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Abstract

We study the optimal targeting strategy of a planner who seeks to maximize
the diffusion of an action in a circular network where agents imitate successful past
behavior of their neighbors. We find that the optimal targeting strategy depends
on two parameters: (i) the likelihood of the action being more successful than its
alternative and (ii) the planner’s patience. More specifically, when the planner’s
preferred action has higher probability of being more successful than its alternative,
then the optimal strategy for an infinitely patient planner is to concentrate all the
targeted agents in one connected group; whereas when this probability is lower
it is optimal to spread them uniformly around the network. Interestingly, for a
very impatient planner, the optimal targeting strategy is exactly the opposite. Our
results highlight the importance of knowing a society’s exact network structure for
the efficient design of targeting strategies, especially in settings where the agents are
positionally similar.
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1. Introduction

1.1. Motivation

The importance of social interactions for the diffusion of innovations, ideas and
behavior is a topic that has attracted a lot of research interest over the years (see
Jackson, 2008). Recent technological advances have made the collection and analysis
of data related to the structure of relationships inside societies, as well as the rules
guiding the behavior of their members possible. The appropriate use of this infor-
mation can provide helpful tools for the effective diffusion of products, technologies
and ideas in societies.
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In this paper, we describe the optimal intervention of an interested party (from
now on called planner) who seeks to maximize the diffusion of a given action in a
society where agents imitate successful past behavior of their neighbors. In practice,
the planner can be either a firm who seeks to spread its product in a new market,
or a social planner who wants to promote the use of a new technology, or even a
political party that seeks to propagate its ideology. We illustrate how beneficial
the knowledge about society’s network structure may be for the efficient design of
marketing and social influence strategies.1

There are several reasons why economic agents adopt simple behavioral rules,
such as the imitation of successful past behavior. For example, they often need to
make decisions without knowing the potential gains or losses of their possible choices.
Furthermore, when these situations arise with high frequency and the agents’ com-
putational capabilities are limited, then they tend to rely on information received
from past experience of others, rather than experimenting themselves.2 These ar-
guments are also supported by a recent, but growing, empirical and experimental
literature which provides strong evidence in favor of the fact that in several decision
problems the agents tend to imitate those who have been particularly successful (see
Apesteguia et al., 2007, Conley and Udry, 2010, Bigoni and Fort, 2013).

Most of the existing literature on targeting in networks has focused on the im-
portance of central agents (see Ballester et al., 2006). Having a high or a low number
of connections (see Galeotti and Goyal, 2009, Chatterjee and Dutta, 2011), or dif-
fusing information to many others who are poorly connected (see Galeotti et al.,
2011) are some usual characteristics of influential agents. The importance of these
characteristics is obvious and beyond doubt. Nevertheless, we show that there is
another important factor with significant effect on diffusion. This is whether the
targeted agents are concentrated all together, in the sense that they are connected
between them, or they are spread around the network. Notice that, in order to
use this additional tool, information about the exact structure of the network is
required. Each of these strategies may be optimal depending on certain parameters,
with one of the most important factors being planner’s patience.

Throughout our analysis we highlight the differences between the optimal target-
ing strategies of an infinitely patient planner, i.e. one who cares about the diffusion
of her preferred action in the long run, and an impatient planner, i.e. one who cares
about the diffusion of her preferred action in the short run. To our knowledge, this
is the first paper that determines both short and long run optimal targeting strate-
gies and provides a clear distinction between them. Interestingly enough, we find
the optimal targeting strategies to differ sharply in the two cases and this difference
to persist for all values of the other parameters. This comparison is important in
several realistic scenarios, since different targeting strategies may be appropriate
depending on the time horizon.

1In broader terms, the importance of social networks in efficient marketing design has been
studied extensively and in several different disciplines. For an extensive list see Galeotti and Goyal
(2009) and references therein.

2These are some of the reasons why imitation has been subject to extensive theoretical study
in different environments (see Ellison and Fudenberg, 1993, 1995, Vega-Redondo, 1997, Eshel et
al., 1998, Schlag, 1998, Alós-Ferrer and Weidenholzer, 2008, Duersch et al., 2012).
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1.2. Setting and Results

Formally, we consider a finite population of behaviorally homogeneous agents
located around a circle. In each period, all agents choose simultaneously between two
alternative actions. The stage payoff each action yields is uncertain and depends on
a random shock, which is common for all the agents who have chosen the same action
in that period.3 Shocks are independent across actions and across periods. There
are no strategic interactions between agents. After making their decisions, all agents
observe the chosen actions and the realized payoffs of their two immediate neighbors.
Subsequently, they update their choice myopically, imitating the action that yielded
the highest payoff within their neighborhood in the preceding period. Notice that,
an agent who does not observe any of her neighbors choosing the alternative action
never changes her choice.

A problem that fits our model well is that of the diffusion of agricultural tech-
nologies.4 Farmers’ harvests depend mostly on common factors such as the weather
and the fertility of the land. Moreover, it is normal to assume that farmers are aware
of the technologies and crops used by their neighbors, as well as the payoffs they
receive. In particular, Conley and Udry (2010) show that farmers tend to imitate
those who have been very successful in the past, whereas as it is pointed out by
Ellison and Fudenberg (1993) the farmers’ technology decisions are guided mostly
by short–term considerations, especially when capital markets are poorly developed
or malfunctioning.

The planner is interested in maximizing the diffusion of her preferred action
in the population. She can be either infinitely patient, therefore interested in the
diffusion of the action in the long run; or impatient, therefore interested in the
diffusion of the action after just one period. She is assumed to know the structure
of the network, as well as how agents behave and she can intervene in society by
enforcing a change at the initial choice of a subset of the population. Ideally, she
would like to target the whole population, but doing so in reality would be extremely
costly. Hence, our goal is to identify the planner’s optimal targeting strategy given
the number of agents she is able to target.

Observe that all the agents are identical with respect to any measure of central-
ity. In fact, none of them has any positional advantage or disadvantage compared
to the rest of the population. Despite this fact, we find that expected diffusion
changes substantially depending on the subset of the population that has initially
been targeted by the planner. This highlights how important it is for the planner
to know the exact structure of the network.

We show that the optimal targeting strategy depends on two parameters: (i) the
likelihood of the planner’s preferred action being more successful than its alternative
and (ii) the planner’s patience. In fact, we observe a sharp contrast between the
optimal strategies of an infinitely patient planner and that of a very impatient
one. More specifically, when the planner’s preferred action has higher probability
of being more successful than its alternative, then the optimal targeting strategy
for an infinitely patient planner is to concentrate all the targeted agents in one

3This assumption is made only in order to facilitate the tractability of the results.
4See also Ellison and Fudenberg (1993).
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connected group;5 whereas when this probability is lower it is optimal to spread
them uniformly around the network. Interestingly, for a very impatient planner, the
optimal targeting strategy is exactly the opposite.

The intuition is relatively simple and depends on the fact that in the long run
only one of the two actions survives. Therefore, when the action is likely to be
successful, then an infinitely patient planner wants to prevent its disappearance due
to a few consecutive negative shocks in the first periods. For this reason she prefers
to concentrate them all together. To the contrary, if the action is unlikely to be
successful, then the optimal strategy for the planner is to try and take advantage of
a possible sequence of successful shocks during the first periods. By concentrating
all targeted agents together, she would only manage to make her preferred action
disappear more slowly, since for its diffusion a large number of consecutive successful
shocks would be needed, which is rather unlikely to happen.

For an impatient planner the arguments are reversed. When the preferred action
is likely to be successful, then the planner wants to make it visible to as many agents
as possible, therefore she should spread the initial adopters6 around the society. On
the other hand, if the action is more likely to be unsuccessful, then the planner wants
to prevent as many of the initial adopters as possible from observing the alternative
action, therefore she should concentrate them all together.

We extend our analysis in many different directions. We discuss the optimal
strategies of planners with intermediate levels of patience, thus intending to identify
how the transition between the two extreme cases occurs. Moreover, we quantify the
practical meaning of infinite patience by characterizing the expected waiting time
before convergence occurs. We observe that, for those cases in which the planner’s
optimal strategy is to concentrate all the initial adopters in one group the process is
slowed down substantially. In addition to this, we discuss what happens if we allow
for inertia and show that the results remain unchanged. This extension captures
many realistic features, such as the existence of switching costs and some forms
of conformity. Finally, we repeat our analysis for the linear and the star network
and provide numerical simulations for other network structures, as an attempt to
identify the effect of centrality on our results.

1.3. Related Literature

The role of influential agents in social networks has been studied in different disci-
plines, such as computer science (see Kempe et al., 2003, Richardson and Domingos,
2002) and marketing (see Kirby and Marsden, 2006), as well as in economics. Intu-
itively, a crucial feature is the centrality of an agent, which depicts either the number
of immediate neighbors an agent has or how important she is for the connectivity
of the network (see Ballester et al., 2006).

Other environments similar to ours have been studied in physics, mathematics
and computer science, especially in the areas of cellular automata and voter models.
The most similar paper to ours is Bagnoli et al. (2001), who study the long-run
behavior and the phase transition of a system with characteristics similar to ours.

5In the circle network, a connected group is a segment of the circle.
6Throughout the paper we interchange between the terms targeted agents and initial adopters,

since the targeted agents are those who adopt the action in the first period.
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A crucial difference with our paper is that they assume initial conditions to be
random, given that they refer to initial positions of particles. Hence, they do not
focus on identifying optimal initial conditions, which is the main focus of the present
paper.

Similar models have also been used in the Economics literature. In particular,
Ortuño (1993) considers a standard voter model setting, where agents are located
in a two dimensional infinite lattice and probabilistically adopt the choice made
by one of their neighbors. This is the only article where centrality does not play
a role. The agents are homogeneous in preferences and location and there exists
a planner who seeks the diffusion of a technology in the society and can choose
between targeting a single connected segment of agents, or spread them uniformly
around the population. The author concludes that these two choices lead to the
same probability of diffusion; result which is guided mainly by the infinite size of
the lattice. In our paper, the population is finite and we do not restrict the potential
choices of the planner. This features allow us to obtain more general results. More
recently, Yildiz et al. (2011) generalize the standard voter model by introducing
“stubborn” agents, i.e. who never change their choice. Similarly to us, the authors
also discuss the problem of optimal placement of stubborn agents, when trying to
maximize their impact on the long run expected choices of agents.

Our paper is closely related to Galeotti and Goyal (2009) and Goyal and Kearns
(2012). The research questions are similar, however both papers study different
types of processes and focus on different aspects. Galeotti and Goyal (2009) focus on
“word-of-mouth” communication and on social conformism, which are mechanisms
that disregard the performance of a product. They look for the optimal influence
strategy of a firm who seeks to maximize the diffusion of its product in a society
show that, depending on the learning mechanism, agents with low or high number
of connections should be targeted, underlining again the important role of central-
ity. Apart from analyzing different learning mechanisms, there are two more main
differences with our work. First, the focus is completely on the short run optimal
targeting strategy, using a two–period model. Second, in their case the network is
modeled as a degree distribution, where each agent meets a fixed number of agents
every period, who are randomly drawn from a population mass. Therefore, the
probability that two agents have a common friend is zero. This approach disregards
potential information about the exact structure of the network, which we show to
be important for the planner. Moreover, another question that remains unanswered
is what would happen if the degree distribution tends to a uniform and furthermore
whether we could do better by knowing the exact formation of the network. Both
of these questions can be tackled in our environment with promising results.

Along similar lines is the work of Goyal and Kearns (2012), where the authors
study competition between two firms who distribute their resources trying to max-
imize the adoption of a product by consumers located in a social network. The
modeled process is significantly different from ours and the paper focuses more on
how efficiently the resources are allocated, as well as on the effect of budget asym-
metries on the equilibrium allocations.

In a recent paper, Galeotti et al. (2011) show that in a setting where information
transmission is strategic (in contrast to what happens here) influential agents are
those who diffuse information to many others, who themselves are poorly connected.
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Another closely related paper is by Chatterjee and Dutta (2011). The authors study
the optimal behavior of a firm that seeks to diffuse a technology in a society con-
sidering different network structures, focusing mostly on the linear and the circular
network. The fact that part of the population consists of perfectly rational agents
and that the structure of the network is common knowledge changes significantly the
dynamics of the system. Also, the firm is allowed to target a single agent. They find
that a firm that produces a good quality product should target the agent with max-
imum decay centrality,7 whereas a firm that produces a bad quality product should
target the agent with the highest number of connections. There is an apparent
analogy between these results and ours, in the sense that in both cases the optimal
choice depends on the quality of the technology, which in our case could be loosely
approximated by the probability of the action of interest being more successful.

Regarding agents’ behavior, we focus on imitation of successful past behavior.
There is a recent but growing empirical literature (see Apesteguia et al., 2007, Con-
ley and Udry, 2010, Bigoni and Fort, 2013) that provides empirical evidence on the
adoption of this behavior in real environments. In theoretical framework, Vega-
Redondo (1997) has shown that a Cournot economy, where the agents follow this
rule, converges to the Walrasian equilibrium. Moreover, Alós-Ferrer and Weiden-
holzer (2008), Eshel et al. (1998) and Fosco and Mengel (2011) study coordination
games and public good games respectively, played between neighbors, where the
agents imitate their most successful neighbor. Their focus is mostly on the charac-
terization of stochastically stable configurations.

In a general framework, the current analysis builds upon the work on learning
from neighbors (see Banerjee, 1992, Banerjee and Fudenberg, 2004, Bala and Goyal,
1998, Chatterjee and Xu, 2004, Ellison and Fudenberg, 1993, 1995, Gale and Kariv,
2003). These articles study different learning mechanisms in environments where
the agents face common individual problems and there are no strategic interactions.
They mainly discuss conditions under which efficient actions spread to the whole
population. In particular, Ellison and Fudenberg (1993) use an environment very
similar to ours, in the sense that the agents repeatedly choose between two alterna-
tive technologies whose payoff depends on a random shock, which is common for all
the agents who use the same technology. Apart from these similarities in the setting,
there are several differences regarding the role of the network and other details of
the model, but the main difference is that their focus is not on the characterization
of the optimal intervention in favor of one of the two technologies.

The rest of the paper is organized as follows. In section 2 we formally define the
model. Section 3 contains the characterization of the optimal targeting strategy for
an impatient planner, whereas in Section 4 we analyze the optimal targeting strategy
for an infinitely patient planner. In Section 5 we briefly discuss some extensions and
Section 6 concludes. A thorough study of the extensions can be found in Appendix
A. All proofs can be found in Appendix B.

7Consider a decay parameter δ, where 0 < δ < 1, then decay centrality measures the proximity
between a given node and every other node weighted by the decay. Formally, this is equal to∑
j 6=i

δn(i,j), where n(i, j) is the geodesic distance between nodes i and j.
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2. The Model

2.1. The Agents

There is a finite set of agents N = {1, ..., n}, referred to as population of the
network. At time τ = 1, 2, ..., each agent i ∈ N chooses between two alternative
actions, aτi ∈ {A,B}. Each action yields random payoff. The payoff of agent i
is independent of the other agents’ choices. Therefore, interactions among agents
are not strategic and their connections represent only an exchange of information.
Moreover, agents who choose the same action at a given period receive equal pay-
offs.8 The payoffs of both actions change in each period, with the realizations being
independent across periods. Action B yields strictly higher payoff than action A
with probability p ∈ (0, 1), while action A yields strictly higher payoff than B with
probability q. For the derivation of the main results, we focus on the case where
q = 1−p. Notice that, for q = 1−p, the probability of both actions yielding exactly
equal payoffs is zero, which is assumed only in order to avoid unnecessary tie-breaks
and does not affect the results. In the extensions section we relax this assumption
and allow for different values of q.9 The ratio between p and q turns out to be crucial
for our analysis, therefore, we define r = p

q
. From now on, we will say that there is

a success (failure) in period τ if action B (A) yielded higher payoff in this period.
10

The planner is an agent, outside of the population, who seeks to maximize the
diffusion of action B in the population. She can do so by changing to her favor
the choice of a subset of the population before the beginning of the first period.
Optimally, she would like to affect the whole population, but in reality this would
be extremely costly. This cost enters implicitly if we assume that the cardinality
of the subset she can affect is fixed exogenously.11 More specifically, given that
at period τ = 0 all the agents are choosing action A, the planner can target t ≤ n
agents from the population and make them choose B in period τ = 1. After that, the
planner cannot affect the society anymore. The goal of this paper is to characterize
the planner’s optimal targeting strategy.

The planner can be either impatient or infinitely patient. A planner is called
impatient if she cares about the diffusion of her preferred action after only one period.
Similarly, a planner is called infinitely patient if she cares only about the diffusion
of her preferred action in the long–run.12 We find that the optimal behavior of an
impatient planner is exactly the opposite to that of an infinitely patient planner.
In the Extensions section, we also discuss some intermediate levels of planner’s
patience.

8This assumption does not affect the main intuitions and is imposed mainly in order to facilitate
the tractability of the results.

9Different values of q allow us to introduce introduce the possibility of inertia. Later on, we use
this feature to capture scenarios where either the two actions can have the same realized payoffs,
or there are externalities between the actions of one’s neighbors, or switching costs.

10Later on, with some abuse of terminology, we will also define the success and failure in a
random walk, in a similar way.

11In the section of Extensions in the Appendix we endogenize t and we discuss the returns of
investment for different values of it

12Implicitly, this means that the planner is assumed to be risk neutral.
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2.2. The Network

A social network is represented by a family of sets N := {Ni ⊆ N | i = 1, ..., n},
when Ni is called i’s neighborhood and denotes the set of agents observed by agent i.
We assume Ni to contain i as well. In the main part of our analysis, we examine the
circular network, where each agent interacts with her two immediate neighbors, i.e.
Ni = {i−1, i, i+1} for i = 2, . . . , n−1, whereas N1 = {n, 1, 2} and Nn = {n−1, n, 1}.
The current structure imposes an undirected network, because for all i, j ∈ N , j ∈ Ni

if and only if i ∈ Nj. In this setting, the network structure describes the flow of
information in the network, in the sense that each agent i ∈ N can observe the
action and the realized payoff of her neighbors, j ∈ Ni.

2.3. The Behavior

At the end of each period, the agents observe the actions and realized payoffs
of their neighbors. Subsequently, they have the opportunity to revise their choices.
Revisions happen simultaneously for all agents. We assume that each agent i ∈ N
can observe the choices and the realized payoffs of her neighbors in the previous
period. According to these observations, she revises her choice by imitating the
most successful action within her neighborhood in the preceding period. Notice
that, an agent never switches to an action that she did not observe, i.e. that neither
her nor any of her neighbors chose in the previous period. Moreover, if an action
disappears from the population, then it never reappears.

The important aspect of this myopic behavior is that the agents discard most
of the information available. They ignore whatever has happened before the pre-
vious period, hence they are unable to form beliefs about the underlying payoff
distributions of their alternative choices.

2.4. The Problem

After the planner has chosen the initial adopters, the population consists of s
agents choosing action A (from now on called non–adopters) and t agents choosing
action B (from now on called adopters); obviously s + t = n. We call a group a
sequence of neighboring agents all of whom choose the same action and are sur-
rounded by agents choosing the opposite action. The population is formed of m
groups of neighboring agents who choose action A, with sizes {s1, s2, . . . , sm}, where∑m

k=1 sk = s and analogously m groups of neighboring agents who all choose action
B, with sizes {t1, t2, . . . , tm}, where

∑m
k=1 tk = t.13 We refer to these groups as

groups of type A and of type B respectively. The numbering of the groups is based
on their size in increasing order, s1 ≤ s2 ≤ · · · ≤ sm and t1 ≤ t2 ≤ · · · ≤ tm.
With some abuse of notation we also use s1, s2, . . . , sm and t1, t2, . . . , tm to name the
groups.

Our goal is to find the optimal size of all sk and tk for k = 1, . . . ,m− 1,14 their
optimal position (if it matters), as well as the optimal number of groups, m.

In order to avoid unnecessary complications in the calculations (which arise with-
out the gain of any additional intuition) we assume that every group must have an

13Notice that, the fact that the network is a circle and there exist exactly two actions ensures
that the number of groups is the same for both actions.

14sm and tm must be equal to sm = s−
∑m−1
k=1 sk and tm = t−

∑m−1
k=1 tk respectively.
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Figure 1: Example of an initial configuration: White nodes represent agents choosing action B
and black nodes agents choosing action A.

even number of agents. This does not cause important limitations in our results,
since the underlying ideas remain the same. We refer the reader to the analysis
of the linear network (Appendix A) for a more detailed motivation regarding this
assumption. Formally:

Assumption 1 (A1). si and ti are even numbers for all i ∈ {1, . . . ,m}.

3. Results for an Impatient Planner

In this section, we study the optimal targeting strategy of a planner who cares
about maximizing the expected number of agents choosing action B after exactly one
period. Figure 2 shows the two possible configurations after one period. White dots
represent the agents who choose initially action B and black dots those agents who
choose initially action A. Observe that only those agents who are on the boundary
of a group can change their choice. In fact, for m denoting the total number of
groups, in case action B is more successful in the first period, then there will be 2m
additional adopters in the next period; whereas, in case action A is more successful,
the number of adopters will decrease by 2m. The probabilities of ending in each of
the two possible states is p and q = 1− p respectively.

Hence we can construct the objective function of the impatient planner:

ENB(1) = t+ 2mp− 2m(1− p) = t+ 2m(2p− 1)

It is easy to see that the optimal targeting strategy depends on the probability
p of action B being more successful. Namely, for p > 1/2 the objective function
is strictly increasing in m.15 Therefore, it is optimal to have as many groups as
possible. On the other hand, if p < 1/2 the objective function is strictly decreasing

15If q 6= 1− p, we would simply have to replace 2p− 1 with p− q.
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Initial Configuration After Success After Failure

Figure 2: Initial configuration and the two possible configurations after one period.

in m and therefore it is optimal to locate all initial adopters in one group. 16 This
result is formally stated in the following proposition:

Proposition 1. Under (A1), then for an impatient planner and for a given number
of initial adopters, t

• If p > 1/2, the optimal targeting strategy is to spread the initial adopters to as
many groups as possible, i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2.

– If t > s, then m = s
2
, with s1 = · · · = sm = 2.

• If p < 1/2, the optimal targeting strategy is to concentrate all the initial
adopters in one group, i.e. m = 1, t1 = t and s1 = s.

Observe that, as long as the planner creates the maximum number of groups, the
allocation of the agents inside these groups is not important. This feature will
change slightly in the case of infinite patience.

Intuitively, this result suggests the following. If an action is likely to be successful,
then the planner should try to make it directly visible to as many non–adopters as
possible. In doing so, she will manage to attract the maximum number of additional
adopters. On the contrary, if an action is unlikely to be successful, then the planner
prefers to prevent most of the initial adopters from observing the opposite action.
As a result, even upon an unsuccessful realization, most of the initial adopters will
not observe the alternative action, therefore they will not revise their choice in the
second period. As we will see, this optimal strategy changes sharply if the planner
is infinitely patient.

4. Results for an Infinitely Patient Planner

In this section, we study the optimal behavior of an infinitely patient planner,
i.e. one who cares only about the diffusion of her preferred action in the long run.

16Throughout the paper, we disregard the case of p = 1
2 . This is because for p = 1

2 and given
Assumption 1 every targeting strategy of the planner yields exactly the same result.
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A crucial feature of this setting is that such a planner disregards completely the
speed of the procedure. Before beginning our analysis, it is useful to state two prior
results.

4.1. Preliminaries

4.1.1. Diffusion when Agents Imitate-the-Best Neighbor

The present behavioral rule constitutes a special case of “Imitate-the-Best Neigh-
bor” rule, applied in a setting of individual decision–making under uncertainty with-
out strategic interactions between agents. Agents observe the choices of their neigh-
bors and the payoff those choices yield. Subsequently, they revise their choices
repeatedly according to these observations. In particular, they do so by imitating
the action that yielded the highest payoff within their neighborhood in the preceding
period.

In such a setting, it turns out that every connected network converges with
probability one to a steady state where all the agents choose the same action (see
Tsakas, 2013). Moreover, if p ∈ (0, 1) then any of the actions can be the one to
survive in the long run. This is based on the fact that all actions are vulnerable to a
sequence of negative shocks, which can lead to their disappearance. Given that an
action which disappears from the network never reappears, it turns out that only
one of them survives at the end.

In our case, this result ensures that only one of the two actions will survive
in the long run and that both actions have a positive probability to be the ones
succeeding. Hence, the optimal strategy for an infinitely patient planner is the one
that maximizes the probability that action B gets diffused to the whole population
in the long run. We define this probability as follows:

Definition 1. PB(·) is the probability that action B will be diffused to the whole
population in the long run.

This probability will depend not only on the size of the population n, the number
of targeted agents t and the probability of success p, but also on the choice of
the planner about which agents to target. Notice as well that maximizing this
probability is equivalent to maximizing the expected number of agents choosing
action B in the long run; a remark that will clarify the analogy between our short
run and long run analysis.

4.1.2. Results on Random Walks with Absorbing Barriers

A technical result which turns out to be particularly useful comes from Kemeny
and Snell (1960). It refers to the properties of a finite one–dimensional random
walk with absorbing barriers, which in the current context is defined as a Markov
chain whose state space is given by the integers j ∈ {0, 1, . . . , n} and its initial state
is i. For some numbers p and q satisfying 0 < p, q < 1, the transition probabili-
ties are given by Pj,j+1 = p, Pj,j−1 = q and Pj,j = 1 − p − q for all j 6= 0, n and
P0,0 = Pn,n = 1. The endpoints of a random walk are called absorbing barriers be-
cause upon reaching one of them random walk eventually stays there forever. Those
two states are the only absorbing ones. We denote the probability of absorption at
state n (respectively at state 0) when the process initiates at state i, by Pn(i) (re-
spectively P0(i)).Specifically, Kemeny and Snell (1960) compute the random walk’s
probabilities of absorption at each one of the two absorbing states as follows:
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Lemma 1 (Kemeny and Snell (1960)). Consider a random walk with state space
{0, 1, . . . , n}, where both barriers 0 and n are absorbing. If the probability of moving
to the right (from j to j + 1) is p, the probability of moving to the left (from j to
j − 1) is q, and r = p

q
, then the probability of absorption at state n, when starting

from state i is:

Pn(i) =

{
rn−rn−i

rn−1
if p 6= q (or equivalently r 6= 1)

i
n

if p = q (or equivalently r = 1)
(1)

Analogously, the probability of absorption at the state 0 is P0(i) = 1− Pn(i).

For the moment, p 6= q is equivalent to p 6= 1
2
. Later on we extend our analysis

to show that the results are completely analogous in the more general case.
To help us understand how this result can be used to express the current diffusion

process we consider a linear network (see Figure 3), with agents named {1, 2, . . . , n},
where each agent has two neighbors, except of agents 1 and n who have one neighbor
each. At period τ = 1, agents 1 to i choose action B and the rest choose action A.
Hence, every period only two agents may revise their choice (for example in the first
period those are the agents i and i + 1). The border fluctuates until either agent
n chooses B, or agent 1 chooses A. The position of the right border of adopters
follows a random walk with absorbing barriers 0 and n. Notice that, in order for
agent 1 to choose A the left barrier must be located at the artificial node 0, which
is going to be omitted in most of the graphs for expositional simplicity. Hence, we
can use the result stated above to describe the probability of diffusion for each of
the two actions. We call a random walk successful (unsuccessful) if it ends up in the
absorbing state where all the nodes included in the walk choose action B(A).

This result is particularly helpful for our analysis, because any initial targeting
choice induces a stochastic process that can be expressed as a sequence of condition-
ally independent random walks with absorbing barriers, similar to the one described
above. Despite having multiple borders between groups, all of them fluctuate syn-
chronously, because the payoffs for each action are perfectly correlated and therefore
all agents on the boundaries make the same choice in each period. For example, con-
sidering the beginning of the process, each border fluctuates until either the smallest
group of adopters, with size t1 or the smallest group of non–adopters, with size s1

disappears. This process can be represented by the random walk that is shown in
Figure A.14. Upon success or failure of the first walk, the process starts fluctuating
according to a new random walk that depends on the smallest still existing groups
of each type.

4.2. Main Results

Not surprisingly, the ratio r = p
q

= p
1−p , which describes the likelihood of action

B being more successful than action A, is a crucial parameter. However, surprisingly
enough, this is the only parameter that affects the optimal targeting strategy and
more specifically whether r is higher or lower than 1.17 The most interesting result,
though, is that the optimal strategy of the infinitely patient planner is in complete

17Even though, at the moment r > 1 is identical to p > 1/2, we keep this notation because it
facilitates the extension to cases where q 6= 1− p.

12



0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 3: Initial configuration of a random walk with absorbing barriers 0 and n.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p p

Figure 4: The two possible configurations after one period.

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

1− p = 0

0 1 2 ...... i− 1 i i+ 1 i+ 2 ...... n− 2 n− 1 n

p = 0

Figure 5: The two possible configurations after absorption.

contrast to that of the impatient planner. In particular, we observe that, for r > 1
the optimal targeting strategy of the planner is to concentrate all the targeted agents
in a single group, whereas for r < 1, the optimal strategy is to spread them as much
as possible across the population, splitting them into as many groups as possible
and as symmetrically as possible. Observe that, the results are not just different,
but are exactly opposite to those found for the impatient planner. In fact, the
optimal strategy for an infinitely patient planner is the worst possible strategy for
an impatient planner and vice versa.

For a better exposition of the general results, we split the problem into three
sub-problems. First, we consider the case where the groups are restricted to be
symmetric. Then, we consider the asymmetric case where the planner can target up
to two groups and finally we consider the general asymmetric case.

4.2.1. Symmetric cases

First, we consider the symmetric case, where the groups of agents choosing the
same action are restricted to have equal sizes, namely s1 = · · · = sm = s

m
and

t1 = · · · = tm = t
m

. Assuming no problems of divisibility we find the optimal
number of groups, m. As we have mentioned already, the optimal targeting strategy
depends only on the ratio r. In particular, when r > 1 it is optimal to concentrate
all initial adopters in one group, whereas when r < 1, it is optimal to split them in
as many groups as possible, i.e. m = min{s/2, t/2}. Formally:
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. . .. . . i i+1 . . .. . .

1− p p

t1/2 s1/2

Figure 6: The first random walk

Proposition 2. Under (A1) and given s1 = · · · = sm = s
m

and t1 = · · · = tm = t
m

,
then for an infinitely patient planner:

• If r > 1, then arg maxm PB(m|s, t, n, r) = 1

• If r < 1, then arg maxm PB(m|s, t, n, r) = min{s/2, t/2}

All proofs can be found in Appendix B.

Intuitively, this proposition suggests that when the probability of success is high,
it is beneficial to concentrate all initial adopters together. This prevents the dis-
appearance of the preferred action upon the realization of a sequence of negative
shocks during the first periods. The opposite strategy is optimal when the proba-
bility of success is low. Then the planner wants to take advantage of some potential
good shocks during the first periods, which will spread the action to as many agents
as possible.

4.2.2. Asymmetric Cases

We now turn attention towards the more general asymmetric cases. At first,
consider the case where the planner is restricted to target at most two groups of
each type, with sizes s1, s2 and t1, t2 respectively. Then the process can be described
as shown in the Figure 7. Recall that s1 ≤ s2 and t1 ≤ t2.

It turns out that the optimal decision depends completely on the value of r.
More specifically, if r > 1 it is optimal to concentrate all the agents in one group,
while if r < 1 the optimal choice is to have two groups of equal size for each action.

Proposition 3. Under (A1) and given m ≤ 2, then for an infinitely patient planner:

• If r > 1, the optimal targeting strategy is to concentrate all initial adopters in
one group.

• If r < 1, then the optimal targeting strategy is to split the initial adopters
into two as equal as possible groups, and locate them in the population as
symmetrically as possible, i.e. s2 − s1 ≤ 2 and t2 − t1 ≤ 2

The intuition is similar to that of the symmetric case. However, an interesting
finding is that this result does not hold for all restrictions on m. For example, if we
restrict the number of groups to be not greater than three, then it is not optimal to
split the agents into three equal groups of each type. Hence, it is not the case that
we always prefer symmetric configurations compared to asymmetric ones. Notice
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t2
s1

t1

s2

Figure 7: Example of an initial configuration with two groups of each type

that, this would be a sufficient condition for the proof of our main result, but it
does not always hold. Nevertheless, this does not affect our general result which is
stated below.

The two propositions help us construct the main theorem of the paper which
describes the optimal targeting strategy in the general case of m initial groups of
each type, allowing them to be of different sizes. The result is in line with the
previous findings and suggests that when r > 1, then the optimal choice is to
concentrate all the initial adopters in one group; whereas when r < 1, then the
optimal choice is to spread them uniformly across the population in as many and as
equal groups as possible. Namely:

Theorem 1. Under (A1), for an infinitely patient planner

• If r > 1, the optimal targeting strategy is to concentrate all the initial adopters
in one group, i.e. tm = t and t1 = · · · = tm−1 = 0 for any m.

• If r < 1, the optimal targeting strategy is to spread the initial adopters in as
many groups as possible and locate these groups as symmetrically as possible,
i.e.

– If t < s, then m = t
2
, with t1 = · · · = tm = 2 and sm − s1 ≤ 2,

– If t > s, then m = s
2
, with s1 = · · · = sm = 2 and tm − t1 ≤ 2

As it has been mentioned already, the importance of this result lies in the com-
plete contrast between the optimal strategy of an infinitely patient planner in com-
parison to an impatient one. An infinitely patient planner prefers to protect from
some initial negative shocks an action which is more likely to be successful from some
initial negative shocks, whereas she prefers to spread as much as possible an action
which is more likely to be unsuccessful, trying to take advantage of a few positive
shocks in the first periods. When the probability of success is low, she knows that
by concentrating all the targeted agents together, a lot of positive shocks will be
needed in order to capture the whole population, which is rather improbable for an
action that is expected to be often unsuccessful.
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5. Extensions

In this section, we briefly present the results of several extensions that address
specific questions related to the problem of interest. One can find an thorough
discussion of these extensions in Appendix A.

A natural question that arises from the contrast between the optimal behavior of
an impatient and an infinitely patient planner is what happens for intermediate levels
of patience. First of all, we observe that the expected diffusion is very sensitive to
small changes in the initial configuration and therefore it becomes particularly hard
to construct a general strategy for all intermediate levels of patience. Nevertheless,
we discuss the optimal targeting strategy of a planner who cares about the diffusion
of action B after 3 periods and we obtain an enlightening result. Namely, if r > 1,
then in some cases the planner prefers to spread the initial adopters in groups
consisting of four, instead of two, agents. Whereas, if r < 1, she always needs to
compare between the two extreme cases, i.e. concentrating all of them in one group
or spread them to as many groups as possible. This result provides a useful starting
point to understand how the optimal targeting strategy changes as the planner
becomes more patient.

Furthermore, we discuss what happens if the number of targeted adopters, t, is
endogenous. To do this it is necessary to define explicitly the profit function of the
planner. We find that under some simple and intuitive conditions, if r > 1 then
the expected profits of the planner have decreasing returns to scale in t. We also
provide a condition under which the function of expected profits attains a strictly
interior maximum, which means that for the planner it is not optimal anymore to
target all the agents in the population, even if she has no budget constraints.

Another crucial aspect we would like to shed more light on is the practical
meaning of infinite patience. In reality, no planner can wait literally infinitely many
periods. We try to identify the expected time before total diffusion of one action
occurs and how the planner’s strategies that maximize the expected diffusion affect
this expected time. Not surprisingly, we find that a larger number of groups leads
to faster diffusion and therefore the optimal strategy of the planner for r > 1 has
the drawback of maximizing also the expected time before total diffusion occurs.
On the other hand, for r < 1 the optimal strategy is also the one that leads to the
fastest expected time of total diffusion. An interesting feature, which is in line with
standard results in the analysis of random walks, is that the expected time of total
diffusion explodes as r gets very close to 1. In general we find that for different
configurations the expected time until diffusion occurs may vary substantially and
therefore one must be very careful when acting as an infinitely patient planner.

Moreover, we discuss cases where inertia is possible. This generalization allows
us to capture some realistic scenarios, which include the possibility of both actions
having equally good realizations, the existence of switching costs and some forms
of conformity. Such settings can be captured by allowing q 6= 1− p, where q is the
probability of action A being more successful than action B, and we explain why
our results are not affected by this feature.

Additionally, we discuss the optimal targeting strategy of a planner for some
slightly modified network structures, so as to get an idea of how the results would
be affected by the presence of central agents. First, we study the linear network
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assuming that the planner can target a single group of agents. Once again, we find
a sharp contrast between the optimal targeting strategies of an impatient and an
infinitely patient planner. In particular, for an infinitely patient planner, if r > 1 it
is optimal to target one of the two corners, whereas if r < 1 it is optimal to target
the agents who are located around the center. To the contrary, for an impatient
planner, if r > 1 it is optimal to target any segment of the line that does not include
any of the corner agents, whereas if r < 1 it is optimal to target one of the two
corners. In this part of our analysis, we also drop the assumption of groups having
an even number of agents and we show why dropping this assumption complicates
our analysis without providing additional insights. We also discuss briefly the star
network, in which the vast importance of very central agents becomes apparent.

Finally, we run a set of simulations to test the robustness of our results to the
addition of a few links in the circle network and we find that our conclusions remain
valid. In particular, if r > 1 it is always optimal to target only one group of
connected agents, with the optimal location of the group depending on the position
of the additional links. Conversely, if r < 1 it is almost always optimal to target the
subset of agents that minimizes the number of successful draws needed to capture the
whole population. This is in line with our previous findings and provides intuitions
which can be useful for the study of more general network structures.

6. Conclusion

We have analyzed the optimal intervention of a planner who seeks to maximize
the diffusion of an action, in a circular network where the agents imitate success-
ful past behavior of their neighbors. It turns out that there is room for strategic
targeting of initial adopters even in environments where all agents are completely
identical. Knowledge of the exact structure of the network, and not only its degree
distribution, can be beneficial for a planner. We find that the optimal decision de-
pends almost completely on two parameters. On the likelihood r of the preferred
action being more successful and on how patient the planner is. Changes in these
two parameters lead to completely opposite optimal behavior.

An important parameter that we have disregarded completely in our analysis is
the risk aversion of the planner. We have assumed the planner to be risk neutral,
caring only about the expected number of adopters. For a risk averse planner, we
would expect the optimal behavior to contain more dispersed targets than for the
risk neutral one, but this remains an open question for future research.

The current paper constitutes a first attempt to explore targeting possibilities in
networks where agents imitate successful behavior. Given that our network structure
is relatively simple, a natural extension would be to explore which of the current
features are still present and which of these are changing when passing to more
general network structures. It is apparent that centrality features arising in more
complex networks will play an important role. However the exact characteristics
remain to be studied.
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Appendix A. Extensions

Appendix A.1. Intermediate patience - the τ -patient planner

The sharp contrast between optimal targeting strategies of impatient versus in-
finitely patient planner makes plausible the question of how this transition occurs as
the planner becomes more patient. Intermediate levels of patience may be defined
in several alternative ways, of which we choose the following:

Definition 2. The planner is τ -patient if she cares about maximizing the expected
number of agents choosing action B at period τ , denoted by ENB(τ).

Although, at first sight, this definition of impatience might seem unusual, it
covers all important intuitions and at the same time it can be easily extended to
more complicated cases. For example, the qualitative results would be very similar if
the planner cared about the sum of discounted expected number of agents choosing
her preferred action from period one up to period τ .

First of all, we analyze the case where the planner is 2-patient, i.e. that she cares
only about the expected number of adopters after two periods. Notice that, after
two periods, there are four possible states the society can be in.18 Notice, also, that
the number of groups may have decreased after the first period. This is because,
after the first period, the groups consisting of only two agents who chose the action
that was unsuccessful during that period will disappear. For a visual representation,
look at the configuration occurring after failure in Figure 2 (p. 9), where the bottom
left group of two agents choosing action B disappears after a failure for action B in
the first period. Hence, we can construct easily the objective function of a 2-patient
planner as:

ENB(2) = t+ 2(2p− 1){2m− [pα2 + (1− p)β2]}

where α2 is the number of groups consisting of two agents choosing A and β2 is the
number of groups consisting of two agents choosing action B.

Notice that there are two opposing forces. We analyze them for p > 1/2, since for
p < 1/2 the analysis is exactly the opposite. For p > 1/2, on the one hand, we would
like to have as many groups as possible, since this increases the expected number
of agents choosing B. On the other hand, we would like not to have groups of size
two, since this enters in the objective function negatively. Hence, as long as we can
create more groups, with size larger or equal than four agents, it is preferred to do
so. Now, what would happen if in order to create one extra group, we would have
to create one or more groups with size two, for each one of the actions. The most
difficult condition to be satisfied arises if we are left with groups of size no larger
than four agents for both actions. In this case, in order to create one additional
group, we would need to substitute one group of four agents with two groups of two
agents for each type. Therefore, we would need to increase the number of both α2

and β2 by two. The necessary condition such that we prefer to have one extra group
would be:

18In general after τ -periods there are 2τ possible histories, so there are 2τ possible configurations.
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2m− [pα2 + (1− p)β2] ≤ 2(m+ 1)− [p(α2 + 2) + (1− p)(β2 + 2)]

With some straightforward calculations, we see that this condition is satisfied
always with equality, hence we are indifferent between having this one additional
group or not. Given that this is the toughest condition to satisfy, this means that
in all the other cases it is strictly preferred to have one more group. Concluding, for
a 2-patient planner it is always preferred, at least weakly, to have one extra group.
Therefore, her optimal behavior is identical to the one of the 1-patient planner.

The intuition is basically the same for the 3-patient planner. Notice that, during
the first two periods it is possible that also groups of four agents disappear, which
may affect the total number of groups in the third period. The objective function
of the planner becomes:

ENB(3) = t+ 2(2p− 1){3m− 2[pα2 + (1− p)β2]− [p2α4 + (1− p)2β4]}

where α4 (β4) is the number of groups consisting of four agents who choose action
A (B) and α2, β2 are as defined above.

We observe that, in this case it would be preferable not to have groups consisting
neither of two nor or four agents. Hence, there is an ambiguous trade–off between
having more groups and those additional groups consisting of four or less agents.
One can easily observe that the creation of groups consisting of four agents has very
small negative effect, compared to the positive effect of the addition of a group. This
means that the planner prefers to have two groups with four agents, rather than one
with eight. However, there are still more cases to analyze. The case captured in
Figure A.8 is the one that imposes the toughest condition to satisfy. In particular,
the question is whether the planner prefers to break two groups of four agents each
into four groups of two agents each.

not break break

Figure A.8: Configuration where a 3-patient planner prefers not to create an additional group if
r > 1

The condition is the following and it is not satisfied for any p:
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3m− 2[pα2 + (1− p)β2]− [p2α4 + (1− p)2β4] ≤
≤ 3(m+ 1)− 2[p(α2 + 2) + (1− p)(β2 + 2)]− [p2(α4 − 1) + (1− p)2(β4 − 1)]⇔
⇔ 3− 4p− 4(1− p) + p2 + (1− p)2 ≥ 0

In a similar manner, we need to check whether other possible ways of creating
more groups are beneficial. This case turns up to be the only one where the 3-patient
planner prefers not to have more groups. The second stricter condition arises by the
configuration depicted in Figure A.9. In this case, it turns out that the planner is
indifferent between the two alternative configurations. All the other conditions are
strictly satisfied.

not break break

Figure A.9: Configuration where a 3-patient planner is indifferent between creating or not an
additional group, if r > 1.

We can describe the optimal behavior of a 3-patient planner as follows. For
p > 1/2, if t ≪ s, then optimally t1 = t2 = · · · = tm = 2 and m = t/2. For s ≪ t,
optimally s1 = s2 = · · · = sm = 2 and m = s/2. However, if s ≈ t then if t is a
multiple of 4 the optimal targeting strategy is to choose t1 = t2 = · · · = tm = 4 and
m = t/4 and if t is not a multiple of 4, then t1 = 2, t2 = · · · = tm and m = t+2

4
and

the same for s.
Analogously, for p < 1/2, the objective function of the planner decreases in

the number of groups until m = t/4 and increases afterwards. Hence, we need to
compare the cases where m = 1 and m = min{s/2, t/2}. Comparing the two cases
for s ≈ t, we get the condition:

3 ≥ 3
t

2
− 2p

s

2
− 2(1− p) t

2

which is satisfied whenever t ≥ 6. Hence, it is not optimal to target one group
only when t ≈ s and t < 6.

The case of the 3-patient planner provides very useful insights regarding the
change in the planner’s optimal behavior as she becomes more patient. On the
one hand, for actions with high probability of success (p > 1/2) it seems that this
transition happens smoothly, since it becomes optimal for the planner to target
larger and larger groups. On the other hand, when the action has low probability
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of success (p < 1/2) this transition happens suddenly, meaning that for low values
of t it is optimal to target as many groups as possible, whereas for high values of t
it is optimal to target only one group.

Continuing the analysis for more patient planners would give more complicated
results which would not be easily tractable. This is because the results would depend
vastly on the exact initial position of each group and not only on their number and
sizes. A complete characterization for any value of planner’s patience would be an
interesting and illuminating extension to our paper.

Appendix A.2. Returns to Scale of Investment

In this section, we endogenize the choice of the number of initial adopters t
and the returns to scale of investment for an infinitely patient planner. We define
explicitly the expected profits of the planner as follows:

EΠ(t) = πPB(t)− c(t)

where PB(t) is the probability of successful diffusion, which depends only on t if we
assume that the planner has chosen the optimal targeting strategy. The constant π
is a fixed benefit that the planner receives if action B captures the whole population
and c(t) is a a strictly increasing and weakly convex cost function. As in most of our
analysis, we consider EΠ(t), PB(t) and c(t) as continuous and twice differentiable
functions, of which we are interested only at the integer values of t.

For r > 1, we show that the expected profits have decreasing returns to scale.
Moreover, if the cost function is linear and the marginal cost of adding an initial
adopter is neither two small, nor too large, then there exists an interior choice of
initial adopters that maximizes the expected profits. This result is very intuitive
if we recall that targeting additional agents increases the probability of successful
diffusion, but never ensures it. Therefore, for a given number of initial adopters,
by targeting one more the increase in probability may be so little, that the cost for
convincing this agent exceeds the expected increase in profits. We summarize these
results in the following proposition.

Proposition 4. For r > 1, the expected profits’ function of the planner, EΠ(t),
given her optimal targeting strategy and cost function c(t) such that c′(t) > 0 and
c′′(t) ≥ 0:

• Has decreasing returns to scale in t,

• If c(t) = kt, k ∈ R+, then it has strictly interior maximum if and only if
π ln r

2(r
n
2 −1)

< k < π ln r

2(r
n
2 −1)

r
n
2 .

If k is larger than the upper bound then the derivative is always negative, which
means that targeting any agent is too expensive and therefore the optimal choice
is t = 0. If k is lower than the lower bound then the derivative is always positive,
which means that targeting an additional agent is very cheap and therefore under
the absence of initial budget constraint the optimal choice is t = n.

For r < 1, the result is more ambiguous because targeting more agents affects
also the optimal number of groups. Nevertheless, if we slightly modify the argument,
we can show that for a fixed number of groups it is possible that the expected profits
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have increasing returns to scale when r < 1 and t < s. In particular, this is the case
if the cost function is homogeneous of degree one, which holds for example when the
cost function is linear. Hence, given that splitting the agents into more groups yields
even higher expected profits, at least when the cost function is linear the expected
profits have increasing returns to scale when r < 1 and t < s.

Appendix A.3. Expected Waiting Time before Absorption

We have analyzed the different optimal targeting strategies, given the planner’s
level of patience. However, in practice, our definition of long–run may have very
different characteristics depending on the parameters of the problem. In order to
complement our previous analysis, we turn our attention towards the identification
of the expected waiting time before the total diffusion of one of the two actions in
the whole population.

Our goal is twofold. On the one hand, we want to quantify the meaning of
“infinite patience” of a planner, by characterizing the performance of her optimal
choices with respect to the expected waiting time before the population converges
to a steady state. On the other hand, we explore potential trade-offs between max-
imizing the probability of successful diffusion and minimizing the expected waiting
time before diffusion occurs.

Not surprisingly, we find that diffusion is expected to occur faster as the number
of groups increases. This result is very intuitive, because having more groups (of
equal sizes) implies that the size of each group is going to be smaller; and when the
groups are smaller then fewer failures are sufficient for their disappearance, feature
that leads to faster convergence. This means that, for p < 1

2
the targeting strategy

that maximizes the probability of diffusion, it also minimizes the expected time
until absorption, therefore there is no trade–off between the two aspects. Moreover,
we see that convergence occurs fast even in absolute terms. On the other hand,
for p > 1

2
, our optimal targeting strategy is the one with the maximum expected

waiting time, compared to all the symmetric configurations, which for some values
of p close to 1

2
may be unrealistically high in absolute terms. Therefore, there is an

important trade–off for the planner.
Furthermore, for the optimal initial configurations if p > 1

2
the expected waiting

time is strictly concave in t and attains an interior maximum, whereas if p < 1
2
, then

for t > s the expected waiting time increases as t increases. However, it decreases
if p < 1

2
with t < s. On the one hand, for p > 1

2
, this happens because extreme

differences in the numbers of adopters and non–adopters lead to quicker absorption
compared to more equilibrated configurations, assuming the total number of agents
constant. On the other hand, for p < 1

2
with t > s (t < s), increasing t (s) is

equivalent to a decrease in s (t), therefore a decrease in the number of groups, and
a decrease in the number of groups means that each group adopters will be larger,
hence the expected waiting time before absorption will also be longer.

In addition to this, in most of the cases we see that the expected waiting time
becomes larger for values of p close to 1

2
and decreases sometimes up to one or two

orders of magnitude as p approaches either 0 or 1. We see also that the larger the
difference between the values of s and t, the more extreme the effect in waiting time
of changes in the values of p. The problem becomes particularly important when
the planner targets a single group of initial adopters, because then the differences
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may become extreme (for example look at Figure C.27 in Appendix C). In addition
to this, in absolute terms these changes increase significantly as the population
increases.

To establish our results on a concrete manner, we use the following result, which
comes from Kemeny and Snell (1960). Namely:

Lemma 2 (Kemeny and Snell (1960)). Consider a random walk with states {0, 1, . . . , n},
where both barriers 0 and n are absorbing. If the probability of moving to the right
(from i to i+ 1) is p, the probability of moving to the left (from i to i− 1) is q and
r = p

q
, then, starting from state i, the expected waiting time before absorption occurs

is:

τ(i,n−i) =

{
1
p−q [n

rn−rn−i

rn−1
− i] if p 6= 1

2

i(n− i) if p = 1
2

(A.1)

Recall that we focus on the case where q = 1− p. Now, we are ready to charac-
terize the expected waiting time for the planner’s optimal targeting strategies.

Appendix A.3.1. Expected waiting times of optimal configurations

For r > 1, recall that the optimal choice for the infinitely patient planner is to
target a single group of adopters. In this case the process can be summarized as
a random walk with n/2 steps and two absorbing barriers, starting from i = t/2.
Hence the expected waiting time is equal to:

τ(t, s|r > 1) = τ( t
2
, s
2

) =
1

2p− 1

[
n

2

(
rn/2 − rs/2

rn/2 − 1

)
− t

2

]
=

1

2p− 1

[
s

2
− n

2

(
rs/2 − 1

rn/2 − 1

)]
The following result summarizes the properties of the above expression:

Remark 1. For r > 1, the expected waiting time before absorption, τ(t, s|r > 1),
is

1. Strictly concave in s and in t,

2. Given p and n, attains interior maximum t∗ = n−s∗ = n−2 ln (rn/2−1)−ln (ln r)−ln (n/2)
ln r

3. lim
r→1+

t∗ = n
2

and lim
r→1+

τ(t∗,s∗=n
2

) = n2

16

4. lim
r→+∞

t∗ = 0 and lim
r→+∞

τ(t∗,s∗=n−2) = n
2
− 1.

/

Notice, that t∗ may not be an even integer number. In this case we have to
compare the two closest even integers to t∗, in order to identify the size of t that
would give the maximum expected time before absorption occurs. As r diverges
to infinity, t∗ approaches 0, which is not in the domain of t, hence we check the
expected time at t = 2.

When p is close to 1
2
, the relation between the expected time of absorption, τ ,

and the probability of success, p, is a bit more sensitive to the different parameter
values. This makes it hard to provide a general result. However, we have analyzed
numerically all circular networks with up to one million agents and we have found
that, for all the values of p when we can target sufficiently many agents and for values
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of p sufficiently far away from 1/2 the expected time of absorption is decreasing in
p. Sufficiently far away has different meaning depending on the size of the network.
For populations larger than 30 agents is less than 0.6, for populations larger than
100 agents is below 0.55 and for populations larger than 1000 it gets so close to 1/2
that in practice it is true everywhere. Moreover, this decrease may be as big as one
or two orders of magnitude. Figures C.27 and C.28 depict the expected time of
absorption and its derivative with respect to p respectively, for different values of t,
in a population with 200 agents.

For r < 1 we must differentiate between the cases where t < s and t > s. We
concentrate in cases where there is no problem of divisibility, i.e. si = s/m and
ti = t/m respectively. For t < s, after some simplifications, the expected waiting
time is equal to:

τ(t, s|r < 1, t < s) = τ(1, s
t
) =

1

2p− 1

[
s

n− s
− n

n− s

(
r

s
n−s − 1

r
n

n−s − 1

)]
Remark 2. For r < 1 and t ≤ s, the expected waiting time, τ(t, s|r < 1, t < s), is

1. Strictly decreasing in t and strictly increasing in s,

2. lim
r→0

τ = 1 and lim
r→1−

τ = s
n−s ,

3. τ(t = n
2
, s = n

2
) = τ(1,1) = 1 and lim

s→n
τ = − 1

2p−1

/

The first result is quite intuitive. Increasing t(s), decreases (increases) s
t

and
therefore decreases (increases) the length of the random walk associated with the
process. Decreasing (Increasing) the length of the walk, decreases (increases) the
expected time before absorption occurs.

More interesting is part (3) of Remark 2 which shows that the minimum and the
maximum expected waiting time do not depend on the size of the population, but
only on the probability of success. This result provides a natural upper bound for
the expected waiting time, which does not explode as the population grows.

For the relation between τ and p we repeat the same numerical analysis we
performed before for r > 1 and for all circular networks with up to one million
agents. We find that for s > n

2
the expected waiting time is strictly increasing

in p. For, s = n
2

is stable and equal to 1. The behavior is qualitatively identical
irrespectively of the size of the population. Figures C.29 and C.30 show the typical
relation for different values of t.

Notice that, from parts (1) and (2) of Remark 2, we find that the maximum
expected time of absorption occurs as p approaches 1

2
and t = 2 and is equal to

n
2
− 1. This is exactly equal to the previous case, described in Remark 1, where

r →∞ and t = 2, which is the fastest among the configurations that maximize the
expected waiting time. This shows that a comparison between worst case scenarios
for r < 1 and r > 1, shows that the slowest of all the worst case scenarios when
r < 1 is still faster than the fastest of the worst case configurations for r > 1. This
provides a notion of how much faster are the optimal configurations for r < 1 with
respect to those for r > 1.
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For t > s, the intuitions are analogous to the previous case. The expected waiting
time before absorption is equal to:

τ(t, s|r < 1, t > s) = τ( t
s
,1) =

1

2p− 1

[
1− n

s

r − 1

r
n
s − 1

]
Remark 3. For r < 1 and t ≥ s, the expected waiting time, τ(t, s|r < 1, t > s), is:

1. Strictly increasing in t and strictly decreasing in s,

2. lim
r→0

τ = lim
r→1−

τ = t
s

3. lim
s→0

τ = +∞ and lim
s→n

2

τ = 1

/

As expected, the first result is the contrary to the first result of Remark 2.
The justification is a straightforward reversal of the argument used before. An
important issue that arises here is that the expected time is not always increasing
as p increases. In fact, it seems to be increasing in the beginning up to some point
and then decreasing. The point where it gets maximized varies a lot as we alter
p, s and t. Again, a typical behavior can be found in Figures C.31 and C.32. The
shape of the figures is very similar for all networks we checked (all networks with
up to one million agents). An interesting feature is expected waiting is minimized
as p approaches 0 and 1/2 with the two limits being always exactly equal.

Appendix A.3.2. Comparison between configurations with different number of groups

Now, we turn our attention to the comparison between configurations consisting
of different number of groups. We analyze the simplest of these cases, where all the
groups are symmetric. Recall that, when groups are symmetric, then the optimal
strategy for an infinitely patient planner is, if r > 1, to locate them in a single
group and if r < 1 to spread them to as many groups as possible. Moreover, even
when we allow for asymmetric configurations, the optimal choices again tend to be
symmetric. However, it is not clear yet which is the effect of this choice on the
expected waiting time before absorption occurs. By Lemma 2, this is equal to:

τ( t
2m

, s
2m

) =
1

2p− 1

[
s

2m
− n

2m

(
r

s
2m − 1

r
n
2m − 1

)]
Proposition 5. For all r 6= 1 and for symmetric configurations, i.e. s1 = · · · =
sm = s

m
and t1 = · · · = tm = t

m
, the expected waiting time is strictly decreasing in

the number of groups, m.

Numerical examples can be found in Figures C.33 and C.34, which show that
this decrease has an exponential shape. Even though we have restricted our atten-
tion to symmetric configurations, this proposition provides an interesting intuition
regarding the trade-off between maximizing the probability of successful diffusion
and minimizing the expected waiting time before diffusion occurs. On the one hand,
for r > 1, the choice that maximizes the probability of successful diffusion is the one
with the longest expected waiting time. On the other hand, for r < 1, the planner’s
choice that maximizes the probability of successful diffusion is also the one mini-
mizing the expected waiting time until diffusion. Theoretically, these findings are
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in line with standard results on finite random walks with absorbing barriers, where
increasing equally the number of steps in both directions leads to an increase in
the expected waiting time before absorption, but it has an ambiguous effect on the
probability of absorption in each one of the two barriers.

In our problem, this result stresses out the fact that the strategy of concentrating
all the initial adopters in one group when r is high despite maximizing the prob-
ability of successful diffusion it may slow down the procedure significantly. This
should be taken into account by a planner when trying to quantify the meaning of
being infinitely patient. In practical terms, the waiting time may be so long that
even a very patient planner would find it unrealistic to wait until diffusion occurs.
Nevertheless, when r is low, the optimal choice for the planner is also the one which
minimizes the expected waiting time. This facilitates the decision of the planner
since there is no trade-off between the two characteristics of the procedure.

Appendix A.4. q 6= 1− p: Conformity, Switching Cost and Possibility of Inertia

Until now, we have focused on the case where q = 1− p. In practice this meant
that if two neighbors were using different actions at some period, then in the next
period either they would both choose action B, which would happen with probability
p, or would both use action A, which would happen with probability 1 − p. This
assumption rules out several realistic problems, which we mention here.

Nevertheless, our whole analysis, for both the patient and the impatient planner,
is based not on the value of p itself, but on the value of r, which we defined as the
relative likelihood of action B being more successful than action A, more formally
as r = p

q
. Despite the fact that, for simplicity reasons, we concentrated on the case

where q = 1 − p, this need not be the case. Our results remain unchanged if we
substitute the condition p > 1

2
(p < 1

2
respectively) with p > q (p < q respectively).

In both cases, the conditions can be summarized by the value of r and in fact whether
r > 1 or r < 1. In this extension we discuss three realistic scenarios, where relaxing
this assumption would be necessary and therefore our results are appropriate.

Appendix A.4.1. Possibility of Inertia

With our previous description we have ruled out the possibility of both actions
yielding the same payoff. A plausible modification would be to allow both actions
to be equally successful in some states of nature. This would lead to a combination
of configurations with transition probabilities as shown in Figure ??.

. . .. . . i i+1 . . .. . .

(1− p− q)q p

tk sk

Figure A.10: Transition probabilities under the possibility of inertia

Focusing on i and i + 1, who would be the only agents who could change their
decision (in this part of the network), we would obtain the following possible cases:
As we have already mentioned, the results are still valid if we define r = p

q
.
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period τ

i i+ 1

prob. p

i i+ 1

prob. q

i i+ 1

(1− p− q)
i i+ 1

Figure A.11: The left figure shows agents’ i and i+ 1 choices at period τ . The other three figures
show the choices of the agents at period τ + 1, after (ii) success, (iii) failure, (iv) draw at period τ .

Appendix A.4.2. Switching Cost

In the example of technology adoption, we have disregarded the effect of switch-
ing costs. Implementing a new technology assumes the purchase of new machinery,
or the effort of learning how to use the new technology efficiently. Therefore, a
farmer in order to decide to pay this cost must have observed the new technology
to have been sufficiently better than the one she already uses. Sufficiently better
in this setting can be translated as follows. Agent i who uses action B at period τ
changes to action A if the payoff of action A at that period was sufficiently higher,
i.e. πτA > πτB + c, where πτB is the payoff of B at that period and c the switching
cost. Let us call q the probability of this realization. Analogously, agent i + 1 who
uses action A, changes to action B if πτB > πτA + c, which occurs with probability p.
Now, if |πA− πB| < c which happens with probability 1− p− q,19 then both agents
keep using the same action. The alternative action did not seem to be successful
enough to convince them to abandon their current technology. This scenario is along
the same lines with those we have already mentioned. Hence, our results are also
suitable under the presence of switching costs.

Appendix A.4.3. Conformity

In the environment we have considered until now, as long as an agent was ob-
serving both actions the probability of choosing one over the other was the same,
irrespectively of how many of her neighbors were choosing it. However, our mech-
anism is also suitable for describing cases where the choices of the agents do not
depend only on the performance of the actions, but also on the number of their
neighbors (including themselves) who used each action in the previous period. For
example, think of a mechanism where there are two cutoff values in the payoff dis-
tribution of action B, b2 > b1, such that in period τ + 1 action B is chosen by those
agents who observed

• One or more neighbors choosing action B in period τ , if b > b2,

• Two or more neighbors choosing action B in period τ , if b2 > b > b1,

• Exactly three neighbors choosing action B in period τ , if b < b1.

where b is the realized payoff of action B in period τ
The three realizations occur with probabilities p1, p2, p3 respectively, where

p1 + p2 + p3 = 1. The values of the probabilities depend on the payoff distribution
of action B. The dynamics of the network can be summarized by Figure A.12.

19We assume that the payoffs are defined such that the switching cost is high enough to ensure
that p+ q < 1.
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period τ

p2p3 p1

period τ + 1, with probability p1

period τ + 1, with probability p2

period τ + 1, with probability p3

Figure A.12: Possible configurations and transition probabilities under the presence of conformity.

This mechanism introduces a notion of conformity in the network, since the more
of ones neighbors choose an action, the more probable is that she chooses it as well.
It is apparent that all of our results still hold in this modified environment.

Appendix A.5. On the Importance of Centrality – The Line

In this section we turn our attention towards the linear network. The only
difference between the linear and the circle networks is that in the linear network
agents 1 and n are not connected between them, so they have only one neighbor.
Formally, Ni = {i − 1, i, i + 1} for i = 2, . . . , n − 1, whereas N1 = {1, 2} and
Nn = {n− 1, n}.

This structure introduces a notion of centrality in the network. Mainly, this is
not because some agents have different number of neighbors, but because there is
only one path that connects indirectly each two agents. Hence, the agents located
closer to the center of the line act as hubs for the transmission of information through
the network. This new feature has implications which we are worth discussing.

We only consider the case where the planner can target a single group of agents,
of size t, which will be surrounded by two groups of non–adopters with sizes s1 and
s2 respectively (see Figure A.13).

For an impatient planner the result is trivial. On the one hand, if r > 1 it is
optimal to target any segment of the line that does not include any of the corner
agents, whereas if r < 1 it is optimal to target one of the two corners. This is because
for high r the planner expects a success, hence she wants to make the action visible
to as many non–adopters as possible. In this case, this number can be at most equal
to two, if the planner targets any group that does not include either agent 1 or agent
n. To the contrary, when r is low the planner wants to prevent as many adopters
as possible from observing the alternative action, therefore she should target one of
the two corners. Once again, we will see that this result is in sharp contrast with
the the optimal targeting strategy of an infinitely patient planner.

For an infinitely patient planner, we first need to construct PB(s1|s, t, n, r) for
different values of s1, s2 and t. Notice that the only independent variable is s1 since
s2 = s−s1. Without loss of generality, we consider only the cases where s1 ≤ s2. By
symmetry, the remaining cases are completely analogous. We also drop Assumption
1, allowing the groups to have odd number of agents and we discuss the effect this
has on the results.
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1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t

n− s2

. . .. . .
n− 1 n

p 1− p 1− p p

s1
t

s2

Figure A.13: A linear network with one group of initial adopters.

The probability of diffusion can be expressed as the product of two random walks
with absorbing barriers. The first walk describes the procedure until either the group
of type B disappears, or the smaller group of type A disappears. For r 6= 1 the first
walk is depicted in Figure A.14. The probability of success in this walk depends on
whether t is an odd or an even number. In case the first walk is unsuccessful, action
B disappears from the population. In case it is successful, then it is pursued by the
random walk in Figure A.15, which is the same for t being odd or even.

1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t

n− s2

. . .. . .
n− 1 n

s1 t
2

s2t
2

1 2
. . .. . .

s1

s1 + 1 . . .. . . s1 + t
2

p 1− p

s1 t
2

Figure A.14: The first random walk.

1 2 . . .. . . 2s1 + t . . .. . .
n− 1 n

2s1 + t s2 − s1

1− p p

Figure A.15: The random walk that follows successful absorption in the first walk.

Hence, the probability of diffusion of action B, for r 6= 1 is:

PB(s1|s, t, n, r) =


r(s1+

t+1
2 )−rs1

r(s1+
t+1
2 −1)

rn−r(n−t−2s1)

rn−1
if t odd

r(s1+
t
2 )−rs1

r(s1+
t
2 )−1

rn−r(n−t−2s1)

rn−1
if t even

(A.2)
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and for r = 1:

PB(s1|s, t, n, r = 1) =

{
(t+1)(t+2s1)
(t+2s1+1)n

if t odd
t
n

if t even
(A.3)

We see that the probability depends slightly on whether t is an odd or an even
number. This is because an odd number of initial adopters provides one additional
step before the disappearance of action B from the society.

Proposition 6. If the number t of initial adopters is even then:

• If r < 1 then target the middle, i.e. s1 = s2 if s even, or s1 = s2 − 1 if s odd.

• If r > 1 then target a corner, i.e. s1 = 0.

• If r = 1 then the probability does not depend on s1.

Proposition 7. If the number t of initial adopters is odd then:

• If r < 1 then target the middle, i.e. s∗1 = s2 if s even, or s∗1 = s2 − 1 if s odd.

• If r = 1 then target the middle, i.e. s∗1 = s2 if s even, or s∗1 = s2 − 1 if s odd.

• If r > 1 then s∗1 ∈ {bg(r, t)c, dg(r, t)e},20 for g(r, t) = ln[r1/2+(r−1)1/2]
ln r

− t
2
. If

PB(s1 = bg(r, t)c) > PB(s1 = dg(r, t)e) then s∗1 = bg(r, t)c and vice versa.

These two propositions clarify the difference between having groups with odd or
even number of agents. We see that for an odd number of agents, the exposition of
the results is slightly more complicated, without providing additional insights. The
following corollary provides some more concrete results regarding the cases where t
is odd.

Corollary 1. For t being an odd number

1. If t = 1 it is never optimal to target the corner.

2. For t ≥ 3 it is optimal to target the corner whenever r ≥ 1.618.

3. For all t ≥ 3, there exists r̂ ≤ 1.618 such that for r > r̂ it is optimal to target
the corner.

In particular, it seems that the results for odd t are substantially different than
for even t only when the number of targeted agents is small. In particular, if we can
target only one agent, we never want her to be in the corner of the network. This
happens because when we target only one agent, she is never safe for more than one
period, meaning that a failure in the first period leads to the disappearance of the
action. Moreover, after a positive shock an agent located in the corner can affect
the choice of only one additional agent, instead of two. Nevertheless, the problem
becomes unimportant when the number of targeted agents is sufficiently large or r
is sufficiently high.

20bg(r, t)c = max{m ∈ Z|m ≤ g(r, t)} is the floor function of g
and dg(r, t)e = max{m ∈ Z|m ≥ g(r, t)} is the ceiling function of g
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Appendix A.6. On the Importance of Centrality – The Star

The star network is a very special case, because there is a unique agent -the
center - who performs as hub for the information transmission in the network. She
observes the actions and outcomes of all the other -peripheral - agents, while everyone
else observes only her. Formally, N1 = {1, . . . , n} = N while Ni = {1, i} for all
i ∈ {2, . . . , n}. This extreme form of centrality turns out to be crucial in the present
setting, making always optimal to target the central agent (independently of the
value of r).

Namely, if the central agent (call it “agent 1”) is targeted together with l more
peripheral agents, then PB(1, l) = p

1−p(1−p) ,
21 which is bounded below by p and

does not depend on l, as long as l > 0. On the other hand, if the central agent
is not targeted, then for any number l′ of targeted peripheral agents PB(not1, l′) =

pPB(1, l′) = p2

1−p(1−p) which is bounded above by p and again does not depend on l′.
Hence, it is apparent that it is always optimal to target the central agent. Target-

ing, also, a peripheral agent increases the probability of diffusion, because it secures
the action from disappearing in case of a failure in the first period. Targeting more
than one peripheral agents does not improve the chances of successful diffusion,
since all of them would transmit to the central agent information that she is already
aware of.

Appendix A.7. On the Importance of Centrality – Other Networks

In this section, we slightly modify the network structure by adding links to the
circular network. We run a set of numerical simulations to test the robustness of our
results to the addition of a few links and we find that the conclusions remain valid.
In particular, if p > 1/2, it is always optimal to target only one group of connected
agents, with the optimal location of the group depending on the position of the
additional links. Conversely, if p < 1/2, it is almost always optimal to target the
subset of agents that minimizes the number of successful draws needed to capture
the whole population.

For the simulation exercise, we consider a network of n = 20 agents located
around a circle and to this network we add either one or two undirected links.
Then we choose the number of targeted agents t and we calculate all possible initial
configurations given n and t. We consider only groups of even size, so as to make
results more easily comparable with the previous analysis. Subsequently, we simulate
the process 4000 times for each initial configuration and for eight different values of
p and we estimate PB for each of the cases. An example of the Matlab code used
for the simulations can be found in Appendix D.

Subsequently, we use a standard t-test to check whether the differences between
the estimated values are statistically significant. As one would expect, we cannot
always find a unique optimal targeting strategy. This happens either because indeed
some configurations have very similar probabilities of successful diffusion, or because
those probabilities are either very low or very high and therefore we would need a
very large sample to choose between the alternatives. In either case, the differences
are so small that they are practically unimportant.

21PB(1, l) = p+ (1− p)PB(not1, l) = p+ (1− p)pPB(1, l)⇒ PB(1, l) = p
1−p(1−p)
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In the following tables, we show two particular examples of the simulated pro-
cesses. For expositional clarity, we report only the configurations that yielded the
highest estimated PB. Nevertheless, all potential optimal strategies of each case
have the same characteristics.22

Observe that, for p = 0.45 it is optimal to concentrate all the agents together,
rather than trying to minimize the number of shocks needed to capture the whole
population. The intuition behind this result is that as the network becomes more
connected, at least for sufficiently high p (but still lower than 1/2), the gain from
spreading the agents becomes less important compared to the gain from protecting
them by concentrating them all together. It is also important to mention that for
high values of p, targeting one connected group of agents seems very robust to the
modifications of the network structure. Moreover, we can see that agents with a
higher number of connections are natural candidates for being targeted only for low
values of p. Having noticed that, it seems that an important parameter for the
characterization of optimal targeting strategies in more general network structures
would be their diameter, which in some cases might be equally important to their
degree distribution.

Table A.1: Optimal targets in a circle with one additional link, for n = 20, t = 4.

Added Link Probability of success (p)

0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

1-3 5,6,15,16 1,2,11,12 10,11,20,1 4,5,14,15 7,8,9,10 8,9,10,11 6,7,8,9 3,4,5,6
1-5 1,2,11,12 12,13,20,1 4,5,12,13 10,11,20,1 7,8,9,10 5,6,7,8 11,12,13,14 9,10,11,12
1-7 6,7,14,15 6,7,14,15 12,13,20,1 1,2,13,14 7,8,9,10 4,5,6,7 4,5,6,7 11,12,13,14
1-9 1,2,17,18 2,3,14,15 8,9,12,13 16,17,20,1 1,2,3,4 1,2,3,4 1,2,3,4 2,3,4,5
1-11 8,9,18,19 6,7,16,17 6,7,16,17 8,9,10,11 1,2,19,20 10,11,12,13 15,16,17,18 4,5,6,7

Table A.2: Optimal targets in a circle with two additional links, for n = 20, t = 8.

Added Links Probability of success (p)

1-5 AND 0.25 0.35 0.45 0.55 0.65 0.75

1-7 1,2,11–14,19,20 10–13,18–20,1 10–13,18–20,1 13–20 8–15 10–17
1-9 2,3,8,9,14,15,20,1 8,9,12,13,16,17,20,1 8–15 8–15 10–17 14–20,1
1-11 8,9,12,13,18,19,20,1 5,6,9,10,15,16,17,18 8,9,12,13,18,19,20,1 15–20,1,2 11–18 10–17
1-13 4,5,10,11,14,15,20,1 6,7,10,11,16,17,20,1 10–15,20,1 7–14 6–13 13–20
1-15 1,2,9–12,19,20 8–11,18,19,20,1 1,2,9–12,19,20 8–15 8–15 14–20,1
1-17 5,6,9,10,15,16,19,20 5,6,9,10,15–18 10–17 10–17 8–15 11–18

22A complete report of the simulations’ results is available upon request.
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Appendix B. Proofs

Proof of Proposition 2. Under (A1), s
m

and t
m

are even numbers. Then, the
process is equivalent to having a line of n

2m
agents, consisting of one group of t

2m

adjacent agents choosing B and another group of s
2m

adjacent agents choosing A.

. . .. . . . . .. . .

1− p p

t
2m

s
2m

Figure B.16: The random walk that describes the process in the symmetric case.

By Lemma 1, the probability of successful diffusion becomes:

PB(m|s, t, n, r) =
r

n
2m − r s

2m

r
n
2m − 1

Despite the fact, that we are interested only in the integer values of m, t and n, the
function PB(·) is well-defined and smooth for all r 6= 1 and m ≥ 1. Hence, we can
check its monotonicity by differentiating with respect to m.

dPB
dm

=
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2m ln r
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=
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If we call s

2m
= s′ and n

2m
= n′, then the following lemma helps us conclude the

argument.

Lemma 3. f(x) = 2mxrx

rx−1
is strictly increasing for x ≥ 1, for all r 6= 1 and m ≥ 1

Proof. Let r 6= 1 and m ≥ 1, then

df

dx
=

2m

(rx − 1)2
[(rx + xrx ln r)(rx − 1)− xrx(rx) ln r]

=
2m

(rx − 1)2
(r2x − rx − xrx ln r) =

2mrx

(rx − 1)2
(rx − 1− x ln r) > 0 for all x ≥ 1
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To show this, we define g(x) = rx − 1− x ln r, which is strictly increasing for x ≥ 1
because dg

dx
= rx ln r − ln r = ln r(rx − 1) > 0. So it attains minimum for x = 1,

which is g(1) = r − 1− ln r. Moreover, g(1) > 0 for all r 6= 1 because it holds that
h(r) = r − 1 − ln r > 0 for all r 6= 1. This holds because dh

dr
= 1 − 1

r
is strictly

positive when r > 1 and strictly negative when r < 1. So, h attains global minimum
for r = 1, with value h(1) = 0. Hence, g(x) > 0 for all x ≥ 1, which means that also
df
dx
> 0 for all x ≥ 1 and this concludes the argument.

By Lemma 3, given that n > s, we get that ( sr
s

2m

r
s

2m−1
− nr

n
2m

r
n
2m−1

) < 0 always, so we

can conclude that dPB

dm
< 0 if r > 1 and dPB

dm
> 0 if r < 1. Hence, for r > 1 the

PB(m|s, t, n, r) is decreasing in m, so arg maxm PB(m|s, t, n, r) = 1, i.e. the optimal
choice is to target a single group of initial adopters. On the other hand, for r < 1,
P is increasing in m, so we would like to split the initial adopters in as many groups
as possible, i.e. arg maxm PB(m|s, t, n, r) = min{s/2, t/2}.

Proof of Proposition 3. First, we have to construct the probability of successful
diffusion. For r 6= 1, the process again can be described as a sequence of ran-
dom walks with absorbing barriers. At the beginning, we have a random walk of
(s1 + t1)/2 nodes, starting from node t1/2, until it disappears either t1 or s1. In case
of successful absorption we get a random walk of n/2 nodes starting from the node
(t+ 2s1)/2. Otherwise, in case of unsuccessful absorption we get a random walk of
n/2 nodes as well, but starting from node (t − 2t1)/2. Notice that (A1) solves all
the problems of divisibility.

Initial Walk
. . .. . . . . .. . .

1− p p

t1
2

s1
2

After Success
. . .. . . . . .. . .

1− p p

t+2s1
2

n−t−2s1
2

After Failure
. . .. . . . . .. . .

1− p p

t−2t1
2

n−t−2t1
2

Figure B.17: The random walks that describe the process in the asymmetric case with two groups.
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Hence, by Lemma 1, the probability of successful diffusion for r 6= 1 is:

PB(s1, t1|s, t, n, r) =
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r
n
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Now, we compute the derivatives with respect to t1 and s1. As usually, we are
only interested in integer points, but the function PB is a well-behaved smooth
function for r 6= 1, so we can study its monotonicity.

∂PB
∂s1

=

r n
2

(
r

t1
2 − 1

)
r

n
2 − 1



(

ln r
2
r

s1
2 + ln r

2
r
−s1−t

2

)(
r

s1+t1
2 − 1

)
−
(
r

s1
2 − r

−s1−t
2

)
ln r
2
r

s1+t1
2(

r
s1+t1

2 − 1
)2

+

+

(
r

n
2 − r

s+2t1
2

r
n
2 − 1

) ln r
2
r

s1
2

(
r

s1+t1
2 − 1

)
−
(
r

s1
2 − 1

)
ln r
2
r

s1+t1
2(

r
s1+t1

2 − 1
)2

 =

=
r

n
2

(
r

t1
2 − 1

)
ln r

2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2

(
r

2s1+t1
2 + r

−t+t1
2 − r

s1
2 − r

−t−s1
2 − r

2s1+t1
2 + r

−t+t1
2

)
+

+

(
r

n
2 − r

s+2t1
2

)
ln r

2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2

(
r

2s1+t1
2 − r

s1
2 − r

2s1+t1
2 + r

s1+t1
2

)
=

=
ln rr

n
2

(
r

t1
2 − 1

) [
2r
−t+t1

2 − r
s1
2 − r

−t−s1
2 + r

s1
2 − r

−t+2t1+s1
2

]
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =

=
ln r

(
r

t1
2 − 1

)(
2r

n−t+t1
2 − r

n−t−s1
2 − r

s+s1+2t1
2

)
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =
ln r

(
r

t1
2 − 1

)
r

s−s1
2

(
2r

s1+t1
2 − 1− rs1+t1

)
2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 =

=

ln r
(
r

t1
2 − 1

)
r

s−s1
2

[
−
(
r

s1+t1
2 − 1

)2
]

2
(
r

n
2 − 1

) (
r

s1+t1
2 − 1

)2 = −
ln r

(
r

t1
2 − 1

)
r

s−s1
2

2
(
r

n
2 − 1

) {
< 0 if r > 1
> 0 if r < 1
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Analogously for t1 we have:
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Hence, given that 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 we conclude that for r > 1 the
optimal targeting strategy is (s1, t1) = (0, 0), whereas for r < 1 it is s2− s1 ≤ 2 and
t2 − t1 ≤ 2.

Proof of Theorem 1. For the case of r > 1 we proceed by induction. First, we
recall the result by Proposition 2, which states that if we can target up to two
groups, then the optimal choice is to concentrate all the initial adopters in one
group. Remember also that s1 ≤ s2 ≤ s3 and t1 ≤ t2 ≤ t3. Now suppose that we
can target up to three groups (m ≤ 3). Then again at first we are interested in the
two smallest groups of each type and we have the following random walk:

. . .. . . . . .. . .

1− p p

t1
2

s1
2

The system fluctuates in this direction until either s1 or t1 disappears. Depend-
ing on the successful or unsuccessful absorption of this process we get one of the
configurations depicted in Figure B.18, with only two groups of each type left.
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By Proposition 2, in both of these cases we know that the optimal choice would
be to eliminate one of the two groups of initial adopters. Hence, we would like
to choose s2 and t2 (as functions of s1 and t1 respectively), in such a way that
the probability of diffusion is maximized in both of these cases. Recalling that
s1 ≤ s2 ≤ s3 and t1 ≤ t2 ≤ t3, we see that this can be achieved if s2 = s1 and
t2 = t1, where the optimal s1 and t1 remained to be determined. Notice that, by
construction, s3 = s− s1 − s2 and t3 = t− t1 − t2.
So now, we can rewrite the probability of diffusion as a function of s1 and t1 only.
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Like before we study the monotonicity of the function with respect to s1 and t1
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Hence the optimal choice is s1 = s2 = 0 and s3 = s.
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before

t2

s1

t1

s3

t3

s2

after success

t1 + t2 + 2s1

s3 − s1

t3 + s1

s2 − s1

after failure

t2 − t1
s1 + s3 + 2t1

t3 − t1

s2 + t1

Figure B.18: Configurations with 3 groups of adopters.

Analogously for t1 we get the following:
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The last step comes from the observation that −2x3+3x2−1 = −(x−1)2(2x+1),

where in this case x = r
s1+t1

2 . Hence, PB is always decreasing in t1, and given that
t1 = t2 the optimal choice is t1 = t2 = 0 and t3 = t. This concludes the argument
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for the case where m = 3. We will generalize this argument by induction.

Formally, given that the argument holds for m = 3, it suffices to show that if it
holds for m = k − 1 ≥ 3 then it holds as well for m = k.

At the beginning of the process we care only about the two smallest groups of
each type s1 and t1 and the system fluctuates as in the previous cases until one of
the two disappears. Figure B.19 shows the possible configurations after the disap-
pearance of either s1 or t1. The location of the groups around the network comes
without loss of generality.

after success

t3 + s1

s2 − s1

t1 + t2 + 2s1

sm − s1

tm + s1

s4 − s1
t4 + s1

s3 − s1

after failure
t3 − t1

s1 + s2 + 2t1

t2 − t1
sm + s1

tm − t1

s4 + t1 t4 − t1

s3 + s1

Figure B.19: Configurations after the disappearance of s1 or t1 with m groups.

Given that the argument holds for k−1 groups then we know that s1 = · · · = sk−1

and t1 = · · · = tk−1. Therefore, we only need to find the optimal s1 and t1. The
probability of diffusion becomes:

PB(s1, t1|s, t, n, r,m = k) =
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By some calculations which are omitted because they are identical to the case
where m = 3, we get:
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and equality holds only if s1 = t1 = 0. For the argument to hold we need
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2 − (k − 1) to be negative. So, let x = r
s1+t1

2 and take the function
f(x) = kx − xk − (k − 1) for some k ≥ 3 and x ≥ 0. Now, df

dx
= k − kxk−1 is

positive if x < 1 and negative if x > 1, hence f attains global max at x = 1 equal to
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f(1) = k−1k− (k−1) = 0, hence f(x) < 0 for all x 6= 1. Now given that x = r
s1+t1

2 ,
with r > 1 and s1, t1 ≥ 0 the function is always strictly negative and becomes equal
to zero only when s1 = t1 = 0. So, the optimal choice is s1 = · · · = sk−1 = 0 and
sk = s.

Analogously for t1 we get that:
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again equality holds only when s1 = t1 = 0 and to ensure the result we need that

kr(k−1)
s1+t1

2 − (k − 1)rk
s1+t1

2 − 1 ≤ 0 for all s1 and t1 with equality holding only in

case they are both equal to zero. As before, let x = r
s1+t1

2 and define the function
g(x) = kxk−1−(k−1)xk−1. Then df

dx
= k(k−1)xk−2−k(k−1)xk−1 which is strictly

negative for x > 1 and strictly positive for x < 1, then g attains unique maximum at

x = 1 equal to g(1) = 0. So g(x) < 0 for all x 6= 1. Given again that x = r
s1+t1

2 then
x = 1 only if s1 = t1 = 0. So again the optimal choices are t1 = · · · = tk−1 = 0 and
tk = t, which completes the inductive argument. Hence, when r > 1, for any possi-
ble number of groups m, the optimal choice is to concentrate all the initial adopters
in one group, i.e. s1 = · · · = sm−1 = 0 and sm = s, as well as t1 = · · · = tm−1 = 0
and tm = t.

Now, we turn our attention towards the case where r < 1. We tackle this case in a
different way. Namely, we construct an upper bound for the probability of successful
convergence and we show that the actual probability is equal to this upper bound
for the same configurations that this upper bound is maximized. Hence this has to
be the maximum value of the probability as well.

In order to proceed, we need to construct the upper bound for the value of the
probability of successful diffusion of action B. We solve it first for t < s and then
for s < t.

Let t < s, then allowing for the existence of m = t
2

groups, the network will
have the form of Figure B.20. Notice that, the fact that si can have size equal
to zero, allows us to construct any possible configuration. For example, if s1 = 0
then the two groups next to s1 merge to one group with four agents. According to
this structure, the network will initially follow a random walk with s1

2
black steps

and one white. By Lemma 1, the probability of success in this first walk is equal to
r
s1
2 +1−r

s1
2

r
s1
2 +1−1

. In Figure B.20 we also see how the network will look like if the first walk

is successful. Unsuccessful absorption in the first walk leads to the disappearance
of action B from the network, because all t’s have the same size. After success,
the network will move according to the random walk of Figure B.21, with the

probability of success in this walk is equal to r
s2
2 +1−r

s2−s1
2

r
s2
2 +1−1

.

We depict as well the two possible configurations that arise after success or failure
in the second walk (see Figure B.22). It is important to notice that the probability
of successful diffusion after two successes is obviously weakly lower than one and it
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Initial Configuration

tk = 2

s1
t1 = 2

tm = 2 sm

s2

After Success
2 + s1

4 + 2s1

sm − s1

s2 − s1

Figure B.20: General Initial Configuration and Result After Success, for t < s.

. . .. . . . . .. . .

1− p p

s1
2 + 1 s2−s1

2

Figure B.21: Random Walk After Success.

is strictly lower than one, as long as sm − s1 > 2, where sm is the size of the largest
group and s1 is the size of the smallest one.

Hence, we can construct the probability of successful diffusion, which is equal to:

PB(·) =
r

s1
2

+1 − r
s1
2

r
s1
2

+1 − 1

[
r

s2
2

+1 − r
s2−s1

2

r
s2
2

+1 − 1
PB(·|s, s) +

r
s2−s1

2 − 1

r
s2
2

+1 − 1

r
n
2 − r

n−s1
2
−1

r
n
2 − 1

]

where PB(·|s, s) stands for the probability of diffusion of B after two successes
in the first two random walks. Given that PB(·|s, s) ≤ 1 we get the following upper

bound of PB, denoted by P̃B(·), which is equal to:

P̃B(·) =
r

s1
2

+1 − r
s1
2

r
s1
2

+1 − 1

[
r

s2
2

+1 − r
s2−s1

2

r
s2
2

+1 − 1
+
r

s2−s1
2 − 1

r
s2
2

+1 − 1

r
n
2 − r

n−s1
2
−1

r
n
2 − 1

]
Before performing any calculations it is important to simplify the expression of

P̃B(·). Specifically,
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Failure After Success

2 + s1

Success After Success

s3 − s1

sm − s2

Figure B.22: Resulting Configurations given Failure or Success in the second random walk, given
successful first walk, for t < s

P̃B (·) =
r

s1
2

+1 − r
s1
2

r
s1
2

+1 − 1

[
r

s2
2

+1 − r
s2−s1

2

r
s2
2

+1 − 1
+
r

s2−s1
2 − 1

r
s2
2

+1 − 1

r
n
2 − r

n−s1
2
−1

r
n
2 − 1

]
=

=
r − 1

r
n
2 − 1


(
r

s1+s2
2

+1 − r
s2
2

) (
r

n
2 − 1

)
+
(
r

n
2 − r

n−s1
2
−1
)(

r
s2
2 − r

s1
2

)
(
r

s1
2

+1 − 1
)(

r
s2
2

+1 − 1
)

 =

=
r − 1

r
n
2 − 1


(
r

n+s2
2 + r

n+s2−s1
2

−1 − r
s2
2 − r n

2
−1
)(

r
s1
2

+1 − 1
)

(
r

s1
2

+1 − 1
)(

r
s2
2

+1 − 1
)

 =

=
r − 1

r
n
2 − 1

r n
2
−1
(
r

s2
2

+1 − 1
)

r
s2
2

+1 − 1
+
r

n+s2−s1
2

−1 − r
s2
2

r
s2
2

+1 − 1

 =

=
r − 1

r
n
2 − 1

[
r

n
2
−1 +

r
n+s2−s1

2
−1 − r

s2
2

r
s2
2

+1 − 1

]
Notice that s2 = s − s1 − s3 − · · · − sm, hence ∂s2

∂s1
= −1. And now we can

differentiate P̃B(·) with respect to s1.

∂P̃B(·)
∂s1

=
r − 1

r
n
2 − 1


(
−r

n+s2−s1
2

−1 ln r + ln r
2
r

s2
2

)(
r

s2
2

+1 − 1
)
−
(
r

n+s2−s1
2

−1 − r
s2
2

)(
− ln r

2
r

s2
2

+1
)

(
r

s2
2

+1 − 1
)2

 =

=
ln r (r − 1) r

s2
2

2
(
r

n
2 − 1

) (
r

s2
2

+1 − 1
)2

(
2r

n−s1
2
−1 − r

n+s2−s1
2 − 1

)
> 0, for r < 1.

The fact that the term 2r
n−s1

2
−1 − r

n+s2−s1
2 − 1 is always negative is not obvious

and is proven here. Substituting s2, we can rewrite it as:
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r−s1−1
[
2r

n+s1
2 − r

n+s−s3−···−sm
2

+1 − r2
s1
2

+1
]

If we denote x = r
s1
2 then we get a polynomial of degree two with respect to x.

The discriminant of this polynomial is equal to:

∆ = 4r2n
2−4r

n
2

+
s−s3−···−sm

2
+2 = 4r

n
2

(
r

n
2 − r

s−s3−···−sm
2

+2
)

= 4r
n
2

(
r

n
2 − r

s1+s2
2

+2
)
< 0

Because r < 1 and n
2
> s1+s2

2
+ 2 for m ≥ 3. For m = 2 this holds with equality,

but we have already analyzed this case. So, this polynomial has no roots and given
that the factor of the quadratic term is negative (−r), we can conclude that for r < 1

the polynomial is always negative. Therefore, P̃B(·) takes its maximum value when
s1 is maximized. For this value of s1, the real probability of successful diffusion is
equal to this upper bound as long as sm − s1 ≤ 2. Therefore, remembering that

P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized for when both s1 is
maximized and sm − s1 ≤ 2.

In case m divides s exactly, then the maximum of s1 is equal to s
m

and the op-
timal choice is s1 = · · · = sm = s

m
. If m does not divide s exactly, then we have

s = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = s−d

m
and d

2
groups with

size q + 2 = s−d
m

+ 2, so again the difference in the size of any two groups is no
larger than four. We still remain to describe what is the optimal position of the
groups that have the two additional agents. The result will become apparent after
we analyze the case for t > s.

Now, we prove the result for t > s in a completely analogous way. In this
case, the initial configuration is as in the left part of Figure B.23. A success in
the first random walk leads to the diffusion of action B, while a failure leads to a
configuration as in the right part of the same figure. The probability of success in the

first walk is r
t1
2 +1−r

r
t1
2 +1−1

. Figure B.24 shows the possible configurations after successful or

unsuccessful absorption in the second random walk, given unsuccessful absorption in

the first one. The probability of success in the second walk is r
t2
2 +1−r

t1
2 +1

r
t2
2 +1−1

. Therefore,

we can construct again an upper bound for the probability of successful diffusion,
equal to:

P̃B(·) =
r

t1
2

+1 − r
r

t1
2

+1 − 1
+

r − 1

r
t1
2

+1 − 1

[
r

t2
2

+1 − r
t1
2

r
t2
2

+1 − 1

r
n
2 − r

t1
2
−1

r
n
2 − 1

+
r

t1
2 − 1

r
t2
2

+1 − 1

]

This expression can be transformed in a similar manner as before:
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Initial Configuration

sk = 2

t1
s1 = 2

sm = 2 tm

t2

After Failure
2 + t1

4 + t1

tm − t1

t2 − t1

Figure B.23: General Initial Configuration and Result After Success, for t > s.

Success After Failure

2 + t1

Failure After Failure

t3 − t1

tm − t2

Figure B.24: Resulting configurations after success or failure in the second random walk, given
failure in the first random walk, for t > s

P̃B(·) =
r

t1
2

+1 − r
r

t1
2

+1 − 1
+

r − 1

r
t1
2

+1 − 1

[
r

t2
2

+1 − r
t1
2

r
t2
2

+1 − 1

r
n
2 − r

t1
2
−1

r
n
2 − 1

+
r

t1
2 − 1

r
t2
2

+1 − 1

]
=

=
1

rn/2 − 1

[
(r

t2
2

+1 − 1)(rn/2 − 1)− (r
t2
2

+1 − r
t1
2

+1)(r − 1)

r
t2
2

+1 − 1

]
=

=
1

rn/2 − 1

[
rn/2 − r + (r − 1)

r
t1
2

+1 − 1

r
t2
2

+1 − 1

]

Notice again, that the upper bound becomes equal to the actual probability if
tm − t1 ≤ 2, where tm is the size of the largest group of type B and t1 the smallest
one.

Now, we can differentiate the expression with respect to t1, remembering that
t2 = t− t1 − t3 − · · · − tm:
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∂P̃B(·)
∂t1

=
(r − 1) ln r

2(rn/2 − 1)

[
r

t1
2

+1(r
t2
2

+1 − 1) + (r
t1
2

+1 − 1)r
t2
2

+1

(r
t2
2

+1 − 1)2

]
> 0, for all r < 1.

The upper bound is increasing in t1. For this value of t1, the real probability of
successful diffusion is equal to this upper bound as long as tm − t1 ≤ 2. Therefore,

remembering that P̃B(·) ≥ PB(·) always, it has to be that PB(·) is also maximized
for when both t1 is maximized and tm − t1 ≤ 2.

In case m divides s exactly, then the maximum of t1 is equal to t
m

and the
optimal choice is t1 = · · · = tm = t

m
. If m does not divide t exactly, then we have

t = mq + d, where q is the quotient of the division and d is the remainder. In this
case, PB is maximized if we have m − d

2
groups of size q = t−d

m
and d

2
groups with

size q+ 2 = t−d
m

+ 2, so again the difference in the size of any two groups is no larger
than four.

To complete the proof we need to explain the optimal location of the groups
which have the two additional agents. For the case where t < s we need to notice
that after successful absorption in the first random walk, now the network consists
of d

2
groups of each type, where all the groups of type A have exactly two agents.

Hence, we fall into the analysis of the case where t > s, where we would like the
groups of type B to be as equal as possible. In order to succeed this we should have
located the groups of type A with more agents as symmetrically as possible around
the network.

An example can be illustrated in Figure B.25. We have targeted 14 out of 48
agents, having seven groups of two agents of type B, three groups of six agents and
four groups of four agents of type A. After successful absorption in the first walk,
there will be left only three groups of two agents of type A, which we want to be
located as symmetrically as possible. For this reason we do not put two groups of
six agents one next to the other in the initial configuration. However, notice that
we cannot make the configuration arising after success totally symmetric, due to the
restriction on the sizes of the groups. But again we want it to be as symmetric as
possible, by maximizing the smallest group and minimizing its difference with the
largest one. The argument for the case where t > s is completely analogous.

Proof of Proposition 4- Decreasing Returns to Scale. By Theorem 1, the op-
timal targeting strategy of the planner is to concentrate all initial adopters in one
group. Therefore the expected profits’ function has the following form, which is
twice differentiable:

EΠ(t) = π
r

n
2 − r n−t

2

r
n
2 − 1

− c(t)⇒ d2EΠ

dt2
= − π(ln r)2

4(r
n
2 − 1)

r
n−t
2 − c′′(t) < 0

Therefore, expected profit is a strictly concave function of t and hence it has
decreasing returns to scale in t.

If c(t) = kt, where k ∈ R+ is a constant then it is sufficient to see when the
following equation has a solution.
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Initial Configuration
q

q + 2q

q + 2

q

q + 2

q

After Success

4 + 2q

4 + 2q

6 + 4q

Figure B.25: Optimal Initial Configuration with s = mq + d, for s > t.

dEΠ

dt
=

π ln r

2(r
n
2 − 1)

r
n−t
2 − k = 0

It is apparent that this equation has a solution if and only if dEΠ
dt
|t=0 < 0 and

dEΠ
dt
|t=n > 0, which are satisfied when π ln r

2(r
n
2 −1)

< k < π ln r

2(r
n
2 −1)

r
n
2 . One can even

calculate the exact value of t which will be either the first integer to the right, or
the first integer to the left of:

t∗ = 2
ln( π

2c
) + ln(r

n
2 ) + ln(ln r)− ln(r

n
2 − 1)

ln r

If k is larger than the upper bound then the derivative is always negative, and
the optimal solution is t = 0. If k is lower than the lower bound then the derivative
is always positive and the optimal solution is t = n.

Proof of Remark 1. 1) τ strictly concave in s:

∂τ

∂s
=

1

2p− 1

[
1

2
− n

4

r
s
2 ln r

(r
n
2 − 1)

]
⇒ ∂2τ

∂s2
= − n(ln r)2r

s
2

8(2p− 1)(r
n
2 − 1)

< 0

.

∂τ

∂t
=

1

2p− 1

[
n

4

r
s
2 ln r

(r
n
2 − 1)

− 1

2

]
⇒ ∂2τ

∂t2
= − n(ln r)2r

s
2

8(2p− 1)(r
n
2 − 1)

< 0

.
2) τ has interior maximum in t, therefore it has interior maximum in s:
We have already found that τ is strictly concave. Hence, we only need to ensure

that there exists s∗ such that ∂τ
∂s

= 0.

At s = 0, ∂τ
∂s

= 1
2p−1

[
1
2
− n

4
ln r

(r
n
2 −1)

]
> 0. This holds because n ln r

2(r
n
2 −1)

< 1 ⇔
n ln r − 2r

n
2 + 2 < 0, which is true for r ≥ 1 because this latest expression, with

respect to r, attains a unique maximum equal to zero for r = 1. Hence, it is strictly
negative for all r > 1.
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At s = n, ∂τ
∂s

= 1
2p−1

[
1
2
− n

4
r
n
2 ln r

(r
n
2 −1)

]
< 0. This holds because nr

n
2 ln r

2(r
n
2 −1)

> 1 ⇔
nr

n
2 ln r − 2r

n
2 + 2 > 0, which is true because this latest expression attains unique

minimum equal to zero for r = 1. Hence, it is strictly positive for all r > 1.
Using the two previous results and the fact that the derivative is continuous in

(0, n) for all r > 1, we can apply Bolzano theorem and conclude that there exists
some s∗ such that the derivative becomes equal to zero.

3)

lim
r→1+

s∗ = 2 lim
r→1+

ln
(
r

n
2 − 1

)
− ln (ln r)− ln

(
n
2

)
ln r

= 2 lim
r→1+

n
2
r

n
2 ln r − r n

2 + 1

ln r(r
n
2 − 1)

=

= 2 lim
r→1+

n2

4
r

n
2 ln r

r
n
2 − 1 + n

2
r

n
2 ln r

=
n2

2
lim
r→1+

n
2

ln r + 1

n+ n2

4
ln r

=
n

2

lim
r→1+

τ(t=n
2
,s=n

2
) = lim

r→1+

1

2p− 1

[
n

4
− n

2

1

r
n
4 + 1

]
0
0= lim
p→ 1

2

+

n2r
n
4
−1

16(r
n
4 + 1)2

∂r

∂p
=
n2

16

4)

lim
r→+∞

s∗ = 2 lim
r→+∞

ln (r
n
2 − 1)− ln (ln r)− ln

(
n
2

)
ln r

= 2 lim
r→+∞

[
nr

n
2

2(r
n
2 − 1)

− 1

ln r

]
= n

lim
r→+∞

τ(t=2,s=n−2) = lim
r→+∞

1

2p− 1

[
n

2
− 1− n

2

r
n
2
−1 − 1

r
n
2 − 1

]
=
n

2
− 1

Proof of Remark 2. 1) Call s′ = s
n−s , n

′ = n
n−s and notice that ∂s′

∂s
= ∂n′

∂s
= n

(n−s)2 .
Now,

∂τ

∂s
=

1

2p− 1

[
∂s′

∂s
− ∂n′

∂s

(
rs
′ − 1

rn′ − 1

)
− n′

∂s′

∂s
rs
′
ln r(rn

′ − 1)− ∂n′

∂s
rn
′
ln r(rs

′ − 1)

(rn′ − 1)2

]
=

= − n(rn
′ − rs′)

(2p− 1)(n− s)2(rn′ − 1)2
(rn

′ − 1− n′ ln r) < 0

Given that the last term is positive for r < 1. The argument for t follows directly,
since t = n− s⇒ ∂τ

∂t
= −∂τ

∂s
.

2) For r → 0+ the calculation is straightforward. For r → 1− we use the previous
definition of s′ and n′. It is easier to calculate the limit with respect to p as it goes
to 1

2
, and applying three times L’Hopital’s rule we get

lim
p→ 1

2

τ = −n
′

2

1
(1/2)2

[s′n′(s′ − n′)]
2(1/2)2n′2 1

(1/2)2

= s′ =
s

n− s

3) The first result is straightforward. For the second one we use again the definition
of s′ and n′. Notice that s′ = n′ − 1 and take the limit with respect to n′. When
s→ n, then n′ →∞. Hence,

47



lim
s→n

τ = lim
n′→∞

1

2p− 1

(
n′ − 1− n′ r

n′−1 − 1

rn′ − 1

)
= lim

n′→∞

1

2p− 1

[
n′
rn
′
(r − 1)

rn′ − 1
− 1

]
= 0

Because,

lim
n′→∞

n′rn
′−1

rn′ − 1
= lim

n′→∞

n′

r − r1−n′ = lim
n′→∞

1

(1− n′)r−n′
= 0

Proof of Remark 3. 1)

∂τ

∂s
=
n(r − 1)(r

n
s − 1− n

s
r

n
s ln r)

(2p− 1)s2(r
n
s − 1)2

< 0

Because the last term is negative for all n
s
> 0. The argument for t follows

directly.
2) For r → 0 the proof is straightforward by substitution. For r → 1 is easier to
calculate the limit with respect to p, as p→ 1

2
and by applying three times L’Hopital

rule we get:

lim
r→ 1

2

−

1

2p− 1

(
1− n

s

(r − 1)

(r
n
s − 1)

)
= − n

2s

n
s
(n
s
− 1)− n

s
(n
s
− 1) + n

s
(n
s
− 1)(n

s
− 2)

2(1
2
)2(n

s
)2

=
n

s
−1 =

t

s

2) Remembering that r = p
1−p , both proofs are straightforward by substitution.

Proof of Proposition 5.

∂τ( t
2m

, s
2m

)

∂m
=

1

2p− 1

− s

2m2
+

n

2m2

(
r

s
2m − 1

r
n
2m − 1

)
− n

2m

∂
(
r

s
2m−1

r
n
2m−1

)
∂m

 < 0 for all r 6= 1

Which holds because of the following:

• The first part of the expression inside the brackets is

− s

2m2
+

n

2m2

(
r

s
2m − 1

r
n
2m − 1

)
=
r

s
2m − 1

m

(
n

2m

1

r
n
2m − 1

− s

2m

1

r
s

2m − 1

){
< 0 if r > 1
> 0 if r < 1

To show this we need to define the function f(x) = x
rx−1

. Its derivative is
df
dx

= rx−1−rxx ln r
(rx−1)2

, whose denominator is positive for all r 6= 1, whereas the

nominator is negative, because ∂(rx−1−rxx ln r)
∂r

= −x2rx−1 ln r which is positive
for r < 1 and negative for r > 1, obtaining a maximum equal to zero for
r = 1. Hence, f is strictly decreasing in x for all r 6= 1, which makes the
expression inside the parenthesis always negative (because n

2m
> s

2m
) and the

sign depending only on r
s

2m − 1 which is positive for r > 1 and negative for
r < 1.
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• Now, to find the sign of − n
2m

∂

(
r

s
2m−1

r
n
2m−1

)
∂m

, notice that r
s

2m−1

r
n
2m−1

= 1 − r
n
2m−r

s
2m

r
n
2m−1

,

hence:

− n

2m

∂
(
r

s
2m−1

r
n
2m−1

)
∂m

=
n

2m

∂
(
r

n
2m−r

s
2m

r
n
2m−1

)
∂m

{
< 0 if r > 1
> 0 if r < 1

which holds by Proposition 1.

Therefore the whole expression inside the brackets is negative for r > 1 and
positive for r < 1. This expression is multiplied by (2p− 1) which positive for r > 1
and negative for r < 1. This makes the derivative of τ with respect to m always
negative.

Proof of Proposition 6. Like before, although we are interested only in integer
values of s1, s2, t and n, this is a well-behaving smooth function for all r 6= 1. Hence,
we can differentiate it with respect to s1.

dP

ds1

=
rn
[
r

t
2 − 1

]
rn − 1

(rs1 ln r + r−s1−t ln r)
(
rs1+ t

2 − 1
)
− (rs1 − r−s1−t)

(
rs1+ t

2 ln r
)

(
rs1+ t

2 − 1
)2

 =

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

[
r2s1+ t

2 + r−
t
2 − rs1 − r−s1−t − r2s1+ t

2 + r−
t
2

]
=

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

(
2r−

t
2 − rs1 − r−s1−t

)
=

=
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

[
−rs1

(
r2s1 − 2rs1−

t
2 + r−t

)]
=

= −
rn
(
r

t
2 − 1

)
ln r

(rn − 1)
(
rs1+ t

2 − 1
)2

(
rs1 − r−

t
2

)2

r−s1 = −
rs2
(
r

t
2 − 1

)
ln r

rn − 1

If r > 1, then dP
ds1

< 0, so the optimal targeting decision is s1 = 0, i.e. target

one corner. Whilst, if r < 1, then dP
ds1

> 0 and recalling that s1 ≤ s2, the optimal
decision is s1 = s2 for s even, or s1 = s2 − 1 for s odd, i.e. to target the middle of
the line. See also the following figures (Figure B.26).

For the case of r = 1, it is apparent that the P (B|·) does not depend on s1,
hence every decision yields the same result.
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s
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Figure B.26: Optimal choice for p > 1/2 (above) and for p < 1/2 (below)

Proof of Proposition 7.

dP

ds1

=
rn
(
r

t+1
2 − 1

)
rn − 1

(rs1 ln r + r−s1−t ln r)
(
rs1+ t+1

2 − 1
)
− (rs1 − r−s1−t) rs1+ t+1

2 ln r(
rs1+ t+1

2 − 1
)2

 =

=
rn
(
r

t+1
2 − 1

)
ln r

(rn − 1)
(
rs1+ t+1

2 − 1
)2

[
r2s1+ t+1

2 + r
−t+1

2 − rs1 − r−s1−t − r2s1+ t+1
2 + r

−t+1
2

]
=

=
rn
(
r

t+1
2 − 1

)
ln r

(rn − 1)
(
rs1+ t+1

2 − 1
)2

(
2r

1−t
2 − rs1 − r−s1−t

)

So, the sign of derivative will depend on the sign of 2r
1−t
2 − rs1 − r−s1−t.

For r < 1, we can rewrite it as r−s1(2r
1
2 rs1r

−t
2 − r2s1 − r−t) which is negative

because:
r < 1⇒ r

1
2 < 1⇒ 2r

1
2 rs1r−

t
2 < rs1r−

t
2 ⇒

⇒ 2r
1
2 rs1r−

t
2 − r2s1 − r−t < rs1r−

t
2 − r2s1 − r−t ⇒

⇒ 2r
1
2 rs1r−

t
2 − r2s1 − r−t < −

(
rs1 − r−

t
2

)2

< 0

So in general for r < 1 we get dP
ds1

> 0, hence, as before, the optimal decision is
s1 = s2 for s even, or s1 = s2 − 1 for s odd, i.e. to target the middle of the line.

For r > 1,we can rewrite it as r−s1r−t
(

2rs1r
1+t
2 − r2s1rt − 1

)
and naming x = rs1

the content of the parenthesis becomes a polynomial of degree 2, namely −[rtx2 −
2r

1+t
2 x+ 1]. Let us first calculate the roots of the polynomial which are
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x1,2 =
2r

1+t
2 ±

√
4r1+t − 4rt

2rt
= r

1−t
2 ± (r − 1)

1
2 r−

t
2

⇒ x1 =
[
r

1
2 − (r − 1)

1
2

]
r−

t
2 and

⇒ x2 =
[
r

1
2 + (r − 1)

1
2

]
r−

t
2

−
(
rtx2 − 2r

1+t
2 x+ 1

)
≥ 0⇔

[
r

1
2 − (r − 1)

1
2

]
r−

t
2 ≤ rs1 ≤

[
r

1
2 + (r − 1)

1
2

]
r−

t
2

⇔ r
1
2 − (r − 1)

1
2 ≤ rs1+ t

2 ≤ r
1
2 + (r − 1)

1
2

⇔ ln rs1 ≤ ln

(
r

1
2 − (r − 1)

1
2

r
t
2

)

⇔ s1 ≤
ln
[
r

1
2 + (r − 1)

1
2

]
ln r

− t

2
= g(r, t)

The left hand-side is always satisfied because r
1
2 − (r − 1)

1
2 < r

1
2 < rs1+ t

2 .

So, for s1 ≤
ln
[
r
1
2 +(r−1)

1
2

]
ln r

− t
2

= g(r, t) we find that dP
ds1

> 0, while for s1 ≤
ln
[
r
1
2 +(r−1)

1
2

]
ln r

− t
2

= g(r, t) we find dP
ds1

< 0, hence the function has a global maximum

at s1 = ln[r1/2+(r−1)1/2]
ln r

− t
2

= g(r, t), however, notice that in our problem s1 has
to be an integer, so in order to find the maximum we need to compare the two
closest integers to s1, namely bg(r, t)c and dg(r, t)e. If PB(s1 = bg(r, t)c) > PB(s1 =
dg(r, t)e) then s∗1 = bg(r, t)c and vice versa.

For r = 1, we have that PB(s1; s, t, n, r = 1) = (t+1)(t+2s1)
(t+2s1+1)n

so,

dP

ds1

=
t+ 1

n

2(2s1 + t+ 1)− 2(2s1 + t)

(2s1 + t+ 1)2
=

2(t+ 1)

n(2s1 + t+ 1)2
> 0

Hence, the optimal is to target the middle.

Proof of Corollary 1. The proof of Corollary 1 comes directly after the proof of
the following lemma (Lemma 4).

Lemma 4. The function f(r) = ln[r
1
2 +(r−1)

1
2 ]

ln r
has the following properties.

1. lim
r→1+

f(r) = +∞,

2. lim
r→+∞

f(r) =
1

2
,

3. f is strictly decreasing in r,
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Proof of Lemma 4.

(1) lim
r→1+

f (r) = lim
r→1+

ln
[
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2
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because both [ln r] and [2 ln 2 (r − 1)] are increasing functions, equal to zero for r = 1
but the second one increases at a higher rate, because:

d (ln r)

dr
=

1

r
< 2 ln 2 =

d [2 ln 2 (r − 1)]

dr
.
Hence, f is decreasing in r.

Appendix C. Figures
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Figure C.27: τ(p) for r > 1, n = 200 and (i)t = 190, (ii)t = 100, (iii)t = 40, (iv)t = 10

0.6 0.7 0.8 0.9 1.0
p

-800

-600

-400

-200

200

400

â Τ

â p

0.6 0.7 0.8 0.9 1.0
p

-8000

-6000

-4000

-2000

â Τ

â p

0.6 0.7 0.8 0.9 1.0
p

-10 000

-5000

5000

â Τ

â p

0.6 0.7 0.8 0.9 1.0
p

-4000

-3000

-2000

-1000

1000

2000

3000

â Τ

â p

Figure C.28: dτ(p)
dp for r > 1, n = 200 and (i)t = 190, (ii)t = 100, (iii)t = 40, (iv)t = 10
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Figure C.29: τ(p) for r < 1, t < s, n = 200 and (i)t = 98, (ii)t = 70, (iii)t = 50, (iv)t = 10
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Figure C.30: dτ(p)
dp for r < 1, t < s, n = 200 and (i)t = 98, (ii)t = 70, (iii)t = 50, (iv)t = 10
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Figure C.31: τ(p) for r < 1, t > s, n = 200 and (i)t = 198, (ii)t = 180, (iii)t = 150, (iv)t = 102
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dp for r < 1, t > s, n = 200 and (i)t = 198, (ii)t = 180, (iii)t = 150, (iv)t = 102
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Figure C.33: τ(m) for r = 0.2, n = 200 and (i)t = 180, (ii)t = 100, (iii)t = 50, (iv)t = 4
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Appendix D. Matlab Code

1 startLoop = t i c ; % Time counter
2 n=20; % Populat ion
3 t =4; % Targeted agents
4 r e p e t i t i o n s =4000; % Number o f r e p e t i t i o n s to approximate p
5 % Grid o f va lue s o f p , which w i l l be 0 . 1 5 , 0 . 2 5 , . . . , 0 . 8 5
6 pgr id =8;
7 % Add a l i n k between agent 1 and agent ” connect ”
8 connect =3;
9

10 A = eye (n) ; % Def ine the adjacency matrix
11 f o r a i = 2 : ( n−1)
12 A( ai , a i − 1) = 1 ;
13 A( ai , a i + 1) = 1 ;
14 end
15 A(1 , n) = 1 ;
16 A(1 , 2) = 1 ;
17 A(n , 1) = 1 ;
18 A(n , n−1) = 1 ;
19

20 A(1 , connect ) = 1 ;
21 A( connect , 1) = 1 ;
22

23 % Def ine p o s s i b l e i n i t i a l c o n f i g u r a t i o n s f o r t=4 ( under A1)
24 S = [ ] ;
25

26 f o r v1 = 1 : 2 : 1 7
27 f o r v2 = v1 +2:2:19
28 v3 = [ v1 , v1+1,v2 , v2 +1] ;
29 S = [ S ; v3 ] ;
30 end
31 end
32

33 f o r v4 = 2 : 2 : 1 6
34 f o r v5 = v4 +2:2:18
35 v6=[v4 , v4+1,v5 , v5 +1] ;
36 S=[S ; v6 ] ;
37 end
38 v7=[v4 , v4 +1 ,20 ,1 ] ;
39 S=[S ; v7 ] ;
40 end
41

42 v8 =[18 , 19 , 20 , 1 ] ;
43 S=[S ; v8 ] ;
44

45 [ b ,my]= s i z e (S)
46

47

48 % Conf i gura t i ons as ar rays o f b inary v a r i a b l e s
49 Config = ze ro s (b , n) ;
50 f o r i = 1 : b
51 f o r j = 1 : t
52 Config ( i , S ( i , j ) ) = 1 ;
53 end
54 end
55 % P r o b a b i l i t y o f s u c c e s s f u l d i f f u s i o n
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56 % f o r a l l c o n f i g u r a t i o n s and va lue s o f p
57 PB = ze ro s (b , pgr id ) ;
58 % Average time o f absorpt ion
59 % f o r a l l c o n f i g u r a t i o n s and va lue s o f p
60 AvTime = ze ro s (b , pgr id ) ;
61

62 % The ac tua l p roce s s f o r each c o n f i g u r a t i o n
63 f o r i = 1 : b
64 f o r j = 1 : pgr id
65 s1 = 0 ;
66 f 1 = 0 ;
67 Per iods1 = 0 ;
68

69 f o r k1 = 1 : r e p e t i t i o n s
70 % Matrix o f r e a l i z e d c o n f i g u r a t i o n s in each r e p e t i t i o n
71 Choice1 = ones (301 , n) ∗2 ;
72 Choice1 ( 1 , : ) = Config ( i , : ) ;
73 t1 = 1 ;
74 % Checking i f convergence has occured
75 whi le ( i s e q u a l ( Choice1 ( t1 , : ) , ones (1 , n ) )==0 && i s e q u a l ( Choice1 ( t1 , : )

, z e r o s (1 , n ) )==0)
76 % Generating the random shock o f the per iod
77 % c 1 i s a random number from a Uniform [ 0 , 1 ]
78 c1 = random ( ’ Uniform ’ , 0 , 1 )
79 f o r i 1 = 1 : n
80 f o r j 1 = 1 : n
81 %Revis ion can occur only i f two agents are connected
82 i f A( i1 , j 1 ) == 1
83 % And only i f they have chosen d i f f e r e n t l y
84 % in the prev ious per iod
85 i f Choice1 ( t1 , i 1 ) ˜= Choice1 ( t1 , j 1 )
86 % Given p , the re i s s u c c e s s i f c1>1−p ,
87 % f o r p = 0 . 1 5 , 0 . 2 5 , . . . , 0 . 8 5
88 i f c1 >= 0.55+0.05∗ pgrid−j /10
89 Choice1 ( t1 + 1 , i 1 ) = 1 ;
90 e l s e
91 Choice1 ( t1 + 1 , i 1 ) = 0 ;
92 end
93 end
94 end
95 end
96 % I f no cond i t i on f o r r e v i s i o n has been s a t i s f i e d ,
97 % choose the same as in the prev ious per iod
98 i f Choice1 ( t1 + 1 , i 1 ) == 2
99 Choice1 ( t1 + 1 , i 1 ) = Choice1 ( t1 , i 1 ) ;

100 end
101 end
102 t1 = t1 + 1 ;
103 end
104 % In case o f s u c c e s s f u l convergence
105 i f Choice1 ( t1 , 1) == 1
106 s1 = s1 + 1 ;
107 e l s e
108 % In case o f u n s u c c e s s f u l convergence
109 f 1 = f1 + 1 ;
110 end

58



111 Per iods1 = Per iods1 + t1 − 1 ; % counter o f pe r i od s
112 end
113 % Update o f the e s t imato r s o f p r o b a b i l i t y and average time
114 PB( i , j ) = s1 /( s1 + f1 ) ;
115 AvTime( i , j ) = Per iods1 / r e p e t i t i o n s ;
116 end
117 end
118

119 % Find the optimal c o n f i g u r a t i o n and the maximum
120 % p r o b a b i l i t y o f s u c c e s s f u l d i f f u s i o n f o r each p o s s i b l e p
121 MaxProb = ze ro s ( pgrid , 1 ) ;
122 % Assume the f i r s t c o n f i g u r a t i o n i s the optimal
123 MaxProb = PB( 1 , : ) ;
124 OptimalConfig = ones (1 , pgr id ) ;
125 f o r j = 1 : pgr id
126 f o r i = 2 : b
127 % I f the cur rent element i s l a r g e r than the cur rent maximum
128 % s u b s t i t u t e i t
129 i f PB( i , j ) > MaxProb( j )
130 MaxProb( j ) = PB( i , j ) ;
131 % Subs t i tu t e a l s o the c o n f i g u r a t i o n tha y i e l d s the maximum
132 OptimalConfig ( j ) = i ;
133 end
134 end
135 end
136

137 OptimalConfig
138 % Optimal c o n f i g u r a t i o n s f o r each p
139 Opt = S( OptimalConfig , : )
140 % Vector o f maximum p r o b a b i l i t i e s f o r each p
141 MaxProb
142

143 endLoop=toc ( startLoop ) ; % End time counter
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