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We present an entropy-stable semi-discretization of the Euler equations. The scheme
is based on high-order summation-by-parts (SBP) operators for triangular and tetrahe-
dral elements, although the theory is applicable to multidimensional SBP operators on
more general elements. While there are established methods for proving stability of linear
equations, such as energy analysis, they are not adequate for nonlinear equations. To ad-
dress nonlinear stability, we use the matrix properties of the SBP operators combined with
entropy-conserving numerical flux functions. This allows us to prove that the semi-discrete
scheme conserves entropy. Significantly, the proof does not rely on integral exactness, and,
therefore, the discretization has a stronger claim of robustness than a similar finite-element
method. The addition of an upwinded term to the entropy-conservative scheme makes it
entropy-stable. This generalizes previous work proving entropy stability for tensor-product
elements to more general elements, including simplex elements. Numerical experiments
are conducted to verify accuracy and entropy conservation on an isentropic vortex flow.

I. Introduction

A goal of computational modeling is to predict the performance of engineering systems. Computational
modeling is especially important in fields like aeronautical engineering, where physical experiments can be
costly and difficult to perform. To this end, high-order methods are an efficient means to simulate complex
systems, but they are often hampered by a lack of robustness. We seek to develop discretizations that have
provable a priori stability properties to improve robustness.

For simple model problems, there is a rich history of schemes with provable stability properties. For the
advection equation, the first order upwind scheme is stable subject to a CFL constraint.1 In this paper, we
refer to a scheme as stable if it produces numerical solutions bounded in some norm. When a nonlinear flux
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is present, finite difference discretizations of Burgers’ equation can be proven energy stable under a change
of variables. This result depends on a particular choice of variables, namely the entropy variables, and the
use of a numerical flux function. It also establishes that, for some equations, entropy and energy analysis
are equivalent.2

For linear PDEs, the energy method provides a powerful tool to analyze the stability of higher-order
discretizations. If the equation is nonlinear, the question of stability becomes more subtle. Hughes, Franca,
and Mallet3 introduced a finite-element discretization that employed entropy variables to symmetrize the
Navier-Stokes equations, which led to discrete satisfaction of the Clausius-Duhem statement of the second
law of thermodynamics. Unfortunately, the proof relies on exact integration,3 which is impractical for
the Euler flux for low degree polynomials and may not be possible for higher-order polynomials. Even
discontinuous-Galerkin (DG) methods, which are inherently dissipative when utilizing an upwinded flux, can
become unstable for certain initial conditions, even when using very high accuracy cubature rules.4

A key theoretical result by Dafermos5 is that hyperbolic systems endowed with an entropy function are
L2 stable provided the entropy function is bounded. The proof was sharpened recently by Svärd.6 In a series
of papers, Fisher et al.7–10 constructed entropy-stable WENO finite difference discretizations of the Burgers,
Euler and Navier-Stokes equations. This work was extended to discontinuous-Galerkin-type discretizations,
including nonconforming interfaces, in a recent paper.11

A critical ingredient of these formulations is the use of Summation-by-parts (SBP) operators. These
operators satisfy a discrete property analogous to integration-by-parts. This allows SBP discretizations of
linear equations to be constructed such that they retain energy stability based on the matrix properties of
the operators, without the assumption of exact integration.12–14 In the nonlinear context, the SBP property
proves essential in obtaining a discrete cancellation of entropy across the interior discretization.

Another important aspect of the entropy-stable formulations is the use of a numerical flux function which
satisfies an entropy condition developed by Tadmor.15 In Carpenter et al.11 the Ismail-Roe (IR) numerical
flux function16 is used to satisfy the entropy condition at a much lower computational cost than Tadmor’s
original flux function. Generalizing this approach, Gassner et al.17 unified several split-form discretizations
into a single framework of numerical flux functions, and compared these flux functions with existing ones
such as the IR flux. Their results show how entropy and kinetic energy stability can be obtained through
different operator splittings.

In this paper we introduce an entropy-conservative discretization of the Euler equation using general
multidimensional SBP operators. We demonstrate the accuracy of the discretization, as well as its ability to
conserve entropy in addition to mass, momentum, and energy. When a suitable entropy dissipation term is
introduced, the discretization becomes entropy-stable. The combination of nonlinear entropy stability and
the ability to handle complex geometry via unstructured grids results in a robust and flexible high-order
method.

The remainder of the paper is organized as follows. After introducing notation and definitions, Section II
defines our generic multidimensional SBP operators and gives a brief overview of continuous entropy stability.
In Section III, we present the new discretization and show that it conserves entropy as well as the conservative
variables. Numerical results in Section IV verify the properties of the discretization. Section V presents our
conclusions and future work.

II. Preliminaries

Before investigating the problem of entropy stability, we need to introduce notation that will allow natural
expression of important quantities, as well as several useful properties of SBP operators. We restrict our
focus to two-dimensional discretizations to keep the presentation concise; however, the results immediately
generalize to three-dimensional discretizations.
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A. Notation and definitions

Let Ω be a two dimensional, compact, connected domain with boundary ∂Ω. When decomposed into non-
overlapping simplex elements, each element is referred to as Ωκ with boundary ∂Ωκ. The Greek letter γ
refers to a single edge of an element, and ΓI is the set of all γ. nκ is the number of nodes on element κ.

We will also need to distinguish between continuous and discrete functions, as well as functions defined
globally and at the element level. Capital letters in script type, such as S, refer to functions defined over Ω,
with bold type used for vector-valued functions, such as U . Lower-case letters, such as u, refer to vectors
containing U evaluated at the nodes of all elements in Ω. Lower-case letters with a subscript, such as uκ,
refer to the evaluation of U on the nodes of κ. When necessary, uκ,i will be used to refer to U evaluated at
node i of element κ. Also, Pd(Ω) is the space of polynomials of total degree d on Ω.

Matrices are represented with an uppercase sans-serif type, for example A ∈ Rn×m. The n × n identity
matrix is represented by In. Discretizing systems of equations is facilitated by the Kronecker product
A ⊗ B. Two properties of Kronecker products that we will use are (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and
(A⊗ B)T = AT ⊗ BT .

We will also use the Hadamard, or element-wise, product of two conforming matrices A,B ∈ Rn×m. This
product is defined as the matrix A◦B ∈ Rn×m whose entries are (A ◦ B)ij = AijBij . The Hadamard product
is commutative, associative, and distributive over addition. It follows from the element-wise nature of the
product that, when A is diagonal, A (B ◦ C) = (AB) ◦ C = B ◦ (AC).

We will also make use of 1 and 0 to denote vectors of all ones and all zeros, respectively. The length of
these vectors can always be inferred from the context. Note that for an arbitrary matrix A, A1 returns a
column vector containing the sum of each row of A and and 1TA returns a row vector containing the sum of
each column.

B. Multidimensional SBP operators

We use multidimensional SBP operators satisfying the definition proposed by Hicken et al.18 The x-direction
operator definition is reproduced below. A similar definition holds in the y direction.

Definition 1. Two-dimensional summation-by-parts operator: The matrix Dx is a degree p SBP
approximation to the first derivative ∂

∂x on the nodes Nκ = {(xi, yi)}nκi=1 if

1. Dxpκ is equal to ∂P/∂x at the nodes Nκ, for all polynomials P ∈ Pp(Ωκ);

2. Dx = H−1Qx, where H is symmetric positive-definite, and;

3. Qx = Sx + 1
2 Ex, where STx = −Sx, ETx = Ex, and Ex satisfies

pTκExqκ =

∫
∂Ωκ

P Q nxdΓ,

for all polynomials P,Q ∈ Pr(Ωκ), for some r ≥ p. In the above integral, nx is the x component of

n = [nx, ny]
T

, the outward pointing unit normal on ∂Ωκ.

Despite the appearance of polynomials in Definition 1, they are used only to define accuracy conditions and
are not used as a basis to define the discrete solution. There are at least as many nodes on an SBP element
as there are on an equal order finite element; in general an SBP operator requires more nodes.

This work will use diagonal-norm SBP operators, for which the mass matrix H is a diagonal matrix with
strictly positive entries that, together with the nodes Nκ, define a cubature rule of at least degree 2p− 1.18

An important distinction between classical tensor-product and more general multidimensional SBP op-
erators is that the boundary operator E may be dense in the general case. Although it is often possible to
construct a multidimensional operator with diagonal E, here we consider the general case of dense E. In the
dense case, the multi-dimensional operators do not support the decomposition of Qx in Lemma 2.2 of Fisher
et al.8 Nonetheless, we will show that entropy stability can be obtained by exploiting the SBP properties
described above.
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C. Simultaneous Approximation Terms

The elements of an SBP discretization are coupled together using Simultaneous Approximation Terms
(SATs),19–22 which are referred to as interior penalties in the finite-element literature. For classical tensor-
product elements, the SATs can be applied node-wise at the boundaries of the elements. Multidimensional
SBP operators may not have nodes on the element boundaries, or they may have face cubature nodes distinct
from the volume nodes. In either case, the classical SAT methodology cannot be applied.23,24 An alternative
approach is to use interpolation/extrapolation operators to move data from the volume nodes to the faces
cubature nodes and back again.25,26

The interpolation/extrapolation operators are defined to exactly interpolate polynomials of at least degree
r, where r is the constant from part 3 of Definition 1, from the nκ volume nodes to the nγ cubature nodes
on each face. When (xi, yi) are the volume cubature nodes and (xj , yj) are the face cubature nodes, this is
expressed as:

(Rγκp)j =

nκ∑
i=1

(Rγκ)jiP(xi, yi) = P(xj , yj), ∀ j = 1, . . . , nγ .

It was shown that when the face cubature rule is accurate to at least degree 2r, and the associated Vander-
monde matrix is full rank, then there exists at least one SBP operator with a boundary operator Ex that
can be decomposed in terms of Rγκ:25

Ex =
∑

γ⊂∂Ωκ

Ex,γκ, where Ex,γκ ≡ RTγκNx,γBγRγκ, (1)

Bγ = diag(b1, b2, . . . , bnγ ) is a diagonal matrix whose entries are the (positive) cubature weights for face γ,
and Nx,γ = diag

[
(nx)1, (nx)2, . . . , (nx)nγ

]
is a diagonal matrix whose entries are the x component of the

unit outward normal to ∂Ωκ at the cubature points of face γ. This decomposition will be important in the
entropy analysis, and so we will use an SBP operator that supports this decomposition.

Note that, for elements that do not have a sufficient number of nodes on γ to construct degree r inter-
polation/extrapolation operators, Rγκ and Rγν are dense matrices and the computation of the face integrals
can be expensive. For elements with a sufficient number of nodes on γ, Rγκ and Rγν are sparse, substantially
reducing the cost of the computation.

D. Continuous Entropy Analysis of the Euler Equations

In this section we present the Euler equations and review important properties related to entropy. These
properties will be mimicked by the discretization in Section III.

The differential form of the two-dimensional Euler equations is

∂U
∂t

+
∂Fx

∂x
+
∂Fy

∂y
= 0, ∀ x ∈ Ω, (2)

where U = [ρ, ρu, ρv, e]T denotes the conservative variables and the flux vectors are

Fx =
[
ρu, ρu2 + p, ρuv, (e+ p)u

]T
, Fy =

[
ρv, ρvu, ρv2 + p, (e+ p)v

]T
.

The calorically perfect ideal gas law is used to close the system. The PDE (2) is a hyperbolic system of
equations and, as shown by Harten,27 it has an entropy function S(U). The entropy function is convex with
respect to U , and further satisfies

∂S
∂U = W , (3)

where W are the entropy variables, and
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WT ∂Fx

∂U =
∂Gx
∂U ,

where Gx is the entropy flux in the x direction. Similar relations hold for the other coordinate directions. A
discrepancy has appeared in the literature regarding the sign of the entropy. The entropy in this paper is the
mathematical entropy S, which is opposite in sign to the physical entropy. Consequently, the mathematical
entropy decreases across a shock. A specific definition of S will be given later.

Using the chain rule and the above properties, the equation governing the entropy can be obtained from
the Euler equations as follows:

WT ∂U
∂t

+ WT ∂Fx

∂x
+ WT ∂Fy

∂y
= 0,

⇒ ∂S
∂U

T ∂U
∂t

+

(
WT ∂Fx

∂U

)
∂U
∂x

+

(
WT ∂Fy

∂U

)
∂U
∂y

= 0,

⇒ ∂S
∂t

+
∂Gx
∂U

∂U
∂x

+
∂Gy
∂U

∂U
∂y

= 0,

⇒ ∂S
∂t

+
∂Gx
∂x

+
∂Gy
∂y

= 0.

This equation can integrated over Ω and cast into the form∫
Ω

∂S
∂t

dΩ +

∫
∂Ω

(Gxnx + Gyny) dΓ = 0, (4)

where the Gauss-Divergence Theorem is used to express the integral of the spatial derivatives as a surface
integral. The form of (4) indicates the entropy should only increase through boundary terms. Note that this
derivation holds as long as the required derivatives exist. In the case of discontinuities, solutions consistent
with the second law of thermodynamics must decrease entropy (recall our sign convention for entropy) and
equation (4) becomes an inequality. Mathematical theory for shock waves, including their entropy properties,
has been previously developed, see, for example, Tadmor15 and Lax,28 but we will not consider shocks waves
in this paper.

We note that the choice of entropy function is not unique. For example, Harten,27 Hughes et al.,3

and Ismail and Roe16 made different choices and arrived at different sets of entropy variables according to
Equation (3). We will make a specific choice of entropy function in section III.C.

Before proceeding, we recognize that the Euler equations require suitable boundary conditions in order
to be well-posed. For this work we consider only periodic boundary conditions. Consequently, the boundary
integral in (4) is zero and the resulting equations should have constant entropy. We leave entropy-stable
boundary conditions as a future topic.

III. Summation-by-Parts Discretization of the Euler Equations

The SBP operator matrices in Definition 1 are useful for discretizing scalar equations. In order to
discretize vector equations, the structure of the matrices must change to simultaneously operate on all
equations. We introduce the overbar notation for all operators, eg. Dx = Dx ⊗ I4, to compactly represent
this change.

A. Standard Discretization

The strong form semi-discretization of Equation (2) on an element κ, ignoring boundary conditions and
inter-element coupling, is

duκ
dt

+ Dxfκ,x + Dyfκ,y = 0,
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where uκ, fκ,x, and fκ,y are the vectors of conservative variables and the corresponding fluxes in the x
and y directions for element κ, respectively. The variables in uκ, fκ,x, and fκ,y are grouped by node, i.e.
the variables at the first node of κ occupy the first 4 positions of the vector and the next four positions
correspond the second node of κ, and so on. Multiplying by the mass matrix, H, results in

H
duκ
dt

+ Qxfκ,x + Qyfκ,y = 0. (5)

The goal of this paper is to obtain a discretization of (2) that also satisfies a discrete version of (4).
Contracting Equation (5) with the vector of entropy variables, wκ, which are ordered in the same manner
as uκ, gives

wT
κH

duκ
dt

+wT
κQxfκ,x +wT

κQyfκ,y = 0. (6)

The time-derivative term can be rewritten as

wT
κH

duκ
dt

= 1T
(
diag [wκ]H

) duκ
dt

= 1T
(
H diag [wκ]

) duκ
dt

= 1T
(

H diag

[
∂sκ
∂uκ

])
duκ
dt

= 1TH
dsκ
dt

,
(7)

where sκ is the entropy function S evaluated at the nodes of κ. This equation mimics the first term in the
continuous entropy Equation (4) at the element level. The first line in (7) requires commuting diag [wκ]
and H, which is possible because H is diagonal. This motivates the use of diagonal-norm SBP operators
for constructing entropy stable discretizations. The second line utilizes the chain rule, which may not hold
for the discrete equation. Recalling that the mass matrix defines a quadrature rule, the time term in (6) is
approximately, although not exactly, equal to the time term in (4). For the remainder of this paper, we will
focus exclusively on the entropy properties of the spatial discretization. In particular, we will consider the
periodic case, where the boundary term in (4) is zero and, therefore, entropy is conserved. In the limit of an
infinitely fine mesh, the spatial terms in (6) will converge to zero. At finite grid resolution, however, their
contribution is non-zero in general. It is this situation we seek to remedy.

B. Entropy-Conservative Discretization

To obtain an entropy-conservative discretization, we begin by changing the volume terms in Equation (5) to
use numerical flux functions. We make use of the following identity

Qxfκ,x =
[
Qx ◦ Fx

]
1 +O(∆xp), (8)

where

Fx(uκ,uν) ≡ 2


diag [F?

x(uκ,1,uν,1)] diag [F?
x(uκ,1,uν,2)] . . . diag [F?

x(uκ,1,uκ,nκ)]

diag [F?
x(uκ,2,uν,1)] diag [F?

x(uκ,2,uν,2)] . . . diag [F?
x(uκ,2,uν,nκ)]

...
...

. . .
...

diag [F?
x(uκ,nκ ,uν,1)] diag [F?

x(uκ,nκ ,uν,2)] . . . diag [F?
x(uκ,nκ ,uν,nκ)]

 .
and F?

x(·, ·) : R4 × R4 → R4 denotes a numerical flux function that is symmetric in its two arguments and
satisfies F?

x(U ,U) = Fx(U). Unless otherwise stated, Fx = Fx(uκ,uκ) for the remainder of the paper. In
Carpenter et al.11 (8) was proven to have the given accuracy for Tadmor’s flux and experimentally shown to
be accurate for other fluxes satisfying an entropy condition. Subsequently, the present authors developed a
theoretical justification for all 2-point, symmetric, consistent fluxes.29
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Next, we substitute part 3 of Definition (1) into Equation (8)

Qx ◦ Fx =

(
Sx +

1

2
Ex

)
◦ Fx = Sx ◦ Fx +

1

2
Ex ◦ Fx. (9)

Substituting Equations (8) and (9), as well as the equivalent y direction expressions into (5) gives

H
duκ
dt

+
[
Sx ◦ Fx + Sy ◦ Fy

]
1 +

1

2

[
Ex ◦ Fx + Ey ◦ Fy

]
1 = 0. (10)

In order to ensure entropy conservation between elements, the terms involving the Ex and Ey boundary
operators are replaced with a term that combines data from both elements on an interface. Defining new
boundary operators

Eκνx ≡ RTγκBγNx,γRγν and Eκνy ≡ RTγκBγNy,γRγν ,

where ν is the element that shares interface γ with element κ. Recall that Nx,γ is the diagonal matrix
containing the components of the outward normal of γ at the face cubature nodes, where outward is defined
with respect to element κ.

Using the accuracy property of the interpolation operator, it can be shown that29∑
γ⊂∂Ωκ

[
Ex ◦ Fx(uκ,uκ)

]
1 =

∑
γ⊂∂Ωκ

[
Eκνx ◦ Fx(uκ,uν)

]
1 +O(hr). (11)

Incorporating this result into Equation (10), the final discretization is

H
duκ
dt

+
[
Sx ◦ Fx + Sy ◦ Fy

]
1 +

1

2

∑
γ⊂∂Ωκ

[
Eκνx ◦ Fx(uκ,uν) + Eκνx ◦ Fy(uκ,uν)

]
1 = 0. (12)

C. Entropy Analysis

In this section, we show that the spatial terms in (12) sum to zero when contracted with the entropy variables
in the periodic case. This behavior is consistent with the entropy Equation (4), where the boundary integral
is zero and therefore the integral of entropy over the domain is constant. We reiterate that the contraction of
the spatial terms in (12) should sum to zero at any finite grid resolution, independent of the flow conditions.

To show that (12) has the desired properties, we select numerical fluxes that satisfy

(w −w′)T F?
x(u,u′) = ψx − ψ′x, (13)

where ψx is the potential flux. This condition was originally introduced by Tadmor,15 who developed the
first numerical flux function that satisfies it. Unfortunately, Tadmor’s flux function is too expensive to be
used in practice. The Ismail-Roe (IR)16 and Chandreshekar30 numerical flux functions were later developed
to satisfy the entropy condition at lower cost.

Using numerical flux functions and Theorem 8 in Carpenter et al.11 to introduce the Hadamard product,
the volume integrals in (12) have the following property:29

wT
κ

[
Sx ◦ Fx(uκ,uκ)

]
1 = −1TExψx,κ,

and wT
κ

[
Sy ◦ Fy(uκ,uκ)

]
1 = −1TEyψy,κ.

(14)

The boundary integrals can also be shown to have the property29

1

2
wT
κ

[
Eκνx ◦ Fx(uκ,uν)

]
1− 1

2
wT
ν

[
Eνκx ◦ Fx(uν ,uκ)

]
1 = 1TEx,γκψx,κ + 1TEx,γνψx,ν . (15)
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The left hand side of the above equation is the sum of the boundary integral contributions from two elements,
κ and ν, that share a face γ. Using the definition of the Eκνx and Eνκx , as well as the entropy consistency
property (13), it is possible to arrive at the right hand side of (15), which says that the potential flux of both
elements is integrated over γ. The importance of this result is that the face integrals, which are accurate for
the original PDE, also have useful properties when the PDE is contracted with the entropy variables. For
both Equations (14) and (15), analogous properties hold for the y direction.

Contracting (12) with the vector of entropy variables, summing over the elements, and using properties
(14) and (15) gives

K∑
κ=1

1THκ
dsκ
dt

=−
K∑
κ=1

∑
γ⊂Γκ

1T [Ex,γκψx,κ + Ey,γκψy,κ]

+
∑
γ⊂ΓI

[
1TEx,γκψx,κ + 1TEx,γνψx,ν + 1TEy,γκψy,κ + 1TEy,γνψy,ν

]
= 0.

(16)

In the first line, the volume term from Equation (14) is decomposed according to Equation (1). With
this decomposition, the potential flux of the volume and interface terms can be directly compared. Notice
that for a given interface γ, the volume term discretely cancels with the κ portion of the interface term.
Similarly, the volume term for element ν cancels with the ν portion of the interface term. Thus all the
potential flux produced by the volume terms is canceled out by the interface terms, resulting in net entropy
conservation. This is the discrete analogue of Equation (4) with periodic boundary conditions. Because the
entropy function is bounded at the initial time and, according to Equation (16), constant thereafter, we can
conclude that the discretization (12) is nonlinearly stable.5,6

For the numerical results in Section IV, we use the Ismail Roe (IR) numerical flux function,16 which sat-
isfies Equation (13) and uses the entropy function S = −ρs

γ−1 , where s = ln(p)−γ ln(ρ) is the physical entropy.

The corresponding entropy variables also symmetrize the viscous terms in the Navier-Stokes equations,3

which is important for extending entropy stability theory beyond inviscid flow.

D. Conservation Analysis

Now that we have established entropy conservation, we also seek to establish elementwise conservation of
mass, momentum, and energy. In order to prove these quantities are conserved, we must show that the
integral of conserved quantities change only through the action of boundary terms. Specifically, we take a
discrete volume integral over two arbitrary elements and show that it reduces to a discrete surface integral
of the flux.

Summing the node-wise contributions of Equation (12) over a single element, we get

1TH
duκ
dt

+ 1T
[
Sx ◦ Fx + Sy ◦ Fy

]
1 +

1

2

∑
γ⊂∂Ωκ

1T
[
Eκνx ◦ Fx(uκ,uν) + Eκνy ◦ Fy(uκ,uν)

]
1 = 0. (17)

The definition of Fx implies that it is a symmetric matrix. From the elementwise nature of the Hadamard
product, it is easy to see that Sx ◦Fx, is a skew-symmetric matrix since Sx is skew-symmetric. Consequently,
because xTAx = xTATx = −xTAx = 0 for all skew-symmetric matrices, the volume terms disappear. All
that remains is to prove conservation across the interfaces.

In Equation (17), for an interface γ, element κ has the x direction boundary operator Eκνx , and element
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ν has Eνκx . Summing their contributions together we have

1T
[
Eκνx ◦ Fx(uκ,uν)

]
1 + 1T

[
Eνκx ◦ Fx(uν ,uκ)

]
1

= 1T
[
Eκνx ◦ Fx(uκ,uν)

]
1− 1T

[
(Eκνx )T ◦ Fx(uν ,uκ)

]
1

= 1T
[
Eκνx ◦ Fx(uκ,uν)

]
1− 1T

[
Eκνx ◦ Fx(uκ,uν)

]T
1

= 0

Going from the first line to the second, we use the fact that these operators are the negative transpose of
each other, where the negative sign comes from the opposing outward normal vectors of κ and ν. From the
second line to the third, we use the elementwise nature of the Hadamard and the fact that Fx is symmetric
in its arguments. Consequently, the material flow out of element κ through interface γ is exactly equal to
the flow into element ν.

Thus, for an arbitrary mesh, the volume terms neither add nor subtract conserved quantities, and every
interface is conservative. This establishes ΣKκ=11

THduκ
dt = 0, and therefore proves elementwise conservation

of the vector of conservative variables. The proof is similar for any individual component of uκ.

E. Entropy-Stable Discretization

Previous studies on entropy-conservative discretizations have shown p rather than p+1 convergence rates for
the degree p dissipation-free scheme.17 In order to obtain p+1 convergence rates, we augment the right-hand
side of (12) with a Lax-Friedrichs type upwinding term

−
∑

γ⊂∂Ωκ

(RTγκBγ ⊗ I4)Λγ(uκ,uν)
[
Rγκwκ − Rγνwν

]
, (18)

where

[Λγ(uκ,uν)]ii =

[
|λmax|

∂u

∂w

]
ii

.

λmax is maximum wave speed at the interface and the Jacobian ∂u
∂w is evaluated at the arithmetic average

of the left and right states. The Lax-Friedrichs term is negative-definite, resulting in provable entropy
dissipation when contracted with the entropy variables. The addition of this term renders the previously
entropy-conservative discretization entropy-stable. This numerical dissipation is different than the one used
previously by Gassner et al.17 and Carpenter et al.10 for tensor-product SBP operators. In those works,
the numerical flux F?

x, used in the construction of Fx(uκ,uν) for the interface terms, was augmented with
a dissipation term. When the boundary operator Ex is dense, this does not result in provable entropy
dissipation. Consequently, we use (18) as a separate upwinding term.

IV. Results

We now perform numerical tests to verify the properties of the discretization. Specifically, we consider
the unsteady isentropic vortex problem; see, for example, Mattsson et al.31 The analytical solution is known
to be32

u =1− εy

2π
exp

(
f(x, y, t)

2

)
, v =

ε((x− x0)− t)
2π

exp

(
f(x, y, t)

2

)
,

ρ =

(
1− ε2(γ − 1)M2

8π2
exp (f(x, y, t))

) 1
1−γ

, p =
ργ

γM2
,

where f(x, y, t) = 1 − (((x − x0) − t)2 + y2) and the Mach number M is set to 0.5. The vortex strength,
ε, is set to 1, and x0, the x coordinate of the center of the vortex at t = 0, is 5. The y coordinate of the
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(a) p = 1 (b) p = 2 (c) p = 3 (d) p = 4

Figure 1: SBP Γ

(a) p = 1 (b) p = 2 (c) p = 3 (d) p = 4

Figure 2: SBP Ω

vortex’s center is zero. We solve the problem on a rectangular domain x ∈ [0, 20] and y ∈ [−5, 5] using
periodic boundary conditions on all boundaries of the domain to ensure discrete conservation of both the
conservative variables and entropy. Because the analytical solution tends to uniform flow at infinity, the
error incurred from applying periodic boundary conditions is expected to be small. In order to quantify this
assumption, the difference in the analytical solution between the parallel edges of the domain was measured.
The maximum pointwise periodic error is 9.78 × 10−6, which is negligible compared to the discretization
error for the grids in Figure 3.

The 5-stage 4th order low-storage explicit Runge-Kutta time-marching method of Carpenter and Kennedy
is used to discretize the time term.33 This time discretization is not entropy-conservative, so we cannot expect
perfect entropy conservation; however, we can verify that the semi-discretization is entropy conservative with
a small enough time step. Therefore, the simulation is run to a maximum time of 5.0 time units at a CFL
of 0.01.

Convergence studies are run on meshes with 20 to 80 rectangles in each direction, where each rectangle
is divided into two triangles. Both entropy-stable and entropy-conservative schemes are run using SBP-Γ
and SBP-Ω operators,18,25 shown in Figures 1 and 2. The SBP-Γ operators can interpolate from the volume
nodes on a face to the cubature nodes on the face with sufficient accuracy that the other volume nodes
are not required. This results in sparse R operators and reduces the cost of the face integrals. The SBP-Ω
operators must use all the volume nodes to interpolate to the faces cubature nodes, hence R is dense.

The convergence study results are shown in Figure 3. The error is calculated as the SBP approximation

to the L2 norm
√∑

κ(uκ − uexactκ )TH(uκ − uexactκ ). The nominal mesh size h is computed as 1/N , where

N is the number of elements in each coordinate direction.
The entropy-conservative SBP-Γ degree p = 1 through p = 3 operators show sub-optimal order p conver-

gence rates. The dissipation term increases the convergence rate somewhat for the degree 1 and 2 schemes,
but decreases it for the degree 3 and 4 schemes. In all cases, particularly for the degree 2 and 4 operators,
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(a) Entropy-Conservative SBP-Γ (b) Entropy-Stable SBP-Γ

(c) Entropy-Conservative SBP-Ω (d) Entropy-Stable SBP-Ω

Figure 3: Unsteady Vortex Convergence Studies

11

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 A

ug
us

t 2
4,

 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

44
96

 



(a) Entropy-Conservative SBP-Γ (b) Entropy-Stable SBP-Γ

(c) Entropy-Conservative SBP-Ω (d) Entropy-Stable SBP-Ω

Figure 4: Unsteady Vortex Entropy Change

the error constant is improved significantly by the dissipation.
For the SBP-Ω operators, the entropy-conservative degree 1 and 3 schemes converge at sub-optimal rates,

while the degree 2 and 4 schemes show the expected convergence rates of p+ 1. Introduction of dissipation
makes the degree 1 scheme superconvergent, while reducing the convergence of the degree 2 and 4 schemes.
The SBP-Ω operators are substantially more accurate than the SBP-Γ operators, particularly for degrees
1 and 2. Previously, even-order tensor-product entropy-stable schemes have shown convergence rates of p
rather than p+ 1.11 For both the tensor-product and multidimensional operators, the cause of the reduced
convergence rates has not yet been identified.

The change in the integral of the entropy function over the domain, 1THS, is shown in Figure 4. The
entropy-conservative schemes maintain constant entropy after a small initial transient, likely caused by the
time discretization. Overall, the results show the scheme is entropy-conservative, as predicted. The entropy-
stable schemes smoothly dissipate entropy for both SBP-Γ and SBP-Ω operators, with the SBP-Γ operators
being more dissipative than the SBP-Ω operators. The smooth dissipation of entropy verifies Equation 18 is
an effective means of adding dissipation. The results in Figure 3 also indicate that the entropy dissipation is
beneficial to the accuracy and, in some cases, convergence of the scheme, even when not required for stability.
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(a) Entropy-Conservative SBP-Γ (b) Entropy-Stable SBP-Γ

(c) Entropy-Conservative SBP-Ω (d) Entropy-Stable SBP-Ω

Figure 5: Unsteady Vortex Density Change

From these results, the benefits of entropy-stable schemes over entropy-conservative schemes remains an open
question.

In order to verify the conservation of the mass, the change in the integral of density,
∑
κ 1THρκ, is

plotted in Figure 5 for all schemes and operators. In all cases, the schemes are conservative. The plots of
momentum and total energy versus time (not shown) are similar.

V. Conclusions

We have presented a conservative, entropy-stable, high-order semi-discretization of the Euler equations
suitable for use on unstructured grids with multidimensional SBP operators. The entropy stability was
established theoretically using the properties of the numerical flux functions and the SBP operators, and
does not require exact integration. Numerical results showed these desirable characteristics are retained in
the absence of dissipation, and accuracy of the scheme increases when dissipation is added. One interesting
application of this scheme is to investigate the tradeoff between the higher accuracy of the SBP-Ω operators
and the lower cost of the SBP-Γ operators. Since the schemes are nonlinearly stable, the comparison can
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be run on problems that contain under-resolved flow features. Future work includes entropy-stable time
integration methods and boundary conditions.
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