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The challenges of non-rigidity

“Once upon a time, a child imagined a fierce
boa constrictor that swallowed an elephant,
giving rise to a most peculiar shape.

[... However] nobody saw in his drawing more
than a hat.

Then the child proceeded to draw an
explanatory drawing showing the elephant
inside the snake’s expansible stomach...”

de Saint-Exupéry, The Little Prince
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Can one hear the shape of a drum?

Kac, 66
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Spectral shape analysis

Δ λ,φ,...
spectral properties
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Spectral shape analysis

Δ λ,φ,...

Δ μ,ψ,...

X

Y

similarity
correspondence

. . .
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Shape-from-Operator inverse problem

Δ Properties

Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator)

satisfies some properties

• Embedding from angles1, curvature2, discrete fundamental forms3,...

• Edge length from Laplacian4,5

• Closest commuting operators6

• Laplacian colormaps7

1Sheffer, de Sturler 2001; 2Ben-Chen et al. 2008; 3Wang et al. 2012; 4Zeng et al. 2012; 5de Goes

et al. 2014; 6B, Glashoff, Loring 2013; 7Eynard, Kovnatsky, B 2014
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From shapes to operators

` ∆

• Laplacian is intrinsic = expressible in terms of discrete metric (edge lengths)

• Embedding induces a discrete metric (and thus also a Laplacian)

• Not unique: many embeddings give rise to the same metric (isometries)
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Laplace-Beltrami discretization (intrinsic)

• Triangular mesh (X ,E ,F )

• Discrete metric ` = (`ij , (i , j) ∈ E)

• Intrinsic edge weights

wij =
−`2

ij + `2
jk + `2

ik

8Aijk
+
−`2

ij + `2
jh + `2

ih

8Aijh

where by Heron’s formula

Aijk =
√

s(s − `ij)(s − `jk)(s − `ik),

and s is the semi-perimeter

• Laplace-Beltrami operator |X |×|X | matrix

L = D−W,

where D = diag(
∑

i 6=j wij)

`ij

`jk

`ik

`jh

`ih
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Laplace-Beltrami discretization (extrinsic)

• Triangular mesh (X ,E ,F )

• Embedding of the mesh in R3 specifies the
coordinates X = {x1, . . . , xn}

• Embedding X induces the metric

` = (‖xi − xj‖, (i , j) ∈ E)

• Cotangent weights

wij =


cot(αij) + cot(βij)

2
, (i , j) ∈ E

0, otherwise

xi

xj

αij

βij

Pinkall and Polthier, 1993
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Functional maps

xi

X

yj

Y

t

Point-wise maps t : X → Y

Ovsjanikov et al., 2012
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Functional maps

f

F(X )

g

F(Y )
T

Functional maps T : F(X )→ F(Y )

Ovsjanikov et al., 2012
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Shape difference operators

t

Jxi

xi
t(xi )

Distortions induced by a map = change of inner products of vectors

Rustamov et al., 2013
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Shape difference operators

T

f

Tf

T

g

Tg

Distortions induced by a map = change of inner products of functions

Rustamov et al., 2013
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Shape difference operators

T

f

Tf

T

g

Tg

〈f, g〉F(X ) 6= 〈Tf,Tg〉F(Y )

Rustamov et al., 2013
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Shape difference operators

T

f

Tf

T

g

Tg

〈f, g〉F(X ) 6= 〈Tf,Tg〉F(Y )

Riesz theorem: there exists a unique self-adjoint linear operator
D : F(X )→ F(X ) such that

〈Tf,Tg〉F(Y ) = 〈f,Dg〉F(X )

Rustamov et al., 2013
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Shape difference operators

X

Y

T

D

f

Df

g

Dg

• Captures the difference in the geometry of the two shapes

• Depends on choice of inner product

Rustamov et al., 2013
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Shape difference discretization

• area-based,

〈f , g〉L2(X ) =

∫
X

f (x)g(x)dµ(x)

D = VX ,Y = A−1
X T>AYT

• conformal-based,

〈f , g〉H1(X ) =

∫
X

∇f (x)∇g(x)dµ(x)

D = RX ,Y = W†XT>WY T

• if V = I, the map preserves the
areas

• if R = I, the map preserves the
angles

• if V = R = I, the map is an isometry

Rustamov et al., 2013
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From operators to shapes

O0

Generic Shape-from-Operator (SfO) problem: given some intrinsic operator
O0, find an embedding X by minimizing some cost function

min
X
E
(
O(`(X)),O0

)

Note: O depends on X indirectly through the discrete metric `(X), very
hard for optimization!

Boscaini, Eynard, Kouronis, Bronstein 2014
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From operators to shapes

` O0

• Metric-from-Operator (MfO): min
`
E
(
O(`),O0

)
s.t. triangle inequality

• Shape-from-Metric (SfM): min
X

n∑
ij∈E

(‖xi − xj‖ − `ij)2,
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Shape-from-metric

Special setting of MDS: given a metric `, find its Euclidean realization by
minimizing the stress

min
X

n∑
i,j=1

vij(‖xi − xj‖ − `ij)2,

where

vij =

{
1 if ij ∈ E ,

0 otherwise

Leeuw et al., 1977
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minimizing the stress

min
X

n∑
i,j=1

vij(‖xi − xj‖ − `ij)2,

where

vij =

{
1 if ij ∈ E ,

0 otherwise

SMACOF algorithm: fixed point iteration of the form

X← Z†B(X)X

where

Z =

−vij if i 6= j ,∑
i 6=j

vij if i = j B(X) =


− vij`ij
‖xi − xj‖

if i 6= j and xi 6= xj ,

0 if i 6= j and xi = xj ,∑
i 6=j

bij if i = j

Leeuw et al., 1977
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Shape-from-Laplacian

L L≠

A Initial X

Given a reference Laplacian operator LA, and a corresponding initial shape X ,
deform X by minimizing

min
X
‖L(`(X))− LA‖

Boscaini, Eynard, Kouronis, Bronstein 2014
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A Resulting X
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Shape-from-Laplacian

L L≠

T

TT

A Initial X

Given a reference Laplacian operator LA, and a initial shape X related by
functional correspondence T , deform X by minimizing

min
X
‖TL(`(X))− LAT‖

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-Laplacian convergence

0

4.13

Reference Y Initialization X Iteration 1 4 6 7 9

Convergence of our method in the shape-from-Laplacian optimization problem.
Colors show vertex-wise MfO energy contribution

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-Laplacian convergence

5 10 15 20 40
10−20

10−15

10−10

10−5

100

105

1010

Time (sec)

M
fO
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ne

rg
y

 

 

25 30 35

0.23 0.45 0.68 0.9 1.81.13 1.35 1.56

 

Convergence of our method in the shape-from-Laplacian optimization problem using
different initializations.

Boscaini, Eynard, Kouronis, Bronstein 2014
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Style transfer by shape-from-Laplacian

Reference Y Initialization X Result

“Modify X such that LX becomes as similar as possible to reference Laplacian LY ”

Boscaini, Eynard, Kouronis, Bronstein 2014
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Sensitivity to map quality

Functional map approximated as a matrix T ≈ ΨC>Φ> of rank k using the
first functions in Fourier expansion (larger k = better map)

k = 10 k = 20 k = 100

Shape-from-Laplacian result for different quality of the map T
(initial shape: sphere, reference Laplacian: bumped sphere)

Ovsjanikov et al. 2012; Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-difference operator

TA,B

TA,C

A B

C X

TC,X

DA,B

DC,X

“bump”

?
Deform initial shape X to make it different from C same way as B is different
from A

min
X

‖DC ,X (`(X))TA,C − TA,CDA,B‖

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-difference convergence

1.86

0

A B

C Iteration 1 2 3 5 7 Result

Convergence of our method in the shape-from-difference optimization problem.
Colors show vertex-wise MfO energy contribution

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-difference convergence

5 10
Iteration

10−2

10−1

100

101

100
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Time (sec)
2.23 4.45

1

0.45

2

0.89

3

1.34

4

1.78 4.012.67 3.12 3.56

96 7 8

Convergence of our method in the shape-from-difference optimization problem.

Boscaini, Eynard, Kouronis, Bronstein 2014
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Analogy synthesis by shape-from-difference

C

A B

X

“Find X such that the difference operator between C ,X is as similar as possible to the
given difference operator between A,B”

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape exaggeration

A B ‘B + (B − A)’ ‘B + 2(B − A)’

Shape exaggeration obtained by applying the difference operator between A,B to B
several times.

Boscaini, Eynard, Kouronis, Bronstein 2014
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Shape-from-eigenvectors

What is the shape whose Laplacian
is diagonalized by the joint eigenvectors?

Kovnatsky et al., 2013
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Shape-from-eigenvectors

...

Reference shapesJoint eigenvectors U

U
T

L U ≠ Λ

...

Given an orthonormal basis U = (u1, . . . , ur ) on F(X ) and
Λ = diag(λ1, . . . , λr ), deform shape X such that U is an (approximate)
eigenbasis of its Laplacian

min
X
‖W(`(X))U− A(`(X))UΛ‖+ µ‖`− `0‖

Boscaini, Eynard, Kouronis, Bronstein 2014
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‘Intrinsic average shape’ by shape-from-eigenvectors

0

2.8

 

 

 

 
x10−3

|U>LinitU| |U>LresU|

Reference shapes Initialization Result

“Modify initial shape such that its Laplacian is diagonalized by a given basis U”

Boscaini, Eynard, Kouronis, Bronstein 2014
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Conclusions

• New generic framework for shape-from-operator inverse problems

• Variety of applications in shape editing

• Other intrinsic operators

• Other shape representations

• Different solutions to shape-from-metric problem


