Shape-from-operators: recovering shapes from intrinsic differential operators

Davide Boscaini
University of Lugano, Switzerland

TUM, Germany
26 November 2014

The challenges of non-rigidity

"Once upon a time, a child imagined a fierce boa constrictor that swallowed an elephant, giving rise to a most peculiar shape.
[... However] nobody saw in his drawing more than a hat.

The challenges of non-rigidity

"Once upon a time, a child imagined a fierce boa constrictor that swallowed an elephant, giving rise to a most peculiar shape.
[... However] nobody saw in his drawing more than a hat.

Then the child proceeded to draw an explanatory drawing showing the elephant inside the snake's expansible stomach..."
de Saint-Exupéry, The Little Prince

Can one hear the shape of a drum?

Spectral shape analysis

Spectral shape analysis

Shape-from-Operator inverse problem

Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator) satisfies some properties

Shape-from-Operator inverse problem

Shape-from-Operator: find a shape whose Laplacian (or another intrinsic operator) satisfies some properties

- Embedding from angles ${ }^{1}$, curvature ${ }^{2}$, discrete fundamental forms ${ }^{3}, \ldots$
- Edge length from Laplacian ${ }^{4,5}$
- Closest commuting operators ${ }^{6}$
- Laplacian colormaps ${ }^{7}$
${ }^{1}$ Sheffer, de Sturler 2001; ${ }^{2}$ Ben-Chen et al. 2008; ${ }^{3}$ Wang et al. 2012; ${ }^{4}$ Zeng et al. 2012; ${ }^{5}$ de Goes
et al. 2014; ${ }^{6}$ B, Glashoff, Loring 2013; ${ }^{7}$ Eynard, Kovnatsky, B 2014

From shapes to operators

- Laplacian is intrinsic $=$ expressible in terms of discrete metric (edge lengths)
- Embedding induces a discrete metric (and thus also a Laplacian)
- Not unique: many embeddings give rise to the same metric (isometries)

Laplace-Beltrami discretization (intrinsic)

- Triangular mesh (X, E, F)

Laplace-Beltrami discretization (intrinsic)

- Triangular mesh (X, E, F)
- Discrete metric $\ell=\left(\ell_{i j},(i, j) \in E\right)$

Laplace-Beltrami discretization (intrinsic)

- Triangular mesh (X, E, F)
- Discrete metric $\ell=\left(\ell_{i j},(i, j) \in E\right)$
- Intrinsic edge weights

$$
w_{i j}=\frac{-\ell_{i j}^{2}+\ell_{j k}^{2}+\ell_{i k}^{2}}{8 A_{i j k}}+\frac{-\ell_{i j}^{2}+\ell_{j h}^{2}+\ell_{i h}^{2}}{8 A_{i j h}}
$$

where by Heron's formula

$$
A_{i j k}=\sqrt{s\left(s-\ell_{i j}\right)\left(s-\ell_{j k}\right)\left(s-\ell_{i k}\right)}
$$

and s is the semi-perimeter

Laplace-Beltrami discretization (intrinsic)

- Triangular mesh (X, E, F)
- Discrete metric $\ell=\left(\ell_{i j},(i, j) \in E\right)$
- Intrinsic edge weights

$$
w_{i j}=\frac{-\ell_{i j}^{2}+\ell_{j k}^{2}+\ell_{i k}^{2}}{8 A_{i j k}}+\frac{-\ell_{i j}^{2}+\ell_{j h}^{2}+\ell_{i h}^{2}}{8 A_{i j h}}
$$

where by Heron's formula

$$
A_{i j k}=\sqrt{s\left(s-\ell_{i j}\right)\left(s-\ell_{j k}\right)\left(s-\ell_{i k}\right)}
$$

and s is the semi-perimeter

- Laplace-Beltrami operator $|X| \times|X|$ matrix

$$
\mathbf{L}=\mathbf{D}-\mathbf{W}
$$

where $\mathbf{D}=\operatorname{diag}\left(\sum_{i \neq j} w_{i j}\right)$

Laplace-Beltrami discretization (extrinsic)

- Triangular mesh (X, E, F)
- Embedding of the mesh in \mathbb{R}^{3} specifies the coordinates $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- Embedding \mathbf{X} induces the metric

$$
\ell=\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|,(i, j) \in E\right)
$$

Laplace-Beltrami discretization (extrinsic)

- Triangular mesh (X, E, F)
- Embedding of the mesh in \mathbb{R}^{3} specifies the coordinates $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$
- Embedding \mathbf{X} induces the metric

$$
\ell=\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|,(i, j) \in E\right)
$$

- Cotangent weights

$$
w_{i j}= \begin{cases}\frac{\cot \left(\alpha_{i j}\right)+\cot \left(\beta_{i j}\right)}{2}, & (i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Functional maps

Point-wise maps $t: X \rightarrow Y$

Functional maps

Functional maps $\mathbf{T}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$

Shape difference operators

Distortions induced by a map $=$ change of inner products of vectors

Shape difference operators

Distortions induced by a map $=$ change of inner products of functions

Shape difference operators

Shape difference operators

Riesz theorem: there exists a unique self-adjoint linear operator $\mathbf{D}: \mathcal{F}(X) \rightarrow \mathcal{F}(X)$ such that

$$
\langle\mathbf{T f}, \mathbf{T} \mathbf{g}\rangle_{\mathcal{F}(Y)}=\langle\mathbf{f}, \mathbf{D} \mathbf{g}\rangle_{\mathcal{F}(X)}
$$

Shape difference operators

Df

Dg

- Captures the difference in the geometry of the two shapes
- Depends on choice of inner product

Shape difference discretization

- area-based,

$$
\begin{gathered}
\langle f, g\rangle_{L^{2}(X)}=\int_{X} f(x) g(x) d \mu(x) \\
\mathbf{D}=\mathbf{V}_{X, Y}=\mathbf{A}_{X}^{-1} \mathbf{T}^{\top} \mathbf{A}_{Y} \mathbf{T}
\end{gathered}
$$

Shape difference discretization

- area-based,

$$
\begin{gathered}
\langle f, g\rangle_{L^{2}(X)}=\int_{X} f(x) g(x) d \mu(x) \\
\mathbf{D}=\mathbf{V}_{X, Y}=\mathbf{A}_{X}^{-1} \mathbf{T}^{\top} \mathbf{A}_{Y} \mathbf{T}
\end{gathered}
$$

- conformal-based,

$$
\begin{gathered}
\langle f, g\rangle_{H^{\top}(x)}=\int_{X} \nabla f(x) \nabla g(x) d \mu(x) \\
\mathbf{D}=\mathbf{R}_{X, Y}=\mathbf{W}_{X}^{\dagger} \mathbf{T}^{\top} \mathbf{W}_{Y} \mathbf{T}
\end{gathered}
$$

Shape difference discretization

- area-based,

$$
\begin{gathered}
\langle f, g\rangle_{L^{2}(X)}=\int_{X} f(x) g(x) d \mu(x) \\
\mathbf{D}=\mathbf{V}_{X, Y}=\mathbf{A}_{X}^{-1} \mathbf{T}^{\top} \mathbf{A}_{Y} \mathbf{T}
\end{gathered}
$$

- if $\mathbf{V}=\mathbf{I}$, the map preserves the areas
- conformal-based,

$$
\begin{gathered}
\langle f, g\rangle_{H^{1}(X)}=\int_{X} \nabla f(x) \nabla g(x) d \mu(x) \\
\mathbf{D}=\mathbf{R}_{X, Y}=\mathbf{W}_{X}^{\dagger} \mathbf{T}^{\top} \mathbf{W}_{Y} \mathbf{T}
\end{gathered}
$$

- if $\mathbf{R}=\mathbf{I}$, the map preserves the angles
- if $\mathbf{V}=\mathbf{R}=\mathbf{I}$, the map is an isometry

From operators to shapes

Generic Shape-from-Operator (SfO) problem: given some intrinsic operator \mathbf{O}_{0}, find an embedding \mathbf{X} by minimizing some cost function

$$
\min _{\mathbf{X}} \mathcal{E}\left(\mathbf{O}(\ell(\mathbf{X})), \mathbf{O}_{0}\right)
$$

From operators to shapes

Generic Shape-from-Operator (SfO) problem: given some intrinsic operator \mathbf{O}_{0}, find an embedding \mathbf{X} by minimizing some cost function

$$
\min _{\mathbf{X}} \mathcal{E}\left(\mathbf{O}(\ell(\mathbf{X})), \mathbf{O}_{0}\right)
$$

Note: \mathbf{O} depends on \mathbf{X} indirectly through the discrete metric $\ell(X)$, very hard for optimization!

From operators to shapes

- Metric-from-Operator (MfO): $\min _{\ell} \mathcal{E}\left(\mathbf{O}(\ell), \mathbf{O}_{0}\right)$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min _{\mathrm{x}} \sum_{i j \in E}^{n}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\ell_{i j}\right)^{2}$,

From operators to shapes

- Metric-from-Operator $(\mathrm{MfO}): \min _{\ell} \mathcal{E}\left(\mathrm{O}(\ell), \mathrm{O}_{0}\right)$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min _{\mathrm{x}} \sum_{i j \in E}^{n}\left(\left\|\mathbf{x}_{i}-\mathrm{x}_{j}\right\|-\ell_{i j}\right)^{2}$,

Shape-from-metric

Special setting of MDS: given a metric ℓ, find its Euclidean realization by minimizing the stress

$$
\min _{\mathbf{x}} \sum_{i, j=1}^{n} v_{i j}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\ell_{i j}\right)^{2}
$$

where

$$
v_{i j}= \begin{cases}1 & \text { if } i j \in E \\ 0 & \text { otherwise }\end{cases}
$$

Shape-from-metric

Special setting of MDS: given a metric ℓ, find its Euclidean realization by minimizing the stress

$$
\min _{\mathbf{x}} \sum_{i, j=1}^{n} v_{i j}\left(\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|-\ell_{i j}\right)^{2}
$$

where

$$
v_{i j}= \begin{cases}1 & \text { if } i j \in E \\ 0 & \text { otherwise }\end{cases}
$$

SMACOF algorithm: fixed point iteration of the form

$$
\mathrm{X} \leftarrow \mathrm{Z}^{\dagger} \mathrm{B}(\mathrm{X}) \mathrm{X}
$$

where

$$
\mathbf{Z}=\left\{\begin{array}{ll}
-v_{i j} & \text { if } i \neq j, \\
\sum_{i \neq j} v_{i j} & \text { if } i=j
\end{array} \quad \mathbf{B}(\mathbf{X})= \begin{cases}-\frac{v_{i j} \ell_{i j}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|} & \text { if } i \neq j \text { and } \mathbf{x}_{i} \neq \mathbf{x}_{j} \\
0 & \text { if } i \neq j \text { and } \mathbf{x}_{i}=\mathbf{x}_{j} \\
\sum_{i \neq j} b_{i j} & \text { if } i=j\end{cases}\right.
$$

From operators to shapes

- Metric-from-Operator (MfO): $\min _{\ell} \mathcal{E}\left(\mathbf{O}(\ell), \mathbf{O}_{0}\right)$ s.t. triangle inequality
- Shape-from-Metric (SfM): $\min _{x} \sum_{i j \in E}^{n}\left(\left\|x_{i}-x_{j}\right\|-\ell_{i j}\right)^{2}$,

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_{A}, and a corresponding initial shape X, deform X by minimizing

$$
\min _{\mathbf{X}}\left\|\mathbf{L}(\ell(\mathbf{X}))-\mathbf{L}_{A}\right\|
$$

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_{A}, and a corresponding initial shape X, deform X by minimizing

$$
\min _{\mathbf{X}}\left\|\mathbf{L}(\ell(\mathbf{X}))-\mathbf{L}_{A}\right\|
$$

Shape-from-Laplacian

Given a reference Laplacian operator \mathbf{L}_{A}, and a initial shape X related by functional correspondence T, deform X by minimizing

$$
\min _{\mathbf{x}}\left\|\mathbf{T L}(\ell(\mathbf{X}))-\mathbf{L}_{A} \mathbf{T}\right\|
$$

Shape-from-Laplacian

Given a reference Laplacian operator L_{A}, and a initial shape X related by functional correspondence T, deform X by minimizing

$$
\min _{\mathbf{X}}\left\|\mathbf{T L}(\ell(\mathbf{X}))-\mathbf{L}_{A} \mathbf{T}\right\|
$$

Shape-from-Laplacian convergence

Convergence of our method in the shape-from-Laplacian optimization problem.
Colors show vertex-wise MfO energy contribution

Shape-from-Laplacian convergence

Convergence of our method in the shape-from-Laplacian optimization problem using different initializations.

Style transfer by shape-from-Laplacian

Reference Y

Initialization X

Result
"Modify X such that \mathbf{L}_{X} becomes as similar as possible to reference Laplacian \mathbf{L}_{Y} "

Style transfer by shape-from-Laplacian

"Modify X such that \mathbf{L}_{X} becomes as similar as possible to reference Laplacian \mathbf{L}_{Y} "

Style transfer by shape-from-Laplacian

"Modify X such that \mathbf{L}_{X} becomes as similar as possible to reference Laplacian \mathbf{L}_{Y} "

Style transfer by shape-from-Laplacian

Reference Y

Initialization X

Result
"Modify X such that \mathbf{L}_{X} becomes as similar as possible to reference Laplacian \mathbf{L}_{Y} "

Style transfer by shape-from-Laplacian

Reference Y

Initialization X

Result
"Modify X such that \mathbf{L}_{X} becomes as similar as possible to reference Laplacian \mathbf{L}_{Y} "

Sensitivity to map quality

Functional map approximated as a matrix $\mathbf{T} \approx \boldsymbol{\Psi} \mathbf{C}^{\top} \boldsymbol{\Phi}^{\top}$ of rank k using the first functions in Fourier expansion (larger $k=$ better map)

Shape-from-Laplacian result for different quality of the map T (initial shape: sphere, reference Laplacian: bumped sphere)

Shape-from-difference operator

Deform initial shape X to make it different from C same way as B is different from A

$$
\min _{\mathbf{x}}\left\|\mathbf{D}_{C, X}(\ell(\mathbf{X})) \mathbf{T}_{A, C}-\mathbf{T}_{A, C} \mathbf{D}_{A, B}\right\|
$$

Shape-from-difference operator

Deform initial shape X to make it different from C same way as B is different from A

$$
\min _{\mathbf{x}}\left\|\mathbf{D}_{C, X}(\ell(\mathbf{X})) \mathbf{T}_{A, C}-\mathbf{T}_{A, C} \mathbf{D}_{A, B}\right\|
$$

Shape-from-difference convergence

Convergence of our method in the shape-from-difference optimization problem. Colors show vertex-wise MfO energy contribution

Shape-from-difference convergence

Convergence of our method in the shape-from-difference optimization problem.

Analogy synthesis by shape-from-difference

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between $A, B^{\prime \prime}$

Analogy synthesis by shape-from-difference

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between $A, B^{\prime \prime}$

Analogy synthesis by shape-from-difference

A

C

B

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between $A, B^{\prime \prime}$

Analogy synthesis by shape-from-difference

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between $A, B^{\prime \prime}$

Analogy synthesis by shape-from-difference

"Find X such that the difference operator between C, X is as similar as possible to the given difference operator between $A, B^{\prime \prime}$

Shape exaggeration

Shape exaggeration obtained by applying the difference operator between A, B to B several times.

Shape-from-eigenvectors

Shape-from-eigenvectors

What is the shape whose Laplacian is diagonalized by the joint eigenvectors?

Shape-from-eigenvectors

Given an orthonormal basis $\mathbf{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)$ on $\mathcal{F}(X)$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, deform shape X such that \mathbf{U} is an (approximate) eigenbasis of its Laplacian

$$
\min _{\mathbf{x}}\|\mathbf{W}(\ell(\mathbf{X})) \mathbf{U}-\mathbf{A}(\ell(\mathbf{X})) \mathbf{U} \boldsymbol{\Lambda}\|+\mu\left\|\ell-\ell_{0}\right\|
$$

Shape-from-eigenvectors

Given an orthonormal basis $\mathbf{U}=\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right)$ on $\mathcal{F}(X)$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, deform shape X such that \mathbf{U} is an (approximate) eigenbasis of its Laplacian

$$
\min _{\mathbf{x}}\|\mathbf{W}(\ell(\mathbf{X})) \mathbf{U}-\mathbf{A}(\ell(\mathbf{X})) \mathbf{U} \boldsymbol{\Lambda}\|+\mu\left\|\ell-\ell_{0}\right\|
$$

'Intrinsic average shape' by shape-from-eigenvectors

"Modify initial shape such that its Laplacian is diagonalized by a given basis \mathbf{U} "

Conclusions

- New generic framework for shape-from-operator inverse problems
- Variety of applications in shape editing
- Other intrinsic operators
- Other shape representations
- Different solutions to shape-from-metric problem

