computing f is not necessary). Interestingly,

both the proposed formulations can indeed be posed as convex minimization problems over

convex compact sets and oracles for computing the sub-gradient of the objective exist. Hence

mirror-descent algorithm can be employed for solving them efficiently.

MD is close in spirit to the projected gradient descent algorithm where the update rule

is x(l+1) = ΠX(x(l) − sl∇f(x(l))) where ΠX denotes projection onto set X and x(l), sl are the

iterate value and step-size in the lth iteration respectively. Note that the update rule is equivalent

to x(l+1) = arg minx∈X x
>∇f(x(l))+ 1

2sl
‖x−x(l)‖2

2. The interpretation of this rule is: minimize

a local linear approximation of the function while penalizing deviations from current iterate (as
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the linear approximation is valid only locally). The step-size takes the role of regularization

parameter. The key idea in mirror-descent is to choose the regularization term which penalizes

deviations from current iterate in such a way that this per-step optimization problem is easy

to solve; leading to computationally efficient gradient descent procedures. For convergence

guarantees to hold, the regularizer needs to be chosen as a Bregman divergence, i.e., 1
2
‖x−x(l)‖2

2

is replaced by some Bregman divergence term: ωx(l)(x) = ω(x)−ω(x(l))−∇ω(x(l))>(x−x(l))

where ω is the (strongly convex) generating function of the Bregman divergence employed. The

step-sizes2 can be chosen as any divergent series for e.g., sl = 1
lp
, 0 ≤ p ≤ 1. Note that in case

ω is chosen as ω(x) = 1
2
‖x‖2

2, then the projected gradient descent algorithm is recovered. The

per-step minimization problem mentioned above can now be re-written in terms of ω as:

x(l+1) = arg min
x∈X

x>ζ(l) + ω(x) (2.7)

where ζ(l) = sl∇f(x(l)) − ∇ω(x(l)). As mentioned above, the strongly convex function ω is

chosen cleverly based on X such that (2.7) turns out to be an easy problem to solve. There are

two well-known cases where the MD algorithm almost achieves the information-based optimal

rates of convergence [99]: i) X is a simplex in Rd (i.e., X = {x ∈ Rd | xi ≥ 0,
∑d

i=1 xi = 1})

and ω is chosen as the negative entropy function: ω(x) =
∑d

i=1 xi log(xi) ii) X is a spectra-

hedron (i.e., set of all symmetric positive semi-definite matrices with unit trace) and ω(x) =

Trace(x log(x)). In fact, in the former case, the per-step problem (2.7) has an analytical solu-

tion:

x
(l+1)
i =

exp{−ζ(l)
i }∑d

j=1 exp{−ζ(l)
j }

(2.8)

Also for this case, the number of iterations can be shown to grow as log(d) and hence nearly-

independent of the dimensionality of the problem.

2Refer [99] for notes on choosing step-sizes optimally.
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Chapter 3

Generic Kernel Learning Framework for

Multiple Tasks

Learning a shared feature representation has been a common approach in Multi-task Learning

(MTL), as discussed in Chapter 2.1.1. Several works [124, 144, 98, 92, 102] aim at learning

a set of input features common across all the tasks by employing `1/`2 or `1/`∞ block-norm

regularization (2.3). In such approaches, the final set of shared features usually belong to the

given input space [124, 98, 70, 93]. Thus, the choice of the given input space plays a signif-

icant role in them. Moreover, many assume that the degree of influence of the shared feature

representation on every task is same. [124, 143, 5, 8]. As an example, if the shared features are

given weights then they are identical across all the tasks. One way of imparting more flexibility

in such a setting is by allowing task-specific weights for the shared features.

In this chapter, we propose a novel framework to learn the shared feature representation

across the tasks. We alleviate this risk of employing low quality input features by considering

an enriched input space induced by multiple base kernels. Kernels allow us to implicitly learn

task relatedness in generic inner product feature spaces. We pose the problem of learning a

shared representation among the tasks as that of learning a shared kernel. The latter is learnt as

a linear combination of the base kernels, the Multiple Kernel Learning (MKL) setting.
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Contributions

We propose a generic `q/`p (1 ≤ q ≤ 2, p ≥ 2) mixed norm convex regularizer for learning

multiple tasks. Within the feature space induced by each base kernel, the task parameters are

regularized by a p-norm. There exists an overall q-norm over the base kernels. As discussed

in Section 2.2, for q ∈ [1, 2), the q-norm promotes sparse selection of the base kernels. De-

pending on the value of the parameter p, the proposed formulation induces varying degree of

task-relatedness:

• Case p = 2: The tasks share the feature space induced by the resultant kernel, which is

learnt as a sparse linear combination of the base kernels. The tasks are assumed to be

equally related.

• Case p > 2: The tasks share the small set of relevant base kernels. The feature space

learnt for each task is a function of both shared as well as task-specific parameters.

We propose a mirror descent algorithm (Section 2.3) and a sequential minimal optimization

(SMO) algorithm to solve the formulation efficiently.

Outline

The rest of the chapter is organized as follows. Section 3.2 formalizes the notation and describes

the problem setup. In Section 3.3, we present the generic mixed norm based formulation and

discuss it in detail. Efficient algorithms for solving it are presented in Section 3.4. Experimen-

tal results are discussed in Section 3.5. We conclude by summarizing the work and the key

contributions. We start by discussing the related works in the next section.

3.1 Related Work

In this section, we specifically discuss those approaches that employed the kernel machinery to

learn multiple tasks. For a general discussion on the works based on learning a shared feature

representation, please refer to Chapter 2.1.1.

[94] proposed a Reproducing Kernel Hilbert Spaces (RKHS) framework for multi-task

problems. They introduced matrix-valued kernel functions to learn multiple tasks simultane-
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ously. [48, 47] constructed such matrix-valued multi-task kernels that enforced two relation-

ships among the tasks. Firstly, all the tasks shared the given feature space. Secondly, the model

parameters of all the tasks were constrained to be centered around a common mean parameter

(also discussed in Chapter 2.1.1). In another work, [28] provides various characterization of

multi-task kernels that induces universal features [96]. However, the above works did not focus

on kernel learning.

Kernel learning for multiple tasks is a relatively less explored setting. [72] proposed to

learn a common shared kernel as conic combination of given base kernels in the maximum

entropy discrimination based framework. Another work, [8], aim at learning a latent low-

dimensional subspace of a given kernel induced feature space that is common across all the

tasks. Recently, [109] proposed a `q/`p mixed-norm based MTL regularizer with q ∈ (0, 1].

The q-norm promotes sparse kernel combination for q = 1 and highly sparse kernel combina-

tion for q ∈ (0, 1). However, in the latter case, their formulation is non-convex. [153] proposed

an exclusive-lasso regularizer for multi-task setting with multiple base kernels. They model the

setting when each kernel is exclusive to a single task, i.e., the tasks are negatively correlated

with respect to the kernels.

3.2 Problem Setup

Consider a set T of learning tasks, T in number. The training data for the tth task is denoted by:

Dt = {(xti, yti), i = 1, . . . ,m} ∀t = 1, . . . , T , where (xti, yti) represents the ith input/output

pair of the tth task. For the sake of notational simplicity, we assume that the number of training

examples is same across all the tasks. The task predictors are assumed to be affine: Ft(x) =

〈ft, φ(x)〉 − bt, t = 1, . . . , T , where ft is the task parameter of the tth task, φ(·) is the feature

map and bt is the bias term. As stated previously in Chapter 2.1, we follow the regularized risk

minimization setup [125] and consider the following problem:

min
ft,bt ∀t∈T

Ω(f1, . . . , fT )2 + C

T∑
t=1

m∑
i=1

V (Ft(xti), yti) (3.1)

where Ω(f1, . . . , fT )2 is the regularizer, V (·, ·) is a suitable convex loss function (e.g. hinge

loss, square loss etc.) and C > 0 is the regularization parameter.
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Let k1, . . . , kn be the given base kernels and let φj(·) denote the feature map induced by

the kernel kj . Hence, φ(x) = (φ1(x), . . . , φn(x)). Let f jt represent the projection of ft onto the

φj space. In other words, ft = (f 1
t , . . . , f

n
t ). With this notation, the prediction function for the

task t can be rewritten as Ft(x) = 〈ft, φ(x)〉 − bt =
∑n

j=1〈f
j
t , φ

j(x)〉 − bt.

Some more notations before we proceed. Symbols 1 and 0 refers to an appropriately sized

column vector with entries as unity and zero respectively. The kernels are denoted by the lower

case ‘k’ and the corresponding gram matrices are denoted by the upper case ‘K’. Domain ∆s,r

(s ∈ N, r > 0) is defined as: z ∈ ∆s,r ≡ {z ∈ Rs | z ≥ 0,
∑s

i=1 z
r
i ≤ 1}. Domain S(w, C)

(w ∈ Rs, s ∈ N, C > 0) is defined as z ∈ S(w, C) ≡ {z ∈ Rs | 0 ≤ z ≤ C1, z>w = 0}.

3.3 Generic Multi-task Learning Formulation

In this section, we discuss our generic framework on learning kernels for multiple tasks. We

propose the following regularizer in (3.1), termed as Multiple Kernel Multi-task Feature Learn-

ing (MK-MTFL)

ΩA(f1, . . . , fT )2 =

 n∑
j=1

(
T∑
t=1

‖f jt ‖
p
2

) q
p

 2
q

(3.2)

where q ∈ [1, 2] and p ≥ 2. The above regularizer employs mixed-norm over the RKHS norms

(i.e. ‖f jt ‖2): a p-norm over the tasks (within each kernel space) and a q-norm over the kernels.

In the following, we discuss the implications of the proposed regularization. For q ∈ [1, 2), the

above regularizer promotes kernel selection. This helps in removing noisy feature1 spaces from

the final decision function. The RKHS norms of all the tasks corresponding to the jth kernel,

‖f jt ‖2 ∀ t, are regularized by a p-norm. In particular, for p = 2 the tasks share a common learnt

kernel while for p > 2, the tasks share few relevant base kernels. This will be discussed in more

detail during the derivation of the dual formulation. To summarize, the proposed multi-task

formulation is:

min
ft,bt ∀t∈T

1

2
ΩA(f1, . . . , fT )2 + C

T∑
t=1

m∑
i=1

V (Ft(xti), yti) (3.3)

1When q = 2, it can be shown that all the kernels are selected with equal weights. Since this is uninteresting,

we focus only on q ∈ [1, 2) in the main text. However, all our derivations will go through for this case as well.
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The proposed formulation can also be understood as an adaptation of the composite abso-

lute penalties family studied in [148, 120, 1] to the current problem.

In order to solve (3.3) efficiently, we first rewrite the formulation in a convenient but equiv-

alent form. In the following, we will derive a variational characterization of ΩA(f1, . . . , fT )

followed by a dual formulation of (3.3) with respect to ft, bt ∀ t. The dual will provide

us new insights into the nature of shared representation among the tasks. To keep the nota-

tions simple, the dual is stated for the case where every task is a binary classification problem

(yti = {−1, 1} ∀ i, t) and the loss function V (·, ·) is the hinge loss. However, one can easily

extend these ideas to other loss functions and learning settings.

Partial Dual Formulation of (3.3)

We note the following variational characterization of ΩA(f1, . . . , fT ):

Lemma 3.3.1. Given ΩA(f1, . . . , fT ) as defined in (3.2), q ∈ [1, 2] and p ≥ 2 we have

ΩA(f1, . . . , fT )2 = min
γ∈∆n,q̂

max
λj∈∆T,p̂∀j

n∑
j=1

∑T
t=1 λjt‖f

j
t ‖2

2

γj
(3.4)

where q̂ = q
2−q and p̂ = p

p−2
.

Proof of the above lemma follows from the application of lemma A.1.1 (in Appendix A.1)

and the notion of dual norm [26]. Note that in the limiting case of p = 2, p̂ =∞ and the optimal

value of any λjt is unity. The following lemma states a dual of (3.3) with respect to ft, bt ∀ t.

Lemma 3.3.2. Consider problem (3.3) with the regularizer term replaced with its variational

characterization provided in (3.4), q ∈ [1, 2), p ≥ 2 and the loss function as the hinge loss

V (Ft(xti), yti) = max(0, 1 − ytiFt(xti)). Then the following is a dual of it with respect to the

variables ft, bt ∀ t:

min
γ∈∆n,q̂

max
λj∈∆T,p̂∀j

max
αt∈S(yt,C)∀t

g(α, λ, γ) (3.5)

where

g(α, λ, γ) =
T∑
t=1

[
1>αt −

1

2
α>t Yt

(
n∑
j=1

γjK
j
t

λjt

)
Ytαt

]
(3.6)
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α = [α>1 , . . . , α
>
t ]>, Yt is the diagonal matrix corresponding to yt and Kj

t ∈ Rm×m represents

the gram matrix of the tth task corresponding to the kernel kj . The prediction function of the tth

task is given by:

Ft(x) =
m∑
i=1

ᾱtiyti

n∑
j=1

γ̄jk
j(xti,x)

λ̄jt

where (ᾱt, λ̄, γ̄) is the optimal solution of (3.5).

Proof. The proof follows from the representer theorem [113].

The dual in (3.5) reveal further information on the nature of shared representation among

the tasks. (3.5) is equivalent to solving regular SVM [125] problems, one for each task, with

an effective kernel matrix
(∑n

j=1
γjK

j
t

λjt

)
. This is well defined since it can be shown that λ̄jt >

0 ∀ j, t if gram matrices Ktj are positive2 definite. The variables γ are shared across the tasks.

In particular, γ̄j = 0 imply that the kernel kj is absent from the shared feature representation

and vice-versa. As q → 1 (q̂ → 1), the formulation promotes sparser γ̄ and hence, sparser

combination of the base kernels.

Now consider the case p = 2 in (3.5). It can be easily seen from Lemma 3.3.1 that

λ̄jt = 1 ∀ j, t. For each task, the effective kernel becomes
(∑n

j=1 γjk
j
)

. Hence, when p = 2,

(3.5) induces same feature map across all the tasks. If p > 2, the tasks share the same set of

active kernels. Let A = {j|γ̄j > 0} be the set of active base kernels at optimality. Then the

resultant kernel for the tth task is given by:
∑

j∈A
γjk

j
t

λjt
. Though the active set (A) is common

across the tasks, the feature map induced by the resultant kernels will vary. The active set is

governed globally by γ̄ and λ̄ have a local effect by influencing the importance given to the

selected kernels. Hence, the task relatedness notion captured by the proposed formulation (3.3)

is as follows: the tasks share few base kernels. In particular, when p = 2, the learnt feature

maps across the tasks are identical.

In the following section, we propose efficient algorithms to solve (3.5) based on the mirror

descent algorithm (2.3) and sequential minimal optimization (SMO) algorithm [105, 128].

2A small ridge maybe added in case they are positive semi-definite.
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3.4 Optimization Algorithm

In this section, we propose efficient algorithms to solve the dual (3.5). The dual optimization

involves three sets of variables: α, λ and γ. The nature of the feasibility sets of γ change with

the value of q. Hence, we propose different optimization techniques for different ranges of q.

Case 1: q = 1

In this case, q̂ = 1 and p̂ ∈ (1,∞) in (3.5). Instead of solving the min-max problem in (3.5),

we prefer to solve equivalently: minγ∈∆n,q̂
h(γ) where

h(γ) = max
λj∈∆T,p̂∀j

max
αt∈S(yt,C)∀t

g(α, λ, γ)

It is easy to see that h(γ) is convex and using Danskin’s theorem [23] one can obtain its gradient

(∇h) provided h(γ) can be computed efficiently for a given γ. Since the feasibility set for this

problem is a simplex, the mirror descent algorithm (outlined in Section 2.3) can be employed

to solve it very efficiently. Computing h(γ) is equivalent to maximization of g(λ, α; γ) with

respect to λ and α for the given γ. This maximization can be performed efficiently using an

alternate maximization over the λ and α variables. For a fixed value of λ, maximization over

α is equivalent to solving T regular SVM problems. For a fixed value of α the problem of

maximization with respect to λ is equivalent to: −
∑k

j=1 minλj∈∆T,p̄

∑T
t=1

Djt
λjt

where Djt =

1
2
γjα

T
t YtKtjYtαt. From lemma A.1.1, we know that this problem has an analytical solution.

The per-step computational complexity is dominated by the SVM computations and cal-

culation of effective kernel: O(nm2T ). The number of iterations for the mirror descent grows

as log(n) and in our simulations we found that the alternate minimization typically converges

in around 3-5 iterations. Hence, the overall computational complexity is O(n log(n)m2T ).

Case 2: q ∈ (1,2)

In this case, q̂ ∈ (1,∞) and p̂ ∈ (1,∞) in (3.5). The formulation is similar to Case 1 except for

the feasibility set over γ: it is now q̂-norm ball instead of the relatively simpler 1-norm ball (sim-

plex). One way to proceed is the algorithm described in Case 1 with the mirror descent method

replaced by projected gradient descent method [108]. Hence, the overall algorithm will be an
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outer iteration of projected gradient descent steps with an inner step of alternate maximization

algorithm. However, projections onto q̂-norm ball are significantly more challenging than those

onto simplex [90]. Hence, we propose a significantly efficient alternative in the following. We

start by presenting an equivalent dual of the primal (3.3)

max
αt∈S(yt,C)∀t

max
λj∈∆T,p̂∀j

T∑
t=1

1>αt −
1

2

 n∑
j=1

(
T∑
t=1

α>t YtK
j
tYtαt

λjt

)q̄
 1

q̄

where q̄ = q
2(q−1)

. The above equivalent is obtained after interchanging min-max in (3.5) using

min-max theorems [110] and subsequent application of the notion of dual norm [26] to eliminate

γ. We propose an alternative maximization procedure to solve for the above problem. Given

the value of λ, the optimization problem is similar to `ρ-MKL optimization problem [81]. It

can be solved by employing the cutting plane or the SMO algorithm. For a fixed value of α, the

maximization over λ has an analytical solution (see the lemma in A.1.1).

3.5 Experiments

In this section, we evaluate the proposed multi-task formulation (3.3) on object recognition

datasets. The aim is to compare the generalization ability of the proposed multi-task formula-

tion against the single task learning baselines. We present detailed comparison of the proposed

method with state-of-the-art multi-task feature learning (MTSFL) algorithm [8] as well as an-

other proposed multi-task learning formulation in Section 4.5. In the current experiments, the

singular value decomposition based MTSFL algorithm [8] failed to execute due to the large

size of the object recognition datasets.

MK-MTFL The proposed multiple kernel multi-task feature learning formulation. The param-

eter q was set to 1 for sparse kernel selection and three different values of p (the norm

over tasks) were considered: 2, 6, 8.67.

MKL The baseline formulation where each task is learnt using MKL [108] formulation.

SVM The baseline formulation where each task is learnt using an SVM [125].

The following datasets were employed in our comparisons:
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Dataset MKL SVM
MK-MTFL

p = 2 p = 6 p = 8.67

Caltech 52.75 54.35 65.12 65.15 65.27∗

Oxford 83.73 81.67 85.29 85.98∗ 85.88

Table 3.1: Comparing the accuracy achieved by various approaches on object categorization
datasets. MK-MTFL achieves significantly higher accuracies as compared to the MKL and
SVM methods.

Caltech A benchmark multi-class object categorization dataset [49]. A collection of images

from 102 categories of objects like faces, watches, ants, etc., with 30 images per category.

Each 1-vs-rest binary classification problem was considered as a task (no. tasks=102).

The training-test splits and 25 base kernels are available at http://mkl.ucsd.edu/

dataset/ucsd-mit-caltech-101-mkl-dataset.

Oxford A benchmark multi-class object categorization dataset [100]. Collection of images

from 17 varieties of flowers. The number of images per category is 80. Each 1-vs-rest

binary classification problem was considered as a task (no. tasks=17). Three predefined

training-test splits consisting of 40 training, 20 validation and 20 test examples and seven

base kernels are provided with the dataset. The dataset is available at http://www.

robots.ox.ac.uk/˜vgg/data/flowers/17/index.html.

Hyper-parameter selection and Base kernels: Parameter C was tuned by three-fold

cross validation for all the methods. SVM also had a three-fold nested cross-validation for the

base kernels. The values of C are considered from the set {5e−1, 5, . . . , 5e+5}. We employed

the benchmark base kernels for both the datasets.

Evaluation criterion: We report the mean percentage accuracy achieved over 5 standard

splits for each dataset. The highest percentage accuracy achieved in each dataset is highlighted.

In addition, if the improvement in accuracy is statistically significant (greater than 94% confi-

dence with paired t-test), the result is marked with a ∗ symbol.

The results on object categorization are summarized in Table 3.1. The proposed MK-

MTFL formulation outperforms the MKL and SVM methods confirming that it is indeed able

to learn a suitable shared feature representation for multiple tasks. Figure 3.1 compares the
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Figure 3.1: Variation in accuracy (%) obtained by multi-task and single task learning meth-
ods on the test set as the number of training examples per task is varied in Caltech dataset.
The advantage of the proposed multi-task approach MK-MTFL over MKL and SVM is more
pronounced at low training data region.

learning rates of the three algorithms as a function of training examples in the Caltech dataset.

We can observe that the advantage of the proposed MK-MTFL over the single task learning

baselines is quite high ( 20%) at low training data region. This advantage starts decreasing as the

number of training examples increase. This is expected because with more training data, a task

should generally be able to obtain good generalization ability on its own. We postpone a more

detailed evaluation of MK-MTFL to Chapter 4.5, where it is compared with state-of-the-art

multi-task feature learning algorithm MTSFL [8] as well as another proposed algorithm.

3.6 Conclusions

We propose a generic `q/`p mixed-norm based convex regularizer for multi-task learning. The

regularizer learns a shared feature representations by learning a common kernel learnt as a

sparse linear combination of base kernels. We also propose mirror descent and sequential mini-

mal optimization based algorithms for solving the formulation efficiently. The empirical results

show that the proposed methodology is scalable as well as achieves good generalization on

benchmark object categorization datasets.
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Chapter 4

Latent Feature Representation for

Multiple Tasks

In this chapter, we consider the setting where multiple tasks share a latent feature representation.

Existing works [5, 4, 144, 8, 33] aim at learning such a latent subspace within a given feature

space. In such approaches, the quality of the final feature representation depends on the choice

of the given feature space. One way to minimize the risk of employing low quality input features

is to work with multiple base kernels (feature spaces). Since some approaches [9, 8] admit a

kernel as the given feature space, a simple workaround for them is to employ a kernel that is

the average of multiple base kernels. This may be is fine provided all the base kernels are good.

In real world setting, unreliable or low quality kernels may also exist among the base kernels.

Hence, a more principled solution is to learn the most suitable kernels along with the shared

latent subspace within them.

In this chapter, we propose a model to learn the shared latent subspace from multiple

base kernels. The proposed formulation searches for suitable low-dimensional orthonormal

transformation of the induced feature spaces of the given base kernels. The shared feature

space is learnt as a sparse linear combination of such subspaces.

Contributions

We model the multi-task learning problem as a `1/`q (1 ≤ q ≤ 2) mixed Schatten-norm regular-

ized formulation. The formulation learns an optimal combination of low dimensional subspaces
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from few base kernels. Mixed Schatten-norm regularized problems are non-standard in liter-

ature and call for novel optimization methodologies. Hence, we propose an efficient mirror

descent based algorithm for solving the proposed formulation, with the feasibility set being a

`1/`q mixed Schatten-norm ball. Such problems are non-standard in literature and call for novel

optimization methodologies. We show that the entropy function can be employed as the regu-

larizer in the context of mirror descent method, leading to an efficient algorithm for solving the

proposed formulation.

Outline

The rest of the chapter is organized as follows. Section 4.2 describes the problem setup. The

proposed formulation and the mirror descent based algorithm for solving it are presented in

Sections 4.3 and 4.4 respectively. Experimental results are discussed in Section 4.5. We con-

clude by summarizing the work and the key contributions. We begin by presenting an overview

of the existing works related to sparse feature induction for multiple tasks.

4.1 Related Work

Several works [5, 4, 144, 8, 33] have proposed algorithms to learn a latent subspace shared

across all the tasks (also discussed in Chapter 2.1.1). This problem may be formalized as fol-

lows: learn a suitable feature map φ(·) : x → Ux, which is shared across all the tasks. A

desirable property of this latent subspace is low-dimensionality (sparse). Works such as [5, 84]

fix the dimension of the latent subspace by a user define parameter. On the other hand, [8]

propose an orthogonal transformation (i.e., U is constrained to be an orthonormal matrix) and

learn sparse latent features by imposing the `1/`2 regularization (2.3) over the task parameters.

This ensures the simultaneously sparse structure among the task parameters in the latent fea-

ture space. [144, 82] model the task parameters as sparse linear combination of a set of basic

classifiers. Note that the above methods work on a given input feature space. We propose a

kernel learning based multi-task formulation that learns an optimal combination of low dimen-

sional subspaces from multiple kernels. When the number of base kernels is unity, the proposed

formulation reduces to the one proposed in [8].
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4.2 Problem Setup

We follow the notations introduced in Chapter 3. Consider a set T of learning tasks, T in

number. The training data for the tth task is denoted by: Dt = {(xti, yti), i = 1, . . . ,mt} ∀ t =

1, . . . , T , where (xti, yti) represents the ith input/output pair of the tth task. Let k1, . . . , kn be

the given base kernels. Let φj(·) denote the feature map induced by the jth kernel kj . As

in case of the multi-task sparse feature learning algorithm [8], MTSFL, we construct latent

features as orthonormal transforms of the given features, i.e., Ljφj(x) where Lj is an (unknown)

orthonormal matrix. We represent the set of all orthonormal matrices of dimensionality d as Od.

Let f jt represent the projection of the ft (the task parameter of tth task) onto the φj space. In

other words, ft = (f 1
t , . . . , f

n
t ). In addition, let the entries of f jt be denoted by f jlt , l = 1, . . . , dj,

where dj is the dimensionality of the φj space. The vector with entries f jlt , t = 1, . . . , T, is

denoted by f jl. With the above notations, the prediction function for the task t can be written

as Ft(x) =
∑n

j=1〈f
j
t ,Ljφ

j(x)〉 − bt.

Some more notations before we proceed. Symbols 1 and 0 refers to an appropriately

sized column vector with entries as unity and zero respectively. The kernels are denoted by

the lower case ‘k’ and the corresponding gram matrices are denoted by the upper case ‘K’.

Domain ∆s,r (s ∈ N, r > 0) is defined as: z ∈ ∆s,r ≡ {z ∈ Rs | z ≥ 0,
∑s

i=1 z
r
i ≤ 1} and for

simplicity let ∆s,1 be denoted as ∆s. Domain S(w, C) (w ∈ Rs, s ∈ N, C > 0) is defined as

z ∈ S(w, C) ≡ {z ∈ Rs | 0 ≤ z ≤ C1, z>w = 0}.

4.3 Learning Latent Subspaces in Multiple Kernels

In this section, we present the proposed multiple kernel multi-task sparse feature learning for-

mulation (MK-MTSFL). Working within the regularized risk minimization [125] setting (3.1),

we propose the following mixed-norm regularizer to learn an optimal combination of low di-

mensional subspaces from few base kernels across multiple tasks:

ΩS(f1, . . . , fT )2 =

 n∑
j=1

 dj∑
l=1

‖f jl‖2

q
2
q

(4.1)

33



where q ∈ [1, 2]. The above regularizer induces sparsity at two different levels of feature

induction: i) for q ∈ [1, 2), the q-norm promotes sparse combination of base kernels, and ii)

the 1-norm over the feature loadings within each kernel induced feature space promotes highly

sparse feature selection within each (selected) kernel. The innermost 2-norm over the tasks

ensures that the any selected feature is common across all the tasks in the learnt feature space.

To summarize, the proposed MK-MTSFL formulation is as follows:

min
ft,bt∀t∈T

min
Lj∈Odj∀j

1

2
ΩS(f1, . . . , fT )2 + C

T∑
t=1

m∑
i=1

V (Ft(xti), yti) (4.2)

where V (·, ·) is a suitable convex loss function and C > 0 is the regularization parameter.

Though the proposed formulation looks similar to that in MK-MTFL (3.2) proposed in

the previous chapter, there are a few fundamental difference. MK-MTSFL (4.1) employs a

1-norm over feature loadings across tasks rather than an RKHS norm over feature loadings for

each task present in (3.2). Hence, the learnt feature space corresponding to a selected kernel

will be a low dimensional subspace in MK-MTSFL, whereas MK-MTFL employs the whole

feature space of a selected kernel. In addition, MK-MTSFL also learn suitable orthonormal

transformation of the kernel induced feature spaces.

The proposed regularizer, in its present form, explicitly enumerates the features induced

by base kernels, which is infeasible in case of infinite dimensional feature spaces (for example

in Gaussian kernels). Hence, in the following, we first derive a variational characterization of

ΩS(f1, . . . , fT ), followed by a kernelized partial dual of (4.2). To keep the notations simple, the

partial dual formulation is stated for the case when each task is a binary classification problem

(yti = {−1, 1} ∀ i, t) and the loss function V (·, ·) employed in (4.2) is the hinge loss. However,

one can easily extend these ideas to other loss functions and learning problems. The following

lemma provides the variational characterization of ΩS(f1, . . . , fT ):

Lemma 4.3.1. Given ΩA(f1, . . . , fT ) as defined in (4.1) with q ∈ [1, 2], we have

ΩS(f1, . . . , fT )2 = min
λ∈∆n,q̄

min
γj∈∆dj

∀j

T∑
t=1

n∑
j=1

dj∑
l=1

(f jlt )2

γjlλj
(4.3)

where q̄ = q
2−q .

Proof. The above can be derived by repeated application of lemma A.1.1.
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Now we perform a change of variables: fjlt√
γjlλj

= f̄ jlt . Also, we define f̄ jt as vector with

entries as f̄ jlt , l = 1, . . . , dj . Employing these new variables, one can re-write the MK-MTSFL

formulation (4.2) with the hinge loss as:

min
λ,γj ,Lj∀j

T∑
t=1

min
f̄t,bt,ξt

1

2

k∑
j=1

〈f̄tj, f̄tj〉+ C
mt∑
i=1

ξti

s.t. yti(
k∑
j=1

〈Λ
1
2
j f̄tj,Ljφ

j(xti)〉 − bt) ≥ 1− ξti, ξti ≥ 0

λ ∈ ∆n,q̄, γj ∈ ∆dj ∀ j,Lj ∈ Odj ∀ j

where Λj is a diagonal matrix with entries1 as λjγjl, l = 1, . . . , dj . The following is the La-

grange dual of the above primal with respect to the variables f̄t, bt, ξt ∀ t:

min
λ,γj ,Lj∀j

T∑
t=1

max
αt∈Smt (C)∀t

1>αt −
1

2
α>t Yt

(
k∑
j=1

Φ>tjL
>
j ΛjLjΦtj

)
Ytαt

s.t. λ ∈ ∆n,q̄, γj ∈ ∆dj ∀ j,Lj ∈ Odj ∀ j

where Φtj is the data matrix with columns as φj(xti), i = 1, . . . ,mt. Denoting L>j ΛjLj by Q̄j

and eliminating variables λ, γ and L leads to the following optimization problem:

min
Q̄

T∑
t=1

max
αt∈Smt (C)∀t

1>αt −
1

2
α>t Yt

(
k∑
j=1

Φ>tjQ̄jΦtj

)
Ytαt

s.t. Q̄j � 0,
k∑
j=1

(trace(Q̄j))
q̄ ≤ 1

The difficulty in working with this formulation is that the explicit mappings φj(·) ∀ j are re-

quired. We now describe a way of overcoming this problem by kernelizing the formulation

(also see [8]). Let Φj ≡ [Φ1j, . . . ,ΦTj] and the compact singular value decomposition2 (SVD)

of Φj be UjΣjV
>
j . Now, we introduce new variables Qj such that Q̄j = UjQjU

>
j . Here, Qj

is a symmetric positive semi-definite matrix of size same as rank of Φj . Eliminating variables

1Note that, λjγjl being zero does not cause a problem since then both f jlt and f̄ jlt will be zero for all t =

1, . . . , T at optimality
2Since we perform a compact SVD, Σj is a square diagonal matrix of size equal to rank (which is upper

bounded by
∑T
t=1mt) of Φj and the number columns of Uj ,Vj are the again equal to the rank.
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Q̄j , we can re-write the above problem using Qj as:

min
Q

T∑
t=1

max
αt∈Smt (C)∀t

1>αt −
1

2
α>t Yt

(
k∑
j=1

M>
tjQjMtj

)
Ytαt (4.4)

s.t. Qj � 0,
k∑
j=1

(trace(Qj))
q̄ ≤ 1

where Mtj = Σ−1
j V>j Φ>j Φtj . Note that calculation of Mtj does not require the kernel induced

features explicitly and hence, the formulation is kernelized.

The partial dual (4.4) provides more insights into the original formulation. Given the Qj

matrices, the problem is equivalent to solving T regular SVM problems individually. The vari-

ables Qj are learnt using training examples of all the tasks and are shared across the tasks. The

trace constraints are a generalization of the trace-norm regularization and hence promote low

rank Qj matrices at optimality. Thus, the formulation indeed constructs a shared sparse feature

representation using multiple base kernels simultaneously. In the next section, we describe an

efficient mirror descent based algorithm for solving this dual formulation.

4.4 Optimization Algorithm

Instead of solving the min-max problem in the dual (4.4), we propose to equivalently solve the

following problem:

min
Q∈R(q̄)

g(Q) (4.5)

where R(q̄) ≡
{
Q|Q = diag(Q1, . . . ,Qn),Qj � 0 ∀ j = 1, . . . , n,

∑n
j=1(trace(Qj))

q̄ = 1
}

,

i.e., Q is a block diagonal matrix, and g(Q) is a function equal to the optimal value of the

following optimization problem

max
αt∈Smt (C)∀t

T∑
t=1

1>αt −
1

2
trace(QB) (4.6)

where B is a block diagonal matrix with entries as Bj =
∑T

t=1 MtjYtαtα
>
t YtM

>
tj .

Note that this minimization problem (4.5) is an instance of a mixed Schatten-norm based

regularized problem. Also, since g(·) is point-wise maximum over affine functions in Q, it
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is convex in Q. Moreover, the gradient ∇g can be obtained using the Danskin’s theorem:

∇g(Q(l)) = −1
2
B(l) where B(l) is the value obtained using optimal αt obtained while evaluating

g(Q(l)). The evaluation of g(Q) is equivalent to solving T regular SVM problems. Hence, the

mirror descent algorithm (Chapter 2.3) can be employed for solving (4.5).

As discussed before, mirror descent algorithm employs a projection operator based on

Bregman-like distance function. For the mixed Schatten-norm regularized problem at hand, we

show that the the strongly convex ω(x) = trace(x log(x)) is a suitable Bregman generating

function. With this choice, the per-step optimization problem (2.7) becomes:

min
Q∈R(q̄)

trace(ζ(l)Q) + trace(Q log(Q)) (4.7)

where ζ(l) = sl∇g(Q(l)) − ∇ω(Q(l)). We already noted how Danskin’s theorem can be em-

ployed to obtain ∇g(Q(l)). Also, ∇ω(Q(l)) = log(Q(l)) + I where I is the identity matrix

of appropriate size. Note that both Q and ζ(l) share the same block diagonal structure. In

the following we argue that at optimality, Q and ζ(l) share the same eigen-vectors (also re-

fer [8] for the case of spectrahedron geometry). Let the eigen value decomposition (EVD) of

the matrix ζ(l) be ZΠZ> (here Π is the diagonal matrix containing eigen values). Passing from

variable Q to Θ according to Q = ZΘZ>, we can re-write the optimization problem (4.7)

as: minΘ∈R(q̄) trace(ΠΘ) + trace(Θ log(Θ)). It is easy to see that the unique optimal solution

of this (strongly convex) problem is a diagonal matrix: for every diagonal matrix D with en-

tries ±1 and every feasible solution Θ, the quantity DΘD will remain feasible and moreover

achieves the same objective (since Π is diagonal). It follows that the optimal set of solutions

must be invariant with respect to Θ → DΘD transformations, which is possible if and only

if Θ is also diagonal (else uniqueness of the solution breaks-down). If the entries in Π,Θ are

πjl, θjl, l = 1, . . . , rj, j = 1, . . . , n (here rj represents the dimension of matrix Qj ) respectively,

then the above problem is equivalent to:

min
θ

n∑
j=1

rj∑
l=1

(θjl log(θjl) + θjlπjl) (4.8)

s.t. θjl ≥ 0∀j,
n∑
j=1

(

rj∑
l=1

θjl)
q̄ ≤ 1

Though this is a convex problem and involves vectorial variables, the number of variables can

be as large as n
∑T

t=1 mt. Hence, it is not wise to employ standard optimization toolboxes to
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solve this problem. In fact one can reduce the number of variables to n by performing the

following trick: introduce variables ρj, j = 1, . . . , n and re-write problem (4.8) as:

min
ρ

n∑
j=1

min
θj

rj∑
l=1

(θjl log(θjl) + θjlπjl) (4.9)

s.t. θjl ≥ 0, ρj ≥ 0 ∀ j, l,
rj∑
l=1

θjl = ρj,

n∑
j=1

ρq̄j ≤ 1

The above minimization problem with respect to θj has an analytical solution: θjl = ρjπ̄jl,

where π̄jl =
exp{−πjl}∑rj

l̄=1
exp{−πjl̄}

. Thus, θj can be eliminated from (4.9):

min
ρ

n∑
j=1

(
ρj log(ρj) + ρj

(
rj∑
l=1

(πjlπ̄jl + π̄jl log(πjl))

))

s.t. ρj ≥ 0,
n∑
j=1

ρq̄j ≤ 1

The size of this problem is n and can be easily managed by standard solvers like cvx [56, 55].

Apart from the computational cost of cvx (which is negligible for n in order of few hundred),

the dominant computations are i) Eigen value decomposition (EVD) of ζ(l) which involves

EVD3 of n matrices of size rj× rj , and ii) solving T regular SVM. This is still reasonable as, in

the special case number of base kernels is unity, cvx need not be employed and the dominant

computation remains the same as that in the alternating minimization algorithm in [8]. In the

case q = 1, cvx need not be employed as the final problem has an analytic solution.

4.5 Experiments

This section summarizes results of simulations that illustrate the merits of the MK-MTSFL

algorithm as well as the multi-task learning algorithm proposed in Chapter 3 (MK-MTFL). We

compare their generalization performance against MTSFL algorithm [8] and other baselines.

We also evaluate the efficiency of the proposed mirror descent algorithm against the alternate

minimization algorithm proposed in [8]. We begin with the results comparing the generalization

performance of the following formulations:

3The computation of log(Qj) can be done efficiently (avoiding EVD) by book-keeping the EVD of Qj
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MK-MTSFL : The multiple kernel multi-task sparse feature learning formulation4 presented

in Section (4.3). Three different values of q-norm were considered: 1.01, 1.5, 1.99.

MK-MTFL : The multiple kernel multi-task feature learning formulation presented in Chap-

ter (3.3). The parameter setting is same as described in Chapter 3.5.

MTSFL : State-of-the-art multi-task sparse feature learning formulation [8]. The original

code provided by the authors and is available at http://ttic.uchicago.edu/

˜argyriou/code/mtl_feat/mtl_feat.tar.

MTSFLavg : A simple extension of the MTSFL formulation to the case of multiple base ker-

nels. It is same as the MTSFL formulation but with input kernel as the average of all the

given base kernels.

MKL The baseline formulation where each task is learnt using MKL [108] formulation.

SVM The baseline formulation where each task is learnt using an SVM [125].

The following datasets were considered in our experiments:

School A benchmark multi-task regression dataset [8]. The goal is to predict performance of

students given their descriptions/past record. Data for 15362 students from 139 schools

is available and each student is described using 28 features. The regression problem of

predicting performances in each school is considered as a task. At random 15 examples

in each task were taken as training data and the rest as test data. It is available at http://

ttic.uchicago.edu/˜argyriou/code/mtl_feat/school_splits.tar.

Sarcos A multiple-output regression dataset [146]. The objective is to predict inverse dy-

namics corresponding to the seven degrees-of-freedom of a SARCOS anthropomorphic

robot arm based on 21 input features. The dataset comprises of 48933 data points. Pre-

diction of inverse dynamics for each degree-of-freedom is considered as a task. 2000

random examples were sampled in case of each task and 15 of them were used as train-

ing examples while the rest were kept aside as test examples. It is available at http:

//www.gaussianprocess.org/gpml/data/.
4The code for the proposed formulations, MK-MTSFL and MK-MTFL, is available at: http://www.cse.

iitb.ac.in/saketh/research/MTFL.tgz
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Parkinsons A multi-task regression dataset from the UCI repository [50]. The objective is to

predict two Parkinson’s disease symptom scores (motor UPDRS, total UPDRS) for pa-

tients based on 19 bio-medical features. The original dataset comprises of 5,875 record-

ings for 42 patients. The regression problem of predicting each symptom score for each

patient is considered as a task. Thus, the total number of tasks is 42 × 2 = 84. We took

15 random examples per task for training and the rest were used as test data.

Hyper-parameter selection and Base kernels: In case of SVM, MTSFL a three fold

nested cross-validation procedure is employed to tune the C and the kernel parameter. For the

proposed methods (MK-MTSFL and MK-MTFL) and MTSFLavg, a 3-fold cross-validation

procedure is employed to tune C. The values of the C parameter considered are in the set

{5e − 4, 5e − 3, . . . , 5e + 2}. We employed the one linear and six Gaussian kernels. The six

different values of the Gaussian parameter considered were: {1e− 2, 1e− 1, . . . , 1e+ 3}.

Evaluation criterion: Following [8], percentage explained variance [14] is employed as

the measure of performance for regression problems. The explained variance per task can be

computed as 1 minus the ratio of mean squared error and the variance of the true outputs on

the test dataset. Note that a simple regressor which predicts every output as the mean of the

outputs in the dataset achieves an explained variance of zero on the dataset. Thus, if explained

variance is negative a simple mean estimate is better than the corresponding regressor and hence

the method is of no use. In general, higher explained variance indicate better method. In our

case we have multiple tasks and we compute the overall explained variance as the mean of

explained variances over each task. Hence we can no longer claim that a methodology which

achieves an overall negative score is useless. But still, the higher the explained variance, the

better the method. We report the mean percentage explained variance achieved over 10 random

splits for each dataset. The highest explained variance achieved in each dataset is highlighted. In

addition, if the improvement in explained variance is statistically significant (≥ 94% confidence

with paired t-test), then the result is marked with a ∗ symbol.

Table 4.1 summarizes the results of the experiments when the base kernels were con-

structed by employing all the features (whole kernels). It clearly shows that the proposed

MK-MTSFL formulation outperforms every baseline confirming that learning a shared feature

representation is indeed beneficial. Moreover the improvement over state-of-the-art multi-task
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Datasets MTSFL MTSFLavg MKL SVM
MK-MTFL MK-MTSFL

p = 2 p = 6 p = 8.67 q = 1.01 q = 1.5 q = 1.99

School 13.88 12.35 -15.42 -8.97 -9.18 -6.60 -4.53 14.02∗ 13.86 13.95

Sarcos -23.28 -40.13 -86.27 -26.16 -82.58 -71.70 -69.94 26.15∗ 25.66 25.52

Park. 57.81 42.72 14.16 44.35 -249.32 -455.36 -2156.34 45.37 58.11 59.27∗

Table 4.1: Comparison of percentage explained variance with various methods on multi-task
regression datasets with whole kernels (kernels constructed by employing all the features). The
proposed MK-MTSFL achieves significantly better generalization as compared to the MTSFL
and other algorithms.

Datasets MTSFL MTSFLavg MKL SVM
MK-MTFL MK-MTSFL

p = 2 p = 6 p = 8.67 q = 1.5

School - 9.76 -3.07 -4999.08 10.95 13.68 14.35∗ -

Sarcos 2.44 37.80 48.72 -14.64 49.82 39.23 30.12 38.82

Park. - 35.98 60.66∗ 53.59 -19.58 -15.88 -418.86 -

Table 4.2: Comparison of percentage explained variance with various methods on multi-task
regression datasets with feature-wise kernels. The proposed MK-MTFL performs significantly
better with feature-wise base kernels than with the whole kernels. ‘-’ denote results where the
number of base kernels was too large for the multi-task algorithm to generate results.

methodology (MTSFL) is statistically significant. This illustrates the advantage of employing

multiple kernels in the context of multi-task applications. Note that MTSFLavg, which also

employs multiple kernels by averaging them, achieves less generalization than MTSFL. This

highlights the benefit of learning sparse combinations of suitable kernels. The results also un-

derline the importance of solving the MK-MTSFL formulation at various values of q-norm, as

there seems to be no evident optimal value across datasets. Automatic tuning of parameter q

calls for further investigation (we discuss it for single task MKL setup in Chapter 7).

From the results in Table 4.1, the MK-MTFL formulation seems to be highly incompetent.

Note that MK-MTSFL learns sparse feature representation within each selected kernel whereas

MK-MTFL promotes sparsity only at the level of kernel combination. However, MK-MTFL

can also learn sparse feature representations provided suitable base kernels are employed. For

instance, if the base kernels are derived from each individual input features, MK-MTFL may

indeed learn sparse feature representations. In order to see if the poor performance of MK-

MTFL is due to inherent limitations in MK-MTFL or due to restricted choice of base kernels,

we repeated the simulations with the base kernels including those derived from individual input

features. The results are reported in Table 4.2. Due to the large increase in the number of
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Figure 4.1: Comparison of convergence of the proposed mirror descent methodology and the
alternate minimization methodology [8] with T = 20 (left) and T = 139 (right) respectively on
the School dataset. The mirror descent technique achieves faster convergence, especially when
the number of tasks is large.

base kernels some formulations failed to execute with the available resources. This failure is

indicated with a ‘-’ symbol. Interestingly, the performance of MK-MTFL improved by a great

magnitude. It is the best performing method in School and Sarcos datasets. In case of the

Parkinsons dataset, though its explained variance seems to be low, we observed that the mean

squared error is the least among all the methods and the improvement in terms of the mean

squared error is statistically significant.

To summarize, in case large number of base kernels are available, then MK-MTFL is the

suitable choice both from computational and generalization perspective. When a restricted set

of base kernels are available, then MK-MTSFL is the better option.

The results illustrating the efficacy of the proposed mirror descent methodology are sum-

marized in Figure 4.1. We solved the MTSFL formulation [8] using the proposed mirror de-

scent algorithm as well as the alternate minimization [8]. The plots compare their convergence

rate on School dataset with T = 20 and T = 139. It can be seen that the mirror descent algo-

rithm achieves faster convergence (with similar per step computational complexity), especially

with large number of tasks.

4.6 Conclusions

We propose multi-task formulation that learns a shared latent feature space within multiple

base kernels. A mirror descent based algorithm is developed for solving the proposed mixed

Schatten-norm regularized formulation. In the process, we showed that the negative entropy
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function can be employed as an efficient Bregman generating function for solving such prob-

lems via the mirror descent algorithm. Empirical results show that the proposed multi-task

formulation achieves better generalization than state-of-the-art and outperforms other baselines

as well.
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Chapter 5

Learning Multiple Tasks with Hierarchical

Kernels

In the previous chapters, we proposed formulations to learn a shared kernel across multiple

tasks. In particular, the shared kernel was learnt as a linear combination of either the base ker-

nels (Chapter 3) or latent subspaces within the base kernels (Chapter 4). The base kernels em-

ployed for constructing the shared kernel, in both these settings, were assumed to be unrelated.

In this chapter, we consider a more generic setting where the base kernels may have certain

relationship or dependencies among them. We explore a setup where the base kernels have a hi-

erarchical relationship among themselves, i.e., the base kernels can be embedded on a directed

acyclic graph. Such a setting occurs naturally in several domains like bio-informatics [114],

dictionary learning [73], text processing [91], etc. Learning the shared kernel across tasks as a

polynomial combination of a given set of kernels is a special case of this setting.

A Multiple Kernel Learning (MKL) [83, 12] framework for construction of sparse linear

combinations of base kernels embedded on a directed acyclic graph (DAG) was recently pro-

posed by [11]. Since the DAG induces hierarchical relations between the base kernels, this

framework is more commonly known as Hierarchical Kernel Learning1 (HKL). It has been

established that HKL provides a powerful algorithm for task specific non-linear feature selec-

tion. HKL employs a carefully designed `1/`2 block-norm regularizer: `1-norm across some

predefined components associated with the DAG and `2-norm within each such component.

1HKL framework and formulation has been briefly discussed in Chapter 2.2.1
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However, the sparsity pattern of kernel (feature) selection induced by this regularizer is some-

what restricted: a kernel is selected only if the kernels associated with all its ancestors in the

DAG are selected. In addition, it can be proved that the weight of the kernel associated with a

(selected) node will always be greater than the weight of the kernels associated with its descen-

dants. Such a restricted selection pattern and weight bias may limit the applicability of HKL in

real world problems.

Contributions

We propose a two-fold generalization of HKL. The first is employing a `1/`ρ, ρ ∈ (1, 2), block-

norm regularizer that mitigates the above discussed weight and selection bias among the kernels,

henceforth termed as gHKL. Note that for the special case of ρ = 2, gHKL renders the HKL

regularizer. Further, gHKL is generalized to the paradigm of Multi-task Learning (MTL), where

multiple related tasks need to be learnt jointly. We consider the MTL setup where the tasks share

a common feature representation [92, 102]. The proposed generalization, henceforth referred

to as gHKLMT, learns a shared kernel across the tasks as a sparse combination of the base

kernels that are arranged on a DAG. In addition, gHKLMT is generic enough to model additional

correlations existing among the given tasks.

Though employing a `1/`ρ, ρ ∈ (1, 2), regularizer is an incremental modification to HKL

formulation, devising an algorithm for solving it is not straight-forward. The projected gradi-

ent descent employed in the active set algorithm for solving HKL [11] can no longer be em-

ployed for solving gHKL as projections onto `ρ-norm balls are known to be significantly more

challenging than those onto `1-norm balls [90]. Hence naive extensions of the existing HKL

algorithm will not scale well. Further, the computational challenge is compounded with the

generalization for learning multiple tasks jointly. The key technical contribution of this work is

the derivation of a highly specialized partial dual of gHKL/gHKLMT formulations and an effi-

cient mirror descent [99] based active set algorithm for solving it. The dual presented here is

an elegant convex optimization problem with a Lipschitz continuous objective and constrained

over a simplex. Moreover, the gradient of the objective can be obtained by solving a known

and well-studied variant of the MKL formulation. This motivates employing the mirror descent

algorithm that is known to solve such problems efficiently. Further efficiency is brought in by
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employing an active set method similar in spirit to that in [11].

In addition, we also focus on the application of Rule Ensemble Learning (REL) [46, 45],

where HKL has not been previously explored. Given a set of basic propositional features de-

scribing the data, the goal in REL is to construct a compact ensemble of conjunctions with the

given propositional features that generalizes well for the problem at hand. Such ensembles are

expected to achieve a good trade-off between interpretability and generalization ability. We

illustrate the efficacy of gHKL/gHKLMT formulations in learning a compact set of promising

rules.

Outline

The rest of the chapter is organized as follows. Section 5.1 introduces the problem setup. In

Section 5.2, we present the proposed gHKL and gHKLMT formulations. The key technical

derivation of the specialized dual is also presented in this section. The proposed mirror descent

based active set algorithm for solving gHKL/gHKLMT formulations is discussed in Section 5.3.

In Section 5.4, we propose to solve the REL problem by employing gHKL/gHKLMT formula-

tions and discuss its details. Experimental results in the REL setting are discussed in Section 5.5.

We conclude the chapter by summarizing the work and the key contributions.

5.1 Problem Setup

The kernel setup for the setup for gHKL is the same as that for HKL, described in Section 2.2.1.

In summary, a DAG and several base kernels embedded on the DAG are provided. Let G(V , E)

be the given DAG with V denoting the set of vertices and E denoting the set of edges. Let D(v)

and A(v) represent the set of descendants and ancestors of the node v in the G. It is assumed

that both D(v) and A(v) include the node v. For any subset of nodes W ⊂ V , the hull and

sources ofW are defined as:

hull(W) =
⋃
w∈W

A(w), sources(W) = {w ∈ W | A(w) ∩W = {w}} .

Let |W| andWc denote the size and the complement ofW respectively.

47



Let kv : X × X → R be the positive definite kernel associated with the vertex v ∈ V .

Let Hkv be its associated RKHS, and φkv be the feature map induced by it. Given this, gHKL

employs the following prediction function:

F (x) =
∑
v∈V

〈fv, φkv(x)〉Hkv − b,

which is an affine model parametrized by f ≡ (fv) v∈V , the tuple with entries as fv, v ∈ V , and

b ∈ R. Some more notations follow: for any subset of nodesW ⊂ V , fW and φW denote the

tuples fW = (fv)v∈W and φW = (φv)v∈W respectively. The kernels are denoted by the lower

case ‘k’ or ‘h’ and the corresponding kernel matrices are denoted by the upper case ‘K’ or ‘H’.

5.2 Generalized Hierarchical Kernel Learning

In this section, we present the proposed generalizations over HKL — the gHKL and gHKLMT

formulations. We begin by introducing gHKL formulation.

5.2.1 The gHKL Primal Formulation

Recall that the HKL formulation employs a `1/`2 block norm regularizer. As we shall under-

stand in more detail later, a key reason for the kernel weight bias problem and the restricted

sparsity pattern in the HKL is the `2-norm regularization. One way to alleviate such restrictions

is by employing the following generic regularizer:

ΩS(f) =
∑
v∈V

dv‖fD(v)‖ρ (5.1)

where f = (fv)v∈V , ‖fD(v)‖ρ =
(∑

w∈D(v) ‖fw‖ρ
) 1
ρ

and ρ ∈ (1, 2]. The implications of the

`1/`ρ block-norm regularization are discussed in the following. Since the `1-norm promotes

sparsity, it follows that ‖fD(v)‖ρ = 0 (fw = 0 ∀ w ∈ D(v)) for most v ∈ V . This phenomenon

is similar as in the HKL. But now, even in cases where ‖fD(v)‖ρ is not forced to zero by the

`1-norm, many components of fD(v) tend to zero2 (i.e., fw → 0 for many w ∈ D(v)) as the

2Note that as `ρ (ρ > 1) norm is differentiable, it rarely induce true sparsity [120]. However, as ρ → 1,

they promote only a few leading terms due to the high curvatures of such norms [119]. In order to obtain a
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value of ρ tends to unity. Also note that ρ = 2 render the HKL regularizer. To summarize, the

proposed gHKL formulation is:

min
fv∈Hkv∀v∈V,b∈R

1

2
(ΩS(f))2 + C

m∑
i=1

` (yi, F (xi)) (5.2)

We next present the gHKLMT formulation, which further generalize gHKL to MTL paradigm.

5.2.2 The gHKLMT Primal Formulation

We begin by introducing some notations applicable in multi-task learning setup. Let T be the

number of tasks and let the training data for the tth task be denoted by Dt = {(xti, yti), i =

1, . . . ,m | xti ∈ X , yti ∈ R ∀i}, where (xti, yti) represents the ith input/output pair of the tth

task. For the sake of notational simplicity, it is assumed that the number of training examples

is the same for all the tasks. The prediction function for the tth task is of the form: Ft(x) =∑
v∈V〈ftv, φkv(x)〉Hkv − bt, where ft = (ftv)v∈V and bt are the task parameters to be learnt for

all the tasks. We propose the following regularized risk minimization problem for estimating

these task parameters and term it as gHKLMT:

min
ft,bt ∀ t

1

2


∑
v∈V

dv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 1
ρ

︸ ︷︷ ︸
ΩT (f1,...,fT )


2

+ C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)), (5.3)

where ρ ∈ (1, 2] and Qw(f1, . . . , fT ) is a norm-based multi-task regularizer on the task parame-

ters ftw ∀ t . In the following, we discuss the effect of the above regularization. Firstly, there is

a `1-norm regularization over each group of nodes (feature spaces) and a `ρ-norm regularization

within each group. This `1/`ρ block-norm regularization is same as that of the gHKL and will

have the same effect on the sparsity pattern of the selected feature spaces (kernels). Hence,

only a few nodes (feature spaces) will be selected by the gHKLMT regularizer ΩT (f1, . . . , fT ).

Secondly, nature of the task relatedness within each (selected) feature space is governed by the

Qw(f1, . . . , fT ) regularizer.

completely sparse solution in such cases, thresholding is a common strategy employed by previous `p-MKL (ρ >

1) algorithms [128, 104, 103, 69]. We employed thresholding in our experiments.
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For instance, consider the following definition of Qw(f1, . . . , fT ) [92, 71]

Qw(f1, . . . , fT ) =

(
T∑
t=1

‖ftw‖2

) 1
2

(5.4)

The above regularizer couples the task parameters within each feature space by a `2-norm. It

encourages the task parameters within a feature space to be either zero or non-zero simultane-

ously. Therefore, ΩT (f1, . . . , fT ) based on (5.4) has the following effect: i) all the tasks will

simultaneously select or reject a given feature space, and ii) overall only a few feature spaces

will be selected in the gHKL-style sparsity pattern.

Several multi-task regularizations [48, 47, 68] have been proposed to promote proxim-

ity among task parameters within a given feature space. This correlation among the tasks

may be enforced while learning a shared sparse feature space by employing the following

Qw(f1, . . . , fT ):

Qw(f1, . . . , fT ) =

µ ∥∥∥∥∥ 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2

+
T∑
t=1

∥∥∥∥∥ftw − 1

T + µ

T∑
t=1

ftw

∥∥∥∥∥
2
 1

2

(5.5)

where µ > 0 is a given parameter. The above Qw(f1, . . . , fT ) consists of two terms: the first

regularizes the mean while the second regularizes the variance of the task parameters in the

feature space induced by kernel kw. The parameter µ controls the degree of proximity among

the task parameters, with lower µ encouraging higher proximity. Note that when µ =∞, (5.5)

simplifies to (5.4).

The gHKLMT regularizer ΩT (f1, . . . , fT ) based on (5.5) has the following effect: i) all the

tasks will simultaneously select or reject a given feature space, ii) overall only a few feature

spaces will be selected in the gHKL-style sparsity pattern, and iii) within each selected feature

space, the task parameters fwt ∀ t are in proximity. Thus, the gHKLMT framework provides

mechanism to learn sparse shared features, while preserving task correlation in the learnt feature

space. As we shall discuss in the next section, more generic correlations among task parameters

may be also modeled using the gHKLMT formulation.

It is clear that the gHKL optimization problem (5.2) may be viewed as a special case of

the gHKLMT based on (5.4) optimization problem and with the number of tasks set to unity.

Hence, the rest of the discussion regarding dual derivation and optimization focuses primarily

on the gHKLMT formulation.
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5.2.3 The gHKLMT Dual Formulation

As mentioned earlier, due to the presence of the `ρ-norm term in the gHKLMT formulation,

naive extensions of the projected gradient based active set method in [11] will be rendered com-

putationally infeasible on real world datasets. Hence, we first re-write the gHKLMT formulation

in an elegant form, which can then be solved efficiently. To this end, we note the following

variational characterization of ΩT (f1, . . . , fT ):

Lemma 5.2.1. Given ΩT (f1, . . . , fT ) and Qw(f1, . . . , fT ) as defined in (5.3) and (5.5) respec-

tively, we have

ΩT (f1, . . . , fT )2 = min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)−1Qw(f1, . . . , fT )2 (5.6)

where δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, z ∈ ∆s,r ≡ {z ∈ Rs | z ≥ 0,

∑s
i=1 z

r
i ≤ 1} and ρ̂ = ρ

2−ρ .

Note that ρ ∈ (1, 2) implies ρ̂ ∈ (1,∞). Proof of the above lemma is provided in ap-

pendix A.1.2.

In order to keep the notations simple, in the remainder of this section, it is assumed that the

learning tasks at hand are binary classification, i.e., yti ∈ {−1, 1} ∀ t, i and the loss function is

the hinge loss. However, one can easily extend these ideas to other loss functions and learning

problems. Refer appendix A.1.8 for the gHKLMT dual formulation with general convex loss

functions.

Lemma 5.2.2. Consider problem (5.3) with the regularizer term replaced with its variational

characterization given in (5.6) and the loss function as the hinge loss `(y, Ft(x)) = max (0, 1− yFt(x)).

Then the following is a partial dual of it w.r.t. the variables ft, bt ∀ t:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
αt∈S(yt,C)∀t

G(γ, λ, α) (5.7)

where

G(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(γ, λ)Hw

)
Yα

α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤ β ≤ C,

∑m
i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]> ∀ t,

Y is the diagonal matrix corresponding to the vector [y>1 , . . . ,y
>
T ]>, 1 is a mT × 1 vector

with entries as unity, δw(γ, λ)−1 =
∑

v∈A(w)
d2
v

γvλvw
, ∆n,1 = {η ∈ Rn | η ≥ 0,

∑n
i=1 ηi ≤ 1},
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ρ̂ = ρ
2−ρ , and Hw ∈ RmT×mT is the multi-task kernel matrix corresponding to the multi-task

kernel hw ∀ w ∈ V . The kernel hw is defined as follows

hw(xt1i,xt2j) = kw(xt1i,xt2j)B(t1, t2) (5.8)

where B is a T × T matrix. B = I (identity matrix) when the regularizer (5.4) is employed in

(5.3). Alternatively, B = I + 11>/µ (here 1 is a T × 1 vector with entries as unity) in the case

when the regularizer (5.5) is employed. The prediction function of the task t1 is given by

Ft1(xt1j) =
T∑

t2=1

m∑
i=1

ᾱt2iyt2i

(∑
w∈V

δw(γ̄, λ̄)kw(xt1i,xt2j)B(t1, t2)

)

where (γ̄, λ̄, ᾱ) is an optimal solution of (5.7).

Proof. The proof follows from the representer theorem [113]. Also refer to appendix A.1.3.

This lemma shows that the gHKLMT formulation essentially constructs the same prediction

function as an SVM with the effective multi-task kernel as: h =
∑

w∈V δw(γ, λ)hw. Similarly,

in the case of the gHKL, the effective kernel is k =
∑

w∈V δw(γ, λ)kw (since the terms T and B

are unity). Here, as well as in the rest of the chapter, we employ the symbols h and H for the

multi-task kernel and the corresponding kernel matrix respectively.

The multi-task kernel (5.8) consists of two terms: the first term corresponds to the similar-

ity between two instances xt1i and xt2j in the feature space induced by kernel kw. The second

term corresponds to the correlation between the tasks t1 and t2. In the case of the regularizer

(5.4), the matrix B simplifies to: B(t1, t2) = 1 if t1 == t2 and B(t1, t2) = 0 if t1 6= t2, thereby

making the kernel matrices Hw (w ∈ V) block diagonal. Hence, the gHKLMT regularizer based

on (5.4) promotes simultaneous sparsity in kernel selection among the tasks, without enforcing

any additional correlations among the tasks.

In general, any T × T positive semi-definite matrix may be employed as B to model

generic correlations among tasks. The multi-task kernel given by (5.8) will still remain a valid

kernel [115, 3]. The matrix B is sometimes referred to as the output kernel in the setting of

learning vector-valued functions. It is usually constructed from the prior domain knowledge.

We now discuss the nature of the optimal solution of (5.7). Most of the kernel weights

δw(γ, λ) are zero at optimality of (5.7): δw(γ, λ) = 0 whenever γv = 0 or λvw = 0 for any
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Algorithm 1 Active Set Algorithm - Outline
Input: Training dataD, the kernels (kv) embedded on the DAG (V), the T ×T matrix B that

models task correlations and tolerance ε.

Initialize the active setW with sources(V).

Compute γ, λ, α by solving (5.9)

while Optimal solution for (5.7) is NOT obtained do

Add some nodes toW

Recompute η, α by solving (5.9)

end while

Output: W , γ, λ, α

v ∈ A(w). The vector γ is sparse due to `1-norm constraint in (5.7). In addition, ρ→ 1⇒ ρ̂→

1. Hence the vectors λv ∀ v ∈ V get close to becoming sparse as ρ → 1 due to the `ρ̂-norm

constraint in (5.7). The superimposition of these two phenomenon leads to a flexible3 sparsity

pattern in kernel selection. In particular, it may happen that ∃w ∈ V , v ∈ A(w) | δw(γ, λ) >

δv(γ, λ). This instance of weighting scheme is not possible in the HKL.

Note that the problem (5.7) remains the same whether solved with the original set of

variables (i.e., γ, λ) or when solved with only those γv 6= 0 and λvw 6= 0 at optimality (refer

appendix A.1.4 for details). However the computational effort required in the latter case can be

far lower since it involves low number of variables. This motivates us to explore an active set

algorithm, which is similar in spirit to that in [11].

An outline of the proposed active set algorithm is presented in Algorithm 1. The algorithm

starts with an initial guess for the set of γw that are non-zero at optimality for (5.7). This set

is called the active set and is denoted by W . Since the kernel weight δw(γ, λ) = 0 whenever

γv = 0 for any v ∈ A(w), the active set must contain sources(V), else the problem has a trivial

solution. Hence, the active set is initialized with sources(V). At each iteration, the problem

3HKL dual formulation [10] is a special case of (5.7) with ρ = 2, T = 1 and B = 1. When ρ = 2, ρ̂ = ∞.

This implies λvw = 1 ∀ v ∈ A(w), w ∈ V at optimality, resulting in the weight bias towards kernels embedded in

the ancestor nodes and restricted sparsity pattern in kernel selection
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(5.7) with variables restricted to those inW is solved:

min
γ∈∆|V∩W|,1

min
λv∈∆|D(v)∩hull(W)|,ρ̂∀v∈W

max
αt∈S(yt,C)∀t

GW(γ, λ, α) (5.9)

where

GW(γ, λ, α) = 1>α− 1

2
α>Y

(∑
w∈W

δw(γ, λ)Hw

)
Yα

Note that ρ = 2 ⇒ λvw = 1 ∀ v ∈ A(w), w ∈ W at optimality in (5.9). Hence for

ρ = 2, the minimization problem in (5.9) can be efficiently solved using a projected gradient

method [108, 10]. However, as established in [90], projection onto the kind of feasibility set

in the minimization problem in (5.9) is computationally challenging for ρ ∈ (1, 2). Hence, we

wish to re-write this problem in a relatively simpler form that can be solved efficiently. To this

end, we present the following important theorem:

Theorem 5.2.3. The following is a dual of (5.3) considered with the hinge loss function, and

the objectives of (5.3) (with the hinge loss), (5.7) and (5.10) are equal at optimality:

min
η∈∆|V|,1

g(η) (5.10)

where g(η) is the optimal objective value of the following convex problem:

max
αt∈S(yt,C)∀t

1>α− 1

2

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

(5.11)

where ζw(η) =
(∑

v∈A(w) d
ρ
vη

1−ρ
v

) 1
1−ρ

, α = [α>1 , . . . , α
>
T ]>, S(yt, C) = {β ∈ Rm | 0 ≤ β ≤

C,
∑m

i=1 ytiβi = 0}, yt = [yt1, . . . , ytm]> ∀ t, Y is the diagonal matrix corresponding to the

vector [y>1 , . . . ,y
>
T ]>, 1 is amT×1 vector with entries as unity, ∆n,1 ≡ {η ∈ Rn | η ≥ 0,

∑n
i=1 ηi ≤ 1},

ρ̄ = ρ̂
ρ̂−1

, ρ̂ = ρ
2−ρ , and Hw ∈ RmT×mT is the multi-task kernel matrix corresponding to the

multi-task kernel (5.8).

The key idea in the proof of the above theorem is to eliminate the λ variables and the

details are presented in appendix A.1.5. The expression for the prediction function F , in terms

of the variables η and α, is provided in appendix A.1.9.

This theorem provides some key insights: firstly, we have that (5.10) is essentially a `1-

norm regularized problem and hence it is expected that most of the η will be zero at optimality.
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Since (ηv = 0) ⇒ (ζw(η) = 0 ∀ w ∈ D(v)), it follows that most of the nodes in V will not

contribute in the optimization problems (5.10) and (5.11). Secondly, in a single task learning

setting (T = 1), the problem in (5.11) is equivalent to the `ρ̂-norm MKL dual problem [81]

with the base kernels as (ζv(η))
1
ρ̄ kv ∀ v ∈ V 3 ζv(η) 6= 0. The optimization problem (5.11)

essentially learns an effective kernel of the form h =
∑

v∈V θv (ζv(η))
1
ρ̄ hv, where the θ are

intermediate optimization variables constrained to lie in the feasibility set ∆|V|,ρ̂. The expression

of θ in terms of the variables η and α is provided in appendix A.1.9.

The θ influences the nature of the effective kernel h in two important ways: i) it follows

from the expression of θ that

θv (ζv(η))
1
ρ̄ ∝ ζv(η)

(
α>YHvYα

) 1
(ρ̂−1)

The above relation implies that the weight of the kernel hv in the DAG V is not only dependent

on the position4 of the node v, but also on the suitability of the kernel hv to the problem at

hand. This helps in mitigating the kernel weight bias in favour of the nodes towards the top of

the DAG from the gHKLMT, but which is present in the HKL, and ii) as ρ → 1 (and hence as

ρ̂ → 1), the optimal θ get close to becoming sparse [119, 104]. This superimposed with the

sparsity of η promotes a more flexible sparsity pattern in kernel selection that HKL, especially

when ρ→ 1.

Due to the sparsity of η at optimality, we propose to solve problem (5.10) by an active set

algorithm, based on the outline presented in Algorithm 1. We discuss it in detail in the next

section.

5.3 Optimization Algorithm

In order to formalize the active set algorithm, we need: i) an efficient algorithm for solving

problem (5.10) restricted to the active set, i.e., V restricted to W , ii) a condition for verifying

whether a candidate solution is optimal with respect to the problem (5.10), and iii) a procedure

for building/improving the active set after each iteration.

4Similar to the δv function in the HKL (2.6), it follows from the definition of ζv that ζv(η) ≥ ζw(η) ∀w ∈ D(v)

(strict inequality holds if ζw(η) > 0).
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Algorithm 2 Mirror Descent Algorithm for solving (5.10) restricted to active setW
Input: Kernel matrices Kw (w ∈ W) and the regularization parameter C

Initialize ηW (w ∈ W) such that ηW ∈ ∆|W|,1 (warm-start may be used)

Iteration number: i = 0

while convergence criterion is not met5 do

i = i+ 1

Compute ζw(ηW) ∀ w ∈ W (Theorem 5.2.3)

Compute αW (5.11) using `ρ̂-norm MKL algorithm with kernels as
(

(ζw(ηW))
1
ρ̄ Hw

)
w∈W

Compute∇g(ηW) as in (A.9)

Compute step size s =
√

log(|W|)/i·‖∇g(ηW ))‖2∞

Compute ηw = exp (1 + log(ηw)− s · ∇g(ηW)w) ∀ w ∈ W

Normalize ηw = ηw∑
v∈W ηv

∀ w ∈ W

end while

Output: ηW , αW

We begin with the first. We propose to solve the optimization problem (5.10) restricted

toW using the mirror descent algorithm [99]. Mirror descent algorithm is known to efficiently

solve convex programs with Lipschitz continuous and sub-differentiable objectives constrained

over a convex compact set. It achieves a near-optimal convergence rate whenever the feasibility

set is a simplex (which is true in our case). The mirror descent algorithm is close in spirit to

the projected gradient descent algorithm and hence assumes that an oracle for computing the

gradient of the objective is available.

Following the common practice of smoothing [10], in the rest of the chapter, we employ

ζw((1 − ε)η + ε
|V |) instead6 of ζw(η) in (5.11) with ε > 0. The following theorem establishes

the applicability of mirror descent for solving (5.10):

Theorem 5.3.1. The function g(η) given by (5.11) is convex. Also, the expression for the ith

entry in the gradient (∇g(η))i is given in (A.9). If all the eigen-values of the gram-matrices Hw

5Relative objective gap between two successive iteration being less than a given tolerance ε is taken to be the

convergence criterion. Objective here is the value of g(ηW), calculated after `ρ̂-norm MKL step.
6Note that this is equivalent to smoothing the regularizer ΩT (f) while preserving its sparsity inducing proper-

ties [10].
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Algorithm 3 Active Set Algorithm
Input: Training data D, the kernels embedded on the DAG and tolerance ε

Initialize the active setW with sources(V)

Compute η, α by solving (5.10) using Algorithm 2

while sufficient condition for optimality (5.12) is not met do

Add those nodes toW that violate (5.12)

Recompute η, α by solving (5.10) using Algorithm 2

end while

Output: W , η, α

are finite and non-zero, then g is Lipschitz continuous.

Proof of the above theorem is technical and is provided in appendix A.1.6.

Algorithm 2 summarizes the proposed mirror descent based algorithm for solving (5.10)

with V restricted to W . One of its steps involve computing ∇g(ηW) (expression provided in

(A.9)), which in turn requires solving (5.11). As noted before, (5.11) is similar to the `ρ̂-norm

MKL problem [81] but with a different feasibility set for the optimization variables α. Hence,

(5.11) can be solved by employing a modified cutting planes algorithm [81] or a modified

sequential minimal optimization (SMO) algorithm [105, 128]. Empirically, we observed the

SMO based algorithm to be much faster than the cutting planes algorithm for gHKLMT (and

gHKL) with SVM loss functions. In the special case ρ = 2, T = 1 and B = 1, (5.11) is simply

a regular SVM problem.

Now we turn our attention to the second requirement of the active set algorithm: a con-

dition to verify the optimality of a candidate solution. We present the following theorem that

provides a sufficient condition for verifying optimality of a candidate solution.

Theorem 5.3.2. Suppose the active set W is such that W = hull(W). Let (ηW , αW) be a

εW-approximate optimal solution for (5.10) with V restricted toW returned by Algorithm (2).

Then it is an optimal solution for (5.10) with a duality gap less than ε if:

max
u∈sources(Wc)

α>WYKuYαW ≤

(∑
w∈W

ζw(ηW)
(
α>WYHwYαW

)ρ̄) 1
ρ̄

+ 2(ε− εW) (5.12)

where Ku =
∑

w∈D(u)
Hw

(
∑
v∈A(w)∩D(u) dv)

2 .
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Proof is provided in appendix A.1.7 and closely follows that for the case of HKL [11].

The summary of the proposed mirror descent based active set algorithm is presented in

Algorithm 3. At each iteration, Algorithm (3) verifies optimality of the current iterate by ver-

ifying the condition in (5.12). In case the current iterate does not satisfy this condition, then

the nodes in sources(Wc) that violate the condition (5.12) are included in the active set7. This

takes care of the third requirement of the active set algorithm. The algorithm terminates if the

condition (5.12) is satisfied by the iterate.

In the following, an estimate of the computational complexity of the active set algorithm

is presented. Let W be the final active set size. The optimization problem (5.10) restricted

to W needs to be solved at most W times, assuming the worst case scenario of adding one

node per active set iteration. Each such run of the mirror descent algorithm requires at most

O(log(W )) iterations [99]. A conservative time complexity estimate for computing the gradient

∇g(ηW) (by solving the variant of the `ρ̂-norm MKL problem (5.11)) is O(m3T 3W 2). This

amounts to O(m3T 3W 3 log(W )). As for the computational cost of the sufficient condition, let

z denote the maximum out-degree of a node in G, i.e., z is an upper-bound on the the maximum

number of children of any node in G. Then the size of sources(Wc) is upper-bounded by Wz.

Hence, a total of O(ωm2T 2Wz) operations is required for evaluating K in (5.12), where ω is

the complexity of computing a single entry in any K. In all the pragmatic examples of kernels

and corresponding DAGs provided by [11], ω is polynomial in the training set dimensions.

Moreover, caching of K usually renders ω to be a constant [10]. Further, the total cost of the

quadratic computation in (5.12) is O(m2T 2W 2z). Thus the overall computational complexity

is: O(m3T 3W 3 log(W )+ωm2T 2Wz+m2T 2W 2z). More importantly, because the sufficiency

condition for optimality given by Theorem 5.3.2 is independent of ρ, we have the following

result:

Corollary 5.3.3. In a given input setting, the HKL algorithm converges in time polynomial in

size of the active set and the training set dimensions if and only if the proposed mirror descent

based active set algorithm, i.e., the gHKLMT algorithm, has a polynomial time convergence in

terms of the active set and training set sizes.

Proof is provided in Appendix A.1.10.
7It is easy to see that with this update scheme,W is always equal to hull(W), as required in Theorem 5.3.2.
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In the next section, we present an application of the gHKL formulation that illustrate the

benefits of the proposed generalizations over the HKL.

5.4 Rule Ensemble Learning

In this section, we propose a solution to the problem of learning an ensemble of decision rules,

formally known as Rule Ensemble Learning (REL) [36], employing the gHKL and gHKLMT

formulations. For the sake of simplicity, we only discuss the single task REL setting in this

section, i.e. REL as an application of the gHKL formulation. Similar ideas can be applied to

perform REL in multi-task learning setting, by employing the gHKLMT formulation. In fact, we

present empirical results of REL in both single and multiple task learning settings in Section 5.5.

We begin with a brief introduction to REL.

If-then decision rules [107] are one of the most expressive and human readable represen-

tations for learned hypotheses. It is a simple logical pattern of the form: IF condition THEN

decision. The condition consists of a conjunction of a small number of simple boolean state-

ments (propositions) concerning the values of the individual input variables while the decision

specifies a value of the function being learned. An instance of a decision rule from Quinlan’s

playtennis example [106] is:

IF HUMIDITY==normal AND WIND==weak THEN PlayTennis==yes

The dominant paradigm for induction of rule sets, in the form of decision list (DL) models for

classification [107, 97, 35], has been a greedy sequential covering procedure.

REL is a general approach that treats decision rules as base classifiers in an ensemble.

This is in contrast to the more restrictive DL models that are disjunctive sets of rules and which

use only one in the set for each prediction. As pointed out in [36], boosted rule ensembles

are in fact simpler, better-understood formally than other state-of-the-art rule learners and also

produce comparable predictive accuracy.

REL approaches like SLIPPER [36], LRI [134], RuleFit [51], ENDER/MLRules [45, 46]

have additionally addressed the problem of learning a compact set of rules that generalize well

in order to maintain their readability. Further, a number of rule learners like RuleFit, LRI
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encourage shorter rules (i.e., fewer conjunctions in the condition part of the rule) or rules with

a restricted number of conjunctions, again for purposes of interpretability. We build upon this

and define our REL problem as that of learning a small set of simple rules and their weights

that leads to a good generalization over new and unseen data. The next section introduces the

notations and the setup in context of REL.

Notations and Setup

Let D = {(x1, y1), . . . , (xm, ym)} be the training data described using p basic propositions,

i.e., xi ∈ {0, 1}p. In case the input features are not boolean, then such propositions can be

derived using logical operators such as ==, 6=,≤,≥ etc. over the input features [refer 51, 45,

for details]. Let V be an index-set for all possible conjunctions with the p basic propositions

and let φv : Rn 7→ {0, 1} denote the vth conjunction in V . Let fv ∈ R denote the weight for

the conjunction φv. Then, the rule ensemble to be learnt is the weighted combination of these

conjunctive rules: F (x) =
∑

v∈V fvφv(x)− b, where perhaps many of the weights fv = 0.

One way to learn the weights is by performing a `1-norm regularized risk minimization

in order to select few promising conjunctive rules [51, 45, 46]. However, to the best of our

knowledge, rule ensemble learners that identify the need for sparse f , either approximate such

a regularized solution using strategies such as shrinkage (Rulefit, ENDER/MLRules) or resort to

post-pruning (SLIPPER). This is because the size of the minimization problem is exponential in

the number of basic propositions and hence the problem becomes computationally intractable

with even moderately sized datasets. Secondly, conjunctive rules involving large number of

propositions might be selected. However, such conjunctions adversely effect the interpretability.

Here we present an approach based on the gHKL framework that addresses these issues.

We begin by noting that 〈V ,⊆〉 is a subset-lattice; hereafter this will be referred to as the

conjunction lattice. Here ∀ v1, v2 ∈ V , v1 ⊆ v2 iff the set of propositions in the v1 conjunction

is a subset of those in the v2 conjunction. As an example, (HUMIDITY==normal) is considered

to be a subset of (HUMIDITY==normal AND WIND==weak). The top node of this lattice is a

node with no conjunctions and is also sources(V). Its children, the second level nodes, are all

the basic propositions, p in number. The third level nodes, children of these basic propositions,

are the conjunctions of length two and so on. The bottom node at (p+ 1)th level is the conjunc-
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Figure 5.1: A lattice of conjunction with four basic propositions: (x1 = a), (x2 6= b), (x3 ≥ c)
and (x4 ≤ d). Here x1, x2, x3 and x4 belong to the input space.

tion of all basic propositions. Figure (5.1) shows such a lattice with all it nodes when p = 4.

We now discuss how the proposed gHKL regularizer (5.2) provides an efficient and opti-

mal solution to a regularized empirical risk minimization formulation for REL.

Rule Ensemble Learning using gHKL

The key idea is to employ the gHKL formulation (5.2) with the DAG as the conjunction lattice

and the kernels as kv(xi,xj) = φv(xi)φv(xj) for performing the task of REL. Note that with

such a set-up, the `1/`ρ block-norm regularizer in gHKL, ΩS(f) =
∑

v∈V dv‖fD(v)‖ρ, implies:

1) for most v ∈ V , fv = 0, and 2) for most v ∈ V , fw = 0 ∀ w ∈ D(v). In the context of the

REL problem, the former statement is same as saying: selection of a compact set of conjunc-

tions is promoted, while the second reads as: selection of conjunctive rules with small number

of propositions is promoted. Thus, the gHKL formulation constructs a compact ensemble of

simple conjunctive rules. In addition, we choose dv = a|Sv | (a > 1), where Sv is the set of basic

propositions involved in the conjunction φv. Such a choice further encourages selection of short

conjunctions and leads to the following elegant computational result:

Theorem 5.4.1. The complexity of the proposed gHKL algorithm in solving the REL problem,
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with the DAG, the base kernels and the parameters dv as defined above, is polynomial in the

size of the active set and the training set dimensions. In particular, if the final active set size is

W , then its complexity is given by O(m3W 3 log(W ) +m2W 2p).

Proof is provided in appendix A.1.11.

We end this section by noting the advantage of the generic regularizer in the gHKL formu-

lation over the that in the HKL formulation in the context of REL applications. Recall that the

sparsity pattern allowed by the HKL formulation has the following consequence: a conjunction

is selected only after selecting all the conjunctions which are subsets of it. This, particularly

in the context of REL, is psycho-visually redundant, because a rule with n propositional state-

ments, if included in the result, will necessarily entail the inclusion of (2n − 1) more general

rules in the result. This violates the important requirement for a small set [51, 45, 46] of human-

readable rules. The gHKL regularizer, with ρ ∈ (1, 2), alleviates this restriction by promoting

additional sparsity in selecting the conjunctions. We empirically evaluate the proposed gHKL

based solution of the REL problem in the next section.

5.5 Experiments

In this section, we report the results of simulation in REL on several benchmark binary and

multiclass classification datasets from the UCI repository [50]. The goal is to compare various

rule ensemble learners on the basis of: (a) generalization, which is measured by the predictive

performance on unseen test data, and (b) ability to provide compact set of short (simple) rules to

facilitate their readability and interpretability [51, 46, 36]. This is judged using i) average num-

ber of rules selected, and ii) average number of propositions employed per rule. The following

methods were compared.

RuleFit: Rule ensemble algorithm proposed by [51]. All the parameters were set to the de-

fault values mentioned by the authors. In particular, the model was set in the mixed

linear-rule mode, average tree size was set 4 and maximum number of trees was kept

as 500. The same configuration was also used by [45, 46] in their simulations. This

REL system cannot handle multi-class datasets and hence is limited to the simulations
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on binary classification datasets. Its code is available at www-stat.stanford.edu/

˜jhf/R-RuleFit.html.

SLI: The SLIPPER algorithm proposed by [36]. Following [45, 46], all parameters were set to

their defaults. We retained the internal cross-validation for selecting the optimal number

of rules.

ENDER: State-of-the-art rule ensemble algorithm [46]. For classification setting, ENDER is

same as MLRules [45]. The parameters were set to the default values suggested by the

authors. The second order heuristic was used for minimization. Its code is available at

www.cs.put.poznan.pl/wkotlowski.

gHKLρ: The proposed gHKL based REL formulation for binary classification problem. We

considered three different values of ρ: 2, 1.5 and 1.1. Note that for binary classification,

ρ = 2 renders the HKL formulation [11]. In each case, a 3-fold cross validation pro-

cedure was employed to tune the C parameter with values in {10−3, 10−2, . . . , 103}. As

mentioned earlier, the parameters dv = 2|v|.

gHKLMT−ρ: The proposed gHKLMT based REL formulation for multiclass classification prob-

lem. For each class, a 1-vs-rest binary classification task is created. Since we did not

have any prior knowledge about the correlation among the classes in the datasets, we

employed the multi-task regularizer (5.4) in the gHKLMT primal formulation (5.3). Cor-

respondingly, the B matrix in the gHKLMT dual formulation (5.10) is set to the identity

matrix. We considered three different values of ρ: 2, 1.5 and 1.1. Its parameters and cross

validation details are same as that of gHKLρ. The codes of gHKLρ and gHKLMT−ρ are

available at http://www.cse.iitb.ac.in/˜pratik.j/ghkl.

Note that the above methods differ in the way they control the number of rules (M ) in

the ensemble. In the case of gHKLρ (gHKLMT−ρ), M depends on the parameters: ρ, C and

dv. SLI has a parameter for maximum number of rules Mmax and M is decided via a internal

cross-validation such that M ≤Mmax. For the sake of fairness in comparison with gHKLρ, we

set Mmax = max(M1.5,M1.1), where Mρ is the average number of rules obtained with gHKLρ

(gHKLMT−ρ). ENDER has an explicit parameter for the number of rules, which is also set
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Dataset # of Examples Bias p |V| Dataset # of Examples Bias p |V|

TIC-TAC-TOE 958 1.89 54 ≈ 1016 HEARTSTAT 270 0.8 76 ≈ 1022

B-CANCER-W 699 0.53 72 ≈ 1021 MONK-3 554 1.08 30 ≈ 109

DIABETES 768 0.54 64 ≈ 1019 VOTE 232 0.87 32 ≈ 109

HABERMAN 306 0.36 40 ≈ 1012 B-CANCER 277 0.41 76 ≈ 1022

HEARTC 296 0.85 78 ≈ 1023 MAM. MASS 829 0.94 46 ≈ 1013

BLOOD TRANS 748 3.20 32 ≈ 109 LIVER 345 1.38 48 ≈ 1014

Table 5.1: Datasets used for binary REL classification. Bias denotes the ratio of # of +ve and
−ve instances. p denotes the number of basic propositions. For each numerical input feature, 8
basic propositions were derived.

to max(M1.5,M1.1). In case of RuleFit, the number of rules in the ensemble is determined

internally and is not changed by us.

Binary Classification in REL

This section summarizes the simulations with binary classification datasets. Table 5.1 provides

the details of the binary classification datasets. For every dataset, we created 10 random train-

test splits with 10% train data8. Since many datasets were highly unbalanced, we report9 the

average F1-score (with standard deviation). The results are presented in Table 5.2. The best

result, in terms of the average F1-score, for each dataset is highlighted. Additionally if the best

result achieves a statistically significant improvement over its nearest competitor, it is marked

with a ‘*’. Statistical significance test is performed using the paired t-test at 99% confidence.

We also report the average number of rules produced per split and the average length of the

rules, specified below each F1-score as: (average number of rules, average length of rules). As

discussed earlier, it is desirable that REL algorithms achieve high F1-score with a compact set

of simple rules.

We can observe from Table 5.2 that gHKLρ obtains better generalization performance than

state-of-the-art in most of the datasets with the additional advantage of having rules with smaller

number of conjunctions. In fact, when averaged over the datasets, gHKL1.1 and gHKL1.5 output

the shortest rules among all the methods. gHKL1.1 obtains statistically significant performance

in TIC-TAC-TOE, BLOOD TRANS and B-CANCER datasets. Though the generalization ob-

8For monk-3, a single train-test split of 122− 432 instances respectively was given in UCI repository itself.
9Table A.1 in appendix A.1.12 reports the average AUC.
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Dataset RuleFit SLI ENDER
gHKLρ

ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 0.517± 0.092 0.665± 0.053 0.668± 0.032 0.889± 0.093 0.897± 0.093 0.905± 0.096∗

(57.7, 2.74) (10.3, 1.96) (187, 3.17) (161.7, 1.715) (186.6, 1.761) (157.6, 1.717)

B-CANCER-W 0.879± 0.025 0.928± 0.018 0.9± 0.041 0.923± 0.032 0.924± 0.032 0.925± 0.032

(17.5, 2.027) (4.4, 1.15) (21, 1.56) (30.9, 1) (20, 1.033) (20.4, 1.023)

DIABETES 0.428± 0.052 0.659± 0.027 0.656± 0.027 0.661± 0.018 0.663± 0.017 0.661± 0.023

(32.9, 2.66) (4.9, 1.42) (74.0, 2.65) (83.2, 1.305) (73.2, 1.172) (62.6, 1.27)

HABERMAN 0.175± 0.079 0.483± 0.057 0.474± 0.057 0.523± 0.062 0.521± 0.06 0.521± 0.06

(7.5, 1) (2.1, 1) (52, 3.59) (112.1, 1.366) (51.2, 1.235) (17.1, 1.142)

HEARTC 0.581± 0.047 0.727± 0.05 0.724± 0.032 0.743± 0.038 0.735± 0.058 0.736± 0.055

(8.8, 1) (3.2, 1.23) (32, 2.05) (46.7, 1.056) (23.9, 1) (32, 1.086)

BLOOD TRANS 0.163± 0.088 0.476± 0.057 0.433± 0.0 0.586± 0.029 0.587± 0.028 0.588± 0.027∗

(40.7, 2.26) (2.0, 1) (63, 1.97) (229.7, 1.981) (62.8, 1.789) (19, 1.294)

HEARTSTAT 0.582± 0.04 0.721± 0.065 0.713± 0.055 0.747± 0.031 0.746± 0.028 0.747± 0.028

(9.3, 1) (3.5, 1.07) (25, 2.02) (34.7, 1.023) (25, 1.017) (24.4, 1.027)

MONK-3 0.947 0.802 0.972 0.972 0.972 0.972

(52, 2.88) (1, 3) (93, 1.96) (200, 2.065) (93, 1.839) (7, 1.429)

VOTE 0.913± 0.047 0.935± 0.055 0.951± 0.035 0.93± 0.042 0.929± 0.043 0.934± 0.038

(2.7, 1) (1.3, 1.15) (9, 1.07) (39, 1.106) (8.2, 1) (6.4, 1)

B-CANCER 0.254± 0.089 0.476± 0.086 0.452± 0.079 0.565± 0.059 0.563± 0.061 0.569± 0.063∗

(8.1, 1) (1.2, 1) (31, 2.93) (39.6, 1.154) (30.2, 1.068) (29.4, 1.167)

MAM. MASS 0.668± 0.032 0.808± 0.022 0.816± 0.018 0.796± 0.026 0.796± 0.026 0.797± 0.024

(26.4, 2.68) (5.3, 1.43) (48, 2.53) (92.2, 1.274) (47.6, 1.237) (40.5, 1.252)

LIVER 0.357± 0.016 0.445± 0.083 0.563± 0.058 0.594± 0.046 0.595± 0.048 0.588± 0.049

(10, 1) (1.5, 1) (59, 2.35) (242.5, 1.422) (58.2, 1.319) (45.7, 1.358)

Table 5.2: Results on binary REL classification. F1-score along with standard deviation, the
number of rules and the length of rules averaged over 10 splits are shown.

tained by gHKL2 (HKL), gHKL1.5 and gHKL1.1 are similar, the number of rules selected by

gHKL2 is generally higher than gHKL1.1 (by 5 to 25 times in some cases), hampering its inter-

pretability.

Dataset # of Examples c p |V| Dataset # of Examples c p |V|

BALANCE 625 3 32 ≈ 109 IRIS 150 3 50 ≈ 1015

CAR 1728 4 42 ≈ 1012 LYMPH 146 3 86 ≈ 1025

C.M.C. 1473 3 54 ≈ 1016 T.A.E. 151 3 114 ≈ 1034

ECOLI 332 6 42 ≈ 1012 YEAST 1484 10 54 ≈ 1016

GLASS 214 6 72 ≈ 1021 ZOO 101 7 42 ≈ 1012

Table 5.3: Datasets used for multiclass REL classification. c denotes the number of classes.
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Dataset SLI ENDER
gHKLMT−ρ

ρ = 2 ρ = 1.5 ρ = 1.1

BALANCE 0.758± 0.025 0.795± 0.034 0.817± 0.028 0.808± 0.032 0.807± 0.034

(10.4, 1.7) (112, 2.4) (2468.9, 2.842) (112, 1.643) (85, 1.612)

CAR 0.823± 0.029 0.835± 0.024 0.864± 0.02 0.86± 0.028 0.875± 0.029∗

(18.3, 2.93) (270, 3.05) (9571.2, 3.136) (220.3, 1.64) (269.3, 1.845)

C.M.C. 0.446± 0.016 0.485± 0.015∗ 0.472± 0.014 0.463± 0.017 0.465± 0.016

(21.1, 1.9) (513, 4.36) (10299.3, 2.854) (512.9, 1.946) (396.4, 1.875)

ECOLI 0.726± 0.042 0.636± 0.028 0.779± 0.057 0.784± 0.045∗ 0.778± 0.054

(7.8, 1.34) (35, 2.15) (4790.2, 2.985) (34.3, 1.05) (32.4, 1.155)

GLASS 0.43± 0.061 0.465± 0.052 0.501± 0.049 0.525± 0.043∗ 0.524± 0.046

(7.4, 1.41) (70, 3.21) (5663.7, 2.396) (69.1, 1.154) (54.6, 1.038)

IRIS 0.766± 0.189 0.835± 0.093 0.913± 0.083 0.927± 0.024∗ 0.893± 0.091

(2.2, 1.02) (10, 1.34) (567, 2.439) (9.8, 1) (8.6, 1)

LYMPH 0.61± 0.066 0.706± 0.058 0.709± 0.061 0.724± 0.078 0.722± 0.078

(2.7, 1) (34, 2.2) (4683.8, 2.299) (33.7, 1.008) (33, 1.01)

T.A.E. 0.334± 0.035 0.41± 0.065 0.418± 0.049 0.399± 0.049 0.402± 0.046

(1.1, 1) (39, 1.86) (5707.4, 2.253) (38.3, 1.000) (38.1, 1.052)

YEAST 0.478± 0.035 0.497± 0.015 0.487± 0.021 0.485± 0.022 0.486± 0.021

(23.4, 1.63) (218, 5.78) (8153.6, 2.847) (217.8, 1.796) (179.6, 1.726)

ZOO 0.556± 0.062 0.938± 0.033 0.877± 0.06 0.928± 0.037 0.927± 0.039

(7.1, 1.24) (33, 1.29) (3322.2, 2.695) (32.3, 1.000) (31.9, 1.014)

Table 5.4: Results on multiclass REL classification. Accuracy along with standard deviation,
the number of rules and the length of rules averaged over 10 splits are shown. Statistical signif-
icance tests performed at 99% confidence.

Multiclass Classification in REL

This section summarizes the simulations with multiclass classification datasets. The details

of the multiclass datasets10 are provided in Table 5.3. The results, averaged over 10 random

train-test splits with 10% train data, are presented in Table 5.4. Following [45, 46], we report

the accuracy to compare generalization performance among the algorithms. The number of

rules as well as the average length of the rules is also reported to give an understanding of the

interpretability of the output.

Note that gHKLMT−ρ obtains the best generalization performance in 7 datasets, out of

which 4 results are statistically significant. Moreover, gHKLMT−1.5 and gHKLMT−1.1 usually

10Classes within a dataset with too little number of instances (< 3) are not considered for simulations. This is

because we perform a 3-fold cross validation for hyper-parameter selection.
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select the shortest rules among all the methods. As in the case of binary classification, the

number of rules as well as the average rule length in case of gHKLMT−2 is generally very large

compared to gHKLMT−1.5 and gHKLMT−1.1. This again shows the efficacy of the proposed

`1/`ρ regularizer in obtaining a compact set of simple rules.

5.6 Conclusions

We generalized the HKL framework in two ways. First, a generic `1/`ρ block-norm regular-

izer is employed that alleviates a restriction in the sparsity pattern induced by HKL. Secondly,

the framework is further generalized to handle the problem of multi-task feature learning (and

termed as gHKLMT). An interesting computational result is that gHKLMT can be solved in

time polynomial in the active set and training set sizes whenever the HKL formulation can be

solved in polynomial time. The other important contribution is the application of the proposed

gHKLMT formulation in the learning setting of Rule Ensemble Learning (REL), where HKL

has not been previously explored. Empirical results on both binary and multiclass classification

for REL illustrate the efficacy of the proposed generalizations.
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Chapter 6

Learning Kernels on Latent Task

Structure

In the previous chapters, we considered multi-task learning (MTL) settings where all the tasks

were assumed to be related. In Chapters 3 and 5, all the tasks shared the same set of selected

base kernels, while in Chapter 4, they shared a common latent feature space residing within

the selected base kernels. However, such an assumption may not hold in real world applica-

tions [70]. In particular, there may also exist a few outliers tasks — those tasks that are not

related to any other task. In such cases, learning all tasks simultaneously under the assump-

tion that all the tasks are related may lead to loss of generalization ability and worsening of

performance [77, 82].

As an example, consider the problem of face recognition of different people. This can be

modeled as a multi-task problem, each task being identification of a certain individual. All the

tasks are related since they the set of relevant features is common for all of them. However,

we also expect that depending on ethnicity, race, region, gender, etc., some people will share

facial characteristics more closely [121]. In genomics, organisms from same family (in terms

of taxonomy) are expected to show more similar characteristics/behavior [136].

In such a scenario, learning which feature information should be shared among which

tasks may lead us to better generalizability by being able learn a more accurate model for the

application at hand. However, this is a challenging problem since it is not known apriori which

task is related with whom under which feature space.
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Contributions

We consider the multi-task setting where some relevant features (kernels) could be shared across

few tasks. We propose a convex formulation that learns the feature space shared by groups of

tasks that have task parameters close to each other (in the shared feature space). Since we do

not have any prior information, we consider the search space consisting of all possible groups

of tasks, i.e., the power-set of the given tasks. The feature space within each group is learnt as a

linear combination of given base kernels. In the special case where the base kernels are chosen

to be linear kernels formed by individual input features, this amounts to feature selection.

The proposed formulation employs a graph-based regularizer that encodes an important

structure among the groups of tasks: if there is no feature space under which a group of tasks has

close-by task parameters, then there does not exists such a feature space for any of its supersets.

Note that this specialty, when appropriately exploited by an algorithm, may help avoid search

in potentially large portions of the search space that are anyway not fruitful. We propose an

active set algorithm exploits this specialty and optimally solves the proposed formulation in a

time polynomial in the number of groups discovered. Note that this number is typically very

small compared to the size of the power-set of the given tasks. Experiments on benchmark

datasets show that the proposed methodology achieves good generalization and outperforms

state-of-the-art multi-task learning techniques in some cases.

Outline

The rest of the chapter is organized as follows. Section 6.2 formalizes the notation and the

problem setup. The details of the proposed formulation and the algorithm for solving it are

discussed in Sections 6.3 and 6.4 respectively. Experimental results are discussed in Section 6.5.

Section 6.6 summarizes the work and the key contributions. We begin by discussion the related

works in the next section.

6.1 Related Work

Recent works in multi-task literature have focused on the problem of learning groups of tasks

that are more related than others. In a hierarchical Bayesian setup, [139] employed the Dirichlet
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process to learn groups of tasks having close-by task parameters. On the other hand, [68]

proposed a k-means clustering based algorithm to cluster such tasks. Note that these approaches

did not incorporate feature learning within groups. Another work, [77], grouped the task sharing

a low dimensional subspace [8]. [68, 77] propose non-convex formulations in empirical risk

regularized framework (2.1) and require the number of clusters as a pre-defined parameter.

They learn disjoint groups of tasks, i.e., a task belongs to only one group.

Note that the disjoint groups setting may not always reflect the true task structure [82, 151].

Hence, some works aim at discovering groups of tasks that may have overlap between them, i.e.

a task may belong to more than one group. [82] assume the tasks to be a sparse combination

of underlying meta-tasks. Tasks sharing meta-tasks are grouped together. [151] proposes to

decompose the task parameters as a superposition of task specific and cluster specific parame-

ters. Two tasks belong to a group if they have identical cluster specific parameter for the input

feature. Another work, [136], attempts to search for suitable groups among all possible groups

of tasks. However the run-time of their algorithm is exponential in the number of tasks.

6.2 Problem Setup

Consider a set T of learning tasks, T in number. The training data for the tth task is denoted by:

Dt = {(xti, yti), i = 1, . . . ,m} ∀t = 1, . . . , T , where (xti, yti) represents the ith input/output

pair of the tth task. For the sake of notational simplicity, we assume that the number of training

examples is the same for all the tasks. The task predictors are assumed to be affine: Ft(x) =

〈ft, φ(x)〉 − bt, t = 1, . . . , T , where ft is the task parameter of the tth task, φ(·) is the feature

map and bt is the bias term.

Recall that our aim is to learn kernels shared by groups of related tasks from the power-set

of T (henceforth denoted by V). To this end, we propose an additive model for task parameters,

ft =
∑

w∈Gt ftw where Gt is the set of all subsets of T containing task t. The parameter ftw

indicate the influence of feature space induced by the shared kernel within the group/subset

w on task t. As discussed previously, the shared kernel for each group of tasks is learnt as a

conic combination of given base kernels. To this end, let k1, . . . , kn be the given base kernels.

Let φj(·) denote the feature map induced by the jth kernel kj , j = 1, . . . , n. Hence, φ(x) =
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(φ1(x), . . . , φn(x)). Let f jtw represent the projection of ftw onto the φj space. In other words,

ftw = (f 1
tw, . . . , f

n
tw). With this notation, the prediction function for the task t can be rewritten

as Ft(x) = 〈ft, φ(x)〉 − bt =
∑

w∈Gt〈ftw, φ(x)〉 − bt =
∑

w∈Gt
∑n

j=1〈f
j
tw, φ

j(x)〉 − bt. Note

that if f jtw = 0 ∀ t ∈ w, then the feature space corresponding to the jth kernel is absent in

the feature space corresponding to the shared kernel of the group w. Hence learning the the

task predictors or equivalently the task parameters f jtw and the bias terms bt amounts to learning

which kernels (feature spaces) is shared among which tasks. In the subsequent section, a novel

convex formulation for learning the optimal task predictors in the current setup is presented.

6.3 Graph-based Multi-task Regularization

In this section, we present the proposed convex feature learning formulation for learning kernels

on the latent task structure. As stated previously in Chapter 2.1, we employ the regularized risk

minimization framework [125] and consider the following problem:

min
ft,bt∀t∈T

Ω(f1, . . . , fT )2 + C
T∑
t=1

m∑
i=1

V (Ft(xti), yti) (6.1)

where Ω(f1, . . . , fT )2 is the regularizer, V (·, ·) is a suitable convex loss function (like the hinge

loss) and C is the regularization parameter. The regularizer Ω(·) is usually chosen based

on some prior knowledge on the relationships among the tasks. For instance, in cases it is

known that all the task parameters are close to each other, the following regularizer may be

employed [48]:

Ω(f1, . . . , fT )2 = µ‖h0‖2
2 +

T∑
t=1

‖ht‖2
2, (6.2)

where ft = h0 + ht ∀ t = 1, . . . , T and µ > 0 is a given parameter that controls the trade-off

between regularizing the mean (h0) and the variance (h1, . . . , hT ) parameters of all the tasks.

In the following text, we present a novel regularizer suitable for the current problem. We

begin by writing down a basic term in the proposed regularizer Θj
w, which promotes proximity

among task parameters within the group w with respect to the feature space j (induced by kj):

Θj
w =

(
µ‖hj0w‖2

2 +
∑
t∈Tw

‖hjtw‖2
2

) 1
2
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where f jtw = hj0w + hjtw. This term is motivated from (6.2). Note that (Θj
w = 0) ⇒ f jtw =

0 ∀ t ∈ w. Hence, if Θj
w is zero, then the tasks within the group w do not share1 the kernel kj .

The terms Θj
w, j = 1, . . . , n, are now combined using a p-norm, leading to: ‖Θw‖p =(∑

j (Θj
w)

p
) 1
p

where Θw is the vector with entries as Θj
w, j = 1, . . . , n, and p ∈ (1, 2). The

p-norm promotes sparse kernel combination for the group w (i.e., forces many Θj
w = 0). With

the interpretation of Θj
w noted above, this essentially enables kernel (feature) learning within

the group of tasks w. In addition, (‖Θw‖p = 0) ⇒ (Θj
w = 0 ∀ j = 1, . . . , n) ⇒ (f jtw =

0 ∀ t ∈ w, j = 1, . . . , n). Hence, in case ‖Θw‖p = 0, then the node w does not contain related

tasks since the tasks within the group w do not share any base kernels and the group does not

influence any of the task prediction functions Ft.

With this interpretation, one naive way of obtaining few promising groups of related tasks

that share a feature space is by employing a `q-norm, q ∈ (1, 2), over the terms ‖Θw‖p, w ∈ V:

Ω(f1, . . . , fT ) =
(∑

w∈V (‖Θw‖p)q
) 1
q . However, the problem with this regularizer is that it

renders the formulation (6.1) infeasible for real-world applications as the resultant optimization

problem cannot be, in general, solved in a time polynomial in the number of tasks (|V| = 2T−1).

One key idea is to employ a graph-based regularizer that alleviates this problem by ex-

ploiting a special structure among the groups of tasks. Note that the groups of tasks can be

represented as nodes of a directed acyclic graph with the partial order ⊆, representing the “sub-

set of” relation. It can verified that 〈V ,⊆〉 is a lattice. The topmost node of the lattice represents

a dummy node – the group with no tasks in it, the second level nodes represents groups with

single task and so on. The bottommost node represents the group consisting of all the T tasks.

As discussed earlier, we would like to encode into our regularizer the following structure among

the groups of tasks: if there is no feature space under which a group of tasks has similar task

parameters, then there does not exists such a feature space for any of its supersets. In the con-

text of the present lattice, this is same as saying: if a node w is not selected, then the entire

sub-lattice D(w), which consists of all the descendants of w (including w itself), need not be

selected. In the following, a regularizer that reflects this special structure is presented.

Motivated by the graph-based regularizers employed in [148, 11] as well as the one dis-

1In case of positive definite base kernels, it can also be shown that if Θj
w is non-zero, then all the tasks within

the group w share the kernel kj , i.e., (Θj
w 6= 0)⇒ f jtw 6= 0 ∀ t ∈ w.
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cussed in Chapter 5, we propose the following novel regularizer for the problem at hand:

Ω(f1, . . . , fT ) =
∑
v∈V

dv

 ∑
w∈D(v)

‖Θw‖qp

 1
q

(6.3)

where q ∈ (1, 2), p ∈ (1, 2) and dv is a parameter that enables encoding prior knowledge

regarding the task-relatedness in the group/node v. Note that the proposed regularizer (6.3)

may also be viewed as a `1/`q/`p mixed-norm regularizer. The `1-norm over the nodes (v ∈ V)

of the lattice promotes sparsity, and hence we have
(∑

w∈D(v) ‖Θw‖qp
) 1
q

= 0 for most v ∈ V ,

i.e., few groups of related tasks are selected. Moreover,
(∑

w∈D(v) ‖Θw‖qp
) 1
q

= 0 ⇒ f jtw =

0 ∀ t ∈ w, ∀ j ∈ 1, . . . , n, ∀ w ∈ D(v). In other words if a group is not selected by the 1-norm,

then none of its descendants are selected by the formulation — the special structure we wanted

to encode. The q-norm brings in additional sparsity among the descendants of the groups that

are selected by the 1-norm. As we detail later, the key advantage with this regularizer is that it

renders the proposed formulation (6.1), solvable in reasonable time.

In the following, a specialized dual of (6.1) with the proposed regularizer (6.3) is pre-

sented. This gives further insights into the working of the proposed formulation and motivates

an efficient active set algorithm for solving it. In order to keep notations simple, the dual is

presented for the case where each of the given tasks is a binary classification problem and the

loss function V (Ft(x), y) is the hinge loss: max (0, 1− yFt(x)). However, it is easy to extend

the derivations to other learning settings and convex loss functions as well.

Theorem 6.3.1. In the case where the given tasks are all of binary classification and the hinge

loss is employed as the loss function, the dual of (6.1) with the regularizer defined in (6.3) is

given by

min
η∈∆|V|

H(η) (6.4)

where z ∈ ∆s,r ≡ {z ∈ Rs | z ≥ 0,
∑s

i=1 z
r
i ≤ 1} and H is a convex function with H(η) equal

to the optimal value of the following optimization problem:

max
αt∈Rm∀t

∑
t

1>αt −
1

2

∑
w∈V

ζw(η)

(
n∑
j=1

(
α>Kj

wα
)p̄) q̄

p̄


1
q̄

(6.5)

s.t. 0 ≤ αt ≤ C1 ∀ t, y>t αt = 0 ∀ t,
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where yt denotes the vector with entries as yti, α = [α1 . . . αT ]>, 1 and 0 denote vectors with

all entries as 1 and 0 respectively, ζw(η) =
(∑

v∈A(w) d
q
vη

1−q
v

) 1
1−q

, A(w) represents the set of

ancestors for node w (including w), p̄ = p
2(p−1)

, q̄ = q
2(q−1)

. The easiest way to describe the

matrix Kj
w ∈ RmT×mT is by writing it as a block matrix of size T × T with the (t1, t2)th block

as the matrix Kj
w(t1, t2) ∈ Rm×m. The (i1, i2)th entry of Kj

w(t1, t2) is:

(Kj
w(t1, t2))i,j =


µ+1
µ
yt1i1yt2i2k

j(xt1i1 ,xt2i2) if t1 = t2 ∈ w,

1
µ
yt1i1yt2i2k

j(xt1i1 ,xt2i2) if t1, t2 ∈ w, t1 6= t2,

0 otherwise.

Proof is provided in appendix A.2.1.

The dual (6.4) provides interesting insights into the formulation. To this end, let us begin

with an interpretation for the Kj
w matrices. From their definition, it is easy to see that Kj

w can

also be viewed as the gram matrix of training examples from all the tasks with an appropriately

defined kernel function kjw. As µ → 0, 1
µ

dominates and the kernel function kjw reflects great

similarity between examples of tasks in w (and vice-versa). Also, the examples from tasks not

belonging to w have low similarity with those in w. Hence, the kernel kjw captures the similarity

between the tasks in the group w under the jth feature space.

Now lets focus on the problem (6.5). In the special case p̄ = q̄, this problem is same as

the `q̂-MKL formulation [80] with q̂ = q̄
q̄−1

and with base kernels as k̂jw = (ζw(η))
1
q̄ kjw ∀w ∈ V

and ∀j = 1, . . . , n. Hence the problem (6.5) realizes a sparse combination of these kernels.

With the interpretation provided above, this essentially amounts to a sparse selection of kernels

shared within groups of tasks. However, unlike `q̂-MKL that performs a ‘flat’ kernel selection,

the kernels are weighted by a function ζw(η) that induces structured sparsity.

To see this, let us shift our focus to the dual problem (6.4). Because of the simplex con-

straint over η (the `1-norm regularization), most of the ηv will be zero at optimality. From the

definition of ζw(η), we obtain: (ηv = 0) ⇒ ζw(η) = 0 ∀ w ∈ D(v). In addition, ζw(η) = 0

implies the entire set of kernels k1
w, . . . , k

n
w are not selected. Hence, ζw(η) = 0 implies that the

group of tasks in w do not share any feature space and group w is not selected. To summarize,

few groups of tasks that share a feature space are selected and if a group of tasks is not selected

(ηv = 0), then all its supersets are not selected (as ζw(η) = 0 ∀ w ∈ D(v)).

Figure 6.1 provides an illustration of the dual problem for the case of four tasks (T =
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Figure 6.1: Figure illustrating the arrangement of kernels (kjw) selected by the dual (6.4). Four
tasks, T = {T1, T2, T3, T4}, and three base kernels (k1, k2, k3) are considered. The base kernels
are represented by three different colors (blue, red and grey). The kernel matrices corresponding
to several groups of tasks are shown. Note that these matrices have a block structure with zeros
for the entries corresponding to the tasks absent in the group. Colored portions in a matrix
indicate the entries corresponding to the tasks present in the group. Figure best viewed in color.

4) and three base kernels (n = 3). The proposed formulation is equivalent to performing a

structured selection among n × |V| kernels arranged on the lattice. At each node, there are n

kernels that represent the relatedness of tasks in that group. The subsequent section, presents

an efficient active set algorithm for solving the proposed formulation that exploits the special

structure in the solution described above.

6.4 Optimization Algorithm

Following a common practice for solving large-scale convex sparsity problems [85, 11], we

propose solving the dual (6.4) using an active set algorithm. We had employed it in Chapter 5.

For the sake of completeness, we begin by having a brief discussion of it, in the context of the

present problem.

The basic idea of the active set algorithm is as follows: the formulation is solved iteratively
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using improved guesses for the active set, which is defined as the set of w for which ηw 6= 0

at optimality. At each iteration the problem restricted to the variables in the active set is solved

using an appropriate solver. In order to save computational cost, the size of the initial active set

is usually taken to be minimal. After solving the problem with the variables restricted to the

current active set, a sufficiency condition for optimality of the solution is verified. In case the

solution is optimal, the algorithm terminates. In case it is not, the active set is updated and the

restricted problem with the new active set is solved. This process is repeated until optimality

is reached. Any prior knowledge related to the structure of the optimal solution may also be

incorporated in building the active set at each iteration. In case of problems like (6.4) with

sparse solutions, the hope is that one may not solve the problem with all the variables, ηw,

which are exponential in T in number.

In order to formalize the active-set algorithm, we need i) an initial guess for the active

set and a procedure for building/improving the active set after each iteration, ii) a sufficiency

condition for verifying optimality of the current solution. Ideally, the complexity of verification

of the condition should depend on the active set size rather than the problem size iii) an efficient

algorithm for solving the formulation restricted to active set.

We begin with the first. Let W represent the active set. The initial guess as well as the

methodology for the identification of the promising nodes is motivated by the special structure

in the solution of (6.4): if a node w is not selected in the optimal solution, i.e., ηw = 0, none

of the descendants of w are selected (since ζv(η) = 0 ∀v ∈ D(w)). Equivalently, it can be

stated that a node w can be selected only if all its ancestors are selected, i.e., only if ηv 6=

0 ∀v ∈ A(w). Due to this observation, W is always maintained to be equal to its hull, where

hull(W) is defined to be the set of all the ancestors of the nodes inW . Accordingly, the initial

guess for W is taken to be the second level nodes, i.e., the singleton task groups. Also, in

the subsequent iterations, only those nodes which have all their parents in W are considered

as potential candidates for entry inside W . Towards the second requirement, we present the

following theorem

Theorem 6.4.1. For a given active setW such thatW = hull(W), let the optimal solution of
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(6.4) restricted toW be (η̂, α̂). Define Θ̂ to be as follows:

Θ̂ =

∑
w∈V

ζ̂w(η̂)

(
n∑
j=1

(
α̂>Kj

wα̂
)p̄) q̄

p̄


1
q̄

Then, (η̂, α̂) is an optimal solution of (6.4) with duality gap ε if:

max
s∈sources(Wc)

 ∑
w∈D(s)

α̂>
(∑n

j=1 K
j
w

)
α̂(∑

v∈A(w)∩D(s) dv

)2

 ≤ Θ̂ + 2ε (6.6)

where sources(W) is the set of nodes inW with no parent inW andWc denotes the set of all

the nodes present in the lattice V but not inW .

Proof is provided in appendix A.2.2.

As mentioned earlier, the above sufficiency condition is useful only if it can be verified

in polynomial time in |W|. Firstly, size of sources(W c) is upper-bounded by T |W|. The

denominator in the summation,
∑

v∈A(w)∩D(s) dv can be computed in O(T ) provided dv is de-

composable as a product. In the simulations we use, dv = 1.5|v|. Because of the block structure

of the matrices Kj
w, the sum over descendants in (6.6) can be computed in O(T 2m2).

In the following, we present an efficient algorithm of solving (6.4) restricted toW . Note

that (6.4) has a simple constraint set, which is a simplex and the gradient ∇H(η) can be com-

puted using the Danskin’s theorem [23]. The ith component of this gradient is given by

(∇H(η))i = −
dqi η
−q
i

2q̄

∑
w∈V

ζw(η)

 k∑
j=1

(
ᾱ>Kj

wᾱ
)p̄

q̄
p̄


1
q̄
−1 ∑

w∈D(i)

ζw(η)q

 k∑
j=1

(
ᾱ>Kj

wᾱ
)p̄

q̄
p̄


where ᾱ is an optimal solution of (6.5) with the given η. Hence one can employ projected

gradient-descent algorithm or any of its variants for solving (6.4. Here we employ the mirror-

descent algorithm [22] for solving (6.4). Note that the gradient computation ∇H(η) at η = η′

requires solving (6.5) at η′. Since the constraint set in (6.5) is similar to that in an SVM, we

employ sequential minimal optimization (SMO) algorithm [105] for solving (6.5). Algorithm 4

summarizes the proposed active-set method.

The computational complexity of the active set algorithm is as follows: let the final size of

the active set be W . Hence, (6.4) is solved a maximum of W times. Each run of mirror-descent
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Algorithm 4 Active Set Algorithm
Input: Training data Dt ∀t, tolerance ε

Output: η, α,W

InitializeW = {w| w ∈ V, |Tw| = 1} (first level nodes of the lattice V)

repeat

For the currentW , solve for η, α in (6.4) using mirror-descent & SMO

Calculate V = nodes violating the condition (6.6)

UpdateW =W ∪ V

until V is empty

algorithm takes O(log(W )) iterations [22] while in each iteration the dominant computation is

that of SMO for solving (6.5). A conservative complexity estimate for the SMO algorithm is

O((Tm)3(Wn)2). The computing cost for kernel matrices is O(n(Tm)2), while that of verify-

ing the sufficiency condition isO((Tm)2TW ). Thus, the overall complexity isO(n2W 2m3T 3).

We end this section by presenting a variant of the proposed methodology. The motivation

for this variant comes from a closer-look at the complexity of the active-set algorithm. Since the

active-set always satisfies the conditionW = hull(W) and since the complexity depends on the

active-set sizeW ; in practice one cannot realize situations where the group selected is way down

the lattice. In other words, it is rare that a group with large number of tasks is selected. However,

as shown in simulations, there may exist applications where the task parameters are extremely

close-by for all or most of the tasks. Hence realizing a group containing most of the tasks

may be beneficial. One simple modification of the proposed methodology for selecting such

large groups is: invert the lattice of groups of tasks, i.e., revert the parent-child relations, and

employ exactly the same formulation (the descendants become the ancestors and vice-versa). It

is easy to see that in this case groups involving large number of tasks may be selected; whereas

selecting groups involving few tasks is now improbable. Though this modification is simple

and interesting, the natural motivation for employing the graph-based regularizer is absent in

this case. The graph-based regularizer needs to be motivated purely from a computational

perspective in this case.
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6.5 Experiments

In this section we present our empirical studies on the following benchmark multi-task classifi-

cation and regression datasets.

Sarcos A multiple-output regression dataset used in [146]. The aim is to predict inverse dy-

namics corresponding to the seven degrees-of-freedom of a robot arm. The number of

tasks is 7 and there are 21 real valued input features. Following [146], we sampled 2000

random examples from each task.

Parkinson A multi-task regression dataset from the UCI repository [50]. The aim is to predict

Parkinson’s disease symptom score for patients at different times using 19 bio-medical

features. The dataset has 5,875 observations for 42 patients. The symptom score pre-

diction problem for each patient is considered as a regression task. Thus, there are 42

regression tasks2 with number of instances for each task ranging from 101 to 168.

Yale A face recognition dataset from Yale face3 base. It contains 165 images of 15 subjects.

Following the experimental setup in [145], each task is defined as the binary classification

problem of classifying two subjects. Thus there are 28 tasks and the number of features

is 30.

Landmine A benchmark multi-task classification dataset used in [139, 145]. It contains ex-

amples collected from various landmine fields. Each example is represented as a 9-

dimensional real valued feature vector. Each task is a binary classification problem with

the goal being to predict landmines (positive class) or clutter (negative class). Follow-

ing [139, 145], we jointly learn 19 tasks from the landmine fields numbered 1 − 10 and

16 − 24 in the data set. Number of instances in each task varies from 445 to 690. The

dataset is highly biased against the positive class.

MHC-I A multi-task classification dataset used in [68]. It contains binding affinities of vari-

ous peptides with different MHC-I molecules. Each task here is a binary classification

2Note that this setting is different that the one employed in the experiments discussed in Chapter 4.
3Dataset and train-test splits available at http://www.zjucadcg.cn/dengcai/Data/FaceData.

html. We used the first 10 splits containing 5 training examples per subject.
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problem. We perform experiments on the same 10 tasks reported in [68]. Total number of

instances in the 10 tasks is 1200 and the input space consists of 180 binary features. The

number of instances per task varies from 59 to 197 and the the dataset is biased against

the positive class.

Letter A multi-task classification dataset used in [75]. It consists of handwritten letters from

different writers. Each task is a binary classification problem of distinguishing between

pairs of letters. There are 9 such binary classification tasks and we randomly sampled

300 data points per task for our simulations. The input features used are the 8×16 = 128

binary pixels.

Each dataset was further randomly split into training and test sets. In Landmine, MHC-I and

Letter datasets, random 20%-80% train-test splits were considered. In the case of Sarcos dataset

15 random samples per task were used for training and the rest for testing. For Parkinson

dataset, 5 random examples per task were used in training and the rest for testing. We compare

the generalization performace of the following algorithms.

STL A baseline approach in which the tasks are learned independently using SVM [125].

MK-MTFL The multiple kernel multi-task feature learning formulation (3.5) proposed in

Chapter 3. As in previous experiments, the parameters (p, q) were fixed to (6, 1), thereby

promoting sparsity in kernel selection and allowing the learnt feature space to be a func-

tion of both shared as well as task-specific parameters.

MTL A classical multi-task learning algorithm [48]. It assumes that all tasks are related and

have the task parameters in proximity. It does not incorporate feature learning.

CMTL The clustered multi-task learning formulation proposed in [68]. It finds clusters of tasks

having task parameters in proximity. It does not incorporate feature learning. Its code

is available at http://cbio.ensmp.fr/˜ljacob/documents/cmtl-code.

tgz.

DMTL The multi-task feature learning formulation in [70]. It performs feature selection to dis-

cover features shared across all the tasks as well as task-specific features. It also induces
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proximity among the task parameters in the shared feature space. Its code is available at

http://www.ali-jalali.com/index_files/L1Linf_LASSO.r.

MTGFL The proposed multi-task group and feature learning formulation. The base kernels

were taken as linear kernels with individual input features. In addition, the linear kernel

using all input features was also employed as a base kernel. Thus if the input space

dimensionality is n, then we generate n+ 1 linear kernels. We did not employ non-linear

kernels in order to be fair and comparable with CMTL and DMTL. The parameters p, q

were both fixed at 1.5, promoting sparsity in selecting groups of related tasks as well as

in selecting the kernel induced feature spaces. Since the base kernels include individual

input-feature based linear kernels, this amounts to feature selection. Its code is available

at www.cse.iitb.ac.in/˜pratik.j/MTFL_icml12.tar.gz.

Note that all of the above multi-task learning techniques rely on the same notion of task-

relatedness: task parameters of related tasks are close. Hence a comparison among them is

indeed meaningful.

The free parameters in all the methods were tuned using nested 3-fold cross validation pro-

cedure. The details of the parameter ranges are as follows: for MTGFL, MTL, MK-MTFL and

STL, the regularization parameter C was chosen from the set {10−3, 10−2, . . . , 103}. MTGFL

and MTL have an additional parameter µ, which was chosen from the set {10−3, 10−2, . . . , 10}.

CMTL has 4 parameters and we considered 3 values for each leading to 34 = 81 combi-

nations [145]. DMTL has 2 parameters and we considered 7 values of each leading to 49

combinations.

In case of regression datasets we report the explained variance, whereas for classification

datasets we report AUC (Area Under Curve). In both cases, higher the value reported, the better

the algorithm. Also, we report both the mean and standard deviation in the values over 10

random train-test splits. The best result in each dataset is highlighted. In case the best result is

with the proposed method (MTGFL) and its improvement over state-of-the-art is statistically

significant, then we additionally mark it with a ‘*’. In case the best result is with an existing

method and its improvement over the proposed method (MTGFL) is statistically significant,

then we again mark it with a ‘*’. Statistical significance test is performed using the paired t-test
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Dataset STL MK-MTFL MTL CMTL DMTL MTGFL

Regression Datasets – Explained Variance (%)

SARCOS 40.47± 7.56 14.23± 18.98 34.50± 10.19 33.02± 13.42 40.59± 10.24 49.86± 6.34∗

PARKINSON 2.84± 7.51 8.94± 10.17 4.94± 19.95 2.74± 3.62 −12.25± 7.41 16.79± 10.81∗

Classification Datasets – AUC (%)

YALE 93.36± 2.33 92.78± 2.79 96.35± 1.64 95.20± 2.12 92.44± 2.81 96.98± 1.55∗

LANDMINE 74.60± 1.55 75.74± 1.23 76.42± 0.78 75.86± 0.66 65.86± 2.63 76.44± 0.92

MHC-I 69.25± 2.07 64.51± 2.83 72.28± 1.94 72.56± 1.36∗ 58.39± 5.46 71.68± 2.20

LETTER 61.24± 0.82 60.15± 0.61 61.02± 1.56 60.52± 1.09 59.34± 1.39 60.45± 1.75

Table 6.1: Performance of various methods on regression and classification datasets, measured
in terms of percentage explained variance and area under the curve respectively. Mean and
standard deviations are shown as well as the average time in minutes taken by each method
within parentheses. MTGFL achieves better generalization as compared to state-of-the-art
CMTL and DMTL formulations.

at 90% confidence.

Results of the simulations are summarized in Table 6.1. The proposed method outper-

formed state-of-the-art in both the regression datasets and achieved significant improvement in

case of the YALE dataset. Note that in case of SARCOS dataset, the baseline STL performs

better than MTL showing that there may be some tasks that are not related to some others and

the latent task structure is non-trivial. Hence, learning which kernels are shared among which

tasks is indeed important in this case. The excellent performance of the proposed method on

these datasets indicates that it learns relevant kernel combinations on the latent task structure.

According to the results, the proposed methodology does not seem to improve over state-

of-the-art in case of the MHC-I and LETTER datasets. A closer look at the datasets and the

predictors achieved with state-of-the-art showed that the task parameters of all the tasks are

quite close to each other in these datasets. This motivated us to try the inverted lattice trick

described towards the end of Section 6.4. With this modified methodology we achieved an

improved average AUC of 72.77% and 61.12% respectively on MHC-I and Letter datasets.

Figure 6.2 compares the learning rates of the proposed multi-task approach and the single

task learning baseline as a function of training examples in SARCOS and MHC-I datasets. We
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Figure 6.2: Generalization obtained by multi-task and single task learning methods on the test
set as the number of training examples per task is varied. The advantage of the proposed multi-
task approach MTGFL over STL is more pronounced at low training data region. In Sarcos
dataset, STL starts giving almost the same performance as MTGFL when the number of train-
ing examples per task become 100. However, in MHC-I dataset, MTGFL is able to maintain a
considerable improvement over STL even at high training data region.

can observe that the advantage of the proposed MTGFL over the single task learning baselines

is high at low training data region. This advantage starts decreasing as the number of training

examples increase. This is expected because with more training data, a task should be able to

obtain good generalization ability on its own.

We end this section with a discussion on the run-time of the proposed method. Note that

none of the existing methods attempt an optimal search over the exponentially large space of

groups of tasks. Hence, as expected, the run-time of the proposed algorithm is on the higher

side. On a Xeon machine with 16GB RAM, with tuned parameters, the run-time of STL, MK-

MTFL, MTL and CMTL on all the datasets was less than one minute. DMTL also took less

than one minute on all datasets except Yale and MHC-I, where it took 9 minutes and 4 minutes

respectively. The run-time in minutes of MTGFL on various datasets are as follows: Sarcos

(2), Parkinson (23), Yale (18), Landmine (14), MHC-I (15) and Letter (12). It is interesting to

note that the extremely large search space (242) in case of the Parkinson dataset is searched in a

reasonable time of 23 minutes. Moreover, in most datasets the proposed method achieves better

generalization.
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6.6 Conclusions

In real-world applications, it is important to learn which kernels (features) are shared among

which tasks. This is because all the tasks may not be related to each other. We proposed a convex

formulation for such a setting. The proposed graph based multi-task regularizer leverages kernel

(feature) overlap among the tasks, wherever it exists, without enforcing additional restrictions

over the other tasks. The regularizer encodes an important property that helps us to perform

a clever search over the exponentially large space of groups of tasks. Experimental results

illustrate the efficacy of the proposed approach.
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Chapter 7

Kernel Selection Path in `p-norm Multiple

Kernel Learning

In the previous chapters, we proposed various kernel learning formulations for multiple tasks.

A common theme in the proposed formulations was to learn the kernel shared by multiple

tasks as a combination of given base kernels — a setting popularly known as Multiple Kernel

Learning (MKL) [83]. As discussed in Chapter 2.2, the coefficients of this combination may

be regularized by a p-norm, p ∈ [1, 2), to learn sparse combination of base kernels. In general,

lower value of p promotes sparser kernel combination. The value of p is usually set by the

user depending on the application at hand. However, the most suitable value of p is heavily

dependent on the available data. As can be observed from the empirical results in the previous

chapters and in existing p-norm MKL (or `p-MKL) works [128, 104, 81], the generalization

accuracy and the sparsity of the model vary significantly with p.

Existing state-of-the-art `p-MKL algorithms are computationally too expensive to be in-

volved thousands of times to determine the entire kernel selection path, i.e., the variation in the

classification accuracy as the fraction of selected kernels is varied from null to unity. Hence,

there is a need to develop formulations and algorithms for efficiently computing the kernel se-

lection path. In this chapter, we present our investigation on p-norm path following in Multiple

Kernel Learning.
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Figure 7.1: (a) The kernel selection path for the proposed Generalized `p-KTA formulation.
Note that generating the entire path for the largest data set (Dorothea) is well beyond the scaling
capabilities of all existing algorithms while our proposed algorithm generated the path in only
half an hour on standard hardware; (b) plot validating our weak Generalized `p-KTA monotonic-
ity conjecture that the number of selected features (kernels) decreases monotonically with p; (c)
& (d) plots validating our strong Generalized `p-KTA monotonicity conjecture that feature (ker-
nel) weights themselves vary monotonically beyond juncture points but vary non-monotonically
in between (e). Figure best viewed in color under magnification.

Contributions

We propose a novel conjecture that, for certain MKL formulations subject to p ≥ 1 regulariza-

tion, the number of kernels (features) selected in the optimal solution monotonically decreases

as p is decreased from an initial value to unity. We first prove that the conjecture is true for

a generic family of Kernel Target Alignment (KTA) based `p-MKL formulations, henceforth

termed as Generalized `p-KTA. This implies that regulating p, in such formulations, provides

a principled way of generating the kernel selection path (see Fig 1(a), 1(b)). In fact, for this

family, we further strengthen the conjecture and prove that the kernel weights themselves de-

cay (grow) monotonically once they are below (above) a certain threshold at optimality (see

Fig 1(c)-1(e)). This implies that there exist juncture points along the path and an algorithm can

exploit these by eliminating certain kernels from the optimization for potentially large intervals

of p. It should be noted that these conjectures are non-trivial and we show that they do not hold

for the popular square loss based `p-MKL formulation.

Generalized `p-KTA formulation is strongly convex and leads to robust kernel selec-

tion [25, 59, 79]. The kernel monotonicity results allow us to develop a predictor-corrector

based path following algorithm for Generalized `p-KTA that exploits the presence of juncture

points for increased efficiency. We demonstrate the efficacy of the proposed formulation as well

as the kernel selection path algorithm in the area of non-linear feature selection.
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Non-linear Feature Selection

In non-linear feature selection [133, 89, 11, 65, 117], the predictor is a non-linear function of

the input features. In many real world applications, one needs to determine the entire feature se-

lection path so as to determine the most feasible operating point on the path in the context of the

given application — motivated by considerations of elimination of noisy, expensive and redun-

dant features, model compression for learning and predicting on a budget, model interpretabil-

ity, etc. This is a challenge since state-of-the-art non-linear feature selection algorithms remain

computationally expensive and training them thousands of times can be prohibitive (even with

warm restarts). Multiple Kernel Learning (MKL) techniques have been shown to be amongst the

most effective for non-linear feature selection [74, 32, 126, 127, 86, 64]. However, even though

many specialized MKL optimization techniques have been developed [128, 104, 103, 81, 69],

training them thousands of times with different parameter settings is often infeasible.

We perform extensive experiments on benchmark data sets to demonstrate that the pro-

posed Generalized `p-KTA formulation can lead to better classification accuracies not only as

compared to other `p-MKL formulations and uniform kernel baselines but also leading feature

selection methods. We further demonstrate that our path following algorithm reduces train-

ing time significantly over other path following algorithms, state-of-the-art `p-MKL optimizers

such as SMO-MKL, warm restarts and predictor-corrector baselines. In particular, we generate

the entire feature selection path for data sets with a hundred thousand features in approximately

half an hour on standard hardware. Entire path generation for such data set is well beyond the

scaling capabilities of other methods.

Outline

The rest of the chapter is organized as follows. Section 7.1 discusses the existing works related

to non-linear feature selection, MKL as well as path following algorithms. In Section 7.2, we

present the proposed Generalized `p-KTA formulation. The novel conjecture on monotonic ker-

nel selection path is proposed and proved in Section 7.3. The details of the predictor-corrector

based kernel path following algorithm for solving Generalized `p-KTA are provided in Sec-

tions 7.4. Experimental results are discussed in Section 7.5. We conclude by summarizing the

work and the key contributions.
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7.1 Related Work

Considerable progress has been made in the area of non-linear feature selection. A popular

approach is to map the input features to a kernel-induced feature space while simultaneously

performing feature selection in the original input space. For example, [89] propose to per-

form LASSO regression in the induced space and thereby perform non-linear feature selection

while [135, 54] pose this problem as that of tuning the hyper-parameters of the kernel. Another

promising direction is to find un-correlated or independent features in the kernel induced feature

space. While [138, 27, 137] aim at selecting orthogonal features in the feature space, [32, 117]

employ Hilbert-Schmidt Independence Criterion based measures. Most of these approaches

are either computationally expensive or resort to approximately minimizing their non-convex

objectives.

Multiple Kernel Learning based techniques for non-linear feature selection have been ex-

plored in settings such as multi-label classification [74], bio-informatics [32, 86] and object

categorization [127, 64]. In [126], MKL techniques for non-linear feature selection were shown

to be better than boosting [15], lasso [6], sparse SVM [30], LP-SVM [52] and BAHSIC [117].

Various MKL formulations have been developed including `p≥1-norm regularization over the

kernel weights [83, 108, 39, 80, 42, 104, 103], mixed-norm regularizers [1], non-linear combi-

nations of base kernels [40, 126], Bregman divergence based regularizers [128] and for regu-

larized kernel discriminant analysis [140]. State-of-the-art `p≥1-MKL optimization techniques

such as SMO-MKL [128] and SPG-GMKL [69] have been shown to scale to a million kernels.

Nevertheless, these techniques take more than a day to train on a standard desktop and so com-

puting them thousands of times for determining the entire kernel selection path is infeasible.

Path following over the regularization parameter has been studied in the context of both

non-sparse regularization [60] as well as sparse linear classifiers [154]. Some of the other set-

tings where path following has been studied are: `1-MKL [13], general non-linear regularization

paths [112], boosting [149] and `1 regularized feature selection [88]. Tracing the solution path

for other hyper-parameters has also been explored. While [57, 129] perform path following

over the tube width parameter in support vector regression, [130] follow the path for the kernel

hyper-parameter in SVMs.
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7.2 Generalized `p-norm Kernel Target Alignment

We introduce our Generalized `p-KTA formulation for sparse kernel learning using the follow-

ing notation. Let k1, . . . , kn denote the given base kernel functions (one per feature) and let

K1, . . . , Kn denote the corresponding centered gram matrices obtained from the training data

so that the features induced in the RKHS have zero mean [41]. Let y denote the vector with

entries as the labels of the training data. We are interested in learning a kernel k that is a conic

combination of the given base kernels: k =
∑n

i=1 ηik
i, ηi ≥ 0 ∀ i = 1, . . . , n. We focus on

the following family of Bregman divergence based `p-KTA formulations for learning the kernel

weights η.

Let F be a strictly convex and differentiable function and let∇F denote its gradient. Then,

the Bregman divergence generated by the function F is given by BF (x) = F (x) − F (x0) −

(x− x0)>∇F (x0), where x0 is some fixed and given point in the domain of F . As an example,

F (x) = 〈x, x〉 leads to BF (x) = ‖x − x0‖2, the squared Euclidean distance. The proposed

Generalized `p-KTA formulations have the following form:

min
η≥0

λ1B̄F (η) + λ2

n∑
i=1

ηpi −
n∑
i=1

ηiy
>Kiy, (7.1)

where the first term representing the Bregman divergence based regularizer is decomposable as

B̄F (η) =
∑

iBF (ηi), the second term is the sparsity inducing `p regularizer and the third term

captures the alignment of the learnt kernel to the ideal kernel yy>. Note that p ≥ 1, λ1 ≥ 0

and λ2 ≥ 0 are regularization parameters.

A large number of popular Bregman divergences such as the squared Euclidean distance,

generalized KL-divergence, etc., are decomposable [16] and hence admissible under the Gener-

alize `p-KTA formulation. Such Bregman divergences are known to promote robust feature and

kernel selection [25, 59, 79] while the `p-norm regularizer achieves variable sparsity [81]. Note

that the classical KTA formulations studied in [83, 44] can be obtained as special cases of our

formulation by taking F to be the squared Euclidean distance and having λ2 = 0. On the other

hand, substituting λ1 = 0 results in the KTA formulation studied in Proposition (7) in [41]. The

normalized KTA formulation in Proposition (9) in [41] employs a non-decomposable Bregman

divergence and hence is not a special case of (7.1). However we empirically demonstrate in

Section 7.5 that the proposed Generalized `p-KTA formulation outperforms this normalized
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KTA formulation both in terms of generalization accuracy as well as computational cost. In

particular, the normalized KTA formulation needs to operate on an n × n dense matrix which

becomes infeasible for large n (n = 105 for the standard Dorothea dataset).

To perform non-linear feature selection, we associate a non-linear base kernel with each

individual feature, such as RBF kernels defined per feature, and then learn a sparse combination

of base kernels. The final classification results are obtained by training an SVM using the learnt

kernel k =
∑n

i=1 ηik
i. This corresponds to non-linear feature selection since features for which

ηi is zero do not contribute to the kernel and can be dropped from the data set.

We conclude this section with the following observation. Though (7.1) optimizes the

kernel weights independently for a given λ1 and λ2, the proposed algorithm employs cross-

validation for optimizing λ2. Hence, the final optimal kernel weights need not be independent.

7.3 Monotonic Kernel Selection Path

In this section, we prove the monotonicity conjecture for the proposed Generalized `p-KTA

formulation. Let η∗i (p
′) denote the optimal weight of the kernel ki obtained with (7.1) at p = p′

and let K(p′) denote the set of kernels active at p = p′. A kernel ki is said to be active at p = p′,

i.e. ki ∈ K(p′). if and only if η∗i (p
′) > ε, where ε > 0 is a user-defined tolerance. The proposed

conjecture can now be formally stated as

kj /∈ K(p′)⇒ kj /∈ K(p) ∀ 1 < p < p′ (7.2)

We begin our analysis by noting the following theorem:

Theorem 7.3.1. The path of the optimal solutions of (7.1) with respect to p, i.e. η∗(p), is unique,

smooth (provided F is twice-differentiable) and, in general, non-linear.

Proof is provided in appendix A.3.1.

The next theorem states the key result that proves the monotonicity conjecture for the

proposed Generalized `p-KTA formulation.

Theorem 7.3.2. Given η∗i (p
′), the following holds as p decreases from p′ to unity: (1) η∗i (p)

decreases monotonically whenever η∗i (p
′) < e−1; (2) η∗i (p) increases monotonically whenever

η∗i (p
′) > e

− 1
p′
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Proof is provided in appendix A.3.2.

Theorem 7.3.2 implies that the monotonicity conjecture for the Generalized `p-KTA for-

mulation in (7.1) holds whenever the user defined tolerance parameter ε (above which a kernel

is said to be active) is set to be less than e−1. Points wherever an optimal kernel weight becomes

less than the threshold are referred to as juncture points. Note that Theorems 7.3.1,7.3.2 and the

monotonicity conjecture are non-trivial as they do not hold for all loss functions. In particular,

we analyze `p-MKL formulations with the popular square loss in Appendix A.3.3, and present

settings where the conjecture does not hold. This implies that path following algorithms for

such formulations cannot be speeded up by eliminating features whose weights touch zero from

the optimization since they can increase to become non-zero at a later stage (see Figure A.1).

7.4 Efficient Path Following Algorithm

In this section, we present an efficient path following algorithm which closely approximates the

true kernel selection path. The algorithm exploits the presence of juncture points to improve

upon the standard Predictor-Corrector (PC) technique and scales effortlessly to problems in-

volving a hundred thousand kernels. Finally, we give a bound on the deviation from the optimal

objective function value caused due to the approximation.

Theorem 7.3.1 states that the solution path of (7.1) is smooth but non-linear in general.

Path following is typically implemented using the standard Predictor-Corrector algorithm [2] in

such cases [13, 112]. The PC algorithm is initialized with the optimal solution at p = p0. At

every iteration, the current value of p is decreased by a small step size, ∆p and the following

key iterative steps are performed:

Predictor: The predictor is a close approximation of η∗i (p −∆p) given η∗i (p). This can either

be the warm start approximation, i.e. η∗i (p−∆p) = η∗i (p), the first order approximation, η∗i (p−

∆p) = η∗i (p)−∆p
dη∗i (p)

dp or the second order approximation η∗i (p−∆p) = η∗i (p)−∆p
dη∗i (p)

dp +

1
2

(∆p)2 d2η∗i (p)

dp2 (the derivative expressions for our case are provided in Appendix A.3.4).

Corrector: The Newton method is used to correct the approximations of the predictor step

leading to a quadratic convergence rate [2].

We modify the standard PC algorithm so as to closely approximate the solution path at
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Algorithm 5 Generic Algorithm for Computing Solution Path of the Kernel Weights

Input: y>K1y, . . . ,y>Kny, step size ∆p(> 0), tolerance ε(> 0), start and end p values: p0 and pe respec-

tively with p0 > pe.

Output: η∗(p) for all p at ∆ intervals between [pe, p0]

Initialization: p = p0, Index set of active kernels K = {1, . . . , n}

Solve (7.1) at p = p0 to obtain the optimal solution η∗(p0)

if (η∗i (p0)) < ε for any i ∈ K then

Set η∗i (p0) = 0

Update K = K \ {i}

end if

repeat

Update p = p−∆p

Set η∗i (p) = 0 for all i /∈ K

for i ∈ K do

Predictor: Initialize η∗i (p) using warm start or first or second order approximation

Corrector: Run Newton’s method to obtain η∗i (p)

end for

if (η∗i (p)) < ε for any i ∈ K then

Set η∗i (p) = 0

Update K = K \ {i}

end if

until p ≤ pe

a significantly lower computational cost. The key idea is to exploit the monotonicity in the

active set size and directly set certain kernel weights to zero for all the subsequent p values.

Algorithm 5 summarizes the proposed algorithm. The algorithm maintains an active-set that

is initialized to those kernels whose optimal weight at p0 is above ε. At every iteration, the

first order PC step is used to determine the kernel weights for the next p value. Kernels whose

weight falls below ε are eliminated from the active set for the remainder of the optimization

due to the monotonicity property. The error incurred by the proposed method can be bounded

in terms of ε. The following Lemma holds when the squared Euclidean distance is used as the

Bregman divergence:

Lemma 7.4.1. For any p, the deviation in the objective value of (7.1) obtained using the

approximate path following algorithm from the true optimal objective is upper bounded by
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n(λ1ε
2 + λ2(p− 1)εp).

This result follows from the optimality conditions (A.17) and Theorem 7.3.2. We also

state an analogous lemma for the generalized KL-divergence in Appendix A.3.5.

7.5 Experiments

We carry out experiments to determine both the classification accuracy of the proposed Gener-

alized `p-KTA formulation as well as the computational cost of the proposed approximate path

following algorithm.

Data sets & kernels: We present results on a variety of feature selection datasets taken

from the NIPS 2003 Feature Selection Challenge [58] and the ASU Feature Selection Reposi-

tory [150]. Table 7.1 lists the number of instances and features in each dataset. Unless otherwise

stated, results are averaged via 5-fold cross-validation (standard deviations are reported in ap-

pendix A.3.6). We define an RBF kernel per feature as our base kernels and center and trace

normalize them as recommended in [41].

Baseline techniques: We compare the proposed approach (Gen `p-KTA) to a number

of baseline techniques including state-of-the-art Centered KTA formulation [41], highly opti-

mized `p-MKL techniques such as SMO-MKL [128], leading feature selection methods such

as BAHSIC [117] as well as path following approaches for `1-MKL (PF-`1-MKL) [13]. While

evaluating classification accuracy, we also compare to the uniform kernel combination base-

line (ηi = 1/n ∀ i) referred to as Uniform as well as path following linear feature selection

approaches (PF-`1-SVM) [154]. We also compare the proposed approach to 8 other state-of-

the-art feature selection techniques whose details are given in [150]. The final classification

results for all the feature selection algorithms are obtained using an SVM with the kernel com-

Data set Num Dim Data set Num Dim

Arcene 100 10000 Madelon 2000 500

Relathe 1427 4322 Pcmac 1943 3289

Basehock 1993 4862 Dorothea 800 100000

Table 7.1: Data set statistics.
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Arcene Madelon Relathe Pcmac Basehock Dorothea

Gen `p-KTA 92.00 (3788) 65.70 (12) 92.57 (3644) 93.62 (2947) 98.59 (4262) 94.75 (20220)

Centered-KTA 75.00 (134) 62.45 (290) 90.40 (542) 93.05 (498) 97.29 (584) -

SMO-MKL 82.00 (9999) 62.05 (1) - - - -

BAHSIC 69.00 (100) 53.90 (50) 85.07 (500) 89.55 (500) 93.58 (500) 90.63 (500)

PF-`1-MKL 81.00 (87) 62.76 (89) 85.67 (287) - - -

PF-`1-SVM 77.00 (273) 61.25 (7) 89.00 (510) 90.68 (190) 97.24 (264) 93.88 (499)

Uniform 81.00 (10000) 59.85 (500) 90.96 (4322) 92.49 (3289) 97.99 (4862) 91.38 (100000)

Table 7.2: The maximum classification accuracy achieved (with the corresponding number of
selected features) along the kernel selection path. Generalized `p-KTA achieves significantly
higher accuracies as compared to state-of-the-art KTA and `p≥1-MKL formulations as well as
leading feature selection techniques such as BAHSIC. The table reports mean results averaged
over 5-fold cross validation (see the supplementary material for standard deviations). ‘-’ denote
results where the data set was too large for the feature selection algorithm to generate results.

puted as k =
∑r

i=1 ηik
i, where (ηi)i=1,...,r are the feature weights provided by the algorithm.

While evaluating computational cost, we also compare the cost of our proposed approximate

first order predictor-corrector algorithm to the exact path following algorithm.

Parameter settings: For the Generalized `p-KTA formulation we set λ1, λ2 and the SVM

misclassification penalty C by 5-fold cross-validation while varying p from 2 to 1 in decrements

of 0.01. We use the squared Euclidean distance as the Bregman divergence with x0 = 0.

BAHSIC, PF-`1-MKL and PF-`1-SVM are parameter free when computing the kernel selection

path. The parameters of the other techniques were also set via extensive cross-validation except

for the computationally intensive SMO-MKL where this was feasible only for the smaller data

sets. On the larger data sets. we follow the SMO-MKL authors’ experimental protocol and fix

λ = 1 and validate over C with p ∈ {1.01, 1.33, 1.66, 2}. As in the case of previous `p-MKL

algorithms [128, 104, 103, 69], we employ the common strategy of thresholding to obtain sparse

solutions for the proposed Generalized `p-KTA.

Results: Table 2 lists the maximum classification accuracy achieved along the entire ker-

nel selection path and the corresponding number of selected features (i.e., corresponding to the

best oracle results on the test set). Our proposed Generalized `p-KTA formulation gets signifi-

cantly higher classification accuracies than all competing methods. For instance, on the Arcene

data set, Generalized `p-KTA achieves a classification accuracy which is 11% higher than the

closest competing method.
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Arcene Madelon Relathe Pcmac Basehock Dorothea

Gen lp-KTA (RBF) 76.80 (124) 64.50 (14) 89.40 (183) 89.76 (196) 95.46 (184) 93.75 (17)

Gen lp-KTA (Linear) 73.40 (16) 62.04 (12) 88.39 (190) 88.88 (180) 94.76 (189) 93.60 (12)

Inf. Gain 72.00 (110) 61.63 (5) 84.39 (190) 88.99 (135) 95.26 (200) 93.33 (35)

Chi-Square 71.20 (120) 61.69 (10) 83.48 (180) 88.24 (155) 95.28 (160) 93.33 (20)

Fisher Score 66.20 (65) 61.47 (10) 83.35 (180) 88.02 (100) 94.61 (200) 93.30 (20)

mRMR 68.20 (60) 61.87 (5) 75.01 (60) 83.34 (145) 88.88 (70) 93.18 (155)

ReliefF 68.40 (170) 62.06 (15) 77.08 (200) 80.76 (200) 86.05 (200) 93.33 (105)

Spectrum 64.00 (195) 60.19 (25) 69.99 (175) 66.74 (185) 69.79 (200) 90.28 (140)

Gini Index 64.60 (185) 59.43 (25) 69.50 (180) 66.60 (185) 69.49 (200) 90.28 (140)

K.-Wallis 60.20 (95) 55.04 (65) 70.97 (200) 65.20 (200) 70.37 (200) 90.08 (65)

Table 7.3: The maximum classification accuracy achieved on the ASU data sets (with the cor-
responding number of selected features) along the kernel selection path. In keeping with the
ASU experimental protocol, all algorithms are restricted to selecting at most 200 features and
are allowed to train on only half the data. Generalized `p-KTA (RBF) outperforms all the linear
techniques and this demonstrates the advantages of non-linear feature selection. Amongst the
linear methods, our proposed method with linear features is the best in general.

Table 7.3 presents results on the ASU data sets following the ASU experimental protocol

where only 50% of the data is used for training and the number of selected features is restricted

to be less than 200. This tests the capabilities of feature selection algorithms under the de-

manding conditions of both limited training data and limited prediction budget. As can be seen,

Generalized lp-KTA (RBF) clearly outperforms all the linear methods thereby demonstrating

the power of non-linear feature selection. Amongst all the linear feature selection methods, our

proposed Gen lp-KTA (Linear) is the best in general. It is the best method on 3 data sets – on

Relathe it is better than the second best method by 4%, on Arcene by 1.4% and on Dorothea

by 0.27%. On 2 data sets it is the second best method – lagging behind the best method on

Madelon by 0.02% and on Pcmac by 0.11%. These results demonstrate that the Generalized

`p-KTA formulation can lead to better results not only as compared to other KTA and `p-MKL

formulations but also as compared to leading feature selection techniques.

Table 7.4 assesses the cost of computing the kernel selection path. Note that algorithms

such as BAHSIC compute the path a feature at a time while other algorithms, such PF-`1-MKL,

have a much sparser sampling of the path (in the limit Centered KTA produces only a single

point on the path). Therefore, for a fair comparison, we report the total time taken by each

algorithm divided by the number of points generated by it along the path. This measures the

average time taken by each algorithm to generate a point along the path. Table 7.4 shows that
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Arcene Madelon Relathe Pcmac Basehock Dorothea

Gen `p-KTA 0.3 2.4 2.4 3.7 4.8 12.5

Centered-KTA 10.9 2405.5 2093.8 1099.6 3302.6 -

SMO-MKL 5.7 168.4 - - - -

BAHSIC 116.2 2265.8 3764.2 5906 7847.1 10976.3

PF-`1-MKL 29.5 83.1 240.0 - - -

Table 7.4: Average training time (in seconds) required to compute a point along the kernel
selection path. Note that each algorithm generates a different number of points along the path.
Therefore, for a fair comparison, we report the total time taken to compute the path for each
algorithm divided by the number of points generated by the algorithm. Our path following
algorithm for the Generalized `p-KTA formulation is orders of magnitude faster than competing
techniques and is the only algorithm which can generate the entire path for the Dorothea data
set. ‘-’ denote results where the data set was too large for the feature selection algorithm to
generate results.

the proposed approximate first order predictor-corrector algorithm can be significantly faster

than competing techniques. Furthermore, on the largest data set, Dorothea with 105 features,

Centered-KTA, SMO-MKL and PF-`1-MKL were not able to generate even a single point on

the path whereas our algorithm was able to generate the entire path in 21 minutes using pre-

computed kernels and 36 minutes using kernels computed on the fly. BAHSIC generates the

path by adding a single feature at each iteration and was able to generate the initial path segment

up to 500 features but at a high computational cost of more than 3 hours. All experiments

were carried out on a standard 2.40 GHz Intel Xeon desktop with 32 GB of RAM. Finally, we

note that our approximate path following algorithm was also found to be faster than the exact

path following algorithm implemented with first order predictor or with warm restarts without

exploiting juncture points and eliminating features from the optimization. The speedups against

both the baselines varied with more than 3 times on Madelon and almost 4 times on Dorothea

while the maximum relative deviation from the exact path was only 7.3× 10−6 and 3.6× 10−4

respectively.

7.6 Conclusions

We developed an efficient kernel selection path algorithm for a generic family of kernel target

alignment based `p-MKL formulation. Our starting point was a novel conjecture that the number
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of selected kernels, and the kernels weights themselves, vary monotonically with p in `p-MKL

formulations. We proposed a Generalized `p-KTA formulation and proved that the conjecture

holds for this formulation but not for other popular formulations such as the square loss based `p-

MKL. The monotonicity property of the Generalized `p-KTA formulation allows us to eliminate

kernels whose weight goes below a certain threshold from the optimization for large intervals

of p leading to efficient path following. It was theoretically and empirically demonstrated that

this resulted in only a minor deviation from the exact path but achieved significant speedups.

Experiments also revealed that our proposed formulation could yield significantly higher clas-

sification accuracies as compared to state-of-the-art MKL and feature selection methods and

that our approximate path following algorithm could be orders of magnitude faster than other

leading path following techniques. Future work includes investigating the solution path of other

popular `p-MKL setting [81, 128] and developing efficient path following algorithms for them.
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Chapter 8

Conclusions

In this final chapter, we summarize the main contributions of this thesis and discuss possible

directions of future work.

8.1 Summary

The paradigm of training multiple related tasks jointly raises interesting challenges and presents

new opportunities for learning the underlying models in unconventional ways. In this thesis, we

focused on the problem of learning which feature information is to be shared among which

tasks. A key idea explored by us is to pose the problem of learning the features shared among

multiple tasks as that of learning a shared kernel. We proposed diverse models for multi-task

kernel learning. In addition to the models developed, derivations of specialized dual formu-

lations as well as the algorithms proposed for solving them efficiently are also an important

contribution of this thesis.

Learning a common feature representation across all the tasks is a popular multi-task set-

ting. In Chapter 3, we modeled the shared kernel as a linear combination of a given set of

base kernels, the Multiple Kernel Learning (MKL) framework. A generic `q/`p mixed-norm

formulation is proposed to learn the shared kernel as well as prediction functions. The q-norm,

q ∈ [1, 2), over the base kernels promotes sparsity in the kernel combination while the p-

norm over the tasks induces varying degree of relatedness among the tasks. Efficient mirror

descent and sequential minimal optimization (SMO) based algorithms were proposed to solve
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the proposed formulation. The formulation is far more scalable than existing multi-task feature

learning methodologies [5, 4, 8, 33, 9]. Experiments on object categorization and other real

world datasets showed that it achieves a good generalization when provided with a suitable set

of base kernels.

Instead of sharing the feature spaces induced by given kernels, the tasks may share the

latent feature spaces residing within those kernels. For such settings, we model the feature

space induced by the shared kernel as a low-dimensional orthonormal transformation of the

feature spaces induced by the base kernels. In Chapter 4, we pose this as a `1/`q (q ≥ 1) mixed

Schatten-norm regularized optimization problem. Mixed Schatten-norm regularized problems

are non-standard in literature and call for novel optimization methodologies. We showed that

the negative entropy function can be employed as an efficient Bregmann generating function

in the context of mirror-descent for solving such mixed Schatten-norm regularized problems.

Simulations on benchmark real-world datasets showed that the proposed formulation achieved

statistically significant improvement against state-of-the-art multi-task feature learning algo-

rithm. The results also confirmed that in this setup, learning suitable kernels is essential for

obtaining a good generalization — baselines with uniform kernel combination yielded worse

performance than the baselines employing simple cross-validation over base kernels.

In Chapter 5, we modeled the shared kernel as a polynomial combination of base kernels.

Such combinations may be encoded in a directed acyclic graph (DAG). The size of such DAGs

can become exponential in the number of base kernels. We proposed to explore this DAG by

employing a carefully designed `1/`p block-norm graph based regularizer that induces structure

sparsity within the DAG and enables us to search it with an active set algorithm. Even when

the DAG is exponential in size, the complexity of the proposed algorithm is polynomial in the

size of active set. We also derive a sufficient condition of optimality for our algorithm. We

illustrate the efficacy of the proposed formulation in the application of Rule Ensemble Learn-

ing (REL), which aims at learning an optimal ensemble of conjunctive rules. We model the

conjunctive rules as a polynomial combination of a special set of base kernels and pose the

problem of learning rule ensemble as a kernel learning problem. Empirical studies in REL set-

ting showed that the proposed formulation learnt rules that are easier to interpret and have better

generalization ability than the existing REL approaches.
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In Chapter 6, we considered the setting where some relevant kernels (feature spaces) are

shared across few tasks. We aim at searching the exponentially large space of all possible

groups of tasks that may share a kernel. We propose a graph based multi-task regularizer that

encodes the following important structure among the groups of tasks that leads to an efficient

active set based algorithm for solving it: if a group of tasks do not share a kernel, then none of

its superset share a kernel. Empirical results on benchmark datasets underline the importance

of learning which kernels are shared by among which tasks. In particular, we see a case where

learning the tasks independently performs much better than the multi-task learning algorithms

that assume all the tasks to be related and/or have a common kernel (feature space) for all the

tasks. However, our formulation achieves statistically significant improvement in this dataset.

Overall, the proposed formulation achieves good generalization and outperforms state-of-the-

art multi-task learning algorithms in many cases.

We explored the problem of computing the kernel selection path for p-norm Multiple

Kernel Learning (MKL) framework in Chapter 7. Kernel selection path is the variation in the

classification accuracy as the fraction of selected kernels is varied from null to unity. In `p-MKL

setting, the fraction of selected kernels as well as the generalization achieved by the formulation

varies significantly with the parameter p. We propose a novel conjecture which states that, for

certain `p-MKL formulations, the number of features selected in the optimal solution monoton-

ically decreases as p is decreased from an initial value to unity. We prove the conjecture for a

generic family of kernel target alignment based `p-MKL formulations. This allows us to develop

an efficient path computing algorithm for MKL. We empirically demonstrate that our formula-

tion can lead to classification accuracies which are as much as 10% higher on benchmark data

sets not only as compared to other `p-MKL formulations and uniform kernel baselines but also

leading feature selection methods. We further demonstrate that our path following algorithm

reduces training time significantly over other path following algorithms, state-of-the-art MKL

optimizers such as SMO-MKL, warm restarts and predictor-corrector baselines. In particular,

we generate the entire feature selection path for data sets with a hundred thousand features in

approximately half an hour on standard hardware. Entire path generation for such data set is

well beyond the scaling capabilities of other methods.
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8.2 Future Work

Discovering the correlations existing among learning problems and leveraging them to obtain

better performance is a central theme in machine learning. Our work primarily focused on

kernel learning based feature induction in various multi-task settings. However, the relatedness

among the tasks may not be limited to kernel (feature) sharing. For instance, in the area of

inductive logic programming, one is typically provided with background knowledge for every

problem (task). Hence, it may be the case that the tasks share the same background knowledge

in such settings. A possible extension of our framework is to design algorithms that may exploit

such prior knowledge during the training phase.

Tasks may also have temporal correlations. Such examples are common in the applications

of computational biology and finance. [152, 131] studied the problem of predicting disease

progression for several patients at successive time slots. They proposed models that learned the

tasks corresponding to some given time slots. An interesting direction of research is to develop

models that learn the prediction functions for future time slots as well. The framework of

operator-valued kernels and functional data analysis [76] is a promising direction in this regard.

Limited work has been done in the area of structured prediction when multiple related

tasks are involved. [53] have proposed a generic extension of the max-margin based structured

output prediction formulation [123] to multiple tasks while [111] considered the case where the

structured output (for each task) is a vector in finite dimensional Euclidean space. Developing

novel formulations and efficient algorithms in this setting will be a useful contribution.

Our work in Rule Ensemble Learning is limited to the domain of propositional logic/features.

It will be interesting if the proposed formulation is generalized to the First Order Logic (FOL)

framework. This may involve exploring other feature induction paradigms such as those em-

ployed in FOL setups.

In Chapter 7, we showed that monotonic kernel selection path is not guaranteed for generic

Multiple Kernel Learning (MKL) formulations. Investigating the nature of this path for other

popular MKL settings and developing efficient algorithms for computing it in those setups is

another interesting line of work.
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Appendix A

A.1 Learning Multiple Tasks with Hierarchical Kernels

A.1.1 Lemma 26 of [95]

Let ai ≥ 0, i = 1, . . . , d and 1 ≤ r <∞. Then, for ∆d,r =
{
η ∈ Rd | η ≥ 0,

∑d
i=1 η

r
i ≤ 1

}

min
η∈∆d,r

d∑
i=1

ai
ηi

=

(
d∑
i=1

a
r
r+1

i

)1+ 1
r

and the minimum is attained at

ηi =
a

1
r+1

i(∑d
i=1 a

r
r+1

i

) 1
r

∀ i = 1, . . . , d.

A.1.2 Proof of Lemma 5.2.1

Proof. Applying the above lemma (A.1.1) on the outermost `1-norm of ΩT (f1, . . . , fT )2 (5.3),

we have

ΩT (f1, . . . , fT )2 == min
γ∈∆|V |,1

∑
v∈V

d2
v

γv

 ∑
w∈D(v)

(Qw(f1, . . . , fT ))ρ

 2
ρ

Reapply the above lemma on the individual terms of the above summation, we get ∑
w∈D(v)

(Qw(f1, . . . , fT )2)
ρ
2

 2
ρ

= min
λv∈∆|D(v)|,ρ̂

∑
w∈D(v)

Qw(f1, . . . , fT )2

λvw

Using the above two results and regrouping the terms will complete the proof.
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A.1.3 Re-parameterization of the Multi-task Regularizer (5.5)

The gHKLMT dual formulation (5.7) follows from the representer theorem [113] after employing

the following reparameterization in (5.5).

Define f 0w = 1
T+µ

∑T
t=1 ftw and f tw = ftw−f 0w. Then,Qw(f1, . . . , fT ) may be rewritten

as:

Qw(f1, . . . , fT ) =

(
µ‖f 0w‖2 +

T∑
t=1

‖f tw‖2

) 1
2

Further, construct the following feature map [48]

Φw(x, t) = (
φw(x)
√
µ
, 0, . . . ,0︸ ︷︷ ︸

for tasks before t

, φw(x), 0, . . . ,0︸ ︷︷ ︸
for tasks after t

) (A.1)

and define fw = (
√
µf 0w, f 1w, . . . , fTw).

With the above definitions, it can be observed that Qw(f1, . . . , fT )2 = ‖fw‖2 and Ft(x) =∑
w∈V〈fw,Φw(x, t)〉 − bt ∀ t. It follows from Lemma 5.2.1 that the gHKLMT primal problem

based on (5.5) is equivalent to:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

min
f,b

1

2

∑
w∈V

δw(γ, λ)−1‖fw‖2 + C
T∑
t=1

m∑
i=1

`(yti, Ft(xti)) (A.2)

where f = (fw)w∈V and b = [b1, . . . , bT ].

A.1.4 Min-max interchange

Claim: The problem (5.7) remains the same whether solved with the original set of variables

(γ, λ) or when solved with only those γv 6= 0 and λvw 6= 0 at optimality.

Proof: It follows from the following arguments: a) variables γ and λ owe their presence in (5.7)

only via δ(γ, λ) functions, b) (γv = 0) ⇒ (δw(γ, λ) = 0 ∀w ∈ D(v)) and (∃v ∈ A(w)|λvw =

0)⇒ (δw(γ, λ) = 0), and c) min-max interchange in (5.7) yields an equivalent formulation. Its

proof is provided in the following lemma.

Lemma A.1.1. The following min-max interchange is equivalent

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

max
αt∈S(yt,C)∀t

G(γ, λ, α) = max
αt∈S(yt,C)∀t

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α)

where G(γ, λ, α) is as defined in (5.7).
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Proof. We proceed by applying a change of variables. Note that γv = 0 implies that the vari-

ables λvw (∀w ∈ D(v)) do not influence the objective of optimization problem (5.7). This

follows from the definition of the δ(γ, λ) function. Hence, we define βvw = γvλvw, ∀w ∈ D(v)

as it is a one-to-one transformation for γv 6= 0 [see also 120]. The gHKL dual (5.7) (the L.H.S.

of the proposed lemma) can be equivalently rewritten as

min
βvw≥0 ∀w∈D(v),v∈V∑

v ‖βvD(v)‖ρ̂≤1

max
αt∈S(yt,C)∀t

G(β, α) where βvD(v) = (βvw)w∈D(v),

G(β, α) = 1>α− 1

2
α>Y

(∑
w∈V

δw(β)Hw

)
Yα and δw(β)−1 =

∑
v∈A(w)

d2
v

βvw

Note that δw(β) is a concave function of β (in the given feasibility set) and hence G(β, α)

is convex-concave function with convex and compact feasibility sets. Therefore, applying the

Sion-Kakutani minmax theorem [116], we have minβ maxαG(β, α) = maxα minβ G(β, α)

(with constraints over β and α as stated above). Finally, we revert to the original variables

(γ, λ): γv = (
∑

w∈D(v) (βvw)ρ̂)
1
ρ̂ ∀ v ∈ V and λvw = βvw

γv
∀ w ∈ D(v), ∀ v ∈ V s.t. γv 6= 0.

This gives us the equivalent

max
αt∈S(yt,C)∀t

min
γ∈∆|V |,1

min
λv∈∆|D(v)|,ρ̂∀v∈V

G(γ, λ, α)

A.1.5 Proof of Theorem 5.2.3

Before stating the proof of Theorem 5.2.3, we first prove the following results that will be

employed therein (also see Proposition 11 of [10]).

Lemma A.1.2. Let ai > 0 ∀ i = 1, . . . , d, 1 < r <∞ and ∆d,1 =
{
z ∈ Rd | z ≥ 0,

∑d
i=1 zi ≤ 1

}
.

Then

min
z∈∆d,1

d∑
i=1

aiz
r
i =

(
d∑
i=1

a
1

1−r
i

)1−r

and the minimum is attained at

zi = a
1

1−r
i

(
d∑
j=1

a
1

1−r
i

)−1

∀ i = 1, . . . , d.
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Proof. Take vectors u1 and u2 as those with entries a
1
r
i zi and a

− 1
r

i ∀ i = 1, . . . , d respectively.

The result follows from the Holder’s inequality: u>1 u2 ≤ ‖u1‖r‖u2‖ r
r−1

. Note that if any

ai = 0, then the optimal value of the above optimization problem is zero.

Proposition A.1.3. The following convex optimization problems are dual to each other, and

there is no duality gap:

max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)Mw, (A.3)

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(A.4)

where L = {κ ∈ R|V|×|V| | κ ≥ 0,
∑

v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c, ∀ w ∈ V},

∆n,r = {z ∈ Rn | z ≥ 0,
∑n

i=1 z
r
i ≤ 1} and Mw ≥ 0 ∀ w ∈ V .

Proof. The optimization problem (A.4) may be equivalently rewritten as:

min
κ∈L

min
A
A subject to A ≥

∑
w∈D(u)

κ2
uwλuwMw

d2
u

∀ u ∈ V

= min
κ∈L

max
γ∈∆|V|,1

∑
u∈V

∑
w∈D(u)

γuκ
2
uwλuwMw

d2
u

(Lagrangian dual with respect to A)

= max
γ∈∆|V|,1

min
κ∈L

∑
w∈V

 ∑
u∈A(w)

κ2
uw

γuλuw
d2
u

Mw (min-max interchange and rearranging terms)

= max
γ∈∆|V|,1

∑
w∈V

 ∑
u∈A(w)

(
γuλuw
d2
u

)−1
−1

Mw (Lemma A.1.2 with respect to variables κ)

= max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)Mw �

We now begin with the proof of Theorem 5.2.3.

Proof. From Lemma A.1.1, the gHKL dual (5.7) can be equivalently written as

max
α∈S(y,C)

1>α− 1

2
max

γ∈∆|V|,1
max

λv∈∆|D(v)|,ρ̂∀v∈V

(∑
w∈V

δw(γ, λ)α>YHwYα

)
︸ ︷︷ ︸

O

(A.5)
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Here ρ̂ = ρ
2−ρ . In the following, we equivalently rewrite the second part of the above formula-

tion

O = max
λv∈∆|D(v)|,ρ̂∀v∈V

max
γ∈∆|V|,1

∑
w∈V

δw(γ, λ)α>YHwYα︸ ︷︷ ︸
Mw

= max
λv∈∆|D(v)|,ρ̂∀v∈V

min
κ∈L

max
u∈V

∑
w∈D(u)

κ2
uwλuwMw

d2
u

(Proposition A.1.3)

= max
λv∈∆|D(v)|,ρ̂∀v∈V

min
κ∈L

min
A

A (Eliminating u)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀ v ∈ V

= min
κ∈L

min
A

max
λv∈∆|D(v)|,ρ̂∀v∈V

A (Sion-Kakutani theorem)

s.t. A ≥
∑

w∈D(v)

κ2
vwλvwMw

d2
v

∀ v ∈ V

= min
κ∈L

min
A

A (Holder’s inequality, ρ̄= ρ̂
ρ̂−1

)

s.t. A ≥ d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

∀ v ∈ V

= min
κ∈L

max
u∈V

d−2
u

 ∑
w∈D(u)

(
κ2
uwMw

)ρ̄ 1
ρ̄

(EliminatingA) (A.6)

Now consider the problem Oρ̄ = minκ∈L maxu∈V d
−2ρ̄
u

∑
w∈D(u) (κ2

uwMw)
ρ̄. Its lagrangian is

L(κ,A, η) = A+
∑
v∈V

ηv

d−2ρ̄
v

∑
w∈D(v)

(
κ2
vwMw

)ρ̄ − A


Minimization of L with respect to A leads to the constraint η ∈ ∆|V|,1. Hence

Oρ̄ = max
η∈∆|V|,1

min
κ∈L

∑
v∈V

∑
w∈D(v)

ηv
(
d−2
v κ2

vwMw

)ρ̄
Using the special structure of L, the above can be rewritten as:

Oρ̄ = max
η∈∆|V|,1

∑
w∈V

(Mw)ρ̄

 min
κw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw


Applying Lemma A.1.2 with respect to variables κ, we have that

min
κw∈∆|A(w)|,1

∑
v∈A(w)

(
ηvd
−2ρ̄
v

)
κ2ρ̄
vw = ζw(η) =

 ∑
v∈A(w)

dρvη
1−ρ
v

 1
1−ρ

(A.7)
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From the above two results, we obtain the following equivalent dual of (A.6)

O = max
η∈∆|V|,1

(∑
w∈V

ζw(η)
(
α>YHwYα

)ρ̄) 1
ρ̄

(A.8)

Substituting O in (A.5) by the above (A.8) and again interchanging the min-max completes the

proof.

A.1.6 Proof of Theorem 5.3.1

Proof. We begin by noting that ζv(η) (v ∈ V) is a concave function of η for all v (this is because

when ρ ∈ (1, 2], ζv is a weighted q-norm in η, where q ∈ [−1, 0) and hence is concave in the

first quadrant). By simple observations regarding operations preserving convexity we have that

the objective in (5.11) is a convex function of η for a fixed value of α. Hence g(η), which is

a point-wise maximum over convex functions, is itself convex. The expression for ∇g(η) is

computed by employing the Danskin’s theorem (prop. B.25 in [23]) and is as follows:

(∇g(η))i =− (1− ε)
2ρ̄

×

P1︷ ︸︸ ︷ ∑
u∈D(i)

dρi

(
(1− ε)ηi +

ε

|V|

)−ρ
ζsu(η)ρ

(
ᾱ>YHuYᾱ

)ρ̄ (A.9)

×

(∑
w∈V

ζsw(η)
(
ᾱ>YHwYᾱ

)ρ̄) 1
ρ̄
−1

︸ ︷︷ ︸
P2

where ρ̄ = ρ
2(ρ−1)

, ζsw(η) = ζw((1 − ε)η + ε
|V|), i.e., the smoothed ζw(η) and ᾱ is an optimal

solution of problem (5.11) with that η where the gradient is to be computed.

Next, we show that g is Lipschitz continuous by showing that its gradient is bounded.

Firstly, ρ ∈ (1, 2] and hence ρ̄ ∈ [1,∞). Next, let the minimum and maximum eigenval-

ues over all Hw (w ∈ V) be θ and σ respectively. Then we have θ‖ᾱ‖2 ≤ ᾱ>YHwYᾱ ≤

σ‖ᾱ‖2. Using this, we obtain:
∑

w∈V ζ
s
w(η)

(
ᾱ>YHwYᾱ

)ρ̄ ≥ θρ̄‖ᾱ‖2ρ̄
∑

w∈V ζ
s
w(η). Note

that
∑

w∈V ζ
s
w(η) ≥ ζsr (η) where r ∈ sources(V) and ζsr (η) ≥ d

ρ/(1−ρ)
max

ε
|V| where dmax is the

maximum of dv (v ∈ V). Thus we obtain: P2 ≤ (θρ̄‖ᾱ‖2ρ̄ε/|V|)
1
ρ̄
−1
d

2−ρ
ρ−1
max.

Now, it is easy to see that ∀ u ∈ D(i), dρi ((1 − ε)ηi + ε
|V|)
−ρζu(η)ρ ≤ d

ρ
1−ρ
i ≤ d

ρ
1−ρ
min,

where dmin is the minimum of dv (v ∈ V). Hence P1 ≤ |V|σρ̄‖ᾱ‖2ρ̄d
ρ

1−ρ
min. In addition, since
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0 ≤ ᾱ ≤ C, we have ‖ᾱ‖ ≤
√
mTC. Summarizing these findings, we obtain the following

bound on the gradient:

‖∇g(η)‖1 ≤
(1− ε)

2ρ̄
mTC2θ1−ρ̄σρ̄ε

1−ρ̄
ρ̄ |V|

2
ρ

+1d
ρ

1−ρ
mind

2−ρ
ρ−1
max

Proof will be similar for the gHKLMT formulations in other learning settings.

A.1.7 Proof of Theorem 5.3.2

Proof. Given a triplet (γ, λ, α = [α>1 , . . . , α
>
T ]>) (with associated primal (f = (f1, . . . , fT ), b, ξ)),

the duality gap (∆) between the two variational formulations in lemma A.1.1 is given by

∆ = max
α̂t∈S(yt,C)∀t

G(γ, λ, α̂) − min
γ̂∈∆|V|,1

min
λ̂v∈∆|D(v)|,ρ̂∀v∈V

G(γ̂, λ̂, α)

≤ 1

2
ΩT (f)2 + C1>ξ − min

γ̂∈∆|V|,1
min

λ̂v∈∆|D(v)|,ρ̂∀v∈V
G(γ̂, λ̂, α)

=

Gap in solving with fixed (γ,λ)︷ ︸︸ ︷
ΩT (f)2 + C1>ξ − 1>α+

1

2

Gap in solving with fixed α︷ ︸︸ ︷(
max

γ̂∈∆|V|,1
max

λ̂v∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ̂, λ̂)α>YHwYα− ΩT (f)2

)

With this upper bound on duality gap, it is easy to see that the following condition is sufficient

for the reduced solution with active setW having ∆ ≤ ε:

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>WYHwYαW ≤ ΩT (fW)2 + 2(ε− εW) (A.10)

where εW is the gap1 associated with the computation of the αW . Here as well as in the rest

of the proof, the subscript ·W implies the value of the variable obtained when the gHKLMT

formulation is solved with V restricted to active setW . In appendix A.1.5, we proved that the

L.H.S. of the above inequality is equal to the R.H.S. of (A.6), i.e.,

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)Mw = min
κ∈L

max
v∈V

d−2
v

 ∑
w∈D(v)

(
κ2
vwMw

)ρ̄ 1
ρ̄

(A.11)

where Mw = α>WYHwYαW .

1This is given by the gap associated with the ρ̂-norm MKL solver employed in the mirror descent algorithm for

solving the small problem (5.9).
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Next, we obtain an upper bound of the above by substituting any κ ∈ L in the R.H.S

of (A.11). In particular, we employ the following: the value of κvw v, w ∈ W is taken to be

that obtained by solving the small2 problem (5.9). This is fine because W = hull(W). For

v ∈ Wc and w ∈ W , by definition of L andW , we have κvw = 0. Next, κvw is set to zero

∀ v ∈ W , w ∈ Wc. For the remaining κvw, v ∈ Wc andw ∈ Wc, we use the value of κ obtained

by solve (A.6) for ρ = 1 case, κvw = dv

(∑
u∈A(v)∩Wc du

)−1

[also see Section A.5 10]. Note

that the above constructed value of κ is feasible in set L. With this choice of κ substituted in

the R.H.S. of (A.11), we have the following inequalities

max
γ∈∆|V|,1

max
λv∈∆|D(v)|,ρ̂∀v∈V

∑
w∈V

δw(γ, λ)α>WYHwYαW

≤ max

ΩT (fW)2, max
u∈Wc

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄

 (Specific choice of κ)

= max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩Wc dv

)2


ρ̄

1
ρ̄

 (∵ W=hull(W))

≤ max

ΩT (fW)2, max
u∈sources(Wc)

 ∑
w∈D(u)

 α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2


ρ̄

1
ρ̄


(∵

∑
v∈A(w)∩Wc dv≥

∑
v∈A(w)∩D(u) dv)

≤ max

ΩT (fW)2, max
u∈sources(Wc)

∑
w∈D(u)

α>WYHwYαW(∑
v∈A(w)∩D(u) dv

)2

 (∵ ‖β‖1≥‖β‖ρ̄ ∀ ρ̄≥1)

Employing this upper bound in (A.10) leads to the result in Theorem 5.3.2. Note that in practice,

the last upper bound is not loose for REL application. This is because most of the matrices,

especially near the bottom of the lattice, will be (near) zero-matrices – larger the conjunctive

rule, the fewer are the examples which may satisfy it.

2κvw (∀ v, w ∈ W) obtained in this manner satisfy the constraint set L restricted to W , i.e., LW = {κ ∈

R|W|×|W| | κ ≥ 0,
∑
v∈A(w) κvw = 1, κvw = 0 ∀ v ∈ A(w)c ∩W, ∀ w ∈ W}
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A.1.8 Extending gHKLMT to General Convex Loss Functions

Here we present extension of the proposed algorithm to other settings like regression. We begin

with the gHKLMT formulation for a general convex loss function ` (for example, the hinge loss,

the square loss, the huber loss, etc.).

Equation (5.3) presented the primal gHKLMT with a general convex loss function `. The

specialized dual formulation corresponding to (5.3) is given by

min
η∈∆|V|,1

max
αt∈Rm,1>αt=0 ∀t

−C
T∑
t=1

m∑
i=1

`∗
(
−αti
C
, yti

)
− 1

2

(∑
w∈V

ζw(η)
(
α>Hwα

)ρ̄) 1
ρ̄

where α = [α>1 , . . . , α
>
T ]>, ζw(η) =

(∑
v∈A(w) d

ρ
vη

1−ρ
v

) 1
1−ρ

(refer Theorem 5.2.3 for details)

and `∗ denotes the Fenchel conjugate3 function [26] of `.

A.1.9 Prediction function for gHKLMT with the hinge loss function

Let the final active set beW and (η̄W , ᾱW) be the optimal solution of (5.10). Then the prediction

function for an instance xtj belonging to the tth task is given by

Ft(x) = (ᾱW � y)>

(∑
w∈W

θ̄w(ζw(η̄W))
1
ρ̄Hw(·,xtj)

)
(A.12)

where symbol � denote element-wise product, Hw is the kernel matrix corresponding to the

multi-task kernel (5.8), Hw(·,xtj) = ((Hw(xt′i,xtj))
m
i=1)Tt′=1 and

θ̄w =

 (ζw(η̄W))
1
ρ̄ ᾱ>WYHwYᾱW(∑

w∈W

(
(ζw(η̄W))

1
ρ̄ ᾱ>WYHwYᾱW

)ρ̄) 1
ρ̄


1
ρ̂−1

A.1.10 Proof of Corollary 5.3.3

Note that proving the computational complexity of the matrix Ku (u ∈ sources(Wc)) in (5.12)

to be polynomial time in size of the active set and the training set dimensions suffices to prove

3Fenchel conjugate ϕ∗(z) of a convex function ϕ(u) is given by ϕ∗(z) = supu z
>u − ϕ(u). As an example,

for hinge loss `(u, y) = max(0, 1− uy), `∗(z, y) =

 zy if zy ∈ [−1, 0]

∞ otherwise
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the corollary. This is because all the other steps in Algorithms 3 and 2 are of polynomial time

complexity (discussed in Section 5.3).

We begin the proof by introducing some indexing notations related to the multi-task matri-

ces. Let the entries in Hw, the mT ×mT multi-task kernel matrix, be arranged in the following

form: the entry corresponding to the input pair (xt1i,xt2j) be in the ((t1− 1) ∗m+ i)th row and

((t2 − 1) ∗m+ j)th column of Hw.

Next we observe that the expression for Ku in Theorem 5.3.2 may be rewritten as

Ku =

 ∑
w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2


︸ ︷︷ ︸

Tu

�KT

where: i) Kw is a mT ×mT matrix corresponding to the base kernel kw and constructed from

the inputs from all the tasks, ii) KT is a mT × mT such that the entry corresponding to the

((t1− 1) ∗m+ i)th row and ((t2− 1) ∗m+ j)th column (1 ≤ i, j ≤ m) of KT is B(t1, t2), and

iii) � is the symbol for element-wise product (Hadamard product).

In the above expression, Ku is computable in polynomial time if and only if Tu is com-

putable in polynomial time. The proof of the corollary follows from observing the expression

of the sufficiency condition for optimality of the HKL (refer to Equation 21 in [10]), which also

involves the term Tu.

A.1.11 Proof of Theorem 5.4.1

Given an active setW of size W , proving that the computational complexity of the verification

of the sufficient condition of optimality (5.12) is polynomial in terms of the active set and

the training set sizes suffices to prove Theorem 5.4.1. This is because all the other steps in

Algorithms 3 and 2 are of polynomial time complexity (Section 5.3).

In the REL setup, the DAG is the conjunction lattice and the embedded kernels kv v ∈ V

can be rewritten as

kv(xi,xj) = φv(xi) · φv(xj) =

(∏
c∈Sv

φc(xi)

)
·

(∏
c∈Sv

φc(xj)

)
=
⊙
c∈Sv

kc(xi,xj)

where Sv is the set of basic propositions involved in the conjunction φv and � is the symbol for

element-wise product (Hadamard product). The kernels corresponding to the basic propositions
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are in fact the base kernels embedded in the second level nodes of the lattice V . Employing the

above, the matrices Ku (in L.H.S. of (5.12)) can be computed as

Ku =
∑

w∈D(u)

Kw(∑
v∈A(w)∩D(u) dv

)2 =

(⊙
c∈Su

Kc

a2

)
�

 ⊙
c∈B/Su

(
Kc

(1 + a)2
+ 11>

)

where Kc is the kernel matrix corresponding to the basic proposition φc, B is the set of all basic

propositions and the parameters dv (v ∈ V) are defined as dv = a|Sv | (a > 0).

It is obvious that Ku (u ∈ V) can be computed in O(pm2). In practice, by caching the

matrix Ku associated with a node u, the corresponding matrix Kw associated with any child w

of u can be computed in O(m2). For illustration, suppose Ku1 needs to be computed, given that

Ku0 is cached and u0 is a parent of u1. Let the extra basic proposition contained in φu1 (with

respect to φu0) be φe. Then Ku1 can be calculated as follows:

Ku1 = Ku0 �
(
Ke

a2

)
�
(

Ke

(1 + a)2
+ 11>

)

where � is the symbol for element-wise division of matrices.

Hence, plugging the REL specific values in the runtime complexity of the gHKL algo-

rithm, ω =constant and z = p, the runtime complexity of the gHKL based REL algorithm is

O(m3W 3 log(W ) +m2W 2p).
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A.1.12 REL Binary Classification Results in AUC

Dataset RuleFit SLI ENDER HKL-`1-MKL
gHKLρ

ρ = 2 ρ = 1.5 ρ = 1.1

TIC-TAC-TOE 0.736± 0.05 0.482± 0.21 0.783± 0.036 0.836± 0.024 0.967± 0.023 0.973± 0.02 0.975± 0.018

B-CANCER-W 0.941± 0.011 0.917± 0.051 0.958± 0.039 0.981± 0.008 0.984± 0.005 0.93± 0.099 0.93± 0.099

DIABETES 0.67± 0.027 0.576± 0.115 0.761± 0.02 0.746± 0.050 0.766± 0.046 0.733± 0.058 0.636± 0.118

HABERMAN 0.537± 0.054 0.17± 0.155 0.575± 0.039 0.524± 0.078 0.556± 0.07 0.482± 0.11 0.383± 0.166

HEARTC 0.764± 0.03 0.541± 0.215 0.805± 0.031 0.802± 0.085 0.837± 0.035 0.763± 0.12 0.753± 0.118

BLOOD TRANS. 0.546± 0.06 0.175± 0.256 0.68± 0.028 0.660± 0.025 0.667± 0.034 0.634± 0.028 0.519± 0.079

HEARTSTAT 0.765± 0.028 0.712± 0.085 0.801± 0.022 0.825± 0.032 0.849± 0.021 0.83± 0.027 0.811± 0.056

MONK-3 0.972 0.632 0.998 0.995 1 0.998 0.957

VOTE 0.955± 0.022 0.919± 0.048 0.965± 0.014 0.977± 0.009 0.972± 0.016 0.948± 0.015 0.945± 0.016

B-CANCER 0.578± 0.05 0.469± 0.078 0.622± 0.043 0.627± 0.063 0.637± 0.055 0.576± 0.089 0.513± 0.124

MAM. MASS 0.818± 0.02 0.763± 0.08 0.887± 0.006 0.866± 0.028 0.882± 0.023 0.85± 0.032 0.839± 0.03

LIVER 0.607± 0.017 0.093± 0.168 0.619± 0.038 0.619± 0.074 0.623± 0.038 0.583± 0.11 0.565± 0.109

Table A.1: Results on binary REL classification. AUC along with standard deviation averaged
over 10 splits is shown.

A.2 Learning Kernels on Latent Task Structure

A.2.1 Proof of Theorem 6.3.1

In the following, we will first reparameterize the proposed primal formulation (6.1) with the

regularizer defined in (6.3). We re-write the primal formulation below

min
h,b

1

2

[∑
v∈V

dv

{ ∑
w∈D(v)

(
n∑
j=1

(
µ‖hjw0‖2

2 +
∑
t∈w

‖hjtw‖2
2

) p
2

) 1
p
} 1

q
]2

+ C
∑
t,i

`(Ft(xti), yti)

Without loss of generality, we assume that within each node w, the tasks are arranged in

the order of their number (hence ti before tj if ti < tj). Next, we employ the following

multi-task feature map [48]. For a given input instance x belonging to the task t, its fea-

ture map with respect to the kernel kj and a group w (containing task t) is: Φj
w(x, t) =
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(φ
j(x)√
µ
,0, . . . ,0︸ ︷︷ ︸

tasks before t

, φj(x),0, . . . ,0︸ ︷︷ ︸
tasks after t

), where 0 represents a zero vector in the induced feature space

φj of the kernel kj . The task parameters within the group corresponding to kernel kj are re-

grouped as: f jw = (
√
µhj0w, h

j
t1w, . . . , h

j
t|w|w

). Hence, the decision function of task t is re-written

as: Ft(x) =
∑

w∈Gt〈fw,Φw(x, t)〉 − bt, where Φw = (Φ1
w, . . . ,Φ

n
w) and fw = (f 1

w, . . . , f
n
w).

From such constructions, it is evident that the the mixed-norm base regularizer ‖Θw‖p within

each group w can be written as: ‖Θw‖p =
(∑

j ‖f jw‖
p
2

) 1
p

= ‖fw‖p. Using the above reparame-

terization, the proposed primal formulation with hinge loss function can be equivalently stated

as:

min
f ,ξ,b

1

2
Ω(f)2 + C

T∑
t=1

m∑
i=1

ξti (A.13)

s.t. ytiFt(xti) ≥ 1− ξti, ξti ≥ 0 ∀ i, t

where Ω(f) =
∑

v∈V dv‖fD(v)‖q,p and ‖fD(v)‖q,p =
(∑

w∈D(v) ‖fw‖qp
) 1
q
.

Note that (A.13) aims at finding an optimal vector in an RKHS. In order to facilitate the

application of a suitable representer theorem [113] for writing down the dual, we employ a

variational formulation of Ω(f). By repeated application of lemma (appendix A.1.1), we get the

following result (see also A.1.2):

Ω(f)2 = min
γ∈∆|V|,1

min
λv∈∆|D(v)|,q̂∀v∈V

min
σv∈∆k,p̂∀v∈V

∑
w∈V

δ−1
w (γ, λ)

‖fw‖2
2

σjw

where δ−1
w (γ, λ) =

∑
v∈A(w)

d2
v

γvλvw
. Next, by applying the representer theorem (see also [108])

and using the notion of dual norm [26], we derive a partial-dual (dual with respect to variables

f , b, ξ alone) of (A.13) to be the following:

min
γ∈∆|V|,1

min
λv∈∆|D(v)|,q̂∀v∈V

max
αt∈Sm(yt,C)∀t∈T

G(γ, λ, α) (A.14)

where

G(γ, λ, α) =
∑
t,i

αti −
1

2

∑
w∈V

δw(γ, λ)‖α>Kwα‖p̄,

‖α>Kwα‖p̄ =
(∑n

j=1

(
α>Kj

wα
)p̄) 1

p̄
and p̄ = p

2(p−1)
.

We obtain the highly specialized partial dual 6.4 from the Lagrangian partial dual A.14

via a series of optimization related reformulations (see A.1.4 and A.1.5 for details).
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A.2.2 Proof of Theorem 6.4.1

The proof of this theorem follows very closely the proof technique employed for Theorem 5.3.2.

The latter is detailed in Section A.1.7. The key idea is to upper bound the duality gap associated

with the min-max interchange within the Lagrangian partial dual A.14.

A.3 Kernel Selection Path in `p-norm Multiple Kernel Learn-

ing

A.3.1 Proof of Theorem 7.3.1

Proof. The optimal solution path of (1), i.e. η∗(p), is unique since the objective of (1) is strictly

convex. In order to prove the smoothness of the optimal solution path, we begin by deriving the

necessary and sufficient conditions of optimality for (1). To this end, we first define

g(ηi) = λ1B̄F (ηi) + λ2η
p
i − ηiy>Kiy

Next, we consider two cases:

Case 1: η∗i = 0 for a given p: The necessary and sufficient conditions of optimality for a

convex function is that the gradient of the function at optimality, g′(η∗i ), should lie in the normal

cone of the feasibility set [22]. This results in the following inequality:

λ1(F ′(0)− F ′(η0
i ))− y>Kiy ≥ 0 (A.15)

Since F is a convex function, we have F (ηi) ≥ F (η0
i ) + F ′(η0

i )(ηi − η0
i ) as well as F (η0

i ) ≥

F (ηi)+F ′(ηi)(η
0
i −ηi). Summing these two inequalities, we get 0 ≥ (F ′(ηi)−F ′(η0

i ))(η
0
i −ηi).

Now substituting ηi = 0, we get 0 ≥ η0
i (F

′(0) − F ′(η0
i )). Since η0

i ≥ 0 (feasible set of ηi is

≥ 0), it follows 0 ≥ F ′(0) − F ′(η0
i ). Hence, in the LHS of (A.15), (F ′(0) − F ′(η0

i )) ≤ 0 and

−y>Kiy ≤ 0. It follows that the optimality conditions for η∗i = 0 are

F ′(0)− F ′(η0
i ) = 0 and y>Kiy = 0 (A.16)

Note that both the above equalities are independent of p. It follows that if ∃ p′ > 1 s.t. η∗i (p
′) =

0 then η∗i (p) = 0 ∀ p > 1. Thus, the optimal solution path, η∗i (p), is smooth, in fact linear, when

∃ p′ > 1 s.t. η∗i (p
′) = 0.
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Case 2: η∗i > 0 for a given p: In this case, the necessary and sufficient conditions of

optimality [22] simplifies to g′(η∗i ) = 0. Thus we get the following optimality condition

Gi(ηi, p) ≡λ1(F ′(ηi)− F ′(η0
i )) + λ2pη

p−1
i

− y>Kiy = 0 (A.17)

In the following, we prove that the path of the optimal solution, η∗i (p), of (A.17) is smooth for

the non trivial case: η∗i (p) > 0 ∀ p > 1.

Since the pair (η∗i (p), p) always satisfy the equality in (A.17), we must have that dGi(η
∗
i (p), p) ≡∑

j
∂Gi

∂ηj
dηj + ∂Gi

∂p
dp = 0 ∀ p > 1. This leads to

dη∗i (p)
dp

=
−λ2η

∗
i (p)

p−1(1 + p ln η∗i (p))

λ1F ′′(η∗i (p)) + λ2p(p− 1)η∗i (p)
p−2

(A.18)

The terms ln η∗i (p) and η∗i (p)
p−2 are always finite as η∗i (p) > 0 and the denominator of (A.18)

is always non-zero, in fact positive, because for any convex, twice-differentiable F we have:

F ′′(η∗i (p)) ≥ 0. Hence, the derivative along the optimal solution path (A.18) is well defined

and itself a continuous function; proving that the optimal solution path is smooth (but generally

non-linear) in this case too.

A.3.2 Proof of Theorem 7.3.2

Proof. The monotonic behavior of η∗i (p) follows from observing the sign of (A.18) and from

the fact that e−
1
p is a monotonically increasing function of p. Note that the denominator of

(A.18) is positive.

A.3.3 Analysis of `p-MKL with Square Loss

In this section, we analyze the proposed conjecture in the context of the `p-MKL formulation

for the ridge regression [39]:

min
η≥0

max
α∈Rm

y>α− 1

2
α>Qηα + λ2

n∑
i=1

ηpi (A.19)

whereQη =
∑

i ηiK
i+ I

2λ1
, I is them×m identity matrix and λ1, λ2 > 0 are the regularization

parameters. Firstly, we consider a setting employed in [83, 44, 43], which leads to the selection
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of a low-dimensional subspace: unit rank base kernels Ki = uiu
>
i s.t. trace(Ki) = 1 and

〈Ki, Kj〉 = 0 ∀ i 6= j. The following theorem holds in this setting:

Theorem A.3.1. Let η∗i (p) denote the optimal weight corresponding to the i-th kernel in (A.19)

at p. Given η∗i (p
′), the following holds as p decreases from p′ to unity: (1) η∗i (p) decreases

monotonically whenever η∗i (p
′) < e−1; (2) η∗i (p) increases monotonically whenever η∗i (p

′) >

e
− 1
p′

The proof of the above theorem involves deriving and analyzing the dη∗(p)/dp term.Needless

to say, the above theorem implies that the conjecture is true for the case mentioned above. We

now present an interesting example where the conjecture does not hold with ε = 0:

Theorem A.3.2. Consider the regression formulation in (A.19) with two given base kernels of

unit rank and unit trace: k1 and k2. Additionally, let y>K2K1y > y>K1y > 0. Then for

some λ1, λ2, ∃ p′ > 1 such that η1 = 0 if and only if p = p′.

Proof. The KKT conditions for optimality for the convex optimization problem (A.19) are:

Gi(η, p) ≡ −
1

2
y>Q−1

η KiQ−1
η y + λ2pη

p−1
i = 0 (A.20)

where Qη =
∑

i ηiK
i + I

2λ1
and i = 1, . . . , r. In the following, we first obtain a particular

p′(> 1) where η∗1(p′) = 0. Next, from (A.20), we show that η∗1 is zero only at p = p′.

Let η∗1 = 0 at p = p′. From the KKT conditions (A.20) corresponding to G1(η, p), we get

y>Q−1
η K1Q−1

η y = 0 (as η∗1 = 0). Employing the Sherman-Morrison formula for computing

Q−1
η and simplifying the L.H.S. of the above expression yields

η∗2 =
y>K1y

2λ1(y>K2K1y − y>K1y)
(A.21)

Since we have y>K2K1y > y>K1y > 0, it follows η∗2 > 0. Similarly, from the KKT condi-

tions (A.20) corresponding to G2(η, p), we obtain

p′(η∗2)p
′+1 =

1

2λ2

(
y>K1yy>K2y

y>K2K1K2y

)
(A.22)

Note that y>K2K1y > 0 ⇒ y>K2K1K2y > 0. Now, consider the following values of

parameters (λ1, λ2):

λ1 =
y>K1y

2(y>K2K1y − y>K1y)
, λ2 =

y>K1yy>K2y

3y>K2K1K2y
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Note that both λ1, λ2 > 0 in the above case. Employing these in (A.21) and (A.22), we obtain

the optimal kernel weight (η∗1, η
∗
2) at p′ = 1.5 as (0, 1). Moreover, with the above mentioned

values of parameters (λ1, λ2), it also follows that at optimality, (η∗1 = 0) ⇒ (p′ = 1.5) and

(η∗1 = 0)⇒ (η∗2 = 1). Hence, it follows that η∗1 > 0 at any 1 < p < p′.

This theorem shows a case in which the kernel weight, after attaining the lowest feasible

value (zero), at p = p′, grows as p further decreases from p′. Figure A.1 shows an instance from

a real world data set (Parkinson disease data set from the UCI Repository) where the optimal

kernel weight in (A.19) grows after attaining zero. We can observe that at around p = 1.5,

the optimal kernel weight corresponding to Feature 1 is zero, and it again starts growing as p

is further decreased. This observation show that the conjecture is not universally true for low

values of ε. However, in the same setting as in Theorem A.3.2, the conjecture may be true for

some other ε > 0. The proposed algorithm is usable whenever such an ε is small4.

1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

p

η

 

 

Feature 1

Feature 2

Figure A.1: η∗1 decrease as p is decreased from 2, attains zero at around p = 1.5 and again
grows as p decreases further. This example proves that the monotonicity conjecture does not
universally hold for (A.19) when ε = 0.

In summary, the proposed conjecture is itself non-trivial and requires careful analysis for

different `p-MKL formulations. Interestingly, in case of the proposed Generalized `p-KTA, it

holds for small enough tolerance, ε < e−1.

A.3.4 Second order derivative along the solution path

Here, we derive the second order derivative along the optimal solution path of (7.1), which can

be employed in Algorithm 5, assuming that the function F is thrice differentiable. From (A.18),

4Interestingly, in our initial simulations on benchmark data sets, we found that many existing lp-MKL formula-

tions do satisfy the conjecture at a reasonably low ε > 0. We postpone theoretical analysis of this very interesting

and open question to future.
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we have the following form: dη∗i (p)

dp
= f(η∗i (p), p) where f is a function corresponding to the

R.H.S. of (A.18). Hence, employing the total derivative formula in the above equation, we get

the following formulation for the second order derivative:

d2η∗i (p)

dp2
= −λ2

D

[
λ1

λ2

F ′′′(η∗i (p)) + p(p− 1)(p− 2)η∗i (p)
p−3

(
dη∗i (p)

dp

)2

+2η∗i (p)
p−2
(
2p− 1 + p2 ln(η∗i (p))− p ln(η∗i (p))

) dη∗i (p)
dp

+ η∗i (p)
p−1 ln(η∗i (p)) (2 + p ln(η∗i (p)))

]

where D = λ1F
′′′(η∗i (p)) + λ2p(p− 1)η∗i (p)

p−2 and the term dη∗i (p)/dp can be obtained from

(A.18).

A.3.5 Lemma for generalized KL-divergence

In the case of generalized KL-divergence as the Bregman divergence in (7.1), using the opti-

mality conditions for the non-trivial case (A.17) and Theorem 7.3.2, the following lemma is

immediate:

Lemma A.3.3. For any p, the deviation in the objective value of (7.1) obtained using the

approximate path following algorithm from the true optimal objective is upper bounded by

n(λ1ε+ λ2(p− 1)εp).

A.3.6 Experimental Results

Table A.2 reports the mean accuracies and standard deviations corresponding to Table 7.2 in

Chapter 7.
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Table A.2: The maximum classification accuracy achieved (mean and standard deviations)
along the feature selection path. Generalized `p-KTA achieves significantly higher accuracies
as compared to state-of-the-art KTA and `p≥1-MKL formulations as well as leading feature
selection techniques such as BAHSIC. The table reports mean and standard deviations results
averaged over 5-fold cross validation. ‘-’ denote results where the data set was too large for the
feature selection algorithm to generate results.

Arcene Madelon Relathe Pcmac Basehock Dorothea

Gen lp-KTA 92.00± 5.70 65.70± 0.99 92.57± 0.30 93.62± 1.67 98.59± 0.58 94.75± 1.30

Centered-KTA 75.00± 9.35 62.45± 2.07 90.40± 0.21 93.05± 1.44 97.29± 1.05 -

SMO-MKL 82.00± 5.70 62.05± 0.54 - - - -

BAHSIC 69.00± 6.52 53.90± 2.97 85.07± 1.42 89.55± 0.22 93.58± 1.38 90.63± 0.77

PF-l1-MKL 81.00± 6.52 62.76± 2.40 85.67± 1.90 - - -

PF-l1-SVM 77.00± 12.04 61.25± 1.08 89.00± 2.16 90.68± 0.59 97.24± 0.89 93.88± 1.65

Uniform 81.00± 6.52 59.85± 0.84 90.96± 0.77 92.49± 0.64 97.99± 0.59 91.38± 1.42

Table A.3 reports the mean accuracies and standard deviations corresponding to Table 7.3

in Chapter 7.

Table A.3: The maximum classification accuracy achieved (mean and standard deviations)
along the feature selection path on the ASU data sets. In keeping with the ASU experimen-
tal protocol, all algorithms are restricted to selecting at most 200 features and are allowed to
train on only half the data. Generalized `p-KTA (RBF) outperforms all the linear techniques and
this demonstrates the advantages of non-linear feature selection. Amongst the linear methods,
our proposed method with linear features is the best in general.

Arcene Madelon Relathe Pcmac Basehock Dorothea

Gen lp-KTA (RBF) 76.80± 9.25 64.50± 1.14 89.40± 0.93 89.76± 0.87 95.46± 1.02 93.75± 1.18

Gen lp-KTA (Linear) 73.40± 7.06 62.04± 0.97 88.39± 0.87 88.88± 2.61 94.76± 0.96 93.60± 1.30

Inf. Gain 72.00± 5.89 61.63± 0.95 84.39± 0.94 88.99± 1.22 95.26± 1.29 93.33± 0.97

Chi-Square 71.20± 7.90 61.69± 1.28 83.48± 0.80 88.24± 1.39 95.28± 1.26 93.33± 1.34

Fisher Score 66.20± 9.68 61.47± 1.04 83.35± 1.05 88.02± 1.60 94.61± 1.47 93.30± 1.32

mRMR 68.20± 7.33 61.87± 1.17 75.01± 1.01 83.34± 1.18 88.88± 1.00 93.18± 1.35

ReliefF 68.40± 7.71 62.06± 1.21 77.08± 2.73 80.76± 1.79 86.05± 3.55 93.33± 0.93

Spectrum 64.00± 6.60 60.19± 0.76 69.99± 1.90 66.74± 1.52 69.79± 1.31 90.28± 1.25

Gini Index 64.60± 5.50 59.43± 2.38 69.50± 2.09 66.60± 1.37 69.49± 1.35 90.28± 1.25

K.-Wallis 60.20± 10.26 55.04± 1.23 70.97± 2.02 65.20± 1.31 70.37± 1.05 90.08± 1.07
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