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Abstract

We study the optimal targeting strategy of a planner who seeks to maximize
the diffusion of an action in a circular network where agents imitate successful past
behavior of their neighbors. We find that the optimal targeting strategy depends
on two parameters: (i) the likelihood of the action being more successful than its
alternative and (ii) the planner’s patience. More specifically, when the planner’s
preferred action has higher probability of being more successful than its alternative,
then the optimal strategy for an infinitely patient planner is to concentrate all the
targeted agents in one connected group; whereas when this probability is lower
it is optimal to spread them uniformly around the network. Interestingly, for a
very impatient planner, the optimal targeting strategy is exactly the opposite. Our
results highlight the importance of knowing a society’s exact network structure for
the efficient design of targeting strategies, especially in settings where the agents are
positionally similar.
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1. Introduction

1.1. Motwwation

The importance of social interactions for the diffusion of innovations, ideas and
behavior is a topic that has attracted a lot of research interest over the years (see
Jackson, 2008). Recent technological advances have made the collection and analysis
of data related to the structure of relationships inside societies, as well as the rules
guiding the behavior of their members possible. The appropriate use of this infor-
mation can provide helpful tools for the effective diffusion of products, technologies
and ideas in societies.
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In this paper, we describe the optimal intervention of an interested party (from
now on called planner) who seeks to maximize the diffusion of a given action in a
society where agents imitate successful past behavior of their neighbors. In practice,
the planner can be either a firm who seeks to spread its product in a new market,
or a social planner who wants to promote the use of a new technology, or even a
political party that seeks to propagate its ideology. We illustrate how beneficial
the knowledge about society’s network structure may be for the efficient design of
marketing and social influence strategies.!

There are several reasons why economic agents adopt simple behavioral rules,
such as the imitation of successful past behavior. For example, they often need to
make decisions without knowing the potential gains or losses of their possible choices.
Furthermore, when these situations arise with high frequency and the agents’ com-
putational capabilities are limited, then they tend to rely on information received
from past experience of others, rather than experimenting themselves.? These ar-
guments are also supported by a recent, but growing, empirical and experimental
literature which provides strong evidence in favor of the fact that in several decision
problems the agents tend to imitate those who have been particularly successful (see
Apesteguia et al., 2007, Conley and Udry, 2010, Bigoni and Fort, 2013).

Most of the existing literature on targeting in networks has focused on the im-
portance of central agents (see Ballester et al., 2006). Having a high or a low number
of connections (see Galeotti and Goyal, 2009, Chatterjee and Dutta, 2011), or dif-
fusing information to many others who are poorly connected (see Galeotti et al.,
2011) are some usual characteristics of influential agents. The importance of these
characteristics is obvious and beyond doubt. Nevertheless, we show that there is
another important factor with significant effect on diffusion. This is whether the
targeted agents are concentrated all together, in the sense that they are connected
between them, or they are spread around the network. Notice that, in order to
use this additional tool, information about the exact structure of the network is
required. Each of these strategies may be optimal depending on certain parameters,
with one of the most important factors being planner’s patience.

Throughout our analysis we highlight the differences between the optimal target-
ing strategies of an infinitely patient planner, i.e. one who cares about the diffusion
of her preferred action in the long run, and an impatient planner, i.e. one who cares
about the diffusion of her preferred action in the short run. To our knowledge, this
is the first paper that determines both short and long run optimal targeting strate-
gies and provides a clear distinction between them. Interestingly enough, we find
the optimal targeting strategies to differ sharply in the two cases and this difference
to persist for all values of the other parameters. This comparison is important in
several realistic scenarios, since different targeting strategies may be appropriate
depending on the time horizon.

In broader terms, the importance of social networks in efficient marketing design has been
studied extensively and in several different disciplines. For an extensive list see Galeotti and Goyal
(2009) and references therein.

2These are some of the reasons why imitation has been subject to extensive theoretical study
in different environments (see Ellison and Fudenberg, 1993, 1995, Vega-Redondo, 1997, Eshel et
al., 1998, Schlag, 1998, Alés-Ferrer and Weidenholzer, 2008, Duersch et al., 2012).



1.2. Setting and Results

Formally, we consider a finite population of behaviorally homogeneous agents
located around a circle. In each period, all agents choose simultaneously between two
alternative actions. The stage payoff each action yields is uncertain and depends on
a random shock, which is common for all the agents who have chosen the same action
in that period.> Shocks are independent across actions and across periods. There
are no strategic interactions between agents. After making their decisions, all agents
observe the chosen actions and the realized payoffs of their two immediate neighbors.
Subsequently, they update their choice myopically, imitating the action that yielded
the highest payoff within their neighborhood in the preceding period. Notice that,
an agent who does not observe any of her neighbors choosing the alternative action
never changes her choice.

A problem that fits our model well is that of the diffusion of agricultural tech-
nologies.* Farmers’ harvests depend mostly on common factors such as the weather
and the fertility of the land. Moreover, it is normal to assume that farmers are aware
of the technologies and crops used by their neighbors, as well as the payoffs they
receive. In particular, Conley and Udry (2010) show that farmers tend to imitate
those who have been very successful in the past, whereas as it is pointed out by
Ellison and Fudenberg (1993) the farmers’ technology decisions are guided mostly
by short—term considerations, especially when capital markets are poorly developed
or malfunctioning.

The planner is interested in maximizing the diffusion of her preferred action
in the population. She can be either infinitely patient, therefore interested in the
diffusion of the action in the long run; or impatient, therefore interested in the
diffusion of the action after just one period. She is assumed to know the structure
of the network, as well as how agents behave and she can intervene in society by
enforcing a change at the initial choice of a subset of the population. Ideally, she
would like to target the whole population, but doing so in reality would be extremely
costly. Hence, our goal is to identify the planner’s optimal targeting strategy given
the number of agents she is able to target.

Observe that all the agents are identical with respect to any measure of central-
ity. In fact, none of them has any positional advantage or disadvantage compared
to the rest of the population. Despite this fact, we find that expected diffusion
changes substantially depending on the subset of the population that has initially
been targeted by the planner. This highlights how important it is for the planner
to know the exact structure of the network.

We show that the optimal targeting strategy depends on two parameters: (i) the
likelihood of the planner’s preferred action being more successful than its alternative
and (ii) the planner’s patience. In fact, we observe a sharp contrast between the
optimal strategies of an infinitely patient planner and that of a very impatient
one. More specifically, when the planner’s preferred action has higher probability
of being more successful than its alternative, then the optimal targeting strategy
for an infinitely patient planner is to concentrate all the targeted agents in one

3This assumption is made only in order to facilitate the tractability of the results.
4See also Ellison and Fudenberg (1993).



connected group;® whereas when this probability is lower it is optimal to spread
them uniformly around the network. Interestingly, for a very impatient planner, the
optimal targeting strategy is exactly the opposite.

The intuition is relatively simple and depends on the fact that in the long run
only one of the two actions survives. Therefore, when the action is likely to be
successful, then an infinitely patient planner wants to prevent its disappearance due
to a few consecutive negative shocks in the first periods. For this reason she prefers
to concentrate them all together. To the contrary, if the action is unlikely to be
successful, then the optimal strategy for the planner is to try and take advantage of
a possible sequence of successful shocks during the first periods. By concentrating
all targeted agents together, she would only manage to make her preferred action
disappear more slowly, since for its diffusion a large number of consecutive successful
shocks would be needed, which is rather unlikely to happen.

For an impatient planner the arguments are reversed. When the preferred action
is likely to be successful, then the planner wants to make it visible to as many agents
as possible, therefore she should spread the initial adopters® around the society. On
the other hand, if the action is more likely to be unsuccessful, then the planner wants
to prevent as many of the initial adopters as possible from observing the alternative
action, therefore she should concentrate them all together.

We extend our analysis in many different directions. We discuss the optimal
strategies of planners with intermediate levels of patience, thus intending to identify
how the transition between the two extreme cases occurs. Moreover, we quantify the
practical meaning of infinite patience by characterizing the expected waiting time
before convergence occurs. We observe that, for those cases in which the planner’s
optimal strategy is to concentrate all the initial adopters in one group the process is
slowed down substantially. In addition to this, we discuss what happens if we allow
for inertia and show that the results remain unchanged. This extension captures
many realistic features, such as the existence of switching costs and some forms
of conformity. Finally, we repeat our analysis for the linear and the star network
and provide numerical simulations for other network structures, as an attempt to
identify the effect of centrality on our results.

1.3. Related Literature

The role of influential agents in social networks has been studied in different disci-
plines, such as computer science (see Kempe et al., 2003, Richardson and Domingos,
2002) and marketing (see Kirby and Marsden, 2006), as well as in economics. Intu-
itively, a crucial feature is the centrality of an agent, which depicts either the number
of immediate neighbors an agent has or how important she is for the connectivity
of the network (see Ballester et al., 2006).

Other environments similar to ours have been studied in physics, mathematics
and computer science, especially in the areas of cellular automata and voter models.
The most similar paper to ours is Bagnoli et al. (2001), who study the long-run
behavior and the phase transition of a system with characteristics similar to ours.

5In the circle network, a connected group is a segment of the circle.
6Throughout the paper we interchange between the terms targeted agents and initial adopters,
since the targeted agents are those who adopt the action in the first period.



A crucial difference with our paper is that they assume initial conditions to be
random, given that they refer to initial positions of particles. Hence, they do not
focus on identifying optimal initial conditions, which is the main focus of the present
paper.

Similar models have also been used in the Economics literature. In particular,
Ortutio (1993) considers a standard voter model setting, where agents are located
in a two dimensional infinite lattice and probabilistically adopt the choice made
by one of their neighbors. This is the only article where centrality does not play
a role. The agents are homogeneous in preferences and location and there exists
a planner who seeks the diffusion of a technology in the society and can choose
between targeting a single connected segment of agents, or spread them uniformly
around the population. The author concludes that these two choices lead to the
same probability of diffusion; result which is guided mainly by the infinite size of
the lattice. In our paper, the population is finite and we do not restrict the potential
choices of the planner. This features allow us to obtain more general results. More
recently, Yildiz et al. (2011) generalize the standard voter model by introducing
“stubborn” agents, i.e. who never change their choice. Similarly to us, the authors
also discuss the problem of optimal placement of stubborn agents, when trying to
maximize their impact on the long run expected choices of agents.

Our paper is closely related to Galeotti and Goyal (2009) and Goyal and Kearns
(2012). The research questions are similar, however both papers study different
types of processes and focus on different aspects. Galeotti and Goyal (2009) focus on
“word-of-mouth” communication and on social conformism, which are mechanisms
that disregard the performance of a product. They look for the optimal influence
strategy of a firm who seeks to maximize the diffusion of its product in a society
show that, depending on the learning mechanism, agents with low or high number
of connections should be targeted, underlining again the important role of central-
ity. Apart from analyzing different learning mechanisms, there are two more main
differences with our work. First, the focus is completely on the short run optimal
targeting strategy, using a two—period model. Second, in their case the network is
modeled as a degree distribution, where each agent meets a fixed number of agents
every period, who are randomly drawn from a population mass. Therefore, the
probability that two agents have a common friend is zero. This approach disregards
potential information about the exact structure of the network, which we show to
be important for the planner. Moreover, another question that remains unanswered
is what would happen if the degree distribution tends to a uniform and furthermore
whether we could do better by knowing the exact formation of the network. Both
of these questions can be tackled in our environment with promising results.

Along similar lines is the work of Goyal and Kearns (2012), where the authors
study competition between two firms who distribute their resources trying to max-
imize the adoption of a product by consumers located in a social network. The
modeled process is significantly different from ours and the paper focuses more on
how efficiently the resources are allocated, as well as on the effect of budget asym-
metries on the equilibrium allocations.

In a recent paper, Galeotti et al. (2011) show that in a setting where information
transmission is strategic (in contrast to what happens here) influential agents are
those who diffuse information to many others, who themselves are poorly connected.



Another closely related paper is by Chatterjee and Dutta (2011). The authors study
the optimal behavior of a firm that seeks to diffuse a technology in a society con-
sidering different network structures, focusing mostly on the linear and the circular
network. The fact that part of the population consists of perfectly rational agents
and that the structure of the network is common knowledge changes significantly the
dynamics of the system. Also, the firm is allowed to target a single agent. They find
that a firm that produces a good quality product should target the agent with max-
imum decay centrality,” whereas a firm that produces a bad quality product should
target the agent with the highest number of connections. There is an apparent
analogy between these results and ours, in the sense that in both cases the optimal
choice depends on the quality of the technology, which in our case could be loosely
approximated by the probability of the action of interest being more successful.

Regarding agents’ behavior, we focus on imitation of successful past behavior.
There is a recent but growing empirical literature (see Apesteguia et al., 2007, Con-
ley and Udry, 2010, Bigoni and Fort, 2013) that provides empirical evidence on the
adoption of this behavior in real environments. In theoretical framework, Vega-
Redondo (1997) has shown that a Cournot economy, where the agents follow this
rule, converges to the Walrasian equilibrium. Moreover, Alés-Ferrer and Weiden-
holzer (2008), Eshel et al. (1998) and Fosco and Mengel (2011) study coordination
games and public good games respectively, played between neighbors, where the
agents imitate their most successful neighbor. Their focus is mostly on the charac-
terization of stochastically stable configurations.

In a general framework, the current analysis builds upon the work on learning
from neighbors (see Banerjee, 1992, Banerjee and Fudenberg, 2004, Bala and Goyal,
1998, Chatterjee and Xu, 2004, Ellison and Fudenberg, 1993, 1995, Gale and Kariv,
2003). These articles study different learning mechanisms in environments where
the agents face common individual problems and there are no strategic interactions.
They mainly discuss conditions under which efficient actions spread to the whole
population. In particular, Ellison and Fudenberg (1993) use an environment very
similar to ours, in the sense that the agents repeatedly choose between two alterna-
tive technologies whose payoff depends on a random shock, which is common for all
the agents who use the same technology. Apart from these similarities in the setting,
there are several differences regarding the role of the network and other details of
the model, but the main difference is that their focus is not on the characterization
of the optimal intervention in favor of one of the two technologies.

The rest of the paper is organized as follows. In section 2 we formally define the
model. Section 3 contains the characterization of the optimal targeting strategy for
an impatient planner, whereas in Section 4 we analyze the optimal targeting strategy
for an infinitely patient planner. In Section 5 we briefly discuss some extensions and
Section 6 concludes. A thorough study of the extensions can be found in Appendix
A. All proofs can be found in Appendix B.

"Consider a decay parameter §, where 0 < § < 1, then decay centrality measures the proximity
between a given node and every other node weighted by the decay. Formally, this is equal to
S 679) | where n(i, j) is the geodesic distance between nodes i and ;.

J#i



2. The Model

2.1. The Agents

There is a finite set of agents N = {1,...,n}, referred to as population of the
network. At time 7 = 1,2, ..., each agent i € N chooses between two alternative
actions, a] € {A, B}. Each action yields random payoff. The payoff of agent 4
is independent of the other agents’ choices. Therefore, interactions among agents
are not strategic and their connections represent only an exchange of information.
Moreover, agents who choose the same action at a given period receive equal pay-
offs.® The payoffs of both actions change in each period, with the realizations being
independent across periods. Action B yields strictly higher payoff than action A
with probability p € (0, 1), while action A yields strictly higher payoff than B with
probability ¢q. For the derivation of the main results, we focus on the case where
q = 1 —p. Notice that, for ¢ = 1 —p, the probability of both actions yielding exactly
equal payoffs is zero, which is assumed only in order to avoid unnecessary tie-breaks
and does not affect the results. In the extensions section we relax this assumption
and allow for different values of ¢. The ratio between p and ¢ turns out to be crucial
for our analysis, therefore, we define r = %. From now on, we will say that there is
a success (failure) in period 7 if action B (A) yielded higher payoff in this period.
10

The planner is an agent, outside of the population, who seeks to maximize the
diffusion of action B in the population. She can do so by changing to her favor
the choice of a subset of the population before the beginning of the first period.
Optimally, she would like to affect the whole population, but in reality this would
be extremely costly. This cost enters implicitly if we assume that the cardinality
of the subset she can affect is fixed exogenously.!! More specifically, given that
at period 7 = 0 all the agents are choosing action A, the planner can target t < n
agents from the population and make them choose B in period 7 = 1. After that, the
planner cannot affect the society anymore. The goal of this paper is to characterize
the planner’s optimal targeting strategy.

The planner can be either impatient or infinitely patient. A planner is called
impatient if she cares about the diffusion of her preferred action after only one period.
Similarly, a planner is called infinitely patient if she cares only about the diffusion
of her preferred action in the long-run.'?> We find that the optimal behavior of an
impatient planner is exactly the opposite to that of an infinitely patient planner.
In the Extensions section, we also discuss some intermediate levels of planner’s
patience.

8This assumption does not affect the main intuitions and is imposed mainly in order to facilitate
the tractability of the results.

9Different values of ¢ allow us to introduce introduce the possibility of inertia. Later on, we use
this feature to capture scenarios where either the two actions can have the same realized payoffs,
or there are externalities between the actions of one’s neighbors, or switching costs.

0L ater on, with some abuse of terminology, we will also define the success and failure in a
random walk, in a similar way.

1Tn the section of Extensions in the Appendix we endogenize ¢ and we discuss the returns of
investment for different values of it

2Implicitly, this means that the planner is assumed to be risk neutral.



2.2. The Network

A social network is represented by a family of sets N := {N; C N |i=1,...,n},
when NV; is called i’s neighborhood and denotes the set of agents observed by agent i.
We assume N; to contain ¢ as well. In the main part of our analysis, we examine the
circular network, where each agent interacts with her two immediate neighbors, i.e.
N; ={i—1,i,i+1} fori =2,... n—1, whereas Ny = {n, 1,2} and N,, = {n—1,n, 1}.
The current structure imposes an undirected network, because for all 7,7 € N, j € N;
it and only if 7 € N;. In this setting, the network structure describes the flow of
information in the network, in the sense that each agent i € N can observe the
action and the realized payoff of her neighbors, j € ;.

2.8. The Behavior

At the end of each period, the agents observe the actions and realized payoffs
of their neighbors. Subsequently, they have the opportunity to revise their choices.
Revisions happen simultaneously for all agents. We assume that each agent i € N
can observe the choices and the realized payoffs of her neighbors in the previous
period. According to these observations, she revises her choice by imitating the
most successful action within her neighborhood in the preceding period. Notice
that, an agent never switches to an action that she did not observe, i.e. that neither
her nor any of her neighbors chose in the previous period. Moreover, if an action
disappears from the population, then it never reappears.

The important aspect of this myopic behavior is that the agents discard most
of the information available. They ignore whatever has happened before the pre-
vious period, hence they are unable to form beliefs about the underlying payoff
distributions of their alternative choices.

2.4. The Problem

After the planner has chosen the initial adopters, the population consists of s
agents choosing action A (from now on called non-adopters) and t agents choosing
action B (from now on called adopters); obviously s +¢ = n. We call a group a
sequence of neighboring agents all of whom choose the same action and are sur-
rounded by agents choosing the opposite action. The population is formed of m
groups of neighboring agents who choose action A, with sizes {s1, sa, ..., i}, where
> ey sk = s and analogously m groups of neighboring agents who all choose action
B, with sizes {t1,t2,...,ty}, where > 7"t = t.> We refer to these groups as
groups of type A and of type B respectively. The numbering of the groups is based

on their size in increasing order, s; < so < -+ < 5, and t; < ty < -+ < £,
With some abuse of notation we also use s1, g, ..., S, and t1,ts,...,t, to name the
groups.

Our goal is to find the optimal size of all s;, and ¢, for k = 1,...,m — 1,* their

optimal position (if it matters), as well as the optimal number of groups, m.
In order to avoid unnecessary complications in the calculations (which arise with-
out the gain of any additional intuition) we assume that every group must have an

13Notice that, the fact that the network is a circle and there exist exactly two actions ensures
that the number of groups is the same for both actions.
s, and t,, must be equal to s,, = s — Zzzll sp and t,, =1t — E;n;ll t;, respectively.

8
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Figure 1: Example of an initial configuration: White nodes represent agents choosing action B
and black nodes agents choosing action A.

even number of agents. This does not cause important limitations in our results,
since the underlying ideas remain the same. We refer the reader to the analysis
of the linear network (Appendix A) for a more detailed motivation regarding this
assumption. Formally:

Assumption 1 (Al). s; and t; are even numbers for alli € {1,...,m}.

3. Results for an Impatient Planner

In this section, we study the optimal targeting strategy of a planner who cares
about maximizing the expected number of agents choosing action B after exactly one
period. Figure 2 shows the two possible configurations after one period. White dots
represent the agents who choose initially action B and black dots those agents who
choose initially action A. Observe that only those agents who are on the boundary
of a group can change their choice. In fact, for m denoting the total number of
groups, in case action B is more successful in the first period, then there will be 2m
additional adopters in the next period; whereas, in case action A is more successful,
the number of adopters will decrease by 2m. The probabilities of ending in each of
the two possible states is p and ¢ = 1 — p respectively.

Hence we can construct the objective function of the impatient planner:

ENg(1) =t+2mp—2m(l —p)=t+2m(2p —1)

It is easy to see that the optimal targeting strategy depends on the probability
p of action B being more successful. Namely, for p > 1/2 the objective function
is strictly increasing in m.'® Therefore, it is optimal to have as many groups as
possible. On the other hand, if p < 1/2 the objective function is strictly decreasing

15Tf g # 1 — p, we would simply have to replace 2p — 1 with p — q.
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Figure 2: Initial configuration and the two possible configurations after one period.

in m and therefore it is optimal to locate all initial adopters in one group. ¢ This
result is formally stated in the following proposition:

Proposition 1. Under (A1), then for an impatient planner and for a given number
of initial adopters, t

o Ifp > 1/2, the optimal targeting strategy is to spread the initial adopters to as
many groups as possible, i.e.

— Ift < s, thenm =

L

27

— Ift>s, thenm =3,

o [f p < 1/2, the optimal targeting strategy is to concentrate all the initial
adopters in one group, i.e. m =1, t; =1t and s; = s.

Observe that, as long as the planner creates the maximum number of groups, the
allocation of the agents inside these groups is not important. This feature will
change slightly in the case of infinite patience.

Intuitively, this result suggests the following. If an action is likely to be successful,
then the planner should try to make it directly visible to as many non—adopters as
possible. In doing so, she will manage to attract the maximum number of additional
adopters. On the contrary, if an action is unlikely to be successful, then the planner
prefers to prevent most of the initial adopters from observing the opposite action.
As a result, even upon an unsuccessful realization, most of the initial adopters will
not observe the alternative action, therefore they will not revise their choice in the
second period. As we will see, this optimal strategy changes sharply if the planner
is infinitely patient.

4. Results for an Infinitely Patient Planner

In this section, we study the optimal behavior of an infinitely patient planner,
i.e. one who cares only about the diffusion of her preferred action in the long run.

6Throughout the paper, we disregard the case of p = % This is because for p = % and given
Assumption 1 every targeting strategy of the planner yields exactly the same result.

10



A crucial feature of this setting is that such a planner disregards completely the
speed of the procedure. Before beginning our analysis, it is useful to state two prior
results.

4.1. Preliminaries
4.1.1. Diffusion when Agents Imitate-the-Best Neighbor

The present behavioral rule constitutes a special case of “Imitate-the-Best Neigh-
bor” rule, applied in a setting of individual decision—making under uncertainty with-
out strategic interactions between agents. Agents observe the choices of their neigh-
bors and the payoff those choices yield. Subsequently, they revise their choices
repeatedly according to these observations. In particular, they do so by imitating
the action that yielded the highest payoff within their neighborhood in the preceding
period.

In such a setting, it turns out that every connected network converges with
probability one to a steady state where all the agents choose the same action (see
Tsakas, 2013). Moreover, if p € (0,1) then any of the actions can be the one to
survive in the long run. This is based on the fact that all actions are vulnerable to a
sequence of negative shocks, which can lead to their disappearance. Given that an
action which disappears from the network never reappears, it turns out that only
one of them survives at the end.

In our case, this result ensures that only one of the two actions will survive
in the long run and that both actions have a positive probability to be the ones
succeeding. Hence, the optimal strategy for an infinitely patient planner is the one
that maximizes the probability that action B gets diffused to the whole population
in the long run. We define this probability as follows:

Definition 1. Pg(-) is the probability that action B will be diffused to the whole
population in the long run.

This probability will depend not only on the size of the population n, the number
of targeted agents t and the probability of success p, but also on the choice of
the planner about which agents to target. Notice as well that maximizing this
probability is equivalent to maximizing the expected number of agents choosing
action B in the long run; a remark that will clarify the analogy between our short
run and long run analysis.

4.1.2. Results on Random Walks with Absorbing Barriers

A technical result which turns out to be particularly useful comes from Kemeny
and Snell (1960). It refers to the properties of a finite one-dimensional random
walk with absorbing barriers, which in the current context is defined as a Markov
chain whose state space is given by the integers j € {0,1,...,n} and its initial state
is 2. For some numbers p and ¢ satisfying 0 < p,q < 1, the transition probabili-
ties are given by Pj;1 = p, Pjj-1 = qand Pj; =1 —p —q for all j # 0,n and
Pyo = P,, = 1. The endpoints of a random walk are called absorbing barriers be-
cause upon reaching one of them random walk eventually stays there forever. Those
two states are the only absorbing ones. We denote the probability of absorption at
state n (respectively at state 0) when the process initiates at state i, by P, (i) (re-
spectively Py(i)).Specifically, Kemeny and Snell (1960) compute the random walk’s
probabilities of absorption at each one of the two absorbing states as follows:

11



Lemma 1 (Kemeny and Snell (1960)). Consider a random walk with state space
{0,1,...,n}, where both barriers 0 and n are absorbing. If the probability of moving
to the right (from j to j + 1) is p, the probability of moving to the left (from j to
j—1)isq, and r = §, then the probability of absorption at state n, when starting
from state i is:

P T'nT;’;nl—i Z:fp #q (or equzjvalently r#1) )
n if p = q (or equivalently r = 1)

Analogously, the probability of absorption at the state 0 is Py(i) = 1 — P, (7).

For the moment, p # ¢ is equivalent to p # % Later on we extend our analysis
to show that the results are completely analogous in the more general case.

To help us understand how this result can be used to express the current diffusion
process we consider a linear network (see Figure 3), with agents named {1,2,...,n},
where each agent has two neighbors, except of agents 1 and n who have one neighbor
each. At period 7 = 1, agents 1 to ¢ choose action B and the rest choose action A.
Hence, every period only two agents may revise their choice (for example in the first
period those are the agents ¢ and i + 1). The border fluctuates until either agent
n chooses B, or agent 1 chooses A. The position of the right border of adopters
follows a random walk with absorbing barriers 0 and n. Notice that, in order for
agent 1 to choose A the left barrier must be located at the artificial node 0, which
is going to be omitted in most of the graphs for expositional simplicity. Hence, we
can use the result stated above to describe the probability of diffusion for each of
the two actions. We call a random walk successful (unsuccessful) if it ends up in the
absorbing state where all the nodes included in the walk choose action B(A).

This result is particularly helpful for our analysis, because any initial targeting
choice induces a stochastic process that can be expressed as a sequence of condition-
ally independent random walks with absorbing barriers, similar to the one described
above. Despite having multiple borders between groups, all of them fluctuate syn-
chronously, because the payoffs for each action are perfectly correlated and therefore
all agents on the boundaries make the same choice in each period. For example, con-
sidering the beginning of the process, each border fluctuates until either the smallest
group of adopters, with size t; or the smallest group of non—adopters, with size s;
disappears. This process can be represented by the random walk that is shown in
Figure A.14. Upon success or failure of the first walk, the process starts fluctuating
according to a new random walk that depends on the smallest still existing groups
of each type.

4.2. Main Results

Not surprisingly, the ratio r = § = 1%, which describes the likelihood of action
B being more successful than action A, is a crucial parameter. However, surprisingly
enough, this is the only parameter that affects the optimal targeting strategy and
more specifically whether r is higher or lower than 1.17 The most interesting result,

though, is that the optimal strategy of the infinitely patient planner is in complete

"Even though, at the moment 7 > 1 is identical to p > 1/2, we keep this notation because it
facilitates the extension to cases where ¢ # 1 — p.
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Figure 3: Initial configuration of a random walk with absorbing barriers 0 and n.
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Figure 4: The two possible configurations after one period.
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Figure 5: The two possible configurations after absorption.

contrast to that of the impatient planner. In particular, we observe that, for » > 1
the optimal targeting strategy of the planner is to concentrate all the targeted agents
in a single group, whereas for r < 1, the optimal strategy is to spread them as much
as possible across the population, splitting them into as many groups as possible
and as symmetrically as possible. Observe that, the results are not just different,
but are exactly opposite to those found for the impatient planner. In fact, the
optimal strategy for an infinitely patient planner is the worst possible strategy for
an impatient planner and vice versa.

For a better exposition of the general results, we split the problem into three
sub-problems. First, we consider the case where the groups are restricted to be
symmetric. Then, we consider the asymmetric case where the planner can target up
to two groups and finally we consider the general asymmetric case.

4.2.1. Symmetric cases
First, we consider the symmetric case, where the groups of agents choosing the

same action are restricted to have equal sizes, namely s; = --- = s, = 2 and

tp = =t, = % Assuming no problems of divisibility we find the optimal
number of groups, m. As we have mentioned already, the optimal targeting strategy
depends only on the ratio r. In particular, when r > 1 it is optimal to concentrate
all initial adopters in one group, whereas when r < 1, it is optimal to split them in

as many groups as possible, i.e. m = min{s/2,¢/2}. Formally:
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Figure 6: The first random walk

Proposition 2. Under (A1) and given sy = -+ = 5, = > and t; = -+ = lp, = —
then for an infinitely patient planner:

o [fr>1, then argmax,, Pg(m|s,t,n,r) =1
o [fr <1, then argmax,, Pg(m|s,t,n,r) = min{s/2,t/2}

All proofs can be found in Appendix B.

Intuitively, this proposition suggests that when the probability of success is high,
it is beneficial to concentrate all initial adopters together. This prevents the dis-
appearance of the preferred action upon the realization of a sequence of negative
shocks during the first periods. The opposite strategy is optimal when the proba-
bility of success is low. Then the planner wants to take advantage of some potential
good shocks during the first periods, which will spread the action to as many agents
as possible.

4.2.2. Asymmetric Cases

We now turn attention towards the more general asymmetric cases. At first,
consider the case where the planner is restricted to target at most two groups of
each type, with sizes s1, so and ¢, 5 respectively. Then the process can be described
as shown in the Figure 7. Recall that s; < s9 and t; < 5.

It turns out that the optimal decision depends completely on the value of r.
More specifically, if » > 1 it is optimal to concentrate all the agents in one group,
while if < 1 the optimal choice is to have two groups of equal size for each action.

Proposition 3. Under (A1) and given m < 2, then for an infinitely patient planner:

o [fr > 1, the optimal targeting strateqy is to concentrate all initial adopters in
one group.

o If r < 1, then the optimal targeting strateqy is to split the initial adopters
into two as equal as possible groups, and locate them in the population as
symmetrically as possible, i.e. so — 51 <2 andty —t; < 2

The intuition is similar to that of the symmetric case. However, an interesting
finding is that this result does not hold for all restrictions on m. For example, if we
restrict the number of groups to be not greater than three, then it is not optimal to
split the agents into three equal groups of each type. Hence, it is not the case that
we always prefer symmetric configurations compared to asymmetric ones. Notice

14
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Figure 7: Example of an initial configuration with two groups of each type

that, this would be a sufficient condition for the proof of our main result, but it
does not always hold. Nevertheless, this does not affect our general result which is
stated below.

The two propositions help us construct the main theorem of the paper which
describes the optimal targeting strategy in the general case of m initial groups of
each type, allowing them to be of different sizes. The result is in line with the
previous findings and suggests that when r > 1, then the optimal choice is to
concentrate all the initial adopters in one group; whereas when r < 1, then the
optimal choice is to spread them uniformly across the population in as many and as
equal groups as possible. Namely:

Theorem 1. Under (A1), for an infinitely patient planner

o [fr > 1, the optimal targeting strateqy is to concentrate all the initial adopters
in one group, i.e. t,, =t andt; =---=t,,_1 =0 for any m.

o [fr < 1, the optimal targeting strateqy is to spread the initial adopters in as
many groups as possible and locate these groups as symmetrically as possible,
1.€.

— Ift <s, thenm =
— Ift > s, thenm =

withty =---=t, =2 and s,, — s1 < 2,

1
27
5, with sy =+ =5, =2 and t,, —t; <2

As it has been mentioned already, the importance of this result lies in the com-
plete contrast between the optimal strategy of an infinitely patient planner in com-
parison to an impatient one. An infinitely patient planner prefers to protect from
some initial negative shocks an action which is more likely to be successful from some
initial negative shocks, whereas she prefers to spread as much as possible an action
which is more likely to be unsuccessful, trying to take advantage of a few positive
shocks in the first periods. When the probability of success is low, she knows that
by concentrating all the targeted agents together, a lot of positive shocks will be
needed in order to capture the whole population, which is rather improbable for an
action that is expected to be often unsuccessful.
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5. Extensions

In this section, we briefly present the results of several extensions that address
specific questions related to the problem of interest. One can find an thorough
discussion of these extensions in Appendix A.

A natural question that arises from the contrast between the optimal behavior of
an impatient and an infinitely patient planner is what happens for intermediate levels
of patience. First of all, we observe that the expected diffusion is very sensitive to
small changes in the initial configuration and therefore it becomes particularly hard
to construct a general strategy for all intermediate levels of patience. Nevertheless,
we discuss the optimal targeting strategy of a planner who cares about the diffusion
of action B after 3 periods and we obtain an enlightening result. Namely, if » > 1,
then in some cases the planner prefers to spread the initial adopters in groups
consisting of four, instead of two, agents. Whereas, if » < 1, she always needs to
compare between the two extreme cases, i.e. concentrating all of them in one group
or spread them to as many groups as possible. This result provides a useful starting
point to understand how the optimal targeting strategy changes as the planner
becomes more patient.

Furthermore, we discuss what happens if the number of targeted adopters, t, is
endogenous. To do this it is necessary to define explicitly the profit function of the
planner. We find that under some simple and intuitive conditions, if » > 1 then
the expected profits of the planner have decreasing returns to scale in t. We also
provide a condition under which the function of expected profits attains a strictly
interior maximum, which means that for the planner it is not optimal anymore to
target all the agents in the population, even if she has no budget constraints.

Another crucial aspect we would like to shed more light on is the practical
meaning of infinite patience. In reality, no planner can wait literally infinitely many
periods. We try to identify the expected time before total diffusion of one action
occurs and how the planner’s strategies that maximize the expected diffusion affect
this expected time. Not surprisingly, we find that a larger number of groups leads
to faster diffusion and therefore the optimal strategy of the planner for » > 1 has
the drawback of maximizing also the expected time before total diffusion occurs.
On the other hand, for » < 1 the optimal strategy is also the one that leads to the
fastest expected time of total diffusion. An interesting feature, which is in line with
standard results in the analysis of random walks, is that the expected time of total
diffusion explodes as r gets very close to 1. In general we find that for different
configurations the expected time until diffusion occurs may vary substantially and
therefore one must be very careful when acting as an infinitely patient planner.

Moreover, we discuss cases where inertia is possible. This generalization allows
us to capture some realistic scenarios, which include the possibility of both actions
having equally good realizations, the existence of switching costs and some forms
of conformity. Such settings can be captured by allowing ¢ # 1 — p, where ¢ is the
probability of action A being more successful than action B, and we explain why
our results are not affected by this feature.

Additionally, we discuss the optimal targeting strategy of a planner for some
slightly modified network structures, so as to get an idea of how the results would
be affected by the presence of central agents. First, we study the linear network
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assuming that the planner can target a single group of agents. Once again, we find
a sharp contrast between the optimal targeting strategies of an impatient and an
infinitely patient planner. In particular, for an infinitely patient planner, if » > 1 it
is optimal to target one of the two corners, whereas if r < 1 it is optimal to target
the agents who are located around the center. To the contrary, for an impatient
planner, if » > 1 it is optimal to target any segment of the line that does not include
any of the corner agents, whereas if r < 1 it is optimal to target one of the two
corners. In this part of our analysis, we also drop the assumption of groups having
an even number of agents and we show why dropping this assumption complicates
our analysis without providing additional insights. We also discuss briefly the star
network, in which the vast importance of very central agents becomes apparent.

Finally, we run a set of simulations to test the robustness of our results to the
addition of a few links in the circle network and we find that our conclusions remain
valid. In particular, if » > 1 it is always optimal to target only one group of
connected agents, with the optimal location of the group depending on the position
of the additional links. Conversely, if » < 1 it is almost always optimal to target the
subset of agents that minimizes the number of successful draws needed to capture the
whole population. This is in line with our previous findings and provides intuitions
which can be useful for the study of more general network structures.

6. Conclusion

We have analyzed the optimal intervention of a planner who seeks to maximize
the diffusion of an action, in a circular network where the agents imitate success-
ful past behavior of their neighbors. It turns out that there is room for strategic
targeting of initial adopters even in environments where all agents are completely
identical. Knowledge of the exact structure of the network, and not only its degree
distribution, can be beneficial for a planner. We find that the optimal decision de-
pends almost completely on two parameters. On the likelihood r of the preferred
action being more successful and on how patient the planner is. Changes in these
two parameters lead to completely opposite optimal behavior.

An important parameter that we have disregarded completely in our analysis is
the risk aversion of the planner. We have assumed the planner to be risk neutral,
caring only about the expected number of adopters. For a risk averse planner, we
would expect the optimal behavior to contain more dispersed targets than for the
risk neutral one, but this remains an open question for future research.

The current paper constitutes a first attempt to explore targeting possibilities in
networks where agents imitate successful behavior. Given that our network structure
is relatively simple, a natural extension would be to explore which of the current
features are still present and which of these are changing when passing to more
general network structures. It is apparent that centrality features arising in more
complex networks will play an important role. However the exact characteristics
remain to be studied.
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Appendix A. Extensions

Appendix A.1. Intermediate patience - the T-patient planner

The sharp contrast between optimal targeting strategies of impatient versus in-
finitely patient planner makes plausible the question of how this transition occurs as
the planner becomes more patient. Intermediate levels of patience may be defined
in several alternative ways, of which we choose the following:

Definition 2. The planner is T-patient if she cares about maximizing the expected
number of agents choosing action B at period T, denoted by ENg(T).

Although, at first sight, this definition of impatience might seem unusual, it
covers all important intuitions and at the same time it can be easily extended to
more complicated cases. For example, the qualitative results would be very similar if
the planner cared about the sum of discounted expected number of agents choosing
her preferred action from period one up to period 7.

First of all, we analyze the case where the planner is 2-patient, i.e. that she cares
only about the expected number of adopters after two periods. Notice that, after
two periods, there are four possible states the society can be in.!® Notice, also, that
the number of groups may have decreased after the first period. This is because,
after the first period, the groups consisting of only two agents who chose the action
that was unsuccessful during that period will disappear. For a visual representation,
look at the configuration occurring after failure in Figure 2 (p. 9), where the bottom
left group of two agents choosing action B disappears after a failure for action B in
the first period. Hence, we can construct easily the objective function of a 2-patient
planner as:

ENp(2) =t +2(2p — 1){2m — [pas + (1 — p) 3]}

where s is the number of groups consisting of two agents choosing A and f5 is the
number of groups consisting of two agents choosing action B.

Notice that there are two opposing forces. We analyze them for p > 1/2, since for
p < 1/2 the analysis is exactly the opposite. For p > 1/2, on the one hand, we would
like to have as many groups as possible, since this increases the expected number
of agents choosing B. On the other hand, we would like not to have groups of size
two, since this enters in the objective function negatively. Hence, as long as we can
create more groups, with size larger or equal than four agents, it is preferred to do
so. Now, what would happen if in order to create one extra group, we would have
to create one or more groups with size two, for each one of the actions. The most
difficult condition to be satisfied arises if we are left with groups of size no larger
than four agents for both actions. In this case, in order to create one additional
group, we would need to substitute one group of four agents with two groups of two
agents for each type. Therefore, we would need to increase the number of both as
and S5 by two. The necessary condition such that we prefer to have one extra group
would be:

18In general after T-periods there are 27 possible histories, so there are 27 possible configurations.
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2m — [pag + (1 = p)Ba] < 2(m + 1) — [p(aa +2) + (1 — p)(B2 + 2)]

With some straightforward calculations, we see that this condition is satisfied
always with equality, hence we are indifferent between having this one additional
group or not. Given that this is the toughest condition to satisfy, this means that
in all the other cases it is strictly preferred to have one more group. Concluding, for
a 2-patient planner it is always preferred, at least weakly, to have one extra group.
Therefore, her optimal behavior is identical to the one of the 1-patient planner.

The intuition is basically the same for the 3-patient planner. Notice that, during
the first two periods it is possible that also groups of four agents disappear, which
may affect the total number of groups in the third period. The objective function
of the planner becomes:

ENg(3) =t +2(2p — 1){3m — 2[pas + (1 — p)fo] — [p*as + (1 — p)*Bu]}

where ay (f84) is the number of groups consisting of four agents who choose action
A (B) and ay, B9 are as defined above.

We observe that, in this case it would be preferable not to have groups consisting
neither of two nor or four agents. Hence, there is an ambiguous trade—off between
having more groups and those additional groups consisting of four or less agents.
One can easily observe that the creation of groups consisting of four agents has very
small negative effect, compared to the positive effect of the addition of a group. This
means that the planner prefers to have two groups with four agents, rather than one
with eight. However, there are still more cases to analyze. The case captured in
Figure A.8 is the one that imposes the toughest condition to satisfy. In particular,
the question is whether the planner prefers to break two groups of four agents each
into four groups of two agents each.

not break break

Figure A.8: Configuration where a 3-patient planner prefers not to create an additional group if
r>1

The condition is the following and it is not satisfied for any p:
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3m — 2[pag + (1 — p)Ba] — [PPas + (1 — p)*B4] <
<3(m+1) = 2[plae +2) + (1 =p)(B2 +2)] — [P*(aa — 1) + (1 = p)*(Bs — 1)] &
S3—4dp—41-p)+p*+(1—-p)*>0

In a similar manner, we need to check whether other possible ways of creating
more groups are beneficial. This case turns up to be the only one where the 3-patient
planner prefers not to have more groups. The second stricter condition arises by the
configuration depicted in Figure A.9. In this case, it turns out that the planner is
indifferent between the two alternative configurations. All the other conditions are
strictly satisfied.

J/J/
v\

not break break

Figure A.9: Configuration where a 3-patient planner is indifferent between creating or not an
additional group, if r > 1.

We can describe the optimal behavior of a 3-patient planner as follows. For
p>1/2,if t <« s, then optimally t; =ty = -+ =t¢,, =2 and m = t/2. For s K t,
optimally sy = s = -+ = s, = 2 and m = s/2. However, if s ~ ¢ th