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The challenges of non-rigidity

“Once upon a time, a child imagined a fierce
boa constrictor that swallowed an elephant,
giving rise to a most peculiar shape.

[... However] nobody saw in his drawing more
than a hat.

)




The challenges of non-rigidity

“Once upon a time, a child imagined a fierce
boa constrictor that swallowed an elephant,
giving rise to a most peculiar shape.

[... However] nobody saw in his drawing more
than a hat.

Then the child proceeded to draw an
explanatory drawing showing the elephant
inside the snake’s expansible stomach...”

de Saint-Exupéry, The Little Prince







Can one hear the shape of a drum?

Kac, 66
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Shape-from-Operator inverse problem
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Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator)

satisfies some properties
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Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator)

satisfies some properties

e Embedding from anglesl, curvature’, discrete fundamental forms®, ...
e Edge length from Laplacian®®
o Closest commuting operators®

e Laplacian colormaps’

Sheffer, de Sturler 2001; 2Ben-Chen et al. 2008; *Wang et al. 2012; *Zeng et al. 2012; °de Goes
et al. 2014; °B, Glashoff, Loring 2013; 7Eynard, Kovnatsky, B 2014



From shapes to operators
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e Laplacian is intrinsic = expressible in terms of discrete metric (edge lengths)
e Embedding induces a discrete metric (and thus also a Laplacian)

e Not unique: many embeddings give rise to the same metric (isometries)



Laplace-Beltrami discretization (intrinsic)

e Triangular mesh (X, E, F)
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e Triangular mesh (X, E, F)
e Discrete metric £ = (¢, (i,j) € E)

e Intrinsic edge weights

o GGG G+ G+ G
v 8Ajik 8Aj

where by Heron’s formula

Aijk = \/S(S — E,'J‘)(S — Ejk)(s - éik)v

and s is the semi-perimeter




Laplace-Beltrami discretization (intrinsic)

e Triangular mesh (X, E, F)
e Discrete metric £ = (¢, (i,j) € E)

e Intrinsic edge weights

o GGG G+ G+ G
v 8Ajik 8Aj

where by Heron’s formula

Aijk = \/5(5 — E,-J-)(S — Ejk)(s — Eik)v

and s is the semi-perimeter

e Laplace-Beltrami operator | X| x | X| matrix
L=D-W,

where D = diag(z,-;,gj wij)



Laplace-Beltrami discretization (extrinsic)

e Triangular mesh (X, E, F)

o Embedding of the mesh in R? specifies the
coordinates X = {x1,...,Xn} \ 4

e Embedding X induces the metric

€= (Ixi =xll, (i,)) € E)

Pinkall and Polthier, 1993



Laplace-Beltrami discretization (extrinsic)

e Triangular mesh (X, E, F)

o Embedding of the mesh in R? specifies the
coordinates X = {x1,...,Xn} \ 4

e Embedding X induces the metric

€= (Ixi =xll, (i,)) € E)

e Cotangent weights
cot(aj) + cot(Bj) ..
wy = 5 , (ihj)€E

0, otherwise

Pinkall and Polthier, 1993



Functional maps

Point-wise maps t: X — Y

Ovsjanikov et al., 2012



Functional maps

Functional maps T: F(X) — F(Y)

Ovsjanikov et al., 2012



Shape difference operators
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Distortions induced by a map = change of inner products of vectors

Rustamov et al., 2013



Shape difference operators
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Distortions induced by a map = change of inner products of functions

Rustamov et al., 2013



Shape difference operators
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Shape difference operators

el

Tf

f g
(f.g)rx) # (TF, Tg) 7(v)
Riesz theorem: there exists a unique self-adjoint linear operator
D: F(X) — F(X) such that

(Tf, Tg) =(v) = (f, Dg) #(x)

Rustamov et al., 2013



Shape difference operators
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e Captures the difference in the geometry of the two shapes
e Depends on choice of inner product

Rustamov et al., 2013



Shape difference discretization

e area-based,

(F.8) o = / F()g(x)dp(x)

D=Vxy=AT AT

Rustamov et al., 2013



Shape difference discretization

e area-based, e conformal-based,
(g = [ () (7.8l = | TFCOVE()n()
X
D=Vxy=AT AT D=Rxy=W,T W, T

Rustamov et al., 2013



Shape difference discretization

e area-based, e conformal-based,

- / F()g(x)du(x) (F &) = / V() Ve(x)du(x)

<f7g>L2(X) =
D=Vxy=AT AT D=Rxy=W,T W, T

e if V = |, the map preserves the e if R = I, the map preserves the
areas angles
e if V=R = |, the map is an isometry

Rustamov et al., 2013



From operators to shapes
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Generic Shape-from-Operator (SfO) problem: given some intrinsic operator
Oy, find an embedding X by minimizing some cost function

mxin £(0(£(X)), 00)

Boscaini, Eynard, Kouronis, Bronstein 2014



From operators to shapes
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Generic Shape-from-Operator (SfO) problem: given some intrinsic operator
Oy, find an embedding X by minimizing some cost function

mxin £(0(£(X)), 00)

Note: O depends on X indirectly through the discrete metric £(X), very
hard for optimization!

Boscaini, Eynard, Kouronis, Bronstein 2014



From operators to shapes
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o Metric-from-Operator (MfO): min £(0(£),00) s.t. triangle inequality

. . . L Al — p.. 2
e Shape-from-Metric (SfM): min ;(Hx, xil| — £i)°,
ij

Boscaini, Eynard, Kouronis, Bronstein 2014



From operators to shapes

o Metric-from-Operator (MfO): meinE(O(E),Oo) s.t. triangle inequality

H . 1  — . — . 2
e Shape-from-Metric (SfM): min ;(Hx, xil| — £i)°,
ij

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-metric

Special setting of MDS: given a metric £, find its Euclidean realization by
minimizing the stress

n
min Z vii([xi — x;[| — €)%,

ij=1

{1 if ij € E,
Vij =

where

0 otherwise

Leeuw et al., 1977



Shape-from-metric

Special setting of MDS: given a metric £, find its Euclidean realization by
minimizing the stress

n
min Z vii([xi — x;[| — €)%,

ij=1

where

1 ifijeE,
Vij = .
0 otherwise

SMACOF algorithm: fixed point iteration of the form

X «+ Z'B(X)X
where
o C il i and w2
—vj if i # ], i — x| 7 EAe TN
2= v ifi=j B(X)={0 if i #j and x; = xj,
i > by ifi=j
i#j

Leeuw et al., 1977



From operators to shapes

aN O

e Metric-from-Operator (MfO): mein £(0(£),00) s.t. triangle inequality

1 - 1 P . .. 2
¢ Shape-from-Metric (SfM): min Z(Hx, xjl| — £5)7,

ijeE

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian
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A Initial X
Given a reference Laplacian operator L4, and a corresponding initial shape X,

deform X by minimizing
min [L(€(X)) — La]

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian

A Resulting X
Given a reference Laplacian operator La, and a corresponding initial shape X,

deform X by minimizing
min IL(€(X)) — La]

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian
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A Initial X

Given a reference Laplacian operator La, and a initial shape X related by
functional correspondence T, deform X by minimizing

min | TL(£(X)) — LaT||

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian
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A Resulting X

Given a reference Laplacian operator La, and a initial shape X related by
functional correspondence T, deform X by minimizing

min | TL(£(X)) — LaT||

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian convergence

4.13

Reference Y Initialization X Iteration 1 4 6 7 9

Convergence of our method in the shape-from-Laplacian optimization problem.
Colors show vertex-wise MfO energy contribution

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-Laplacian convergence

Time (sec)
10" 0.23 0.45 0.68 0.9 1.13 1.35 1.56 1.8
10°
10°

MfO energy
3

107"°H

107%

Convergence of our method in the shape-from-Laplacian optimization problem using
different initializations.

Boscaini, Eynard, Kouronis, Bronstein 2014



Style transfer by shape-from-Laplacian

Reference Y Initialization X Result

“Modify X such that Lx becomes as similar as possible to reference Laplacian Ly"

Boscaini, Eynard, Kouronis, Bronstein 2014
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Style transfer by shape-from-Laplacian

Reference Y Initialization X Result

“Modify X such that Lx becomes as similar as possible to reference Laplacian Ly"
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Style transfer by shape-from-Laplacian

e
Reference Y Initialization X Result

“Modify X such that Lx becomes as similar as possible to reference Laplacian Ly"

Boscaini, Eynard, Kouronis, Bronstein 2014



Sensitivity to map quality

Functional map approximated as a matrix T &~ WCT &' of rank k using the
first functions in Fourier expansion (larger k = better map)

 JOXOX

Q8 Q@

k =10 k=20 k =100

Shape-from-Laplacian result for different quality of the map T
(initial shape: sphere, reference Laplacian: bumped sphere)

Ovsjanikov et al. 2012; Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-difference operator
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Deform initial shape X to make it different from C same way as B is different
from A

min [Dc,x(£(X))Tac — TacDagsll

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-difference operator
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DC,XC\ I) L\ ?
C X

Deform initial shape X to make it different from C same way as B is different
from A

min [Dc,x(£(X))Tac — TacDagsll

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-difference convergence

1.86

oo

Result

C Iteration 1

Convergence of our method in the shape-from-difference optimization problem.
Colors show vertex-wise MfO energy contribution

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-difference convergence

Time (sec)

0.45 0.89 1.34 1.78 2.23 2.67 312 356 4.01 4.45

MfO energy
R

_.
<

107 s :
3 4 5 6 7 8 9 10
Iteration

Convergence of our method in the shape-from-difference optimization problem.

Boscaini, Eynard, Kouronis, Bronstein 2014



Analogy synthesis by shape-from-difference
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“Find X such that the difference operator between C, X is as similar as possible to the
given difference operator between A, B”

Boscaini, Eynard, Kouronis, Bronstein 2014



Analogy synthesis by shape-from-difference
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“Find X such that the difference operator between C, X is as similar as possible to the
given difference operator between A, B”

Boscaini, Eynard, Kouronis, Bronstein 2014



Analogy synthesis by shape-from-difference
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“Find X such that the difference operator between C, X is as similar as possible to the
given difference operator between A, B”
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Analogy synthesis by shape-from-difference
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given difference operator between A, B”
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Analogy synthesis by shape-from-difference
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“Find X such that the difference operator between C, X is as similar as possible to the
given difference operator between A, B”

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape exaggeration
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Shape exaggeration obtained by applying the difference operator between A, B to B
several times.

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-eigenvectors

Kovnatsky et al., 2013



Shape-from-eigenvectors
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What is the shape whose Laplacian
is diagonalized by the joint eigenvectors?

Kovnatsky et al., 2013



Shape-from-eigenvectors
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Joint eigenvectors U Reference shapes
v
Wi U TL UzA
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Given an orthonormal basis U = (uy, ..., u,) on F(X) and

N = diag()\1, ..., Ar), deform shape X such that U is an (approximate)
eigenbasis of its Laplacian

min [[W(£(X))U — A(E(X))UA| + p[|€ = &

Boscaini, Eynard, Kouronis, Bronstein 2014



Shape-from-eigenvectors
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Joint eigenvectors U Reference shapes
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Given an orthonormal basis U = (uy, ..., u,) on F(X) and

N = diag()\1, ..., Ar), deform shape X such that U is an (approximate)
eigenbasis of its Laplacian

min [[W(£(X))U — A(E(X))UA| + p[|€ = &

Boscaini, Eynard, Kouronis, Bronstein 2014



‘Intrinsic average shape’ by shape-from-eigenvectors

Reference shapes Initialization Result
-28x10°
.l .I
.I .I
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| |

| | ||

[UT Linie V] U Lres U]

“Modify initial shape such that its Laplacian is diagonalized by a given basis U”

Boscaini, Eynard, Kouronis, Bronstein 2014



Conclusions

e New generic framework for shape-from-operator inverse problems
e Variety of applications in shape editing

e Other intrinsic operators

e Other shape representations

e Different solutions to shape-from-metric problem



