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OPTIMAL INVESTMENT UNDER RELATIVE PERFORMANCE CONCERNS

GILLES-EDOUARD ESPINOSA AND NIZAR TOUZI

Centre de Mathématiques Appliquées, Ecole Polytechnique Paris

We consider the problem of optimal investment when agents take into account their
relative performance by comparison to their peers. Given N interacting agents, we
consider the following optimization problem for agent i , 1 ≤ i ≤ N:

sup
π i ∈Ai

EUi
(
(1 − λi )Xπ i

T + λi
(
Xπ i

T − X̄i ,π
T

))
,

where Ui is the utility function of agent i , π i his portfolio, Xπ i
his wealth, X̄i ,π the

average wealth of his peers, and λi is the parameter of relative interest for agent i .
Together with some mild technical conditions, we assume that the portfolio of each
agent i is restricted in some subset Ai . We show existence and uniqueness of a Nash
equilibrium in the following situations:

- unconstrained agents,
- constrained agents with exponential utilities and Black–Scholes financial mar-

ket.

We also investigate the limit when the number of agents N goes to infinity. Finally,
when the constraints sets are vector spaces, we study the impact of the λi s on the risk
of the market.

KEY WORDS: portfolio optimization, relative concerns, Nash equilibrium, differential game,
backward stochastic differential equations.

1. INTRODUCTION

The seminal papers of Merton (1969, 1971) generated a huge literature extending the
optimal investment problem in various directions and using different techniques. We refer
to Pliska (1986), Cox and Huang (1989), or Karatzas, Lehoczky, and Shreve (1987) for the
complete market situation, to Cvitanic and Karatzas (1992) or Zariphopoulou (1994) for
constrained portfolios; to Constantinides and Magill (1976), Davis and Norman (1990),
Shreve and Soner (1994), Duffie and Sun (1990), or Akian, Menaldi, and Sulem (1995)
for transactions costs; to Constantinides (1983), Jouini, Koehl, and Touzi (1997, 1999),
Damon, Spatt, and Zhang (2001), or Ben Tahar, Soner, and Touzi (2008a, 2008b) for
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We are grateful to Jérôme Lebuchoux for initiating this study as well as for his helpful comments and
advice. We also thank Jean-Michel Lasry for his support and for many interesting discussions and remarks,
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taxes; and to He and Pearson (1991a,b), Karatzas, Lehoczky, Shreve, and Xu (1991),
Kramkov and Schachermayer (1999, 2003), or Kramkov and Sirbu (2006) for general
incomplete markets.

However, in all of these works, no interaction between agents is taken into account.
The most natural framework to model such interaction would be a general equilibrium
model where the behavior of the investors is coupled through the market equilibrium
conditions. But this typically leads to untractable calculations. Instead, we shall model
the interactions based on some simplified context of comparison of the performance to
that of the competitors or to some benchmark. A return of 5% during a crisis is not
equivalent to the same return during a financial bubble. Moreover, human beings tend
to compare themselves to their peers. In fact, economic and sociological studies have
emphasized the importance of relative concerns in human behaviors, see Veblen (1899)
for the sociological part, and Abel (1990), Gali (1994), Gomez, Priestley, and Zapatero
(2007), or DeMarzo, Kaniel, and Kremer (2008) for economic works, considering simple
models in discrete time frameworks.

In this paper, we study the optimal investment problem under relative performance con-
cerns, in a continuous-time framework. More precisely, there are N particular investors
that compare themselves to each other. Agents are heterogeneous (different utility func-
tions and different constraints sets) and instead of considering only his absolute wealth,
each agent takes into account a convex combination of his wealth (with weight 1 − λ,
λ ∈ [0, 1]) and the difference between his wealth and the average wealth of the other
investors (with weight λ). This creates interactions between agents and therefore leads to
a differential game with N players. We also consider that each agent’s portfolio must stay
in a set of constraints.

In the context of a complete market situation where all agents have access to the entire
financial market, we prove existence and uniqueness of a Nash equilibrium for general
utility functions. The optimal performances at equilibrium are explicit, and therefore
allow for many interesting qualitative results.

We next turn to the case where the agents have different access to the financial market,
i.e., their portfolio constraints sets are different. Our solution approach requires to
restrict the utility functions to the exponential framework. Then, assuming mainly that
the agents positions are constrained to lie in closed convex subsets, and that the drift
and volatility of the log prices are deterministic, we show the existence and uniqueness
of a Nash equilibrium, using the backward stochastic differential equation (BSDE)
techniques introduced by El Karoui and Rouge (2000) and further developed by Hu,
Imkeller, and Müller (2005). The Nash equilibrium optimal positions are more explicit
in the case of constraints defined by linear subspaces. In this setting, we analyze the limit
when the number of players N goes to infinity where the situation considerably simplifies
in the spirit of mean field games, see Lasry and Lions (2007). Notice that our problem
does not fit in the framework of Lasry and Lions (2007) for the two following reasons.
First, in Lasry and Lions (2007), the authors consider similar agents, which is not the
case in the present paper, as the utility functions, the parameters λi s, and the sets of
constraint can be specific. More importantly, in Lasry and Lions (2007), the sources of
randomness of two different agents are independent.

We finally investigate the impact of the interaction coefficient λ. Under some additional
assumptions, which are satisfied in many examples, we show that the local volatility of
the wealth of each agent is nondecreasing with respect to λ. In other words, the more
investors are concerned about each other (λ large), the more risky is the (equilibrium)
portfolio of each investor. However, in general, this can fail to hold. But in the limit,
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N goes to infinity, the same phenomenon holds for the average portfolio of the market,
without any additional assumption. Roughly speaking, this means that the global risk of
the market increases with λ, although it can fail for the portfolio of some specific agent.

This paper is organized as follows. Section 2 introduces the problem. In Section 3, we
solve the complete market situation, for general utility functions. In Section 4, we deal
with the general case with exponential utility functions and portfolios that are constrained
to remain inside closed convex sets. In Section 5, we restrict the sets of constraints to
linear spaces that allow us in particular to derive some interesting economic implications.

REMARK 1.1. This paper is the submitted version from the content of the PhD thesis
of the first author Espinosa (2010). The delayed date of submission is due to our wish to
provide more relevant examples. Based on the content of Espinosa (2010), Frei and dos
Reis developed an interesting article, Frei and dos Reis (2011), during their Post-Doc at
Ecole Polytechnique. Their article, in particular, highlights the difficulty in the existence
and uniqueness of the quadratic multidimensional backward SDE of the present paper,
and establishes the existence of a sequentially delayed Nash equilibrium in the general
case. Frei and dos Reis (2011) also provide some extensions of our results, and some
shorter proofs. But they crucially make use of many results of this paper.

Notations. H2(Rm) denotes the space of all predictable processes ϕ, with values in
Rm, and satisfying E

∫ T
0 |ϕt|2dt < ∞. The corresponding localized space is denoted by

H2
loc(Rm). When there is no risk of confusion, we simply write H2 and H2

loc.

2. PROBLEM FORMULATION

Let W be a d-dimensional Brownian motion on the complete probability space (�,F, P),
and denote by F = {Ft, t ≥ 0} the corresponding completed canonical filtration. We
assume that F is generated by W. Let T > 0 be the investment horizon so that t ∈ [0, T].
Given two F-predictable processes θ taking values in Rd and σ taking values in Rd×d ,
satisfying:

σ symmetric, uniformly definite positive,
∫ T

0
|σt|2dt < +∞ a.s.,(2.1)

and θ is bounded, dt ⊗ dP−a.e,(2.2)

we consider a market with a nonrisky asset with interest rate r = 0 and a d-dimensional
risky asset S = (S1, . . . , Sd ) given by the following dynamics:

d St = diag(St)σt(θtdt + dWt),(2.3)

where for x ∈ Rd , diag(x) is the diagonal matrix with i th diagonal term equal to xi .
A portfolio is an F-predictable process {πt, t ∈ [0, T]} taking values in Rd . Here, π

j
t is

the amount invested in the j th risky asset at time t. Under the self-financing condition,
the associated wealth process Xπ

t is defined by

Xπ
t = X0 +

∫ t

0
πr · diag(Sr )−1d Sr , t ∈ [0, T].

Given an integer N ≥ 2, we consider N portfolio managers whose preferences are char-
acterized by a utility function Ui : R → R, for each i = 1, . . . , N. We assume that Ui is
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C1, increasing, strictly concave and satisfies Inada conditions:

U ′
i (−∞) = +∞, U ′

i (+∞) = 0.(2.4)

In addition, we assume that each investor is concerned about the average performance of
his peers. Given the portfolio strategies π i , i = 1, . . . , N, of the managers, we introduce
the average performance viewed by agent i as

X̄i ,(π j ) j 
=i := 1
N − 1

∑
j 
=i

Xπ j
.(2.5)

The portfolio optimization problem of the i th agent is then defined by

Vi
0

(
(π j ) j 
=i

)
:= Vi

0 := sup
π i ∈Ai

E
[
Ui
(
(1 − λi )Xπ i

T + λi
(
Xπ i

T − X̄i ,(π j ) j 
=i

T

))]
(2.6)

= sup
π i ∈Ai

E
[
Ui
(
Xπ i

T − λi X̄i ,(π j ) j 
=i

T

)]
, 1 ≤ i ≤ N,

where λi ∈ [0, 1] measures the sensitivity of agent i to the performance of his peers, and
the set of admissible portfolios Ai will be defined later. Roughly speaking, we impose
integrability conditions as well as the constraints π i take values in Ai , a given closed
convex subset of Rd .

Our main interest is to find a Nash equilibrium in the context where each agent is
“small” in the sense that his actions do not impact the market prices S.

DEFINITION 2.1. A Nash equilibrium for the N portfolio managers is an N-tuple
(π̂1, . . . , π̂ N) ∈ A1 × . . .AN such that, for every i = 1, . . . , N, given (π̂ j ) j 
=i , the portfolio
strategy π̂ i is a solution of the portfolio optimization problem Vi

0 ((π̂ j ) j 
=i ).
If in addition, for each i = 1, . . . , N, π̂ i is a deterministic and continuous function of

t ∈ [0, T], we say that (π̂1, . . . , π̂ N) is a deterministic Nash equilibrium.

Our main results are the following:

MAIN THEOREM 2.2. Assume that for each i = 1, . . . , N, Ui (x) = −e− x
ηi for some

constant ηi > 0, the portfolio constraints sets Ai are closed convex,
∏N

i=1 λi < 1, and that
there exists a Nash equilibrium (π̃1, . . . , π̃ N). Then, there exists a solution to the N-
dimensional quadratic BSDE (4.20) below, and (π̃1, . . . , π̃ N) can be expressed in terms of
this solution.

Unfortunately, the well-posedness of BSDE (4.20) below is an open problem in the
present literature, thus preventing Main Theorem 2.2 from providing a characterization
of Nash equilibria. We refer in particular to Frei and dos Reis (2011) who further explored
this question following a previous version of this paper based on Espinosa (2010). In
particular, Frei and dos Reis (2011) highlight some examples of nonexistence by allowing
the agents to have some final reward.

In the context of deterministic coefficients, we obtain a complete characterization.

MAIN THEOREM 2.3. Assume that θ and σ are deterministic and continuous functions
of t ∈ [0, T], and that for each i = 1, . . . , N, Ui (x) = −e− x

ηi for some constant ηi > 0, the
portfolio constraints sets Ai are closed convex, and

∏N
i=1 λi < 1. Then, there exists a unique

deterministic Nash equilibrium.
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We also observe that the unique Nash equilibrium of Main Theorem 2.3 can be
computed explicitly in various interesting situations that will be described throughout
the paper.

In order to simplify notations, from now on, we will write

Xi
t := Xπ i

t and X̄i
t := X̄i ,(π j ) j 
=i

t , t ∈ [0, T].

In Section 3, we shall consider the complete market situation in which the portfolios will
be free of constraints (in other words, Ai = Rd for each i ). This will be solved for general
utility functions. In the next sections, we will derive results for more general types of
constraints, but we will focus on the case of exponential utility functions: Ui (x) = −e− x

ηi .
We will first consider the general case in Section 4, and then in Section 5, we will focus
on the case of linear constraints, where the Ai s are (vector) subspaces of Rd .

3. THE COMPLETE MARKET SITUATION

In this section, we consider the case where there are no constraints on the portfolios:

Ai = Rd , for all i = 1, . . . , N.

In the present situation, the density of the unique equivalent martingale measure is

dQ

dP
= e− ∫ T

0 θ (u)·dWu− 1
2

∫ T
0 |θ (u)|2du .(3.1)

We shall denote by EQ the expectation under Q.
In contrast with the general results in the subsequent sections, the complete market

situation can be solved for general utility functions. In this case, the set of admissible
strategies A = Ai is the set of predictable processes π such that

σπ ∈ H2
loc(Rd ), Xπ is aQ-martingale,

and Uj
(− 2k

(
Xπ

T

)+)
, Uj

(− 2k
(
Xπ

T

)−) ∈ L1(P) for all j ≤ N and k ∈ N.
(3.2)

To simplify the notations and presentation in this introductory example, we also assume
that all agents have the same relative performance coefficient λ:

λi = λ ∈ [0, 1), for all i = 1, . . . , N,(3.3)

see, however, Remark 3.4. Nevertheless, we allow the investors to have different utility
functions Ui and different initial endowments xi ∈ R. We denote

x̄i := 1
N − 1

∑
j 
=i

x j , i = 1, . . . , N.

3.1. Single-Agent Optimization

We first check that the single-agent optimization problem is well-posed under the
following additional conditions:

for all y > 0, E

∣∣∣∣Ui ◦ Ii

(
y

dQ

dP

)∣∣∣∣ < ∞, EQ

∣∣∣∣Ii

(
y

dQ

dP

)∣∣∣∣ < ∞, and(3.4)

Uj

(
−2kIi

(
y

dQ

dP

)+)
, Uj

(
−2kIi

(
y

dQ

dP

)−)
∈ L1(P) for all j ≤ N and k ∈ N.
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LEMMA 3.1. Under condition (3.4), we have Ui (Xi
T − λX̄i

T) ∈ L1(P) for all
(π1, . . . , π N) ∈ A1 × · · · × AN and i = 1, . . . , N.

Proof. Using the convex dual of −Ui (−x), we have for any y > 0:

Ui
(
Xi

T − λX̄i
T

) ≤
∣∣∣∣Ui ◦ Ii

(
y

dQ

dP

)∣∣∣∣+ y
dQ

dP

(∣∣Xi
T − λX̄i

T

∣∣+ ∣∣∣∣Ii

(
y

dQ

dP

)∣∣∣∣
)

.

The right-hand side is integrable under P by the admissibility conditions (3.2) and the
integrability assumptions (3.4). Then, Ui (Xi

T − λX̄i
T)+ is integrable. On the other hand,

by the increase of Ui , we have Ui (x − y) ≥ Ui (−x− − y+) ≥ −|Ui (−2x−)| − |Ui (−2y+)|.
Then, it follows from the concavity of Ui that

Ui
(
Xi

T − λX̄i
T

) ≥ (1 − λ)Ui
(
Xi

T

)+ λ

N − 1

∑
j 
=i

Ui
(
Xi

T − X j
T

)

≥ (1 − λ)Ui
(− 2

(
Xi

T

)−)− λ

N − 1

∑
j 
=i

{∣∣Ui
(− 2

(
Xi

T

)−)∣∣+ ∣∣Ui
(− 2

(
X j

T

)+)∣∣}

≥ −∣∣Ui
(− 2

(
Xi

T

)−)∣∣− λ

N − 1

∑
j 
=i

∣∣Ui
(− 2

(
X j

T

)+)∣∣.
Hence, Ui (Xi

T − λX̄i
T) ∈ L1(P) by our definition of Ai . �

We now characterize the optimal portfolio and wealth of each agent, given the strategies
of his peers. In other words, we try to find the best response of agent i to the strategies
of his peers. As in the classical case of optimal investment in complete market, we will
use the convex dual of −Ui (−x). Since Ui is strictly concave and C1, we can define
Ii := (U ′

i )
−1, which is a bijection from R∗

+ onto R because of (2.4). The main result of
this section requires the following integrability conditions:

LEMMA 3.2. For any i = 1, . . . , N, let the strategies π j ∈ A for j 
= i be given. Then,
under (3.4), there exists a unique optimal portfolio for the optimization problem (2.6) of
agent i with optimal final wealth:

Xi∗
T = Ii

(
yi dQ

dP

)
+ λX̄i

T, where yi is defined by EQ Ii

(
yi dQ

dP

)
= xi − λx̄i .(3.5)

Proof. Since the market is complete, and under conditions (3.2) and (3.4), there exist
portfolio strategies π∗

i such that Xi∗
T = Xπ∗

i
T is a Q-martingale. We only verify that π∗

i ∈ Ai

for all i , the rest of the proof is omitted as it follows the classical martingale approach in
the simple complete market framework. Writing Ii := Ii (yi dQ

dP
), we compute that

Uj (0) ≥ Uj
(− 2k(Xi∗

T

)±) ≥ Uj
(− 2kI±

i − 2k(X̄i
T

)±)
≥ 1

N − 1

∑
	 
=i

Uj
(− 2kI±

i − 2k(X	
T

)±)

≥ −1
N − 1

∑
	 
=i

{∣∣Uj
(− 2k+1 I±

i

)∣∣+ ∣∣Uj
(
2k+1(X	

T

)±)∣∣}.
Then, the required integrability follows from (3.4) and the definition (3.2) of the sets

of admissible portfolios Ai , i = 1, . . . , N. �
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3.2. Partial Nash Equilibrium

The second step is to search for a Nash equilibrium between the N agents. Let XN :=
(Xi∗

T )1≤i≤N be the vector of terminal wealth of the investors associated to (π1, . . . , π N).
From Lemma 3.2, (π1, . . . , π N) is a Nash equilibrium if and only if we have

ANXN = JN,

where AN =

⎛
⎜⎜⎜⎝

1 − λ

N − 1
�

− λ

N − 1
1

⎞
⎟⎟⎟⎠ ∈ MN(R); JN =

(
Ii

(
yi dQ

dP

))
1≤i≤N

.

Under the condition λ 
= 1 in (3.3), it follows that AN is invertible and we can compute
explicitly that

A−1
N =

⎛
⎜⎜⎜⎜⎝

1 + λ2

(1 − λ)(N + λ − 1)
λ

(1 − λ)(N + λ − 1)
�

λ

(1 − λ)(N + λ − 1)
1 + λ2

(1 − λ)(N + λ − 1)

⎞
⎟⎟⎟⎟⎠ ,

thus providing the existence of a unique Nash equilibrium:

THEOREM 3.3. There exists a unique Nash equilibrium, and the equilibrium terminal
wealth for each i = 1, . . . , N is given by

X̂i
T =

(
1 + λ2

(1 − λ)(N + λ − 1)

)
Ii

(
yi dQ

dP

)
+ λ

(1 − λ)(N + λ − 1)

∑
j 
=i

I j

(
y j dQ

dP

)
.

REMARK 3.4. In the case of specific λi s, the previous arguments can be adapted. In
the expression of AN, λi appears on the i th line instead of λ, AN is invertible if and only
if
∏N

i=1 λi < 1 (for more details, see the proof of Lemma 4.6 below), and then its inverse
is given by

(
A−1

N

)
i i = 1 +

λN
i
∑

k
=i
λN

k
1+λN

k

1 −∑k
=i
λN

k (1+λN
i )

1+λN
k

, and
(

A−1
N

)
i j =

λN
i

1+λN
j

1 −∑k
=i
λN

k (1+λN
i )

1+λN
k

for i 
= j ,

where we denoted λN
i := λi/(N − 1). The equilibrium performances are given by

X̂i
T =

N∑
j=1

(
A−1

N

)
i j I j

(
y j dQ

dP

)
, i = 1, . . . , N.

REMARK 3.5. In the case λ = 1, it turns out that there exist either an infinity of Nash
equilibria or no Nash equilibrium. Indeed, in this case, AN is of rank N − 1. Therefore,
if JN belongs to the image of AN, then there is an affine space of dimension 1 of Nash
equilibria, while if JN is not in the image of AN, then there is no Nash equilibrium.

In particular, in the exponential utility context (further developed below), we directly
compute that JN = ANx + η

∫ T
0 θ (t) · (θ (t)dt + dWt), where x is the vector of initial data
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xi and η is the vector of risk tolerances ηi of each agent. Therefore, JN belongs to the
image of AN if and only if η belongs to it.

3.3. The Exponential Utility Case

In order to push further the analysis of the complete market situation, we now consider
the exponential utility case:

Ui (x) = −e− x
ηi , x ∈ R,(3.6)

where ηi > 0 is the risk tolerance parameter for agent i , i.e., the inverse of his absolute
risk aversion coefficient. We denote the average risk tolerance by

η̄N := 1
N

N∑
j=1

η j .(3.7)

In the present context, Ii (y) = −ηi ln(ηi y), so that the equilibrium wealth process is

X̂i
T = xi − ηi

1 − λ

[(
1 − λN

N + λ − 1

)
+ λN

N + λ − 1
η̄N

ηi

](
ln

dQ

dP
− EQ ln

dQ

dP

)
.

We denote by π̂ i ,N,λ the corresponding equilibrium portfolio strategy of agent i , where
we emphasize its dependence on the parameters N and λ.

In order to have explicit formulas, we assume that the risk premium θ is a (deterministic)
continuous function of t. Then, it is well known that the classical portfolio optimization
problem with no interaction between managers leads to the optimal portfolios

π̂0,i
t := ηiσ

−1
t θ (t), t ∈ [0, T].

PROPOSITION 3.6. In the above setting, the equilibrium portfolio for agent i is given by

π̂ i ,N,λ
t = ki ,N

λ π̂0,i
t , where ki ,N

λ := 1
1 − λ

[(
1 − λN

N + λ − 1

)
+ λN

N + λ − 1
η̄N

ηi

]
.

REMARK 3.7. Assume further that η̄N −→ η > 0 as N → ∞. Then, ki ,N
λ −→ 1 +

λ
1−λ

η

ηi
. In particular, if all agents have the same risk aversion coefficient ηi = η > 0, then

π̂ i ,N,λ = π̂λ := 1
1 − λ

π̂0
t . for all i .

REMARK 3.8. In the case of similar agents, i.e., for any i = 1, . . . , N, ηi = η and λi = λ,
we can find the equilibrium portfolio very easily. Indeed, by symmetry considerations,
all the Xi s must be equal, Xi = X̄i , and the optimization problem reduces to

sup
π

−Ee− 1−λ
η

Xi
T .

This is the classical case with η replaced by η

1−λ
so that the optimal portfolio is given by

π̂t = ησ−1
t θ (t)/(1 − λ), in agreement with our results.

In the general case of the following sections, we will not always be able to conclude
anything on the behavior of every agent; therefore, we introduce the following definition:
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DEFINITION 3.9. The market index and the corresponding market portfolio are defined
by

X̄t := 1
N

N∑
i=1

Xi
t and π̄ t := 1

N

N∑
i=1

π i
t , t ∈ [0, T].

We recall the definition of the Sharpe ratio SR and introduce the variance risk ratio
VRR:

SR = expected excess return
volatility

, VRR := expected excess return
variance

.(3.8)

For practical purposes, the VRR is a better criterion for the two following reasons:

� VRR is robust to the investment duration, while SR is not: for a time period L and
a scalar k > 0, we have SR(kL) = k SR(L), while VRR(kL) = VRR(L).

� VRR accounts for the illiquidity risk related to the size of the position, while SR
does not: for a portfolio X and a scalar k > 0, we have SR(kX) = SR(X) and
VRR(kX) = VRR(X)/k.

We have the following results for the impact of λ:

PROPOSITION 3.10.

(i) For any linear form ϕ, |ϕ(π̂ i ,N,λ
t )| is increasing w.r.t. λ.

(ii) The dynamics of the market index and the corresponding market portfolio are given
by

d X̄t = η̄N

1 − λ
θ (t) · [θ (t)dt + dWt] and π̄ t = η̄N

1 − λ
σ−1

t θ (t).

In particular, for any linear form ϕ, |ϕ(π̄ t)| is increasing w.r.t. λ.

Proof. (ii) is immediate, so we only prove (i). By Proposition 3.6, π̂ i ,N,λ = ki ,N
λ π̂

0,i
t ,

and we directly compute that

∂ki ,N
λ

∂λ
= 1

(1 − λ)2(N + λ − 1)2

[
N + λ − 1 + N

(
λ + (N − 1)(1 − λ)

) ( η̄N

ηi
− 1
)]

.

By definition of η̄N in (3.7) and the fact that η j ≥ 0 for all j , we have η̄N
ηi

− 1 ≥ 1−N
N .

Therefore,

(1 − λ)2(N + λ − 1)2 ∂kλ

∂λ
≥ N(N + λ − 1) − λ(N − 1) − (N − 1)2(1 − λ)

≥ (N − 1)(1 − λ) + λ(N2 − N + 1) > 0.

�
In words, Proposition 3.10 states that the more investors are concerned about each

other, the more risk they will undertake. In each investment direction, the global position
of agents, described by |ϕ(π̄ t)|, will increase with λ and in the limit λ → 1, we even have
a limit of infinite positions |ϕ(π̄ t)| → ∞ a.s. Furthermore, the drift and volatility of the
market index are both increasing w.r.t. λ. The corresponding Sharpe ratio is SR = |θ (t)|,
independent of λ, while the variance risk ratio is VRR = 1−λ

η̄N
, a decreasing function of λ.

This is a perverse aspect of the present financial markets that may provide an explanation
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of the emergence of financial bubbles, when managers use the Sharpe ratio as a reliable
indicator.

3.4. General Equilibrium

In the previous sections, the price process S was given exogeneously. We now analyze
the effect of the relative performance coefficient λ when the price process S is determined
at the equilibrium.

For each fixed price process S, defined as in Section 2, there exists a unique Nash
equilibrium in the sense of Definition 2.1. Similar to Karatzas and Shreve (1998), our
objective is to search for a market equilibrium price S that is consistent with market
equilibrium conditions:

N∑
i=1

π
i , j
t = K j Sj

t for all j = 1, . . . , d and t ∈ [0, T],(3.9)

N∑
i=1

xi =
d∑

j=1

K j Sj
0 ,(3.10)

where K j is a constant such that K j Sj
t is the market capitalization of the j th firm.

Equation (3.9) says that the total amount invested in the stocks of the j th firm is equal
to the market capitalization of this firm. Equation (3.10) says that the initial endowment
of the investors equals the initial market capitalizations. With 1 := (1, . . . , 1)T ∈ Rd , we
observe that (3.9) and (3.10) imply that

N∑
i=1

Xi
t =

N∑
i=1

(
xi +

∫ t

0
π i

u · diag(Su)−1d Su

)

=
N∑

i=1

xi +
d∑

j=1

∫ t

0
K j d Sj

u

=
N∑

i=1

xi +
d∑

j=1

K j (Sj
t − Sj

0

) =
d∑

j=1

K j Sj
t =

N∑
i=1

π i
t · 1,

i.e., the total amount invested in the nonrisky asset is zero at any time t ∈ [0, T].

DEFINITION 3.11. We say that a process S is an equilibrium market if there exists a
Nash equilibrium π̂ = (π̂1, . . . , π̂ N) associated with the price dynamics S, in the sense
of Definition 2.1, such that S and π̂ satisfy (3.9) and (3.10).

In order to simplify notations, we set K j = kj N and k := (k1, . . . , kd ).

PROPOSITION 3.12. Let θ be a deterministic and continuous function of t ∈ [0, T]. Then,
there exists an equilibrium market whose risk premium is θ . Moreover, in this equilibrium
market, the market index is given by

X̄t = x̄ + η̄N

1 − λ

∫ t

0
θ (u) · (θ (u) du + dWu), t ∈ [0, T].
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Proof. By Proposition 3.10 (ii), it follows that

St = η̄N

1 − λ
diag(k)σ (t)−1θ (t).

Notice that the previous equation does not define σ uniquely for d > 1.
Conversely, let θ be some given continuous function. Then, we can choose a diagonal

matrix σt = σ (t, St), with diagonal elements

σ i i (t, St) = η̄N

(1 − λ)ki Si
t
θ i (t).

Notice that σ satisfies the conditions for S to be a strong solution of (2.3). Then, it follows
from Proposition 3.6 that:

d X̄t = 1
N

N∑
i=1

d Xi
t = 1

N

N∑
i=1

π̂ i
t · diag(St)−1d St = η̄N

1 − λ
θ (t) · (θ (t)dt + dWt).

�
We next analyze the impact of λ on the drift and the volatility of the market index.

Despite the multiplicity of market equilibria, they all lead to similar conclusions. Let
us, for example, assume that the risk premium is independent of λ. Then, the drift of
the market index is η|θ (t)|2/(1 − λ) and the volatility is η|θ (t)|/(1 − λ); thus, both are
increasing w.r.t. λ and with the same order. We may interpret this equilibrium as a
financial bubble, where the return and the volatility are both increased by the agents’
interactions. An alternative interpretation for a fund manager is that for the same given
return, the agents’ interaction coefficient increases the volatility of the optimal portfolio.

Notice that in the present setting, the variance risk ratio VRR = (1 − λ)/η is decreasing
in λ and tends to zero as λ → 1. This indicates that according to this criterion, the agents’
interactions lead to market inefficiency.

4. GENERAL CONSTRAINTS WITH EXPONENTIAL UTILITY

In the rest of this paper, we consider a general case with constrained portfolios. We
assume

Ai is a closed convex set of Rd , for all i = 1, . . . , N.(4.1)

We denote by Pi
t the orthogonal projection on σt Ai , which is well defined by (4.1). For

x ∈ Rd , we denote dist(x, σt Ai ) := |x − Pi
t x| the Euclidean distance from x to the closed

convex subset σt Ai .

REMARK 4.1. Recall that for a closed convex set A in a Euclidean space, the orthogonal
projection on A, denoted by P, is well defined, is a contraction, and satisfies for any
x, y ∈ Rd :

|P(x) − P(y)|2 ≤ (x − y) · (P(x) − P(y)) ≤ |x − y|2.
Moreover, P(x) is the only point satisfying (x − P(x)) · (a − P(x)) ≤ 0 for all a ∈ A.

For technical reasons, we restrict our analysis to exponential utility functions (3.6).

DEFINITION 4.2. The set of admissible strategies Ai is the collection of all predictable
processes π with values in Ai , dt ⊗ dP−a.e., such that σπ ∈ H2

loc(Rd ) and such that
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the family

{e±(Xπ
τ −Xπ

ν ); ν, τ stopping times on [0, T] with ν ≤ τ a.s.}(4.2)

is uniformly bounded in Lp(P) for all p > 0.

In comparison with the admissibility conditions of Section 3, the previous definition
requires the uniform boundedness condition of the above family, which is needed in order
to prove a dynamic programming principle similar to Lim and Quenez (2009).

REMARK 4.3. The set of admissible strategies introduced in Definition 4.2 is strictly
smaller than the corresponding set in the one-agent framework of Hu, Imkeller, and
Müller (2005). This deficiency was further overcome by Frei and dos Reis (2011) who
used the results of the present paper (which are contained in Espinosa 2010).

4.1. A Formal Argument

In this section, we provide a formal argument that helps to understand the construction
of Nash equilibrium of the subsequent section. For fixed i = 1, . . . , N, we rewrite (2.6)
as

Vi
0 := sup

π i ∈Ai

E
[
Ui
(
Xπ i

T − ξ̃ i )], where ξ̃ i := λi X̄i
T =: λi x̄i + ξ̃ i

0.(4.3)

Then, following El Karoui and Rouge (2000) or Hu, Imkeller, and Müller (2005), we
expect that the value function Vi

0 and the corresponding optimal solution be given by

Vi
0 = −e−(xi −λi x̄i −Ỹi

0 )/ηi , σtπ̂
i
t = Pi

t (ζ̃ i
t + ηiθt) for all t ∈ [0, T],

and (Ỹi , ζ̃ i ) is the solution of the quadratic BSDE:

Ỹi
t = ξ̃ i

0 +
∫ T

t

(
−ζ̃ i

u · θu − ηi

2
|θu |2 + f̃ i

u

(
ζ̃ i

u + ηiθu
))

du −
∫ T

t
ζ̃ i

u · dWu, t ≤ T,(4.4)

where the generator f̃ i is given by

f̃ i
t(z

i ) := 1
2ηi

dist(zi , σt Ai )2, zi ∈ Rd .(4.5)

This suggests that one can search for a Nash equilibrium by solving the BSDEs (4.4) for
all i = 1, . . . , N. However, this raises the following difficulties:

- the final data ξ̃ i
0 do not have to be bounded as it is defined in (4.3) through the

performance of the other portfolio managers;
- the situation is even worse because the final data ξ̃ i

0 induce a coupling of the
BSDEs (4.4) for i = 1, . . . , N. To express this coupling in a more transparent way,
we substitute the expressions of ξ̃ i

0 and rewrite (4.4) for t = 0 into:

Ỹi
0 = ηiξ +

∫ T

0
f̃ i

u(ζ i
u) du −

∫ T

0

⎛
⎝ζ i

u − λN
i

∑
j 
=i

P j
u

(
ζ j

u

)⎞⎠ · dBu,
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where B := W + ∫ .

0 θr dr is the Brownian motion under the equivalent martingale mea-
sure

λN
i := λi

N − 1
, ζ i

t := ζ̃ i
t + ηiθt, t ∈ [0, T],(4.6)

and the final data are expressed in terms of the unbounded r.v.

ξ :=
∫ T

0
θu · dBu − 1

2

∫ T

0
|θu |2du.(4.7)

Then, Ỹ0 = Y0, where (Y, ζ ) is defined by the BSDE

Y i
t = ηiξ +

∫ T

t
f̃ i

u

(
ζ i

u

)
du −

∫ T

t

⎛
⎝ζ i

u − λN
i

∑
j 
=i

P j
u

(
ζ j

u

)⎞⎠ · dBu .(4.8)

In order to sketch (4.8) into the BSDEs framework, we further introduce the mapping
ϕt : RNd −→ RNd defined by the components:

ϕi
t (ζ 1, . . . , ζ N) := ζ i − λN

i

∑
j 
=i

P j
t (ζ j ) for all ζ 1, . . . , ζ N ∈ Rd .(4.9)

It turns out that the mapping ϕt is invertible under fairly general conditions. We shall
prove this result in Lemma 4.6 for general convex constraints and in Lemma 5.1 in the
case of linear constraints. We denote ψt := ϕ−1

t and ψ i
t (z) the i th block component of

size d of ϕ−1
t (z). Then, one can rewrite (4.8) as

Y i
t = ηiξ +

∫ T

t
f i
u (Zu) du −

∫ T

t
Z i

u · dBu,(4.10)

where the generator f i is now given by

f i
t (z) := f̃ i

t

(
ψ i

t (z)
)

for all z = (z1, . . . , zN) ∈ RNd .(4.11)

A Nash equilibrium should then satisfy for each i :

π̂ i
t = σ−1

t Pi
t

(
ψ i

t (Zt)
)
, i = 1, . . . , N.(4.12)

4.2. Auxiliary Results

Our first objective is to verify that the map ϕ introduced in (4.9) is invertible. The
crucial condition for the rest of this section is∏

1≤i≤N

λi < 1.(4.13)

Recall the notation λN
i from (4.6).

LEMMA 4.4. Under (4.1) and (4.13), for any t ∈ [0, T], the map I + λN
j P j

t is a bijection
on Rd and its inverse is a contraction, for all j = 1, . . . , N.

Proof. Let t ∈ [0, T] be fixed, for ease of notation, we omit all t subscripts. Since σt Aj is
a closed convex set, from Remark 4.3, (x − y) · (P j (x) − P j (y)) ≥ |P j (x) − P j (y)|2 ≥ 0,
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for any x, y ∈ Rd . Notice that I + λN
j P j is a bijection if and only if, for all y ∈ Rd , the

map

fy(x) := y − λN
j P j (x)(4.14)

has a unique fixed point. Since P j is a contraction, we compute, for any x, x′ in Rd :

| fy(x) − fy(x′)| = λN
j |P j (x) − P j (x′)| ≤ λN

j |x − x′| = λ j

N − 1
|x − x′|.

Case 1: If N ≥ 3 or λ j < 1, then fy is a strict contraction of Rd . We prove now that the
inverse of I + λN

j P j is a contraction. Indeed, if x 
= y, we have

∣∣x − y + λN
j (P j (x) − P j (y))

∣∣2 = |x − y|2 + (λN
j

)2 |P j (x) − P j (y)|2(4.15)

+ 2λN
j (x − y) · (P j (x) − P j (y))

≥ |x − y|2 > 0,

where we used the fact that (x − y) · (P j (x) − P j (y)) ≥ 0, see Remark 4.15.
Case 2: If N = 2 and λ j = 1, fy fails to be a strict contraction. However, (4.15) still

holds and implies that I + P j is one-to-one. Using Lemma 4.5 below, we get the bijection
property of I + P j and the contraction property of the inverse function follows from
(4.15). �

LEMMA 4.5. Let A be a closed convex set of Rd . Then (I + PA)(Rd ) = Rd .

Proof. Let B := 2A = {y ∈ Rd ; ∃x ∈ A, y = 2x}, and let us prove that

PA

(
y − 1

2
PB(y)

)
= 1

2
PB(y) for all y ∈ Rd .(4.16)

This implies that y = (I + PA)(y − 1
2 PB(y)) ∈ (I + PA)(Rd ) for all y ∈ Rd , which gives

the required result.
To prove (4.16), define x := 1

2 PB(y) and z := y − 2x. By Remark 4.3, PB(y) is the only
point in B satisfying (y − PB(y)) · (b − PB(y)) ≤ 0 for all b ∈ B. In other words, we have
for any b ∈ B, z · (b − 2x) ≤ 0, or by definition of B, for any a ∈ A, z · (2a − 2x) ≤ 0;
hence,

(x + z − x) · (a − x) ≤ 0 for all a ∈ A,

which means that x = PA(x + z) and therefore (I + PA)(x + z) = x + z + x = y. �
Recall the definition of ϕ in (4.9).

LEMMA 4.6. Under (4.1) and (4.13), we have for t ∈ [0, T]:

(i) ϕt is a bijection of RNd, and we write ψt := ϕ−1
t .

(ii) ψt is Lipschitz continuous with a constant depending only on N and the λi s.

Proof. For ease of notation, we omit all t subscripts. For arbitrary z = (z1, . . . , zN) in
RNd , we want to find a solution ζ ∈ RNd to the following system:

ϕi (ζ ) = ζ i − λN
i

∑
j 
=i

P j (ζ j ) = zi , 1 ≤ i ≤ N.(4.17)
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Subtracting λ j times equation i from λi times equation j in (4.17), we see that

λi
(
I + λN

j P j ) (ζ j ) = λ j
(
I + λN

i Pi ) (ζ i ) + λi z j − λ j zi , i , j = 1, . . . , N.(4.18)

1. From Lemma 4.4, we know that I + λN
j P j is a bijection; thus, from (4.18), we

compute

∑
j 
=i

P j (ζ j ) =
∑
j 
=i

P j ◦ (
¯
I + λN

j P j )−1
(

λ j

λi

(
I + λN

i Pi )(ζ i ) + z j − λ j

λi
zi
)

,

so that from (4.17)

(4.19)

ζ i = zi + λN
i

∑
j 
=i

P j ◦(I + λN
j P j )−1

(
λ j

λi

(
I + λN

i Pi )(ζ i ) + z j − λ j

λi
zi
)

=: gi ,z(ζ i ).

2. We next show that under Condition (4.13), gi ,z has a unique fixed point. We have

∣∣(I + λN
j P j ) (x) − (I + λN

j P j ) (y)
∣∣2 = |x − y|2 + 2λN

j (x − y) · (P j (x) − P j (y))

+ (λN
j

)2 |P j (x) − P j (y)|2

≥ (
1 + 2λN

j + (λN
j

)2)|P j (x) − P j (y)|2

≥ (
1 + λN

j

)2 |P j (x) − P j (y)|2.

Therefore, P j ◦ (I + λN
j P j )−1 is 1

1+λN
j
−Lipschitz. Then, since (I + λN

i Pi ) is 1 +
λN

i −Lipschitz:

|gi ,z(x) − gi ,z(y)| ≤ 1
N − 1

∑
j 
=i

λ j

1 + λN
j

(
1 + λN

i

)∣∣x − y|.

Notice that λ j

1+λN
j

(1 + λN
i ) ≤ max(λi , λ j ), with equality if and only if λi = λ j .

Therefore, condition (4.13) implies that Ki := 1
N−1

∑
j 
=i

λ j

1+λN
j

(1 + λN
i ) < 1, where

Ki depends only on N and the λ j s. Then, gi ,z is a strict contraction and admits a
unique fixed point that we write {ψ(z)}i . It is then immediate that ζ = ψ(z) is the
unique solution of (4.17).

3. Finally, we prove that ψ is Lipschitz with a constant depending only on N and the
λ j s. Let z1, z2 ∈ RNd , from (4.19), we compute

|ψ(z1)i − ψ(z2)i | ≤ |zi
1 − zi

2| + Ki |ψ(z1)i − ψ(z2)i | + 2 sup
1≤ j≤N

|z j
1 − z j

2 |.

Since K := sup1≤ j≤N K j < 1, we get sup1≤ j≤N |ψ(z1) j − ψ(z2) j | ≤ 3
1−K

sup1≤ j≤N |z j
1 − z j

2 |, which completes the proof since K depends only on N
and the λ j s. �
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4.3. The Main Results

Similar to the classical literature on portfolio optimization with exponential utility (El
Karoui and Rouge 2000; Hu, Imkeller, and Müller 2005; Mania and Schweizer 2005), we
first establish a connection between Nash equilibria and a quadratic multidimensional
BSDE.

THEOREM 4.7. Under (4.1) and (4.13), assume that (π̃1, . . . , π̃ N) is a Nash equilibrium.
Then, there exists a solution (Y, Z) ∈ H2(RN) × H2

loc(RNd ) of the following N-dimensional
BSDE:

Y i
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ i
u(Zu)

∣∣2 du −
∫ T

t
Z i

u · dBu,(4.20)

where ξ is defined by (4.7), and we have

π̃ i
t = σ−1

t Pi
t

(
ψ i

t (Zt)
)

and Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )
.

Proof. See Section 4.5. �
Our second main result focuses on the multidimensional Black–Scholes financial mar-

ket, where we can guess an explicit solution to the BSDE (4.20). Although no uniqueness
result is available for the BSDE (4.20) in this context, the following complete characteri-
zation is obtained by means of a PDE verification argument.

In view of Lemma 4.6, under Condition (4.13), the maps

ψ̄ i
t (x) := ψ i

t (η1x, . . . , ηNx) for all x ∈ Rd , i = 1, . . . , N, t ∈ [0, T],(4.21)

are well defined and Lipschitz continuous on Rd .

THEOREM 4.8. Under (4.1) and (4.13), assume that σ and θ are deterministic continuous
functions. Then, there exists a unique deterministic Nash equilibrium:

π̂ i
t = σ (t)−1 Pi

t ◦ ψ̄ i
t (θ (t)) for all t ∈ [0, T].(4.22)

Moreover, the value function for agent i at equilibrium is given by

Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )
, Yi

0 = −ηi

2

∫ T

0
|θ (t)|2dt + 1

2ηi

∫ T

0

∣∣(I − Pi
t

) ◦ ψ̄ i
t (θ (t))

∣∣2dt.

Proof. See Section 4.6. �
We conclude this section by two simple examples. More interesting situations will be

obtained later under the additional condition that the constraints sets are linear.

EXAMPLE 4.9 (Common investment). Let σ = Id , λi = λ, ηi = η, and Ai = B̄(x, r ) for
some x ∈ Rd and r > 0, i = 1, . . . , N. Here, B̄(x, r ) is the closed ball centered at x with
radius r > 0 for the canonical Euclidean norm of Rd . Using Theorem 4.8, we compute
the following equilibrium portfolio:

π̂ i
t = P

(
ηθ (t)
1 − λ

)
=

⎧⎪⎪⎨
⎪⎪⎩

ηθ (t)
1 − λ

if
ηθ (t)
1 − λ

∈ B̄(x, r )

x + r

| ηθ (t)
1−λ

− x|

(
ηθ (t)
1 − λ

− x
)

otherwise.
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Notice in particular that as one could expect, π̂ i
t − x is collinear to ηθ (t)

1−λ
− x and that

π̂ i
t is in the boundary of B̄(x, r ) whenever ηθ (t)

1−λ

∈ B̄(x, r ). One can prove that |π̂ | is

nondecreasing w.r.t. λ and η. Notice also that this expression is independent of N.

EXAMPLE 4.10 (Specific independent investments). Let σ = Id , λi = λ, ηi = η, and
Ai = [ai , bi ]ei , for some ai ≤ bi , i = 1, . . . , N. Here, (e j , 1 ≤ j ≤ d) is the canonical basis
of Rd . Using Theorem 4.8, we compute the following equilibrium portfolio for agent i :

π̂ i
t = Pi (ηθ (t)

) = ai ∨ (ηθ (t)
) ∧ bi .

This is exactly the same expression as in the classical case with no interaction between
managers. Hence, the equilibrium portfolio is not affected by λ and N.

REMARK 4.11. Suppose that the portfolio constraints sets Ai are not convex. Then, we
have to face two major problems. First, the projection operators Ai are not well defined.
Second, and more importantly, the map ϕ may fail to be one-to-one or surjective onto
RNd . The failure of the one-to-one property means that there could exist more than
one Nash equilibrium. However, the failure of the surjectivity onto RNd , as illustrated
by Examples A.1 and A.2 in the Appendix section, would lead to a constrained (N-
dimensional) BSDE with no additional nondecreasing penalization process. Such BSDEs
do not have solutions even in the case of Lipschitz generators, meaning that there is no
Nash equilibrium in this context.

4.4. Infinite Managers Asymptotics

In the spirit of the theory of mean-field games, see Lasry and Lions (2007), we examine
the situation when the number of mangers N increases to infinity with the hope of getting
some more explicit qualitative results with behavioral implications. In this section, we
assume that the number of assets d is not affected by the increase of the number of
managers, see, however, the examples of Section 5.3. We also specialize the discussion to
the case where the agents have similar preferences and only differ by their specific access
to market.

The following result is similar to Proposition 5.1 in Espinosa (2010). Therefore, the
proof is omitted.

PROPOSITION 4.12. Let λ j = λ ∈ [0, 1) and η j = η > 0 for all j ≥ 1. Assume
1
N

∑N
i=1 Pi

t −→ U1
t uniformly on any compact subsets, for all t ∈ [0, T] (respectively, uni-

formly on [0, T] × K, for any compact subset K of Rd). Then,

π̂ i ,N
t −→ π̂ i ,∞

t := σ (t)−1 ◦ Pi
t ◦ (I − U1

t ◦ (λI)
)−1(

ηiθ (t) + U1
t (0)

)
for all t ∈ [0, T] (respectively, uniformly in t ∈ [0, T]).

4.5. Proof of Theorem 4.7

Assume that (π̃1, . . . , π̃ N) is a Nash equilibrium for our problem. First, by Hölder’s
inequality, the admissibility conditions for all i = 1, . . . , N imply that e− 1

ηi
(Xi

T−λi X̄i
T ) be-

longs to Lp, for any p > 0. Let T be the set of all stopping times with values in [0, T],
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we define the following family of random variables:

Ji ,π (τ ) : = E
[− e− 1

ηi
(
∫ T
τ

σuπu ·dBu−λi (X̄i
T−x̄i ))|Fτ

]
,(4.23)

V i (τ ) : = ess sup
π∈Ai

Ji ,π (τ ) for all τ ∈ T so that V i (0) = e
1
ηi

(xi −λi x̄i )Vi
0 .(4.24)

1. By Lemma 4.13 below, the family {V i (τ ); τ ∈ T } satisfies a supermartingale property.
Indeed, let β

i ,π
t := e− 1

ηi

∫ t
0 σ (u)πu ·dBu for all π ∈ Ai , we have

β i ,π
τ V i

τ ≥ E(β i ,π
θ V i

θ |Fτ ) for all stopping times τ ≤ θ.

Then, we can extract a process (V i
t ) that is càdlàg and consistent with the family defined

previously in the sense that V i
τ = V i (τ ) a.s. (see Karatzas and Shreve 1991, proposition

I.3.14 p. 16, for more details). Moreover, this process also satisfies the dynamic program-
ming principle stated in Lemma 4.13 so that for any π ∈ Ai , the process β i ,πV i is a
P-supermartingale.

The definition of a Nash equilibrium implies that π̃ i is optimal for agent i , i.e.,

V i
0 = sup

π∈Ai

E − e− 1
ηi

(Xπ
T−xi −λi (X̄i

T−x̄i ))(4.25)

= E − e− 1
ηi

(Xπ̃ i
T −xi −λi (X̄i

T−x̄i ))
,

which implies that the process β i ,π̃ iV i is a square integrable martingale, as the conditional
expectation of a r.v. in L2.

2. We now show that the adapted and continuous process:

γ i
t := Xπ̃ i

t − xi + ηi ln
(− β i ,π̃ i

t V i
t

)
, t ∈ [0, T],(4.26)

solves the required BSDE.
(a) First, by Jensen’s inequality, and the fact that ln x ≤ x for any x > 0, we have

− 1
ηi

E
[
Xπ̃ i

T − xi − λi
(
X̄i

T − x̄i )∣∣Ft
] ≤ ln

(− β i ,π̃ i

t V i
t

)
≤ E

[− e− 1
ηi

(Xπ̃ i
T −xi −λi (X̄i

T−x̄i ))∣∣Ft
]
.(4.27)

By the admissibility conditions, both sides of (4.27) belong to H2, as conditional expec-
tations of random variables in L2. Since Xπ̃ i

is also in H2, we see that γ i is in H2. Then,
for all π ∈ Ai , we have that

Mi ,π
t := −e− 1

ηi
(Xπ

t −xi −γ i
t ) = M̃i

te
− 1

ηi
(Xπ

t −Xπ̃ i
t )

, t ∈ [0, T],

where M̃i = β i ,π̃ iV i is a square integrable martingale. By Hölder’s inequality, it follows

that e− 1
ηi

(Xπ
t −Xπ̃ i

t ) ∈ Lp for all p > 0. Then, Mi ,π is integrable.
(b) In this step, we prove that Mi ,π is a supermartingale for all π ∈ Ai . Assume, to the

contrary, that there exists π ∈ Ai , t ≥ s and A ∈ Fs , with P(A) > 0 and such that

E
(− e− 1

ηi
(Xπ

t −xi −γ i
t )|Fs

)
> −e− 1

ηi
(Xπ

s −xi −γ i
s ) on A,
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and let us work toward a contradiction. Define:

π̂u(ω) := πu(ω)1{[s,t]×A}(u, ω) + π̃u(ω)1{([s,t]×A)c}(u, ω).

Since A ∈ Fs , using Hölder’s inequality, we see that π̂ ∈ Ai and we have

V i
0 ≥ E − e− 1

ηi
(Xπ̂

T−xi −γ i
T )

= E
[
E
{− e− 1

ηi
(Xπ̂

T−xi −γ i
T )|Ft

}] = E − e− 1
ηi

(Xπ̂
t −xi −γ i

t )

by the fact that π̂ = π̃ on [t, T] and M̃i is a martingale. Since P[A] > 0, A ∈ Fs , and
recalling the definition of π̂ , this implies that

V i
0 ≥ E

[
E
{− e− 1

ηi
(Xπ̂

t −xi −γ i
t )|Fs

}]
= E

[
E
{− e− 1

ηi
(Xπ

t −xi −γ i
t )|Fs

}
1A + E

{− e− 1
ηi

(Xπ̃
t −xi −γ i

t )|Fs
}
1Ac )

]
> E − e− 1

ηi
(Xπ̂

s −xi −γ i
s ) = −e

1
ηi

γ i
0 = V i

0,

which provides the required contradiction.
(c) Since M̃i = β i ,π̃ iV i is a martingale, it follows from the martingale representation

theorem that M̃i is an Itô process. Therefore, (4.26) implies that γ i is also an Itô process
defined by some coefficients bi and ζ i :

dγ i
t = −bi

tdt + ζ i
t · dWt with (γ i , ζ i ) ∈ H2(R) × H2

loc(Rd ).(4.28)

Moreover, by Jensen’s inequality, ln(−Mi ,π̃ i
) is a supermartingale, and by (4.27), it is

bounded in L2. Therefore, it admits a Doob–Meyer decomposition ln(−Mi ,π̃ i
) = N + A,

where N is a (uniformly integrable) martingale and Aa decreasing process. The martingale
representation theorem then implies that there exists a process δ ∈ H2

loc(Rd ) such that
Nt = ∫ t

0 δu · dWu . Using (4.27) and (4.28), we get ζ i
t = σtπ̃

i
t + ηiδt.

(d) We next compute the drift of Mi ,π . From the previous supermartingale and mar-
tingale properties of Mi ,π and M̃i , respectively, together with (4.28), we get

bi
t ≤ 1

2ηi

∣∣σtπt − (ζ i
t + ηiθt

)∣∣2 − ηi

2
|θt|2 − ζ i

t · θt for all π ∈ Ai ,

and bi
t = 1

2ηi

∣∣σtπ̃
i
t − (ζ i

t + ηiθt
)∣∣2 − ηi

2
|θt|2 − ζ i

t · θt.

This implies that

π̃ i
t = σ−1

t Pi
t

(
ζ i

t + ηiθt
)
,(4.29)

bi
t = f i (t, ζ i

t ) = 1
2ηi

d
(
ζ i

t + ηiθt, σt Ai
)2 − ηi

2
|θt|2 − ζ i

t · θt,

and therefore (γ i , ζ i ) ∈ H2(R) × H2
loc(Rd ) is a solution of the BSDE:

dγ i
t =

(
ζ i

t · θt + ηi |θt|2
2

− 1
2ηi

∣∣(I − Pi
t

)(
ζ i

t + ηiθt
)∣∣2) dt + ζ i

t · dWt,

γ i
T = λi

(
X̄i

T − x̄i
) = λN

i

∑
j 
=i

∫ T

0
π̃ j

u · σu(dWu + θudu).
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Recalling that dBt = dWt + θtdt, we can write it:

dγ i
t =

(
ηi |θt|2

2
− ηi

2

∣∣(I − Pi
t

)(
ζ i

t + ηiθt
)∣∣2) dt + ζ i

t · dBt,(4.30)

γ i
T = λi

(
X̄i

T − x̄i
) = λN

i

∑
j 
=i

∫ T

0
π̃ j

u · σudBu .

3. We finally put together the N BSDEs obtained in step 2. Since (π̃1, . . . , π̃ N) is a Nash
equilibrium, equation (4.30) holds for each i = 1, . . . , N. Replacing the value of π̃ j by
(4.29) in the expression of γ i and writing �i := ζ i + ηiθ , we see that (γ i , �i ) must satisfy
for each t ∈ [0, T]:

γ i
t = λN

i

∑
j 
=i

∫ T

0
P j

u

(
� j

u

) · dBu − ηi

2

∫ T

t
|θu |2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
�i

u

)∣∣2du

−
∫ T

t
(�i

u − ηiθu) · dBu,

so that the adapted process Y i
t := γ i

t − ηi
2

∫ t
0 |θu |2du + ηi

2

∫ t
0 θu · dBu − λN

i∑
j 
=i

∫ t
0 P j

u (� j
u ) · dBu , t ∈ [0, T], satisfies:

Yi
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
�i

u

)∣∣2du −
∫ T

t

⎛
⎝�i

u − λN
i

∑
j 
=i

P j
u

(
� j

u

)⎞⎠ · dBu,

with (Yi , �i ) ∈ H2(R) × H2
loc(Rd ). We finally define

Zi
t := ϕi

t (�t) = �i
t − λN

i

∑
j 
=i

P j
t
(
�

j
t
)
.

Under (4.13), using Lemma 4.6, we know that ϕt is invertible. As a consequence, (Y, Z) ∈
H2(RN) × H2

loc(RNd ) is a solution of the following system of BSDEs:

Yi
0 = ηiξ + 1

2ηi

∫ T

0

∣∣(I − Pi
t

)(
ψ i

t (Zt)
)∣∣2dt −

∫ T

0
Zi

t · dBt.

Moreover, for each i , the equilibrium portfolio is given by

σ (t)π̃ i
t = Pi

t [ψt(Zt)i ], t ∈ [0, T].

The following dynamic programming principle was used in step 1 of the previous
proof.

LEMMA 4.13 (Dynamic Programming). For any stopping times τ ≤ ν in T , we have

V i (τ ) = ess sup
π∈Ai

E
[
e− 1

ηi

∫ ν

τ
σuπu ·,dBuV i (ν)|Fτ

]
, i = 1, . . . , N.
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Proof. Let τ ≤ ν ≤ T a.s. We first obtain by the tower property that

V i (τ ) = ess sup
π∈Ai

E
[
E
[− e− 1

ηi
(
∫ T
ν

σuπu ·dBu−λi (X̄i
T−x̄i ))|Fν

]
e− 1

ηi

∫ ν

τ
σ (u)πu ·dBu |Fτ

]
≤ ess sup

π∈Ai

E
[
e− 1

ηi

∫ ν

τ
σuπu ·dBuV i (ν)|Fτ

]
.

To prove the converse inequality, we fix π0 ∈ Ai and we observe that Ji ,π (ν) de-
fined by (4.23) depends on π only through its values on [ν, T]. Therefore, we have the
identity:

V i (ν) = ess sup
π∈Ai (ν)

Ji ,π (ν), where Ai (ν) := {π ∈ Ai ; π = π0 on [0, ν], dt ⊗ dP-a.e}.

We next observe that the family {Ji ,π (ν), π ∈ Ai (ν)} is closed under pairwise max-
imization. Indeed, let π1, π2 in Ai (ν), A := {ω ∈ �; Ji ,π1 (ν)(ω) ≥ Ji ,π2 (ν)(ω)} and de-
fine the process π := 1Aπ1 + 1�\Aπ2. Since π1 = π2 = π0 on [[0, ν]], and A ∈ Fν , it
is immediate that π is predictable. We compute Ee± p

ηi
(Xπ

τ −Xπ
ν ) = Ee± p

ηi

∫ τ

ϑ
σtπ

1
t ·dBt 1A +

Ee± p
ηi

∫ τ

ϑ
σtπ

2
t ·dBt 1�\A so that since π1, π2 ∈ Ai (ν), the family {e± 1

ηi
(Xπ

τ −Xπ
ϑ ); ϑ ≤ τ ∈ T } is

uniformly bounded in any Lp, p > 1. Therefore, π ∈ Ai (ν) and it is immediate that
Ji ,π (ν) = max(Ji ,π1 (ν), Ji ,π2 (ν)). Then, it follows from Theorem A.3 (p. 324 in Karatzas
and Shreve 1998) that there exists a sequence (π̂n) satisfying:

� ∀n, π̂n = π0 on [[0, ν]]
� (Ji ,π̂n (ν)) is nondecreasing and converges to V i (ν).

Then, we have

Ji ,π̂n (τ ) = E[Ji ,π̂n (ν)e− 1
ηi

∫ ν

τ
σuπ0

u ·dBu |Fτ ].

Since Ji ,π̂n (ν) is nondecreasing and converges to V i (ν), it follows from the monotone
convergence theorem that

V i (τ ) ≥ E
[
e− 1

ηi

∫ ν

τ
σuπ0

u ·dBuV i (ν)|Fτ

]
,

and the required inequality follows from the arbitrariness of π0. �

4.6. Proof of Theorem 4.8

1. We first prove that the portfolio (4.22) is indeed a Nash equilibrium. The idea is to
show that we can make the formal computations of Section 4.1 in the reverse sense.

(a) Let

ξt :=
∫ t

0
θ (u).dBu − 1

2

∫ T

0
|θ (u)|2du, t ∈ [0, T],(4.31)

Since θ and σ are deterministic and continuous functions, the functions Pi s are also
deterministic and continuous w.r.t. (t, z) ∈ [0, T] × Rd . Let us prove that the same holds
for ψ , and therefore for that π̂ i

t := σ (t)−1 Pi
t ◦ ψ i

t (Zt) is deterministic and continuous w.r.t.
t ∈ [0, T]. Indeed, it is immediate that ϕ is deterministic and continuous w.r.t. (t, ζ ) so that
ψ is a deterministic function of (t, z). Then, from Lemma 4.6, under condition (4.13), ψt

is Lipschitz in z, uniformly in t, so that there exists a constant K > 0 such that for all t ∈
[0, T], and all z, z′ ∈ Rd , |ψt(z) − ψt(z′)| ≤ |z − z′|. Let tn → t, z ∈ RNd , and ζ := ϕt(z).
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We define zn := ϕtn (ζ ) for each n. Since ϕ is continuous w.r.t. t, zn → z, and we have, for
all n, ψtn (zn) = ζ , so that |ψtn (z) − ζ | = |ψtn (z) − ψtn (zn)| ≤ K|z − zn| → 0. Therefore,
ψ is continuous w.r.t. t. Then, if zn → z and tn → t, we compute |ψtn (zn) − ψt(z)| ≤
|ψtn (zn) − ψtn (z)| + |ψtn (z) − ψt(z)| → 0, since ψ is continuous w.r.t. t and Lipschitz in z
uniformly in t. As a consequence, we can define the following adapted and continuous
processes:

Zi
t := ηiθ (t) and Y i

t := ηiξt + 1
2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ i
u(Zu)

∣∣2du, t ∈ [0, T].

Then, we directly verify that (Y, Z) satisfies the following N-dimensional BSDE:

Y i
t = ηiξ + 1

2ηi

∫ T

t

∣∣(I − Pi
u

)(
ψ i

u(Zu)
)∣∣2du −

∫ T

t
Z i

u · dBu .

Set

γ i
t = Y i

t + ηi

2

∫ t

0
|θ (u)|2du − ηi

∫ t

0
θ (u) · dBu + λN

i

∑
j 
=i

∫ t

0
P j

u

(
ψ j

u (Zu)
) · dBu,

ζ i
t = ψt(Zt)i − ηiθ (t) = (ψ̄ i

t − ηi I
)

(θ (t)).

By the same computations as in Section 4.1, we see that for all i = 1, . . . , N, (γ i , ζ i ) is a
solution of the one-dimensional BSDE:

dγ i
t =

(
ζ i

t · θ (t) + ηi |θ (t)|2
2

− 1
2ηi

∣∣(I − Pi
t

)(
ζ i

t + ηiθ (t)
)∣∣2) dt + ζ i

t · dWt,

γ i
T = λN

i

∑
j 
=i

∫ T

0
π̂ j

u · σ (u)(dWu + θ (u) du).

Then, using the definition of ϕ and ψ , we can rewrite γ i as

γ i
t = −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du + λN
i

∑
j 
=i

∫ t

0
P j

u [ψu(Zu)] j · dBu

= −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du +
∫ t

0
ζ i

u · dBu

= −ηi

2

∫ t

0
|θ (u)|2du + 1

2ηi

∫ T

t

∣∣(I − Pi
u

) ◦ ψ̄ i
u(θ (u))

∣∣2du +
∫ t

0

(
ψ̄ i

u − ηi I
)

(θ (u)) · dBu .

(b) Throughout this step, we fix an integer i ∈ {1, . . . , N}, and we define

M π
t := −e− 1

ηi
(Xi ,π

t −xi −γ i
t ) for all π ∈ Ai .

By Itô’s formula, it follows that M π is a local supermartingale for each π ∈ Ai , and Mπ̂ i

is a local martingale. Then, there exist increasing sequences of stopping times (τπ
n ) in T

such that for each π , τπ
n → T a.s. and for each n and any s ≤ t:

E
[
M π

t∧τπ
n
|Fs
] ≤ M π

s∧τπ
n

for all π ∈ Ai and E
[
Mπ̂ i

t∧τ π̂
n
|Fs
] = Mπ̂ i

s∧τ π̂
n
.(4.32)
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We next introduce the measure Qi , equivalent to P, defined by its Radon–Nikodym
density:

Li
t = dQi

dP

∣∣∣∣
Ft

= e
∫ t

0 ( 1
ηi

ψ̄ i
u−I)(θ (u))·dWu− 1

2

∫ t
0 |( 1

ηi
ψ̄ i

u−I)(θ (u))|2du
.(4.33)

We denote by Ei the expectation operator under Qi . Since θ is a deterministic and contin-
uous function on [0, T], − ηi

2

∫ t
0 |θ (u)|2du + 1

2ηi

∫ T
t |(I − Pi

u ) ◦ ψ̄ i
u(θ (u))|2du is bounded.

Then, for any π ∈ Ai :

(4.34)
EM π

t∧τn
= 1

Li
s
Ei [− e

− 1
ηi

(Xπ
t∧τn −xi )− 1

2

∫ t∧τn
0 |θ (u)|2du+ 1

2η2
i

∫ T
t∧τn

|(I−Pi
u )◦ f i

u (θ (u))|2du

× e
∫ t∧τn

0 ( 1
ηi

ψ̄ i
u−I)(θ (u))·θ (u)du+ 1

2

∫ t∧τn
0 |( 1

ηi
ψ̄ i

u−I)(θ (u))|2du]
,

where we simply denoted τn := τπ
n . In (4.34), all the terms inside the expectation

other than e− 1
ηi

Xπ
t∧τn are bounded. We shall prove in step 1(c) below that the family

{e− 1
ηi

Xπ
τ ; τ ∈ T } is uniformly integrable under Qi . Hence, the sequence of processes

inside the expectation in (4.34) is uniformly integrable under Qi , and we may ap-
ply the dominated convergence theorem to pass to the limit n → ∞, and we obtain
limn→∞ EM π

t∧τn
= EM π

t . Together with (4.32), this implies that

E − e− 1
ηi

(Xπ
t −xi −γ i

t ) ≤ −e
1
ηi

γ i
0 for all π ∈ Ai and

E − e− 1
ηi

(Xπ̂ i
t −xi −γ i

t ) = −e
1
ηi

γ i
0 .

Multiplying by e− 1
ηi

(xi −λi x̄i ), we finally get Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 ), since Yi

0 = γ i
0 , and π̂ i is

optimal for agent i . Hence, (π̂1, . . . , π̂ N) is a Nash equilibrium.
(c) In this step, we prove that the family {Yτ := e− 1

ηi
Xi ,π

τ : τ ∈ T } is Qi uniformly inte-
grable for all π ∈ Ai . Fix some p > 1. Then, by the admissibility condition, the family
{Yτ : τ ∈ T } is uniformly bounded in Lp(P). With r := (1 + p)/2, it follows that the fam-
ily {Yr

τ : τ ∈ T } is uniformly integrable. Then, for all c > 0 and τ ∈ T , it follows from
Hölder’s inequality:

EQi
[Yτ 1Yτ ≥c] = E

[
Li

TYτ 1Yτ ≥c
] ≤ ∥∥Li

T

∥∥
Lq (P)‖Yr

τ 1Yτ ≥c‖Lr (P),

where q is defined by (1/q) + (1/r ) = 1. Since {Yr : τ ∈ T } is uniformly integrable, the
last term uniformly goes to 0 as c → ∞.

REMARK 4.14. We mention again that based on a first version of this paper contained in
the PhD thesis Espinosa (2010), Frei and dos Reis developed many interesting extensions
in Frei and dos Reis (2011). In particular, their argument for the existence part of Theorem
4.8 is shorter than our previous step 1.

2. We now prove uniqueness by using a verification argument.
(a) Let (π1, . . . , π N) be a deterministic Nash equilibrium, and define for all i =

1, . . . , N:

ui (t, x, y) := −e
− 1

ηi
(x−λi y)− 1

2

∫ T
t |θ (u)|2du+ 1

2η2
i

∫ T
t |(I−Pi

u )(ηi θ (u)+ λi σ (u)π̄ i
N(u))|2du

,(4.35)



244 G.-E. ESPINOSA AND N. TOUZI

where

π̄ i
N(u) := 1

N − 1

∑
j 
=i

π j (u).

Since π j is a continuous function for all j = 1, . . . , N, the functions ui are C1 in the t
variable. Direct calculation reveals that ui is a classical solution of the equation:

−∂tui − sup
p∈Ai

Lpui = 0 and ui (T, x, y) = −e−(x−λi y)/ηi ,

where for all p ∈ Ai , Lp is the linear second-order differential operator:

Lp := σ (t)π̄ i
N(t) · θ (t)∂y + 1

2

∣∣σ (t)π̄ i
N(t)

∣∣2∂2
yy

+ σ (t)p.θ (t)∂x + σ (t)p · σ (t)π̄ i
N(t)∂2

xy + 1
2
|σ (t)p|2∂2

xx,

and the supremum is attained at a unique point

π∗
t := σ (t)−1 Pi

t

(
ηiθ (t) + λiσ (t)π̄ i

N(t)
)
.(4.36)

(b) In this step, we prove that ui (0, Xi
0, X̄i

0) = Vi
0 . First, by Itô’s formula, we have for

all π ∈ Ai :

(4.37)

ui (t, x, y) = ui (τn, Xπ
τn

, X̄i
τn

)−
∫ τn

t
Lπ ui (r , Xπ

r , X̄i
r

)
dr −

∫ τn

t

(
π − π̄ i

N

)
(r ) · σ (r ) dWr ,

where τn := inf{r ≥ t, |Xπ
r − x| ≥ n or |X̄i

r − x̄i | ≥ n}. Taking conditional expectations
in (4.37), and using the fact that Lπt ui ≤ 0 for any π ∈ Ai , we get

ui (t, x, y) ≥ Et,x,yui (τn, Xπ
τn

, X̄i
τn

) for all π ∈ Ai .(4.38)

Since the π j s, σ , and θ are continuous deterministic functions and π i ∈ Ai , it follows from

Hölder’s inequality that {e− 1
ηi

(Xi
τ −λi X̄i

τ )
, τ ∈ T } is uniformly bounded in any Lp. By the

definition of Ui , this property is immediately inherited by the family {ui (τ, Xπ
τ , X̄i

τ ), τ ∈
T }. Therefore, taking the limit n → ∞ in (4.38), we get ui (t, x, y) ≥ Et,x,ye− 1

ηi
(Xπ

T−λi X̄i
T ).

By the arbitrariness of π ∈ Ai , this implies that ui (0, Xi
0, X̄i

0) ≥ Vi
0 .

We next observe that π∗ ∈ Ai and the inequality in (4.38) is turned into an equality if
π∗ is substituted to π . By the dominated convergence theorem, this provides

ui (t, x, y) = Et,x,ye− 1
ηi

(Xπ∗
T −λi X̄i

T )
,

which, in view of (4.38), shows that ui (0, Xi
0, X̄i

0) = Vi
0 .

(c) To see that the continuous deterministic Nash equilibrium is unique, consider
another continuous deterministic Nash equilibrium (π̂1, . . . , π̂ N), and denote by ûi the
corresponding value functions as in (4.35). It suffices to observe that Lπ ûi < 0 on any
nonempty open subset B of [0, T] such that π 
= π∗ on B, and the inequality (4.38) is
strict. Therefore, any Nash equilibrium must satisfy (4.36) for every i = 1, . . . , N.
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Set γ̂ i
t := σ (t)π̂ i

t , and let γ̂ be the matrix whose i th line is γ̂ i . From the previous
argument, (π̂1, . . . , π̂ N) is a Nash equilibrium if and only:

�i
t (γ̂t) := Pi

t

⎛
⎝ηiθ (t) + λN

i

∑
j 
=i

γ̂
j

t

⎞
⎠ = γ̂ i

t , i = 1, . . . , N, t ∈ [0, T],(4.39)

i.e., γ̂t is a fixed point of �t for all t ∈ [0, T]. Using Lemma 4.15 below, we have the
uniqueness of a Nash equilibrium. Finally, the expression for Vi at equilibrium follows
from the last statement of Lemma 4.15 together with (4.35).

Recall the function ψ̄ i defined in (4.21).

LEMMA 4.15. Under (4.13), the function �t defined in (4.39) has a unique fixed point
γ̂t for all t ∈ [0, T], given by

γ̂ i
t = Pi

t ◦ ψ̄ i
t (θ ) and satisfying ψ̄ i

t (θ ) = ηiθ + λN
i

∑
j 
=i

γ̂
j

t .

Proof.

1. Since Pi
t is a contraction, we compute

|�t(x1) − �t(x2)|1 :=
N∑

i=1

∣∣�i
t (x1) − �i

t (x2)
∣∣ ≤ N∑

i=1

1
N − 1

∑
j 
=i

∣∣xj
1 − xj

2 | = |x1 − x2|1,

proving that �t is a contraction.
2. We next show that (�t)2 := �t ◦ �t is a strict contraction. Indeed, under (4.13), we

may assume without loss of generality that λ1 < 1. Then,∣∣�i
t ◦ �t(x1) − �i

t ◦ �t(x2)
∣∣ ≤ λN

i

∑
j 
=i

∣∣� j
t (x1) − �

j
t (x2)

∣∣ ≤ λN
i

∑
j 
=i

λN
j

∑
k
= j

∣∣xk
1 − xk

2

∣∣,
so that

|(�t)2(x1) − (�t)2(x2)|1 ≤
N∑

i=1

∑
j 
=i

∑
k
= j

λN
i λN

j

∣∣xk
1 − xk

2

∣∣

≤ λ1

(N − 1)2

⎛
⎝ N∑

k=1

(N − 2)
∣∣xk

1 − xk
2

∣∣+∑
k
=1

∣∣xk
1 − xk

2

∣∣
⎞
⎠

+ N − 2
N − 1

∣∣x1
1 − x1

2

∣∣+ N − 1 + (N − 2)2

(N − 1)2

∑
k
=1

∣∣xk
1 − xk

2

∣∣

≤
(

λ1(N − 2)
(N − 1)2

+ (N − 2)2 + N − 1
(N − 1)2

)
|x1 − x2|1.

Observe that N − 2 + N − 1 + (N − 2)2 = (N − 1)2. Then, λ1 < 1 implies that
(�t)2 is a strict contraction.

3. Therefore, (�t)n is a strict contraction as well for any n ≥ 2. As a consequence,
(�t)2, (�t)3, and (�t)6, respectively, admit a unique fixed point x2, x3, and x6,
respectively. It is immediate that x2 and x3 are also fixed points for (�t)6; therefore,
x2 = x3 = x6, and finally, x2 = (�t)3(x2) = �t ◦ (�t)2(x2) = �t(x2) so that x2 is a
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fixed point of �t. The uniqueness is immediate since a fixed point of �t is also a
fixed point of (�t)2.

4. Let � ∈ RNd be defined by �i = ηiθ . By definition of ψt in Lemma 4.6, ϕi
t ◦

ψt(�) = ηiθ for all i = 1, . . . , N. Using the definition of ϕt in (4.9), this implies
that

ψ i
t (�) = ηiθ + λN

i

∑
j 
=i

P j
t ◦ ψ

j
t (�).(4.40)

Applying Pi
t and setting γ̂ i

t = Pi
t ◦ ψ i

t (�), this provides γ̂ i
t = �i

t (γ̂t), for each i =
1, . . . , N. By the definition of ψ̄ i together with the expression of ψ , we have
ψ̄ i

t (θ ) = ψ i
t (�) so that γ̂ i

t = Pi
t ◦ ψ̄ i

t (θ ). Plugging it into (4.40) provides the last
statement of the lemma. �

5. LINEAR PORTFOLIO CONSTRAINTS

We now focus on the case where the sets of constraints are such that

Ai is a vector subspace of Rd , for all i = 1, . . . , N.(5.1)

Our main objective in this section is to exploit the linearity of the projection operators
Pi in order to derive more explicit results.

5.1. Nash Equilibrium Under Linear Portfolio Constraints

In the present context, we show that condition (4.13) in Theorem 4.8 can be weakened
to

N∏
i=1

λi < 1 or
N⋂

i=1

Ai = {0}.(5.2)

In view of Lemma 4.4 (which is obvious in the present linear case), the map

R i
t := 1

N − 1

∑
j 
=i

λ j P j
t
(
I + λN

j P j
t
)−1(

I + λN
i Pi

t

)
(5.3)

is well defined. Moreover, for any j = 1, . . . , N, since P j
t is a projection, we compute

that (I + λN
j P j

t )−1 = I − λN
j

1+λN
j

P j
t so that

R i
t =

∑
j 
=i

λN
j

1 + λN
j

P j
t
(
I + λN

i Pi
t

)
.

The following statement is more precise than Lemma 4.6.

LEMMA 5.1. Let (Ai )1≤i≤N be vector subspaces of Rd . Then, for all t ∈ [0, T]:

(i) the linear operator ϕt is invertible if and only if (5.2) is satisfied,
(ii) this condition is equivalent to the invertibility of the linear operators I − R i

t , i =
1, . . . , N,
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(iii) under (5.2), the i th component of ψt = ϕ−1
t is given by

ψ i
t (z) = (I − R i

t )−1

⎛
⎝zi +

∑
j 
=i

1

1 + λN
j

P j
t
(
λN

i z j − λN
j zi )

⎞
⎠ .

The proof of this lemma is reported in Section 5.4. We now proceed to the characteriza-
tion of Nash equilibria in the context of the multivariate Black–Scholes financial market.
From Lemma 5.1, if condition (5.2) is satisfied, ψ̄ i defined by (4.21) is well defined, is a
linear operator, and has the following expression:

(5.4)

ψ̄ i
t = Mi

t :=
⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j
t
(
I + λN

i Pi
t

)⎞⎠
−1⎛
⎝ηi I +

∑
j 
=i

λN
i η j − λN

j ηi

1 + λN
j

P j
t

⎞
⎠ .

THEOREM 5.2. Assume that σ and θ are deterministic, and (5.2) is satisfied. Then, there
exists a unique deterministic Nash equilibrium given by

π̂ i
t = σ (t)−1 Pi

t Mi
t θ (t) for i = 1, . . . , N, t ∈ [0, T].

Moreover, the value function for agent i at equilibrium is given by

Vi = −e− 1
ηi

(xi −λi x̄i −Yi
0 )

where

Yi
0 = −ηi

2

∫ T

0
|θ (t)|2dt + 1

2ηi

∫ T

0

∣∣(I − Pi
t

)
Mi

t θ (t)
∣∣2dt.

Proof. Follow the lines of the proof of Theorem 4.8, replacing Lemma 4.6 by Lemma
5.1 and Lemma 4.15 by the following Lemma 5.3. �

LEMMA 5.3. Let θ ∈ Rd be arbitrary and � : RNd → RNd be defined for any γ ∈ RNd

by

�i (γ ) = Pi

⎛
⎝ηiθ + λN

i

∑
j 
=i

γ j

⎞
⎠ .

Then, under (5.2), � admits a unique fixed point γ̂ given by γ̂ i = Pi ψ̄ i (θ ).

The proof of this lemma is reported in Section 5.4. We illustrate the previous Nash
equilibrium in the context of symmetric managers with different access to the financial
market.

EXAMPLE 5.4 (Similar agents with different investment constraints). Assume that σ

and θ are deterministic, and let λ j = λ ∈ [0, 1) and η j = η > 0, j = 1, . . . , N. Then, there
exists a unique deterministic Nash equilibrium given by

π̂ i
t = ησ (t)−1 Pi

t

⎛
⎝I − λN

1 + λN

∑
j 
=i

P j
t
(
I + λN Pi

t

)⎞⎠
−1

θ (t), i = 1, . . . , N.
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We conclude this section with the following qualitative result that shows, in partic-
ular, that the managers’ interactions induce an overinvestment on the risky assets, and
imply that the market portfolio π̄ of Definition 3.9 is nondecreasing in the interaction
coefficients λi , in agreement with Proposition 3.10. This result requires a quite restrictive
condition that, however, covers many examples, see also Remark 5.6 below.

PROPOSITION 5.5. Assume that the projection operators Pi commute, i.e., Pi P j = P j Pi

for all i , j = 1, . . . , N. Then, under the conditions of Theorem 5.2, Agent i ’s equilibrium
portfolio is such that |σ (t)π̂ i

t | is nondecreasing w.r.t. λ j and η j , for all i , j = 1, . . . , N and
t ∈ [0, T].

Proof. We fix an agent i = 1, . . . , N, and omit all t-dependence. The assumption that
the Pi ’s commute is equivalent to the existence of an orthonormal basis {uk, k = 1, . . . , d}
such that for all i , uk is an eigenvector of Pi for all k. We write Pi uk = εi ,kuk, and
we observe that εi ,k ∈ {0, 1} by the fact that Pi is a projection. Then, by the explicit
expression of π̂ i in Theorem 5.2, writing θ =∑d

k=1 θkuk, we directly compute that
|σ π̂ i |2 =∑d

k=1(θk)2(	i ,k)2, where

	i ,k = εi ,k

⎛
⎝1 −

∑
m 
=i

λN
mεm,k

1 + λN
m

(
1 + λN

i εi ,k
)⎞⎠

−1⎛
⎝ηi +

∑
m 
=i

λN
i ηm − λN

mηi

1 + λN
m

εm,k

⎞
⎠ .(5.5)

We now verify that 	i ,k is nondecreasing w.r.t. λ j and η j , for all j = 1, . . . , N and
k = 1, . . . , d, which implies the required result by the orthogonality of the basis {uk, k =
1, . . . , d}.

- That 	i ,k is nondecreasing in η j is obvious from (5.5).
- That 	i ,k is nondecreasing in λi is also obvious from (5.5).
- Finally, for j 
= i , we directly differentiate (5.5), and see that the sign of ∂	i ,k/∂λN

j
is given by the sign of

εi ,kε j ,k

⎛
⎝(1 + λN

i εi ,k
)⎛⎝ηi +

∑
m 
=i

λN
i ηm − λN

mηi

1 + λN
m

εm,k

⎞
⎠

− ηi

⎛
⎝1 −

∑
m 
=i

λN
mεm,k

1 + λN
m

(
1 + λN

i εi ,k
)⎞⎠
⎞
⎠

= εi ,kε j ,k

⎛
⎝λN

i ηi + λN
i

⎛
⎝1 + λN

i

∑
m 
=i

ηm

1 + λN
m

εm,k

⎞
⎠
⎞
⎠ ≥ 0.

�

REMARK 5.6. The statement of Proposition 5.5 is not valid for general portfolio
constraints, as illustrated by the following example. Let N = d = 2, A1 = Re1, A2 =
R(e1 + e2), and σ = I. Then, the projection operators P1 and P2 are defined by the
following matrices in the basis (e1, e2):

P1 =
(

1 0
0 0

)
and P2 =

(
1/2 1/2
1/2 1/2

)
,
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respectively. By direct calculation, |π̂1| = 1
2−λ1λ2

|(2η1 + λ1η2)θ1 + λ1η2θ2|, which can be
increasing or decreasing in ηi and λi , i = 1, 2 for appropriate choices of the risk premium
θ .

5.2. Infinite Managers Asymptotics

We now investigate the limiting behavior when the number of agents N goes to infinity
with fixed number of assets d.

Recall that |.| denotes the canonical Euclidean norm on Rd , and L(Rd ) is the space
of linear mappings on Rd endowed with operator norm ‖U‖ = sup|x|=1 |U(x)| for all
U ∈ L(Rd ).

PROPOSITION 5.7. Let d be fixed and the sequence (ηi )i∈N bounded in R. Assume that

1
N

N∑
i=1

λi Pi
t −→ Uλ

t inL(Rd ) and
1
N

N∑
i=1

ηi Pi
t → Uη

t in L(Rd ),(5.6)

for all (respectively, uniformly in) t ∈ [0, T]. Assume further that ‖Uλ
t ‖ < 1, t ∈ [0, 1].

Then,

π̂ i ,N
t −→ π̂ i ,∞

t := σ (t)−1 Pi
t (I − Uλ

t )−1(ηi
(
I − Uλ

t

)+ λi U
η
t
)
θ (t)

for all (respectively, uniformly in) t ∈ [0, T].

Proof. By Theorem 5.2, we have π̂
i ,N
t = σ (t)−1 Pi

t Ai
t Bi

t θ (t), where

Ai
t :=

⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j
t (I + λN

i Pi
t )

⎞
⎠

−1

and Bi
t := ηi I +

∑
j 
=i

λN
i η j − λN

j ηi

1 + λN
j

P j
t .

Since ‖P j
t ‖ ≤ 1, we have

∥∥∥∥∥∥
1

N − 1

∑
j 
=i

λ j

1 + λN
j

P j
t − 1

N

N∑
j=1

λ j P j
t

∥∥∥∥∥∥
≤ 1

N − 1

∥∥∥∥∥∥
∑
j 
=i

λ j

1 + λN
j

P j
t − λ j P j

t

∥∥∥∥∥∥+
∥∥∥∥∥∥

1
N − 1

∑
j 
=i

λ j P j
t − 1

N

N∑
j=1

λ j P j
t

∥∥∥∥∥∥
≤
∥∥∥∥∥∥

1
(N − 1)2

∑
j 
=i

λ2
j

1 + λN
j

P j
t

∥∥∥∥∥∥+
∥∥∥∥∥∥

1
N

λi Pi
t + 1

N(N − 1)

∑
j 
=i

λ j P j
t

∥∥∥∥∥∥ ≤ 3
N

.

Similarly, by the boundedness of the sequence (ηi )i≥1:

∥∥∥∥∥∥
1

N − 1

∑
j 
=i

η j

1 + λN
j

P j
t − 1

N

N∑
j=1

η j P j
t

∥∥∥∥∥∥ ≤ 3|η|∞
N

.
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Then, as N → ∞, we have in L(Rd )

I + λN
i Pi

t → I,
1

N − 1

∑
j 
=i

λ j

1 + λN
j

P j
t −→ Uλ

t ,
1

N − 1

∑
j 
=i

η j

1 + λN
j

P j
t −→ Uη

t ,

and Ai
t → (I − Uλ

t )−1, Bi
t → ηi I + λi U

η
t − ηi Uλ

t . Under the condition ‖Uλ
t ‖ < 1, the

limit is finite. Moreover, the convergence is uniform in t whenever the convergence (5.6)
holds uniformly in t. �

EXAMPLE 5.8 (Symmetric agents with different access to the financial market). Let
λi = λ ∈ [0, 1) and ηi = η > 0, i ≥ 1. Then, the limiting Nash equilibrium portfolio
reduces to

π̂ i ,∞
t = ησ (t)−1 Pi

t

(
I − λU1

t

)−1
θ (t), t ∈ [0, T], i ≥ 1.

EXAMPLE 5.9 (Symmetric agents with finite market access possibilities). In the context
of the previous example, suppose further that {Ai , i ≥ 1} = {Aj , j = 1, . . . , p} for some
integer p > 1. We denote by kN

j the number of agents with portfolio constraint Aj , and we
assume that kN

j /N −→ κ j ∈ [0, 1] for all j = 1, . . . , p. Then, an immediate application
of Proposition 5.7 provides the limit Nash equilibrium portfolio:

π̂ i ,∞
t = ησ (t)−1 Pi

t

⎛
⎝I − λ

p∑
j=1

κ j P j
t

⎞
⎠

−1

θ (t).

REMARK 5.10. We may also adopt the following probabilistic point of view to re-
formulate Proposition 5.7. Assume that there is a continuum of independent players
modeled through a probability space (�,D, μ) independent from the space (�,F, P)
describing the financial market uncertainty. In such a setting, the market interactions,
the risk tolerance, and the projection operators are defined by the random variables λ

and η and the process P = {Pt, t ∈ [0, T]} taking values, respectively, in [0, 1], (0, +∞)
and L(Rd ). The limiting Nash equilibrium portfolio is then given by

π̂ i ,∞
t := σ (t)−1 Pt(I − μ(λPt))−1(η(I − μ(λPt)) + λμ(ηPt))θ (t),

provided that μ(λ‖Pt‖) + μ(η‖Pt‖) < ∞ and ‖μ(λPt)‖ < 1.

Our next comment concerns the asymptotics of the market index X̄N and the market
portfolio π̄ N of Definition 3.9.

REMARK 5.11. In the context of Remark 5.10, we further assume that the random
variables λ, η, and Pt are independent, and we denote P̄t := μ(Pt), λ̄ := μ(λ), η̄ := μ(η).
Then, under the condition λ̄P̄t < 1, the limit market portfolio and market index are given
by

π̄∞
t = σ (t)−1v̄∞

t , X̄∞
t = x̄ +

∫ t

0
v̄∞

t · (dWt + θ (t)dt
)
, where v∞

t := η̄Ūt
(
I − λ̄Ūt

)−1
θ (t).

In particular, we have the following observations that are consistent with Proposition
3.10:

- the drift of the market index is nonnegative,
- the drift and the volatility of the market index are nondecreasing in η̄ and λ̄,
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- the VRR index of the market portfolio is given by

VRR
∞
t = θ (t) · P̄t(I − λ̄P̄t)−1θ (t)

θ (t) · (P̄t(I − λ̄P̄t))2θ (t)
,

and is nonincreasing in η̄ and λ̄.

5.3. Examples with Linear Constraints

For simplicity, except for Example 5.16, we assume that the agents are symmetric
λi = λ and ηi = η for i = 1, . . . , N and only differ by their access to the financial market.

Except for the last Example 5.17, we shall consider a diagonal multidimensional
Black–Scholes model with volatility matrix σ = Id , i.e., the risky assets price processes
are independent.

Under the conditions of Theorem 5.2, the optimal Nash equilibrium is given by

π̂ i
t = ηPi

⎛
⎝I −

λ
N−1

1 + λ
N−1

∑
j 
=i

P j
(

I + λ

N − 1
Pi
)⎞⎠

−1

θ (t) for i = 1, . . . , N,(5.7)

see Example 5.4. Let (e1, . . . , ed ) be the canonical basis of Rd .

EXAMPLE 5.12. Let d = N and Ai = Rei , i = 1, . . . , N. Notice that ∩n
i=1 Ai = {0}.

Then, Theorem 5.2 applies for all λ ∈ [0, 1]. The projection matrices Pi are all diagonal
with unique nonzero diagonal entry Pi

i ,i = 1. The calculation of the Nash equilibrium is
then easy and provides

π̂ i
t = ησ (t)−1θi (t)ei , i = 1, . . . , N.

Hence, in agreement with the economic intuition, the interaction has no impact in this
example, and the optimal Nash equilibrium portfolio coincides with the classical case
with no interactions (λ = 0).

EXAMPLE 5.13. Let d = 3, N = 2, and A1 = Re1 + Re2, A2 = Re2 + Re3. Since A1 ∩
A2 
= {0}, Theorem 5.2 requires that λ ∈ [0, 1). In the present context, the projection
matrices are diagonal with P1

1,1 = P1
2,2 = 1, P1

3,3 = 0, and P2
1,1 = 0, P2

2,2 = P2
3,3 = 1. An

easy calculation provides the optimal Nash equilibrium:

π̂1
t = ηθ1(t)e1 + η

1 − λ
θ2(t)e2 and π̂2

t = η

1 − λ
θ2(t)e2 + ηθ3(t)e3.

Notice that the optimal investment in the first and the third stock for agent 1 and agent
2, respectively, is the same as in the classical case (λ = 0). However, the investment in
stock 2, which both agents can trade, is dilated by the factor (1 − λ)−1 ∈ [1, +∞).

EXAMPLE 5.14. Let d = N = 3 and A1 = Re1 + Re2, A2 = Re2 + Re3, A3 = Re3. Since
A1 ∩ A2 ∩ A3 = {0}, Theorem 5.2 applies for λ ∈ [0, 1]. The projection matrices P1 and
P2 are the same as in the previous example, and we similarly see that P3 is diagonal with
P3

1,1 = P3
2,2 = 0, P3

3,3 = 1. Direct calculation provides the optimal Nash equilibrium:

π̂1
t = ηθ1(t)e1 + η

1 − λ
2

θ2(t)e2, π̂2
t = η

1 − λ
2

θ2(t)e2 + η

1 − λ
2

θ3(t)e3,

π̂3
t = η

1 − λ
2

θ3(t)e3.



252 G.-E. ESPINOSA AND N. TOUZI

Similar to the previous example, we see that the optimal investment in the first stock
for agent 1 and agent 2, respectively, is the same as in the classical case (λ = 0), while
the investment in stocks 2 and 3, which can both be traded by two agents, is dilated by
the factor (1 − λ

2 )−1 ∈ [1, +∞). Notice that the dilation factor in the present example is
smaller than that of the previous one.

EXAMPLE 5.15 (Investment with respect to hyperplanes). Let d = N and Ai = (Rei )⊥.
In words, each manager has access to the whole market except for its own stock or those
of the firms for which some private information is available to the manager. Direct
calculation from the expression of Theorem 5.2 provides the following unique Nash
equilibrium:

π̂ i ,N = η

1 − λ + λ
N−1

∑
j 
=i

θ j e j , i = 1, . . . , N.

EXAMPLE 5.16 (Groups of managers investing in independent sectors). We assume
that there are d groups of managers. The j th group consists of kj symmetric agents with
risk tolerance coefficient η j , interaction coefficient λ j , and market access defined by the
constraints set Aj = Re j . The total number of managers is N =∑d

j=1 kj . Then, it follows
from Theorem 5.2 that the Nash equilibrium portfolio for an agent of the j th group is

π̂ j = P j

⎛
⎝I −

∑
m 
= j

km
λN

m

1 + λN
m

Pm(I + λN
j P j )− (kj − 1)

λN
j

1 + λN
j

P j (I + λN
j P j )

⎞
⎠

−1

×
⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ

= P j

⎛
⎝I −

∑
m 
= j

km
λN

m

1 + λN
m

Pm − (kj − 1)λN
j P j

⎞
⎠

−1⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ,

where we used the fact that P j Pm = 0 for m 
= j . The inverse matrix in the previous
expression can be computed explicitly, and we get

π̂ j = P j

⎛
⎝ 1

1 − (kj − 1)λN
j

P j +
∑
m 
= j

1

1 − km
λN

m
1+λN

m

Pm

⎞
⎠
⎛
⎝η j I +

∑
m 
= j

λN
j ηm − λN

mη j

1 + λN
m

Pm

⎞
⎠ θ.

Using again the fact that P j Pm = 0 for m 
= j , we see that

π̂ j = η j

1 − kj −1
N λ j

θ j e j for each agent of group j , j = 1, . . . , d.

EXAMPLE 5.17 (Correlated investments). Let d = N, Ai = Rei , i = 1, . . . , N, and

θ = θNσ

d∑
i=1

ei , σ 2 = σ 2
N

⎛
⎜⎝

1 ρ2

. . .
ρ2 1

⎞
⎟⎠ ,(5.8)

for some θN ∈ R, ρ ∈ (−1, 1) and σN > 0.
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Since σ is invertible, (ui := σei )1≤i≤d forms a basis of Rd . We directly verify that for
j 
= i and x =∑d

i=1 xi ui ,

P j (x)=
⎛
⎝xj +ρ2

∑
k
= j

xk

⎞
⎠ u j , P j Pi (x)=ρ2

⎛
⎝xi +ρ2

∑
k
=i

xk

⎞
⎠ u j .(5.9)

By (5.7), the Nash equilibrium portfolio for the i th manager is given by π̂ i
t = ηPi x, where

x satisfies ⎛
⎝I −

λ
N−1

1 + λ
N−1

∑
j 
=i

P j
(

I + λ

N − 1
Pi
)⎞⎠ x = θ for i = 1, . . . , N.

Given the particular structure of the risk premium in (5.8), we search for a solution of
this linear system of the form x = xi ui + x0

∑
k
=i uk. By (5.9), this reduces the previous

linear system to

θ = xi ui +
∑
j 
=i

(
x0 − λ

N − 1
ρ2xi −

λ
N−1

1 + λ
N−1

(1 + (N − 2)ρ2 + λρ4)x0

)
u j ,

and provides the solution of the system

xi = θN and x0 = (1 + λ
N−1ρ2)θN

1 −
λ

N−1

1+ λ
N−1

(1 + (N − 2)ρ2 + λρ4)
,

and therefore, using again (5.9), the Nash equilibrium π̂ i = ηPi x is given by

π̂ i = ηθN

⎛
⎜⎝1 + (N − 1)ρ2(1 + λ

N−1ρ2)

1 −
λ

N−1

1+ λ
N−1

(1 + (N − 2)ρ2 + λρ4)

⎞
⎟⎠ ui , i = 1, . . . , N.

We finally observe that π̂ i ∼ ηθN
1+(N−1−λ)ρ2

1−λρ2 as N → ∞. Then,

π̂ i ∼ ηθ0ρ
2

1 − λρ2
ui whenever θN ≡ θ0

N
as N → ∞.

This shows that the Nash equilibrium portfolio consists again of a dilation of the no-
interaction optimal portfolio. However, in the present context, in addition to the dilation
due to the interaction coefficient λ, there is an additional dilation caused by the correlation
coefficient ρ. The dilation factor is increasing both in λ and ρ.

5.4. Proof of Technical Lemmas

Proof of Lemma 5.1. We omit all t subscripts. For arbitrary z1, . . . , zN in Rd , we want
to find a unique solution to the system:

zi − λN
i

∑
j 
=i

P j (z j ) = ζ i , 1 ≤ i ≤ N.(5.10)
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1. We reduce (5.10) to a simpler form. Subtracting λi times equation j from λ j times
equation i in (5.10), we get for any i , j

λi
(
I + λN

j P j ) z j = λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i .

Since (I + λN
j P j )−1 = I − λN

j

1+λN
j

P j , we have

λi P j z j = 1

1 + λN
j

P j (λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i ).
Thus, using (5.10) it follows that

ζ i = zi − 1
N − 1

∑
j 
=i

1

1 + λN
j

P j [λ j
(
I + λN

i Pi ) zi + λiζ
j − λ jζ

i ] ,
and we can rewrite (5.10) equivalently as

(5.11)⎛
⎝I −

∑
j 
=i

λN
j

1 + λN
j

P j (I + λN
i Pi )

⎞
⎠ zi = ζ i + 1

N − 1

∑
j 
=i

1

1 + λN
j

P j (λiζ
j − λ jζ

i ) ,
so that the invertibility of ϕ is equivalent to the invertibility of the linear operators I − Ri ,
for i = 1, . . . , N, where the Ri s are introduced in the statement of the lemma.

2. We prove that the I − Ri s are all invertible iff (5.2) holds true.
(a) First, assume that λ j = 1 for all j and that x ∈⋂N

j=1 Aj 
= {0} satisfies x 
= 0. Then,
we have for any j , P j x = x and so:

Ri x = 1
N − 1

∑
j 
=i

1

1 + 1
N−1

P j
(

I + 1
N − 1

Pi
)

x = x.

Therefore, I − Ri is not invertible.
(b) Conversely, assume that (5.2) holds true. We consider two separate cases.

� If λi0 < 1, for some i0 ∈ {1, . . . , N}, then we estimate that

λN
i0

1 + λN
i0

<

1
N−1

1 + 1
N−1

and
λN

j

1 + λN
j

≤
1

N−1

1 + 1
N−1

for any j 
= i0.

Then, since 1 + λN
i0

< 1 + 1
N−1 , for any i and any x 
= 0, |Ri x| < |x|, proving that

I − Ri is invertible.
� If λi = 1, for all i = 1, . . . , N and

⋂N
i=1 Ai = {0}. Let x ∈ Ker (I − Ri ) for some i ,

using the fact that the P j s are contractions, we have

|x| = |Ri x| =
∣∣∣∣∣∣

1
N − 1

∑
j 
=i

1

1 + 1
N−1

P j
(

I + 1
N − 1

Pi
)

x

∣∣∣∣∣∣
≤ 1

N − 1

∑
j 
=i

|x| = |x|,
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so that equality holds in the above inequality, which can only happen if P j x = x
for all j = 1, . . . , N, which implies that x ∈⋂N

j=1 Aj , and therefore x = 0, which
completes the proof. �

Proof of Lemma 5.3. We want to show that the system ηi Piθ + λN
i
∑

j 
=i Piγ j = γ i ,
for all i = 1, . . . , N, has a unique solution, or equivalently that λN

i
∑

j 
=i Piγ j − γ i = 0
is satisfied for all i = 1, . . . , N if and only if γ = 0. Writing this linear system Aγ = 0,
we have ∣∣∣∣∣∣λN

i

∑
j 
=i

Piγ j − γ i

∣∣∣∣∣∣ ≥ |γ i | − λN
i

∑
j 
=i

|Piγ j |,

so that γ ∈ KerA implies that |γ i | = |γ j | for any i , j . Having equality for i implies
that Piγ j = γ j for all j , the γ j s are all collinear (i included) and λi = 1. Therefore, if∏

i λi < 1 or ∩i Ai = {0}, the previous inequality becomes strict if γ ∈ KerA 
= 0.
Then, as in the proof of Lemma 4.15, we have γ̂ i = �i (γ̂ ), for each i = 1, . . . , N. �

APPENDIX

EXAMPLE A.1. Let N = 2, σ = Id , λi = λ, and Ai = A := {x ∈ Rd ; |x1| ≥ 1}, i = 1, 2.
The projection is uniquely determined for x1 
= 0, and we can take, for example, the
following:

P(x) =
⎧⎨
⎩

x, if x ∈ A
(1, x2, . . . , xd )t, if x1 ∈ [0, 1)
(−1, x2, . . . , xd )t, if x1 ∈ (−1, 0).

If ϕ was surjective onto R2d , then subtracting the expressions of ϕ1 and ϕ2, we see
that I + λP would be surjective onto Rd . Let y ∈ Rd , we want to find x such that
x + λP(x) = y.

- If x1 ≥ 1, then (1 + λ)x1 = y1 so that y1 ≥ 1 + λ;
- if x1 ∈ [0, 1), then x1 + λ = y1 so that y1 ∈ [λ, 1 + λ);
- if x1 ∈ (−1, 0), then x1 − λ = y1 so that y1 ∈ (−1 − λ,−λ);
- if x1 ≤ −1, then (1 + λ)x1 = y1 so that y1 ≤ −1 − λ.

Therefore, {x ∈ Rd ; x1 ∈ [−λ, λ)} is not attained by I + λP so that as soon as λ > 0, ϕ

is not surjective. Moreover, the interior of the complementary of its image is nonempty.

EXAMPLE A.2. Let Ai = B := {x ∈ Rd ; |x| ≥ 1}, the complement of the unit (open)
ball. The projection is uniquely determined for x 
= 0, and we can for example take:

P(x) =

⎧⎪⎪⎨
⎪⎪⎩

x, if x ∈ B,
1
|x| x, if |x| ∈ (0, 1),

1d , if x = 0.

Similar to the previous example, in order to have ϕ surjective, we need I + λP surjective
onto Rd . If y ∈ Rd , and x + λP(x) = y, we compute
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- if |x| ≥ 1, then (1 + λ)x = y so that |y| ≥ 1 + λ;
- if |x| ∈ (0, 1), then (1 + λ

|x| )x = y so that |y| ∈ (λ, 1 + λ);
- if x = 0, then y = λ1d .

Therefore, {x ∈ Rd ; |x| < λ} is not attained by I + λP, so again as soon as λ > 0, ϕ is
not surjective. Moreover, the interior of the complementary of its image is nonempty.
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The problem of robust utility maximization in an incomplete market with volatility
uncertainty is considered, in the sense that the volatility of the market is only assumed
to lie between two given bounds. The set of all possible models (probability measures)
considered here is nondominated. We propose studying this problem in the framework
of second-order backward stochastic differential equations (2BSDEs for short) with
quadratic growth generators. We show for exponential, power, and logarithmic utilities
that the value function of the problem can be written as the initial value of a particular
2BSDE and prove existence of an optimal strategy. Finally, several examples which
shed more light on the problem and its links with the classical utility maximization
one are provided. In particular, we show that in some cases, the upper bound of the
volatility interval plays a central role, exactly as in the option pricing problem with
uncertain volatility models.

KEY WORDS: second-order backward stochastic differential equation, quadratic growth, robust
utility maximization, volatility uncertainty.

1. INTRODUCTION

One of the most prominent questions of mathematical finance literature is the so-called
problem of utility maximization. It is a problem of optimal investment faced by an
economic agent who has the opportunity to invest in a financial market consisting of a
riskless asset and (for simplicity) one risky asset. Given a fixed investment horizon T, the
aim of the agent is to find an optimal allocation between the two assets, so as to maximize
his “welfare” at time T. Following the seminal work of Von Neumann and Morgenstern
(1944), where they assumed that the preference of the agent could be represented by a
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utility function U and a given probability measure P reflecting his views, the now classical
formulation of the problem consists in solving the optimization problem

V(x) := sup
π∈A

EP
[
U(Xx,π

T − ξ )
]
,

where A is the set of admissible strategies π for the agent, Xx,π
T is his wealth process at

time T computed with initial capital x, trading strategy π , and terminal liability ξ .
In the 1960s, Merton (1969) was the first to study and solve this problem in the partic-

ular case where the risky asset follows a Black–Scholes model, there are no restrictions
on the admissible strategies (that is to say in a complete market), the utility function
is of power type, and the liability is equal to 0. The proof relies on classical techniques
of stochastic control theory, since he manages to solve the Hamilton–Jacobi–Bellman
partial differential equation (PDE) associated with the problem explicitly, and then uses a
verification argument. The problem in complete markets but with general utility functions
was only solved in the 1980s by Pliska (1986), using techniques from convex duality. Fol-
lowing these papers, many have tried to weaken their assumptions, notably the complete-
ness assumption on the market, which was too restrictive and unrealistic from the point
of view of applications. One possible direction of generalization is to impose constraints
on the strategies of the investor. Following the first works of Cvitanić and Karatzas (1992)
and Zariphopoulou (1994), where once more convex duality techniques were used, the
beginning of the 21st century saw the emergence of a link between this optimal invest-
ment problem and the theory of backward stochastic differential equations (BSDEs for
short). These objects were first introduced by Bismut (1973) in the linear case, then gen-
eralized by Pardoux and Peng (1990) to Lipschitz generators. On a filtered probability
space (�,F, {Ft}0≤t≤T , P) generated by an Rd -valued Brownian motion B, a solution to
a BSDE consists of a pair of progressively measurable processes (Y, Z) such that

Yt = ξ +
∫ T

t
fs(Ys, Zs)ds −

∫ T

t
Zsd Bs, t ∈ [0, T], P − a.s.

where f (also called the driver) is a progressively measurable function and ξ is a
FT-measurable random variable.

El Karoui and Rouge (2000) considered the problem of indifference pricing with an
exponential utility function (which is linked to the optimal investment problem) in the
case where the strategies are constrained to stay in a given closed and convex set. They
proved that the value function of the problem was related to the initial value of a BSDE
with a driver of quadratic growth in the Z part. Building upon these results, Hu, Imkeller,
and Müller (2005) generalized the approach to the case of logarithmic and power utilities
with strategies constrained in a closed set.

Another direction of generalization of the original Merton problem is related to the
question of model uncertainty. Indeed, in all the above formulations, a probability mea-
sure P is fixed. It means that the investor knows the “historical” probability P that
describes the dynamics of the state process. In reality, the investor may have some un-
certainty on this probability, which means that there can be several objective probability
measures to consider. The problem then becomes a robust utility maximization and can
be written as follows:

Vξ (x) := sup
π∈A

inf
Q∈P

EQ[U(Xx,π
T − ξ )],

where P is the set of all considered possible probability measures.
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In this case, the properties of the set P become crucial in order to solve the problem.
Preliminary results in the literature were limited to dominated sets. A set P is said to
be dominated if every probability measure P ∈ P is absolutely continuous with respect
to some reference probability measure in P . For instance, this covers the case of drift
uncertainty. In this framework, the problem was introduced by Gilboa and Schmeidler
(1989). Anderson, Hansen, and Sargent (2003) and Hansen et al. (2006) then introduced
and discussed the basic problem of robust utility maximization, penalized by a relative
entropy term of the model uncertainty Q ∈ P with respect to a given reference probability
measure. Inspired by these latter works, Bordigoni, Matoussi, and Schweizer (2007)
solved the robust problem (the minimization part) in a more general semimartingale
framework by using stochastic control techniques and proved that the solution was related
to a quadratic semimartingale BSDE. Among others, results in the robust maximization
problem were also obtained by Gundel (2005), Schied and Wu (2005), or Skiadas (2003)
in the case of continuous filtrations. The overall approach relies essentially on convex
duality ideas.

The situation becomes more intricate when the set P is no longer dominated, which
happens when introducing volatility uncertainty, in the sense that the volatility process
is only assumed to lie between two given bounds. Although the problem of option
pricing under volatility uncertainty has been solved for a long time (see Avellaneda,
Levy, and Paras 1995 and Lyons 1995 for instance), the problem of utility maximization
was not addressed until recently by Denis and Kervarec (2007) (see also Talay and Zheng
2002, where it is analyzed under the framework of stochastic games and Hamilton–
Jacobi–Bellman–Isaacs equations). They first establish a duality theory for robust utility
maximization and then show that there is a least favorable probability measure and an
optimal strategy. However, their utility function U is supposed to be bounded and to
satisfy Inada conditions. Recently, Epstein and Ji (2011) formulated a model of utility in a
continuous-time framework that captures the decision maker’s concern with ambiguity or
model uncertainty, even though they did not study the maximization problem of robust
utility per se. More recently, Tevzadze, Toronjadze, and Uzunashvili (2012) studied a
related robust utility maximization problem for exponential and power utility functions
(and also for mean-square error criteria). We will compare our results and theirs in
Section 7 (see Remark 7.2).

The intuition at the core of our work is that, exactly as the problem of utility maxi-
mization under constraints was linked to BSDEs with quadratic growth, the problem of
robust utility maximization under volatility uncertainty should be linked to some kind
of backward equations. In fact, the right objects to consider in this case are the so-called
second-order BSDEs (2BSDEs for short) which were introduced for the first time by
Cheridito et al. (2007). However, they were not able to provide a complete theory of
existence and uniqueness. Hence, a reformulation was proposed by Soner, Touzi, and
Zhang (2012), who provided a well-posedness theory for 2BSDEs under uniform Lips-
chitz conditions similar to those of Pardoux and Peng. Their key idea was to reinforce
the condition that the 2BSDE must hold P−a.s. for every probability measure P in a
nondominated class of mutually singular measures (see Section 2 for precise definitions).
The theory being very recent, the literature remains rather limited. However, we refer the
interested reader to Possamaı̈ (2010) and Possamaı̈ and Zhou (2012) who, respectively,
extended these well-posedness results to generators with linear and quadratic growth. In
our main result, we show that in incomplete markets with volatility uncertainty, the solu-
tion of the robust utility maximization problem (for exponential, logarithmic, and power
utilities) is related to the initial value of a particular 2BSDE with quadratic growth, as
suggested by intuition. We also emphasize a specificity in our approach when it comes
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to the sets of admissible strategies considered. Usually, when dealing with this type of
problems (see, for instance, El Karoui and Rouge 2000; Hu et al. 2005), an exponen-
tial uniform integrability assumption is made on the trading strategies. Our approach
relies instead on integrability assumptions of BMO type on the trading strategies. The
mathematical justifications are detailed in Remarks 4.2 and 4.5. However, there is also a
financial interpretation. Indeed, as explained in Frei, Mocha, and Westray (2012) which
also adopts the BMO framework, this assumption corresponds to a situation where the
market price of risk is assumed to be BMO. Exactly as in the case of a bounded market
price of risk, it implies that the minimum martingale measure is a true probability mea-
sure, and therefore that the market is without arbitrage, in the sense of No Free Lunch
with Vanishing Risk.

The paper is organized as follows: in Section 2, we recall the 2BSDEs framework and
some useful results. Inspired by El Karoui and Rouge (2000) and Hu et al. (2005), in
Sections 3, 4, 5, and 6 we solve the problem for robust exponential utility, robust power
utility, and robust logarithmic utility, which, unlike in Denis and Kervarec (2007), are not
bounded. Finally, in Section 7, we give some examples where we can explicitly solve the
robust utility maximization problems by finding the solution of the associated 2BSDEs,
and we provide some insights and comparisons with the classical dynamic programming
approach adopted in the seminal work of Merton (1969).

2. PRELIMINARIES

We will start by recalling some notations and notions related to the theory of 2BSDEs,
which are the main tool in our approach to the robust utility maximization problem.

2.1. Probability Spaces

Let � := {ω ∈ C([0, T])d , ω(0) = 0} be the canonical space, B the canonical process,
and F = (Ft)0≤t≤T the filtration generated by B. We will also make use of the right-limit
F+ = (Ft+ )0≤t≤T of F. Let P0 be the Wiener measure. As in Soner et al. (2012), we can
construct the quadratic variation of B and its density â pathwise.

Let PW denote the set of all local martingale measures P such that P−a.s. for t ∈ [0, T]

〈B〉t is absolutely continuous with respect to t and â takes values in S>0
d ,(2.1)

where S>0
d denotes the space of all d × d real-valued positive definite matrices. As in

Soner et al. (2012), we concentrate on the subclass PS ⊂ PW consisting of all probability
measures

Pα := P0 ◦ (Xα)−1 where Xα
t :=

∫ t

0
α1/2

s d Bs, t ∈ [0, T], P0 − a.s.(2.2)

for some F-progressively measurable process α in S>0
d with

∫ T
0 |αt|dt < +∞, P0 − a.s.

Notice that α
1/2
s is just the square-root of the positive definite matrix αs .

Finally, we fix a, a ∈ S>0
d such that a ≤ a (for the usual order on positive definite

matrices, i.e., (a − a) ∈ S>0
d ) and we define the class

PH := {
P ∈ PS s.t. a ≤ ât ≤ a, dt × P − a.e.

}
,
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which is a particular case of definition 2.6 in Soner et al. (2012), the main differences here
being that the two bounds on â are independent of the probability measures and that F̂0

(introduced and defined below in Section 2.3) is bounded. Throughout the paper, it is
assumed that PH is not empty.

For every (t, P) ∈ [0, T] × PH, we also define the class of probability measures which
coincide with P up to t+

PH
(
t+, P

)
:= {

P
′ ∈ PH, P

′ = P on Ft+
}
.

DEFINITION 2.1. We say that a property holds PH-quasi-surely (PH-q.s. for short) if it
holds P-a.s. for all P ∈ PH.

REMARK 2.2. The filtration F+ is right-continuous but not complete under each
P ∈ PH. Moreover, it is not possible to complete the filtration for each P since the mea-
sures are singular. It is of course a major drawback since many results of the general theory
of processes rely on the fact that the underlying filtrations satisfy the usual hypotheses
of right-continuity and completeness. However, this problem was solved in lemma 2.4 of
Soner, Touzi, and Zhang (2011), which implies that for every P ∈ PH, we can always con-
sider a version of our processes which is progressively measurable for the completion of F+

under P.

2.2. Spaces and Norms

We now recall from Possamaı̈ and Zhou (2012) the spaces and norms which will be
needed for the formulation of the quadratic 2BSDEs.

L∞
H is the space of random variables which are bounded quasi-surely endowed with

the norm

‖ξ‖L∞
H

:= sup
P∈PH

‖ξ‖L∞(P).

For p ≥ 1, Lp
H is the space of random variables with

‖ξ‖p
Lp

H
:= sup

P∈PH

EP [|ξ |p] < +∞.

For p ≥ 1, H
p
H denotes the space of all F+-progressively measurable Rd -valued pro-

cesses Z with

‖Z‖p
H

p
H

:= sup
P∈PH

EP

[(∫ T

0
|̂a1/2

t Zt|2dt
) p

2
]

< +∞.

BMO(PH) denotes the space of all F+-progressively measurable Rd -valued processes
Z with

‖Z‖BMO(PH) := sup
P∈PH

∥∥∥∥∫ .

0
Zsd Bs

∥∥∥∥
BMO(P)

,

where ‖·‖BMO(P) is the usual BMO(P) norm under P, that is to say∥∥∥∥∫ .

0
Zsd Bs

∥∥∥∥2

BMO(P)
:= ess supP

τ∈T0,T

∥∥∥∥EP
τ

[∫ T

τ

|̂at Zt|2 dt
]∥∥∥∥

L∞(P)
,
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where T0,T denotes the stopping times with value in [0, T]. We abuse notation and say
that

∫ .

0 Zsd Bs is a BMO(PH) martingale if Z ∈ BMO(PH).
D∞

H denotes the space of all F+-progressively measurable R-valued processes Y with

PH − q.s. càdàg paths, and ‖Y‖D∞
H

:= sup
0≤t≤T

‖Yt‖L∞
H

< +∞.

We also recall the following space which is important in the formulation of Lipschitz
2BSDEs in Soner et al. (2012). For any κ ∈ (1, 2], L

2,κ
H is the space of random variables

ξ such that

‖ξ‖2
L

2,κ
H

:= sup
P∈PH

EP

[
ess supP

0≤t≤T
ess supP

P
′ ∈PH(t+,P)

(
EP

′

t [|ξ |κ ]
) 2

κ

]
< +∞.

Finally, we denote by UCb(�) the collection of all bounded and uniformly continuous
maps ξ : � → R with respect to the ‖·‖∞-norm, and we let

L∞
H := the closure of UCb(�) under the norm ‖·‖L∞

H
,

and

L2,κ
H := the closure of UCb(�) under the norm ‖·‖L

2,κ
H

.

2.3. The Quadratic Generator

We consider a map Ht(ω, z, γ ) : [0, T] × � × Rd × DH → R, where DH ⊂ Rd×d is a
given subset containing 0.

Define the corresponding conjugate of H with respect to γ by

Ft(ω, z, a) : = sup
γ∈DH

{
1
2

Tr(aγ ) − Ht(ω, z, γ )
}

for a ∈ S>0
d ,

F̂t(z) : = Ft(ω, z, ât) and F̂0
t := F̂t(0).

We denote by DFt(z) the domain of F in a for a fixed (t, ω, z). As in Possamaı̈ and Zhou
(2012), the generator F is supposed to verify either

ASSUMPTION 2.3.

(i) The domain DFt(z) = DFt is independent of (ω, z).
(ii) For fixed (z, a), F is F-progressively measurable.

(iii) F is uniformly continuous in ω for the || · ||∞ norm.
(iv) F is continuous in z and has the following growth property. There exists (α, γ ) ∈

R+ × R+/ {0} such that

|Ft(ω, z, a)| ≤ α + γ

2

∣∣a1/2z
∣∣2

, for all (t, z, ω, a).

(v) F is C2 in z, and there are constants r and θ such that for all (t, ω, z, a),

|Dz Ft(ω, z, a)| ≤ r + θ
∣∣a1/2z

∣∣ , |D2
zz Ft(ω, y, z, a)| ≤ θ.

or
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ASSUMPTION 2.4. Let points (i) through (iv) of Assumption 2.3 hold, and

(vi) ∃μ > 0 and a progressively measurable process φ ∈ BMO(PH) such that for all
(t, z, z′, ω, a),∣∣Ft(ω, z, a) − Ft(ω, z′, a) − φt.a1/2(z − z′)

∣∣ ≤ μa1/2|z − z′| (∣∣a1/2z
∣∣ + ∣∣a1/2z′∣∣) .

REMARK 2.5. Notice that Assumption 2.3(iv) implies that ess sup
0≤t≤T

∣∣F̂0
t

∣∣ ∈ L∞
H .

2.4. Quadratic 2BSDE

In the sequel, we will have to deal with the following type of 2BSDEs

Yt = ξ −
∫ T

t
F̂s(Zs) ds −

∫ T

t
Zsd Bs + KT − Kt, 0 ≤ t ≤ T, PH − q.s.(2.3)

DEFINITION 2.6. Given ξ ∈ L∞
H , we say (Y, Z) ∈ D∞

H × H2
H is a solution to the 2BSDE

(2.3) if

� YT = ξ, PH − q.s.
� For each P ∈ PH, the process KP defined below has nondecreasing paths, P-a.s.

KP
t := Y0 − Yt +

∫ t

0
F̂s(Zs) ds +

∫ t

0
Zsd Bs, 0 ≤ t ≤ T, P − a.s.(2.4)

� The family of processes
{

KP, P ∈ PH
}

defined in (2.4) satisfies the following mini-
mum condition:

KP
t = ess infP

P′∈PH(t+,P)
EP′

t [KP′
T ], P − a.s. for all P ∈ PH, t ∈ [0, T].(2.5)

Moreover, if the family {KP, P ∈ PH} can be aggregated into a universal process K ,
that is to say that for all t ∈ [0, T]

Kt = KP
t , P − a.s., ∀P ∈ PH,

then we call (Y, Z, K) a solution of the 2BSDE (2.3).

Here, one of the results proved in Possamaı̈ and Zhou (2012) is recalled (see
theorems 3.3 and 4.1).

THEOREM 2.7. Let ξ ∈ L∞
H . Under Assumption 2.3 or 2.4 with the addition that the

norm of ξ and the L∞
H -norm of ess sup

0≤t≤T
|F̂0

t | are small enough, there is a unique solution

(Y, Z) ∈ D∞
H × H2

H of the 2BSDE (2.3). Moreover, for all t ∈ [0, T] and every P ∈ PH

Yt = ess supP

P
′ ∈PH(t+,P)

yP
′

t , P − a.s.,(2.6)

where yP
′

is the solution under P
′
of the BSDE with generator F̂ and terminal condition ξ .

REMARK 2.8. Assumption 2.4 is weaker than Assumption 2.3, but is sufficient for
the existence of a solution to the quadratic 2BSDE defined above only if the norms of
the terminal condition ξ and F̂0 are small enough. Notice that since, for power and
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logarithmic utilities, the terminal condition will be equal to 0, we only have a restriction
on the norm of F̂0 in these cases. We also emphasize that these restrictions are in no way
necessary to obtain existence, but are artifacts of the type of proofs used in Possamaı̈
and Zhou (2012) to obtain existence of a 2BSDE with quadratic growth. Indeed, the
proof relies at some point on the fact that solutions of standard BSDEs can be obtained
through Picard iterations. Notice that this property was already needed in Soner et al.
(2012). However, with a generator of quadratic growth, such a property was shown by
Tevzadze (2008) only if Assumption 2.3(v) holds (see proposition 2), or if the terminal
condition and F̂0 are small enough and if Assumption 2.4(v) holds (see proposition 1).
We conjecture that existence of solutions of 2BSDEs with quadratic growth should hold
under less restrictive assumptions similar to those in Barrieu and El Karoui (2011) (for
instance ξ would not need to be bounded and the generator would only need to be of
quadratic growth), but this is left for future research.

REMARK 2.9. The representation (2.6) gives some insight into 2BSDEs. Since Y can be
written as a supremum of solution of BSDEs, we can interpret the increasing processes
KP as the instruments allowing Y to remain above the corresponding yP. It is similar to
reflected BSDEs with a lower obstacle. Moreover, the minimum condition (2.5) tells us
that this is done in a minimal way, making it the counterpart of the Skorokhod condition
in our context.

3. ROBUST UTILITY MAXIMIZATION

We will now present the main problem of the paper and introduce a financial market
with volatility uncertainty. The financial market consists of one bond with zero interest
rate and d stocks. The price process is given by

d St = diag [St] (btdt + d Bt), PH − q.s.,

where b is an Rd -valued uniformly bounded stochastic process which is uniformly con-
tinuous in ω for the ||·||∞ norm.

REMARK 3.1. The volatility is implicitly embedded in the model. Indeed, under each
P ∈ PH, we have d Bs ≡ â1/2

t dWP
t where WP is a Brownian motion under P. Therefore,

â1/2 plays the role of volatility under each P and thus makes it possible to model the
volatility uncertainty. We also note that we make the uniform continuity assumption for
b to ensure that the generators of the 2BSDEs obtained later satisfy Assumption 2.3 or
2.4.

We then denote π = (πt)0≤t≤T a trading strategy, which is a d-dimensional F+-
progressively measurable process, supposed to take its value in some closed set A. We
refer to Definitions 4.1, 5.1, and 6.1 in the following sections for the precise definitions
of the set of admissible strategies A for the three utility functions studied.

The process π i
t describes the amount of money invested in stock i at time t, with

1 ≤ i ≤ d. The number of shares is π i
t

Si
t
. So the liquidation value of a trading strategy π

with positive initial capital x is given by the following wealth process:

Xπ
t = x +

∫ t

0
πs(d Bs + bsds), 0 ≤ t ≤ T, PH − q.s.
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Since zero interest rate was assumed, the amount of money in the bank π0 does not
appear in the wealth process X.

The problem of the investor in this financial market is to maximize the expected utility
under model uncertainty of his terminal wealth Xπ

T − ξ , where ξ is a liability, that is to
say an FT-measurable random variable. This liability could represent the value of any
option or contract maturing at time T. It will always be assumed that ξ ∈ L∞

H .
Denote by U the utility function of the investor. The value function V of the maxi-

mization problem therefore becomes

Vξ (x) := sup
π∈A

inf
Q∈PH

EQ[U(Xπ
T − ξ )].(3.1)

In the case where PH contains only one probability measure, the problem reduces to
the classical utility maximization problem.

REMARK 3.2. Due to the construction of 2BSDEs, we must have ξ ∈ L∞
H . It is easy to

see that ξ can be constant, deterministic, or in the form of g(BT) where g is a Lipschitz
bounded function, such as a Put or a Call spread payoff function. However, it can be
noted that vanilla options payoffs with underlying S may not be in L∞

H . Indeed, we have
in the one-dimensional framework

ST = S0exp
(∫ T

0
btdt − 1

2
〈B〉T + BT

)
, PH − q.s.

Since the quadratic variation of the canonical process can be written as follows:

lim
n→+∞

∑
i≤2n t

(
Bi+1

2n
(ω) − B i

2n
(ω)

)2
,

it is not too difficult to see that S can be approximated by a sequence of random variables
in UCb(�). Besides, this sequence converges in L2

H. However, we cannot be sure that it
also converges in L∞

H , which is the space of interest here.
Of course, in the uncertainty framework, it seems to be a major drawback. Nevertheless,

to deal with these options, it is sufficient to redo the whole 2BSDE construction from
scratch but taking the exponential of the Brownian motion under the Wiener measure as
the canonical process instead of the Brownian motion itself. It would amount to restrict
ourselves to the subset P+

H of PH, containing only those P ∈ PH such that the canonical
process is a positive continuous local martingale under P.

To find the value function Vξ and an optimal trading strategy π∗, we follow the ideas
of the general martingale optimality principle approach in El Karoui and Rouge (2000)
and Hu et al. (2005), but adapt it here to a nonlinear framework. Note that A is the
admissibility set of the strategies π .

Let {Rπ }π∈A be a family of processes which satisfy the following properties.

PROPERTIES 3.3.

(i) Rπ
T = U(Xπ

T − ξ ) for all π ∈ A.
(ii) Rπ

0 = R0 is constant for all π ∈ A.
(iii) We have

Rπ
t ≥ ess infP

P′∈PH(t+,P)
EP′

t [Rπ
T ], ∀π ∈ A
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Rπ∗
t = ess infP

P′∈PH(t+,P)
EP′

t [Rπ∗
T ] for some π∗ ∈ A, P − a.s. for all P ∈ PH.

Then it follows that

inf
P∈PH

EP[U(Xπ
T − ξ )] ≤ R0 = inf

P∈PH

EP[U(Xπ∗
T − ξ )] = Vξ (x).(3.2)

In the following sections, we will follow the ideas of Hu et al. (2005) to construct such
a family for our three utility functions U.

4. ROBUST EXPONENTIAL UTILITY

In this section, the exponential utility function which is defined as

U(x) = −exp(−βx), x ∈ R for β > 0,

will be considered. In this context, the set of admissible trading strategies is defined as
follows:

DEFINITION 4.1. Let A be a closed set in Rd . The set of admissible trading strategies A
consists of all d-dimensional progressively measurable processes, π = (πt)0≤t≤T satisfying

π ∈ BMO(PH) and πt ∈ A, dt ⊗ PH − a.e.

REMARK 4.2. Many authors have shed light on the natural link between BMO class,
exponential uniformly integrable class and BSDEs with quadratic growth. See Barrieu
and El Karoui (2011), Briand and Hu (2006), and Hu et al. (2005) among others. In the
standard utility maximization problem studied in Hu et al. (2005), their trading strategies
satisfy a uniform integrability assumption on the family (exp(Xπ

τ ))τ . Since the optimal
strategy is a BMO martingale, it is easy to see that the utility maximization problem can
also be solved if the uniform integrability assumption is replaced by a BMO assumption.
However, at the end of the day, those two assumptions are deeply linked, as shown in the
context of quadratic semimartingales in Barrieu and El Karoui (2011). Nonetheless, in
our framework, as explained below in Remark 4.5, it is necessary to generalize the BMO
martingale assumption instead of the uniform integrability assumption. Moreover, as
recalled in the introduction, from a financial point of view these admissibility sets are
related to absence of arbitrage in the market considered.

4.1. Characterization of the Value Function and Existence of Optimal Strategies

The investor wants to solve the maximization problem

Vξ (x) := sup
π∈A

inf
Q∈PH

EQ
[−exp (Xπ

T − ξ )
]
.(4.1)

In order to construct a process Rπ which satisfies the Properties 3.3, we set

Rπ
t = −exp(−β(Xπ

t − Yt)), t ∈ [0, T], π ∈ A,
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where (Y, Z) ∈ D∞
H × H2

H is the unique solution of a 2BSDE with a generator F̂ to be
determined

Yt = ξ −
∫ T

t
Zsd Bs −

∫ T

t
F̂(s, Zs) ds + KP

T − KP
t , P − a.s., ∀P ∈ PH.

REMARK 4.3. From theorem 3.3 of Possamaı̈ and Zhou (2012), we have the following
representation:

Yt = ess supP

P′∈PH(t+,P)
yP′

t .

Therefore, in general Y0 is only F0+ -measurable and therefore not a constant. But by
proposition 4.2 of Possamaı̈ and Zhou (2012), we know that the process Y is actually
F-measurable (it is true when the terminal condition is in UCb(�) and by passing to the
limit when the terminal condition is in L∞

H ). This and the above representation easily
imply that

Y0 = ess supP

P′∈PH(0+,P)
yP′

0 = sup
P′∈PH

yP′
0 .

The Blumenthal Zero-One law then ensures that Y0 is a constant.

Let us now define for all a ∈ S>0
d such that a ≤ a ≤ a the set Aa by

Aa := a1/2 A = {
a1/2b, b ∈ A

}
.

For any a ∈ [a, a], the set Aa is still closed. Moreover, since A �= ∅ we have

min {|r | , r ∈ Aa} ≤ k(4.2)

for some constant k independent of a. We can now state the main result of this section

THEOREM 4.4. Assume that ξ ∈ L∞
H and either that ‖ξ‖L∞

H
+ sup0≤t≤T ‖bt‖L∞

H
is small

and that 0 ∈ A, or that the set A is C2 (in the sense that its border is a C2 Jordan arc).
Then, the value function of the optimization problem (4.1) is given by

Vξ (x) = −exp (−β (x − Y0)) ,

where Y0 is defined as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H to the
following 2BSDE:

Yt = ξ −
∫ T

t
Zsd Bs −

∫ T

t
F̂s(Zs) ds + KP

T − KP
t , P − a.s., ∀P ∈ PH.(4.3)

The generator is defined as follows:

F̂t(ω, z) := Ft(ω, z, ât),(4.4)

where for all t ∈ [0, T], z ∈ Rd and a ∈ S>0
d

Ft(ω, z, a) = −β

2
dist2

(
a1/2z + 1

β
θt(ω), Aa

)
+ z′a1/2θt(ω) + 1

2β
|θt(ω)|2 ,
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where θt(ω) := a− 1
2 bt(ω) and for all x ∈ Rd and E ⊂ Rd , dist(x, E) is the distance from x

to E.
Moreover, there is an optimal trading strategy π∗ satisfying

â1/2
t π∗

t ∈ Âat

(
â1/2

t Zt + 1
β

θ̂t

)
, t ∈ [0, T], PH − q.s.(4.5)

with θ̂t := â−1/2
t bt.

Proof. The proof is divided into five steps. First, it is shown that the 2BSDE with the
generator defined in (4.4) has indeed a unique solution. Then, we prove a multiplicative
decomposition for the process Rπ and some BMO integrability results on the process Z
and the optimal strategy π∗. Using these results, we are then able to show that (iii) of
Properties 3.3 holds.

Step 1: We show first that the 2BSDE (4.3) has a unique solution. We need to verify that
the generator F̂ satisfies the conditions of Assumption 2.4 or 2.3.
First of all, F defined above is a convex function of a, and thus for any t ∈ [0, T], F can
be written as the Fenchel transform of a function

Ht(ω, z, γ ) := sup
a∈DF

{
1
2

Tr(aγ ) − Ft(ω, z, a)
}

for γ ∈ Rd×d .

It is clear that F satisfies the first two conditions of either Assumption 2.4 or 2.3. For
Assumptions 2.4(iii) and 2.3(iii), the assumption of boundedness and uniform continuity
in ω on b implies that b2 is uniformly continuous in ω. Since b and b2 are the only
nondeterministic terms in F , then F is also uniformly continuous in ω.
As we consider the distance function to a closed set, we know that it is attained for some
element of Rd . Besides, as recalled earlier in (4.2), there is a constant k ≥ 0 such that

min
{|d| , d ∈ Âat

} ≤ k, dt ⊗ P − a.e., for all P ∈ PH.

Then we get, for all z ∈ Rd , t ∈ [0, T],

dist2
(

â1/2
t z + 1

β
θ̂t, Âat

)
≤ 2

∣∣̂a1/2
t z

∣∣2 + 2
(

1
β

∣∣̂θt
∣∣ + k

)2

.

Thus, we obtain from the boundedness of θ̂∣∣F̂t(z)
∣∣ ≤ c0 + c1

∣∣̂a1/2
t z

∣∣2
,

that is to say that Assumptions 2.4(iv) and 2.3(iv) are satisfied.
Finally, Assumption 2.4(v) is clear from the Lipschitz property of the distance function,
and Assumption 2.3(v) is also clear from the regularity assumption on the border of A.
The terminal condition ξ is in L∞

H and we have proved that the generator F̂ satisfies
Assumption 2.4 or 2.3. Moreover, by definition of F , it is clear that if b has a small
L∞

H -norm and if 0 ∈ A, then F̂0 also has a small L∞
H -norm. Indeed, we have

F̂0
t = −β

2
dist

(
θt

β
, Âat

)
+ 1

2β
|θt|2 ,

which tends to 0 as bt and thus θt goes to 0 (it is clear for the second term on the right-
hand side, and for the first, continuity of the distance function and the fact 0 ∈ A ensure
the result).
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Therefore, Theorem 2.7 states that the 2BSDE (4.3) has a unique solution in D∞
H × H2

H.
Step 2: We first decompose Rπ as the product of a process Mπ and a nonincreasing
process Nπ which is constant for some π∗ ∈ A.
Define for all P ∈ PH any for any t ∈ [0, T]

Mπ
t = e−β(x−Y0)exp

(
−

∫ t

0
β(πs − Zs) dBs − 1

2

∫ t

0
β2

∣∣̂a1/2
s (πs − Zs)

∣∣2
ds − βKP

t

)
,

P − a.s.

We can then write for all t ∈ [0, T]

Rπ
t = Mπ

t Nπ
t ,

with

Nπ
t = −exp

(∫ t

0
v(s, πs, Zs) ds

)
,

and

v(t, π, z) = −βπbt + β F̂t(z) + 1
2
β2

∣∣̂a1/2
t (π − z)

∣∣2
.

Clearly, for every t ∈ [0, T], v(t, πt, Zt) can be rewritten in the following form:

1
β

v(t, πt, Zt) = β

2

∣∣̂a1/2
t πt

∣∣2 − βπ
′
t â

1/2
t

(
â1/2

t Zt + 1
β

θ̂t

)
+ β

2

∣∣̂a1/2
t Zt

∣∣2 + F̂t(Zt)

= β

2

∣∣∣∣̂a1/2
t πt −

(
â1/2

t Zt + 1
β

θ̂t

)∣∣∣∣2

− Z
′
t â

1/2
t θ̂t − 1

2β

∣∣θ̂t
∣∣2 + F̂t(Zt).

By a classical measurable selection theorem (see El Karoui 1981 or lemma 3.1 in El
Karoui, Peng, and Quenez 1994), we can define a progressively measurable process π∗

satisfying (4.5). Then, it follows from the definition of F̂ that PH − q.s.

� v(t, πt, Zt) ≥ 0 for all π ∈ A, t ∈ [0, t].
� v(t, π∗

t , Zt) = 0, t ∈ [0, T],

which implies that the process Nπ is always nonincreasing for all π and is equal to −1
for π∗.
Step 3: In this step, we show that the processes∫ ·

0
Zsd Bs,

∫ ·

0
π∗

s d Bs

are BMO(PH) martingales.
First of all, by lemma 2.1 in Possamaı̈ and Zhou (2012), we know that

∫ ·
0 Zsd Bs is a

BMO(PH) martingale. By the triangle inequality and the definition of π∗ together with
(4.2), we have for all t ∈ [0, T]∣∣̂a1/2

t π∗
t

∣∣ ≤
∣∣∣∣̂a1/2

t Zt + 1
β

θ̂t

∣∣∣∣ +
∣∣∣∣̂a1/2

t π∗
t −

(
â1/2

t Zt + 1
β

θ̂t

)∣∣∣∣
≤ 2

∣∣̂a1/2
t Zt

∣∣ + 2
β

∣∣̂θt
∣∣ + k ≤ 2

∣∣̂a1/2
t Zt

∣∣ + k1,
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where k1 is a bound on θ̂ . Then, for every probability P ∈ PH and every stopping time
τ ≤ T,

EP
τ

[∫ T

τ

∣∣̂a1/2
t π∗

t

∣∣2
dt

]
≤ EP

τ

[∫ T

τ

8
∣∣̂a1/2

t Zt
∣∣2

dt + 2Tk2
1

]
,

and therefore

‖π∗‖2
BMO(PH) ≤ 8‖Z‖2

BMO(PH) + 2Tk2
1,

which implies the BMO(PH) martingale property of
∫ ·

0 π∗
s d Bs as desired.

Step 4: We prove that π∗ ∈ A and Rπ∗ ≡ −Mπ∗
satisfies (iii) of Properties 3.3, that is to

say for all t ∈ [0, T]

ess supP

P′∈PH(t+,P)
EP′

t

[
Mπ∗

T

] = Mπ∗
t , P − a.s., ∀P ∈ PH.

For a fixed P′ ∈ PH(t+, P), we denote

Lt :=
∫ t

0
β(π∗

s − Zs) dBs + 1
2

∫ t

0
β2

∣∣̂a1/2
s (π∗

s − Zs)
∣∣2

ds + βKP′
t , 0 ≤ t ≤ T,

then with Itô’s formula and thanks to the BMO(PH) property proved in Step 3, we obtain
for every t ∈ [0, T],

EP′
t

[
Mπ∗

T

] − Mπ∗
t = −βEP′

t

[∫ T

t
Mπ∗

s− d KP′
s

]
(4.6)

+EP
′

t

[ ∑
t≤s≤T

e−Ls − e−Ls− + e−Ls− (Ls − Ls− )

]
.

First, we prove

ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s− d KP′
s

]
= 0, t ∈ [0, T], P − a.s.

For every t and every P′ ∈ PH(t+, P), we have

0 ≤ EP′
t

[∫ T

t
Mπ∗

s− d KP′
s

]
≤ EP′

t

[(
sup

0≤s≤T
Mπ∗

s

) (
KP′

T − KP′
t

)]
.

Besides, since KP
′

is nondecreasing, we obtain for all s ≥ t

Mπ∗
s ≤ e−β(x−Y0)E

(
β

∫ s

0

(
Zu − π∗

u

)
dBu

)
.

Then, again thanks to Step 3, we know that(
Zs − π∗

s

) ∈ BMO(PH),

and thus the exponential martingale above is a uniformly integrable martingale for all
P and is in Lr

H for some r > 1 (see lemma 2.2 in Possamaı̈ and Zhou 2012). Thus, by
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Hölder inequality, we have for all t ∈ [0, T]

EP′
t

[∫ T

t
Mπ∗

s− d KP′
s

]
≤ eβ(Y0−x)EP′

t

[
sup

0≤s≤T
Er

(
β

∫ s

0

(
Zu − π∗

u

)
dBu

)] 1
r

× EP′
t

[(
KP′

T − KP′
t

)q
] 1

q
.

With Doob’s maximal inequality, we have for every t ∈ [0, T]

EP′
t

[
sup

0≤s≤T
Er

(
β

∫ s

0

(
Zu − π∗

u

)
dBu

)]1/r

≤

CEP′
t

[
Er

(
β

∫ T

0

(
Zu − π∗

u

)
dBu

)]1/r

< +∞,

where C is an universal constant which can change value from line to line.
From Cauchy–Schwarz inequality, we see for 0 ≤ t ≤ T

EP′
t

[(
KP′

T − KP′
t

)q
]1/q

≤ C
(
EP′

t

[(
KP′

T − KP′
t

)]
EP′

t

[(
KP′

T − KP′
t

)2q−1
]) 1

2q

≤ C

(
ess supP

P′∈PH(t+,P)
EP′

t

[(
KP′

T − KP′
t

)2q−1
]) 1

2q

× (
EP′

t

[(
KP′

T − KP′
t

)]) 1
2q .

Arguing as in the proof of theorem 3.1 in Possamaı̈ and Zhou (2012) we know that
for t ∈ [0, T] (

ess supP

P′∈PH(t+,P)
EP′

t

[(
KP′

T − KP′
t

)2q−1
]) 1

2q

< +∞, P − a.s.

Hence, we obtain for 0 ≤ t ≤ T

0 ≤ ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s− d KP′
s

]
≤ C ess infP

P′∈PH(t+,P)

(
EP′

t

[(
KP′

T − KP′
t

)]) 1
2q = 0, P − a.s.,

which means

ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s− d KP′
s

]
= 0, 0 ≤ t ≤ T, P − a.s.

Finally, we have for every t ∈ [0, T]

ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s− d KP′
s −

∑
t≤s≤T

exp(−βLs) − exp(−βLs− )

+ βexp(−βLs− )(Ls − Ls− )

]
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≤ ess infP

P′∈PH(t+,P)
EP′

t

[∫ T

t
Mπ∗

s− d KP′
s

]

− ess infP

P′∈PH(t+,P)
EP′

t

[ ∑
t≤s≤T

exp(−βLs) − exp(−βLs− ) + βexp(−βLs− )(Ls − Ls− )

]
≤ 0, P − a.s.,

because the function x → exp(−x) is convex and the jumps of L are positive. Hence,
using (4.6), we have for every t ∈ [0, T]

ess supP

P′∈PH(t+,P)
EP′

t

[
Mπ∗

T − Mπ∗
t

] ≥ 0, P − a.s.

However, by definition Mπ∗
is the product of a martingale and a positive nonincreasing

process and is therefore a supermartingale. It implies that for every t ∈ [0, T]

ess supP

P′∈PH(t+,P)
EP′

t

[
Mπ∗

T − Mπ∗
t

] = 0, P − a.s.

Finally, π∗ is an admissible strategy, Rπ∗
satisfies (iii) of Properties 3.3, and

Rπ∗
0 = inf

P∈PH

EP

[
−exp

(
−β

(
x +

∫ T

0
π∗

s (dBs + θsds) − ξ

))]
= −exp (−β (x − Y0)) .

Step 5: Next we will show that for all π ∈ A, Rπ satisfies (iii) of Properties 3.3, that is,
for every t ∈ [0, T]

ess infP

P′∈PH(t+,P)
EP′

t [−exp(−β(Xπ
T − ξ ))] ≤ Rπ

t , P − a.s.

Since π ∈ A, the process ∫ .

0
(Zs − πs) dBs

is a BMO(PH) martingale. Then, the process

Gπ = exp (−β(x − Y0)) E
(

−β

∫ .

0
(πs − Zs) dBs

)
is a uniformly integrable martingale under each P ∈ PH.
As in the previous steps, we write Rπ as Rπ = Mπ Nπ , where Nπ is a negative nonin-
creasing process. We then have for 0 ≤ s ≤ t ≤ T

ess infP

P′∈PH(s+,P)
EP′

s

[
Mπ

t Nπ
t

] ≤ ess infP

P′∈PH(s+,P)
EP′

s

[
Mπ

t Nπ
s

] = ess supP

P′∈PH(s+,P)
EP′

s

[
Mπ

t

]
Nπ

s , P − a.s.,

because Nπ is negative. By the same arguments as in Step 3 for Mπ∗
, we have for

0 ≤ s ≤ t ≤ T

ess supP

P′∈PH(s+,P)
EP′

s

[
Mπ

t

] = Mπ
s , P − a.s.
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Therefore, the following inequality holds for 0 ≤ s ≤ t ≤ T

ess infP

P′∈PH(s+,P)
EP′

s

[
Rπ

t

] ≤ Rπ
s , P − a.s.,

which ends the proof. �
REMARK 4.5. Here, it can be seen why it is essential in this context to have strong

integrability assumptions on the trading strategies. Indeed, in the proof of the above
property for Mπ∗

, the fact that the stochastic integral∫ ·

0
π∗

s dBs

is a BMO(PH) martingale allowed us to control the moments of its stochastic exponential,
which in turn allowed us to deduce from the minimal property for KP a similar minimal
property for ∫ ·

0
Mπ∗

s d KP
s .

This term is new when compared with the context of Hu et al. (2005). To deal with it,
the BMO(PH) property has to be imposed. Note however that since the optimal strategy
already has that property, we do not lose much by restricting the strategies.

REMARK 4.6. We note that the approach still works when there are no constraints on
trading strategies. In this case, the 2BSDE related to the maximization problem has a
uniformly Lipschitz generator, and we are in the context of complete markets. Then, the
theory developed in Soner et al. (2012) for Lipschitz 2BSDEs can also be used.

4.7. A Min-Max Property

By comparing the value function of our robust utility maximization problem and the
one presented in Hu et al. (2005) for standard utility maximization problem, we are able
to obtain a min-max property similar to that obtained by Denis and Kervarec (2007).
We observe that we were only able to prove this property after having solved the initial
problem, unlike in the approach of Denis and Kervarec (2007).

THEOREM 4.7. Under the previous assumptions on the probability measures set PH and
the admissible strategies set A, the following min-max property holds:

sup
π∈A

inf
P∈PH

EP
[
Rπ

T

] = inf
P∈PH

sup
π∈A

EP
[
Rπ

T

] = inf
P∈PH

sup
π∈AP

EP
[
Rπ

T

]
,

where AP is the set consisting of trading strategies π which are in A, P − a.s., and such that
the process

∫ .

0 πsdBs is a BMO(P) martingale.

Proof. First note that we have

D := sup
π∈A

inf
P∈PH

EP
[
Rπ

T

] ≤ inf
P∈PH

sup
π∈A

EP
[
Rπ

T

] ≤ inf
P∈PH

sup
π∈AP

EP
[
Rπ

T

] =: C.

Indeed, the first inequality is obvious and the second one follows from the fact that
for all P, A ⊂ AP.
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That C ≤ D remains to be proved. By the previous sections, we know that

D = −exp (−β (x − Y0)) .

Moreover, we know from Possamaı̈ and Zhou (2012) that we have a representation
for Y0,

Y0 = sup
P∈PH

yP
0 ,

where yP
0 is the solution of the standard BSDE with the same generator F̂ . On the other

hand, it can be observed from Hu et al. (2005) that

C = inf
P∈PH

[−exp
(−β

(
x − yP

0

))]
implying that C = D. �

4.3. Indifference Pricing via Robust Utility Maximization

It has been shown in El Karoui and Rouge (2000) that in a market model with
constraints on the portfolios, if the indifference price for a claim � is defined as the
smallest number p such that

sup
π

E
[−exp

(−β
(
Xx+p,π − �

))] ≥ sup
π

E [−exp (−β Xx,π )] ,

where Xx,π is the wealth associated with the portfolio π and initial value x, then this
problem turns into the resolution of a BSDE with quadratic growth generator.

In this framework of uncertain volatility, the problem of indifference pricing of a
contingent claim � boils down to solving the following equation in p:

V0(x) = V�(x + p).

Thanks to our results, we know that if � ∈ L∞
H then the two sides of the above

equality can be computed by solving 2BSDEs. The indifference price p can therefore be
calculated as soon as the 2BSDEs can be solved (explicitly or numerically). Two examples
are provided in Section 7.

5. ROBUST POWER UTILITY

In this section, we will consider the power utility function

U(x) = − 1
γ

x−γ , x > 0, γ > 0.

Here, a different notion of trading strategy will be used: ρ = (ρi )i=1,...,d denotes the
proportion of wealth invested in stock i . The number of shares of stock i is given by ρi

t Xt

Si
t

.
Then, the wealth process is defined as

Xρ
t = x +

∫ t

0

d∑
i=1

Xρ
s ρi

s

Si
s

d Si
s = x +

∫ t

0
Xρ

s ρs (dBs + bsds) , PH − q.s.(5.1)

and the initial capital x is positive.
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In the present setting, the set of admissible strategies is defined as follows:

DEFINITION 5.1. Let A be a closed set in Rd . The set of admissible trading strategies
A consists of all Rd -valued progressively measurable processes ρ = (ρt)0≤t≤T satisfying

ρ ∈ BMO(PH) and ρ ∈ A, dt ⊗ PH − a.e.

The wealth process Xρ can be written as

Xρ
t = xE

(∫ t

0
ρs(dBs + bsds)

)
, t ∈ [0, T] , PH − q.s.

Then for every ρ ∈ A, the wealth process Xρ is a local P-martingale bounded from
below, hence, a P-supermartingale, for all P ∈ PH.

We suppose that there is no liability (ξ = 0). Then, the investor faces the maximization
problem

V(x) = sup
ρ∈A

inf
P∈PH

EP
[
U(Xρ

T)
]
.(5.2)

In order to find the value function and an optimal strategy, we follow the method
outlined in the previous section for the exponential utility. Therefore, we have to construct
a stochastic process Rρ with terminal value

Rρ

T = U
(

x +
∫ T

0
Xρ

s ρs
d Ss

Ss

)
,

and which satisfies Properties 3.3. Then the value function will be given by V(x) = R0.
Applying the utility function to the wealth process yields

− 1
γ

(
Xρ

t
)−γ =− 1

γ
x−γ exp

(
−

∫ t

0
γρsdBs −

∫ t

0
γρsbsds + 1

2

∫ t

0
γ

∣∣̂a1/2
s ρs

∣∣2
ds

)
.(5.3)

This equation suggests the following choice:

Rρ
t = − 1

γ
x−γ exp

(
−

∫ t

0
γρsdBs −

∫ t

0
γρsbsds + 1

2

∫ t

0
γ

∣∣̂a1/2
s ρs

∣∣2
ds + Yt

)
,

where (Y, Z) ∈ D∞
H × H2

H is the unique solution of the following 2BSDE:

Yt = 0 −
∫ T

t
Zs dBs −

∫ T

t
F̂s(Zs) ds + KT − Kt, t ∈ [0, T], PH − q.s.(5.4)

In order to get (iii) of Properties 3.3 for Rρ , we have to construct F̂t(z) such that, for
t ∈ [0, T]

γρtbt − 1
2
γ
∣∣̂a1/2

t ρt
∣∣2 − F̂t(Zt) ≤ −1

2

∣∣̂a1/2
t (γρt − Zt)

∣∣2
for all ρ ∈ A(5.5)

with equality for some ρ∗ ∈ A. It is equivalent to

F̂t(Zt) ≥ −1
2
γ (1 + γ )

∣∣∣∣̂a1/2
t ρt − 1

1 + γ

( − â1/2
t Zt + θ̂t

)∣∣∣∣2
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−1
2

γ
∣∣ − â1/2

t Zt + θ̂t
∣∣2

1 + γ
+ 1

2

∣∣̂a1/2
t Zt

∣∣2

with θ̂t := â−1/2
t bt.

Hence, the appropriate choice for F̂ is

F̂t(z) = −γ (1 + γ )
2

dist2

(
−â1/2

t z + θ̂t

1 + γ
, Âat

)
+ γ

∣∣ − â1/2
t z + θ̂t

∣∣2

2(1 + γ )
+ 1

2

∣∣̂a1/2
t z

∣∣2
,(5.6)

and a candidate for the optimal strategy must satisfy

â1/2
t ρ∗

t ∈ Âat

(
1

1 + γ

( − â1/2
t Zt + θ̂t

))
, t ∈ [0, T].

The above results are summarized in the following theorem.

THEOREM 5.2. Assume either that the drift b verifies that sup0≤t≤T ‖bt‖L∞
H

is small and
that the set A contains 0, or that the set A is C2 (in the sense that its border is a C2 Jordan
arc). Then, the value function of the optimization problem (5.2) is given by

V(x) = − 1
γ

x−γ exp(Y0) for x > 0,

where Y0 is defined as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the
quadratic 2BSDE

Yt = 0 −
∫ T

t
Zsd Bs −

∫ T

t
F̂s(Zs) ds + KT − Kt, t ∈ [0, T], PH − q.s.,(5.7)

where F̂ is given by (5.6).
Moreover, there is an optimal trading strategy ρ∗ ∈ A with the property

â1/2
t ρ∗

t ∈ Âat

(
1

1 + γ

( − â1/2
t Zt + θ̂t

))
, t ∈ [0, T],(5.8)

with θ̂t := â−1/2
t bt.

Proof. The proof is very similar to the case of robust exponential utility. First, it
can be shown with the same arguments that the generator F̂ satisfies the conditions of
Assumption 2.3 or 2.4. Hence, there exists a unique solution to the 2BSDE (5.7).

Let ρ∗ denote the progressively measurable process, constructed with a measurable
selection theorem, which realizes the distance in the definition of F̂ . The same arguments
as in the case of robust exponential utility show that ρ∗ ∈ A.

Then with the choice made for F̂ , we have the following multiplicative decomposition:

Rρ
t = − 1

γ
x−γ E

(
−

∫ t

0
(γρs − Zs) dBs

)
e−γ KP

t exp
(

−
∫ t

0
vs ds

)
,

where

vt = γρtbt − 1
2
γ
∣∣̂a1/2

t ρt
∣∣2 − F̂t(Zt) + 1

2

∣∣̂a1/2
t (γρt − Zt)

∣∣2 ≤ 0, dt ⊗ P−a.e.
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Since the stochastic integral
∫ t

0 (ρs − Zs) dBs is a BMO(PH) martingale, the stochastic
exponential above is a uniformly integrable martingale. By exactly the same arguments
as before, we have

ess infP

P′∈PH(s+,P)
EP′

s

[
Rρ

t
] ≤ Rρ

s , s ≤ t, P − a.s.,

with equality for ρ∗.
Hence, the terminal value Rρ

T is the utility of the terminal wealth of the trading strategy
ρ. Consequently,

inf
P∈PH

EP
[
U

(
Xρ

T

)] ≤ R0 = − 1
γ

x−γ exp(Y0) for all ρ ∈ A.
�

REMARK 5.3. Of course, the min-max property of Theorem 4.7 still holds.

6. ROBUST LOGARITHMIC UTILITY

In this section, we consider the logarithmic utility function

U(x) = log(x), x > 0.

Here, we use the same notion of trading strategies as in the power utility case, ρ =
(ρi )i=1,...,d denotes the part of the wealth invested in stock i . The number of shares of
stock i is given by ρi

t Xt

Si
t

. Then, the wealth process is defined as

Xρ
t = x +

∫ t

0

d∑
i=1

Xρ
s ρi

s

Si
s

d Si
s = x +

∫ t

0
Xρ

s ρs (dBs + bsds) , PH − q.s.(6.1)

and the initial capital x is positive.
The wealth process Xρ can be written as

Xρ
t = xE

(∫ t

0
ρs(dBs + bsds)

)
, t ∈ [0, T] , PH − q.s.

In this case, the set of admissible strategies is defined as follows.

DEFINITION 6.1. Let A be a closed set in Rd . The set of admissible trading strategies
A consists of all Rd -valued progressively measurable processes ρ satisfying

sup
P∈PH

EP

[∫ T

0

∣∣̂a1/2
t ρt

∣∣2
dt

]
< ∞

and ρ ∈ A, dt ⊗ dP − a.s., ∀P ∈ PH.

For the logarithmic utility, we assume the agent has no liability at time T (ξ = 0). Then
the optimization problem is given by

V(x) = sup
ρ∈A

inf
P∈PH

EP[log(Xρ

T)]

= log(x) + sup
ρ∈A

inf
P∈PH

EP

[∫ T

0
ρsdBs +

∫ T

0
(ρsbs − 1

2
|̂a1/2

s ρs |2)ds
]

.(6.2)
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We have the following theorem.

THEOREM 6.2. Assume either that the drift b verifies that sup0≤t≤T ‖bt‖L∞
H

is small and
that the set A contains 0, or that the set A is C2 (in the sense that its border is a C2 Jordan
arc). Then, the value function of the optimization problem (6.2) is given by

V(x) = log(x) − Y0 for x > 0,

where Y0 is defined as the initial value of the unique solution (Y, Z) ∈ D∞
H × H2

H of the
quadratic 2BSDE

Yt = 0 −
∫ T

t
Zs dBs −

∫ T

t
F̂sds + KP

T − KP
t , t ∈ [0, T], P − a.s., ∀P ∈ PH.(6.3)

The generator is defined by

F̂s = −1
2

dist2(̂θs, Âa) + 1
2
|̂θs |2,

where θ̂t := â−1/2
t bt.

Moreover, there exists an optimal trading strategy ρ∗ ∈ A with the property

â1/2
t ρ∗

t ∈ Âat

(̂
θt

)
.(6.4)

Proof. The proof is very similar to the case of exponential and power utility. First, we
show that there is an unique solution to the 2BSDE (6.3). We then write, for t ∈ [0, T]

Rρ
t = Mρ

t + Nρ
t ,

where

Mρ
t = log(x) − Y0 +

∫ t

0
(ρs − Zs) dBs + KP

t ,

Nρ
t =

∫ t

0

(
−1

2

∣∣̂a1/2
s ρs − θ̂s

∣∣2 + 1
2

∣∣̂θs
∣∣2 − F̂s

)
ds.

Similarly, we prove that ρ∗, which can be constructed by means of a classical measurable
selection argument, is in A. Note in particular that ρ∗ only depends on θ̂ , â1/2 and the
closed set A describing the constraints on the trading strategies.

Next, due to Definition 6.1, the stochastic integral in Rρ is a martingale under each
P for all ρ ∈ A. Moreover, F̂ is chosen to make the process Nρ nonincreasing for all ρ

and a constant for ρ∗. Thus, the minimum condition of KP implies that Rρ satisfies (iii)
of Properties 3.3.

Furthermore, the initial value Y0 of the simple 2BSDE (6.3) satisfies

Y0 = − sup
P∈PH

EP

[∫ T

0
F̂sds

]
.

Hence,

V(x) = Rρ∗
0 (x) = log(x) + sup

P∈PH

EP

[∫ T

0
F̂sds

]
. �
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REMARK 6.3. Of course, the min-max property of Theorem 4.7 still holds. Moreover,
it is an easy exercise to show that the 2BSDE has a unique solution in this case given by

Yt = ess supP

P
′ ∈PH(t+,P)

EP
′
[∫ T

t

1
2

(
dist2(θs, Âas ) − |θs |2

)
ds

]
, P − a.s., for all P ∈ PH.

7. EXAMPLES

In general, it is difficult to solve BSDEs and 2BSDEs explicitly. In this section, some
examples with an explicit solution will be given. In particular, we show how the optimal
probability measure is chosen. In all our examples, we will work in dimension one, d = 1.

First, robust exponential utility is dealt with. We consider the case where there are
no constraints on trading strategies, that is A = R. Then, the associated 2BSDE has a
generator which is linear in z. In the first example, we consider a deterministic terminal
liability ξ and show that our result can be compared with the one obtained by solving the
Hamilton–Jacobi–Bellman (HJB) equation in the standard Merton’s approach, working
with the probability measure associated with the constant process a. In the second
example, we show that with a random payoff ξ = −B2

T, where B is the canonical process,
we end up with an optimal probability measure which is not of Bang–Bang type (Bang–
Bang type means that, under this probability measure, the density of the quadratic
variation â takes only the two extreme values, a and a). We emphasize that this example
does not have real financial significance, but nonetheless shows that one cannot expect
the optimal probability measure to depend only on the two bounds for the volatility
unlike with option pricing in the uncertain volatility model.

7.1. Example 1: Deterministic Payoff

In this example, we suppose that b is a constant in R. From Theorem 4.4, we know
that the value function of the robust maximization problem is given by

Vξ (x) = −exp (−β (x − Y0)) ,

where Y is the solution of a 2BSDE with quadratic generator. When there are no con-
straints, the 2BSDE can be written as follows:

Yt = ξ −
∫ T

t
Zs dBs −

∫ T

t
F̂s(Zs) ds + KP

T − KP
t , P − a.s., ∀P ∈ PH

and the generator is given by

F̂t(z) := Ft(ω, z, â) = bz + b2

2βâ
.

Then, the corresponding BSDEs can be solved explicitly with the same generator under
each P. By setting

Mt = e− ∫ t
0

1
2 b2â−1

s ds−∫ t
0 b̂a−1

s dBs ,
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and applying Itô’s formula to yP
t Mt, we have

yP
0 = EP

[
ξ MT − b2

2β

∫ T

0
â−1

s Msds
]

.

Since a ≤ â ≤ a, we derive that

yP
0 ≤ ξ − 1

2β

b2

a
T.

Therefore, by the representation of Y, we have

Y0 ≤ ξ − 1
2β

b2

a
T.

Moreover, under the specific probability measure Pa ∈ PH, we have

yPa

0 = ξ − 1
2β

b2

a
T.

It implies that Y0 = yPa

0 , which means that the robust utility maximization problem
is degenerated and is equivalent to a standard utility maximization problem under the
probability measure Pa . This result is discussed in more details in Example 7.3 below.

7.2. Example 2: Nondeterministic Payoff

In this subsection, we consider a nondeterministic payoff ξ = −B2
T. As in the first

example, there are no constraints on trading strategies. Then, the 2BSDE has a linear
generator. We can verify that −B2

T can be written as the limit under the norm ‖·‖L
2,κ
H

of

a sequence which is in UCb(�), and thus is in L2,κ
H , which is the terminal condition set

for 2BSDEs with Lipschitz generator (these sets are defined in Section 2.2). Here, we
suppose that b is a deterministic continuous function of time t.

By the same method as in the previous example, let

Mt = e− ∫ t
0

1
2 b2

s â−1
s ds−∫ t

0 bs â−1
s dBs ,

then we obtain

yP
0 = EP

[
−MT B2

T −
∫ T

0

b2
s

2β
â−1

s Msds
]

.

By applying Itô’s formula to Mt Bt, we have

d Mt Bt = MtdBt + Btd Mt − bt Mtdt.

Since b is deterministic, by taking expectation under P and localizing if necessary, we
obtain

EP [MT BT] = EP

[
−

∫ T

0
bt Mtdt

]
= −

∫ T

0
btdt.



282 A. MATOUSSI, D. POSSAMAÏ, AND C. ZHOU

Again, by applying Itô’s formula to −Mt B2
t , we have

−d Mt B2
t = −2Mt BtdBt − B2

t d Mt − ât Mtdt + 2bt Mt Btdt.

Therefore, yP
0 can be rewritten as

yP
0 = EP

[∫ T

0
−Mt

(
ât + b2

t

2βât

)
dt

]
−

∫ T

0
2bt

(∫ t

0
bsds

)
dt.

By analyzing the map g : x ∈ R+ �−→ x − b2
t

2βx , we know that g′(x) = 1 − b2
t

2βx2 , imply-

ing that g is nondecreasing when x2 ≥ b2
t

2β
.

Let it now be assumed that b is a deterministic positive continuous and nondecreasing
function of time t such that

b2
0

2β
≤ a2 ≤ a2 ≤ b2

T

2β
.

Let t be such that
b2

t

2β
= a and t be such that

b2
t

2β
= a, and define

a∗
t := a10≤t<t + bt√

2β
1t≤t<t + a1t≤t≤T, 0 ≤ t ≤ T,

then as in Example 7.1, we can show that Pa∗
is an optimal probability measure, which

is not of Bang–Bang type.

7.3. Example 3: Merton’s Approach for Robust Power Utility

Here, we deal with robust power utility. As in Example 7.1, we suppose that b is a
constant in R and ξ = 0. First, we consider the case where A = R. From Theorem 5.2,
F̂t(z) can be rewritten as

F̂t(z) = γ
∣∣ − â1/2

t z + b̂a−1/2
t

∣∣2

2(1 + γ )
+ 1

2

∣∣̂a1/2
t z

∣∣2
,

which is quadratic and linear in z.
Then the corresponding BSDEs can be solved explicitly under each probability mea-

sure P. We use an exponential transformation and let

α := 1 + γ

1 + γ
, y′P := e−αyP

, z′P := e−αyP

zP.

By applying Itô’s formula, we know that (y′P, z′P) is the solution of the following
linear BSDE:

dy′Pt = −αy′Pt

[
γ

2(1 + γ )

(
b2â−1

t − 2bzP
t

)
dt + z′PtdBt

]
,

with the terminal condition y′PT = 1.
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For t ∈ [0, T], let

λt := αγ

2(1 + γ )
b2â−1

t , ηt := − γ

2(1 + γ )
2b̂a−1/2

t , and Mt := e
∫ t

0 λs− η2
s
2 ds+∫ t

0 â−1/2
s ηs dBs .

By applying Itô’s formula to y′Pt Mt, we obtain

y′Pt = EP
t [MT/Mt] , so yP

0 = − 1
α

ln
(
EP [MT]

)
.

Since a ≤ â ≤ a, we derive that

yP
0 ≤ − γ

2(1 + γ )
b2

a
T.

Thus by the representation of Y, we have

Y0 ≤ − γ

2(1 + γ )
b2

a
T.

Moreover, under the specific probability measure Pa ∈ PH, we have

yPa

0 = − γ

2(1 + γ )
b2

a
T.

It implies that Y0 = yPa

0 . Thus, the value of the robust power utility maximization problem
is

V(x) = − 1
γ

x−γ exp (Y0) .

As in Example 7.1, the robust utility maximization problem degenerates, and becomes
a standard utility maximization problem under the probability measure Pa . In order
to shed more light on this somehow surprising result, we first recall the HJB equation
obtained by Merton (1969) in the standard utility maximization problem

−∂v
∂t

− sup
δ∈A

[Lδ,αv(t, x)] = 0

together with the terminal condition

v(T, x) = U(x) := − x−γ

γ
, x ∈ R+, γ > 0,

where

Lδ,αv(t, x) = xδb
∂v
∂x

+ 1
2

x2δ2α
∂2v
∂x2

,

with a constant volatility α1/2.
It turns out that, when A = R, the value function is given by

v(t, x) = exp
(

b2

2α

−γ

(1 + γ )
(T − t)

)
U(x), (t, x) ∈ [0, T] × R+.
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Let α = a, we have v(0, x) = V(x), which is the result given by our 2BSDE method.
Intuitively and formally speaking (in the case of controls taking values in compact sets,
it has actually been proved under other technical conditions in Talay and Zheng 2002
that the solution to the stochastic game we consider is indeed a viscosity solution of the
equation below, see also Remark 7.2), the HJB equation for the robust maximization
problem should then be

−∂v
∂t

− sup
δ∈A

α ∈ [a, a] inf [Lδ,αv(t, x)] = 0

together with the terminal condition v(T, x) = U(x), x ∈ R+.
Note that the value function obtained from our 2BSDE approach solves the above

PDE, confirming the intuition that it is the correct PDE to consider in this context. Now
assume that A = R. If the second derivative of v is positive, then the term

sup
δ∈A

inf
α∈[a,a]

[Lδ,αv(t, x)]

becomes infinite, so the above PDE has no meaning. It implies that v should be concave.
Then a is the minimizer. It explains why the robust utility maximization problem degen-
erates in the case A = R. From a financial point of view, this is the same type of result
as in the problem of superreplication of an option with convex payoff under volatility
uncertainty. Then, similarly to the so-called robustness of the Black–Scholes formula,
this leads to the fact that the probability measure with the highest volatility corresponds
to the worst case for the investor. However, it is clear that when, for instance, we impose
no short-sale and no large sales constraints (that is to say A is a segment), the problem
should not degenerate and the optimal probability measure switches between the two
bounds a and a.

Finally, notice that using the language of G-expectation introduced by Peng (2010), if
we let

G(�) = 1
2

sup
a≤α≤a

α� = 1
2

(
a (�)+ − a (�)−

)
,

then the above PDE can be rewritten as follows:

− ∂v
∂t

+ inf
δ∈A

[Lδ,a,av(t, x)] = 0,(7.1)

where

Lδ,a,av(t, x) = x2δ2G
(

− ∂2v
∂x2

)
.

Then, our PDE plays the same role for Merton’s PDE as the Black–Scholes–Barenblatt
PDE plays for the usual Black–Scholes PDE, by replacing the second-order derivative
terms by their nonlinear versions.

REMARK 7.1. It could be interesting to consider more general constraints for the
volatility process. For instance, we may hope to consider cases where a can become 0 and
a can become +∞. From the point of view of existence and uniqueness of the 2BSDEs
with quadratic growth considered here, all the results still hold, since there is no uniform
bound on â for the set of probability measures considered in Possamaı̈ and Zhou (2012,
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see definition 2.2). However, the boundedness assumption is crucial to retain the BMO
integrability of the optimal strategy and thus also crucial for our proofs. We think that
without it, the problem could still be solved but by now using the dynamic programming
and PDE approach that we mentioned. However, delicate problems would arise in the
sense that on the one hand, if a = 0, then the PDE will become degenerate and one
should then have to consider solutions in the viscosity sense, and on the other hand, if
a = +∞, the PDE will have to be understood in the sense of boundary layers.

Another possible generalization would be to consider time-dependent or stochastic
uncertainty sets for the volatility. It would be possible if we were able to weaken As-
sumption 2.3(i), which was already crucial in the proofs of existence and uniqueness in
Soner et al. (2012). One first step in this direction has been taken by Nutz (2013) where
he defines a notion of G-expectation (which roughly corresponds to a 2BSDE with a
generator equal to 0) with a stochastic domain of volatility uncertainty.

REMARK 7.2. In Tevzadze et al. (2012), a similar problem of robust utility maximization
is considered. They consider a financial market consisting of a riskless asset, a risky asset
with unknown drift and volatility, and a nontradable asset with known coefficients.
Their aim is to solve the robust utility maximization problem without terminal liability
and without constraints for exponential and power utilities, by means of the dynamic
programming approach already used in Talay and Zheng (2002). They managed to show
that the value function of their problem solves a PDE similar to (7.1), and also that
(see proposition 2.2) the optimal probability measure was of Bang–Bang type, thus
confirming our intuition in their particular framework. Besides, they give some semi-
explicit characterization of the optimal strategies and of the optimal probability measures.
From a technical point of view, the main difference between our two approaches, beyond
the methodology used, is that their set of generalized controls (that is to say their set of
probability measures) is compact for the weak topology, because it corresponds to the
larger setPW defined in Section 2. It is also the framework adopted in Denis and Kervarec
(2007). However, as shown in Denis and Martini (2006) for instance, our smaller set PH

is only relatively compact for the weak topology. Nonetheless, working with this smaller
set has no effect from the point of view of applications, and more importantly makes it
possible to obtain results which are not attainable by their PDE methods, for instance
with non-Markovian terminal liability ξ and also when the set of trading strategies is
constrained in an arbitrary closed set.
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We present a novel efficient algorithm for portfolio selection which theoretically
attains two desirable properties:

1. Worst-case guarantee: the algorithm is universal in the sense that it asymptot-
ically performs almost as well as the best constant rebalanced portfolio deter-
mined in hindsight from the realized market prices. Furthermore, it attains the
tightest known bounds on the regret, or the log-wealth difference relative to the
best constant rebalanced portfolio. We prove that the regret of the algorithm is
bounded by O(log Q), where Q is the quadratic variation of the stock prices. This
is the first improvement upon Cover’s (1991) seminal work that attains a regret
bound of O(log T), where T is the number of trading iterations.

2. Average-case guarantee: in the Geometric Brownian Motion (GBM) model of
stock prices, our algorithm attains tighter regret bounds, which are provably
impossible in the worst-case. Hence, when the GBM model is a good approx-
imation of the behavior of market, the new algorithm has an advantage over
previous ones, albeit retaining worst-case guarantees.

We derive this algorithm as a special case of a novel and more general method for
online convex optimization with exp-concave loss functions.1

KEY WORDS: regret minimization, portfolio selection, online convex optimization.

1. INTRODUCTION

A widely used model in mathematical finance for stock prices is the Geometric Brownian
Motion (GBM). This model has been successfully applied to study and price financial
instruments, and is the basis of much investing in practice. However, while it is often
an acceptable approximation, the GBM model is not always valid empirically. This
motivates a worst-case approach to investing, called universal portfolio management,
where the objective is to maximize wealth relative to the wealth earned by the best fixed
portfolio in hindsight. In this paper, we tie the two approaches, and design an investment
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strategy which is universal in the worst case, and yet capable of significantly improved
performance when the market is closely approximated by the GBM model.

“Average-case” Investing. Much of mathematical finance theory is devoted to the mod-
eling of stock prices and devising investment strategies that maximize wealth gain (while
controlling risk). Typically, such investment strategies involve estimating fitting a para-
metric model of stock prices to observed data. Such strategies are geared to the average-
case market (in the formal computer science sense), and are naturally susceptible to
drastic deviations from the model, as witnessed in the recent stock market crash.

Even so, empirically the GBM (Osborne 1959; Bachelier 1900) has enjoyed great
predictive success and every year significant investments are made assuming this model.
One illustration of its wide acceptability is that Black and Scholes (1973) used this same
model in their Nobel prize-winning work on pricing options on stocks.

“Worst-case” Investing. The fragility of average-case models in the face of rare but
dramatic deviations led Cover (1991) to take a worst-case approach to investing in
stocks. The performance of an online investment algorithm for arbitrary sequences of
stock price returns is measured with respect to the best constant rebalanced portfolio
(CRP; see Cover 1991) in hindsight. A universal portfolio selection algorithm is one that
obtains sublinear (in the number of trading periods T) regret, which is the difference in
the logarithms of the final wealths obtained by the two.

Cover (1991) gave the first universal portfolio selection algorithm with regret bounded
by O(log T). There has been much follow-up work after Cover’s seminal work, such as
Helmbold et al. (1998), Merhav and Feder (1993), Kalai and Vempala (2003), Blum and
Kalai (1900), and Hazan, Agarwal, and Kale (2007), which focused on either obtaining
alternate universal algorithms or improving the efficiency of Cover’s algorithm. However,
the best regret bound is still O(log T).

This dependence of the regret on the number of trading periods is not entirely satisfac-
tory for two main reasons. First, a priori it is not clear why the online algorithm should
have high regret (growing with the number of iterations) in an unchanging environment.
As an extreme example, consider a setting with two stocks where one has an “upward
drift” of 1% daily, whereas the second stock remains at the same price. One would expect
to “figure out” this pattern quickly and focus on the first stock, thus attaining a constant
fraction of the wealth of the best CRP in the long run, i.e., constant regret, unlike the
worst-case bound of O(log T).

The second problem arises from trading frequency. Suppose we need to invest over
a fixed period of time, say a year. Trading more frequently potentially leads to higher
wealth gain, by capitalizing on short-term stock movements. However, increasing trading
frequency increases T , and thus one may expect more regret. The problem is actually
even worse: since we measure regret as a difference of logarithms of the final wealths, a
regret bound of O(log T) implies a polynomial in T factor ratio between the final wealths.
In reality, however, experiments by Agarwal et al. (2006) show that some known online
algorithms actually improve with increasing trading frequency.

Bridging Worst-case and Average-case Investing. Both these issues are resolved if one
can show that the regret of a “good” online algorithm depends on total variation in
the sequence of stock returns, rather than purely on the number of iterations. If the
stock return sequence has low variation, we expect our algorithm to be able to perform
better. If we trade more frequently, then the per iteration variation should go down
correspondingly, so the total variation stays the same.
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We analyze a portfolio selection algorithm and prove that its regret is bounded by
O(log Q), where Q (formally defined in Section 1.2) is the sum of squared deviations of
the returns from their mean. Since Q ≤ T (after appropriate normalization), we improve
over previous regret bounds and retain the worst-case robustness. Furthermore, in an
average-case model such as GBM, the variation can be tied very nicely to the volatility
parameter, which explains the experimental observation the regret does not increase with
increasing trading frequency. Our algorithm is efficient, and its implementation requires
constant time per iteration (independent of the number of game iterations).

1.1. New Techniques and Comparison to Related Work

Cesa-Bianchi, Mansour, and Stoltz (2007) initiated work on relating worst-case regret
to the variation in the data for the related learning problem of prediction from expert
advice, and conjectured that the optimal regret bounds should depend on the observed
variation of the cost sequence. Recently, this conjecture was proved and regret bounds
of Õ(

√
Q) were obtained in the full information and bandit linear optimization settings

(Hazan and Kale 2010, 2011), where Q is the variation in the cost sequence. In this
paper, we give an exponential improvement in regret, viz. O(log Q), for the case of online
exp-concave optimization, which includes portfolio selection as a special case.

Another approach to connecting worst-case to average-case investing was taken by
Jamshidian (1992) and Cross and Barron (2003). They considered a model of “continuous
trading,” where there are T “trading intervals,” and in each the online investor chooses
a fixed portfolio which is rebalanced k times with k → ∞. They prove familiar regret
bounds of O(log T) (independent of k) in this model w.r.t. the best fixed portfolio which
is rebalanced T × k times. In this model our algorithm attains the tighter regret bounds
of O(log Q), although our algorithm has more flexibility. Furthermore their algorithms,
being extensions of Cover’s algorithm, may require exponential time in general.2

Our bounds of O(log Q) regret require completely different techniques compared to
the Õ(

√
Q) regret bounds of Hazan and Kale (2010, 2011). These previous bounds are

based on first-order gradient descent methods which are too weak to obtain O(log Q)
regret. Instead we have to use the second-order Newton step ideas based on Hazan et al.
(2007) (in particular, the Hessian of the cost functions).

The second-order techniques of Hazan et al. (2007) are, however, not sensitive enough
to obtain O(log Q) bounds. This is because progress was measured in terms of the
distance between successive portfolios in the usual Euclidean norm, which is insensitive
to variation in the cost sequence. In this paper, we introduce a different analysis technique,
based on analyzing the distance between successive predictions using norms that keep
changing from iteration to iteration and are actually sensitive to the variation.

A key technical step in the analysis is a lemma (Lemma 2.3) which bounds the sum
of differences of successive Cesaro means of a sequence of vectors by the logarithm of
its variation. This lemma, which may be useful in other contexts when variation bounds
on the regret are desired, is proved using the Kahn–Karush–Tucker conditions, and also
improves the regret bounds in previous papers.

2 Cross and Barron give an efficient implementation for some interesting special cases, under assumptions
on the variation in returns and bounds on the magnitude of the returns, and assuming k → ∞. A truly
efficient implementation of their algorithm can probably be obtained using the techniques of Kalai and
Vempala.
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1.2. The Model and Statement of Results

Portfolio Management. In the universal portfolio management model Cover (1991), an
online investor iteratively distributes her wealth over n assets before observing the change
in asset price. In each iteration t = 1, 2, . . . the investor commits to an n-dimensional
distribution of her wealth, xt ∈ �n = {

∑
ixi = 1, x ≥ 0}. She then observes a price relatives

vector rt ∈ Rn
+, where rt(i) is the ratio between the closing price of the i th asset on trading

period t and the opening price. In the tth trading period, the wealth of the investor
changes by a factor of (rt · xt). The overall change in wealth is thus

∏
t(rt · xt). Since in

a typical market wealth grows at an exponential rate, we measure performance by the
exponential growth rate, which is log

∏
t(rt · xt) = ∑

tlog (rt · xt). A constant rebalanced
portfolio (CRP) is an investment strategy which rebalances the wealth in every iteration
to keep a fixed distribution. Thus, for a CRP x ∈ �n, the change in wealth is

∏
t(rt · x).

The regret of the investor is defined to be the difference between the exponential growth
rate of her investment strategy and that of the best CRP strategy in hindsight, i.e.,

Regret := max
x∗∈�n

∑
t

log(rt · x∗) −
∑

t

log(rt · xt).

Note that the regret does not change if we scale all the returns in any particular period
by the same amount. So we assume w.l.o.g. that in all periods t, max irt(i) = 1. We assume
that there is known parameter r > 0, such that for all periods t, min t,irt(i) ≥ r. We call
r the market variability parameter. This is the only restriction we put on the stock price
returns; they could be chosen adversarially as long as they respect the market variability
bound.

Online Convex Optimization. In the online convex optimization problem Zinkevich
(2003), which generalizes universal portfolio management, the decision space is a closed,
bounded, convex set K ∈ Rn , and we are sequentially given a series of convex cost3

functions ft : K → R for t = 1, 2, . . . . The algorithm iteratively produces a point xt ∈ K
in every round t, without knowledge of ft (but using the past sequence of cost functions),
and incurs the cost ft(xt). The regret at time T is defined to be

Regret :=
T∑

t=1

ft(xt) − min
x∈K

T∑
t=1

ft(x).

In this paper, we restrict our attention to convex cost functions which can be written as
ft(x) = g(vt · x) for some univariate convex function g and a parameter vector vt ∈ Rn

(for example, in the portfolio management problem, K = �n, ft(x) = −log (rt · x), g =
−log , and vt = rt).

Thus, the cost functions are parameterized by the vectors v1, v2, . . ., vT . Our bounds
will be expressed as a function of the quadratic variability of the parameter vectors v1,
v2, . . ., vT , defined as

Q(v1, . . . , vT) := min
μ

T∑
t=1

‖vt − μ‖2.

3 Note the difference from the portfolio selection problem: here we have convex cost functions, rather than
concave payoff functions. The portfolio selection problem is obtained by using −log as the cost function.
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This expression is minimized at μ = 1
T

∑T
t=1 vt, and thus the quadratic variation is just

T − 1 times the sample variance of the sequence of vectors {v1, . . . , vt}. Note however
that the sequence can be generated adversarially rather than by some stochastic process.
We shall refer to this as simply Q if the vectors are clear from the context.

Main Theorem. In the setup of the online convex optimization problem above, we have
the following algorithmic result:

THEOREM 1.1. Let the cost functions be of the form ft(x) = g(vt · x) . Assume that there
are parameters R, D, a, b > 0 such that the following conditions hold:

1. for all t, ‖vt‖ ≤ R,
2. for all x ∈ K, we have ‖x‖ ≤ D,
3. for all x ∈ K, and for all t, either g′(vt · x) ∈ [0, a] or g′(vt · x) ∈ [ − a, 0], and
4. for all x ∈ K, and for all t, g′′(vt · x) ≥ b.

Then there is an algorithm that guarantees the following regret bound:

Regret = O((a2n/b) log(1 + bQ + bR2) + a RD log(1 + Q/R2) + D2).

Now we apply Theorem 1.1 to the portfolio selection problem. First, we estimate the
relevant parameters. We have ‖rt‖ ≤ √

n since all rt(i) ≤ 1, thus R = √
n. For any x ∈

�n, ‖x‖ ≤ 1, so D = 1. g′(vt · x) = − 1
(vt ·x) , and thus g′(vt · x) ∈ [− 1

r , 0], so a = 1
r . Finally,

g′′(vt · x) = 1
(vt ·x)2 ≥ 1, so b = 1. Applying Theorem 1.1 we get the following corollary:

COROLLARY 1.2. For the portfolio selection problem over n assets, there is an algorithm
that attains the following regret bound:

Regret = O
( n

r 2
log(Q + n)

)
.

2. BOUNDING THE REGRET BY THE OBSERVED
VARIATION IN RETURNS

2.1. Preliminaries

All matrices are assumed to be real symmetric matrices in Rn×n , where n is the number
of stocks. We use the notation A � B to say that A − B is positive semidefinite. We
require the notion of a norm of a vector x induced by a positive definite matrix M,
defined as ‖x‖M =

√
xMx. The following simple generalization of the Cauchy–Schwartz

inequality is used in the analysis:

∀x, y ∈ Rn : x · y ≤ ‖x‖M‖y‖M−1 .

We denote by |A| the determinant of a matrix A, and by A•B = Tr(AB) =∑
ijAijBij. As

we are concerned with logarithmic regret bounds, potential functions which behave like
harmonic series come into play. A generalization of harmonic series to high dimensions
is the vector-harmonic series, which is a series of quadratic forms that can be expressed
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as (here A�0 is a positive definite matrix, and v1, v2, . . . are vectors in Rn):

v
1

(
A+ v1v

1

)−1
v1, v

2

(
A+ v1v

1 + v2v
2

)−1
v2, . . . , v

t

(
A+

t∑
τ=1

vτ v
τ

)−1

vt, . . .

The following lemma is from Hazan et al. (2007) (and proven in Appendix A for com-
pleteness):

LEMMA 2.1. For a vector harmonic series given by an initial matrix A and vectors v1,
v2, . . . , vT , we have

T∑
t=1

v
t

(
A+

t∑
τ=1

vτ v
τ

)−1

vt ≤ log

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣A+
T∑

τ=1

vτ v
τ

∣∣∣∣∣
|A|

⎤
⎥⎥⎥⎥⎥⎦ .

The reader can note that in one dimension, if all vectors vt = 1 and A = 1, then the
series above reduces exactly to the regular harmonic series whose sum is bounded, of
course, by log (T + 1).

Henceforth, we will denote by
∑

t the summation
∑T

t=1.

2.2. Algorithm and Analysis

We analyze the following algorithm and prove that it attains logarithmic regret with
respect to the observed variation (rather than number of iterations). The algorithm
follows the generic algorithmic scheme of “Follow-The-Regularized-Leader” (FTRL)
with squared Euclidean regularization.

Algorithm Exp-Concave-FTL. In iteration t, use the point xt defined as:

xt � arg min
x∈�n

(
t−1∑
τ=1

fτ (x) + 1
2
‖x‖2

)
.(2.1)

Note the mathematical program which the algorithm solves is convex, and can be
solved in time polynomial in the dimension and number of iterations. The running time,
however, for solving this convex program can be quite high. In Section 4, for the specific
problem of portfolio selection, where ft(x) = −log (rt · x), we give a faster implementation
whose per iteration running time is independent of the number of iterations.

We now proceed to prove Theorem 1.1.

Proof [Theorem 1.1]. First, we note that the algorithm is running a “Follow-the-
leader” procedure on the cost functions f 0, f 1, f 2, . . . where f0(x) = 1

2‖x‖2 is a fictitious
period 0 cost function. In other words, in each iteration, it chooses the point that would
have minimized the total cost under all the observed functions so far (and, additionally,
a fictitious initial cost function f 0). This point is referred to as the leader in that round.

The first step in analyzing such an algorithm is to use a stability lemma from Kalai
and Vempala (2005), which bounds the regret of any Follow-the-leader algorithm by the
difference in costs (under ft) of the current prediction xt and the next one xt+1, plus an
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additional error term which comes from the regularization. Thus, we have (recall the
notation

∑
t ≡ ∑T

t=1)

Regret ≤
∑

t

ft(xt) − ft(xt+1) + 1
2

(‖x∗‖2 − ‖x0‖2)

≤
∑

t

∇ ft(xt) · (xt − xt+1) + 1
2

D2

=
∑

t

g′(vt · xt)[vt · (xt − xt+1)] + 1
2

D2

(2.2)

The second inequality is because ft is convex. The last equality follows because ∇ft(xt) =
g′(xt · vt)vt. Now, we need a handle on xt − xt+1. For this, define Ft = ∑t−1

τ=0 fτ , and note
that xt minimizes ft over K. Consider the difference in the gradients of Ft+1 evaluated at
xt+1 and xt:

∇Ft+1(xt+1) − ∇Ft+1(xt) =
t∑

τ=0

∇ fτ (xt+1) − ∇ fτ (xt)

=
t∑

τ=1

[
g′(vτ · xt+1) − g′(vτ · xt)

]
vτ + (xt+1 − xt)

=
t∑

τ=1

[∇g′(vτ · ζ t
τ

) · (xt+1 − xt)
]
vτ + (xt+1 − xt)

(2.3)

=
t∑

τ=1

g′′(vτ · ζ t
τ

)
vτ v

τ (xt+1 − xt) + (xt+1 − xt).(2.4)

Equation (2.3) follows by applying the Taylor expansion of the (multi-variate) function
g′(vτ · x) at point xt, for some point ζ t

τ on the line segment joining xt and xt+1. The
equation (2.4) follows from the observation that ∇g′(vτ · x) = g′′(vτ · x)vτ .

Define At = ∑t
τ=1 g′′(vτ · ζ t

τ )vτ v
τ + I, where I is the identity matrix, and �xt = xt+1

− xt. Then equation (2.4) can be rewritten as:

∇Ft+1(xt+1) − ∇Ft(xt) − g′(vt · xt)vt = At�xt.(2.5)

Now, since xt minimizes the convex function ft over the convex set K, a standard inequal-
ity of convex optimization (see Boyd and Vandenberghe 2004) states that for any point
y ∈ K, we have ∇ft(xt) · (y − xt) ≥ 0. Thus, for y = xt+1, we get that ∇ft(xt) · (xt+1 − xt)
≥ 0. Similarly, we get that ∇Ft+1(xt+1) · (xt − xt+1) ≥ 0. Putting these two inequalities
together, we get that

(∇Ft+1(xt+1) − ∇Ft(xt)) · �xt ≤ 0.(2.6)

Thus, using the expression for At�xt from (2.5) we have

‖�xt‖2
At

= At�xt · �xt

= (∇Ft+1(xt+1) − ∇Ft(xt) − g′(vt · xt)vt) · �xt

≤ g′(vt · xt)[vt · (xt − xt+1)]

(2.7)

(from (2.6)).
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Assume that g′(vt · x) ∈ [−a, 0] for all x ∈ K and all t. The other case is handled
similarly. Inequality (2.7) implies that g′(vt · xt) and vt · (xt − xt+1) have the same sign.
Thus, we can upper bound

g′(vt · xt)[vt · (xt − xt+1)] ≤ a(vt · �xt).(2.8)

Define ṽt = vt − μt, μt = 1
t+1

∑t
τ=1 vτ . Then, we have

∑
t

vt · �xt =
∑

t

ṽt · �xt +
T∑

t=2

xt(μt−1 − μt) − x1μ1 + xT+1μT,(2.9)

Now, define ρ = ρ(v1, . . . , vT) = ∑T−1
t=1 ‖μt+1 − μt‖. Then we bound

T∑
t=2

xt(μt−1 − μt) − x1μ1 + xT+1μT

≤
T∑

t=2

‖xt‖‖μt−1 − μt‖ + ‖x1‖‖μ1‖ + ‖xT+1‖‖μT‖

≤ Dρ + 2DR.

(2.10)

We will bound ρ momentarily. For now, we turn to bounding the first term of (2.9) using
the Cauchy–Schwartz generalization as follows:

ṽt · �xt ≤ ‖ṽt‖A−1
t

‖�xt‖At .(2.11)

By the usual Cauchy–Schwartz inequality,

∑
t

‖ṽt‖A−1
t

‖�xt‖At ≤
√∑

t

‖ṽt‖2
A−1

t
·
√∑

t

‖�xt‖2
At

≤
√∑

t

‖ṽt‖2
A−1

t
·
√∑

t

a(vt · �xt)

from (2.7) and (2.8). We conclude, using (2.9), (2.10), and (2.11), that

∑
t

a(vt · �xt) ≤ a
√∑

t

‖ṽt‖2
A−1

t
·
√∑

t

a(vt · �xt) + aDρ + 2aDR.

This implies (using the AM-GM inequality applied to the first term on the RHS) that∑
t

a(vt · �xt) ≤ a2
∑

t

‖ṽt‖2
A−1

t
+ 2aDρ + 4aDR.

Plugging this into the regret bound (2.2) we obtain, via (2.8),

Regret ≤ a2
∑

t

‖ṽt‖2
A−1

t
+ 2aDρ + 4aDR + 1

2
D2.

The proof is completed by the following two lemmas (Lemmas 2.2 and 2.3) which
bound the RHS. The first term is a vector harmonic series, and the second term can be
bounded by a (regular) harmonic series. �
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LEMMA 2.2.
∑

t ‖ṽt‖2
A−1

t
≤ 5n

b log
[
1 + bQ + bR2

]
.

Proof . We have At = ∑t
τ=1 g′′(vτ · ζ t

τ )vτ v
τ + I. Since g′′(vt · ζ t

τ ) ≥ b, we have At �
I + b

∑t
τ=1 vτ v

τ . Using the fact that ṽt = vt − μt and μt = 1
t+1

∑
τ≤t vτ we get that

t∑
τ=1

ṽτ ṽ
τ =

t∑
s=1

(
vs − 1

s + 1

∑
τ≤s

vτ

)(
vs − 1

s + 1

∑
τ≤s

vτ

)

=
t∑

s=1

(
1 +

t∑
τ=s

1
(τ + 1)2

− 2
s + 1

)
vsv

s

+
t∑

s=1

∑
r<s

(
− 1

s + 1
+

t∑
τ=s

1
(τ + 1)2

) [
vr v

s + vsv
r

]
.

Since

1
s + 1

− 1
t + 2

=
∫ t+2

s+1

1
x2

dx ≤
t∑

τ=s

1
(τ + 1)2

≤
∫ t+1

s

1
x2

dx = 1
s

− 1
t + 1

,(2.12)

we get that ∣∣∣∣∣− 1
s + 1

+
t∑

τ=s

1
(τ + 1)2

∣∣∣∣∣ ≤ 1
s2

+ 1
t
.(2.13)

Since (vr ± vs)(vr ± vs) � 0, we have (vr v
r + vsv

s ) � ±(vr v
s + vsv

r ), and so(
− 1

s + 1
+

t∑
τ=s

1
(τ + 1)2

) [
vr v

s + vsv
r

] �
∣∣∣∣∣− 1

s + 1
+

t∑
τ=s

1
(τ + 1)2

∣∣∣∣∣ [vr v
r + vsv

s

]

�
(

1
s2

+ 1
t

) [
vr v

r + vsv
s

]
,

by (2.13). Also by (2.12), we have (1 + ∑t
τ=s

1
(τ+1)2 − 2

s+1 ) ≤ 1 + 1
s − 1

t+1 − 2
s+1 ≤ 1, so

we have

t∑
τ=1

ṽτ ṽ
τ �

t∑
s=1

vsv
s +

t∑
s=1

∑
r<s

(
1
s2

+ 1
t

) [
vr v

r + vsv
s

]

� 3
t∑

s=1

vsv
s +

t∑
s=1

(
1
s2

+ 1
t

)∑
r<s

vr v
r

� 3
t∑

s=1

vsv
s +

t∑
s=1

vsv
s

t∑
r=s+1

(
1
r 2

+ 1
t

)

� 3
t∑

s=1

vsv
s +

t∑
s=1

(
1 + 1

s

)
vsv

s

� 5
t∑

s=1

vsv
s .
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Let Ãt = I + b
∑

τ ṽτ ṽ
τ . Note that the inequality above shows that Ãt � 5At. Thus,

using Lemma 2.1, we get

∑
t

‖ṽt‖2
A−1

t
=
∑

t

ṽt A−1
t ṽt ≤ 5

b

∑
t

[
√

bṽt] Ã−1
t [

√
bṽt] ≤ 5

b
log

[
|ÃT|
|Ã0|

]
.(2.14)

To bound the latter quantity note that |Ã0| = |I| = 1, and that

|ÃT| = |I + b
∑

t

ṽt ṽ
t | ≤

(
1 + b

∑
t

‖ṽt‖2
2

)n

= (1 + bQ̃)n

where Q̃ = ∑
t ‖ṽt‖2 = ∑

t ‖vt − μt‖2. Lemma 2.4 shows that Q̃ ≤ Q + R2. This implies
that |ÃT| ≤ (1 + bQ + bR2)n and the proof is completed by substituting this bound into
(2.14). �

LEMMA 2.3. ρ(v1, . . ., vT ) ≤ 4R[log (1 + Q/R2) + 2].

Proof . Define, for τ = 0, 1, 2, . . ., T , the vector uτ = vτ − μ, where μ = 1
T

∑T
t=1 vt.

Let v0 = 0 and u0 = −μ. We have

T∑
t=1

‖ut‖2 =
T∑

t=1

‖vt − μ‖2 = Q.

We have

‖μt+1 − μt‖ =
∥∥∥∥∥ 1

t + 2

t+1∑
τ=0

vτ − 1
t + 1

t∑
τ=0

vτ

∥∥∥∥∥
=
∥∥∥∥∥ 1

t + 2

t+1∑
τ=0

uτ − 1
t + 1

t∑
τ=0

uτ

∥∥∥∥∥
≤ 1

(t + 1)2

t∑
τ=0

‖uτ‖ + 1
t + 1

‖ut+1‖.

Summing up over all iterations,

ρ =
T−1∑
t=1

‖μt+1 − μt‖ ≤
T−1∑
t=1

(
1

(t + 1)2

t∑
τ=0

‖uτ‖ + 1
t + 1

‖ut+1‖
)

≤ ‖u0‖ ·
T−1∑
t=1

1
(t + 1)2

+
T∑

t=1

‖ut‖ ·
(

1
t

+
T−1∑
τ=t

1
(τ + 1)2

)

≤ ‖u0‖ +
T∑

t=1

2
t
‖ut‖

≤ 4R [log(1 + Q/R2) + 2].

The second inequality follows because
∑∞

τ=t
1

(τ+1)2 ≤ ∫∞
x=t

1
x2 dx = 1

t . The last inequality
uses the following facts:
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1. Since v0 = 0, u0 = −μ, and hence ‖u0‖ = ‖μ‖ ≤ R since for all t, ‖vt‖ ≤ R.
2. Note ‖ut‖ = ‖vt − μ‖ ≤ ‖vt‖ + ‖μ‖ ≤ 2R. Applying Lemma 2.5 below with xt =

‖ut‖/2R for t = 1, 2, . . ., T , and using the fact that
∑T

t=1 x2
t = ∑T

t=1 ‖ut‖2/4R2 ≤
Q/R2, we get that

T∑
t=1

2
t
‖ut‖ ≤ 4R(log(1 + Q/R2) + 1). �

LEMMA 2.4. Q̃ ≤ Q + R2.

Proof . Consider the Be-The-Leader (BTL) algorithm played on the sequence of cost
functions ct(x) = ‖vt − x‖2, for t = 0, 1, 2, . . ., T , with v0 = 0, when the convex domain is
the ball of radius R. The BTL algorithm is as follows. On round t, this algorithm chooses
the point that minimizes

∑t
τ=0 ct(x) over the domain. It is easy to see that this point

is exactly 1
t+1

∑t
τ=0 vt = μt. Thus, the cost of the algorithm is

∑t
τ=0 ‖vt − μt‖2 = Q̃,

since μ0 = v0 = 0, and the first period cost is thus 0. The best fixed point in hindsight
is μT . Thus, the cost of the best fixed point in hindsight, μT , is

∑t
τ=0 ‖vt − μT‖2 =

Q + ‖μT‖2. Kalai and Vempala (2005) prove that the BTL algorithm incurs 0 regret, i.e.,
Q̃ ≤ Q + ‖μT‖2 ≤ Q + R2. �

LEMMA 2.5. Suppose that 0 ≤ xt ≤ 1 and
∑

t x2
t ≤ Q. Then

T∑
t=1

xt

t
≤ log(1 + Q) + 1.

Proof . By Lemma 2.6, the values of xt that maximize
∑T

t=1 xt/t must have the follow-
ing structure: there is a k such that for all t ≤ k, we have xt = 1, and for any index t >

k, we have xk+1/xt ≥ (1/k)/(1/t), which implies that xt ≤ k/t. We first note that k ≤ Q,
since Q ≥ ∑k

t=1 x2
t = k. Now, we can bound the value as follows:

T∑
t=1

xt

t
≤

k∑
t=1

1
t

+
T∑

t=k+1

k
t2

≤ log(k + 1) + k · 1
k

= log(1 + Q) + 1. �

LEMMA 2.6. Let a1 ≥ a2 ≥ . . . an > 0. Then the optimal solution of

max

{∑
i

ai xi : 0 ≤ xi ≤ 1 and
∑

i

x2
i ≤ Q

}

has the following properties: x1 ≥ x2 ≥ . . . xn, and for any pair of indices i, j, with i < j,
either xi = 1, xi = 0 or xi/xj ≥ ai/aj.

Proof . The fact that in the optimal solution x1 ≥ x2 ≥ . . . xn is obvious, since otherwise
we could permute the xi’s to be in decreasing order and increase the value.
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The second fact follows by the Karush–Kuhn–Tucker (KKT) optimality conditions,
which imply the existence of constants μ, λ1, . . . , λn, ρ1, . . . , ρn for which the optimal
vector x satisfies (here ei is the i th standard basis vector, and a = (a1, a2, . . . , an)):

−a + 2μx +
∑

i

(λi + ρi )ei = 0.

By KKT theory, complementary slackness implies that the constants λi, ρ i are equal to
zero for all indices of the solution which satisfy xi �∈ {0, 1}. For these coordinates, the
KKT equation is

ai − 2μxi = 0,

which implies the lemma. �

3. IMPLICATIONS IN THE GEOMETRIC BROWNIAN MOTION MODEL

We begin with a brief description of the model. The model assumes that stocks can
be traded continuously, and that at any time, the fractional change in the stock price
within an infinitesimal time interval is normally distributed, with mean and variance
proportional to the length of the interval. The randomness is due to many infinitesimal
trades that jar the price, much like particles in a physical medium are jarred about by
other particles, leading to the classical Brownian motion.

Formally, the model is parameterized by two quantities, the drift μ, which is the long-
term trend of the stock prices, and volatility σ , which characterizes deviations from the
long-term trend. The parameter σ is typically specified as annualized volatility, i.e., the
standard deviation of the stock’s logarithmic returns in 1 year. Thus, a trading interval
of [0, 1] specifies 1 year. The model postulates that the stock price at time t, St, follows a
geometric Brownian motion with drift μ and volatility σ

d St = μStdt + σ StdWt,

where Wt is a continuous-time stochastic process known as the Wiener process or simply
Brownian motion. The Wiener process is characterized by three facts:

1. W 0 = 0,
2. Wt is almost surely continuous, and
3. for any two disjoint time intervals [s1, t1] and [s2, t2], the random variables Wt1 − Ws1

and Wt2 − Ws2 are independent zero mean Gaussian random variables with variance
t1 − s1 and t2 − s2, respectively.

Using Itō’s lemma (see, for example, Karatzas and Shreve 2004), it can be shown that
the stock price at time t is given by

St = S0 exp((μ − σ 2/2)t + σ Wt).(3.1)

Now, we consider a situation where we have n stocks in the GBM model. Let μ = (μ1,
μ2, . . . , μn) be the vector of drifts, and σ = (σ 1, σ 2, . . . , σ n) be the vector of (annualized)
volatilities. Suppose we trade for 1 year. We now study the effect of trading frequency
on the quadratic variation of the stock price returns. For this, assume that the year-long
trading interval is sub-divided into T equally sized intervals of length 1/T , and we trade
at the end of each such interval. Let rt = (rt(1), rt(2), . . ., rt(n)) be the vector of stock
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returns in the tth trading period. We assume that T is “large enough,” which is taken to
mean that it is larger than μ(i ), σ (i ), ( μ(i )

σ (i ) )2 for any i.
Then using the facts of the Wiener process stated above, we can prove the follow-

ing lemma, which shows that the expected quadratic variation is essentially the same
regardless of trading frequency, while its variance decreases with trading frequency.

LEMMA 3.1. In the setup of trading n stocks in the GBM model over 1 year with T
trading periods, where T � μ(i), σ (i) , ∀i, there is a vector v such that

E

[
T∑

t=1

‖rt − v‖2

]
≤ ‖σ‖2

(
1 + O

(
1
T

))

and

VAR

[
T∑

t=1

‖rt − v‖2

]
≤ 3‖σ‖4

T

(
1 + O

(
1
T

))
,

regardless of how the stocks are correlated.

Proof . For every stock i, it follows from the GBM equation for the stock prices
(St = S0 exp ((μ − σ 2/2)t + σWt) ) that its return rt(i) in period t is given by

rt(i ) = exp
((

μ(i ) − σ (i )2

2

)
1
T

+ σ (i )Xt(i )
)

,

where Xt(i ) ∼ N (0, 1
T ). Thus, for any given stock i, the returns r1(i), r2(i), . . . , rT (i) are

i.i.d. log-normal random variables, with parameters:

rt(i ) ∼ lnN
(

μ(i )
T

− σ (i )2

2T
,
σ (i )2

T

)

Recall that for a log-normal random variable X ∼ lnN (μ, σ 2) the mean and variance
are given by E[X] = eμ+σ 2/2 and VAR[X] = (eσ 2 − 1)e2μ+σ 2

.
Define the vector v as v(i ) = E[rt(i )] = eμ(i )/T. Then, assuming that T > μ(i), σ (i), we

have using the exponential approximation ex ≤ 1 + x + x2 for −1 ≤ x ≤ 1:

E[(rt(i ) − v(i ))2] = VAR(rt(i )) = (eσ (i )2/T − 1)e2μ(i )/T

≤
(

σ (i )2

T
+ O

(
1

T2

))
· e2μ(i )/T

≤ σ (i )2

T

(
1 + O

(
1
T

))
,

where the last equality uses the Taylor approximation of the exponential and the fact
that 2μ(i )

T � 1.
Summing up over all stocks i and all periods t, and using linearity of expectation, we

get the first part of the lemma:

E

[
T∑

t=1

‖rt − v‖2

]
=

T∑
t=1

n∑
i=1

E[(rt(i ) − v(i ))2] ≤ ‖σ‖2
(

1 + O
(

1
T

))
.



PORTFOLIO SELECTION WITH VARIATION-BOUNDED REGRET 301

As for the bound on the variance, we first bound the quantity E[(rt(i ) − v(i ))4],
using the fact that if X ∼ lnN (μ, σ 2), then Xa ∼ lnN (aμ, a2σ 2). We denote μ̃ =
μ(i )

T − σ (i )2

2T , σ̃ 2 = σ (i )2

T .

E[(rt(i ) − v(i ))4] = E[rt(i )4 − 4rt(i )3v(i ) + 6rt(i )2v(i )2 − 4rt(i )v(i )3 + v(i )4]

= e4μ̃+8σ̃ 2 − 4e3μ̃+ 9
2 σ̃ 2

eμ̃+σ̃ 2/2 + 6e2μ̃+2σ̃ 2
e2μ̃+σ̃ 2

− 4eμ̃+σ̃ 2/2e3μ̃+ 3
2 σ̃ 2 + e4μ̃+2σ̃ 2

= e4μ̃+8σ̃ 2 − 4e4μ̃+5σ̃ 2 + 6e4μ̃+3σ̃ 2 − 4e4μ̃+2σ̃ 2 + e4μ̃+2σ̃ 2

= e4μ̃(e8σ̃ 2 − 4e5σ̃ 2 + 6e3σ̃ 2 − 3e2σ̃ 2
)

= (eσ̃ 2 − 1)2e4μ̃(e6σ̃ 2 + 2e5σ̃ 2 + 3e4σ̃ 2 − 3e2σ̃ 2
)

≤
(

σ (i )4

T2
+ O

(
1

T3

))
· e4μ̃(e6σ̃ 2 + 2e5σ̃ 2 + 3e4σ̃ 2 − 3e2σ̃ 2

)

= σ (i )4

T2

(
3 + O

(
1
T

))
= 3σ (i )4

T2

(
1 + O

(
1
T

))
.

Above the fifth equality follows from the polynomial factorization:

x8 − 4x5 + 6x3 − 3x2 = (x − 1)2(x6 + 2x5 + 3x4 − 3x2).

Thus for all stocks i and time periods t, we have:

VAR[(rt(i ) − v(i ))2] ≤ E[(rt(i ) − v(i ))4] ≤ 3σ (i )4

T2

(
1 + O

(
1
T

))
.(3.2)

Now, we use the following inequality which follows from the Cauchy–Schwarz in-
equality: for any random variables X1, X2, . . . , Xn:

VAR

[
n∑

i=1

Xi

]
≤
(

n∑
i=1

√
VAR[Xi ]

)2

.

Hence, using inequality (3.2), we get:

VAR[‖rt − v‖2] ≤
(

n∑
i=1

√
VAR[(rt(i ) − v(i ))2]

)2

≤ 3‖σ‖4

T2

(
1 + O

(
1
T

))
.

Finally, using the fact that in the GBM model, the returns are independent between
periods we get

VAR

[
T∑

t=1

‖rt − v‖2

]
≤ 3‖σ‖4

T

(
1 + O

(
1
T

))
. �

Applying this bound in our algorithm, we obtain the following regret bound from
Corollary 1.2.
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THEOREM 3.2. In the setup of Lemma 3.1, for any δ > 0, with probability at least 1 −
δ, we have

Regret = O
(

n log
((

1 + 3√
δT

)
‖σ‖2 + n

))
.

Proof . First, we show that the market variability parameter, r, is 	(1) with high prob-
ability. Fix any stock i. The return rt(i) for stock i at time period t is a log-normal
random variable: rt(i) = exp (Nt(i)) where Nt(i ) ∼ N ((μ(i ) − σ (i )2

2 ) 1
T ,

σ (i )2

T ). Using stan-
dard tail bounds for normal variables (which is given in Lemma B.1 in the Appendix for
completeness), we have

Pr
[∣∣∣∣Nt(i ) −

(
μ(i ) − σ (i )2

2

)
1
T

∣∣∣∣ >
σ (i )√

T

√
2 log(2nT/δ)

]
< e− log(2nT/δ) = δ

2nT
.

Thus, assuming T � μ(i), σ (i), with probability at least 1 − δ
2nT , we have

|Nt(i )| = O
(

σ (i )√
T

√
log(nT/δ)

)
.

Since rt(i) = exp (Nt(i)), we conclude that with probability at least 1 − δ
2nT , we have

|rt(i ) − 1| = O
(

σ (i )√
T

√
log(nT/δ)

)
.

Applying a union bound over all stocks and all periods, we conclude that with probability
at least 1 − δ

2 , the market variability parameter r is at least 1 − O( σ√
T

√
log(nT/δ)) > 0.5,

if T > 	(σ 2log (nT/δ)).
Now we bound the total variation. Applying Chebyshev’s inequality to the random

variable
∑T

t=1 ‖rt − v‖2 and using Lemma 3.1, we have

Pr

[
T∑

t=1

‖rt − v‖2 >

(
1 + 3√

δT

)
‖σ‖2

]
<

3‖σ‖4

T

(
1 + O

(
1
T

))
9‖σ‖4

δT

<
δ

2
.

The result now follows by a union bound applied to our regret bound of
Corollary 1.2. �

Theorem 3.2 shows that one expects to achieve constant regret independent of the
trading frequency, as long as the total trading period is fixed. This result is only useful if
increasing trading frequency improves the performance of the best constant rebalanced
portfolio. Indeed, this has been observed empirically (see, e.g., Agarwal et al. 2006 and
Section 5).

To obtain a theoretical justification for increasing trading frequency, we consider an
example where we have two stocks that follow independent Black–Scholes models with
the same drifts, but different volatilities σ 1, σ 2. The same drift assumption is necessary
because in the long run, the best CRP is the one that puts all its wealth on the stock
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with the greater drift. We normalize the drifts to be equal to 0, this doesn’t change the
performance in any qualitative manner.

Since the drift is 0, the expected return of either stock in any trading period is 1; and
since the returns in each period are independent, the expected final change in wealth,
which is the product of the returns, is also 1. Thus, in expectation, any CRP (indeed, any
portfolio selection strategy) has overall return 1. We therefore turn to a different criterion
for selecting a CRP. The risk of an investment strategy is measured by the variance of
its payoff; thus, if different investment strategies have the same expected payoff, then the
one to choose is the one with minimum variance. We therefore choose the CRP with the
least variance.

LEMMA 3.3. In the setup where we trade two stocks with zero drift and volatilities
σ 1, σ 2, the variance of the minimum variance CRP decreases as the trading frequency
increases.

Proof . To compute the minimum variance CRP, we first compute the variance of the
CRP (p, 1 − p):

VAR

[∏
t

(prt(1) + (1 − p)rt(2))

]
= E

[∏
t

(prt(1) + (1 − p)rt(2))2

]
− 1

=
∏

t

E[(prt(1) + (1 − p)rt(2))2] − 1.

The second equality above follows from the independence of the randomness in each
period. Thus, the minimum variance CRP is obtained by minimizing E[(prt(1) +
(1 − p)rt(2))2] over the range p ∈ [0, 1]. We now note that in the Black–Scholes
model, rt(1) = eX1 where X1 ∼ N (− σ 2

1
2T ,

σ 2
1

T ), and rt(2) = eX2 where X2 ∼ N (− σ 2
2

2T ,
σ 2

2
T ),

and thus

E[(prt(1) + (1 − p)rt(2))2]

= E[p2e2X1 + 2p(1 − p)eX1+X2 + (1 − p)2e2X2 ]

= p2e
σ2

1
T + 2p(1 − p) + (1 − p)2e

σ2
2
T .

This is minimized at p = exp(
σ2

2
T )−1

exp(
σ2

1
T )+exp(

σ2
2
T )−2

, and at this point, its value is exp(
σ2

1 +σ2
2

T )−1

exp(
σ2

1
T )+exp(

σ2
2
T )−2

.

Thus, the variance of the final payoff becomes

⎡
⎢⎢⎢⎣

exp
(

σ 2
1 + σ 2

2
T

)
− 1

exp
(

σ 2
1

T

)
+ exp

(
σ 2

2

T

)
− 2

⎤
⎥⎥⎥⎦

T

− 1.
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This is a decreasing function of T . To prove this, by direct computation we have

d
dT

⎡
⎢⎢⎢⎣
⎡
⎢⎢⎢⎣

exp
(

σ 2
1 + σ 2

2
T

)
− 1

exp
(

σ 2
1

T

)
+ exp

(
σ 2

2

T

)
− 2

⎤
⎥⎥⎥⎦

T

− 1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

exp
(

σ 2
1 + σ 2

2

T

)
− 1

exp
(

σ 2
1

T

)
+ exp

(
σ 2

2

T

)
− 2

⎤
⎥⎥⎥⎦

T

· log

⎡
⎢⎢⎢⎣

exp
(

σ 2
1 + σ 2

2

T

)
− 1

exp
(

σ 2
1

T

)
+ exp

(
σ 2

2

T

)
− 2

⎤
⎥⎥⎥⎦

×
−
(

exp
(

σ 2
1

T

)
− 1

)2

exp
(

σ 2
2

T

)
σ 2

2

T2
−
(

exp(
σ 2

2

T
) − 1

)2

exp
(

σ 2
1

T

)
σ 2

1

T2(
exp

(
σ 2

1

T

)
+ exp

(
σ 2

2

T

)
− 2

)2

< 0.

The inequality above uses the fact that exp( σ 2
1 +σ 2

2
T ) − 1 > exp( σ 2

1
T ) + exp( σ 2

2
T ) − 2 which

can be verified by using the power series expansion of exp (x). �

Thus, increasing the trading frequency decreases the variance of the minimum variance
CRP, which implies that it gets less risky to trade more frequently; in other words, the
more frequently we trade, the more likely the payoff will be close to the expected value.
On the other hand, as we show in Theorem 3.2, the regret does not change even if we
trade more often; thus, one expects to see improving performance of our algorithm as
the trading frequency increases.

4. FASTER IMPLEMENTATION

In this section we describe a more efficient algorithm compared to the one from the main
body of the paper. The regret bound deteriorates slightly, though it is still logarithmic
in the total quadratic variation. The algorithm is based on the online Newton method,
introduced in Hazan et al. (2007), and is described in the following figure. For simplicity,
we focus on the portfolio management problem, although it is likely that similar ideas
can work for general loss functions of the type we consider in this paper.

Algorithm 1 Faster quadratic-variation universal algorithm

for t = 1 to T do

Use xt � arg minx∈�n

(∑t−1
τ=1 f̃ τ (x) + 1

2‖x‖2
)

.

Receive return vector rt.
Let f̃ t(x) = − log(rt · xt) − rt ·(x−xt)

(rt ·xt)
+ r (rt ·(x−xt ))2

8(rt ·xt)2 .
end for
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The basic idea is to bound the cost functions by a paraboloid approximation in the
FTRL algorithm. The paraboloid approximation only increases the regret, but since it
is a simple quadratic function, the running time of the the FTRL algorithm is improved
greatly. All we need to do is optimize the sum of quadratic cost functions, which has
a compact representation (unlike the sum of log functions), over the n-dimensional
simplex. This optimization can be carried out in time O(n3.5) using interior point methods
(assuming real number operations can be carried out in O(1) time). Using observations
made in Hazan et al. (2007) it is possible to further speed up the algorithm and attain a
running time proportional to O(n3).

We have the following regret bound for the algorithm:

THEOREM 4.1. For the portfolio selection problem, the regret of algorithm 1 is bounded
by

Regret = O
(

n
r 3

log(Q + n)
)

.

Proof . We first describe the paraboloid approximation to the cost functions that we
use in the algorithm instead of actual cost functions. This approximation, based on a
more general lemma from Hazan et al. (2007), has the following property, for all x and
y in the simplex and any return vector v with coordinates in [r, 1]:

− log(v · x) ≥ − log(v · y) − v · (x − y)
(v · y)

+ r (v · (x − y))2

8(v · y)2
.

Thus for any t, f̃ t(xt) = − log(rt · xt), and for any x ∈ �n, f̃ t(x) ≤ − log(rt · x). Thus,
if x∗ is the best CRP in hindsight, we have the following bound on the regret of
algorithm 1:

Regret =
∑

t

− log(rt · xt) −
∑

t

− log(rt · x∗)

≤
∑

t

f̃ t(xt) −
∑

t

f̃ t(x∗).

The RHS above is bounded by the regret of algorithm 1 assuming that the cost functions
are f̃ t. We therefore proceed to bound this regret of the algorithm with cost functions
f̃ t.

The cost functions f̃ t can be written in terms of the univariate functions

gt(y) = r
8(rt · xt)2

· y2 − 1
rt · xt

(
1 + r

4

)
· y + r

8
+ 1 − log(rt · xt)

as f̃ t(x) = gt(rt · xt). Now we note that even though the statement of the main theorem
assumes that the cost functions can be written in terms of a single univariate function g
for all t, the proof of the theorem is flexible enough to handle different functions gt for
different t, as long as conditions 3. and 4. in the main theorem on the first and second
derivatives of g hold uniformly with the same constants a and b for all functions gt.

Furthermore, the proof only requires the bound a on the magnitude of the first deriva-
tives at the points xt which the algorithm produces. Thus, we can now estimate the a and
b parameters for the gt functions as follows: g′

t(rt · xt) = − 1
(rt ·xt)

∈ [− 1
r , 0], so we choose
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FIGURE 5.1. Best CRP and algorithm exp-concave-FTL vs. trading period. The x-axis
denotes the trading period in days, and the y-axis is the log-wealth factor (i.e., a real
number).

a = 1
r . For any portfolio x ∈ �n, and g′′

t (rt · x) = r
4(rt ·x)2 ≥ r

4 , thus we choose b = r
4 . The

regret bound is now obtained via the bound of the main theorem. �

5. EXPERIMENTS

We tested the performance of the best CRP and Algorithm Exp-Concave-FTL as well as
its regret on stock market data. The following graph in Figure 5.1 was generated using
real NYSE quotes for the 1,000 trading days from 2001 and 2005 obtained form Yahoo!
finance. We randomly chose twenty S&P 500 stocks, and computed the performance of
the best CRP and Algorithm Exp-Concave-FTL on the relevant trading period, varying
the trading frequency from daily to every 50 trading days (only integer periods which
divide 1,000 were tested). The regret, i.e., difference between the log wealth of both
methods is also depicted.

For various choices of stocks, the fact that the regret remains pretty much constant
was consistent, as predicted by the theoretical arguments in the paper.

The change in performance of the best CRP with respect to trading frequency was not
conclusive, at times agreeing with theory and at times not. In one sense, however, this
change does agree with theory: in the previous work of Agarwal et al. (2006), Figure 6
depicts the performance of several online portfolio management as varies with the trading
period. These more comprehensive experiments measure the average annual percentage
yield (APY) in an experiment of sampling a set of stocks from the S&P 500 (the average
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is taken over the different samples of random stocks from S&P 500). These experiments
clearly show that on an average, the performance of many online algorithms, as well as
that of the best CRP, improves with trading frequency.

6. CONCLUSIONS

We have presented an efficient algorithm for regret minimization with exp-concave loss
functions whose regret strictly improves upon the state of the art. For the problem of
portfolio selection, the regret is bounded in terms of the observed variation in stock
returns rather than the number of iterations. This is the first theoretical improvement in
regret bounds for universal portfolio selection algorithms since the work of Cover (1991).

We show how this fact implies that in the standard GBM model for stock prices the
regret does not increase with trading frequency, hence giving the first universal portfolio
selection algorithm whose performance improves when the underlying assets are close to
GBM. This serves as a bridge between universal portfolio theory and stochastic portfolio
theory.

Open Questions. It remains an intriguing open question to improve the dependence of
the regret in portfolio selection in terms of other important parameters aside from the
quadratic variability: our dependence on the number of stocks in the portfolio (previously
denoted n) is linear. In contrast Helmbold et al. (1998) obtain a logarithmic dependence
in this parameter. Our regret bounds also depend on the market variability parameter
(denoted r), whereas Cover’s original algorithm does not have this dependence at all. Is
it possible to obtain a O(log Q) regert bound, via an efficient algorithm, that behaves
better with respect to n, r?

APPENDIX A: PROOF OF THE VECTOR HARMONIC SERIES LEMMA

The proof is based on the following fact, whose one-dimensional analogue is an easy
consequence of the Taylor expansion of the logarithm.

LEMMA A.1. Let A � B � 0 be positive definite matrices. Then

A−1 • (A− B) ≤ log
|A|
|B| ,

where |A| denotes the determinant of matrix A.

Proof . For any positive definite matrix C, denote by λ1(C), λ2(C), . . ., λn(C) its
(positive) eigenvalues. Denote by Tr(C) the trace of the matrix, which is equal to the sum
of the diagonal entries of C, and also to the sum of its eigenvalues.

Note that for the matrix product A• B = ∑n
i , j=1 Ai j Bi j defined earlier, we have

A•B = Tr(AB) (where AB is the standard matrix multiplication), since the trace is equal
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to the sum of the diagonal entries. Therefore,

A−1 • (A− B) = Tr(A−1(A− B))

= Tr(A−1/2(A− B)A−1/2)

= Tr(I − A−1/2 BA−1/2)

=
n∑

i=1

[1 − λi (A−1/2 BA−1/2)]

(
∵ Tr(C) =

n∑
i=1

λi (C)

)

≤ −
n∑

i=1

log[λi (A−1/2 BA−1/2)]

(∵ 1 − x ≤ − log(x))

= − log

[
n∏

i=1

λi (A−1/2 BA−1/2)

]

= − log |A−1/2 BA−1/2|

= log
[ |A|

|B|
]

.

In the last equality we use the following facts about the determinant of matrices: |A| =∏n
i=1 λi (A), |AB| = |A||B| and |A−1| = 1

|A| . �

We can now prove the vector harmonic series Lemma 3:

LEMMA A.2.

T∑
t=1

v
t

(
A+

t∑
τ=1

vτ v
τ

)−1

vt ≤ log

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣A+
T∑

τ=1

vτ v
τ

∣∣∣∣∣
|A|

⎤
⎥⎥⎥⎥⎥⎦ .

Proof . Let At := A+ ∑t
τ=1 vτ v

τ and denote A0 = A. Now by the lemma above

T∑
t=1

vt A−1
t vt =

∑
t

A−1
t • vtv

t

=
∑

t

A−1
t • (At − At−1)

≤
∑

i

log
|At|

|At−1|

= log
[ |AT|

|A0|
]

. �
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APPENDIX B: TAIL BOUNDS FOR NORMAL RANDOM VARIABLES

The following standard bound on the tail of the Normal distribution is given here for
completeness.

LEMMA B.1. Let X ∼ N(μ, σ 2), then

Pr[|X − μ| > x] ≤ σ

x
exp

(
− x2

2σ 2

)
.

Proof . First, consider the case μ = 0, σ = 1. Then by definition

Pr[X > x] =
∫ ∞

x

1√
2π

exp(−t2/2) dt.

Since the exponent is a convex function, we can upper bound it by the first derivative at
the point t = x and obtain:∫ ∞

x

1√
2π

exp(−t2/2) dt ≤
∫ ∞

x

1√
2π

exp(−x2/2 − x(t − x)) dt

where the new exponent is the linearization of −t2/2 at t = x. Then pull out factors which
do not depend on t to get

exp(x2/2)√
2π

∫ ∞

x
exp(−xt) dt

and doing that last integral gives the bound:

Pr[X > x] ≤ 1√
2πx

exp(−x2/2).

Hence, by symmetry of the distribution, we get for X ∼ N(0, 1):

Pr[|X| > x] ≤
√

2√
πx

exp(−x2/2) ≤ 1
x

exp(−x2/2).

Next, consider Y ∼ N(μ, σ 2) = μ + σN(0, 1). Hence,

Pr[|Y − μ| > x] = Pr
[
|X| >

x
σ

]
≤ σ

x
exp

(
− x2

2σ 2

)
. �
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It is commonly believed that the trading of futures on a commodity enables the
market to overcome short selling constraints on the spot commodity itself. This belief
is embedded in the notion that trading strategies involving futures contracts enable
traders to replicate the payoffs as if they were short the spot commodity. The purpose of
this paper is to investigate this common belief in a general arbitrage-free semimartingale
financial model with trading in futures and a short selling prohibition on the spot
commodity. We show via various examples that, in general, this common belief is
incorrect. Furthermore, we provide a set of sufficient conditions, albeit very restrictive,
under which the common belief is true.

KEY WORDS: short sale constraints, futures contracts, futures prices, complete markets, martingale
representation, supermartingale measures, overpricing hypothesis, bubbles.

1. INTRODUCTION

In the recent financial crisis, short sales bans and restrictions were used by regulators
to stabilize declining prices (see Beber and Pagano 2013; Boehmer, Jones, and Zhang
2011). For the same reasons, in most third world emerging markets, short selling is
either not allowed or is not possible due to inadequate financial infrastructures (see Bris,
Goetzmann, and Zhu 2007; Charoenrook and Daouk 2005). Even in well-developed
markets, for many commodities, short selling is impossible because the underlying asset
cannot be borrowed, e.g., residential homes. When an asset cannot be shorted, it is
often believed that the market may be “overpriced” because the market value does not
reflect negative sentiments. This is called the overpricing hypothesis (see for instance
Miller 1977; chapter 7 of Fabozzi 2004; Boulton and Braga Alves 2010; Brown and
Rogers 2012). Such an overpricing can lead to an inefficient allocation of investments
within the economy. Consequently, the inability to short an asset is often used as one
justification for introducing the trading of futures contracts on that asset (see for instance
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chapter 3 in Duffie 1989). The common belief is that trading futures contracts on an asset
enables the market effectively to short the spot asset, thereby completing the market. The
purpose of this paper is to investigate the validity of this belief in a general arbitrage-free
semimartingale financial model with trading in futures and short sale prohibitions on
the spot asset.

We show via various examples that, in general, this common belief is incorrect: one
cannot use futures to replicate the payoffs of being short an asset. Furthermore, we
provide a set of sufficient conditions, albeit very restrictive, where this common belief
is true. These results are based on the version of the Fundamental Theorem of Asset
Pricing proved in Pulido (2011). In addition, when futures contracts do overcome short
selling constraints, we also investigate whether trading in only a single index of futures on
the spot commodities (instead of all the futures on the spot commodities) is sufficient to
complete the market. In general, the answer is again negative. However, hedging strategies
involving all the futures on the spot commodities can be replaced by trading strategies
using an index futures and only long trades on the futures contracts themselves. Here
the long positions on the individual spot asset futures can be approximated by long
positions on the spot commodities themselves, yielding an approximation to the desired
result. The error term in this approximation depends on the magnitude of the market
overpricing. This insight is particularly important for commodities that cannot be sold
short and where futures on the individual asset are impractical, but where futures on
an index of the commodities (a portfolio) can be traded. Two prime examples satisfying
these conditions are: (i) residential homes and (ii) individual equities when short sale
constraints are imposed.

The paper is organized as follows. In Section 2, we present two examples that moti-
vate the discussion in the rest of the paper. In Section 3, we extend the Fundamental
Theorem of Asset Pricing (FTAP) in markets with short sale prohibitions, as presented
in Pulido (2011), to markets with positive interest rates and assets with cash flows. In
Section 4, we study the implications that the FTAP imposes on futures prices. In Section
5, under various hypotheses, we characterize arbitrage-free futures prices when interest
rates are identically zero. We show that futures prices exhibit more randomness than is
present in the spot asset’s price process, even under zero interest rates. We also give in
Section 6 sufficient conditions under which futures contracts can be used to short the
underlying asset, along with mathematical examples where this is not the case and where
the spot asset cannot be hedged with traded futures. These examples complement those
presented in Section 2. In Section 7, we extend the previous results to positive interest
rate economies. Finally, in Section 8 we consider futures contracts on an index and show
when trading an index futures is sufficient to overcome the short sale restrictions on the
individual stocks themselves.

2. PRELIMINARY EXAMPLES

In this section, we present two examples to show that under short sale restrictions, the
common belief that the completeness property of the underlying asset price process (see
Definition 6.1) is inherited by the futures price process is incorrect. Other examples will
be presented in Section 6. These additional examples will better illustrate the results of
Sections 5 and 6 (see Theorems 5.2 and 6.5). As we will see in Section 4, in a market with
short sale prohibitions the set of risk-neutral measures for the futures market corresponds
to the set of equivalent probability measures under which the discounted underlying
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asset price process (plus discounted cash flows) is a supermartingale and the futures
price process is a local martingale. Furthermore, in the examples provided the futures
price process is actually a martingale, which implies that futures prices do not have type
3 bubbles (see Jarrow, Protter, and Shimbo 2010). For simplicity these examples also
assume that the default free spot rate of interest is zero and the spot commodities have
no cash flows.

The first example is in discrete time. It can be extended to a continuous time example
with jumps as in Example 5.5.

EXAMPLE 2.1. Suppose that for t = 1 , . . . , T the underlying asset price process is given
by

St = S0

t∏
k=1

(1 + Rk),

where S0 is a positive constant, under P, R1 , . . . , RT are i.i.d random variables with
P(R1 = r ) = 1

2 , P(R1 = −r ) = 1
2 , and 0 < r < 1. It is known that this financial market,

where S trades and the filtration considered is the minimal filtration generated by S, is
complete under P. Fix 0 < t∗ < t. Define a measure Q∗ such that for n > t∗, on the set
{St∗ = x},

Q∗(Rn = −r |Fn−1) = px ∈ (1/2, 1),

and Q∗(Rn = r |Fn−1) = 1 − px. Assume additionally that Q∗ coincides with P over
σ (R1, . . . , Rt∗ ). Q∗ is a probability measure equivalent to P such that S is a Q∗-
supermartingale. As we will prove in the next section, if we define a futures price process
Ft,T (see Definition 4.1) by the formula Ft,T = EQ∗

[ST |Ft] (where F = (Ft)t≥0 is the
minimal filtration generated by S), the extended market where both S and futures con-
tracts on S (with maturity T) trade, with short sale prohibitions on S, is arbitrage-free
(see Proposition 4.2). Observe that in this example, on the set {St∗ = x},

EQ∗
[ST |Ft∗ ] = x

T−t∗∑
k=0

(
T − t∗

k

)
(1 − r )k(1 + r )T−t∗−k pk

x(1 − px)T−t∗−k

= x((1 − r )px + (1 + r )(1 − px))T−t∗

= x((1 + r ) − 2r px)T−t∗
.

Suppose that a fix positive constant c satisfies 0 < c < St∗ and

r > 1 −
(

c
St∗

) 1
T−t∗

.

If we let

px :=
(1 + r ) −

( c
x

) 1
T−t∗

2r
∈ (1/2, 1),

we have that Ft,T = EQ∗
[ST |Ft] is identically equal to the constant c for t ≤ t∗ and the

futures market is not complete under Q∗. Trivially, the futures cannot be used to hedge
the underlying’s price risk, either long or short. In other words, the futures market does
not inherit the completeness property of the underlying market (see Figure 2.1). In other
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FIGURE 2.1. This is a discrete time representation of Example 2.1. In this figure t
∗ = 1.

The probability of going down after time 1 depends on whether the path goes through
x1 or x2 at time 1. The futures price is constant and equal to c between times 0 and 1.

cases, for instance if the constants px are all equal to a constant p ∈ (1/2, 1), the futures
market is complete under Q∗.

For continuous processes we have the following example considered in Cox and Hob-
son (2005) when studying price bubbles.

EXAMPLE 2.2 (An Asset Price Process with a Bubble). Suppose that for t < T the
underlying asset price process S is given by

S = 1 + E
(∫ ·

0

dBs√
T − s

)
,

where B is a P-Brownian motion. We have that if

X :=
∫ ·

0

dBs√
T − s

,

then

[X]t = ln
(

T
T − t

)
and lim

t→T
[X]t = ∞, P-a.s.

Since

St = 1 + exp
(

Xt − 1
2

[X]t

)
= 1 + exp

(
[X]t

(
Xt

[X]t
− 1

2

))
,

and limt→T
Xt

[X]t
= 0 (see problem 2.9.3 and theorem 3.4.6 in Karatzas and Shreve

(1998a)), if we define ST ≡ 1, then S is a continuous strict local martingale on
[0, T ], i.e., S is a P-local martingale on [0, T ] that is not a P-martingale.

The market consisting of this risky asset price alone is complete. In this case Ft,T :=
EP[ST |Ft] (where F = (Ft)t is the minimal filtration generated by S) is constant and
equal to 1. Again trivially, although the futures market is arbitrage-free, the futures
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cannot be used to hedge the underlying’s price risk, and the futures market is not complete
under P.

For markets with short sales restrictions, we would like to know when futures can be
used to hedge the underlying asset’s price risk. Before we answer this question in Sec-
tion 6, we first investigate the dynamics of futures prices consistent with No Free Lunch
with Vanishing Risk (NFLVR-S) when short sale prohibitions exist in the underlying
market.

3. THE FTAP WITH SHORT SALE PROHIBITIONS

This section extends the results in Pulido (2011) to the case where the money market
account’s value is stochastic and risky assets have cash flows. We consider a finite trading
horizon [0, T ] and assume that there are N risky assets trading. We suppose, as in
the seminal work of Delbaen and Schachermayer (1994), that the price processes of
the N risky assets are nonnegative locally bounded P-semimartingales on a stochastic
basis (�,F,F , P), where F := (Ft)0≤t≤T satisfies the usual hypotheses. The probability
measure P denotes the statistical probability measure. We further assume that F0 is
P-trivial and FT = F . Hence, all random variables measurable with respect to F0 are P-
almost surely constant and there is no additional source of randomness on the probability
space. Given two probability measures Q and P on F , we write Q ∼ P when P and Q are
equivalent.

We denote by S := (Si)1≤i≤N the RN-valued stochastic price processes for the risky
assets. We assume that S0, the value of a money market account, is a positive and
predictable P-semimartingale bounded away from 0. This is almost without loss of
generality. In typical models, the money market account’s value grows by continuously
compounding at the default free spot rate of interest, i.e., the money market account’s
value equals a constant times the exponential of a Lebesque integral of the spot rate of
interest across time. As such, the money market account’s value is continuous a.e., even if
the spot rate of interest follows a discontinuous sample path process. We denote by S̃i =
(S0)−1Si the discounted price process of asset i for 1 ≤ i ≤ N and by S̃ := (S̃1, . . . , S̃N)
the vector of discounted price processes.

We assume that for each asset i, 1 ≤ i ≤ N, there exists a cumulative cash flow process
Di, which is an F-adapted P-semimartingale. We let D := (D1 , . . . , DN) be the vector of
cumulative cash flow processes.

Also for 1 ≤ i ≤ N we define D̃i := 1
S0 · Di (throughout this paper the · symbol

represents stochastic integration, see Protter 2005). This integral is well defined since S0

is nonnegative and bounded away from 0. Finally, let D̃ := (D̃1, . . . , D̃N) be the vector
of discounted cumulative cash flows.

Last, to capture short sale prohibitions on some of the traded assets, we assume that
the first d ≤ N assets can be sold short in an admissible way (see Definition 3.1), but the
last N − d assets cannot, i.e., we define the admissible strategies as follows.

DEFINITION 3.1. A vector valued process H = (H1 , . . . , HN) is called an admissible
trading strategy if

(i) H ∈ L(S̃ + D̃), i.e., H is integrable in the stochastic sense with respect to S̃ + D̃
(see Protter 2005).

(ii) H0 = 0.
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(iii) (H · (S̃ + D̃)) ≥ −α for some α > 0.
(iv) Hi ≥ 0 for all i > d.

We let A be the set of admissible trading strategies.

We define as in Pulido (2011) the sets

K := {(H · (S̃ + D̃))T : H ∈ A},(3.1)

C := (
K − L0

+(P)
) ∩ L∞(P),(3.2)

where L0
+(P) is the space of equivalence classes of nonnegative finite random variables,

and L∞(P) is the space of P-essentially bounded random variables. With these sets, the
arbitrage-free conditions of No Arbitrage under short sales prohibition (NA-S) and No
Free Lunch with Vanishing Risk under short sales prohibition (NFLVR-S) are defined as
follows. (NA-S) holds if C ∩ L0

+(P) = {0}. (NFLVR-S) holds if C ∩ L0
+(P) = {0}, where

C is the closure of C with respect with the ‖·‖∞ norm in L∞(P). Because these definitions
are standard we provide no additional explanation. Throughout this paper whenever
we write (NFLVR-S) we mean No Free Lunch with Vanishing Risk under short sales
prohibition.

The following theorem is an immediate consequence of theorem 3.10 in Pulido (2011)
and the fact that S0 is a positive semimartingale bounded away from 0.

THEOREM 3.2. Under the additional assumption that for all i, D̃ i is a locally bounded
semimartingale under P, the condition of (NFLVR-S)is equivalent to

Msup(S̃ + D̃) �= ∅,(3.3)

where Msup(S̃ + D̃) is the set of probability measures Q ∼ P such that S̃i + D̃ i is a Q-
local martingale for 1 ≤ i ≤ d and S̃i + D̃ i is a Q-local supermartingale for d < i ≤ N.
If in addition D̃ i is bounded from below, then S̃i + D̃ i is a Q-supermartingale for Q in
Msup(S̃ + D̃).

Proof . This corresponds to theorem 3.10 in Pulido (2011) after replacing S by S̃ + D̃.
The only difference is that S̃ + D̃ is not always nonnegative. However, a careful inspection
of the proof of Proposition 3.2 in Pulido (2011) shows that the conclusion of this theorem
holds. �

Although the previous theorem seems to be folklore knowledge (see for instance
Cvitanić and Karatzas 1993; Jouini and Kallal 1995; Schürger 1996; Frittelli 1997; Pham
and Touzi 1999; Napp 2003), we could not find a proof at this level of generality for
semimartingales with jumps. Our proof relies on a modification of a known proposition
by Ansel and Stricker (1994, see their proposition 3.3), which is proved in Pulido (2011).
This theorem will be used to study the conditions under which futures contracts can be
used to overcome short sale prohibitions on the underlying commodities.

4. ARBITRAGE-FREE FUTURES PRICES

This section explores the implications that the Fundamental Theorem of Asset Pricing
(FTAP) under short sale prohibitions (Theorem 3.2) has on futures prices and their
hedging strategies. Initially, to simplify our notation, we assume that there is only one
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risky asset trading and that this asset cannot be sold short (i.e., we assume that d = 0,
N = 1). We denote by S the price of the risky asset and call it the underlying asset price
process or spot price process. We further assume that there are no cash flows associated
to S. As we did in the previous section, we denote by S0 the price of the money market
account, and assume that it is a positive predictable P-semimartingale bounded away
from zero. S̃ := (S0)−1S therefore corresponds to the discounted price process of the risky
asset.

The previous section shows that (NFLVR-S) guarantees the existence of a probability
measure in Msup(S̃) (see Theorem 3.2). This set of probability measures contains the set
of measures Mloc(S̃) defined by

Mloc(S̃) := {Q ∼ P : S̃ is a Q-local martingale}.(4.1)

Furthermore, the Fundamental Theorem of Asset Pricing (FTAP) presented in Del-
baen and Schachermayer (1994), shows that this later set Mloc(S̃) �= ∅ if and only if the
condition of (NFLVR-S) holds for admissible trading strategies, without restriction (iv)
in Definition 3.1. Hence, with the short sale prohibitions on S, the set of risk neutral
measures is enlarged from Mloc(S̃) to Msup(S̃). This makes intuitive sense. If the set of
trading strategies is restricted by short sale constraints, then the set of price processes
consistent with no-arbitrage should increase, and it does.

Suppose that for some Q∗ ∈ Msup(S̃), S̃∗
t := EQ∗

[S̃T |Ft] corresponds to the discounted
fundamental price of S at time t. It has been argued that in markets with short sale pro-
hibitions, under certain hypotheses on agents’ beliefs, the measure Q∗ is a strict super-
martingale measure, in the sense that S̃0 > S̃∗

0. This is known as the overpricing hypothesis
(see for instance Miller 1977; chapter 7 of Fabozzi 2004; Boulton and Braga Alves 2010;
Brown and Rogers 2012). In the case when Q∗ is a strict local martingale measure, the
asset S has a price bubble (see Jarrow, Protter, and Shimbo 2007; Jarrow et al. 2010). This
case has been studied extensively (see for instance Delbaen and Schachermayer 1995;
Cox and Hobson 2005; Madan and Yor 2006; Jarrow et al. 2007, 2010; Ekström and
Tysk 2009; Pal and Protter 2010; Mijatović and Urusov 2012; Ruf 2012).

For hedging, it is often argued that by trading in futures markets, short sale prohibitions
can be overcome (see chapter 7 of Duffie 1989; chapter 3 of Fabozzi 2004). The previous
examples (see Section 2) show that this is not always true. In the subsequent sections we
study both the consequences of short sale prohibitions and the overpricing hypothesis
on the ability of hedging strategies using futures to generate a short position in the
underlying asset price process S. Our analysis differs from that used in the bubbles
literature because we consider supermartingale measures, rather than local martingale
measures. Consequently, our conclusions and examples apply to a larger variety of
models, including both the Black–Scholes and discrete time models.

We define futures contracts as in Karatzas and Shreve (1998b) and Jarrow and Protter
(2009).

DEFINITION 4.1. A futures contract on a risky asset with price process S and maturity
time T is a financial instrument with cash flows dFt,T such that

(i) Ft,T is a nonnegative F-adapted P-semimartingale with FT,T = ST , and
(ii) the market price of the cash flows (dFt,T )t is zero at all times.

Ft,T is called the futures price process.
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Condition (ii) in this definition makes the futures price process dependent on the
market price. Note that the futures price process is different from the market price of the
futures contract which is always zero. Using the notation of Section 3, if we denote by
S2 a futures contract on S with maturity T , the discounted market price of S2 is equal to
0 (i.e., S̃2 = 0) and the cash flow associated with S2 is dF ·,T (i.e., dD2 = dF ·,T ). Investors
are allowed to take both long and short positions in a futures contract.

Intuitively a long futures contract on S at time t obligates the holder to purchase the
risky asset at time T at a fixed price Ft,T , specified at time t. The payment is arranged
in different installments determined by the fluctuations of the futures prices over the
contract’s life. In practice this is accomplished by using a margin account. When futures
prices increase, the increment is deposited in the margin account. And when futures
prices decrease, the negative increment is withdrawn from the margin account. The
futures margin account is said to be marked-to-market. The cumulative changes in the
futures price between time t and the contract’s maturity sum to the spot price of the asset
at time T less the original fixed price Ft,T .

Unlike shorting the underlying asset, taking a short position in a futures contract is
unrestricted and it is equivalent to selling the futures contract. A short position in a
futures contract is entitled to a stream of cash flows exactly opposite to a long position.
In practice, a futures transaction is made through a clearing house where for each seller
the clearing house finds a buyer on the other side of the contract. Acting as a middle
man between the buyer and seller, the clearing house reduces counterparty risk, and it
also facilitates reduced transaction costs and increased market liquidity.

Finally, there is no cash flow paid when entering a long or short position in a futures
contract (see (ii) in Definition 4.1), other than the necessity of setting up a margin
account (for a detailed exposition we refer the reader to Duffie 1989). However, under
our assumptions such margin requirements impose no additional restrictions on the set
of trading strategies. This is because a margin account is equivalent to holding the money
market account, and borrowing and lending is unrestricted in our model.

4.1. NFLVR-S IN THE EXTENDED MARKET

This section presents some necessary and sufficient conditions on futures price pro-
cesses under which the underlying asset price process S and the futures contract on S
with maturity T satisfy the no arbitrage condition of (NFLVR-S).

PROPOSITION 4.2. If the futures price process Ft,T is a Q-local martingale for some
Q ∈ Msup(S̃) then the extended market where both the underlying risky asset S and the
futures contract on S trade satisfies (NFLVR-S). Conversely, if furthermore S0 is locally
bounded from above, D̃ := (S0)−1 · F·,T is locally bounded, and the extended market satisfies
(NFLVR-S), then there exists a Q ∈ Msup(S̃) such that Ft,T is a Q-local martingale.

Proof . (⇒) We have that D̃ = (S0)−1 · F·,T is a Q-local martingale since (Ft,T )t is a
Q-local martingale and (S0)−1 is bounded (S0 is bounded away from 0). The conclusion
follows from Theorem 3.2.

(⇐) Assume that S0 is locally bounded from above and D̃ = (S0)−1 · F·,T is locally
bounded. By Theorem 3.2 there exists Q ∈ Msup(S̃) such that D̃ is a Q-local martingale,
and since Ft,T = F0,T + (S0 · D̃)t and S0 is locally bounded, F ·,T is a Q-local martingale
as well. �
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REMARK 4.3. In the above proof the process D̃ corresponds to the discounted cash
flows from a futures contract on S with maturity T . Notice that in order for the extended
market to satisfy (NFLVR-S) it suffices to ensure the existence of a measure Q ∈ Msup(S̃)
such that (Ft,T )t is a Q-local martingale and not necessarily a Q-martingale (see Jarrow
and Protter 2009). Also, since usually |Msup(S̃)| > 1 this proposition shows that the
futures price process is not uniquely determined by the underlying asset price process
and (NFLVR-S). Indeed, for arbitrary Q ∈ Msup(S̃)

Ft,T := EQ[ST |Ft],

defines the futures price of a futures contract in such a way that the extended market sat-
isfies (NFLVR-S). In principle, these futures price processes could differ across different
risk neutral measures (see Example 4.5).

Taking into account the remarks just made we impose the following assumption on
the futures contract on S.

ASSUMPTION 4.4. The futures price process F ·,T is a Q∗-martingale, for at least one
Q∗ ∈ Msup(S̃).

This implies that the extended market including both S and F satisfies (NFLVR-S)
and the futures contract on S does not have a bubble with respect to Q∗ ∈ Msup(S̃) (see
Jarrow et al. 2007, 2010).

The purpose of the next example is to illustrate, under Assumption 4.4, the relationship
between the arbitrage-free futures price and the underlying asset’s price processes. This
example shows that the futures price process inherits the dynamics of the underlying asset
price process if additional assumptions are made on the measure Q∗ of Assumption 4.4
(see equations (4.2) and (4.3)). Furthermore, under these additional assumptions, an
explicit formula characterizing the difference between the underlying asset price process
and the futures price can be derived (see equation (4.4)). The example motivates Theo-
rem 5.2. It is important to point out that Assumption 4.4 is not a necessary condition for
the futures price process to inherit the structure of the asset’s price process. For instance,
in Example 2.2, F ·,T = S defines a futures price process consistent with (NFLVR-S)
which has the same dynamics as the spot price, but Assumption 4.4 does not hold in this
case.

EXAMPLE 4.5 (The Black–Scholes Model with Short Sale Prohibitions). Assume that

dSt = St(μdt + σdBt),

where Bt is an F-Brownian motion under P, and μ and σ are positive constants, i.e.,

St = S0 exp
(

σBt +
(

μ − 1
2
σ 2

)
t
)

.

Assume that the default free spot rate of interest is identically equal to 0 so that S̃ = S.
Furthermore, suppose that F is the filtration generated by B, and that Q∗ ∈ Msup(S̃).
By the martingale representation theorem for Brownian motion (see theorem IV-43 in
Protter 2005) we have that there exists a predictable process η such that for all t ∈ [0, T ],

Zt := EP
[

d Q∗

d P

∣∣∣∣Ft

]
= E(η · B)t.
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Girsanov’s Theorem (theorem III-40 in Protter 2005) implies that under Q∗, S has the
semimartingale decomposition

dSt = σ St (dBt − ηt dt) + St(σηt + μ) dt

= σ StdB∗
t + St(σηt + μ) dt,

where B∗ is an F-Brownian motion under Q∗. Since Q∗ ∈ Msup(S̃), we have that S is a
Q∗-supermartingale, and we conclude that the finite variation process∫ ·

0
Ss(σηs + μ) ds

is indistinguishable from a nonincreasing process and η ≤ −μ

σ
P ⊗ λ-almost surely, where

λ denotes Lebesgue measure on [0, T ]. Recall that μ

σ
is commonly known as the market

price of risk.
Now, according to Assumption 4.4 the futures price process of a futures contract on

S with maturity T is given by

Ft,T = EQ∗
[ST |Ft]

= EQ∗
[

S0 exp
(

σB∗
T +

∫ T

0

(
σηs + μ − σ 2

2

)
ds

)∣∣∣∣Ft

]
.

To obtain a more explicit formula for the futures price process at time t we could
impose the additional assumption that∫ T

t
σηs ds is Ft-measurable.(4.2)

In essence, this additional assumption implies that the futures price process has no
additional randomness over the contract’s entire maturity, other than that present in the
price process itself. In this case we can conclude that

Ft,T = S0 exp
(∫ T

0
(σηs + μ) ds

)
E(σB∗)t.(4.3)

Under no short sale prohibitions and zero interest rates with η ≡ −μ

σ
, the dynamics of

the futures price process is given by

S0E(σB∗)t.

Hence, in a market with short sale prohibitions, if the overpricing hypothesis and (4.2)
hold, then at time t the futures price process has the additional discounting factor

exp
(∫ T

0
(σηs + μ) ds

)
.

It is interesting to note that in this case

Ft,T

St
=

exp

⎛
⎝
∫ T

0
(σηs + μ) ds

⎞
⎠E(σB∗)t

exp(μt)E(σB)t

= exp
(∫ T

t
(σηs + μ) ds

)
.

(4.4)
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Since F ·,T and S are observable, one can estimate η + μ

σ
from market price observations.

Of course, in order for (4.4) to hold, we are not taking into consideration interest rates
(see Section 7) and we are adding an additional assumption on the process η, namely
(4.2) (see Theorem 5.2). Equation (4.4) agrees with the empirical evidence on the effect
of short sales restrictions on futures prices and stock returns (see for instance Fung and
Draper 1999; Boulton and Braga Alves 2010).

REMARK 4.6. Condition (4.2) is a strong assumption. It effectively assumes that the
futures price process exhibits no additional randomness over the contract’s entire ma-
turity, other than that reflected in the underlying asset’s price process itself. There is
no reason to believe this must be true a priori. Equivalently, condition (4.2) essentially
assumes that the future evolution of the process σηu for t ≤ u ≤ T is observable at time
t. Again, under the filtration generated by the Brownian filtration, there is no reason to
believe that this must be true a priori.

This condition might hold if one enlarges the original filtration to include knowledge
of (ηu)t≤u≤T by appealing to the theory of enlargement of filtrations. A simple way to
do this would be to include the entire process (ηu)0≤u≤T in F0 via what is known as an
initial enlargement, using Jacod’s Criterion (see e.g., chapter VI of Protter 2005). But this
approach seems inappropriate for processes such as η which arise through martingale
representation. An alternative solution might be to include gradually the process η in the
filtration via a dynamic enlargement, but this theory is still in its infancy, see Kchia and
Protter (2011).

5. ZERO-INTEREST RATES

This section generalizes Example 4.5 and characterizes the relation between the futures
and asset price processes. As in the previous section, we continue to assume that the spot
rate of interest is identically equal to 0 so S = S̃. We can describe the dynamics of the
futures prices under Assumption 4.4. Before we do so let’s recall the following lemma.

LEMMA 5.1. Suppose that the supermartingale S > 0. Then S has one and only one
multiplicative decomposition of the form S = LD where L is a positive Q∗-local martingale
and D is a positive, predictable, and nonincreasing process with D0 = S0. Furthermore, if
S = S0 + N + V is the Doob–Meyer decomposition of the Q∗-supermartingale S, with N a
Q∗-local martingale, and V a predictable and nonincreasing process with N0 = V0 = 0 then

L = E
((

1
S− + �V

)
· N

)
,(5.1)

D = S0

(
E

(
−

(
1

S− + �V

)
· V

))−1

.(5.2)

Proof . The proof of this result can be found in section VI-2-a of Jacod (1979). See
also section II-8b of Jacod and Shiryaev (2003). �

By using this lemma and the ideas contained in Example 4.5 we have the following
result.

THEOREM 5.2. Suppose that S > 0 and Assumption 4.4 holds. With the notation of
Lemma 5.1 we have the following.
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1. If N is a Q∗-martingale then Ft,T = S0 + Nt + EQ∗
[VT |Ft]. Furthermore, if VT ∈

Ft0 for some t0 < T, then Ft,T = S0 + Nt + VT for all t ∈ [t0, T ].
2. If L is a Q∗-martingale and DT ∈ Ft0 for some t0 < T, then Ft,T = Lt DT for all t ∈

[t0, T ].

Proof . This theorem follows simply from the expression Ft,T = EQ∗
[ST |Ft]. �

REMARK 5.3. Since this result does not take into consideration interest rates, the
futures price coincides with the forward price. Recall that the forward price at time t is
the value of K such that the price of a forward contract with delivery price K and maturity
T has market price 0 at time t. Assuming that there is no bubble for the forward contract
with respect to Q∗ this holds if and only if EQ∗

[ST − K |Ft] = 0 and K = EQ∗
[ST |Ft].

REMARK 5.4 (Black–Scholes continued). If we assume that the hypotheses of the
previous theorem hold, then in the previous Black–Scholes example, the futures price
process differs from the asset price process for t ∈ [t0, T ] by the factor

Ft,T

St
= DT

Dt
.

When using futures contracts to hedge the asset price process under short sale prohibi-
tions it is important to recognize the existence of this additional factor. Observe that in
Example 4.5, Dt = exp(

∫ t
0 (σηs + μ) ds) and the previous theorem agrees with (4.3).

Although the conclusion of the previous theorem might seem trivial at first,
Theorem 5.2 motivates the discussion in the next section. As the following example
shows, the dynamics of the futures price process on the interval [0, t0) might be very dif-
ferent from the underlying asset’s price process and consequently not inherit properties
such as completeness (see Definition 6.1) on this interval.

EXAMPLE 5.5. Suppose that � = (ω1, ω2, ω3, ω4) and T = 3. Suppose that the price
process of an asset that cannot be sold short is given by S, where St ≡ 21

16 for 0 ≤ t
< 1; St(ω1) = St(ω2) = 11

8 , St(ω3) = St(ω4) = 10
8 for 1 ≤ t < 2; St(ω1) = 7

4 , St(ω2) = 1
4 ,

St(ω3) = 3
2 , St(ω4) = 1

2 for 2 ≤ t ≤ 3. Let F be the minimal filtration generated by S.
We have in this case that P given by P(ω1) = P(ω3) = 3

8 , P(ω2) = P(ω4) = 1
8 is a

martingale-measure for S. Furthermore, P is the only measure that makes S a martingale.
Next, suppose that Q∗ is given by Q∗(ω1) = Q∗(ω2) = Q∗(ω3) = Q∗(ω4) = 1

4 . Then
Q∗ ∈ Msup(S). We have that EQ∗

[St |F1] ≡ 1 for 2 ≤ t ≤ 3. It is easy to see that the
canonical decomposition of the special semimartingale S relative to Q∗ is S = S0 + N +
V , where Vt ≡ 0 for 0 ≤ t < 2 and Vt = 1 − S1 for 2 ≤ t ≤ 3, Nt = 0 for 0 ≤ t < 1, Nt =
S1 − S0 for 1 ≤ t < 2 and Nt = S2 + (S1 − 1) − S0 for 2 ≤ t ≤ 3. We have that

(
1

S− + �V
· N

)
t
= S1 − S0

S0 + 0
1[1,3](t) + S2 − 1

S1 + (1 − S1)
1[2,3](t)

= S1 − S0

S0
1[1,3](t) + (S2 − 1)1[2,3](t),(

1
S− + �V

· V
)

t
= 1 − S1

S1 + (1 − S1)
1[2,3](t)

= (1 − S1)1[2,3](t).

The conditions of Theorem 5.2 are satisfied in this case with t0 = 1.
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FIGURE 5.1. This is a discrete time representation of Example 5.5. We think of the ω′
i s

as the possible paths and the probabilities of going through each branch are written
above the branch (the Q

∗
-probabilities being those in parentheses).

Observe that in this case Ft,T ≡ 1 for 0 ≤ t < 2. The multiplicative decomposition of
S (see Lemma 5.1) is given by

D =
⎧⎨
⎩

S0 if 0 ≤ t < 2

S0

S1
for 2 ≤ t ≤ 3,

L =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 for 0 ≤ t < 1

S1

S0
for 1 ≤ t < 2

S1S2

S0
for 2 ≤ t ≤ 3,

and the conclusion of the theorem does not hold for t ∈ [0, 1). A discrete time represen-
tation of this example can be found in Figure 5.1.

In this example the futures contract cannot be used to hedge positions on S before time
2. In the next section we prove that when the hypothesis of Theorem 5.2 holds with t0 =
0, market completeness in the underlying asset price process is inherited by the futures
market. We will also provide a striking continuous time example (Example 6.9) when this
fails, which complements the examples provided in Section 2 and Example 5.5.

6. THE REPRESENTATION PROPERTY

Suppose that the financial market is complete without short sale prohibitions. It is
commonly believed that, without taking into account interest rates, the introduction of
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trading in futures contracts completes the market. In this section we provide sufficient
conditions under which this belief is true, and we provide counterexamples to show that
it is not true in general.

The concept of a complete market is usually defined in terms of a predictable repre-
sentation property for the assets’ price processes (see for instance the seminal works of
Harrison and Pliska 1981, 1983). In this section we discuss some conditions under which
this property on the underlying asset price process is inherited by the futures price pro-
cess. To keep the notation simple, as before we assume that there is only one underlying
asset price process S trading in the market and that the spot interest rate and associated
cash flows are identically zero. We furthermore assume that there exists a P∗ ∈ Mloc(S).
In other words, we assume that S satisfies (NFLVR-S) for admissible integrands without
short sale prohibitions.

DEFINITION 6.1 (Market Completeness). We say that the financial model is complete
under P∗, or that S has the completeness property with respect to P∗, if every P∗-local
martingale M can be expressed as M = M0 + (H · S) for some H ∈ L(S).

Given the results in the previous section it is interesting to study whether the local
martingale part N, of the Doob–Meyer decomposition of S under Q∗, inherits the
completeness property of the process S. This, in turn, will enable us to derive sufficient
conditions under which the futures market inherits the completeness property from the
underlying asset market (see Theorem 6.5). To prove this result in general, we first have
to prove it for continuous processes.

THEOREM 6.2. Assume that S is a continuous process that has the completeness property
with respect to P∗, and N is the local martingale part in the canonical decomposition of S
under Q∗. Then N has the completeness property with respect to Q∗.

Proof . The proof of this result when S is a P∗-Brownian motion can be found in
proposition 5.8.1.2. of Chesney, Jeanblanc, and Yor (2009). The proof can be mimicked
step by step for any continuous process and the conclusion follows from Girsanov’s
Theorem (theorem III-40 in Protter 2005). �

The following result generalizes the previous theorem. It shows that in general the local
martingale part of the canonical decomposition of S under Q∗ inherits the completeness
property of the underlying asset price process S.

THEOREM 6.3. Assume that S has the completeness property with respect to P∗, and N
is the local martingale part in the canonical decomposition of S under Q∗. Then N has the
completeness property with respect to Q∗.

Proof . We let (0, c, K, A) be a good version of the semimartingale characteristics as
in (A.1) of Appendix A, with P replaced by P∗. By localization, it is enough to show that
any Q∗-martingale X in H1(Q∗) (see Protter 2005, p. 195) with X0 = 0 can be written
as X = H · N for some H ∈ L(N). For a semimartingale Z with good version of the
semimartingale characteristics (bZ, cZ, KZ, AZ) we denote by Lc,Z(ω, t) the eigenspace
of cZ(ω, t) corresponding to the eigenvalue 1 and by Ld,Z(ω, t) the support of the kernel
KZ(ω, t). By theorem 4.82 in Jacod (1979), to show the above-mentioned representation
for N it is enough to show that:

(i) Any continuous Q∗-martingale Y in H1(Q∗) can be written as K · Nc for some
predictable process K, where Nc is the continuous Q∗-local martingale part of N.

(ii) Lc,N(ω, t) ∩ Ld,N(ω, t) = {0} MQ∗

AN− a.s. in (ω, t) (see Jacod 1979).
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By the same theorem, we have the same properties for S with respect to P∗. (i) follows
by Theorem 6.2 and the fact that Nc is the Q∗-local martingale part of Sc. To see (ii),
observe that Lc,N coincides with Lc,S, that Ld,N is a subset of Ld,S by equation (B.1)
of Appendix B, and that we can take A := AS = AN . Hence, Lc,N(ω, t) ∩ Ld,N(ω, t) =
{0} MP∗

A −a.s. in (ω, t). Since Q∗ ∼ P∗, this implies that Lc,N(ω, t) ∩ Ld,N(ω, t) = {0}
MQ∗

A −a.s. in (ω, t). �
REMARK 6.4. This theorem shows that the completeness property of the local mar-

tingale part in the Q∗-canonical decomposition of S is inherited from the completeness
property of S with respect to P∗. Theorem 11.29 in Jacod (1979) shows that this condition
is necessary for the supermartingale measure Q∗ to be an extreme point among all the
measures in Msup(S), but in general the two conditions are not equivalent. Hence, even
for measures that are not extreme in Msup(S), the completeness property of the local
martingale is inherited from the underlying process S.

Theorem 6.3 allows us to provide a set of sufficient conditions that guarantees the
futures market is complete, even when asset price bubbles exist.

THEOREM 6.5. Assume the hypotheses of Theorem 5.2 (2) hold with t0 = 0 and that the
financial market where S trades is complete under P∗. Then, the futures market where a
futures contract with price process Ft,T = EQ∗

[ST |Ft] trades is complete under Q∗, i.e., all
Q∗-local martingales are of the form x + (H · F ·,T ) for some constant x and H ∈ L(F ·,T ).

Proof . If the hypotheses of Theorem 5.2 (2) hold with t0 = 0 then the futures price
process dynamics are given by

d Ft,T = S0 DTd Lt = S0 DT Lt−
St− + (�V)t

d Nt,(6.1)

where S = S0 + N + V is the Doob–Meyer decomposition of the Q∗-supermartingale S.
It follows easily from equation (6.1) and Theorem 6.3 that in this case the futures market
is complete with respect to Q∗. �

Theorem 6.5 states that if the discount factor DT is F0 measurable, the interest rates
are zero, the spot price process is strictly positive, and the futures price process can
be written as a conditional expectation, then trading in the futures price process com-
pletes the market when the underlying spot price process has restricted short sales. This
theorem is perhaps the source of the common belief mentioned earlier because in the
classical literature on futures contracts, these three assumptions are common. Indeed,
stochastic interest rates were usually not considered so no distinction was usually made
between forward and futures contracts, and futures prices were defined as the conditional
expectation in Assumption 4.4.

When we relax the hypotheses of this theorem, the completeness property of the
underlying asset price process need not be inherited by the futures price process. As we
showed in the examples of Section 2, the common belief that trading in futures completes
the market when short selling in the spot asset is prohibited is false in general.

EXAMPLE 6.6. In Example 2.1 the conclusion of Theorem 6.5 does not apply. In this
case the discount factor DT is not F0-measurable.

EXAMPLE 6.7. It is easy to check that the model presented in Example 5.5 is complete
under P = P∗. However, since F ·,T is constant on the interval [0, 2) the futures market
is not complete under Q∗. As we already pointed out, in this example the hypothesis
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of Theorem 5.2 does not hold with t0 = 0, because the discount factor DT is not F0-
measurable. This example complements Example 2.1, because in this case the probability
measure Q∗ at time 1 is independent of the level of the underlying asset price, while in
Example 2.1 the probability measure Q∗ depends on the level of the underlying asset
price at time t∗.

EXAMPLE 6.8. In Example 2.2 the conclusion of Theorem 6.5 fails. In this case even
though the discount factor D is constant and is identically equal to S0, the local martin-
gale factor L(=S/S0) is not a martingale with respect to the measure Q∗(=P).

The following example is even more striking, and it is motivated by Example 2.1. It
shows that the futures price process can lack the completeness property even if the under-
lying asset price process is a continuous martingale under P∗ satisfying the completeness
property with respect to its minimal filtration. This example is the generalization to con-
tinuous time of the idea behind Example 2.1, where after a certain time the measure Q∗

is dependent on the level of the underlying asset price process at a fixed time t∗.

EXAMPLE 6.9. In this example, we first construct a price process for a risky asset on a
complete and filtered probability space (�,G,G, P∗). We denote this price process as S
and we show it has the martingale representation property with respect to its own filtration
F . We then construct a futures process F for S and show that, under F , the futures process
does not have martingale representation. This shows that martingale representation (and
hence market completeness) is not—in general—inherited by a futures process, even if
the risky asset price process has the property.

We begin with the construction of S, which is slightly complicated. We let W be a
standard Brownian motion on (�,G,G := (Gt), P∗). Given x ∈ R, on the compact time
interval [0, 2] we can change to an equivalent probability measure Px so that under Px

the process Xt = W t + xt becomes a standard Brownian motion with no drift, on [0, 1].
By Girsanov’s Theorem we have that Px given by

d Px

d P∗ = E(−xW)1,

satisfies the desired property. We next define a G stopping time τ by

τ = inf{t : |Wt| ≥ 1} ∧ 1,

and

f (x) = EP∗
[WτE(−xWτ )] = EP∗

[
Wτ exp

{
−xWτ − x2

2
τ

}]
= EPx

[Wτ ].(6.2)

Since X is a standard Brownian motion on [0, 1] under Px and τ is a stopping time
bounded by 1, EPx

[Xτ ] = 0; but

0 = EPx
[Xτ ] = EPx

[Wτ + xτ ] = EPx
[Wτ ] + xEPx

[τ ] = f (x) + xEPx
[τ ]

whence f (x) = −xEPx
[τ ]. Since |W τ | is bounded by 1 and τ strictly positive a.s. we know

−1 < f (x) < 0 for all x > 0. By Lebesgue’s dominated convergence theorem we have that
f is continuous on R+. Also, f (0) = 0. Therefore f ([0, 1]) = [−R, 0] for some constant R
∈ (0, 1).
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Recall we are working under the filtration G, relative to which W is a standard
Brownian motion under P∗. We define two stopping times ρ and τ̃ as follows.

ρ = inf
{

t : |Wt| ≥ R
2

}
∧ 1,

and

τ̃ = inf{t ≥ 1 : |Wt − W1| ≥ 1} ∧ 2.

Define

St = 2 + Wt∧ρ + (Wt∧τ̃ − W1)1[1,2](t) > 0.

Finally, we let F := (Ft) denote the filtration generated by S. We are only interested in
(Ft)0≤t≤2.

Note that ρ < τ and ρ < τ̃ as well. If we let Ht = σ {Ws − W1; 1 ≤ s ≤ t} then the
filtrationH = (Ht)t≥1 is independent ofF1 by the independent increments of W under P∗.
Moreover if W̃t = Wt − W1 for t ≥ 1, then (W̃t,H)t≥1 is a Brownian motion independent
from (W t∧1).

We can also write S as a stochastic integral: St − 2 = ∫ t
0 HsdWs where Ht = 1[0,ρ](t) +

1(1,τ̃ ](t); then S is at least a P∗-local martingale, but also S is a bounded process and
hence it is a P∗-martingale. Note further that S has the same intervals of constancy as
t�→[S, S]t and hence is constant on the random intervals [ρ, 1 and τ̃ , 2].

We are now ready to show that (S,F) has martingale representation for [0, 2]. We first
need to show that S is martingale for its own filtration F . However since martingales
for an arbitrary filtration to which they are adapted remain martingales for their own
filtration, we only need to show S is a martingale for a larger filtration, and this we have
already done. To show S has martingale representation, we can invoke the Second Fun-
damental Theorem of Asset Pricing. This theorem states that (S,F) has the martingale
representation property on [0, 2] if for any other measure Q equivalent to P∗ on F2 such
that (S,F) is a Q-local martingale, we have that Q = P∗ on F2. This result essentially
corresponds to corollary 11.4 in Jacod (1979) (see also Harrison and Pliska 1983 and
section 9.5 of Chesney et al. 2009). Let Q be a probability measure equivalent to P on
F2 such that (S,F) is a Q-local martingale. Then since the quadratic variation of S is
[S, S]t = ∫ t

0 (1[0,ρ](s) + 1(1,τ̃ ](s)) ds, by Lévy’s theorem, (St − S0) is a Brownian motion
on the stochastic interval [0, ρ] with respect to Q and (Ft)0≤t≤1, and (St − S1) is also
a Brownian on the interval [1, τ̃ ] with respect to Q and (Ht)1≤t≤2 which is independent
of F1. Additionally, S is constant on the intervals [ρ, 1] and [τ̃ , 2]. Therefore under Q
the process S has exactly the same distribution as it does for P∗ unless ρ and/or τ̃ have
different distributions for Q and P∗. Now, ρ can be defined in terms of the paths of S
before ρ, so it will have the same distribution under both P∗ and Q, since S is a Brownian
motion for each time before ρ due to Lévy’s theorem. And τ̃ can be defined in terms of
the paths of S after 1 up to τ̃ , and since again (St − S1)t≥1 behaves like a standard Brow-
nian motion for both Q and P∗, the distribution of τ̃ is the same under both P∗ and Q.
Therefore Q = P∗ on F2 and since Q was arbitrarily chosen by the Second Fundamental
Theorem of Asset Pricing we have that (S,F) has martingale representation on [0, 2].

We now turn our attention to the futures process F = (Ft)t≥0. First, for y ∈ [−R, 0]
define

μ(y) = inf{x ≥ 0 : f (x) = y},
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and Q∗ on F2 by

d Q∗

d P∗|F2

= E
(

−
∫ 2

1
μ(−R/2 − S1 + 2) dSs

)
.

Notice that Q∗ is well defined because the function μ is bounded on [−R, 0] by 1.
Intuitively, the measure Q∗ gives drift to the paths of S according to their level at
time 1. We have by Bayes’ formula, the tower property for conditional expectations,
the independence lemma for conditional expectations, and the Markov property of the
Brownian motion W that

EQ∗
[S2 − S1|F1] = EQ∗

[Wτ̃ − W1|F1]

= EP∗
[

EP∗
[

(Wτ̃ − W1) exp
{
−μ(−R/2 − S1 + 2)(Wτ̃ − W1)

− (μ(−R/2 − S1 + 2))2

2
(τ̃ − 1)

} ∣∣∣∣G1

] ∣∣∣∣F1

]

= f (μ(−R/2 − S1 + 2))

= −R/2 − S1 + 2.

Therefore,

EQ∗
[S2 |Ft] = EQ∗

[S2 − S1 |Ft] + S1 ≡ 2 − R/2 for t ≤ 1,

S is a (Q∗,F)-supermartingale (μ(−R/2 − S1 + 2) ≥ 0) and

Ft := EQ∗
[S2 |Ft].

Note that F is a Q∗ martingale, being the projection of S2 onto a filtration F , but the
filtration F is not constant on [0, 1] while F is constant there. Since any stochastic
integral with respect to F must also be constant where F is constant, (F,F) does not
have martingale representation for Q∗.

In the Brownian framework we can obtain inter alia necessary and sufficient conditions
for market completeness to be inherited by the futures price process, albeit within the
confines of a heavily hypothesized paradigm.

EXAMPLE 6.10. Suppose that dSt = St(μdt + σdBt) with B a P-Brownian motion and
let Q∗ ∈ Msup(S) be as in Example 4.5. By following the steps of Example 4.5 we can
prove that

Ft,T = S0 EQ∗
[

exp
(∫ T

0
(μ + σηs) ds

)
E(σB∗)T

∣∣∣∣Ft

]
,

where B∗ is a Q∗-martingale with respect to F and η is a predictable process such that
(μ + ση) ≤ 0 P ⊗ λ-almost surely, where λ is Lebesgue measure on [0, T ].

Assume that F is the minimal filtration generated by B∗ (this is a rather delicate
assumption, and an interesting discussion on this subject can be found in chapter V of
Revuz and Yor 1999 and section 5.7.1 of Chesney et al. 2009). Assume that μ + ση − σ 2

2 =
−k(B∗

t ) for some continuous and nonnegative function k (this hypothesis is also quite
delicate since we are imposing a particular functional form dependence of ηt on Bt and
ηs for s < t).
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We can then write

Ft,T = S0 EQ∗
[

exp
(

−
∫ T

0
k(B∗

s ) ds
)

exp
(
σB∗

T

)∣∣∣∣Ft

]

= S0 exp
(

−
∫ t

0
k(B∗

s ) ds
)

EQ∗
[

exp
(

−
∫ T

t
k
(
B∗

s

)
dt

)
exp

(
σB∗

T

)∣∣∣∣Ft

]
.

Using the Markovian property of B∗ with respect to Ft and assuming that the hypotheses
of the theorem of Feynman–Kac (theorem 4.4.2 in Karatzas and Shreve 1998a) hold then
we can write

Ft,T = S0 exp
(

−
∫ t

0
k
(
B∗

s

)
ds

)
v
(
t, B∗

t

)
,

where

v(t, x) = Ex
[

exp
(

−
∫ T−t

0
k
(
B∗

s

)
ds

)
exp

(
σB∗

T−t

)]

solves the Cauchy-problem

−∂v
∂t

+ kv = 1
2
�v ; on [0, T) × R

v(T, x) = exp(σ x); x ∈ R.

By Itô’s formula

d Ft,T = S0 exp
(

−
∫ t

0
k
(
B∗

s

)
ds

)
vx

(
t, B∗

t

)
dB∗

t ,

where vx denotes the first partial derivative of v is the x argument.
We would have in this case that the futures market is complete under P∗ (for the

original filtration F) if and only if the process (vx(t, B∗
t ))0≤t≤T is nonzero P ⊗ λ-almost

surely, where λ is Lebesgue measure on [0, T ].
An alternative way to describe the dynamics of the futures price process when the

process η is not deterministic uses Malliavin Calculus. Under technical assumptions on
η, by the Generalized Clark-Ocone formula (see Karatzas and Ocone 1991) we have that

d Ft,T =
(

EQ∗
[Dt F |Ft] + EQ∗

[
F

∫ T

t
Dtηu dB∗

u

∣∣∣∣Ft

])
dB∗

t ,

where F = ST = S0 exp(μT + σBT − σ 2

2 T) and Dt denotes the Malliavin derivative. By
using properties of the Malliavin derivative it is straightforward to see that

Dt F = σ F .

This implies that

d Ft,T =
(

σ Ft,T + EQ∗
[

ST

∫ T

t
Dtηu dB∗

u

∣∣∣∣Ft

])
dB∗

t .

When η is deterministic this yields

d Ft,T = σ Ft,T dB∗
t ,
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and Ft,T = F0,TE(σB∗)t = S0 exp(
∫ T

0 (μ + σηs) ds)E(σB∗)t, as already observed in Exam-
ple 4.5.

However, when η is random, the volatility of the process Ft,T is not necessarily equal
to σ and has an additional term equal to

EQ∗
[

ST

∫ T

t
Dtηu dB∗

u

∣∣∣∣Ft

]
.

This difference in volatility in markets with short sales prohibition was experimentally
confirmed in Charoenrook and Daouk (2005). Also observe that the futures market is
complete if and only if(

σ Ft,T + EQ∗
[

ST

∫ T

t
Dtηu dB∗

u

∣∣∣∣Ft

])
�= 0(6.3)

Lebesgue-almost everywhere t ∈ [0, T ], P-almost surely.
Under the hypothesis of this example, expression (6.3) provides necessary and suffi-

cient conditions for the futures market to inherit the completeness property from the
underlying asset price process. Essentially, the volatility of the futures price process must
not be zero for any open time interval over the futures contract’s maturity. If the volatility
is zero, then the futures price does not reflect the randomness generating the underlying
asset price process. And of course, the futures market would not be complete.

7. STOCHASTIC INTEREST RATES

In the previous sections the spot rate of interest was equal to zero, and futures and
forward prices coincided (see Remark 5.3). It is well known that without short sales
restrictions or dividend payments, futures prices differ from forward prices by a factor
depending on interest rates (see for instance Duffie 1989; Jarrow and Protter 2009). We
have showed that with short sale prohibitions, when the overpricing hypothesis holds,
and when the spot rate of interest is zero, there is a difference between the asset price
process and the futures price process originating from the multiplicative decomposition
of the underlying asset price process with respect to the market’s pricing measure Q∗ (see
Theorem 5.2). Hence, in a market with: (1) short sale prohibitions, (2) stochastic interest
rates, (3) when the overpricing hypothesis holds, and (4) when the spot price process has
a bubble, then the difference between futures and the spot asset prices can be expressed
as a combination of two factors, the one relating to interest rates and the aforementioned
“short sales prohibition discount factor.” In this section, we exhibit explicit formulas for
this difference. We have the following extension of Theorem 5.2.

THEOREM 7.1. Suppose that S > 0 and Assumption 4.4 holds. Suppose that the canonical
Doob–Meyer decomposition of the Q∗-supermartingale S̃ is S̃ = S̃0 + Ñ + Ṽ and that the
multiplicative decomposition of S̃ under Q∗ is S̃ = L̃D̃. Where

L̃ = E
((

1

S̃− + �Ṽ

)
· Ñ

)
,

D̃ = S̃0

(
E

(
−

(
1

S̃− + �Ṽ

)
· Ṽ

))−1

.

Then the following holds.
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1. If Ñ is a Q∗-martingale and ṼT, S0
T ∈ Ft0 for some t0 < T then Ft,T = ST

0 (S̃0 + Ñt +
ṼT) for all t ∈ [t0, T ].

2. If L̃ is a Q∗-martingale and D̃T, S0
T ∈ Ft0 for some t0 < T , then Ft,T = Lt S0

T DT for
all t ∈ [t0, T ].

Proof . This theorem follows directly from

Ft,T = EQ∗
[ST |Ft] = S0

T EQ∗
[S̃T |Ft] for t ≥ t0. �

When the assumptions on S in the previous theorem do not hold, then there is an
alternative way to represent the futures price process using additional assumptions on
the stochastic evolution of the term structure of interest rates. Define

p(t, T) := EQ∗[(
S0

T

)−1 |Ft
]
,(7.1)

to be the (discounted) price at time t of a zero-coupon bond with maturity T . We have
the following alternative characterization of the futures price process.

THEOREM 7.2. With the notation of Theorem 7.1 and under Assumption 4.4, let

X :=
(

1

S̃− + �Ṽ

)
· Ñ,

R := −
(

1

S̃− + �Ṽ

)
· Ṽ,

and suppose that

p(·,T) = p(0, T)E(Y),

for a Q∗-local martingale Ywith �Y > −1. Then, the futures price process is given by

Ft,T = S̃0

p(0, T)
EQ∗

[E(Z)T

E(R)T

∣∣∣∣Ft

]
,(7.2)

where

Z := X − Y − [Xc − Yc, Yc] −
∑
s≤·

(
�(X − Y)s

�Ys

1 + �Ys

)
,

and Xc, Y c are the continuous parts of the Q∗-local martingales Xand Y, respectively.

Proof . Observe that by Lemma 5.1 and Theorem 7.1

Ft,T = EQ∗
[ST |Ft]

= EQ∗[
S̃T

(
S0

T

)∣∣Ft
]

= EQ∗
[

S̃T

p(T, T)

∣∣∣∣Ft

]

= S̃0

p(0, T)
EQ∗

[ E(X)T

E(Y)TE(R)T

∣∣∣∣Ft

]
.
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The theorem follows from lemma 3.4 in Karatzas and Kardaras (2007), which shows that

E(X)
E(Y)

= E(Z). �
REMARK 7.3. The ideas presented in this theorem extend those in Amin and Jarrow

(1992). In their work, there is no short sales prohibition (so R ≡ 0), the processes X
andY are continuous, [X − Y , Y ] is assumed to be deterministic, and E(X − Y) is a
Q∗-martingale. In this case we can rewrite formula (7.2) as

Ft,T = S̃0 exp(−[X − Y, Y]T)
p(0, T)

E(X − Y)t

= S̃0 exp(−[X − Y, Y]T + [X − Y, Y]t)
p(0, T)

E(Z)t

= S̃t

p(t, T)
exp(−[X − Y, Y]T + [X − Y, Y]t),

which corresponds to equation (3.26) in Amin and Jarrow (1992).
These results exhibit explicitly the fact that the discount factors of futures prices have

two sources of randomness, X and Y , one coming from the underlying asset price process
and another from stochastic interest rates Y . Hence, in order to use futures contracts to
hedge the asset’s price randomness, it is not only important to adjust for the “short sales
prohibition discount factor” E(R)−1, but also for the interest rate factor as well. Traded
zero-coupon bonds are needed to hedge this later randomness.

8. THE MULTIDIMENSIONAL CASE AND FUTURES ON AN INDEX

This section presents the natural extension of the previous results to multidimensional
markets. We also study the behavior of futures on an index, and the effect of short
sale prohibitions on hedging strategies using these instruments. These results are of
particular importance for assets that cannot be short sold, where futures on the individual
asset are impractical, but where futures on an index of the assets (a portfolio) can be
traded. The two prime examples satisfying these conditions are residential homes, and
individual equities with short sale constraints. Another example would be for electricity
and electricity futures, where the underlying commodity—electricity—cannot be stored
in significant quantities.

We again adopt the notation used in Section 2. We assume that there are N securities
trading in the market, from which the first d assets can be sold short in an admissible
way (see Definition 3.1) and the last N − d cannot. Let S = (S1 , . . . , SN) represent the
price processes of these assets. In this section, to simplify our notation we will assume
again that the spot rate of interest is identically equal to zero, however we note that
the results can be extended to the case of stochastic interest rates using the ideas from
the previous section.

Throughout this section we will assume that Si > 0 for all i ≤ N. For each i, the
Doob–Meyer decomposition of the Q∗-supermartingale Si is Si = Si

0 + Ni + Vi . For
each i, we denote by Li and Di the local martingale and predictable part, respectively, in
the multiplicative decomposition Si = LiDi. For each i ≤ N we suppose that Assumption
4.4 holds for the futures price of a futures contract on Si with maturity T . In other words,
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we assume that if Fi
·,T is the futures price of a futures contract on Si with maturity T

then

ASSUMPTION 8.1.

Fi
·,T is a Q∗-martingale.

We denote by F· = (F1
·,T, . . . , F N

·,T) the vector of futures price processes. For fixed deter-
ministic positive weights ωi we define the index value by

I =
N∑

i=1

ωi Si .(8.1)

The following observation immediately follows.

PROPOSITION 8.2. If I is a Q∗-martingale, then for all i ≤ N, Si is a Q∗-martingale.

Proof . Since Si is a Q∗-supermartingale for all i ≤ N we have that if EQ∗
[Si

T|Fi ] < Si
t

for some i ≤ N and t < T then

It = EQ∗
[IT |Ft] =

∑
i≤N

ωi EQ∗[
Si

T

∣∣Ft
]

<
∑
i≤N

ωi Si
t = It,

which is a contradiction. Then, it must be that Si is a Q∗-martingale for all i ≤ N.
This proposition shows that if the index I is traded, sold short, and has no bubble then

none of the underlying asset price processes have bubbles either, using the definiton of
bubbles in Jarrow et al. (2007, 2010).

It is also of interest to study futures contracts on indexes. In this regard we make the
following assumption.

ASSUMPTION 8.3. The futures price of a futures contract on I , F I
·,T , is a Q∗-martingale.

The following theorem describes the behavior of futures on an index and a related
hedging result.

THEOREM 8.4. Assume that for all i ≤ N Di is deterministic and Li is a true Q∗-
martingale and that Assumptions 8.1 and 8.3 hold. We have that if for some probability
measure P∗ ∼ P

Mloc(S) = {Q ∼ P : Si is a Q-local martingale for all i ≤ N} = {P∗}

then,

Mloc(F) := {Q ∼ P : Fi
·,T is a Q-local martingale for all i ≤ N} = {Q∗}.

Additionally, any Q∗-local martingale M can be written as

M = M0 + (H · F),

for some predictable process H ∈ L(F), where L(F) is the space of predictable processes
integrable with respect to F .

If additionally Hi ∈ L(Fi
·,T) for all i ≤ N then

M = M0 + (K · Y),
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where Y = (F1
·,T, . . . , F N

·,T, F I ) and K is a predictable process in L(Y ) such that Ki ≥ 0 for
all i ≤ N.

Proof . That Mloc(F) = {Q∗} and that any Q∗-local martingale M can be written as

M = M0 + (H · F),

for some predictable process H ∈ L(F), follows from the Second Fundamental Theorem
of Asset pricing (see corollary 11.4 in Jacod 1979; Harrison and Pliska 1983; section 9.5
of Chesney et al. 2009) and Theorem 6.3 (the same proofs apply to this framework). It
remains to prove the representation property with respect to the futures contract on I .
Let M be an arbitrary Q∗-martingale and H ∈ L(F) such that

M = M0 + (H · M).

We have that for each i ≤ N

−d Fi
t,T = 1

ωi

⎛
⎝−d F I

t +
∑

j≤N, j �=i

ω j d F j
t,T

⎞
⎠ .(8.2)

If additionally Hi ∈ L(Fi
·,T) for all i ≤ N, we can write (see Jacod 1980)

Htd Ft =
∑
i≤N

Hi
t d Fi

t,T

=
∑
i≤N

(
Hi

t 1{Hi
t ≥0}d Fi

t,T + Hi
t 1{Hi

t <0}d Fi
t,T

)

=
∑
i≤N

(
Hi

t 1{Hi
t ≥0}d Fi

t,T + ( −Hi
t

)
1{Hi

t <0}
( −dFi

t,T

))

=
∑
i≤N

⎛
⎝Hi

t 1{Hi
t ≥0}d Fi

t,T + ( − Hi
t

)
1{Hi

t <0}
1
ωi

⎛
⎝−d F I

t,T +
∑

j≤N, j �=i

ω j dF j
t,T

⎞
⎠

⎞
⎠ .

Observe that the last equation can be rewritten as

Htd Ft =
∑
i≤N

Ki
t d F i

t,T + K N+1
t d F I

t,T,

with Ki ≥ 0 for all i ≤ N. �
REMARK 8.5. This theorem states that under certain technical assumptions, hedging

strategies involving all the futures contracts on the asset price processes can be replaced
by a trading strategy using a futures on an index and trades that are only long on these
futures contracts.

It is also important to note that in order to hedge claims using the futures contract on
an index, one needs the futures contracts on the individual asset price processes, rather
than the asset price processes themselves. A short position on F I

·,T combined with a long
position on the individual asset price processes (modulus some constant coefficients) is
not necessarily equivalent to a short position on the asset price process due to the factors
Di by which asset and futures prices differ (see equation (8.2)). More precisely, we have
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that

d Fi
t,T = DTd Li

t,

while

dS i
t = Di

t−d Li
t + Li

t−d Di
t + d

[
Di

t , Li
t

]
.

Nonetheless, we see how the difference between the dynamics of the futures and asset
price processes depends on the “overpricing discount factor” D.

APPENDIX A: SEMIMARTINGALE CHARACTERISTICS UNDER THE
REFERENCE MEASURE

For a more detailed discussion of the results presented below we refer the reader to
chapter III of Jacod and Shiryaev (2003). To simplify our notation, in this appendix we
will assume that S0 ≡ 1 and there are no cash flows. However under mild hypotheses, by
the results presented in Section 3 (see Theorem 3.2), the analysis below can be extended
to markets with stochastic interest rates and assets with cash flows. To obtain such an
extension, one replaces the underlying asset price process by the discounted process plus
its discounted cash flows.

Let S be an RN-valued process representing the prices of the risky assets in the market.
Since we have assumed that S is a P-semimartingale, it has a canonical representation
given by

S = S0 + Sc + (x1{|x|≤1}) ∗ (μS − ν) + (x1{|x|>1}) ∗ μS + B,

where ∗ denotes integration with respect to a random measure (see section II-1a of Jacod
and Shiryaev 2003) and

(i) Sc is a continuous P-local martingale starting at 0, known as the continuous
martingale part of S,

(ii) μS is the random measure associated to the jumps of S defined by

μS([0, t] × A) =
∑
s≤t

1A\{0}(�Ss),

for 0 ≤ t ≤ T and A ⊂ RN,
(iii) ν is the compensator of the random measure μS (see theorem II-1.8 in Jacod and

Shiryaev 2003),
(iv) B is a predictable RN-valued process with components of finite variation.

If we define Ci,j = [(Sc)i, (Sc)j] then (B, C, ν) are known as the semimartingale charac-
teristics of S under P with respect to the canonical truncation function h(x) = x1{|x|≤1}.
According to proposition II-2..9 in Jacod and Shiryaev (2003) one can find a version of
the characteristics (B, C, ν) of S of the form

B = b · A,

C = c · A
ν(ω, dt, dx) = d At(ω)Kω,t(dx),

(A.1)
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where A is a predictable locally integrable nondecreasing process; b and c are predictable
processes, with b taking values in RN and c taking values in the set of symmetric non-
negative N × N matrices; and Kω,t(dx) is a transition kernel from (� × [0, T],P) into
(RN,B(RN)) which satisfies

Kω,t({0}) = 0,

∫
Kω,t(dx)

(|x|2 ∧ 1
) ≤ 1,

�At(ω) > 0 ⇒ bt(ω) =
∫

Kω,t(dx)x1{|x≤1|},

�At(ω)Kω,t(RN) ≤ 1.

APPENDIX B: SEMIMARTINGALE CHARACTERISTICS UNDER THE
PRICING MEASURE

Now, given the measure Q∗ (see Assumption 4.4), Girsanov’s Theorem for semimartin-
gales (theorem III-3.24 in Jacod and Shiryaev 2003) implies that there exists a nonnegative
P̃ := P ⊗ B(RN)-measurable function Y∗ (where B(RN) is the Borel sigma-algebra on
RN and ⊗ denotes the product sigma-algebra) and a predictable process β∗ satisfying

|x1{|x|≤1}(Y∗ − 1)| ∗ νt < ∞ Q∗-almost surely for all t ∈ [0, T],∣∣∣∣∣∣
∑
j≤N

ci jβ∗, j

∣∣∣∣∣∣ · At < ∞ and

⎛
⎝ ∑

j ,k≤N

β∗, j c jkβ∗,k

⎞
⎠ ·

At < ∞ Q-almost surely for all i and t ∈ [0, T],

ν(ω; {t} × E) = 1 ⇒
∫

Y∗(ω, t, x)ν(ω; {t} × dx) = 1,

and such that the characteristics of S relative to Q∗ are

B∗ = B + cβ∗ + x1{|x|≤1}(Y∗ − 1) ∗ ν,

C∗ = C,

ν∗ = Y∗ · ν, where Y∗ · ν(ω; dt, dx) = ν(ω; dt, dx)Y∗(ω, t, x).

(B.1)

Furthermore, according to lemma III-5.17 in Jacod and Shiryaev (2003), the density
process Z∗ of Q∗ relative to P has the form

Z∗ = 1 + (Z∗
−β∗) · Sc + Z∗

−

(
Y∗ − 1 + Ŷ∗ − a

1 − a
1{a<1}

)
∗ (μS − ν) + Z′,

where

(i) Z′ is a P-local martingale with Z ′
0 = 0 and [(Z′c, (Si)c] = 0 for all i ≤ N and

MP
μS[�Z ′ | P̃ ] = 0 (see III-3.15 in Jacod and Shiryaev 2003),

(ii)

at(ω) = ν(ω; {t} × RN),
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(iii)

Ŷ∗
t(ω) =

⎧⎨
⎩

∫
ν(ω; {t} × dx)Y∗(ω, t, x) if this integral converges,

∞ otherwise.
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In this paper, we study the dual representation for generalized multiple stopping
problems, hence the pricing problem of general multiple exercise options. We derive a
dual representation which allows for cash flows which are subject to volume constraints
modeled by integer-valued adapted processes and refraction periods modeled by stop-
ping times. As such, this extends the works by Schoenmakers (2012), Bender (2011a),
Bender (2011b), Aleksandrov and Hambly (2010), and Meinshausen and Hambly
(2004) on multiple exercise options, which either take into consideration a refraction
period or volume constraints, but not both simultaneously. We also allow more flexible
cash flow structures than the additive structure in the above references. For example,
some exponential utility problems are covered by our setting. We supplement the the-
oretical results with an explicit Monte Carlo algorithm for constructing confidence
intervals for prices of multiple exercise options and illustrate it with a numerical study
on the pricing of a swing option in an electricity market.

KEY WORDS: general multiple stopping, dual representations, multiple exercise options, volume
constraints, refraction period.

1. INTRODUCTION

The last decades have seen ground breaking developments of Monte Carlo methods for
American options based on multidimensional underlying price processes. In the late 1990s
the regression-based methods by Carriere (1996), Longstaff and Schwartz (2001), and
Tsitsiklis and Van Roy (2001) may be considered as main breakthroughs. In general, these
methods provide lower bounds on the option price by constructing an approximation to
the optimal exercise (stopping) time via regression on a set of basis functions. As such
these approaches are termed “primal.” At the beginning of this century Rogers (2002) and
independently Haugh and Kogan (2004) provided the next breakthrough by presenting a
“dual” representation for the optimal stopping problem corresponding to the American
option pricing problem. In this representation the option price is expressed as infimum
of an expectation over a set of martingales. (The key behind this dual representation can
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already be found in Davis and Karatzas 1994, in fact.) Although in the primal methods
the central problem is to find a “good” stopping time, in the dual problem one needs to
find a “good” martingale, which leads to an upper bound for the price of an American
option. As one of the standard numerical approaches to compute dual upper bounds for
American options by Monte Carlo we refer to Andersen and Broadie (2004).

During the same time, in the emerging electricity markets products with multiple
exercise opportunities, such as “swing options,” became popular. Naturally, the pricing
of such a product leads to a multiple stopping problem, which requires a numerical
method for resolution. In this respect, generalization of the existing primal regression
methods for standard optimal stopping was just a matter of routine. Further, Bender
and Schoenmakers (2006) developed a kind of policy iteration for multiple stopping.
However, regarding the dual approach the situation was less clear. Meinshausen and
Hambly (2004) proposed a dual representation for the multiple stopping problem by
expressing the excess value due to each additional exercise right by an infimum of an
expectation over a set of martingales and a set of stopping times. This line of research
was carried out further by Aleksandrov and Hambly (2010) and Bender (2011b) in
the context of dual pricing of multiexercise options under volume constraints. Recently,
Schoenmakers (2012) introduced a dual representation for the price of a multiple exercise
option instead of the dual representation for the excess value of an additional right. This
new dual representation involves an infimum over martingales only and can thus be
considered as a more natural extension of the dual representation for single exercise
options. This approach was generalized by Bender (2011a) to a continuous time setting
involving (constant) refraction periods.

In the meantime Kobylanski, Quenez, and Rouy-Mironescu (2011) introduced and
studied multiple stopping problems in the primal sense in a far more general context,
where the payoff is considered to be some abstract functional of an (ordered) sequence
of stopping times. The goal of this paper is to find (pure) martingale dual representations
for such generalized multiple stopping problems in a discrete time setting. As we will
show, such representations can be constructed even in a most general setting. However,
for practical implementation these general representations unfold their full strength only
if applied to some more specifically structured cash flows. In this respect, we study a
generic payoff structure with both multiplicative and additive structure that incorporates
(integer-valued) volume constraints and refraction periods given by stopping times. We
furthermore provide an explicit Monte Carlo-based algorithm and carry out a detailed
numerical study illustrating the pricing of swing options. Comparing to existing works,
the numerical experiments reveal that, by and large, the dual algorithms due to our
new representations applied to the problem type considered in Aleksandrov and Hambly
(2010) and Bender (2011b) produce tighter upper bounds on the option price, in particular
when the number of exercise rights is large. We moreover present a numerical example
which involves swing options subject to both volume constraints and refraction periods
and give tight confidence intervals for the respective option prices. We underline that the
latter example is not covered by the numerical dual methods presented in the literature
so far.

It should be mentioned that Brown et al. (2010) developed a dual approach for general
optimal control problems via the concept of information relaxation and that Rogers
(2007) presented a path-wise dual approach for a specific class of Markovian control
problems. A closer investigation reveals that, in fact, the dual representation of Brown
et al. (2010) is essentially equivalent to Theorem 2.4 in this paper. However, Theorem 2.4 is
derived in a different way and in a different language, namely by directly generalizing the
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standard dual martingale approach of Rogers (2002), and Haugh and Kogan (2004) (cf.
Schoenmakers 2012). Furthermore, to end up with feasible algorithms, the complexity
has to be reduced. In this respect, we present a systematic treatment for a class of
problems which generalizes those studied previously in the literature. Finally, we note
that (virtually simultaneously with the present work) Gyurko, Hambly, and Witte (2011)
developed a dual formulation for a specific class of control problems via an approach in
the spirit of Rogers (2007).

The structure of the paper is as follows: In Section 2 we derive a dual representation
for general multiple stopping problems in terms of a family of martingales. As this family
of martingales is typically too large for practical purposes in general, we specialize to a
generic cash flow with additive and multiplicative structure which incorporates volume
constraints and refraction periods in Section 3. In this section we then prove two dual
representations. One is in terms of the Doob decomposition of the Snell envelopes of
an auxiliary family of stopping problems, the other one only requires approximations of
these Snell envelopes. In Section 4 we explain how to build a Monte Carlo algorithm for
computing confidence intervals on the value of the multiple stopping problems based on
the results of Section 3 and perform some numerical experiments in the context of swing
option pricing.

2. GENERAL MULTIPLE STOPPING PROBLEM

In this section we consider a multiple stopping problem in discrete time i = 0, . . . , T ,
where T ∈ N is a fixed and finite time horizon. We further introduce a “cemetery time”
∂ := T + 1, where all rights will be exercised, which are not exercised up to time T . For
a given filtration (Fi )0≤i≤∂ and a number L of exercise dates we next consider a cash flow
X as a map X : {0, . . . , T, ∂}L × � → R which satisfies for all 0 ≤ i1 ≤ · · · ≤ iL ≤ ∂,

Xi1,...,iL is FiL-measurable,

E|Xi1,...,iL | < ∞.

Now consider the stopping problem (sup:=ess.sup, Ei := EFi ),

Y∗L
i = sup

i≤τ 1≤···≤τ L
Ei Xτ 1,...,τ L,(2.1)

where the supremum runs over the families of ordered stopping times τ k, 1 ≤ k ≤ L.
In mathematical finance this type of multiple stopping problems has the following two

generic applications:

• Suppose that X is the revenue or, more generally, the utility of an investor’s revenue
depending on a set of exercise decisions. An investor, who aims at maximizing his
expected utility by using his exercise rights in an optimal way, is faced with the
optimal multiple stopping problem (2.1), where the expectation is taken under the
physical measure. Examples 3.2 and 3.3 below on exponential utility and on portfolio
liquidation are of this type.

• Suppose that X is the discounted payoff of an option which allows for multiple
exercises. Then, similarly to the American option case, an arbitrage-free discounted
price for the multiple exercise option is given by the multiple stopping problem (2.1),
if the expectation is taken under a pricing measure, i.e., a probability measure under
which the discounted prices of tradable and storable basic securities in the underlying
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market are (local) martingales. This price depends, of course, on the choice of the
pricing measure in the situation of an incomplete market, which can be selected by
calibration to liquidly traded options in practice for instance. In Example 3.1 below
and in the numerical section we consider the pricing of swing options.

To reduce problem (2.1) to a sequence of single stopping problems let us define for
k = 2, . . . , L and 0 ≤ j1. . . ≤ jk−1 ≤ r ≤ ∂,

Y∗L−k+1, j1,..., jk−1
r := sup

r≤τ k≤···≤τ L
Er Xj1,..., jk−1,τ k,...,τ L,(2.2)

with the convention that for k = 1, we put Y∗L,∅
r := Y∗L

r , and for k = L + 1, we put
Y∗0, j1,..., jL

r = Xj1,..., jL .

PROPOSITION 2.1. We have the following reduction principle

Y∗L−k+1, j1,..., jk−1
r = sup

τ≥r
Er Y∗L−k, j1,..., jk−1,τ

τ , r ≥ jk−1.(2.3)

Proof. This principle can be straightforwardly proved in an inductive manner, but it
can also be considered as a discrete time version of a related result in a continuous time
setting from Kobylanski et al. (2011). �

REMARK 2.2. Thanks to the previous proposition and standard results on single stop-
ping problems, we observe that a family of optimal stopping times for (2.1) is given
recursively by

τ ∗1
i = inf

{
r ≥ i ; Y∗L−1,r

r ≥ Er Y∗L
r+1

}
,

τ ∗k
i = inf

{
r ≥ τ ∗k−1

i ; Y∗L−k,τ ∗1
i ,...,τ ∗k−1

i ,r
r ≥ Er Y∗L−k+1,τ ∗1

i ,...,τ ∗k−1
i

r+1

}
, k = 2, . . . , L.

In what follows the following remark turns out to be useful.

REMARK 2.3. We say that a martingale (Mr)r≥p is a Doob martingale of (Y r)r≥p,
whenever there exists a predictable process (Ar)r≥p, such that Y r − Mr + Ar is Fp-
measurable for any r ≥ p. In particular, for any two Doob martingales (Mr)r≥p and
(M̃r )r≥p of (Y r)r≥p, it holds

Mr − Mr ′ = M̃r − M̃r ′ =
r−1∑
k=r ′

(Yk+1 − EkYk+1)

for any r ≥ r′ ≥ p.

We can now state and prove a dual representation for the general multiple stopping
problem in terms of martingales.

THEOREM 2.4 [Dual representation]. In the setting described above, we have that:

(i) For any 0 ≤ i ≤ ∂ and any set of martingales (ML−k+1, j1,..., jk−1
r )r≥ jk−1 , where 1 ≤ k ≤

L, and i =: j0 ≤ j1 ≤ · · · ≤ jk−1, it holds

Y∗L
i ≤ Ei max

i≤ j1≤···≤ jL≤∂

(
Xj1,..., jL +

L∑
k=1

(
ML−k+1, j1,..., jk−1

jk−1
− ML−k+1, j1,..., jk−1

jk

))
.

(2.4)
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(ii) It holds for i ≥ 0

Y∗L
i = max

i≤ j1≤···≤ jL≤∂

(
Xj1,..., jL +

L∑
k=1

(
M∗L−k+1, j1,..., jk−1

jk−1
− M∗L−k+1, j1,..., jk−1

jk

))
,

where for 1 ≤ k ≤ L, and i =: j0 ≤ j1 ≤ ··· ≤ jk−1,(M∗L−k+1, j1,..., jk−1
r )r≥ jk−1 is a Doob

martingale of (Y∗L−k+1, j1,..., jk−1
r )r≥ jk−1 .

Proof.

(i) For the martingale family as stated we have for any chain of stopping times 0 ≤ τ 1

≤ ··· ≤ τL ≤ ∂,

Ei

L∑
k=1

(
ML−k+1,τ 1,...,τ k−1

τ k−1 − ML−k+1,τ 1,...,τ k−1

τ k

)
=

L∑
k=1

EiEτ k−1

(
ML−k+1,τ 1,...,τ k−1

τ k−1 − ML−k+1,τ 1,...,τ k−1

τ k

) = 0,

hence,

Y∗L
i = sup

i≤τ 1≤···≤τ L
Ei

(
Xτ 1,...,τ L +

L∑
k=1

(
ML−k+1,τ 1,...,τ k−1

τ k−1 − ML−k+1,τ 1,...,τ k−1

τ k

))

from which (i) follows directly.
(ii) For any chain i ≤ j1 ≤ ··· ≤ jL ≤ ∂ we may write (recalling j0 := i)

Xj1,..., jL +
L∑

k=1

(
M∗L−k+1, j1,..., jk−1

jk−1
− M∗L−k+1, j1,..., jk−1

jk

)
= Xj1,..., jL +

L∑
k=1

(
Y∗L−k+1, j1,..., jk−1

jk−1
− Y∗L−k+1, j1,..., jk−1

jk

)
+

L∑
k=1

jk−1∑
l= jk−1

(
El Y

∗L−k+1, j1,..., jk−1
l+1 − Y∗L−k+1, j1,..., jk−1

l

)
= Y∗L

i +
L∑

k=1

(
Y∗L−k, j1,..., jk

jk − Y∗L−k+1, j1,..., jk−1
jk

)
+

L∑
k=1

jk−1∑
l= jk−1

(
El Y

∗L−k+1, j1,..., jk−1
l+1 − Y∗L−k+1, j1,..., jk−1

l

)
.

(2.5)

By the reduction principle (2.3) it follows that (Y∗L−k+1, j1,..., jk−1
r )r≥ jk−1 is a supermartin-

gale which dominates the (virtual) cash flow Y∗L−k, j1,..., jk−1,r
r for k = 1, . . . , L. Hence,

expression (2.5) is less than or equal to Y∗L
i . It thus follows that

max
i≤ j1≤···≤ jL≤∂

(
Xj1,..., jL +

L∑
k=1

(
M∗L−k+1, j1,..., jk−1

jk−1
− M∗L−k+1, j1,..., jk−1

jk

)) ≤ Y∗L
i ,

and then, an application of (i) finishes the proof. �
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A straightforward consequence of Theorem 2.4 is the following dual representation in
terms of approximate Snell envelopes.

COROLLARY 2.5. For any set (YL−k+1, j1,..., jk−1
r )r≥ jk−1 of approximations to the Snell en-

velopes
(
Y∗L−k+1, j1,..., jk−1

r
)

r≥ jk−1
with Y0, j1,..., jL

jL
:= Xj1,..., jL, it holds for i ≥ 0:

Y∗L
i ≤ YL

i + Ei max
i≤ j1≤···≤ jL≤∂

L∑
k=1

(
YL−k, j1,..., jk

jk − YL−k+1, j1,..., jk−1
jk +

jk−1∑
l= jk−1(

El Y
L−k+1, j1,..., jk−1

l+1 − YL−k+1, j1,..., jk−1
l

))
.

(2.6)

Equality holds when the Snell envelopes are plugged in.

Proof. Given (YL−k+1, j1,..., jk−1
r )r≥ jk−1 , we denote a corresponding family of Doob mar-

tingales by (ML−k+1, j1,..., jk−1
r )r≥ jk−1 . Following the same manipulations as in (2.5) and

recalling that by definition Y0, j1,..., jL
jL

= Xj1,..., jL , we get

YL
i +

L∑
k=1

((
YL−k, j1,..., jk

jk − YL−k+1, j1,..., jk−1
jk

)
+

jk−1∑
l= jk−1

(
El Y

L−k+1, j1,..., jk−1
l+1 − YL−k+1, j1,..., jk−1

l

))

= Xj1,..., jL +
L∑

k=1

(
ML−k+1, j1,..., jk−1

jk−1
− ML−k+1, j1,..., jk−1

jk

)
.

Hence, the assertion is a mere reformulation of Theorem 2.4. �
At this point, we stress that the dual representation from Theorem 2.4 relies on families

of martingales (ML−k+1, j1,..., jk−1
r )r≥ jk−1 whose size is parameterized via the (k − 1)-tuples

(j1, . . . , jk−1), k = 1, . . . , L. Hence, depending on the time horizon T and the number of
exercise rights L a huge number of martingales ML−k+1, j1,..., jk−1 , k = 1, . . . , L, 0 ≤ j1 ≤
. . . ≤ jk−1 ≤ ∂ = T + 1 is required to compute an upper price bound by the above dual
formulation. It is thus of great importance to single out situations, in which a family
of optimal martingales can be constructed from a much smaller family of auxiliary
processes. This will be the topic of Section 3. A motivating example in this respect is the
standard multiple stopping problem.

EXAMPLE 2.6 [Standard multiple stopping]. Let Z be a nonnegative adapted process
with Zj = 0 for j = ∂, i.e., no penalty is imposed for unexercised rights. The standard
multiple stopping problem is to maximize E[

∑L
k=1 Zτ k ] over the set of ordered stopping

times τ 1 ≤ ··· ≤ τL such that τ k < τ k+1 or τ k = τ k+1 = ∂. This means that at most one
right can be exercised per day, but an arbitrary number of rights can be left unexercised,
i.e., is exercised at time ∂. This problem can be put into our general setting by considering
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the cash flow

Xi1,...,iL =

⎧⎪⎪⎨⎪⎪⎩
L∑

k=1

Zik, if i j+1 = i j ⇒ i j = ∂,

−N, else,

for N ∈ N. Note that the Snell envelope Y∗L
i does not depend on the choice of N, because

it is never optimal to exercise X in a way which gives a negative payment. Hence, letting
N tend to ∞, Theorem 2.4 yields,

Y∗L
i = max

i ≤ j1 ≤ · · · ≤ jL

jk = jk+1 ⇒ jk = ∂

(
L∑

k=1

Zjk +
L∑

k=1

(
M∗L−k+1, j1,..., jk−1

jk−1
− M∗L−k+1, j1,..., jk−1

jk

))
,

where for 1 ≤ k ≤ L, i ≤ j1 < · · · < jk−1,(M∗L−k+1, j1,..., jk−1
r )r≥ jk−1 is a Doob martingale of

Y∗L−k+1, j1,..., jk−1
r =

k−1∑
p=1

Zjp + sup
r≤τ k≤···≤τ L

τ p=τ p+1 ⇒ τ p=∂ and τ k= jk−1 ⇒ jk−1=∂

Er

L∑
p=k

Zτ p

for r ≥ jk−1. Define, for r ≥ 0,

Y∗L−k+1
r := sup

r≤τ k···≤τ L

τ p=τ p+1 ⇒ τ p=∂

Er

⎛⎝ L∑
p=k

Zτ p

⎞⎠
and denote the Doob martingale of (Y∗L−k+1

r )r≥0 by (M∗L−k+1
r )r≥0. As

Y∗L−k+1
r − Y∗L−k+1, j1,..., jk−1

r

is F jk−1 -measurable for r ≥ jk−1, we can conclude by Remark 2.3 that (M∗L−k+1
r )r≥ jk−1 is

a Doob martingale of (Y∗L−k+1, j1,..., jk−1
r )r≥ jk−1 . Hence, we end up with the dual represen-

tation

Y∗L
i = max

i ≤ j1 ≤ · · · ≤ jL

jk = jk+1 ⇒ jk = ∂

(
L∑

k=1

Zjk +
L∑

k=1

(
M∗L−k+1

jk−1
− M∗L−k+1

jk

))

of Schoenmakers (2012). Here, the potentially large family of optimal martingales
(M∗L−k+1, j1,..., jk−1 ), k = 1, . . . , L, 0 ≤ j1, . . . ≤ jk−1 ≤ ∂, collapses, in fact, to a family
of L martingales, namely the Doob martingales of Y∗k.

3. GENERIC CASH FLOW WITH ADDITIVE AND MULTIPLICATIVE
STRUCTURE

We now introduce a generic cash flow structure for which the dual representation simpli-
fies in a similar way than for the standard multiple stopping problem in Example 2.6. To
this end, let us consider for each k = 1, . . . , L and l = 1, . . . , L − 1 two adapted processes
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Uk and Vl. We define a “precash flow”

X̃j1,..., jL =
L∑

k=1

Uk
jk

k−1∏
l=1

Vl
jl ,

which is assumed to satisfy X̃j1,..., jL > −N for some (possibly large) N ∈ N. Concerning
the processes Uk and Vl, we suppose that Uk

i is integrable for every k = 1, . . . , L and i =
0, . . . , ∂, and that Vl

i is strictly positive and bounded from above for every l = 1, . . . , L −
1 and i = 0, . . . , ∂. The multiple stopping problem which we have in mind is to optimally
exercise this precash flow under some constraints on the set of admissible stopping times,
which we now formulate. We first define an adapted volume constraint process v with
values in {1, . . . , L} such that vt is the maximum number of rights one may exercise at t,
and such that v∂ = L. To formalize this constraint, we introduce for p ≥ 1 the mapping
Ep which acts on a nondecreasing p-tuple (j1, . . . , jp) by

Ep( j1, . . . , jp) := #{r : 1 ≤ r ≤ p, jr = jp}.

Hence, Ep denotes the number of rights exercised at jp in the nondecreasing chain
0 ≤ j1 ≤ · · · ≤ jp ≤ ∂. Obviously, an ordered chain of stopping times τ 1 ≤ ··· ≤ τL

satisfies the volume constraint if and only if Ep(τ 1, . . . , τ p) ≤ vτ p for every p = 1, . . . , L.
The second constraint, which we want to impose, is a refraction period which specifies
the minimal waiting time between two exercises at different times. We admit random
refraction periods, i.e., at each time i, 0 ≤ i < ∂, we fix a stopping time ρ i taking values
in {i + 1, . . . , ∂}. If at least one right is exercised at time i, then the refraction period
constraint imposes that the next right must either be exercised at the same time (if
consistent with the volume constraint) or otherwise no earlier than ρ i. A standard case
is ρ i = (i + δ)∧∂, where 1 ≤ δ ≤ T is deterministic. Both constraints can be summarized
by the binary F jp -measurable random variable

Cp( j1, . . . , jp) :=
{

1, ∀1≤l≤p : El ( j1, . . . , jl ) ≤ v jl and ∀1≤l≤p : jl > jl−1 =⇒ jl ≥ ρ jl−1 ,

0, else,

which is equal to 1, if and only if the constraints are satisfied when exercising at the p
times j1 ≤ ··· ≤ jp.

The dynamic multiple stopping problem which we now study is

Y∗L
i = sup

i ≤ τ 1 ≤ · · · ≤ τ L ≤ ∂

CL(τ 1, . . . , τ L) = 1

Ei

[
L∑

k=1

Uk
τ k

k−1∏
l=1

Vl
τ l ,

]
,(3.1)

i.e., the supremum is taken over all stopping times with values in {i, . . . , T , ∂} which
satisfy the volume constraint and the refraction period constraint. This problem fits in
our general (unconstrained) setting by considering the cash flow

Xj1,..., jL =
{

X̃j1,..., jL, if CL( j1, , . . . , jL) = 1.

−N, else.
(3.2)

To illustrate our motivation for studying the previous cash flow, let us have a look at
the following examples.
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EXAMPLE 3.1 [Swing options]. We extend the situation in Example 2.6 by imposing
volume constraints and refraction periods as described above. Hence, we have

Vl
j := 1, l = 1, . . . , L − 1, j = 0, . . . , ∂,

U p
j := Zj p = 1, . . . , L, j = 0, . . . , ∂,

where we recall that Z is a nonnegative adapted process with Z∂ = 0. The multiple
stopping problem then becomes

sup
τ 1 ≤ · · · ≤ τ L

CL(τ 1, . . . , τ L) = 1

E

[
L∑

k=1

Zτ k

]
,

leading to

Xj1,..., jL =

⎧⎪⎪⎨⎪⎪⎩
L∑

k=1

Zjk, if CL( j1, , . . . , jL) = 1,

−N, else.

Here any N ∈ N can be chosen because Z is nonnegative. A dual approach for this
multiple stopping problem was studied by Bender (2011b) and Aleksandrov and Hambly
(2010) under volume constraints, but with unit refraction period, i.e., ρ i = i + 1. The
case with nontrivial constant refraction period is treated in Bender (2011a), but only
under unit volume constraint, i.e., vi = 1. A typical problem in the context of electricity
markets which leads to this type of multiple stopping problem is the pricing of Swing
option contracts, in which volume constraints and refraction periods are often imposed.
This option pricing problem will be explained in more detail in our numerical study in
Section 4.

EXAMPLE 3.2 [Exponential utility]. Under the assumptions of the previous example
we can also maximize the exponential utility of exercising the cash flow Zi L-times while
obeying the constraints. Given the risk aversion parameter α ∈ (0, ∞), the corresponding
multiple stopping problem becomes

sup
τ 1 ≤ · · · ≤ τ L

CL(τ 1, . . . , τ L) = 1

E
[
−e−α

∑L
k=1 Zτk

]
.

This problem fits in our setting by considering

Xj1,..., jL =

⎧⎪⎪⎨⎪⎪⎩
L∑

k=1

Uk
jk

k−1∏
l=1

Vl
jl , if CL( j1, , . . . , jL) = 1,

−N, else
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with

Vl
j := e−αZj > 0 and Uk

j :=
{

0, if k = 1, · · · , L − 1,

−e−αZj , if k = L,

for j = 0, 1, . . . , ∂ and N ≥ 2.

EXAMPLE 3.3 [Portfolio liquidation]. Suppose a (large) investor on a illiquid market
wants to sell out (liquidate) L shares of a stock during the period {0, . . . , T}. As such
the investor is faced with a portfolio liquidation problem, see for example Almgrem and
Chriss (2001), Gatheral and Schied (2011), Schied and Slynko (2011), and the references
therein. Let us assume that S̃j > 0, j = 0, . . . , T , is the virtual stock price process reflecting
the stock price evolution in the absence of the large investor’s trading. In the spirit of
Schied and Slynko (2011), section 3.1, we model the price impact of the large investor by
a resilience function G which we here apply to the log-price. Hence, the log-stock price
ln Sj1,..., jk−1

jk at time jk of the sale of the kth share, where k − 1 shares were already sold at
dates 0 ≤ j1 ≤ · · · ≤ jk−1, is given by

ln Sj1,..., jk−1
jk = ln S̃jk −

k−1∑
l=1

G( jk − jl ).

We here choose the capped linear resilience function G(t) = b(1 − at)+ for constants a, b
> 0. Assuming a short time horizon T ≤ 1/a , the investor is thus faced with a multiple
stopping problem

sup
τ 1≤···≤τ L

E

[
L∑

k=1

Sτ 1,...,τ k−1

τ k

]
,

which fits in our framework by applying, for 0 ≤ j1 ≤ ··· ≤ jL ≤ T , the cash flow

Xj1,..., jL :=
L∑

k=1

Sj1,..., jk−1
jk =

L∑
k=1

S̃jk exp

(
−

k−1∑
l=1

b(1 − a( jk − jl ))

)

=
L∑

k=1

S̃jk exp[b(a jk − 1)(k − 1)]
k−1∏
l=1

exp(−abjl )

=
L∑

k=1

Uk
jk

k−1∏
l=1

Vl
jl

with

Uk
j := S̃j exp[b(aj − 1)(k − 1)] and Vl

j := exp(−abj ).

(Note that the cemetery time ∂ is irrelevant in this setting and we can, e.g., set Uk
∂ = 0,

Vl
∂ = 1 to make sure that it is never optimal to exercise at this time.)

Similarly to the situation in Example 2.6, we now introduce a family of auxiliary
multiple stopping problems Y∗L−k+1

r , which are not parameterized by the times j1, . . . ,
jk−1, at which the first rights were exercised. We will then show that a family of optimal
martingales for the original multiple stopping problem (3.1) can be constructed via the
Doob decomposition of the auxiliary problems. This then leads to a simplified dual
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representation for (3.1), which can be implemented in practice even when the maturity T
and the number of rights L are large.

Define

Y∗L−k+1
r := sup

τ k,...,τ L

r≤τ k≤···≤τ L and CL−k+1(τ k,···,τ L)=1

Er

⎛⎝ L∑
p=k

U p
τ p

p−1∏
l=k

Vl
τ l

⎞⎠(3.3)

with the convention Y∗0
r := 0. The following proposition states the Bellman principle for

this multiple stopping problem.

PROPOSITION 3.4 [Dynamic program]. For r ≥ 0 and 1 ≤ k ≤ L we have,

Y∗L−k+1
r = max

⎛⎝Er Y∗L−k+1
r+1 , max

1≤n≤vr ∧ (L−k+1)

⎛⎝k+n−1∑
p=k

U p
r

p−1∏
l=k

Vl
r +

k+n−1∏
l=k

Vl
r Er Y∗L−k−n+1

ρr

⎞⎠⎞⎠ .

Proof. From (3.3) we derive straightforwardly,

Y∗L−k+1
r = max

0≤n≤vr ∧ (L−k+1)
sup

r < τ k+n ≤ · · · ≤ τ L

CL−k+1(r , . . . , r , τ k+n, . . . , τ L) = 1

× Er

⎛⎝k+n−1∑
p=k

U p
r

p−1∏
l=k

Vl
r +

L∑
p=k+n

U p
τ p

k+n−1∏
l=k

Vl
r

p−1∏
l=k+n

Vl
τ l

⎞⎠
= max

⎛⎝Er Y∗L−k+1
r+1 , max

1≤n≤vr ∧ (L−k+1)

⎛⎝k+n−1∑
p=k

U p
r

p−1∏
l=k

Vl
r

+
k+n−1∏

l=k

Vl
r sup

ρr ≤ τ k+n ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

Er

⎛⎝ L∑
p=k+n

U p
τ p

p−1∏
l=k+n

Vl
τ l

⎞⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ .

A standard argument shows that

sup
ρr ≤ τ k+n ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

Er

⎛⎝ L∑
p=k+n

U p
τ p

p−1∏
l=k+n

Vl
τ l

⎞⎠

= Er sup
ρr ≤ τ k+n ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

Eρr

⎛⎝ L∑
p=k+n

U p
τ p

p−1∏
l=k+n

Vl
τ l

⎞⎠ = Er Y∗L−k−n+1
ρr ,

(3.4)

which concludes the proof. �
We now establish a crucial relationship between the Snell envelopes Y∗L−k+1, j1,..., jk−1

and Y∗L−k+1 defined in (3.3). The following proposition shows that Y∗L−k+1, j1,..., jk−1 ,
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parameterized by the jk’s, can be represented in terms of Y∗L−k+1 which avoids the jk’s.
Note that, for k = 1, both Snell envelopes coincide by definition.

PROPOSITION 3.5. Suppose 1 < k ≤ L + 1. Under the condition Ck−1( j1, . . . , jk−1) = 1,
we have

(i) for r > jk−1 it holds

Y∗L−k+1, j1,..., jk−1
r =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + Er Y∗L−k+1

ρ jk−1 ∨r

k−1∏
l=1

Vl
jl .(3.5)

(ii) Further it holds

Y∗L−k+1, j1,..., jk−1
jk−1

=
k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl max

n∈N( j1,..., jk−1)

×
⎧⎨⎩

k−1+n∑
p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+ E jk−1 Y∗L−k+1−n
ρ jk−1

k−1+n∏
l=k

Vl
jk−1

⎫⎬⎭ ,

(3.6)

where the maximum runs over the F jk−1 -measurable set

N( j1, . . . , jk−1) := {n; 0 ≤ n ≤ (v jk−1 − Ek−1( j1, . . . , jk−1)) ∧ (L − k + 1)}.

Proof. For k = L + 1 both assertions are implied by the conventions Y∗0, j1,..., jL
r =

Xj1,..., jL and Y∗0
r = 0. Hence, we assume for the remainder of the proof that 1 < k ≤ L.

(i) Under Ck−1( j1, . . . , jk−1) = 1, we have for r > jk−1

Y∗L−k+1, j1,..., jk−1
r =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

× sup
r≤τ k≤···≤τ L

CL( j1,..., jk−1,τ
k,...,τ L)=1

Er

⎛⎝ L∑
p=k

U p
τ p

p−1∏
l=k

Vl
τ l

⎞⎠ .

(3.7)

As r > jk−1 , we obtain, thanks to (3.4),

sup
r≤τ k≤···≤τ L

CL( j1,..., jk−1,τ
k,...,τ L)=1

Er

⎛⎝ L∑
p=k

U p
τ p

p−1∏
l=k

Vl
τ l

⎞⎠(3.8)

= 1{r<ρ jk−1 } sup
ρ jk−1 ≤τ k≤···≤τ L

CL−k+1(τ k,...,τ L)=1

Er

⎛⎝ L∑
p=k

U p
τ p

p−1∏
l=k

Vl
τ l

⎞⎠

+ 1{r≥ρ jk−1 } sup
r≤τ k≤···≤τ L

CL−k+1(τ k,...,τ L)=1

Er

⎛⎝ L∑
p=k

U p
τ p

p−1∏
l=k

Vl
τ l

⎞⎠
= 1{r<ρ jk−1 }Er Y∗L−k+1

ρ jk−1
+ 1{r≥ρ jk−1 }Y

∗L−k+1
r .
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Hence, by combining (3.7) and (3.8) we get (i).
(ii) Given that the first (k − 1) rights have been exercised at times j1 ≤ ··· ≤ jk−1

the number of the remaining (L − k + 1) rights which are also exercised at time
jk−1 must be chosen from the F jk−1 -measurable set N( j1, . . . , jk−1) = {n; 0 ≤ n ≤
(v jk−1 − Ek−1( j1, . . . , jk−1)) ∧ (L − k + 1)}. These are the only choices which obey
the volume constraint at time jk−1. Hence,

Y∗L−k+1, j1,..., jk−1
jk−1

= max
n∈N( j1,..., jk−1)

sup
ρ jk−1 ≤ τ n+k ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

EXj1,..., jk−1,···, jk−1,τ k+n ,...,τ L,

where the time index jk−1 appears (n + 1) times in the nth term. It then follows, for
fixed n ∈ N(j1, . . . , jk−1),

sup
ρ jk−1 ≤ τ n+k ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

EXj1,..., jk−1,···, jk−1,τ k+n ,...,τ L

=
k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

k−1+n∑
p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+
k−1∏
l=1

Vl
jl

k−1+n∏
l=k

Vl
jk−1

sup
ρ jk−1 ≤ τ n+k ≤ · · · ≤ τ L

CL−k−n+1(τ k+n, . . . , τ L) = 1

E jk−1

L∑
p=k+n

U p
τ p

p−1∏
l=k+n

Vl
τ p

=
k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

k−1+n∑
p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+
k−1∏
l=1

Vl
jl

k−1+n∏
l=k

Vl
jk−1

E jk−1 Y∗L−k−n+1
ρ jk−1

,

making again use of (3.4). This implies (3.6). �

3.1. Dual Representation Based on Doob Decompositions

The goal of this subsection is to prove and discuss the following simplified version of
the dual representation from Theorem 2.4 for multiple stopping problems of the form
(3.1).

THEOREM 3.6. Suppose Y∗L
i is given by (3.1). Then:

(i) For any set of martingales (ML−k+1
r )r≥0, k = 1, . . . , L, and any set of integrable

adapted processes (AL−k+1
r )r≥0, k = 1, . . . , L, it holds for i ≥ 0 and with j0 := i

Y∗L
i ≤ Ei max

i ≤ j1 ≤ · · · ≤ jL ≤ ∂

CL( j1, . . . , jL) = 1

( L∑
k=1

Uk
jk

k−1∏
l=1

Vl
jl +

L∑
k=1

k−1∏
l=1

Vl
jl

(
ML−k+1

jk−1
− ML−k+1

jk + E jk AL−k+1
ρ jk−1

− E jk−1 AL−k+1
ρ jk−1

))
.
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(ii) For every i ≥ 0 it holds with j0 := i

Y∗L
i = max

i ≤ j1 ≤ · · · ≤ jL ≤ ∂

CL( j1, . . . , jL) = 1

( L∑
k=1

Uk
jk

k−1∏
l=1

Vl
jl +

L∑
k=1

k−1∏
l=1

Vl
jl

(
M∗L−k+1

jk−1
− M∗L−k+1

jk + E jk A∗L−k+1
ρ jk−1

− E jk−1 A∗L−k+1
ρ jk−1

))
,

where M∗L−k+1 , A∗L−k+1 are the martingale part and the predictable part
of the Doob decomposition of the auxiliary Snell envelopes Y∗L−k+1 in (3.3),
respectively.

We here recall that the Doob decomposition of Y∗L−k+1 is the unique decomposition
of the form

Y∗L−k+1
r = Y∗L−k+1

0 + M∗L−k+1
r − A∗L−k+1

r ,

where the martingale M∗L−k+1
r and the predictable process A∗L−k+1

r start in zero at time
zero. To prove Theorem 3.6 we need the following auxiliary result.

PROPOSITION 3.7. Under the assumption of Theorem 3.6, a Doob martingale of
Er Y∗L−k+1

ρ jk−1 ∨r
, say M

∗L−k+1
r , is determined for r ≥ jk−1 by

M
∗L−k+1
r − M

∗L−k+1
jk−1

= M∗L−k+1
r − M∗L−k+1

jk−1
+ E jk−1 A∗L−k+1

ρ jk−1
− Er A∗L−k+1

ρ jk−1
.

Proof. Using the Doob decomposition we may write

Er Y∗L−k+1
ρ jk−1 ∨r

= 1{r<ρ jk−1 }Er Y∗L−k+1
ρ jk−1

+ 1{r≥ρ jk−1 }Y
∗L−k+1
r

= 1{ jk−1≤r<ρ jk−1 }
(
Y∗L−k+1

jk−1
+ M∗L−k+1

r − M∗L−k+1
jk−1

− Er A∗L−k+1
ρ jk−1

+ A∗L−k+1
jk−1

)
+ 1{r≥ρ jk−1 }

(
Y∗L−k+1

jk−1
+ M∗L−k+1

r − M∗L−k+1
jk−1

− A∗L−k+1
r + A∗L−k+1

jk−1

)
= Y∗L−k+1

jk−1
+ M∗L−k+1

r − M∗L−k+1
jk−1

− 1{ jk−1≤r<ρ jk−1 }Er A∗L−k+1
ρ jk−1

− 1{r≥ρ jk−1 } A∗L−k+1
r + A∗L−k+1

jk−1

= Y∗L−k+1
jk−1

+ A∗L−k+1
jk−1

− 1{r≥ρ jk−1 }
(

A∗L−k+1
r − A∗L−k+1

ρ jk−1

)

(3.9)

+ M∗L−k+1
r − M∗L−k+1

jk−1
− Er A∗L−k+1

ρ jk−1
.(3.10)

Since line (3.9) is the sum of a Fk−1-measurable random variable and a predictable
process and line (3.10) is a martingale, the proposition follows. �

We now can prove the dual representation.
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Proof of Theorem 3.6.

(i) Suppose that, for k = 1, . . . , L, ML−k+1 is a martingale and AL−k+1 is an adapted
and integrable process. Then, the process ML−k+1, j1,..., jk−1

r defined for r ≥ jk−1 via

ML−k+1, j1,..., jk−1
r :=

k−1∏
l=1

Vl
jl

(
ML−k+1

r − ML−k+1
jk−1

+ E jk−1 AL−k+1
ρ jk−1

− Er AL−k+1
ρ jk−1

)
is a martingale due to the boundedness of the Vl’s. By Theorem 2.4-(i), we have

Y∗L
i ≤ Ei max

i≤ j1≤···≤ jL≤∂

(
Xj1,..., jL +

L∑
k=1

(
ML−k+1, j1,..., jk−1

jk−1
− ML−k+1, j1,..., jk−1

jk

))

= Ei max
i≤ j1≤···≤ jL≤∂

(
Xj1,..., jL +

L∑
k=1

k−1∏
l=1

Vl
jl

(
ML−k+1

jk−1
− ML−k+1

jk + E jk AL−k+1
ρ jk−1

− E jk−1 AL−k+1
ρ jk−1

))
with X as defined in (3.2) for sufficiently large N ∈ N. Letting N tend to infinity,
we observe that maximization only takes place over those j1 ≤ ··· ≤ jL which satisfy
CL( j1, . . . , jL) = 1. Plugging in the definition of X for those j1 ≤ ··· ≤ jL yields the
assertion.

(ii) We now apply Theorem 2.4-(ii) for X as defined in (3.2) with sufficiently large
N ∈ N. Letting N tend to infinity again and substituting the definition of X , we
obtain,

Y∗L
i = max

i ≤ j1 ≤ · · · ≤ jL ≤ ∂

CL( j1, . . . , jL) = 1

×
( L∑

k=1

Uk
jk

k−1∏
l=1

Vl
jl +

L∑
k=1

(
M∗L−k+1, j1,..., jk−1

jk−1
− M∗L−k+1, j1,..., jk−1

jk

))
,

whenever (M∗L−k+1, j1,..., jk−1
r )r≥ jk−1 are Doob martingales of (Y∗L−k+1, j1,..., jk−1

r )r≥ jk−1 .
By Proposition 3.5-(i) and Proposition 3.7 we can take

M∗L−k+1, j1,..., jk−1
jk−1

− M∗L−k+1, j1,..., jk−1
jk

=
k−1∏
l=1

Vl
jl

(
M∗L−k+1

jk−1
− M∗L−k+1

jk + E jk A∗L−k+1
ρ jk−1

− E jk−1 A∗L−k+1
ρ jk−1

)
.

�
Theorem 3.6 gives a straightforward generic way to calculate upper bounds for multiple

stopping problems of the form (3.1) at time i = 0 via Monte Carlo by performing the
following steps in a Markovian setting:

1. Solve the dynamic program in Proposition 3.4 for the auxiliary problems Y∗L−k+1

approximately, and let ŶL−k+1, k = 1, . . . , L, denote the respective approximations.
2. Perform the Doob decomposition of ŶL−k+1, k = 1, . . . , L, numerically, e.g., by

one layer of nested Monte Carlo as suggested by Andersen and Broadie (2004) in
the context of options with a single early exercise right.
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3. Plug the processes which stem from the numerical Doob decomposition into the
formula of Theorem 3.6-(i) and replace the outer expectation by the sample mean.

This program will be carried out in more detail in Section 4 in the context of Swing
options.

Note that for a large maturity and a large number of exercise rights, the path-wise
maximum in the dual representation of Theorem 3.6 runs over a huge set. We will now
show that, due to the special structure of the payoff in (3.1), this maximum can be
computed efficiently by a recursion over the time steps and exercise levels.

Given any L-tuple of martingales M = (M1, . . . , ML) and any L-tuple of adapted
processes A = (A1, . . . , AL), define, for n = 0, . . . , L and i = 0, . . . , ∂,

θ
n,L
i (M, A) := max

j0 = i ≤ j1 ≤ · · · ≤ jL−n

CL−n( j1, . . . , jL−n) = 1

L−n∑
k=1

(
k−1∏
l=1

Vl+n
jl

)

× (
Un+k

jk − (
ML−n−k+1

jk − ML−n−k+1
jk−1

)
+ 1{k>1 ∧ jk> jk−1}

(
AL−k−n+1

ρ jk−1
− E jk−1 AL−k−n+1

ρ jk−1

))
.

By Theorem 3.6,

Y∗L
0 ≤ E[θ0,L

0 (M, A)]

for any pair of L-tuples (M, A), and

Y∗L
0 = θ

0,L
0 (M∗, A∗)

for an optimal pair of L-tuples (M∗, A∗). Generalizing a related formula in Balder,
Mahayni, and Schoenmakers (2011) in the context of flexible (or chooser) caps, the
expression θ

0,L
0 (M, A) can be recursively calculated by the following proposition.

PROPOSITION 3.8. For every L-tuple of martingales M = (M1, . . . , ML) and L-tuple of
adapted processes A = (A1, . . . , AL) it holds for i = 0, . . . , T and n = 0, . . . , L,

θ
n,L
i (M, A) = max

{
θ

n,L
i+1(M, A) − (

ML−n
i+1 − ML−n

i

)
, max

ν=1,...,vi ∧(L−n)

ν∑
k=1

(
k−1∏
l=1

Vl+n
i

)
Un+k

i

+
(

ν∏
λ=1

Vλ+n
i

) (
θ

n+ν,L
ρi (M, A) − (

ML−n−ν
ρi − ML−n−ν

i

)
+AL−n−ν

ρi − Ei AL−n−ν
ρi

)}
,

with

θ
n,L
∂ (M, A) =

L−n∑
k=1

(
ν∏

l=1

Vl+n
∂

)
Un+k

∂ .
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Proof. The formula for θ
n,L
∂ (M, A) is obvious by definition. To prove the recursive

formula, we denote

Fn,L( j0, . . . , jL−n) =
L−n∑
k=1

(
k−1∏
l=1

Vl+n
jl

)(
Un+k

jk − (
ML−n−k+1

jk − ML−n−k+1
jk−1

)
+1{k>1 ∧ jk> jk−1}

(
AL−k−n+1

ρ jk−1
− E jk−1 AL−k−n+1

ρ jk−1

))
.

Then,

θ
n,L
i (M, A) = max

ν=0,...,vi ∧(L−n)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ max
j0=···= jν=i< jν+1≤···≤ jL−n

CL−n ( j1,..., jL−n )=1

Fn,L( j0, . . . , jL−n)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭.

(3.11)

For ν = 0 we get

max
j0=i< j1≤···≤ jL−n

CL−n ( j1,..., jL−n )=1

Fn,L( j0, . . . , jL−n)

= max
j0=i+1≤ j1≤···≤ jL−n

CL−n ( j1,..., jL−n )=1

Fn,L( j0, . . . , jL−n) − (
ML−n

i+1 − ML−n
i

)

= θ
n,L
i+1

(
M, A) − (ML−n

i+1 − ML−n
i

)
.

(3.12)

For ν > 0 we obtain

max
j0=···= jν=i< jν+1≤···≤ jL−n

CL−n ( j1,..., jL−n )=1

Fn,L( j0, . . . , jL−n)

=
ν∑

k=1

(
k−1∏
l=1

Vl+n
i

)
Un+k

i +
(

ν∏
λ=1

Vλ+n
i

)
max

jν=i , ρi ≤ jν+1≤···≤ jL−n

CL−n−ν ( jν+1,..., jL−n )=1

×
L−n∑

k=ν+1

(
k−1∏

l=ν+1

Vl+n
jl

) (
Un+k

jk − ML−n−k+1
jk

+ ML−n−k+1
jk−1

+ 1{ jk> jk−1}
(

AL−k−n+1
ρ jk−1

− E jk−1 AL−k−n+1
ρ jk−1

))
=

ν∑
k=1

(
k−1∏
l=1

Vl+n
i

)
Un+k

i +
(

ν∏
λ=1

Vλ+n
i

) ((
AL−ν−n

ρi − Ei AL−ν−n
ρi

)− (
ML−ν−n

ρi − ML−ν−n
i

))
+
(

ν∏
λ=1

Vλ+n
i

)
max

jν = ρi ≤ jν+1 ≤ · · · ≤ jL−n

CL−n−ν( jν+1, . . . , jL−n) = 1

L−n∑
k=ν+1

(
k−1∏

l=ν+1

Vl+n
jl

)

(
Un+k

jk − ML−n−k+1
jk + ML−n−k+1

jk−1
+ 1{k>ν+1 ∧ jk> jk−1}

(
AL−k−n+1

ρ jk−1
− E jk−1 AL−k−n+1

ρ jk−1

))
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=
ν∑

k=1

(
k−1∏
l=1

Vl+n
i

)
Un+k

i

+
(

ν∏
λ=1

Vλ+n
i

) ((
AL−ν−n

ρi − Ei AL−ν−n
ρi

)− (
ML−ν−n

ρi − ML−ν−n
i

))
+
(

ν∏
λ=1

Vλ+n
i

)
max

j0=ρi ≤ j1≤···≤ jL−n−ν

CL−n−ν ( j1,..., jL−n−ν )=1

×
L−n−ν∑

k=1

(
k−1∏
l=1

Vl+n+ν
jl

)(
Un+ν+k

jk − ML−n−ν−k+1
jk

+ ML−n−ν−k+1
jk−1

+ 1{k>1 ∧ jk> jk−1}
(

AL−k−n−ν+1
ρ jk−1

− E jk−1 AL−k−n−ν+1
ρ jk−1

))
=

ν∑
k=1

(
k−1∏
l=1

Vl+n
i

)
Un+k

i

+
(

ν∏
λ=1

Vλ+n
i

) ((
AL−ν−n

ρi − Ei AL−ν−n
ρi

)− (
ML−ν−n

ρi − ML−ν−n
i

))
+
(

ν∏
λ=1

Vλ+n
i

)
θ

n+ν,L
ρi (M, A).

Plugging this identity and (3.12) into (3.11) yields the assertion. �

3.2. Dual Representation Based on Snell Envelopes

In this subsection we present a simplified version of the dual representation in
Corollary 2.5 in terms of approximate Snell envelopes for the multiple stopping problem
of the form (3.1). It reads as follows:

THEOREM 3.9. Suppose Y∗L
i is given by (3.1) for some fixed 0 ≤ i ≤ ∂. Let (Y k)1≤k≤L

be any set of integrable approximations to (Y∗k)1≤k≤L defined in (3.3). We then have, with
the conventions j0 := −1, ρ j0 := i , and Y 0 = 0,

Y∗L
i − YL

i ≤ Ei max
i ≤ j1 ≤ · · · ≤ jL ≤ ∂,

CL( j1, . . . , jL) = 1

L∑
k=1

⎧⎨⎩
jk−1∑

r=ρ jk−1

k−1∏
l=1

Vl
jl

(
Er YL−k+1

r+1 − YL−k+1
r

)

+ 1{ jk> jk−1}
k−1∏
l=1

Vl
jl

⎛⎝ max
1≤n≤v jk∧(L−k+1)

⎧⎨⎩
k+n−1∑

p=k

U p
jk

p−1∏
l=k

Vl
jk

+
k+n−1∏

l=k

Vl
jkE jkYL−k−n+1

ρ jk

}
− YL−k+1

jk

)}
.

Moreover, the right-hand side becomes zero if Y k = Y∗k, for k = 1, . . . , L.
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Proof. Suppose 0 ≤ i ≤ ∂ is fixed and assume that integrable and adapted processes
Y L−k+1, k = 1, . . . , L, are given which we consider as approximations of the Snell en-
velopes of the auxiliary multiple stopping problems Y∗L−k+1. Following the relationships
for the Snell envelopes Y∗L−k+1 and Y∗L−k+1, j1,..., jk−1 in Proposition 3.5, we define for k
> 1 approximations to Y∗L−k+1, j1,..., jk−1 via

YL−k+1, j1,..., jk−1
r :=

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + Er YL−k+1

ρ jk−1 ∨r

k−1∏
l=1

Vl
jl , r > jk−1,(3.13)

and (for r = jk−1)

YL−k+1, j1,..., jk−1
jk−1

:=
k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl

+
k−1∏
l=1

Vl
jl max

n∈N( j1,..., jk−1)

⎧⎨⎩
k−1+n∑

p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+
k−1+n∏

l=k

Vl
jk−1

E jk−1 YL−k+1−n
ρ jk−1

⎫⎬⎭ .

(3.14)

Clearly, we define, for k = 1, Y L,∅ = Y L.
Applying Corollary 2.5 for X as defined in (3.1) and the above approximations we

obtain,

Y∗L
i ≤ YL

i + Ei max
i≤ j1≤···≤ jL≤∂,

CL( j1,..., jL)=1

L∑
k=1

(
YL−k, j1,..., jk

jk − YL−k+1, j1,..., jk−1
jk

+
jk−1∑

l= jk−1

(
El Y

L−k+1, j1,..., jk−1
l+1 − YL−k+1, j1,..., jk−1

l

))
,

(3.15)

where we again observe that the path-wise maximum is attained on the set
CL( j1, . . . , jL) = 1 by letting N (in the definition of X) tend to infinity.

To prove the upper bound, it is, in view of (3.15), sufficient to show that, for i ≤ j1 ≤
··· ≤ jL ≤ ∂ with CL( j1, . . . , jL) = 1 the following assertions are true:

(i) If k = 2, . . . , L and jk > jk−1 or if k = 1, then

YL−k, j1,..., jk
jk − YL−k+1, j1,..., jk−1

jk

=
k−1∏
l=1

Vl
jl

⎛⎝ max
0≤n≤(v jk−1)∧(L−k)

⎧⎨⎩
k+n∑
p=k

U p
jk

p−1∏
l=k

Vl
jk +

k+n∏
l=k

Vl
jkE jkYL−k−n

ρ jk

⎫⎬⎭− YL−k+1
jk

⎞⎠ .

(ii) If k = 2, . . . , L and jk = jk−1, then

YL−k, j1,..., jk
jk − YL−k+1, j1,..., jk−1

jk ≤ 0.

(iii) If k = 1 and i ≤ r ≤ j1 − 1, or if k = 2, . . . , L and ρ jk−1 ≤ r ≤ jk − 1, then

Er YL−k+1, j1,..., jk−1
r+1 − YL−k+1, j1,..., jk−1

r =
k−1∏
l=1

Vl
jl

(
Er YL−k+1

r+1 − YL−k+1
r

)
.
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(iv) For k = 2, . . . , L and jk−1 ≤ r < ρ jk−1

Er YL−k+1, j1,..., jk−1
r+1 − YL−k+1, j1,..., jk−1

r ≤ 0.

We first show (i). To this end suppose that k ≥ 2 and jk > jk−1. Then, Ek( j1, . . . , jk) = 1,
which implies N(j1, . . . , jk) = {n; 0 ≤ n ≤ (vk − 1)∧(L − k)}. Hence, by (3.14),

YL−k, j1,..., jk
jk =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl max

0≤n≤(v jk−1)∧(L−k)

⎧⎨⎩
k+n∑
p=k

U p
jk

p−1∏
l=k

Vl
jk +

k+n∏
l=k

Vl
jkE jkYL−k−n

ρ jk

⎫⎬⎭.

Subtracting the defining equation (3.13) for YL−k+1, j1,..., jk−1
jk from the above expression,

we obtain (i), because jk ≥ ρ jk−1 . For k = 1, we again get E1( j1) = 1 and (i) follows in the
same way, taking the definition YL,∅

j1 = YL
j1 into account.

To derive (ii), we note that Ek( j1, . . . , jk) = Ek−1( j1, . . . , jk−1) + 1 for jk = jk−1. Thus,

YL−k, j1,..., jk
jk =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

× max
0≤n≤(v jk−Ek−1( j1,..., jk−1)−1)∧(L−k)

⎧⎨⎩
k+n∑
p=k

U p
jk

p−1∏
l=k

Vl
jk +

k+n∏
l=k

Vl
jkE jkYL−k−n

ρ jk

⎫⎬⎭
≤

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

× max
0≤n≤(v jk−1 −Ek−1( j1,..., jk−1))∧(L−k+1)

⎧⎨⎩
k+n∑
p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+
k+n∏
l=k

Vl
jk−1

E jk−1 YL−k−n
ρ jk−1

⎫⎬⎭
= YL−k+1, j1,..., jk−1

jk−1
= YL−k+1, j1,..., jk−1

jk .

We next prove (iii). The case k = 1 is trivial in view of the definition of Y L,∅. Hence,
we assume that k ≥ 2 and ρ jk−1 ≤ r ≤ jk − 1. Then, r + 1 > r ≥ ρ jk−1 > jk−1 and, thus,
by (3.13)

Er YL−k+1, j1,..., jk−1
r+1 =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + Er YL−k+1

r+1

k−1∏
l=1

Vl
jl ,

YL−k+1, j1,..., jk−1
r =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + YL−k+1

r

k−1∏
l=1

Vl
jl .

Taking the difference of both equations yields (iii).
It remains to show (iv). For k ≥ 2 and jk−1 < r < ρ jk−1 , (3.13) implies

Er YL−k+1, j1,..., jk−1
r+1 =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + Er YL−k+1

ρ jk−1

k−1∏
l=1

Vl
jl = YL−k+1, j1,..., jk−1

r .
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Finally, for k ≥ 2 and r = jk−1, by (3.13) and (3.14),

E jk−1 YL−k+1, j1,..., jk−1
jk−1+1 =

k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl + E jk−1 YL−k+1

ρ jk−1

k−1∏
l=1

Vl
jl

≤
k−1∑
p=1

U p
jp

p−1∏
l=1

Vl
jl +

k−1∏
l=1

Vl
jl

× max
n∈N( j1,..., jk−1)

⎧⎨⎩
k−1+n∑

p=k

U p
jk−1

p−1∏
l=k

Vl
jk−1

+
k−1+n∏

l=k

Vl
jk−1

E jk−1 YL−k+1−n
ρ jk−1

⎫⎬⎭
= YL−k+1, j1,..., jk−1

jk−1
.

Hence, the asserted upper bound for Y∗L
i − YL

i is shown. This upper bound is zero, if
Y k = Y∗k, for k = 1, . . . , L, because, by Proposition 3.4, Y∗L−k+1 is a supermartingale
and Y∗L−k+1

jk dominates

max
1≤n≤v jk∧(L−k+1)

⎧⎨⎩
k+n−1∑

p=k

U p
jk

p−1∏
l=k

Vl
jk +

k+n−1∏
l=k

Vl
jkE jkY∗L−k−n+1

ρ jk

⎫⎬⎭ .

�
As a spin-off result from Theorem 3.9, we may write the following upper bound for

Y∗,L
i which avoids the computation of the recursive maximum from Proposition 3.8

(cf. Schoenmakers 2012, remark 3.3, for a related result in the context of the standard
multiple stopping problem).

COROLLARY 3.10. Suppose all assumptions and all conventions of Theorem 3.9 are in
force. Then,

Y∗L
i − YL

i ≤ Ei

{
T−1∑
r=i

max
0≤k<L

(
Vk

max

(
Er YL−k

r+1 − YL−k
r

)+)+
L∑

k=1

Vk−1
max

× max
i≤ j≤∂

⎛⎝ max
1≤n≤v jk∧(L−k+1)

⎛⎝k+n−1∑
p=k

U p
j

p−1∏
l=k

Vl
j

k+n−1∏
l=k

Vl
jE j YL−k−n+1

ρ j

⎞⎠− YL−k+1
j

⎞⎠+⎫⎬⎭,

where

Vk
max :=

k∏
l=1

max
j≥i

Vl
j .

Moreover, the right-hand side becomes zero if Y k = Y∗k, for k = 1, . . . , L.

Proof. It is straightforward to check that the upper bound in this corollary is actually
an upper bound to the right-hand side of the estimate in Theorem 3.9. That the bound
is still tight, i.e., that the right-hand side becomes zero, if Y k = Y∗k, for k = 1, . . . , L,
follows from the same argument as at the end of the proof of Theorem 3.9. �
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4. A NUMERICAL EXAMPLE

We provide a numerical example for the dual representation of multiple stopping prob-
lems in the context of swing option pricing. Throughout this section, we assume i = 0, i.e.,
we provide confidence bounds for the swing option price at time 0. Precisely, we consider
a stylized swing option, similar to those considered in Meinshausen and Hambly (2004)
and Bender (2011a). In our setting, the holder of a swing option has the right to buy a
certain quantity of electricity in the period from j = 0, . . . , T , for a fixed strike price K
> 0, subject to the restriction that the option allows up to L ≥ 1 exercise opportunities
under the volume constraints vj, and where a refraction period has to be taken into
account. In the numerical implementation we choose T = 50 or T = 300 and recall that
∂ := T + 1. The price of electricity, (St)t=0, ... ,T , is modeled by the following discretized
exponential Gaussian Ornstein–Uhlenbeck process

log(Sj ) = (1 − k)(log(Sj−1) − μ) + μ + σε j , S0 = s0 > 0,(4.1)

where (εj)j=1, ... ,T is a family of independent standard normal random variables and the
parameters are specified by

σ = 0.5, k = 0.9, μ = 0, s0 = 1.

We set S∂ = 0, which means that no penalty is imposed, if the holder of the option does not
exercise all rights. This model is a discrete version of the exponential Gaussian Ornstein–
Uhlenbeck model suggested by Lucia and Schwartz (2002). We stress however that our
algorithm can be generically applied to any Markovian model such as the more realistic
non-Gaussian exponential Ornstein–Uhlenbeck model studied by Benth, Kallsen, and
Meyer-Brandis (2007) and Hambly, Howison, and Kluge (2009). The payoff of the swing
option is then given by X in (3.1) with

Vl
j := 1, l = 1, . . . , L − 1, j = 0, . . . , ∂,

U p
j := Zj := Z(Sj ) := (Sj − K)+, j = 0, . . . , ∂, p = 1, . . . , L.

In our numerical study we assume that the strike price is K = 1. As volume constraints,
we consider the situation of a unit volume constraint vi = 1 for i = 0, . . . , T and the
situation of a swing option with vi = 1 on weekdays and vi = 2 on Saturdays and Sundays.
We recall that swing options are traded as base swing options, peak swing options, and
off-peak swing options, see, e.g., Haarbrücker and Kuhn (2009). In an off-peak swing
option rights can only be exercised in off-peak periods. As there are twice as many off-
peak periods at Saturdays and Sundays than at weekdays, our second volume constraint
corresponds to the situation of an off-peak swing option. The refraction period which
we impose is a constant refraction period, i.e., ρ i = (i + δ)∧∂ for various choices of the
constant δ ∈ N.

In this Markovian framework, we produce confidence intervals for the price of the
swing option at time i = 0 by applying the following steps. The procedure below can
easily be generalized to the generic cash flow structure of Section 3, provided the problem
has a Markovian structure. (For notational convenience we only spell out the algorithm
for the swing option case.)
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4.1. Implementation

Step 1: Precompute an approximation of the continuation values. We employ least
squares Monte Carlo regression to obtain an approximation to the continuation values

C∗1,l
j (Sj ) := E

[
Y∗l

j+1

∣∣F j
]= E

[
Y∗l

j+1

∣∣Sj
]
, C∗1,l

T (ST) = 0,

C∗δ,l
j (Sj ) := E

[
Y∗l

j+δ

∣∣F j
]= E

[
Y∗l

j+δ

∣∣Sj
]
, C∗δ,l

T (ST) = 0,

with l = 1, . . . , L, where here and in the following j + 1 and j + δ are to be understood
as j + 1 ∧ ∂ and j + δ ∧ ∂. Recall that (Y∗l

j ) j=0,...,T is given by the dynamic program from
Proposition 3.4. We simulate N1 independent paths (Sm

j )m=1,...,N1
j=0,...,T . Choosing as basis

functions

ψ1(x) := x, ψ2(x) := (x − K)+,

we use (Sm
j )m=1,...,N1

j=0,...,T in a straightforward least squares regression procedure to solve
the dynamic program approximately, replacing the conditional expectations by the least
squares Monte Carlo estimator. This yields approximations to C∗1,l

j (·) and C∗δ,l
j (·), de-

noted by C1,l
j (·) and Cδ,l

j (·), which are linear combinations of the basis functions. We note
that alternative numerical methods can be utilized to construct approximate continuation
values. For example, Jaillet, Ronn, and Tompaidis (2004) suggest to apply a trinomial
forest approximation of the electricity price and Bardou, Bouthemy, and Pagès (2009)
study a quantization approach.

Step 2: Compute lower bounds. Given the functions C1,l
j (·) and Cδ,l

j (·), we define a

(suboptimal) stopping rule
(
τ

p,l
j

)1≤l≤L
1≤p≤l for 0 ≤ j ≤ T along a given trajectory (Sj)j=0...,T

(which we suppress in the notation below) using the following iteration. Here, τ
p,l
j is

interpreted as the time at which the investor exercises the pth right, if l rights are left at
time j.

τ
0,l
j := j − δ;

p := k := 0;

while (p < l) do

τ
p+1,l
j := inf

{
(τ p,l

j + δ) ∧ ∂ ≤ r ≤ ∂ : max
1≤n≤vr ∧(l−p)

(
nZr + Cδ,l−p−n

r

) ≥ C1,l−p
r

}
,

s := τ
p+1,l
j ,

k := argmax1≤n≤vs∧(l−p)

(
nZs + Cδ,l−p−n

s
)
,

τ
p+1,l
j := τ

p+2,l
j := . . . := τ

p+k,l
j := s,

p := p + k,

end.

(4.2)

When C1,l
j (·) and Cδ,l

j (·) are replaced by C∗1,l
j (·) and C∗δ,l

j (·), then this family of stopping

times is optimal. Hence,
(
τ

p,l
j

)1≤l≤L
1≤p≤l is a good family of stopping times, if the approxima-

tions of the continuation values in Step 1 are reasonably close to the true continuation
values.
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REMARK 4.1.

(i) In the situation of unit volume constraint (i.e., v ≡ 1), the stopping rule (4.2)
simplifies to τ

0,l
j = j − δ and

τ
p,l
j = inf

{
(τ p−1,l

j + δ) ∧ ∂ ≤ r ≤ ∂ : Zr + Cδ,l−p
r ≥ C1,l−p+1

r

}
, 1 ≤ l ≤ L, 1 ≤ p ≤ l,

compare with equation (3.7) in Bender (2011a).
(ii) In the situation of a trivial refraction period (i.e., δ = 1), the above construction of

approximate stopping rules is also used in Aleksandrov and Hambly (2010).

Setting

Yl
0 := E0

l∑
p=1

Z
τ

p,l
0

, Yl
1 := E1

l∑
p=1

Z
τ

p,l
1

, Yl
δ := Eδ

l∑
p=1

Z
τ

p,l
δ

,

we have that Yl
0 is a lower bound for Y∗l

0 . By the tower property of the conditional
expectation, we also have

E0Yl
1 = E0

l∑
p=1

Z
τ

p,l
1

, E0Yl
δ = E0

l∑
p=1

Z
τ

p,l
δ

.

As for simulations, we generate a new set of N2 independent paths of the underlying price
process, which we again denote, in abuse of notation, by (Sm

j )m=1,...,N2
j=0,...,T . Along theses N2

trajectories we compute τ
p,l

0 and apply the notation

τ
p,l,m

0 , 1 ≤ p ≤ l, 1 ≤ m ≤ N2.

Now the lower biased estimate Ŷl
0 for Y∗l

0 is calculated by averaging over the N2 realiza-
tions of

∑l
p=1 Z

τ
p,l

0
, i.e.,

Ŷl
0 = 1

N2

N2∑
m=1

l∑
p=1

Z
(
Sm

τ
p,l,m

0

)
, 1 ≤ l ≤ L.(4.3)

Similarly, we also construct approximations

Ê0Yl
1 = 1

N2

N2∑
m=1

l∑
p=1

Z
(
S

τ
p,l,m

1

)
, Ê0Yl

δ = 1
N2

N2∑
m=1

l∑
p=1

Z
(
S

τ
p,l,m
δ

)
of E0Yl

1 and E0Yl
δ, which we store for later use.

For constructing confidence intervals, we also save the empirical standard deviation
stddev(Ŷl

0).

Step 3: Compute approximations to the Snell envelopes. Using the stopping rule (4.2),
we consider a family of random variables

Yl
j := E j

l∑
p=1

Z
τ

p,l
j

, 1 ≤ l ≤ L, 0 ≤ j ≤ T,(4.4)
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which is an approximation to the Snell envelope (Y∗l
j )1≤l≤L

0≤ j≤T. We apply the following
procedure to simulate Yl

j :
We simulate a new set of N3 paths of the underlying (Sm

j )1≤m≤N3
0≤ j≤T (abusing the notation,

again). We refer to these paths as the outer paths. We now fix a pair (m, j) and compute
approximations of Yl

j , E j Yl
j+1, and E j Yl

j+δ along the mth outer path which are denoted

by Ŷl,m
j , Êm

j Yl
j+1, and Êm

j Yl
j+δ, respectively. In these approximations, the conditional

expectations are replaced by the sample mean over a set of inner simulations. Hence, for
the fixed path Sm and the fixed time point j, we generate N4 independent sample paths of
(Sr)r=j, ... ,T under the conditional law given that Sj = Sm

j . These inner paths are denoted
by (S̄ν

r )ν=1,...,N4
r= j ,...,T , suppressing here and in the following the dependence on (m, j). Along

the inner paths S̄ν we compute the stopping times τ
p,l

i for i = j, j + 1, j + δ in (4.2) and
apply the notation

τ
p,l,ν

i , 1 ≤ p ≤ l, 1 ≤ l ≤ L, ν = 1, . . . , N4.

We now define

Ŷl,m
j := Êm

j

l∑
p=1

Z
τ

p,l
j

:= 1
N4

N4∑
ν=1

l∑
p=1

Z
(
S̄ν

τ
p,l,ν
j

)
.

Similarly, we approximate E j Yl
j+1 for the fixed j along the fixed mth outer path by

Êm
j Yl

j+1 := 1
N4

N4∑
ν=1

l∑
p=1

Z
(
S̄ν

τ
p,l,ν
j+1

)
,

taking the tower property of the conditional expectation into account. The approximation
Êm

j Yl
j+δ is obtained analogously.

REMARK 4.2. Note that, for j = 0 approximations Ŷl
0, Ê0Yl

1, and Ê0Yl
δ of Yl

0, E0Yl
1,

and E0Yl
δ were already obtained based on the N2-samples in Step 2. As typically N2 >

N4 these approximations are more accurate. Hence, one can perform Step 3 for j ≥ 1
only and set

Ŷl,m
0 := Ŷl

0, Êm
0 Yl

1 := Ê0Yl
1, Êm

0 Yl
δ := Ê0Yl

δ, m = 1, . . . , M.

This trick of applying the more accurate nonnested Monte Carlo simulation of Step 2
at time 0 leads to a significant decrease of the variance in the simulation of the upper
bound. This is in the same spirit as the computation of low variance upper bounds for
the standard stopping problem from Andersen and Broadie (2004).

Step 4: Compute the upper bounds. The Doob decomposition of Yl
j yields the pair

(Ml
j , Al

j ). Note that, due to

Ml
i+1 − Ml

i = Yl
i+1 − Ei Yl

i+1,

and

−(Ml
i+δ − Ml

i ) + Al
i+δ − Ei Al

i+δ = Ei Yl
i+δ − Yl

i+δ,
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we can rewrite the recursion formula in Proposition 3.8 as

θ
n,L
i = max

{
θ

n,L
i+1 + Ei YL−n

i+1 − YL−n
i+1 , max

1≤ν≤vi ∧(L−n)

(
νZi + θ

n+ν,L
i+δ + Ei YL−n−ν

i+δ − YL−n−ν
i+δ

)}
.

We now introduce approximations θ
n,L,m
i of θ

n,L
i along the mth outer path of Step 3 by

replacing Yl
j , E j Yl

j+1, and E j Yl
j+δ with their simulated counterparts Ŷl,m

j , Êm
j Yl

j+1, and
Êm

j Yl
j+δ constructed in Step 3.

As simulation-based estimate for the upper bound, we use

Yup,L
0 := 1

N3

N3∑
m=1

θ
0,L,m
0 .

Replacing the conditional expectations by the sample mean in θ
0,L,m
0 introduces an

additional bias up thanks to Jensen’s inequality and the convexity of the maximum.
Hence, the estimator Yup,L

0 is biased up by Theorem 3.6 and Proposition 3.8.
Finally, a 95% confidence interval on the price of the swing option is given by[

ŶL
0 − 1.96 × stddev

(
ŶL

0

)
, Yup,L

0 + 1.96 × stddev
(
Yup,L

0

)]
.

4.2. Numerical Results: Swing Options with Unit Volume Constraints

We now present some numerical results which the above algorithm produces for the
swing option contract as specified at the beginning of this section. Let us first consider the
situation of a unit volume constraint, i.e., vj := 1 for j = 0, . . . , T with T = 50. We recall
that δ ∈ N denotes a constant refraction period. In this setting the dual representation
of Theorem 3.6 reduces to the one derived in Bender (2011a). In the latter paper the
same swing option example is treated numerically but for up to three exercise rights only.
Thanks to the recursion formula in Proposition 3.8 we can now efficiently treat the case
of a large number of exercise rights. Moreover, the upper bound algorithm in Bender
(2011a) differs slightly from the one we propose here. In Bender (2011a) the upper bound
is calculated based on the numerical Doob decomposition of

Yl
j = max

{
Zj + Cδ,l−1

j , C1,l
j

}
,

although we here utilize the numerical Doob decomposition of Yl
j := E j

∑l
p=1 Z

τ
p,l
j

.

The choice of simulation parameters in our study is as follows: In Step 1, we choose
N1 = 1,000 paths for the least squares Monte Carlo regression to approximate the
continuation function. In Step 2, the lower bound is simulated using N2 = 300,000 paths
and in Step 3, we employ N3 = 2,000 outer and N4 = 100 inner paths for the computation
of the upper bound. Moreover, we use the variance reduction method from Remark 4.2.

Table 4.1 depicts the numerical results for the case of two and three exercise rights
for a refraction period ranging from 1 to 20. We observe that the relative length of the
95% confidence intervals is less than 1% in all cases. A comparison with the numerical
results in Bender (2011a) shows that the differences in the upper price estimator based
on Y l and Yl are negligible, but the variance reduction method of Remark 4.2 shrinks
the confidence interval significantly.

The numerical results for the case of a larger number of exercise rights (L = 4, 6, 8,
10) are presented in Table 4.2. Due to the time horizon of 50 days, it may happen that,
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TABLE 4.1
Unit Volume Constraints (vj ≡ 1)

95% confidence 95% confidence
δ L ŶL

0 Yup,L
0 interval L ŶL

0 Yup,L
0 interval

1 2 3.3116 3.3211 [3.30738, 3.32229] 3 4.53627 4.54806 [4.53118, 4.54938]
2 2 3.27513 3.28469 [3.27094, 3.28587] 3 4.43753 4.45154 [4.43252, 4.45295]
4 2 3.2313 3.24083 [3.22716, 3.242] 3 4.29996 4.31656 [4.29502, 4.31813]
6 2 3.18613 3.19809 [3.18197, 3.19948] 3 4.15557 4.17514 [4.15063, 4.17697]
8 2 3.13625 3.14984 [3.13213, 3.15143] 3 3.99773 4.01954 [3.99289, 4.02158]
10 2 3.09022 3.10332 [3.08613, 3.1048] 3 3.83377 3.8528 [3.82898, 3.85464]
20 2 2.81521 2.83005 [2.81123, 2.83173] 3 2.91951 2.93649 [2.91536, 2.9383]

Note: Numerical results based on the approximation Ŷl
j to the Snell envelope via the

stopping rule (4.2) for two and three exercise rights.

TABLE 4.2
Unit Volume Constraints (vj ≡ 1)

95% confidence 95% confidence
δ L ŶL

0 Yup,L
0 interval L ŶL

0 Yup,L
0 interval

1 4 5.60136 5.614 [5.59554, 5.61527] 6 7.38677 7.40107 [7.37977, 7.4023]
2 4 5.41347 5.43091 [5.4078, 5.43249] 6 6.94554 6.97364 [6.93882, 6.97562]
4 4 5.13119 5.15543 [5.12562, 5.15741] 6 6.2151 6.25165 [6.2086, 6.2541]
6 4 4.82479 4.85239 [4.81928, 4.85454] 6 5.4079 5.44248 [5.40174, 5.44491]
8 4 4.49057 4.51822 [4.48525, 4.52041] 6 4.68469 4.71574 [4.67908, 4.71808]
10 4 4.13658 4.16231 [4.13141, 4.16444] 6 4.1662 4.19164 [4.16098, 4.19373]

1 8 8.83286 8.84907 [8.82488, 8.85034] 10 10.0219 10.0391 [10.0131, 10.0404]
2 8 8.04508 8.08421 [8.03754, 8.08651] 10 8.80264 8.85093 [8.79443, 8.85353]
4 8 6.66726 6.71129 [6.66021, 6.71389] 10 6.74649 6.78596 [6.73929, 6.78847]
6 8 5.45188 5.48518 [5.44563, 5.48748] 10 5.45187 5.48518 [5.44563, 5.48748]

Note: Numerical results based on the approximation Ŷl
j to the Snell envelope via the

stopping rule (4.2) for a higher number of exercise rights.

for a large number of rights and a large refraction period, some exercise rights cannot
be used by the investor. This explains why, e.g., the price bounds for the swing option
with refraction period δ = 6 are the same for L = 8 and L = 10 rights. Concerning the
accuracy of our numerical procedure we emphasize that the relative difference between
lower and upper bound is still less than 1% even in the case of 10 exercise rights.

4.3. Numerical Results: Off-Peak Swing Option

We now consider an off-peak swing option which allows for buying at most one
package of electricity on weekdays and two packages on Saturdays and Sundays. Hence,
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TABLE 4.3
Off-Peak Volume Constraints

95% confidence 95% confidence
δ L ŶL

0 Yup,L
0 interval L ŶL

0 Yup,L
0 interval

2 4 5.73736 5.76003 [5.73078, 5.76192] 6 7.55394 7.58547 [7.54595, 7.58773]
4 4 5.51763 5.5468 [5.51105, 5.54915] 6 7.01995 7.06275 [7.01198, 7.06577]
6 4 5.27976 5.30967 [5.27316, 5.31227] 6 6.45197 6.49774 [6.44401, 6.50102]
8 4 5.06733 5.10055 [5.06078, 5.10335] 6 5.9401 5.98546 [5.93238, 5.989]
10 4 4.85039 4.88637 [4.84386, 4.88953] 6 5.46672 5.50782 [5.45916, 5.51116]

2 8 8.97188 9.01806 [8.96279, 9.02078] 10 10.0822 10.1411 [10.0721, 10.1443]
4 8 8.00789 8.06203 [7.99887, 8.06551] 10 8.58082 8.63832 [8.57102, 8.64178]
6 8 7.06562 7.11754 [7.05669, 7.12102] 10 7.33533 7.38481 [7.32577, 7.38835]
8 8 6.18418 6.23051 [6.17596, 6.23403] 10 6.20274 6.24781 [6.19445, 6.2513]

Note: Numerical results for the off-peak swing option for various exercise rights and
refraction periods. The simulations are based on the approximation Ŷl

j to the Snell
envelope via the stopping rule (4.2).

we have for j = 0, . . . , 50 the volume constraints

v j :=
{

1, if j is a week day,

2, if j is a weekend day,
(4.5)

where we start in j = 0 on a Monday.
We run the above algorithm with N1 = 10,000, N2 = 300,000, N3 = 2,000, and N4 =

100 sample paths. The numerical results for this off-peak swing option are presented in
Table 4.3 for various choices of the number L of exercise rights and the length δ of the
refraction period. Note that the dual representations yet available in the literature do not
cover the case of a nontrivial refraction period (δ �= 1) in combination with nontrivial
volume constraints (v �= 1).

Table 4.3 exhibits the numerical results computed with the algorithm which was de-
scribed in detail in Section 4.1, although Table 4.4 provides the numerical results for a
slight modification of this algorithm which replaces stopping time-based approximations
to the Snell envelope by

Yl
j = max

{
max

1≤n≤v j ∧l

(
nZj + Cδ,l−n

j

)
, C1,l

j

}
,

similar to the computation of upper bounds in Bender (2011a). We note that this variant
of the algorithm is somewhat cheaper to implement, because the inner paths in Step 3 of
Section 4.1 need only be simulated δ steps ahead. A comparison between Tables 4.3 and
4.4 show that the quality of the upper bounds produced by the original algorithm and
its variant is almost the same. We observe that the relative length of the 95% confidence
interval is less than 1.3% in all cases which demonstrates that the algorithm performs
equally well in the presence of volume constraints than in the unit constraint case.

Due to the feature of allowing for exercising twice on weekends in this example, the
swing option prices are now higher than in the previous example with unit volume
constraint. Moreover, additional rights can now become beneficial in situations in which
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TABLE 4.4
Off-Peak Volume with Differently Computed Upper Bounds

95% confidence 95% confidence
δ L ŶL

0 Yup,L
0 interval L ŶL

0 Yup,L
0 interval

2 4 5.73631 5.79467 [5.72494, 5.80299] 6 7.55461 7.62608 [7.54078, 7.63619]
4 4 5.51148 5.54104 [5.50001, 5.54941] 6 7.01482 7.04521 [7.00098, 7.05536]
6 4 5.28808 5.3262 [5.27667, 5.33452] 6 6.458 6.50509 [6.44423, 6.51519]
8 4 5.07143 5.0982 [5.05997, 5.10654] 6 5.93962 5.97165 [5.92618, 5.98171]
10 4 4.85361 4.89511 [4.84228, 4.90326] 6 5.46925 5.51407 [5.45619, 5.52365]

2 8 8.98204 9.06441 [8.96626, 9.07597] 10 10.0889 10.1741 [10.0715, 10.1869]
4 8 8.00261 8.03391 [7.98694, 8.04548] 10 8.57358 8.60182 [8.55655, 8.61451]
6 8 7.07971 7.12341 [7.06422, 7.13479] 10 7.34633 7.38241 [7.32977, 7.39474]
8 8 6.18142 6.2135 [6.16713, 6.2243] 10 6.20036 6.23156 [6.18596, 6.24246]

Note: Numerical results for the off-peak swing option for various exercise rights
and refraction periods. The simulations are based on the approximation Yl

j =
max{max1≤n≤v j ∧l (nZj + Cδ,l−n

j ), C1,l
j }.

TABLE 4.5
Off-Peak Volume Constraints for T = 300

95% confidence 95% confidence
δ L ŶL

0 Yup,L
0 interval δ L ŶL

0 Yup,L
0 interval

10 20.415 20.594 [20.378, 20.623] 10 19.582 19.766 [19.545, 19.796]
15 27.081 27.330 [27.036, 27.365] 15 25.120 25.384 [25.075, 25.420]
20 32.486 32.810 [32.435, 32.850] 20 28.810 29.162 [28.760, 29.202]

5 25 36.854 37.261 [36.798, 37.304] 10 25 30.874 31.286 [30.819, 31.328]
30 40.965 41.446 [40.903, 41.494] 30 31.636 32.051 [31.578, 32.095]
35 43.080 43.605 [43.014, 43.655] 35 31.745 32.148 [31.686, 32.192]
40 45.104 45.674 [45.034, 45.727] 40 31.748 32.150 [31.689, 32.194]

Note: Numerical results for T = 300 and reduced numbers of simulation paths.

they could not be exercised under the unit volume constraint (e.g., the additional 10th
right when the refraction period is δ = 6).

To test the accuracy of the algorithm for a larger number of rights, we price the same
off-peak swing option with T = 300 days. To balance the ratio of computational costs
and accuracy, we choose N1 = 10,000, N2 = 30,000, N3 = 1,000, and N4 = 50. Moreover,
the computation of the upper bounds are based on the Snell envelope approximation

Yl
j = max

{
max

1≤n≤v j ∧l

(
nZj + Cδ,l−n

j

)
, C1,l

j

}
instead of Yl

j = E j
∑l

p=1 Z
τ

p,l
j

. Table 4.5 depicts the numerical results for T = 300. The
choice of less simulation paths does not significantly reduce the accuracy because the
relative length of the 95% confidence intervals are in a very satisfactory range range of
1.2% − 1.6% even for up to 40 exercise rights.
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TABLE 4.6
Off-Peak Volume Constraints

Upper bound using
δ L Yup,L

0 Bender (2011b)

1 1 1.86485 (0.0019) 1.8638 (0.0019)
1 2 3.40832 (0.003) 3.4078 (0.003)
1 3 4.73509 (0.0037) 4.7368 (0.0038)
1 4 5.90956 (0.0043) 5.9170 (0.0045)
1 5 6.96665 (0.00047) 6.98 (0.0052)
1 6 7.92669 (0.005) 7.9470 (0.0058)
1 7 8.80743 (0.0055) 8.8327 (0.0062)
1 8 9.61643 (0.0058) 9.6493 (0.0069)
1 9 10.3642 (0.0061) 10.4040 (0.0074)
1 10 11.0553 (0.00064) 11.1035 (0.0079)

Note: A comparison between our upper bounds and the upper bounds obtained via
the algorithm from Bender (2011b) for the case of unit refraction period. Standard
deviations are displayed in parentheses.

In the case of unit refraction period δ = 1, upper price bounds for the off-peak
swing option can also be computed by the dual representation of Bender (2011b) for
the marginal price of a multiple exercise option. This approach generalizes the ideas
of Meinshausen and Hambly (2004): An upper biased estimate for the marginal price
of having an additional lth right is computed in terms of one martingale and (l − 1)
stopping times. By summing up these upper bounds for the marginal prices, one finally
ends with an upper biased estimate for the option price. This approach is based on the
fact that, roughly speaking, under the assumption of a trivial refraction period (δ = 1)
optimal exercise times for the problem with (l − 1) rights are also optimal for the problem
with l rights, if one adds one additional exercise time in a clever way. This is clearly not
possible, in general, in the presence of a nontrivial refraction period. So, it seems that
this alternative approach cannot be easily generalized to include refraction periods.

Table 4.6 compares the upper bounds obtained using our method and the method
from Bender (2011b) for the unit refraction case δ = 1 for the case T = 50. We mention
that in Table 4.6, the variance reduction method from Remark 4.2 is not applied for both
algorithms. As both methods are run with the same number of sample paths and the
nested maximum in our method can be efficiently calculated by the recursion formula in
Proposition 3.8, the computational effort is roughly the same for both algorithms. We
observe that, as the number of exercise rights increases, our method of directly tackling
the Snell envelope produces upper bounds that become lower than the algorithm tackling
the marginal values from Bender (2011b). Whereas the differences for L = 1, . . . , 4 are
numerically not significant yet, they however become notable starting from L = 5 and
are striking, e.g., L = 10. We also note that the larger L, the better our method performs
concerning the variance of the upper bounds. At large, we conclude that if one is mainly
interested in the price (and not the marginal price) of the swing option, our new method
performs better than the algorithm from Bender (2011b). Moreover, it is applicable to a
larger class of problems.
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ON THE CONSISTENCY OF REGRESSION-BASED MONTE CARLO
METHODS FOR PRICING BERMUDAN OPTIONS IN CASE OF ESTIMATED

FINANCIAL MODELS

ANDREAS FROMKORTH AND MICHAEL KOHLER

Technische Universität Darmstadt

In many applications of regression-based Monte Carlo methods for pricing, Amer-
ican options in discrete time parameters of the underlying financial model have to be
estimated from observed data. In this paper suitably defined nonparametric regression-
based Monte Carlo methods are applied to paths of financial models where the pa-
rameters converge toward true values of the parameters. For various Black–Scholes,
GARCH, and Levy models it is shown that in this case the price estimated from the
approximate model converges to the true price.

KEY WORDS: American options, consistency, least squares estimates, nonparametric regression,
robustness, regression-based Monte Carlo methods.

1. INTRODUCTION

In this paper we study the problem of numerical evaluation of an American option in
discrete time (also called Bermudan option). The holder of such an option has the right
to buy or sell the underlying asset for a given strike price at one of the time points
0, 1, . . . , T , where T is the so-called majority of the option. It is well known that in
complete and arbitrage-free markets the price V0 of such an option is given by a solution
of the optimal stopping problem

V0 = sup
τ∈T (0,...,T)

E{ fτ (Xτ )}(1.1)

(cf., e.g., Karatzas and Shreve 1998). Here, f t is the discounted payoff function, the
underlying stochastic process is given by X0, X1, . . . , XT , and T (0, . . . , T) is the class of
all {0, . . . , T}-valued stopping times, i.e., τ ∈ T (0, . . . , T) is a measurable function of
X0, . . . , XT satisfying

{τ = α} ∈ F(X0, . . . , Xα) for all α ∈ {0, . . . , T}.

Throughout this paper, we assume X0 = x0 a.s. for some x0 ∈ IRd , i.e., we start at time
zero with some fixed value. Furthermore, we assume that X0, X1, . . . , XT is a IRd -valued
Markov process recording all necessary information about financial variables including
prices of the underlying assets as well as additional risk factors driving stochastic volatility
or stochastic interest rates. Neither the Markov property nor the form of the payoff as
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a function of the state Xt are very restrictive and can often be achieved by including
supplementary variables.

One way to compute (1.1) is to determine an optimal stopping rule τ ∗ ∈ T (0, . . . , T)
satisfying

V0 = E{ fτ ∗ (Xτ ∗ )}.(1.2)

Let

qt(x) = sup
τ∈T (t+1,...,T)

E{ fτ (Xτ ) | Xt = x}(1.3)

be the so-called continuation value describing the value of the option at time t given
Xt = x in case of holding the option rather than exercising it. It follows from the general
theory of optimal stopping (cf., e.g., Chow, Robbins, and Siegmund 1971 or Shiryayev
1978) that an optimal stopping rule can be defined by

τ ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)}(1.4)

(cf., e.g., section 8.1 in Glasserman 2004 or theorem 1 in Kohler 2010).
The Markov property implies the dynamic programming equations

qT(x) = 0,

qt(x) = E{max{ ft+1(Xt+1), qt+1(Xt+1)} | Xt = x} (t = 0, 1, . . . , T − 1)

(1.5)

(cf., e.g., section 8.1 in Glasserman 2004 or theorem 2 in Kohler 2010). In general,
these conditional expectations cannot be computed in applications. The basic idea of
regression-based Monte Carlo methods for pricing American options is to apply recur-
sively regression estimates to artificially created samples of

(Xt, max{ ft+1(Xt+1), q̂n,t+1(Xt+1)})(1.6)

to construct estimates q̂n,t of qt. This kind of recursive estimation scheme was first pro-
posed by Carrier (1996) for the estimation of so-called value functions. In Tsitsiklis
and Van Roy (1999) and Longstaff and Schwartz (2001) it was used in connection with
parametric regression to construct estimates of continuation values. Various nonpara-
metric regression estimates have been applied for the estimation of continuation values in
Egloff (2005), Egloff, Kohler, and Todorovic (2007), Kohler (2008), Belomestny (2011a),
Kohler and Krzyżak (2009), and Kohler, Krzyżak, and Todorovic (2010). There results
concerning consistency and rate of convergence of the resulting estimates of the price
of the option have been derived. An alternative simulation-based optimization approach
for pricing American was proposed and studied in Belomestny (2011b).

From the theoretical point of view there is still one important problem. In applications
the distribution of the stock values is unknown. Usually in practice one considers a
stochastic model for the stock values (e.g., a Black–Scholes model), estimates the model
parameters (in this case the volatility of the underlying asset), and generates sample paths
with this estimated distribution. Here it is assumed that the real model is known, but the
real model parameters are unknown. So instead of (1.6), artificially generated samples of

(X̄t, Ȳt) = (X̄t, max{ ft+1(X̄t+1), q̂n,t+1(X̄t+1)})
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are given, where it is assumed that the distribution of X̄t is close to the distribution of Xt

in the sense that it is generated with the same model but slightly different values of the
parameters.

In the sequel we investigate how the estimated price of the option behaves in case that
the parameters of a given model converge to the true parameter values. Our main result
will be that for suitably defined least squares estimates of the continuation values the
estimated prices in case of a Black–Scholes model, of a GARCH-model, or of a Levy
model converge to the true price in this situation.

Model calibration won’t be considered in this paper. Usually, the parameters of the
underlying price model are calibrated to option data of plain vanilla options. The cor-
responding calibration problem in the case of Levy models was rigorously studied in
Belomestny and Reiß (2010).

The outline of this paper is as follows: The definition of the nonparametric regression-
based Monte Carlo methods which we analyze is given in Section 2. The main result
concerning consistency of the estimate in case of an application with estimated parame-
ters of a Black–Scholes, of a GARCH, and of a Levy model is described in Section 3. In
Section 4 the results are illustrated by simulated data. The proofs are given in Section 5.

2. DEFINITION OF THE ESTIMATES

In the sequel, we consider a IRd -valued stochastic process

(Xt)t=0,...,T

containing the log prices of the underlyings and at least all informations needed to com-
pute the payoff for arbitrary t. We denote the payoff function with respect to (Xt)t=0,...,T

at time t by f t and the corresponding continuation value by qt.
The consideration of log prices instead of ordinary prices simplifies the integrability

condition of the sample paths, which we will need in our theoretical results.
Instead of (Xt)t=0,...,T we have only given artificially generated samples of an estimate

of (Xt)t=0,...,T denoted by

(
X̄(n)

t,i

)
t=0,...,T, i = 1, . . . , N(n).

We will use these sample paths to estimate the continuation values qt (t = 0, . . . , T).
Here, n is the sample size used to calibrate the distribution of the process (Xt)t=0,...,T and
N(n) denotes the Monte Carlo sample size (so it is possible to choose the Monte Carlo
sample size depending on the sample size that has been used to calibrate the model). In
situations where the dependency on n is not so relevant, we will sometimes abbreviate
N(n) by simply writing N.

We start with

q̂ N,T = 0.(2.1)

Given the estimate q̂ N,t+1 of qt+1 for some t ∈ {0, 1, . . . , T − 1}, we estimate the
conditional expectation in (1.5) by applying the principle of least squares to the data

{(
X̄(n)

t,i , max
{

ft+1
(
X̄(n)

t+1,i

)
, q̂n,t+1

(
X̄(n)

t+1,i

)})
: i = 1, . . . , N(n)

}
.
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To do this, we choose a set FN of functions f : IRd → IR and define

q̂ N,t(·) = arg min
g∈FN

1
N

N∑
i=1

∣∣g(X̄(n)
t,i

)− max
{

ft+1
(
X̄(n)

t+1,i

)
, q̂ N,t+1

(
X̄(n)

t+1,i

)}∣∣2,

where x0 = arg minx∈D h(x) means x0 ∈ D and h(x0) = minx∈D h(x) for a function h :
D → IR. Here we assume, for simplicity, that the minimum exists, but we do not require
its uniqueness.

To compute the least squares estimate above, we have to specify suitable function sets
FN. In the sequel we will use sets of polynomial spline functions.

Choose M ∈ IN0, KN ∈ IN, A, B ∈ IR with A < B and set uk = A + k · (B − A)/KN

for k ∈ ZZ. Let Bj ,M,KN , j = 1, . . . , KN + M be the B-spline with support [uj, uj+M+1]
with respect to the knot sequence (uk)k∈ZZ (see, e.g., de Boor 1978, chapter IX or Györfi
et al. 2002, section 14.1). The spline spaces which we will use for our estimates in case d
= 1 will be defined as subspaces of

SKN,M([A, B]) =
⎧⎨
⎩

∑
j∈ZZ:supp(Bj ,M,KN )∩[A,B] 	=∅

a j · Bj ,M,KN : j ∈ ZZ, a j ∈ IR

⎫⎬
⎭ .

Restricted on [A, B] the space SKN,M([A, B]) consists of all functions f that are (M −
1)-times continuously differentiable on [A, B] and that are on each interval [uj, uj+1) equal
to a polynomial of degree M (or less). For our function space we restrict the coefficients
in SKN,M([A, B]) such that the functions are bounded and Lipschitz continuous. More
precisely, we set

SKN,M,βN,γN ([A, B]) =
{∑

j∈ZZ

a j Bj ,M,KN : |a j | ≤ βN, |a j − a j−1| ≤ γN/KN,

a j = 0 if supp (Bj ,M,KN ) ∩ [A, B] = ∅ ( j ∈ ZZ)
}

(2.2)

for some βN , γ N > 0. By standard results on B-splines and its derivatives (cf., e.g.,
lemmas 14.4 and 14.6 in Györfi et al. 2002) it can be shown that each function in
SKN,M,βN,γN ([A, B]) is bounded in absolute value by βN and Lipschitz continuous with
Lipschitz constant γ N , which we will need later in the proofs.

In case of higher dimensions we will use tensor product B-splines. Let ei be the ith unit
vector (i = 1, . . . , d). For a multi-index k = (k1, . . . , kd ) ∈ ZZd , we define the multivariate
B-spline Bk : Rd → IR of degree M = (M1, . . . , Md ) ∈ INd by

Bk,M,KN (x(1), . . . , x(d)) =
d∏

i=1

Bki ,Mi ,Ki ,N (x(i )) (x(1), . . . , x(d) ∈ IR),

where KN = (K1,N, . . . , Kd,N) ∈ INd .
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Accordingly, we define

SKN,M,βN,γN

(
d×

i=1
[Ai , Bi ]

)

=
⎧⎨
⎩
∑
j∈Zd

a j Bj ,M,KN : |a j | ≤ βn, |a j − a j−ei | ≤ γn√
d KN,i

(i = 1, . . . , d)

a j = 0 if supp (Bj ,M,KN ) ∩
d×

i=1
[Ai , Bi ] = ∅ ( j ∈ Zd )

⎫⎬
⎭ .

(2.3)

The definition of the B-splines implies that SKN,M,βN,γN ([×d
i=1[Ai , Bi ]) is a subset of a

linear vector space of dimension
∏d

i=1(Ki + Mi + 1). Furthermore, it follows as above
that the functions in SKN,M,βN,γN (×d

i=1[Ai , Bi ]) are bounded in absolute value by βn and
are Lipschitz continuous with Lipschitz constant γ N .

To compute q̂ N,t for the function spaces given by (2.2), respectively, (2.3) numerically,
one has to solve a quadratic programming problem under linear constraints. For liter-
ature about this topic, we refer to Gill and Murray (1983) and Goldfarb and Idnani
(1983). In our simulation in Section 4 we speed up the computation of the estimate by
choosing βN and γ N rather large. In this case, the least squares estimate computed with-
out imposing restrictions on the coefficients, which can be quickly computed by solving
a linear equation system (cf., e.g., chapter 10 in Györfi et al. 2002), is contained in the
space (2.2) respectively (2.3) and hence coincides with the estimate in the above theorems.

Given the above estimates of the continuation values, we can estimate the price of the
option by

V̂0,N = max{ f0(x0), q̂ N,0(x0)}.
Because

|V̂0,N − V0| = | max{ f0(x0), q̂ N,0(x0)} − max{ f0(x0), q0(x0)}| ≤ |q̂ N,0(x0) − q0(x0)|

=
(∫ ∣∣q̂ N,0(u) − q0(u)

∣∣2 PX0 (du)
)1/2

(2.4)

(where the last equality follows from X0 = x0 a.s.), the error of this estimate tends to
zero whenever the so-called L2 error of our estimate of q0 tends to zero.

Alternatively, we can estimate the price of the option by so-called lower estimates
defined by Monte Carlo estimates of the expected payoff of a plug-in version of the
stopping rule (1.4), cf., e.g., subsection 8.6.1 in Glasserman (2004). It follows from
proposition 1.3 in Belomestny (2011a) that in this case the error of our estimated price of
the option tends also to zero if the L2 errors of the above estimates of the continuation
values tend to zero.

3. MAIN RESULTS

In this section we consider three different models for the stock values and present for
each model a consistency result of our estimation procedure applied to paths of versions
of the model where the parameter values converge to the true values.
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3.1. A Black–Scholes Model

In this subsection the stock values are modeled via Black–Scholes theory, and the
log-prices are given by Xk,t = log Zk,t, where

Zk,t = zk,0 · er ·t · e
∑d

j=1(σk, j ·Wj (t)− 1
2 σ 2

k, j t) (k = 1, . . . , d).(3.1)

Here, r > 0 is the riskless interest rate, σ k = (σ k,1, . . . , σ k,d)T is the volatility of the kth
stock, zk,0 is the initial stock price of the kth stock, and {Wj (t) : t ∈ IR+} (j = 1, . . . , d)
are independent Wiener processes. Because W j(1), W j(2) − W j(1), . . . , W j(T) − W j(T
− 1) are independent standard normally distributed random variables, we can define Zk,t

(k = 1, . . . , m, t = 0, . . . , T) also by

Zk,0 = zk,0 (k = 1, . . . , d)

and by

Zk,t+1 = Zk,t · er · e
∑d

j=1(σk, j ·εt+1, j − 1
2 σ 2

k, j ) (k = 1, . . . , d, t = 0, . . . , T − 1),

where (εt,j)t∈{1,...,T},j∈{1,...,d} are independent standard normally distributed random
variables.

In the sequel we assume that instead of sample paths from

(Xt)t=0,...,T = ((X1,t, . . . , Xd,t))t=0,...,T,

we observe (
X̄(n)

t,i

)
t=0,...,T

(i = 1, . . . , N(n)),

where

X̄(n)
t,i = (X̄(n)

1,t,i , . . . , X̄(n)
d,t,i

)T = ( log Z̄(n)
1,t,i , . . . , log Z̄(n)

d,t,i

)T

is given by

Z̄(n)
k,0,i = zk,0 (k = 1, . . . , d)

and by

Z̄(n)
k,t+1,i = Z̄(n)

k,t,i · er · e
∑d

j=1

(
σ̂

(n)
k, j ·εt+1, j ,i − 1

2

(
σ̂

(n)
k, j

)2
)

(k = 1, . . . , d, t = 0, . . . , T − 1)

for some independent standard normally distributed random variables εt+1,j,i.

THEOREM 3.1. Assume that the discounted payoff function f t with respect to the above
defined log price process (Xt)t=0,...,T is bounded and Lipschitz continuous. Let V0 and
qt be the corresponding price of the option and continuation values. Let M ∈ IN, M =∑d

i=1 ei M, KN(n) ∈ IN, KN(n) =∑d
i=1 ei KN(n), βN(n) > 0, γN(n) > 0 and An > 0 and let the

estimate be defined as in Section 2 with

FN(n) = SKN(n),M,βN(n),γN(n)

(
[−AN(n), AN(n)]d

)
.
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Assume that the parameters of the function spaces satisfy

AN(n) → ∞, βN(n) → ∞, γN(n) → ∞,
AN(n)

KN(n)
→ 0,

β5
N(n) · Ad

N(n) K
d
N(n)

n
→ 0 (n → ∞).

If the parameters of the estimated model converge to the true parameter values in the sense
that

γN(n) · (σ̂ (n)
k, j − σk, j

)→ 0 (n → ∞)

for all k, j ∈ {1, . . . , d} then we have for t = 0, . . . , T∫ ∣∣q̂ N(n),t(x) − qt(x)
∣∣2 PXt (dx) → 0 (n → ∞) in probability

and, in addition,

V̂0,N(n) → V0 (n → ∞) in probability.

3.2. A GARCH Model

Next we present results for a price process, where the volatility is modeled by a GARCH
time series, which was introduced by Bollerslev (1986). We consider this in the form
proposed in Duan (1995), where the GARCH process is modified in such a way that the
discounted price process is a martingale.

Here the price process {St}t=0,1,... of a stock is modeled by

St = x0 · exp

⎛
⎝r · t − 1

2

t∑
j=1

h j +
t∑

j=1

√
h j · ε j

⎞
⎠ ,

where x0 ∈ IR+ is the value of the stock at time zero, r > 0 is the riskless interest rate,
(ε j ) j∈ZZ are independent standard normally distributed random variables, and where the
(random) volatility ht of the process satisfies

ht = 0 for t ≤ 0

and

ht = a0 +
q∑

j=1

a j · ht− j
(
εt− j − λ

)2 +
p∑

j=1

b j · ht− j (t ∈ IN)

for some p, q ∈ IN0 and parameters λ > 0, aj > 0 (j = 0, . . . , p), and bj > 0 (j = 1, . . . , p).
In applications the parameters λ, a0, . . . , aq, b1, . . . , bp are unknown. Therefore, it

is only possible to generate Monte Carlo samples where these parameters are estimated.
Given sequences (âi ,n)n∈IN (i = 0, . . . , q), (b̂i ,n)n∈IN(i = 1, . . . , p), (λ̂n)n∈IN of nonneg-
ative real numbers, where â0,n > 0 for all n ∈ IN, and independent standard normally
distributed random variables εj,i, the samples of the error-behaved logarithmic returns
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are given by

Z̄(n)
t,i = log(x0) + r · t − 1

2

t∑
j=1

h̄(n)
j ,i +

t∑
j=1

√
h̄(n)

j ,i · ε j ,i ,(3.2)

h̄(n)
t,i = â0,n +

q∑
j=1

â j ,n · h̄(n)
t− j ,i (εt− j ,i − λ̂n)2 +

p∑
j=1

b̂ j ,n · h̄(n)
t− j ,i(3.3)

(i = 1, . . . , N(n)), where we set again h̄(n)
t, j = 0 for t ≤ 0.

To ensure that the price process is a Markov process, we have to extend the state space.
So instead of only Z̄(n)

t,i , we consider

X̄(n)
t,i = (Z̄(n)

t,i , εt,i , . . . , εt+1−q,i , h̄(n)
t,i , . . . , h̄(n)

t+1−max{p,q},i
)T

.(3.4)

THEOREM 3.2. Assume that the payoff function ft is bounded and Lipschitz continuous.
Let V0 and qt be the price of the option and the continuation values corresponding to the
above defined log price process log (St). Let X̄(n)

t,i be defined by (3.4). Let M ∈ IN, M =∑1+q+max{p,q}
i=1 ei M, KN(n) ∈ IN, KN(n) =∑1+q+max{p,q}

i=1 ei KN(n), βN(n) > 0, γN(n) > 0 and
AN(n) > 0. Let the estimates q̂ N(n),t be defined as in Section 2, where the function space is
given by

FN(n) = SKN(n),M,βN(n),γN(n)

(
1+q+max{p,q}×

i=1

[Ai ,N(n), Bi ,N(n)]

)
.

Assume

Ai ,N(n) → −∞, Bi ,N(n) → ∞,
γN(n)

Bi ,N(n) − Ai ,N(n)
→ ∞, γN(n)

Bi ,N(n) − Ai ,N(n)

KN(n)
→ 0,

for i = 1, . . . , 1 + q + max {p, q},

βN(n) → ∞,

and

β5
N(n)

1+q+max{p,q}∏
i=1

Ki ,N(n)

N(n)
→ 0 (n → ∞).

Then

γN(n) (âi ,n − ai ) → 0 (n → ∞), γN(n)(b̂ j ,n − b j ) → 0 (n → ∞)

for all i ∈ {0, . . . , q}, j ∈ {1, . . . , p} and

γN(n)(λ − λ̂n) → 0 (n → ∞)
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imply ∫
|q̂ N(n),t(x) − qt(x)|2PXt,1 (dx) → 0 in probability

for all t = 0, 1. . . , T and, in addition,

V̂0,N(n) → V0 in probability.

3.3. A Levy Model

Finally, we present a result for a Lévy processes. Here we consider the following Merton
Model (cf. Merton 1976):

St = x0 · exp

⎛
⎝μ · t + σ · Wt +

πt∑
j=1

Yj

⎞
⎠ ,

where W = (Wt)t∈IR+ is a Wiener process, π = (πt)t∈IR+ is a Poisson process with parame-
ter λ independent from W , and Y 1, Y 2, . . .are independent normally distributed random
variables with mean m and variance δ2 independent from W and π . By defining

μ = r − σ 2

2
− λ

(
exp

(
m + δ2

2

)
− 1
)

,(3.5)

the price process with respect to the martingale measure in the sense of Merton (1976)
can be written as

St = s0 exp

(
μt +

t∑
s=1

σεs +
πt∑

i=1

(m + δξi )

)
,(3.6)

where εs, ξ i with i , s ∈ IN are independent standard normal distributed and π t is Poisson
distributed with parameter λt. Again we consider the corresponding log price process

Xt = log s0 + μt +
t∑

s=1

σεs +
πt∑

i=1

(m + δξi ).

As in the Black–Scholes and the GARCH case we we estimate the parameters σ , λ,
m, and δ by σ̂ n , λ̂n , m̂n , and δ̂n , and consider the logarithm of the returns. According to
Merton (1976) we define μ̂n by

μ̂n = r − σ̂ 2
n

2
− λ̂n

(
exp

(
m̂n + δ̂2

n

2

)
− 1

)

and generate data

X̄(n)
t,i = log(x0) + μ̂nt +

t∑
s=1

σ̂ nεs,i +
π

(n)
t,i∑

i=1

(m̂n + δ̂nξi )

(t = 0, . . . , T, i = 1, . . . , N(n)),

(3.7)
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where εi,j, ξ i,j are independent standard normal distributed and π
(n)
t,i is a Poisson dis-

tributed random variable with parameter λ̂nt independent from εi,j, ξ i,j for all i , j ∈ IN.
Note that the above definition of μn ensures the martingale property of the discounted
price process.

THEOREM 3.3. Assume that the payoff function ft is bounded and Lipschitz continuous.
Let V0 and qt be the price of the option and the continuation values corresponding to
the above defined log price process Xt. Let X̄(n)

t,i be defined by (3.7). Let M ∈ IN, KN(n) ∈
IN, βN(n) > 0, γN(n) > 0 and AN(n) > 0. Letthe estimates q̂ N(n),t be defined as in Section 2,
where the function space SKN(n),M,βN(n),γN(n) ([−AN(n), AN(n)]) is defined by (2.2). Assume that

AN(n) → ∞, βN(n) → ∞, γN(n) → ∞,
AN(n)

KN(n)
→ 0,

β5
N(n) · Ad

N(n) K
d
N(n)

N(n)
→ 0 (n → ∞).

Then

γN(n) · (σ̂ n − σ ) → 0, γN(n) · (mn − m) → 0, γN(n) · (δ̂n − δ) → 0,

and

γ 2
N(n) · (λ̂n − λ) → 0 (n → ∞)

imply ∫ ∣∣q̂ N(n),t(x) − qt(x)
∣∣2 PXt,1 (dx) → 0 in probability

for all t ∈ {0, . . . , T} and, in addition,

V̂0,N(n) → V0 in probability.

REMARK 3.4. It is an open problem whether one can derive rate of convergence results
in the above theorems in case of estimation of smooth continuation values. In principle, it
should be possible to use known results for the rate of convergency for model calibration
algorithms in connection with Theorem 5.2 (which is formulated in the proof section) to
derive results for the rate of convergence in the setting presented in this paper.

REMARK 3.5. It is an open problem whether one can derive similar results as in the
above theorems without assuming that the payoff functions is bounded. In the proofs of
the above theorems we need this boundedness assumption because we apply Theorem 1
of Fromkorth and Kohler (2010), where the boundedness of the regression function is
needed.

REMARK 3.6. In practise, the parameters of the spline space can be chosen by splitting
of the sample (cf. remark 4 in Fromkorth and Kohler 2010).

4. APPLICATION TO SIMULATED DATA

To demonstrate the finite sample performance of our estimate we first apply it in case of
a Duan–GARCH model. To reduce the computational effort, we choose here and in the
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sequel the parameters βN and γ N so large that the least squares estimates which does
not impose restrictions on the range of the parameters coincides with the least squares
estimate corresponding to (2.3). Basically, this means that we skip the constraints in the
optimization problem corresponding to (2.3).

With respect to the martingale measure of Duan (cf. Duan 1995) the logarithm of the
price process has the form

log(St) = log(s0) + rt − 1
2

t∑
s=

hs +
t∑

s=1

√
hsεs,

with

ht = a0 + a1|ht−1|(εt−1 − λ)2 + b1ht,1,

with independent standard normal distributed random variables ε0, . . . , εt. As parame-
ters of the real price process we take

a0 = 0.0000166, a1 = 0.144, b1 = 0.776, and λ = 0.7138.

To ensure the Markov property of the considered process we take

Xt =

⎛
⎜⎝

St

exp(ht)

exp(εt)

⎞
⎟⎠ .

The riskless rate is assumed to be known as

r = 0.05/T ≈ 0.001389.

As start vector of this process we choose

X0 =

⎛
⎜⎝

100

1

1

⎞
⎟⎠ .

In applications the parameters a0, a1, b1, and λ are unknown and have to be estimated
from historical data. To demonstrate the influence of such an estimate, we consider
different error levels for each parameter.

We price a Bermudan capped-straddle option with exercise prices 70, 100, and 130.
The payoff function is shown in Figure 4.1. As maturity we choose T = 36, so exercising
is possible at the time points t = 0, 1, . . . , 36.

As parameters of the spline space we take A = (0, 0, 0)T , B = (200, 2, 120)T ,
M = (1, 1, 1)T , and βN = γ N = 5, 000. The parameter K1 ∈ {4, 10} is cho-
sen by splitting of the sample, K2 and K3 are set to 2. To estimate the continua-
tion values we use nl = 1, 000 paths as learning data and nt = 1, 000 testing data.
The so-computed estimates for continuation values are taken as plug-in estimates to
evaluate on na = 10, 000 newly generated paths. The arithmetic mean of these na

paths is the estimate of one option price. This procedure is repeated 50 times for
each parameter constellation. So we get for every chosen parameter set 50 option
prices.
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FIGURE 4.1. Payoff function of a capped-straddle with strike prices 70, 100, and 130.

FIGURE 4.2. Simulated option prices in case of a Duan–GARCH model with
(a) a0 = 0.0001494, (b) a0 = 0.0001577, (c) a0 = 0.00016434, (d) a0 = 0.000166,
(e) a0 = 0.00016766, (f) a0 = 0.0001743, (g) a0 = 0.0001826.
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FIGURE 4.3. Simulated option prices in case of a Duan–GARCH model with
(a) a1 = 0.1296, (b) a1 = 0.1368, (c) a1 = 0.14256, (d) a1 = 0.144, (e) a1 = 0.14544,
(f) a1 = 0.1512, (g) a1 = 0.1584.

FIGURE 4.4. Simulated option prices in case of a Duan–GARCH model with (a) b1 =
0.69840, (b) b1 = 0.7372, (c) b1 = 0.76824, (d) b1 = 0.776, (e) b1 = 0.78376, (f) b1 =
0.8148, (g) b1 = 0.85360.
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FIGURE 4.5. Simulated option prices in case of a Duan–GARCH model with
(a) λ = 0.642420, (b) λ = 0.678110, (c) λ = 0.706662, (d) λ = 0.713800, (e) λ = 0.720938,
(f) λ = 0.749490, (g) λ = 0.785180.

FIGURE 4.6. Payoff function of a bear spread with strikes 60 and 140.
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FIGURE 4.7. Simulated option prices in case of a Bermudan bear spread option in a
Merton model with (a) m = 0.18, (b) m = 0.19, (c) m = 0.198, (d) m = 0.2, (e) m =
0.202, (f) m = 0.21, (g) m = 0.22.

Figures 4.2, 4.3, 4.4, and 4.5 show the simulation results in the form of boxplots.
Each of these simulations considers different parameter levels for one of the parameters
although all other parameters are set to the value of the real price process defined
above.

The next simulation series considers the pricing of a Bermudan bear spread option
with strikes 60 and 140. The corresponding payoff function is illustrated as Figure 4.6.
The maturity is set to T = 36, the riskless rate is r = 0.05/T .

This time we use a Merton model for simulating the asset prices. We start with the
log price process (3.6). Here we assume, that the real parameters are σ = 0.02/

√
T, m =

0.2, δ = 0.5, λ = 0.2. The parameter μ is computed by (3.5).
The parameters of the spline space are Kn ∈ {4, 10}, A = 0, B = 250, Mn ∈ {1,

3}, and βN = γ N = 2, 000. The number of learning data for choosing the spline space
parameters is nl = 1, 000. The corresponding testing data is nt = 1, 000. The so-computed
estimates for continuation values are taken as plug-in estimates to evaluate on na =
10, 000 new generated paths. The arithmetic mean of these na paths is the estimate of one
option price. This procedure is repeated 50 times for each parameter constellation. So
we get for every chosen parameter set 50 option prices. Start value of the price process
is 100.
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FIGURE 4.8. Simulated option prices in case of a Bermudan bear spread option
in a Merton model with (a) δ = 0.45, (b) δ = 0.475, (c) δ = 0.495, (d) δ = 0.5,
(e) δ = 0.505, (f) δ = 0.525, (g) δ = 0.55.

Figure 4.7 shows the results, if we choose m as

0.18, 0.19, 0.198, 0.2, 0.202, 0.21, 0.22

and keep all other parameters fixed.
Figure 4.8 shows the results, if we choose δ as

0.45, 0.475, 0.495, 0.5, 0.505, 0.525, 0.55

and keep all other parameters fixed.
Figure 4.9 shows the results, if we choose λ as

0.18, 0.19, 0.198, 0.2, 0.202, 0.21, 0.22

and keep all other parameters fixed.
We do not consider an error in the remaining parameters, because of the similarity

with the case of the Black–Scholes model.
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FIGURE 4.9. Simulated option prices in case of a Bermudan bear spread option
in a Merton model with (a) λ = 0.18, (b) λ = 0.19, (c) λ = 0.198, (d) λ = 0.2,
(e) λ = 0.202, (f) λ = 0.21, (g) λ = 0.22.

5. PROOFS

5.1. An Auxiliary Lemma

In the proofs we will need the following lemma.

LEMMA 5.1. Let ft, qt, q̄ t : Rd → IR be functions (t = 0, . . . , T). For given Rd -valued
stochastic processes (Xt)t=0,...,T, (X̄t)t=0,...,T, and t ∈ {0, . . . , T − 1} define

Yt = max{ ft+1(Xt+1), qt+1(Xt+1)} andȲt = max{ ft+1(X̄t+1), q̄ t+1(X̄t+1)}.

Let s ∈ {0, . . . , T − 1} and assume that fs+1 is Lipschitz continuous with Lipschitz constant
L. Then

|Ys − Ȳs |2 ≤ 2L2‖Xs+1 − X̄s+1‖2 + 2|qs+1(Xs+1) − q̄s+1(X̄s+1)|2.
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Proof . Using (a + b)2 ≤ 2a2 + 2b2 and |max {a, b} − max {a, c}| ≤ |b − c| for
a, b, c ∈ IR we get

|Ys − Ȳs |2 ≤ 2| max{ fs+1(Xs+1), qs+1(Xs+1)} − max{ fs+1(Xs+1), q̄s+1(X̄s+1)}|2
+2| max{ fs+1(Xs+1), q̄s+1(X̄s+1)} − max{ fs+1(X̄s+1), q̄s+1(X̄s+1)}|2

≤ 2|qs+1(Xs+1) − q̄s+1(Xs+1)|2 + 2| fs+1(Xs+1) − fs+1(X̄s+1)|2.
By using the Lipschitz property of f s+1 we get the desired result. �

5.2. A General Consistency Result

In this subsection we formulate and proof a general consistency result. Here we assume
that instead of independent copies

(Xt,i )t=0,...,T (i = 1, . . . , N)

of the underlying IRd -valued Markov process (Xt)t=0,...,T , we have given paths

(X̄(n)
t,i )t=0,...,T (i = 1, . . . , N(n))

such that

1
N(n)

N(n)∑
i=1

∥∥X̄(n)
t,i − Xt,i

∥∥2

is small for all t. We define our estimates q̂ N,t and V̂0,N as in Section 2 with a general
function space FN. Then the following result holds.

THEOREM 5.2. Let the discounted payoff function ft be bounded in absolute value by some
M > 1 and Lipschitz continuous with Lipschitz constant L > 0. Let FN(n) be a subspace of a
linear vector space of dimension DN(n)consisting of functions which are bounded in absolute
value by some βN(n) > 0 and which are Lipschitz continuous with respect to some Lipschitz
constant γ N(n). Assume that

X1,t+1, . . . , XN(n),t+1 and X̄(n)
1,t, . . . , X̄(n)

N(n),t are independent given X1,t, . . . , XN(n),t(5.1)

for all t = 0, . . . , T − 1. Then

DN(n)β
5
N(n)

N(n)
→ 0, DN(n)β

3
N(n) → ∞,

inf
f ∈FN(n)

∫
| f (x) − qt(x)|2 PXt (dx) → 0 (n → ∞)(5.2)

for all t = 0, . . . , T − 1 and

γ 2
N(n)

n

n∑
i=1

∥∥X̄(n)
t,i − Xt,i

∥∥2 → 0 in probability (n → ∞)
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for all t = 0, . . . , T imply∫
|q̂ N(n),t(x) − qt(x)|2PXt (dx) → 0 in probability (n → ∞)(5.3)

for t = 0, . . . , T and, in addition

V̂0,N(n) → V0 in probability.(5.4)

In the proof we will apply theorem 1 of Fromkorth and Kohler (2011). In case of
bounded Y , the sub-Gaussian condition there is trivially fulfilled. Using lemma 9.3 in
Györfi et al. (2002), we can conclude from the result there the following lemma:

LEMMA 5.3. Let (X , Y ), (X1, Y 1), . . . , (Xn, Y n) be independent and identically dis-
tributed Rd × IR-valued random vectors with |Y | ≤ β a.s. for some β > 0. For each n let FN

be a subset of a linear vector space of dimension Dn consisting of functions f : IRd → IR
which are bounded in absolute value by βN(n) and which are Lipschitz continuous with
Lipschitz constant γ N(n). Given an arbitrary data set

D̄N(n) = {(X̄1,n, Ȳ1,n), . . . , (X̄N(n),n, ȲN(n),n)}

with the property, that Y 1, . . . , Y N(n) and X̄1,n, . . . , X̄N(n),n are independent given X1, . . . ,
XN(n), define the estimate m̄N(n) by

m̄N(n)(·) = arg min
f ∈FN(n)

1
N(n)

N(n)∑
i=1

| f
(
X̄i ,n

)− Ȳi ,n|2.

If

DN(n)β
5
N(n)

N(n)
→ 0, DN(n)β

3
N(n) → ∞ (n → ∞)

then it holds for c sufficiently large that we have for any n ∈ IN

P
{∫

|m̄N(n)(x) − m(x)|2μ(dx) > c · Zn

}
≤ c · exp

(− c · DN(n) · β3
N(n)

)
and

P

⎧⎨
⎩ 1

N(n)

N(n)∑
i=1

|m̄N(n)(X̄i ,n) − m(Xi )|2 > c · Zn

⎫⎬
⎭ ≤ c · exp

(− c · DN(n) · β3
N(n)

)
,

where

Zn = 1
N(n)

N(n)∑
i=1

|Yi − Ȳi ,n|2 + γ 2
N(n) · 1

N(n)

N(n)∑
i=1

‖Xi − X̄i ,n‖2 +
DN(n)β

5
N(n)

N(n)

+ inf
f ∈FN(n)

∫
| f (x) − m(x)|2μ(dx).



390 A. FROMKORTH AND M. KOHLER

Proof . The result follows directly from theorem 1 in Fromkorth and Kohler (2011)
and Lemma 9.3 in Györfi et al. (2002). �

Proof of Theorem 5.2. We prove the theorem by backward induction. We start with
t = T , in which case we have q̂ N,T(x) = qT(x) = 0, which implies∫

|q̂ N,s(x) − qs(x)|2PXs (dx) → 0 in probability(5.5)

and

1
N

N∑
i=1

∣∣q̂ N,s(Xs,i ) − qs(X̄(n)
s,i )
∣∣2 → 0 in probability(5.6)

for s = T .
Let t ∈ {0, . . . , T − 1} be arbitrary and assume that (5.5) and (5.6) hold for s = t + 1.

In the sequel we show (5.5) and (5.6) for s = t. To do this we apply Lemma 5.3 with

Xi = Xi ,t, X̄i ,n = X̄(n)
i ,t , Yi = max{ ft+1(Xi ,t+1), qt+1(Xi ,t+1)},

and

Ȳi ,n = max
{

ft+1
(
X̄(n)

i ,t+1

)
, q̂ N,t+1

(
X̄(n)

i ,t+1

)}
.

Here (5.1) implies that Y 1, . . . , Y N and X̄1,n, . . . , X̄N,n are independent given X1, . . . ,
XN , so we can conclude

P
{∫

|q̂ N,t(x) − qt(x)|2PXt (dx) > c11 · Zn

}
→ 0 (n → ∞)

and

P

{
1
N

N∑
i=1

|q̂ N,t(X̄t,i ) − qt(Xt,i )|2 > c11 · Zn

}
→ 0 (n → ∞),

where

Zn = 1
N(n)

N(n)∑
i=1

∣∣max{ ft+1(Xi ,t+1), qt+1(Xi ,t+1)} − max
{

ft+1
(
X̄(n)

i ,t+1

)
, q̂ N(n),t+1

(
X̄(n)

i ,t+1

)}∣∣2

+ γ 2
N(n) · 1

N(n)

N(n)∑
i=1

∥∥Xi ,t − X̄(n)
i ,t

∥∥2 +
DN(n) · β5

N(n)

N(n)
+ inf

f ∈FN(n)

∫
| f (x) − qt(x)|2PXt (dx).

Lemma 5.1 implies that for n sufficiently large (i.e., in case γ N ≥ L), we have

Zn ≤ 2
1

N(n)

N(n)∑
i=1

|q̂ N(n),t+1
(
X̄(n)

i ,t+1

)− qt+1(Xi ,t+1)|2+3 · γ 2
N(n) · 1

N(n)

N(n)∑
i=1

∥∥Xi ,t+1− X̄(n)
i ,t+1

∥∥2

+
DN(n) · β5

N(n)

N(n)
+ inf

f ∈FN(n)

∫
| f (x) − qt(x)|2PXt (dx).



PRICING BERMUDAN OPTIONS IN CASE OF ESTIMATED FINANCIAL MODELS 391

By the induction hypothesis and the assumptions of the theorem, we have

Zn → 0 in probability.

The proof of (5.3) is complete, and using (2.4) we also get (5.4). �
We reformulate Theorem 5.2 in case of choosing the function space as a spline space.

COROLLARY 5.4. Let the discounted payoff function ft be bounded in absolute value by
some β > 1 and Lipschitz continuous with Lipschitz constant L > 0. For n ∈ IN let An, βn,
γ n > 0, Kn ∈ IN, Kn = (Kn, . . . , Kn), M ∈ INd

0 and set

Fn = SKn ,M,βn ,γn ([−AN(n), AN(n)]d ).

Assume that

X1,t+1, . . . , Xn,t+1 and X̄(n)
1,t, . . . , X̄(n)

n,t are independent given X1,t, . . . , XN(n),t(5.7)

for all t = 1, . . . , T − 1. Then

AN(n) → ∞, βN(n) → ∞, γN(n) → ∞,
AN(n)

KN(n)
→ 0,

β5
N(n) · Ad

N(n) K
d
N(n)

N(n)
→ 0 (n → ∞)

and

γ 2
N(n)

N(n)

N(n)∑
i=1

∥∥X̄(n)
t,i − Xt,i

∥∥2 → 0 in probability

for all t = 0, . . . , T imply∫
|q̂ N(n),t(x) − qt(x)|2PXt (dx) → 0 in probability

for t = 0, . . . , T and, in addition

V̂0,n → V0 in probability.

Proof . Corollary 5.4 follows directly from Theorem 5.2 if we observe that (5.2) fol-
lows from qt ∈ Ł2(PXt (which is implied by the boundaries of the payoff function) and
approximation properties of spline spaces (cf., e.g., proof of corollary 2 in Fromkorth
and Kohler 2011). �

5.3. Proof of Theorem 3.1

Set Xt,i = (X1,t,i, . . . , Xd,t,i)′, where

Xk,t,i = log(zk,0) + r · t +
t∑

s=1

d∑
j=1

(
σk, j · εs, j ,i − 1

2
· σ 2

k, j

)
.

This can be interpreted as an artificial sample of the logarithm of asset values with the
real (but unknown) distribution.
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For all t = 0, . . . , T it holds

∥∥Xt,1 − X̄(n)
t,1

∥∥2

=
d∑

k=1

∣∣Xk,t,1 − X̄(n)
k,t,1

∣∣2

=
d∑

k=1

∣∣∣∣∣∣
t
2

·
d∑

j=1

((
σ̂

(n)
k, j

)2 − σ 2
k, j

)+ t∑
s=1

d∑
j=1

((
σk, j − σ̂

(n)
k, j

) · εs, j ,1
)∣∣∣∣∣∣

2

≤
d∑

k=1

d · (t + 1) ·
⎛
⎝ t2

4
·

d∑
j=1

((
σ̂

(n)
k, j

)2 − σ 2
k, j

)2 +
t∑

s=1

d∑
j=1

(
σk, j − σ̂

(n)
k, j

)2 · ε2
s, j ,1

⎞
⎠ ,

where we have used the inequality of Jensen. From this we get

E
{
γ 2

N(n)

∥∥Xt,1 − X̄(n)
t,1

∥∥} ≤
d∑

k=1

t · (d + 1)

⎛
⎝ t2

4
·

d∑
j=1

γ 2
N(n)

((
σ̂

(n)
k, j

)2 − σ 2
k, j

)2

+
t∑

s=1

d∑
j=1

γ 2
n

(
σk, j − σ̂

(n)
k, j

)2 · E
(
ε2

s, j ,1

)⎞⎠

≤
d∑

k=1

t · (d + 1)

⎛
⎝ t2

4
·

d∑
j=1

γ 2
N(n)

(
σ̂

(n)
k, j − σk, j

)2 · (σ̂ (n)
k, j + σk, j

)2

+ t ·
d∑

j=1

γ 2
N(n)

(
σk, j − σ̂

(n)
k, j

)2⎞⎠→ 0 (n → ∞),

where the last step follows from the assumptions of the theorem. For arbitrary ε > 0, the
Markov inequality implies now

P

{
γ 2

N(n) · 1
n

n∑
i=1

∥∥Xt,i − X̄(n)
t,i

∥∥2
> ε

}
≤

E

⎧⎪⎨
⎪⎩γ

2
N(n) · 1

n

n∑
i=1

∥∥Xt,i − X̄(n)
t,i

∥∥2

⎫⎪⎬
⎪⎭

ε

=
E
{
γ 2

N(n)

∥∥Xt,1 − X̄(n)
t,1

∥∥}
ε

→ 0 (n → ∞),

this means

γ 2
N(n) · 1

N(n)

N(n)∑
i=1

∥∥Xt,i − X̄(n)
t,i

∥∥2 → 0 (n → ∞) in probability.

Finally, we note that X1,t+1, . . . , XN,t+1 depend only on random variables independent
from all random variables used up to time t provided we fix Xt,1, . . . , Xt,N . So the
independence assumption in Corollary 5.4 is trivially fulfilled.

Corollary 5.4 implies the assertion. �
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5.4. Proof of Theorem 3.2

Again we introduce the artificial sample Xt,i of the real distribution, i.e., we set

Xt,i = (Zt,i , εt,i , . . . , εt−q+1,i , ht,i , . . . , ht−max{p,q}+1,i )T,

where

Zt,i = log(x0) + rt − 1
2

t∑
j=1

h j ,i +
t∑

j=1

√
h j ,i · ε j ,i ,

ht,i = a0 +
q∑

j=1

a j · ht− j ,i (εt− j ,i − λ)2 +
p∑

j=1

b j · ht− j ,i ,

for t > 0 and hs,i = 0 for s ≤ 0.
As in the proof of Theorem 3.1 it suffices to show

E
{
γ 2

n

∥∥Xt,1 − X̄(n)
t,1

∥∥2}→ 0 (n → ∞).

By the definition of the stochastic processes and the inequality of Jensen we get

∥∥Xt,1 − X̄(n)
t,1

∥∥2

= ∣∣Zt,1 − Z̄(n)
t,1

∣∣+ max{p,q}∑
j=1

∣∣ht+1− j ,1 − h̄(n)
t+1− j ,1

∣∣2

=
∣∣∣∣∣

t∑
s=1

1
2

(
h̄(n)

s,1 − hs,1
)+

t∑
s=1

(√
hs,1 −

√
h̄(n)

s,1

) · εs,1

∣∣∣∣∣
2

+
max{p,q}∑

j=1

∣∣ht+1− j ,1 − h̄(n)
t+1− j ,1

∣∣2

≤ 2t ·
(

t∑
s=1

1
4

(
h̄(n)

s,1 − hs,1
)2 +

t∑
s=1

(√
hs,1 −

√
h̄(n)

s,1

)2 · ε2
s,1

)

+
max{p,q}∑

j=1

∣∣ht+1− j ,1 − h̄(n)
t+1− j ,1

∣∣2.

Because of a0 > 0 and aj, â j ,n , bi, b̂i ,n nonnegative, we know h̄(n)
s,1 ≥ 0 and hs,1 ≥ a0 for all

s ∈ {0, . . . , t}. Therefore,

(√
hs,1 −

√
h̄(n)

s,1

)2 =
⎛
⎝ hs,1 − h̄(n)

s,1√
hs,1 +

√
h̄(n)

s,1

⎞
⎠

2

≤ 1
a0

(
hs,1 − h̄(n)

s,1

)2
.
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Using this and the independence of εs,1 from hs,1 and h̄(n)
s,1 we get

E
{
γ 2

N(n) · ∥∥Xt,1 − X̄(n)
t,1

∥∥2}
≤ 2t ·

(
t∑

s=1

1
4

E
{
γ 2

N(n) · (h̄(n)
s,1 − hs,1

)2}+
t∑

s=1

E
{
γ 2

N(n) ·
(√

hs,1 −
√

h̄(n)
s,1

)2}
· Eε2

s,1

)

+
max{p,q}∑

j=1

E
{
γ 2

N(n) · ∣∣ht+1− j ,1 − h̄(n)
t+1− j ,1

∣∣2}

≤
(

t
2

+ 2t
a0

+ 1
)

·
t∑

s=1

E
{
γ 2

N(n) · (h̄(n)
s,1 − hs,1

)2}
.

So it remains to proof

γ 2
N(n) · E{(hs,1 − h̄(n)

s,1

)2} → 0 (n → ∞)(5.8)

for s ∈ {0, . . . , t}. We will do this by induction over s. By definition we have for s = 0 that

γ 2
N(n) · E{(hs,1 − h̄(n)

s,1

)2} = 0.

Let s ∈ IN0 and assume (5.8) holds for s (and all smaller indices). Then we have for
s + 1, that

γ 2
N(n) · E

{∣∣hs+1,1 − h̄(n)
s+1,1

∣∣2}

= γ 2
N(n) · E

{∣∣∣a0 − â0,n +
q∑

j=1

(
a j hs+1− j ,1(εs+1− j ,1 − λ)2 − â j ,nh̄(n)

s+1− j ,1(εs+1− j ,1 − λ̂n)2)

+
p∑

j=1

(
b j hs+1− j ,1 − b̂ j ,nh̄(n)

s+1− j ,1

)∣∣∣2} ≤ (1 + p + q)
(
γ 2

N(n)|a0 − â0,n|2

+
q∑

j=1

γ 2
N(n)E

{∣∣a j hs+1− j ,1(εs+1− j ,1 − λ)2 − â j ,nh̄(n)
s+1− j ,1(εs+1− j ,1 − λ̂n)2

∣∣2}

+
p∑

j=1

γ 2
N(n)E

{∣∣b j hs+1− j ,1 − b̂ j ,nh̄(n)
s+1− j ,1

∣∣2}),

where the last inequality follows from the inequality of Jensen.
By the assumptions of the theorem we know

γ 2
N(n)

∣∣a0 − â0,n
∣∣2 → 0 (n → 0).
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Using (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ IR) and the independence of εs+1−j,1 from
hs+1−j,1 and h̄(n)

s+1− j ,1 we get

E
{∣∣a j hs+1− j ,1(εs+1− j ,1 − λ)2 − â j ,nh̄(n)

s+1− j ,1(εs+1− j ,1 − λ̂n)2
∣∣2}

≤ 3a2
j · Eh2

s+1− j ,1 · E
{(

(εs+1− j ,1 − λ)2 − (εs+1− j ,1 − λ̂n)2
)2}

+ 3a2
j · E

{(
hs+1− j ,1 − h̄(n)

s+1− j ,1

)2} · E
{
(εs+1− j ,1 − λ̂n)4

}
+ 3 · (a j − â j ,n)2 · E

{(
h̄(n)

s+1− j ,1

)2} · E
{
(εs+1− j ,1 − λ̂n)4

}
= 3a2

j · Eh2
s+1− j ,1 · (λ − λ̂n)2 · ((4 + (λ + λ̂n)2)

+ 3a2
j · E

{(
hs+1− j ,1 − h̄(n)

s+1− j ,1

)2} · (6λ̂2
n + λ̂4

n + 3)

+ 3 · (a j − â j ,n)2 · E
{(

h̄(n)
s+1− j ,1

)2} · (6λ̂2
n + λ̂4

n + 3),

where the last equality follows from Eεs+1− j ,1 = 0, Eε2
s+1− j ,1 = 1, Eε3

s+1− j ,1 = 0, and
Eε4

s+1− j ,1 = 3.
From this, the induction hypothesis, E{h2

s,1} < ∞ (which follows by induction) and

E
{(

h̄(n)
s+1− j ,1

)2} ≤ 2 · E
{(

hs+1− j ,1 − h̄(n)
s+1− j ,1

)2}+ 2 · E
{
h2

s+1− j ,1

}
for all s, j, and the assumptions of the theorem we see

γ 2
N(n)E

{∣∣a j hs+1− j ,1(εs+1− j ,1 − λ)2 − â j ,nh̄(n)
s+1− j ,1(εs+1− j ,1 − λ̂n)2

∣∣2}→ 0 (n → ∞).

Similar arguments lead to

γ 2
N(n)E

{∣∣b j hs+1− j ,1 − b̂ j ,nh̄(n)
s+1− j ,1

∣∣2}→ 0 (n → ∞),

from which we conclude the assertion. �

5.5. Proof of Theorem 3.3

The assertion depends only on the joint distribution of the random variables describing
the discrete the price process used in the regression-based Monte Carlo method sampled
at discrete points, so to prove the theorem we may assume without loss of generality
that the random variables are generated in some special way. We do this in the same
way for random variables describing the logarithms of the returns of the price process
using the true parameter values. In both cases we use that values of a Poisson process
sampled at discrete points can be generated as partial sums to a sequence of independent
Poisson-distributed random variables.

Let

εt,i , ξt,i , πt,i , π̂
(n)
t,i (i , t ∈ IN),

be independent random variables, where εt,i and ξ t,i are standard normally distributed,
Nt,i is Poisson distributed with parameter λt, and π̂

(n)
t,i is Poisson distributed with param-

eter |λ − λ̂n|t.
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At first we consider the case λ < λn. Because of the folding property of the Poisson
distribution we can write π̄

(n)
t,i as

π̄
(n)
t,i = Nt,i + π̂

(n)
t,i .

For the logarithm of the price processes Xt,i and X̄(n)
t,i this means

Xt,i = log(x0) + μt +
t∑

s=1

σεs,i +
πt,i∑
j=1

(m + δξt, j )

and

X̄t,i = log(x0) + μ̂nt +
t∑

s=1

σ̂ nεs,i +
πt,i +π̂

(n)
t,i∑

j=1

(m̂n + δ̂nξt, j ).

As in the proofs of Theorems 3.1 and 3.2, it is enough to show

E{γ 2
N(n)

∣∣Xt,1 − X̄(n)
t,1

∣∣2} → 0 (n → ∞).

Jensen’s inequality implies

∣∣Xt,1 − X̄(n)
t,1

∣∣2 =
∣∣∣∣(μ − μ̂n)t + (σ − σ̂ n)

t∑
s=1

εs,1 + πt,1(m − m̂n) + (δ − δ̂n)
πt,1∑
j=1

ξt, j

−
πt,1+π̂

(n)
t,1∑

j=πt,1+1

(m̂n + δ̂nξt, j )

∣∣∣∣
2

≤ 5 ·
⎛
⎝(μ − μ̂n)2 t2 + (σ − σ̂ n)2

(
t∑

s=1

εs,1

)2

+ (πt,1)2(m − m̂n)2 + (δ − δ̂n)2

⎛
⎝ πt,1∑

j=1

ξt, j

⎞
⎠

2

+

⎛
⎜⎝

πt,1+π̂
(n)
t,1∑

j=πt,1+1

(m̂n + δ̂nξt, j )

⎞
⎟⎠

2⎞
⎟⎠

and therefore,

E
{
γ 2

N(n)

∣∣Xt,1 − X̄(n)
t,1

∣∣2}

≤ 5 · γ 2
N(n)

⎛
⎝(μ − μ̂n)2 t2 + (σ − σ̂ n)2 E

⎧⎨
⎩
(

t∑
s=1

εs,1

)2
⎫⎬
⎭+ E

{
(πt,1)2

}
(m − m̂n)2

+ (δ − δ̂n)2E

⎧⎪⎨
⎪⎩
⎛
⎝ πt,1∑

j=1

ξt, j

⎞
⎠

2
⎫⎪⎬
⎪⎭+ E

⎧⎪⎨
⎪⎩
⎛
⎜⎝π̂

(n)
t,1m̂n + δ̂n

πt,1+π̂
(n)
t,1∑

j=πt,1+1

ξt, j

⎞
⎟⎠

2⎫⎪⎬
⎪⎭
⎞
⎟⎠ .

The random variables ε1,1, . . . , εt,1 are independent and standard normal distributed, so
it holds

E

⎧⎨
⎩
(

t∑
s=1

εs,1

)2
⎫⎬
⎭ = t,
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and by definition of π t,1 we have

E{(πt,1)2} = (λt)2 + λt.

Because of the independence of π t,1, ξ t,1, ξ t,2, . . . and the identical distribution of ξ t,1,
ξ t,2, . . . , this implies

E

⎧⎪⎨
⎪⎩
⎛
⎝ πt,1∑

j=1

ξt, j

⎞
⎠

2
⎫⎪⎬
⎪⎭ = E{πt,1}Var{ξt,1} + E{(πt,1)2} (Eξt,1)2 = λt

and so

(δ − δ̂n)2E

⎧⎪⎨
⎪⎩
⎛
⎝ πt,1∑

j=1

ξt, j

⎞
⎠

2
⎫⎪⎬
⎪⎭ = (δ − δ̂n)2λt.

From the independence of πt,1, π̂
(n)
t,1, ξt,1, ξt,2, . . . and because of E

(
ξt, j
) = 0 for all i, j

one gets

E

⎧⎪⎨
⎪⎩
⎛
⎜⎝π̂

(n)
t,1m̂n + δ̂n

πt,1+π̂
(n)
t,1∑

j=πt,1+1

ξt, j

⎞
⎟⎠

2⎫⎪⎬
⎪⎭ = E

{(
π̂

(n)
t,1m̂n

)2}+ E

⎧⎪⎨
⎪⎩
⎛
⎜⎝δ̂n

πt,1+π̂
(n)
t,1∑

j=πt,1+1

ξt, j

⎞
⎟⎠

2⎫⎪⎬
⎪⎭

= (|λ − λ̂n|t + |λ − λ̂n|2t2
) · m̂2

n + |λ − λ̂n| · δ̂2
n · t.

To conclude this means in case of λ < λn, that

E
{
γ 2

N(n)

∣∣Xt,1 − X̄(n)
t,1

∣∣2} ≤ 5 · γ 2
N(n)

(
(μ − μ̂n)2 t2 + (σ − σ̂ n)2 t + (λ2t2 + λt) · (m − m̂n)2

+(δ − δ̂n)2λt + (|λ − λ̂n|t + |λ − λ̂n|2t2) · m̂2
n + |λ − λ̂n|t · δ̂2

n

)
.

Similar argumentation implies for λ ≥ λn, that

πt,i = π̄
(n)
t,i + π̂

(n)
t,i .

So we get in this case

E
{
γ 2

N(n)

∣∣∣Xt,1 − X̄(n)
t,1

∣∣∣2} ≤ 5 · γ 2
N(n)

(
(μ − μ̂n)2 t2 + (σ − σ̂ n)2 t + (λ̂2

nt2 + λ̂nt
) · (m − m̂n)2

+(δ − δ̂n)2λ̂nt + |λ − λ̂n|t · δ̂2
n +

(
|λ − λ̂n|t + |λ − λ̂n|2t2

)
· m2

)
.
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Altogether this means

E
{
γ 2

N(n)

∥∥Xt,1 − X̄(n)
t,1

∥∥2
}

≤ 5 · γ 2
N(n)

(
(μ − μ̂n)2 t2 + (σ − σ̂ n)2 t + max

{
λ̂2

nt2 + λ̂nt, λ2t2 + λt
} · (m − m̂n)2

+(δ − δ̂n)2 max{λt, λ̂nt} + |λ − λ̂n|t · δ̂2
n + (|λ − λ̂n|t + |λ − λ̂n|2t2) · max

{
m̂2

n, m2
} )

≤ 5 · γ 2
N(n)

(
(μ − μ̂n)2 t2 + (σ − σ̂ n)2 t + (λ̂2

nt2 + λ̂nt + λ2t2 + λt
) · (m − m̂n)2

+(δ − δ̂n)2(λt + λ̂nt) + |λ − λ̂n|t · δ̂2
n + (|λ − λ̂n|t + |λ − λ̂n|2t2) · (m̂2

n + m2
) )

.

By the assumptions of the theorem this expression converges to zero for n → ∞. Here
we have used that by the mean-value-theorem we have

∣∣∣∣∣exp

(
m̂n + δ̂2

n

2

)
− exp

(
m + δ2

2

)∣∣∣∣∣ ≤
∣∣∣∣∣m̂n + δ̂n

2
− m − δ2

2

∣∣∣∣∣ exp

(
|m̂n| + δ̂2

n

2
+ m + δ2

2

)
.

The result follows as in Theorem 2.
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The left tail of the implied volatility skew, coming from quotes on out-of-the-money
put options, can be thought to reflect the market’s assessment of the risk of a huge drop
in stock prices. We analyze how this market information can be integrated into the
theoretical framework of convex monetary measures of risk. In particular, we make use
of indifference pricing by dynamic convex risk measures, which are given as solutions
of backward stochastic differential equations, to establish a link between these two
approaches to risk measurement. We derive a characterization of the implied volatility
in terms of the solution of a nonlinear partial differential equation and provide a small
time-to-maturity expansion and numerical solutions. This procedure allows to choose
convex risk measures in a conveniently parameterized class, distorted entropic dynamic
risk measures, which we introduce here, such that the asymptotic volatility skew under
indifference pricing can be matched with the market skew. We demonstrate this in a
calibration exercise to market implied volatility data.

KEY WORDS: dynamic convex risk measures, volatility skew, stochastic volatility models, indifference
pricing, backward stochastic differential equations.

1. INTRODUCTION

Risk measurement essentially conveys information about tails of distributions. However,
that information is also contained in market prices of insurance securities that are con-
tingent on a large (highly unlikely) downside, if we concede that those prices are mostly
reflective of protection buyers’ risk aversion. Examples are out-of-the-money put options
that provide protection on large stock price drops, or senior tranches of collateralized
debt obligations that protect against the default risk of say 15–30% of investment grade
US companies over a 5-year period.

A central regulatory and internal requirement in recent years, in the wake of a number
of financial disasters and corporate scandals, has been that firms report a measure of
the risk of their financial positions. The industry-standard risk measure, value-at-risk,
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is widely criticized for not being convex and thereby possibly penalizing diversification,
and a number of natural problems arise:

1. How to construct risk measures with good properties.
2. Computation of these risk measures under typical financial models.
3. Choice: what is the “right” risk measure?

The first issue has been extensively studied in the static case (Artzner et al. 1999;
Föllmer and Schied 2002) and recent developments in extending to dynamic risk mea-
sures with good time-consistency and/or recursive properties are discussed, e.g., in
Barrieu and El Karoui (2009), Klöppel and Schweizer (2007), Musiela and
Zariphopoulou (2009), and Föllmer and Schied (2011). However, concrete examples
of dynamic, time-consistent convex risk measures are scarce, and they typically have to
be defined abstractly, for example via the driver of a backward stochastic differential
equation (BSDE) or as the limit of discrete time-consistent risk measures as in Stadje
(2010). As a result, intuition is lost, and there is at present little understanding what the
choice of driver says about the measure of risk. Or, to put it another way, how can the
driver be constructed to be consistent with risk aversion reflected in the market?

Let ξ be a bounded random variable representing a financial payoff whose value is
known at some future time T < ∞. A classical example of a convex risk measure, the
entropic risk measure, is related to exponential utility:

�(ξ ) = 1
γ

log(E[e−γ ξ ]),(1.1)

where γ > 0 is a risk-aversion coefficient. When extending to dynamic risk measures �t(·)
adapted to some filtration (Ft), a desirable property is (strong) time-consistency

�s(−�t(ξ )) = �s(ξ ), 0 ≤ s ≤ t ≤ T.

This flow property is important if �t is used as a basis for a pricing system. The static
entropic risk measure (1.1) generalizes to

�t(ξ ) = 1
γ

log(E[e−γ ξ | Ft]).(1.2)

The flow property follows simply from the tower property of conditional expectations.
However, finding other directly defined examples is not easy, and to have a reasonable
class of choices, we need to resort to more abstract constructions.

In a Brownian-based model, time-consistent dynamic risk measures can be built
through BSDEs, as shown in Barrieu and El Karoui (2009), Klöppel and Schweizer
(2007) (compare also Gianin 2006), extending the work of Peng (2004). That is, on a
probability space with a d-dimensional Brownian motion W that generates a filtration
(Ft), the risk measure of the FT-measurable random variable ξ (taking values in R for
simplicity) is computed from the solution (Rt, Zt), which takes values in R × Rd , of the
BSDE

−d Rt = g(t, Zt) dt − Z∗
t dWt

RT = −ξ,

where ∗ denotes transpose. Here the driver g, which defines the risk measure, is Lipschitz
and convex in z and satisfies g(t, 0) = 0. The solution is a process R, taking values
in R that matches the terminal condition −ξ on date T (when ξ is revealed and the
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risk is known), and a process Z taking values in Rd that, roughly speaking, keeps the
solution nonanticipating. Then �t(ξ ) := Rt defines a time-consistent dynamic convex risk
measure. However, the possibility to offset risk by dynamically hedging in the market
needs to be accounted for. Setting aside technicalities for the moment, this operation
leads to a modification of the driver.

The left tail of the implied volatility skew observed in equity markets is a reflection of
the premium charged for out-of-the-money put options. The bulk of the skew reveals the
heavy left tail in the risk-neutral density of the stock price ST at expiration, but the very
far left tail, where investor sentiment and crash-o-phobia takes over, could be interpreted
as revealing information about the representative market risk measure and its driver g,
if we assume prices are consistent with this kind of pricing mechanism. The question
then is to extract constraints on the driver from the observed tails of the skew, an inverse
problem. In the application to equity options in Section 3, we assume the mid-market
option prices reflect the premium a risk-averse buyer is willing to pay. We do not relate
buyers’ and sellers’ prices to the bid-ask spread, since that is more likely related to the
market maker’s profit.

To put our analysis into a broader framework, we observe that the underlying structural
question is the inference of preference structures from observable data. The idea of
using (at least in theory) observable consumption and investment streams to reveal the
preference structure of a rational utility maximizing investor dates back to Samuelson in
the 1940s and Black in the 1960s—for a recent overview on this “backward approach” to
utility theory we refer to Cox, Hobson, and Obłój (2011). The spirit of our presentation
is a similar one, except we deal with dynamic risk measures rather than utility functions,
and the observable data are not given as consumption and investment strategies but as
readily available market implied volatilities.

The main goal of the current paper is to develop short-time asymptotics that can
be used for the inverse problem of extracting information about the driver g from the
observed skew. This could be used to construct an approximation to the driver and then to
value more exotic derivatives in a way consistent with the risk measure. The information
could also be used to quantify market perception of tail events, particularly when they
depart from usual. Some studies have discussed the steepening of skew slopes in the run
up to financial crises without a corresponding overall raise in volatility level. Inferring,
fully or partially, a risk measure driver, could be used for detection of increased wariness
of a crash.

Berestycki, Busca, and Florent (2004) presented short-time asymptotics for implied
volatilities for no arbitrage pricing under a given risk-neutral measure in stochastic volatil-
ity models. Further work in this direction includes, among others, Feng, Forde, and
Fouque (2010), Forde and Jacquier (2009), Forde, Jacquier, and Lee (2012), and refer-
ences therein. In Section 2, we extend this analysis to the nonlinear partial differential
equations (PDEs) characterizing indifference pricing under dynamic convex risk mea-
sures.

We find (Theorem 2.12) that the zero-order term in the short-time approximation is
the same as found in no arbitrage pricing by Berestycki et al. (2004). The next order term
is the solution of an inhomogeneous linear transport equation that sees only a particular
slope of the partially Legendre-transformed driver, but is independent of the size of the
options position (see equation (2.25)).

Section 3 illustrates the theoretical findings by focusing on a particular class of drivers,
introducing distorted entropic convex dynamic risk measures. First we develop explicit
calculations for the small time expansion in the Hull–White stochastic volatility model
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to illustrate the impact of the distortion parameter on the implied volatility skew. In
Section 3.3, as a proof of concept, we perform a preliminary calibration exercise of the
short-time asymptotics to S&P 500 implied volatilities close to maturity. This allows
to estimate the stochastic volatility model parameters from the liquid central part of
the skew, and to recover the distortion parameter of our family of dynamic convex risk
measures from far out-of-the-money put options.

We illustrate the parameter impact for longer dated options in a numerical study (via
the pricing PDE) of arctangent stochastic volatility driven by an Ornstein–Uhlenbeck
process. Section 4 contains the conclusions and Section 5 gives the more technical proofs
omitted in the exposition.

2. HEURISTICS AND STATEMENT OF RESULTS

We consider a model of a financial market consisting of a risk-free bond bearing no
interest and some stock following the stochastic volatility model on the filtered probability
space (�,F, (Ft), P){

dSt = μ(Yt)St dt + σ (Yt)St dW1
t , S0 = S;

dY t = m(Yt) dt + a(Yt)
(
ρ dW1

t + ρ ′ dW2
t

)
, Y0 = y,

(2.1)

where W 1, W 2 are two independent Brownian motions generating (Ft) and ρ ′ =√
1 − ρ2.

ASSUMPTION 2.1. We assume that:

(i) σ , a ∈ C1+β

loc (R), where C1+β

loc (R) is the space of differentiable functions with locally
Hölder-continuous derivatives with Hölder-exponent β > 0;

(ii) both σ and a are bounded and bounded away from zero:

0 < σ < σ < σ < ∞, and 0 < a < a < a < ∞;

(iii) μ, m ∈ C0+β

loc (R), and |μ| < μ < ∞.

The pricing will be done via the indifference pricing mechanism for dynamic convex
risk measures, which are introduced in the next subsection.

2.1. Dynamic Convex Risk Measures, Indifference Pricing, and BSDEs

DEFINITION 2.2. We call the family �t : L∞(�,FT, P) → L∞(�,Ft, P), 0 ≤ t ≤ T , a
convex dynamic risk measure, if it satisfies for all t ∈ [0, T ] and all ξ , ξ 1, ξ 2 ∈ L∞(�,FT, P)
the following properties.

(i) Monotonicity: ξ 1 ≥ ξ 2 P-a.s implies �t(ξ 1) ≤ �t(ξ 2);
(ii) Cash invariance: �t(ξ + mt) = �t(ξ ) − mt for all mt ∈ L∞(�,Ft, P);

(iii) Convexity: �t(αξ 1 + (1 − α)ξ 2) ≤ α�t(ξ 1) + (1 − α)�t(ξ 2) for all α ∈ [0, 1];
(iv) Time-consistency �t(ξ 1) = �t(ξ 2) implies �s(ξ 1) = �s(ξ 2) for all 0 ≤ s ≤ t.

We note that if the risk measure is additionally normalized, i.e., �t(0) = 0 for all t ∈
[0, T ], then (iv) is equivalent to the stronger property �s(−�t(ξ )) = �s(ξ ) for all 0 ≤ s ≤ t
(Klöppel and Schweizer 2007, lemma 3.5). The risk measure �t(ξ ) should be understood
as the risk associated with the position ξ at time t.
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If �t is normalized, this is nothing else than the minimal capital requirement at time t
to make the position riskless since �t(ξ + �t(ξ )) = 0. In this static setting, the certainty
equivalent price of a buyer of a derivative ξ ∈ L∞(�,FT, P) at time t is just the cash
amount for which buying the derivative has equal risk to not buying it.

In fact we are much more interested in the case where the buyer of the security is allowed
to trade in the stock market to hedge her risk. In describing admissible strategies we follow
the setting of continuous time arbitrage theory in the spirit of Delbaen–Schachermayer
(for an overview, we refer to the monograph Delbaen and Schachermayer 2006). Denote
therefore by 
t the set of all admissible hedging strategies from time t onwards, i.e., all
progressive processes such that θ t = 0 and

∫ u
t θs(μ(Ys) ds + σ (Ys) dW1

s ) exists for all u ∈
]t, T ] and is uniformly bounded from below, and set

Kt :=
{∫ T

t
θs

(
μ(Ys) ds + σ (Ys) dW1

s

)
: θ ∈ 
t

}
.

The set of all superhedgeable payoffs is then given by Ct := (Kt − L0
+) ∩ L∞, where L0

+
denotes the set of all almost surely nonnegative random variables.

The residual risk at time t of the derivative ξ ∈ L∞(�,FT, P) after hedging is given by

�̂t(ξ ) := ess inf
h∈Ct

�t(ξ + h).(2.2)

Thus, assuming that the buyer’s wealth at time t is x, her dynamic indifference price Pt,
which can be viewed as the certainty equivalent after optimal hedging in the underlying
market, is given via �̂t(x + ξ − Pt) = �̂t(x), whence, using cash invariance,

Pt = �̂t(0) − �̂t(ξ ).(2.3)

We note, while restricting ourselves to the buyer’s indifference price, all our considerations
are easily adaptable to the seller’s indifference price by a simple change of signs of ξ and
Pt in (2.3).

A convenient class of dynamic convex risk measures to which we will stick throughout
this paper is defined from solutions of BSDEs. Assume that g : [0, T] × � × R2 → R is a
P ⊗ B(R2) predictable function which is continuous, convex, and quadratic (i.e., bounded
in modulus by a quadratic function) in the R2-component. Next, let ξ ∈ L∞(�,FT, P)
be a given bounded financial position. Then the BSDE

Rt = −ξ +
∫ T

t
g
(
t, ω, Z1

s , Z2
s

)
ds −

∫ T

t
Z1

s dW1
s −

∫ T

t
Z2

s dW2
s(2.4)

admits a unique Ft-adapted solution (Rt, Z1
t , Z2

t ), which defines a dynamic convex risk
measure via �t(X) := Rt (Barrieu and El Karoui 2009, theorem 3.21).

The existence of a solution of the BSDE (2.4) in this quadratic setting was first proved
by Kobylanski (2000, theorem 2.3), with some corrections to their arguments given by
Nutz (2007, theorem 3.6), whereas the uniqueness follows from the convexity of the driver
as shown in Briand and Hu (2008, corollary 6). From a financial perspective, the compo-
nents Z1, Z2 of the “auxiliary” process Z can be interpreted as risk sources, describing
the risk stemming from the traded asset and the volatility process, respectively.
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2.2. Transformed BSDE under Hedging

To assure the solvability of the BSDEs and PDEs that arise in our setting, we have to
restrict the class of admissible drivers. Throughout, subscripts of functions indicate in
the PDE context partial derivatives with the respect to the respective components.

DEFINITION 2.3. We call a function g : R2 → R a strictly quadratic driver (normalized
strictly quadratic driver) if it satisfies the following conditions (i)–(iii) (resp. (o)–(iii)):

(o) g(0, 0) = 0;
(i) g ∈ C2,1(R2);

(ii) gz1z1 (z1, z2) > 0 for all (z1, z2) ∈ R2;
(iii) there exist constants c1, c2 > 0 such that

c1( z2
1

4c2
1
− (1 + z2

2)) ≤ g(z1, z2) ≤ c2(1 + z2
1 + z2

2) for all (z1, z2) ∈ R2.

The normalization of the driver (condition (o)) corresponds to the normalization of
the risk measure.

REMARK 2.4. To ease the presentation, we only work with drivers that do not depend
explicitly on time or on ω. While any dependence on Rt would destroy the cash invariance,
it is not difficult to add an additional dependence of g on time (requiring some local
Hölder-continuity in the time component of g). The small time expansion Section 2.5 up
to first order works in this case exactly as in the time-independent case (evaluating the
driver at t = T), and the higher-order expansions can be adapted straightforwardly. For
analysis of filtration-consistent, translation invariant nonlinear expectations, we refer to
Coquet et al. (2002).

In passing from the principal risk measure defined by g to the residual risk measure
after hedging, as in (2.2), we will need the Fenchel–Legendre transform of g in its first
component, namely

ĝ(ζ, z2) := sup
z1∈R

(ζ z1 − g(z1, z2)), ζ ∈ R.(2.5)

LEMMA 2.5. Given that g is a (normalized) strictly quadratic driver, then the risk-
adjusted driver ĝ defined in (2.5) is also a (normalized) strictly quadratic driver.

Proof . To show ĝ satisfies condition (iii) of Definition 2.3, we fix z2 and treat the
function as classical Fenchel–Legendre transform in one variable. Therefore it holds for
proper, continuous convex functions f , g, that f ≤ g implies f̂ ≥ ĝ and ˆ̂f = f , (Hiriart-
Urruty and Lemaréchal 2001b, proposition E.1.3.1 and corollary E.1.3.6). So the state-
ment is proved by noting that

sup
z1

(
ξz1 − c

(
1 + z2

1 + z2
2

)) = c
(

z2
1

4c2
− (

1 + z2
2

))

for any positive constant c.
To show (i) and (ii) in Definition 2.3, we note that condition (iii) implies that g is

1-coercive in z1, i.e., g(z1, z2)/|z1| → ∞ as z1 → ±∞ for fixed z2. Now we can use the
fact that the Fenchel–Legendre transform of any 1-coercive, twice differentiable function
with positive second derivative is itself 1-coercive and twice differentiable with positive
second derivative, cf. Hiriart-Urruty and Lemaréchal (2001a, corollary X.4.2.10). Thus it
remains only to prove the differentiability of ĝ with respect to z2 which is a consequence
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of the differentiability properties of g: writing down the difference quotient and noting
that the maximizer is differentiable, the positive second derivative with respect to the
first component yields the existence of a finite limit. Finally ĝ(0, 0) = 0 follows from the
definition if g(0, 0) = 0. �

In other words, the class of strictly quadratic drivers is invariant under the convex
conjugation in the first component and the class of normalized strictly quadratic drivers
is an invariant subclass thereof.

REMARK 2.6. We note that it is important in our setting to stick to the theory of
quadratic drivers, since if g would be a Lipschitz driver, ĝ would be no more a proper
function. This fact is easily seen, since from the Lipschitz condition it follows that

g(z1, z2) ≤ L
(

1 +
√

z2
1 + z2

2

)
≤

√
2L(1 + |z1| + |z2|)

for some constant L and hence

ĝ(ζ, z2) = sup
z1

(ζ z1 − g(z1, z2)) ≥ sup
z1

(ζ z1 −
√

2L(1 + |z1| + |z2|))

=
{

∞ if |ζ | >
√

2L;

−√
2L(1 + |z2|) if |ζ | ≤ √

2L.

From now on we will assume that g is convex as a function on R2 and an admissible
driver. Our next step is to describe the dynamic hedging risk in terms of BSDEs. These
results are in essence due to Toussaint (2007, section 4.4.1). Since his thesis is not easily
available, we will nevertheless state the proofs here. It is convenient to introduce a notation
for the Sharpe ratio:

λ(y) := μ(y)
σ (y)

.(2.6)

PROPOSITION 2.7. The risk of the financial position ξ ∈ L∞(�,FT, P) under hedging is
�̂t(ξ ) = R̂t

(ξ )
where R̂t

(ξ )
is given via the unique solution of the BSDE

R̂t
(ξ ) = −ξ −

∫ T

t
Ẑs

1
λ(Ys) + ĝ

(−λ(Ys), Ẑs
2)

ds −
∫ T

t
Ẑs

1
dW1

s −
∫ T

t
Ẑs

2
dW2

s .(2.7)

Moreover, �̂t is itself a dynamic convex risk measure.

Proof . It follows from the work of Klöppel and Schweizer (2007, theorem 7.17) that
the risk is given via the BSDE

R̂t
(ξ ) = −ξ +

∫ T

t
g̃
(
Ẑs

1
, Ẑs

2)
ds −

∫ T

t
Ẑs

1
dW1

s −
∫ T

t
Ẑs

2
dW2

s ,

where g̃ is given by the infimal convolution

g̃(z1, z2) := inf
v∈R

(g(z1 + σ (Yt)v, z2) + μ(Yt)v).(2.8)

To be precise, besides the differences in sign between our convex risk measures and their
monetary concave utility functionals, our L∞ framework is in line with the main part of
their paper where they work in L∞. However, the result (Klöppel and Schweizer 2007,
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theorem 7.17) is stated in the framework of L2-BSDEs with Lipschitz drivers. Their
detour to L2 was due to their consideration that this is the natural framework for BSDEs.
We have motivated that we have to work with quadratic drivers, for which there is yet
no L2-theory, but it is straightforward (though tedious) to check that their result (2.8)
adapts to our setting due to the regularity enforced by the admissibility conditions in
Definition 2.3.

Next, we rewrite the infimum in (2.8) to get

g̃(z1, z2) = inf
u∈R

(g(u, z2) − (z1 − u)λ(Yt)) = −z1λ(Yt) − ĝ(−λ(Yt), z2).

Finally, the uniqueness of the solution of the BSDE (2.7) follows again from Briand and
Hu (2008, corollary 6) using the convexity of the driver, which is implied by the fact that
ĝ is concave in the second component. Moreover, this entails also that �̂ is a dynamic
convex risk measure. �

REMARK 2.8.

1. We remark that in view of equation (2.7) of the above proposition, the notion of
admissibility could be slightly extended: it is possible to replace the lower bound
in Definition 2.3 (iii) by

c1
(

f (z1) − (
1 + z2

2

)) ≤ g(z1, z2)

for an arbitrary real-valued, convex, and 1-coercive function f . This is enough to
get existence and uniqueness of equation (2.7), however it would clearly destroy
the nice invariance property of Lemma 2.5 and we do not adopt it in the following.

2. As in (2.7) and the rest of the paper, the first argument of ĝ is the negative of the
Sharpe ratio. If we knew a priori that the Sharpe ratio was small relative to the
minimal Lipschitz constant L in Remark 2.6, then we could allow BSDEs with
Lipschitz drivers. However we choose to put restrictions on the driver, such as in
Definition 2.3(iii), rather than on the range of the model parameters.

2.3. Indifference Valuation of European Claims

From the formula (2.3) for the indifference price Pt and Proposition 2.7, we have that

Pt = R̂t
(0) − R̂t

(ξ )
.(2.9)

From now on we will restrict ourselves to particular bounded payoffs, namely European
put options with strike price K and maturity date T : ξ = (K − ST )+. Moreover, for the
further treatment the substitutions

x := log (S/K), τ := T − t,(2.10)

will be convenient and we introduce the following notation. Denote by LT the layer
[0, T] × R2 and by Qτ0,r the open cylinder above the disk B(m, r) with midpoint m,
radius r, and height 0 < τ 0 ≤ T : Qτ0,r := ]0, τ0[×B(m, r ). Since the location of the
midpoint (once fixed) will play no further role, we skip it in the notation.

The following theorem characterizes the indifference price of a European put with
respect to the dynamic convex risk measure with driver g under the stochastic volatility
model (2.1).
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THEOREM 2.9. The buyer’s indifference price of the European put option is given as

P(τ, x, y) = ũ(τ, y) − u(τ, x, y),(2.11)

where u ∈ C1+β/2,2+β (QT,r) ∩ C(LT ) for every cylinder QT,r is the solution of the semi-linear
parabolic PDE ⎧⎨

⎩−uτ + Lu = 1
K

ĝ
(−λ(y), ρ ′Ka(y)uy

)
;

u(0, x, y) = −(1 − ex)+,

(2.12)

with operator L given by

Lu = Mu − 1
2
σ 2(y)ux + (m(y) − ρa(y)λ(y))uy,

Mu = 1
2
σ 2(y)uxx + ρσ (y)a(y)uxy + 1

2
a2(y)uyy,

(2.13)

and ũ denotes the (x-independent) solution of (2.12), with altered initial condition ũ(0, y) =
0. Moreover there exists a solution of the Cauchy problem (2.12) (as well as to that with
the altered initial condition) which is the unique classical solution that is bounded in LT

together with its derivatives.

Proof . By Ladyzhenskaya, Solonnikov, and Ural’tseva (1967, theorem V.8.1 and re-
mark V.8.1), there exists a classical solution v ∈ C1+β/2,2+β (QT,r) ∩ C(LT ) to the semilinear
parabolic PDE

vt + 1
2
σ 2(y)S2vSS + 1

2
a(y)2vyy + ρσ (y)a(y)SvSy + (m(y) − ρa(y)λ(y))vy

= ĝ(−λ(y), ρ ′a(y)vy),

(2.14)

with terminal condition v(T , S, y) = −(K − S)+ which is the unique classical solution
to this PDE that is bounded in LT together with its (first- and second-order) derivatives.
Applying Itô’s formula to v(t, St, Y t) and defining

Z̄t
1

:= σ (Yt)Stvs(t, St, Yt) + ρa(Yt)vy(t, St, Yt),

Z̄t
2

:= ρ ′a(Yt)vy(t, St, Yt),

R̄t := v(t, St, Yt)

shows that (R̄t, Z̄t
1
, Z̄t

2
) solves the BSDE (2.7) for (R̂t

(ξ )
, Ẑt

1
, Ẑt

2
) with ξ = (K − ST )+, and

therefore we identify R̂t
(ξ ) = v(t, St, Yt). The transformation (2.10), together with u(τ , x,

y) = v(t, s, y)/K leads to the Cauchy problem (2.12) for u. Finally, taking zero terminal
condition for the PDE (2.14), and calling the solution ṽ(t, y) leads to R̂t

(0) = ṽ(t, Yt).
Therefore the indifference price in (2.9) is given by Pt = ṽ(t, Yt) − v(t, St, Yt), which, in
transformed notation, leads to (2.11). �

Here u is the value function of the holder of the put option, and ũ is related to the
investment (or Merton) problem with trading only in the underlying stock and money
market account. The nonlinearity in the PDE (2.12) is in its “Greek” uy, that is, the Vega,
and enters through the Legendre transform of the driver g in its first variable. For the
familiar entropic risk measure, g(z1, z2) = γ (z2

1 + z2
2)/2, where γ > 0 is a risk-aversion
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parameter, we have ĝ(ζ, z2) = (ζ 2/γ − γ z2
2)/2. In this case, the nonlinearity is as u2

y (see,
e.g., Benth and Karlsen 2005; Sircar and Zariphopoulou 2005).

2.4. Implied Volatility PDE

Our main goal is to establish an asymptotic expansion of the indifference price implied
volatility in the limit of short time-to-maturity. To do so, we now adapt the approach
of Berestycki et al. (2004) to establish a PDE satisfied by the Black–Scholes volatility
I(τ , x, y) implied by the indifference pricing. Therefore, we note that in the Black–Scholes
model with unit volatility, the no arbitrage pricing PDE is given by⎧⎨

⎩−Uτ + 1
2

(Uxx − Ux) = 0;

U(0, x) = (1 − ex)+,

which can be represented explicitly as

U(τ, x) = �

(
− x√

τ
+

√
τ

2

)
− ex�

(
− x√

τ
−

√
τ

2

)
,

where � is the cumulative density function of the standard normal distribution. Using
the scaling properties of the Black–Scholes put price, the indifference pricing implied
volatility I(τ , x, y) is hence given by the equation

P(τ, x, y) = U(I2(τ, x, y)τ, x).(2.15)

Before we derive a PDE for the implied volatility, we give some a priori bounds on
indifference prices and their associated implied volatilities.

PROPOSITION 2.10. Denote by PBS(τ , x; σ ) the Black–Scholes price of the put calculated
with constant volatility σ . Then

PBS(τ, x; σ ) ≤ P(τ, x, y) ≤ PBS(τ, x; σ )(2.16)

and

σ ≤ I(τ, x, y) ≤ σ ,(2.17)

where σ and σ are the volatility bounds in Assumption 2.1.

The proof is given in Section 5.
To derive the PDE for the implied volatility, we plug (2.15) into the equation (2.11)

and get after some calculations—detailed in Section 5—that the implied volatility I is
subject to the nonlinear degenerate parabolic PDE

−(τ I2)τ + τ IMI + I2G x
I

− 1
4
τ 2 I2G I + τq(y)I Iy

= 2τ I Iy
ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)

K(ũ y − uy)
,

(2.18)

with the square field type operator

G I := MI2 − 2IMI(2.19)
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and

q(y) := ρσ (y)a(y) + 2m(y) − 2ρa(y)λ(y).(2.20)

To motivate an initial condition for the Cauchy problem, we send formally τ to zero
in (2.18). As the “Vega” ν = ũ y − uy tends also to zero as τ↓0 (this is shown in Lemma
5.2), we observe that the quotient on the right side of (2.18)

ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)
K(ũ y − uy)

→ ρ ′a(y)ĝz2 (−λ(y), 0),

which is bounded by the definition of strictly quadratic drivers and Lemma 2.5. Dividing
by I2, this leads to the formal limit equation

G x
I(0, x, y)

= 1.(2.21)

REMARK 2.11. Our Cauchy problem is similar to that derived for no arbitrage pricing
implied volatilities in Berestycki et al. (2004), where they have the same equation (2.18),
but (i) without the last term on the left side (which here is due to the change in measure
from physical to a risk-neutral one); and (ii) without the right-side term (which here is due
to the dynamic convex risk measure used for indifference pricing). However, our initial
condition (2.21), which does not depend on ĝ and the drift of the stochastic volatility
model, is exactly the same as theirs.

Now we turn this heuristic argument into a precise statement.

THEOREM 2.12. The implied volatility function I(τ , x, y) generated by the indifference
pricing mechanism is the unique solution I ∈ C1+β/2,2+β (QT,r) ∩ C(LT ) to the following
nonlinear parabolic Cauchy problem

−(τ I2)τ + τ IMI + I2G x
I

− 1
4
τ 2 I2G I + τq(y)I Iy

= 2τ I Iy
ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)

K(ũ y − uy)
,

(2.22)

where M, G, and q are given by (2.13), (2.19), and (2.20), respectively. The initial
condition is given as I(0, x, y) = x/ψ(x, y) where ψ is the unique viscosity solution of the
eikonal equation ⎧⎪⎨

⎪⎩
Gψ = 1;

ψ(0, y) = 0;

ψ(x, y) > 0 for x > 0.

(2.23)

The proof is given in Section 5.
It is worthwhile to note that indifference prices are not linear. Indeed, buying double

the amount of securities will not lead to twice the price. In this way also the volatility
implied by indifference prices is quantity-dependent as a consequence of the appearance
of uy and ũ y on the right side of equation (2.22). However, the nonlinearity in quantity
is not observed in the zeroth- and first-order small time-to-maturity approximation as
we show in the following subsection. Moreover, deriving the PDE for the indifference
price implied volatility for buying n put options results in the same Cauchy problem
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as in Theorem 2.12, where one has only to replace K by nK in every appearance in
equation (2.22).

2.5. Small-Time Expansion

In the short time limit the implied volatility under indifference pricing is equal to
the usual one as calculated by Berestycki et al. (2004), as the initial conditions are the
same (see Remark 2.11). The subtleties of the indifference pricing appear only away from
maturity. This can be seen by methods of a formal small-time expansions. We make the
Ansatz of an asymptotic expansion of the implied volatility:

I(τ, x, y) = I0(x, y)
(
1 + τ I1(x, y) + O(τ 2)

)
.(2.24)

As seen above, the term I0(x, y) = I(0, x, y) is given via solution of the eikonal equa-
tion (2.23). To find the PDE for I1, we plug the expansion (2.24) into the equation (2.22)
and compare the first-order terms for τ → 0. This leads to the inhomogeneous linear
transport equation

2I1(x, y) + ψ

2
(σ 2(y)ψx + ρσ (y)a(y)ψy)I1

x (x, y)

+ ψ

2
(ρσ (y)a(y)ψx + a2(y)ψy)I1

y (x, y) − ψ

x
M x

ψ

= −(q(y) − ρ ′a(y)ĝz2 (−λ(y), 0))
ψy

ψ
,

(2.25)

where ψ is again the solution of the eikonal equation (2.23).
It is important to observe that the dependence of this first-order approximation on the

risk measure (via its driver g) is given merely by the evaluation at z2 = 0 of the derivative
of its Fenchel–Legendre transform ĝ with respect to the second component.

Comparing our PDE to the analogous equation in the arbitrage-pricing setting of
Berestycki et al. (2004) (who, however, prescribe only the methodology in general and
make explicit calculations just in one example), we note the presence of two additional
terms in (2.25)—one due to the change to a risk-neutral probability measure and the
second due to indifference pricing with a dynamic convex risk measure.

Furthermore in many cases we can obtain an interior boundary condition for the PDE
at x = 0 by sending x formally to zero in (2.25), since by ψ → 0 and ψx it follows that the
first-order coefficients vanish. We will show this specific procedure on a concrete example
in Section 3.2. Imposing higher regularity on the coefficients and on ĝ one can obtain
also higher-order terms in the expansion of the implied volatility. This is done by using
Taylor expansions of ĝ (in the second component) and ũ y and uy (in τ ).

3. EXAMPLES AND COMPUTATIONS

In this section, we introduce a family of dynamic risk measures within which to present
the effect of risk aversion on implied volatilities, first using the asymptotic approximation
in the Hull–White stochastic volatility model, and later using a numerical solution of the
quasilinear option pricing PDE.
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3.1. Distorted Entropic Dynamic Convex Risk Measures

To study the impact of the driver on the implied volatility, we will now turn to a nicely
parameterized family of risk measures. Therefore we define the following class of drivers,
generating distorted forms of the entropic risk measure:

gη,γ (z1, z2) := γ

2

(
z2

1 + z2
2

) + ηγ z1z2 + η2γ

2
z2

2 = γ

2

(
(z1 + ηz2)2 + z2

2

)
.(3.1)

It is clear that in the case η = 0 this is the driver connected to the classical entropic risk
measure, whereas η can be seen as a parameter which describes in which way volatility risk
increases also the risk coming from the tradable asset. As we will see later in Section 3.4,
η effectively plays the role of a volatility risk premium. In the case of the usual entropic
risk measure every level set of the driver is a circle whose radius is governed by the
parameter γ . In the distorted case it is now an ellipse where η determines additionally
the eccentricity.

Turning to the Fenchel–Legendre transform, we have

ĝη,γ (ζ, z2) = 1
2γ

ζ 2 − γ

2
z2

2 − ηζ z2.(3.2)

Plugging this into (2.22), we see that the right-hand side now reads

τ I Iy(2ηρ ′λ(y)a(y) − γ Kρ ′2a(y)2(ũ y + uy))

and we remark in particular that γ scales with K and hence also with the number
of securities bought (as mentioned at the end of Section 2.4). In particular, we see
again that the term appearing in the first-order approximation of the implied volatility,
ĝη,γ

z2 (−λ(y), 0) = ηλ(y), is independent of γ .

3.2. Short-Time Asymptotics for the Hull–White Model

In the following we look at an example which is an adaption of Example 6.1/6.3 of
Berestycki et al. (2004). Let the stochastic volatility model be given as the Hull–White
model {

dSt = μ(Yt)St dt + Yt St dW1
t , S0 = s;

dY t = κYt dW2
t , Y0 = y.

(3.3)

for two independent Brownian motions W 1, W 2. Obviously the model does not fall in the
class considered above because the volatility σ (Y ) = Y is a geometric Brownian motion
that is not bounded above or away from zero. Nevertheless, by a change of variables we
will see that the results hold.

Writing down the pricing PDE in the case of the distorted entropic risk measure (3.1),
we get

−uτ + 1
2

(
y2uxx + κ2 y2uyy

) − 1
2

y2ux = 1
2γ K

μ(y)2

y2
− γ Kκ2

2
y2u2

y + ηκμ(y)uy,

and one sees that by the time change τ �→τy2 (the boundary y = 0 is not hit when we start
with y0 > 0 given that Y t is a geometric Brownian motion) and setting μ̃(y) := μ(y)/y2
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the equation becomes

−uτ + 1
2

(uxx + κ2uyy) − 1
2

ux = 1
2γ K

μ̃(y)2 − γ Kκ2

2
u2

y + ηκμ̃(y)uy.

This equation has a solution (again by Ladyzhenskaya et al. 1967, theorem V.8.1 and
remark V.8.1), at least in the case that μ̃ is locally β-Hölder continuous (which in turn
implies that μ(y) = O(y2) as y → 0) .

In absence of global bounds on the volatility we are not able to derive results about
existence and uniqueness of solutions for the PDE (2.22) for the implied volatility. Nev-
ertheless we can postulate the small-time expansion to get⎧⎪⎨

⎪⎩
ψ2

x + κ2ψ2
y = 1/y2;

ψ(0, y) = 0;

ψ(x, y) > 0 for x > 0

(3.4)

as the PDE characterizing its zeroth-order term and⎧⎪⎪⎨
⎪⎪⎩

0 = 2I1 + y2ψψx I1
x + κ2 y2ψψy I1

y − x
ψ
Mψ

x
− ηκμ(y)

ψy

ψ
;

I1(0, y) = κ2

12
+ η

μ(y)
2y

(3.5)

for the first. The interior boundary condition for I1 at x = 0 follows from the formal
asymptotics as x → 0. As derived in Berestycki et al. (2004), the zeroth-order term of the
expansion is given via the solution of (3.4),

ψ(x, y) = 1
κ

ln
(

κx
y

+
√

1 + κ2x2

y2

)
,(3.6)

as I0(x, y) = x/ψ(x, y), whereas for (3.5) we can guarantee only a solution in the case
where μ(y) = O(y3) since I0

y/I0 = −ψy/ψ = o(1/y) as y → 0. Obviously this means
practically that we need an extreme drift in the Hull–White model to compensate the
very volatile volatility process. However, setting, e.g., μ(y) = μy3 for some constant μ,
we are able to solve the PDE (3.5) explicitly by the method of characteristics to get

I1(x, y) = 1
ψ2(x, y)

(
ln

(
y
x
ψ(x, y)

(
1 + κ2x2

y2

) 1
4

)
+ η

μx2

2

)
.(3.7)

In Figure 3.1, we rely on the parameter set

μ = 6; κ = 7; y = 0.3; τ = 0.1.

Whereas the parameter γ does not appear in the first-order approximation, the distor-
tion parameter η has a double effect. On the one hand, it shifts the smile at the money
a small amount, on the other hand it changes more significantly the wing behavior of
the smile, adding to the asymptotics the term η

μκ2

2
x2

(ln |x|)2 (since x2/ψ2 ∼ k2x2/(ln |x|)2 as

x → ±∞). This changes the whole wing behavior, since I0 ∼ κ
|x|

ln |x| and I1 → 0 for η =
0 as x → ±∞. Of course η = 0 corresponds to the first-order term of martingale pricing
as Berestycki et al. (2004). Positive η (hence a positive impact of the volatility risk on the
risk of the traded asset) increases the implied volatility and steepens the wings.
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FIGURE 3.1. Implied volatility in terms of log-moneyness log (K/S0) for the Hull–
White model: zeroth- and first-order approximation in dependence of η.

3.3. Calibration Exercise

We perform a simple calibration exercise using S&P 500 implied volatilities to show
how the approximation (2.24) could be used to recover some information about the
market’s risk measure. We work with the short-time approximation in the uncorrelated
Hull–White model (3.3) of Section 3.2 and within the family of distorted dynamic convex
risk measure (3.1).

We suppose that the near-the-money option prices are given by expectations under an
equivalent martingale measure, specifically the minimal martingale measure. This corre-
sponds to setting the distortion η = 0, and so the short-time asymptotic approximation
for implied volatilities I is

I ≈ x
ψ(x, y)

(1 + τ I1(x, y)),

where ψ(x, y) is given by (3.6) and I1(x, y) by (3.7) with η = 0. This gives

I ≈ IM := x
ψ(x, y)

(
1 + τ

ψ2(x, y)
ln

(
y
x
ψ(x, y)

(
1 + κ2x2

y2

) 1
4
))

,

where we see that the approximation IM depends only on the parameter κ and the current
volatility level y. Then having fit the liquid implied volatilities to recover estimates of κ

and y, we can write the short-time approximation with distortion as

I ≈ IM + (μη)
τ x3

2ψ3(x, y)
,(3.8)

from which we can estimate the combination μη.
In Figure 3.2, we show the result of a fit to S&P 500 implied volatilities from options

with nine days to maturity on October 7, 2010. We comment that the Hull–White model
is not the best choice of stochastic volatility model, and our intention is primarily to



FROM SMILE ASYMPTOTICS TO MARKET RISK MEASURES 415

FIGURE 3.2. Fit of short-time asymptotics to S&P 500 implied volatility data nine days
from maturity.

demonstrate the procedure. In particular, because our asymptotic formulas are for the
uncorrelated model, which always has a smile with minimum implied volatility at the
money, we restrict the fit to options with negative log-moneyness, which is mainly out-
of-the-money put options. The first part of the least-squares fitting to options with
log-moneyness between −0.06 and 0 gives κ ≈ 6.6, and y ≈ 0.18. Then fitting to (3.8)
the options with log-moneyness less than −0.06, which we view as less liquid and more
reflective of the market’s risk measure, gives the estimate μη ≈ 35. We note that the μ in
this model is expected to be rather large because the composite drift of the stock is μy3,
and y �1. So the estimate we get from the data of μη is not unreasonable. In particular
it reveals a positive distortion coefficient η.

3.4. Numerical Study

We consider the buyer’s indifference price of one European put option with respect
to the family of distorted entropic risk measures defined by (3.1). We work within the
stochastic volatility model (2.1) and, for the numerical solution, we return to the primitive
variables (t, S, y). Denote by Ly the generator of the Markov process Y :

Ly = 1
2

a(y)2 ∂2

∂y2
+ m(y)

∂

∂y
,

and by LS,y the generator of (S, Y ):

LS,y = Ly + 1
2
σ (y)2S2 ∂2

∂S2
+ ρa(y)σ (y)S

∂2

∂S∂y
+ μ(y)

∂

∂S
.
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From (2.9), the buyer’s indifference price of a put option with strike K and expiration
date T at time t < T when St = S and Y t = y, is given by

P(t, S, y) = ϕ(t, S, y) − ϕ0(t, y),

where ϕ solves

ϕt +
(
LS,y − ρa(y)λ(y)

∂

∂y

)
ϕ = −ĝ(−λ(y), −ρ ′a(y)ϕy),

ϕ(T, S, y) = (K − S)+,

(3.9)

and ϕ0(t, y) solves the same PDE without the S-derivatives and with zero terminal
condition. Note that ϕ = −v , where v was the solution to the PDE problem in (2.14),
and ϕ0 = −ṽ which was introduced in the proof of Theorem 2.9.

As ĝ is given by (3.2), we can rewrite (3.9) as

ϕt +
(
LS,y − (ρ + ηρ ′)a(y)λ(y)

∂

∂y

)
ϕ = −λ2(y)

2γ
+ 1

2
(1 − ρ2)γ a(y)2ϕ2

y.(3.10)

This shows that η plays the role of a volatility risk premium in that it enters as a drift
adjustment for the volatility-driving process Y . However the nonlinearity of the PDE is
through a quadratic term in ϕy, as in the case of the entropic risk measure.

Moreover, introducing the transformation

ϕ0(t, y) = − 1
γ (1 − ρ2)

log f (t, y),

leads to the linear PDE problem for f :

ft +
(
Ly − (ρ + ηρ ′)a(y)λ(y)

∂

∂y

)
f − 1

2
λ2(y)(1 − ρ2) f = 0,(3.11)

f (T, y) = 1.(3.12)

Therefore the indifference price is given by

P(t, S, y) = ϕ(t, S, y) + 1
γ (1 − ρ2)

log f (t, y).

In the numerical solutions, we take the volatility-driving process (Y t) to be an Ornstein–
Uhlenbeck process with the dynamics:

dY t = α(m − Yt) dt + ν
√

2α
(
ρ dW1

t + ρ ′ dW2
t

)
,

and we choose a function σ (Y ) that gives realistic volatility characteristics. For the OU
process (Y t), the rate of mean-reversion is α, the long-run mean-level is m, and the long-
run variance is ν2. For the computations, we will take α = 5, m = 0, ν2 = 1, ρ = −0.2,
and

σ (y) = 0.7
π

(arctan(y − 1) + π/2) + 0.03,

so that σ (m) = 0.2050. The parameter ν measures approximately the standard deviation
of volatility fluctuations. The values are chosen such that the interval of width one
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FIGURE 3.3. Implied volatility from the arctangent stochastic volatility model in terms
of log-moneyness log (K/S0) and η with fixed γ = 0.5.

FIGURE 3.4. Implied volatility from the arctangent stochastic volatility model in terms
of log-moneyness log (K/S0) and γ with fixed η = 0.2.

standard deviation for Y under its stationary distribution is (−1, 1), and this translates
roughly to the interval (0.13, 0.38) for volatility σ . The two standard deviation interval
for volatility is approximately (0.10, 0.56).

We first solve the quasilinear PDE (3.10) for ϕ using implicit finite-differences on the
linear part, and explicit on the nonlinear part. Then we solve the linear PDE problem
(3.11) for f . This procedure is done for a current stock price S0 = 100 and σ (Y 0) =
0.223, calculating the solutions for European put options expiring in three months for
strikes K in the range [70, 110] for different values of the distortion parameter η and the
risk-aversion parameter γ > 0.

Figure 3.3 reveals a more complex picture regarding the effect of η away from the
short maturity asymptotic approximation. We see, as in Figure 3.1 from the asymptotics,
increasing η increases the skew slope; however it also shifts down the levels of implied
volatility around the money (as opposed to the opposite effect we saw in Figure 3.1).

Figure 3.4 shows, as we would expect, that increasing risk aversion γ decreases the
implied volatility skew which comes from the indifference price of the buyer who is willing
to pay less for the risk of the option position. It also has a secondary effect of flattening
the skew out of the money.
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4. CONCLUSION

We have derived a nonlinear PDE for the implied volatility from indifference pricing with
respect to dynamic convex risk measures defined by BSDEs under diffusion stochastic
volatility models. Our asymptotic analysis has highlighted the principal effect of the risk
measure on option implied volatility at short maturities, namely through the appearance
of ĝz2 in the first-order correction solving (2.25).

In the example of Section 3.2, this translates explicitly to a steepening effect on the im-
plied volatility smile from the distortion parameter η. Numerical computations confirm
this away from short maturity too, as well as quantifying the effect of risk aversion on
the level of implied volatilities.

The analysis can be used to infer some information about the driver, for example η

and γ in the family (3.1), from market implied volatilities. This is illustrated using the
short-time asymptotics for the Hull–White model on S&P 500 implied volatilities in
Section 3.3.

5. PROOFS

5.1. Price and Volatility Bounds

LEMMA 5.1 (First Price Comparison). Suppose that P = ũ − u and P = ũ − u for
some u, ũ, u, ũ ∈ C1,2,(Qτ0,r ) ∩ C(Qτ0,r ), 0 < τ 0 ≤ T, satisfy

Pτ ≥ LP − 1
K

(
ĝ
(−λ(y), ρ ′Ka(y)ũ y

) − ĝ
(−λ(y), ρ ′Ka(y)uy

))
, in Qτ0,r(5.1)

Pτ ≤ LP − 1
K

(
ĝ
(−λ(y), ρ ′Ka(y)ũ y

) − ĝ
(−λ(y), ρ ′Ka(y)uy

))
, in Qτ0,r(5.2)

as well as

P ≥ P on {0} × R2 ∩ Qτ0,r and ]0, τ0] × R2 ∩ ∂ Qτ0,r .(5.3)

Then P ≥ P on Qτ0,r .

Proof . Even if the form of this comparison principle for sub- and superprices seems
to be quite unusual, the proof follows directly along the lines of Friedman (1964,
theorem 2.16) since the function ĝ contains no second derivatives. To be precise: this
argument leads a version where the inequalities in (5.1), (5.3) and the conclusion are
strict. But setting P

ε = P + ε(1 + τ ) one gets a strict superprice and sending ε to zero
yields the stated version. �

5.2. Proof of Proposition 2.10

Proof . To prove (2.16), we intend to invoke the above comparison principle for the
price process given in Theorem 2.9 since it is clear that the Black–Scholes pricing functions
are sub- resp. supersolutions of the PDE. Unfortunately we have the indifference price
only as solution of a Dirichlet problem which does not give rise to directly comparable
lateral boundary conditions; thus we have to alter the argument a bit.
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Denote for N ∈ N by uN,σ the solution of the initial/boundary-value problems⎧⎪⎪⎨
⎪⎪⎩

−uN,σ
τ + LuN,σ = 1

K
ĝ
( − λ(y), ρ ′Ka(y)uN,σ

y

)
;

uN,σ (0, x, y) = −(1 − ex)+;

uN,σ (τ, x, y)|∂ B(0,N) = −PBS(τ, x; σ ).

By a classical argument (Ladyzhenskaya et al. 1967, section V.§8), we can extract a
subsequence uNk,σ of uN,σ such that uNk,σ converges together with its derivatives to u and
its derivatives pointwise in LT . The same is true for ũN given by⎧⎪⎪⎨

⎪⎪⎩
−ũN

τ + LũN = 1
K

ĝ
(−λ(y), ρ ′Ka(y)ũN

y

)
;

ũN(0, x, y) = 0;

ũN(τ, x, y)|∂ B(0,N) = 0.

Thus PN,σ (τ, x, y) = uN,σ (τ, x, y) − ũ(τ, x, y) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−PN,σ
τ + LPN,σ = 1

K
ĝ
(−λ(y), ρ ′Ka(y)ũN

y

) − 1
K

ĝ
(−λ(y), ρ ′Ka(y)uN,σ

y

)
;

PN,σ (0, x, y) = (1 − ex)+;

PN,σ (τ, x, y)
∣∣
∂ B(0,N) = PBS(τ, x; σ ),

(5.4)

and PN,σ → P along a subsequence.
Noting that PBS(τ, x; σ ) is a subprice on every cylinder QT,N by writing it in the odd

form PBS(τ, x; σ ) = 0 − (−PBS(τ, x; σ )) to satisfy the comparison principle of Lemma
5.1, we have PBS(τ, x; σ ) ≤ PN,σ on QT,N and hence in the limit PBS(τ, x; σ ) ≤ P.
The other direction of Theorem 2.9 is proved, of course, by the same argument using
PBS(τ, x; σ ) as superprice.

Finally a reformulation of the achieved result reads

U(σ 2τ, x) ≤ U(I(τ, x, y)2τ, x) ≤ U(σ 2τ, x)

and so the strict monotonicity of U with respect to the first variable yields (2.17). �

5.3. Deriving the PDE for the Implied Volatility

To derive the PDE for the implied volatility, we note that from (2.11) and (2.12), it
follows that the indifference price P obeys the equation

−Pτ + LP = 1
K

(ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)).

Substituting P(τ , x, y) = U(I2(τ , x, y)τ , x) we note that the derivatives relate

Pτ = Uτ · (τ I2)τ ; Px = Uτ · 2I Ixτ + Ux; Py = Uτ · 2I Iyτ ;

Pxx = Uττ · 4I2 I2
xτ 2 + Uτ · 2I2

xτ + Uτ · 2I Ixxτ + Uτ x · 4I Ixτ + Uxx;

Pxy = Uττ · 4I2 Ix Iyτ
2 + Uτ · 2Ix Iyτ + Uτ · 2I Ixyτ + Uτ x · 2I Iyτ

Pyy = Uττ · 4I2 I2
yτ 2 + Uτ · 2I2

yτ + Uτ · 2I Iyyτ.

(5.5)
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Plugging this into (5.5) and dividing by Uτ , we derive the equation (2.22) by noting that

Uxx − Ux

Uτ

= 2;
Uττ

Uτ

= x2

2I4τ 2
− 1

2Iτ
− 1

8
;

Uτ x

Uτ

= − x
Iτ

+ 1
2

;
1

Uτ

= 2I Iyτ

ũ y − uy
.

(5.6)

The initial condition follows by observing that Vega vanishes as τ tends to zero:

LEMMA 5.2. It holds that ν = ũ y − uy → 0 uniformly on compacts as τ → 0.

Proof . Choose the cylinder QT,r in the layer LT such that the compact set is contained.
Thus u, ũ ∈ C1+β/2,2+β (QT,r ) ∩ C(LT) implies that uy and ũ y are β/2-Hölder continuous
with some Hölder constant c, whence

|ν(τ, x, y)| = |ũ y(τ, y) − uy(τ, x, y)|
≤ |ũ y(τ, y) − ũ y(0, y)| + |uy(τ, x, y) − uy(0, x, y)| ≤ 2cτ

β

2 → 0

as τ → 0 since ũ y(0, y) and uy(0, x, y) exist and are equal to zero by the definition of the
initial conditions. �

5.4. Implied Volatility—Proof of the Main Theorem

LEMMA 5.3 (Second Price Comparison). Recall that u is the solution of the Cauchy
problem (2.12) and ũ of the same problem with initial condition equal to zero. Suppose that
P, P ∈ C1,2(Qτ0,r ) ∩ C(Qτ0,r ), 0 < τ 0 ≤ T, satisfy

Pτ ≥ LP − 1
K

(ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)), in Qτ0,r(5.7)

Pτ ≤ LP − 1
K

(ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)), in Qτ0,r(5.8)

as well as

P ≥ P ≥ P on ]0, τ0] × R2 ∩ ∂ Qτ0,r ,(5.9)

and

P(0, x, y) = P(0, x, y) = P(0, x, y) = (1 − ex)+

then P ≥ P ≥ P on Qτ0,r .

Proof . We note that inequality (5.7) implies (P − P)τ ≥ L(P − P) which implies to-
gether with the lateral bound (P − P) ≥ 0 on ]0, τ0] × R2 ∩ ∂ Qτ0,r and the initial condi-
tion P(0, x, y) − P(0, x, y) = 0 that P ≥ P on Qτ0,r by the classical comparison principle.
The second inequality is proved in the same way. �

LEMMA 5.4 (Volatility Comparison). Suppose that I, I ∈ C1,2(Qτ0,r ) ∩ C(Qτ0,r ), 0 <

τ 0 ≤ T , satisfy

(τ I2)τ ≤ τ IMI + I2G I + τq(y)I I y

− 2τ I I y

(
ρa(y)λ(y) + ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)

K(ũ y − uy)

)
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resp.

(τ I
2
)τ ≥ τ IMI + I

2G I + τq(y)I I y

− 2τ I I y

(
ρa(y)λ(y) + ĝ

(−λ(y), ρ ′Ka(y)ũ y
) − ĝ

(−λ(y), ρ ′Ka(y)uy
)

K(ũ y − uy)

)

in Qτ0,r together with the lateral comparison

I(τ, x, y) ≤ I(τ, x, y) ≤ I(τ, x, y) on ]0, τ0] × R2 ∩ ∂ Qτ0,r

and the initial growth condition

lim
τ→0

τ I2(τ, x, y) = lim
τ→0

τ I
2
(τ, x, y) = 0 on {0} × R2 ∩ Qτ0,r .(5.10)

Then it holds that

I(τ, x, y) ≤ I(τ, x, y) ≤ I(τ, x, y) in Qτ0,r .

Proof . Define first P(τ, x, y) := U(I
2
(τ, x, y)τ, x) and P(τ, x, y) := U(I2(τ, x, y)

τ, x). Then by the same calculation as in the derivation of the PDE (2.22) of the im-
plied volatility in the paragraph above we get

Pτ ≥ LP − 1
K

(ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)), in Qτ0,r

Pτ ≤ LP − 1
K

(ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)), in Qτ0,r

as well as the lateral boundary condition

P(τ, x, y) ≤ P(τ, x, y) ≤ P(τ, x, y) in Qτ0,r .

Moreover, the growth condition (5.10) implies by the continuity of U that P(0, x, y) =
P(0, x, y) = P(0, x, y) = (1 − ex)+. Thus we can use Lemma 5.3 to infer P(τ, x, y) ≤
P(τ, x, y) ≤ P(τ, x, y) in Qτ0,r and the strict monotonicity of the function U in the first
component yields the result. �

5.5. Proof of Theorem 2.12

Proof . Remark first that if there exists a solution to the PDE with some fixed initial
condition, it has to be unique by the smoothness and strict monotonicity of U (and
the boundedness of I proven in Proposition 2.10) since otherwise the solution of the
pricing PDE (Theorem 2.9) would not be unique. By the same reasoning we get also
I ∈ C1+β/2,2+β (QT,r) ∩ C(LT ). Moreover, the eikonal equation (2.23) has a unique viscos-
ity solution as proved in Berestycki et al. (2004, section 3.2). To prove the theorem we will
hence show that the solution of the eikonal equation is the only possible initial condition,
i.e., that any solution of the PDE (2.22) has the eikonal equation as its small time limit.
More precisely we will show that there exist parametrized families of (time-independent)
local super- and subsolutions of (2.22) which converge locally uniformly to the eikonal
equation. This is done in a similar way as in Berestycki et al. (2004, section 3.4), using an
adapted vanishing viscosity method. However, in our setting the bounds on the volatility
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σ enable us to simplify the proof and circumvent some obscurities in the local volatility
argument in Berestycki et al. (2004).

Define I
ε,δ

(x, y) for ε, δ > 0 as the solution of⎧⎨
⎩

−δ = −(
I
ε,δ)2 + (

I
ε,δ)2G x

I
ε,δ

+ ε�
(

ln
(
I
ε,δ))

;

I
ε,δ|∂ B(m,r ) = σ,

(5.11)

where B(m, r) is an arbitrary disk. We will show that for r, δ, ε > 0 there exists a solution
to this equation and for fixed r and δ there exist ε0 > 0, τ 0 > 0 such that for all 0 < ε

< ε0 this is a supersolution of (2.22) in Qτ0,r . Moreover, we show that I
ε,δ → I0 locally

uniformly as we send first ε and then δ to zero.
First Step: Making the change of variables w := ln (I

ε,δ
) one gets

(
I
ε,δ)2G x

I
ε,δ = (

I
ε,δ)2

(
σ 2(y)

(
x

I
ε,δ

)2

x
+ 2ρσ (y)a(y)

(
x

I
ε,δ

)
x

(
x

I
ε,δ

)
y
+ a2(y)

(
x

I
ε,δ

)2

y

)

= σ 2(y)(1 − xwx)2 − 2ρσ (y)a(y)x(1 − xwx)w y + a2(y)x2w2
y =: G̃w

and the equation (5.11) becomes{
−δ = −e2w + G̃w + ε�w ;

w |∂ B(m,r ) = ln σ .

which admits a solution w ∈ C2+β (B(m, r)) (Ladyzhenskaya and Ural’tseva 1968, Theo-
rem 4.8.3) which is unique for sufficiently small r (Ladyzhenskaya and Ural’tseva 1968,
theorem 4.2.1).

Second Step: By the Hölder property of the derivatives of w resp. I
ε,δ

implying the
boundedness of the functions on the cylinder (as well as the boundedness of uy and
ũ y and the differentiability of ĝ) we can conclude that there exist constants c1-c4 solely
depending on r such that

−1
4
τ 2(I

ε,δ)2G I
ε,δ ≤ c1(r )τ 2

τ I
ε,δMI

ε,δ ≤ c2(r )τ

τ

(
q(y) − 2

ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)
K(ũ y − uy)

)
I
ε,δ

I
ε,δ

y ≤ c3(r )τ

−ε�
(

ln
(
I
ε,δ)) ≤ εc4(r )

in B(m, r). We can conclude that(
(τ

(
I
ε,δ)2)

τ
= (

I
ε,δ)2 = δ + I

(
I
ε,δ)2G x

I
ε,δ

+ ε�
(

ln
(
I
ε,δ))

≥ τ I
ε,δMI

ε,δ + (
I
ε,δ)2G x

I
ε,δ

− 1
4
τ 2(I

ε,δ)2G I
ε,δ + τq(y)I

ε,δ
I
ε,δ

y

− 2τ Iε,δ Iε,δ
y

ĝ(−λ(y), ρ ′Ka(y)ũ y) − ĝ(−λ(y), ρ ′Ka(y)uy)
K(ũ y − uy)

+ δ − (c1(r )τ 2 + c2(r )τ + c3(r )τ + εc4(r )),

thus for given δ > 0 and r > 0 we can find indeed positive bounds on ε0, τ 0 such that I
ε,δ

is a supersolution of (2.22) for 0 < ε ≤ ε0 in Qτ0,r . In the same way one proves that we
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get for Iε,δ of ⎧⎨
⎩

δ = −(Iε,δ)2 + (
Iε,δ

)2G x
Iε,δ

+ ε�
(

ln (Iε,δ)
)
;

Iε,δ|∂ B(m,r ) = σ

subsolutions.
Third Step: Having now super- and subsolutions, we can (by sake of Proposition 2.10)

invoke now the comparison principle Lemma 5.4 to conclude that

Iε,δ(x, y) ≤ I(τ, x, y) ≤ I
ε,δ

(x, y) in Qτ0,r

for all 0 < ε < ε0, ε0 and τ 0 chosen as above. Thus we have

Iε,δ(x, y) ≤ lim inf
τ→0

I(τ, x, y) ≤ lim sup
τ→0

I(τ, x, y) ≤ I
ε,δ

(x, y).

Next we want to send ε to zero. Therefore we note that the families of solutions I
ε,δ

,
Iε,δ are uniformly bounded (by the constants

√
δ ∨ σ and

√
δ ∧ σ as a consequence of

the comparison principle [Gilbarg and Trudinger 2001, theorem 10.7.(i)] applied to the
equations in the log-variables) and equicontinuous in ε (since Hölder-continuous with
the same Hölder constants). Thus by the Arzelà–Ascoli theorem I

ε,δ
converges along

a subsequence uniformly on compacts to some limit function I
δ ∈ C0+β (Qτ0,r ). This

function is a viscosity solution of the PDE⎧⎨
⎩

−δ = −(
I
δ)2 + (

I
δ)2G x

I
δ

;

I
δ|∂ B(m,r ) = σ .

An analogous result holds true for the subsolutions. Now sending δ → 0, this gives by
the same argument a solution of the PDE

G x

I
0 = 1

which satisfies I(0, y) = 0. Thus for τ → 0, I(τ , x, y) converges locally uniformly to I0

which is nothing else than the (by Berestycki et al. 2004, section 3.2 unique) viscosity
solution of the eikonal equation (2.23) with ψ = x/I0. �
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CORRELATION UNDER STRESS IN NORMAL VARIANCE MIXTURE
MODELS
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We investigate correlations of asset returns in stress scenarios where a common risk
factor is truncated. Our analysis is performed in the class of normal variance mixture
(NVM) models, which encompasses many distributions commonly used in financial
modeling. For the special cases of jointly normally and t-distributed asset returns we
derive closed formulas for the correlation under stress. For the NVM distribution,
we calculate the asymptotic limit of the correlation under stress, which depends on
whether the variables are in the maximum domain of attraction of the Fréchet or
Gumbel distribution. It turns out that correlations in heavy-tailed NVM models are
less sensitive to stress than in medium- or light-tailed models. Our analysis sheds light
on the suitability of this model class to serve as a quantitative framework for stress
testing, and as such provides valuable information for risk and capital management
in financial institutions, where NVM models are frequently used for assessing capital
adequacy. We also demonstrate how our results can be applied for more prudent stress
testing.

KEY WORDS: stress testing, risk management, correlation, normal variance mixture distribution,
multivariate normal distribution, multivariate t-distribution.

1. INTRODUCTION

In risk management, stress testing encompasses various techniques used by financial
firms to test bank capital adequacy in a strongly adverse market environment. Stress
tests on bank portfolios are mandatory under the Basel II regulatory rules, and have
gained importance as an integral part of risk management and banking supervision in
the aftermath of the subprime crisis, see, e.g., Turner (2009), Larosière et al. (2009), Brun-
nermeier et al. (2009), BIS (2009). For example, bank supervisors conducted mandatory
stress tests in the previous years to assess the adequacy of capital buffers of the largest
US and European banks.

A standard technique of conducting stress tests is to calculate portfolio risk measures,
such as expected loss, value-at-risk (VaR), economic capital, or regulatory capital under
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the assumption of adverse market conditions. Typically, stress scenarios are translated
into constraints on risk factors, which are economic or market variables that affect
portfolio losses. In our setup, the constraints are formalized by truncating the risk factor
variables, that is, by conditioning on the range of values that a risk factor may attain.
For example, a stress scenario for an equity portfolio may be defined as a decrease of an
equity index (considered as a risk factor) by more than 10% within a time period of one
year.

The truncation of risk factors is a commonly used stress-testing technique for the
credit risk management and capital management of financial institutions, see, e.g., Bonti
et al. (2006), Kalkbrener and Overbeck (2008), Duellmann and Erdelmeier (2009). In
these papers, stress scenarios are implemented in structural credit portfolio models,
which link the default of a firm to the relationship between its assets and liabilities. The
dependence between assets is specified by systematic factors, which usually represent
geographic regions or industries. Each stress scenario specifies a constraint on one or
more systematic factors and thus quantifies the impact of a downturn in an economy or
industry on the credit portfolio of a bank.1

The outcome of a stress test depends strongly on the correlations among portfolio
components in the stress scenario. In general, the conditional correlation between asset
returns—conditional on the truncated factor—is different from the unconditional cor-
relation. However, the conditional correlations are the correlations that implicitly enter
the calculation of risk measures under the stress scenario, because the risk measure is
now calculated under a new probability measure obtained by conditioning. An analysis
of conditional correlation may therefore contribute to understanding the behavior of
portfolio models under stress and to refine the stress-testing methodology.

In this paper we analyze correlation under stress for a quite general class of distribu-
tions that encompasses many models commonly encountered in the financial industry.
We provide closed formulas for the conditional correlation in the cases of jointly nor-
mally distributed asset returns and jointly t-distributed asset returns, which are standard
distributions in portfolio modeling.2 More generally, we consider normal variance mix-
ture (NVM) distributions, a family of distributions with diverse tail behavior, ranging
from light- to heavy-tailed. Essentially, a random vector follows an NVM distribution if
it has a representation as a jointly normally distributed random vector multiplied with a
strictly positive and independent “mixing” random variable.3 NVM distributions belong
to the class of elliptical distributions, whose key parameter for describing the dependence
is the correlation matrix. These properties make NVM distributions attractive for high-
dimensional applications, such as modeling the asset returns of a bank portfolio. For
NVM models, we calculate the asymptotic limit of the conditional correlation. Here, we
employ results and techniques from EVT.

It turns out that the limit of the conditional correlation depends on whether the
variables in the NVM model are in the maximum domain of attraction (MDA) of a

1For further stress test methods, see also Kupiec (1998), Berkowitz (2000), and Breuer et al. (2009); for
applications of extreme value theory (EVT) to stress testing, see, e.g., Longin (2000) and Schachter (2001).

2For example, in structural credit portfolio models, such as CreditMetricsTM, Gupton, Finger, and
Bhatia (1997), and Moody’s KMV Portfolio ManagerTM, Crosbie and Bohn (2002), the multivariate normal
distribution is still the de-facto standard for modeling log-returns of asset values.

3For example, the increments of certain time-changed Brownian motion models, such as the variance
gamma or the inverse Gaussian processes and certain stochastic volatility models follow an NVM distribu-
tion, see, e.g., Madan and Seneta (1990), Barndorff-Nielsen (1998), Geman, Madan, and Yor (2001).
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Fréchet distribution or the Gumbel distribution.4 More precisely, consider asset returns
Ai and Aj with (unconditional) correlation ρ ij and a risk factor V , whose correlation
with each of the asset returns is denoted by ρ i and ρ j, respectively. We show that the
asymptotic limit of the conditional correlation of Ai and Aj equals

ρi ρ j + (ρi j − ρi ρ j ) (α − 1)√(
ρ2

i + (
1 − ρ2

i

)
(α − 1)

) (
ρ2

j + (
1 − ρ2

j

)
(α − 1)

) , α > 2,(1.1)

if the risk factor is stressed, i.e., if V is truncated at a threshold C, and C converges to
−∞. The parameter α specifies the tail index of the asset returns and the risk factor in
the Fréchet case. The case when the variables are in the MDA of the Gumbel distribution
corresponds to the limit as α → ∞, in which case the asymptotic limit of the conditional
correlation between Ai and Aj is

ρi j − ρi ρ j√(
1 − ρ2

i

)(
1 − ρ2

j

) .(1.2)

The limit formula (1.1) of the conditional asset correlation has a number of interesting
consequences. First of all, it shows that for small α the correlations in the NVM model
are insensitive to stress, i.e., the conditional correlations do not differ significantly from
the unconditional correlations in heavy-tailed NVM models. In the Gumbel case, on the
other hand, the impact of stress on the conditional correlation is typically much stronger
than for heavy-tailed models, in particular when comparing to the heavy-tailed case with
α sufficiently close to 2. The asymptotic conditional correlation may be either greater or
smaller than the unconditional asset correlation depending largely on the correlations
between the risk factor and the respective asset returns. In particular, when the assets
in question are sufficiently correlated with the risk factor, the conditional correlation is
typically smaller than the unconditional correlation. Loosely speaking, in many cases
systematic risk is reduced by conditioning on the risk factor, whereas unsystematic risk
remains (a detailed example is given in Section 5).

The implications of our results are threefold: first, they shed light on the impact of
stress tests on the correlation of portfolio constituents and associated portfolio diversifi-
cation within a model family that includes many commonly used light- and heavy-tailed
distributions. Second, depending on how the conditional correlation obtained from the
model reconciles with empirical observation, one may assess whether the model class is
an appropriate model for the dependence structure. Furthermore, one may incorporate
correlation as an additional risk factor and apply appropriate changes to the correlation
itself when applying a stress scenario. We discuss these applications in our examples.

In a wider sense, our results may be of interest in the context of systemic risk mea-
sures, such as CoVaR and �CoVaR, suggested by Adrian and Brunnermeier (2011),
and marginal expected shortfall, suggested by Acharya et al. (2010). Essentially, these
measures gauge risk conditioned on certain stress events, such as a bank or the system
being in distress. The (model) effect of such stress events on the correlation between
institutions may give additional useful information when using these measures.

The model behavior of conditional correlation has also been studied for example by
Boyer, Gibson, and Loretan (1999), where formulas for conditional asset correlations

4Essentially, the MDA of the Fréchet distribution consists of the heavy-tailed distributions, such as
the t-distribution, while the MDA of the Gumbel distribution contains mostly light- to medium-tailed
distributions, for example, the normal and the log-normal distributions.
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are determined for bivariate normally distributed asset returns, when one of two asset
returns is stressed. Malevergne and Sornette (2006) consider in addition bivariate t-
distributed asset returns. These are special cases of our analysis of the stressed NVM
model, in which the stressed risk factor coincides with one of the assets. In a stress test
setup similar to ours, that is, by truncating a common risk factor, Bae and Iscoe (2010)
consider a jump-diffusion model to achieve an increasing conditional correlation.

The remainder of the paper is structured as follows: In Section 2 we introduce the
model setup involving asset returns and a single risk factor. We derive a general formula
for conditional asset correlations in NVM models, which is based on some conditional
expectations, in Section 3. In addition, we provide explicit formulas for the cases when the
risk factor and the asset returns are normally distributed and t-distributed. In Section 4,
we investigate the asymptotic limit of conditional correlation as the truncation of the risk
factor tends to −∞. More precisely, we derive formula (1.1) for the case when the NVM
distribution is in the MDA of the Fréchet distribution (under some additional moderate
assumption) and formula (1.2) when it is in the MDA of the Gumbel distribution.
In Section 5, we analyze the relationship between correlations under stress and VaR
in structural credit portfolios. We also provide examples where the correlation itself is
considered to be a risk factor and subjected to change under stress. An empirical example
involving DAX data is given. Finally, we conclude and discuss the results in Section 6.
Appendix A provides a brief overview of the concepts from EVT that are applied in this
paper.

2. DEFINITIONS AND PROBLEM

Let V , A1 , . . . , Ak be random variables on a probability space (�,A, P). In our setting,
V will be interpreted as a risk factor, and A1 , . . . , Ak may be interpreted as additional
risk factors or as variables that specify asset returns or the credit quality of k assets.

We assume that V , A1 , . . . , Ak follow a multivariate normal variance mixture (NVM)
distribution, i.e., there exist normally distributed variables X , Y 1 , . . . , Y k and a P–a.s.
strictly positive random variable W , independent of X , Y 1 , . . . , Y k, such that

V :=
√

WX, Ai :=
√

WYi , i = 1, . . . , k.(2.1)

We assume in addition that W is integrable and that X and Y 1 , . . . , Y k are standardized.5

For i, j ∈ {1 , . . . , k} the correlations of X , Y i, Y j are denoted by

ρi := Corr(X, Yi ), ρi j := Corr(Yi , Yj ).(2.2)

It is straightforward to show that Corr(V , Ai) = ρ i and Corr(Ai, Aj) = ρ ij. We shall also
sometimes use the following orthogonalization of Y i on X :

Yi = ρi X +
√

1 − ρ2
i Zi ,(2.3)

where Zi is a standard normally distributed variable independent of X and W .
The NVM distribution encompasses a number of distributions that are commonly

used to model asset returns. Some examples of NVM distributions are the multivariate
normal distribution, in which case the mixing variable W is a constant, or the multivari-
ate t-distributions, when W follows an inverse gamma distribution. When W follows a

5Working with standardized variables is not a restriction, as long as we are interested only in correlations.
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so-called generalized inverse Gaussian distribution, then the NVM distribution is a sym-
metric generalized hyperbolic distribution. More generally, NVM distributions belong
to the family of elliptic distributions, for which correlation appropriately describes the
dependence among the variables. For a general review of NVM distributions we refer to
McNeil, Frey, and Embrechts (2005, section 2.3) and Bingham and Kiesel (2002).

Let us consider the situation when V is truncated by C ∈ R, that is, V ≤ C and write

PC(A) = P(A| V ≤ C), A ∈ A,(2.4)

for the corresponding conditional distribution. In this setting, the random variable V is
interpreted as a stressed risk factor with C the level of stress applied to V .

Let us rephrase the objectives of the paper: we wish to analyze the impact of the
stress on the correlation of the Ai, i = 1 , . . . , k. In the special cases of a multivariate
normal model (W = 1) and a jointly t-distributed model (W inverse gamma distributed),
we derive formulas for conditional asset correlations CorrC(Ai, Aj), where CorrC is the
correlation coefficient under the measure PC (Section 3). For the general NVM model,
we derive the limit of the conditional asset correlations as C → −∞ (Section 4).

3. CORRELATIONS UNDER STRESS

In this section we derive a general formula for the conditional correlation CorrC(Ai, Aj).
We further derive explicit formulas for the case when the variables are normally dis-
tributed (Section 3.1) and when the variables are t-distributed (Section 3.2).

PROPOSITION 3.1. In the NVM model, and additionally writing EC and VarC for the
expectation and variance under PC, respectively, the conditional correlation of Ai, Aj is
given by

CorrC(Ai , Aj ) =
ρi ρ j

VarC(V)
EC(W)

+ ρi j − ρi ρ j√√√√(ρ2
i

VarC(V)
EC(W)

+ (
1 − ρ2

i

)) (
ρ2

j
VarC(V)
EC(W)

+ (
1 − ρ2

j

)) .(3.1)

Observe that the conditional correlation depends only on the univariate quantity
VarC(V)
EC(W)

. In the remainder of the paper we shall thus concentrate on deriving explicit

formulas for this quantity and for the limit of this quantity as C → −∞.

Proof. By the independence of Zi and V , Zi is a standard normal random variable
under PC , so that, by equation (2.3),

EC(Zi Zj ) = E(Zi Zj ) = ρi j − ρi ρ j√(
1 − ρ2

i

) (
1 − ρ2

j

) .(3.2)

Also, by equation (2.3), we have EC(Ai ) = ρi EC(V), so that one obtains

VarC(Ai ) = ρ2
i VarC(V) + (

1 − ρ2
i

)
EC(W),
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FIGURE 3.1. Left: Simulated asset returns of A1 and A2 that are jointly normally
distributed with ρ12 = 0.6 and each with standard deviation 0.2. Right: Samples
conditional on V ≤ −0.3, where V is normally distributed with standard deviation 0.2,
and ρ1 = 0.8 and ρ2 = 0.7.

CovC(Ai , Aj ) = ρi ρ j VarC(V) + (ρi j − ρi ρ j )EC(W).

The claim follows by dividing both the conditional covariance and the conditional vari-
ance by EC(W). �

Let us illustrate the impact of truncating a risk factor on the conditional correlation:
The left plot of Figure 3.1 shows a scatterplot of 5,000 simulated samples representing
asset returns of two assets, A1 and A2. The asset returns are jointly normally distributed,
each with a standard deviation of 20%, and with a correlation of ρ12 = 0.6. Let us
assume that the assets are in addition correlated with a common risk factor V , which
is also normally distributed with a standard deviation of 20%, and where ρ1 = 0.8 and
ρ2 = 0.7. The right plot shows the samples conditional on V ≤ −0.3. It appears that
the conditional samples are less correlated than the unconditional samples; in fact, their
correlation is approximately 0.25. We confirm this observation analytically below.

3.1. Special Case: Normal Distribution

Let us set W = 1, so that V = X and Ai = Y i are normally distributed. Denote by φ the
standard normal density function and by N the standard normal distribution function.

PROPOSITION 3.2. Let V , A1 , . . . , Ak be standard normally distributed. Then,

CorrC(Ai , Aj ) = ρi ρ j VarC(V) + ρi j − ρi ρ j√(
ρ2

i VarC(V) + 1 − ρ2
i

)(
ρ2

j VarC(V) + 1 − ρ2
j

) ,(3.3)

with

VarC(V) = 1 − C φ(C)
N(C)

− (φ(C))2

(N(C))2
.(3.4)
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TABLE 3.1
Example Parameters

Example ρ12 ρ1 ρ2 Corr(Z1, Z2)

1 0.6 1 0.6 0
2 0.6 0.8 0.7 0.093
3 0.6 0.6 0.6 0.375
4 0.6 0.1 0.1 0.596
5 0.6 0.7 0.02 0.82

Proof. The first equation follows directly from Proposition 3.1, so it remains to prove
equation (3.4). First, observe that E(V 1{V≤C}) = −φ(C), which follows directly from
φ(C) = ∫ C

−∞ φ′(x) dx = ∫ C
−∞ −x φ(x) dx. Second, observe that E(V2 1{V≤C}) = N(C) −

C φ(C), which follows from C φ(C) = ∫ C
−∞ (x φ(x))′ dx = N(C) − ∫ C

−∞ x2 φ(x) dx. The
claim is now obtained via

VarC(V) = EC(V2) − (
EC(V)

)2 = E(V2 1{V≤C})
P(V ≤ C)

− E(V 1{V≤C})2

P(V ≤ C)2
. �

Let us illustrate conditional correlation for five examples. The data are given in
Table 3.1. Here, ρ12 specifies the correlation between assets A1 and A2, and ρ i is the
correlation between the risk factor and asset Ai, i = 1, 2. Because all variables are stan-
dardized, the correlation Corr(Z1, Z2) of the orthogonalization of equation (2.3) is given
by equation (3.2). In all examples, we have set ρ12 = 0.6. In example 1, the first asset co-
incides with the risk factor. In examples 2 and 3, both assets are quite strongly correlated
with the risk factor. In example 4, both assets are only weakly correlated with the risk
factor, and in example 5, A1 is strongly correlated with the risk factor, while the corre-
lation between A2 and the risk factor is low. The conditional correlations as a function
of the truncation level are shown in Figure 3.2. When the dependence of both assets on
the risk factor is sufficiently high, the conditional correlation decreases as the truncation
level decreases. For example, assume that V denotes the return on an equity index and
let A1 and A2 be the returns on two index components. Clearly, a negative return smaller
than C on the equity index return V translates into a strong negative return on two index
constituents A1 and A2. However, conditional on V ≤ C, the correlation between A1

and A2 is now driven mainly by the correlation between the specific components Z1 and
Z2, as demonstrated in Figure 3.1. In fact, we show in Section 4.1 that the conditional
correlation converges to Corr(Zi, Zj) as C → −∞. This also explains why in example 5
the conditional correlation increases with the stress level. For example, there could be a
second risk factor driving the correlation of Z1 and Z2. This second risk factor becomes
more dominant as the stress level increases.

3.2. Special Case: t-Distribution

The class of multivariate t-distributions is frequently used in the finance indus-
try to model random variables with heavy tails. We derive an explicit formula for
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FIGURE 3.2. Conditional asset correlations when V , A1, A2 are normally distributed.
The risk factor V has a standard deviation of 20%; for example, one may think of C
as the truncation level of an equity index return with volatility 20%.

conditional correlations in t-distributed models. As outlined above, it is sufficient to
calculate VarC(V)/EC(W), which can be expressed in terms of beta functions.

PROPOSITION 3.3. Let V , A1 , . . . , Ak follow a multivariate t-distribution with parameter
ν > 2 denoting the degrees of freedom. Then, for C < 0,

VarC(V)
EC(W)

= EC(V2) − EC(V)2

EC(W)
= f (ν, C)

g(ν, C)
,

with

f (ν, C) := B
(

ν

C2 + ν
;
ν − 2

2
,

3
2

)
−

4
(

ν

C2 + ν

)ν−1

(ν − 1)2 B
(

ν

C2 + ν
;
ν

2
,

1
2

) ,

g(ν, C) :=
B
(

1
2
,
ν

2

)
ν − 2

−

(
B
(

ν − 2
2

,
1
2

)
− B

(
ν

ν + C2
;
ν − 2

2
,

1
2

))
ν − 1

,

where B(y; a, b) := ∫ y
0 ta−1(1 − t)b−1 dt is the incomplete beta function and B(a, b) := B(1;

a, b) is the beta function.

Proof.6 For n ∈ N, n < ν, and for C < 0 we first show that the conditional moments
of V are given by

6We are grateful to an anonymous referee whose suggestions significantly simplified the initial proof,
which was based on hypergeometric functions.
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EC(Vn) =
(−1)n νn/2 B

(
ν

C2 + ν
;
ν − n

2
,

n + 1
2

)

B
(

ν

C2 + ν
;
ν

2
,

1
2

) .(3.5)

Because V is t-distributed, we have

E(Vn 1{V≤C}) =

∫ C

−∞
xn
(

ν

x2 + ν

) ν+1
2

dx

√
νB
(

ν

2
,

1
2

) .(3.6)

Integration by substitution with variable transformation x = −
√

( 1
y − 1)ν yields

∫ C

−∞
xn
(

ν

x2 + ν

) ν+1
2

dx = 1
2

(−1)nν
n+1

2

∫ ν

C2+ν

0
(1 − y)

n−1
2 y

ν−n−2
2 dy

= 1
2

(−1)nν
n+1

2 B
(

ν

C2 + ν
;
ν − n

2
,

n + 1
2

)
.

(3.7)

By combining equations (3.6) and (3.7) we obtain

E(Vn 1{V≤C}) =
(−1)nνn/2 B

(
ν

C2 + ν
;
ν − n

2
,

n + 1
2

)

2B
(

ν

2
,

1
2

) .

Dividing by P(V ≤ C) = B(
ν

C2 + ν
; ν

2 , 1
2 )/(2B( ν

2 , 1
2 )) yields equation (3.5).

A simple representation can be obtained for the first conditional moment EC(V): it is
an immediate consequence of the definition of incomplete beta functions that

B
(

ν

C2 + ν
;
ν − 1

2
, 1
)

=
∫ ν

C2+ν

0
t

ν−1
2 −1 dt =

2
(

ν

C2 + ν

) ν−1
2

ν − 1
,

and therefore

EC(V) = 2 (C2 + ν)
1−ν

2 ν
ν
2

(1 − ν) B
(

ν

C2 + ν
;
ν

2
,

1
2

) .(3.8)

Turning to the calculation of the conditional mean of W we now show that, for C < 0,

EC(W) =

⎛
⎜⎜⎝

νB
(

ν

2
,

1
2

)
ν − 2

−
ν

(
B
(

ν − 2
2

,
1
2

)
− B

(
ν

C2 + ν
;
ν − 2

2
,

1
2

))
ν − 1

⎞
⎟⎟⎠
/

B
(

ν

C2 + ν
;
ν

2
,

1
2

)
.

(3.9)
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Because X and W are independent and ν/W follows a chi-square distribution with ν

degrees of freedom, we have

E(W 1{V≤C}) = E
(
W 1{X≤C/

√
W}
)

=
∫ ∞

0

∫ C
√

y
ν

−∞

(
ν

y

)
⎛
⎜⎜⎜⎝e

−
x2

2√
2π

⎞
⎟⎟⎟⎠
⎛
⎜⎝2−ν/2e−y/2 y

ν
2 −1

	
(ν

2

)
⎞
⎟⎠ dx dy

= 2(−ν−1)/2ν
√

π 	
(ν

2

) ∫ ∞

0

∫ C
√

y
ν

−∞
e

−x2−y
2 y

ν
2 −2 dx dy.

Integration by substitution with variable transformation x = −√
z yields

∫ ∞

0

∫ C
√

y
ν

−∞
e

−x2−y
2 y

ν
2 −2 dx dy =

∫ ∞

0

∫ ∞

C2 y
ν

e
−y−z

2 y
ν
2 −2

2
√

z
dz dy.

For the function

F(t) :=
∫ ∞

0

∫ ∞

ty
ν

e
−y−z

2 y
ν
2 −2

2
√

z
dz dy,

we use the representation F(t) = F(0) + ∫ t
0 F ′(x) dx and obtain

∫ ∞

0

∫ ∞

C2 y
ν

e
−y−z

2 y
ν
2 −2

2
√

z
dz dy = F(C2) = 2

ν−3
2

√
π 	

(ν

2
− 1

)

−
2

ν−3
2 	

(
ν − 1

2

)
ν

∫ C2

0

(x
ν

+ 1
) 1

2 − ν
2

√
x
ν

dx.

Integration by substitution with variable transformation x = −(1 − 1
z )ν yields

∫ C2

0

(x
ν

+ 1
) 1

2 − ν
2

√
x
ν

dx =
∫ 1

ν

C2+ν

z
ν−4

2 ν√
1 − z

dz = ν

(
B
(

ν − 2
2

,
1
2

)
−B

(
ν

C2 + ν
;
ν − 2

2
,

1
2

))
.

By combining the equations above we obtain

E(W 1{V≤C}) = ν

4
√

π 	
(ν

2

)

·
(√

π 	
(ν

2
− 1

)
− 	

(
ν − 1

2

)(
B
(

ν − 2
2

,
1
2

)
− B

(
ν

C2 + ν
;
ν − 2

2
,

1
2

)))
.

The basic identities

	(1/2) = √
π, 	(a + 1) = 	(a)a, B(a, b) = 	(a)	(b)/	(a + b)

can now be used to simplify the representation of E(W 1{V≤C}):
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FIGURE 3.3. Conditional asset correlations when V , A1, A2 are t-distributed with
parameter ν = 4 (left) and ν = 10 (right). The risk factor V has a standard deviation
of 20%.

E(W 1{V≤C}) = ν

2ν − 4
−

ν

(
B
(

ν − 2
2

,
1
2

)
− B

(
ν

ν + C2
;
ν − 2

2
,

1
2

))

2(ν − 1)B
(

ν

2
,

1
2

) .

Dividing by P(V ≤ C) = B( ν
C2+ν

; ν
2 , 1

2 )/(2B( ν
2 , 1

2 )) yields equation (3.9).
The representation VarC(V)/EC(W) = f (ν, C)/g(ν, C) is now an immediate conse-

quence of equations (3.5), (3.8), and (3.9). �
Examples of the conditional asset correlation for t-distributed models with parameter

ν = 4 and ν = 10 are given in Figure 3.3. As before the examples refer to the data in
Table 3.1. As in the normally distributed case, the conditional correlations increase or
decrease depending on the correlations with the risk factor V . In the more heavy-tailed
case (ν = 4), the effect is much less pronounced than in the less heavy-tailed case (ν =
10), which is in turn less pronounced than the normally distributed case. In other words,
correlations in t-distributed models with rather heavy tails are quite insensitive to stress,
whereas correlations in normally distributed models are much more affected by stress.

4. ASYMPTOTIC LIMIT OF CORRELATIONS UNDER STRESS

In this section we derive asymptotic limits for conditional correlations as the truncation
level C tends to −∞. Using Proposition 3.1, limC→−∞CorrC(Ai, Aj) is determined by

lim
C→−∞

VarC(V)
EC(W)

,(4.1)

if this limit exists. For normally distributed V the limit (4.1) can be computed using only
properties of the normal distribution; see Section 4.1.

More generally, it turns out that essentially the limit exists whenever V is in the MDA
of some EVT distribution.7 A random variable X is in the MDA of the distribution H
if H is nondegenerate and if a scaled and normalized distribution of the maximum Mn

7Basically all continuous distributions commonly used in statistics are in the MDA of some EVT distri-
bution (see McNeil et al. 2005, section 7.1).
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of n i.i.d. copies of X converges to H. The limit distribution H is one of the Fréchet,
Gumbel, or Weibull EV distributions. We write X ∈ MDA(H) (or F ∈ MDA(H), where
F is a distribution function) to mean that X (F) is in the MDA of H, cf. Appendix A.

The limit (4.1) depends on whether W is in the MDA of the Fréchet distribution,
in which case V is in the Fréchet MDA, or whether V is in the MDA of the Gumbel
distribution.8 We treat the two cases separately in Sections 4.2 and 4.3, respectively.

The following result, required later, holds for all NVM-distributed variables.

LEMMA 4.1. On R \ {0}, V has a density, given by fV(x) = E( 1√
W

φ( x√
W

)).

Proof. We have

FV(x) = P(
√

W X ≤ x) = E

(
P
(

X ≤ x√
W

∣∣∣∣W
))

= E

(
N
(

x√
W

))
.

For every x 	= 0, the family of derivatives of N(x/
√

w), w > 0, is locally bounded (that
is, there exist a neighborhood U of x and a constant M such that for all u ∈ U and for all
w the derivatives are bounded by M); this follows from the continuity of the derivatives
in x and w and by observing that the limits tend to zero as w → 0 and as w → ∞.
The claim now follows by the Fundamental Theorem of Calculus and by Dominated
Convergence. �

4.1. Special Case: Normal Distribution

Let us first analyze the case of jointly normally distributed V and A1 , . . . , Ak (i.e.,
W = 1). Although this is a special case of V in the MDA of the Gumbel distribution,
we examine this special case separately as it requires only properties of the normal
distribution, whereas the more general result relies on techniques from EVT.

PROPOSITION 4.2. Let V be a standard normally distributed random variable. Then,

lim
C→−∞

VarC(V) = 0.

By inserting this into the formula for asset correlations, equation (3.1), respectively,
equation (3.3), one immediately obtains the limit of the conditional correlation:

COROLLARY 4.3. Let V , A1 , . . . , Ak be jointly normally distributed. Then, for|ρ i| < 1
and |ρ j| < 1,

lim
C→−∞

CorrC(Ai , Aj ) = ρi j − ρi ρ j√(
1 − ρ2

i

)(
1 − ρ2

j

) = Corr(Zi , Zj ).(4.2)

If either |ρ i| = 1 or |ρ j| = 1 (but not both), then limC→−∞CorrC(Ai, Aj) = 0. If ρ i = ρ j =
±1, then limC→−∞CorrC(Ai, Aj) = 1. If ρ i = −ρ j = ±1, then limC→−∞CorrC(Ai, Aj) =
−1.

According to equation (4.2), the correlation under stress of Ai, Aj converges toward
the correlation of the residuals Zi and Zj obtained by regressing Y i and Y j on X .

8The case that V is in the MDA of the Weibull distribution does not arise, as all distributions in this
MDA have a finite right endpoint.
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Proof of Proposition 4.2. The claim follows from equation (3.4), if we show that9

lim
C→−∞

[
Cφ(C)
N(C)

+ φ(C)2

N(C)2

]
= 1.(4.3)

Let C < 0. We shall use the identity N(C) = φ(C) f (C), for C < 0, where f is the
continued fraction

f (C) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−C + 1

−C + 2

−C + 3
−C + · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(see Abramowitz and Stegun 1972, equation 26.2.14). We obtain

Cφ(C)
N(C)

+ φ(C)2

N(C)2
= C

f (C)
+ 1

f (C)2

= C
1

−C + 1

−C + 2
−C + · · ·

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

−C + 1

−C + 2
−C + · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

= C

⎡
⎢⎢⎣−C + 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦+

⎡
⎢⎢⎣−C + 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦

2

=

⎡
⎢⎢⎣−C + 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣C − C + 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦

= −C

−C + 2
−C + · · ·

+

⎡
⎢⎢⎣ 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦

2

= 1 −
2

−C + · · ·
−C + 2

−C + · · ·
+

⎡
⎢⎢⎣ 1

−C + 2
−C + · · ·

⎤
⎥⎥⎦

2

.

9It is known from Sampford (1953) that for C < 0, the expression in brackets is in (0, 1) and strictly
decreasing.
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FIGURE 4.1. Asymptotic asset correlations as C → −∞.

Observing that 1
−C+ 2

−C+···
≤ − 1

C , and 2
−C+··· ≤ − 2

C , for C < 0, equation (4.3) is obtained

by taking the limit. �
Figure 4.1 shows the asymptotic asset correlation for the examples of Table 3.1, where

the normally distributed case corresponds to the figure labeled “(Gumbel).”

4.2. W and V in the Fréchet MDA

Let us assume that W ∈ MDA(
α/2) (i.e., W is in the Fréchet MDA with tail index
α/2), with α > 2. Lemma 4.4 below establishes that V ∈ MDA(
α). Hence, the tail
distribution function F̄ V(x) = 1 − FV(x) is regularly varying (at ∞) with index −α and
can be represented as F̄ V(x) = x−α L(x), for some slowly varying function L. Some
members of the Fréchet MDA are the t-distribution, the Pareto distribution, and the
inverse gamma distribution.

LEMMA 4.4. If W is in MDA(
α/2), then
√

W and V are in MDA(
α). Furthermore,

lim
x→∞

F̄ V(x)

F̄√
W(x)

= E
(
Xα 1{X≥0}

)
.

Proof. By Theorem A.4 in the Appendix, F̄ W can be written as F̄ W(x) = x−α/2 L(x),
for x > 0 and some slowly varying function L. From F̄√

W(x) = F̄ W(x2) = x−α L(x2),
we obtain that

√
W ∈ MDA(
α). The claim then follows directly from Breiman (1965,

Proposition 3 and equation (3.1)) or McNeil et al. (2005, theorem 7.35). �
The main result of this section is the following proposition.

PROPOSITION 4.5. Let W ∈ MDA(
α/2), α > 2. Then,

lim
C→−∞

VarC(V)
EC(W)

= 1
α − 1

.
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By inserting the previous result into equation (3.1) we obtain the asymptotic limit of
CorrC(Ai, Aj) for heavy-tailed factors:

COROLLARY 4.6. Let W ∈ MDA(
α/2), with α > 2. Then

lim
C→−∞

CorrC(Ai , Aj ) = ρi ρ j + (ρi j − ρi ρ j ) (α − 1)√(
ρ2

i + (
1 − ρ2

i

)
(α − 1)

) (
ρ2

j + (
1 − ρ2

j

)
(α − 1)

) .
If V is t-distributed with parameter ν (i.e., W follows an inverse gamma distribution

with parameters ν/2, ν/2), then the formula above holds with α = ν. Observe that as α

approaches the value 2, the limit correlation tends to ρ ij, which is just the unconditional
correlation. In other words, when the tail is very heavy, then correlations are unaffected
by stress testing.

Figure 4.1 shows the asymptotic correlation (for the heavy-tailed case as derived in
Corollary 4.6) as a function of the tail index α for the five examples of Table 3.1. This
illustrates once again that the sensitivity of conditional correlation to stress increases
with the tail index α. In other words, the greater the α, the greater the deviation from the
unconditional correlation.

For the proof of Proposition 4.5 we need the following auxiliary result first.

LEMMA 4.7. Let X be a nonnegative random variable with distribution function F and
with F̄(x) > 0. If E(Xk) < ∞, k ≥ 0, then

E(Xk | X > x) = xk + k
∫ ∞

x

F̄(y) yk−1

F̄(x)
dy, x ≥ 0.

Moreover, if X ∈ MDA(
α), then, for k < α, E(Xk) < ∞ and

lim
x→∞

E(Xk | X > x)
xk

= α

α − k
.

Proof. We haveE(Xk | X > x) = E(Xk 1{X>x})/F̄(x). For the numerator we obtain that

E(Xk 1{X>x}) = xk F̄(x) +
∫ ∞

x
k tk−1 F̄(t) dt,

e.g., by Kallenberg (2001, lemma 3.4), and the first claim follows.
For the second claim, observe first that E(Xk) < ∞, if k < α, see (Embrechts,

Klüppelberg, and Mikosch 1997, proposition A 3.8). Let L be the slowly varying function
defined by F̄(x) = x−α L(x). Applying Karamata’s Theorem (theorem A.5), yields

lim
x→∞

E(Xk | X > x)
xk

= lim
x→∞

k
∫ ∞

x
yk−1−α L(y) dy

xk−α L(x)
+ 1 = α

α − k
.

�
Proof of Proposition 4.5. First, let us show that

lim
C→−∞

VarC(V)
C2

= α

(α − 2)(α − 1)2
.(4.4)
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Note that, V = √
WX is symmetric about 0, that is, FV(x) = F̄ V(−x) for all x ∈ R.

Hence,

lim
C→−∞

VarC(V)
C2

= lim
C→−∞

E(V2 | V ≤ C) − [E(V | V ≤ C)]2

C2

= lim
C→∞

E(V2 | V ≥ C) − [E(V | V ≥ C)]2

C2

= α

α − 2
−
(

α

α − 1

)2

,

where the last step follows from Lemma 4.7, and equation (4.4) follows.
Second, let us show that

lim
C→−∞

EC(W)
C2

= α

(α − 2)(α − 1)
.(4.5)

Observe that, for C ≥ 0, E−C(W) = E(W | √WX ≥ C). Now choose a nonnegative se-
quence (cn)n≥1 such that cn → ∞ as n → ∞, and write

lim
n→∞

E−cn (W)
c2

n
= lim

n→∞
E(W | √WX ≥ cn)

c2
n

= lim
n→∞

E(W 1{√WX≥cn})

c2
n F̄ V(cn)

= lim
n→∞E

[
E
(
W 1{√WX≥cn} | X

)
c2

n F̄ V(cn)

]
.

(4.6)

To exchange the order of limit and expectation, we must show that the sequence of
random variables Gn(X), n ≥ 1, defined P–a.s. by

Gn(X) := E
(
W 1{√WX≥cn} | X

)
c2

n F̄ V(cn)
, n ≥ 1,

is uniformly integrable and that Gn(X), n ≥ 1, converges P–a.s. To establish uniform
integrability we have to show that

lim
D→∞

lim sup
n

∫ ∞

0
Gn(x) 1{Gn (x)>D} N(dx) = 0.(4.7)

Let L be the slowly varying function that satisfies F̄ V(x) = x−α L(x), with α the tail index
of V .

First, choose C̄ > 0 such that for all c > C̄ the following four conditions are satisfied:

E(W | √W > c)
c2

≤ α

α − 2
+ 1,(4.8)

F̄√
W(c)E((X1{X>0})α) ≤ 2F̄ V(c),(4.9)

xα−2 L(c/x)
L(c)

< 2, 0 < x ≤ 1,(4.10)
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xα−2 L(c/x)
L(c)

< 2 xα−1, 1 ≤ x ≤ c/C̄.(4.11)

The existence of C̄ satisfying conditions (4.8) and (4.9) follows from Lemmas 4.4 and
4.7. Conditions (4.10) and (4.11) are a consequence of Theorem A.6 with parameters
ε = 1 and δ = α − 2 for (4.10) and ε = 1 and δ = 1 for (4.11).

Now, let cn ≥ C̄ and x ≤ cn/C̄. Then, by equations (4.8) and (4.9),

Gn(x) = E
(
W 1{√Wx≥cn}

)
c2

n F̄ V(cn)
=

∫ ∞

cn/x
w2 F√

W(dw)

c2
n F̄ V(cn)

=

⎛
⎜⎜⎝
∫ ∞

cn/x
w2 F√

W(dw)

(cn/x)2 F̄√
W(cn/x)

⎞
⎟⎟⎠
/(

c2
n F̄ V(cn)

(cn/x)2 F̄√
W(cn/x)

)

≤
(

α

α − 2
+ 1

)
F̄√

W(cn/x)

x2 F̄ V(cn)

≤ H(α)
F̄ V(cn/x)

x2 F̄ V(cn)
= H(α)

xα−2 L(cn/x)
L(cn)

,

where H(α) := 2

E
(
(X1{X≥0})α

) ( α

α − 2
+ 1

)
. Hence, by equations (4.10) and (4.11),

Gn(x) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2H(α) 0 < x ≤ 1,

2H(α) xα−1 1 < x ≤ cn/C̄.

E(W)

c2
n F̄ V(cn)

x > cn/C̄.

(4.12)

By equation (4.12) we obtain

lim
D→∞

lim sup
n

∫ cn/C̄

0
Gn(x) 1{Gn (x)>D} N(dx)

≤ lim
D→∞

∫ 1

0
2H(α) 1{2H(α)>D} N(dx)

+ lim
D→∞

∫ ∞

1
2H(α)xα−1 1{2H(α)xα−1>D} N(dx) = 0.

Finally,

lim
D→∞

lim sup
n

∫ ∞

cn/C̄
Gn(x) 1{Gn (x)>D} N(dx)

≤ lim
D→∞

lim sup
n

1{ E(W)

c2
n F̄ V (cn )

>D}
E(W)

c2
n F̄ V(cn)

[1 − N(cn/C̄)]

≤ lim sup
n

E(W)

c2
n F̄ V(cn)

[
1 − N(cn/C̄)

]

= lim sup
n

E(W) N̄(cn/C̄) eλcn

c2
n F̄ V(cn) eλcn

= 0,
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where λ > 0, and where the last step follows, because the numerator vanishes in the limit,
while the denominator tends to ∞, see Lemma A.7. This completes the proof of uniform
integrability, that is, we have established equation (4.7).

It remains to evaluate limn→∞Gn(X). For any x > 0,

lim
n→∞ Gn(x) = lim

n→∞

∫ ∞

cn/x
w2 F√

W(dw)

c2
n F̄ V(cn)

= lim
n→∞

⎡
⎢⎢⎣
⎛
⎜⎜⎝
∫ ∞

cn/x
w2 F√

W(dw)

(cn/x)2 F̄√
W(cn/x)

⎞
⎟⎟⎠
/(

c2
n F̄ V(cn)

(cn/x)2 F̄√
W(cn/x)

)⎤⎥⎥⎦ .

By Lemma 4.7, we obtain for the limit of the numerator,

lim
n→∞

⎛
⎜⎜⎝
∫ ∞

cn/x
w2 F√

W(dw)

(cn/x)2 F̄√
W(cn/x)

⎞
⎟⎟⎠ = α

α − 2
.

For the denominator, application of Lemma 4.4 and the definition of regularly varying
functions yield

lim
n→∞

c2
n F̄ V(cn)

(cn/x)2 F̄√
W(cn/x)

= lim
n→∞

[
F̄ V(cn)

F̄√
W(cn)

· x2 F̄√
W(cn)

F̄√
W(cn/x)

]

= E((X1{X≥0})α) · x−(α−2).

Hence,

lim
n→∞ Gn(X) = α

(
X1{X≥0}

)α−2

(α − 2)E
(
(X1{X≥0})α

) P–a.s.

Finally, taking expectation (continuing equation (4.6)), we obtain

E
[

lim
n→∞ Gn(X)

]
= αE

(
(X1{X≥0})α−2

)
(α − 2)E

(
(X1{X≥0})α

) = α

(α − 1)(α − 2)
,(4.13)

where the last equality follows, because by partial integration∫ ∞

0
xa φ(x) dx = 1

a + 1

∫ ∞

0
xa+2 φ(x) dx, a > 0.

Because equation (4.13) holds for any sequence (cn)n≥1, we have established equation (4.5).
Combining equations (4.4) and (4.5) completes the proof. �

4.3. V in the Gumbel MDA

Let us now consider the case when V is in the MDA of the Gumbel distribution. The
MDA of the Gumbel distribution comprises a wide range of distribution functions, such
as the log-normal, exponential, and the normal distributions.

The following proposition is the main result of this section.
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PROPOSITION 4.8. Let V ∈ MDA(�). Then, limC→−∞
VarC(V)
EC(W)

= 0.

The corresponding formula for asset correlations is obtained by inserting this expres-
sion into equation (3.1).

COROLLARY 4.9. Let V ∈ MDA(�). Then, for |ρ i| < 1 and |ρ j| < 1,

lim
C→−∞

CorrC(Ai , Aj ) = ρi j − ρi ρ j√(
1 − ρ2

i

)(
1 − ρ2

j

) = Corr(Zi , Zj ).(4.14)

If either |ρ i| = 1 or |ρ j| = 1 (but not both), then limC→−∞CorrC(Ai, Aj) = 0. If ρ i = ρ j =
±1, then limC→−∞CorrC(Ai, Aj) = 1. If ρ i = −ρ j = ±1, then limC→−∞CorrC(Ai, Aj) =
−1.

The asymptotic correlations for the examples of Table 3.1 are given in Figure 4.1.
For the proof of Proposition 4.8 we need the following properties of the tail function

F̄ V(x) of V . Observe that from the first part of Lemma 4.7 one obtains a “mean excess
function for higher moments,” in the sense that

E(Vk − xk | V > x) = k
∫ ∞

x

yk−1 F̄ V(y)

F̄ V(x)
dy, x ≥ 0.(4.15)

Furthermore, it follows from Theorem A.9 that for V ∈ MDA(�)

lim
C→∞

∫ ∞

C
F̄ V(x) dx

CF̄ V(C)
= 0,(4.16)

lim
C→∞

∫ ∞

C
xF̄ V(x) dx = 0.(4.17)

LEMMA 4.10. Let V ∈ MDA(�). Then limC→∞
∫∞

C C F̄ V (x) dx∫∞
C x F̄ V (x) dx

= 1.

Proof. The denominator vanishes, see equation (4.17). Furthermore, the numerator is
strictly smaller than the denominator, so it vanishes, too. By Lemma 4.1, F̄ V is continuous
and therefore

d
dC

∫ ∞

C
x F̄ V(x) dx = −CF̄ V(C) 	= 0, C > 0,

so that the conditions for applying the rule of L’Hospital to
∫∞

C C F̄ V (x) dx∫∞
C x F̄ V (x) dx

are satisfied:

lim
C→∞

∫ ∞

C
C F̄ V(x) dx∫∞

C x F̄ V(x) dx
= lim

C→∞

∫ ∞

C
F̄(x) dx − CF̄ V(C)

−CF̄ V(C)
= lim

C→∞
1 −

∫ ∞

C
F̄ V(x) dx

CF̄ V(C)
.

But the last term vanishes, see equation (4.16). �
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Proof of Proposition 4.8. By symmetry of V , we may equally show that

lim
C→∞

Var(V | V ≥ C)
E(W | V ≥ C)

= 0.(4.18)

Let C > 0 and write Var(V |V ≥ C) in the form

Var(V | V ≥ C) = C2 + E(V2 − C2 | V ≥ C) − (C + E(V − C | V ≥ C))2

= E(V2 − C2 | V ≥ C) − 2C E(V − C | V ≥ C) − (E(V − C | V ≥ C))2.

We divide each component by E(V2 − C2 | V ≥ C) and analyze the limit for C → ∞: by
equation (4.15) and Lemma 4.10,

lim
C→∞

2C E(V − C | V ≥ C)
E(V2 − C2 | V ≥ C)

= lim
C→∞

∫ ∞

C
C F̄ V(x) dx∫∞

C x F̄ V(x) dx
= 1.

Furthermore, as C → ∞

(E(V − C | V ≥ C))2

E(V2 − C2 | V ≥ C)
= E(V − C | V ≥ C)

2C
· 2C E(V − C | V ≥ C)
E(V2 − C2 | V ≥ C)

→ 0,

as
E(V − C | V ≥ C)

2C
=

∫ ∞

C
F̄ V(x) dx

2CF̄ V(C)
vanishes, cf. equation (4.16).

By combining the equations above we obtain

lim
C→∞

Var(V | V ≥ C)
E(V2 − C2 | V ≥ C)

= 0.

For completing the proof of equation (4.18) we show that

E(V2 − C2 | V ≥ C) ∼ 2E(W | V ≥ C).(4.19)

From E(W1{V≥C}) = E(E(W1{√WX≥C} | W)) = E(W N̄( C√
W

)) we obtain

E(V2 − C2 | V ≥ C)
2E(W | V ≥ C)

=

∫ ∞

C
x F̄ V(x) dx

E(W1{V≥C})
=

∫ ∞

C
x F̄ V(x) dx

E

(
W N̄

(
C√
W

)) .

Both the numerator and the denominator vanish as C →∞; for the numerator this follows
from equation (4.17), and for the denominator this follows by Dominated Convergence.
We apply the rule of L’Hospital (where the derivative of the denominator is obtained
by applying the Dominated Convergence Theorem) and further the identity (derived by
partial integration)

φ(x) =
∫ ∞

x
y φ(y) dy = x N̄(x) +

∫ ∞

x
N̄(y) dy,
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and obtain

C F̄ V(C)

E

(√
Wφ

(
C√
W

)) = C F̄ V(C)

E

(
C N̄

(
C√
W

)
+ √

W
∫ ∞

C/
√

W
N̄(y) dy

) .

Finally, it follows from F̄ V(z) = E(N̄(z/
√

W)), z ∈ R, that

C F̄ V(C)

E

(
C N̄

(
C√
W

)
+ √

W
∫ ∞

C/
√

W
N̄(y) dy

) = C F̄ V(C)

C F̄ V(C) +
∫ ∞

C
F̄ V(y) dy

→ 1,

as C → ∞, where the limit is a consequence of equation (4.16). This establishes equa-
tion (4.19) and completes the proof. �

REMARK 4.11. Because we have used only properties of the class of rapidly varying
functions, to which the distribution functions with infinite right endpoint in the Gumbel
MDA belong, Proposition 4.8 can be generalized to “If F̄ V is rapidly varying, then
limC→−∞

VarC(V)
EC(W) = 0.”

5. EXAMPLE: APPLICATION TO STRESS TESTING

Let us demonstrate how the results from the previous sections can be applied in practice.
The initial motivation for analyzing correlations under stress is to better understand the
results of stress tests performed in financial institutions. A typical example of a credit
portfolio stress test is presented in Bonti et al. (2006), where a sample investment banking
portfolio consisting of 25,000 loans is modeled in a structural credit portfolio model,
see Merton (1974). In the Merton model, firm i defaults if its asset value Ai (at some
fixed time horizon) falls below a threshold Di ∈ R, chosen such that P(Ai ≤ Di) equals
a given probability of default. Bonti et al. (2006) specify the dependence structure of the
asset variables via 75 systematic factors that represent geographic regions and industries.
The factors are assumed to be normally distributed, which is still industry standard in
credit portfolio modeling. The stress scenario is implemented by truncating one of the
systematic factors, the risk factor for the automotive industry.

The results of the stress test reported in Bonti et al. (2006) show a pattern that is
often encountered: the relative impact of the stress on the expected loss of the portfolio,
i.e., the mean of the portfolio loss distribution, is much stronger than on the VaR of
the portfolio. In the specific stress test, the portfolio Expected Loss increased by 56%
whereas the 99.98% VaR increased by 19% only.

The correlation formulas derived in this paper provide insight into the behavior of
these risk measures under stress. First of all, note that the systematic country and indus-
try factors typically show high positive (unstressed) correlations, which induce positive
correlations of systematic factors and asset variables of the individual counterparties. In
a normally distributed model, these correlations are significantly reduced under stress
as illustrated in Figure 3.2. It is therefore not surprising that the increase of the stressed
VaR, which strongly depends on the asset correlations in the stressed model, is less signif-
icant than the increase of the stressed EL, which only depends on exposure and stressed
default probabilities.
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In addition to the analysis of stress tests, the formulas for correlations under stress can
be used to design new meaningful stress scenarios, where the conditional correlation is
set to an appropriate value, such as an empirical conditional correlation. We provide two
examples of credit portfolio stress tests for illustration.

Both stress tests are implemented in a structural credit portfolio model with NVM-
distributed asset variables as specified in (2.1) and (2.2). We make two simplifying
assumptions, which, however, do not affect the qualitative behavior of the results: First,
we assume that the correlations of X and Y i and the correlations of Y i and Y j are
homogeneous, i.e., there exist ρ, ρ̄ such that

ρ = Corr(X, Yi ), ρ̄2 = Corr(Yi , Yj )(5.1)

for all i, j ∈ {1 , . . . , k}, i 	= j . In this case, the asset variables Ai := √
WYi , i = 1 , . . . , k, can

be conveniently represented by the systematic factor V = √
WX, an additional systematic

factor
√

WY and k specific factors
√

Wε1, . . . ,
√

Wεk, where X , Y , ε1 , . . . , εk are standard
normally distributed and independent:

Ai =
√

W
(

ρ̄

(
ρ

ρ̄
X +

√
1 − ρ2/ρ̄2Y

)
+
√

1 − ρ̄2εi

)
.(5.2)

It is easily seen that Corr(
√

WX, Ai ) = Corr(X, Yi ) and that Corr(Ai, Aj) = Corr(Y i,
Y j).

As a second simplification, we consider only credit portfolios consisting of loans with
identical default probability p and we assume that the portfolios are infinitely granular
with equally weighted loans with total value 1 (in some monetary unit). In the normally
distributed case, this leads to the well-known Vasicek formula, Vasicek (1991), which
is the basis for the Basel 2 formula for regulatory capital for credit risk. The Vasicek
formula is easily generalized to NVMs, in which case the portfolio loss is given by

L := lim
k→∞

1
k

k∑
i=1

1{Ai ≤D} = N

(
D/

√
W − ρ̄(ρ/ρ̄X +

√
1 − ρ2/ρ̄2 Y)√

1 − ρ̄2

)
P-a.s.,

(5.3)

where N denotes the normal distribution function and D is the truncation threshold
that yields a default probability p, i.e., P(Ai ≤ D) = p. Both the Vasicek formula and
equation (5.3) follow from the Strong Law of Large Numbers by conditioning on W , X ,
and Y , and from Fubini’s Theorem; for further details see, e.g., Bluhm, Overbeck, and
Wagner (2003, proposition 2.5.4).

Note that equation (5.3) illustrates another interpretation of the general NVM model:
instead of NVM-distributed systematic and specific components with a common mixing
variable, which introduces dependence between the two components, one can think
of normally distributed independent components and a stochastic default threshold
D/

√
W.

5.1. Stressing the Correlation

In the first example, we choose a one-factor model with uncorrelated specific compo-
nents, that is, the asset variables are given by equation (5.2) with ρ̄2 = ρ2 = Corr(Ai , Aj )
for any two assets i, j. We set the default probability to p = 0.005, and we examine VaR
at the 99.9% level for different correlations and stress levels. The truncation threshold C
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FIGURE 5.1. Top row: normally distributed asset returns; bottom row: t-distributed
asset returns (ν = 5). Left column: unconditional correlation ρ2 versus conditional
correlation ρ2

C for different stress probabilities; middle column: VaR for different
stress probabilities; right column: VaR for different stress probabilities with correlation
stressed. Stress probabilities: solid line: unstressed; small dashes: 10%; wide dashes:
1%; dash-dot-dash: 0.1%.

is chosen according to given stress probabilities of 10%, 1%, 0.1%, that is, P(V ≤ C) ∈
{10%, 1%, 0.1%}. We consider both a normally distributed model and a t-distributed
model with parameter ν = 5.

In the middle column of Figure 5.1, the unstressed and stressed VaRs are shown as
a function of the unstressed correlation ρ2. As can be seen, VaR increases with the
stress level and with ρ2. Furthermore, VaR is greater in the t-distributed case than in the
normally distributed case.

In these stress scenarios the dependence structure is specified via unstressed correla-
tions. It is ignored that correlations under stress may behave differently than implied
by the model. The formulas for conditional correlation derived in the previous sections
can be applied to set the conditional correlation to a target value rather than relying on
the values implied by the model. The left column of Figure 5.1 shows the mapping of
asset correlation ρ2 to the correlations under stress CorrC(Ai , Aj ) =: ρ2

C. This allows for
choosing target correlations under stress by inserting appropriate unstressed correlations
into the model. With the formulas for conditional correlation derived for normally and
t-distributed random variables one can make the notion of a stressed correlation precise,
whereas for the more general NVMs the asymptotic correlation may be used to derive
the unstressed correlation.

Thus, in a second step, we consider the correlation itself as an additional risk factor
subjected to stress. Here, we employ a “constant correlation” assumption in the sense that
we require the target conditional correlation to equal the original unstressed correlation.
The resulting VaRs under stress are shown in the right column of Figure 5.1. Because
in our example conditional correlation decreases with increasing stress, these stressed
VaRs are greater than the stressed VaRs in the first case. In particular, under high
stress, VaR increases to 1, the notional amount of the portfolio, even for moderately low
correlations. On the other hand, the differences in expected loss, which corresponds to
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the probability of default, between the two stress scenarios are relatively small compared
to the differences in VaR.

The example gives an explanation for the observation of the relatively moderate in-
crease of VaR under stress compared to EL mentioned at the beginning of the section.
It confirms that decreasing conditional correlation in light-tailed models is a key driver
of this behavior. Moreover, we demonstrate that choosing a heavy-tailed distribution or
that stressing the correlation in an appropriate way mitigates the problem.

All calculations were done by simulating the risk factor. For each given stress prob-
ability, 100,000 simulations fulfilling the condition {V ≤ C} were drawn. To assess the
quality of the estimates we calculate the sample standard deviation of the VaR estimator
assuming a correlation of 0.5 by simulating the estimator 10 times. The resulting standard
deviations are within 2% of the VaR figure in the normally distributed case and within
1.2% in the t-distributed case.

In the setup above, one may also consider one of the assets as a risk factor. Truncating
the asset return at its default boundary and providing the correlation under stress may
be useful for studying contagion effects.

5.2. Empirical Example

In contrast to the first example we now implement stress scenarios in the unrestricted
two-factor model (5.3) and calibrate model parameters to empirical data, consisting
of rating data and equity time series of the DAX and its 30 constituents. The default
probability p that enters the Vasicek formula is set to 0.058% (i.e., 5.8 basis points).
This value is derived from S&P credit ratings of the DAX companies.10 Taking the DAX
return to be the systematic factor, the correlation parameters are calibrated to historical
equity data, i.e., to daily returns from the DAX index and its n = 30 constituents ranging
from February 5, 2001 to December 20, 2011.11 The average (unstressed) correlations are
given by

ρ = Corr(V, Ai ) = 1
n

n∑
i=1

ρi = 0.6161,

ρ̄2 = Corr(Ai , Aj ) = 1
n2 − n(n − 1)/2

n∑
i=1

n∑
j=i+1

ρi j = 0.415.

Note that ρ̄ = 0.6442 and that ρ2 = 0.3796.
We use the formulas for conditional correlation to calculate the correlations under

stress for ρ2 and ρ̄2 as estimated for both the normal distribution and the t-distribution,

10The credit ratings are mapped to one-year default probabilities, using cumulative default rates of
European corporates from 1981 until 2010, S&P (2011). The default probabilities are in turn mapped to
hazard rates, of which a weighted average is calculated. From this, an average default probability of 0.00058
is determined. Three names do not have a credit rating, making up a total of 9.62% of the DAX, which we
simply ignore in our calculations.

11Because the time series data are typically not i.i.d., one can consider applying a GARCH filter to
each time series. This entails fitting each time series to a GARCH model and dividing each return by its
corresponding volatility estimate from the GARCH model, yielding the so-called innovations, which are
assumed to be i.i.d. Each innovation is then multiplied with the volatility forecast for the next time period.
Under the assumption of i.i.d. innovations, this yields a sample of i.i.d. returns. We refer to, e.g., Barone-
Adesi, Bourgoin, and Giannopoulos (1998), McNeil and Frey (2000), Alexander and Sheedy (2008) for
further details on GARCH filtering.
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FIGURE 5.2. Average correlations under stress ρ̄2
C = CorrC(Ai , Aj ) (left), respectively,

ρ2
C = (CorrC(V, Ai ))2 (right); solid line (small dashes): assuming constant ρ2 and ρ̄2

and normally distributed (t-distributed) asset returns; wide dashes: ρ̄2
C, respectively,

ρ2
C, implied by the data.

where in the latter case we set ν = 3.46, which is the average tail index estimated from the
DAX returns. In addition, we calculate average empirical correlations when the DAX is
subjected to stress. As can be seen from Figure 5.2, the empirical conditional correlation
behaves differently than the conditional correlations in both the normally distributed and
the t-distributed case. For thresholds close to 0, the empirical conditional correlation
is similar to the t-distributed case. For more severe stress the empirical conditional
correlation is smaller than in the t-distributed case, but still greater than in the normally
distributed case.12 Of course, as the stress increases, the sample size decreases. The actual
number of samples under conditioning ranges from 74 at C = −0.035 to 1069 at C =
−0.0025 (the total number of returns is 2,769).

We calculate VaR under stress for ρ2 and ρ̄2 as estimated for both the normal dis-
tribution and the t-distribution. We repeat the calculations, but now with the empirical
conditional correlations. For this we back out unstressed correlations from the empirical
stressed correlations ρ2

C and ρ̄2
C that need to be fed into the model to produce the target

correlations under stress.
The resulting ELs and VaRs are shown in Figure 5.3.13 In the normally distributed

case the lower conditional correlation (compared to the empirical conditional correlation)
translates into lower stressed ELs and VaRs (see top graphs of Figure 5.3). Thus, imposing
the empirical conditional correlations rather than using the unconditional estimates gives
a more prudent estimate of risk under the stress scenario. For the t-distributed case, the
impact of the correlation parameter turns out to be more moderate: in line with the
correlation analysis in Figure 5.2, the stressed EL and VaR figures turn out to be similar
for truncation levels greater than −2% (given the scarcity of data, a clear interpretation for

12Observe that one should not necessarily expect that conditional correlations increase with the level
of stress applied. This so-called correlation breakdown refers to an increase of dynamic correlations in
stressed markets and has been verified empirically in different markets, see for example, Longin and Solnik
(2001), Loretan and English (2000), Ang and Chen (2002), Ang and Bekaert (2002), Kim and Finger
(2000). It has gained wide interest as it annihilates the risk reducing effect of a well-diversified or a hedging
portfolio when it is needed most, namely in a stressed market. The association of conditional correlation
with correlation breakdown is not straightforward: one cannot necessarily deduce from the behavior of
conditional correlations that correlations change with time or state. This point is discussed in detail in Boyer
et al. (1999).

13All calculations are done by Monte Carlo simulation with 500,000 simulations fulfilling {√WX ≤ C}
for each truncation level C.
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FIGURE 5.3. EL (left) and VaR (right) for the DAX portfolio under stress. Top: normal
distribution case; bottom: t-distribution case. Solid line: assuming constant ρ2 and ρ̄2;
dashed line: setting ρ2

C and ρ̄2
C to the values determined from the data.

lower truncation levels may be difficult). Hence, in this example the t-distributed model
provides a consistent framework for modeling unstressed as well as realistic stressed
correlations.

6. CONCLUSION

We study correlations in truncated NVM distributed models. The main motivation for
our analysis comes from stress testing. Stress tests on bank portfolios have gained partic-
ular importance as a technique for assessing the adequacy of capital buffers in financial
institutions, and as such form an integral part of risk management and banking supervi-
sion.

The class of NVM models is significant for practical applications as it encompasses
many models commonly encountered in the financial industry. For example, our results
can be applied to the most popular credit portfolio models such as CreditMetricsTM

and Moody’s KMV Portfolio ManagerTM, where log-returns of asset values follow a
multivariate normal distribution. The appeal of the NVM distribution in the industry
certainly comes from its simplicity combined with diverse tail behavior, ranging from
light- to heavy-tailed.

From a technical point of view, our results are summarized as follows: for the special
cases of jointly normally and t-distributed asset returns we have derived closed formulas
for the correlation in the truncated model. More generally, for the NVM distribution,
we have calculated the asymptotic limit of the correlation, which depends on whether
the variables are in the MDA of the Fréchet or Gumbel distribution. It turns out that
correlations in heavy-tailed NVM models are less sensitive to stress than in medium- or
light-tailed models.



452 M. KALKBRENER AND N. PACKHAM

Our analysis allows for a critical review of the suitability of this model class to reproduce
empirically observed conditional correlations, and as such provides valuable information
for risk and capital management in financial institutions. Also, using our results, the
conditional correlation can take the role of a further free parameter, which can be set to
a target value, for example to design more prudent stress tests.

We illustrate the application of our correlation formulas by comparing VaR under
stress for a stylized credit portfolio, both under different distribution and correlation
assumptions, and using empirical conditional correlations derived from DAX data.

APPENDIX A: SOME RESULTS FROM EVT

We give a brief review of some results of EVT that are applied in this paper; standard
references to EVT are Embrechts et al. (1997), Resnick (2007), and de Haan and Ferreira
(2006).

The central result of classical EVT is the Fisher–Tippett Theorem, which specifies the
form of the limit distribution for centered and normalized maxima.

THEOREM A.1 [Fisher–Tippett Theorem, limit laws for maxima]. Let (Xn) be a se-
quence of i.i.d. random variables, and let Mn = max (X1 , . . . , Xn). If there exist norming
constants cn > 0, dn ∈ R and some nondegenerate distribution function H such that

Mn − dn

cn

L→ H, as n → ∞,(A.1)

then H belongs to the type of one of the following three distribution functions:

Fréchet: 
α(x) =
{

0, x ≤ 0

exp{−x−α}, x > 0
α > 0,

Weibull: �α(x) =
{

exp{−(−x)α}, x ≤ 0

1, x > 0
α > 0,

Gumbel: �(x) = exp{−e−x}, x ∈ R.

If equation (A.1) holds, then the type of the limiting distribution is uniquely determined,
and does not depend on the particular choice of norming constants cn, dn.

DEFINITION A.2. A random variable X with distribution function F belongs to the
MDA of H if there exist constants cn > 0, dn ∈ R such that equation (A.1) holds, written
X ∈ MDA(H) and F ∈ MDA(H).

A different parameterization allows grouping the Fréchet, Weibull, and Gumbel dis-
tributions into one family of distribution functions, called the generalized extreme value
distributions.
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A.1. Maximum Domain of Attraction of the Fréchet Distribution

The distributions that are in MDA(
α), α > 0, have a particularly elegant and conve-
nient representation via slowly varying functions or regularly varying functions.

DEFINITION A.3. A positive, Lebesgue-measurable function L on (0, ∞) is slowly
varying (at ∞) if

lim
x→∞

L(tx)
L(x)

= 1, t > 0.

A positive, Lebesgue-measurable function h on (0, ∞) is regularly varying (at ∞ ) with
index ρ ∈ R if

lim
x→∞

h(tx)
h(x)

= tρ, t > 0.

We shall drop the specification “at ∞,” because we only consider functions that are
regularly or slowly varying at ∞. It is easily seen that h is regularly varying with index
ρ if and only if there exists a slowly varying function L such that h(x) = xρ L(x) (just
choose L(x) = h(x)/xρ). For details on regularly varying functions, we refer to Bingham,
Goldie, and Teugels (1987).

The following theorem completely characterizes those distribution functions that are
in the MDA of the Fréchet distribution.

THEOREM A.4 [Gnedenko (1943)]. The distribution function F belongs to MDA(
α),
α > 0, if and only if F̄(x) := 1 − F(x) = x−α L(x) for some slowly varying function L.

It follows directly that these distribution functions have infinite right endpoint, that
is sup{x : F(x) < 1} = ∞. Examples of distributions in MDA(
α) are the t-distribution
and the inverse gamma distribution. The parameter α is called the tail index. In the case
of the t-distribution the degree of freedom is α.

An important result for regularly varying functions, which is used in Section 4.2, is
Karamata’s Theorem, see Bingham et al. (1987, theorem 1.5.11 (ii)) or McNeil et al.
(2005, theorem A.5).

THEOREM A.5 [Karamata’s Theorem]. Let L be a slowly varying function that is locally
bounded in [x0, ∞), for some x0 ≥ 0. Then,

(i) for κ > −1,

∫ x

x0

tκ L(t) dt ∼ 1
κ + 1

xκ+1 L(x), as x → ∞,

(ii) for κ < −1,

∫ ∞

x
tκ L(t) dt ∼ − 1

κ + 1
xκ+1 L(x), as x → ∞.

The following bound for regularly varying functions can be found, e.g., in Potter (1942)
and de Haan and Ferreira (2006, proposition B.1.9):
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THEOREM A.6 [Potter bound]. Suppose h is regularly varying with index ρ. For arbi-
trary ε > 0 and δ > 0 there exists x0 = x0(ε, δ) such that for x ≥ x0, x t ≥ x0,

(1 − ε)tρ min(tδ, t−δ) <
h(tx)
h(x)

< (1 + ε)tρ max(tδ, t−δ).

Conversely, if h satisfies the property above then h is regularly varying with index ρ.

The following is a direct consequence of corollary 1.3.2 and lemma 1.3.5 of Embrechts
et al. (1997):

LEMMA A.7. If the tail distribution function F̄ is regularly varying, then limx→∞
eεx F̄(x) = ∞, for all ε > 0.

A.2. Maximum Domain of Attraction of the Weibull Distribution

Distributions in MDA(�α), α > 0, all have finite right endpoint. They include, for
example, the uniform and the beta distributions.

A.3. Maximum Domain of Attraction of the Gumbel Distribution

The MDA of the Gumbel distribution covers a wide range of distribution functions,
such as the log-normal, exponential, and the normal distributions. This class contains
distribution functions with both finite and infinite right endpoint. If the distribution
function F ∈ MDA(�) has an infinite right endpoint, then F̄ is rapidly varying.

DEFINITION A.8. A positive, Lebesgue-measurable function h on (0, ∞) is rapidly
varying with index −∞ if

lim
x→∞

h(tx)
h(x)

=
{

0, t > 1,

∞, 0 < t < 1.

For rapidly varying functions, there exists an analogous result to Karamata’s Theorem,
see e.g., Embrechts et al. (1997, theorem A3.12):

THEOREM A.9. Let h be a nonincreasing, rapidly varying function. Then for some z > 0
and all κ ∈ R ∫ ∞

z
tκ h(t) dt < ∞ and lim

x→∞
xκ+1 h(x)∫∞

x tκ h(t) dt
= ∞.
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EMBRECHTS, P., C. KLÜPPELBERG, and T. MIKOSCH (1997): Modelling Extremal Events for Fi-
nance and Insurance, Berlin: Springer.

GEMAN, H., D. B. MADAN, and M. YOR (2001): Time Changes for Lévy Processes, Math. Finance
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