Shape-from-operators: recovering shapes from intrinsic differential operators

Davide Boscaini University of Lugano, Switzerland

TUM, Germany 26 November 2014

Slide idea: Crane

Slide idea: Crane

The challenges of non-rigidity

"Once upon a time, a child imagined a fierce boa constrictor that swallowed an elephant, giving rise to a most peculiar shape.

[... However] nobody saw in his drawing more than a hat.

The challenges of non-rigidity

"Once upon a time, a child imagined a fierce boa constrictor that swallowed an elephant, giving rise to a most peculiar shape.

[... However] nobody saw in his drawing more than a hat.

Then the child proceeded to draw an explanatory drawing showing the elephant inside the snake's expansible stomach..."

de Saint-Exupéry, The Little Prince

Can one hear the shape of a drum?

Kac, 66 6/33

Spectral shape analysis

Spectral shape analysis

Shape-from-Operator inverse problem

Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator) satisfies some properties

Shape-from-Operator inverse problem

Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator) satisfies some properties

- Embedding from angles¹, curvature², discrete fundamental forms³,...
- Edge length from Laplacian^{4,5}
- Closest commuting operators⁶
- Laplacian colormaps⁷

 $^{^{1}}$ Sheffer, de Sturler 2001; 2 Ben-Chen et al. 2008; 3 Wang et al. 2012; 4 Zeng et al. 2012; 5 de Goes et al. 2014; 6 B, Glashoff, Loring 2013; 7 Eynard, Kovnatsky, B 2014

From shapes to operators

- Laplacian is **intrinsic** = expressible in terms of discrete metric (edge lengths)
- Embedding induces a discrete metric (and thus also a Laplacian)
- Not unique: many embeddings give rise to the same metric (isometries)

• Triangular mesh (X, E, F)

- Triangular mesh (X, E, F)
- Discrete metric $\ell = (\ell_{ij}, \ (i,j) \in E)$

- Triangular mesh (X, E, F)
- Discrete metric $\ell = (\ell_{ij}, \ (i,j) \in E)$
- Intrinsic edge weights

$$w_{ij} = \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ik}^2}{8A_{ijk}} + \frac{-\ell_{ij}^2 + \ell_{jh}^2 + \ell_{ih}^2}{8A_{ijh}}$$

where by Heron's formula

$$A_{ijk} = \sqrt{s(s - \ell_{ij})(s - \ell_{jk})(s - \ell_{ik})},$$

and s is the semi-perimeter

- Triangular mesh (X, E, F)
- Discrete metric $\ell = (\ell_{ij}, \ (i,j) \in E)$
- Intrinsic edge weights

$$w_{ij} = \frac{-\ell_{ij}^2 + \ell_{jk}^2 + \ell_{ik}^2}{8A_{ijk}} + \frac{-\ell_{ij}^2 + \ell_{jh}^2 + \ell_{ih}^2}{8A_{ijh}}$$

where by Heron's formula

$$A_{ijk} = \sqrt{s(s-\ell_{ij})(s-\ell_{jk})(s-\ell_{ik})},$$

and s is the semi-perimeter

$$L = D - W$$

where
$$\mathbf{D} = \operatorname{diag}(\sum_{i \neq j} w_{ij})$$

- Triangular mesh (X, E, F)
- \bullet Embedding of the mesh in \mathbb{R}^3 specifies the coordinates $\boldsymbol{X}=\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_n\}$
- Embedding X induces the metric

$$\ell = (\|\mathbf{x}_i - \mathbf{x}_j\|, (i, j) \in E)$$

- Triangular mesh (X, E, F)
- \bullet Embedding of the mesh in \mathbb{R}^3 specifies the coordinates $\boldsymbol{X}=\{\boldsymbol{x}_1,\dots,\boldsymbol{x}_n\}$
- Embedding X induces the metric

$$\boldsymbol{\ell} = (\|\mathbf{x}_i - \mathbf{x}_j\|, (i, j) \in \boldsymbol{E})$$

Cotangent weights

$$w_{ij} = egin{cases} rac{\cot(lpha_{ij}) + \cot(eta_{ij})}{2}, & (i,j) \in E \ 0, & ext{otherwise} \end{cases}$$

Functional maps

Point-wise maps $t: X \to Y$

Functional maps

Functional maps $T \colon \mathcal{F}(X) \to \mathcal{F}(Y)$

Distortions induced by a map = change of inner products of vectors

Rustamov et al., 2013

Distortions induced by a map = change of inner products of functions

Rustamov et al., 2013

 $\langle f,g\rangle_{\mathcal{F}(X)} \neq \langle Tf,Tg\rangle_{\mathcal{F}(Y)}$

Rustamov et al., 2013 14/

$$\langle f,g\rangle_{\mathcal{F}(X)}\neq \langle Tf,Tg\rangle_{\mathcal{F}(Y)}$$

Riesz theorem: there exists a unique self-adjoint linear operator $D\colon \mathcal{F}(X) \to \mathcal{F}(X)$ such that

$$\langle \textbf{T} \textbf{f}, \textbf{T} \textbf{g} \rangle_{\mathcal{F}(Y)} = \langle \textbf{f}, \textbf{D} \textbf{g} \rangle_{\mathcal{F}(X)}$$

- Captures the **difference** in the geometry of the two shapes
- Depends on choice of inner product

Rustamov et al., 2013

Shape difference discretization

• area-based,

$$\langle f, g \rangle_{L^2(X)} = \int_X f(x)g(x)d\mu(x)$$

 $\mathbf{D} = \mathbf{V}_{X,Y} = \mathbf{A}_X^{-1}\mathbf{T}^{\top}\mathbf{A}_Y\mathbf{T}$

Shape difference discretization

• area-based,

$$\langle f, g \rangle_{L^2(X)} = \int_X f(x)g(x)d\mu(x)$$

$$\mathbf{D} = \mathbf{V}_{X,Y} = \mathbf{A}_X^{-1} \mathbf{T}^\top \mathbf{A}_{\mathbf{Y}} \mathbf{T}$$

conformal-based,

$$\langle f, g \rangle_{H^1(X)} = \int_X \nabla f(x) \nabla g(x) d\mu(x)$$

 $\mathbf{D} = \mathbf{R}_{X,Y} = \mathbf{W}_X^{\dagger} \mathbf{T}^{\top} \mathbf{W}_Y \mathbf{T}$

Shape difference discretization

• area-based,

$$\langle f, g \rangle_{L^2(X)} = \int_X f(x)g(x)d\mu(x)$$

 $\mathbf{D} = \mathbf{V}_{XY} = \mathbf{A}_{Y}^{-1}\mathbf{T}^{\top}\mathbf{A}_{Y}\mathbf{T}$

 \bullet if $\boldsymbol{V}=\boldsymbol{I},$ the map preserves the areas

conformal-based,

$$\langle f, g \rangle_{H^1(X)} = \int_X \nabla f(x) \nabla g(x) d\mu(x)$$

$$\mathbf{D} = \mathbf{R}_{X,Y} = \mathbf{W}_X^{\dagger} \mathbf{T}^{\top} \mathbf{W}_Y \mathbf{T}$$

- ullet if ${f R}={f I}$, the map preserves the angles
- ullet if $oldsymbol{V} = oldsymbol{R} = oldsymbol{I}$, the map is an isometry

Generic **Shape-from-Operator (SfO)** problem: given some intrinsic operator \mathbf{O}_0 , find an embedding \mathbf{X} by minimizing some cost function

$$\min_{\boldsymbol{X}} \mathcal{E}\big(\boldsymbol{O}(\boldsymbol{\ell}(\boldsymbol{X})), \boldsymbol{O}_0\big)$$

Generic Shape-from-Operator (SfO) problem: given some intrinsic operator \mathbf{O}_0 , find an embedding \mathbf{X} by minimizing some cost function

$$\min_{\boldsymbol{X}} \mathcal{E}\big(\boldsymbol{O}(\boldsymbol{\ell}(\boldsymbol{X})), \boldsymbol{O}_0\big)$$

Note: O depends on X indirectly through the discrete metric $\ell(X)$, very hard for optimization!

- Metric-from-Operator (MfO): $\min_{\ell} \mathcal{E} \left(\mathbf{O}(\ell), \mathbf{O}_0 \right)$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min_{\mathbf{X}} \sum_{ij \in E}^{n} (\|\mathbf{x}_i \mathbf{x}_j\| \ell_{ij})^2$,

- Metric-from-Operator (MfO): $\min_{\ell} \mathcal{E} \left(\mathbf{O}(\ell), \mathbf{O}_0 \right)$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min_{\mathbf{X}} \sum_{ij \in E}^{\infty} (\|\mathbf{x}_i \mathbf{x}_j\| \ell_{ij})^2$,

Shape-from-metric

Special setting of MDS: given a metric ℓ , find its Euclidean realization by minimizing the stress

$$\min_{\mathbf{X}} \sum_{i,j=1}^{n} v_{ij} (\|\mathbf{x}_i - \mathbf{x}_j\| - \ell_{ij})^2,$$

where

$$v_{ij} = egin{cases} 1 & ext{if } ij \in E, \ 0 & ext{otherwise} \end{cases}$$

Leeuw et al., 1977

Shape-from-metric

Special setting of MDS: given a metric $\boldsymbol{\ell},$ find its Euclidean realization by minimizing the stress

$$\min_{\mathbf{X}} \sum_{i,j=1}^{n} v_{ij} (\|\mathbf{x}_i - \mathbf{x}_j\| - \ell_{ij})^2,$$

where

$$v_{ij} = egin{cases} 1 & ext{if } ij \in E, \ 0 & ext{otherwise} \end{cases}$$

SMACOF algorithm: fixed point iteration of the form

$$\mathbf{X} \leftarrow \mathbf{Z}^{\dagger}\mathbf{B}(\mathbf{X})\mathbf{X}$$

where

$$\mathbf{Z} = \begin{cases} -\mathbf{v}_{ij} & \text{if } i \neq j, \\ \sum_{i \neq j} \mathbf{v}_{ij} & \text{if } i = j \end{cases} \qquad \mathbf{B}(\mathbf{X}) = \begin{cases} -\frac{\mathbf{v}_{ij}\ell_{ij}}{\|\mathbf{x}_i - \mathbf{x}_j\|} & \text{if } i \neq j \text{ and } \mathbf{x}_i \neq \mathbf{x}_j, \\ 0 & \text{if } i \neq j \text{ and } \mathbf{x}_i = \mathbf{x}_j, \\ \sum_{i \neq j} b_{ij} & \text{if } i = j \end{cases}$$

Leeuw et al., 1977

- \bullet Metric-from-Operator (MfO): $\min_{\ell} \mathcal{E} \big(\textbf{O}(\ell), \textbf{O}_0 \big) \,$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min_{\mathbf{X}} \sum_{ij \in E}^{n} (\|\mathbf{x}_i \mathbf{x}_j\| \ell_{ij})^2$,

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_A , and a corresponding initial shape X, deform X by minimizing

$$\min_{\boldsymbol{X}}\|\boldsymbol{L}(\boldsymbol{\ell}(\boldsymbol{X}))-\boldsymbol{L}_{\!A}\|$$

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_A , and a corresponding initial shape X, deform X by minimizing

$$\min_{\mathbf{X}} \|\mathbf{L}(\ell(\mathbf{X})) - \mathbf{L}_{A}\|$$

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_A , and a initial shape X related by functional correspondence T, deform X by minimizing

$$\min_{\boldsymbol{X}} \| \boldsymbol{\mathsf{TL}}(\boldsymbol{\ell}(\boldsymbol{\mathsf{X}})) - \boldsymbol{\mathsf{L}}_{\boldsymbol{\mathsf{A}}} \boldsymbol{\mathsf{T}} \|$$

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_A , and a initial shape X related by functional correspondence T, deform X by minimizing

$$\min_{\boldsymbol{X}} \| \boldsymbol{\mathsf{TL}}(\boldsymbol{\ell}(\boldsymbol{\mathsf{X}})) - \boldsymbol{\mathsf{L}}_{\boldsymbol{\mathsf{A}}} \boldsymbol{\mathsf{T}} \|$$

Shape-from-Laplacian convergence

Convergence of our method in the shape-from-Laplacian optimization problem.

Colors show vertex-wise MfO energy contribution

Shape-from-Laplacian convergence

Convergence of our method in the shape-from-Laplacian optimization problem using different initializations.

"Modify X such that \mathbf{L}_X becomes as similar as possible to reference Laplacian \mathbf{L}_Y "

"Modify X such that \mathbf{L}_X becomes as similar as possible to reference Laplacian \mathbf{L}_Y "

"Modify X such that \mathbf{L}_X becomes as similar as possible to reference Laplacian \mathbf{L}_Y "

"Modify X such that \mathbf{L}_X becomes as similar as possible to reference Laplacian \mathbf{L}_Y "

"Modify X such that \mathbf{L}_X becomes as similar as possible to reference Laplacian \mathbf{L}_Y "

Sensitivity to map quality

Functional map approximated as a matrix $\mathbf{T} \approx \mathbf{\Psi} \mathbf{C}^{\top} \mathbf{\Phi}^{\top}$ of rank k using the first functions in Fourier expansion (larger k = better map)

Shape-from-Laplacian result for different quality of the map **T** (initial shape: sphere, reference Laplacian: bumped sphere)

Shape-from-difference operator

Deform initial shape X to make it different from ${\it C}$ same way as ${\it B}$ is different from ${\it A}$

$$\min_{\boldsymbol{\mathsf{X}}} \quad \|\boldsymbol{\mathsf{D}}_{\boldsymbol{\mathsf{C}},\boldsymbol{\mathsf{X}}}(\boldsymbol{\ell}(\boldsymbol{\mathsf{X}}))\boldsymbol{\mathsf{T}}_{\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{C}}} - \boldsymbol{\mathsf{T}}_{\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{C}}}\boldsymbol{\mathsf{D}}_{\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{B}}}\|$$

Shape-from-difference operator

Deform initial shape X to make it different from ${\it C}$ same way as ${\it B}$ is different from ${\it A}$

$$\min_{\boldsymbol{X}} \quad \|\boldsymbol{D}_{C,X}(\boldsymbol{\ell}(\boldsymbol{X}))\boldsymbol{T}_{A,C} - \boldsymbol{T}_{A,C}\boldsymbol{D}_{A,B}\|$$

Shape-from-difference convergence

Convergence of our method in the shape-from-difference optimization problem.

Colors show vertex-wise MfO energy contribution

Shape-from-difference convergence

 $Convergence\ of\ our\ method\ in\ the\ shape-from-difference\ optimization\ problem.$

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between A, B"

"Find X such that the difference operator between C,X is as similar as possible to the given difference operator between A,B"

"Find X such that the difference operator between C,X is as similar as possible to the given difference operator between A,B"

"Find X such that the difference operator between C,X is as similar as possible to the given difference operator between A,B"

"Find X such that the difference operator between C,X is as similar as possible to the given difference operator between A,B"

Shape exaggeration

Shape exaggeration obtained by applying the difference operator between A, B to B several times.

Kovnatsky et al., 2013

What is the shape whose Laplacian is diagonalized by the joint eigenvectors?

Given an orthonormal basis $\mathbf{U}=(\mathbf{u}_1,\ldots,\mathbf{u}_r)$ on $\mathcal{F}(X)$ and $\mathbf{\Lambda}=\mathrm{diag}(\lambda_1,\ldots,\lambda_r)$, deform shape X such that \mathbf{U} is an (approximate) eigenbasis of its Laplacian

$$\min_{\mathbf{X}} \|\mathbf{W}(\ell(\mathbf{X}))\mathbf{U} - \mathbf{A}(\ell(\mathbf{X}))\mathbf{U}\mathbf{\Lambda}\| + \mu \|\ell - \ell_0\|$$

Given an orthonormal basis $\mathbf{U}=(\mathbf{u}_1,\ldots,\mathbf{u}_r)$ on $\mathcal{F}(X)$ and $\mathbf{\Lambda}=\mathrm{diag}(\lambda_1,\ldots,\lambda_r)$, deform shape X such that \mathbf{U} is an (approximate) eigenbasis of its Laplacian

$$\min_{\mathbf{X}} \|\mathbf{W}(\ell(\mathbf{X}))\mathbf{U} - \mathbf{A}(\ell(\mathbf{X}))\mathbf{U}\mathbf{\Lambda}\| + \mu \|\ell - \ell_0\|$$

'Intrinsic average shape' by shape-from-eigenvectors

"Modify initial shape such that its Laplacian is diagonalized by a given basis U"

Conclusions

- New generic framework for shape-from-operator inverse problems
- Variety of applications in shape editing
- Other intrinsic operators
- Other shape representations
- Different solutions to shape-from-metric problem