
1Copyright Marmalade Graphics ©2004

had just done, or doing tasks that would undo ones
you had just done. You can write the sequence as a
series of pictures, or as written commands. That’s all
there is to it!

Which language would you use? For cookery, you
would speak in English, or French or Spanish, but you
would use similar food ingredients. For GDL, you use
the language of BASIC, and your ingredients are com-
mands to produce primitives like BLOCK, CYLIND and
CONE; and you can go on to make more complex
shapes like TUBE. BASIC is the easiest of the major
programming languages, devised in the seventies, and
was predominant on micros during the eighties. BA-
SIC is easy to learn – so is GDL.

Graphisoft must be thanked for choosing BASIC as
the model for their programming language. We can all
write a few lines of code, and see 3D objects spring-
ing up into existence. It’s fun! It’s intellectually chal-
lenging! One’s capabilities are vastly increased – in the
‘old days’ of programming, BASIC could build menu
driven programs for dull things like accounts and cal-
culations, many of which were far easier to do in
spreadsheets. Now, with GDL, towers, chairs, bridges,
space structures, buildings and trees can all grow from
your keyboard.

INTERFACING – GDL objects can behave slightly
intelligently in that they can know storey, scale,

frame number, object’s location, current pen, camera
position and so forth, and behave accordingly. If they
are windows and doors, they can know current wall
thicknesses and materials.

Introducing GDL
(Geometric Description Language)

GDL COMMANDS – in their raw state are avail-
able to you in the GDL manual. It is difficult to

understand their use and syntax until you have to ap-
ply them for real. Therefore, the cookbook approach
in this book gives you an easier way of learning them
by doing small projects, a bit at a time. The cookbook
method is based on small projects, growing in com-
plexity and a critical look at what we have learned from
it. This is analogous to the process of architectural edu-
cation. The GDL explanations in this cookbook runs
systematically through all the 2D and 3D commands
with small examples of the commands at work.

3D ORGANISATION – You may not be able to build
something in every detail, but you look at it, and

decide what parts of it need to be included. You also
decide how the object will behave if it is to be stretched
or hinged, and what 3D primitive shapes – blocks, cyl-
inders, cones, surfaces – would best produce the ob-
ject.

PROGRAMMING – A program is just a sequence
of instructions. You can read instructions to some-

one over the telephone, you can struggle through the
instructions for setting the controls on your new video,
you can explain a cookery recipe to a friend, or plan
the most efficient way of mowing the lawn. There is
even a program required in making a cup of tea! In all
these cases you use a program, even if you didn’t think
of it as a program. Suppose you write down the se-
quence of tasks, you would be sure to get them into
the right order. You would try to avoid doing tasks you

Working with GDL consists of
four main areas of knowledge

IN the early days of ArchiCAD, the forerunner
 of ArchiCAD (RaDar) ran on an old Hewlett

Packard as a 3D Piping design solution. Yes, the origi-
nal Graphisoft team designed 3D piping for nuclear
power stations! Then they got more and more inter-
ested in the problem of wrapping buildings around the
piping. Gradually they moved into architecture.

Not having a mouse or windows, the ancestor of
ArchiCAD was something like GDL – a scripting lan-
guage to produce 3D form. The arrival of the Apple
Lisa followed by the Macintosh enabled programmers
to put the building plan into one window, the building
tools into another (to form a palette of clickable but-
tons), coordinates in another palette, and so on.

ArchiCAD as we now know it became visual – place
elements, click, drag and click again. Designers could
drop walls and other building elements into a plan win-
dow, stretch them to fit and change their properties;
view the 3D results in another window. GDL survived
as a speciality, evolving in its own way as a means of
building library objects. For some, GDL is the reason
for picking ArchiCAD over its competitors.

GDL COMMANDS
– produce 3D and

2D entities – like CONE,
BLOCK, SPHERE,
TUBE, POLY, ARC,
REVOLVE and so on.

3D ORGANISATION
– look at the object

analytically and under-
stand what 3D shapes it
contains and what rules
they follow.

PROGRAMMING
– the organization

of the script in a struc-
tured way, observing
rules of syntax.

INTERFACING
with ArchiCAD –

to enable the object to
respond to conditions
in the main project.

Introduction to GDL

2 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

So, you think you can’t
program...

NEXT, you look at each Operation and realise that
none of them are single Actions. Each operation

consists of a number of Actions which might include
Error Checking. For example, if the teapot contains
last night’s teabags, then Wash Teapot. This might re-
quire quite a lot of IF statements, followed by the Ac-
tions taken as a result of the IF statements.

WELL you can! Squirrels can program, birds
can program, spiders do it, small children do

it – in that they plan a series of actions, they try to get
them in the right order, they correct their own mis-
takes when they make them, and they achieve a result
– perhaps a hoard of nuts, a nest full of eggs, a web, or
a Lego model.

The British Standards Institute (Sept ‘99) received
the ‘Ig Nobel’ Prize for Literature in that they wrote
BS.6008: Method for Preparation of a Liquor of Tea, and
took 5000 words to do it, going into the minutest de-
tail! We will not go quite so far, but let’s use tea mak-
ing as an example of human programming. Let’s write
down a series of ‘Operations’ involved in making Tea.
Without going into too much detail, list the sequence
of operations to someone who knows the obvious
things like how to turn on taps. Anybody reading this
(above the age of 10) should be able to recite the at-
tached list in the right order.

Lovers of tea should try this website for more about
the history and culture of tea:
http://www.stashtea.com/

Now because we are going to teach a computer how
to make tea, you need to rewrite the list giving each
Operation a number (with a colon), and use an excla-
mation mark to make each Operation name into a La-
bel. For a human, you might number each task 1, 2, 3,
etc, but for computers it’s easier to use larger numbers
(because later, you could insert extra things you hadn’t
thought of, like getting the sugar lumps.)

The final program for
making tea

Goes around until kettle
filled: 2 IF statements

A single line way of writing
two IF statements

People are ‘integer’ quanti-
ties; but this makes doubly
sure that you can make tea
for 2.

For the ‘parameter’ of tea,
you could let the user select
from a list of choices.

In the event of a major
problem you might have to
jump back to the start.

100: !Fill Kettle with water
200: !Boil water
300: !Get teapot
400: !Fill teapot with bags
500: !Fill with water
600: !Get cups
700: !Wait until ready
800: !Pour out
900: !Add Milk
1000:!Serve Tea 2

1. Fill Kettle with water
2. Boil water
3. Get teapot
4. Fill teapot with bags
5. Fill with water
6. Get cups
7. Wait until ready
8. Pour out
9. Add Milk
10.Serve Tea 1

100:!Fill Kettle with water
IF kettle (empty) THEN (Fill kettle with water)
IF kettle (filled) THEN CONTINUE:!Boil water

200:!Boil water
IF water (boiling) THEN (turn kettle off) ELSE (boil water)

300:!Get teapot
IF (number of people) less or equal to 2 THEN (GET smallteapot)
IF (number of people) greater than 2 THEN (GET largeteapot)
IF teapot (dirty) THEN (wash out teapot) UNTIL (clean)
IF teapot (clean) THEN (swirl hot water) UNTIL (warm)
IF teapot (warm) THEN (Fill teapot with bags) !continue

400:!Fill teapot with bags
LET teatype=USERCHOOSE(EarlGrey,Lapsang,Camomile,Tetleys,Green)
IF teapot (large) THEN add 2 teabag USING teatype
IF teapot (small) THEN add 1 teabag USING teatype

500:!Fill with water
POUR water INTO teapot UNTIL teapotfil (full)
IF (not enough water) THEN GOTO 100:
PLACE teacosy UPON teapot
START timeclock USING seconds

3

Continued next page

Depending on the level of knowledge or stupidity of
the machine, you instruct it appropriately. For exam-
ple we assume here that the machine knows how to
turn a tap or a kettle on. In the same way, GDL knows
that Cylinders are round and that Cones are tapered
and round without us having to define ‘roundness’
mathematically.

3Copyright Marmalade Graphics ©2004

700:!Wait until ready
IF TIMECLOCK less than 120 seconds THEN WAIT

800:!Pour out
REPEAT (on the teatray)
 IF fullness=0 THEN POUR (a cup) UNTIL fullness=7/8
 UNTIL (enough cups for everybody)

900:!Add Milk
LET milkcondition=USERCHOOSE(with milk,without milk)
 REPEAT (for each cup on the teatray)
 IF milkcondition=(with milk) THEN (add milk to cup)
 UNTIL (each cup tested)

1000:!Serve Tea
1100:!Tea too hot, pour into saucer and drink from that
 !...vicar is shocked!

OK, we can’t all be perfect. The British Standard says put the milk in the
cup first, and of course, I haven’t tested to see if the users have chosen sugar,

or want spoons, saucers or biscuits. And what happens if there isn’t enough tea for
everyone? Then you have to loop back and top up the teapot, or even reboil the
kettle. This could be built into the program. That level of detail and error correction
would make the program more professional and user friendly.

I hope this shows the sort of thing you can do, and has persuaded you that you
can indeed write a program.

This was going on while you
were getting the cups.

Another repeating ‘Loop’

Another example of
getting the parameter from
the user’s choice.

Now this isn’t written in
BASIC, and it isn’t written
in GDL, but it’s close to
both of those two, and
shows that programming
can be like writing in
English in a slightly
mathematical style.

4

How do you make an
Object?
Look at it as if through half closed eyes.....
See it like this in your mind’s eye, reduce the object to
what you feel is essential about it; and then you ask...
Can you draw it in 3D on paper?
If you can sketch it in 3D, you are well on the way to
understanding how you would build it in GDL; and then
you ask...
What are its primitive forms?
Most things can be simplified to the simple shapes of
cylinders, blocks, and cones; furthermore, you can per-
ceive tubes, surfaces, prisms and lathed elements; and
then you ask...
Does it need to LOOK right, or BE right?
Is this a quick little object that adds authenticity to a
3D rendering but doesn’t need to be accurate? – or is
it required to look good in detailed sections and plans
in a construction drawing? And then you ask...
What Level of Detail (LOD) does it require?
If it’s for a rendering, you may be seeing it fleetingly
during a flythrough, or requiring it for an Artlantis
closeup. For a construction detail, it could be scale sen-
sitive so that it shows detail at 1/20 and 1/50 but sim-
plifies at 1/100 and 1/200. Your object may be mak-
ing too many polygons if it is curvy. Consider LOD
constantly; and then you ask...
Could it be 2D only?
Some objects are only required for the 2D drawings.
People, trees and furniture could be 2D entities that
appear only in plans sections and elevations; perhaps
you needn’t bother with the 3D; and then you ask...

Does it need to be stretchy?
We are all familiar with autoscripted objects being
stretchy. But does it really need to be stretchy? Or can
the stretchiness be controlled to make the object
stretch smartly? And then you ask...
Does it need coded GDL?
If you know GDL already you might dive in without
hesitation. But can it be built easier with Profiler or
Trussmaker or using ArchiCAD’s tools? although it
wouldn’t be smart... then you ask...
Will it be an Object, or a Tool?
It may be a single piece of furniture. But if it’s a clad-
ding panel, fencing, handrail or similar, it may be more
akin to a Tool, whereby if you stretch it, you get more
and more objects. And then you ask...
How smart does it really need to be?
If it is a tool and it is an investment, you can make it
smart – know the 3D rules of its existence, how to
behave when stretched. But some objects can be so
smart they can be annoying to the user, and can take
too long to develop. And then you ask…
Does it need to appear in listings?
This is increasingly important with manufacturers
jumping to the realization that they can make libraries
of their products in GDL, not just in DXF. The object
may need to have accurate names and serial numbers
in the property scripts and smart value lists to ensure
that the name/number corresponds to the object. And
then you ask...
Can complex problems be solved with textures?
Recognise when 3D forms or surfaces are so complex
that a texture will solve them better then modelling –
for example leaves, tiles etc. And then you ask...
Have I got the ability to make it?
If not, then here’s the chance to learn new tricks!

Introduction to GDL

4 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Look at GDL
FROM the File>GDL Objects menu, open any 3D

object and have a quick look at the way the GDL
library part editing dialog is organised. Here is the
dialog and parameter table for a typical chair from Ar-
chiCAD 8’s library. (Earlier GDL Cookbooks show how
5.0, 6.0, 6.5 or 7.0 GDL dialogs were organised.)

For total beginners, you only need to use the 2D
and 3D Scripts. You quickly develop your skills and
make use of the Master Script and Parameter Script,
and with a little more practice the UI Script and Prop-
erty Script. Buttons enable you to see the scripts. If
you press the grey buttons, the scripts appear in the
main window. If you press the white buttons, the scripts
appear in independent floating windows.

The preview window (top left) offers you, at a
glance, a choice of 2D Symbol, 2D
View, elevation, 3D hidden line,
3D shaded views. The right hand
button can display a pasted-in
photorendered view of the object.
By clicking on the 3D image you
can view the object from differ-
ent angles.

GDL is not just for 3D
objects!

GDL can also make Windows,
Doors and Skylights which know

how to cut holes in walls or roofs; you
can make Lamps, Beams, Zone stamps
and Labels. They can be pure script
(e.g. a list of materials); Macro object
(e.g. door handle, tap); Property ob-
ject, or Stairmaker part. 3D and 2D ob-
jects can have subtype definitions that
distinguish them from each other, such
as seating or roofing. Click on the <Se-
lect Subtype> button to see the list.

This classification system is part of
GS’s committment to Industry Foun-
dation Classes (IFCs). The list of
subtypes here is a massive increase
from the ones offered in earlier AC
versions, and it provides you with a
comprehensive list of product types
ensuring that your GDL library parts
will be compatible with IFC.

Introduction to GDL

5Copyright Marmalade Graphics ©2004

3D Script is the primary means of building para-
metric 3D objects. If the object is simple, almost

all the work can done in the 3D Script.

3D View is generated by the 3D Script – shows
what your model will look like, and using 3D set-

tings, you will be able to see it from every angle in
shaded, hidden line or wireline mode. You can set this
to Raster or Analytic. The small quickview window at
the top is set in Analytic mode, so if your model is
complex, it's best to leave it in 2D or Preview mode
and use the 3D view to see your model.

PROPERTY Script: Here you can write Compo-
nents and Descriptor commands if the object is

to be in Elements, Components and Zone lists.

PARAMETER Script: This is a convenient place
to build all your pop-down menus, and for locking

or altering parameter values; however, the author
mostly prefers to do this in the Master Script so that
the logic sequence is maintained – the menus are built,
and results are checked.

COMMENT is a small text field in which you can
write a small set of instructions to your user on

how to use the object, or could place a copyright state-
ment/ signature. You can enter the URL of websites
relevant to the object, such as the manufacturer of the
furniture or component.

PREVIEW Picture is a window containing a pasted
in bitmap image of the object – it will resize to

128x128 pixels. It tells the user what the object will
look like in its setting, and could come from Artlantis
or an ArchiCAD rendering. This becomes the Icon of
the object in the Settings box browser and in Windows.

USER Interface Script enables you to build a
Custom dialog box with text fields, images, but-

tons and input fields for the user to enter parameters.
It is great for complex objects where the user might
need more explanation on the use of the object or the
visual choices of style and form, or where the number
of parameters could become bewildering to the user.
The UI can be organised into tidy pages with pictures
and instructions to the user, more helpful parameter
descriptions, checkboxes or buttons to link the pages.

FRAGMENTS: The 16 numbered cubes under the
preview window.... These are used for the 2D Sym-

bol and are less used than the 2D Script. 2D Fragments
are analogous to 2D Layers. Clicking on the cubes will
hide or show the fragments in the 2D Symbol window.

NEW button gives you a new parameter, always
Length, and you can change this to Material or

other parameter type by clicking on the popup param-
eter palette.

DELETE : Will delete parameters (not undoable).

SELECT SUBTYPE: Decides on the object’s classifi-
cation (see the comments on IFCs).

TEMPLATE: Allows you to define your own Subtype.

DETAILS: Set bounding box hotspots etc.

PLACEABLE: The object may be used only as a
Macro, such as a door handle or tap.

PARAMETERS : Press this button and the
GDL environment displays the Parameter Table,

which is the usual condition in the GDL Dialog. This
shows the parameters, their names and types and the
values you wish them to have when you test or save
the object. You can organise the order of parameters,
insert titles, indent parameters under titles, hide pa-
rameters. We fill out the table of parameters by hitting
the <New> button, and filling in the small details. A, B
and ZZYZX are ‘obligatory parameters’ – they already
exist – but we can make many more. We click on white
or grey buttons to view the scripts.

COMPONENTS and Descriptors buttons are used
when you build a ‘Property Object’. These allow

you to build a parameter table for use with Property
objects – attached to building elements such as walls
or floors.

MASTER Script is the most powerful one and it
is read first. It can be where you put everything

that is not specifically 3D or 2D, all the housekeeping
tasks - i.e. Calculations, checking the results of Menus,
Idiotproofing (in case people enter silly values), Defin-
ing Materials, setting Flags etc.
 Information in the Master Script can be used by both
the 2D and 3D Scripts and other scripts, so it central-
ises decision making on your part – if you didn't have
this, you would have to do repetitive calculations and
error checking in each script.

2D Symbol is a 2D window into which you
can paste a 2D image, or draw using 2D tools, but

it will only be displayed if there is no 2D Script, or if
the 2D Script tells it to be displayed. With GDL
knowlege, you are better to write a 2D Script. The 2D
Symbol can have up to 16 layers Because the word
‘layers’ is already used in the 3D, the word for them is
‘fragments’. The 2D Script can decide which fragments
to show: you can hide or show complex permutations
of 2D objects – eg, a motorcar or tree object could
have plan and elevational views of itself stored in frag-
ments. For simple objects using only the 2D symbol,
you can click on the little fragments buttonsto decide
which will show.

2D Script: This can be used simply to tell GDL to
draw the symbol you see on your floorplan (it could

be done with a drawn symbol instead). At its simplest
it can just draw a view of the 3D object - at its most
complex, it can display the object from several direc-
tions, include self labelling and dimensioning, pictures,
etc, with user control of linetypes, fills and pens. By
designating smart hotspots, the 2D Script can also gov-
ern how stretchy the object can be. By leaving this
script blank, the GDL object will display what ever is
drawn into the 2D Symbol window. If you leave both
blank, the object will not show in the project.

2D Full View: Displays the symbol you will
get on the floor plan as a result of the 2D Script,

including your hotspots. This can be scripted using
LINE2, RECT2, ARC2, POLY2 etc, but can also include
elements from the 2D symbol if the FRAGMENT2
command is used.

Introduction to GDL

6 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

FIRST GET acquainted with the idea of the X,
Y, Z universe that you have to work in.

All locations are defined in these coordinates. We
have to simplify our ideas of space so that poor idiot
computers can understand where we want the 3D cur-
sor to go. If you want to move sideways, you move the
cursor in the X direction with an ADD command. If
you move forward, you move it in a Y direction. If you
move up or down, you move it in a Z direction. You
can Rotate the cursor with a ROT command and the
XYZ world gets rotated too. You can even stretch or
shrink the cursor with a MUL command.

• The ‘G’ (global) coordinates remain fixed at the
Origin of the model. When you bring an object into
the project plan, this origin is what decides the height
of the object in the project. The origin should be
planned carefully – preferably at the base of the
object, and at the axis of any symmetry or rota-
tional axis that you perceive.

Working in 3D Space: 3D Cursor

JUST HOW do you write in GDL in 3D? Well,
 when you are word processing, you move your
cursor to a location and start typing. Move the cur-

sor, and type again, and the new words appear at the
new position.

With GDL, you have a 3 pointed cursor; you can
move or rotate the cursor; when you issue a 3D GDL
command like BLOCK or CONE, you will get a 3D
object wherever the 3D cursor happens to be. Move
the 3D cursor to a new position and issue the same
command and now it appears in the new position.

Thus to make a chair, you can move to each corner,
plant a chair leg, then raise the cursor up to plant the
seat and finally, move the cursor to plant the back of
the chair.

When you have achieved a group of things (like a
bunch of chair legs), you have completed a task. So
now return the cursor to the global origin. Now you
can depart and do another task, for example the seat
of the chair, and later the back.

When you have finished, you can do a small 2D
Script so that a 2D symbol will appear in the project
plan, save the file, and you are done.

TIPS and Tricks are spread through the GDL Cookbook
like nuggets of gold and are mostly about GDL, some-

times about ArchiCAD or Life in general.
The best place to find Tips and Tricks at their place of

origin is to be a member of the ArchiCAD-Talk web-based
conference, on the Internet. Although I have tested out all
my own tricks here, many of the ideas for them started
from questions and answers on ArchiCAD-Talk.

There is also a specialised list server conference on the
Internet called GDL-Talk, which permits more technical
questions and is used by the experts.

Try ArchiCAD-Talk and GDL-Talk!

Join a User Group and the GDLA

GRAPHISOFT are always willing to listen to construc-
tive criticism or wishlists. Your voice is more effective

if you are a member of a user group; also, you might find
from the more experienced users that many of the things
you want are already possible. If there isn’t a group around,
then form one with friends, locally. Register the group with
Graphisoft in your country.

Another major group you could join would be the GDL
Alliance, a truly international collection of GDL writers.

Use the GDL Manual!

MOST ArchiCAD commands are covered in full in
various sections in the GDL Cookbook. But please

note that it is not the function of the Cookbook to replace
the GDL Manual. You need to use both. You will find the
GDL Manual a lot easier to read now you have tried the
Cookbook. You will also find sections of the Cookbook
easier if you dip into the manual. And while you are in
ArchiCAD, you have an extensive HELP menu with most of
the manual’s contents available at a glance.

Enjoy a dual view of your script!

IN the parameter table, if you press the grey buttons, the
scripts appear in the main window. If you press the white

buttons, the scripts appear in independent floating win-
dows. You can press both and have both open at once,
very good for when you have a complex script and need
to work on different parts of the script at the same time:-
e.g. when fixing subroutines, while working on the rou-
tines that call those subroutines. You also have stretch
buttons at the bottom right of the parameter table and
can have a larger view of the script.

• The ‘L’ (local) coordinates are, in the 3D sense,
the Moving Cursor in your model – they travel
with you, wherever you are drawing an component.
Always try to return the GDL cursor to the origin
before you start out with another element of the
model.

G=Global Origin
L=Local origin

G,L

The Cartesian
XYZ Universe

x

y

z

7Copyright Marmalade Graphics ©2004

SPHERE is the easiest one of all – but the one
most likely to cause you to have so many polygons
that ArchiCAD will have trouble rendering it. Use
strict control of the surface resolution with RESOL
or TOLER commands.

If you do not specify resol, the resol value is as-
sumed to be 36, which means that the sphere will
have 648 faces! RESOL 10 is the smallest that still
looks spherical.

CYLIND drives a cylinder up the Z axis. If you
want a cylinder at an angle, you first have to rotate
the cursor with a ROT command so that the Z-axis
points in the desired direction.

Note that RESOL 6 or 8 can change Cylinders into
hexagons or octagons. If you do not write a RESOL
command, the cylinder will have 36 sides.

First 3D Elements: Primitives

!Block Demonstration
!Syntax:- BLOCK x,y,z
BLOCK 0.3,0.2,0.25
 ADD 0.1,0.1,0.25
BLOCK 0.1,0.1,0.2
 DEL 1

!Cylind demonstration
!Syntax:-
! CYLIND height,radius
 CYLIND 0.2,0.05
 ADDx 0.2
 RESOL 6
 CYLIND 0.2,0.05
 RESOL 8
 ADDz 0.15
 ROTy 45
 CYLIND 0.1,0.03

!SPHERE demonstration
!Syntax:- SPHERE radius
!RESOL sets the
!number of faces
 SPHERE 0.1
 ADDx 0.2
 RESOL 12
 SPHERE 0.05
 DEL 1

UNTIL you feel ready to progress to PRISM and
other more powerful commands, get used to

building 3D GDL objects using the items on this page.
These are the essential primitives of 3D building. It is
amazing how much you can do with these. These ex-
amples also demonstrate the simple-to-use cursor
movement commands of ADD and ROT.

By the way, the single sphere on the left, if saved as a DXF
3D file would require 21,000 lines of code to describe it.

Some existing Graphisoft
library objects use
BRICK – but it works to
the same syntax.

BLOCK or BRICK is the primary building block
of GDL, and with X,Y,Z dimensions for the param-
eters, you can’t get simpler.

In GDL projects it is actually rather limited to use;
you have to get the cursor to the lower left corner of
a block, and you have no control over pen lines, cor-
ners, faces etc.

By the way, if you want the cursor to return to the origin,
you would have to finish this script with a DEL 3.

Introduction to GDL

CONE is like a cylinder in which the radius can be
varied at the top and bottom.

It also includes a cutting command, to decide if
the top should be cut square (90,90 degree cuts) or
cut like a ship’s funnel, at an angle. The angles are
always cut along the X-axis, and must be positive.

The number of faces on a Cone
can also be controlled with the
RESOL command

!CONE demonstration
!Syntax:- CONE height,radius1,
! radius2,cut1,cut2
 CONE 0.2,0.06,0.03,90,90
 ADDx 0.15
 CONE 0.2,0.06,0.03,40,140

ELLIPS produces a hemisphere, but by changing
the height, it can be distorted into a bullet shape.
RESOL can be used to make it look polygonal. ELLIPS
is always solid. If you want a hollow dome, you need
to use REVOLVE.

Note; the exclamation mark (!) is used here to start a
line with a Comment on it.

!ELLIPS demonstration
!Syntax:- ELLIPS height,radius
ELLIPS 0.2,0.06
 ADDx 0.15
RESOL 12
ELLIPS 0.16,0.04

When you use any curved surface,
always set the lowest resolution
that will look acceptable – to
reduce rendering time.

8 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

ADD dx,dy,dz, ADDx dx, ADDy dy and
ADDz dz are the way to move the 3D cursor

from location to location. Most frequently, you add in
one direction, X, Y or Z, but when you want to move
in two directions or more it’s more economical to use
the ADD dx,dy,dz command to do 3 in one go. The
best way to get the hang of these movements is to
launch into typing in some of the exercises.

ADD2 dx,dy is the 2D equivalent of ADD, but is is
not as often used, because many of the 2D commands
can be issued without moving from the origin.

For example in 3D, you might go:
ADD 1,1.5,0: CIRCLE 0.5: DEL 1

but in 2D it is:
ADD2 1,1.5: CIRCLE2 0,0,0.5: DEL 1

but this can be shortened to:
CIRCLE2 1,1.5,0.5

DEL is the way to undo the cursor movements – you
specify the number of undoes you want to undo.

Starting with a plain
ELLIPS... (half a sphere)
you can make it shrink to

an elliptical plan shape
by MULx or can flip it

vertically with a MULz.

3D & 2D Cursor Movement

!MUL Demonstration
ELLIPS 1,1

!MUL Demonstration
 MULx 0.5
ELLIPSE 1,1
 DEL 1

!MUL Demonstration
 MULz -1
ELLIPSE 1,1
 DEL 1

Above: The primitives all exist in the same 3D space, a jumble
of forms. Below: after a few easy cursor movements, they are
all distributed correctly

PEN 1
MATERIAL 'Surface, Whitewash'
BLOCK 1.0, 2.0, 3.0
CYLIND 1.0, 1.0
SPHERE 1.0
CONE 4, 0.5, 0.1, 90, 90

!Cursor Movement
PEN 1
MATERIAL 'whitewash'
BLOCK 1.0, 2.0, 3.0
 ADD 1.0,1.0,1.5
 ROTy 90
CYLIND 1.0,1.0
 ADDz 2.0
 MULz 0.5
SPHERE 1.0
 ADDz -2.0
CONE 5, 0.5, 0.1, 90,90
 DEL 5

Try making something very simple!

TRY writing something using the simple GDL
 commands you have just learnt. If you issue the

commands (BLOCK, CYLIND, SPHERE and CONE)
you find them all jumbled together at the origin and
all being a horrible colour. Immediately you can see
that they look better if you specify a PEN and a MA-
TERIAL. Use a Material name that is in your Library.

This looks like nothing in the real world, so you
have to learn 3D cursor movement from day one. With
a few ADD, ROT and MUL commands, you can cre-
ate something usable. It’s a case of lifting the cursor
into position, issue the 3D command; either progress
to the next 3D object, or use DEL to return to the
origin. Experiment with changing the dimensions and
modify the cursor movement statements.

Try changing the values
of the ADD, ROT and
MUL command to see

what happens. Click in the
3D View window in GDL

Try changing the
dimensions of these

simple solids

MUL means Multiply – along the axis stated.
So MULz -1 converts all references to Z to

negative, MULx 0.5 halves everything in the X di-
rection – and so on. You can use a MUL x,y,z com-
mand and do three multiplications at once.

What MUL means in reality is that you can use it
to change the scale of entire objects or parts of ob-
jects – all ArchiCAD Autoscripted objects use MUL
to enable objects to be resized, or to be stretchy.

Objects can easily be mirrored by MULtiplying by
minus 1 around the mirroring axis. Symmetrical ob-
jects are labour saving, as you build just half, then
mirror around X, Y or Z.

MUL2 x,y is the equivalent command in 2D Script-
ing environment. MUL2 is expressed in terms of x
and y. Mirroring around X would be MUL2 -1,1.

9Copyright Marmalade Graphics ©2004

DEL n means “Delete the most recent
Cursor Movement command” – ADD, MUL or

ROT or XFORM. DEL 2 means delete the last two.
DEL is the most important command of this page.

If ADD and ROT are components of the engine, then
DEL is the braking system – just as important in the
performance of your motorcar. If you go somewhere,
you have to be able to return! If you do not control the
cursor, your model will be unmanageable after a page
of script. Therefore, use DEL to return to the Origin
as often as possible.

The bad way to get back to the origin is to repeat
all your moves backwards. For every ROTy 45, you do
a ROTy -45, and so on, in reverse order. This is not
good! Use the DEL command. The ROT, MUL, ADD
and XFORM commands are stored in a stack, and if
you DEL 1, it knocks 1 off the stack. If you DEL 4, it
knocks the previous 4 off the stack – in ‘last-in-first-
out’ order. You can also DEL using a variable like DEL
num.

If you use subroutines, DEL must match the number
of Cursor movements within a subroutine. Look at the
small number of commands on this and the next page
to see how DEL is used.

The DEL command cannot run past the stack. If
you DEL 2 when there is only one item to delete using
DEL, you will get an error message.

DEL TOP removes all the Cursor
commands – returns you to the Origin of the

model by brute force.
DEL TOP is useful because GDL does not declare

an error when you use it, even if there is nothing to
DEL. So you can put it at the end of a script, and not
worry about an error occuring. However, it is far bet-
ter to control the model by using DEL intelligently –
with every subroutine – so that you never need to use
the DEL TOP command until the END statement.

DEL TOP is dangerous – apart from encouraging
you to program in a sloppy fashion, it can wipe out
global commands (like ‘ROTx 90’ or MUL commands)
that existed at the beginning of the script.

ROT means Rotate the Cursor around an axis.
You use it in the form of ROTx, ROTy or ROTz.

You use them one at a time. You use them in the order
that logic tells you – the order is vital. Rotation is nor-
mally positive if it is in the anti-clockwise direction. If
you want to rotate clockwise, you can rotate a nega-
tive quantity such as ROTz -90.

There is a combined ROT command, but it is not
used in the way that you use the combined ADD and
MUL commands. The ROT command rotates the ob-
ject around a vector – defined as the line connecting
0,0,0 to a point defined by an X,Y,Z definition. It is
unexplained and unillustrated in the GDL manual, so
here is a simple example! It is very effective if the cir-
cumstance arises where it is needed: when it is, you
will recognise its usefulness.

PEN 7
MATERIAL ‘zinc’
ROT 1,1,1,-60
BLOCK 1.0,0.5,0.8
DEL 1

ROT2 is the equivalent in 2D of the ROTz com
mand. One of the problems of 2D Scripting is

that you dont have a visible cursor, so if you do a lot
of ADD2 and ROT2 and MUL2, you need to imagine
the cursor’s location.

Introduction to GDL

XFORM is a complex command that can
combine ADD, ROT and MUL all at the same

time. It’s the kind of thing that appears when you im-
port a DXF into GDL, machines like it, but humans
don’t. The only time that we need to use XFORM is
when we want to SKEW the object, XFORM skews
brilliantly.

A Note on Spelling

SOME of my friends in the USA and elsewhere must
 think sometimes that the author of the Cookbook is

quite illiterate – I mean who but a limey could possibly
spell ‘inquiries’ as ‘enquiries’, ‘realize’ as ‘realise’, ‘color’
as ‘colour’, ‘story’ as ‘storey’, or ‘meter’ as ‘metre’?

Well there is english english and there is ameringlish.
Remember the romantic song about ‘I say tom-ar-to and
you say tom-ay-to’?? Vive la Difference! For me to be con-
sistent, I am mostly sticking to UK spelling conventions.

OK you guys? Have a nice day!

Typograpical note: Upper/Lower?

IN reading this you have already expressed an interest
in GDL – so let’s bring in a good discipline at the start.
Write all GDL commands in UPPER case, and all vari-

ables (parameter names) and comments in lower case.
The machine is not case sensitive, but you are, and when
reading and debugging your scripts later, you will find it
easier if you follow this advice.

If you find yourself working on GDL as part of a team
you need to agree on a format, so this is a good rule to
follow. It is followed in the Cookbook.

Comma confusion?

IN some countries, it is common to write decimal points
as commas e.g. 1,25. In other countries it is common to

write thousands with commas for example, a million is
1,000,000. If you have a localised ArchiCAD, this is how
numbers may appear in the parameters box. But in GDL,
the scripts are hard coded so only one convention can be
followed. Dots are used to form the decimal point, and
commas are used to separate numbers.

Many of the errors in your early efforts in creative GDL
will be with misplaced dots and commas. Be rigorously
careful with them.

10 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

First 3D object: a simple Chair

This simple chair starts life from its front right leg. Do each part
in stages, and move the cursor back to its origin at the end.

As we develop it further, we can add more 3D options, but we
keep it simple for now.

You want to do something
practical? Well try this
VERY simple little kitchen
chair for a starter.
From the File > GDL Objects
> New Object, you will get a
new GDL Dialog and from this,
you can bring up the 3D
Script.

IDEALLY, you make everything parametric, but we
shall start with a 3D Script for a small chair using

non parametric dimensions. Later, we can convert it
to parametric scripting. You can do it in Metric or Im-
perial.
 You start by looking at the object 'with half closed
eyes' and decide what simple elements it really con-
sists of - leaving out inessential detail. Next, each ob-
ject has an 'Origin' so in this case, we decide on the
front left hand leg.
 We build this entirely with BLOCK and CONE, to
keep things simple. We move the 3D cursor around
the model, drawing a BLOCK or CONE in each place.
The syntax of BLOCK and CONE are very easy.

Notice that the stages of the script are marked
with labels (or ‘comments’) which all start with an ex-
clamation mark. When you look at the script later, you
will know what’s what if you have labelled frequently.

As you build each Block or Cylinder, you use
the ADDx, ADDy, ADDz or ADD commands to move
the cursor to the next location, then build the next 3D
shape. After a group of commands is completed, get
the cursor back to the start before doing the next group,
using the DEL command – this ‘undoes’ the number
of ADDs that you have made. Make sure that at the
very end, you move the cursor back to the origin of
the model using DEL.

If you do not specify a material, your objects will
turn out all one colour, which can be disconcerting.
So the PEN and MATERIAL command is one of the
first ones you learn. PEN 1 in my ArchiCAD is black –

set whatever colour you want. If you do not have ‘Pine,
Shiny’ in your Materials library, then find another wood
material name to use for the chair.

This example is done in Metric and Imperial – to
please the U.S. readers of the GDL Cookbook. All na-
tive GDL scripting has to be done in Metres (not Mil-
limetres). If you wish to write in Imperial, you can, but
each number must be clearly signified with Foot and
Inch apostrophes. For Imperial users, the first things I
suggest (apart from changing to Metric) is to work en-
tirely in Decimal Inches, as this avoids spurious punc-
tuation marks and maths operators. And of course,
future scripts will be neither: they will be parametric!

2D Symbol
The ArchiCAD objects that are autoscripted from the
Wall/Floor/Roof tools always have their own 2D sym-
bol or script. When you write a script yourself, you
need to create the 2D symbol.

So here, you can write a tiny script. Open the 2D
Script Window and use this one-line ‘killer command’:
PROJECT2 3,270,2. It is very powerful and solves
your need for a 2D symbol at a stroke. It draws a Plan
view of the 3D object [3], with a camera angle of 270˚
[270] and it is in hidden line [2]. Your 2D symbol will
be given bounding box Hotspots by ArchiCAD.

11Copyright Marmalade Graphics ©2004

!Chair - 2D-Script
PROJECT2 3,270,2

!Simple Chair Example
!Non-Parametric, Metric

PEN 1
RESOL 12

!--All the legs-----------
MATERIAL "Wood-Pine, shiny"
 CONE 0.5, 0.015,0.03, 90,90
 ADDx 0.45
 CONE 0.5, 0.015,0.03, 90,90
 ADDy 0.55
 CONE 0.5, 0.015,0.03, 90,90
 ADDx -0.45
 CONE 0.5,0.015,0.03,90,90
 DEL 3

!--The Seat and upholstery-----
ADDz 0.45
 BLOCK 0.45,0.55,0.045

MATERIAL "Surface-Fabric"
 ADD 0.025,0.025,0.045
 BLOCK 0.40,0.50,0.005
 DEL 2

!--Back Legs, panel & upholstery
MATERIAL "Wood-Pine, shiny"
 ADD 0,0.55,0.5
 CONE 0.6,0.03,0.02, 90,90
 ADDx 0.45
 CONE 0.6,0.03,0.02, 90,90
 DEL 2

 ADD 0,0.54,0.70
 BLOCK 0.45,0.025,0.35

MATERIAL "Surface-Fabric"
 ADD 0.05,-0.01,0.02
 BLOCK 0.35,0.01,0.30
 DEL 2

!Simple Chair Example
!Non-Parametric, Imperial

PEN 1
RESOL 12

!--All the legs
MATERIAL "Wood-Pine, shiny"
 CONE 20", 5/8",1.2", 90,90
 ADDx 1'-6"
 CONE 20", 5/8",1.2", 90,90
 ADDy 22"
 CONE 20", 5/8",1.2", 90,90
 ADDx -18"
 CONE 20", 5/8",1.2", 90,90
 DEL 3

!--The Seat and upholstery
ADDz 18"
 BLOCK 18",22",1.75"

MATERIAL "Surface-Fabric"
 ADD 1",1",1.75"
 BLOCK 16",20",1/4"
 DEL 2

!--Back Legs, panel and upholstery
MATERIAL "Wood-Pine, shiny"
 ADD 0,22",20"
 CONE 24",1.2",0.8", 90,90
 ADDx 18"
 CONE 24",1.2",0.8", 90,90
 DEL 2

 ADD 0, 21.8", 26"
 BLOCK 18",1",14" !Backpanel

MATERIAL "Surface-Fabric"
 ADD 2", -3/8", 1"
 BLOCK 14", 3/8", 12" !Cushion
 DEL 2

Your First 3D Object : a Chair

Start with the Title, set a Pen and a
curve control (RESOL) early on.

For the first operation, state your
material - it’s better to use a

parameter in future! All four cones are
the same, get one right, you get them

all right. Use ADD to move about and
place them. DEL 3 because we needed

3 moves.

Start the seat with a new Title. The
seat is a block, with a thin covering of
fabric on top. DEL back to the Origin

before building the legs.

Start the back with a new Title and
restate material. We can use an ADD

command which can go in X,Y,Z
directions at one leap. The Cones are

similar to the legs, but with the narrow
radii at the top. Returning to the seat

height (not all the way back to the
origin) place a wood block for the

back infill, then make another small
ADD move to instal a thin layer of

Fabric for the back upholstery. Then
you DEL right back to the origin –

and you are finished.

Now all you need is a 2D symbol. This
can be generated from a short one-line

2D Script, using PROJECT2.

Now it’s time to think about ways
to make this parametric.

Make your Chair Parametric!
THE first chair isn’t

Smart and it isn’t Para-
metric, so let’s do something
to make it better. Open the
chair object you made ear-
lier, and make some param-
eters. Click the <NEW> but-
ton a few times and make
some parameters for lengths
and materials. Hold the
mouse down on the param-
eter icon, and up pops an
iconic palette so you can set
its purpose.

Parameters can be:
Dimension (based on your
system preferences, metric
or imperial), Angle, Real

number, Integer, Boolean choice, Text, Material, Line type, Fill pattern, Pen colour, Separator (white
space), or Title (bold font). Keep the parameter names to between 2 and 10 characters.

You can rearrange the order of parameters using the little <up-down> arrows, so group them into a logical
order. You can put in some titles for groups of parameters, e.g. Materials, and then click on the little <indent>
button to make the parameters part of that group under the title.

12 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Make your chair parametric!
When you create parameters, change their Variable
names to sensible ones like ‘lsec’ for leg section and
‘sthit’ for seat height. The Description here is what
the User will see when using the dialog box that you
are now creating. Put in nominal Values for each pa-
rameter. In this example, they are in millimetres.

!Simple Chair Example
!Parametric

PEN cont_pen
RESOL 12

!--All the legs-----------
MATERIAL framat
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx A
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDy B
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx -A
 CONE sthit,lsec/3,lsec/2,90,90
 DEL 3

!--The Seat and upholstery-----
ADDz sthit-frsec
 BLOCK A,B,frsec-0.002

MATERIAL seatmat
 ADD lsec/2,lsec/2,frsec
 BLOCK A-lsec,B-lsec,0.005
 DEL 2

!--Back Legs, panel and upholstery
MATERIAL framat
 ADD 0,B,sthit
 CONE bhit,lsec/2,lsec/3, 90,90
 ADDx A
 CONE bhit,lsec/2,lsec/3, 90,90
 DEL 2

 ADD 0,B-0.01,sthit+bhit*0.3
 BLOCK A,lsec/2,bhit*0.6!Backpanel

MATERIAL seatmat
 ADD lsec/2,-0.01,lsec/2
 BLOCK A-lsec,0.01,bhit*0.6-lsec
 DEL 2

!Simple Chair Example
!Non-Parametric

PEN 1
RESOL 12

!--All the legs-----------
MATERIAL "Wood-Pine, shiny"
 CONE 0.5, 0.015,0.03, 90,90
 ADDx 0.45
 CONE 0.5, 0.015,0.03, 90,90
 ADDy 0.55
 CONE 0.5, 0.015,0.03, 90,90
 ADDx -0.45
 CONE 0.5,0.015,0.03,90,90
 DEL 3

!--The Seat and upholstery-----
ADDz 0.45
 BLOCK 0.45,0.55,0.045

MATERIAL "Surface-Fabric"
 ADD 0.025,0.025,0.045
 BLOCK 0.40,0.50,0.005
 DEL 2

!--Back Legs, panel & upholstery
MATERIAL "Wood-Pine, shiny"
 ADD 0,0.55,0.5
 CONE 0.6,0.03,0.02, 90,90
 ADDx 0.45
 CONE 0.6,0.03,0.02, 90,90
 DEL 2

 ADD 0,0.54,0.70
 BLOCK 0.45,0.025,0.35

MATERIAL "Surface-Fabric"
 ADD 0.05,-0.01,0.02
 BLOCK 0.35,0.01,0.30
 DEL 2

3D Script
Take the 3D Script of the Simple chair, and change all
the 2” or 0.05 to ‘lsec’ (leg section). Continue to work
through all the dimensions changing them to param-
eters.

We will return to this chair later to learn about Sub-
routines.

Make the Pen parametric... and
add a parameter for the material
for the legs.

Now we can use A as a parameter
for the width and B for the depth
of the chair. This means that we
can make the chair stretchy.

Because blocks are built from the
bottom left corner, you raise the
seat block to the seatheight and
then drop it by the frame section,
so that its top surface is at the
correct height.

The fabric material should also be
parametric, this is one area where
the user must have a choice!

With the cones we have made
some fairly arbitrary assumptions
about the ratio of width for top
and bottom, and the heights of the
back panel. These are ‘designer’s
decisions’ – you have to decide
what the user is going to be
allowed to decide, and what the
designer decides. Novice GDL
writers tend to make too many
parameters (in their new-found
enthusiasm) and then the object is
confusing to the user with so many
parameters.

2D Symbol
We can stay with PROJECT2 to make the 2D symbol,
but we can be a bit clever with HOTSPOTs. Previously
we relied on default bounding-box hotspots, but now
we can write our own. HOTSPOT2 x,y is the word!

Since you now converted the chair to use A and B
as parameters for width and depth, you can easily de-
fine the XY positions of the HOTSPOTs in the 2D GDL.
 HOTSPOT2 0,0
 HOTSPOT2 A,0
 HOTSPOT2 A,B
 HOTSPOT2 0,B
 HOTSPOT2 A/2,B/2
 PROJECT2 3,270,2

Now the Hotspots will
show in the plan. The cor-
ner ones will enable
stretching, and the central
A/2,B/2 spot is a good
‘Pickup’ spot.

Dimensional settings

E VERYBODY works in different dimensions
depending on their country and regional building stand-

ards. The first simple Chair was hard coded (written into
the script) in metres and in feet/inches.

The improved Chair is parametric. Most of the exer-
cises here are in metric, in millimetres – even if the scripts
are parametric, the Parameter Tables are usually metric.
The settings you use do not affect the hard coding in the
scripts, but they make the Parameter Table look different.
If you are not sure of your Units, open a NEW Library ob-
ject and look at A and B. If A is 1.00 you are in metres, and
if A is 1000 you are in millimetres. If A is 3’-3.37” it’s feet
and decimal inches. If you wish to develop GDL in non-
metric, I advise you to work in Decimal Inches.

You are advised to have a project floor plan file open
in the background while you work in GDL to get the navi-
gator palette to work correctly, and to set the dimensional
environment. If you modify dimensional settings remem-
ber to set the number of decimals you can display.

13Copyright Marmalade Graphics ©2004

About 2D Scripting

PROJECT2

PROJECT2 is a command that you MUST
learn, even with your first scripted Object!

Syntax: PROJECT2 Viewtype, Camera Angle, Visibility

Until you learn parametric 2D Scripting, the easiest
thing is to write a short 2D Script containing
PROJECT2 3,270,2. This reads the 3D Script and
draws whatever it can see, faithfully, in wireline or hid-
den line view. Be warned – it can slow down the time
it takes to draw the symbol if the object is complex.

PROJECT2 should be learnt parrot fashion, you will
use it many times!

PROJECT2 has interesting possibilities. For exam-
ple, it can be told to display the object in the Project
Plan in elevation or axonometric form or from the un-
derside: very useful if you wish to generate drawings
of your object from all directions without having to
organise sections in ArchiCAD. Note that -7, -8 and -9
are the same as their +ve equivalent, just upside down!

Visibility value: the last digit. 1 gives you Wireline,
2 gives you Hidden Line, 3 gives a solid material qual-
ity to the 2D symbol, -1 gives you a vectorial fill.

About 2D Scripting

UNLESS you have a 2D Symbol or a 2D Script,
your object will not appear on the Project Plan!

If you been using ArchiCAD’s conventional tools to
make library objects, you have been used to it making
automatically generated scripts, and automatically
drawn 2D symbols generated from the view of the
object. But now, you have to do it!

HOTSPOT2 x,y places a Hotspot at the point
x,y in the 2D symbol of the object. It lights up when
you select the object.
The purpose of HOTSPOTs are 4-fold:
1. To enable you to see objects when touched or
marqueed,
2. to pick up the object,
3. to make objects stretchy, and
4. to provide ‘gravity’ for snapping objects to line or
to other hotspots.

3,270,2 4,270,2 5,270,2 6,270,2 7,270,2 8,270,2 9,270,2 -3,270,2 -6,270,2

!Typical very short 2D Script for any 3D object
PROJECT2 3,270,2

!Typical short 2D Script for any 3D object
!using A and B for width and depth
 HOTSPOT2 0,0
 HOTSPOT2 A,0
 HOTSPOT2 A,B
 HOTSPOT2 0,B
 HOTSPOT2 A/2,B/2
 PROJECT2 3,270,2

With ArchiCAD 8, hotspots have acquired massive
importance as it possible to apply hotspots to differ-
ent parts of a GDL model and articulate parts of the
model – e.g. opening doors and pulling/pushing draw-
ers in a furniture cabinet. Of which much more anon!

LINE2 x1,y1, x2,y2 : draws a line from one XY lo-
cation to another XY location – relative to your cur-
rent cursor position.

HOTLINE2 x1,y1, x2,y2 : following a LINE2,
makes the whole line sensitive to your mouse – easy
selection of objects!

RECT2 x1,y1, x2,y2 : draws a rectangle from one
XY location to another XY location diagonally oppo-
site – relative to your current cursor position and an-
gle. RECT2 is always wireline (you can see through it).

CIRCLE2 x,y, rad : draws a circle at point x,y with
radius rad.

Complex objects may be very slow to draw in 2D if
you use the PROJECT2 command. A 2D Script using
LINE2 and accurately reflecting the trigonometry of
the object without showing excess detail may be per-
fectly adequate for the 2D symbol, as above. You could
offer the user an option to show greater detail if the
plan is larger than 1/50 or 1/4”-1’ scale. With win-
dows and doors, the frame sections are so small that
they would just be a dense blob of ink at 1/50 or 1/
100, so some intelligent 2D Scripting is very desirable.

14 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

FOR the Simple Chair, we used a PROJECT2 com-
mand – the killer command that does most of

the 2D work for you! But you can see the compari-
son here – Project2 (right) is untidy, with too many
pen lines. A scripted 2D symbol (left) is faster for Ar-
chiCAD to draw, and it puts you into the driving seat
– enabling you to decide how the object looks. Let’s
write a 2D Script. Find and open your Simple Chair
model. Open the 2D Script.

This chair is built with the parameters A and B for
stretchiness. Have Project2 in the script at first, write
your script after it, make sure that your new lines
follow the outline correctly, and when the scripted
version looks good enough, comment out the
Project2. Put the Hotspots before the 2D statements.

You can build the whole chair symbol from CIR-
CLE2 and LINE2. We can’t use RECT2 because the
corners intersect the round legs – this looks fine in
3D, but horrid in 2D. Some skillful work with LINE2
simulates the rectangular seat intersecting the legs.

2D Script for the simple
chair

PEN
PEN sets the pen colour. But remember, this also

changes the pen thickness. If you use True Line
Weight, this matters hugely.

On PEN, there are some points to note: PEN must
have a value. You cannot have PEN zero. PEN 1 gives
you a Black line – but if you have recently opened a
DWG file then PEN 1 might now be Red: this demon-
strates immediately the benefit of making your object
parametric. People might modify the pen palette in
ArchiCAD and the palette values can be re-assigned
in colour and line thickness. This can have mischie-
vous effects on your model. It is best therefore not to
hard code the pen colours, but to make them with pa-
rameters so that the user can select them. So every
good object should have a pen parameter.

PEN can be changed during the execution of the
script, so that different parts of the model can be drawn
separately. My advice is: it is best to keep the pen to a
single colour in the 3D, so that the object looks right in
wireline and in hidden line. Use Material as a way to
vary the appearance of the object. I also recommend
a separate pen for the 2D symbol, different from the
one you use for the 3D. If you choose one pen for both,
the pen that looks right in 3D might be too dark and
chunky for the drawing scale in the 2D.

It is not essential to set any pen colour for simple
objects as the pen colour can be set by the user in the
main Object Settings dialog box. If you are making a
GDL macro, you should avoid setting a pen param-
eter, because these will be inherited from the senior
object.

You cannot make your own Pen
This has always been most frustrating to me. You can
Define Material, so why shouldn’t you Define a Pen?
You can use a REQUEST() statement to suggest a PEN,
and it will find the one with the closest RGB value, but
you will only request it by RGB colour and have no
control over pen thickness. There ought to be a DE-
FINE PEN r,g,b,t statement – but there isn’t.
Consistent parameter names
You are advised to work with standard parameter
names. GS used to use ‘cpn’ for contour pen, but with
AC8 and IFC in mind, GS now use ‘gs_cont_pen’ as
their primary pen name. I also recommend
‘gs_symb_pen’ if you make a separate one for 2D – if
you have a scripted 2D object with polygons and lines
and text. You will also need pen values for Background
and Fills. In this case, try to use the correct Subtype,
which will prompt you with suitable parameter names
for most of your pens. It is worth the short time it takes
to get your head round POLY2_A and B in which you
can specify all these pens.
Material obtained from Pen
PEN can be used as a convenient way to create bright
coloured surfaces. If you set MATERIAL to zero, then
the surface colour becomes the PEN colour. This is
why most of your first efforts at modelling come out
as GREEN, BLACK, PINK or another colour – the ma-
terial is becoming the same colour as your default pen
colour if no material has been specified.

But this method produces a very matte effect. It is
possible to generate a full material definition from a
pen colour using REQUEST() statement. This will give
a far better appearance, with characteristics like shini-
ness, transparency and emission fully controllable by
you. See later exercises for this.

!Simple Chair Example
!Parametric 2D Script
HOTSPOT2 0,0
HOTSPOT2 A,0
HOTSPOT2 A,B
HOTSPOT2 0,B
HOTSPOT2 A/2,B/2

!PROJECT2 3,270,2
s4=lsec/4 !Quarter diam
s2=lsec/2 !Half diameter
PEN cont_pen
CIRCLE2 0,0,s2
CIRCLE2 A,0,s2
CIRCLE2 A,B,s2
CIRCLE2 0,B,s2

LINE2 s2,B-s4, A-s2,B-s4 !back
LINE2 s2,B+s4, A-s2,B+s4 !back
LINE2 0, s2, 0,B-s2 !side
LINE2 A, s2, A,B-s2 !side
LINE2 s2,0, A-s2,0 !front

Notice that the use of variables
like ‘s2’ and ‘s4’ saves a lot of
typing and reduces the risk of

spelling errors.

15Copyright Marmalade Graphics ©2004

About 2D Scripting

More about GDL 2D

Modifying Objects

AUTOSCRIPTED objects saved from the 3D view
are given a drawn symbol, and some code in the

3D Script makes them stretchy.
Autoscripted objects saved directly from the Floor

Plan are fully scripted in 2D as a mass of LINE2s and
HOTSPOT2s. I often delete the whole lot and replace
them with a single PROJECT2 command. This is es-
sential if you intend to alter or rotate the object in the
3D code. If you are willing to, you could try to rescript
it in a much simpler, more usable, parametric form.

Another method is to write a PROJECT2, place the
object in the Floor Plan, Explode the object, then
Copy the 2D symbol thus created and Paste it into
the 2D symbol window of the object. Add the com-
mand FRAGMENT2 ALL,1 to the 2D Script. Retain
Project2 until you get the symbol and drawing aligned.
Then delete PROJECT2. You can add Hotspots
manually to the 2D symbol. If the symbol is too full of
lines, replace them with fills, much tidier.

First advice on 2D Scripting

WHENEVER you can, and if you have the
skill, always try to write a 2D Script with a para-

metric quality to match your 3D object.
2D Scripting is good because...
1. You get faster speed of drawing in the project plan.
With PROJECT2, AC must do a 3D hidden line pro-
jection of the object before drawing it – slow! Scripted
objects draw instantly.
2. A Symbol drawn into the 2D symbol window might
be pretty, but it is not parametric.
3. The 2D Script can itself be highly parametric, error
checking, allowing hotspots, informative, self labelling,
and scale aware.

If it is too complex to script in 2D, and too slow to
generate a PROJECT2 image from the 3D Script, con-
sider using a symbol: use a PROJECT2, and follow the
advice on the right (explode> copy> paste> frag-
ment2> hotspot).

TEXT2 x,y,’string’ is for adding text to an ob-
ject’s symbol. Apart from being able to label the ob-
ject, the object can use it to display a level of intelli-
gence, e.g. flashing up a text warning if the object has
bad parameters, or displaying the final size of a
stretched object, the pitch of a stretched staircase, or
the serial number of a manufacturers component.

It is only worth using if you are first prepared to
learn how to DEFINE STYLE; if you do not, you will
have no control over the size of the text, or how it
plots at different drawing scales. The text can be adapt-
able to different scales, including not displaying itself
at all when it would be too small to read (e.g above 1/
200). Define Style needs more space for explanation,
so it will come later in the book.

Are your HotSpots Stretchy AND
Squeezy?

IF you want objects to be Squeezy as well as Stretchy,
you need to utter your HOTSPOT2 commands <BEFORE>

the commands which actually draw the 2D objects. Other-
wise, objects may stretch, but not reduce in size correctly.

You must also provide some hotspots that are not on
the stretchy corners or you will have trouble picking up
your object – it may stretch every time you try to drag it!

If you write any scripted hotspots at all, the default
bounding box will disappear. If you WANT the bounding
box, hit ‘Details’ button to force them to appear.

A and B based Hotspots are somewhat redundant, be-
cause Graphical Hotspots can make EVERY part of a GDL
model manipulable with hotspots for sliding and rotating.

Stretchy: A typical listing
of HOTSPOTs when the
Origin of the model is at the
bottom left.

Stretchy: A typical listing
of HOTSPOTs when the
Origin of the model is at
the centre of the model.

More about 2D Hotspots: stretching!
HOTSPOT2 x,y should be used in every 2D Script.
They make your objects stretchy: if you use A and
B as dimensions, the Hotspots at the outer corners
may enable you to stretch the object. Stretchy objects
are most useful and user friendly.

If the Hotspots are written as illustrated here, and
if A and B are the distances apart of the corner
hotspots, then the object will be STRETCHY!

HOTSPOT2 0,0
HOTSPOT2 A,0
HOTSPOT2 A,B
HOTSPOT2 0,B

HOTSPOT2 -A/2,-B/2
HOTSPOT2 A/2,-B/2
HOTSPOT2 A/2, B/2
HOTSPOT2 -A/2, B/2

ADD2 1.6,0.9
HOTSPOT2 0,0
DEL 1

!The same result
HOTSPOT2 1.6,0.9

You can send a Hotspot directly to a location, e.g.
HOTSPOT2 1.6,0.9 or you can write it the long way
as:

ARC2 draws a circular line, which you can control
by location, radius and angles (in degrees). Angles start
from the Horizontal and move in an anticlockwise
direction.
!Syntax: ARC2 x,y,radius,startangle,endangle

ARC2 0,0,0.5,90,180
You also have HOTARC2 (AC9) which has the same
syntax, but allows easy selection in the plan.

16 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

WHEN we talk about ‘programming’ we are
often thinking of the ability of our script to tell

the computer to follow a path, make decisions, follow
courses of action based on those decisions or upon
pre-ordained rules, and thus display a level of ‘articifial
intelligence’ – you can make the object ‘smart’!

The IF statement is the essential mechanism by
which your object can make decisions.

Level 1: IF can be used to follow rules blindly – sound
but not smart.
Level 2: IF can be used to allow the user considerable
flexibility, and save them when an error could occur –
getting a bit smart!
Level 3: IF can enable an object to have a great vari-
ety of 3D options each of which obey good rules, and
have a good user interface – getting even smarter!
Syntax of IF... THEN...
Simplest example of an IF statement would be a one-
liner like this:

IF A >=10.0 THEN LET A=10.0

Say it in English: “IF the value of A is greater than or
equal to 10 metres, then let A be equal to 10 metres.”

IF s=13 THEN GOSUB 250

If the IF condition is ‘false’ (i.e. ‘s’ is not equal to 13),
then the program continues to the next line. You can
offer an alternative course of action in the same line:

IF p>13 THEN n=1 ELSE n=0

If the first IF condition is not ‘true’ then it will take an
alternative course of action. In this example, one is
setting a flag called ‘n’ to values of 1 or zero.

IF... THEN... ELSE... ENDIF
Or... how machines make decisions

IF Curr<0 THEN
 IF closd=1 THEN
 PRINT "Holes not allowed"
 END
 ELSE
 closd=1
 ENDIF
 ELSE
 IF Curr>=900 AND Curr<1000 THEN
 S900X=CurrX-OrX
 S900Y=CurrY-OrY
 ELSE
 IF int(Curr/2)%2 THEN
 IF int(Curr/64)%2 THEN
 StatusE=2
 ELSE
 StatusE=0
 ENDIF
 ELSE
 StatusE=1
 ENDIF
 IF int(Curr/4)%2 THEN
 StatusP=-1
 ELSE
 StatusP=1
 ENDIF
 IF Curr>=4000 AND Curr<=4100 THEN
 GOSUB 4000
 ELSE
 SHX[PtCount]=CurrX-OrX
 SHY[PtCount]=CurrY-OrY
 SHM[1][PtCount]=StatusE
 SHM[2][PtCount]=StatusP
 PtCount=PtCount+1
 ENDIF
 ENDIF
 ENDIF

This small chunk of a
script by one of the
worlds most expert

GDL artists, Oleg
Shmidt reveals how

complex you can get
with nested IF...

ENDIF statements.
You have to keep

your head about you
if things get this

complex!

Long IF Statements
IF statements like this can stay on one line but you
may wish to refer to a long sequence of commands.
This can be done with a GOSUB, or you can use a
‘Long IF statement’ which contains that routine. A
long IF statement takes this form:

IF condition THEN !carriage return after the THEN
!routine contained in here....
ENDIF

ENDIF: means that it has reached the end of the
long version of the IF statement.
ELSE: You could have two complicated tasks to do,
one if the IF condition is true, and the other if it is
false. You use ELSE to help decide whether to do one
task or the other. In this case, ELSE must be on a line
by itself.

Boolean IF statements
IF s>13 OR s<26 THEN GOSUB 250
IF nq=1 AND s<13 THEN GOSUB 150

Where a Boolean choice is to be made, you can use
AND and OR and XOR. You can also use brackets. Be
careful with these. Speak them slowly to yourself to
make sure you haven’t got it wrong.
IF (s<=3 AND t<=4) OR (s>=6 AND t>=7) THEN st=1

Nested IF Statements
As the GDL parser encounters each IF... THEN, it re-
members it, and as it encounters each ENDIF, it signs
it off. So you can ‘Nest’ many IF.. THEN.. ENDIFs in-
side each other, and the machine keeps count accu-
rately. You being human, may lose count though, so
I don’t encourage excessively complex nests.
Shortened IF statements
It is possible to write shortened IF statements that do
not actually include the word IF. The following line:

var1=var2=12
means the same as:

IF var2=12 THEN var1=1
IF var2<>12 THEN var1=0

The time it takes to think out the shortened version
takes longer than it takes to type out the long version.
Which do you prefer? If you are concerned with main-
tenance, your scripts will be better if they are closest
to spoken english – like the long form. This could be
written with one line:

IF var2=12 THEN var1=1 ELSE var1=0

IF s=13 THEN
 ADDz 1.2
 GOSUB 250
 nq=1
 DEL 1
ELSE
 ADDx 0.3
 GOSUB 150
 DEL 1
ENDIF

Leave the first line with a ‘THEN’
hanging off the end of the line.
Everything on every line after that will
then work if the IF statement is true. If
the IF statement is false, GDL ignores
the whole group, until it reaches the
ENDIF statement – logically. If there is
an alternative action required (in case
the first IF statement is false, then you
can use the ELSE command to make it
do something else.

17Copyright Marmalade Graphics ©2004

Boolean Parameters
One of the parameters types is Boolean, which pro-
vides you with a checkbox, for setting the parameter
to ON/OFF. This has a value of only 1 or 0, and so
converts the user choice to numbers. As the number
can only be one or zero, IF statements for Boolean
parameters can be simple. Suppose you have a param-
eter ‘shad’ for ‘Shadows ON/OFF?’, you can write:

IF shad THEN SHADOW ON ELSE SHADOW OFF

You dont need to say here ‘IF shad=1’, because it is
implicit that if shad is anything other than zero it is
assumed to be TRUE else it is FALSE.
Idiotproofing
It is easy enough to get something working in 3D, with
a passable 2D symbol. But if you want to make ob-
jects for others to use, you can improve your objects
by building in safeguards against bad user data or just
careless stretching. We have all seen GS windows
which become blank openings if stretched wrongly.

This chair we made a few pages back would fail if it
was so narrow that the legs touched, or if the seat
height was a negative. There are structural reasons why
the seat height cannot be more than 900mm, so we
need to build in some ‘idiotproofing’ IF statements to
protect the chair from errors.
Master Script
This is where the Master Script comes into play. We
can use this for some ‘Idiotproofing’ routines – define
the limits of lengths, widths etc of the object.
 The Smaller Than or Equal to <=, and the Great Than
or Equal to >= are useful symbols. (Hint, the larger
side of the chevron indicates the larger quantity.)

The MAX() statement is a way to ensure that the
Pen colour cannot be zero.

!Master Script
!Simple Chair Parametric

!-------Idiotproofing--------
!Width
 IF A<=0.3 THEN A=0.3
 IF A>=0.8 THEN A=0.8
!Depth
 IF B<=0.3 THEN B=0.3
 IF B>=0.9 THEN B=0.9
!Seat height
 IF sthit<=0.3 THEN sthit=0.3
 IF sthit>=0.9 THEN sthit=0.9
!Leg section
 IF lsec<=0.03 THEN lsec=0.03
 IF lsec>=0.08 THEN lsec=0.08

 cpn=MAX(cpn,1)

PARAMETERS A=A, B=B,
 sthit=sthit,
 lsec=lsec, cpn=cpn

PARAMETERS Script and statement
This command is very useful. Normally the param-
eters table informs the scripts of what to do. The PA-
RAMETERS command is a way for you push back new
values into the table so that they are visible to the user.
Pedantically I should tell you to put this in the Param-
eters Script, but for simple object, I like to keep the
Idiotproofing and PARAMETERS statements closely
associated.

This Master Script shows how PARAMETERS
works. This is just a short example, you need to write
more error checks in a higher quality object.
Note the syntax here:
PARAMETERS value displayed in the table =
value determined by the error checking routine.

Master Script
MASTER Script is where you can do param-

eter calculations which are not specifically 3D
or 2D, but govern the object as a whole – the results
of calculations are sent to the other scripts. You can
use this script to correct errors, but just as impor-
tantly you can provide feedback to the user with the
corrected figures.

Master Script came in with AC6, and was a great
blessing. Prior to that, any internal parameters that
needed to be calculated (such as the circumference
and sweep angle of an arch) had to be done twice, in
both the 2D and 3D Scripts – and perhaps in the Prop-
erty script too. You needed duplicate sets of IF state-
ments to check for bad user parameters
(‘idiotproofing’). If you subsequently changed or
added to these, you had to go to each script, copying
and pasting. With ValueLists (Popdown menus), there
is even more parsing of parameters to be done.

ValueLists can be built in the Master Script or in
the Parameter Script.

A sophisticated GDL writer uses Master Script to
define one’s own Materials, set out manufacturer’s
rules and set up dynamic Arrays – and all other such
housekeeping tasks.

GDL strobes through all the scripts and graphical
hotspots repeatedly (it’s a very complex circular proc-
ess) but mostly it executes the Master Script first.
The Master Script passes all the internal parameters
on to the 2D and 3D and other scripts as required.
The Parameter Script is activated when an object’s
settings are viewed and parameters edited.

Put as much as possible into the Master Script.
This way, you only have one place to check when
you want to modify your error checking routines. You
must never write the END command here – it will
obey! So you do not normally use it for subroutines.

The Rule is:
• Thinking and error checking and decision
making should take place in the Master Script.
• 2D and 3D Scripts should concentrate solely
on building 2D and 3D form.

IF Statements & Master Script

Here the new
values of A and B

are being placed
into the field in the

Object Settings
box, visible to the

user.

The
PARAMETERS

statement could be
done in the

Parameter Script.

18 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

User Choice
Boolean
Parameters

!--Back Legs, panel and upholstery
IF bakon THEN
MATERIAL framat
 ADD 0,B,sthit
 CONE bhit,lsec/2,lsec/3, 90,90
 ADDx A
 CONE bhit,lsec/2,lsec/3, 90,90
 DEL 2

 ADD 0,B-0.01,sthit+bhit*0.3
 BLOCK A,lsec/2,bhit*0.6 !Back
MATERIAL seatmat
 ADD lsec/2,-0.01,lsec/2
 BLOCK A-lsec,0.01,bhit*0.6-lsec
 DEL 2
ENDIF

Note that we could have written: IF bakon=1 THEN... But if
the answer to the question is a simple True/False, you can write
simply: IF bakon THEN... If the zero (false) result would
activate the routine, we could write: IF NOT(bakon) THEN...

!Braces
IF brace THEN
MATERIAL framat
 ADDz sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

 ADD A,0,sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

 ADD 0,B/2,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4

ENDIF

The decision to make
the diameters lsec/3

and lsec/4 is a
manufacturers

decision, there’s no
point in burdening

the user with too
many parameter

questions.

3D Options: the Chair Back

THE 3D object could offer the user many
options, and your user needs to know how

to select them.
I prefer to offer the user a pop-down menu even if
there are only two choices – the choice is made clear.
But for a question to which the answer is ON or OFF, a
Boolean parameter is ideal – and the answer to an ON/
OFF Boolean question is simply 1 or 0.
 In the chair, we will have an option to change the
chair between a Stool/Table, and a Chair with the back.
That is a simple ON/OFF question.
 If you had options for ‘No back’, ‘Back’ and ‘Back
with Arms’, then you would have 3 possibilities, and
you would need a popdown menu.

We have to make the new parameter ‘bakon’ and
click the popup icon palette to make sure it’s a Boolean.
While you are about it, make a ‘Title’ parameter which
serves to put a title line in bold type in the parameters
table.

The 3D Script is modified with a simple IF... THEN...
ENDIF statement at the start and end of the script for
the chairback.

Now, try clicking the ON/OFF button in your ob-
ject to see the effect in the 3D Preview window.
More 3D Options: Leg Braces
There are many additional ways to enhance this chair.
Let’s try something easy, adding some Leg Braces.
Other options could be Arms, or a Curving Back to
make it more comfortable.

As with the Booleian option for the chairback, we
add a new parameter, 'brace', and write a new routine
at the end of the 3D Script, as on the right here.

We could have used Cylinders here but it would be
unrealistic. The braces have to be mortice & tenoned
into the legs, and the legs are too slender unless the
tenoned ends are smaller in diameter. Braces in
wooden furniture quite commonly swell in the middle,
and the CONE command is a good way to do this.
CONEs only build up the Z-Axis, so you have to ROTx
-90 to lay the Cones on their side. Use 2 cones to build
each brace.

With each brace built, it's easiest to return to the
Origin using DEL, and use a single ADD command to
get to the location for the next one.
Try a Pop down menu?
In a later variation, we could have 'O' braces as well as
'H' braces, and these would need a pop-down menu to
decide and subroutines to perform the 3D.

19Copyright Marmalade Graphics ©2004

Popdown Menus:
ValueLists

3D Options: Menus do it better

POPDOWN Menus are a great enhancement
to GDL. One popdown menu can offer the user a

host of configurations or choices. The popdown menu
guarantees that the user cannot make a spelling mis-
take. Users have all used popdown menus in Archi-
CAD Library parts, so it's the most helpful way for your
object to be told how to perform by the user. This
makes the user’s decision more informed. The choices
can be manufacturer-specific with proper names or
model numbers. If your popdown menu offers three
distinct choices for the shape of an object, the user
cannot mistakenly enter a fourth and wrong choice.

GDL objects can now be much friendlier to the user,
and for the developer, there is less need to write error
catching routines.
Let’s make a Popdown menu
Technically we call them ValueLists. Making a
ValueList is easy. We have to set up the list of values
in the script and offer them to the user. Make a new
parameter – either text or a number – and then make
a list of values for the ValueList menu in the Param-
eter Script or the Master Script. The VALUES com-
mand is the way to store the values. This then forms
the popdown menu, in the same way that we get Ma-
terials, Pens, Lines, etc. offered to us.

If you learn to write User Interface scripts, you can
create an advanced ValueList which I call a Pictorial
Value List – you can offer the user a scrolling set of
picture tiles of the sort that you may have seen if you
have used the Door and Window libraries from GS.

My advice is that wordy (text) menus as most often
the most friendly and you can write the routine in the
Master Script that turns the user’s choice into num-
bers so that it will work in the other scripts.

For example, for a smart car model, you can script
a pop-up menu saying ‘Saloon’, ‘Coupe’, ‘Estate’, ‘Con-
vertible’ and your Master Script can interpret that and
use an IF statement to set a flag of values 1, 2, 3 and 4.
These numbers can be used in subroutines to produce
the correct shape of car.

Simply, a ValueList can take this form:
 VALUES 'cartyp' 'Rolls-Royce','Bentley',
 'Jaguar','BMW',’Mercedes'

Note that the parameter name is in quote marks be-
cause here we are building it, not using it. Later on
your 3D Script might include IF statements like:

IF cartyp='Bentley' THEN
 !Build the car

ENDIF

Making a ‘flag’

User Choice

The previous IF statement is case sensitive and spell-
ing sensitive, so it often goes wrong. What you should
do is to make a ‘flag’ in the Master Script, and work
from that. The benefit of a flag is that as an integer
number it cannot be spelt wrong.

 VALUES 'cartyp' 'Rolls-Royce','Bentley',
 'Jaguar',’BMW',’Mercedes'
 IF cartyp= 'Rolls-Royce' THEN ct=1
 IF cartyp= 'Bentley' THEN ct=2
 IF cartyp= 'Jaguar' THEN ct=3
 IF cartyp= 'BMW' THEN ct=4
 IF cartyp= 'Mercedes' THEN ct=5

!’ct’ is a flag

Later in the 3D Script you might write a simpler IF
statement like this:

 IF ct=2 THEN !'Bentley'
 !Build the car

ENDIF

It’s important that you write a small !comment! after
the IF statement because you are using a flag not a
string – you would have a headache remembering what
all the flags meant when you look at the script later.

The best method for building and pars-
ing ValueLists
The little routine here saves you the bother of parsing
it – create some variables (e.g. "ct1") for each line of
the menu, and then in the 3D you can use those vari-
ables to decide what to do.
 ct1= 'Rolls-Royce'
 ct2= 'Bentley'
 ct3= 'Jaguar'
 ct4= 'BMW'
 ct5= 'Mercedes'

VALUES ‘cartyp’ ct1,ct2,ct3,ct4,ct5

These variables are a tidy way to build the ValueList
and you do not have to bother to parse the menu as
we did above. Later in the 3D Script you might write a
an easy IF statement like this:

 IF cartyp=ct2 THEN !'Bentley'
 !Build the car

ENDIF

We will return to Value lists many times: there is much
more to say about them.

User Choise: Booleans & Popdown Menus

This method
works best in

the Master
Script

20 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Add a popdown
Menu to the chair

WE can create an additional leg
brace style to the chair. As a simple

example, let's make a choice between an 'H' leg
brace and an 'O' leg brace for the chair. If you include
the option of ‘No Brace’ then that makes three, so we
need a ValueList.

In fact, I use a ValueList even when there are only
two choices as you can name the choices so much more
explicitly than the ‘On/Off ’ of a Boolean choice.
Do it for the chair
Make a new text parameter ‘bracetyp’ and build the
menu in the Master Script or the Parameter script. (I
prefer the Master Script). We make a
simple flag ‘brace’ from the result of
the menu. The menu decides if
'brace' is 1 or 0 now, so you can click
the little X icon to hide brace from
the user. In fact you can delete it al-
together from the parameter table
because the user no longer needs it.

We also need to modify the 3D Script that we de-
veloped for the 3D Options. The two braces that go
from front to rear are unchanged.

We introduce two IF statements for the lateral
braces, based on our Popdown menu parameter
'bracetyp' – and nested within the over all IF state-
ment. Build these with CONE as for the single H-brace.

It’s time to learn subroutines as all these braces
are basically the same object and it’s a lot of typing.
We also need to know more complex 3D commands
than BLOCK and CONE.
Now add some Arms with a Boolean
We can make another small refinement using a Boolean
choice, and it illustrates a small level of intelligence: if
the object doesnt have a Back, it cannot have Arms. it
also illustrates the use of MUL. We can make the arm
with a cone, but make it elliptical in section.

!Add to the Master Script
!-------Pop down Menu-----------
 bv0="No leg braces"
 bv1="O brace"
 bv2="H brace"
VALUES "bracetyp" bv0, bv1, bv2

IF bracetyp=bv0 THEN
 brace=0
 ELSE
 brace=1
 ENDIF

We build the
ValueList with the

smart method, using
variables – makes

parsing easier.

Here we will still
make a flag, because

we used ‘brace’
before.

!--------Braces front to rear----------
IF brace THEN
MATERIAL framat
 ADDz sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

 ADD A,0,sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

IF bracetyp=bv1 THEN !---H Brace------
 ADD 0,B/2,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4
ENDIF

IF bracetyp=bv2 THEN !---O Brace------
 ADD 0,0,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4

 ADD 0,B,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4
ENDIF
ENDIF

The two braces that go
from front to rear are

unchanged

Now we build in
routines for the

cross braces, either
one in the centre for
the H-brace, or two,

front and back for
the O-brace.

As these braces are
almost all the same

shape, it seems a pity
to have to keep

typing them over and
over again. It’s time

we learnt
Subroutines.

!Add this to the end of the 3D Script
!Arms
IF arms THEN
MATERIAL framat
ADD 0,0,sthit !Left
 CONE 0.2 ,lsec/2,lsec/3,90,90
 ADD 0,-lsec, 0.2
 ROTx -90
 MULy 0.5
 CONE B+lsec,
 lsec*0.7,lsec*0.45, 90,90
 DEL 4

 ADD A,0,sthit !Right
 CONE 0.2 ,lsec/2,lsec/3,90,90
 ADD 0,-lsec, 0.2
 ROTx -90
 MULy 0.5
 CONE B+lsec,lsec*0.7,
 lsec*0.45, 90,90
 DEL 4
ENDIF

!Add to the Master Script
IF bakon=0 THEN arms=0

21Copyright Marmalade Graphics ©2004

User Choice: MultiObject

Extending ValueLists

WE can make one GSM library part contain the
code for many objects, in effect for it to become

a super object, which I nickname the MultiObject. This
is more economical than having a library of many dif-
ferent objects, all similar – because improvements and
maintenance are easier to a few well written objects.

GDL for Manufacturing
The MultiObject is a very important concept in ‘GDL
for Manufacturing’. GDL is smarter than a dumb DXF
object, but one facility that makes it appear
smartest by comparison is its ability to op-
erate as a Configurator: to contain configu-
rations of a designed object, that can be
selected by the user, and which when se-
lected will follow the correct rules.

If permitted by the manufacturer then
‘custom configuration’ in GDL is an additional power
that allows an object to be designed or configured by
the user according to systematic rules defined by the
manufacturer. The dimensions and attributes can re-
corded in data output or in the object settings dialog
that allow the now-unique object to be manufactured.
In this way, one good kitchen cabinet library part can
have over a million variations. CNC machines now
make custom objects possible, even with small pro-
duction runs.

Make the Chair a MultiObject
If the user chooses to keep this chair as a custom chair,
it might be that they intend to commission the furni-
ture-maker to make a special, and this customization
is a useful visualiser of the end result. Otherwise, they
are happy to use one of the standard products, and
have a choice of fabrics and woods, perhaps.

This chair can be adapted to be a MultiObject. It is
amazingly simple – you do not have to change the 3D
Script at all – the work is done in the Master Script.

Make a new parameter [text], let's call it 'chairtyp'.
Build a Popdown menu definition in the Master Script.

If the chair is to be one of the standard items, we
should LOCK all the customizable parameters like seat
height. If they were not locked, it would confuse the
user who would think they could still customize pa-
rameters. Alternatively, with HIDEPARAMETER, you
could hide them altogether.

We simply use the Master Script to define a value
for the parameters for each of the standard versions

!Cookbook Chair: Master Script
!------Menu for Chair-------
cv0='Customised chair'
cv1='Foot stool'
cv2='Nursery chair'
cv3='Piano stool'
cv4='Dining chair'
cv5='Dining armchair'
cv6='Kitchen stool'
cv7='Bar stool'

VALUES 'chairtyp' cv0,cv1,
 cv2,cv3,
 cv4,cv5,
 cv6,cv7

IF chairtyp<>cv0 THEN
!Grey out custom parameters
 LOCK 'A','B','sthit'
 LOCK 'lsec','frsec'
 LOCK 'bakon','bracetyp',
 'bhit','arms'
ENDIF

IF chairtyp =cv1 THEN !Footstool
 A=0.35: B=0.30: sthit=0.28:
 lsec=0.04: frsec=0.04: arms=0
 bakon=0: bracetyp=bv0
ENDIF

IF chairtyp =cv2 THEN !Nursery chair
 A=0.30: B=0.35: sthit=0.32:
 lsec=0.04: frsec=0.04: arms=0
 bakon=1: bracetyp=bv0: bhit=0.5
ENDIF

IF chairtyp =cv3 THEN !Piano stool
 A=0.45: B=0.40: sthit=0.45:
 lsec=0.05: frsec=0.1: arms=0
 bakon=0: bracetyp=bv0
ENDIF

of the chair: for seat height, leg section etc, overriding
the choice in the parameter table.

At the end we could choose to use the PARAM-
ETERS command to show all or some of the values in
the parameter table.

Should you wish to extend this chair further, a User
Interface would allow you to make a pictorial menu.
For the moment, ensure that your interface is tidy by
using the indents to form parameter groups, as be-
low.

Build the
menu using

variables.

The VALUES
statement

follows.

Lock out the
customising
parameters.

Specify the
dimensions

for each
predesigned

chairtype

Continued next page

User Choise: the Multiobject

22 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Stretchy Object: Beam Tool
Main value of this exercise:
• Make things stretchy – do this whenever possible.
• Using a dual 2D Script – If it is difficult (tilted) THEN
use PROJECT2, ELSE when it is easy (untilted) use a
2D Script.

THIS is a useful little object that I give to my stu-
dents, and it makes 3D modelling in ArchiCAD

almost as easy as using good old ModelShop of years
gone by. It is simply a stretchy rectangular object that
can be dropped into the plan, stretched into shape, set
material and height. Put several of them together, save
them and you have a new Library object without hav-
ing to use GDL! It’s a great way to knock up pergolas,
frames, furniture etc. – easier than using Slabs and
Walls. I made a glass Elevator car entirely out of
BeamTool – with lots of detail – and a group of my
students built an entire timber framed house!

3D Script
For starters, just do it with BLOCK. If you wanted to
be able to vary the top, side and bottom colours, you
would have to do it with a cPRISM_ command.

2D Script
The HOTSPOT commands give the object stretchi-
ness. When the object tilts, you can no longer use
RECT2 so you use an IF...ENDIF statement to gener-
ate a PROJECT view of the object.

SLAB 5,higt,
 0,0,0,
 A,0,0,
 A,B,B*SIN(tilt),
 0,B,B*SIN(tilt),
 0,0,0

IF chairtyp =cv4 THEN !Dining chair
 A=0.45: B=0.40: sthit=0.45:
 lsec=0.05: frsec=0.05: arms=0
 bakon=1: bracetyp=bv1: bhit=0.55
ENDIF

IF chairtyp =cv5 THEN !Dining armchair
 A=0.50: B=0.45: sthit=0.45:
 lsec=0.05: frsec=0.05: arms=1
 bakon=1: bracetyp=bv1: bhit=0.65
ENDIF

IF chairtyp =cv6 THEN !Kitchen stool
 A=0.35: B=0.40: sthit=0.60:
 lsec=0.05: frsec=0.05: arms=0
 bakon=0: bracetyp=bv2
ENDIF

IF chairtyp =cv7 THEN !Bar stool
 A=0.35: B=0.40: sthit=0.65:
 lsec=0.05: frsec=0.05: arms=0
 bakon=1: bracetyp=bv2: bhit=0.3
ENDIF

Normally I hate
multistatement

lines, but for this
purpose it makes

sense: the eye can
run down the list

easily.

!More parameter checking
IF bracetyp=bv0 THEN
 brace=0
 ELSE
 brace=1
 ENDIF

IF bakon=0 THEN arms=0

!Feedback to the user
PARAMETERS A=A, B=B,
 sthit=sthit, arms=arms,
 lsec=lsec, cpn=cpn

The PARAMETERS command is akin to the speedometer
of a car :- whereas the parameter table and the “IF
chairtyp” routines are driving the object (the accelerator),
the PARAMETERS command is providing the user with
information about the performance of the object, e.g. it’s
like a speedometer.

End note
If you do this with SLAB instead of BLOCK, you can
turn it into a Rafter tool, with sheer end-edges.

SLAB is similar to PRISM, except
that you specify the z-height of each
corner. Beware, if the surface is not
planar, it may not show correctly.

!2D Script

PEN gs_cont_pen

HOTSPOT2 0,0
HOTSPOT2 A,0

IF tilt THEN
PROJECT2 3,270,2
 ELSE
 RECT2 0,0, A,B
 HOTSPOT2 A,B
 HOTSPOT2 0,B
 HOTSPOT2 A/2,B/2
 ENDIF

!Simple beamtool
!3D Script

PEN gs_cont_pen
MATERIAL bmat

ROTx tilt
BLOCK A,B,zzyzx
DEL 1

Here we use the classic
stretchy parameters of A
for Width, B for Depth
and ‘zzyzx’ for Height.
This wiall stretch in the
2D and in the 3D
windows.

23Copyright Marmalade Graphics ©2004

PRISM : the Ordinary Prism
PRISM is a polygonal shaped object which has the
same colour all over, no hollow faces or curved sur-
faces, and no holes.

The local origin can be anywhere, but the prism is
always built up the Z-axis, off the X-Y Plane. The
first thing you write after PRISM is the number of
points on the prism. Include the start point a second
time, at the end. You should declare the MATERIAL
property before you write the prism.

PRISMs can have negative thickness values and
thus grow down instead of up the Z-axis.

PRISM_ : Prism Underscore
CPRISM_ gives you the power to control the faces
and to include curves and holes by using masking
values. For now, just put 15 after every XY location;
later in the Cookbook, the role of masks is explained
in more detail.

You can finish off the final coordinate with a 15,
or if you plan to add holes, you can put a negative
number (–1 will do) which tells GDL that you have
finished drawing the outline.

With curved edges (Polylines), you can use PRISM
to produce Cylinders and ovals.

cPRISM_ : Coloured Prism
cPRISM_ is similar to PRISM_ with the addition of
a line to describe the three materials of the top sur-
face, bottom surface and side surface. It also uses
masking codes for the edges, and supports polylines
(curves) and holes.

When you make a library object by the conven-
tional method from the floorslab tool, ArchiCAD al-
ways does each floor slab as a cPRISM_ in the 3D
Script.

Note that the PRISM_ above had many lines on
the curved surface. This is explained in the section
on Masking. Techniques of masking are learnt by a
combination of thinking it out and trying it out.

More 3D Commands: Prisms

SOONER or later, you have to produce shapes which cannot be done with Blocks and Cylinders.
 PRISM can form complex outlines in 3D. PRISM (and its variants) is the most common 3D statement in

creative GDL. I use PRISM in preference to using BLOCK, even for rectangular objects. Because you enter the
XY locations of the points, you can stay at the origin and the Prisms can happen according to their XY loca-
tions. It is always best to draw the Prism out on paper before you enter the XY coordinates, numbering all
the points. When you get further into Prisms, you can texture, drill, bend, curve and chamfer them. Powerful!

!Syntax:- PRISM number,height,
! x1,y1, x2,y2,...etc
MATERIAL "Sandstone"
PRISM 9, 0.2,
 0.00,0.00,
 -0.10,0.30,
 0.10,0.30,
 0.10,0.40,
 0.20,0.40,
 0.20,0.10,
 0.15,0.10,
 0.15,0.00,
 0.00,0.00

Note, that by adding 1000 to the 15, you can
create interesting tangential curves. This is

your first view of the power of Polylines

!Syntax:- PRISM_ number,height,
! x1,y1,15,
! x2,y2,15,...etc
MATERIAL "Sandstone"
PRISM_ 9,0.2,
 0.00,0.00,15,
 -0.10,0.30,15,
 0.10,0.30,15,
 0.10,0.40,15,
 0.20,0.40,15,
 0.20,0.10,1000+15,
 0.15,0.10,15,
 0.15,0.00,15,
 0.00,0.00,-1

!Syntax:-
! cPRISM_ topmat,botmat,sidmat,
! number,height,
! x1,y1,15,
! x2,y2,15,...etc
cPRISM_ "Sandstone","Pine","Zinc",
 9,0.1,
 0.00,0.00,15,
 -0.10,0.30,15,
 0.10,0.30,15,
 0.10,0.40,15,
 0.20,0.40,15-2,
 0.20,0.10,1015-2,
 0.15,0.10,15,
 0.15,0.00,15,
 0.00,0.00,-1

Get the numbers right

ALL 3D commands that use XY coordinates require
you to enter the ‘number’ of coordinates in the state-

ment. For example PRISM 4,0.2, x,y, etc etc means that there
are 4 points on the prism, with a height of 0.2. This rule also
applies to REVOLVE, SWEEP and all complex 3D forms.

Although most coordinate based 3D objects are self closing,
its best to re-write the start point at the end, to indicate that
you have closed the polygon. Also, it’s a good discipline to go
in an anti-clockwise direction, although I regret to say that all
the examples on this page are going clockwise.

The Prism family

24 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

HPRISM_/FPRISM_: Chamfered Prism
HPRISM_ allows you to chamfer the top edge of a
prism, and to have different materials for each sur-
face. Put an angle in and you get a hipped roof ef-
fect. Put in zero for angle, and you get round edges.

Before AC8’s HPRISM, you only had FPRISM, the
same but without HPRISM’s hillstatus code which
allows you to control visiblity of lines on the Hill sur-
face, 0 for visible, 1 for smooth.

With AC8, RESOL and TOLER work correctly with
both, but worked wrongly on earlier versions.

Most realistic furnishing and other objects have
rounded edges; this FPRISM/HPRISM command is
a real help; but whenever possible, use an angled
chamfer, which suggests a rounded look without cre-
ating hundreds of polygons.

SPRISM_ is a prism that puts a Cutplane on the
top surface. Frankly it’s easier to use CUTPLANE .

!HPRISM demonstration
!Syntax: – HPRISM_ topmat, botmat, sidmat, hillmat,
!number of pts, thickness, angle,
!hill_height, hillstatus

RESOL rsl
PEN 1
hs=0 !0=visible, 1=invisible
HPRISM_ topmat,botmat,sidemat,hillmat,
 9+2,0.1,sang,hhit,hs,
 0.00,0.00,15,
 -0.10,0.30,15,
 0.10,0.30,15,
 0.10,0.40,15,
 0.20,0.40,13,
 0.20,0.10,1013,
 0.15,0.10,15,
 0.15,0.00,15,
 0.00,0.00,-1,

 0.05,0.10,900, !hole
 0.05,360,4000 !hole

Drilling Holes in Prisms

PRISMs may not be able to have holes through
them, but the addition of an Underscore makes

PRISM_ which can have holes & curved lines. All
the later Underscore prisms support hole-drilling.

With PRISM_, you end each XY location with a
15. The trick with holes is that you describe the out-
line of the object, followed by XY lists of the outlines
of each hole. You end the description of the outline
and each hole by repeating the first point as the last
point, with a -1. You can have as many holes as you
like if you follow that sequence.

My tip for hole making is to express the number
of points as I have done here, e.g. 9+7, not as 16.
This way, you can remind yourself how many points
make the outlines, and how many are in the hole.

!Syntax:- PRISM_ number,height,
! x1,y1,15,
! x2,y2,15,...etc
MATERIAL "Sandstone"
PRISM_ 9+7,0.2,
 0.00,0.00, 15,
 -0.10,0.30, 15,
 0.10,0.30, 15,
 0.10,0.40, 15,
 0.20,0.40, 15,
 0.20,0.10, 15,
 0.15,0.10, 15,
 0.15,0.00, 15,
 0.00,0.00, -1,

 0.00,0.05, 15,
 -0.07,0.25, 15,
 0.15,0.25, 15,
 0.15,0.15, 15,
 0.10,0.15, 15,
 0.10,0.05, 15,
 0.00,0.05, -1
RETURN

bPRISM_ : Bent Prism
bPRISM_ (bent PRISM underscore) is similar to
cPRISM, with the added ability to curve it – by add-
ing in a value for a Radius. It always curves in a down-
ward direction, along the X-axis.

If you want to curve upwards, you can issue a
MULz -1 (multiply all Z values by -1) command first.
You can also enter a negative value for the depth of
the prism, and bring it below the origin (and thus make
a tighter curve). The MUL command also reverses
the materials of Top and Bottom.

With bPRISM, you can make long helices
e.g.curved rising walls. You can have a negative Z
value, i.e. the bPRISM_ can go downwards.

bPRISM requires every point to have a masking
value. Start by giving it 15, then change some to 13
[15-2] to remove vertical lines.

!Syntax:-
! bPRISM_ topmat,botmat,sidmat,
! number,height,radius,
! x1,y1,15,
! x2,y2,15,...etc
bPRISM_ "Sandstone","Pine","Zinc",
 9,0.05,0.4,
 0.00,0.00,15,
 -0.10,0.30,15,
 0.10,0.30,15,
 0.10,0.40,15,
 0.20,0.40,15-2,
 0.20,0.10,1013,
 0.15,0.10,15,
 0.15,0.00,15,
 0.00,0.00,-1

!you can make it
!curve in
!the other direction
MULZ -1
 GOSUB 360:!bPRISM
 DEL 1

More about Prisms

The end point of each groupof
points must be the same as the

start point.

25Copyright Marmalade Graphics ©2004

STATUS & Masking values – are ways of con-
trolling the visibility of edges and surfaces in 2D

and 3D entities. Newcomers to GDL hate them, but
they are worth learning about. When they are ex-
plained, the GDL user rapidly recognises the values of
masking, and learns how to apply it.

Status Values

STATUS Values mostly apply to things which are
 2 Dimensional in nature (even if they are 3D ob-

jects). Mostly they decide if a Line is to be drawn or
missed out. POLY_ and POLY2_ are the prime exam-
ples of 2D elements that use Status Values.

3D Scripts which define a 2D outline for 3D form-
making also use Status values – for example, in defin-
ing a profile in TUBE, SWEEP and REVOLVE.

Masking Values

MASKING Values apply mostly to 3D objects –
elaborating the details of how the object is to

appear in 3D – lines and surfaces. On a 3D Prism, the
Top and Bottom surfaces are always drawn. But the
definition of the side surfaces and edge lines can be
done with masking values.

On Prisms, there are only 0-15 permutations of lines
and surface to each facet of the prism. When you are
not sure and want the whole prism to be drawn, just
write the XY values of each point followed by 15 –
that draws everything.

If you use a mask of 8 at a point on the prism, it
draws the surfaces without the lines. If you want to
make one side draw differently from another, experi-
ment with the script to make sure that you attach the
different value to the correct line.

For Planar elements the choice of drawing line edges is either
Yes or No

For Prisms, there are 0-15 permutations for the status of edges.
This is an example of 13: no vertical lines visible on the curved
surface.

Status and Masking values
See the
Masking
example in the
Bocaccio
Chair

Masking Values on solids

WITH more complex objects, you can declare
an overall masking value for the whole thing,

which is written on the first line. EXTRUDE, REVOLVE,
PYRAMID, SWEEP, MASS and RULED are objects with
masking values, and there are more. For safety, just
start by writing 63 for most objects until you need to
change it.

Certain objects also have special considerations sot
that some masking values apply and others are ignored.
For example, REVOLVE requires a masking value for
the starting angle surface and the ending surface. The
masking values for this will behave differently from a
SWEEP. Therefore for Masking values, you need to
have handy access to a manual. The Cookbook gives
a handy summary of the object masking for each com-
plex 3D command.

Adding 64 to the object masking (e.g. 63+64) will
reveal all the rough construction lines which make it.
For example in a COONs or a REVOLVE, you will see
all the triangulation lines.

Let’s explain Prism
masking again...
MASKING values are the numbers that come af-
t e r

each XY location in the listing of a PRISM_ (un-
derscore) and other similar 3D objects. In Autoscripted
objects, these are either 15 or 79, or -1.
 1 draws the bottom edge line..
 2 draws the vertical side line..
 4 draws the top edge line.
 8 draws the side surface as solid.
 64 smooths the edge.
You can add these yourself in any combination.
Combinations:
 79 (15+64) draws everything, but smoothes edges in
Open GL or photorendering.
 7 (1+2+4) draws all the lines, but omits the face.
 13 (1+4+8) draws top and bottom lines, and the face,
omits the vertical line.
 -1 means that you have reached the end of an out-
line..
The Cookbook is full of countless examples of Mask-
ing codes in action.

Status and Masking values

26 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

YOU need to know how to de
fine a prism outline by describ-

ing the X and Y coordinates. The
simple rectangle here starts with its
bottom left at the origin just like a
BLOCK command. Although it has
4 corners, we count this as 5 points,
because you start from the origin,
proceed (preferably in a counter
clockwise direction) giving the X,Y values of each
point, and you repeat the first point last. In GDL the
points can be defined by real dimensions (metres or
feet+inches) or by parameters.
The Origin
Notice that you no longer need to sit over the origin,
as with Block and Cylinder. If you can define the X,Y
locations, the prism can be anywhere, with the limita-
tion that the bottom surface is always at the Local Zero,
and the height is always vertical – down or upwards.
So you often have to do an ADDz to get to the right
place.
Improve the chairseat with PRISM
Let's keep PRISM simple for now and see how it ap-
plies to the chair. To build the seat of the chair we
have several methods.
• The PRISM statement can merely replace the BLOCK
statement of earlier – the origin at zero and the far-
thest corner at A,B.
• We could drill the PRISM with a hole, thus getting
the effect of a frame. To do this, we need the prism to
know when we have stopped drawing the outline and
started drawing the hole. For this, we use a PRISM_
(prism underscore) and we then append a drawing code
or 'masking code' to the end of each line. We use a
masking code of 15 after each line, and one of minus
one (-1) to denote the last line of the outline. We could
then set the upholstery more realistically into the frame.
• Keeping the theme of a frame, we could build 4
prisms, one for each side of the frame. The benefit of
this would be to control the woodgrain in each piece.

Masking Codes and Drilling the Hole
To drill the hole, we put a comma at the end of the
first prism outline, and then continue the list of X,Y
coordinates and masking codes to describe the ‘inline’.
The number of points in the Prism is now 5+5 or 10,
so remember to change that.

Improve the chair frame - centre the
frame members for more realism!
As we have a mission to improve the look of the chair,
we need to centre the frame elements to the legs – we
didn't do this before, to keep things simple. Centring it

!Alternative Codes for the Seat frame....
!BLOCK A,B,frsec-0.002

!Simple Prism
PRISM 5,frsec-0.002,
 0,0,
 A,0,
 A,B,
 0,B,
 0,0

!Same prism with drawing codes
PRISM_ 5, frsec-0.002,
 0,0, 15,
 A,0, 15,
 A,B, 15,
 0,B, 15,
 0,0, -1

!Prism with hole, for frame effect
 ft=0.03
PRISM_ 5+5, frsec-0.002,
 0,0, 15,
 A,0, 15,
 A,B, 15,
 0,B, 15,
 0,0, -1,

 ft, ft, 15,
 A-ft,ft, 15,
 A-ft,B-ft, 15,
 ft, B-ft, 15,
 ft, ft, -1

Temporarily make a small
variable of ‘ft’ for frame

thickness

The masking code of '15' means
'draw everything' and '-1' means

'completion of an outline'. Let's
assume the frame thickness is a
parameter called 'ft' and make
ft=30mm or 1 1/4". This could

be a parameter for the user to
change, but here it is defined by

the manufacturer, so is written
in the script.

makes more realistic mortice and tenon joints. So us-
ing a half-frame width of ‘f2’ we can alternate the out-
side and inside lines of the prism by f2 either side of
the 0, 0, A, B rectangle.

Working with
PRISMs: apply
them to the Chair

27Copyright Marmalade Graphics ©2004

!Prism with frame effect by drilling hole
!Improved statement with f2
 ft=0.03
 f2=ft/2
PRISM_ 5+5, frsec-0.002,
 -f2, -f2, 15,
 A+f2, -f2, 15,
 A+f2, B+f2, 15,
 -f2, B+f2, 15,
 -f2, -f2, -1,

 f2, f2, 15,
 A-f2, f2, 15,
 A-f2, B-f2, 15,
 f2, B-f2, 15,
 f2, f2, -1

To save a lot of ‘ft/2’
expressions, make a short

term variable called ‘f2’

If you look at the script
adapted for the frame

thickness, you can see that
the outline for the hole is the

same as the main outline
with just the plus and minus

signs exchanged - very
labour saving!

Centring the frame members

Improve the upholstery
Now that we have made a hole in the seat by building
a realistic frame, we need to fill the hole. Let’s build
some seat upholstery. We can improve the chair by
softening the look of the upholstery by using a prism
for the cushion and chamfering the edges. One way to
do this is to use FPRISM_, the simpler version of
HPRISM_.
CPRISM_
To learn FPRISM_, we first need to extend our knowl-
edge of the PRISM. If you want to variegate the mate-
rials on a PRISM, you can use a cPRISM_ (C-prism-
underscore) which allows you to specify Top, Bottom
and Side Materials. This is the command that Archi-
CAD uses when it writes floorslabs when you are cre-
ating autoscripted objects.

Look up the syntax for cPRISM_. You add the 3 ma-
terial parameters first, followed by the same syntax as

!Prism with frame effect by making 4 Prisms
 ft=0.03
 f2=ft/2
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0

ADDx A
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0
DEL 1

PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2

ADDy B
PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2
DEL 1

To improve the chair
further, it is better to build

the frame closer to its
manufactured sequence - 4

separate prisms for each
frame section allows us to
control the wood grain on

each.
This change will not alter

the 3D or line view, but will
work better in Photorender

if we write a routine later
for texture directions. for PRISM_. As with the PRISM_ you must put 15 af-

ter every XY point, and a -1 at the last point. You can
decide if the bottom material of the upholstery is to
be the same as frame or fabric or something else.
FPRISM_
We can adapt CPRISM_ to form an FPRISM_ in which
we can chamfer the edge surfaces. Because we can
chamfer the top surface, we need to specify a 4th ma-
terial - for the 'hill' - and follow that with two param-
eters after the prism
height, hill angle and
hill height.

The 'hill' can be
curved or angled,
but the curved hill
creates too many
polygons. For this
chair, an angled hill
of 300 is ideal. A hill
angle of 0 would re-
sult in a curve, but
do not use this op-
tion here.

!Cushion using BLOCK
! ADD lsec/2,lsec/2,frsec
! BLOCK A-lsec,B-lsec,0.005
! DEL 1

!Way to do it with PRISM_
! PRISM_ 5,frsec+0.010,
! f2, f2, 15,
! A-f2, f2, 15,
! A-f2,B-f2, 15,
! f2,B-f2, 15,
! f2, f2, -1

!Way to do it with cPRISM_
! cPRISM_ seatmat,framat,seatmat,
! 5,frsec+0.010,
! f2, f2, 15,
! A-f2, f2, 15,
! A-f2,B-f2, 15,
! f2,B-f2, 15,
! f2, f2, -1

!Cushion Chamfered with FPRISM_
 FPRISM_ seatmat,framat,
 seatmat,seatmat,
 5,frsec+0.010, 30, 0.01,
 f2, f2, 15,
 A-f2, f2, 15,
 A-f2,B-f2, 15,
 f2,B-f2, 15,
 f2, f2, -1

Now disable this old
BLOCK routine – we

have something much
better now!

Before writing a
CPRISM_ you could
write it as a normal

PRISM_ and then add
the materials.

CPRISM_ now
includes the materials

at the start of the
statement. This uses

the same XY
coordinates as the hole

in the wood frame.

Now convert the
CPRISM_ to an

FPRISM _ by adding
the Hill Material,

Hill Angle and Hill
Height.

Comment out the
previous Prism

statements.

Read up on BASIC!
For further reading on the syntax of BASIC, it is worth con-
sidering getting a book on it. Although these are probably
more difficult to find in the 21st Century than books on
C++, there must be some in libraries and well stocked book-
shops. If not, you will have to learn from the GDL Cook-
book!

GDL has moved on a lot from the original BASIC so it is
possible to learn GDL without knowing all of BASIC.

3D Commands: PRISMs

28 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!————Cushion————
ROTy -90
ADDz -(A-upthik*2)/2
PRISM_ 5,A-upthik*2, !Cushion
 armhit+upthik,B/2-upthik,15,
 armhit+upthik,B/2-upthik*1.5,15,
 0,B/2-upthik*2,15,
 0,B/2-upthik,15,
 armhit+upthik,B/2-upthik,-1
DEL 4

!—————Leg——————
MATERIAL legmat
 RESOL 8
 ADDz 0.04
CYLIND sethit-upthik-0.04,0.025
 DEL 1

!Black feet, Steel legs
 FOR k=1 TO 4
 ROTz 45+k*90
MATERIAL legmat
ADDz 0.04
 PRISM 5,0.04,
 dm/2, -p,
 0,-p,
 0, p,
 dm/2, p,
 dm/2, -p

DEL 1
MATERIAL blak
 PRISM 5,0.04,
 dm/2, -p,
 dm/2-p*4,-p,
 dm/2-p*4, p,
 dm/2, p,
 dm/2, -p
DEL 1
NEXT k

Bocaccio Chair
Demonstration of Prism Masking

THIS chair is a simplified edition of the Bocaccio
chair, to show how prism masking works in prac-

tical use. It also includes a material definition. The chair
is simply constructed. If this object was for commer-
cial use, one would build with softer edges & corners.

We want a cube that has a cubic chunk carved out
of it. We can build it up from a seat prism and a prism
for the arms. The left hand chair shows the chair with
all masking values set to 15. Although the seat ele-
ment is a square, it is a good idea to include two verti-
cal lines that coincide with the inside line of the arm.
This gives you the chance to remove the top line un-
der the arm, but show it across the seat cushion.

3D Script
Look at the masking on the Prisms for the upholstery
elements. 15 means ‘show all’, so if you write ‘15-4’
that means ‘show all except the top line’. We use Loops
here which are explained more fully, later.

2D Script
For a commercial object one writes a proper script.
It’s easy to copy the outline for the arms Prism, con-
vert them to a POLY2 and you are almost done. The
chair object on the CD is fully 2D Scripted.

!Bocaccio Chair 2D
HOTSPOT2 0, 0
HOTSPOT2 A/2, B/2
HOTSPOT2 -A/2, B/2
HOTSPOT2 -A/2,-B/2
HOTSPOT2 A/2,-B/2

PROJECT2 3,270,2

The cushion is built on
its side then rotated

into position. Return
to the Origin before

starting the legs.

The chair is stretchy
because it uses A and B.

This cylinder stays at the
central origin.

The user is free to set a new
material for the main leg – it

can be stainless steel or
painted. But the feet are

black. To make sure that they
are always black, define your

own material, set it and use it.

We create just one quarter
part of the leg and use a FOR
NEXT Loop to turn this into 4
legs; look at the article in the

book about loops.
This point closes

the prism

The arm omits
the lower ink

line around the
outside surface.

!---Master Script---

DEFINE MATERIAL ‘blak’ 4,0,0,0 !R,G,B
blak=IND(MATERIAL,’blak’)

p=0.01 !one 3d pixel
dm=MAX(A,B)*1.2 !extent of leg

IF upthik>B/6 THEN upthik=B/6

!Bocaccio Chair
!----3D Script----

PEN gs_cont_pen

!———Seating————
MATERIAL setmat
ADDz sethit-upthik
PRISM_ 7,upthik, !Seat
 -A/2, -B/2, 15-4,
 -A/2+upthik,-B/2, 15-2,
 A/2-upthik,-B/2, 15-4-2,
 A/2, -B/2, 15-4,
 A/2, B/2, 15-4,
 -A/2, B/2, 15-4,
 -A/2, -B/2, -1

ADDz upthik
PRISM_ 9,armhit, !Arms
 -A/2, -B/2, 15-1,
 -A/2+upthik,-B/2, 15,
 -A/2+upthik, B/2-upthik,15,
 A/2-upthik, B/2-upthik,15,
 A/2-upthik,-B/2, 15-1,
 A/2, -B/2, 15-1,
 A/2, B/2, 15-1,
 -A/2, B/2, 15-1,
 -A/2, -B/2, -1

We are assuming that 15
will draw everything, and
we work this by deducting
the lines we want to hide.

These numbers could be
written as 11. If you write

it analytically as in this
example, you can easily

run your eye down the list
and notice errors.
It’s a good idea to

tabulate the values neatly
in vertical line.

This is an example of a
Material Definition. It

works best if you
convert the new

material into a numeric
index with the IND()

statement.

The same job can now be done better and more
easily with Solid Element Operations

29Copyright Marmalade Graphics ©2004

Graphisoft Newsletter
Summer 2000
on 4/7/00, Sarah Elliott (Graphisoft_HU) wrote:
What are the most important things you tell the people who
attend your GDL classes about object making?

DNC Replies:
Here are the five most important!
First thing is....
•Dont Panic!!•
Its not as difficult as you expect once you are into it, and
when you get an error message, read the message, look at
the script; have you spelt the parameters right? Are your
commas in the right place? Try excluding part of the script
to see if other parts work. GDL has few bugs; for beginner
level GDL there are none to speak of; so it’s a relief to know
that the error will be found through hard logical thinking.
Second thing is....
•Always have pen and paper handy•
If you can’t draw it on paper, you can’t write it in GDL. Draw-
ing it out on paper will put your mind at ease to concen-
trate on the logical process of actually building it. For many
commands such as prisms and revolves, half the job is done
if you have drawn it out, preferably marking the origin and
numbering each point along the profile.

Third thing is....
•Think in parameters•
Always try to work (and think) in parameters not in num-
bers – it’s easy to develop your own lingo of 'wid', 'dep',
'len', 'hit' and 'thik', and easier to write in these terms know-
ing that a simple change in the parameter value will modify
your object easily.
Fourth thing is...
•Steal from ArchiCAD•
Some objects are so complex that the parametric method
above is harder than beating your head against the wall.
You may be better sketching them out in the ArchiCAD
floorplan and then dragging them and dropping into the
script. You may have to settle for making them parametric
only by stretching and mirroring.
Fifth thing is....
•Structured GDL is best•
The moment it gets more complicated than one page full of
script, convert the script to subroutines, so that each part of
the model is a tiny object in its own right. This also saves on
repetitive typing, and makes it easy to isolate errors.
First published in Graphisoft Newsletter, Summer 2000

• Can you draw the object on paper? If you can’t
you can’t build it. But if you are part of a team, can
you draw it out, flowchart style, as a sequence of
tasks? ...and write it in the same sequence?

• What investment value does your object re-
ally have? Will it be used once, for your eyes only,
or could it be used dozens of times in coming years
by many people? Imagine someone else using the
library object, and ask yourself which aspects of
the model really need to be parametric? What hap-
pens if the user enters negative quantities or an-
gles? How many choices should the user be offered?

• Where should the model origin be? This is the
point that defines the object’s height and location
in the project model. It’s better to start from a cen-
tre of symmetry or rotation.

• Can your object be subdivided into ‘tasks’ or
elements? Look for axes of symmetry, elements
which repeat themselves, elements which are clearly
lathed round an axis, elements which curve or twist,
elements which hinge or bend. Can you make use
of symmetry? – you can build half or quarter of the
model only, and then multiply or mirror the rest. If
you modify parameters such as length and height,
do elements which elongate also have to thicken?
Will they then become larger than the element they
join on to, or punch through it? Is there a logical
sequence to the assembly? Do the elements have
‘sub-elements’?

• Are there hinging or sliding elements? In how
many planes do they rotate or slide? Is there a suc-
cession of moving elements, such as in the human
arm? (in which, you get rotation as well as hinging!)

• What elements are repetitious and can be done
with loops? Are some quantities unknown? Per-
haps they will be generated after the user has en-
tered a parameter – e.g., the number of rungs of a
ladder depends on the height and slope of the lad-
der, assuming a regular spacing.

• Which commands (in GDL) would best achieve
the result? If you analyse the model into primi-
tives, are the elements formed from cylinders, cones,
prisms, tubes, extrusions, cut objects, blocks or
spheres? There are frequently more ways than one
to ‘cook your fish’.

• What maths or circle geometry problems are
involved? How may arcs or circles, and can you
locate their centres, and calculate their radii? Are
curved shapes circular, elliptical or parabolic?

• Can you estimate the required ‘level of de-
tail’ accurately? Do you really need to show glaz-
ing fittings, or handles on the doors? Could you use
more simple planar elements in the 3D model? Is
your level of detail (LOD) likely to generate too
many polygons? Do you need detailed 2D symbols?

• Are you planning to animate the model at
some stage? Objects can reduce their level of de-
tail when the camera is a long way away, or turn to
face the camera. Wheels can turn, doors open.

Advice Corner for GDL newbies
Advice Corner

30 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

slenr=colht/colwid !Slenderness Ratio
IF slenr>24 THEN
 PRINT “Warning, Column Slenderness Ratio is:”,slenr
ENDIF

END is one of the first
things I write, after I have

written a Title of the object, the
Date and my Name. It is be-
cause everything in front of
END is the 'Executive script'
and everything after END is
going to be a useful Subroutine
that needs to be stored until
used. Even the most complex
of objects need be no more
verbose than the example here.
It is immensely easier to detect
errors or make changes if the
script is written as subroutines.
Put a line of dashes after the
END statement.

LINE label numbers are
always written with a co-

lon (e.g. '250:'), and should be
followed by a text comment
(e.g. '!Chair legs'). They do not
have to be in sequence, but it
helps you if they are.

Early forms of BASIC re-
quired a number on EVERY line,
which is why numbers were
spaced with increments e.g. 10:
20: 30: 40: etc. – enabling you
to insert extra ones later. Now
you have freedom to write lines
without numbers except when
you need to Label. When you
use subroutines, there is noth-
ing to stop you using large num-
bers like 100: 1000: or 10000: –
they are merely labels.

END and Line Label numbers
!Timber chair
!Date and Author

PEN gs_cont_pen
RESOL 12

 GOSUB 100:!All the legs
 GOSUB 200:!The Seat and upholstery
IF bakon THEN GOSUB 300:!Back
 GOSUB 400:!Braces
IF arms THEN GOSUB 500:!Arms

END:!____________________________

100:!All the legs
MATERIAL framat
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx A
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDy B
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx -A
 CONE sthit, lsec/3,lsec/2, 90,90
 DEL 3
RETURN

PRINT
Error messages, Debugging and Idiotproofing

PRINT is a way of getting GDL to tell you or the
user something – it is used in pointing out errors,

or in debugging. The warning box only shows when
you display in 3D and you need to have error mes-
sages permitted in Options>Preferences.
Error Messages
My advice is to NOT use it for telling the user some-
thing unless you have a very important object, and a
very important message to tell the user. If you do it
for commonplace objects like windows, the user could
be faced with 20 or 50 identical shouting warning
boxes, and would not know which object was wrongly
set. They may not see it if they have the option turned
off.

For errors, it is far better to write ‘Idiotproofing’
statements in the Master Script where your object qui-
etly corrects the errors made by a user e.g. if the tim-
ber window is less high than 400mm, the horizontal
transom can be omitted, or the window is locked at
400mm (you decide which). With the PARAMETERS
command you can feed information back to the user
by showing a correct value in the Parameter Table.

Another way to correct errors is to have the 2D
object flag up an error. Some GS objects bleep a mes-
sage in the 2D “Bad Parameters!”. If Idiotproofing is
included, then stretchy objects will stretch to a safe
size and stop. Another way to make objects safe is to
have a ValueList to set the safe sizes for something –
e.g. door opening angles. When you open it, the door
snaps to safe angles.

Debugging with PRINT
PRINT is most useful during the writing and debug-
ging process, e.g. to see if a calculation is giving the
right result. Execution of the 3D Script is halted at the
Print command, so it’s a good way to test something
even when it isn’t fully working. You can then hit ‘Con-
tinue’ to see the rest of the script working.

It’s also useful if you lack a pocket calculator capa-
ble of Trig or complex functions. Type in a quick ex-
pression into the 3D Script, click on the 3D view and
get the answer.

GDL Miscellany

ValuesLists can provide ‘snapping’
VALUESLISTs can do more than provide a popdown menu.
You can also save a lot of work with IF statements by us-
ing them to define a range of values, and you can even set
the intermediate stepping values. Objects using Graphical
Hotspots will adopt a distinctive ‘snapping’ mode.
VALUES ‘len’ RANGE [0.05,1.0] STEP 0.05,0.05
VALUES ‘wid’ RANGE [2”,3’-4”] STEP 2”,2”
This will set the values to a range from 50mm to a metre
snapping to 50mm increments.

31Copyright Marmalade Graphics ©2004

GOTO is something that I never use, as going
to is the worst thing that you can do if you be-

lieve in the structured programming approach. You can
issue a command such as: ‘GOTO 250’, and it will jump
to that numbered line. It doesn’t care if the number is
part of a subroutine, it doesn’t check as to whether it
is already in a subroutine. It just jumps, even if it is
illegal. Chaos can be the result. If you want to modify
such an object, it may be impossible and you may find
that it’s quicker to rewrite the object from scratch.

GOSUBs are OK because they return after they have
completed; they remember where they came from.
GOTOs have no way to return safely; the execution of
the programme carries on like a runaway horse.

Early Graphisoft library objects are littered with doz-
ens of GOTO’s, perhaps to discourage users editing
the scripts. Some commercial GDL writers use GOTOs
to confuse a reader by making it difficult to find the
real code.

The use of Subroutines, Loops and IF.. THEN.. ELSE
commands should give you ways of getting round
every possible situation where you might want or need
to use GOTO.

You can even omit the THEN, or omit the GOTO – as long
as one of them is present. But why am I telling you this? It’s
just bad to use GOTO except in emergency.

Before FOR... NEXT Loops were invented, one
could make something that behaved like a loop, using
GOTO and k=k+1 to keep count. But now, there should
be no need for it in clean scripting.

If the GOTO is going to a location so close that it is
within ‘eyeshot’, i.e. when viewing the script the desti-
nation can be seen without scrolling, then I would re-
luctantly accept its use – just (if the numbering sys-
tem was rational and sequential).

One acceptable use of GOTO is as a substitute for
the END statement in a Master Script. You cannot END
here – or the object will not execute the 2D or 3D
Scripts. So if you have a command GOTO 99999 in-
stead of END, you can use GOSUB and subroutines in
a Master Script, with a 99999: at the final line of the
script.

The wickedness of GOTO

p=0
if p GOTO 1
PRINT "hello'
1:END

p=1
if p THEN 1
PRINT "hello'
1:END

What is zzyzx ?

ZZYZX is a ‘dynamic parameter’ denoting
HEIGHT. A and B are used to denote width

and depth – ArchiCAD recognises them as special
‘magic’ parameters that can make objects stretchy.
They are given special prominence in the Settings
dialog box. Zzyzx is the magic parameter used for
height, and if you use it, the height will be dis-
played in the Info Box Palette. Objects with zzyzx
can be stretchy in the 3D view – a 3D hotspot set

will appear at the height specified by zzyzx and if
you grab the spots, the ‘pet palette’ displays a ‘stretch
vertically’ option.

With new graphical hotspots since AC8, the use-
fulness of A, B and zzyzx are reduced because they
assume that stretchiness works on a theoretical
cuboid surrounding the object. GHSs make every part
of an object stretchy.

SHADOW
SHADOW: sometimes you must turn off shadow

rendering even when the rest of the object is shad-
owed – for example glazing fittings – which if curvy
and casting shadows could prevent ArchiCAD ever fin-
ishing a render. In a model of a car, you can speed up
rendering by issuing a SHADOW OFF command be-
fore drawing hubcaps or door handles.

SHADOW ON and SHADOW OFF can be used in
IF statements – for example, if the object is further
than 50 metres from the camera location then do not
cast shadows.
Example:
IF dd>30 THEN SHADOW OFF ELSE SHADOW ON

MODEL
MODEL: sets a viewing mode for the model, or

parts of the model. With the MODEL command,
you can single out parts of the model to draw differ-
ently from the rest.

With a Boolean Yes/No command in the dialog box,
part of your object could change from shaded to trans-
parent wireline.

In GDL Solid Element Operations, you could use
wireline to show the outline of bits that had been sub-
tracted. They would disappear in renderings, but show
in Open GL and 3d hidden line.
Syntax:
MODEL WIRE: MODEL SURFACE: MODEL SOLID

GDL Miscellany

32 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Now, let’s cascade!

AS you build each parameter, you have a little ver-
tical gripper at the extreme left with which you

can change the order of parameters. You also have
three buttons to touch on; the first one, with a cross
(as in ‘ZZYZX’ here) means ‘hide it’; perhaps you are
not using it, or it is ONLY to be used in the advanced
User Interface boxes. The second button with an ar-
row means ‘indent the parameter name’, making the
parameter hierarchically subsidiary to the nearest un-
indented above it. The third button with a large ‘B’
sets the parameter description to Bold, even to ones
which are indented. You can indent a parameter un-
der another, you are not restricted to doing it only
under titles.

Typical groupings would be ‘Pens and Materials’ or
‘3D options’. By organising the table into these group-
ings, you get triangular ‘rocking’ buttons, giving you
‘cascading parameters’ – the user can open group-
ings according to choice and need. You should make a
grouping when the number of parameters exceed 6 to
7 – it is considered very bad GDL organisation to make
the user have to scroll deep down the table.

Although you need to make all the parameters here,
you can hide them from the user with
HIDEPARAMETER command, to keep the box tidy. If
you hide the top parameter of a group (under which
the rest cascade), using either a cross or a command,
you will hide the entire group. Titles are parameters
with names, they can be hidden too.

If you use A, B or zzyzx these should remain un-
touched at the TOP of the parameter table and not in
any hierarchical group. When the object is saved and
then viewed through its settings box, A, B and zzyzx
become main Infields, not in the Parameter Table.

Value lists automatically activate if they find a valid
script in the Parameter or Master Script. In the ad-
vanced UI, you can have Pictorial Value lists.

Cascading parameters

FROM ArchiCAD 6.5 onwards, it has been
possible to organise the Parameters table into logi-

cal groups – you see this in all the objects in the Archi-
CAD Library.

While building the GDL object, you see the usual
box of parameters with the scroll bar. You should now
organise the parameters into tidy groupings with bold
titles, popdown menus, and line spaces. Emphasis very
important parameters with a Bold font.

With the emphasis on IFC and the use of subtypes,
the number of parameters that we use in GDL has in-
creased alarmingly. When you set an object to a
subtype, you get many many parameters created for
you in blue type, that are standardising some of the

2D representation and ArchiFM parameters. Use these.
But you will be annoyed that new parameters created
by you always start life at the bottom and have to be
moved upwards into position. If you do not want these
to be visible, hit the ‘X’ button so they are hidden from
the user.
UI: Moving beyond the Parameter table
It is possible to build a custom User Interface that does
away with the traditional parameter box altogether and
makes it possible to build objects that have the sort of
interface you normally expect from a well written API
add-on. You could also build a set of duplicate user
interface windows in different national languages. This
is the subject of extended study later in the book.

This is a
user’s typical
parameter
box all neat
and tidy and
folded up.

This is the
same user’s
parameter
box with 2 of
the groups
opened up
ready for
inspection
and use.

ArchiGuide for Library Parts.
ArchiGuide is a wonderful facility, so good I wondered
whether it was worth writing the GDL Cookbook edition.
But you can have both! Try it at:
http://www.graphisoft.com/support/archicad/
archiguide/library_gdl.html

33Copyright Marmalade Graphics ©2004

Making it friendly for the User

There are two oft-overlooked buttons in the GDL edit-
ing window, Comment and Preview – all good ob-
jects should use them!

COMMENT: is a good way to document your
object so that a user has a guide as to its author,

its purpose or to how it functions. If you are building
objects for sale, the comment box could be like a tiny
manual – or a copyright notice. You can place a Web
address in there preceded by a hash sign, and objects
may enable users to refer to a website e.g.

#http://www. gdlcookbook.com
Comment has a no word-wrap, so you have to write

it without carriage returns, and check out the wrap by
saving and viewing the settings. It cannot scroll, so
you cannot write much.

If its important to provide a lot of information, you
have two other methods, an extended Popdown menu,
or a scripted User Interface.

PREVIEW PICTURE: is used to show what
the object should look like. You can place a pic-

ture from the clipboard straight into the Preview Pic-
ture Window – or better still, this could be one you
made earlier with Artlantis.

To make a Preview picture, marquee a good look-
ing Render or Open GL image of the object, making
the marquee as square as possible. Open the Preview
window (grey button in GDL) and paste it in. It will be
resized as near as it can to 128x128. Line images do
not paste well, you need enough body in the image to
have something to click on when you want to select it
in a browser.

Every object you make should be equipped with a
Preview image, even autoscripted ones. If you use a
PC, your Preview image will become your icon in Win-
dows. In the GDL browser window, the Preview im-
age is the main means of identifying the object.

In a really complex object, you can write a UI show-
ing the many variations of the object, but this necessi-
tates storing picture files in a loaded library.

Sometimes in AC8, Preview images do not survive
if GDL objects are sent by email.– whether from Mac
or PC. The solution is to wrap them in an archive, zip
the archive and send that.

This Popdown menu is very
valuable in this Norwegian

window object for two reasons.
All of the parameters have

been concealed except this one,
because the entire parameter

set is displayed in the User
Interface. Secondly, the menu

can be arranged to show itself
in English or Norwegian, it is
very easy to switch language.

Simple Comment description and
Preview for the Fireplace on a
later page in the book.

Organising the Parameter Table
We already touched on the value of clicking the ‘in-
dent’ button to drop organise parameters into tidy
groups. You can also use the following commands to
life easier for the user.

PARAMETERS: This makes the result of
idiotproofing or calculations visble to the user.

LOCK: This leaves the parameter visible to the user,
but greys out the data and does not permit the

cursor to be clicked in the infield – good for display.

HIDEPARAMETER: This enables you to hide a
parameter if it is not required. You may have a

table that can have either cylindrical or square legs. If
the user selects the square leg, the parameter for the
diameter should be hidden. It is a pity that there is not
a SHOWPARAMETER command – for those occasions
when you want to be sure it’s visible.
IF A>=2.0 THEN A=2.0
PARAMETERS A=A, B=0.6,
 zzyzx=0
LOCK ‘B’
HIDEPARAMETER ‘zzyzx’

This limits ‘A’ to 2 metres
and informs the user of
that; it defines the other

sizes.
‘B’ is uneditable, but

here the user still needs
to see it. The ‘zzyzx’ can

be hidden altogether
from the settings

palettes.

Note, PARAMETERS: names are
not in quotes.
HIDEPARAMETER and LOCK:
names are in quotes.

User Friendliness

34 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

How not to write GDL?

Criticism of Script
• The script is ‘sequential’ instead of being organ-
ised into a modular structure. For example, in this
script, the entire leg is written once, and then it is writ-
ten all over again, nearby. This is wasteful, and diffi-
cult to edit later. The legs, being the same, should be
repeated in a neater way, either using a Loop or a
Subroutine.
• The PEN colour should also be a parameter in case
pen colour 1 is not what the user wants.
• Make even more use of Comments, Indents and
Carriage Returns in the script to make it easier to
understand. Some indents are used in this example,
but there is no logic to them. Indent cursor movements.
• The Model starts with an origin in the bottom left
corner, although it would be better for a symmetrical
object to start from the Centre line.
• The material for the legs is specified after they have
been drawn. They will turn out green!
• The entire script is written in lower case. Although
lower case is easier to read, it is more difficult to pick
out commands from comments and variable, and it is
therefore more difficult to edit the script. Always use
UPPER case for GDL code and lower case for com-
ments, string and parameters and variables.
• The script makes occasional use of
multistatement lines using the colon: – eg addy -
.03:roty -5 on one line. This is legal syntax, but is bad
because you will have problems debugging the script.
• It is bad to write numbers in the form .03. Always
give low numbers a leading zero, e.g. 0.03.
• It is not parametric. The script specifies all materi-
als and dimensions very specifically – whereas you
should provide the user with all the parameters they
need in the dialog box. All these material names change
in new versions of ArchiCAD and in different coun-
tries, so they will not be recognised by GDL
• At the end of the script, no attempt is made to bring
the cursor back to a final resting place at the origin.
• Although the author brings the cursor back before
beginning the next operation (most commendable!),
there are far easier ways to do it; instead of wriggling
backwards in reverse, use the DEL command.
• PROJECT2 is quite legal in the 2D Script but it is
always better to try a real script with RECT2 and LINE2
commands. Also, you should add in some Hotspots.

The side elevation shows
that it still works, even
though it is a bad script!

This cookbook is all about learning to used ‘structured
programming’ techniques. It is easier to learn from
mistakes than from successes – so please look at the
criticisms on this page when you have tried some scripts
yourself.

IF you are working at home, you may have
looked through pages in the GDL Cookbook. You

may have begun to get some ideas about good style
and form in GDL. Look at the script on this page, and
CRITICISE! Come back to it later for another read
when you have done more scripting.

Do not type this script in!!
....it’s an example of the untidy kind of scripts you write
when you first start writing GDL scripts.

Let’s notice the good point(s) first:
• The script results in a chair! Therefore, it is not all
bad!!

! Tubular Steel chair
! badly written GDL
Pen 1
! Draw Legs
 block .03,.03,.45
block .45,.03,.03
addz .45
block .45,.03,.03
addx .45
roty 5
 block .03,.03,.45
roty -5
addz -.45: addx -.45
addy .45
block .03,.03,.45
block .45,.03,.03
 addz .45
block .45,.03,.03
addx .45
roty 5
block .03,.03,.45
roty -5
addz -.45: addx -.45
addy -.45
Material "Chrome"
 !Seat
addz .48
Material "LimeStone"
!Seat
block .45,.48,.05
addx .44
addz .15
!Back
 roty 5
addy .03
block .05,.42,.28

!2D Script
PROJECT2 3,270,2

If you make mistakes with
a sequential script like this,
you get tangles like the one
here – and you will find it
very difficult to disentangle
the distorted framework.

35Copyright Marmalade Graphics ©2004

FOR small models, you can write BLOCK
this, CYLINDer that, CONE the other and finish

up with simple models – the scripting may not be el-
egant, but it works.

However, if you make the model bigger, you will
produce a script of spaghetti-like complexity. A week
or two later, you won’t remember your way round your
own script! By contrast, if you structure your 3D Script
with more discipline, you can build models of great
complexity without losing track of what you are do-
ing – and you are able to repair it or amend it without
despair. Professional programmers despise BASIC be-
cause they associate it with amateurishly written, un-
structured code that only just works, that cannot pro-
duce merchantable applications, that can only be de-
bugged by the original writer, and so on. The virtue of
systems like PASCAL, LISP and ‘C’ is that programs
are 'object oriented', modular, structured, and so on.
Perhaps this is why AutoCAD uses Lisp, and why
MiniCAD uses PASCAL for their equivalents of GDL.

But listen! BASIC, as used in GDL, does everything
that is needed to produce 3D objects, and is perfectly
capable of being written in an 'object oriented', modu-
lar, structured way, that can be debugged by other peo-
ple and which can produce library objects that are of
merchantable quality. It's just the way you do it!!

3D Model Analysis

SCRIPTING is easier if you understand the 3D
nature of the object. All that really matters is that

you analyse the object accurately, regardless of the
human or computing language you are using or think-
ing in. For architects and designers who are in the busi-
ness of 3D, this should be the easiest part.

So, what is Structured
Programming?

Think these out on paper: if you cannot draw the
object freehand in pencil, then you cannot script it.

The starting language of 3D is the 3D primitive –
the Block, Cylinder, Cone, Sphere, Extrusion etc. As
you elaborate your vision, you have prism shapes which
curve, have drilled holes, rounded or chamfered sur-
faces; then you employ extrusions taken through
curved or chamfered angular pathways, saddle shapes
and surfaces, lathed objects, elements repeated around
axes, and many such variations.

At the next level of perception, objects contain a
set of assemblies. For example, the jib of a tower
crane is not a slab or a cylinder, it’s a complex 3D lat-
tice assembly, but it still needs to swing on its swivel
on the tower as a single object. If the tower is raised in
height, the jib must go up too.

In complex objects, there is always a hierarchy of
organisation of assemblies. The traveller mecha-
nism holding the hook (that drives on rails along the
jib) is another complex mechanism, and should be
treated as such. But when the jib swings, the traveller
must swing too. The hook and the cable assembly
with it must both swing with the jib and move with the
traveller, because they are ‘below’ both the traveller
and the jib in the hierarchy. Assemblies which might
change, like lights which come on, elements that want
to slide, doors which open or rotate, should be treated
as objects. In GDL you organise these using subrou-
tines or macros.

Origin and 3D Cursor

THE location of the 3D cursor is something you
must control tightly: you need to return to the

origin before you tackle the next major part of the
model. If you have a model with a complex hierarchy
of assemblies, you depend heavily on your subroutines
to make sure that the cursor location is always safe.
Never use DEL TOP in a structured model because it
blows the floor out from your hierarchical structure.Look at the scripts in the GDL Cookbook, and you will see a

constant re-iteration of the value of Structure in programming.

Ideas about Structured Programming

IN the context of GDL, it means taking a very disciplined
approach to model building, in particular these three rules:

ANALYSE the model to un
derstand all aspects of its

symmetry, repetition, rota-
tion, sliding and other essen-
tial geometries.

MAINTAIN strict control
over the location of the

3D cursor. Return to the ori-
gin after each operation.

ORGANISE the script into
a number of subroutines

and/or macros that reflect
the 3D organisation of the ob-
ject.

36 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

The ‘Subroutine’

THE subroutine is a short parcel of code that
performs an action; having done its job the execu-

tion of GDL returns precisely to the part of the execu-
tive script that it came from.

Subroutines live in the region following the END
command. A subroutine starts with a number label so
that you use that number when you write the GOSUB
command – e.g. GOSUB 200.

The subroutine should behave like an elemental
object in its own right. If you want to move the ele-
ment sideways, or swivel it, you apply those move or
swivel commands to the cursor, and then GOSUB the
subroutine – it moves or swivels as required.

Here is a typical subroutine, numbered 250: The
number label must always be followed by a colon: and
you should add a !comment line after the number, so
that you know what the subroutine is actually required
to do.

In each subroutine, there must be exactly the right
number of DELs to ensure that the cursor returns to
the same place as it was at the start of the subroutine.

About Subroutines...

The ‘Executive Script’

THE first part of the script (as far as the END
statement) can be thought of as your ‘executive

script’. This is the main controlling script, that decides
on what will be drawn, and in what order. When GDL
reaches the END statement, it stops. After the END
statement you carry a lot of useful baggage called Sub-
routines. Each element of the model could be a sub-
routine – analogous to an assembly in the 3D. They
can only be used if they are called by the executive
script, or by another subroutine. The END statement
prevents them from being read accidentally.

It is a good idea to keep the executive script short
and decisive. When you want to repair, modify or ex-
tend the model, you will know exactly which subrou-
tine to go to. Make sure that every GOSUB command
has a comment attached so you know precisely what
it is doing.

When assigning number labels, keep them well
spaced (e.g. in 10s or 100s) so you can insert extra
number labels if you think of more things to add later.

Golden Rules for
Subroutines!
• Subroutines are always written after the END statement.
END is essential – you must never accidentally run from
the executive script into the subroutines.
• Subroutines always start with a Numerical Label,
and finish with the statement ‘RETURN’, otherwise, GDL
will accidentally run on into the next subroutine.
• The Subroutine must be entirely self contained
as regards cursor movement – the 3D cursor must finish
up exactly where it was at the start of the subroutine. So
you DEL all the ADD, ROT and MUL commands within the
Subroutine. Never use DEL TOP for this purpose.
• Never GOSUB the subroutine you are already in, or GDL
will go on trying to do this for ever (Cmd-period to stop).

• Never use a GOTO command to jump out of a subrou-
tine – GDL will get quite lost!
• Think hierarchically – Subroutines can GOSUB other
subroutines: For example, in the human body, upper Arm is
an object written with a subroutine with its own rules for
rotation and movement; but the forearm will swivel round
the elbow. Arm needs another subroutine to draw the ob-
ject called Hand, and the Hand will need one for each of the
objects called Finger.
• The 2D, 3D and Properties scripts can use Subroutines;
but they cannot jump to one in another script from the one
you are in!
• You cannot use END in a Master Script.

!Swivel Chair - 3D executive script
!Date and Author

GOSUB 100:!Foot of chair
GOSUB 200:!Shaft of chair
GOSUB 300:!Seat of Chair
GOSUB 400:!Back of Chair

END !------------------

250:!Two Spheres subroutine
SPHERE 0.1
 ADDx 0.2
 SPHERE 0.05
 DEL 1
RETURN A typical Subroutine

Re-read these rules
frequently when your
first attempts do not

work correctly!

A typical
Executive Script.

Mark the END statement
with a row of dashes as a

clear break between
executive script and

subroutines.

THE essence of structured programming in
GDL is that 3D models should consist of sub-

routines which reflect the 3D nature of the
model.

Another benefit of using subroutines is to avoid ever
having to type out complex GDL routines more than
once.

The example here is what you should be aiming
towards. Every GOSUB command is telling GDL to
GO and run the SUBroutine of that line number.

37Copyright Marmalade Graphics ©2004

FIND the Simple chair we made earlier. We shall
try to ‘structure’ it. The first practical step to mak-

ing your script modular (or structured) is to learn how
to use subroutines. Although we have managed so far
to do this chair, even the Multichair, without subrou-
tines, we could have saved ourself some typing by
using subroutines whenever something was to be re-
peated – such as the legbraces and arms. Furthermore,
we could add more 3D options by using them e.g. if
we wanted a choice between Conical, Sabre and
Clawfoot legs. Subroutines are a way to clean up the
code into tidy modules. Without them, we would get
quite buried in IF statements.

Step by step
Here, we try changing the script from the raw (but para-
metric) script into subroutines. It is an easy progres-
sive change.

First apply label numbers to the groups of code that
represent each logical operation e.g. the Legs, the Seat,
etc. Each one will become a subroutine. Make sure
that in each group, the number of DELs is right in that
the cursor goes back to the origin each time. Use 100’s
to increment the numbers of your groups.

Next, put in the END statement, clearly marked with
a comment marker and a row of dashes. This signifies
the end of the main part of the 3D Script (the ‘execu-
tive script’).

What follows the END statement is a series of Sub-
routines which have to be called with a GOSUB com-
mand. Copy and paste some of the routines down to
below the END statement. Now they are a subroutine:
no longer part of the executive script. Put RETURN at
the end of each subroutine so that execution returns
to where it came from. Now, in the Executive script,
write GOSUB followed by the Line number and a copy
of the name of the subroutine – do it as I have done
here.

If it doesn’t work (you get errors) it’s due to forget-
ting the colon after the line numbers, or forgetting END
or RETURN. Perhaps you didn’t get the number of
DELs right. Go over my example until you get it com-
pletely right.

Do it for the chair
The examples on this page show how the legs and seat
can be converted. For the rest of the chair, do have a
look at the examples on the CD or try doing it to you
own example.

Whenever you are in doubt, go back to the page on
Subroutines, and thoroughly check through the Golden
Rules for Subroutines.

Subroutines: Convert the chair

!Timber chair for GDL Cookbook
!Parametric NO Subroutines

PEN gs_cont_pen
RESOL 12

100:!All the legs
MATERIAL framat
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx A
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDy B
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx -A
 CONE sthit, lsec/3,lsec/2, 90,90
 DEL 3

200:!The Seat and upholstery
ADDz sthit-frsec

!Do four prisms for seatframe
 ft=0.03
 f2=ft/2
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0

ADDx A
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0
DEL 1

PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2

ADDy B
PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2
DEL 1

!Seatcushion
MATERIAL seatmat

!Way to do it: chamfered with FPRISM_
 FPRISM_ seatmat,framat,seatmat,seatmat,
 5,frsec+0.010, 30,0.01,
 f2, f2, 15,
 A-f2, f2, 15,
 A-f2,B-f2, 15,
 f2,B-f2, 15,
 f2, f2, -1
 DEL 1
ENDIF

!The rest of the script, Back and
!Braces and Arms, not shown here, to save space.

Note that conversion of the chair to subroutines will have no
effect on the appearance of the chair, or on the parameters
available to the user. The purpose of doing this is to make it
possible to make the chair object more complex, add more
options and reduce the number of IF statements.
There is no need to change anything in the Master Script.

3D Script
without

Subroutines

About Subroutines...

38 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Timber chair for GDL Cookbook
!Parametric WITH Subroutines

PEN gs_cont_pen
RESOL 12

 GOSUB 100:!All the legs
 GOSUB 200:!The Seat and upholstery

!As you progress, add in the remaining routines as
Subroutines:
IF bakon THEN GOSUB 300:!Back
 GOSUB 400:!Braces
IF arms THEN GOSUB 500:!Arms

END:!____________________________

100:!All the legs
MATERIAL framat
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx A
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDy B
 CONE sthit, lsec/3,lsec/2, 90,90
 ADDx -A
 CONE sthit, lsec/3,lsec/2, 90,90
 DEL 3
RETURN

200:!The Seat and upholstery
ADDz sthit-frsec
!Do four prisms for seatframe
 ft=0.03
 f2=ft/2
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0

ADDx A
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0
DEL 1

PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2

ADDy B
PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2
DEL 1

!Seatcushion
MATERIAL seatmat

!Way to do it chamfered with FPRISM_
 FPRISM_ seatmat,framat,seatmat,seatmat,
 5,frsec+0.010, 30,0.01,
 f2, f2, 15,
 A-f2, f2, 15,
 A-f2,B-f2, 15,
 f2,B-f2, 15,
 f2, f2, -1

 DEL 1
RETURN

3D Script with
Subroutines

300:!Back Legs, panel and upholstery
MATERIAL framat
 ADD 0,B,sthit
 CONE bhit,lsec/2,lsec/3, 90,90
 ADDx A
 CONE bhit,lsec/2,lsec/3, 90,90
 DEL 2

 ADD 0,B-0.01,sthit+bhit*0.3
 BLOCK A,lsec/2,bhit*0.6 !Back panel
MATERIAL seatmat

!Do it chamfered
ADD lsec/2,0,lsec/2
ROTx 90
 FPRISM_ seatmat,framat,seatmat,seatmat,
 5,0.010, 30,0.008,
 0, 0, 15,
 A-lsec, 0, 15,
 A-lsec,bhit*0.6-lsec, 15,
 0,bhit*0.6-lsec, 15,
 0, 0, -1

 DEL 2
 DEL 1
RETURN

400:!Braces
IF brace THEN
MATERIAL framat
 ADDz sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

 ADD A,0,sthit/3
 ROTx -90
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 3

IF bracetyp=bv1 THEN !--H Brace
 ADD 0,B/2,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4
ENDIF

IF bracetyp=bv2 THEN !--O Brace
 ADD 0,0,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4
 ADD 0,B,sthit/3
 ROTz -90
 ROTx -90
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 4
ENDIF
ENDIF
RETURN

500:!Arms
MATERIAL framat
ADD 0,0,sthit
 CONE 0.2 ,lsec/2,lsec/3, 90,90
 ADD 0,-lsec, 0.2
 ROTx -90
 MULy 0.5
 CONE B+lsec,lsec*0.7,lsec*0.45, 90,90
 DEL 4

ADD A,0,sthit
 CONE 0.2 ,lsec/2,lsec/3, 90,90
 ADD 0,-lsec, 0.2
 ROTx -90
 MULy 0.5
 CONE B+lsec,lsec*0.7,lsec*0.45, 90,90
 DEL 4
RETURN

This is a
chance to

catch up with
the previous

pages: here is
a round up of

the complete
3D Script,

formed into
subroutines.

Once you have
the script

organised into
subroutines,

there are ways
to tighten up

the code –
eliminate

duplication by
making
smaller

subroutines
which branch

out from the
main ones.

 Sometimes the
code for an

object can be
reduced to a

fraction of its
former size.

These PRISM
routines are very

repetetive and could
be converted to
subroutines. We

could do the same to
the CONEs for the

leg braces

39Copyright Marmalade Graphics ©2004

Code Compression

WE can look at ways to convert the minor parts
of the chair to smaller subroutines such as

legbraces and arms – this tightens up the code, and
makes future maintenance and modification easier.
With more experience you learn to write in a more
economical way from the start, recognising immedi-
ately when something is coming up that it will be re-
peated so it should go into a subroutine straight away.

We labelled the original subroutines in the hundreds
– 100, 200 etc. Thus any minor subroutines to do with
the legs could be numbered 110, 120 etc. For the seat-
ing, we could use numbers like 210, 220. For the braces
we could use 410, 420 etc. It will provide us with some
logical grouping.

We can do an example of fragmenting the subrou-
tines on this page, and the remainder can be seen if
you view the object from the CD.
 This process does not do anything to improve the
3D, but it shortens the code and, most importantly,
improves the maintenance of the object. For exam-
ple, the seat frame with prisms required repetition -
same for the legbrace. If we had curly legs for the chair
that might require a lot of code and a single subrou-
tine could suffice for each leg. Then if you edit one of
the legs, the rest get updated too.

On an earlier page, you saw the script for the four
prisms of the seatframe, as we first created them. Here
is an improved version for the seating and the braces.

Texture matters with wood objects!
You can make a beautiful wood-based object in 3D,
but if the wood texture is going all in the wrong direc-
tion people will will not take your GDL skills seriously.
At the time of writing, all the Graphisoft Doors and
Windows have incorrect woodgrain on them, and this
is something I cannot understand, as texture is so easy
to get right.

Textures in ArchiCAD itself align themselves dy-
namically by guessing at the aspect ratio of the wall or
slab they are attached to. If you don’t like the result,
you can use ‘Align texture’ in the Edit menu to correct
it.

Textures in GDL require you to write some code to
drive the texture in the right direction, because GDL
will not guess. For the beginner in GDL, it's difficult to
get textures right without knowing some arcane se-
crets of GDL. You are about to find out those secrets.

The easier way for the GDL writer (apart from not
bothering) is to require the user of your object to make
all the textures in ArchiCAD including the correct ori-
entation. You make a different parameter for materi-

Subroutines: Tighten up the Code and
improve the Texture

als horizontal and vertical. You then have the user be-
ing forced to choose textures for legs and arms sepa-
rately – this is a real nuisance for the user, and very
very lazy on the part of the GDL writer.

If you want textures to go upwards or at angles,
you can write routines in the GDL that make the tex-
ture go in the direction you want. For example, the
textures in the legs must go vertically, and in the front
to back frame elements must also go from front to back.

Let the user choose one single material for the
frame. Assume that they choose one that is horizontal
in nature, and then let the GDL code organise the
woodgrain. This is best!

In this script the two frame
pieces are placed in sub-

routines 210: and 220:.
Subroutine 200 now calls

those subroutines.

Just to improve the
appearance, we can add a

texture direction to each
subroutine. This is itself a
subroutine, 999:, and this

contains code to paint texture
horizontally. By rotating it to
vertical in subroutine 998, we

get vertical texture.

200:!The Seat and upholstery
ADDz sthit-frsec

!Do four prisms for seatframe
 ft=0.03
 f2=ft/2
GOSUB 210:!Front to Back frame

ADDx A
GOSUB 210:!Front to Back frame
DEL 1

GOSUB 220:!Left to Right frame

ADDy B
GOSUB 220:!Left to Right frame
DEL 1

!Seatcushion
!Chamfered with FPRISM_
 FPRISM_ seatmat,framat,
 seatmat,seatmat,
 5,frsec+0.010, 30,0.01,
 f2, f2, 15,
 A-f2, f2, 15,
 A-f2,B-f2, 15,
 f2,B-f2, 15,
 f2, f2, -1
GOSUB 999:!Paint Texture

 DEL 1
RETURN

210:!Front to Back frame
PRISM 5,frsec-0.002,
 -f2,0,
 f2,0,
 f2,B,
 -f2,B,
 -f2,0
ROTz 90
GOSUB 999:!Paint Texture
DEL 1
RETURN

220:!Left to Right frame
PRISM 5,frsec-0.002,
 -f2,-f2,
 A-f2,-f2,
 A-f2, f2,
 -f2, f2,
 -f2,-f2
GOSUB 999:!Paint Texture
RETURN

This is a
restructuring
of subroutine

200.

The ‘ft’ and ‘f2’
statements

could move to
the Master

Script.

999 is a
Texture

Subroutine

Subroutines and Texture

40 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Textures such as brickwork and woodgrain are gen-
erally horizontal in ArchiCAD, but recently Graphisoft
brought in some more wood texture bitmaps that are
vertical, such as Mahogany. This was a mistake, and
they promised me to try to be more consistent in fu-
ture.

This is something you won't find any help from the
GDL manual on. This particular trick wasn't even in
GDL Cookbook 3. You found it here first!

There are two ways to organise woodgrain in a
model like this. Subroutine 999 is a technical piece of
GDL code that will be explained in more detail later,
but let’s just say here that the routine guarantees that
a horizontal texture will be painted horizontally. Sim-
ple as that!

If you rotate this subroutine 999 around Y or Z, you
can easily redirect the texture. It’s like rotating a tooth-
paste tube, and then letting the texture squirt out. The
X-Axis is used in GDL for many things, ELBOWs and
LIGHTs and REVOLVEs for example. By pointing the
X-Axis, you can squirt texture out like toothpaste along
the X-Axis of the theoretical tube.

400:!Braces
IF brace THEN
!Front to Back
MATERIAL framat
 ADDz sthit/3
 ROTx -90
GOSUB 410:!Brace Front to back
 ADDx A
 GOSUB 410:!Brace Front to back
 DEL 3

IF bracetyp=bv1 THEN !--H Brace
 ADD 0,B/2,sthit/3
 ROTz -90
 ROTx -90
 GOSUB 420:!Brace left to right
 DEL 3

ENDIF

IF bracetyp=bv2 THEN !--O Brace
 ADD 0,0,sthit/3
 ROTz -90
 ROTx -90
 GOSUB 420:!Brace left to right
 DEL 4
 ADD 0,B,sthit/3
 ROTz -90
 ROTx -90
 GOSUB 420:!Brace left to right
 DEL 3

ENDIF
ENDIF

RETURN

410:!Brace Front to back
 CONE B/2,lsec/4,lsec/3,90,90
 ADDz B/2
 CONE B/2,lsec/3,lsec/4,90,90
 DEL 1
 GOSUB 998:!Paint upright
RETURN

420:!Brace left to right
 CONE A/2,lsec/4,lsec/3,90,90
 ADDz A/2
 CONE A/2,lsec/3,lsec/4,90,90
 DEL 1
 GOSUB 998:!Paint upright
RETURN

998:!Paint upright
 ROTy 90
 GOSUB 999:!Paint Texture
 DEL 1
RETURN

999:!Paint Texture
 !Horizontally
BASE
 VERT 0,0,0
 VERT 0.1,0,0
 VERT 0,0.1,0
 VERT 0,0,0.1
 COOR 256+2, -1,-2,-3,-4
 BODY -1
RETURN

What’s the secret? Well if we
define 4 vertices which

accurately describe the 3
pointed XYZ cursor, it can be
told to point the texture along

the X-Axis.

The BASE starts off a new
Texture routine. The VERTs

describe the Centre, the X-Axis,
the Y-Axis and the Z-Axis in

that order. The COOR
coordinates the 4 together, with
a code of 256+2 which means
“wrap cubically according to

the local coordinates”. The
BODY command actually

completes the job by painting
the texture. Although it’s based
on the X-Axis, the cubic mode
will look after the other faces

of the cuboid.

You can rotate the texture to any angle, but in the
chair we have two main directions, Horizontal and
Vertical. Subroutine 998 is simply a device to point
the texture vertically. The texture subroutine must
come AFTER the object you make. Everything that
was made, back to the previous use of the subroutine,
will be painted. So go to every subroutine in the script
and insert either a GOSUB 998 or GOSUB 999 and
you will get the textures right.

How does it work?
There is an extremely brief explanation of the magic
subroutine 999 in the caption above. Why do we need
to know the directions of the Y and Z axes? Because
if we play games with these, we can skew the textures.
And beside Cubic wrapping, on another occasion, we
can try Spherical and Cylindrical wrapping modes.

This is a
restructuring
of subroutine

400.

No Texture
Control

Active Texture
Control

Texture control for woodgrain

41Copyright Marmalade Graphics ©2004

Working with
PRISMs: Curve
the Chairback

WHILE this section is about
Prisms, we can look at the

bendy BPRISM_ and apply it to the
back of the chair.

We would like to curve the back
panel to make it more comfortable and
authentic. The width of the chair is ‘A’.
Make a parameter for the bulge of the
chairback ‘bbulg’ and use the formula
based on A to calculate how much cur-
vature to apply to the chairback. See
the formula illustrated.

Make a new parameter ‘bbulg’ (dimension). First
the Master Script does the calculations.

!--------Add to Master Script---------
!Back bulge Circle calculation formula
IF bbulg<=0.01 THEN bbulg=0.01
IF bbulg>=0.08 THEN bbulg=0.08
 bangl=(90-ATN((A/2)/bbulg))*2
 brad=(A/2)/SIN(bangl)
 bcirc=2*PI*rad*bangl*360
PARAMETERS bbulg=bbulg

We must calculate the sweep angle – the half angle
‘bangl’ between the edge and the centre. From that
we work out ‘brad’ the radius. As BPRISM is like a flat
surface bent into a curve, we work out the length of
the chord. As BPRISM has to be organised around the
centre of the chair for it to bend symmetrically, we
need only the half length of the chord. So look at the
3D script as it was before, and make the modification.

!Modify 3D Script
!Back Legs, panel and upholstery
IF bakon THEN
MATERIAL framat
 ADD 0,B,sthit
 CONE bhit,lsec/2,lsec/3, 90,90
 ADDx A
 CONE bhit,lsec/2,lsec/3, 90,90
 DEL 2

!Back panel
ADD A/2,B-lsec/3+bbulg,sthit+bhit*0.9
ROTx -90
BPRISM_ framat,framat,framat,
 5,lsec/3,brad,
 -bcirc,0,15,
 bcirc,0,15,
 bcirc,bhit*0.6,15,
 -bcirc,bhit*0.6,15,
 -bcirc,0,-1

!Cushion, not chamfered
ADDz -lsec/6
BPRISM_ seatmat,framat,seatmat,
 5,lsec/6,brad,
 -bcirc +ft,ft,15,
 bcirc -ft,ft,15,
 bcirc -ft,bhit*0.6-ft,15,
 -bcirc +ft,bhit*0.6-ft,15,
 -bcirc +ft,ft,-1
DEL 3
!BLOCK A,lsec/2,bhit*0.6 !original Back panel
ENDIF

In the 3D Script, we built the back legs, as before, but
for the back panel, we have to do some 3D manoevres.
The height of the prism will be from the topmost part
– ‘sthit+bhit*0.9’. Try changing the values to see where
the back moves to. We made the half-width of the prism
the half-circumference, so that whatever the bulge
value, it will always fit perfectly.
The back cushion – by adjusting the Z height, we can
shift a small distance and issue another BPRISM_ for
the upholstery, using soft fabric. DEL 3 takes us right
back to the origin.

Final touch of quality – Update the 2D Script
From the illustration you can see that the 2D Script
has been updated. Let’s do this. We could ‘cave in’ and
do a PROJECT2. Since we took the trouble to calcu-
late the circle geometry of the chairback, let’s put that
to use. Comment out the LINE2 commands and try
an ARC2 for the back and a single line for the frame.

!Put these lines in for the curved back
!LINE2 s2,B-s4, A-s2,B-s4 !back
!LINE2 s2,B+s4, A-s2,B+s4 !back
ARC2 A/2,B-brad+bbulg,brad,90-bangl+2,90+bangl-2
!HOTARC2 A/2,B-brad+bbulg,brad, !for AC9 users
! 90-bangl+2,90+bangl-2 !for AC9 users
LINE2 s2,B, A-s2,B !back. HOTLINE2 for AC9 users.

We do not have to use ADD2 commands here. We
position the arc with an XY coordinate, and the posi-
tion is at the centre of the back, as with the prism. The
sweep angle of the arc can be ‘bangl’ either way. By
deducting 2˚ either way, it looks better in relation to
the legs.

We have two
idiotproofing lines.

PARAMETERS reports
the corrected dimensions

back to the user.

We use ADD to get to
the centre of the chair.

Because BPRISM_
curves downwards,

we have to get behind
the chair and use

ROTx so that the Z
axis is facing

backwards (away
from the chair). Play
with the script of the

chair changing the
ROTx from -90 to 90.

The chairback is a
chord. Work out from
the bulge what the
sweep angle is, and
work out the radius.
We also need the
circumferential
distance travelled by
the back.

Curve the chairback

42 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Curvy shapes: Polygon Control

RESOL: is the easiest way of controlling the reso-
lution of curvature of curved surfaces such as Cones
and Cylinders. RESOL tells GDL how many polygonal
surfaces there are to be in a single 360˚ rotation.

The default resolution is 36, so a single Sphere will
have 648 surfaces right from the start. Get it down to
the lowest practical quantity – or even lower. If you
are Photorendering or using Open GL the resolution
can be set even lower because you have a smoothing
function that makes even a hexagonal cylinder look
round. It is a good tip to set resolution to an odd
number – 5, 7 or 9 look more cylindrical than the pat-
ently hexagonal look of RESOL 6. RESOL cannot be
less than 3.

RESOL can be controlled by a variable, for exam-
ple RESOL 6+10/dd will make the resolution higher
as the distance to camera ‘dd’ reduces. If the resolu-
tion is stated as a real number – eg 6.35, it is always
rounded down.

RADIUS: is more powerful than RESOL. It gives
you 3 RESOL commands in a single line. Some ob-
jects such as a curved handrail have two curves to
resolve, the curve of the handrail and the curve of the
tubing. You state RADIUS in the form:

RADIUS rmin, rmax

Any curve equal to or less than ‘rmin’ will render with
6 faces. Any curve equal to or more than ‘rmax’ will
render with 36 faces. Any curve between the two will
render with a variable number of faces, on a sliding
scale between 6 and 36 .

RADIUS cannot be higher than 36 faces, so for very
large curves combined with small ones, use TOLER.

TOLER: is the best way of setting Resolution of
curvature, and the most powerful. TOLER is like your
‘tolerable error’, the distance from the actual arc of
the curve, and the distance you are willing to allow
the chord of the curve to exist away from the curve.
GDL will recalculate the resolution to match the ob-
ject. For example, a TOLER of 1 mm (1/25”) is ideal
for tubular furniture and does a good job on curves.
It’s even better on very large structures where a maxi-
mum of 36 needs to be exceeded.

TOLER could be set using variables or IF state-
ments, just like RESOL or RADIUS. TOLER takes, per-
haps more processor time than RADIUS and RESOL
but gives the best result visually.

Note of Warning – RESOL, TOLER and RADIUS can-
cel each other out if used, so decide which one you
want to use for a model, or for a component of a model.

Smart Programming – For me the 4th weapon in
the war against polygons is to be a smart programmer.
You can have a parameter for the level of detail, e.g.
0=2D only, 1=Simple 3D, 2=High 3D. Most Graphisoft
objects have this (parameter is “treed”). If the user se-
lects simple, you leave out all bolts and joints, set
TOLER to 0.01 or 3/8” and perhaps use flat POLYs
instead of PRISMs (to avoid edge polygons). If the user
selects option 2, they are aware that the drawing time
will be longer.

Open GL and faster processors have made it possi-
ble to have more complex objects with more polygons,
but you should still apply a rigorous approach to the
Level of Detail (LOD)

MOST of the workload of the processor during rendering seems to be working out the values of
light and shade on each surface (polygon) in the model. If it is trying to work out Shadows, it’s also

working out the outline of the object and what the shadow will do when falling on each polygon. Fewer poly-
gons means faster rendering. An excess of polygons will lead to excessive rendering times, or it may cripple
the model altogether – not enough RAM to finish! Isn’t Open GL a major blessing! Sometimes, the object you
are doing may not be visible (such as a nut or bolt) so why give it 36 or more polygons, especially when there
could be thousands of nuts and bolts in the model? So control the curvature!

Elbow: the curved Cylinder

ELBOW builds a curved tubular bend object. It
 always grows up the Z-Axis, curving towards the X

direction. The alpha angle can be from 0 to 360.
The number of polygons can be a problem – the

curvature can be controlled with the RESOL or the
TOLER statements. Curvature is an important issue –
if you have a low resol, the curvature of the tube looks
unfortunately angular. However, if you set a high resol,
you have too many surfaces on the elbow, and it will
take too long to render. TOLER is best for controlling
curvature on small and large curves simultaneously.
(see later pages for more examples).

!ELBOW Demonstration
!Syntax:- ELBOW rad1,alpha,rad2
RESOL 36
ELBOW 0.12,90,0.03
 RESOL 12
 ADDy 0.1
ELBOW 0.16,90,0.04
 RESOL 6
 ADDy 0.1
ELBOW 0.20,90,0.05
 DEL 2

!ELBOW Demonstration
!Syntax:- ELBOW rad1,alpha,rad2
ELBOW 0.12,90,0.03

‘alpha’ is the sweep
angle of the Elbow.

TOLER

The illustration
of three ELBOWs

shows what a clumsy tool
 is RESOL. The Elbow can
become sadly polygonal, or
even straight. Use TOLER.

43Copyright Marmalade Graphics ©2004

Curvy shapes: Tubular Handrail

EARLY on, it’s good to take a break from the
tyranny of the rectangle, and try something

a bit more elegant. Here, we look at:
• Handling cylindrical entities –

CYLIND and ELBOW
• Using TOLER to control curve smoothness
• Using HOTSPOTs in 2D

Parameters
Ask the user to enter small dimensions for tubing in
the form of Diameter, not in Radius. People always
think of handrails and other round things in ‘diameter’.
Your Master Script can convert Diameter to Radius.
As the handrail dimensions can be altered, A and B
are not used in this script or in the parameters box –
we specify the length of each tube.

Angle – You can think of the angle in terms of the
angle formed by two lines. But a tube bender, or GDL
prefers to think of the ‘sweep angle’ formed by the
tube, from the straight.

TOLER – We want the main curve to be as smooth as
possible, but don’t want the surface of the tubing to
have 36 faces as it will take too long to render. The
TOLER command allows you to control the surfaces
of small and large curves, and to relate it to the actual
tube radius. 2mm is good for most purposes and will
work well even for very small or large tubes.
PEN – we use the parameter name ‘gs_cont_pen’ as
this is one of the GS recommended names.

If you want to ‘hand’ the finished handrail, i.e. Mir-
ror it, then you can do that in the object settings box,
later.

3D Script
Set the Material and Pen colours.

Starting from the end of the first tube, use a ROTx -
90 to lie the handrail down horizontally (or it will grow
upwards). Do the first Rail by pushing out a cylinder
horizontally, then move to its end by adding along the
Z axis – which is now horizontal. You can push the
ELBOW round the corner, as it grows along the Z axis,
which is already in the right direction. Then go round
the bend – go to the centre of the curve, rotate by the
angle, and move to the start of the second tube. This
trick means that the cursor will be pointing in the cor-
rect direction for you to push out the final cylinder.

This script is short, but you should still use the DEL
command to bring your 3D cursor back to the origin.

Using the principles of the script for this simple li-
brary object, you can assemble handrail and tubing
structures of great complexity.

Notice how the cursor movement commands are
indented. When you have a long run of them, it makes
it easier to count them up.

The handrails can be grouped together to form useful
structures which would be difficult to do in any other way.

The Origin for this
Handrail starts drawing

the tube from one end,
and proceeds to ‘worm’

its way around the
bend, along the tube.

Making it stretchy?
If you used A and B to make it stretchy, you would
have to work backwards from the curve radius to de-
cide what the straight tube lengths would be. For an-
gles other than 90degrees, it would make no sense.
This object should be developed further with custom
Graphical Hotspots, because the restrictions of an
A,B,zzyzx cuboid are not helpful. See the Bendy bar
exercise.

!Master Script
trad=diam*0.5 !TubeRadius

!3D Script
MATERIAL tub_mat
PEN gs_cont_pen
TOLER 0.002

!Build the tube
 ROTx -90
CYLIND len1,trad
 ADDz len1
ELBOW radc,angb,trad
 ADDx radc
 ROTy angb
 ADDx -radc
CYLIND len2,trad
 DEL 5

This is the trick for
getting round the corner

Curvy Objects

44 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Master Script
VALUES 'font' 'Times','Arial','Courier'

 atv1='Laid flat text'
 atv2='Upright text'
VALUES 'atti' atv1,atv2

IF atti=atv1 THEN hit=B
IF atti=atv2 THEN hit=zzyzx
 DEFINE STYLE '3dtextyl' font,hit*1000,7,0

!3D Text : Example of 3D Text
PEN gs_cont_pen
MATERIAL text_mat
TOLER 0.002
SET STYLE '3dtextyl'

!Make it Stretchy
MULx A/(STW(message)/1000)

IF atti=atv1 THEN
 TEXT zzyzx,0,message
 ENDIF

IF atti=atv2 THEN
 ADDy B
 ROTx 90
 TEXT B,0,message
 DEL 2
 ENDIF

 DEL 1

!2D Script for 3D text
HOTSPOT2 0,0
HOTSPOT2 0,B
HOTSPOT2 A,0
HOTSPOT2 A,B
HOTSPOT2 A/2,B/2

PROJECT2 3,270,2

!Handrail 2D Script
PROJECT2 3,270,2
HOTSPOT2 0,0

!First Tube
 ADD2 0,len1
HOTSPOT2 0,0

!Round the bend
 ADD2 radc,0
 ROT2 -angb
 ADD2 -radc,0
HOTSPOT2 0,0

!Second tube
 ADD2 0,len2
HOTSPOT2 0,0
 DEL 5

2D Script
As the user can change the handrail details, you can-
not use a standard symbol. You need to write a 2D
Script. For quick-to-draw objects, issue the PROJECT2
command as here.

Hotspots: This handrail is a slippery object to pick up
because the ‘Bounding box’ hotspots are going to be
positioned well away from the actual rail. You need to
plant HOTSPOTs in the 2D Script. Turn off Bounding
boxes. The 2D cursor can be moved about in a similar
way to the 3D Script, using the ADD2 and ROT2 com-
mands, until you find the end of the tube. This object
is not stretchy.

You can make a small
dropdown menu of the fonts
on your system, and one for

the attitude of the object.
Use ‘hit for the height,

depending on the attitude of
the object.

For the Define Style, 7 is the
best position for the text.

Set up Pen and Material.

Set the Style for the text.

It is vital to apply a RESOL
or TOLER command before

writing 3D text, or your
model may be crippled with
too many polygons. RESOL
9 is the lowest practical (for

legible text), but TOLER is
better.

You can write the TEXT
statement on its own, but

with this MUL command,
you can make it stretchy.

Divide A by the actual length
of the string in Metres to get

the correct size.

Plant Hotspots at each
corner and one in the centre.

Syntax: TEXT depth,0,string

3D Text: Depth is in metres, zero is always zero,
the string is in quote marks unless it’s a string pa-

rameter.
The height is defined earlier with DEFINE STYLE

and must be in millimetres. So if you want the letter-
ing to be 0.6 metres high (2’-0”) you write in 600 for
the height – or multiply a length parameter by 1000.

This text can be for laying flat or standing upright,
so you apply an optional ROTx 90 to make it stand up.
The problem is that ‘B’ and ‘zzyzx’ perform differently
according to the object’s attitude, so in this case, you
need some tricks in the Master Script to define the
style accordingly. Because B and zzyzx are in metres
when it gets to GDL, you have to convert them to mil-
limetres, multiply by 1000. As we only want to make
only one DEFINE STYLE statement, we use a tempo-
rary variable like ‘hit’ to do the work.

For the width of the overall text object, you cannot
use ‘A’ directly because the Font determines its own
length. However, the function STW(string) returns a
value of the length of the string in millimetres, so di-
vide it by 1000 to get the length in metres. You could
use MULx to ‘squash or stretch’ it by
the ratio of A divided by actual length.

When you use ROTx 90 to make it
stand up. you need a little offset to
make it fit the 2D hotspots.

The final touch is that you have to
write a 2D Script with stretchy
Hotspots to make it work correctly.

Apply a RESOL or TOLER com-
mand before writing 3D text, or your
model may be crippled with too many
polygons. RESOL 9 is the lowest prac-
tical (for legible text), but TOLER is
better for all sizes.

Curvy Objects: Tubular Handrail

3D Text

MODEL WIRE is a neat trick to make the
lettering 3D, but transparent.

45Copyright Marmalade Graphics ©2004

Tubular Steel Chair
HERE is a different chair – but rendered in round tubes

– like the original Breuer chair.
This chair is a useful starting exercise in
• Handling straight and curved tubular sections
• Keeping track of many 3D cursor moves
• Structuring the program in the form of subroutines
• Using Symmetry and Mirroring
• Soft look upholstery
• Some Trigonometry

Parameters
We will make the origin in the centre front of the chair,
draw one leg, all in subroutine 100. Then we’ll repeat
that on the other side (mirroring the first). Then we’ll
finish off with the seat and back, all in subroutines 200
and 300. The steel of this tubular chair meets at the
bottom. It could also do at the top, but I am trying to
keep this simple! For this chair we will use ‘zzyzx’ to
denote the height of the seat.

Master Script
Use this for parameters etc. that are needed by both
2D and 3D Scripts.

‘Crad’ and ‘trad’ are examples of ‘internal param-
eters’. This means a parameter that is not changeable
by the user in the normal dialog box. They have been
prescribed by the chair designer / manufacturer. These
go into the Master Script. The author of the script can
tweak the value of ‘crad’.

3D Script
We will try the RADIUS command to control the two
curvatures of tube bend and tube surface. Imagine
a lecture room or café filled with such chairs if we
didn’t control the polygons – it would render very
slowly!
Axial Symmetry: Because the round tube chair is
symmetrical, there is great advantage of starting from
the Centre Line, doing only one leg, and then mirror-
ing that whole leg. The MUL command multiplies eve-
rything in the direction of the axis. So MULx -1 makes
the leg draw itself.

If you are a bit adventurous, you
could try making a larger curve

radius, leaning the front tubes of
the frame, curving the seat and
back, and closing the frame at

the top of the back.

!Master Script
trad = fsec/2 !Tube radius
crad = trad*4 !Curv radius
sinr = SIN(recang)

!Tubular steel chair
!3D Script

 PEN gs_cont_pen
 RADIUS trad,trad*4

 GOSUB 100: !Leg
 MULx -1
 GOSUB 100: !Leg
 DEL 1

 GOSUB 200: !Seat
 GOSUB 300: !Back

END!----------------------

The executive script is very
short. If your origin is on

the centreline, a MULx -1 is
enough to mirror the leg

symmetrically.

The Leg Tubes
100: Starting from the centre back of the chair, you
‘worm’ your way round the tubular frame, issuing Cyl-
inder and Elbow commands as you go. Frequently, you
have to issue a ROTz to get the next Elbow to grow in
the right direction – it always wants to grow in the
direction of the X-axis. Use the trick we used on the
Handrail to turn the corners (even though it is simply
90˚ and one could do an easy ADD crad,0,crad jump).

The lengths of the horizontal and vertical leg cylin-
ders are tricky, you have to deduct curve radii and tube
radii to get them right, so that the finished height of
the seat is as required.

Upholstering the chair
200: and 300: The Seat is easy to place but the Back
is more difficult. Maneouvring up to the right place for
the Back of the chair proves to be a bit tough, you just
have to think out the additions and deductions for curve
and tube radii.

Curvy Objects: Tubular steel chair

46 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

2D Script
As the user can change the chair style and size, you
need to write a short 2D Script. For quick-to-draw ob-
jects, just issue the PROJECT2 com-
mand as here. You need to organise a
‘nest’ of Hotspots, one at each corner
and one in the middle to make sure the
chair will stretch correctly. This is a clas-
sic stretchy hotspots script for any ob-
ject with the origin at the front centre.

For objects with many uses, it pays
to write a 2D Script which will draw a
cleaner symbol, and draw it faster. The
user can opt for a True view or a scripted
view with a Boolean tick box.

For the scripted one, we can use the
same line labels as the 3D, but do not
need to use subroutines. The legs and
seat are easy enough. For the back, it
requires a little trigonometry trick if the
reclining angle is to be parametric.

When you get further, I advocate the use of POLY2
instead of RECT2, so you can define fill pattern and
make the chair opaque in plan.

100:!Cylindrical Leg
MATERIAL lmat
 ADD 0,B,trad
 ROTy 90
 CYLIND A/2-crad-trad,trad
 ADDz A/2-crad-trad
 ROTz -90
 ELBOW crad,90,trad
 ADD crad,0,crad
 ROTy 90
CYLIND B-crad*2,trad
 ADDz B-crad*2
 ROTz -90
 ELBOW crad,90,trad
 ADDx crad

ROTy 90
ADDx -crad

!(Work out cylinder height)
clen=zzyzx-sthik-crad*2-trad*2
CYLIND clen,trad
 ADDz clen
 ELBOW crad,90,trad
 ADDX crad
 ROTy 90
 ADDx -crad
 CYLIND B-crad*2,trad
 ADDz B-crad*2
 ROTz 180
ELBOW crad,90-recang,trad
 ADDx crad
 ROTy 90-recang
 ADDx -crad
 CYLIND bhigt-crad,trad
 DEL 20
RETURN

200:!Seat for Cyl chair
MATERIAL smat
 ADDz zzyzx-sthik
 ADDy crad
HPRISM_ smat,smat,smat,smat,
 5,sthik,0,sthik/2,1,

-A/2,0,15,
 A/2,0,15,
 A/2,B-crad*2,15,
-A/2,B-crad*2,15,
-A/2,0,-1

 DEL 2
RETURN

300:!Back for Cyl chair
MATERIAL smat
 ADDy B-crad
 ADDz zzyzx-sthik+crad-trad
 ROTx -recang
 ADD 0,sthik,bhigt/2-crad
 ROTx 90
HPRISM_ smat,smat,smat,smat,
 5,sthik,0,sthik/2,1,

-A/2,0,15,
 A/2,0,15,
 A/2,bhigt/2,15,
-A/2,bhigt/2,15,
-A/2,0,-1

 DEL 5
RETURN

When doing a long
tunnelling job as

this Worm is
having to do you
just have to keep

your head and
your sense of

direction.

‘clen’ is used here
just to shorten the
line length. It’s a

short term
parameter.

Successive
indenting and

grouping of blocks
of code helps you

keep track of what
you are doing.

At the end, count
up all the moves
and DEL them.

For the seat we can give a soft
edged impression by using

HPRISM_, and making the
lines on the hill edge invisible

(code 1). For the back its a little
more tricky, allowing for a user
variable reclining angle for the

back.

!Tubular steel chair
!2D Script

PEN gs_symbol_pen

HOTSPOT2 -A/2,0 !Stretchy
HOTSPOT2 A/2,0 !hotspots
HOTSPOT2 -A/2,B
HOTSPOT2 A/2,B
HOTSPOT2 0,B/2 !Pickup
!PROJECT2 3,270,2 !Test

IF truvu THEN
 PROJECT2 3,270,2
ELSE

100:!Legs
RECT2 -A/2,0,-A/2+fsec,
 B+bhigt*sinr
 MUL2 -1,1
 RECT2 -A/2,0,-A/2+fsec,
 B+bhigt*sinr
 DEL 1

200:!Seat
RECT2 -A/2,crad,
 A/2,B-crad

300:!Back
RECT2 -A/2,B-sthik+bhigt*sinr/2,
 A/2,B+bhigt*sinr
ENDIF

True view and
scripted symbols

r
e
c
a
n
g

bhigt

we want this
dimension: it is

bhigt*SIN(recang)

Curvy Objects: Tubular Steel Chair

47Copyright Marmalade Graphics ©2004

THIS exercise is a demonstration of
how to modify a library object autoscripted

by ArchiCAD.
First, using slab, wall and roof tool, you knock out a

model, like this. I haven’t space to cover this stage in
detail because it’s not GDL – but you can make use of
Profiler to get a better finish, and perhaps make the
mantel corbels with the slab tool, saved as objects. My
recommendation is to build it precisely ON the origin
of the main model. Better still, set the small grid to
1mm, use ‘snap-to-grid’. That reduces all the million
millionths to 3 decimal places.

Saving it from the 3D view
For plan objects, position the camera using 3D Pro-
jection Settings so that it views it in parallel view in
Plan with the camera at 270 degrees. Note that this
fireplace is built on flat on the floor so you are required
to position the camera as if looking from a 90˚
direction, in Elevational view.

While viewing the 3D image, use the
File>GDL Objects to do a Save 3D Model As...
and save it as a ArchiCAD Object File (.GSM).
You will see a box asking if it is an Object, a
Window or a Door. Don’t worry if the final des-
tiny of the object is to be a Lamp or a Seating
or Roofing object – you can change the subtype
later. Tick the ‘Remove redundant lines’ box.
We only want the visible top lines to be saved
in the 2D symbol.

Modify Library Object

You are asked if you want to save as ‘Editable’ or
as ‘non-Editable’ Binary data. Never save as binary
if you want to edit the object. The file will lose all para-
metric qualities except for size. A binary file has all
been compressed into one indecipherable lump of
data. This can be advantageous for complex objects
as they will render more reliably and carry all macros
with them. But that isn’t the case here. Save it as
Editable, into a Loaded Library.

Saving it from the Floor Plan
If the object is built flat on its backface on the ground,
like a window or this fireplace, or built sideways on,
you must use the 3D View procedure.

If the object is the right way up like a table should
be, select the group of elements; from the File>GDL
Objects Menu, Save Selection As... an ‘ArchiCAD ob-
ject’ (.GSM). You save it to your loaded library.

This is built
laying down flat,
centred on the main Origin

Hide the Navigator so you
can extend the Info palette
and see the IDs of each
slab, wall and roof.

Modify Library Object

48 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4 Modify Library Object

Saving directly
from the Floor Plan

Saving from the 3D – you are asked if it’s an Object, a
Window or a Door. If it’s a window or door, viewed in 270˚
plan, GDL will save it with a 90˚ elevational view and apply a
window or door Subtype.

Now Place it and Open it
If you just saved it, you can click in the object’s icon in
the Tools Palette and if you are lucky, the last thing
you saved is now available as an object (if it doesn’t,
you should have saved it into a Loaded Library). You
can place it in the Floor Plan. Select it. You can then
open it from the File>GDL Objects Menu with Open
GDL Object... and you are ready to modify it or just
gently tweak it.

Saving from the
3D View

First look at the scripts
The 3D GDL will be more or less the same whichever
method you saved by.

The 2D is different. If you used the Floor Plan
method, the object is fully 2D Scripted with POLY2
and HOTSPOTs. If you use the 3D View method the
object draws a 2D Symbol instead.

Tidy up the object
Preview and Comment

First thing you can do to a new object is give it a
nice Preview Image and write something into the
Comment field., including perhaps your Website
URL, name and date, using a hash # symbol before
the URL

2D Symbol
This should be findable in the
2D Symbol window, not the 2D
View window. This is a jumble
of lines just as it came from the
3D wireline view. You can do
yourself a favour by tidying it
up – change Display Options
to ‘True Line weight’ to see
how the lines will look. Make
the pens thin to avoid your ob-
ject looking heavier than walls.

Hotspots in the 2D
The hotspots will also be at the corners, bounding box
style, and you could now plant your own hotspots from
the 2D toolbox. Keep hotspots at the extremities if
you wish to retain stretchiness. If your object is NOT
required to be stretchy, deliberately plant the new

hotspots slightly inboard of the corners by zooming
in really close – avoid the A,B corners. If you get this
wrong, it is possible to have a 3D object with a non
stretchy condition, but a 2D symbol that appears to
be stretchy – or vice versa. Very confusing!

49Copyright Marmalade Graphics ©2004

This powerful British Fire Engine model was built in a day using the
technique in this section: stealing prisms from ArchiCAD. A little bit of
GDL knowledge is used to organise details like the glass and the doors
into subroutines. Here you see it sitting on its pile of constructional
prisms.

2D View & 2D Script : and FRAGMENT
If you have an object that you are going to modify in
the 3D, or which got saved with a complicated but not
so helpful 2D Script (as if saved from the Floor Plan)
then you might consider erasing the 2D Script and sim-
ply putting in an easy PROJECT2 statement. You know
what you are doing with this, it’s safe country.

Any working 2D Script, however humble will take
control and prevent the 2D symbol from displaying.
The scripted version takes over. There are occasions
when you write a 2D Script, change your mind, and
then erase it, but the previous 2D symbol refuses to
reappear (this is a bug). Or, perhaps you want to com-
bine a 2D Script with something you have drawn in
the 2D Symbol window. In this unlikely event, simply
write FRAGMENT2 ALL,1 into the 2D Script and it
forces the 2D Symbol to appear in the 2D View.

FRAGMENT2 is a very useful command that justi-
fies a whole section to itself, later in the book.

3D Script
Now open the 3D Script and have a good look. At first
you will be a bit surprised at all the housekeeping at
the start of the script. There are an awful lot of lines
with GLOB and BODY in them!

This long list of Global Variables (the GLOB state-
ments) are simply a housekeeping record of the con-
ditions prevailing at the time the object was made –
current drawing scale, eye position etc. These can all
go. BODY commands can go too. So can PENs.

In case you built the object some distance from the
origin, go to the very end of the script and write in
DEL TOP. The object will look better in the 3D View
window. Better still, resave the object over the Origin.

The MUL statements allow the object to be stretchy.
If your object is fixed in size and not stretchy, delete
all the MUL statements. Leave the ADD commands in
place, unless you built your object over the Project
Origin.

You will also notice that each Slab or Wall has an
ID field attached to it. This makes it easy to work
through the 3D Script working out what each piece in
the script relates to in the model.

Making Parameters
When you get further you can do a lot of manipula-
tion of the GDL in the 3D Script, but for starters the
two most useful things are PEN and MATERIALs. If
the object was made with slabs and roof and walls,
like the fireplace, it has disparate pens and materials.
Make one Pen parameter for the 3D, ‘gs_cont_pen’ and
make a few for Materials. Make a Section Fill param-
eter so that the fireplace looks solid in section views.

In the case of the Fireplace, you need material pa-
rameters for the shelf, the pilasters and capital, the back
panel material, the hearth, and the moulding round
the arch opening. You also get the AC_show2D
Hotspots parameter which is in every library part and
cannot be deleted. Leave it ON, only tick it OFF if you
plan to write custom 3D hotspots.

The Golden Rule: use the Origin

ONE of the most important rules to remember is to try
to build the original object AT PROJECT ZERO ON THE

MASTER ORIGIN of the Project. Moving the origin some-
where else doesn’t work. You have to do it on the original
origin. To move a temporary origin back to the original,
click once on the temporary origin, hit delete, and it will
restore the main origin.

Revisiting Autoscripted objects

IF you regularly make objects using ArchiCAD instead of
GDL, what do you do with all those bits of slab

and wall that you used? Do you keep them all in
one monster .PLN file? It’s impractical.

One good idea is to select the elements you
have used to build an object and save them as a
MODULE. This keeps them together in a tidy compact file,
can be stored in a named folder, and ensures that you can
easily recover them when you need to make another of
the same or similar.

Master Script
There’s nothing to do here unless, in the example, you
wish to prevent the object from being accidentally
stretched in the 2D symbol or in 3D. Use the LOCK
command, put the parameter names in quotes.

Modify Library Object

50 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

! Document name:
! Name : Fireplace.gsm
! Date : February 2004
! Version : 8.10
! Written by ArchiCAD
!
MULX A/1.499717354774
MULY B/0.4499999880791
MULZ ZZYZX/1.049610733986
ADDX 0.7544884085655
ROTX 270
ROTZ 180
BODY -1
MODEL SOLID
RESOL 36
GLOB_SCRIPT_TYPE = 3
GLOB_CONTEXT = 3
GLOB_SCALE = 20
GLOB_NORTH_DIR = 90
GLOB_DRAWING_BGD_PEN = 91
GLOB_FRAME_NR = -1
GLOB_EYEPOS_X = 19.2944
GLOB_EYEPOS_Y = -6.2127
GLOB_EYEPOS_Z = 1.5
GLOB_TARGPOS_X = 23.7703
GLOB_TARGPOS_Y = 6.04545
GLOB_TARGPOS_Z = 4.30919
GLOB_SUN_AZIMUTH = 225
GLOB_SUN_ALTITUDE = 45
BODY -1
BODY -1
PEN 1
SET MATERIAL "Paving-Asphalt, smooth"
CUTFORM 4, 1, 57,
 0, 0, 1, 0,
 -0.8150207352017, -0.142237848387, 15,
 0.7740288475367, -0.142237848387, 15,
 0.7740288475367, 1.402534810993, 15,
 -0.8150207352017, 1.402534810993, 15
GLOB_HSTORY_HEIGHT = 0.65
!!Wall-030
PEN 2
GLOB_LAYER="Exterior walls"
GLOB_ID = "Wall-030"
GLOB_INTID = 54
BODY -1
ADD 0.7366109980948, 1.029690951693, 0
ROTZ 180
xWALL_{2} "Oak", "Oak", "Oak", "Oak",
 0.2, 0, 1.465714637969, 1.465714637969, -
2.449212707645E-018, 0, -4.255225907027E-017,
0.02, 0.02, 0.02, 0,
 0, 0,
 15, 15, 15, 15,
 0,
 0
DEL 2
BODY -1
!!Wall-030
GLOB_INTID = 59
BODY -1
ADD 0.7544884238836, 1.049610751387, 0
ROTZ 180
xWALL_{2} "Oak", "Oak", "Oak", "Oak",
 0.22, 0, 1.499717385614, 1.499717385614, -
2.449212707645E-018, 0, -3.8388260989E-017, 0.02,
0.02, 0.02, 0,
 0, 0,
 15, 15, 15, 15,
 0,
 0
DEL 2
BODY -1
!the rest is omitted

The title can be shortened
and renamed if you are

putting work into this.

The 3 MUL commands are
there to make the object

stretchy. At the moment the
Fireplace is 1.5m wide, and if

A is stretched to a width of
1.8, the X-values are

multiplied by 1.8/1.5. the
others work in the same way.

Delete them if the object is
not stretchy.

There are no ADD
commands because the object

was built over the Origin.

The GLOBs can all be
deleted, and so can the

BODY and PEN and
MODEL and RESOL

statements at this point.

The CUTFORM statement is
here because the original

model was set in a Marquee.
Delete CUTFORM and the

CUTEND at the end.
Note, each element in the

script has its own ID.

These GLOBS and Layer
statements can also be

deleted. Retain RESOLs if
they occur later in the 3D

Script.

Do not interfer with the
XWALL statements, and

retain the ADD and DELs
either side of them.

Autoscripts are
‘unstructured’, meaning that

each element is dealt with one
at a time.

We have to delete all BODY
statements, because we want
to control the Textures in the

object and we must be the
one to issue BODY -1

statements. THE REST OF
THE SCRIPT IS OMITTED

! ModifyObject_Fireplace.gsm
! Date : February 2004, Version : 8.10
! Written by ArchiCAD, Modified for GDL CB4

IF stretchy THEN
MULX A/1.499717354774
MULY B/0.4499999880791
MULZ ZZYZX/1.049610733986
ENDIF

ADDX 0.7544884085655
ROTX 270
ROTZ 180

PEN gs_cont_pen

SECT_FILL secfil,91,gs_cont_pen,gs_cont-pen

!Mantelshelf
ADD 0.7366109980948,1.029690951693,0
ROTZ 180
xWALL_{2} shelf_mat, shelf_mat, shelf_mat,
shelf_mat,
 0.2, 0, 1.46571, 1.46571, -0, 0, 0, 0.02,
 0.02, 0.02, 0,
 0, 0,
 15, 15, 15, 15,
 0,0
DEL 2

ADD 0.7544884,1.04961,0
ROTZ 180
xWALL_{2} shelf_mat, shelf_mat, shelf_mat,
shelf_mat,
 0.22, 0, 1.499717385614, 1.499717385614, -0,
0, 0, 0.02, 0.02, 0.02, 0,
 0, 0,
 15, 15, 15, 15,
 0,0
DEL 2

GOSUB 999:!Texture
!Remove all BODY statements in the script.

!Moulding round fireplace- Uprights
ADD -0.3, 0, 0
ROTZ 90
xWALL_{2} mould_mat, mould_mat, mould_mat,
mould_mat,
 0.07, 0, 0.424132503479, 0.424132503479, -0,
0, 0, 0.05, 0.05, 0.05, 0,
 0, 0,
 15, 15, 15, 15,
 0,0
DEL 2

ADD 0.3, 0.424132503479, 0
ROTZ 270
xWALL_{2} mould_mat, mould_mat, mould_mat,
mould_mat,
 0.07, 0, 0.424132503479, 0.424132503479, -0,
0, 0, 0.05, 0.05, 0.05, 0,
 0, 0,
 15, 15, 15, 15,
 0,0
DEL 2

ROTz 90
GOSUB 999:!Texture
DEL 1

!Moulding round fireplace- Curved section
RESOL 37
ADD 0.35, 0.424132503479, 0
ROTZ -269.2410240448
xWALL_{2} mould_mat, mould_mat, mould_mat,
mould_mat,
 0.07, 0, 1.090380453073, 1.090380453073, -0,
0, 0, 0.05, 0.05, 0.05, 0.3500307100535,
 0, 0,
 15, 15, 15, 15,
 0,0
DEL 2

GOSUB 999:!Texture

Put an IF... ENDIF
routine round the

MULs.

Leave the ADD and
the ROTs. Set the
contour PEN and

delete all later pens.
Add in the SECT_FILL

Identify each part of the script and
put a title over it. Work each part out

(wall, roof or slab) by logic or by ID
field, and how thick each one was.

Put a 999:!Texture subroutine at the
end of the script, copied from the
Chair object, and you can texture

map every part of the fireplace.

Replace all the material statements
with Parameters, NOT in quotes.

Remember with the Texture
subroutine that the object was built

flat on the floor, so you ROTz to
make vertical texture.

There is more of this on the next
page.

How do you identify which parts
(walls etc) are which? Easy, they all

have ID numbers, and so do the
sections of the script.

Back to the the 3D Script
On this side we have the script as it arrives from
ArchiCAD (just the first column). On the other we
have it tidied up.

Modify Library Object

51Copyright Marmalade Graphics ©2004

!Main Backpanel
RESOL 36
cPRISM_ backp_mat, backp_mat, backp_mat,
 27, 0.05,
 -0.5, 1.009690951693, 15,
 -0.5, -7.549694427109E-017, 15,
 -0.3, -7.549694427109E-017, 15,
 -0.3, 0.424132503479, 79,
 -0.3003476993072, 0.442430660001, 79,
 -0.2919171850616, 0.494247123188, 79,
 -0.274616914865, 0.543812434433, 79,
 -0.2489725486731, 0.589620576834, 79,
 -0.215763277576, 0.6302796931654, 79,
 -0.1759981484712, 0.664554376751, 79,
 -0.1308854046845, 0.691403208675, 79,
 -0.08179577410767, 0.71001040076, 79,
 -0.03022082032523, 0.71981058290, 79,
 0.02227237779032, 0.720505981518, 79,
 0.07408884097709, 0.712075467273, 79,
 0.1236541522215, 0.6947751970765, 79,
 0.1694622946227, 0.6691308308846, 79,
 0.2101214109539, 0.6359215597875, 79,
 0.2443960945398, 0.5961564306828, 79,
 0.2712449264634, 0.551043686896, 79,
 0.2898521185531, 0.5019540563192, 79,
 0.2996523006928, 0.4503791025367, 79,
 0.3, 0.424132503479, 79,
 0.3, 0, 15, !E-minus number
 0.5, 0, 15, !changed to Zero
 0.5, 1.009690951693, 15,
 -0.5, 1.009690951693, -1
 GOSUB 999:!Texture Horizontal

!Pilasters
cPRISM_ pilas_mat, pilas_mat, pilas_mat,
 5, 0.1,
 0.5, 1.009690951693, 15,
 0.6364136155509, 1.009690951693, 15,
 0.6364136155509, 0, 15,
 0.5, 0, 15,
 0.5, 1.009690951693, -1

cPRISM_ pilas_mat, pilas_mat, pilas_mat,
 5, 0.1,
 -0.6364136155509, 1.009690951693, 15,
 -0.5, 1.009690951693, 15,
 -0.5, 0, 15,
 -0.6364136155509, 0, 15,
 -0.6364136155509, 1.009690951693, -1

!Base blocks
cPRISM_ pilas_mat,pilas_mat,pilas_mat,
 5, 0.13,
 -0.65584, 0.1695, 15,
 -0.47905, 0.1695, 15,
 -0.47905, 0.0377, 15,
 -0.65584, 0.0377, 15,
 -0.65584, 0.1695, -1

cPRISM_ pilas_mat,pilas_mat,pilas_mat,
 5, 0.13,
 0.48036, 0.16950, 15,
 0.65715, 0.16950, 15,
 0.65715, 0.03774, 15,
 0.48036, 0.03774, 15,
 0.48036, 0.16950, -1

ROTz 90
GOSUB 999:!Texture Horizontal
DEL 1

!Hearth slab
cPRISM_ harth_mat,harth_mat,harth_mat,
 5, 0.45,
 -0.655842, 0.037741, 15,
 0.6591421, 0.037741, 15,
 0.6591421, 0, 15,
 -0.655842, 0, 15,
 -0.655842, 0.03774123, -1
GOSUB 999:!Texture Horizontal

!Beam
cPRISM_ pilas_mat, pilas_mat, pilas_mat,
 5, 0.08,
 -0.5, 1.009690951693, 15,
 -0.5, 0.856795635428, 15,
 0.5, 0.856795635428, 15,
 0.5, 1.009690951693, 15,
 -0.5, 1.009690951693, -1
GOSUB 999:!Texture Horizontal

!Capitals atop the Pilasters
cSLAB_ pilas_mat, pilas_mat, pilas_mat,
 5, 0.096447260198,
 -0.6364136, 0.844527895, 0.0169, 15,
 -0.5, 0.84452789571, 0.0169, 15,
 -0.5, 1.00969095169, 0.0770, 15,
 -0.6364136, 1.00969095, 0.0770, 15,
 -0.6364136, 0.844527895, 0.0169, -1

cSLAB_ pilas_mat, pilas_mat, pilas_mat,
 5, 0.09644726,
 0.5, 0.8445278957155, 0.0169, 15,
 0.63641361555, 0.8445279, 0.0169, 15,
 0.63641361555, 1.009691, 0.0770, 15,
 0.5, 1.0096909516, 0.0770, 15,
 0.5, 0.8445278957, 0.0169, -1

ROTz 90
GOSUB 999:!Texture Horizontal
DEL 1

DEL TOP

END:!-------------------

999:!Texture Horizontal
BASE
VERT 0,0,0
VERT 0.1,0,0
VERT 0,0.1,0
VERT 0,0,0.1
COOR 256+2,-1,-2,-3,-4
BODY -1
RETURN

Continued from previous page

This is the routine that you
can apply here, there and
everywhere. Because the

fireplace is built on the floor,
don’t forget that ‘vertical

texture requires ROT Z and
not Y’.

If you apply Align Texture
while building in ArchiCAD,

the Coor Vert routine may be
included in the autoscript!

Do not
delete

RESOLs
that occur

later in the
script.

This curved
arch is

converted to
a series of

Polypoints,
with a 79

(15+64)
smoothing

masking
value.

Roof elements
become cSLAB in

autoscripts

3D ArchiCAD or Open GL?

WHEN working in GDL, which 3D drawing mode
should one use? Speed is not an issue for small mod-

els – so what else? Quality?
ArchiCAD’s 3D engine gives sharper and brighter 3D, with

more visible polygons... but if you are working with Tex-
tures there is only one winner! Open GL is a real time saver,
it saves the bother of using Photorendering to check out
the direction of your wood grain.

By centring the building blocks on the
origin, you guarantee the textures
starting correctly from the centre,

working outwards.

Because the
locations are

stored in
million

millionths of
a metre

accuracy, the
ArchiCAD

parser must
spend longer

reading
through all

that data and
building the

object.

On this page,
the E-minus

numbers are
approximating

to Zero anc
have been

changed to
Zero.

If you are a
fanatical

pruner, you
can even

truncate the
XY

coordinates to
4 or 5 decimal

places – this
speeds up the

reading of the
data. Make

sure the start
and end

points are the
same. Use Open GL to check

that your textures are
working.

This hearth
was

‘eyeballed’ in
ArchiCAD.

Now you can
see that the X
values could
be replaced
safely with
0.66 and -

0.66, and the
Y with 0.038,

and would
be more
precise.

Sorry, space doesn’t permit me to do a more
sophisticated object with curly corbels and
profiled mantel edges.

Modify Library Object

52 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Find and Replace
If the script is really very long, then you can use the Find
and Replace feature quite effectively. It speeds up read-
ing of the script if you can remove a lot of the clutter for
you and for the machine. Search and replace all instances
of ‘GLOB_’ and ‘PEN’ with ‘!’....., or a double space with a
single (to compact the code), and more besides.

In more advanced work, e.g. converting an imported
file from Rhino, I have found that you can replace all ‘LIN_’
with ‘PUT’ and thus put all the values into memory. You
can then write a GET routine to get all the values out and
do something useful with them.

Instant GDL!

EVERY element in ArchiCAD can be expressed
in GDL because it is the underlying language

of ArchiCAD. If you want to see what anything looks
like in GDL, try this and be amazed.

Arrange your project window so it occupies half
the screen. Open a New GDL object file and arrange
the empty floating 3D Script window so it occupies
the other half (click the white script button to make it
float).

cPRISM_ “Oak”, “Oak”, “Oak”,
 5, 0.13,
 -0.6558418327861, 0.1695079, 15,
 -0.4790539555416, 0.1695079, 15,
 -0.4790539555416, 0.0377412, 15,
 -0.6558418327861, 0.0377412, 15,

 -0.6558418327861, 0.1695079, -1

Floor Plan
3D Script

Grab the 3D element (Slab, Roof, Wall, Mesh) by an edge
and just drag it smartly into the 3D Script which should be
in an overlapping window. If the object is a 2D element (Fill,
Lines), drag it into the Master or 2D Script.

Steal this chunk of ArchiCAD!

x
x

Now select any part of the Project, grip the part(s)
by an edge and Drag’n’Drop across and into the 3D
Script as quick as you can! Instant GDL!!

Tidy up the garbage at the head and tail and you
now have some clean usable GDL for the object you
dragged over.

You can do the same with any group of 2D ele-
ments, Drag’n’Drop into the 2D Script window. It’s bril-
liant! Most complex 3D items such as EXTRUDE, RE-
VOLVE and the profiles for TUBE and SWEEP use the
same syntax as a POLY2. So you can copy the
X_Y_mask data from a Fill and paste it into the 3D
Script for a complex 3D command.

Now it’s in a script, put a number label at the top
and ‘RETURN’ at the bottom and you have a perfect
subroutine!

This technique only works satisfactorily if the ob-
jects to be dragged are correctly located relative to
the main origin. If somewhere else, then you will have
crazy coordinates, many metres or feet away.

Experts use this method
This procedure is quite convenient even for hardened
GDL users. It is good for knocking out complicated
shapes, without having to work out the XY locations
yourself. Look at the Helicopter!

Place a 2D symbol of the object you want to make
(like the Bus or Truck from the ArchiCAD Library),
explode it, and trace over the main body panels with
the slab tool. Drag each slab into the 3D Script win-
dow, label each one, and then reorganise each prism
with the correct thickness and material.

Once you have got the hang of this technique, you
can ‘steal’ the X,Y locations in Slab/Prisms to define
many other things, such as the pathway of a tube, or
the locations of glazing bars. It’s very useful for creat-
ing the outline for a shape that you want to lathe around
an axis using REVOLVE.

If you want to use the numbers later, delete the state-
ment header (e.g. cPRISM_ etc, leaving just the X,Y,15
numbers, put PUT in front of them and you can store
them in memory. That’s an expert technique that is
explained fully later in the book.

A Use for the Patch Tool
If you have something complex to convert to 2D and
it’s not realistic to move to the origin, the PATCH tool
is a great helper! Make a patch of the bit you want,
save it, place the patch over the origin, explode, and
your 2D is now in the right place, without disturbing
the original.

Mac OSX Workaround
This Drag’n’Drop technique, sadly, doesnt work in OSX
on the Mac, something to do with OSX, not the fault
of ArchiCAD. But you can click on the object you want
to drag over, ‘Save Selection as’ something like
thing.gsm, place it in the plan, open GDL Object, and
then you can copy chunks of script and paste them
into the main object you are inserting them to – more
long winded, but perfectly doable.

This authentic, parametric Helicopter started out as
a set of Fills in ArchiCAD, dragged into GDL.

Instant GDL! Drag’n’Drop

53Copyright Marmalade Graphics ©2004

FOR... NEXT Loops
The inexhaustible workhorse of GDL

FOR k=1 TO n: NEXT k

FOR non-programmers, the FOR... NEXT Loop
seems at first a challenge. It is in reality your

strongest friend, because it has a tremendous capac-
ity for work. With a few economical lines of script to
make a FOR... NEXT loop, huge lattices or structures
can be created.

When you want to repeat an operation, there will
be more than one way in which you can repeat it. Think
of music. On your guitar, you can strum a chord ten
times, at your own speed – so NUMBER is the con-
trolling parameter. On the other hand you could strum
the chord metronomically until the conductor tells you
to stop. Try changing the interval of the strum. In this
case TIME is the parameter – the frequency of each
chord, and duration of the total will determine how
many chords get played.

In 3D, there are three main ways to organise a FOR
NEXT loop: Distance, Number and Angle.
• Distance: where total distance could decide how
many objects get laid – keep laying them stepping at a
set spacing until you reach the target distance.
Example: you lay joists at 400mm spacing across a room 4000m
wide.

FOR k=1 TO 7
 CYLIND 2,0.2 !Pole
 ADDx 0.5
 NEXT k
 DEL 7

FOR dist=0 TO 3.0 STEP 0.5
 ADDx dist
 CYLIND 2,0.2 !Pole
 DEL 1
 NEXT dist

Let’s plant 7 poles at fixed spacings

NUMBER: For this script we nominate ‘k’ to be
a counter – the value changes from 1 to 7.

Having moved 7 times, you issue a DEL 7 command
after NEXT to get back to the origin before your
next operation. This is not a good idea as you have
a DEL ‘hanging off the end’.

It’s better to do both the move and DEL inside
the Loop. Do the move inside the loop by moving
one distance, DEL to the origin, move a longer dis-
tance and DEL, and so on.

The first time you want to move zero distance,
the second time you want move one, the third you
move two. So multiply the ‘spacing’ by (counter-1).

FOR k=1 TO 7
 ADDx 0.5 * (k-1)
 CYLIND 2,0.2 !Pole
 DEL 1

 NEXT k

As a matter of discipline, always try to use i, j, k, m,
or n for loops based on round numbers (integers).
Never use these variables for anything else, espe-
cially dimensions.

Plant an unknown number of poles

DISTANCE: We don’t know how many poles
there will be – we let GDL work that out for

us – until we run out of road. We have three metres
of road to plant. Here, ‘dist’ acts as a distance di-
mension. Do not use ‘k’ here. It’s best to associate
‘k’ in your mind with integer counters, not with ‘real
numbers’. In the first run through the loop, ‘dist’ is
zero, so the cursor moves zero, plants a pole, then
returns to the origin – and then does it again with a
new value of ‘dist’. For this, the loop needs to be
told the ‘stepping’ rate of each cycle in the loop. If
no stepping rate is given, it assumes you mean a
value of One. Here, you want to step half a metre
each time.

As you have been using DEL inside the pole plant-
ing loop, you do not need to finish with a DEL.
Moreover, you do not need to worry about how
many poles to plant. When it has planted 7 poles
and reached a distance of 3.0 metres, it realises that
if it plants another, it will go to 3.3 metres, which is
too far. Therefore, it stops at 3.0 metres run.

• Number: where you are told to lay a fixed number
of objects at a set spacing, stepping one at a time.
Example: you are given 10 joists and told to lay them at 400mm
spacing.
• Angle: You are laying out objects at a stepping an-
gular spacing, until you reach your target angle.
Example: you are placing columns to enclose an octagon at a
spacing of 45˚ (relative to the centre) until you reach 360˚.

In the FOR statement on the lower left, read it to your-
self in slow, elongated english. Using a counter called
‘k’, for values of ‘k’ starting with 1, Do What Has to be
Done. When you get to NEXT k, if the value of k isn’t 4
then go round again, increment ‘k’ by 1 and Do What Has
to be Done again. Keep cycling between FOR and NEXT
until it reaches a value of 4. When ‘k’ reaches 4, you have
finished, so execution continue to the rest of the script.

NEXT: In every case, NEXT must be followed by the
name of the variable. In a more complex model, you
could have some FOR...NEXT loops nested inside each
other, and it is important that GDL knows which loop
you are referring to.

FOR NEXT Loops

54 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

What do we do when we know distance
and spacing, but want to know number?

Assume that the re-
quired distance is ‘A’.
We only need one pa-
rameter, that of ‘spac’
for spacing. This rou-
tine will space the
poles out exactly and
if there is remaining
distance left over, no
additional poles will be
planted – there will be a space.
We use the Integer INT() function to de-
vise an exact number of poles.

What if we want the poles to fit exactly to ‘A’
with the last pole perfectly on the A-spot?
We now have to assume that ‘spac’ is the user’s opti-
mum but not the actual spacing. Use the Master Script
to work out the most likely number of poles, rounded
up or down, and then work out the exact spacing
‘spa’ to achieve a result. Adding 0.5 in the Integer
statement results in it rounding up or down to the
nearest whole number.

FOR ang=0 TO 315+1 STEP 45
 ROTz ang
 ADDx 2.0
 CYLIND 2,0.2
 DEL 2
 NEXT ang

!Trig Method
rad=2.0
FOR ang=0 TO 315+1 STEP 45
 ADD rad*COS(ang),rad*SIN(ang),0
 CYLIND 2,0.2
 DEL 1
 NEXT ang

In both of these, the principle is that we return the cursor to
zero within the loop at the end of every cycle. We usually add
a single spare degree to the end value to counteract any
adding up error – in this case there is a risk the succession of
45s might add up to 314.99999. The extra degree will not
affect the number of poles planted. If you forget to put in a
stepping value, it will be assumed to be 1 degree.

Let’s plant poles at angles until we
have a circle

ANGLE: In this case we can use ‘ang’ as the coun
ter. We rotate around z, go out to the edge of

the circle, plant a pole and then DEL back to the
centre. We want to make an octagon, so we use an
angle of 45˚ for the spacing. We do not need to go
all the way to 360˚ because we already planted one
when the value of ‘ang’ was zero.

There’s another way to go round a circle, using
trigonometry. At first sight it seems more difficult,
but it’s an essential technique e.g. for tracing out
the points for the edge of a prism or the pathpoints
along a tube. Look ahead to the Maths Primer for
more detailed explanation. At every point on the
circle, the radius is actually the hypoteneuse of a
right angle, and the XY location can be calculated
with a COS/SIN calculation.

!Master Script
 numbay=INT(A/spac) !Number of bays

!3D Script
FOR k=1 TO numbay+1
 ADDx spac*(k-1)
 CYLIND 2.0,0.2
 DEL 1
 NEXT k

!2D Script
 HOTSPOT2 0,0 !Stretch
 HOTSPOT2 A,0 !-spots

FOR k=1 TO numbay+1
 ADD2 spac*(k-1),0
 CIRCLE2 0,0,0.2
 HOTSPOT2 0,0
 DEL 1
 NEXT k

!Master Script
 numbay=INT(0.5+A/spac) !Number of bays, rounded
 spa=A/numbay !Actual spacing of poles

!3D Script
FOR k=1 TO numbay+1
 ADDx spa*(k-1)
 CYLIND 2.0,0.2
 DEL 1
 NEXT k

!2D Script
 HOTSPOT2 0,0 !Stretch
 HOTSPOT2 A,0 !-spots
 FOR k=1 TO numbay+1

CIRCLE2 spa*(k-1),0,0.2
HOTSPOT2 spa*(k-1),0

NEXT k

This little master script routine
calculates the number of spaces
created. When we lay the poles,
we have to remember to include

the last pole in the sequence.

As an example, we show that by
copying and pasting the 3D Script

into the 2D, we can amend it to
work efficiently in 2D.

Circle and Hotspot have XY
locations, so we could shorten

this:
 FOR k=1 TO numbay+1

CIRCLE2 spac*(k-1),0,0.2
HOTSPOT2 spac*(k-1),0

NEXT k

Pen and material
parameters have been

omitted to keep this
routine simple.

We calculate a value for
‘spa’ the ACTUAL

spacing, and then lay the
poles. The last pole will

be exactly on the A-spot.

Does the above trick work for angles?
Yes! Try an adaptation, using an angular difference
instead of a linear difference.

But how about when you want a linear difference
around the edge of an arc or circle? e.g. distribute
posts at 600mm spacing around the perimeter for 270
degrees sweep: and arrive sweetly on the end angle.
Here one divides the spacing by the circumference
and multiply by 360 to arrive at the optimum spac-
ing angle ‘spangl’. Use this trick to finalise an exact
spacing angle, and go!

!Parameters rad=5.0 , spac=0.6 , endangl=270

!Master Script
circum=2 * PI * rad !circumference
spangl= 360*spac/circum !spacing angle
numbay= INT(0.5+endangl/spangl)
spang = endangl/numbay

!3D Script
FOR ang=0 TO endangl+1 STEP spang
 ROTz ang
 ADDx rad
 CYLIND 2,0.2
 DEL 2
 NEXT ang

Optimise the spacing angle:
work out the

optimum number
of bays between posts, work

out the required spacing angle
to meet the endangle exactly.

Add the 1 degree as a
protection against a

cumulative adding up error

FOR NEXT and other Loops

55Copyright Marmalade Graphics ©2004

!Simple joistool
!3D Script

PEN gs_cont_pen
MATERIAL bmat

FOr dist=0 TO A STEP spa
 ADDx dist
 BLOCK jwid,B,zzyzx
 DEL 1
 NEXT dist

!Simple beamtool
!2D Script

PEN gs_cont_pen

HOTSPOT2 0,0
HOTSPOT2 A,0
HOTSPOT2 A,B
HOTSPOT2 0,B
HOTSPOT2 A/2,B/2

FOR dist=0 TO A STEP spa
 ADD2 dist,0
 RECT2 0,0, jwid,B
 HOTSPOT2 0,0
 DEL 1
 NEXT dist

TRY this simple joist tool – just a FOR NEXT
loop with Blocks in the 3D, Rect2s in the 2D

and some Hotspots – easy!

Quick Loop Object with FOR NEXT :
Stretchy Joist Tool

Other types of Loop: REPEAT and DO
REPEAT...UNTIL / DO WHILE

OTHER commands related to loops are
REPEAT...UNTIL , and DO WHILE and

WHILE... DO... ENDWHILE.
REPEAT... UNTIL and DO WHILE are the best ways
to run loops where only a trial-and-error approach will
work.

In a REPEAT Loop, there may be an unknown
number of occurences, and you can keep a tally of
these. You keep it going until the tally exceeds a value,
or falls lower than zero.

Example of REPEAT UNTIL: In Music, you might
be playing something very modern where you
strummed the guitar at random intervals – and fin-
ished after the total number of intervals add up to
twenty minutes. This is a REPEAT UNTIL loop (until
time=20). Everybody will be very grateful when 20
mins is up. Every time you played the piece, the total
number of chords played would be different and could
be counted.

Staying with the Music, WHILE... DO occurs while
a value remains known (e.g. n>0). If something hap-
pens that changes that condition, then you can escape
from the loop. For example, while people stayed to lis-
ten, you could play. You can’t forecast the rate of walk
out. But you DO play: WHILE audience>0.

Some people never use WHILE or REPEAT loops.
Sooner or later, as you use GDL, you will come across
a situation where you realise that this is where you
need to use one of them.

Two occasions I use it for are: when clearing the
memory buffer in case you have anything in it after
some PUT statements (see later in the book), or ap-
plying CUTEND statements after an unknown number
of CUTPLANEs.

!DO WHILE Loop
k = 1
DO
 CYLIND 2.0,0.2
 ADDx 1.0
 k = k + 1
WHILE k <= 5

!WHILE DO Loop
k = 1
WHILE k <= 5 DO
 CYLIND 2.0,0.2
 ADDx 1.0
 k = k + 1
ENDWHILE

!REPEAT UNTIL Loop
k = 1
REPEAT
 CYLIND 2.0,0.2
 ADDx 1.0
 k = k + 1
UNTIL k >= 5

LOOPS: Some Golden Rules
• Loops can be based on Distance, Angle or Number.
• Do not change the value of the variable that is being
used as the counter or the end of the loop while in the
loop. For this reason, you cannot write FOR k=1 TO NSP.
• If you use a STEP value in FOR... NEXT and forget to
give it a real value (other then zero), the loop will be step-
ping zero each time, for infinity. ArchiCAD may never re-
cover. Alt-Ctrl-Del will be your friend!
• If you REPEAT towards something that is unattainable,
then GDL will never stop. So continue until a value is greater
or less than, not equalled. For example in a decrementing
value, REPEAT UNTIL K<=0.
• Once you are in a loop, you must never branch out of it,
except to use a Subroutine. GOSUBs are perfectly safe.
GOTO commands are quite forbidden, unless you go to a
label inside the loop.
• If you don’t know exactly how long the loop will be,
use REPEAT... UNTIL, or WHILE ... DO... ENDWHILE.
• If the contents of the loop could cause an error, use
WHILE DO, not DO WHILE or REPEAT UNTIL. If the condi-
tion does not apply, GDL will not enter the loop.
• To avoid an adding up error add a little deliberate over-
shoot to the end value in a FOR_NEXT e.g. 361˚ instead of
360˚ in a circle. This has no effect on the 3D result.
• It is possible to ‘Nest’ one loop inside another. Just make
sure that you do not use the same counter. Get the NEXT
statements in the right sequence.

Note that with DO and
REPEAT, you must ensure that

the loop is ‘legal’, e.g. no
division by zero, and no risk that
the UNTIl or WHILE conditions

will not be invalid.

FOR NEXT and other Loops

56 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

PLANE is most useful: you can specify XYZ loca-
tions of any points in 3D space and GDL will en-
deavour to join them up with a surface.

With three points, you can do anything anywhere.
With more than 3, you must ensure that the surface
will be planar. If they are not planar, the whole sur-
face may appear as empty.

You can position Plane anywhere: it does not re-
quire ADDs and ROTs to get to its location. It pays
to have a good grasp of trigonometry to get the best
out of Plane.

PLANE_ (Plane underscore) allows you to decide
if edge lines are to be drawn or not.

Imported 3D DXF files often get
converted to a large number of
PLANEs when read in by GDL.

!PLANE Demonstration
!Syntax:- PLANE number,
! x1,y1,z1,
! x2,y2,z2,
! x3,y3,z3, etc..
PLANE 3,
 0.20,-0.4,-0.2,
-0.20, 0.3, 0.1,
 0.25, 0.4, 0.1

!Syntax:- PLANE_ number,
! x1,y1,z1,s, etc.
PLANE_ 4,
 -0.3,0.0,-0.20,0,
 0.3,0.0,-0.20,1,
 0.3,0.2,-0.05,1,
 -0.3,0.2,-0.05,1

3D Elements : Planar
PLANAR 3D elements are very useful because

they only generate two polygons, 1 top, 1 bottom.
When it comes to rendering speed, the ‘polygon count’
of a model is all important (because AC has to calcu-
late the line outlines and the shading values for each
polygon.)

CIRCLE is simply defined by its radius. Use it in-
stead of thin cylinders.

ARC draws a curved line sector shape. The rotation
angle goes in an anti clockwise direction starting from
horizontal. Here, the start angle is 45 degrees, and it
finishes with 100 degrees – anti clockwise.

LIN_ draws a straight line in 3D from one XYZ lo-
cation to another; but only shows up in 3D views with
Best contours.

RECT draws a rectangle of width X and depth Y.

Example of POLY – a simple
outline with straight edges.

Example of POLY_ – an
outline with the opportunity
for curved & straight edges
and drilled holes (round or

polygonal).

POLY the syntax is identical to that of PRISM,
without a thickness. No holes or curved edges or
masking codes are possible. POLY must always be
laid on the X-Y plane, so if you want a poly in an
odd place and angle, you have to move the cursor
there first.

POLY_ (Poly underscore) extends the power of
POLY – it supports holes and curved edges and
masking codes. With POLY_ you only need to know
if the line is to be drawn or omitted – so a code of
one or zero is enough. In addition, by adding 1000
or other polylines, you get curved lines or holes. As
a bit of adventure, I have shown you an example of
a hole drilled in the Poly – this is similar to the pro-
cedure for holes in PRISM.

Look ahead in the book for more on Polylines
and Masking Codes.

HOTSPOT x,y,z is a hotspot that can be at any
3D location defined by X, Y and Z. Of which more
will be said later in the book

!POLY Demo
!Syntax:- POLY number,
! x1,y1, x2,y2, etc
POLY 9,
 0.00,0.00,
 -0.10,0.30,
 0.10,0.30,
 0.10,0.40,
 0.20,0.40,
 0.20,0.10,
 0.15,0.10,
 0.15,0.00,
 0.00,0.00

!POLY_ Demo w’ hole
!Syntax:- POLY_ number,
! x1,y1,mask,
! x2,y2,mask, etc
POLY_ 9+2,
 0.00,0.00,1,
 -0.10,0.30,1,
 0.10,0.30,0,
 0.10,0.40,1,
 0.20,0.40,1,
 0.20,0.10,1001,
 0.15,0.10,0,
 0.15,0.00,1,
 0.00,0.00,-1,
0.05,0.1,900, !Hole centre
0.05,360,4000 !Hole drawn

!Planar Three-D elements
!Syntax:-
!CIRCLE radius
!ARC radius, startangl,endangl
!LIN_ x1,y1,z1, x2,y2,z2
!RECT x,y

CIRCLE 0.2
ARC 0.3,45,100
LIN_ 0.00,0.00,0.00,
 -0.15,-0.15,0.15
 ADDz -0.2
RECT 0.3,0.3

CIRCLE, POLY, PLANE and RECT all appear in ren-
derings – but LIN_ and HOTSPOT disappear. When-
ever you would normally use a PRISM or a CYLIND,
stop to think whether the same job can be done with a
PLANE or a POLY or a CIRCLE.

3D Elements: Planar

57Copyright Marmalade Graphics ©2004

!cSLAB_ Demonstration
!Syntax:- CSLAB_ topm,botm,sidm,
! n, h,
! x1,y1,z1,mask1,
! xn,yn,zn,maskn

CSLAB_ "Gold","Zinc","Ice",
 4, 0.2,
 0.0,0.0,0,15,
 0.8,0.0,0,15,
 0.8,1.5,1,15,
 0.0,1.5,1,15

3D Elements : SLAB
SLAB
SLAB is very similar to PRISM, but far more flexible.
You only need to define the XYZ points of the nodes
– like PLANE. As with Prism, you define a thickness,
but depending on the pitch, this is really a vertical
height quantity, not true thickness. The XYZ points
are actually the points on the lower surface unless
you specify a Negative Height.

Plain SLAB and SLAB_ are all one material.
With SLAB is that you need to be sure that the

surface will be planar – or it may not render properly.
It does not check for you.

SLAB retains its sides perpendicular to the ground,
or to the current XY plane – making it ideal for ramps,
roof slabs etc. If the pitch gets too steep, the ridge
and eaves detail get very distorted.

SLAB is good because you do not have to move
the cursor to its location, or Rotate the XY plane, as
you do with a Prism.

SLAB_
SLAB_ is similar, but you can control the pen lines
and edges in 3D drawings. (However, all the edges in
the illustration here still get shown in photo render.)
SLAB_ does not appear to support the drilling of holes
– you have to use CROOF, or PRISM_. SLABs do not
support PolyLines.

CSLAB_
CSLAB_ is SLAB_ with the ability to set different
materials for top, bottom and edge surfaces. CSLABs
are what you get when you make an autoscripted li-
brary part using hipped roofs. The Materials can be
defined by name, or by index number, or with vari-
ables.

This is analogous to cPRISM. Because of the way
it handles the edges, and because you do not have to
lift or rotate the cursor into position, the SLAB fam-
ily can be more useful than Prism.

With SLAB_, you can control the
display of edges and edgelines, as
with Prisms.

!SLAB Demonstration
!Syntax:- SLAB n,h,
! x1,y1,z1,
! xn,yn,zn

SLAB 4,0.2,
 0.0,0.0,0,
 0.8,0.0,0,
 0.8,1.5,1,
 0.0,1.5,1

!SLAB_ Demonstration
!Syntax:- SLAB_ n,h,
! x1,y1,z1,mask1,
! xn,yn,zn,maskn

SLAB_ 4,0.2,
 0.0,0.0,0,15,
 0.8,0.0,0, 0,
 0.8,1.5,1, 8,
 0.0,1.5,1,15

errors, especially if you live in a country where commas
are used as a decimal point – in GDL you must always use
dot (period) as a decimal point.
• If you use a -1 masking value for the end of an XY out-
line, make sure the start and end points have the same XY
coordinates.
• Prisms and most solids close themselves. I advise you to
get into the habit of joining the first point to the last, e.g.
making 9 point XY coordinates in an 8 sides object. When
you insert holes or openings, or write out XY lists for other
forms such as EXTRUDE, you need to close all prisms and
other 3D forms by return to the starting point.

• Write the keywords PRISM, SLAB etc. in upper case. Only
use an underscore form of prism or a more complex 3D
form if you need to make use of masking, polyline curves
or holes.
• Indent the XY numbers – it is much easier to read and
repair. Tabulate the XY numbers using commas to line up
the list of numbers. Express numbers in the 0.00 format,
so that all the commas line up. Even if they do not line up,
force the commas to line up, using your spacebar.
• When you have a problem with Prism or another XY
based solid, it is often because you have made an error
with the commas. That is where you should first look for

Typographical format for all XY based 3D solids

3D Elements: Slab

58 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

This Rafter/Joist tool is useful in practice and
the exercise demonstrates :
• Making objects stretchy
• An OBJECT becomes a TOOL
• Using a FOR NEXT Loop to convert

stretchy object into a multiple stretchy object
• Popdown menus and Hide / Lock Parameters.
• Trigonometry thinking
• CUTPLANE and CUTPOLY
• Texture mapping correctly

THE ArchiCAD Toolset provides f loor slabs
and roof tools, but these appear too ‘concrete’

in sections – you want to see more constructional de-
tail. This rafter/joist tool object is for people who want
their model to display visible structure. This is a de-
velopment of the BeamTool and simple JoistTool that
was in an earlier exercise.

Parameters
Think about the parameters that you would want your
object to offer to the user. If you want the object to be
stretchy, the overall dimension is the primary consid-
eration; the actual number of joists will be worked out
by your script.

A and B are used for the plan area. We can use zzyzx
for the height of the high end of the joists, but we can
offer the user a choice: Pitch or Height – if the Pitch is
chosen we calculate Height, and if Height is chosen,
we calculate Pitch. The timber details are also entered
for width, depth and spacing.

We can plan some extra 3D options e.g. you can
offer to provide a final rafter/joist if the space to be
filled is not an exact multiple of the joist spacing; a
variable eaves overhang.

When you are further in, you can set the Subtype to
Roof structure. (This gives you a load of ArchiFM pa-
rameters that you can hide later). For the moment, treat
this as a simple 3D object.

3D Script
At the beginning of a new object, I tend to just knock
a prototype that works before I introduce complexity
and structure. So this is a first stab at a script, where
you get a few timbers working, then develop it further.
If we want this to be a rafter tool also, we shall have to
use SLAB which is like a PRISM but it allows height
coordinates at each point.

Master Script
Some ‘Internal’ parameters are needed. We need the
actual number of joists in the object. We need to find
out how much space is left after you have put in a
‘round’ number of joists, in case there is room to put
in the final joist. This is simply ‘A’ minus the number
of bays times the joist_spacing. Joists and rafters usu-
ally have fixed spacings because they have to work

Stretchy Rafter / Joist Tool

with plasterboard, battens and floorboards so we don’t
need to calculate a variable spacing (as we might do
for venetian blinds). We make the ValueList here, too.

3D Script: Use a FOR... NEXT Loop
The joist we first put in can now be ‘wrapped up’ in a
FOR-NEXT loop which spaces out the joists at the re-
quired spacing. The joist/rafter can be stored in a sub-
routine. Each joist is drawn, and the cursor returns to
the origin before drawing the next joist – the Loop is
stepping in Distance.

More parameters can be added later

Rafter Joist Tool: FOR NEXT

59Copyright Marmalade Graphics ©2004

!Rafter Joisting tool
!Master Script

rp0="By Height"
rp1="By Pitch"
VALUES 'rtyp' rp0,rp1

IF rtyp=rp0 THEN
 pitch=ATN(zzyzx/B)
 LOCK 'pitch'

ENDIF

IF rtyp=rp1 THEN
 zzyzx=B*TAN(pitch)
 LOCK 'zzyzx'
 ENDIF

!Timber sizing and spacing
IF jspac<=jw THEN jspac=jw !Spacing

jdep=jd/COS(pitch) !Joist/rafter depth
evdrop=evoh*TAN(pitch)!Eaves overhang height

!End Rafter
numbay=INT((A-jw)/jspac)
lenj=(numbay*jspac+jw)
IF A-lenj<=jw THEN enraft=0

PARAMETERS jspac=jspac,pitch=pitch,
zzyzx=zzyzx

!Rafter Joisting tool
!3D Script

PEN gs_cont_pen
MATERIAL jmat
SECT_FILL secfil,gs_cont_pen,91,gs_cont_pen

!--Loop rafters by distance
FOR dist=0 TO A STEP jspac
 ADDx dist
 GOSUB 100:!rafters
 DEL 1
 NEXT dist

!End rafter
IF enraft THEN
 ADDx A-jw
 GOSUB 100:!End rafter
 DEL 1
 ENDIF

END!____________________________

100:!rafters
LIN_ -jw,0,0, jw*2,0,0
SLAB 5,jdep,
 0, 0-evoh, -evdrop,
 jw, 0-evoh, -evdrop,
 jw, B, zzyzx,
 0, B, zzyzx,
 0, 0-evoh, -evdrop
HOTSPOT 0,0,0
HOTSPOT 0,B,hit

ROTz -90
 ROTy pitch
 GOSUB 999:!Texture
 DEL 2
RETURN

999:!Texture Horizontal
BASE
 VERT 0,0,0
 VERT 0.1,0,0
 VERT 0,0.1,0
 VERT 0,0,0.1
 COOR 256+2,-1,-2,-3,-4
 BODY -1
RETURN

!Rafter Joisting tool
!2D Script

PEN gs_cont_pen

HOTSPOT2 0,0
HOTSPOT2 A,0

!PROJECT2 3,270,2

FOR dist=0 TO A STEP jspac
 GOSUB 100:!rafters
 GOSUB 110:!hotspots
 NEXT dist

IF enraft THEN !End Rafter
dist=A
 ADD2 -jw,0
 GOSUB 100:!rafters
 GOSUB 110:!hotspots
 DEL 1
 ENDIF

END:!---------------------

100:!rafter
RECT2 dist+0,-evoh,
 dist+jw,B
RETURN

110:!hotspots
 HOTSPOT2 dist,0
 HOTSPOT2 dist,B
 LINE2 dist-jw/2,0,dist+jw*3/2,0
RETURN

Build the Popdown menu:
do it in Master Script so
that rp0 and rp1 can be

used in other scripts.
Depending on the result we

use a bit of Trigonometry to
work out the Pitch, and

then lock the Pitch
parameter... or we work out
the Height and then lock the

Height parameter.
We lock these so that the

user can see what they are
going to get, but cannot be
confused into thinking they

can edit the calculated
results.

These calculations are for
the Eaves overhang and the

End rafter. If there is not
enough space at the end,

then the end rafter will not
be built.

After the Title and Date, we
start with Pen. There is one
material in the whole object

so it can go here.

We would like a nice fill
pattern if the tool is cut in

section: SECT_FILL
provides this using the

current pen & white pen 91.
The Loop is based on

Distance and we make the
timber as a subroutine to

keep things tidy.
The End rafter is added if

the user asked for it. It goes
to the end ‘A’ and steps back

one rafter thickness, to fit.

For the Timber subroutine,
we assume that the zero,zero

point is where the timber
touches the wall. The Eaves
overhang is in the negative

Y zone, and its Z value is
‘evdrop’ downwards.

SLAB is very like PRISM
with the Z value added.

The LIN_ command draws
a 3D line which helps the
user visually to attach the

tool to a wall.

We now use the Texture
mapping trick that was

explained in the Timber
chair earlier to paint the

Texture along the pitch of
the Rafter/Joist. Make it

GOSUB 999 and you won’t
forget it.

evoh B

zzyzx

evdrop

 jdep

jd

Diagram showing how the ‘jdep’ and ‘evdrop’ parameters are
calculated using TAN and COS of Pitch.

Start with Title & Pen.
Stretchy Hotspots must

come early, for the Width
‘A’.

use PROJECT2 as an
overlay to check the

accuracy of your scripted
loop.

We use a similar FOR
NEXT loop and the

Hotspots for each rafter’s
zero and ‘B’ values are

included with each rafter.

Instead of using ADD2, we
can use ‘dist’ directly. So we
need a little dist=A trick for

the end rafter.

The rafter itsel f is a simple
transparent RECT2 (but
with a POLY2 we could

provide a fill pattern).

The LIN_ from the 3D is
provided here as a LINE2 so

that the user knows where
the wall line is to be.

It is useful!
With this tool you can assemble quite complex group-
ings, and the RafterJoistTool can also be used for
floorboarding – in fact for any parallel, linear assem-
blies. Single joists, such as the trimmer in the floor
example can be created simply by squeezing the Tool
to the thickness of a single joist.

If you used the tool for Studwork you would get
incorrect texture mapping, but now you know how,
you could make a similar tool that stood the timbers
upright with the correct upwards texture.

2D Script
This follows a
similar pattern to
the 3D Script, us-
ing the same FOR
NEXT loop and a
subroutine 100.

At the end of all thise, we display the results
in the parameter table.

Rafter Joist Tool: FOR NEXT

60 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Extend the Rafter / Joist Tool

More 3D Options
NOW you have got the Tool working, you could

add more 3D options:
• Cutplanes to improve the eaves end detail.
• Mitring at the end for hip/valley conditions
• Birdsmouthing and wall plate for the wall line.
• To make it better still, you could add graphical
hotspots for the eaves overhang and spacing.

Eaves end cut
Starting with this, we need a Cutplane hovering just
under the Rafter/Joist Tool that can trim off the sharp
lower corner of the eaves. The eaves cut is always
working so if you don’t want it, you can lower it a great
distance so that it cuts nothing.

Hip Mitre
We need a vertical Cutplane that can allow user to
form Jack rafters around a corner. Use a CIRCLE again
to check that your rotations work.

Wallplate and Birdsmouth
These two follow the same line, one is solid, the other
is a cutpoly through the rafters. The purpose in using
both would be to get a nice inkline at the joint, in 3D.

Alterations to the Scripts
Cutplanes and Polys are always added before building
the 3D, so insert these extra routines as shown here.
Finish with the CUTENDS. For the 2D, it would be too
complex to work out the 2D Script for a mitred
raftertool, so reform the 2D into an IF...ENDIF rou-
tine. The Subroutines are unchanged.

We can add these all at once, or a few at a time. We can assume
that the birdsmouth will have the same dimensions as the
Wallplate.

!Rafter Joisting tool
!2D Script

PEN gs_cont_pen

HOTSPOT2 0,0
HOTSPOT2 A,0

IF hipm OR walp THEN
PROJECT2 3,270,2
FOR dist=0 TO A STEP jspac
 GOSUB 110:!hotspots
 NEXT dist

ELSE

FOR dist=0 TO A STEP jspac
 GOSUB 100:!rafters
 GOSUB 110:!hotspots
 NEXT dist

IF enraft THEN !End Rafter
dist=A
 ADD2 -jw,0
 GOSUB 100:!rafters
 GOSUB 110:!hotspots
 DEL 1
 ENDIF
ENDIF

END:!—————————————

!Rafter Joisting tool
!3D Script

PEN gs_cont_pen
MATERIAL jmat
SECT_FILL secfil,gs_cont_pen,91,gs_cont_pen

!Cutting routines
ADDz -eavcut
CUTPLANE 180
!CIRCLE 1
DEL 1

IF hipm THEN
 ADDx mitrx
 ROTz -mitr
 ROTy -90
 CUTPLANE
!CIRCLE 1
 DEL 3
 ENDIF

!Wallplate and Birdsmouth
ROTy 90
IF walp THEN
PRISM 5,A,
 0,0,
 0,walpw,
 -walph,walpw,
 -walph,0,
 0,0
ENDIF

IF birds THEN
CUTPOLY 5,
 0,0,
 0,walpw,
 -walph,walpw,
 -walph,0,
 0,0
ENDIF

DEL 1

GOSUB 999:!Texture

!-----Loop rafters by distance-----
!Repeat everything that is already here
!and add the following cutend lines just before
!the end

CUTEND !Eaves cutting

IF hipm THEN CUTEND
IF birds THEN CUTEND

END!______________________

As Cutplane cuts away everything
above it, we need to flip the

Cutplane over with a 180˚ turn.
Lower it by ‘eavcut’.

With the CIRCLE command, you
can temporarily see where the

‘bacon slicer’ is sitting.

See nearby page for explanation of
CUTPLANE.

The PRISM and the CUTPOLY
can both be build pointing upwards
and then bent over with a ROTy to

their final positions.

With Graphical Hotspots you could
provide independent end offset

dimensions for the wall plate. At
the moment, it starts from 0,0.

We also need GHs because
hotspots based on A and B are

annoying – they stretch too freely
in all directions. GHs can be strictly

controlled.

Use the texture subroutine to make
sure that the woodgrain is correct.

Finally, add the CUTENDs before the
END. They must be protected with an IF
statement – if you try to CUTEND when
none is needed you will get an error.

If either the wallplate or
hip mitring are chose,

we now converet this to
an IF statement,

providing an option for
a PROJECT2 and a

small loop to draw the
Hotspots for the rafters

where they meet the
wall.

Rafter Joist Tool: FOR NEXT

61Copyright Marmalade Graphics ©2004

Cutplane/Cutend
CUTPLANE is one of my favourite commands.

It is much easier to make something larger than
it needs to be and cut it down to size, than to build it
up positively. The more complicated the object, the
more useful Cutplane becomes. Its greatest use
comes when you need to form mitres at the end of
extrusions. Without Cutplane, it could not be done.

I mostly use and teach the Angle method. The
other method, Vectors, is more difficult to use. X,Y,Z
describe a point, making a vector from 0,0,0 for the
direction the Cutplane points to. The ‘side’ values are:

0 for normal cutting, throw away stuff above the
plane, and,

1 to flip the Cutplane and throw away the stuff
below.

CUTPLANE can be likened to a large spinning
bacon slicer. You move the slicer into position, ro-
tate the blade to the right angle, issue the CUTPLANE
command; now you must use DEL to get back to the
origin. Next, build the model that needs cutting. If
your model disappears, you may have forgotten to
DEL correctly.

CUTPLANE always cuts away what is above it,
and leaves behind what is below. Sometimes, you wish
to do the opposite, and cut away everything below
the ground plane. For this, it is handy to spin the blade
through 180 degrees with a ‘CUTPLANE 180’ com-
mand to leave behind everything above the plane.

CUTPLANE needs to know the Material that you
are using. If you do not issue a Material command
before Cutplane, it will leave the cut face to the cur-
rent PEN colour or an earlier stated material, not to
the material of the cut object.

DEL is essential. After you write the Cutplane com-
mand you have to get back to where you want to
start building your part of the 3D model.

Multi coloured models
You could issue a Material command, issue a
Cutplane, then write another Material statement, is-
sue another Cutplane... and so on. Then build the ob-
ject to be cut. In this way, you can get multi coloured
models. Cutplane uses a lot of memory, and if you
issue a large number of them, the model rendering
will slow down, or you may even be told that Archi-
CAD is out of memory.

Remember to do the
correct number of DELs

before building the
object that is to be cut.

For other angles (i.e. not around X
axis), you do the swivelling
yourself with ROT commands and
issue a CUTPLANE.

 ADDz 0.5
CUTPLANE 45

DEL 1
SPHERE 1
CUTEND

 ADDz 0.5
CUTPLANE -45

DEL 1
SPHERE 1
CUTEND

 ADDz 0.5
 ROTy 45

CUTPLANE
DEL 2

SPHERE 1
CUTEND

 ADDz 0.5
 ROTy 45

CUTPLANE 180
DEL 2

SPHERE 1
CUTEND

!CUTPLANE Demonstration
!Syntax: - CUTPLANE angle

 ADDz 0.5
CUTPLANE

DEL 1
SPHERE 1
CUTEND

There is also:
CUTPLANE x,y,z [,side]

If an angle is
included, the

Cutplane rotates
around the X-Axis.

 CUTEND At the end of the cutting process, the
CUTEND command is required to stop the

blade spinning. If CUTEND is not stated, the Cutplane
command will continue till the end of the object and
you will get an Error report.

Some models use many Cuts, and for EVERY
Cutplane, you must have the right number of
CUTENDs. It is annoying to GDL user that there is
not some sort of CUT TOP command that has a simi-
lar function to DEL TOP – i.e. it would stop all cutting,
and if there were no cutplanes in action it would not
result in an error.

Cutplane / Cutend

62 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

More Cutting
commands

!CUTPOLY demonstration

PEN 1
MATERIAL 18
RESOL 16

!Cutpoly Demo
!Syntax: CUTPOLY number,
! x1,y1, x2,y2,...xn,yn
! (define a poly cut plane)
! [,xv,yv,zv] Optional
! Defines the vector direction of cutting.
 ADDz 2
 ROTx 90
CUTPOLY 4,
 -2, 0,
 2, 0,
 2, 2,
 -2, 2
 DEL 2

!Cutpolya Demo
!Syntax: CUTPOLYA number,status,depth,
! x1,y1,15, etc.
! [xv,yv,zv] Optional Vector
! Status - 1 body’s polygons, 2 normal
CUTPOLYA 5,1,1,
 -4, 0, 15,
 0, -4, 15,
 4, 0, 15,
 0, 4, 15,
 -4, 0, -1,
 0, 0, 1 !Vector

!Now for the object!
MATERIAL 15
 CONE 4,4,6,90,90

 CUTEND
 CUTEND

We are just using standard pen
and material here.

Cutpoly can be lifted, rotated
and pointed just like a prism.

In this case the vector is directly
upwards, but you can have fun

changing the values of this
vector XYZ. The cutpoly is using
the material of the body, not the

whitewash.

The Object to be cut is always
made after the cutting

commands have been issued.
Remember to issue the CUTEND

commands after the cutting,
even if its the end of the script.

SOLID Geometry Commands allow you to
add and subtract and intersect objects from each

other. They provide vast opportunities for more real-
istic modelling in 3D GDL. In many cases, SGC re-
place the drilling of holes in Prisms or the use of
Cutpoly/Cutplane.

!Show the Blade!
ADDx A/2
 ROTz 90-angl+ABS(mitr)
 ROTx 90
!circle 0.5

CUTPLANE
DEL 3

Show the Blade!

CUTPLANE is most easily done with the ‘angle
method’ – maneovre the imaginary cutting blade into

position, then issue the command. Sometimes, you get
very confused with the pluses and minuses of the angles.
Put an ACTUAL cutting disc at the same place so
you can see exactly which way it is facing. Then
comment it out when it is working.

Cutting and CUTEND

CUTPOLY operates like a cookie cutter through
the model. You define the profile of CUTPOLY

with similar syntax to a common PRISM. It grows up
from the X-Y plane. The direction of the cut can be
modified by maneouvring it into position (like I advise
for CUTPLANE, and just like you would do if you were
trying to manoevre a PRISM to the same location); or
it can defined with a final X,Y,Z statement at the end
of the CUTPOLY statement which defines a vector
(from 0,0,0).

Prior to AC8, the limitation was that the profiles had
to be CONVEX. Concave or more complex shapes
were built from a succession of convex CUTPOLY
statements. Now you can use complex shapes.

A helpful idea is to build a PRISM in exactly the
same place as you wish to have a CUTPOLY, and when
it is in the right place and working, change it to a
CUTPOLY .

Remember that CUTPOLY cuts for an infinite dis-
tance in both directions, until you issue a CUTEND.

CUTPOLYA: If you want holes with Polylines
enabled, you can use a variation called

CUTPOLYA which is analogous to PRISM underscore.
Masking and Polylines: Every XY location is fol-
lowed by a masking value, usually 15. The masking
values also permit the use of Polylines, curved edges
and round holes.
Status: You can decide if the cut faces adopt the ex-
isting material setting or the material of the object
being cut – important if cutting through several layers
of different material. ‘1’ adopts the material of the cut
object, ‘2’ uses an aforementioned material statement.
Depth: A big benefit is that you are able to point
CUTPOLYA in a certain direction and fire it off from a
defined starting point like a gun, but for an infinite dis-
tance in that direction. The Depth is the starting point.
In earlier AC, you had to start outside an object. With
AC8.x you can start inside as in this example.
Vector: Cutpoly and CutpolyA can also accept an ex-
tra XYZ coordinate set at the end of the statement to
indicate a vector, and with this you can skew the di-
rection of the cutter.

CUTSHAPE: This is now archaic since
CUTPOLY does the job better. CUTSHAPE made

a block shaped cutpoly with an infinite z-height and y-
depth, you only have to specify the location and x-
width. CUTSHAPE does not work with AC 8.1, it just
cuts an infinite plane, like CUTPLANE .

CUTFORM: This is a powerful cutting capa-
bility that extends CUTPOLYA to include Pyrami-

dal and Wedge shaped 3D cutting. This is advanced
and deserves a whole section later in the book.

63Copyright Marmalade Graphics ©2004

Steps in 2D

Dimension Tool

YOU might think the GDL Cookbook was only
 about 3D modelling – not so! 2D scripting can be

useful for practical work.
This dimension tool is a stretchy dimension line with

two witness lines (stretch it, or type in the dimension)
and it allows Metric and Imperial, and a choice of tick
marks. The Subtype is ‘Drawing Symbol’. It can be used
after a survey.

Parameters
The Font size in millimetres is based absolutely on the
plotting or printing size, whatever the scale of the draw-
ing. Later in the Cookbook you can see how to adapt
this script to make autosizing fonts.

Here, we make popdown menus for the font, the
font units, text position, and the witness line marks at
the intersections. These have to be converted to flags.
We offer a choice of Pens.

2D Script
The Hotspots are key to making it stretchy. Put them
in first. Using A and B ensures that both the dimen-
sion and witness lines are stretchy.

Finally, for the TEXT2 display, it is always neces-
sary to Define the Style of the text. Having done that,
if you wonder why it doesn’t work, it’s because you
have to remember to Set the Style to your defined style.

TEXT2 wants to print a string, so we convert the
value of A to a string. STR(...) forces TEXT2 to display
a number (signified by the ‘%’ sign) as a string ex-
pressed in Metres, Millimetres, Feet+Inches or Deci-
mal Inches, and the 0.8 forces it to a precision of 1/
8”, 0.3 to 3 decimal places and so on. The IF... state-
ments decide on the alternative STR formats for the
dimensions. Other formats are available in the GDL
manual if you want to add them to this tool.

!Master Script

dun0='Metres'
dun1='Millimetres'
dun2='Feet+Inches'
dun3=’Inches’
VALUES 'dim_unit' dun0,dun1,dun2,dun3

VALUES 'dim_fpos' 'Above','Centre','Below'
IF dim_fpos='Above' THEN fp=8
IF dim_fpos='Centre' THEN fp=5
IF dim_fpos='Below' THEN fp=2

ch0='Circle'
ch1='Crossline'
VALUES 'dim_ins' ch0,ch1

VALUES 'font' 'Times New Roman Western',
 'Verdana','Arial','Courier'
!-------------------------------------

!Dimensioning Tool
!2D Script

!Hotspots - Stretch & Pickup
PEN symb_pen
HOTSPOT2 0,0
HOTSPOT2 A,0
HOTSPOT2 A/2,0
HOTSPOT2 0,-B
HOTSPOT2 A,-B

!Dim_Line & Witness Lines
LINE2 -xt,0, A+xt,0 !Dim_line
 HOTLINE2 -xt,0, A+xt,0 !AC9
LINE2 0,-B, 0,xt
LINE2 A,-B, A,xt

!Dimension markers
IF dim_ins=ch0 THEN
 CIRCLE2 0,0,xt/4
 CIRCLE2 A,0,xt/4
 ELSE
 LINE2 -xt/2,-xt/2, xt/2, xt/2
 LINE2 A-xt/2,-xt/2, A+xt/2, xt/2
 ENDIF

!Text
PEN text_pen
DEFINE STYLE "diasty" font,fsiz,fp,0
SET STYLE "diasty"
IF dim_unit=dun0 THEN string=STR('%0.3 m',A)
IF dim_unit=dun1 THEN string=STR('%0.1 mm',A)
IF dim_unit=dun2 THEN string=STR('%0.8 ffi',A)
IF dim_unit=dun3 THEN string=STR('%0.2 di',A)
TEXT2 A/2,0,string

The results of
the popdown

menu are
converted to

flags.

These position
numbers are

as on the
telephone

keypad

Put the Hotspots
first.

The dimension
lines and witness
lines are stretchy

using A.

We use the
extension line

length to calculate
the size of the

crosshairs and
circles.

STR() formats
the dimension.

DEFINE STYLE
Before we write anything with
TEXT2, we need to define style: font
etc. The syntax is:
DEFINE STYLE “name of style”
font, fontsize_in_mm, position,
style.

Style is: 0=normal, 1=bold, 2=italic, 3=bold italic.
Position is as on the numbers on the keypad of a mobile
phone. The text ‘grows’ from that number, so 8 means grow
‘upwards’, 5 means ‘centre’.
AC9 vastly extends DEFINE STYLE, allowing rich text …
varying colour, size, style within sentences.

Steps in 2D: Dimension Tool

64 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Polygons in 2D

POLY2
POLY2 simply draws a polygon – a sequence of lines.
It can be filled or empty. You list out the XY coordi-
nates just like you do with PRISM. The framefill ‘ffill’
codes from 0 to 7 determine the visual quality.

POLY2_
POLY2_ (underscore) is an enhancement of POLY2 –
you can control the line drawing of each part of the
polygon; you can use ‘polylines’ (curved elements) and
drill holes. POLY2 and POLY2_ can be filled with a fill
pattern. The polygon must be closed for this to work.
For any poly to be filled, you should close the form by
specifying the last point the same as the first point.
The Framefill attribute is normally left as ‘1’ for un-
filled Polygon drawing. However, you can vary this with
7 permutations. If you wish to control Pen Colours of
the Fill, then you must use POLY_2A and POLY2_B.

POLY2_A & POLY2_B
Good GDL will always use POLY2_B instead of the
weaker versions because it gives the user full control
over appearance and opacity. You need additional pa-
rameters for the Fill pen and the Background Fill pen
– if you use Subtype definitions, GDL will provide these
as ‘gs_fill_pen’ and ‘gs_back_pen’.

What is Framefill?
0 means draw nothing, 1 draws
the line, 2 draws the fill pattern

but no line, 4 means close the
Polygon (if not already closed).

Any additive combination of
these can be used e.g. 3 is the
sum of 1 and 2 so you get the

lines and the fill pattern, 6
[2+4] results in a closed filled

polygon with no line!, 7
[1+2+4] gives you everything.

!Syntax POLY2 n, ffill,
!x1,y1, xn,yn
PEN 1
SET FILL 'Earth'
POLY2 9,3,
 0.00,0.00,
 -0.10,0.30,
 0.10,0.30,
 0.10,0.40,
 0.20,0.40,
 0.20,0.10,
 0.15,0.10,
 0.15,0.00,
 0.00,0.00

!Syntax POLY2_ n, ffill,
!x1,y1,s, xn,yn,s
PEN 1
SET FILL 'Earth'
POLY2_ 9,7,
 0.00,0.00,1,
 -0.10,0.30,1,
 0.10,0.30,1,
 0.10,0.40,1,
 0.20,0.40,1,
 0.20,0.10,1,
 0.15,0.10,1,
 0.15,0.00,1,
 0.00,0.00,-1

Steps in 2D

Northpoint
THE NORTHPOINT uses a filled POLY2, and

LINE2 to form the cross shape. By using A and B
as the determinants of size it is completely stretchy.
Hotspots are also positioned at key positions. The Fill
pattern and Pen colours are settable by the user.

The script shows how to set a text style in a 2D
Script, and how to control font and fontsize. Font height
is based on millimetres (1/25th”) in the plotted or
printed output, regardless of the scale of the drawing.
The US version uses Points (1/72th”), so a quick for-
mula allows the user to set the font size in Points.

!North Arrow
!3D Script

PEN gs_symb_pen

!Ideal size A=3 B=6
LINE2 0,-B/2, 0,B/2
LINE2 -A/2,0, A/2,0
 HOTLINE2 0,-B/2, 0,B/2 !AC9
 HOTLINE2 -A/2,0, A/2,0 !AC9
LINE2 A/4,0, 0,-B*0.4

SET FILL northfil

POLY2_ 4,3,
 0,0,1,
 0,B/*0.4,1,
 -A/4,0,1,
 0,0,1

PEN gs_text_pen
IF funit='Millimetres' THEN fs=fsiz
IF funit='Points' THEN fs=fsiz*25.4/72
DEFINE STYLE "north" font, fs,8,0
 SET STYLE "north"
 TEXT2 0,B/2,"N"

!Hotspots
HOTSPOT2 0,0
HOTSPOT2 A/2,0
HOTSPOT2 -A/2,0
HOTSPOT2 0,B/2
HOTSPOT2 0,-B/2

!Parameter Script
VALUES 'funit' 'Millimetres',
 'Points'
VALUES 'font' 'Times','Verdana',
 'Arial','Courier'
!Values Lists can be in Parameter or Master ScriptNote, the SubType is set to Drawing Symbol

POLY2_B{2}
This is the final development of the POLY2 and this
includes three additional parameters for XY and angle
of the origin of the vectorial fill pattern.

POLY2 and its variants are VERY important in AC9
because objects with a fill can be easily selected.

The 1 status
code tells

GDL to draw
the line to the

next point,
zero will omit

it.

This is the
formula for

Points

65Copyright Marmalade Graphics ©2004

Tips and Tricks for 2D

DRAWINDEX
DRAWINDEX defines the order in which 2D ele-

ments are drawn. This is important if you use
opaque objects, so you want, for example, one poly-
gon to be above another polygon, not hidden. You can
have just 5 strata of 2D Scripting, DRAWINDEX 10,
20, 30, 40 and 50. Place a Drawindex command in a
script and everything after that is in that stratum The
lowest numbered strata get drawn first, so higher num-
bers will appear ON TOP of the lower numbers.

The normal drawing order without Drawindex is
Figures (bitmaps) lowest, then Fills, then Lines, and
finally Text on top.

Make a 2D symbol for a non
stretchy object
You could do a PROJECT2, place the chair on the plan,
Explode it, copy the lines and arcs, and paste into the 2D
Symbol window of the chair. To be sure of it working, type
FRAGMENT2 ALL,1 into the 2D Script. This is because ob-
jects which have had a script and later have a symbol seem
to steadfastly ignore this fact. ‘Fragment’ forces them to
pay attention.

2D Crosshairs
IF stretchiness is a big feature of your object, the A.B points
may not actually be within the object boundary. To make
them visible to the user, plant a 2D crosshair at the A,B
points. e.g. for point A,0, write in the 2D Script:
LINE2 A-0.02,0, A+0.02,0
LINE2 0,A-0.02, 0,A+0.02

Here the crosshair size is 20mm (3/4”). Don’t forget
that it is better to declare all your stretchy Hotspots be-
fore you issue the Project2 or the rest of the 2D Script.

Standard Hotspots give you round spots and AC 8.1
gives you distinctive diamond spots where they are cor-
rectly written Graphical Hotspots designed to be stretchy.

Cursor control in 2D Scripting
ADD2, ROT2 and MUL2 are the Cursor movement com-
mands in 2D Scripting. ADD2 and MUL2 always have to
be specified with X and Y in the same command. e.g. ADD2
1.50,0 will do the equivalent of an ADDx in 3D.

Unfortunately, you do not see a visible cursor as you
do in 3D. One trick is to use the CIRCLE2 0,0,0.01 com-
mand as a substitute cursor and keep pushing it along
just in front of the cursor movement command. e.g.
 ADD2 1.50,0
 CIRCLE2 0,0,0.01

Delete the circle when you have finished working, or
use it as a hotspot location identifier like the crosshair
above.

ROT2 bad for your DWGs?
Objects in drawings exported from AC to DWG often be-
have unexpectedly in the 2D symbol – because ROT2 may
cause problems. If you can use Trigonometry, you can of-
ten avoid the use of ROT2. Unfortunately it is more diffi-
cult to think out. Use COS and SIN*radius for X and Y co-
ordinates.

FOR ang=0 TO fan+0.001 STEP stang
LINE2 0,0,lrad*COS(ang),lrad*SIN(ang)
ARC2 0,0,arcd1,ang-4,ang+4
ARC2 0,0,arcd2,ang-3,ang+3
HOTSPOT2 arcd1*COS(ang),arcd1*SIN(ang)
HOTSPOT2 arcd2*COS(ang),arcd2*SIN(ang)

NEXT ang
See the Maths primer for more on Trigonometry.

Hot Tip for rapid 2D Scripting
Leave PROJECT2 in action until you are sure that your script
works perfectly. In fact leave it there permanently, with a
comment mark to disable it. This is in case you need to
edit or check the 2D Script.
• In fact, you can copy your 3D Script and paste
it into the 2D Script window. Then convert it to
2D.

Change the ADD x, y, z commands appropriately, to
ADD2 x, y (throw away the Z value). ADDx and ADDy can
be changed to ADD2. MUL can be changed to MUL2. Moves
in the Z direction can be deleted if they will have no effect
on the plan view. DELs will have to be recalculated.

As there is no height in 2D, you can change a BLOCK
command to a RECT2 command:- for example, BLOCK
jwid,jlen,jdep becomes RECT2 0,0, jwid,jlen.

This is a very good technique when there are Loops
and subroutines. Loops can use the same counters, and
you use DEL to cancel Cursor movements just like you can
do in 3D Scripts. Subroutines can retain the same num-
bers. This is most helpful for object maintenance.

Font size in Millimetres or Points?
Some people prefer to think of text in Points, not mm. Points
are 72ths of a inch and go right back to the days of Caxton.
If you wish your STYLE to be defined in points, ask the use
for points as an Integer Parameter ‘fsiz’, then adapt your
DEFINE STYLE statement above thus:
DEFINE STYLE ‘mysty’ ‘Arial’, fsiz*25.4/72,5,0

...in which you apply the 25.4/72 multiplier to convert
points to millimetres.

Real World Autosizing text in 2D
When you ‘Define Style’ for text, the font height is usually
a fixed height that will appear on the printed or plotted
sheet at that size, regardless of scale.

More often, you may want the font to appear constant
relative to the object that it is part of: so that it is working
in real world dimensions, for example it is based on a wall
thickness or tube diameter. In the DEFINE STYLE state-
ment, Font size has to be in millimetres. The Object size
comes to GDL in metres (even in the non-metric environ-
ment). So multiply the object dimension by 1000. Then di-
vide the resulting size by the Global Variable for the scale
of the drawing ‘A_’ or ‘GLOB_SCALE. This finished size will
stick faithfully to the size of the object it relates to, what-
ever the drawing scale.
DEFINE STYLE ‘mysty’ ‘Arial’, fhit*1000/A_,5,0

See elsewhere in the Cookbook for more discussion of Glo-
bal Variables.

Advice page for 2D

66 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Graphical
Hotspots!

GRAPHICAL Hotspots are the most exciting
innovation to arrive with ArchiCAD 8. They come

early in the GDL Cookbook as they transform the ex-
perience of GDL object making from a task into a de-
light. It may seem early in the book to be tackling these,
but the demand for knowledge about Graphical
Hotspots is huge. Let’s get on with it!

Stretchiness through the ages of GDL
Objects can have Hotspots in their 2D symbol and 3D
form which enable them to be selected, moved or
stretched. Since the early days of GDL, objects were
either fixed in size, or they had stretchiness within a
theoretical rectangle based on A and B in the 2D sym-
bol. Autoscripted objects are still stretchy by virtue of
a routine using MUL (to shrink or stretch them to the
A or B size), but this merely distorts them – such ob-
jects are not truly parametric. In recent times, the rec-
tangle was given a height of ‘zzyzx’ and became a
cuboid. Considerable ingenuity has been extended over
the years to make sophisticated objects using just A, B
and zzyzx for stretching in the 2D or 3D. The holy grail
of user friendliness is to extend the tangibility of ob-
jects by making hotspots more powerful.

Complex options need a User Interface
If objects are written parametrically, they can have
many complex options like swinging doors and draw-
ers whose position can be defined as a percentage or
a dimension in the parameters table. These can be-
come extremely tedious to fill in, and are in some cases
too complex for users to understand all the interac-
tions. As these are not part of the A/B/zzyzx cuboid,
the user cannot be assisted by conventional hotspots.

The User Interface that came with ArchiCAD 6.5
was a major improvement. In the first place, the nor-
mal parameter table could be organised into cascad-
ing groups such as materials, options, 2D representa-
tion. The table could be organised with bold font, sepa-
rators and titles. Furthermore a new scripting solution
was introduced to enable the creation of a graphical
User Interface (UI) which was an even greater benefit.
The UI can contain many pages, include explanations
to the user, include illustrations and pictorial menus.
This is good, but you still need to select the object,
plough through pages of UI, read all the instructions,
fill in the parameters – it still tedious.

At the human level, the very first level of user in-
terface is the object itself as seen in the 2D and 3D
windows. Can you touch and manipulate the objects
intuitively? This is what we all want to do!

Graphical Hotspots to the rescue!
ArchiCAD 8’s Graphical Hotspots (GHs) provide the
means to Push / Pull and to Rotate. With ingenious
use of these 2 capabilities in 2D and 3D, it is possible
to make GDL objects work like a mechanism; one that
you can explore by grasping parts with the mouse
pointer, opening doors, sliding open covers, turning
levers, pulling drawers open. Once you have grasped
the technique it can become addictive, you make one
part of the object manipulable, and before you know
it, you are making all parts of it manipulable.

It’s fair to say that the old fashioned A/B/zzyzx
cuboid has had its day. An A, B or zzyzx dimension are
always more tidily and accurately handled by the GHs
engine, with a visible readout of the dimension
achieved, an editable infield to enter accurate dimen-
sions, and best of all, a real-time wireline representa-
tion of the object as it moves or rotates.

The user needs to get the hang of the Pet Palette in
AC8.x because if the wrong icon is clicked, the hotspots
are not accessible.

Graphical Hotspot definitions
The original syntax for a hotspot is HOTSPOT2 x,y in
2D or HOTSPOT x,y,z in 3D. In AC65, we noticed that
they could be HOTSPOT2 x,y[,hsid] which is an op-
tional numerically unique hotspot identity, but there
was then no function for the ID. In AC8 and AC9, we
now see what this ID is for. The internal database of
ArchiCAD needs to know what these objects are do-
ing, matching them up to the parameter they relate to
and to the function of the individual spot. A hotspot
also carries the name of the parameter it is trying to
edit, and a numerical code for the function, e.g. push/
pulling, or rotating. A GH can even carry a reference
to another parameter which it can display while you
work the hotspot, e.g. by changing the length of a rod,
you can be changing its volume.

Do not worry that your object will suddenly become
populated with many spurious hotspots. Many of the
new ones can be defined but then hidden from view
so that only the ones you want to see and grasp will be
visible – as small diamonds.

This vertical window
blind demonstrates
Graphical Hotspots
in action. There is a

wireline realtime
view of the changing

object. The blinds
can be dragged

along the track, and
their angle or height

can be changed.

Graphical Hotspots!

67Copyright Marmalade Graphics ©2004

The Pet palette for
2D use of GHs

The Pet palette for 3D
use of GHs

Typical 2D Script to draw a line with dimension ‘A’:

!Syntax: HOTSPOT2 x,y, hsid, param, flag [,disparam]

hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, A, 1

hsid=hsid+1 !Move
HOTSPOT2 A,0, hsid, A, 2

hsid=hsid+1 !Vector
HOTSPOT2 -1,0, hsid, A, 3

LINE2 0,0,A,0 !The Object

ID: The hsid=hsid+1 is a neat way to generate new
ID numbers without having to write actual numbers.
Comment: For me it’s part of my religion to put a
comment before each GH to describe its function –
essential for object maintenance. It is also valuable to
keep the flag order correct, i.e. 1,2,3. Many an object
have I seen where the order is jumbled.
Vector: This Hotspot is invisible – it must be placed
in a position opposite to the direction in which the
Move-spot is moving. If the Move-spot is going to the
right, then anywhere to the left, 1 inch, 1 metre, 100
metres, will be adequate to describe a direction for
sliding the spot.
Flag: There are additional attributes which can be
added to the 1,2 flags: 128, 256 and 512. GDL recog-
nises by their size that they are attributes, not flags.

+128 in this example makes the Base-spot invis-
ible. You can also hide the Move-spot if you want to,
but why?

+256 makes the Base-spot visible and active. With-
out this a visible Base-spot is static (can be used for
picking and moving the object). With 256, the action
can be reversed, and the Base-spot will, if grabbed
with the mouse pointer, perform like a Move-spot and
the Move-spot will perform like a Base-spot.

+512 is used for angles in 2D.

Typical script for a Rectangle:
!Hotspot for A

hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, A, 1+128 !invisible

hsid=hsid+1 !Move
HOTSPOT2 A,0, hsid, A, 2

hsid=hsid+1 !Vector
HOTSPOT2 -1,0, hsid, A, 3

!Hotspot for B
hsid=hsid+1 !Base

HOTSPOT2 0,0, hsid, B, 1+256 !active
hsid=hsid+1 !Move

HOTSPOT2 0,B, hsid, B, 2
hsid=hsid+1 !Vector

HOTSPOT2 0,-1, hsid, B, 3

RECT2 0,0,A,B !Build the object!

You could improve the functionality of this by writing
additional hotspot routines for the far corner (A,B) of
the rectangle. It’s coming soon!

Graphical Hotspots! the Syntax

Learning Graphical Hotspots (GHs)

FIRST attempt at GHs seems a bit painful and they
are somewhat verbose. It takes 6 lines of code to

write a single linear hotspot, and up to 10 lines of code
to write an angle hotspot. The first one takes the long-
est, but the remainder are easily created with Copy
and Paste. Practice makes perfect very quickly. Soon
you will be able to churn them out without access to
the Manual or Cookbook!

GHs lend themselves well to use in subroutines. With
Parameter Arrays (which come later in the book) you
can write incredible numbers of hotspots with just a
few lines – 100 or more individual linear hotspots could
be created with just 6 lines in a subroutine. With Pa-
rameter Arrays, every rafter in the Rafter/Joist Tool
could have individual lengths, pitch and eaves over-
hangs with just three GHs subroutines.

Write them in 2D or 3D?
Do you write GHs in 2D, 3D or in both? The answer is
that you should take an intelligently economical view.
If the movements are in a plane visible from above,
GHs are always best in 2D – faster to write, faster act-
ing for the user, easier to understand. For many of the
plan view spots, it’s possible to copy the code to the
3D Script, modify them (retain the same subroutine
numbers), and you have both.

For true 3D motion, e.g. the pushing and pulling of
drawers stacked above each other, or the rotation of a
lever, then 3D GHs must be written.

A round of applause for the team in HU
When I work with GDL I am always grateful to Graph-
isoft for providing this wonderful language that is so
creative and practical. But when I have made an ob-
ject with many GHs and see it working, I positively
glow with admiration for those amazingly clever guys
and girls who have predicted our needs so accurately
and have written the underlying engine for this code.
In some ways, GHs create a new middleground be-
tween GDL and API in smartness.

‘Length’ GHs – Push / Pull

GHs have to be written as a group. It takes three to
define a single length-based hotspot. GDL must

know the Base point from where the action starts, flag
1=Base; the actual Moving visible point, flag 2=Move;
and a Vector for the direction of pushing or pulling,
flag 3=Vector.

The hotspot ID does not really mind what it is as
long as it is an integer and not duplicated anywhere in
the current script (you can use duplicate numbers in
the 2D that have been used in the 3D). So one never
supplies a number, one just supplies an ever-
incrementing numerical variable, in this case ‘hsid’.

Graphical Hotspots!

68 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

‘Angle’ GHs – Rotate

GHs have to be written as a group. It takes three to
define a single angle-based hotspot in 2D and four

to do the same in 3D. GDL must know the Base point
from where the action starts, flag 4=Base; the actual
Moving visible point, flag 5=Move; the Centre of ro-
tation, flag 6=Centre; and a Vector for the swivel/
axle of rotation, flag 7=Vector. The Vector is not re-
quired in 2D, the axle of rotation is assumed to be ver-
tically above the object.

Typical 2D Script for rotating an angle ‘angl’ using
a line of length ‘len’ :
hsid=hsid+1 !Base
HOTSPOT2 len,0, hsid, angl, 4

ROT2 angl
hsid=hsid+1 !Move
HOTSPOT2 len,0, hsid, angl, 5
DEL 1

hsid=hsid+1 !Centre
HOTSPOT2 0,0, hsid, angl, 6

!Build it!
ARC2 0, 0, len, 0,angl
LINE2 0,0,len,0

ROT2 angl
LINE2 0,0,len,0
DEL 1

Iteration!: Incredible as it may seem, you can rotate
the line with the Move-spot using a ROT2 before it
knows the angle. GDL is iterating rapidly, and respond-
ing to each tiny change of angle as you turn the Move-
spot. The iteration is such that you can even have the
Radius varying as the Move-spot rotates, which sounds
insane, but it works.

A way to write the routine without rotating the
Move-spot with ROT2 is using easy Trigonometry:

hsid=hsid+1 !Base
HOTSPOT2 len,0, hsid, angl, 4+256

hsid=hsid+1 !Move
HOTSPOT2 len*COS(angl),len*SIN(angl),hsid,angl,5

hsid=hsid+1 !Centre
HOTSPOT2 0,0, hsid, angl, 6

!Build it!
ARC2 0, 0, len, 0,angl
LINE2 0,0,len,0

ROT2 angl
LINE2 0,0,len,0
DEL 1

Vector: In the 3D, you must define an axle of rota-
tion, using an imaginary line between the centre of
rotation and the vector point. The position should be
perpendicular to the plane of rotation, so that positive
rotation is anti-clockwise. If you get this wrong, you
will see rotation occuring opposite to the direction of
the Move-spot, so you will be able to correct it.
Flag: There are additional attributes which can be
added to the 4,5 flags: 128, 256 and 512. GDL recog-
nises by their size that they are attributes, not flags.

+128 Invisible.
+256 make the Base-spot active. This can have the

useful side effect of rotating the whole object.
+512 can be used in 2D to reverse the direction of

rotation. Normally, the anti-clockwise direction is re-
garded as positive, but you may need to rotate some-
thing clockwise, with positive angle increments.

Competition between Hotspots!
You can always tell a graphical hotspot from a normal
one as it will be diamond shaped in AC 8.1. But if you
get two competing hotspots over the same point you
may have problems. If the two spots are both linear,
they will work in cooperation (if vectors permit), with
ArchiCAD sensing the direction in which the user is
pushing his mouse and moving correctly.

If a Linear and Angle Hotspot land on the same
place, the Linear Hotspot is the stronger of the two.
Avoid this by using ‘witness lines’ small lines that make
it clear to the user if a spot is linear or angular, or
which move the angle spot a few centimetres out from
the exact position – like making a lever.

Get two working together – now!
We can work linear ones together and this is an exam-
ple. In the 0,0,A,B rectangle, only the A,B spot is work-
ing. The 0,0 is the bottom left corner, but it is not the
Base-spot for either of the A or B stretchers. Note the
position of the Base-spots in both cases. This rectan-
gle works better than the earlier example.

While we are here, we can see the use of the extra
‘display parameter’ that goes after the Hotspot flag.
This can enable a different parameter to show in the
editable infield while the object is being modified.

!Hotspot for A
hsid=hsid+1 !Base

HOTSPOT2 0,B, hsid, A, 1+128 !invisible
hsid=hsid+1 !Move

HOTSPOT2 A,B, hsid, A, 2,area
hsid=hsid+1 !Vector

HOTSPOT2 -1,B, hsid, A, 3

!Hotspot for B
hsid=hsid+1 !Base

HOTSPOT2 A,0, hsid, B, 1+256 !active
hsid=hsid+1 !Move

HOTSPOT2 A,B, hsid, B, 2,A
hsid=hsid+1 !Vector

HOTSPOT2 A,-1, hsid, B, 3

HOTSPOT2 0,0 !simple one for the corner

RECT2 0,0,A,B !Build the object!

If you are making
this, don’t forget to

make the two
parameters, ‘angl’

and ‘len’. GHs only
work on parameters,

not on variables.

Try the 256 attribute
to allow the Base-spot

to work as a Move
and rotate spot.

Make a parameter called ‘area’ as a Real Number. Cal-
culate a result and send that back to the user with a
Parameters command. Add ‘area’ to the end of the
Move-spot statement as the ‘display parameter’. This
will display in the editable infield while you modify
the object.

!Master Script
PARAMETERS area=A*B

Graphical Hotspots!

69Copyright Marmalade Graphics ©2004

Graphical
Hotspots!
2D CircleGrid, with Text

2D Script
Title your script, and set the Pen. Decide if you want
it made of solid or dotted lines. Hotspots should be
decided as early as possible, so these are always best
placed in a subroutine to avoid clogging up the ex-
ecutive script.

A FOR...NEXT loop is used for the main routine.
Rotating around the centre, each line consists of a
LINE2 command, with Hotspot subroutines to mark
out the line ends and arc intersections. DEL the ROT2
command each time the loop is used. After the Loop
we have the ARC2 statements.

The deliberate error of 1/1000 degree for ‘fan’ is
included, or GDL could make tiny rounding down
errors and miscount the number of lines to draw.
When you ROT2 in 2D the positive direction of rota-
tion is anti clockwise.

We now look at how to label the object, as an
added option, and a demo of Text and Strings.

Parameters
In this CircleGrid, there are an user-defined number
of radiating lines, and 2 arcs (there could be more if
you want). Graphical Hotspots at each point allow the
user to rotate and stretch parts of the grid. A choice
of ‘sweep angle for the whole fan’ or ‘stepping angle
for each segment’ is offered through a Popdown menu.
The text block gives feedback to the user. The object
does not fit a cuboid, so A and B are not used.

Master Script
This sets up the Popdown menu, sets a lower limit on
the number of angles, checks the user’s choice from
the menu and calculates the reciprocal parameters. The
PARAMETERS command provides feedback to the
user. We can also hide unwanted parameters.

This object could be improved with Parameter
Arrays for the arcs, allowing us as many arcs as we
want, all equipped with Hotspots. With PAs for the lines,
individual lines could have varied lengths.

!Circle grid
!Master Script

 at1='Sweep based'
 at2='Step angle based'
 VALUES 'angltyp' at1,at2

 IF numang<=1 THEN numang=1

 IF angltyp=at1 THEN
IF fan<numang THEN fan=numang
IF fan>=359 THEN fan=360
stang=fan/numang !Stepping angle
LOCK 'stang'
ENDIF

 IF angltyp=at2 THEN
fan=numang*stang
LOCK 'fan'
ENDIF

 PARAMETERS fan=fan,stang=stang,
 numang=numang

 IF numarc=0 THEN HIDEPARAMETER 'arcd1','arcd2'
 IF numarc=1 THEN HIDEPARAMETER 'arcd2'

This Popdown menu must
be defined in the Master

Script because we use ‘at1’
and ‘at2’ in the 2D Script.

If we select sweep we need
to know the step angle, and

if we select step angle, we
need to calculate sweep.

Lock the unused parameter,
but do not hide it, it’s useful

as user feedback with the
PARAMETERS statement.

GDL can be used to create 2D entities that help
you to lay out models or drawings, but which do

not have any 3D – let’s call them drafting aids.
CircleGrid is a simple example. It can help you lay
out walls in a radiating pattern. You can explode it to
turn it into lines, or store it on a ghost storey to help
with layout. It also illustrates:
• FOR...NEXT Loop used with angles,
• Pop down menu, PARAMETERS & Master Script,
• Defining Style and using Text and Strings,
• Using a Global Variable
• Graphical Hotspots for everything!

Graphical Hotspots!

70 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!CircleGrid with Hotspots
!2D Script

 PEN gs_symb_pen
 HOTSPOT2 0,0

 IF angltyp=at1 THEN GOSUB 1000:!Hotspots Fan
 IF angltyp=at2 THEN GOSUB 1010:!Hotspots Steps

!Draw the actual grid
LINE_TYPE linlin
 FOR ang=0 TO fan+0.001 STEP stang

ROT2 ang
 GOSUB 1020:!Hotspots Lines
 GOSUB 1030:!Hotspots Arcs
 LINE2 strtlin,0,endlin,0
 DEL 1

 NEXT ang
 LINE_TYPE linarc
 IF numarc THEN ARC2 0,0,arcd1,0,fan
 IF numarc=2 THEN ARC2 0,0,arcd2,0,fan

!Show angular increment and sweep
 IF shodat AND fontz THEN
 GOSUB 1050:!Hotspots for Text
 DEFINE STYLE 'angtext' 'Arial',fontz,1,0
 SET STYLE 'angtext'
angstr=STR(numang,3,0)+'@'+STR('%6.3dd',stang)+'='+STR('%6.3dd',fan)

ADD2 textx,texty
ROT2 -SYMB_ROTANGLE

TEXT2 0t0,ngstr
DEL 2
ENDIF

END:!======================================

1000:!Hotspots Fan angle
 LINE2 endlin,0,endlin+ovrlin,0 !Witnessline
 hsid=hsid+1 !Base
 HOTSPOT2 endlin+ovrlin,0, hsid,fan,4+256
 hsid=hsid+1 !Move
 ROT2 fan
 HOTSPOT2 endlin+ovrlin,0, hsid,fan,5
 LINE2 endlin,0,endlin+ovrlin,0 !Witnessline

 DEL 1
 hsid=hsid+1 !Centre
 HOTSPOT2 0,0, hsid,fan,6
 RETURN

1010:!Hotspots Stepping angle
 hsid=hsid+1 !Base
 HOTSPOT2 endlin+ovrlin,0, hsid,stang,4+256
 hsid=hsid+1 !Move
 ROT2 stang
 HOTSPOT2 endlin+ovrlin,0, hsid,stang,5
 DEL 1
 hsid=hsid+1 !Centre
 HOTSPOT2 0,0, hsid,stang,6
 RETURN

1020:!Hotspots Lines
 hsid=hsid+1 !Base
 HOTSPOT2 0,0, hsid,strtlin,129
 hsid=hsid+1 !Move
 HOTSPOT2 strtlin,0, hsid,strtlin,2
 hsid=hsid+1 !Vect
 HOTSPOT2 -1,0, hsid,strtlin,3

 hsid=hsid+1 !Base
 HOTSPOT2 0,0, hsid,endlin,129
 hsid=hsid+1 !Move
 HOTSPOT2 endlin,0, hsid,endlin,2
 hsid=hsid+1 !Vect
 HOTSPOT2 -1,0, hsid,endlin,3
 RETURN

1030:!Hotspots Arcs
 IF numarc THEN
 hsid=hsid+1 !Base
 HOTSPOT2 0,0, hsid,arcd1,129
 hsid=hsid+1 !Move
 HOTSPOT2 arcd1,0, hsid,arcd1,2
 hsid=hsid+1 !Vect
 HOTSPOT2 -1,0, hsid,arcd1,3
 ENDIF

 IF numarc=2 THEN
 hsid=hsid+1 !Base
 HOTSPOT2 0,0, hsid,arcd2,129
 hsid=hsid+1 !Move
 HOTSPOT2 arcd2,0, hsid,arcd2,2
 hsid=hsid+1 !Vect
 HOTSPOT2 -1,0, hsid,arcd2,3
 ENDIF
 RETURN

1050:!Hotspots for Text
 hsid=hsid+1 !Base
 HOTSPOT2 0,texty, hsid,textx,129
 hsid=hsid+1 !Move
 HOTSPOT2 textx,texty, hsid,textx,2
 hsid=hsid+1 !Vect
 HOTSPOT2 -1,texty, hsid,textx,3

 hsid=hsid+1 !Base
 HOTSPOT2 textx,0, hsid,texty,129
 hsid=hsid+1 !Move
 HOTSPOT2 textx,texty, hsid,texty,2
 hsid=hsid+1 !Vect
 HOTSPOT2 textx,-1, hsid,texty,3
 RETURN

Check these out one at a time, look at the real object on the
Cookbook CD, and you will find that Graphical Hotspots, if
tackled subroutine by subroutine are really very easy to
make.

Text and Strings
We use Text as a form of user feedback. It is essential
to DEFINE STYLE first. We keep it simple here and
use Arial (although you could use a font Popdown
menu). After defining style, you have to SET STYLE.

TEXT2 x,y,string is the command to show data
in 2D, but it can only show one thing at a time, a number
or a string. If the text element contains more than one
item, you have to construct a single string by
concatenating all the data. You could use a variable
like ‘angstr’ in which all parts are defined as small
strings, then joined by plus signs into one large one.

You can convert ‘numang’ (the number of angles)
as a string using the STR() command and parameters
within the brackets decide if it’s displayed as an inte-
ger, or a decimal number. Add to it an @ symbol, and
then, to print the degrees symbol as a string, you can
use the ‘%dd’ method with STR() – see the manual to
test this further. Try this and experiment with chang-
ing the number of digits to be displayed. Add in simi-
lar strings for the ‘=’ and the Sweep angle.

Text position and Global Variables
Because the object is dynamic in many respects,
resizing and rotating at the touch of a hotspot, we need
to relocate the Text label with some hotspots of its
own. We need to enable the label to stay upright, which
brings us to our first experience of Global Variables.

GDL Objects can get information from ArchiCAD
such as their current storey / layer, drawing scale, po-
sition of camera, wall material / thickness, rotational
angle, object ID number. These variables are to do with
global matters outside the object. SYMB_ROTANGLE
tells the object how it has been rotated.

Hotspots Before the
Lines and Arcs!

Set the Line type.

If you Define the
Style, don’t forget to

Set the Style next!

By rotating it by the negative
of the object’s rotational

angle, the label will always
remain upright.

Graphical Hotspots!

71Copyright Marmalade Graphics ©2004

Graphical
Hotspots!
3D Vertical Blinds

THE Vertical Blinds object demonstrates Loops
and 3D Graphical Hotspots. It also uses a tech-

nique called ‘passing parameters’ which uses a sub-
routine to make a part that we wish was in GDL but
isn’t: a ‘Squilinder’.

This is also a ‘smart’ object: notice that it does not
ask how many blinds we want. Unlike the object in the
AC8 library, this one calculates from the length of the
rail how many blinds would be possible, and then uses
that number, subdivided into the ‘drawing length’.

Parameters
The Origin of this object is at the top surface of the
rail, so that it can be applied to the head of the win-
dow or at the ceiling height. As the blinds hang down-
wards, we cannot use ‘zzyzx’: the cuboid misbehaves
with a downwards direction for height when working
the hotspots in 3D. But why worry!! With Graphical
Hotspots, this is not a problem.

We use ‘A’ for the metal rail, and a GHs for the width
and height of the blinds. If this was a manufactured
object, you could perhaps hide the rail width and height
and blind width parameters if they are unchanging.

For this object, try using a subtype, in this case a
building element. You will get extra parameters to do
with 2D Representation and ArchiFM. The former are
useful, but the latter should be pushed down to the
bottom of the table – and hidden if you want to avoid
annoying or confusing the user.

It’s good to have separate pens for 3D and 2D. We
can build a POLY2 for the 2D, so we need the special
pen parameters.

Master Script
This routine works out how many blinds would fit the
rail if the blinds were fully stretched and closed. Then
it reads the distance to which the blinds have been
drawn and works out the dynamic value of blind spac-
ing at this moment in time. For the distance and angle
parameters, a ValueList with a RANGE function is a
good way to set smallest and largest limits. You can
also set Stepping values, so that the object snaps neatly
to the required sizes, e.g. the blind angle snaps to 10
degree increments without a host of IF statements.
The Parameters statement reports back to the user.

3D Script
This is very short and consists mainly of GOSUBs for
the GHs subroutines. The Rail and the Blinds are also
carried in tidy subroutines. The Rail is simply a set of
blocks. The Blinds are generated by a FOR... NEXT
loop. Add one extra blind at the end because our cal-
culation knows the number of bays, not blinds.

If you
manipulate
objects with

Graphical
Hotspots, you see

a realtime
wireline display

of the movement,
plus an editable

Infield for
entering exact

numbers.

This icon must be pressed in the
Pet Palette for GHs to work.

!Vertical Blinds: Master Script
IF bhang<=railthk+0.13 THEN bhang=railthk+0.130

 ovlp=0.01!overlap of blinds
 blindspac= (blindwid-ovlp)
 blindnum= INT(0.5+(A-0.01)/blindspac)
 bspa=blen/blindnum!Dynamic spacing

VALUES ‘blindang’ RANGE [10,170] STEP 10,10

VALUES ‘A’ RANGE [0.6,2.0] STEP 0.6,0.1

VALUES 'blen' RANGE(0.025+0.015*blindnum/2,A-0.025)
 PARAMETERS zzyzx=0,
 bhang=bhang,blindang=blindang
 HIDEPARAMETER 'zzyzx'

We hide parameter ‘zzyzx’ and make it zero, otherwise it
produces an irrelevant cuboid wireline if you try to play with
hotspots. VALUES statements with a RANGE and STEP
value are an excellent way to eliminate complex IF routines.

Graphical Hotspots!

72 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Squilinder: Passing Parameters
For the Blind, we have a mechanism that swivels on a
Cylinder and it is very complicated to do all the grip-
pers, blind and weight with BLOCK statements.

We need an Axially oriented cuboid shape that can
follow the axis of the swivel. This does not exist in
GDL – so we must make one. I call it ‘Squilinder’ –
Square Cylinder. This is the subroutine 220 that has
only 3 arguments, x, y and z. By passing just those 3
parameters to the subroutine, we get effortless crea-
tion of blocks which with the right ADDz commands,
all line up perfectly with the axis.

!Vertical Hanging Blinds
!3D Script

 PEN gs_cont_pen
 TOLER 0.001

GOSUB 1000:!Rail Hotspots

!Blind drawing hotspots
 GOSUB 1010:!top
 ADDz -bhang-0.017
 GOSUB 1010:!bottom
 DEL 1

GOSUB 1020:!Vertical hotspot
GOSUB 1030:!Rotate Blinds angle

GOSUB 100:!Rail
GOSUB 200:!Blinds

END!==================================

The loop uses
the (k-1) trick
to ensure that

the
DEL can occur
within the loop.

Although I do
not like

Multistatement
lines using the

colon, this is
one occasion

where it seems
to be

acceptable.

1000:!Rail Hotspots
 HOTSPOT 0,0,0
 HOTSPOT A,0,0
 HOTSPOT A,railthk,0
 HOTSPOT 0,railthk,0
RETURN

1010:!blind drawing hotspots
 ADD 0.0125,railthk/2, -railht
 hsid=hsid+1!Base
 HOTSPOT 0, 0,0, hsid, blen,1+128
 hsid=hsid+1!Move
 HOTSPOT blen,0,0, hsid, blen,2
 hsid=hsid+1!Vect
 HOTSPOT -1, 0,0, hsid, blen,3
 DEL 1
RETURN

1020:!Vertical hotspot
 ADD 0.0125, railthk/2, -railht-0.017
 hsid=hsid+1!Base spot
 HOTSPOT 0,0,0, hsid,bhang,1+128
 hsid=hsid+1!move spot
 HOTSPOT 0,0,-bhang, hsid,bhang,2
 hsid=hsid+1!Vect spot
 HOTSPOT 0,0,1, hsid,bhang,3
 DEL 1
RETURN

1030:!Rotate Blinds angle
 ADD 0.0125, railthk/2, -railht-0.017
 hsid=hsid+1!Base spot
 HOTSPOT -blindwid/2,0,0, hsid,blindang,4+128

ROTz blindang-90
hsid=hsid+1!Move spot
HOTSPOT 0,-blindwid/2,0, hsid,blindang,5
DEL 1

 hsid=hsid+1!Centre spot
 HOTSPOT 0,0,0, hsid,blindang,6
 hsid=hsid+1!Vector spot
 HOTSPOT 0,0,1, hsid,blindang,7
 DEL 1
RETURN

Hotspots can become the new UI!

THE user can change so many parameters with hotspots
that it can become positively tedious to open the ob-

ject settings box. With some ingenuity, it is possible to move
more of the parameters to the 2D symbol.

You can build a form of control panel in the 2D symbol,
with sliders and levers to control other parameters in the
object such as Boolean choices, or opening angles of win-
dows, or even selections from Popdown menus. These will
be explored later in the book!

100:!---Rail---
MATERIAL railmat
 ADDz -railht
 BLOCK A, railthk, railht!Main rail
 ADDz -0.005
 BLOCK 0.005, railthk, 0.005!End block
 ADDx A-0.005
 BLOCK 0.005, railthk, 0.005!End block
 DEL 3
RETURN

200:!---Blinds---
ADD 0.0125, railthk/2,-railht
 FOR k=1 TO blindnum+1
 ADDx bspa*(k-1)
 GOSUB 210:!The Blind
 DEL 1
 NEXT k
 DEL 1
RETURN

210:!---Single Blind---
MATERIAL railmat
 ADDz -0.002
 x=0.015:y=railthk:z=0.002
 GOSUB 220:!Squilinder: Traveller
 ADDz -0.015
 ROTz blindang-90
 CYLIND 0.015, 0.005!swivel
 ADDz -bhang
 x=0.004:y=blindwid:z=0.04
 GOSUB 220:!Squilinder: Lower weight
 ADDz 0.04
 x=0.001:y=blindwid:z=bhang-0.06
 GOSUB 220:!Squilinder: Blind
 ADDz bhang-0.06
 x=0.004:y=blindwid:z=0.02
 GOSUB 220:!Squilinder: Gripper
DEL 6
RETURN

220:!Squilinder - quick prisms
 PRISM 5,z,
 -x/2,-y/2,
 x/2,-y/2,
 x/2, y/2,
 -x/2, y/2,
 -x/2,-y/2
RETURN

Graphical Hotspots!

73Copyright Marmalade Graphics ©2004

!Vertical Blinds
!2D Script

 PEN gs_symb_pen

 GOSUB 1000:!Main rail hotspots
 GOSUB 1010:!Blind drawing hotspots
 GOSUB 1030:!Blind angle hotspots

!PROJECT2 3,270,3

100:!Main rail
 DRAWINDEX 20
 FILL gs_fill_type
 POLY2_B 5,7,gs_fill_pen,gs_back_pen,
 0,0,1,
 A,0,1,
 A, railthk,1,
 0, railthk,1,
 0,0,-1

200:!Blinds
 DRAWINDEX 10
 ADD2 0.005,0
 FOR k=1 TO blindnum+1
 ADD2 bspa*(k-1),0
 GOSUB 210:
 DEL 1
 NEXT k
 DEL 1

END!===============================

210: !Single Blind
 ADD2 0.0075,railthk/2
 ROT2 blindang-90

LINE2 0,-blindwid/2,0,blindwid/2
DEL 2

 RETURN

1000:!Main rail hotspots
 HOTSPOT2 0,0
 HOTSPOT2 A,0
 HOTSPOT2 A,railthk
 HOTSPOT2 0,railthk
RETURN

1010:!Blind drawing hotspots
 hsid=hsid+1!Base
 HOTSPOT2 0.005,railthk/2, hsid, blen,1+128
 hsid=hsid+1!Move
 HOTSPOT2 blen,railthk/2, hsid, blen,2
 hsid=hsid+1!Vect
 HOTSPOT2 -1,railthk/2, hsid, blen,3
RETURN

1030:!Blind angle hotspots
 ADD2 0.0125,railthk/2
 hsid=hsid+1!Base
 HOTSPOT2 -blindwid/2,0, hsid, blindang,4+128
 hsid=hsid+1!Move
 ROT2 blindang-90
 HOTSPOT2 0,-blindwid/2, hsid, blindang,5
 DEL 1
 hsid=hsid+1!Centre
 HOTSPOT2 0,0, hsid, blindang,6
 DEL 1
RETURN

2D Script for the Vertical Blinds

The 2D Hotspots closely
resemble the code in the 3D –

indeed they are best
prototyped in the 2D first.

Use the same subroutine
numbers.

Do the Hotspots first.
Retain PROJECT2

until you are sure that
the new scripted

symbol fits perfectly.

Normally the lines of
the blinds will

overdraw the Polygon
of the rail. Use
DRAWINDEX

statements to ensure
that the lines are

under the rail.

Graphical
Hotspots!
Add them to the
RafterJoist Tool

WITH very little extra effort, we can transform
the RafterJoist Tool into a more powerful and

user friendly object. As with the previous objects, we
can place some GOSUBs at the start of the 2D and 3D
Scripts, and append the GHs subroutines at the end of
the script.

In this case we can provide GHs for the Eaves over-
hang, the Height and the Pitch of the roof. We can
make the wallplate independently extendible which will
make corner detailing easier. We can even make the
rafter spacing stretchy, but the user might be advised
to write this in accurately for a real project.

Parameters
The parameter table has been tidied up with more cas-
cading groups, but the only significant change is the
addition of start and end points for the wallplate, the
timber section on which the rafters or joists rest.

Which Script do we convert?
Most of the changes except GHs for Pitch are best
done in 2D, so we do them all in 2D first, and these
can later be adapted to work in the 3D. The Pitch and
the Height option and Eaves cut are required in 3D.

Graphical Hotspots!

74 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Rafter Joisting tool
!3D Script

PEN gs_cont_pen
MATERIAL jmat
SECT_FILL secfil,gs_cont_pen,91,gs_cont_pen

GOSUB 1000:!Hotspots Main width
GOSUB 1010:!Hotspots Height/Pitch
GOSUB 1080:!Hotspots for Eaves Cutting

!-------------------------------------
!THE EXISTING SCRIPT GOES IN HERE. |
!-------------------------------------

END:!=================================

100:!rafters
!THIS REMAINS UNCHANGED

1000:!Hotspots Main width and joist spacing
These are the same as the 2D routine, suitably adapted by
changing HOTSPOT2 to HOTSPOT and adding a Z height.
RETURN

1010:!Hotspots Height/Pitch
IF rtyp=rp0 THEN !Height
 hsid=hsid+1 !Base
 HOTSPOT 0,B,0, hsid, zzyzx,1+128
 hsid=hsid+1 !Move
 HOTSPOT 0,B,zzyzx, hsid, zzyzx,2
 hsid=hsid+1 !Vect
 HOTSPOT -1,B,0, hsid, zzyzx,3
ENDIF

IF rtyp=rp1 THEN !Pitch angle
jlen=SQR(B^2 + zzyzx^2)
 hsid=hsid+1 !Base
 HOTSPOT 0,B,0, hsid, pitch,4+128

 ROTx pitch
 LIN_ 0,jlen-jw,0, 0,jlen,0 !witness line
 hsid=hsid+1 !Move
 HOTSPOT 0,jlen,0, hsid, pitch,5
 DEL 1

 hsid=hsid+1 !Centre
 HOTSPOT 0,0,0, hsid, pitch,6
 hsid=hsid+1 !Swivel
 HOTSPOT 1,0,0, hsid, pitch,7
ENDIF
RETURN

1080:!Hotspots for Eaves Cutting
 hsid=hsid+1 !Base
HOTSPOT 0,-evoh,0, hsid, eavcut,1+128
 hsid=hsid+1 !Move
HOTSPOT 0,-evoh,-eavcut, hsid, eavcut,2
 hsid=hsid+1 !Vect
HOTSPOT 0,-evoh,1, hsid, eavcut,3
RETURN

!Rafter Joisting tool
!2D Script

PEN gs_cont_pen

GOSUB 1000:!Hotspots Main width
GOSUB 1010:!Hotspots Eaves Overhang
GOSUB 1020:!Hotspots Hip mitring X
GOSUB 1030:!Hotspots Hip mitring ang
GOSUB 1040:!Hotspots Wallplate length

!-------------------------------------
!THE EXISTING SCRIPT GOES IN HERE. |
!-------------------------------------

END:!=================================

100:!rafter
!THIS REMAINS UNCHANGED

110:!Hotspots for Depth
 HOTSPOT2 dist,0
 HOTSPOT2 dist,B
 LINE2 dist-jw/2,0,dist+jw*3/2,0
RETURN

1000:!Hotspots Main width+joistspacing
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, A,1+256
 hsid=hsid+1 !Move
HOTSPOT2 A,0, hsid, A,2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid, A,3

 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, jspac,1+128
 hsid=hsid+1 !Move
HOTSPOT2 0,jspac, hsid, jspac,2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid, jspac,3
RETURN

1010:!Hotspots Eaves Overhang
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, evoh,129
 hsid=hsid+1 !Move
HOTSPOT2 0,-evoh, hsid, evoh,2
 hsid=hsid+1 !Vect
HOTSPOT2 0,1, hsid, evoh,3
RETURN

1020:!Hotspots Hip mitring X-position
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, mitrx,129
 hsid=hsid+1 !Move
HOTSPOT2 mitrx,0, hsid, mitrx,2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid, mitrx,3
RETURN

1030:!Hotspots Hip mitring angle

 hsid=hsid+1 !Base
HOTSPOT2 mitrx,jd, hsid, mitr,4+128

 ADD2 mitrx,0
 ROT2 -mitr
 LINE2 0,0,0,jd !witness line
 hsid=hsid+1 !Move
 HOTSPOT2 0,jd,hsid, mitr,5
 DEL 2

 hsid=hsid+1 !Centre
HOTSPOT2 mitrx,0, hsid, mitr,6+512
RETURN

1040:!Hotspots Wallplate length
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, walpst,1
 hsid=hsid+1 !Move
HOTSPOT2 walpst,0, hsid, walpst,2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid, walpst,3

 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid, walpen,1
 hsid=hsid+1 !Move
HOTSPOT2 walpen,0, hsid, walpen,2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid, walpen,3
RETURN

Insert these
GOSUBs at the
start, and write
the subroutines
at the bottom.
As a matter of

habit, I apply a
special

numbering
system to them,
here it is based

on 1000 plus,
with the
primary

stretching
function writen
first to replace

the old A,B
stretching.

It is too
complex to put

the Hip Mitring
routine in the

3D. Do it in 2D
only.

It is a pity that
there is not a

method for
‘passing

parameters’ to
a standard
routine for
Graphical

Hotspots like
you can do

with Infields in
the User

Interface (UI)
design. Only

the name of a
valid

parameter from
the parameter

table is
acceptable.

For the Pitch to
work, we need to

calculate the
length of the
rafter, using
Pythagoras

theorem. this is
calculated on the
fly many times a

second as the
rafter is being

tilted.

We need a small
extension line so
we know where

the point is in
space if the end

has been mitred.

The 2D symbol
now has diamond

shaped GHs

The RafterJoist tool can now be manipulated in
3D based on Height or Pitch (as illustrated)

Add the
GOSUBs

to the
start of
the 3D
Script

Graphical Hotspots!

75Copyright Marmalade Graphics ©2004

Manufacturing concepts
Make a Cabinet with Drawers

GDL can be a potent tool in furniture
making. A freely stretchy object in the Floor

Plan? How can something that whimsical be made into
a real object?

But suppose we can place a GDL furniture object
that has been supplied by a manufacturer; stretch it to
the required size; know that it obeys manufacturing
rules on jointing and thicknesses; and then retrieve
the dimensions of side and back panels, tops, drawer
sides and everything; pass the data to CNC machines
which can churn out the panels correctly – GDL could
be a powerful tool for product configuration.

I discovered the power of this when teaching a fur-
niture manufacturer a bit of advanced GDL. He was
already doing much of the above, his two CNC ma-
chines were churning out panels for beautiful custom-
made kitchen, bedroom and office furniture – all de-
signed in ArchiCAD with GDL objects, with cutting
outlines saved to DXF. He needed to know better ways
to work with macros and textures, and how to output
dimensions and lists to spreadsheet format! Every com-
ponent down to the humble drawer back was itemised
accurately and cut on his machines. I came away hav-
ing learnt as much as I taught!

G-Code is the solution – & the problem
Let’s not make it sound easy. It’s not, indeed it is a
personal ‘Holy Grail’ of mine to get this link working
better, to get a direct output from GDL to CNC usable
command language (G-Code) without having to go
through too many intermediate stages. This may never
happen fully because variations to G-Code are prolif-
erating as fast as new machine manufacturers intro-
duce new models. But there may be an intermediate
level of data that can be output by GDL and converted
to G-Code by dedicated CNC software like
MasterCAM. I am still looking for it!

CNC machine = Computer Numerically Controlled machine.
Look somewhere like http://www.cnczone.com/ for more
information on CNC manufacturing.

Large CNC Machines
for manufactured

joinery have flatbeds
with a moving bridge

above them which
carries the mechanism

that does the drilling
and cutting. The drill

head has
interchangable tools,
based on commands

from the computer.

Smaller CNC machines
are used for drilling

and routing and
shaping small objects.

CNC machines work
from G-Code. The

software converts data
(e.g. DXF) into G-

Codewhich instructs
the working head.

WE are going to make a small cabinet that can
include a variable number of drawers. We will

work with veneered board, and butt jointed construc-
tion with joints, i.e. not mortice & tenoned or rebated.
This is a good exercise in:
• Learning about manufacturing ideas
• Texture mapping on veneers
• Macros - bringing in other GDL files
• Graphical Hotspots (of course!)
• Parameter Arrays
• Smart use of flags (‘ts’ & ‘txtdir’)

Parameters
The cuboid shape will be governed by A, B and zzyzx.
We need to establish the board thicknesses. We can
offer some 3D options, e.g. on the jointing style for the
top panel & drawers (‘inset’ and ‘overhang’ detailing)
and plinth detailing. Select Subtypes to make this a
‘Storage’ object. Your new parameters will appear be-
low the ArchiFM stuff and will have to be repositioned.

Master Script
This sets up the menus and defines some dimensional
limits – stepping values for the width and depth.

3D Script
We start by building the essential outer box of the cabi-
net. We can use the elementary BLOCK command here
for most of the components. Note how the Flag ‘ts’ for
timber detailing style is used to vary the size of the
side and top panels.We can use the Texture mapping
routine that has already been used in the chair and
other objects. Make it a subroutine 999, and use it as
you need. Get the cabinet working, then move on to
the drawers.

Manufacturing Concepts

76 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Cabinet with Drawers
!2D Script

GOSUB 1000:!Hotspots for outline
HOTSPOT2 A/2,B/2 !Pickup spot
PEN gs_symb_pen
FILL gs_fill_type
POLY2_ 5,7,
 0,0,1,
 A,0,1,
 A,B,1,
 0,B,1,
 0,0,-1

LINE2 0,bthk1,A,bthk1

END:!===========================

1000:!Hotspots for outline
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,A,1+256
 hsid=hsid+1 !Move
HOTSPOT2 A,0, hsid,A,2
 hsid=hsid+1 !Vector
HOTSPOT2 -1,0, hsid,A,3

GOSUB 1010:!Hotspots Depth
 ADD2 A,0
 GOSUB 1010:!Hotspots Depth
 DEL 1
RETURN

1010:!Hotspots Depth
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,B,1
 hsid=hsid+1 !Move
HOTSPOT2 0,B, hsid,B,2
 hsid=hsid+1 !Vector
HOTSPOT2 0,-1, hsid,B,3
RETURN

!Cabinet with Drawers
!3D Script

PEN gs_cont_pen
!Side Panels
MATERIAL cab_mat
 BLOCK bthk1,B-ts*bthk1,zzyzx-ts*bthk1 !Left
 ADDx A-bthk1
 BLOCK bthk1,B-ts*bthk1,zzyzx-ts*bthk1 !Right
 DEL 1
txdir=2:GOSUB 999:!Texture

!Back panel
MATERIAL con_mat
 ADD bthk1,0,plinh
 BLOCK A-bthk1*2, bthk2, zzyzx-bthk1-plinh
 DEL 1

!Roof/Worktop
MATERIAL cab_mat
 ADD bthk1*(1-ts),0, zzyzx-bthk1
 BLOCK A-bthk1*2*(1-ts),B,bthk1
 DEL 1

!Floor
MATERIAL cab_mat
 ADD bthk1,bthk2, plinh
 BLOCK A-bthk1*2,B-bthk2-ts*bthk1,bthk1
 DEL 1

!Plinth
MATERIAL cab_mat
 ADD bthk1,B-plind-bthk1, 0
 BLOCK A-bthk1*2,bthk1,plinh
 DEL 1
txdir=0:GOSUB 999:!Texture

END:!==================================

999:!Texture Horizontal X
IF txdir=0 THEN ROTz 0 !Horizontal X
IF txdir=1 THEN ROTz 90 !Horizontal Y
IF txdir=2 THEN ROTy 90 !Vertical Z
BASE
VERT 0,0,0
VERT 0.1,0,0
VERT 0,0.1,0
VERT 0,0,0.1
COOR 256+2,-1,-2,-3,-4
BODY -1
DEL 1
RETURN

!Cabinet with Drawers
!Master Script

ts0='Bedroom style, inset'
ts1='Office style, overhang'
VALUES 'timstyl' ts0,ts1

IF timstyl=ts0 THEN ts=0 !Flag for timber
IF timstyl=ts1 THEN ts=1 !Detailing style
VALUES 'numdraw' 0,1,2,3,4,5,6,7,8,9,10

!Set Values for Width and Depth
VALUES 'A' RANGE [0.4,1.5] STEP 0.4,0.1
VALUES 'B' RANGE [0.3,0.9] STEP 0.3,0.05
VALUES 'zzyzx' RANGE [0.3,2.1] STEP 0.3,0.05

There are two ways of
designing the fitting of the

Top panel and we set a
Flag, ‘ts’ to deal with it in

the script.

In ValueList, the RANGE function with Stepping allows the
object to ‘Snap’ to convenient sizes.

We use ‘ts’ to vary the height
and depth of the Side panels. If

‘ts’ is zero, the panels are
shorter. ‘ts’ alternates between 1

and zero.

Depending on the state of the
flag ‘ts’ the Floor and Top
panels are also modified.

The decision to make the Back
panel of the same or different
material to the sides is for the

designer to decide.

For the Top panel, the ‘ts’ helps
to determine the final width.

We can direct the texture as we
please with each panel, and

with Open GL, we get an
immediate result.

Note: another use of a Flag,
‘txtdir’ which tells the texture

which way to point, and
requires only ONE Texture

subroutine of the type we used
earlier with the Chair and the

Rafter – smart and economical.

Do the Hotspots
first, including

a pickup
hotspot in the

centre.

We want a
‘filled’ 2D

symbol, so use
a POLY2_

instead of a
RECT2. The

LINE2 helps to
establish which

is the back
panel.

We want to
permit free

editing in A, but
limit B to
forward

direction only.
A stretches in

100mm
increments, and

B in 50mm
increments.

Make
this a

‘Storage’
subtype

The two timber styles will become clearer to you when the
drawers fit. The ‘Office’ cabinet drawers overlap the front,
and the ‘Bedroom’ style ones are inset.

Build a Cabinet: the Carcase

77Copyright Marmalade Graphics ©2004

Extend the Cabinet:
Subroutines, Drawers

WE need to develop the cabinet further. First,
make the cabinet itself into a subroutine.

More Master Script work
We want to fit drawers into the cabinet so we need to
calculate how much space there is in the internal vol-
ume. We need to subdivide this according to the
number of drawers. Let’s assume they are held by
sliders and do not need separating wood bars. The
smart object could also have more idiotproofing.

Later, we could have an option whereby if the user
could choose zero drawers and opt for doors instead.
There are future options to think about, such as drawer
handles.

You need to think about small dimensions like
drawer sliders, and a tolerance around each drawer.

!Cabinet with Drawers
!3D Script

PEN gs_cont_pen
GOSUB 100:!Cabinet main shape

!Prototype of single drawer
ADDx -1.5 !Temporary position

!Single Drawer
!Side Panels
MATERIAL con_mat
 ADD dt+ds,dt+ds,bthk2
 BLOCK bthk2,drw_y-bthk1-ds-dt,
 drw_z-bthk2-dt

DEL 1
 ADD drw_x-dt-ds-bthk2,dt+ds,bthk2
 BLOCK bthk2,drw_y-bthk1-ds-dt,
 drw_z-bthk2-dt

DEL 1
txdir=1:GOSUB 999:!Texture

!Back Panels

 ADD dt+ds+bthk2,dt+ds,bthk2
 BLOCK drw_x-2*(bthk2+ds+dt),
 bthk2,drw_z-bthk2-dt

DEL 1

!Bottom Panel
 ADD dt+ds+bthk2,dt+ds+bthk2,bthk2
 BLOCK drw_x-2*(bthk2+ds+dt),
 drw_y-bthk1-bthk2-dt-ds,bthk2

DEL 1

!Front Panel
MATERIAL cab_mat
 ADD dt-bthk1*ts,drw_y-bthk1,dt
 BLOCK drw_x-dt*2+bthk1*2*ts,
 bthk1,drw_z-dt*2
 DEL 1
txdir=0:GOSUB 999:!Texture

!Sliders
MATERIAL met_mat
 ADD dt,dt,(drw_z-ds)/2
 BLOCK ds,drw_y-dt-bthk1,ds

DEL 1
 ADD drw_x-dt-ds,dt,(drw_z-ds)/2
 BLOCK ds,drw_y-dt-bthk1,ds

DEL 1

END:!--------------------------------------

100:!Cabinet main shape
!Side Panels
MATERIAL cab_mat
 BLOCK bthk1,B,zzyzx-ts*bthk1 !left
 ADDx A-bthk1
 BLOCK bthk1,B,zzyzx-ts*bthk1 !Right
 DEL 1 !etc. etc etc.
!THE REST OF THE CABINET SUBROUTINE IS
!THE SAME AS IN THE PREVIOUS PAGE

!--
!Additions to Master Script
!Calculate Drawer sizes
IF numdraw THEN
 drw_x=A-bthk1*2 !Drawer housing X width
 drw_y=B-bthk2 !Drawer housing Y Depth
 !Drawer housing Z Height
 drawrz=zzyzx-bthk1*2-plinh !Total height
 drw_z=drawrz/numdraw !Single drawer height
 ENDIF

dt=0.002 !Tolerance of free space around drawers
ds=0.015 !Space for Drawer Sliders

Let your drawers float
The drawers have to be made as subroutines, and each
of these is a smaller version of the cabinet – a box.
The front is of the same wood veneer as the exterior,
but the back, sides and bottom are different wood and
thinner. The nominal volume of the space for each
drawer can be sent to the subroutine which can then
decide exactly how big the drawer is when constructed.

The drawers cannot touch each other or the cabi-
net, they must ‘float in space’ with at least 2 mm of
tolerance around them – but the fronts need to be flush.
It’s a similar concept to Bricks Actual size versus Brick
Nominal size (allowing for mortar joints). In addition,
the sides must be inset by enough space to accommo-
date metal sliders. These are manufacturer’s dimen-
sions, so need not be parameters for the user, they can
be in the Master Script. You need to use ‘ts’ again to
vary the width of the drawer fronts.

Later we should convert the drawers to macros, in
case the same manufacturer has other items of furni-
ture which also use drawers (a certainty!).

3D Script
Build a prototype drawer unit a metre and a bit to the
left of the cabinet. When it is working you can then
use a loop to place them into the cabinet interior.

The drawer does not relate to A and B, it relates
only to the drw_x, drw_y and drw_z that you have
calculated for it in the Master Script.

With the help of the
sketch plan, you can

bend your brain to
work out all the ‘dt’

and ‘ds’ values to
make sure everything

fits.

It can be prototyped
here, and then

pushed down below
to be a subroutine

210
(reserve the label of

200 for the whole
pack of drawers.)

Add in the Texture
GOSUBs for the true
authentic woodgrain

look.
Note that ‘ts’ makes

the drawer front
wider.

You can break the
line (carriage return)
if you have a comma

in the statement.

Sliders do not need
texture if they are of

one colour.

Make the drawer over to
one side, and when you
get it working it can be

made as a subroutine and
placed in the cabinet.

Extend the Cabinet with Subroutines

78 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

‘dt’ Drawer tolerance zone
Drawer origin is at bottom left

‘ds’ Drawer Slider zone

Drawer Front

Draw out the drawer!
You MUST draw out a sketch plan of the drawer to
understand how the spaces around it for the tolerance
and the sliders will work.

Organise the parameters
We need to improve the organisation of the Param-
eters Table. Make the board thicknesses ‘hidden’ so
the user cannot change them. Add a material for sliders,
and make some titles so that parameters can be or-
ganised into cascading groups.

Put the drawers in

WE can write a FOR...NEXT loop to position
the drawers in the cabinet. Because each

drawer ‘floats’ in its own tolerance space, we can safely
work to the exact interior corner point of the cabinet.
We put the drawer into a subroutine before writing the
loop.

In the long run, you may be wanting to generate
drawings of the panels with texture orientation, so we
can smarten up the texture subroutine in the 3D Script
using the texture-direction flag ‘txdir’, 0 for X-horizon-
tal, 1 for Y-horizontal, 2 for Z-vertical. The rotation of
the texture is done inside Subroutine 999.

Master Script
!---
!more Additions to Master Script
IF drw_opn>=drw_y*0.8 THEN drw_opn=drw_y*0.8
IF drw_opn<=0 THEN drw_opn=0
PARAMETERS drw_opn=drw_opn

!Autosizing drawers
IF drawrz<0.05 THEN numdraw=0
IF numdraw THEN !Only do it if there are drawers

WHILE drw_z<0.05 DO
numdraw=numdraw-1
IF numdraw THEN drw_z=drawrz/numdraw

ENDWHILE
ENDIF

PARAMETERS numdraw=numdraw

We put in limitations to the movement of the drawers.
We could use a ValueList here as we did for the cabi-
net dimensions, but this would not work so well when
we use Parameter Arrays for the drawers.

Autosizing Drawers with WHILE DO
We also want to prevent the drawers being built if they
will be less than 50mm (2”) high. We can autosize the

We add in also an Drawer Opening Distance ‘drw_opn’ at this
stage, for future use.

The drawers sit
perfectly within their
tolerance space (give
them 3mm initially just
to make sure it’s
working correctly).
However, having all
the same opening
distance is a bit
ludicrous. How does
one make each drawer
individually capable of
being pulled out? It’s
time to think about
Parameter Arrays.

We also need to add GHs for the zzyzx value –
gives us visual feedback as we stretch or shrink.
WHILE DO gives us a routine to calculate whether
to reduce the number of drawers if the cabinet
height is reduced.

drawers and reduce the number if we see that they
are going to be smaller than 50mm. This is an ideal
demonstration of a WHILE... DO... ENDWHILE loop.
If the number of drawers is reduced by one each time,
we must not allow a ‘divide-by-zero’ error, so
‘numdraw’ is checked TWICE in the loop. WHILE
Loops are dangerous, there’s a chance that GDL will
never escape the loop – when you try this, there’s a
fair chance you will be Alt-Ctrl-Dell ing before long!

This illustrates the difference between
the ‘Office’ and the ‘Bedroom’ styles

– it’s ‘overlap’ versus ‘flush’
detailing.

Limit the drawer
travel to 8/10ths of

the depth

Build a Cabinet: Subroutines

79Copyright Marmalade Graphics ©2004

Extend the Cabinet:
Loop & Hotspots

!Cabinet with Drawers
!3D Script

PEN gs_cont_pen
GOSUB 1000:!:Hotspots Vertical
GOSUB 100:!Cabinet main shape

200:!All Drawers
 IF numdraw THEN
 ADD bthk1,bthk2,plinh+bthk1
 FOR k=1 TO numdraw
 ADDz drw_z*(k-1)
 GOSUB 1020:!Hotspots Drawer knobs
 ADDy drw_opn
 GOSUB 210:!Single Drawer
 GOSUB 220:!Knob for Drawer
 DEL 2
 NEXT k
 DEL 1
 ENDIF

END:!-------------------------------

100:!Cabinet main shape
RETURN

210:!Single Drawer
RETURN

220:!Knob for Drawer
TOLER 0.002
MATERIAL cab_mat
ADD drw_x/2,drw_y,drw_z/2
ROTx -90
CYLIND bthk1,bthk1
DEL 2
RETURN

3D Script

PUT the Drawer into a subroutine, and it’s an
easy job now to make a FOR NEXT loop based on

the number of drawers – the size and spacing of each
have been calculated in the Master Script. Add in some
hotspots for the vertical Z-heights.

We need to add push-pull hotspots for the drawers,
but we need a knob otherwise there is nothing to grab
on to – a hotspot hovering in the centre of a flat drawer
front would be too intangible. For the moment we put
a simple cylindrical knob there – once it’s in a subrou-
tine (220) it can be replaced later with a parade of
nobly elegant or knobbly handles. The hotspot rou-
tine has to be lifted to the right height for each drawer,

Both of the Z-
hotspots can

be stored in a
subroutine.

Move to the
inside back

corner of the
Cabinet first

before the
loop starts.

There is one
hotspot

routine for all
drawers at

the moment,
each one is a

subroutine
inside the

loop.

The reason
for giving the

loop a label
of 200: is that

it can also
become a

subroutine.

1000:!:Hotspots Vertical
GOSUB 1010!:Hotspots Vertical
 ADDx A
 GOSUB 1010!:Hotspots Vertical
 DEL 1
RETURN

1010:!:Hotspots Vertical
 hsid=hsid+1 !Base
HOTSPOT 0,0,0, hsid,zzyzx,1
 hsid=hsid+1 !Move
HOTSPOT 0,0,zzyzx, hsid,zzyzx,2
 hsid=hsid+1 !Vector
HOTSPOT 0,0,-1, hsid,zzyzx,3
RETURN

1020:!Hotspots for Drawer knobs

ADD drw_x/2,drw_y,drw_z/2
 hsid=hsid+1 !Base
HOTSPOT 0,0,0, hsid,drw_opn,1+128
 hsid=hsid+1 !Move
HOTSPOT 0,drw_opn,0, hsid,drw_opn,2
 hsid=hsid+1 !Vector
HOTSPOT 0,-1,0, hsid,drw_opn,3
DEL 1
RETURN

The Knob
subroutine is a
temporary fix.

Other, more exotic
knobs can be

provided later.

Notice that we
economize by

writing only one
vertical hotspots

routine, and
move it to the two

rear corners of the
cabinet.

The drawer
opening hotspots
work from a base
at the back inside

face of the
cabinet.

Because we are
using drw_opn for
each drawer, they

all pull out
together – it’s time

for Parameter
Arrays.

but it does not move in the Y direction like the draw-
ers and knobs do – the Base spot remains at the inside
face of the back panel.

The routine for the drawers is given a number 200.
Guess what! it’s going to be a subroutine too!

Deliberate Errors

COMPUTERS work in Machine Code, we work in the
world of elementary applied Maths. Humble earthlings

use feet and inches, millimetres or metres. But between
human and machine, there may be conversion stages like
Decimal and Hexadecimal and Binary. There is an extra
stage if you are converting from imperial to decimal di-
mensions.

Sometimes when you divide two numbers, or use the
INT() command, you get tiny errors as a result of this con-
version. For example 1/3 produces a recurring number in
decimal. INT(9/3) could produce a result of 2 instead of 3
due to tiny conversion errors. FOR k=0 TO 10 STEP 5/2
should produce 4 intervals and 5 locations; but this could

result in one of them being lost due to a tiny error in the
division, resulting in underflow: not meeting the target.

Using a tiny unit like a millimetre or 1/25”, build in a
deliberate error to minimise the risk of underflow. If you
write FOR k=0 TO 10+0.001 STEP 2.5, you will eliminate
the conversion error, but you will not alter the model at all.
I noticed recently that if you divide 6’-0” by 3’-0” you get
an error. If you divide by 6’-0” by 2’-11.9999” (yes you can
use decimals) you guarantee getting a result of 2. If a piece
of GDL simply doesn’t work when it should, look for the
opportunity to feed in a deliberate error.

With rotational loops, add a single degree to prevent
underflow, e.g., FOR angl=0 TO 331 STEP 30: NEXT angl.

Build a Cabinet: Loops and Hotspots

80 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Extend the Cabinet:
Parameter Arrays

Hotspots without Arrays: nightmare!

WITHOUT Arrays, the only way to write
hotspots for the ten drawers in this cabinet is to

have some very verbose code. You will need to make
a parameter of opening distance for EACH one, and
write a complete hotspot routine for EACH one. In-
stead of a neat loop, you have to write a cluster of IF
statements deciding whether to GOSUB each of those
routines. Very tedious. Actually, I encourage you to
try writing this way for say the first 3 drawers, just to
see how it might be done. The script on this page shows
you the solution for the first 3 drawers. You have to
make 10 more parameters like drw_opn1, drw_opn2,
drw_opn3 and so on. You need 10 lengthy IF state-
ments, and you cannot use a nice friendly efficient
Loop. It’s tedious to write an individual routine stop-
ping the drawers coming out into free space or push-
ing through the back panel. Supposing you have an
object with 50 or 100 movable objects, like curtain wall
mullions – how many IF statements are you prepared
to write?

Explaining Parameter Arrays
Parameter Arrays were thought so complex and unu-
sual requirements that they didn’t rate a mention in
GDL Cookbook 1, 2 or 3. However if you have an ob-
ject that combines Loops with AC8’s Graphical
Hotspots, it has become clear to me that Parameter
Arrays become transcendentally important – as
the example on this page proves. They make an el-
ementary object object like this cabinet behave like
something made by an expert.

With Parameter Arrays, we can write ALL the
drawer-opening hotspots for any number of drawers
in ONE 6 line routine! We can initiate PAs by hitting
that little square button next to the parameter icon.
Look at the picture below – every newcomer to GDL
hits that pesky little button at some time by accident,
and reverses out rapidly in a panic!

Arrays, in a nutshell, are Lists, or they can be 2D
Grids like a spreadsheet. They live with a single name
for the whole array, so that any cell in the array can be
recalled with an easy grid reference. They can contain
numbers (mostly) or strings (occasionally) – whichever
of these, they are always referenced by a number. If
the array is called ‘dd’ the 7th one in the list is a pa-
rameter called dd[7] – we use square brackets for
arrays. The prime benefit of arrays is that with a num-
bering system for the parameter, we can now write
FOR NEXT loops to make use of them, using a coun-
ter like ‘k’. Thus if we want to do something with dd[k],
it works! ‘Parameter Arrays’ are ones that start life in Keep hitting the insert button till you have ten

!Drawers without a loop
ADD bthk1,bthk2,plinh+bthk1
 IF numdraw>=1 THEN
 ADDz drw_z*0
 GOSUB 1101:!Hotspot
 ADDy drw_opn1

 GOSUB 210:!Single Drawer
 GOSUB 220:!Knob for Drawer

 DEL 2
 ENDIF
 IF numdraw>=2 THEN
 ADDz drw_z*1
 GOSUB 1102:!Hotspot
 ADDy drw_opn2

 GOSUB 210:!Single Drawer
 GOSUB 220:!Knob for Drawer

 DEL 2
 ENDIF
 IF numdraw>=3 THEN
 ADDz drw_z*2
 GOSUB 1103:!Hotspot
 ADDy drw_opn3

 GOSUB 210:!Single Drawer
 GOSUB 220:!Knob for Drawer

 DEL 2
 ENDIF
DEL 1

END:!----

1101:!First drawer, the rest are similar
ADD drw_x/2,drw_y,drw_z/2
 hsid=hsid+1 !Base
HOTSPOT 0,0,0, hsid,drw_opn1,1+128
 hsid=hsid+1 !Move
HOTSPOT 0,drw_opn1,0, hsid,drw_opn1,2
 hsid=hsid+1 !Vector
HOTSPOT 0,-1,0, hsid,drw_opn1,3
DEL 1
RETURN

Do not attempt
to type this in if

you are
following the

exercise: this is
another

example of
BAD GDL: a

complex
sequence of IF
statements and

repetetive
Hotspot

subroutines.

If this convinces
you to use
Parameter

Arrays, then
read on.....

Build a Cabinet: Loops, Hotspots, Arrays

81Copyright Marmalade Graphics ©2004

the Parameter Table, as in this example. It is also pos-
sible to have ‘Dynamic Arrays’, ones that are initiated
and defined in the Master Script, not in the Parameter
Table. These will be covered later in the book. When
you use a practical example, as in this cabinet, you
will rapidly see how to use them, and appreciate how
powerful and simple they are.

I never found a use for them in earlier ArchiCADs
but now find that almost every object with Loops and
GHs demands them. Hence their inclusion in this ‘be-
ginners-level’ section of the Cookbook.

Make a Parameter Array
So where we had ‘drw_opn’, let’s make a new param-
eter called ‘drw_opd’ for the opening distance. Posi-
tion it below the old parameter, as above. Hit the square
button and when the next dialog appears, click first on
one of the side buttons. Then hit the Insert button till
you get 10 items in the list. They will all have a start-
ing value of Zero, but don’t let that bother you – they
are all values for the drawer-opening distance. Close
the dialog, and you return to the Parameter Table. You
now have 10 items in the Array called ‘drw_opd’. You
can no longer use the name ‘drw_opd’ on its own. From
now on, you have to refer to all mentions of this pa-
rameter as drw_opd[1], drw_opd[2] and so on. Once
we have modified the Master and 3D Scripts we can
delete the obsolete parameter ‘drw_opn’.

Use the ‘Set’ Button
If you wish to open the object in GDL to edit the con-
tents of the array grid, you can only do so by hitting
the ‘Set’ button. You could enter default values for the
drawers. But for now, you can leave them all at zero
and let the user to play with them using the Hotspots.
When the object is in ArchiCAD, the user can easily
change array values by clicking on the parameter.

Parameter Arrays, continued

!Cabinet with Drawers
!3D Script

PEN gs_cont_pen
GOSUB 1000:!:Hotspots Vertical
GOSUB 100:!Cabinet main shape
GOSUB 200:!All Drawers

END:!--------------------------------

100:!Cabinet main shape
RETURN

200:!All Drawers
 IF numdraw THEN
 ADD bthk1,bthk2,plinh+bthk1
 FOR k=1 TO numdraw
 ADDz drw_z*(k-1)

GOSUB 1020:!Hotspots for Drawer knobs
 ADDy drw_opd[k]

GOSUB 210:!Single Drawer
GOSUB 220:!Knob for Drawer
 DEL 2
 NEXT k
 DEL 1

ENDIF
RETURN

210:!Single Drawer
RETURN

220:!Knob for Drawer
RETURN

999:!Texture
RETURN

1000:!:Hotspots Vertical
RETURN

1010:!:Hotspots Vertical
RETURN

1020:!Hotspots for Drawer knobs

ADD drw_x/2,drw_y,drw_z/2

 hsid=hsid+1 !Base
HOTSPOT 0,0,0, hsid,drw_opd[k],1+128

 hsid=hsid+1 !Move
HOTSPOT 0,drw_opd[k],0, hsid,drw_opd[k],2

 hsid=hsid+1 !Vector
HOTSPOT 0,-1,0, hsid,drw_opd[k],3

 DEL 1
RETURN

For now, you can write in the Master Script a rou-
tine that will write in the values for you to this grid
using the PARAMETERS command. Use this routine
to replace the former simple routine to limit the ex-
tent of the drawer pulling.

!Modify existing Master Script
!Limit extent of drawers - collision control
FOR k=1 TO 10
IF drw_opd[k]>=drw_y*0.8 THEN drw_opd[k]=drw_y*0.8
IF drw_opd[k]<=0 THEN drw_opd[k]=0
PARAMETERS drw_opd[k]=drw_opd[k]
NEXT k

3D Script
The modifications to the 3D Script are stunningly sim-
ple and effective. The Drawer routine now becomes a
subroutine, the drawer opening distance is simply re-
placed by a array parameter ‘drw_opd[k]’ in the drawer
subroutine and in the Hotspot sub routine.

The drawer
subroutine is now
tidily put in a safe

place after the
END statement.

Change the
parameter for the

drawer opening
to the new array
parameter in this

routine and in the
Graphical

Hotspot routine
below.

Parameter Arrays
are a general

term for the
whole thing, a

single one is an
Array

Parameter’.

Build a Cabinet: Loops, Hotspots, Arrays

82 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

THE Master Script is where most of the
‘thinking’ takes place. It is worth getting ac-

quainted with some of the Maths functions that you
need to help your thinking. On the next few pages, we
also look at Trigonometry, Circles and Arches. ‘Tricks
of the Trade’ is perhaps the most often visited section
(by me) in the GDL Cookbook.

ABS(number) returns a positive value of a number,
regardless of whether it is negative or positive. You
can prevent the user entering a negative parameter
with a statement like: item=ABS(item).

SGN(number) returns a 1 if the number is positive,
or a -1 if the number is negative. Small token numbers
like this which signify the status of a number are called
‘flags’, in programming jargon.

RND(number) returns a random number value be-
tween 0.0 and 1.0 and is multiplied by the number in
the bracket, e.g. RND(50) gives you numbers from 0 to
50, RND(0.1) is from 0.0 to 0.1. RND numbers are Real
Numbers, so can only be used to generate Dimensions
if you are using Metres, unless you convert them.

Unfortunately, GDL’s random number generator is
weak, and generates the same sequence each time from
a fixed list, with a preponderance of low numbers. The
only way to get a more nearly random number is to
get the list to start from anywhere but the start. In
animations, you could use the Frame number as a
randomisation seed. One method that seems to work
well is: nul=RND(GLOB_INTID).

INT(number) returns the integer of the number – an
integer is a round number (without decimals). The INT
command ALWAYS rounds downwards, so you can do
x=INT(number + 0.5) to get it to round up OR down-
ward correctly.
Example: INT(8.56)=8 !(rounds down)

INT(8.56+0.5)=9 !(rou nds up)

FRA (number) is the other side of INT(). It returns
the fraction remaining when you remove the integers.
Unfortunately it behaves always in one direction, so
FRA(6.3) returns 0.3, but FRA(-6.3) returns 0.7.

CEIL (number) is similar to INT, collects the nearest
integer number larger than the number.

SQR(number) returns the square root of the number.
This is useful in matters like the use of Pythagoras
Theorem in Triangles, and Circle geometry. If you need
Cube and Quad roots, use the ‘Power’ symbol – e.g.
c=length**(1/3): q=width**(1/4).

PI is useful in circle geometry – it is exact, and there-
fore better than trying to put in your own number, such
as 3.1416, and incurring errors in a calculation.

Maths Primer
Functions

MIN() and MAX() are useful – they simply tell you
the highest or lowest of a series of numbers or vari-
ables that you print in the brackets, using commas.
For example: ADDz MAX(leftht,rightht)
raises the cursor to the level of the highest of the two
heights of a furniture monopitch end panel.

NOT() is useful in IF statements. You could write IF
thing=0 THEN GOSUB 100, but it is more like english
to write IF NOT(thing) THEN GOSUB 100. Also
because NOT() either returns a value of 1 or zero, you
could use it as a flag, as in:

LET rotation_angle= 30*NOT(noturn).
When ‘noturn’ is valid, the angle would be zero and if
‘noturn’ is zero, then the angle will be at 30degrees.

AND (&) and OR (|) and EXOR (@) are used as
arguments in IF statements.

For example, you could say:
IF item>4 AND item<6 THEN GOSUB 500.

This would certainly identify a floating point number
in the region of five. With OR, either or both state-
ments being true will produce an action, e.g.

IF item<4 OR item>64 THEN GOSUB 500.
Usually, if you say it to yourself slowly in English,

and digest the natural logic of the AND and the OR
argument, you will get it right.

EXOR is an exclusive OR statement, meaning that
if one or other are true, do the action, but if both are
simultaneously true or false, do not do it. EXOR is less
often used, but mostly because people do not under-
stand it. Circumlocution is possible if you do not wish
to use it.

If you are comparing something with zero, you can
use a shortened form not requiring the ‘equals’ sign,
e.g. IF circlr THEN GOSUB 500 ELSE GOSUB 550.
‘circlr’ is a flag with a value of 1 or zero. In effect, do
the action if ‘circlr’ is any value but zero.

EXP(), LGT(), LOG() are ‘transcendental’ functions,
to do with ‘e’ and logarithms. These are rarely used,
e.g. in calculating Catenary curves. EXP(x) calculates
the value of e^x. (‘e’ is a magic number 2.7182818).
LOG() return the natural logarithm and LGT() the
logarithm to base 10.

MOD is a way of finding the remainder after a divi-
sion e.g. 8 MOD 2 equals 0 because 2 divides perfectly
into 8. 8 MOD 3 equals 2 because if you divide 8 by 3
it goes twice and leaves a remainder of 2.

Maths Primer

83Copyright Marmalade Graphics ©2004

Trigonometrical functions

SIN(), COS() and TAN() – Trigonometry functions
that return you the Sine, Cosine and Tan of the angle.
ATN(), ASN(), ACS() mean respectively ArcTan,
ArcSin and ArcCos. This means that if you know the
sides of a right angle triangle, you can easily work out
the angles. For ArcTan: ATN(0.231) will return you the
Angle which, if you calculated TAN(angle) would give
you a TAN of 0.231. This is essential if you are build-
ing lattice trusses.

Functions like COSH, SINH, SEC, COSEC can be
derived from these and from EXP().

Common maths symbols
<> Not Equal to (you can also use #)
> Greater than, < Smaller than
>= Great than or Equal to
<= Smaller than or Equal to
^ To the power of... (also **)

Strings and things
WHAT is a String? It is a sequence of alpha-

numeric characters which have no numerical
value – so it’s in quote marks.

In GDL, a set of alphanumeric characters on their
own (not in quotes) are either a Parameter or a Com-
mand (not a string) and have to be doing something,
or you get an error. A set of alphanumeric characters
behind an exclamation mark are a Comment.

A set of alphanumeric characters in quote marks
are a String. ‘123.456’ is a string because it is in quotes.

Materials (and other attributes) can be named by a
string – you can say MATERIAL ‘Whitewash’.

Strings can be used as a parameter or variable, e.g.
the ABC parameter type contains a string, frequently
used for Popdown menus. e.g. timstyl= ‘Office style’.

TEXT2 in 2D scripting can print a string or a number
but not both. If you wish to combine strings and num-
bers, then you have to convert the numbers to strings
using STR().

STR() is very useful in 2D labelling – when you need
to combine many numbers together to make a long
string of letters – it often happens. For example, you
can use it when you wish to make an object self label-
ling. If you have a stretchy staircase, you can get it to
display a string like: ‘Pitch= 38.462 degrees’. We did it
for the CircleGrid earlier.

STR() needs to have an idea of how many digits
will be needed to represent an entire number, and how
many of those digits will occur after the decimal point.
For example: item=123.456

string=STR(item,6,3) gives you ‘123.456’
string=STR(item,6,1) gives you ‘123.5’
string=STR(item,4,3) gives you ‘123.456’
string=STR(item,7,2) gives you ‘123.46’

To concatenate strings and numbers, you might use
the addition symbol and join the strings, as in:

Declaring variables : number or string

All numbers in GDL are ‘Floating Point’, you cannot
force a variable to be an integer.

You can force a variable to be a string – this con-
tains text. Once a variable is a string, you cannot not
change it back to a number and vice versa. The script
below is likely to produce a syntax error that will baf-
fle you – but the error has been caused by a previous
use of ‘n’ as a string.

LET n=”washbasin”
FOR n=1 TO 5

GOSUB 100
NEXT n

Eats, shoots and leaves? Use Brackets
Multiply and Divide stick things together, Plus and
Minus separate. What does 300/5*6+10 equal? If in
any doubt, use Brackets.

e.g. SPHERE_VOLUME = (4/3)*PI*(R^3)

lenstr=“Length=” + STR(item,6,2)

TEXT2 0,0, lenstr

and get a string variable called lenstr.

x=STRLEN(‘hello’) returns a value of 5, the
number of letters.

x=STW(‘hello’) gives you a dimension in metres
equal to the length of the word, in its present text style.
Allowing you to build a 2D box round it, or to get a
good results if labelling an object where you want the
label to fit neatly to the object, whatever the drawing
scale.

SPLIT(): This is an interesting command that con-
vert part of a string back into numbers – complicated
to use, but sometimes necessary. See the ‘Bendibar’
for an example. It half-does what VAL() does in BA-
SIC. To me, its most useful purpose has been rapid
parsing of Value List answers – reducing the need for
many IF statements.

!Value List definition for a Stair Handrail
VALUES 'handtyp' ‘0-None’, '1-Parallel rails',
 '2-Rail + spindles'

!Parse the type of Handrail
x=SPLIT(handtyp, '%n',htyp)
!htyp is the flag for the rail

As a result of this, htyp is equal to either 0, 1 or 2.

STRSTR(): Returns the value of the position of one
string inside another.
e.g. x=STRSTR(‘Whitewash’, ‘wash’) returns a
value for x of 6. If nothing is found, x is zero.

STRSUB() : returns a string, extracted from a longer
one. Use this for ‘parsing’ strings. e.g.

myname= ‘David’
FOR k=1 TO STW(myname)

TEXT2 0,K*0.3, STRSUB(myname,k,1)
NEXT k

This comes up with each letter of my name arranged
vertically.

Maths Primer – with Strings

84 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

GDL requires a 3D spatial awareness, and an essential minimal knowl
edge of Triangle and Circle Geometry. Architects usually have no prob-

lems with the former, but may need help with the latter.
Let us assume that you are familiar with basic Arithmetic and Algebra. At this

stage in your GDL learning curve, you have a knowledge of BASIC. However,
there are 3D problems which require considerable analysis before you begin,
and I find these pages useful for myself when tackling new problems. Sketch
onto paper the essential geometry of the problem. Then plan the solution.

Maths Primer: Triangles & Circles

Triangles
TRIGONOMETRY can be easy: you need a basic

knowledge of the right angle triangle – in fact all
you need to know is the motto SOH CAH TOA so
that you can always calculate the characteristics of a
triangle from minimal information. If you don’t know
this already, learn it by saying it to yourself as a mantra
whilst in traffic queues.

The angles of any triangle add up to 180o.

Coordinate Geometry is based on Pythagoras.
The distance between any two points in 2D is simply
SQR((x1-x2)^2 + (y1-y2)^2). This works even when
points have negative values. The gradient ‘m’ of a line
is =(y1-y2)/(x1-x2) – same as the TAN of its angle.

The formula for a straight line is y=mx+c, or
ax+by+c=0. If two lines intersect (straight or curved),
you can derive a simultaneous equation – both ‘y’ val-
ues equal each other.

The gradient ‘m2’ perpendicular to a line of gradi-
ent ‘m1’ equals (-1)/(m1) – and you can say that
m1*m2=(-1).

Right Angle Triangles
Remember: ‘SOH CAH TOA’
SIN(angl)=Opposite/Hypoteneuse
COS(angl)=Adjacent/Hypoteneuse
TAN(angl)=Opposite/Adjacent

Pythagoras him say (many years ago): Hypoteneuse squared
equals sum of the squares of the other two sides. In other
words, Hypoteneuse=SQR(Adjacent^2 + Opposite^2)

Nostalgia trip
Suddenly all those distant
memories of Maths you did
back at school can be dusted
off and made useful.
Isn’t it marvellous!!

0°

0°30°
270°

270°

90°

180°

60°

Rotation in the
Geophysical world

180°

90°

Rotation in the
Mathematical world

Rotation Directions

THE Geophysical world works with the
Vertical being Zero˚ North at the top; East (90°)

is in a Positive direction clockwise. West is either –90°
or +270°, depending on how you travel there. The
hands of a clock work that way.

In Mathematics, the horizontal is Zero°, and an
angle grows in the anti clockwise direction, so that 90°
is facing up the page. This is how the diagram for the
camera works in 3D Projection Settings, in ArchiCAD.

In GDL, You can use angles in either the mathemati-
cal or geophysical sense, as long as you remain con-
sistent in your interpretation but the Maths method
works best.

When you talk about the azimuth of the Sun rela-
tive to the site and entering site survey information,
this causes confusion. Tread Carefully.

Which way to
ROT??

Consult these pages! You are now looking at the set of pages that I use myself most frequently. The Maths Tips and
Tricks are useful, and some of the formulae for circular and parabolic curves are only found in this book.

Hypoteneuse

(The side) Adjacent (to the angle)

The Right
Angle

angl

(T
he

 s
id

e)
 O

pp
os

it
e

(to
 th

e
an

gl
e)

Maths Primer

85Copyright Marmalade Graphics ©2004

Irregular Triangles

IRREGULAR triangles can be analysed by breaking
them into small right angled ones and using SOH

CAH TOA. The SIN and COS rules enable you to de-
rive all the facts from any three pieces of information.

Powers can be written with two asterisks e.g.
num**2, or a caret as num^2 and square root is
SQR(num) or num^0.5. Cube and other roots would
be written as num^(1/3).

Any three points in space, no matter how irregu-
larly disposed can be joined up to form a planar (flat)
triangle; a planar circle can be drawn through the
points. ArchiCAD’s circle tool provides a means of find-
ing this centre. The calculation is more difficult.

An Isosceles triangle has two equal sides and two
equal angles. The angles of any triangle add up to 180o.

From this diagram you can
work out any triangle from
any three known facts

A circle can always be inscribed in an irregular triangle.
From this, several right angle triangles can be derived.
SIN Rule: a/SIN(A)=b/SIN(B)=c/SIN(C)=2*R
COS Rule: a^2= b^2 + c^2 – 2*b*c*COS(A)
Hence, if you know the sides,
Angle A=ACS((b^2+c^2-a^2)/(2*b*c))
Area=(length of any side)*(height relative to that side)/2

b

side cangle
A

C

R

a

B

!3D Pythagoras Demonstration
MODEL wire
PEN 1
x=1: y=2: z=3
BLOCK x,y,z

!Calculate length of diagonal
diaglen= SQR(x^2 + y^2 + z^2)

!Azimuth=ATN(y/x)
!Elevation=ACS(z/diaglen)

ROTz ATN(y/x)
ROTy ACS(z/diaglen)
CYLIND diaglen,0.02
DEL 2

3D Pythagoras

ONE fact that I worked out for myself (it must
be in a book somewhere, but which?) and which

I have used for some time, is Pythagoras’ Theorem
applied to 3D. The diagonal of a cuboid shape is the
Square Root of the sum of the squares of the Length,
Width and Height. diaglen=SQR(x^2 + y^2 + z^2).

The script here demonstrates it. Thus if you have a
linear object arcing around in 3D space (like the arm
of a crane) you know its length and its declination an-
gle from the simple formulae demonstrated here. (Dec-
lination is the elevational angle from vertical).

Reverse engineer
From this theorem, you can work out the reverse of
the 3D Pythagoras, using Trig. If you know the crane
arm’s length, its Rotational angle, and its Elevational
angle (from horizontal), you can know its X,Y,Z loca-
tion in space. In this diagram, ‘rotang’ is the rotational
angle of the arm from the Y axis, and ‘elvang’ is the
elevational angle from flat on the floor. ‘diaglen’ is the
length of the Cylinder. Hence, these quick formulae:

Maths Primer: Tricks of the Trade

YOU frequently need to ‘toggle’ or convert numbers and
flags especially when Boolean choices are involved.

• To find out if a number is odd or even :-
IF INT(item/2)=item/2 THEN even=1 ELSE even=0
or IF item MOD 2=0 (it is even)

• To find out if number is Negative or Positive (& set a flag):
IF item<>0 THEN flag=item/ABS(item) ELSE flag=0
(makes 1 or -1, or 0 if item is zero)

• To force a number to be positive: item=ABS(item)
• To force a number to be nearest even number

item=2*INT(1+item/2)
• To generate 1 & zero alternately in a loop (stepping 1)

flag=2*FRA(k/2)
• To make any number into 1 (if real) or 0 if zero.

IF item<>0 THEN flag=item/item ELSE flag=0
• To round a number Up or Down to nearest integer,

newvalu=INT(0.5+item)

z

x

y

• X=SIN(rotang)*COS(elvang)*diaglen
• Y=COS(rotang)*COS(elvang)*diaglen
• Z=SIN(elvang)*diaglen

Distance between any two points in space:
 dist=SQR((x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2)

• To turn 1 & 2 into 0 & 1
• To turn 1 & 2 into -1 & +1
• To turn 0 & 1 into -1 & +1
• To turn 0 & 1 into +1 & -1
• To toggle values of -1 & +1
• To generate 1 or 0 randomly
• To toggle values of 0 & 1
• To make 0=0, and 1,2,3 etc=1
• To make 1 & -1 into 0 & 1
• To make -1 & 1 into 0 & 1

(item-1)

(item-1)*2-1

item*2-1

(item*2-1)*(-1)

item*(-1)

INT(RND(2))

(1–item)

INT(x/(x-0.1))

-(item-1)/2

(item+1)/2

Fiddling with Flags

• To round a long number to a set no. of decimals:
number=INT(0.5+number*(10^decmls))/(10^decmls)
• Make an angle that is below zero (e.g. -26˚) show as
minus 26˚, not 336˚ :

IF angl>=180 AND angl<360 THEN angl=angl-360
PARAMETERS angl=angl

Warning: Azimuth
calculation doesn’t always
work well in the negative
quadrants. Objects may
become mirrored by
ArchiCAD, and disobey the
calculation.

Maths Primer

86 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

All triangles can be drawn
into a circle. It is useful to
know that in a right angle
triangle, the hypoteneuse is
also the diameter of an
enclosing circle, and its half
way point is the Circle centre.

Circles
THERE will be many situations where the object

you are making is circular (curved truss), or parts
of it trace a circular path through space (a swinging
arm). In coordinate geometry, the Formula for a Cir-
cle is R^2=x^2 + y^2.. There are 360 degrees in a circle.
But you can safely issue commands like SIN(angl) when
angl is a number like 535º (greater than 360) and GDL
will not turn a hair (it will return a result of SIN(175)).

The diagram displays the terminology of parts of circles
used in many of the worksheets in the CookBook.

Polar to Cartesian conversion
If you are distributing things in a circle (e.g. mullions in a
bay window), you usually know the centre, the radius
and the angle in which you are pointing.

Above: You may know the X and Y location, but need to
know the Radius and Angle – perhaps you have a
diagonal cylindrical tube which must connect the two
points. Only works if 0,0 is the centre.

Above: On many occasions, you need to derive the
factors of Circles and their inscribed triangles when you
only know the CHORD length, A, and the BULGE
(segment height), B.

These formulae above can be juggled about.
If you already know Radius and A then:
 angl=ASN((A/2)/radius)
In which case, B, the Bulge can be found:
B=(A/2)/TAN(90-angl/2) OR B=rad-
rad*SIN(angl)

If you know Bulg and angl, then radius is found:
rad=Bulg/(1-SIN(angl)

Distance along an Arc whose angle is angl:
 dist=2 * PI * rad * angl/360
Distance between points whose angular separation is
angl and radial distance is rad =2*rad*SIN(angl/2)

If your origin is at the centre-base of this chord, the
locations for x and y at angle k from the vertical are:
x=rad*SIN(k), y=(B-rad)+rad*COS(k).

If you are starting from the
vertical, moving clockwise

If you are starting from the
horizontal, moving anti-
clockwise

If you know rad and angl, the
height of the Bulge is

rad-rad*COS(angl)

A circle’s circumference is 2*PI*R, or PI*diameter.
A circle’s area is PI*(R^2).
Sphere’s volume is (4/3)*PI*(R^3)

Maths Primer

○ ○ ○ ○

87Copyright Marmalade Graphics ©2004

Arch Forms
Ihave developed formulae which can be used

for raised arches or hanging cables in GDL.
The Parabola and the Catenary forms display
the effects of gravity on a linear pathway. A
weightless arch or cable would form a Parabola,
but with self weight (e.g. chain) it is formed into
a Catenary, which is based on hyperbolic trig
(COSH & SINH). See the Catenary exercise.

The formulae below describe several ways of
building arches and forms using mathematical
curves. You might use TUBE or SWEEP to pass
through the curve.

Flattish Round Arch
(less than 180 degrees of sweep):
 radius=(span/2)/SIN(2*(90-ATN((span/2)/height)))
 Z=radius*COS(ASN(x/radius))-(radius-height)
(Circles and ellipses are much better done by a radial
method. Ellipses can use the above method, but add,
LET Z =Z*height/(span/2)).

The cartesian formula for a Circle is R2=x2+y2 so
you can use y=SQR(R*2 – x*2) for flattish circular
forms.

Gothic Arch
For each side, you can run a profile of the doorway
with REVOLVE and use a Cutplane to cut it at the ver-
tical axial centre. Or by using TUBE you can do it in
one sequence.

angle=(90-ATN(height/(span/2)))*2
radius= height/SIN(angl)

This is for arches whose
springing point for the curve
is tangential to the door
style, as in this diagram.

SIN Wave Arch
Z=height*SIN(X*180/span). This can be surpris-
ingly useful. I used it to calculate the declination of
the sun on a day by day basis through the year.

Parabolic Arch
Z=height–(4*height/(span^2))*X^2
dydx=(8*height/(span^2))*X (‘dydx’ is TAN of the
slope at point X – if you want to attach panels.)

For this, you start a FOR…NEXT loop starting from
span/2 one side of zero and finish up span/2 the other
side of zero – using PUT to store all the XYZ values.
Then feed them to a TUBE command or to whatever
you are building.

Inversely, X=SQR((hit-Z) / (4*hit/(span^2)))
works in the Z direction but you get an over flow if
you go close to the peak of the parabola.

Catenary Arch/Cable
This is a parabola for something that has weight, e.g a
chain, or an arch composed of stone or concrete with
some self weight. There is no guaranteed formula,
there is a procedure based on SINH(x). You test this
formula y=(EXP(k*x) +EXP(-(k*x)))/(2*k) with a
changing value of a constant ‘k’, until the chain is the
height you want it to be. See the exercise on Catenary.

Elliptical shapes
... are done by applying MUL to a Circular form, but if
it is a 3D solid, this action may distort the section of
the tubing _ but this can be helpful, e.g. this Handle:

!Drawer handle 3D
MULx 2 !the distortion value
ELBOW 0.1,180,0.02
DEL 1
!Makes a nice drawer handle

!Outline of an ellipse 2D
FOR ang=0 TO 361 STEP 15

x=rad*COS(ang) * 2 !the distortion value
y=rad*SIN(ang)
HOTSPOT2 x,y
NEXT ang !Produces hotspots round an ellipse

Useful things for ellipses:
• Locus for an Ellipse: x^2/A^2+y^2/B^2=1
• Area of an Ellipse: PI * A * B
• Perimeter of an Ellipse: PI*(A+B)

A true Parabolic arch
is more elegant than
a SIN or circle. It is

close enough to a
Catenary for most

GDL purposes.

Swing the Cat!*
This technique is explained in some exercises (e.g.
Long Handrail, Helix). Trace out a circular path, use
COS and SIN to work out the X,Y points, store them
and then send the list of points to a TUBE. This can
also be an elliptical path if you apply a multiplier to
the width or height.

* ‘Swing the Cat’ has several possible derivations, but for me it
comes from the days when one lived in a student bedsitter in
which there “wasn’t room to swing a cat”.

Maths Primer – with Arch forms

88 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

GLOBAL Variables are current conditions and
settings of your main project. They are known

by ArchiCAD. GDL objects can, at any time, interro-
gate them and make use of the information.

Each new version of ArchiCAD introduces more
Global variables, and you need to study the Appendix
in the AC Help files and Manual to see the entire list.
Many of the newer ones are not usable for 2D and 3D
model building (they are for the Calculate menu).
Meanwhile the following are some of the GV’s you

General Environment information
GLOB_SCALE : Drawing Scale (A_). Use this to de-
termine how complex a 2D Scripted symbol will be.
For example, at scales up to 1/20, you show rebates
in door jambs, at 1/50 you can show them as rectan-
gles, and beyond that, they are rendered as simple door
swings. If you use True Line widths, this is essential.

GLOB_SCRIPT_TYPE : Type of current script (T~).
Tells the object which script is currently working. See
the Help file for the results 1,2,3,5,6.

GLOB_CONTEXT : Context of appearance. Similar
to but more comprehensive than the Script_type, this
lets the object know it is being viewed, say in a Sec-
tion/Elevation or in its 2D symbol and it can modify
the level of detail accordingly. A 3D Script can know
if it is operating a PROJECT2 command and can sim-
plify the model with planar 3D forms instead of solid
3D. See the Help file for the many results 1,2,3,4,5,6,7,
22,23,24, 43,44,46.

GLOB_DRAWING_BGD_PEN : Nearest match of Pen
colour to the background colour of the drawing.

GLOB_MODPAR_NAME : Most recently altered pa-
rameter. This is incredibly useful in User Interface de-
sign. This adds intelligence to the object as it uncan-
nily seems to know the last parameter you changed or
boolean box you ticked. It’s most useful function is in
User interface design where you can use it to make
Boolean checkboxes function like Radio buttons.

GLOB_LAYER : The layer to which the object has been
assigned.

GLOB_INTID : The internal ID created by ArchiCAD
(you can’t edit this).

GLOB_ID : The ID provided by the user in the object
settings box, in the Listing option.

GLOB_ELEVATION : Base height relative to the cur-
rent storey (not for windows/doors, they have their
own GVs).

Storey Information
GLOB_HSTORY_ELEV : Elevation of the Home sto-
rey (B_) that the object is currently placed on. This is
important if you have a staircase, and want it to show
on the home storey as the start of a flight, and on the
next as the end of the same flight.

GLOB_HSTORY_HEIGHT : Height of the Home sto-
rey. (Q_).
GLOB_CSTORY_HEIGHT : Height of the Current
storey in the Floor Plan window. (R~).
GLOB_CSTORY_ELEV : Elevation of the Current sto-
rey in the Floor Plan window. (Q~).
GLOB_CH_STORY_DIST : Relative position of the
Current storey to the Home storey. (S~).

Flythrough Information
GLOB_FRAME_NR : Current frame number in the
animation. (N_)
GLOB_FIRST_FRAME : First frame number in the
animation. (O_)
GLOB_LAST_FRAME : Last frame number in the ani-
mation. (P_). Quickest way to know if an model is ex-
periencing a flythrough is :

 IF GLOB_LAST_FRAME>0 THEN

Symbol Attributes
SYMB_VIEW_PEN : Default pen of the library part,
(L_) if you do not use object’s own pen.
SYMB_MAT : Default material of the library part, (M_)
if you do not use object’s own materials.
SYMB_LINETYPE : Default Line Type of the object
(if you didn’t use object own Line Type).

SYMB_FILL : Default Fill of the object (if you didn’t
use object’s own Fill) when cut in Section, and similar
considerations apply to the following GVs:
SYMB_FILL_PEN : Fill Pen. SYMB_FBGD_PEN : Fill
Background Pen. SYMB_SECT_PEN : Section Pen on
contours.
SYMB_VIEW_PEN : Default pen of the library part,
(L_) if you do not use object’s own pen.

Global Variables
could find most useful, with a minimum of commen-
tary. See some of the exercises to see these in active
use.

In early versions of ArchiCAD, Global Variables
were known by a single letter and a symbol, e.g. A_ or
T~. However, this has fallen into disuse and you are
advised to use the long names in case the old single
letters (which still work in AC8) get dropped in future
versions, or are not recognised by GDL engines like
the Web browser, GDL Adaptor, ArchiFM, Black Tur-
tle or something yet to come.

Global Variables

89Copyright Marmalade Graphics ©2004

Rotation of Object
SYMB_MIRRORED : Flag to indicate if D symbol is
mirrored in plan. (V~). This is useful if you have a
scripted 2D symbol, and want to ensure that Hotspots
and text in objects still appear the right way round and
in the right place, even when the symbol is mirrored.
When you tick the ‘mirrored’ checkbox in the Object
settings dialog, the 2D symbol and the hotspots will
be mirrored for you. However, you might want the
Properties script to know that the object has been mir-
rored – for example in specifying right or left handed
desking units in interior layouts.

SYMB_ROTANGLE : Rotational angle of the object.
(W~). No matter how you rotate the object, you can
straighten it out or straighten its text label – see the
Circle Grid.

Orientation Information
(if you set the Sun position in the Sun Dialog).
GLOB_NORTH_DIR : Project North direction (U~).
Force a North point to face North; set a solar panel or
shading device to animate during a flythrough.

GLOB_SUN_AZIMUTH : Direction of the Sun.

GLOB_SUN_ALTITUDE : Altitude of the Sun.

Windows / Doors
There are a HUGE number of Global Variables to do
with Windows and Doors, so that the windows or doors
can know the Wall thickness, materials, fill patterns
and pens, sill height and many more conditions. These
mostly begin with the prefix WIDO. They make the
GDL for windows and doors perhaps the most com-
plex GDL of all to write. They require further discus-
sion in the windows/doors section of the GDL Cook-
book.

More Global
Variables

MATERIAL SYMB_MAT : PEN SYMB_VIEW_PEN

MATERIAL M_ : PEN L_

Limitations to Globals
Library Parts are only that, they cannot see other objects.
Thanks to APIs in ArchiCAD, they may appear to be able to
do this, e.g. the way Rooflights find and cut the roof; Win-
dow and Doors cut walls; objects can use gravity to find a
Mesh, Roof or Slab surface. In most cases, these are things
you can only influence by your choice of Subtype.

Certain Certain things cannot be found from Globals
and may have to be found using the REQ and the REQUEST
commands.

Most globals are numbers; REQUESTs are for renum-
bers or strings. An example of REQUEST is current System
Time and Date, or the RGB of the Pen.

Camera Information
GLOB_EYEPOS_X, GLOB_ EYEPOS_Y, &
GLOB_EYEPOS_Z (K~, L~ and M~) tell the object
where the most recent camera is located.

GLOB_TARGPOS_X, GLOB_ TARGPOS_Y, &
GLOB_ TARGPOS_Z (N~, O~, P~) tell the object
what the camera is looking at – the ‘target position’.

SYMB_POS_X, SYMB_POS_Y, SYMB_POS_Z (X~,
Y~, Z~) tell the object where the object itself is in the
overall project.

Location Awareness : These GVs are useful for get-
ting objects to face the camera in a static perspective
view. They can change position as the camera ap-
proaches during a flythrough by recalculating their
position and that of the camera.

Global Variables: Location Aware Capability

IT is possible to give a certain amount of decision
making capacity to the object. If you run a flight

through the model, objects can react to the camera
position – if you ‘Rebuild each Frame’.

The location awareness algorithm can be applied to:
• 2D trees and human figures rotate to look full bodied to

the camera.
• The density of branches & leaves on trees can vary. Peo-

ple and car objects can simplify hugely when camera is
far. Complex objects like glazing fittings and louvres de-
cide not to draw, or turn off Shadows.

• Lights come on in rooms.
• Curved objects change their RESOL/TOLER value to

show more polygons when the camera is near, and re-
duce when it is far.

Do it with Global Variables!
The Location awareness routine uses Global Variables.
ArchiCAD tells GDL the Camera location and the Ob-
ject’s own location. By comparing the distance differ-
ences in X, Y and Z (a simple subtraction that works
whichever sector the model or camera is in), you use
a 3D Pythagoras calculation to reveal the real distance
dd from camera. dkx is the difference between the
GVs ‘K~’ and ‘X~’ – the object and camera positions
in the X direction. The same idea applied in the Y & Z
direction generates dly and dmz. See the example here.

An ArcTan (ATN) calculation reveals the Azimuth
(or direction) by dividing the X distance into the Y dis-
tance.

Global Variables

90 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Location Awareness Routine
!with camera global variables
!using the old letter system.

 dkx=K~ - X~:IF dkx=0 THEN dkx=0.001
 dly=L~ - Y~
 dmz=M~ - Z~

dr =SQR(dkx^2 + dly^2) !Plan distance
dd =SQR(dkx^2 +dly^2 +dmz^2)!Distance
azi=ATN(dly/dkx) !Azimuth

IF facecam THEN ROTz 90+azi-W~

When does it not work?
If there is no camera, e.g. in an axonometric or an
elevation, you need a ‘get-out-clause’ to set a false dis-
tance from the camera. This is to avoid a ‘divide by
zero’ error when calculating the azimuth. Thus the
variable dkx is given a tiny value of 1 mm.

The routine works with Sun Studies and Flythoughs.
Doors and Windows can open during an animation,
but must do so based on frame number. They do not
work correctly with ‘location awareness’ because they
subordinate themselves to the wall they are attached
to and you cannot write the routine for the wall.

Animate based on Distance/Angle or Time?
Other aspects of animation, such as wind turbines
whose blades turn, buildings stacking themselves up,
cars moving, human figures moving, sea undulating,
yachts heeling, Doors and Windows etc are better done
by using the global variable GLOB_FRAME_NR
(frame number in the animation) to determine the ac-
tion – which is equivalent to TIME.

Steal this routine!
This location awareness routine can be used again –
keep it in your Scrapbook. I have done a model where
EVERY GDL component was location aware to keep
the rendering workload under control. If the model is
a mile or more in size, you can completely hide ob-
jects too distant to be worth drawing.

Rebuild each Frame
This routine will work for still views with different cam-
era distances (after a ‘Rebuild’). To ensure that this
works during a movie flythrough, you need a REBUILD
EACH FRAME to happen during animation. This can
be enabled in the dialog box just prior to starting a
Flythrough.

Which Way is it?
Azimuth is a difficult calculation. Because objects could
be in positive and negative quadrants, this calculation
could result in inversion. There is an interesting and
complicated procedure for 100% accurate azimuth. Ap-
plied to people and tree objects, you do not mind if
objects flip 180˚ as that merely helps the randomness

The Eye positions K~, L~, & M~ can also be called
GLOB_EYEPOS_X, Y & Z, and the Object positions X~,
Y~ & Z~ can be called SYMB_POS_X, Y & Z. The
adjustment to dkx avoids a divide by zero error. If azimuth
is critical there is more to it than this, but this routine is good
enough for trees and people.

Location Aware Capability

Location Aware Capability, continued

!FINDING BEARING OF LINE - Master Script
dx=x2-x1
dy=y2-y1
hypo=SQR(dy^2+dx^2) !Hypoteneuse
sinq=dy/hypo
cosq=dx/hypo

!angla is the angle the line
!makes with the horizontal X-axis
IF dx=0 THEN

IF dy>0 THEN angla=90 ELSE angla=270
ENDIF

IF dy=0 THEN
IF dx>0 THEN angla=0 ELSE angla=180
ENDIF

IF dx<>0 AND dy<>0 THEN GOTO 121
GOTO 131

121:
angla=SGN(ASN(sinq))*ASN(sinq)
!to get angle between 0 & 90 degree only
IF SGN(sinq)= 1 AND SGN(cosq)= 1 THEN angla=angla
IF SGN(sinq)= 1 AND SGN(cosq)=-1 THEN angla=180-angla
IF SGN(sinq)=-1 AND SGN(cosq)=-1 THEN angla=180+angla
IF SGN(sinq)=-1 AND SGN(cosq)= 1 THEN angla=360-angla
131:

!Test of Frank's Azimuth algorithm
!2D Script
PEN ink

HOTSPOT2 0,0
HOTSPOT2 x1,y1
HOTSPOT2 x2,y2

CIRCLE2 0,0,0.1 !Origin

LINE2 x1,y1,x2,y2 !Line itself
CIRCLE2 x1,y1,0.02 !Start
CIRCLE2 x2,y2,0.01 !End

DEFINE STYLE 'angtst' 'Arial',4,8,0
 SET STYLE 'angtst'
 TEXT2 0,0,angla !Label
 ARC2 x1,y1,hypo,0,angla !AngleArc

to look more authentic. But if you need accurate rota-
tion, this routine from Frank Chin of Brunei provides
a fix. It is more complicated than the ArcTan of the
quick and easy method – but it works!

Frank writes: Below is the routine that I used for find-
ing the bearing of a line from Point 1 (x1, y1) to Point
2 (x2, y2). This can be adapted to be a subroutine to
calculate many different lines in a shape.

91Copyright Marmalade Graphics ©2004

Global Variables:
Storey Sensitivity

OFTEN an object needs to appear on other
storeys1, such as main beam lines, staircases,

ventilation ducts, drainage lines, lighting fittings etc. –
but you don’t want it to appear solid. Here is an exam-
ple of Storey Sensitivity, using a simple stretchy round
table.

GLOB_CH_STORY_DIST: it’s a Global!
On its own storey, the Global variable S~ (also known
as GLOB_CH_STORY_DIST) is zero. On other storeys
it’s a number e.g. 1 for the storey above, -1 for the sto-
rey below. So the object can be displayed on the home
storey in all its glorious detail, and on other storeys it
will show more simply using a linetype of the user’s
choosing.

Learn how to Define LineType
One thing you can introduce here is a ‘Calculated Line
type’. This could be based on a fraction of the circum-
ference of the table, in this case 1/36 of it – this gives
you a consistent line spacing regardless of the draw-
ing scale – the dotted line pattern will be the same at
1/50 or 1/200 scale. DEFINE LINE_TYPE is tricky
but the example here works. We define a Solid Line
first, then the more difficult dotted line. Of course the
Line weight is still subject to the scale of the drawing.

1 In UK spelling, ‘stories’ (pl. from story) are what you tell
your children at bedtime, and ‘storeys’ are what you call levels
in buildings.

 This routine will
guarantee that the

segments are
resized to fit your

object.

This dotted circle
has 36 segments

and gaps, but at the
end point, you

always get a double
segment. The
spacing is the

reciprocal of the
scale so it looks

right whatever the
drawing scale.

Here we convert
the defined

Linetype to a
numerical value
(an ‘index’) with

the IND()
statement.

Special line types
do not work unless
‘Use Object’s own

Line Types’ is
ticked

!Simple Table Object
!2D Script

PEN symb_pen

HOTSPOT2 0,0
HOTSPOT2 -A/2,0
HOTSPOT2 A/2,0
HOTSPOT2 0,-A/2
HOTSPOT2 0, A/2

DEFINE LINE_TYPE 'solid' 1,1,1
SET LINE_TYPE 'solid'

!Legs
IF GLOB_CH_STORY_DIST=0 THEN
!We are 'on home storey
FOR k=1 TO 4
 ROT2 k*90
 CIRCLE2 A/2-thk,0,thk/2
 DEL 1
 NEXT k
 ENDIF

!Table Top
IF GLOB_CH_STORY_DIST THEN
!We are 'Not at home'

 IF calclin THEN
 circum=PI*A !Circumference
 DEFINE LINE_TYPE 'tabl_lin' 1/GLOB_SCALE,
 2, circum/36,circum/36
 tablin=IND(LINE_TYPE,'tabl_lin')
 SET LINE_TYPE tablin

 ELSE

 SET LINE_TYPE lint
 ENDIF
 ENDIF

CIRCLE2 0,0,A/2 !Draw the Tabletop

!Simple Table Object
!3D Script

MATERIAL tablmat
PEN cont_pen

!Legs
RESOL 8
FOR k=1 TO 4
 ROTz k*90
 ADDx A/2-thk
 CYLIND zzyzx-thk,thk/2
 DEL 2
 NEXT k

!Table Top
RESOL 36
 ADDz zzyzx-thk
 CYLIND thk,A/2
 DEL 1

ROT2 -SYMB_ROTANGLE
HOTSPOT2 A*0.6,0, 1000,angl,4+128!Base

ROT2 angl
HOTSPOT2 A*0.6,0, 1002,angl,5!Move
LINE2 A/2,0,A*0.6,0
DEL 1

HOTSPOT2 0,0, 1003,angl,6!Centre
DEL 1

ROT2 -SYMB_ROTANGLE+angl
POLY2 5,7,
-A/2,-B/2,
 A/2,-B/2,
 A/2, B/2,
-A/2, B/2,
-A/2,-B/2
DEL 1

Global Variables:
Un-rotatable Object

THIS simple little object could be developed into
a Northpoint or Text box, where it cannot be ro-

tated by a normal Ctrl-E command.
Only the Angle Parameter ‘angl’ or its hotspots will
rotate it.

!The Un rotatable Object
!2D Script
!Can only be rotated by the hotspot angle changer

HOTSPOT2 0,0

Global Variables

92 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

CircleGrid
Parameter Arrays & Font scaling

CIRCLEGRID object can now be updated with
Parameter Arrays for the Arcs, and (as it was for

the Cabinet) this is very easily done with only small
changes to make. Then you can add hotspots for each
of the arcs, using a single subroutine for all.

Parameters and Master Script
Add in the new parameter of ‘arcd’ and hide or delete
the old ‘arcd1’ and ‘arcd2’. Add a text parameter of
‘commnt’

!CircleGrid with Hotspots
!2D Script additions

IF numarc THEN
LINE_TYPE linarc
FOR k=1 TO numarc
 ARC2 0,0, arcd[k],0,fan
 NEXT k
 ENDIF

!Show angular increment and sweep
IF shodat AND fontz THEN
 GOSUB 1050:!Hotspots for Text
 DEFINE STYLE 'angtext' 'Arial',fontz,1,0
 SET STYLE 'angtext'
 angstr=':'+STR(numang,3,0)+'@'+STR('%6.3dd',stang)+'='+STR('%6.3dd',fan)
ADD2 textx,texty
ROT2 -SYMB_ROTANGLE
 TEXT2 0,0, angstr
!Additional comment!
IF commnt>"" THEN
 TEXT2 0,-1.3*fontz*GLOB_SCALE/1000,commnt
 ENDIF
DEL 2
 ENDIF

END:!______________________________

!--------Replacement subroutine-------
1030:!Hotspots Arcs
FOR k=1 TO numarc
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,arcd[k],129
 hsid=hsid+1 !Move
HOTSPOT2 arcd[k],0, hsid,arcd[k],2
 hsid=hsid+1 !Vect
HOTSPOT2 -1,0, hsid,arcd[k],3
NEXT k
RETURN

!Add to Master Script for Parameter Arrays
IF numarc=0 THEN HIDEPARAMETER 'arcd'

FOR k=1 TO 10
IF arcd[k]<=0.01 THEN arcd[k]=0.01
NEXT k

We can hide the parameter ‘arcd’ if no arcs are re-
quired. More importantly, we need a routine to pre-
vent GDL trying to draw arcs with a radius of zero.
When you make new parameter arrays, zero is their
value. This routine protects the object from errors.

2D Script
We now have an easy FOR NEXT loop to draw all or
any of the arcs. If you are editing the old CircleGrid,
delete the previous arc drawing routine in favour of
this one. The Hotspot subroutines for the arcs can be
replaced by this simple one that is sufficent for all the
hotspots on all the arcs.

There is no change to the first part of the original
Text routine which used the GV: SYMB_ROTANGLE.
We have added one more parameter, ‘commnt’ which
allows the user to display a title. This gives an oppor-
tunity to show another use of GVs. The font size is
given in terms of plotting millimeters, and we need to
calculate the leading – a safe downward distance for
the second text line.

Multiply the millimetre font height by the
drawing scale. Dividing this by 1000 gives us
a final height in Metres. Multiply this by 1.3

to get a comfortable leading between each
line.

CircleGrid: Parameter Arrays

93Copyright Marmalade Graphics ©2004

The Cabinet
Enhance the 2D: Text & Hotspots

THIS Cabinet can be a more serious object with
some text labelling, and 2D Hotspots for the open-

ing of the drawers. Although one might not need to
invest such a humble item of furniture with all this
capability it’s a good vehicle for learning GDL basics.
Read this and use these routines for any object you
want to add labelling to.

Later we can add dimensions and highly varied
forms of 2D representation, to help in the design and
manufacturing process – configuration using GDL!

Parameters
Add a whole raft of extra parameters. Amazingly, noth-
ing more is required in the Master Script – we can use
these directly in the 2D Script. If you make this a
subtype (I recommend ‘Storage’) then you will get a
lot of Archi-FM parameters. For now you can click
the little X next to them and hide all. We can put a
small ValueList for the Fonts in the Parameter Script.

 !Parameter Script
 VALUES ‘font’ ‘Arial’, ‘Verdana’, ‘Times’

User-editable Font Sizing
In the CircleGrid we used Plotting size for the text,
which is in millimetres. For the Cabinet we can use
another way (hints of AutoCAD...) – sizing the text to
real world dimensions, so they stay with the cabinet.
We have a safeguard to hide the text if the scale gets
smaller than 1/100, using the Global Variable
GLOB_SCALE. We also want a Hotspot routine to
make the text height and positions user-editable. The
Hotspots are on the first lines of the script. The pa-
rameters for the text position are hidden in the Param-
eter Table so that Hotspots are the only way to relo-
cate the text.

We need two Define Style routines for the main title
and the minor lines of text. In this case, the display of
the current Layer and timber detailing style could be
very useful, and we also have an Optional Label for
you to add an extra comment.

Text options
As the User can select a number of items to display in
the label, we use Boolean parameters to select them,
and then a routine in the 2D Script to set out the lines
of text so that there are no gaps if one of the lines is
omitted. We also want to be able to rotate the Cabinet
to place it anywhere in the plan, but still have the lines
of text horizontally oriented – so we must always ro-
tate the text to counter the object’s rotation angle.

2D Enhancement
We can also show the drawers opening and shutting.
This is not necessary for such a cabinet, but it’s an-
other lesson in GDL 2D scripting and hotspots. Indi-
cator lines over the Poly can indicate the timber styl-
ing of the cabinet.

!Cabinet with Drawers
!2D Script

GOSUB 1000:!Hotspots for outline
GOSUB 1020:!Hotspots for Drawers

HOTSPOT2 A/2,B/2
PEN gs_symb_pen
FILL gs_fill_type
POLY2_B 5,7,gs_back_pen,gs_fill_pen,
 0,0,1,
 A,0,1,
 A,B,1,
 0,B,1,
 0,0,-1

IF ts THEN !Indicator lines
 LINE2 0,bthk1,A,bthk1

ELSE
 LINE2 bthk1,0,bthk1,B
 LINE2 A-bthk1,0,A-bthk1,B

ENDIF

The distance of the Hotspots from the top left corner tells you if
it’s a lower, middle or higher drawer. Try the object on the CD.
No matter how you rotate the object, the text always remains
upright.

Add in the Hotspot
subroutine for the

drawers.

The indicator lines
just overlay the Fill

showing if it’s Office
or Bedroom style –

using the flag ‘ts’.

The Cabinet: 2D enhancements

94 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Drawer lines
FOR k=1 TO numdraw
ADD2 0,B
 POLY2 4,1,
 0,0,
 0,drw_opd[k],
 A,drw_opd[k],
 A,0
 DEL 1
 NEXT k

!Labelling Routine
IF labl AND GLOB_SCALE<101 THEN
PEN gs_text_pen
 ADD2 0,-fsiz*0.35
 GOSUB 1050:!Hotspots for Text
 GOSUB 1060:!Hotspots for Fontheight
 DEL 1
DEFINE STYLE 'txtbold' font,

fsiz*1000/GLOB_SCALE,1,1 !Bold
DEFINE STYLE 'txtnorm' font,

fsiz*1000/GLOB_SCALE,1,0 !Normal
SET STYLE 'txtbold'

ledg=1.2 !leading distance
ln=-ledg !Starting value:line number
 ADD2 txtx,txty
 ROT2 -SYMB_ROTANGLE

IF globid THEN !ID
ln=ln+ledg
 string=GLOB_ID
 TEXT2 0,txty-fsiz*ln,string

ENDIF

SET STYLE 'txtnorm'

IF globlayer THEN !Layer
ln=ln+ledg
 string='Layer:'+GLOB_LAYER
 TEXT2 0,-fsiz*ln,string

ENDIF

IF labdetl THEN !Detailing
ln=ln+ledg
 string=timstyl
 TEXT2 0,-fsiz*ln,string

ENDIF

IF labdraw THEN !How many drawers
ln=ln+ledg
 string=STR(numdraw,2,0)+' Drawers'
 TEXT2 0,-fsiz*ln,string

ENDIF

IF labopt THEN !Optional Comment
ln=ln+ledg
 string=optlabl
 TEXT2 0,-fsiz*ln,string

ENDIF
DEL 2
ENDIF

END:!===========================

!Add these Subroutines to the 2D Script
1020:!Hotspots for Drawers
FOR k=1 TO numdraw
ADD2 k*A/11,B
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,drw_opd[k],129
 hsid=hsid+1 !Move
HOTSPOT2 0,drw_opd[k], hsid,drw_opd[k],2
 hsid=hsid+1 !Vector
HOTSPOT2 0,-1, hsid,drw_opd[k],3
DEL 1
NEXT k
RETURN

1050:!Hotspots for Text Location
 hsid=hsid+1 !Base
HOTSPOT2 0,txty, hsid,txtx,129
 hsid=hsid+1 !Move
HOTSPOT2 txtx,txty, hsid,txtx,2
 hsid=hsid+1 !Vector
HOTSPOT2 -1,txty, hsid,txtx,3

 hsid=hsid+1 !Base
HOTSPOT2 txtx,0, hsid,txty,129
 hsid=hsid+1 !Move
HOTSPOT2 txtx,txty, hsid,txty,2
 hsid=hsid+1 !Vector
HOTSPOT2 txtx,-1, hsid,txty,3
RETURN

1060:!Hotspots for Fontheight
ADD2 txtx,txty
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,fsiz,129
 hsid=hsid+1 !Move
HOTSPOT2 0,-fsiz, hsid,fsiz,2
 hsid=hsid+1 !Vector
HOTSPOT2 0,1, hsid,fsiz,3
DEL 1
RETURN

These are open (unclosed)
Polygons to indicate each

drawer.

The IF statement includes a
safeguard to stop the Cabinet
printing out the text if it’s in a
general building layout plan –

this could be a user definable
limit.

Include a
routine for the

Font sizing
Hotspots.

Two similar
text styles are

defined,
normal and

Bold.
We are using
a leading of

1.2. Each
option

increments a
flag ‘ln’ for

line number.
If the option

is not
required, the
lines appear

to close up
tidily.

Some of the
strings are
created by

concatenation
before they

are sent to the
TEXT2

statement.

As there are 10
drawers, we can’t

go wrong by
basing the hotspot
spacing on 11ths.

With parameter
arrays, the entire
set is done in one

subroutine.

The Text location
is the same as for

the CircleGrid.

The Font sizing
routine is very

useful, copy and
use it on many of

your objects.

Multiply, don’t Divide!

PROCESSORS find it much easier to multiply than to
divide. To divide once can take perhaps 32 cycles of a

processors time, whereas a multiplication can take 1, 2 or
4 cycles, depending on which processor we are talking
about, and whether it is optimised for floating point or
integer. So although it may be easier on the eye to write
an expression like 'LET len=wid*3/4', it may process faster
in the form 'LET len=wid*0.75'. If you have to divide by 3,
then you should trust the machine, I would always write
prime number division in the form ‘wid/3’.

Seriously, the time difference would only matter on ex-
tremely long scripts or slow machines. You are better off
writing efficient code, by using polylines and clear struc-
ture, and by reducing the polygon count on surfaces.

Rendering – Speed

IF the project is large, photorendering often appears
faster than 3D drawing, analytic or raster. Before em-

barking on a VR walkabout or a flythrough animation or
series of pictures, ArchiCAD tries to draw a 3D of the most
recent camera used – which can take ages. It does this for
good reasons – it is, in effect, performing an integrity check
on the whole model to make sure that there are no ob-
jects, pictures or textures missing.

Therefore, set up one 3D camera facing away from
the model in Raster mode (so that it draws nothing), and
immediately after, proceed with the VR or Flythrough. It
will start with the rendering almost immediately.

Subroutines in the Master Script

THIS is supposed to be impossible – because to have a
subroutine you need to have the END statement to pre-

vent the program execution running into the subroutine.
You can’t do this because the Master Script is so powerful
that it will do what you say! Well if you are a believer in
the idea of structured programming, it is possible. If you
have a line at the very end of the script like 999999:!End,
you can have a GOTO 999999 in the Master Script which
will behave like an END statement.

One drawback of this is that your line numbers must
not be ones that are likely to be used in any of the other
scripts. So you should number your subroutines with high
numbers like 100011:, 100021:, 100031: etc.

Build a Cabinet: enhanced 2D

95Copyright Marmalade Graphics ©2004

Attribute Definitions
DEFINE LINE_TYPE

LINE_TYPE sizes are like Font height in defining
style. The dimensions in the DEFINE statement

are the actual segment length as drawn by your plot-
ter, nothing to do with the dimensions of the objects
they are drawing..
Syntax: DEFINE LINE_TYPE “name” spacing factor, number
of line parts, length1, length2, etc etc

DEFINE LINE_TYPE is tricky because of drawing
scale issues – so make the spacing factor the recipro-
cal of the Global Variable for Drawing Scale.

Please consult the GDL Help pages for more detail
on LINE_TYPE. A quick definition for a Solid line is
DEFINE LINE_TYPE 'solid' 1,1,1 because it only needs
one line part.

You could use the Master Script to build some material definitions if you wanted clean primary coloured mate-
rials.

!Master Script
IF NOT(stretchy) THEN LOCK 'A','B','ZZYZX'
DEFINE MATERIAL ‘blak’ 4, 0.1,0.1,0.1
DEFINE MATERIAL ‘whit’ 4, 1,1,1

We do not need special materials for the Fireplace, but here is an early glimpse of a Material definition –
DEFINE MATERIAL name, type, Red, Green Blue.

Get Properties: Read the script
ONE useful trick available to Windows users is
the Get Properties function – available to right click-
ers on GSM icons. You get the preview and basic info,
as you would expect. More amazingly, because the
scripts are contained in resources, Windows will tab
up each resource and reveal the contents of the scripts,
and you can drag a mouse through them and copy
script to the clipboard. Unfortunately, Mac OSX users
can only envy this, the most they can do is view the
preview image.

If this doesn’t work, it may be that your GSM files
are thought to be a form of Video, which shares the
same suffix. With right-click Open As... you can tell it
which application you want the file to belong to and it
will remember for later.

It would be great if GS and MS could collaborate
so that the ‘Get Properties’ also included a 3D object
browser, so that objects appear as they do on the web.

Get Properties; LineType

96 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

DEFINE FILL can be a nightmare as you have to
define Fill patterns in binary, valuing each dot, and then
in lines. The same command also includes routines to
define the fill by vectors. But then if you don’t have a
fill, all your objects could have transparent 2D sym-
bols and look wrong. So you may have to get by with
the standard fills.

But it’s very useful to be able to script a perfect solid
and white fill. Here are a few useful routines for mak-
ing white, black and grey fills. In other cases you can
have a user parameter, asking the user to specify the
fill for the 2D symbol. For this definition, the number
of zeroes is very important.

Attribute Definitions
DEFINE
PARAMETERS for Fills, Materials and Lines etc

can be provided by the user in the Parameter Ta-
ble. But there are times when the GDL writer has to
use DEFINE. Only a Masochist could possibly enjoy
DEFINE FILL and DEFINE LINE_TYPE; but DE-
FINE STYLE and MATERIAL are essential and de-
sirable parts of your GDL. Once defined, you can com-
mand GDL to use a Style, Material etc, by the com-
mand SET. In fact, you do not need SET; just saying
MATERIAL followed by the name will be sufficient.

DEFINE STYLE is essential if any TEXT2 is to be
included in a 2D symbol – followed by the SET STYLE
command.

It is even more important if you have more than
one line of text, and if you intend to print or plot the
plans, because you can control the position of the text,
and the font plotting and printing height.

Once you start 2D scripting you will write DEFINE
STYLE statements so often that you will be able to
remember the syntax without difficulty.

Size: Most dimensions in GDL are assumed to be in
Metres, but this is one odd case where font height pro-
duced by the plotter has to be defined in millimetres
(even in the USA) For this reason, when you state the
font size in the parameter box, you must use use pa-
rameter type ‘real number’ or ‘integer’, and not use
the ‘length’ , because ‘length’ could be changed by the
dimensional settings of the project. If font size is not
stated, the TEXT or TEXT2 will not appear.
Anchor defines the position where the text starts writ-
ing. If you use ‘1’, it will be left justified, and above the
point of text entry. If you use 2, it will be centred, and
if you use 3 it will be right justified. Larger numbers
change the vertical position of the text. It’s like the
keypad of a touchtone phone.
FaceCode is simply whether the text is plain, italic,
bold etc. Codes are:
0=Normal, 1=Bold, 2=Italic, 4=Underline, 8=OutlineOutline,
16=ShadowShadow. You can combine the numbers e.g. 3=Bold
Italic.

DEFINE MATERIAL enables you to carry mate-
rial qualities with your GDL object so that, when
dropped into someone else’s model in another coun-
try, it will still have the correct colour and appearance.
People often tweak their materials in AC and then de-
fault material index numbers change. ‘Whitewash’ and
‘Stainless Steel’ may have disappeared... Mercy!

In my Motorist object, it is vital that red tail lamps
and indicators look right, and that the white bodywork
of the police car does not look grey. The tail-lamps
change from reflective red in daylight, to brightly emit-
ting red when the lights are turned on.

GDL has long highly detailed ways to define mate-
rials. For now, we can look at the short definition, which
is based on RGB values. You can make use of
predefined surface qualities, like ‘Plastic’(4) so try this
simpler definition:

2: Matte: non reflective, horrid.
3: Metal: shiny but non reflective, too dark.
4: Plastic: not shiny, but reflective – the Best!
5: Glass: transparent (with colour) – OK!
6: Glowing: with colour (doesnt work properly).
7: Constant: utterly horrid! no shading

!Example of a long definition, type 0
DEFINE MATERIAL "Bright_Metal" 0,
0.84, 0.83, 0.85, !Surface RGB
0.95, 0.10, !ambient, diffuse
0.95, 0.0,!specular,transparent
57, !shining
4, !transparency attenuation
1,1,1,!Specular RGB
0.0, 0.0, 0.0, !Emission RGB
0.0 !Emission attenuation
shmat=IND(MATERIAL,"Bright_Metal")

!Example of a short definition, type 4
DEFINE MATERIAL "anodiseframe" 4,
0.84, 0.83, 0.85 !Surface RGB

!The “don’t bother” definition
MATERIAL 0: PEN ccol

Fill Patterns
Quick fill patterns for bitmaps are as follows:
DEFINE FILL ‘whit’ 0, 0, 0, 0, 0, 0, 0, 0,
 0,0,0 ! totally white fill, note it’s 11 zeroes
DEFINE FILL ‘blak’ 255, 255, 255, 255, 255, 255, 255, 255,
 1,0,0 ! totally filled fill
DEFINE FILL ‘grey50’ 85, 170, 85, 170, 85, 170, 85, 170,
 1,0,0 ! 50% filled fill
DEFINE FILL ‘grey25’ 85, 0, 170, 0, 85, 0, 170, 0,
 1,0,0 ! 25% filled fill
DEFINE FILL ‘tiled’ 64, 192, 192, 192, 192, 192, 255, 255,
 1,0,0 ! 3D tiled effect

If you don’t bother, and just make the material zero,
the pen colour becomes the material, but it’s a horri-
ble matte (type 2) quality.

Attribute Definitions

97Copyright Marmalade Graphics ©2004

ZZYZX
Vertically Stretchy Parameter

ONE innovation since ArchiCAD 6 was to permit GDL
users to provide a quick way to enter heights of ob-

jects without having to open the settings box. ‘zzyzx’ is the
parameter for height. If you use zzyzx as the magic height
parameter, ArchiCAD will give special treatment to it includ-
ing making it stretchy in the 3D view, and extending the 2D
hotspots to the height of zzyzx.

I wrote to Laszlo Vertesi of Graphisoft to ask how ‘zzyzx’
came about because I guessed that the inspiration may have
come from the famous computer game ‘Collossal Cave’??
Maybe it was the password to get from the Sapphire room
back to the House in the Forest??? (and back down again)
Laszlo Sparing of R&D at Graphisoft-HU replied,
“Dear David, I was the fool who suggested this stupid name
for this standard parameter. Sorry, no computer game, only
a short visit to the City of Casinos after a conference. I looked
for a unique name which doesn’t make any old library part
obsolete. Names like Z, ZZ, ZVALUE, ZPARAM etc. can be
used anywhere in the ArchiCAD world, but I hope that zzyzx
is strange enough, and that’s why ideal for the above goal.”
What is ZZYZX? – it’s a small town in California halfway
between Las Vegas and Baker; close to the Nevada border
in the Mohave Desert about 3 miles south of the main high-
way – on the edge of the dried up Soda lake, next to the
very dry Soda Mountains. Its main street is “the Boulevard
of Dreams”.

I have actually driven a car through the Mojave desert
from LA to LV, and although I didnt see that sign, I noted
that there is a lot of wierdness out there – and it doesn’t
surprise me if there’s someone trying to make their town
the last in the alphabet. You may see ZZYZX from 35000
feet if you fly from London Heathrow to LAX on a clear day,
about ten minutes after you pass over Las Vegas.
You can enter a VR panorama of the Zzyzx road at:
http://www.virtualguidebooks.com/SouthCalif/
 MojaveDesert/MojaveRiver/ZzyzxSpringsRoad.html
You can see and read more about Zzyzx on the GDL Alliance
website at: http://www.gdlalliance.com/GDL_Rocks/
blvd_of_dreams.html

Do you need zzyzx?
Since Graphical Hotspots came in with ArchiCAD 8.x, there
is less need for ‘zzyzx’ unless you want a single easy number
to update in the settings box. If you have a more complex
object with many parts, you will want to write a separate
graphical hotspot routine for many of the components ub
the object which have a height value. In this case, I often
write a routine in the Master Script of:
PARAMETERS zzyzx=0: HIDEPARAMETER ‘zzyzx’
to make sure that it’s clear that it cannot be used, and to
remove irrelevant hotspots from the object’s 3D view.

View of ZZYZX and Soda Lake, and the signpost at the centre.
(photos: Thomas Dalbert)

I want to go there sometime

ZZYZX – the full story

Why not Zala?: Having travelled in Hungary, I am somewhat astonished that the Hungarian
team should have chosen ZZYZX, as Hungary is graced with dozens of placenames starting
with Z, including the river Zala, and towns like Zador, Zabar, Zajk, Zajta, Zanka,Zirk, Zok, Zsira,
Zsurk, Zics, Zomba, Ziliz, Zsana, and even Zavod.

98 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

The Cabinet
GDL as a configuration & assembly assistant

WITH a minimum of coding, you can transform
an object like our Cabinet to provide a range of

construction drawings using the power of the
PROJECT2 command, with its interesting parameters.
So we can add four more parameters: for instructions,
for 2D view type, drawer opening condition and 3D
cutaway. Make ValueLists for the first three.

Short Instructions Manual / User Information
The first, ‘instruct’ is an example of providing instruc-
tions or information to the user in an easy way. Apart
from writing good clear parameter descriptions, we
thought the only way to get information to the user is
to write a full blown User Interface? Well no, this
method is a middle way. It can be quite wordy, and it is
easily edited if you think of more to add later. Morever,
it’s a good way to provide instructions/info even as
part of a scripted User Interface, since it avoids all the
problems of lengthy Outfield statements and the idi-
osyncratic word-wrapping and font-sizing and platform
issues. As this isn’t going to be used in other scripts,
it’s OK to put in the Parameter Script, along with the
fontmenu.
 !Parameter Script
 VALUES 'font' 'Arial','Verdana','Times New Western'
 VALUES 'instruct' 'This cabinet is a demonstration of',
 'GDL in manufacturing configuration. For GDL,',
 'it includes parameter arrays, graphical hotspots,',
 '2D scripting, 2D projections, texture mapping.',
 'Copyright, David Nicholson-Cole 2004.'

2D Viewing options
Think of the views you might want in an assembly or
construction drawing. PROJECT2 gives you a good
range of orthographic and parallel 3D views. It’s a pity
that it doesn’t include a perspective view. The above
graphic shows how it might look. The self labelling in
the previous version of the Cabinet comes in perfectly

here.
The idea is that the user

configures their perfect furniture
solution in Floor Plan and 3D.

Please remember that we are really talking about
more serious products like kitchen furniture, luxu-
rious wardrobes, office suites. This little cabinet
is serving as a teacher of techniques for more
complex real world problem solving. Having
configured the perfect solution, the user does a

‘multiply’ of the object alongside for as many views as
they want. They move the duplicates to a 2D layer (so
as not to confuse a scheduler into thinking the cus-
tomer wants eight more cabinets). Change each cabi-
net to the 2D view of their choice. Each object labels
itself with the correct view (neat feature) without any
work by the user. We can include a Sectional view by
providing a Cutplane command in the 3D Script. In
fact with the ‘cutway’ parameter, any of these projec-
tions can be of cutaway views. If we had space, addi-
tional views might be the underside view, the alterna-
tive side elevation (if the object is non symmetrical), a
section in the other direction, and a front elevation
with a choice of doors open or closed (if it has doors).

Can it get better than this?
For a more systematic manufacturer, a single GDL
object could make all these 2D assembly drawings in
the one object and distribute them tidily on the sheet.

Build a Cabinet: enhanced configuration

Remember you should have the 3D hidden
for all but the top right, or you will have

nine 3D cabinets in your model!

99Copyright Marmalade Graphics ©2004

!---
!Additions to Master Script Cab 7
!working out different drawings for construction
tw0='Plan'
tw1='Rear Elevation'
tw2='Front Elevation'
tw3='Side Elevation'
tw4='Frontal Axo'
tw5='Isometric'
tw6='Mono Axo'
tw7='Side Section'
VALUES 'twodraw' tw0,tw1,tw2,tw3,
 tw4,tw5,tw6,tw7
IF twodraw=tw7 THEN cutway=1

VALUES 'optlabl' CUSTOM, twodraw !Self Labelling

!Temporarily shut the drawers
cd0='Customize Drawers'
cd1='Close Drawers'
VALUES 'drw_opnshut' cd0,cd1

 IF drw_opnshut=cd1 THEN
 FOR k=1 TO 10
 drw_opd[k]=0

PARAMETERS drw_opd[k]=0
NEXT k
ENDIF

PARAMETERS drw_opnshut=cd0 !Restore to ‘Customize’

Master Script
Create the first ValueList as shown; it must be in the
Master Script so that the 3D and 2D can make use of
the results. The remaining two could be in the Param-
eter or the Master scripts.

If the view is to be a sectional cut, we set the
‘cutway’ Flag for the cutting. so that it would only hap-
pen in the 2D symbol or in GDL, but not in the 3D. For
GLOB_CONTEXT, 1 is the GDL editing environment
and 2 is for the 2D symbol drawing.

A very neat trick with ‘optlabl’ is that if you put the
result of the ‘twodraw’ into a ValueList, it becomes
the default value. The simple act of placing the object
and configuring the 2D makes it self labelling, but still
allows the user to adapt the label.

In some views, the user would like to have the draw-
ers shut, so the ‘drw_opnshut’ ValueList gives them
that option, and a little loop runs to shut all the draw-
ers. Then the parameter is restored to ‘customize’.

Set the ‘cutway’
flag if the chosen

view is a
Sectional view.

Neat trick for
labelling!

Shut the drawers,
then return the

option to
‘Customize’.

!Cabinet with Drawers
!3D Script

PEN gs_cont_pen

IF cutway THEN
 ADDx MAX(bthk1+bthk2*3,A/3)
 ROTy -90
 CUTPLANE
 DEL 2
 ENDIF

GOSUB 1000:!:Hotspots Vertical
GOSUB 100:!Cabinet main shape
GOSUB 200:!All Drawers

IF cutway THEN CUTEND

END:!============================

!Cabinet with Drawers
!2D Script

HOTSPOT2 0,0
 IF twodraw=tw0 THEN GOSUB 100:!Plan shape
 IF twodraw=tw1 THEN PROJECT2 4,270,2
 IF twodraw=tw2 THEN PROJECT2 4,90,2
 IF twodraw=tw3 THEN PROJECT2 4,180,2
 IF twodraw=tw4 THEN PROJECT2 6,90,2
 IF twodraw=tw5 THEN PROJECT2 7,90,2
 IF twodraw=tw6 THEN PROJECT2 8,90,2
 IF twodraw=tw7 THEN PROJECT2 4,180,2

GOSUB 110:!Labels

END:!===========================

If there is a
sectional view, the

CUTPLANE is
activated, as is the

CUTEND.

2D Script: short and sweet
Put almost all of the previous routines of the 2D Scripts
into two subroutines. We only want the plan if plan
view is selected. We only want one hotspot now, for
the origin-corner. Now we can enable all of the re-
maining views using easy one line IF-statements.

3D Script: even shorter!
All we need to do is to provide a Cutplane routine that
will move inboard by just more than the thickness of
the drawer sides and display a 3D Cutaway of the cabi-
net.

The executive script is now as short as you can get
it – the cutting routine is best left up here, not as a
subroutine. Subroutines are meant to be stable ‘quasi-
objects’, but a Cutplane routine is like a lighted match
– waiting for the Cutend.

Attribute Definitions: IND()

IND() provides an index number for a Material, Text
Style, Texture, Line_Type or Fill. Mostly these can

be specified by name in the form of a string, but there
are times when they have to be specified by number.
IND() does this conversion for you.

In a MATERIAL statement, it helps to specify a ma-
terial by its index number, not name. In a Material defi-
nition you need to specify a previously defined Fill or
Texture by its index number – so you need IND().

It is most useful where you think that users have
tweaked their materials library and changed some of
the default numbers. For example, IND(MATERIAL,
“mypaint”) will guarantee getting the ‘mypaint’ you de-

fined, whereas MATERIAL 18 might get a quite differ-
ent result if someone has re-used 18 for a type of brick.
You can use it to do the same if users have tweaked
their Linetype and Fill numbers.

When you make your own material in GDL using
the DEFINE command the new material gets allocated
a number by ArchiCAD. To be sure, type in:

MATERIAL IND(MATERIAL,‘dnc_brick’)

A new Material definition using a Texture called
‘woolly_carpetTX’ might be written:

DEFINE MATERIAL ‘woolly_carpet’ 22,
red, green, blue, 0,61,
IND(TEXTURE,‘woolly_carpetTX’)

Build a Cabinet: enhanced configuration

100 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

The Cabinet: Explode the 3D GDL!

Simulating the explosion

ONE does not do this for fun! It has a serious use,
extending the power of the GDL to generate con-

struction and assembly drawings from a custom
configured object. This makes the ideal drawing for
flatpack quick assembly constructors – all we need now
is some tiny GDL screws to complete the package.

The 3D and all the 2D drawings in the previous sec-
tion can be exploded at the will of the user. All you
need is an ‘explode index’ as above, and then to apply
that to all the parts. We could also improve the
Hotspots on the various 2D representations.

Parameter and Master Scripts
Add the two parameters, and add these lines to the
scripts:
 !Master Script : Cabinet 8 additions
 xpld=xplod*xplinx !Set degree of explosion

This sends a value to the 3D so must be in the Master
Script, but the statements below are purely about pa-
rameters and can be in the Parameter Script.
 !Parameter Script : Cabinet 8 additions
 !Set or Hide Explode index
 VALUES 'xplinx' 0,1,2,3,4,5,6,7,8,9,10
 IF xplod=0 THEN HIDEPARAMETER 'xplinx'

3D Script
The changes all occur in the Subroutine 100 to make
the cabinet. We could also explode the drawers, if we
wanted to take it further.

We insert ‘xpld’ values in all directions outwards,
including downwards for the floor and plinth. Most of
the movements are easy, but we have to do some tricks
with the roof to make sure there’s enough to explode
all the drawers too.

By setting 11 levels of explosion, we make the best
looking explosion as value 4, and allow the user to
vary the degree expansion from zero to 10, either side
of 4. The decisions on the mini-distance values for

!Modify the Cabinet 3D Subroutine
100:!Cabinet main shape
!Side Panels
MATERIAL cab_mat
ADDx -xpld*0.1
 BLOCK bthk1,B-ts*bthk1,zzyzx-ts*bthk1 !Left
 DEL 1
 ADDx A-bthk1 +xpld*0.1
 BLOCK bthk1,B-ts*bthk1,zzyzx-ts*bthk1 !Right
 DEL 1
txdir=2:GOSUB 999:!Texture

!Back panel
MATERIAL con_mat
 ADD bthk1, -xpld*0.1,plinh
 BLOCK A-bthk1*2, bthk2, zzyzx-bthk1-plinh
 DEL 1

!Roof/Worktop
MATERIAL cab_mat
 ADD bthk1*(1-ts),0,
 zzyzx-bthk1 -xpld*0.08+xpld*0.05*numdraw
 BLOCK A-bthk1*2*(1-ts),B,bthk1
 DEL 1

!Floor
MATERIAL cab_mat
 ADD bthk1,bthk2, plinh -xpld*0.1
 BLOCK A-bthk1*2,B-bthk2-ts*bthk1,bthk1
 DEL 1

!Plinth
MATERIAL cab_mat
 ADD bthk1,B-plind-bthk1, -xpld*0.125
 BLOCK A-bthk1*2,bthk1,plinh
 DEL 1
txdir=0:GOSUB 999:!Texture
RETURN

The roof height is dependent on the number of drawers. The
roof goes down to the floor, then up by the number of
drawers (plus a bit).

explosion are a matter of judgement. If they look OK
with index 4, just check that they look OK with level 1
and 10 before saving the object.

These mini-distance
values are a matter for

your judgement, with the
explosion index of 4 or 5.

Build a Cabinet: enhanced configuration

101Copyright Marmalade Graphics ©2004

!Cabinet with Drawers
!2D Script

HOTSPOT2 0,0 !They all have this one
 IF twodraw=tw0 THEN GOSUB 100:!Plan shape

 IF twodraw=tw1 THEN !Rear Elev
 PROJECT2 4,270,2
 HOTSPOT2 A,0
 ENDIF

 IF twodraw=tw2 THEN !Front Elev
 PROJECT2 4,90,2
 HOTSPOT2 -A,0
 ENDIF

 IF twodraw=tw3 THEN !Side elev
 PROJECT2 4,180,2
 HOTSPOT2 -B,0
 ENDIF

 IF twodraw=tw4 THEN !Frontal axo
 PROJECT2 6,90,2
 HOTSPOT2 -B*COS(45)/2,-B*COS(45)/2
 HOTSPOT2 -B*COS(45)/2-A,-B*COS(45)/2
 ENDIF

 IF twodraw=tw5 THEN !Isometric
 PROJECT2 7,90,2
 HOTSPOT2 -B*COS(30),-B*SIN(30)
 HOTSPOT2 -(A+B)*COS(30),-(B-A)*SIN(30)
 ENDIF

IF twodraw=tw6 THEN !Monometric Axo
 PROJECT2 8,90,2
 HOTSPOT2 -B*SIN(30),-B*COS(30)
 HOTSPOT2 -B*SIN(30)-A*COS(30),
 -B*COS(30)+A*SIN(30)
 ENDIF

 IF twodraw=tw7 THEN !Section
 PROJECT2 4,180,2
 HOTSPOT2 -B,0
 ENDIF

GOSUB 110:!Labels

END:!===========================
! The rest remains unchanged....

The Cabinet: Explode the 3D!

Improve the 2D Hotspots
We have to elongate the IF statements in the 2D Script
to include some additional Hotspots. This is easy
enough for the orthographic views, but requires some
trigonometry to work the hotspots into the 3D projec-
tions. The Axonometrics and Isometrics work on an-
gles of 45˚ and 30/60˚ so it doesn’t take long to get
the Hotspots in the right place.

For the different 2D projections, the text might be
in an inconvenient place for an AC7 GDL writer. Now,
with Graphical Hotspots, you can allow the user to
reposition and resize the text without difficulty.

Anything else?
Self dimensioning, and output of the panels to 2D for
further output to DWG or G-Code would complete the
whole trick!

The diagram
shows the 60/30/
90 triangles which
help you work out
the hotspot
locations.

Reflections on GDL: the Genome
Object Project

KIMON Onuma, president of the GDL Alliance promotes
the idea of GDL as analogous to the genome: DNA is a

compact (but complex) molecule that contains all the data
and rules necessary to construct the organism it represents
– in nature this is for constructing living creatures. The hu-
man genome has found a way to make 6 billion people all
different, but mostly following similar rules (number of arms
and legs, head location, reproductive mechanisms).

In the artificial human world we can see examples
of growth and form and evolution following rules. Greek
Architecture is an example: from a simple set of con-
struction and decorative rules originating from prehis-
toric timber construction, it went on to be used, ex-
tended and re-interpreted: first by the Greeks, then the
Romans, the Byzantines, the Islamic world, with reviv-

als at regular intervals, such as the Renaissance, Baroque,
Rococo, Soanian, Greek Revival, Edwardian, Imperialist neo
classical and even Post-Modern!

In this world we try to find better and better ways of
encoding construction information to construct anything
from microchip to ships and skyscrapers.

GDL has the ability to provide data and rules for numer-
ous permutations of essentially the same object. Smart Ob-
ject Technology even includes an evolutionary cycle: as more
tools are added, the writers of GDL get smarter and so do
the objects they make.

With a UI and Graphical Hotspots, one single GDL object
can contain all the Kitchen Cabinets of a manufacturer’s
range, including configurations that do not exist but can be
user-customised. The GDL object can permit additional small

variations – the result being millions of permutations.
In nature, starting with the code in a single cell, a repro-

ductive mechanism starts the process of cell division, and
by taking on nutrients and oxygen and surviving in an
environment becomes a vastly larger complex organism –
like a human being. In GDL, 10 or 50k of smart code can
flourish in the environment of ArchiCAD using the GDL
drawing and rendering engine to construct virtual mod-
els of infinite variety.

Build a Cabinet: enhanced configuration

102 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

LET’S just dimension the Plan view so that when
the cabinet is configured, the user gets direct feed-

back, and their construction drawing is even more
useful. Why put the user through dimensioning the
drawing if the GDL can do it?

Reflection: GDL as a configurator
This GDL object is in a sense a prototype for a whole
production technology in furniture making. If we take
the object further and make more use of macros (ex-
ternal GDL files called by the script), the subroutines
100 and 200 could contain different cabinet and drawer
designs, we could add subroutines for doors and han-
dles and slider designs.,

The GDL Genome idea
We could make this object a sort of DNA molecule for
a whole family of furniture. The routines which make
the menus for 2D representation, configuration and
dimensioning and labelling would be need very little
alteration to accommodate designs for a Bed or a Ta-
ble or anything that works with A, B or zzyzx. This
approach can also be applied to windows and doors
which demand a high level of modularity due to the
many varations of user choice – I have worked on a
window design that allows a zillion variations based
on one procedure for configuring the casements.

Adding the Dimensions
First of all, in the Master Script we should add an ex-
tra option for the 2D view, a ‘true view plan’, so that
we can have a view of the exploded object that is in
keeping with the other exploded drawings. We will
apply dimensions to the plan and side elevations only.
We could dimension subsidiary parts of the elevations
and sections (plinth, drawers) if space permitted.

Dimension lines, witness lines
When the dimensions are shown, they all need to be a
certain distance from the object and must fit the draw-
ing well – so the user must be able to position the di-
mension, and pull them into shape with GHs. Make a
new parameter called ‘dimdis’ for dimension distance.
As this could be used for plan and elevations, we can
make a Parameter Array, so that all dimensions are
stored in one parameter – even if they are applied to
elevations and sections. Taking it further, you might
consider linetype and pen, and the design of the
crosshair. We’ll use a small overshoot, and circles – if
space permitted I could add more intersection styles.

Text considerations
You should also consider parameters for dimensioning
pen and text size. A fully developed product could
also have a routine to rotate dimension text so that it
is always the right way up on the drawing. It also needs
to truncate the dimension text to a controlled number
of decimal places and offer a choice of metric or im-
perial. Dimensions in GDL are always in metres, but if
we are to offer the user the range of choice that Archi-

The Cabinet: Dimension and Reflection

CAD offers, we need to borrow the techniques from
the earlier Dimensioning Tool and use String format-
ting to make the texts suit the user’s requirements.

Master Script and Parameters
Create the parameters we have discussed above. The
font size will be a real world dimension, not a plotting
height. In the Parameter Script, we can hide the pa-
rameters that are not needed if there are no dimen-
sions to be shown. This is optional, we didn’t do it
with the labels. The ValueLists need to be written into
the Master Script because we make use of the vari-
ables and flags such as ‘dun0’ and ‘fp’.

!-- Cabinet 9 additions to Parameter Script --
IF NOT(shodim) THEN HIDEPARAMETER 'dim_pen',
 'dim_ins','dim_fsiz',
 'dim_ovr','dim_fpos','dim_unit'

!-- Cabinet 9 additions to Master Script --
ch0='Circles'
ch1='Crosshair'
VALUES 'dim_ins' ch0,ch1
chd=dim_ovr*0.3 !Crosshair half dimension

dun0='Metres'
dun1='Millimetres'
dun2='Feet+Inches'
dun3='Inches'
VALUES 'dim_unit' dun0,dun1,dun2,dun3

VALUES 'dim_fpos' 'Above','Centre','Below'
IF dim_fpos='Above' THEN fp=8
IF dim_fpos='Centre' THEN fp=5
IF dim_fpos='Below' THEN fp=2

Build a Cabinet: enhanced configuration

You can dimension something after it is made using AC’s
dimensioning tools. But smart objects should do it for you!

103Copyright Marmalade Graphics ©2004

540:!Convert dimension to correct units
IF dim_unit=dun0 THEN string=STR('%0.3 m', paradm)
IF dim_unit=dun1 THEN string=STR('%0.1 mm', paradm)
IF dim_unit=dun2 THEN string=STR('%0.8 ffi',paradm)
IF dim_unit=dun3 THEN string=STR('%0.2 di', paradm)
RETURN

550:!Dim lines X
GOSUB 1070:!Hotspot dimension distance
 LINE2 -dim_ovr,dimdis[d],
 paradm+dim_ovr,dimdis[d]
 LINE2 0,-dim_ovr, 0,dimdis[d]-dim_ovr
 LINE2 paradm,-dim_ovr,paradm,dimdis[d]-dim_ovr
 GOSUB 580:!Crosshairs etc
RETURN

551:!Dim lines Y
GOSUB 1071:!Hotspot dimension distance
 LINE2 dimdis[d],-dim_ovr,
 dimdis[d],paradm+dim_ovr
 LINE2 -dim_ovr, 0,dimdis[d]-dim_ovr ,0
 LINE2 -dim_ovr,paradm,dimdis[d]-dim_ovr,paradm
 GOSUB 581:!Crosshairs etc
RETURN

580:!Crosshairs etc for dimension X direction
IF dim_ins=ch0 THEN
 CIRCLE2 0,dimdis[d],chd
 CIRCLE2 paradm,dimdis[d],chd
ELSE
 LINE2 -chd,dimdis[d]-chd,chd,dimdis[d]+chd
 LINE2 paradm-chd,dimdis[d]-chd,
 paradm+chd,dimdis[d]+chd
ENDIF
RETURN

581:!Crosshairs etc for dimension Y direction
IF dim_ins=ch0 THEN
 CIRCLE2 dimdis[d],0,chd
 CIRCLE2 dimdis[d],paradm,chd
ELSE
 LINE2 dimdis[d]-chd,-chd,dimdis[d]+chd,chd
 LINE2 dimdis[d]-chd,paradm-chd,
 dimdis[d]+chd,paradm+chd
ENDIF
RETURN

!Add these Graphical Hotspot routines
1070:!Hotspots:Dimension distances Y direction
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,dimdis[d],129
 hsid=hsid+1 !Move
HOTSPOT2 0,dimdis[d], hsid,dimdis[d],2
 hsid=hsid+1 !Vector
HOTSPOT2 0,-1, hsid,dimdis[d],3
RETURN

1071:!Hotspots:Dimension distances X direction
 hsid=hsid+1 !Base
HOTSPOT2 0,0, hsid,dimdis[d],129
 hsid=hsid+1 !Move
HOTSPOT2 dimdis[d],0, hsid,dimdis[d],2
 hsid=hsid+1 !Vector
HOTSPOT2 -1,0, hsid,dimdis[d],3
RETURN

!Cabinet with Drawers
!2D Script

HOTSPOT2 0,0
IF twodraw=tw0 THEN
 GOSUB 100:!Plan shape
 GOSUB 500:!Dimensioning Plan
 ENDIF

 IF twodraw=tw00 THEN !Plan Trueview
 PROJECT2 3,270,2
 HOTSPOT2 A,0
 HOTSPOT2 A/2,B/2
 GOSUB 500:!Dimensioning Plan
 ENDIF
 !--------------------

The remainder of the script as far as the END
statement is unchanged. Subroutine 500 governs the
dimensions.

 END:!===========================

500:!Dimensioning Plan
IF shodim THEN
PEN dim_pen
DEFINE STYLE "diasty" font,
 dim_fsiz*1000/GLOB_SCALE,fp,0
SET STYLE "diasty"

d=1:paradm=A
 GOSUB 550:!Dim lines X
 GOSUB 540:!Format string
 ADD2 A/2,dimdis[d]
 ROT2 -SYMB_ROTANGLE
 TEXT2 0,0,string
 DEL 2

d=2:paradm=B
 GOSUB 551:!Dim lines Y
 GOSUB 540:!Format string
 ADD2 dimdis[d],B/2
 ROT2 90-SYMB_ROTANGLE
 TEXT2 0,0,string
 DEL 2
ENDIF
RETURN

2D Script
This whole routine is only carried out if dimensions
are chosen. Although we are only doing the Plan di-
mensions here, we need to think ahead. We can write
a general routine that will cover any dimension and
any parameter in the X direction, and do the same for
a dimension and parameter in the Y direction. Any
dimension in the Z direction in 3D is also going in the
Y direction in the 2D. We can use a ‘d’ counter to de-
cide which dimension is being stretched by the
hotspots.

We also want to ensure that the dimension is read-
able no matter how the object is rotated so use a Glo-
bal Variable to straighten out the text.

We use a general variable ‘paradm’ so that the rou-
tine can be used for any dimensions in the X or Y di-
rection for the text and line lengths and intersections.

The Cabinet: Dimensions

Build a Cabinet: enhanced configuration

128 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

What are IFCs?
INDUSTRY Foundation Classes are a system of classifica

tion of information about components and element in
the building industry – designed to improve the building
and design and manufacturing processes by defining a
common language for construction between software ap-
plications. The project is driven by the International Asso-
ciation for Inter-operability (IAI). Graphisoft are fully com-
mitted to IFCs, because at its heart the IFC idea revolves
around the principle of the Virtual Building or BIM (Build-
ing Information Model). GS have pioneered this for over
20 years and can only benefit by supporting the move-
ment – although, at the time of writing, it seems Autodesk
are ignoring IFCs. GS have been developing Archi-FM for
several years, and IFCs are essential to managing facilities
based on a project model. Correct use of IFC classification
for objects reduces the risk/uncertainty factor in design
and management of biuldings. GDL technology gives GS a
head start in the IFC movement, because it has been an
object-oriented approach from its beginning.

What do you need to do to ensure that your GDL li-
brary parts are IFC compatible? At this stage you must
ensure that you select the correct subtype for your object.
If you are making Windows or Skylights, you have no choice
– but it is possible to apply the correct subtype even if you
are only making general 3D objects, such as a chair, table
or storage unit. If you select a subtype, GDL will place into
the parameters table a number of pre-organised param-
eters (in blue font) which you are advised to use. For ex-
ample, if you and everybody else uses ‘gs_frame_mat’ for
the frame material in a Window, then you are giving your
object a longer life in the future by providing compatibil-
ity.

It is most valuable in this multilingual world to have a
IFC, a system which crosses the boundaries of country and
language. For example, an object defined as ‘Seating’ will
be seen as such by every regional version of ArchiCAD,
even if it is a library object called ‘sedia’ or ‘chaise’. Some
APIs have to operate on libraries, and they will now rec-
ognise subtypes, whatever their language.

If you are into serious GDL, for manufacturing, you can
define your own subtypes, using the ‘template’ checkbox
in GDL.

If you wish to know more, just GOOGLE with “Industry
Foundation Classes”.

Quality Control: Finishing
WHEN you have made an object or a library for

others to use, put it through a series of tests to en-
sure that it meets good standards. If you wish to transfer
an object or a library of objects to another user, the safest
way is to save it as an PLA Archive. If your object has mac-
ros and associated image files, they will be included. You
should tick the Options button to see what else is in-
cluded. Avoid including all of the loaded libraries or your
archive file could exceed 100megabytes!!! Only include
Textures if you have special ones. If your objects use nor-
mal ArchiCAD textures, untick the textures checkbox.

It’s annoying that you can only save an archive in the
version you are in. If you wish to send someone an object
library say in version 8.0 from 8.1, save the PLN file as an
8.0, open it in 8.0, then save as an archive from 8.0.

If you use the student version of ArchiCAD you cannot
send someone (outside the world of education) an planfile
or an archive, so put the .GSM files and any other little
macros or GIFs into a ZIP file and send that.

Let’s assume that you have saved the floor plan cor-
rectly with the library into an archive. Transfer it by floppy
or zip or email to a different platform, Mac or PC, to make
sure that the whole thing unpacks correctly on the other
machine. The library objects should have been saved in
the correctly named folders and they should all show cor-
rectly in the newly created floor plan.
• View the floor plan. Check that the objects are there.
Look for coloured dots (missing objects). You can write an
instruction text file into the floor plan on the use of the
library. You could label each object, and put boxes round
groups of related objects. Objects which have more than
one 2D representation or 3D configuration should be placed
enough times to show all the versions.
• Check the ‘Missing Library Parts’ list to make sure that
you haven’t lost any. Check that you haven’t included li-
brary parts that you didn’t want included.
• Ensure that your Plan file is clean (not having wierd
personalised materials or pens). You could upset your end
user because they will get your settings.
• Check the settings of each object to reassure yourself
that the parameter descriptions look right, are in the right
language and that the 3D view displays correctly.
• If you have edited the object’s GDL a lot, delete it and
place it again in the floor plan so that its database entry in
ArchiCAD is refreshed, before you archive it.
• Check that all objects have an icon in the browser (if
not, they need a Preview image).
• Make sure you have saved each object with sensible
default values.
• Delete ‘cache’ and other unwanted binary files like .gs&
files. If your library objects have to work in listing, then
run some listings to check that they display correctly.
• Delete section/elevation views from the floor plan. These
inflate file size alarmingly.
• Don’t send .GSM files directly in email, they often lose
their preview image or subtype definition – very confus-
ing! On PCs, they may be treated as movie files!
If you are quite happy, you could now re-archive the file,
put it in a ZIP archive, and it is ready for sending to the
recipient.

129Copyright Marmalade Graphics ©2004

Professional Standards in GDL
Can GDL be a profession?

IT’S a good point at which to ask how far we (or
others who learn it) can take GDL. The normal ar-

chitectural work you do may not be demanding enough
to need all these GDL skills, but you may still see a
purpose in continuing with GDL – to build investment
objects for your office, to sell your objects to others,
or to work with a manufacturer on a product range.

Manufactured products – this is a major area
where GDL should go to. ArchiCAD users and Graph-
isoft would like GDL to be a world platform for 3D
object description. Every manufacturer who now thinks
that it is essential to have their products in DXF should
now be thinking about having the same range of prod-
ucts available to ArchiCAD and AutoCAD users in the
form of GDL. This will help to get their product speci-
fied. When they see the reality of Smart, Parametric
objects, they would benefit from using GDL. But they
may only see this if there is pressure from Users. Don’t
wait for Graphisoft to do this, do the asking yourself !
Many of their existing DWG/DXF libraries can easily
be adapted to GDL with a bit of smartness and
modularity on the part of the GDL author.

A single GDL object can contain dozens, or even

Developing GDL Professionally

IF you are a developer these are what you
should aim to achieve. If you are a customer,

these are what you should expect.
• Select the correct Sub-type classification and use
standard GS-recommended parameter names.
• Structured scripting: scripts should debuggable
and logical, capable of being repaired, extended, up-
dated by you or by others.
• Signed and dated: scripts should identify the au-
thor (if you take responsibility for your work), date of
creation and all subsequent amendments.
• Maintainable in future: should be documented
with comments for each stage of the script.
• Economical LOD: object renders quickly with
fewest polygons, and it’s quicker to write.
• Scale sensitive LOD: in 2D and 3D – smart.
• Consider 3D wireline view: should draw cor-
rectly on a pen plotter, not just look good in 3D render.
• Stretchy: stretchy objects are more user friendly,
but they should NOT stretch if the objects are required
to have fixed size.
• Appropriate Hotspots: intelligent 2D and 3D
hotspots make it easy for the user to pick up, identify,
snap and stretch (don’t rely on the bounding box!).
• Graphical editing hotspots: allow GDL objects
to be manipulable, e.g. opening doors, turning knobs.

millions of configurations of a product, just as we have
explored in a modest way with the GDL cabinet with
drawers. The power of GDL as a Configurator for
custom manufacturing is perhaps the most signifi-
cant change that GDL can bring.

GDL needs a new class of user – GDL should be
available in a form separate from ArchiCAD. It should
be available to lower paid technical staff who just want
to do GDL. Graphisoft cannot expect a new class of
dedicated GDL technicians to appear from nowhere,
all capable of paying thousands of dollars for the whole
of ArchiCAD when they just need a development en-
vironment. Something like the student version would
achieve this. Trained GDL writers could write better
and more professional products than inspired archi-
tectural dabblers.

The GDL Alliance, formed in 2000, is committed
to developing GDL as a professional activity. The defi-
nition of achievement levels, the promotion of GDL
as a programming language, the enabling of the crea-
tion of a new technician class of GDL writer – these
are all part of that mission.

• Cascading grouped parameters: Group them
into logical groups: Materials, Pens, 3D config., 2D etc.
• User Interface: your object will look more like an
API with its extra level of quality – but this quality will
take a lot of time to design and write.
• Preview window: a 128x128 pixel image in the
Preview window box will give you a nice browser icon.
• Comment: provides your object with a URL.
• 2D Scripted: objects must not only be good in 3D,
they must be quick to draw, look good in the floor plan,
and be scale sensitive, have good hotspots.
• Correct 2D and sectional lines, fills etc.: looks
correct in plan view, and when viewed in section.
• Self scaling, self orienting labelling: versatile.
• Error correcting: prevent crashes or non appear-
ance of the object. Correct errors, if the user enters
bad data, or use ValueLists to guarantee good data.
• Include Material definitions: so your objects are
portable between countries and versions.
• Property: descriptor and components – essential
for schedules. The manufacturer needs this.
• Dimensional environment: objects must work
when used in any measurement system.
• Libraries organised: so you can find objects –
group windows, doors, stairs, macros etc. logically in
their own folders. Use sensible names that do not rep-
licate existing library parts.

130 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Advanced 3D

TUBE+TUBEA Mental Health
Warning!

TUBE causes more grief that most – because if you don’t
get it right, you get error messages. Once you under-

stand it, though, you may find yourself typing in TUBE scripts
with confidence. My solution is to use a series of PUT state-
ments first to ensure that one major source of syntax er-
rors is removed.

However, the way that the sectional outline is drawn in
TUBE is verging on the irrational. It is supposed to follow
the ‘looking from above’ rules of the other 3D elements.
But then it jumps about the origin once the location points
are entered. It works more reliably if the direction of the
tube is mainly horizontal. A lot of trial and error may be
involved to get it right. Circular tube profiles always work
well.
A BODY -1 com-
mand before and
after the TUBE is
advisable.

Phantom Start and End
In this script, a little ball has
been placed at the Phantom
Start & Phantom End points

to illustrate the principle.

TUBE works out its own
mitres, and wierd things
happen if you start trying
to twist the section. For
safety, always use a mitre/
twist value of zero.
In this example, I have
used the mysterious
command called BODY -1
which does an integrity
check on the 3D form. It’s
a lifesaver with TUBE
which can often display
irrational errors.

!Display Phantom points
MATERIAL 0
 ADD 0,0,p*7
SPHERE 0.01
 DEL 1
 ADD 0,0,-p
SPHERE 0.01
 DEL 1

!TUBE Demonstration
!Syntax:- TUBE n,m,mask,
! section-> u1,v1,s1,...un,vn,sn,
! pathway-> x1,y1,z1,twistangle1,...
! ->...xn,yn,zn,anglen
LET p=0.05 !one pixel

BODY -1
TUBE 4,5+2,63,
 0,0,0,
 0,p,0,
 p,p,0,
 p,0,0,
 0 ,0 ,-p ,0, !phantom start
 0 ,0 ,0 ,0, !real start
-p ,0 ,p*3,0,
 p*2,0 ,p*4,0,
 0 ,0 ,p*5,0,
 0 ,0 ,p*6,0, !real end
 0 ,0 ,p*7,0 !phantom end
BODY -1

Note, here, the use of ‘p’
to save having to type in

many zeroes.

TUBE
TUBE is a profoundly useful command. You can

draw a profile through a series of X-Y-Z points in
3D space, thus creating complex frameworks without
having to use Trigonometry. TUBE does its best to
work out a mitring solution at each change in the path-
way (sometimes not very well).

TUBE Profile
With TUBE, you define the 2D outline/profile, just as
you do in Extrude or Poly2.

TUBE Pathways
You define a number of path points that the section
must pass through – as in Sweep. At each joint, GDL
mitres the junction.

Design Problems
Because the Mitring and Rotational angle can be set
with each joint, TUBE requires a Starting and Ending
Direction, so it knows how to treat the start and end
surfaces.

So you must position a ‘Phantom Start’ and ‘Phan-
tom End’ point. This will correctly mitre the start and
end of the tube object. You need to type in some ex-
amples to appreciate quite how it works. The example
here puts a black ball at each phantom point.

The Pathway is defined in XYZ locations – a bit like
in Sweep. In Sweep, the section changes by the same
scale and angle change, and moves from XYZ point to
XYZ point. In Tube, the section remains constant, but
you can have a different twist angle, at each mitring
opportunity.

TUBE works best if the section is kept simple, and
is axially centred on the origin – like a cylindrical or
rectangular profile.

Masking: 1=Base surface, 2=End surface, 16=Base edges,
32=End edges, 64=Cross section edges visible

One trick you can do is to lay out a Fill in plan, save
it as a temporary 2D library object, and then steal the
XY locations, copying and pasting them to the 3D
Script to form the profile points for a TUBE command.
You could also use a Line tool dragged into the 2D
window to give you the path points for the Tube. This
is how the Add-On ‘Profiler’ works.

TUBE is by far the easiest way to
accomplish complex lattices like this. As

TUBE only needs to know the XYZ
locations of the ends, you do not need

to move or rotate the cursor

Advanced 3D

131Copyright Marmalade Graphics ©2004

Hot MESH Tip!

If you precede the MESH command
with a MULy -1 then the script and

the object will be the same way up,
and it is easy to enter heights (even
though the top left corner is now at
the origin).

Notice that the grid is rectangular, but if a surface within a rectangle of the mesh is not planar, it is divided into
two triangles, and thus can be rendered as two planar surfaces. With triangular subdivisions, ANY surface,
however complex can be rendered. It could be quite useful for doing a site, but you cannot drill holes in it, or
increase local detail, or vary its outline. The MASS command is more useful for sites, and permits irregular
shapes and allows holes to be drilled.

Above – it appears inverted
Below – it now appears corrected
with the MULy -1 command

!MESH Demonstration
MESH 15,12,6,5,63,
 1,0, 0, 0,0,0,
 0,0,-1, 0,0,0,
 0,0,-1,-1,0,0,
 1,0, 1, 2,2,2,
 1,2, 4, 7,6,4

!MESH Demonstration

MULy -1
MESH 15,12,6,5,63,
 1,0, 0, 0,0,0,
 0,0,-1, 0,0,0,
 0,0,-1,-1,0,0,
 1,0, 1, 2,2,2,
 1,2, 4, 7,6,4
DEL 1

MESH
M ESH – is limited by being

applicable to rectangular enti-
ties only.

However, it is easy to use, as you
only need to enter the Z -height of
each point. Write the mesh out with
all points zero at first. Set them out
with the same grid as the ‘n’ and ‘m’
factors. Then try tweaking some
points upwards to reshape the terrain.
Although almost obsolete as a 3D
shape, it is an ideal use for parameter
arrays.

As you view it in the script &then
in the 3D View, the positions of the
meshes appear inverted. The bottom
left on the mesh is the top left in the
script. The top right of the mesh is the
bottom right in the script. It is as if
you were viewing it from upside down.

Start off with a flat mesh (all the
heights at zero), then tweak the
points up and down.

!MESH Demonstration
!Syntax: MESH a_width,b_length,
! m,n,mask,
! z11,z12,z13,z14,..z1m,
! z21,z22,z23,z24,..z2m,
! ...zn1,zn2,zn3,zn4,..znm
MESH 15,12,6,5,63,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0

Masking: 1=Base surface, 4=Side surface,
16=Base & side edges, 32=Top edges,
64=Top edges & surface rough.

TUBEA
ARCHICAD has a TUBEA com-

mand. It’s different from TUBE,
in that there is no Twist Angle in-
volved at each junction; it is not bet-
ter than TUBE, just different.

The section defined is drawn onto
the YZ plane using the same syntax
as REVOLVE (which has to be drawn
onto the XY plane), and is ‘extruded’
along the X axis. The section defined
is the section at the mitres, so there
seems to be a danger of the actual
linear section changing erratically
along its length if the pathway is mov-
ing a lot.

A good feature is that if you leave
the section description unclosed, it
will force the section to ‘grow’ down-
wards to meet the XY plane, like a wall
of changing height.

PEN 1
MATERIAL 'surface-whitewash'

PUT -1.0,1.4,0,
 0.0,2.8,1,
 1.2,1.5,1,
 1.2,1.0,1
profpts=NSP/3

PUT -1,0,0,
 0,0,0,
 2, 1, 1,
 3, 1, 1.6,
 4, 1, 1.6

pathpts=(NSP-profpts*3)/3

TUBEA profpts,pathpts,63,GET(NSP)

TUBEA needs phantom points just like TUBE, so the example here
shows the finished object, and the phantom points in wireline. Phan-
tom start and stop points tell the object how to mitre its ends.

The routine uses PUT & GET, profpts and pathpts and is a classic way
of doing TUBE and TUBEA with the lowest risk of errors. This method
ensures that you know where the definition of the profile ends and
where the pathpoints begin.

Masking: 1=Base surface, 2=End surface, 16=Base
edges, 32=End edges, 64=Cross section edges visible

132 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Use this method!
I have evolved a fairly unburstable routine for do-
ing COONS successfully, and very rarely get an er-
ror using this method. Try this one out.

NOW we come to one of the most in-
triguing 3D Commands of all – COONS. I used

to theorise that this meant something like Coordinated
Network Surface, but when I asked Graphisoft, it turned
out to be named after a mathematician called Robert
Coons who is admired by the programming team!

By defining the XYZs of the cornersand
edgepoints of a rectangular object, GDL will try to
work out all the in-between locations; the whole sur-
face will be rendered as a myriad of small triangles. It
can therefore adopt any shape.

The overall object need not be an exact Rectangle
– it just requires 4 corners (so that it is ‘quasi-rectan-
gular’), and almost anything can happen in between.
GDL interpolates and smooths all the points over the
surface.

More complex surfaces can be made up with tiles
of COONS elements. Sometimes the edge points are
determined by mathematical procedure, not by guess-
work, so for this you MUST use the PUT statement.

63 is the best mask, 127
reveals the triangles, and can

be written as 63+64

!COONS Demonstration
!Syntax:- COONS n,m,mask,
! all XYZs from Point 1 to 2
! all XYZs from Point 4 to 3
! all XYZs from Point 1 to 4
! all XYZs from Point 2 to 3

COONS 2,2,63+64,
 0.0, 0.0, 1.0, ! 1 to 2
 0.0, 2.0, 1.5,
 2.0, 0.0, 0.7, ! 4 to 3
 2.2, 2.4, 1.9,
 0.0, 0.0, 1.0, ! 1 to 4
 2.0, 0.0, 0.7,
 0.0, 2.0, 1.5, ! 2 to 3
 2.2, 2.4, 1.9

COONS
Freeform surface making

Masking: 4=1st boundary edge, 8=2nd boundary edge, 16=3rd
boundary edge, 32=4th boundary edge, 64=Top edges & surface
rough. Even in AC8, none of these maskings seem to work cor-
rectly except 64. It seems impossible to control 3D line representa-
tion. If you make a complex surface from several COONS tiles, the
viewer can see how you have tiled it.

The example here happens to have
an XY location of 0,0. You don’t

have to move the cursor to the start
of the command.

!COONS Demonstration!COONS Demonstration!COONS Demonstration!COONS Demonstration!COONS Demonstration
COONS 3,2,63+64,
 0.0, 0.0, 1.0, ! 1 to 2
 -0.1, 1.0, 1.1,
 0.0, 2.0, 1.5,

 2.0, 0.0, 0.7, ! 4 to 3
 2.3, 1.2, 1.1,
 2.2, 2.4, 1.9,

 0.0, 0.0, 1.0, ! 1 to 4
 2.0, 0.0, 0.7,

 0.0, 2.0, 1.5, ! 2 to 3
 2.2, 2.4, 1.9

Inserting additional pairs of XYZ
points in the COONS makes the

mesh more shapely – the more you
put in, the smoother the result.

Hot Tip!
Do it with PUT & GET

C OONS statements can get very long and
 increasingly complex. The same applies to MASS.

Once this happens the chance of errors increases.
By using a series of PUT statements to ‘build’ the coons

or mass, and by using an NSP statement to define the
number of points on the surface, you will have greater
freedom to interpolate edge points.

I also use PUT and GET for most Prisms and Tubes – it
reduces syntax errors.

OK! so COONS looks terrifying. But if you take
 the gradual systematic approach demonstrated

here, you can get COONS to be useful for you. It is
the only way to do smooth interpolated surfaces in
ArchiCAD.

!COONS Demonstration!COONS Demonstration!COONS Demonstration!COONS Demonstration!COONS Demonstration
COONS 3,3,63+64,
 0.0, 0.0, 1.0, ! 1 to 2
 -0.1, 1.0, 1.1,
 0.0, 2.0, 1.5,

 2.0, 0.0, 0.7, ! 4 to 3
 2.3, 1.2, 1.1,
 2.2, 2.4, 1.9,

 0.0, 0.0, 1.0, ! 1 to 4
 1.0,-0.2, 1.0,
 2.0, 0.0, 0.7,

 0.0, 2.0, 1.5, ! 2 to 3
 1.1, 2.2, 1.4,
 2.2, 2.4, 1.9

Start with the corners only:
If you follow the rigorous discipline of Points 1 to 2,
Points 4 to 3, Points 1 to 4, Points 2 to 3, then you will
be able to use COONS successfully.

Once it works, then insert the interpolated points
along the edge. Don’t forget to increase the stated
number of points on the first line of the statement.

Advanced 3D

133Copyright Marmalade Graphics ©2004

The difference between COONS and
MASS in a Nutshell

COONS makes a skin, and requires you only to
describe the edges of a surface and it tries to in-

terpolate all the other points – sometimes producing
excellent results – but sometimes it smooths the sur-
face in a way that you do not like. If the surface is too
complex in shape to tolerate smooth interpolation
because it has more complex detail (pointy bits), MASS
will allows you to be more prescriptive about the ex-
act height of points, in addition to making skins or
solid objects – but then you will not get the smooth
interpolation. Both are difficult to write.

MASS has the advantage that you can build it in
ArchiCAD’s normal project window with the

MESH tool, then copy it to GDL and edit to its final
form. COONS can only be built the hard way. MASS
permits holes to be drilled, or plateaux to be formed
with ease.
MESH: How does MESH compare with these? Don’t
even think about it! Very few things in the 3D world
are perfectly rectangular, but worse, you have to cal-
culate every blessed point height in the MESH.

MASS
MASS is good. MASS is very good. It is the GDL equiva-

lent of the Mesh tool, and forms a surface from a
number of X-Y-Z node locations by resolving the resulting
surface into triangles. It is a great help for surface and site
making. Triangulation is calculated automatically by GDL.
Like the Meshtool, it can only make surfaces that can be
seen from above, i.e. has no tucks or curls in it.

A neat trick is to use the mesh tool direct in AC to get the
basic shape worked out, then you can edit the details of the
resulting MASS script in GDL. With some thought, you could
generate new shapes with MASS such as trigonometrical or
random surfaces or points with graphical hotspots, an inter-
esting adventure to try some time.

After the opening lines of materials and masking, you
first define the XYZ nodes in the boundary. Then, if you
have any points within the surface, you define them as a
series of small ‘ridges’ or single points, each ending in a -1
masking code. As the ridges are added, the whole surface
responds with yet more triangles to ensure that the whole
surface will shade. By playing with the object mask, you can
also show or omit the side wall (skirt) or the base, and in-
voke object smoothing.

MASS topmat, botmat, sidemat,
numbextpoints,numbintpoints,mask,skirtheight,
xe1,ye1,ze1,se1,...xen,yen,zen,sen, list of external points,
xi1,yi1,zi1,si1,...xin,yin,zin,sin, list of internal points

The XYZ’s of Holes are considered to be ‘ex-
ternal points’, but they need a minus 1 after the
external shape, as in PRISM_holes.

The end of the definition of the perimeter is
marked by a masking code of -1, and the later
XYZ definitions are ridges or points – also each
ending in a -1. The overall object masking code
(here, 32) can decide if the sides or bottom are to
be displayed, or if the object is to appear smooth
in renderings.
Object Masking: 1=Show base, 4=Show skirt, 16=Show
edge lines for base and skirt, 32=Edge lines for top are vis-
ible, 64=Top edges visible, top surface is not smooth.

LOFTER
No, sorry, LOFTER

does not exist. But it
ought to. If you had a
LOFTER command which
was a combination of
RULED, TUBE and SWEEP,
how happy we would be.

The syntax would be to
state the number of points in the
section, the number of pathway
points, and then a sequence of
Skin polygon definitions, and angle.
The function would then skin the
results to form a shape. My friend
Oleg Shmidt has written a GDL
Macro called LOFTER that does
just this, although it is complex to use.
Let’s hope Graphisoft adopt something like LOFTER
in a future edition.

134 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

EVERY element in ArchiCAD’s toolbox has its
2D or 3D equivalent in GDL. You can find out

which by laying out elements in the ArchiCAD Floor
Plan and dragging them to a GDL Script window.
• Walls become XWALL_{2}
• Roofs become CSLAB_
• Floors become CPRISM_
• Beams become BEAM
• Columns become CPRISM_
• Mesh becomes MASS
• Fills and Polylines become POLY2_B{2}
• Line becomes LINE2
• Spline lines become SPLINE2A
• Texts become TEXT2
• Circles become CIRCLE2
• Hotspots become HOTSPOT2
• Objects, Lamps and stairs dragged into GDL be-

come CALLs. Some of these are already covered.

What of the WALL and related 3D GDL?
My view is that these are are near impractical to write
in creative GDL scripting, even though it might be
worth the work of tweaking them if they appear as
part of editable script. If you need to make anything
with XWall, for example, I would draw something as
near to what I wanted first in ArchiCAD – including
roof and window cuts – then tweak the result.

Most parametric objects, however complex, can
more easily be done with workarounds using prisms,
cutpolys and SGC. Boolean operations (Solid Geom-
etry Commands SGC) make more complex 3D possi-
ble. For this reason, the GDL CB does not go into de-
tail on the walls, nor on the CROOF. If you have read
this far in the GDL CB, you will have enough courage
to read the sections on the manual with a more ana-
lytical approach.

Strangely, GS spend pages detailing the use of ad-
ditional GDL commands that are only likely to be used
in autoscripting – VECT, PIPG, NODE for example. As
The manual has the tendency to fall open at these
pages (like buttered toast landing on the carpet), it’s
no wonder that some newcomers to GDL snap the
book shut again!

CWALL_ and bWALL_ and XWALL_
These are commands to generate wall shapes with cuts
and holes. BWALL adds parametric curvature to the
CWALL. XWALL and its extended version XWALL_{2}
allows greater complexity altogether – including para-
metric Log walling capability, varied planform, cham-
fered sills etc.

VERT, COOR, BASE, BODY
These are very important commands in Texture map-
ping and deserve their own section in the GDL CB.

More 3D GDL Elements
EDGE, PGON, PIPG & TEVE
These commands are vital to imported Autoscripted
objects, but of no use to creative GDL – they are not
even friendly to those who like to tweak. If you im-
port DXF files, you get the code condensed into pages
of scripted garbage using these commands. So while
it’s useful to have a way of interpreting DXF imports,
I very much doubt if you will use them for making
new objects.

ARMC, ARME
These derive from the earliest days of GDL – which
started out as a piping design tool for early designs of
nuclear powerstations.

ARMC allows you to make a cylinder with a concave
curved end that can fit cleanly against another pipe of
the same or larger radius. The cylinder can be in line
with the bigger pipe axis or off centre. It is ideal for
simulating sleeve joints in a lattice structure.

ARME is designed to fit cylinders to an ellipsoid. You
will be unlucky if you ever need to do this in a lifetime
of GDL writing! A circular chimney on a dome?

I have never used either of these in practical GDL
work, perhaps out of laziness – models of tubular space
structures etc. looked adequate even when pipes
passed through each other because they look OK in
photo renders.

If your GDL model requires attention to closeup
detail and line quality, the pro-minded GDL author
needs to make the effort to use these. The major ben-
efit seems to be that if you get intersecting pipes, you
will get cleaner end cutting, leading to clean wireline
views. With Boolean operations, they may be obso-
lete.

It would be much
easier for the GDL writer
if ARMC was more like
CONE or ELBOW, in that
the primary axis runs
vertically, and the
l,h,alpha parameters de-
termine how the top end
is to be cut.

135Copyright Marmalade Graphics ©2004

!ARMC Tester
!3D Script
MATERIAL 18
PEN 1
TOLER 0.001

ROTY -90
!Main Pipe
CYLIND 1.4, 0.09

!Main sleeve
ADDz 0.4
CYLIND 0.5, 0.1

!First pipetree
ADDz 0.3
alph=45
FOR ang=-90 TO 90 STEP 90
 ROTz ang
 GOSUB 10
 DEL 1
 NEXT ang

!Centre Pipe
ADDz -0.05
alph=90
 GOSUB 10

!Second pipetree
ADDz -0.05
alph=135
FOR ang=-45 TO 45 STEP 45
 ROTz ang
 GOSUB 10
 DEL 1
 NEXT ang

DEL 5

END:!==========================

10:!Sleeve and pipe
ARMC 0.1, 0.06, 0.4, 0, 0, alph
 ROTy alph
 ADDz 0.4
 CYLIND 0.3,0.05
 DEL 2
RETURN

ARMC Syntax:

ARMC largepipe radius, armc’s
radius, length, offset from centre
of large pipe, alpha angle of armc
to large pipe around Y.

!CROOF tester
!3D Script
PEN 1

CROOF_ 18, 18, 18, ! materials
 5+5,
 0, 0, !Start X,Y
 1, 0, !End X,Y
 0.0, !Height
 -30, !Angle
 0.5, !Thickness

 !XY List Outline
 0.0, 0.0, -60, 15,
 3.5, 0.0, 0, 15,
 3.5, 4.0, -30, 15,
 0.0, 4.0, 0, 15,
 0.0, 0.0, 0, -1,

 !XY List Window
 1.0, 1.0, -60, 15,
 2.5, 1.0, 0, 15,
 2.5, 3.0, -30, 15, !<----
 1.0, 3.0, 0, 15,
 1.0, 1.0, 0, -1

CROOF_ Syntax:

CROOF_ Material, Material, Material,
Number of points,
start X, start Y, end X, end Y,
Height above reference plane,
Angle of pitch,
Thickness,
X,Y, cutangle, masking code,
X,Y, cutangle, masking code,
X,Y, cutangle, masking code,
X,Y, cutangle, masking code,
etc, etc, etc

We are changing the cut angle
of the upper surface of the

rooflight hole.

cROOF
CROOF is less difficult than the walls for someone
really determined to get custom shapes that CSLAB
cannot form. CSLAB limits you to vertical cuts on
upper and lower faces – and you have to know the
XYZ of every point on the outline. If the resulting
surface is non-planar then it will disappear!

CROOF allows you to define the hingeing line (as
you do when making a monopitch roof in ArchiCAD),
then the Height, Pitch and Thickness. The list of XY
locations (looking at it vertically) no longer asks for
Z heights (as with CSLAB), it asks for edge cutting
angles and a visibility code. Very powerful.

136 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Lattice Truss

THIS is kind of structure could be made by placing, arranging and
grouping the cylinders from the ArchiCAD Library, but it would

not be parametric or smart. We need GDL for a beam that is adaptable
to different spans and depths.

Parameters
The model is not stretchy, as the lattice is built from manufacturer’s
standard sized modules.
• The Truss is to be done here using only CYLIND to form the tubes.
• The user is offered a choice of width, height and any number of

modules, and tubing diameter. This example does not worry about
joints, but it would be easy to add balls or cones, which could be a
user option.

• The user can ask the truss to ‘Show Data’ – this could be a print out
of its span or weight.

• As the truss could in fact be a vertical structure (column) or could be
leaning (over an atrium) the lean angle option is offered.

3D Script
Even for a small object, a strictly structured approach is adopted from
the start. Resolve the model into a series of subroutines, one to draw
every element of the model. The executive script is short in the ex-
treme, just calling subroutines.

The technique is to make all the upper elements, in a FOR...NEXT
loop, then the bottom tube, and finally, the diagonal tubes. Some trigo-
nometry is required to work out the angles of the diagonal tubes. As
this is an important part of the script, a special subroutine 100: is pro-
posed for working out the trigonometry and setting up other param-
eters.

100: First set up the usual things like RESOL, Material and Pen. Then
convert diameter to radius.

Now work out the angle of the diagonal tubes. As the truss module
as seen in plan is a perfect square, the diagonal across the square is the
‘truss module times √2’; the angle of lean of the cylinder will be the
ArcTan of half that diagonal and the truss depth.

Finally, the Length of the diagonal tube can be found as the
hypoteneuse of the right angle triangle formed by the tube – the depth
divided by the COS of the angle. Alternatively, you could work out the
tube length by Pythagoras. In later exercises (winged truss) you will see
that it is possible almost to dispense with trigonometry and use the
TUBE command to go from XYZ point to XYZ point.

This model is a useful exercise in:
• Using Trigonometry to determine lengths and angles
• FOR... NEXT loops
• 2D Script writing
• Using 2D image to display information
• Defining text styles

!LATTICE TRUSS
!3D Script

!---- THE PROGRAM ---------
GOSUB 100 !check parameters

 ROTy -Leanang
GOSUB 200 !Upper elements
GOSUB 300 !Bottom tube
GOSUB 400 !Diagonal tubes
 DEL 1 !undo Lean angle

END !-------------------

100: !parameter set up
!or put into Master Script

RESOL 8
MATERIAL tmatl
PEN tpen
trad =tdiam/2 !tube radius
dtang =ATN((tmod*sqr(2)/2)/tdep)
dtlen =tdep/cos(dtang)
RETURN

137Copyright Marmalade Graphics ©2004

200: The Upper longitudinal tubes are easy enough : a matter of getting
to the right position, and pumping out a CYLIND. However, note that
one steps backwards by one tube radius, and makes the tube a tiny bit
longer to give the impression of a butt end to the tube. The same is done
for the bottom member.

The FOR...NEXT Loop is needed to generate the lateral tubes. By
using a loop, you can use the number of modules as a counter to decide
how many to draw. Notice in this example, that we use K as a counter in
the loop and also as a way of calculating how far the cursor travels be-
fore generating the cylinder. For the first tube, it moves ‘tmod*(k-1)’ which
is, effectively, zero. When it gets to the 4th tube, it is moving ‘tmod*(4-1)’
which gets it to the right place. Using this method, you can do the DEL
command INSIDE the FOR... NEXT loop, which is much tidier.
300: Bottom member of the truss is very easy. One long Cylinder, slightly
elongated to improve the junction detail.
400: The Diagonals – well, the routine to draw the 4 diagonal tubes is a
bit complicated, so it uses subroutine 450 for each truss module, so that
the main FOR...NEXT loop looks tidier.
450: Rotate 45º then issue 4 leaning-over cylinders rotating 90º each
time. At the end, put DEL 4+1 instead of 5. It reminds you not to forget
the ROTz 45 with which you started drawing the tubes.

200: !Truss upper element
 !Longitudinal

 ADD -tmod/2-trad,-tmod/2,tdep
 ROTy 90
CYLIND tmod*tnum+tdiam,trad
 ADDy tmod
CYLIND tmod*tnum+tdiam,trad
 DEL 3

!Truss upper tube – Lateral
FOR k = 1 TO tnum+1
 ADD -tmod/2,-tmod/2,tdep
 ROTx -90
 ADDx tmod*(k-1)
CYLIND tmod,trad
 DEL 3
 NEXT k
RETURN

300: !Bottom boom
 ROTy 90
 ADDz -trad !slightly longer
CYLIND tmod*(tnum-1)+tdiam,trad
 DEL 2
RETURN

400: !Diagonal Truss element
FOR k = 1 TO tnum
 ADDx tmod*(k-1)
 GOSUB 450
 DEL 1
 NEXT k
RETURN

450: !Diagonals
 ROTz 45: !first tube angle
FOR n=1 to 4
 ROTx dtang
 CYLIND dtlen,trad
 DEL 1
 ROTz 90
NEXT n
 DEL 4+1
RETURN

!2D Script

IF Leanang THEN
 PROJECT2 3,270,2

 ELSE !if Truss is Flat

LET w2 = tmod/2
!Top and bottom lengths
tenx= tmod*tnum-tmod/2
benx= tmod*(tnum-1)
!--------------------------
RECT2 -w2,w2, tenx,-w2
FOR k=1 to tnum
 ADD2 tmod*(k-1),0
 LINE2 -w2,-w2,w2, w2
 LINE2 -w2, w2,w2,-w2
 LINE2 w2, w2,w2,-w2
 DEL 1
NEXT k
 LINE2 0,0, benx,0
!--------------------------
HOTSPOT2 0,0
HOTSPOT2 benx,0
!--------------------------
IF shodata THEN
DEFINE STYLE "display"
 "geneva", fhigt,1,0
 STYLE "display"
 TEXT2 0,w2,"span"
 TEXT2 0,0 ,tmod*(tnum-1)
 ENDIF

2D Script
It is important to have a good 2D Script, as the Project2 command will
take too long to display, with all those cylinders.

If you wish to tilt the truss so that it’s a leanto or a Column, the 2D
Script would not work, so you need to use Project2.

The 2D Script here takes the same parameters as the 3D Script, works
out a few locations of the nodes, and draws quick lines and rectangles to
draw the truss in plan. It also plants Hotspots in the right places.

Finally, you might like to try getting the 2D symbol to give you infor-
mation. In this case, the span of the truss. For this, you need to define a
text style – the size of the text is parametric. This 2D display ability
could be used to print out structural or weight data. It is also useful in
circular objects in displaying Radius or span.

The truss can also be used as a Walling element. A way to make the
truss draw very quickly in the project plan is to ‘encapsulate’ your Truss:
make your parametrically defined truss a library object AGAIN, so that it
has a standard object symbol – providing you have no further intention
of changing it. You can use this method to make an entire PORTAL.

Scripted 2D symbol if the truss is flat Use PROJECT2 if the truss is tilted Truss as a wall element

Notice tubular
ends to truss
longitudinal

members

138 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

GDL Macros

Rules and Tricks for Macros:
• Macros are better as placeable Objects (.GSM files),
not as pure scripts, or as Macro Sybtypes – thus they can
have their own small parameter names, preview image,
3D and 2D Script, which makes it much easier to write and
review them because you can see them in 3D as you make
them.
• It is better that many objects (such as a lot of sink units)
should call on a few macros (such as taps); this is more
efficient than a few objects calling on many macros (such
as a lattice repeatedly calling macros for the members).
• If you are certain that you will not need to use the
Macro as an independent object, then you could make the
object “unplaceable”. You can omit PEN and MATERIAL
statements. If the macro lacks these, it will simply inherit
them from the parent object that calls it. The only reason
you might specify materials in the macro is if the macro
contains more than one material and cannot simply in-
herit the parent’s materials.
• Write Macros with simpler parameter names, for ex-
ample, it’s not unreasonable to use single letter variables
for macros, as in the example here. Another trick is to use
the same parameter names as in the parent object so that
the CALL command will contain simple Parameter state-
ments like armlen=armlen, arm_mat=arm_mat.
• Store macros in a folder in your library that clearly la-
bels them as macros – because they are all .GSM now and
you will soon forget which objects are macros.
• Never use DEL TOP in a macro. This is so powerful it
will delete the stack in the parent object too.
• If you try to use the GDL Debugger in the parent ob-
ject, it will regard the CALL command as a single com-
mand – i.e. it will NOT continue execution in the macro
(unless there is a BREAKPOINT statement in the macro).

MANY OF GRAPHISOFT’s Library objects –
windows, kitchenware etc – make use of

macros. A macro is a script or object that is used
so often that it is stored as a special component.

An example is a window sash, that could be called
from the Library to join a whole variety of window
designs. It saves having to write the code for the sash
again and again. In fact, the ‘Window Sash’ could it-
self be calling macros for each ‘Window Section’ that
makes up the sash. The same applies to a kitchen tap
– which can be called to a variety of sink unit configu-
rations. A door handle might be applicable to a whole
range of doors, so you would not want to have to paste
the same door handle subroutine into every one of
the doors. I think of the macro being a child and the
major object being the parent – calling the child, and
passing on its characteristics to the child (‘inheritance’).

Those who use subroutines a lot are more than half
way aware of the power of macros. With subroutines,
you wrap up a chunk of code that you intend to call
frequently. If well written, the subroutine is nicely logi-

cal, neatly encapsulating a sub-object. Macros are simi-
lar in concept only the code for the sub-object is con-
tained in a quite separate .GSM file. As these macros
can have parameters of their own, they can be much
more powerful and richly complex than a subroutine.
And the primary benefit is that they can be used by
several major objects, whereas a subroutine would
have to be copied and pasted into the major objects.
If you want to do some upgrading on the sub-object,
you would have a nightmare doing it to all those sub-
routines, whereas with a macro, you improve the code
in the macro, save, look again at the major object, and
Hey! the whole thing is immediately improved.

Macros are activated with the CALL command.
They may bring their own parameters (that they were
first saved with) or may be told to adopt new values in
the current script.

CALLing the Macro from another script/object
Save the left hand routine as an object in its own right
with only hit and w as parameters. Now your current
script can get it from the library with a CALL com-
mand.
!Squilinder macro
PRISM 4,hit,
 w/2,w/2,
 -w/2,w/2,
 -w/2,-w/2,
 w/2,-w/2

!The major object
MATERIAL 18
CALL squilinder PARAMETERS

 w=12”,hit=2”-10”

Know when to use Macros
If you are serious about GDL for manufacturing, e.g.
your objects are part of a commercial library using
standard timber sections and metal fixings, there is no
argument about it: Macros are the way to go! the ONLY
way to go.

If you are working as a team with others, you can
share the same library of macros. Can you imagine
how complex it would be to copy and paste chunks of
subroutine code between GDL objects on different
workstations, at different times over several weeks of
a development programme.

By clever organisation and macro-naming tactics,
you can make a parent object like a single window
have a set of casement configuration options, but have
a choice of timber, composite metal-timber and all
metal window sections, all of whose code would be
safely stored in macros, and not clutter up the main
window object.

Know when to avoid Macros
If you are making unified objects, such as ones you
wish to place on Objects on Line, or sell on the web,
and which are one-off in conception, then macros are
a nuisance, because the user will lose the macros. They
will get error messages and non-appearing parts of
their parent object. In this case, you should use Sub-
routines.

A similar argument applies to small bitmap images
in the UI. If you have a commercial library, you can
store images along with the macros, but if you want
have a singular object, write a UI that avoids the use
of bitmap images.

139Copyright Marmalade Graphics ©2004

!Coiled cable
!Non parametric

RESOL 6
rad=0.5 !Radius
PUT 0,0,-1,0,!twist
 0,0,0,10,
 0,0,1,20,
 0,0,2,30,
 0,0,3,40,
 0,0,4,50,
 0,0,5,60,
 0,0,6,70

TUBE 2,NSP/4,63,
 0,0,900,
 rad,360,4000,
 GET(NSP)

Twisted Cable
THIS exercise investigates a useful feature of

TUBE command. The last digit in the Pathway
definition of a TUBE command is a Twist angle. (The
best stories always have a twist at the end.) If this an-
gle progressively increases, then the section twists as
it moves through space. The first exercise shows sim-
ply how this is done. The angle is always absolute, not
relative. 10, 10, 10, will go straight, 10, 20, 30 will
twist.

The 900 and 4000 define a circular section; if these
were 901 and 4001, the twisty lines would disappear.

If you have smoothness ON in photorendering this
form gets smoothed and the coil is useless – with
smoothness OFF, you can clearly see the twists.

Because it’s very short and could be used as a macro,
it’s easier to use single letter variables. As a macro, it
could be used almost as easily as CYLIND.

Material and Pen are omitted because they can be
applied in the object settings box. If the object is to be
used as a macro, it would inherit material and pen from
the calling object.

With graphical hotspots, you could make this ‘wind’
itself realistically.

!‘Coilcabl’ 3D Script
!Parametric
!Error checking

IF n<3 THEN n=3
IF n>12 THEN n=12
IF t<1 THEN t=1
IF t>10 THEN t=10
RESOL n

FOR z=-d TO l+d STEP d
 tw=tw+t^2
 PUT 0,0,z,tw
 NEXT z

BODY -1
TUBE 2,NSP/4,63,
 0,0,900,
 d/2,360,4000,
 GET(NSP)
BODY -1

This is a Parametric way
of doing the cable so this
could be a macro, used
like CYLIND, up the Z-
axis. BODY -1 makes it
more reliable in 3D.

MATERIAL 'Zinc'
PEN L_
CALL coilcabl PARAMETERS l=5,
 d=0.4,n=8,t=6

This is how it can be used as a macro

As a tiny object, the error
checking can be done in the

3D script
The twist angle is

progressively increased as
the loop progresses.

As a macro, it would not
need a 2D script.

!Ultra simple 2D Script
CIRCLE2 0,0,d/2

Dynamic Line numbers!
Normally you GOSUB 100 and that’s it. But if you are mak-
ing use of flags, you can use this technique. Where you
might normally write:

IF hs=1 THEN GOSUB 101
IF hs=2 THEN GOSUB 102
IF hs=3 THEN GOSUB 103

You can write all of these on a much shorter line:
GOSUB 100+hs

The trick of course only works if you organise your subrou-
tines so that the numbering relates to the flag numbers. If
you (like me) prefer to follow good practice and separate
your line numbers in chunks of ten or more, then replace:

IF hs=1 THEN GOSUB 110
IF hs=2 THEN GOSUB 120
IF hs=3 THEN GOSUB 130

with:
GOSUB 100+hs*10

Name your subroutine!
Another idea for subroutines is to find a way to name them
directly. (The subroutines still have to have numbered la-
bels, but the name can be part of the Label Comment.)

!Master Script
build_cabinet=100
build_drawers=200
dimensioning=500

!3DScript
GOSUB build_cabinet
GOSUB build_drawers
GOSUB dimensioning

140 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Lattices – Winged Truss – 1
THIS is an interesting truss form, which I call a

‘winged truss’. It is here to show a way of building
lattices that can done by one subroutine call and re-
quires no trigonometry.
This is a valuable learning exercise, including:
• Smart stretchy algorithm (recalculates spacing)
• Uses no trigonometry (done by XYZ locations)
• The 2D script is written in the 3D window (?)
• The members are made with TUBE command :-(

This method is incredibly easy for making lattices,
because one subroutine does all the work, you only
have to tell it the XYZ locations of each end of a tube
and the job is done. Even better, you get a totally ac-
curate 2D image, scripted from within the 3D script!!
All the 2D script has to supply are hotspots and labels.
In the Cookbook, I have referred to this as the
‘AngleRod’ method, using a simple TUBE from point
to point.

!Winged 3D truss
!Master Script

tnum=INT(1+A/tlen) !Number of Trusses
IF tnum<1 THEN tnum=1
twid=B !Width of Truss
thit=zzyzx !Height of Truss

!Resolution limits
IF resl<4 THEN resl=4
IF resl>12 THEN resl=12

!Drawing in 2D or 3D?
IF GLOB_SCRIPT_TYPE=2 THEN draw2d=1
IF truvu=1 THEN draw2d=0Master Script

GLOB_SCRIPT_TYPE is the key to automatic 2D
scripting. It tells GDL when it’s busy drawing a 2D sym-
bol; if it is then the flag draw2d is set to 1. Subroutine
100 does all the work in 3D. Every tube in the 3D can
have a matching LINE in 3D also which is performed
by subroutine 101. We can then do a project2 of the
truss made with either tubes or lines.

3D Script
Establish the subroutine 100 first, because this is what
does all the work. Do one test member, which can be
the lower tube.

Because this truss is, in effect, a load of cylinders
that all collide at node points, you are depending on
the ability of shaded views to ‘z-buffer’ all the cylin-
ders where they meet – i.e. to tidy up the junction.
Thus the lower tube is improved in appearance by be-
ing extended by its own radius in each direction. The
parameters for x1,y1,z1 and x2,y2,z2 and the tube ra-
dius are sent to the subroutines. If draw2d is positive,
the action will be sent to subroutine 101 where a LIN_
command will draw a line instead of a cylinder.

For would-be lattice builders, this is
the most useful exercise in the GDL
Cookbook.

Lattices and Tube Structures

141Copyright Marmalade Graphics ©2004

3D script: continued
The tube structure continues with the upper and the
lateral tubes. Then the diagonal tubes are done as a
series of FOR NEXT loops. They could all be done as
one single FOR NEXT, but for the Cookbook I have
done each set of tubes separately so you see how the
thing builds up. All you have to do is to work out the
relative x1,y1,z1, and x2,y2,z2 locations for each tube
and you have won!

!Winged 3D truss
!ReWritten for Cookbook3 Nov 2000

PEN pcol3
MATERIAL tmat
RESOL resl

!Lower main member
rad=t1diam/2
 x1=-rad: y1=0: z1=0
 x2=tlen*(tnum-1)+rad
 y2=0:z2=0
GOSUB 100+draw2d

END:!------------------------

100:!Tube
!Define Phantom Points
 x0=x1+(x1-x2)
 x3=x2-(x1-x2)
 y0=y1+(y1-y2)
 y3=y2-(y1-y2)
 z0=z1+(z1-z2)
 z3=z2-(z1-z2)

!Draw it
TUBE 2,4,63,
 0,0,901,
 rad,360,4001,
 x0,y0,z0,0,
 x1,y1,z1,0,
 x2,y2,z2,0,
 x3,y3,z3,0
RETURN

101:!Tube in 2D
LIN_ x1,y1,z1, x2,y2,z2
RETURN

This routine works out
the position of phantom

points no matter how
wierd the start and end

points. It ensure clean
butt ends to all tubes.

These two lines are the
polylines required to
draw a cylinder. The
extra 1 gives you tidy

cylinders. 900 and 4000
would give you a mass

of ink lines for each
polygon on the cylinder

– horrid!

Subroutine 101 only
happens if PROJECT2

is working

!Winged 3D truss
!2D Script

HOTSPOT2 0,0
HOTSPOT2 A,0
HOTSPOT2 tlen*(tnum-1),0
HOTSPOT2 tlen*(tnum)-tlen/2,0
HOTSPOT2 -tlen/2,0

!Put Hotspots on each truss element
FOR n=1 TO tnum
 HOTSPOT2 tlen*(n-1),0
 HOTSPOT2 tlen*(n-1), twid/2
 HOTSPOT2 tlen*(n-1),-twid/2
NEXT n

!Crosshair on stretchy point
p=-t1diam/2
 LINE2 -p,0,p,0
 LINE2 0,-p,0,p
 LINE2 A-p,0,A+p,0
 LINE2 A,-p,A,p

PROJECT2 3,270,2

IF shownam THEN !Annotation
fntz=2*t1diam*1000/A_ !Autosize
DEFINE STYLE 'ttxt' 'Arial',fntz,1,0
SET STYLE 'ttxt'
 TEXT2 0,-t1diam,iden
ENDIF

The 2D symbol with a simple level of detail. Each
member is represented by one line

The 2D symbol with a high level of detail – a truview.
The full PROJECT2 is drawn. A detail study in an
architect’s drawing might need such detail, but an
engineer’s layout for a whole roof of trusses would prefer
the simpler representation and the faster redraw time.

This is where the real work
happens. Normally you are

advised to script in 2D instead of
using PROJECT2. We have done!

...in the 3D script.

these pages are
not yet
formatted

142 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Winged 3D truss
!ReWritten for Cookbook3 Nov 2000

PEN pcol3
MATERIAL tmat
RESOL resl

!Lower main member
rad=t1diam/2
 x1=-rad: y1=0: z1=0
 x2=tlen*(tnum-1)+rad
 y2=0:z2=0
GOSUB 100+draw2d

!Upper main member
rad=t1diam/2
 x1=-tlen/2-rad: y1=0: z1=thit
 x2=tlen*(tnum-1)+tlen/2+rad
 y2=0: z2=thit
GOSUB 100+draw2d

!Outer long members
rad=t2diam/2
 x1=-rad:y1=-twid/2:z1=thit/2
 x2=tlen*(tnum-1)+rad
 y2=-twid/2:z2=thit/2
GOSUB 100+draw2d
 y1=-y1: y2=-y2
GOSUB 100+draw2d

!Upper diagonal tubes
FOR n=1 TO tnum
ADDx tlen*(n-1)
 rad=t3diam/2
 x1=-tlen/2: y1=0: z1=thit
 x2=0: y2=-twid/2: z2=thit/2
GOSUB 100+draw2d
 y2= twid/2
GOSUB 100+draw2d
 x1=tlen/2
GOSUB 100+draw2d
 y2=-twid/2
GOSUB 100+draw2d
DEL 1
NEXT n

!Lower diagonal tubes
FOR n=1 TO tnum
ADDx tlen*(n-1)
 rad=t4diam/2
 x1=0:y1=0:z1=0
 x2=0:y2=-twid/2:z2=thit/2
GOSUB 100+draw2d
 y2= twid/2
GOSUB 100+draw2d
DEL 1
NEXT n

!Longitudinal diagonal tubes
FOR n=1 TO tnum
ADDx tlen*(n-1)
 rad=t5diam/2
 x1=0: y1=0: z1=0
 x2=-tlen/2: y2=0: z2=thit
GOSUB 100+draw2d
 x2=tlen/2
GOSUB 100+draw2d
DEL 1
NEXT n

END:!--------------------------

!Follow this with the
!subroutines 100 and 101

2D Script
The Hotspots are important – this truss is stretchy in
length (and in height in the 3D window). A loop is used
to put one on each truss node. There could be an op-
tion to omit this if it is a nuisance with too many
hotspots. The Crosshair assists in finding the stretchy
‘A’ hotspot.

All you have to do is send
the values of XYZ at each
end, and radius, and your

TUBE will be built!

143Copyright Marmalade Graphics ©2004

Lattices – Winged Truss – 2
THIS is the ‘winged truss’ again, but done in a quite

dif ferent way. This is the more traditional
craftsmanlike way to make one, showing a good level
of detail. The truss has cast metal sleeved joints to
the tubes which we want to display. This requires the
use of Trigonometry, to get all the angles of the tubes
precisely calculated.

For manufacturing purposes, this would provide ac-
curate feedback – as you stretch the truss, it can cal-
culate and report back on the angles of the joints and
the lengths of the tubes – this could be a written re-
port for an engineer/fabricator. For general perspec-
tive drawing, or animation, one would like to shorten
the drawing time – hence the truss can also be drawn
with the joints concealed.

This is a valuable learning exercise, including:
• Using Trigonometry to calculate lattice mem-

bers
• Outputting data to file to inform the user of

details and risks
• Reading the system clock
• Extensive 2D scripting, to save redraw time
• Level of Detail awareness
• Defining and Autosizing text in 2D symbols

Parameters
If you have already built the previous Winged Truss,
note that this has an identical parameter window, ex-
cept for the addition of two parameters, simcom and
outdat. So you could open the previous truss, erase
the scripts and resave with a new name to save the
effort of rewriting all the parameters.

The truss has four different radii of tubing. Every
linear element is parametrically definable. A and B
are used to make the truss stretchy. The Master Script
converts the A and B into ‘tnum’ and ‘twid’, from which
the rest of the truss can be drawn.

If you are starting from scratch, leave the optional
parameters at the bottom of the list until you need
them.

Master Script
If the object is stretchy, make sure that you equate A,
B and zzyzx to the parameters names you wish to use.
the tnum routine is a way of counteracting the ten-
dency of INT(…) to round down. (One could use a
new function CEIL(…) which is like INT but rounds
up.)

The next set of calculations use ArcTan and Py-
thagoras to work out the angles and lengths of tubing.

!Winged 3D truss
!Master Script

 tnum=INT(1+A/tlen) !Number of Trusses
 twid=B !Width of Truss
 thit=zzyzx !Height of Truss
IF tnum<1 THEN tnum=1

!Longitudinal Diagonal Tubing
 dtang=ATN(thit/(tlen/2))
 dlen =SQR(thit**2+(tlen/2)**2)

!Upper Wing tubing
 ang1=ATN(tlen/twid)
 ang2=ATN((thit/2)/((tlen/2)/SIN(ang1)))
 utlen=(thit/2)/SIN(ang2)

!Lower Wing Tubing
 ltang=ATN(thit/twid)
 ltlen=SQR(thit*thit+twid*twid)/2

IF resl<4 THEN resl=4
IF resl>12 THEN resl=12

In some versions of ArchiCAD 6.5, the presence of trigonometry
functions in the Master script causes Stretchy objects to have a
spurious ‘divide by zero’ error – move the routine to the 3D and
2D scripts.

3D Script
The housekeeping (like the angle and length of diago-
nal tubes) are all dealt with in the Master script. The
3D script can be dedicated to 3D. As this is a complex
object, set out to structure the script, so put in the
END

Lattice and Tube Zone

144 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

statement early.
The Lower and Upper and outer tube members (300:

and 310:) are easy enough to do. Manoevre into posi-
tion, rotate to point Z along the line of the truss and
push out your cylinders. If the user has opted for the
complex truss, then run the FOR NEXT loops that are
sleeves for the joints. Because the sleeves are bigger
than the tube, and have to accept diagonal tubes later,
they are longer then their diameter. You need to make
small adjustments in position to make the sit nicely.

The sleeves sit nicely along the rods. The ones in
the middle are the right length because they have to
accept a total of 8 tubes arriving into them at different
angles. The end tubes overhang too much, so a
CUTPLANE routine is required to reduce the size of
the end joints. Insert the CUTPLANE routine before

you start with the 3D elements, to trim off the
sleeve ends correctly. Add CUTEND:

CUTEND just before the END
statement

Tips and Tricks
Building Lattices

WE CAN easily make non parametric lattices
with the slab tool, laying out the shape, and

then inserting holes, and finishing up with rectan-
gular sectioned members. But if you stretch them,
the sizes of all the members are distorted. Making
a serious 3D truss this way is almost out of the
question.

Home built Parametric Lattice trusses are one
way to impress people who think that everything
should be done with AutoCAD. Challenge them to
match that with AutoLisp! Here are four methods
to think about.

The Prism method: A lattice can be made as a
PRISM_ with holes drilled. You can use arithmetic
to work out how many holes to draw, PUT to store
the outlines of the holes, and GET to draw the prism.
You could also make the web of a castellated beam
this way. This is somewhat limited to 2D trusses.

The Trigonometry and Loop
method: Using the technique of
the Lattice truss in the Discovery
course, you can use arithmetic to
work out how many lattice mod-
ules required (or to calculate the
module size); then use a For Next
Loop. The cursor runs along the
length of the truss, building each
module.

Along the way, you will have to
use trigonometry to work out the
angles of the truss members, and
either Cylinder, or a Squilinder
(prism) to draw the members. (I call
this ‘knitting’). This needs some
serious maths if the truss is curved
or irregular in shape. (Winged
Truss-2)

The ‘AngleRod’ method: is
useful if the truss departs from
regular spacings or layout, and
has members in which there are
so many angles and geometries
that the trigonometry gives you
a headache. (I like trig, but you
may not). In this case, you just use
a macro like AngleRod in the Voy-
ager course. You just specify the
start and end points, the sectional
diameter, and whether the rod is
square or round. You do not ac-
tually need to call Anglerod, be-
cause the routine using TUBE is
so short, it can be copied and
pasted as a subroutine into your
main script. (Winged Truss-1).

CUTPOLY method: First build your lattice as a solid block; then apply
a series of CUTPOLYs to drill holes, leaving behind the structural mem-
bers. This is a laborious method for a 2D lattice, but for a 3D lattice, it
could be the easiest! Use Loops and PUT and GET to place them.

!Winged 3D truss: 3D Script
PEN pcol3
MATERIAL tmat
RESOL resl

GOSUB 300 !Lower Tube
GOSUB 310 !Upper Tube

END:!----------------------

300: !Lower Tube sleeves
 ADDx -t1diam/2
 ROTy 90
CYLIND tlen*(tnum-1)+t1diam,t1diam/2

IF simcom THEN
 FOR k=1 TO tnum
 ADDz tlen*(k-1)-t1diam
 CYLIND t1diam*3, t1diam/1.5
 DEL 1
 NEXT k
 ENDIF
 DEL 2
RETURN

310:!Upper Tube sleeves
 ADD -tlen/2-t1diam/2,0,thit
 ROTy 90
CYLIND tlen*tnum+t1diam,t1diam/2

IF simcom THEN
 ADDz -t1diam
 FOR k=1 TO tnum+1
 ADDz tlen*(k-1)
 CYLIND t1diam*3,t1diam/1.5
 DEL 1
 NEXT k
 DEL 1
 ENDIF
 DEL 2
RETURN

!Cutplane routines for ends
 ADDx -tlen/2-t1diam/2
 ROTy -90
 CUTPLANE
 DEL 2

 ADDx tlen*(tnum-1)+tlen/2+t1diam/2
 ROTy 90
 CUTPLANE
 DEL 2

CUTPLANE routine:
Insert here

CUTPLANE routine:
you need this to trim
the sleeves

The basic Cylinder is the
tube and

the Loop creates the
sleeves

These two lattices depend on cylinders meeting ex-
actly at nodes. If you need to trim them back for a
perfect wireline view, use the Trig and Loop method,
and push circular CUTPOLYAs along the lines of the
main tubes to cut the ends of the minor tubes (not
illustrated in this example).

145Copyright Marmalade Graphics ©2004

!3D Script, continued

GOSUB 320 !Outer Lateral member
 MULy -1
GOSUB 320 !Outer Lateral member
 DEL 1

END:!------------------

300:
310:
320: !Outer Tube
 ADD -t2diam/2,-twid/2,thit/2
 ROTy 90
CYLIND tlen*(tnum-1)+t2diam,t2diam/2

IF simcom THEN
 FOR k=1 TO tnum
 ADDz -t2diam
 ADDz tlen*(k-1)
 CYLIND t2diam*3, t2diam/1.2
 DEL 2
 NEXT k
 ENDIF
DEL 2
RETURN

Lateral tubes
The lateral (or wing) tubes are done in the same way.
Do one of them, and then use a mirroring technique,
using MULy -1, to do the other. The routine in 320 is
done in exactly the same way as for the main tubes.

Diagonals
The way to get the diagonals done is to start off by
getting ONE module right, and the rest will be done
with a FOR... NEXT loop.

These diagonals are more complicated. The main
tubes were long single tubes, and the sleeves were cyl-
inders. In the diagonals, the sleeves are conical, and
have to point in the same direction as the tubes. This
is a good illustration of an object oriented approach –
one cannot solve the problem in bits and pieces. One
must get to the right place, summon the tube and it
should arrive as a whole object, complete with its
cones.

Passing parameters
A standard subroutine (240:) has been developed for a
Cylinder that has a cone at each end. (This gives the
form of the sleeved joints). All you have to do is get
the cursor to the right place, point it in the right direc-
tion, pass appropriate parameters to the subroutine,
and it’s done. 260 calls 270 to get the cones. the pa-
rameters are clen (cylinder length) and diam (diameter).
The subroutines have built in rules to decide how big
the cones should be.

 ROTz 180 - ang1
 ROTx 270 + ang2
GOSUB 260 !tube
DEL 2+1

ADD 0, twid/2,thit/2 !fourth upper
 ROTz 180 + ang1
 ROTx 270 + ang2
GOSUB 260 !tube
 DEL 2+1
RETURN

220:! Do Lower Wing tubes
 ROTx 90-ltang
clen=ltlen:diam=t4diam
GOSUB 260: !Cylinder lower tube
 DEL 1
 ROTx -(90-ltang)
GOSUB 260: !Cylinder lower tube
 DEL 1
RETURN
!-----------------------------------

260: !Cylinder lower tube
IF simcom THEN GOSUB 270 !joint
CYLIND clen,diam/2
 IF simcom THEN
 ADDz clen
 MULz -1
 GOSUB 270 !joint
 DEL 2
 ENDIF
RETURN

270: !Joint using a Cone
CONE diam*2,diam,diam/1.5,90,90
RETURN

!All the diagonal tubes
FOR k=1 TO tnum
 ADDx tlen*(k-1)
 GOSUB 200: !Do Diagonal Tubes
 GOSUB 210: !Upper Wing tubes
 GOSUB 220: !Lower Wing tubes
 DEL 1
NEXT k

CUTEND
CUTEND
END:!--------------------------

200: !Do Diagonal Tubes
LET clen=dlen: diam=t2diam
 ROTy 90-dtang
GOSUB 260 !tube
 DEL 1
 ROTy -(90-dtang)
GOSUB 260 !tube
 DEL 1
RETURN

210:!Upper wing tubes
LET clen=utlen: diam=t3diam
ADD 0,-twid/2,thit/2 !first upper
 ROTz ang1
 ROTx 270 + ang2
GOSUB 260 !tube
DEL 2+1

ADD 0,-twid/2,thit/2 !second upper
 ROTz -ang1
 ROTx 270 + ang2
GOSUB 260 !tube
DEL 2+1

ADD 0, twid/2,thit/2 !third upper

These are the end of the cut
commands cutting the end joints to

the correct length

Subroutine 260 does all the work,
you just have to pass parameters

to it

Lattice and Tube Zone

146 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Winged Truss
The joints in this truss look good even
at close inspection. Perhaps the
cones at the end of each tube could
be a bit longer. From this, one can
derive the design of cast steel sleeve
joints.
One can get the script to write out to
disk a list of the data for each tube –
see later in this worksheet.

2D Script
Whether youare to use the Truview (using Project2)
or a scripted 2D symbol, you will need Hotspots to
pick the truss up with. You also need to write the
stretchy hotspots before you draw the truss.

If the user prefers a scripted view (many seconds
faster especially if you use the one with complex joints),
the the script is below. the sequence is similar to the
3D in that you do a FOR... NEXT loop for the diago-
nals in each module, and then put in the main longitu-
dinal tubes. As a rule, 2D scripting is easy if you use a
similar structure as for the 3D (loops etc)

As the truss has a name, it is possible to have it
display its name in the 2D symbol, using TEXT2. The
size of the Text is automatically calculated to be twice
the diameter of the main tube.

File Output

You were offered the possibility of outputting to
disk a file with the data about the truss. Here it is.

You can now add the final parameters.
First, it is important to know WHICH truss it is, as

a building project may have several of different lengths.
So we offer the user the chance to name the truss

(‘iden’) and at the same time, we offer them the chance
to turn off the feature (‘outdat’) – we don’t want doz-
ens of trusses all simultaneously sending the same data
to disk. If the user appoints a truss (the "show-truss")
to do the work, the others can remain silent.

By the way, the name ‘iden’ will determine the name
of the file. This file will be placed in the ArchiCAD
Data Folder. It takes the name of the truss followed by
.TXT.

IF outdat THEN GOSUB 500:!File I/O

Add this line to the executive script, just above the END
statement.

Make sure that different trusses have different names,
or later trusses will overwrite the file written by one
that was processed earlier.

Add ‘outdat’ and ‘shoname’ to the parameters box

!2D Script for Winged Truss

HOTSPOT2 -tlen/2,0 !Stretchy
HOTSPOT2 A-tlen/2,0 !Hotspots

!Hotspots on each truss element
FOR n=1 to tnum
 ADD2 tlen*(n-1),0
 HOTSPOT2 0,-twid/2
 HOTSPOT2 0, twid/2
 HOTSPOT2 0,0
 DEL 1
 NEXT n

IF shownam THEN !Annotation
fntz=2*t1diam*1000/A_ !Autosize
DEFINE STYLE 'ttxt' 'Arial',fntz,1,0
SET STYLE 'ttxt'
 TEXT2 0,-t1diam,iden
ENDIF

IF truvu THEN
 PROJECT2 3,270,2

ELSE

 RECT2 -tlen/2,t1diam/2,
 tlen*tnum-tlen/2,-t1diam/2
FOR n=1 to tnum
ADD2 tlen*(n-1),0
 POLY2 6,1,
 0, twid/2,
 tlen/2,0,
 0,-twid/2,
 -tlen/2,0,
 0,twid/2,
 0,-twid/2
 DEL 1
NEXT n

!Lateral tubes
RECT2 0, twid/2+t2diam/2,
 (tnum-1)*tlen, twid/2-t2diam/2
RECT2 0, -(twid/2+t2diam/2),
 (tnum-1)*tlen,-twid/2+t2diam/2
ENDIF

This differs from the previous
Winged truss in that the 2D script is

fully scripted, not depending on
Project2. As there is still the

mysterious bug with the project2
solution, it may be preferable to

script it. There is no trigonometry
because in the plan view it’s

possible to describe locations using
polygon points.

147Copyright Marmalade Graphics ©2004

REQUEST results in a number (X) which can be discarded, but
as a result of making the request, you obtain the value of ‘dstr’
and ‘tstr’.

Date and Time
We want to know the date of the report, in case it was
different from the one we wanted. this, along with the
name of the truss will appear in the report.

Date and Time are not in the manual, but they are
in a Readme file in your Add-ons folder. In the
date&time script, one uses a REQUEST which investi-
gates a resource in ArchiCAD called ‘DateTime’ that
knows the system time and date. The strings using per-
cent signs can extract the data.

Actually, the whole time and date can be repre-
sented in a single string called ‘%c’, but to show you
how the strings work, I have joined several ones to-
gether – %A gives the day of the week; %d the day
number, &B the month; %Y the year and century
(millenium bug proof ! ha-ha!); %X gives the time in
AM or PM.

The rest of the DateTime strings can be found by
reading the ReadMe file in the Add-ons Folder. The
whole lot are combined into a text string called ‘dstr’.

The Report
FILE INPUT and OUTPUT are covered in the ap-
pendix to the main GDL manual. If you are a Voyager,
it’s time to read that appendix! But then you may feel
like reading the Cookbook for light relief.

First, the file must be opened and named, a chan-
nel defined, and you must set up the way in which the
routine will separate data.

The OUTPUT commands then follow; each time
you remind it which channel you are writing to (in case
you have more than one file open at once – you could
be reading from one file, and writing to the other.)
• The report adopts the name put into the ‘iden’ field
in the parameters box.
• The report has TABs (‘\t’)between fields, so you
could copy and paste this to a spreadsheet – or you
could reformat it so that it could be read in by
Filemaker.
• It’s a good idea to have carriage returns to separate
groups of data. A report of this kind would be used as
a cutting schedule for the tubing and the design of the
steel sleeve joints in the truss.

It is not really on to have it report in detail on struc-
tural matters, as you would require to ask the user to
enter vastly more data, like Live and Dead loads, K-
factors, steel grades, joint characteristics etc. However,
a report on slenderness ratio is a good example of
providing a warning to the designer. This could also
flash up in the 2D symbol.

This report does provide the engineer with essen-
tial detail like tube lengths, from which calculations
would be done – how else could those dimensions be
derived, except by the engineer having to calculate
them all again?

500:!File Output Routine
!Get the Date and Time
x=REQUEST("DateTime","%A %d %B %Y",dstr)
x=REQUEST("DateTime","%X",tstr)

500:!File Output Routine
!Get the Date and Time
x=REQUEST("DateTime","%A %d %B %Y",dstr)
x=REQUEST("DateTime","%X",tstr)
!Write the Report File
ch1=OPEN("TEXT",iden+".txt","SEPARATOR='\t',MODE=WO")
OUTPUT ch1,1,0,"Winged Truss Data:>",iden
OUTPUT ch1,1,0,"Output Date:",dstr
OUTPUT ch1,1,0,"Output Time:",tstr
OUTPUT ch1,1,0,"Cutting Schedule for Tubes in mm."
OUTPUT ch1,1,0," "
 CLOSE ch1
RETURN

OPEN: Channel 1 is opened to allow output to a file, in a
Write Only mode (WO), using tabs (\t) to separate.
OUTPUT: ‘ch1’ tells it where to send, ‘1’ tells it to start a
new line (‘0’ appends to the most recent line), the ‘0’ does
nothing. After that, you send the data you would like to have
in the line, enclosing all text in quote marks.

Winged Truss Data:> MainHall
Output Date: Sunday 02 January 2000
Output Time: 17:33:04
Cutting Schedule for Tubes in mm.

Upper tubes
 Number : 4
 Length : 2100
 Diameter: 100
Bottom tubes
 Number : 3
 Length : 2100
 Diameter: 100
Diagonal tubes
 Number : 8
 Length : 1594.52
 Diameter : 70
 Declination: 48.8141
Upper Wing tubes
 Number : 8
 Length : 2168.52
 Diameter : 70
 Angle in Plan: 30.2564
 Declination :16.0625
Lower Wing tubes
 Number : 4
 Length : 1897.37
 Diameter : 70
 Declination: 18.4349
Upper Tube Sleeves : 5
Bottom Tube Sleeves:4
Wing Sleeves LeftH : 4
Wing Sleeves RightH:4

Slenderness Ratios
Upper : 1/ 21
Lower : 1/ 21
Diagonals: 1/ 23
UpperWing: 1/ 31
LowerWing: 1/ 27

This is the kind of data that
you can get a report to

produce. It is much neater
and more organised than a

Components listing from the
Properties scripting, but it is
more tiresome for people to
have to ‘dig around’ in the
ArchiCAD data folder for
the result. You should still

try to give objects some
Descriptor and Components
listing in the Property script.

Lattice and Tube Zone

148 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

DO not be dismayed by apparent complexity of
this script. Like everything else, type in the first

few lines, do a 3D view and see if it works by looking
at the Data Folder to see what has landed there. Don’t
forget that you must include the CLOSE statement
or the file cannot be read.

As you build up the text, you add in the extra lines.
You need to be pretty precise about the format of the
report, so each line is precisely worked out, and ap-
propriate labelling text is put in, always enclosed in
quote marks. When you have got the above text work-
ing, continue, line by line, until you have completed.
You do not need to do all of course – by now, you
should have got the idea.

By the way, you notice that it is possible to include
algebraic expressions in the OUTPUT statements,
such as the ones that calculate Slenderness Ratio. It
would be possible to express it as a decimal, but you
can see that by playing with the layout, you can get it
to lay it out in a more readable form.

In this case, OUTPUT tells it to send, ‘ch1’ tells it
where to send, ‘1’ tells it to start a new line (‘0’ should
append to the most recent line according to the
manual), the final ‘0’ does nothing at all. After all that,
you send the data you would like to have in the line,
carefully enclosing all text material in quote marks.

500:!File Output Routine
!Get the Date and Time
x=REQUEST("DateTime","%A %d %B %Y",dstr)
x=REQUEST("DateTime","%X",tstr)
!Write the Report File
ch1=OPEN("TEXT",iden+".txt","SEPARATOR='\t',MODE=WO")
OUTPUT ch1,1,0,"Winged Truss Data:>",iden
OUTPUT ch1,1,0,"Output Date:",dstr
OUTPUT ch1,1,0,"Output Time:",tstr
OUTPUT ch1,1,0,"Cutting Schedule for Tubes in mm."
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Upper tubes"
OUTPUT ch1,1,0," Number :",tnum
OUTPUT ch1,1,0," Length :",tlen*1000
OUTPUT ch1,1,0," Diameter:",t1diam*1000
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Bottom tubes"
OUTPUT ch1,1,0," Number :",tnum-1
OUTPUT ch1,1,0," Length :",tlen*1000
OUTPUT ch1,1,0," Diameter:",t1diam*1000
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Diagonal tubes"
OUTPUT ch1,1,0," Number :",tnum*2
OUTPUT ch1,1,0," Length :",dlen*1000
OUTPUT ch1,1,0," Diameter :",t2diam*1000
OUTPUT ch1,1,0," Declination:",dtang
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Upper Wing tubes"
OUTPUT ch1,1,0," Number :",tnum*2
OUTPUT ch1,1,0," Length :",utlen*1000
OUTPUT ch1,1,0," Diameter :",t3diam*1000
OUTPUT ch1,1,0," Angle in Plan:",ang1
OUTPUT ch1,1,0," Declination :",ang2
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Lower Wing tubes"
OUTPUT ch1,1,0," Number :",tnum
OUTPUT ch1,1,0," Length :",ltlen*1000
OUTPUT ch1,1,0," Diameter :",t4diam*1000
OUTPUT ch1,1,0," Declination:",ltang
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Upper Tube Sleeves :",tnum+1
OUTPUT ch1,1,0,"Bottom Tube Sleeves:",tnum
OUTPUT ch1,1,0,"Wing Sleeves LeftH :",tnum
OUTPUT ch1,1,0,"Wing Sleeves RightH:",tnum
OUTPUT ch1,1,0," "
OUTPUT ch1,1,0,"Slenderness Ratios"
OUTPUT ch1,1,0,"Upper : 1/",(INT(tlen/t1diam+0.5))
OUTPUT ch1,1,0,"Lower : 1/",(INT(tlen/t1diam+0.5))
OUTPUT ch1,1,0,"Diagonals: 1/",(INT(dlen/t2diam+0.5))
OUTPUT ch1,1,0,"UpperWing: 1/",(INT(utlen/t3diam+0.5))
OUTPUT ch1,1,0,"LowerWing: 1/",(INT(ltlen/t4diam+0.5))
 CLOSE ch1
RETURN

SOMETIMES it is just too difficult to set up
the background in ArchiCAD. Do you want to

model the entire town or perhaps use a photo-
graph of it as a background and spend hours try-
ing to get it to line up with the model? Yes!.... but
No, I havent got the time.

Much easier still is to use a perfectly white
background. When you save the render, ArchiCAD
saves the background as an Alpha Channel. The
proof is on the left – Photoshop displays the chan-
nel perfectly. Save as a PICT or a TIFF with no com-
pression. This can be brought into Photoshop and
laid over a photographic background. Make use
of the transparency of the alpha channel.

Anti aliasing is good, but for better results for
images with alpha channels/transparency, render
VERY LARGE with NO Anti-aliasing – like 4000
pixels wide! Remove backgrounds with 100% pre-
cision. Then rescale the image to the size you want.

Tips and Tricks
Doing it with Alpha Channels : think
BIG! VERY VERY BIG!

149Copyright Marmalade Graphics ©2004

Lattices: More complex shapes
Not as difficult as you may think

SOMETIMES you have to make a compromise be
tween parametric technology, and ‘clicking in the

plan to steal from ArchiCAD’. We will make a curved
space frame where the locations of primary points
along its surface are defined by clicking, but other char-
acteristics are parametric. The lattice can be devel-
oped further to give a higher level of parametric capa-
bility.

In this case, we have a roof already made, and we
go to a Section window. Its easiest to clickout the di-
agonals first using the continuous Linetool (Polyline),
so that you get the vertices nicely spaced. Click in the
lower lines of the spacedeck, snapping to the vertices.
Copy both of these and paste into the floor plan, then
click in the lines of the upper members (you could do
it earlier but there may be confusing snapping points
in the roof fabric that cause you to miss the vertices.)
Move the lines to somewhere near the main Origin,
preferably the extreme left corner to be on zero.

Use the drag and drop method to drag ONLY THE
TOP and BOTTOM lines into the 2D Script window
of a new GDL Object. Change the headers so that
they become a PUT statement. Cut and Paste these
into the Master Script. We are ready to build the frame.
The program we write will work for any set of num-
bers created in this way. You can use this object again
and again.

We put the numbers into an array
We are limiting it here to 20 points (you could add
more). We need to write routines that will store these
numbers in an array. We have mentioned arrays many
times earlier, the ones here are dynamic arrays cre-
ated in the Master Script, not Parameter arrays.

We declare the likely size of the array with a DIM
statement, make sure it’s safely larger than the number
we will actually use. We need arrays for the X and Z
values of the points, plus twist angles for each top tube.

This is what we want: a bendy spacedeck. The profile is fixed,
but we can stretch it widthways, and provide hotspots.

k=0
WHILE NSP DO
 k=k+1
 tx[k]=GET(1)
 tz[k]=GET(1)
 nothing=GET(1)
 ENDWHILE
 numt=k

!Bottom level
PUT 0.8915248799115, -1.452438081482, 1,

2.960938636525, -2.114626824624, 1,
5.298840429751, -2.390505674063, 1,
7.490314916727, -2.220957359614, 1,
9.545282878069, -1.689359651964, 1,
11.42146364404, -0.8545555737123, 1,
13.14805774461, 0.2451485099629, 1,
14.75332930093, 1.186391085724, 1,
16.67102669916, 1.769052816456, 1,
18.71558942951, 1.843338465032, 1,
21.14286105828, 1.348931363385, 1,
23.05211021206, 0.567871936596, -1

k=0
WHILE NSP DO
 k=k+1
 bx[k]=GET(1)
 bz[k]=GET(1)
 nothing=GET(1)
 ENDWHILE
 numb=k

!Curved spacedeck: Master Script

!Store in an array
DIM tx[20],tz[20] ! Points on the top
DIM bx[20],bz[20] ! Points on the bottom
DIM dx[40],dz[40] ! Points on the diagonals
DIM twt[20] !Twist angle top in cross tubes
DIM twb[20] !Twist angle bottom

!Top level
PUT -0,0, 1,
 2.154987149632, -0.9170764513291, 1,
 4.327020796939, -1.350285995269, 1,
 6.562311181797, -1.314987298444, 1,
 8.381395402791, -0.9789795244067, 1,
 9.860819677821, -0.4131370856228, 1,
 11.42146364404, 0.4413916146407, 1,
 13.31680906168, 1.598128616054, 1,
 15.30049749881, 2.44317319297, 1,
 17.50999790329, 2.877467134283, 1,
 20.15874336325, 2.731740204065, 1,
 22.63568039847, 2.00658441796, 1,
 24.72146266704, 0.839168080994, -1

Don’t copy over the diagonals, we
can calculate these points by

combining the top and bottom
points. Using ‘k’ as a counter, we

can find out how many points
there actually are.

We use a WHILE DO loop to run through the list count-
ing the number of points, storing the X and Zs in the
array, and throwing away the third number on each
line of the Line tool script.

In AC7 you have to use the Fill tool to get the points. AC8 and
AC9 have a Polyline drawing tool.

Curved Lattice Structure

‘k’ is a counter here, but
it has to be manually

updated

150 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Continuing the Master Script

!-----Space Grid calculations-----
 wid=B/numf !width of each frame
 w2=wid/2 !Half Width
 IF numf<=1 THEN numf=1
 IF secd>=sect THEN secd=sect
 PARAMETERS numf=numf, wid=wid, secd=secd
 LOCK 'wid'

!----Calculate the Diagonals----
FOR k=1 TO numt !Alternating top and bottom
 dx[k*2-1]=tx[k]
 dz[k*2-1]=tz[k]
 dx[k*2]=bx[k]
 dz[k*2]=bz[k]
 NEXT k
 numd=numt*2-1

!--Twist angle calculation for the cross tubes--
!--Top tubes
FOR k=1 TO numt-1

twt[k]=ATN((tz[k+1]-tz[k])/(tx[k+1]-tx[k]))
NEXT k

 twt[numt]=twt[numt-1] !last tube

!--Bottom tubes
FOR k=1 TO numb-1

twb[k]=ATN((bz[k+1]-bz[k])/(bx[k+1]-bx[k]))
NEXT k

 twb[numb]=twb[numb-1] !last tube

!Write in the ideal place for pick up hotspots
!at middle and end
 spt=tx[1] !Start point
 mpt=tx[INT(1+numt/2)] !Middle Pickup point
 ept=tx[numt] !End point

!Select shape and set flag
 VALUES 'tub_shap' 'Square','Round'
 IF tub_shap='Square' THEN ts=0
 IF tub_shap='Round' THEN ts=1

Master Script and Parameters
We want this to be stretchy widthways, so it’s time to
make some parameters. We are going to make ‘B’ as
the width, and set a number of frames, ‘numf ’. Make a
few others, for materials, pens etc. Use the master script
to do some idiotproofing and to work out some inter-
nal parameters, like the width and half width of each
frame section.

We run a routine to work out the points of the diago-
nals. You can do this with a smart routine that alter-
nates between the top and bottom lines, building up a
new array.

This takes some thinking out, but it’s
better than requiring the user to copy

and paste in an separate and extra
set of points for the diagonals.

!Curved spacedeck: 2D Script
PEN gs_symb_pen

HOTSPOT2 spt,0
HOTSPOT2 spt, B
HOTSPOT2 ept,0
HOTSPOT2 ept, B

FOR n=1 TO numf+1
HOTSPOT2 mpt, wid*(n-1)
NEXT n

 PROJECT2 3,270,1

!Curved spacedeck: 3D Script

PEN gs_cont_pen
IF GLOB_CONTEXT=2 THEN PEN gs_symb_pen
TOLER 0.005

!---Space grid-------------
!Top and Bottom linear tubes
MATERIAL matl_main
FOR n=1 TO numf+1

ADDy wid*(n-1)
GOSUB 200:!Top deck
DEL 1
NEXT n

FOR n=1 TO numf
ADDy wid/2+wid*(n-1)
GOSUB 210:!Bottom deck
DEL 1
NEXT n

!Diagonal Tubes
MATERIAL matl_diag
FOR n=1 TO numf

ADDy wid/2+wid*(n-1)
m=1
GOSUB 220:!diagonals
m=-1
GOSUB 220:!diagonals
DEL 1
NEXT n

!Cross Tubes
MATERIAL matl_main
GOSUB 250:!Top deck cross tubing single
IF numf>1 THEN

GOSUB 260:!Bot deck cross tubing single
ENDIF

!Hotspots on edges
GOSUB 300:!Hotspots on one top deck line

ADDy B
GOSUB 300:!Hotspots on one top deck line

DEL 1
GOSUB 310:!Hotspots on edges

END:!===================================

Continued next page

We also need a routine to rotate the cross tubes of the
spacedeck – this is the kind of thing one thinks of and
adds later when one has got the main frame working
correctly.

To round off the Master Script, calculate some X
dimensions for positioning pickup hotspots in the 2D
and 3D – the start, middle and end points.

2D Script
We should write a full 2D script to make the object
draw itself very quickly in the plan, but for the mo-
ment, lets leave it as a PROJECT2.

3D Script
The IF statement allows us to use a different pen col-
our in the 2D symbol. Set TOLER to control the number
of polygons. In constructing the tubes, we delegate
the hard work to the subroutines – these loops merely
decide how many tubes we will have. The number of
parallel frames will be ‘numf ’.

This flag ‘m’ switches the
directions of the diagonals.

Run the same subroutine,
but with a negative ‘m’ and
the diagonals all lean over

the other way from a
positive ‘m’.

Curved Lattice Structure

151Copyright Marmalade Graphics ©2004

100:!Square Section outline Main tubes
PUT sectn/2, sectn/2, 0
PUT -sectn/2, sectn/2, 0
PUT -sectn/2,-sectn/2, 0
PUT sectn/2,-sectn/2, 0
PUT sectn/2, sectn/2,-1
RETURN

101:!Round Section outline Main tubes
PUT 0,0, 901
PUT sectn/2, 360,4001
RETURN

200:!------Top deck-----
sectn=sect !tube section
GOSUB 100+ts !Section
prpts=NSP/3 !profile points

PUT -100,0,0,0
 FOR k=1 TO numt
 PUT tx[k],0,tz[k],0
 NEXT k
 PUT 100,0,0,0

ptpts=(NSP-prpts*3)/4
TUBE prpts,ptpts,63,GET(NSP)

RETURN

210:!------Bottom deck--------
 sectn=sect !tube section
 GOSUB 100+ts !Section
 prpts=NSP/3 !profile points

 PUT -100,0,0,0
 FOR k=1 TO numb

PUT bx[k],0,bz[k],0
NEXT k
PUT 100,0,0,0

ptpts=(NSP-prpts*3)/4
TUBE prpts,ptpts,63,GET(NSP)

RETURN

220:!------Diagonals--------
 sectn=secd !tube section
 h=0 !top or bottom
 GOSUB 100+ts !Section
 prpts=NSP/3 !profile points

 PUT -1,0,0,0
 FOR k=1 TO numd

h=1-h !switch from 1 to 0
PUT dx[k],m*h*wid/2,dz[k],0
NEXT k
PUT 100,0,0,0

ptpts=(NSP-prpts*3)/4
TUBE prpts,ptpts,63,GET(NSP)

RETURN

250:!--Top deck cross tubing--
FOR k=1 TO numt
 GOSUB 100+ts !Profile
 prpts=NSP/3 !profile points

 PUT tx[k],0, tz[k], twt[k]
 PUT tx[k],0, tz[k], twt[k]
 PUT tx[k],B, tz[k], twt[k]
 PUT tx[k],B+1, tz[k], twt[k]

TUBE prpts,4,63,GET(NSP)
NEXT k

RETURN

260:!--Bottom deck cross tubing--
FOR k=1 TO numb
 GOSUB 100+ts !Profile
 prpts=NSP/3 !profile points

 PUT bx[k], 0, bz[k], twb[k]
 PUT bx[k], wid/2, bz[k], twb[k]
 PUT bx[k], B-wid/2,bz[k], twb[k]
 PUT bx[k], B, bz[k], twb[k]
 TUBE prpts,4,63,GET(NSP)
 NEXT k
RETURN

300:!3D Hotspots:Top Deck side edges--
FOR k=1 TO numt

HOTSPOT tx[k],0,tz[k]
NEXT k

RETURN

310:!Hotspots on start and end edges--
FOR k=1 TO numf+1

HOTSPOT tx[1], wid*(k-1), tz[1]
HOTSPOT tx[numt],wid*(k-1), tz[numt]
NEXT k

RETURN

We can use these two
routines for PUTting the

profile coordinates for the
small and large tubing.

This routine draws the
top tube. We have two
phantom points either

side of the real points on
the array. As we don’t

know the number of
points on either the

profile or the path, we
have to use this trick with

NSP.
The routine for the

bottom tube is the same.

We have the ‘m’ flag
deciding which way to

lay, but the ‘h’ flag is
deciding whether the tube

is touching the top or
bottom main tubes.

This is a bit crude, the
diagonal is one

continuous zigzag line
and can result in somc
spiky mitring details at

the joints.

These could be done
with prism, but we
have a good thing

going here with TUBE
so we stay with it. It
allows us to use the

twist, the fourth
parameter on the path

points list in a TUBE
command.

The bottom deck cross
tubes are slightly

shorter than the top
tubes.

Summary
Frames like this are in the ‘quick and dirty’ category,
i.e, one is working towards the geometric configu-
ration, but is not looking to make beautiful joint
details etc. This would require calculation of the
directions and lengths of every tube – each line of
which is different!

We also need to find a way to improve the detail-
ing at the joints – to make them less ‘spiky’. the
joints here meet precisely at the node point, but in

real frames, there has to be space for the welding of
the tubes.

Because GDL is a programming language, it
would be easy enough to printout a list of calcu-
lated tube lengths for manufacturing purposes – in-
deed, how else would one calculate all this essen-
tial data? It’s worth expending this effort on a more
parametric version of this framework, which we will
try next.

Curved Lattice Structure

152 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4 Curved Lattice Structure

Curved
Lattice:
make it
Parametric!
GRAPHICAL Hotspots have transformed the ca

pabilities of GDL. The curved lattice on the ear-
lier pages rely on a complex list of XY coordinates in
the Master Script. There are pitfalls for the unwary,
especially those who do not quite understand the way
PUT and GET work. It’s possible to make a mistake in
clicking out the polyline, or in pasting the code into
the Master Script. And it’s not really parametric.

Let’s try to use Parameter Arrays to make a similar
curved lattice, but one that offers a staggering level of
freedom to configure the framework. This does not
actually do calculations for the structure (you would
still need this verified by an engineer), but you could
provide your engineer with detailed information on
tube lengths (and slenderness ratios) and greatly as-
sist the fabrication process. Previously, this kind of
frame, irregular in configuration, would be too com-
plex to manufacture. GDL can make the impossible
possible! The way to make it configurable is not to
make the user type in vast numbers of coordinates
(this can be a fall-back method); the best way is to dis-
play a 2D configuration tool using hotspots which
makes it easy to shape the lattice to fit a roof outline.

In just playing with this object, I am pretty amazed
at its flexibility – there must be a practical use for it, if
it can configure frames of a complexity that normal
design methods could not tackle.

Author’s note
This frame is vastly smarter than the one on the previ-
ous page. One of the problems I have as an author is
to make the more advanced examples complex enough
to amuse and educate the advanced GDL users, but
short enough to stay within 2-3 pages. Please forgive
me for leaving out some of the more complex
elaborations that could be added.

Parameters and Master Script
We need to have parameter arrays for the top and bot-
tom nodes if we want to be able to use Graphical
Hotspots. Let’s base the overall length of the frame o
‘numnod’, number of nodes in the top surface, and
call the top and bottom nodes ‘topnod’ and ‘botnod’
respectively. (The ‘startdep’ here is for future use, for
initialising a new frame.) We need parameters for the
Tubing sectional sizes, and a spacing dimension where
the small diagonals meet the larger main tubes. The
tubing can be round or square in section.

One of the smart features we will give this frame is
to enable the user to configure the frame in the 2D
view by laying it on its side.

This frame isn’t only for roofs. It can be arched over to form an
enclosure like this.

This Parameter Table include the ‘Reset’ routine for initialising
the lattice. You can adapt this for other objects.

153Copyright Marmalade Graphics ©2004

!Curved spacedeck: Master Script

x=1:z=2 !Reference for arrays

!----Menus----------------------
VALUES 'tub_shap' 'Square','Round'
IF tub_shap='Square' THEN ts=0
IF tub_shap='Round' THEN ts=1

vu0 ='True view hidline'
vu1='True view solid'
vu2='Line 2D view'
vu3='Sideways configuration view'
VALUES 'vu2d' vu0,vu1,vu2,vu3

!----Space Grid calculations----
!Frame overall is stretchy
!number of bays is parametric
 wid=B/numf !width of each section
 LOCK 'wid'
IF numf<=1 THEN numf=1
IF secd>=sect THEN secd=sect
 w2=wid/2 !Half Width
 df2=diagofset*0.5 !Offset for Diagonals
PARAMETERS wid=wid, numf=numf, secd=secd

!Limit Number of points for the Array version--
 IF numnod<=2 THEN numnod=2
 IF numnod>=60 THEN numnod=60
 PARAMETERS numnod=numnod

 numd=numnod*2-1 !Number of Diagonal points

!---
!Initialise Points in the arrays: Reset routine
 resetval=0 !Customise not reset

 rv0='Customise'
 rv1='Reset all values'
VALUES 'reset' rv0,rv1
VALUES 'rusur' rv0,rv1

IF reset=rv0 THEN
PARAMETERS rusur=rv0
 HIDEPARAMETER 'rusur'
 ENDIF

IF reset=rv1 THEN
 IF rusur=rv1 THEN resetval=1
 ENDIF

IF resetval THEN
FOR k=1 TO 60
 PARAMETERS topnod[k][x]=spac*(k-1) !X Values
 PARAMETERS topnod[k][z]=0 !Z Values
 PARAMETERS botnod[k][x]=spac*(k-0.5) !X Values
 PARAMETERS botnod[k][z]=-startdep !Z Values
 NEXT k
HIDEPARAMETER 'rusur'
PARAMETERS reset=rv0
resetval=0 !reset flag to zero
ENDIF

!Start and End Points
spt=topnod[1][x] !Start
ept=topnod[numnod][x] !End
mpt=topnod[INT(numnod/2)][x] !Midpoint
PARAMETERS A=ept,zzyzx=0
LOCK 'A'
HIDEPARAMETER 'zzyzx'

!---
!Store Twist values in an array
DIM twt[] !Twist angle top in cross tubes
DIM twb[] !Twist angle bottom

!--Twist angle calculation for the cross tubes--

!--Top tubes
twt[1]=ATN((topnod[2][z]-topnod[1][z])/(topnod[2][x]-topnod[1][x]))
FOR k=2 TO numnod-1
 twt[k]=ATN((topnod[k+1][z]-topnod[k-1][z])/(topnod[k+1][x]\
 -topnod[k-1][x]))
 IF twt[k]>=180 AND twt[k]<=360 THEN twt[k]=twt[k]-360
 NEXT k
twt[numnod]=twt[numnod-1] !last node

!--Bottom tubes
twb[1]=ATN((botnod[2][z]-botnod[1][z])/(botnod[2][x]-botnod[1][x]))
FOR k=2 TO numnod-1
 twb[k]=ATN((botnod[k+1][z]-botnod[k-1][z])/(botnod[k+1][x]\
 -botnod[k-1][x]))
 IF twb[k]>=180 AND twb[k]<=360 THEN twb[k]=twb[k]-360
 NEXT k
twb[numnod-1]=twb[numnod-2] !last one

Master Script
This appears complex, but real objects of this sophis-
tication have even longer Master Scripts as the author
thinks of more features.

In this case we set up some of the main menus for
tubing sections and 2D representation. We calculate
some of the essential parameters for the space grid
width, and do some idiotproofing to limit the size of
the frame. We could have 60 nodes, we could choose
to have 600! But here, we have limited it to 60.

Note that when we have idiotproofed or corrected
parameters, we do not forget to notify the user with a
PARAMETERS command, and apply a LOCK if the
parameter is not to be edited.

‘Reset’ – smart Initialisation routine
In this script I have included a very interesting rou-
tine, which is an Initialisation routine – this straight-
ens out the frame in case it is an insane shape, or it
can be used to set the frame to near-enough the re-
quired shape then tweak it to its final shape – you can
set a starting value of spacing of the nodes and depth
of the frame.

What makes it smart is the way it has a ‘conversa-
tion’ with the user. If the user decides to reset the struc-
ture, they may regret this, so the parameters come up
with the question “Are you sure?” and the user has to
issue the reset command again to make it happen.

The advanced GDL user should play with this ob-
ject and explore its capabilities.

This reset routine can be used again with other ob-
jects where you can devise a way of initialising the
configuration to a default value. It may not matter with
a chair or table, but if you have spend hours configuring
a complex lattice, you don’t want to straighten it out
by accident.

Twist Values, and Welding details
One smart feature of this frame is to twist the cross
tubes of the frame so that they are not always hori-
zontal. We did this for the previous object, but this is
more accurate – it averages the angle between the pre-
ceding and the next nodes to the one in question, and
the twist angle also govern the spacing of the diago-
nals. Because it unrealistic for all those tubes to come
precisely together, we have a parameter for a welding
offset for the diagonals. It has made this object much
more complex than I would have liked, but without it,
the sharp eyed readers of this book would be crying
out that I had ignored an important feature. It gets
very complicated if the frame is distorted greatly.

Finally, we calculate the optimum position of the
midpoints, and the location of the ends (to improve
the 2D Hotspots) and send a value of ‘A’ to the param-
eter table.

Note that when lines are too long to fit, you can use a \ symbol
and continue on the next line.

154 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!Flexible Spacegrid: Parameter Script
VALUES 'instruct' 'This is highly parametric, best done by dragging vertices with,',
 'smart hotspots. The 3D ones are a bit dodgy, the safest method is using',
 'the 2D one in the sideways elevation view. You can copy and paste the',
 'object into a Section/Elevation, then configure',
 'the spacegrid very accurately in that view, following the profile of the roof,',
 'then copy and paste back to the Plan view and then lay it flat again!',
 'Beware of using the <solid> view in the 2D symbol, its very slow.'

!Curved spacedeck: 3D Script

PEN cpn
IF GLOB_CONTEXT=2 THEN PEN gs_symb_pen
TOLER 0.005

!-------------Hotspots on edges-------
GOSUB 1000:!Hotspots on one top deck line
 ADDy B
GOSUB 1000:!Hotspots on one top deck line
 DEL 1
GOSUB 1010:!Hotspots on one edge

!----------------Space grid-------------
!Top and Bottom linear tubes
MATERIAL matl_main
FOR n=1 TO numf+1

ADDy wid*(n-1)
GOSUB 200:!Top deck
DEL 1
NEXT n

FOR n=1 TO numf
ADDy wid/2+wid*(n-1)
GOSUB 210:!Bottom deck
DEL 1
NEXT n

!Diagonal Tubes
MATERIAL matl_diag
FOR n=1 TO numf

ADDy wid/2+wid*(n-1)
m=1
GOSUB 220:!diagonals
m=-1
GOSUB 220:!diagonals
DEL 1
NEXT n

!Cross Tubes
MATERIAL matl_main
GOSUB 250:!Top deck cross tubing single
IF numf>1 THEN

GOSUB 260:!Bot deck cross tubing single
ENDIF

END:!____________________________________

100:!Square Section outline Main tubes
 PUT sectn/2, sectn/2, 0
 PUT -sectn/2, sectn/2, 0
 PUT -sectn/2,-sectn/2, 0
 PUT sectn/2,-sect/2, 0
 PUT sectn/2, sectn/2,-1
RETURN

101:!Round Section outline Main tubes
 PUT 0,0, 901
 PUT sectn/2, 360,4001
RETURN

200:!-----Top deck Array-----
sectn=sect !tube section
GOSUB 100+ts !Section
prpts=NSP/3 !profile points

PUT -10000,0,0,0

FOR k=1 TO numnod
 PUT topnod[k][x],0,topnod[k][z],0
 NEXT k
 PUT 10000,0,0,0

ptpts=(NSP-prpts*3)/4
 TUBE prpts,ptpts,63,GET(NSP)
RETURN

210:!------Bottom deck--------
sectn=sect !tube section
GOSUB 100+ts !Section
prpts=NSP/3 !profile points

 adjb1x=(df2+secd)*COS(twb[1])
 adjb1z=(df2+secd)*SIN(twb[1])
 adjbnx=(df2+secd)*COS(twb[numnod-1])
 adjbnz=(df2+secd)*SIN(twb[numnod-1])

PUT -10000,0,0,0
PUT botnod[1][x]-adjb1x,0,botnod[1][z]-adjb1z,0
FOR k=1 TO numnod-1
 PUT botnod[k][x],0,botnod[k][z],0
 NEXT k
 PUT botnod[numnod-1][x]+adjbnx,0,
 botnod[numnod-1][z]+adjbnz,0
 PUT 10000,0,0,0

 ptpts=(NSP-prpts*3)/4
 TUBE prpts,ptpts,63,GET(NSP)
RETURN

220:!------Diagonals--------
sectn=secd !tube section

FOR k=1 TO numnod-1
!!Do each Rod in the Vee separately
 adjtx=df2*COS(twt[k]) !Adjustments
 adjtz=df2*SIN(twt[k])
 adjbx=df2*COS(twb[k])
 adjbz=df2*SIN(twb[k])

x1=topnod[k][x]+adjtx
 y1=m*wid/2
 z1=topnod[k][z]+adjtz
x2=botnod[k][x]-adjbx
 y2=0
 z2=botnod[k][z]-adjbz
 GOSUB 900:!Build a tube

x1=botnod[k][x]+adjbx
 y1=0
 z1=botnod[k][z]+adjbz
x2=topnod[k+1][x]-adjtx
 y2=m*wid/2
 z2=topnod[k+1][z]-adjtz
 GOSUB 900:!Build a tube

NEXT k
RETURN

250:!Top deck cross tubing single
sectn=sect !tube section
FOR k=1 TO numnod
GOSUB 100+ts !Profile
prpts=NSP/3 !profile points

 PUT topnod[k][x],-1,topnod[k][z], twt[k]
 PUT topnod[k][x], 0,topnod[k][z], twt[k]
 PUT topnod[k][x], B,topnod[k][z], twt[k]
 PUT topnod[k][x], B+1,topnod[k][z],twt[k]

TUBE prpts,4,63,GET(NSP)
NEXT k

RETURN

!continued next page

As usual, I like to have
some instructions with

every object, and a
popdown text is the

easiest way to do this.

3D Script
This is a complex object, and is best looked at on the
CD. It demonstrates how important it is to docu-
ment every subroutine with a title. It contains most
of the heavy GDL artillery except for UI, Surfaces
and File I/O. Surfaces could easily be added once
the coordinates are in the array.

The main routines are in
compact routines with the
heavy work delegated to

subroutines. The loops here
just repeat the modules in

the Y direction.

The M value swaps the
direction of the tubes so that

the ‘vees’ get repeated both
sides of the bottom tubes.

Change pen
colour if it’s

a 2D
PROJECT2.

We have two choices of
section for the tubing,
round or square. The

subroutines decide
which size section to

use.

This top tube just
follows the array of

nodes. The Phantom
points are a long way

away!

The bottom tube
is more

complicated.
Because we want

to improve the
look of the weld
of the diagonal

tubing we
introduce a

spacing
parameter.

This gets very
complicated. We
have twisted the
cross tubes, but

we have to apply
a similar twist to

the locations of
the welds for the

diagonals.
Hard GDL-case
will appreciate

this. It’s done with
separate tubes
with butt-ends

and a small
Adjustment in X

and Z for the top
and bottom

points.
Having calculated

the twist angles,
we can apply

them in the cross
tubes.

155Copyright Marmalade Graphics ©2004

!3D Script continued

260:!--Bottom deck cross tubing--
sectn=sect !tube section
FOR k=1 TO numnod-1
 GOSUB 100+ts !Profile
 prpts=NSP/3 !profile points

 PUT botnod[k][x],0, botnod[k][z], twb[k]
 PUT botnod[k][x],wid/2, botnod[k][z], twb[k]
 PUT botnod[k][x],B-wid/2,botnod[k][z], twb[k]
 PUT botnod[k][x], B, botnod[k][z], twb[k]
 TUBE prpts,4,63,GET(NSP)
 NEXT k
RETURN

900:!----Tubes for Diagonals------
x0=x1+(x1-x2)
x3=x2-(x1-x2)
y0=y1+(y1-y2)
y3=y2-(y1-y2)
z0=z1+(z1-z2)
z3=z2-(z1-z2)

GOSUB 100+ts !Profile
TUBE NSP/3,4,63,
 GET(NSP),
 x0,y0,z0,0,
 x1,y1,z1,0,
 x2,y2,z2,0,
 x3,y3,z3,0
RETURN

1000:!-----3D Hotspots on Top Deck edges-----
FOR k=1 TO numnod
 hsid=hsid+1
HOTSPOT topnod[k][x],0,0, hsid,topnod[k][z],1+128
 hsid=hsid+1
HOTSPOT topnod[k][x],0,topnod[k][z],hsid,topnod[k][z],2
 hsid=hsid+1
HOTSPOT topnod[k][x],0,-100, hsid,topnod[k][z],3
 NEXT k
RETURN

1010:!Hotspots on one edge
FOR n=1 TO numf+1
 HOTSPOT topnod[1][x],wid*(n-1),topnod[1][z]
 HOTSPOT topnod[numnod][x],wid*(n-1),topnod[numnod][z]
 NEXT n
RETURN

!Curve spacedeck: 2D Script

PEN gs_symb_pen

IF vu2d=vu0 THEN !Plan in true view line
GOSUB 1000:!Hotspots Plan view
PROJECT2 3,270,2
ENDIF

IF vu2d=vu1 THEN !Plan in true view solid
GOSUB 1000:!Hotspots Plan view
PROJECT2 3,270,3 !solid
ENDIF

!2D Fully scripted version Plan
IF vu2d=vu2 THEN !Plan in 2D
GOSUB 1000:!Hotspots Plan view

!Top Deck
FOR n=1 TO numf+1

FOR k=1 TO numnod-1
LINE2 topnod[k][x], wid*(n-1),

 topnod[k+1][x], wid*(n-1)
NEXT k
NEXT n

!Bottom Deck
FOR n=1 TO numf

FOR k=1 TO numnod-2
LINE2 botnod[k][x], w2+wid*(n-1),

 botnod[k+1][x], w2+wid*(n-1)
NEXT k
NEXT n

!Top cross tubes
FOR k=1 TO numnod

LINE2 topnod[k][x],0, topnod[k][x], B
NEXT k

!Bottom cross tubes
IF numf>=1 THEN

FOR k=1 TO numnod-1
LINE2 botnod[k][x], w2, botnod[k][x], B-w2
NEXT k
ENDIF

!!Diagonals
m=1
FOR n=1 TO numf
ADD2 0, wid*(n-1)

FOR k=1 TO numnod-1
 LINE2 topnod[k][x],0, botnod[k][x],wid/2
 LINE2 topnod[k][x],wid,botnod[k][x],wid/2
 LINE2 topnod[k+1][x],0,botnod[k][x],wid/2
 LINE2 topnod[k+1][x],wid,botnod[k][x],wid/2
 NEXT k
 DEL 1
 NEXT n
ENDIF

!2D Fully scripted version
IF vu2d=vu3 THEN !Elevation in 2D
GOSUB 1010:!Hotspots Elevation view
!Top Deck

FOR k=1 TO numnod-1
LINE2 topnod[k][x], topnod[k][z],

topnod[k+1][x], topnod[k+1][z]
NEXT k

!Bottom Deck
FOR k=1 TO numnod-2
LINE2 botnod[k][x], botnod[k][z],

botnod[k+1][x], botnod[k+1][z]
NEXT k

!Diagonals
FOR k=1 TO numnod-1
LINE2 topnod[k][x],topnod[k][z],

botnod[k][x],botnod[k][z]
LINE2 topnod[k+1][x],topnod[k+1][z],

botnod[k][x],botnod[k][z]
NEXT k
ENDIF

END:!==

1000:!Hotspots Plan view
!Plan Hotspots
FOR n=1 TO numf+1
HOTSPOT2 ept, wid*(n-1)
HOTSPOT2 spt, wid*(n-1)
HOTSPOT2 mpt, wid*(n-1)
NEXT n
RETURN

1010:!Hotspots for elevtion view
FOR k=1 TO numnod
 hsid=hsid+1
HOTSPOT2 0,topnod[k][z], hsid,topnod[k][x],1+128
 hsid=hsid+1
HOTSPOT2 topnod[k][x],topnod[k][z], hsid, topnod[k][x],2
 hsid=hsid+1
HOTSPOT2 -1,topnod[k][z], hsid,topnod[k][x],3

 hsid=hsid+1
HOTSPOT2 topnod[k][x], 0, hsid,topnod[k][z],1+128
 hsid=hsid+1
HOTSPOT2 topnod[k][x],topnod[k][z], hsid, topnod[k][z],2
 hsid=hsid+1
HOTSPOT2 topnod[k][x],-1, hsid,topnod[k][z],3
NEXT k

FOR k=1 TO numnod-1
 hsid=hsid+1
HOTSPOT2 0,botnod[k][z], hsid,botnod[k][x],1+128
 hsid=hsid+1
HOTSPOT2 botnod[k][x],botnod[k][z], hsid,botnod[k][x],2
 hsid=hsid+1
HOTSPOT2 -1,botnod[k][z], hsid,botnod[k][x],3

 hsid=hsid+1
HOTSPOT2 botnod[k][x], 0, hsid, botnod[k][z],1+128
 hsid=hsid+1
HOTSPOT2 botnod[k][x],botnod[k][z], hsid,botnod[k][z],2
 hsid=hsid+1
HOTSPOT2 botnod[k][x],-1, hsid,botnod[k][z],3
NEXT k
RETURN

156 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Tube structures
from imported
DXF files
SOME 3D structures may come to you as DWG

or DXF, and if you are lucky with the format, there
is a method of converting them to practical 3D GDL
solid structures.

When you import the file into GDL, you have no
say on how it will appear, but try it out and see what
you get (always ask for editable GDL, not Binary). In
the example used here, that of a Geodesic structure,
the import filter produces a 3D script full of LIN_ state-
ments. These produce 3D lines in space which look
OK, but disappear in a photorender – because lines on
their own are not solid. This exercise gives you a stand-
ard routine for taking any of these line based 3D struc-
tures and making them solid, using TUBE statements.

Formian
The examples used here come from ‘Formian’ which
is a programme (Windows only) developed at the Uni-
versity of Surrey by Hoshyar Nooshin and his team in
the Space Structures Research Centre. You can con-
struct 3D structures with Formex Algebra which can
then be saved as DXF files. I have also brought line
based structures saved as DXF from Rhinoceros into
GDL which produced the same line based 3D code.

Use Google to look up ‘Formian Surrey’ and ‘Formex
Algebra’ and you will discover more about it, and will
be able to download and use Formian yourself (al-
though it is a hundred times more difficult than GDL!)
The demonstration files generate a good number of
parametric towers, vaults, domes and scallop domes.

3D Script
When you have opened the DXF file as a GDL Object,
look at the 3d Script. If you suspect that the dimen-
sions of the lines are either 1000 times smaller or larger
than they should be, bring it back in with a modifica-
tion to the scale in the DXF Translator. It will look like
the code below, hundreds of lines of LIN_ statements.

We receive a DXF of a 3D model like the one on the right, and
we want to finish up with the one on the left.

 0
SECTION
 2
ENTITIES
 0
LINE
 8
Default
 10
0.343279
 20
0.000000
 30
0.939234
 11
0.106079
 21
0.326477
 31
0.939234
 0

LINE
 8
Default
 10
0.106079
 20
0.326477
 30
0.939234
 11
-0.277718
 21
0.201774
 31
0.939234
 0

LINE
 8
Default
 10
-0.277718
 20
0.201774
 30
0.939234
 11
-0.277718
 21
-0.201774
 31
0.939234
 0

The original DXF file will look something
like this – a long chunk of text containing
something that appears to be Line
statements.

When you import the 3D file into GDL you will get a parameter
table looking like this. We need to add some parameters to
include details of tubing.

MODEL SURFACE
MUL a, b, ZZYZX
XFORM TR3D_1_1, TR3D_1_2, TR3D_1_3, 0.0,
 TR3D_2_1, TR3D_2_2, TR3D_2_3, 0.0,
 TR3D_3_1, TR3D_3_2, TR3D_3_3, 0.0
MATERIAL 0
LINE_TYPE "Solid Line"
PEN 1
LIN_ 0.343279, 0, 0.939234, 0.106079, 0.326477, 0.939234
LIN_ 0.106079, 0.326477, 0.939234, -0.277718, 0.201774, 0.939234
LIN_ -0.277718, 0.201774, 0.939234, -0.277718, -0.201774, 0.939234
LIN_ -0.277718, -0.201774, 0.939234, 0.106079, -0.326477, 0.939234
LIN_ 0.106079, -0.326477, 0.939234, 0.343279, 0, 0.939234
LIN_ 0.343279, 0, 0.939234, 0.686557, 0, 0.727076
LIN_ 0.106079, 0.326477, 0.939234, 0.212158, 0.652955, 0.727076
LIN_ -0.277718, 0.201774, 0.939234, -0.555436, 0.403548, 0.727076
LIN_ -0.277718, -0.201774, 0.939234, -0.555436, -0.403548, 0.727076
etc, etc, etc, hundreds more lines like this.......

Parameters and Master Script
You will need to set up new param-
eters for the tubing detail, plus some
popdown menus for choices, such as
resolution of tubing and 2D represen-
tation. We could have a choice of
section (round or rectangular) but this
has been covered in other exercises
in the GDL CB. You can also HIDE
the transformation parameters, these
can be retained, but we can set per-
manent values for them.
You could also write some instruc-
tions for the object’s user.

All these LIN_ statements
draw lines from x1, y1, z1 to

x2, y2, z2. All we need is to
make Tubes that do the

same thing!

157Copyright Marmalade Graphics ©2004

!Dome imported from DXF - Master Script

!Resolution
rsl=MAX (3,rsl)
rsl=MIN (8,rsl)
PARAMETERS rsl=rsl

!Menus
mv1='Lines'
mv2='Solid tubes'
VALUES 'mode3d' mv1,mv2

IF mode3d='Lines' THEN HIDEPARAMETER 'diam',
 'rsl','tmatl','truvu','_sp1'

vv1='Line representation'
vv2='3D hidden line'
vv3='3D Solid'
VALUES 'vu2d' vv1,vv2,vv3

!Parameters
trad=diam/2 !tube radius

!Transformation to make it the right size
PARAMETERS TR3D_1_1=0.5,
 TR3D_2_2=0.5,TR3D_3_3=0.5
!Leave this line till last....

This limits the resolution to
between 3 and 8.

We retain the option to
display in line mode, in case

the dome is very large and
would be slow to render.

The other TR3D parameters
are to do with skewing. If

you wish to experiment with
skewing, leave the XFORM
statement in the 3D script.

Tweaking the TR3D_1 parameters
The dome/structure comes from Formian in a spe-
cific size. GDL assigns a size of 1m x 1m x 1m to it as
a default, but displays it at the imported size. Very
confusing. We can make use of the XFORM command
in the imported script to adjust the object to its cor-
rect size and to be able to use A, B & zzyzx correctly.
XFORM is like an extended MUL statement. We can
use either trial and error or pure logic to work out the
multiplication factor – in this case, I used the recipro-
cal of the actual size as imported from DXF.

3D Script again – the trick!
The primary trick in this task is to use Global Search
and Replace and change all the LIN_ statements to
PUT statements. Once they are in memory, you can
use a standardised routine which will convert all these
numbers either to Lines or Tubes. Then use the script
here. In future, use this as a template – you can bring
any other objects in, grab that list of LIN_ statements,
convert them to PUT, paste them into duplicate of this

!Parameter Script
VALUES 'instruct' 'The structure can be in',
 '3D lines, or in 3D solid tubes.',
 'Warning, use the line representation',
 'in the 2D symbol while',
 'setting up the object',
 'as drawing time in 2D will be slow.',
 'If you have the object in',
 'Line mode in the 3D View,',
 'it will disappear in renders.'

It is ALWAYS a good idea to include some instructions to the
user, and what better place to put it than the Parameter
Script. I tend to use the Master Script for any menus that
result in flags like ‘mv1’ or ‘vv1’ in this case so that they are
known to the 3D and 2D scripts.

!Dome imported from DXF - 3D Script

GOSUB 1000:!Hotspots

IF vu2d=vv1 AND GLOB_CONTEXT=2 THEN mode3d=mv1

MUL a, b, ZZYZX
MUL TR3D_1_1, TR3D_1_2, TR3D_1_3
PEN gs_cont_pen

PUT 0.343279, 0, 0.939234, 0.106079, 0.326477, 0.939234
PUT 0.106079, 0.326477, 0.939234, -0.277718, 0.201774, 0.939234
PUT -0.277718, 0.201774, 0.939234, -0.277718, -0.201774, 0.939234
PUT -0.277718, -0.201774, 0.939234, 0.106079, -0.326477, 0.939234
PUT 0.106079, -0.326477, 0.939234, 0.343279, 0, 0.939234
PUT 0.343279, 0, 0.939234, 0.686557, 0, 0.727076
PUT 0.106079, 0.326477, 0.939234, 0.212158, 0.652955, 0.727076
PUT -0.277718, 0.201774, 0.939234, -0.555436, 0.403548, 0.727076
PUT -0.277718, -0.201774, 0.939234, -0.555436, -0.403548, 0.727076
PUT 0.106079, -0.326477, 0.939234, 0.212158, -0.652955, 0.727076
!etc etc etc, hundreds more lines like these

!Standard routine to use with all such DXFs
IF mode3d=mv1 THEN
WHILE NSP DO

LIN_ GET(6)
ENDWHILE
ENDIF

!---- Tubes ------
IF mode3d=mv2 THEN
MATERIAL tmatl
RESOL rsl

WHILE NSP DO
 x1=GET(1)
 y1=GET(1)
 z1=GET(1)
 x2=GET(1)
 y2=GET(1)
 z2=GET(1)

 x0=x1+(x1-x2)
 x3=x2-(x1-x2)
 y0=y1+(y1-y2)
 y3=y2-(y1-y2)
 z0=z1+(z1-z2)
 z3=z2-(z1-z2)

TUBE 2,4,63,
 0,0,901,
 trad,360,4001,
 x0,y0,z0,0,
 x1,y1,z1,0,
 x2,y2,z2,0,
 x3,y3,z3,0
ENDWHILE

ENDIF

END:!==========================

1000:!Hotspots
HOTSPOT 0,0,0

!the remaining hotspots are standard Graphical Hotspot
!routines that you can get in more detail from the
!3D Script of the object on the Cookbook CD.
RETURN

Do the hotspots before the rest of
the object.

This IF-statement enables us to get
the right appearance in the 2D

symbol. The imported object will
have a 2D Symbol, but if you

represent the 3D in Lines mode, it’s
acceptable to use a PROJECT2.
Leave the XFORM statement in

place – or change it to a MUL
statement. This tweaks the object so

that the A,B,zzyzx parameters are
correct.

For the Tubes, we get the data in
bunches of 6 at a time using a

WHILE statement. The x0 and x3
routines here work out the

theoretical phantom points at the
start and end of each tube – it’s a

standard routine which you can use
for all tube structures, giving you a

nice butt ended cut on each tube.

In another exercise we can look at
ways to give such tubes conical

ends.
The Hotspots routine is visible on

the example object on the Cookbook
CD.

object using this 3D script – apply the size adjusting
tweak in the Master Script and you have a new 3D
structure!

2D Script: See next page.

158 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Print out a
parameter
list
LASZLO NAGY of Graphisoft posted

on ArchiCAD-Talk this very useful
method of printing out a list of param-
eters. The only thing it does not do for the
GDL writer is to show the internal param-
eter names, but for those who wish to list
out the details of objects, it’s perfect.

The method I have used throughout the
GDL Cookbook is to do a screen capture
and then use Photoshop to tidy it up – but
if you need a text version of the table this
is a good method.

It uses a little known capability of Ar-
chiCAD to make an SQL query on its da-
tabase. To get this to work you use
Calculate\SQL\Query. Make sure SQL is enabled from
the lowermost drop-down list in ‘Options\ Prefer-
ences\ Imaging and Calculation’, so it appears in the
Calculate menu. This example is taken from the Dome
in the page on converting from DXF files.
Type the following query:

Query
SELECT O.PARAMETERS.NAME, O.PARAMETERS.TYPE,
O.PARAMETERS.VALUE FROM FLAT(OBJECTS, PARAMETERS) AS
O WHERE OBJECTS.LIBRARY_PART_NAME=’DOME_b’

 Result
 X Dimension 2 2.000000
 Y Dimension 2 2.000000
 Vertical scale 2 2.000000
 Instructions 12 The structure can...
 3D Mode of Model 12 Solid tubes
 Pen 3D contour 11 1.000000
 3D Options 15 0.000000
 Tubing Diameter 2 0.050000
 Tube Material 9 18.000000
 Tube Resolution 3-8 0 5.000000
 2D Representation 15 0.000000
 View in 2D 12 Line representation
 Pen 2D Symbol 11 1.000000
 Show 2D Hotspots in 3D 13 0.000000
 Transform in X direction 4 0.500000
 Transform in Y direction 4 0.500000
 Transform in Z direction 4 0.500000
 TRAFO3D_1_2 4 0.000000
 TRAFO3D_1_3 4 0.000000
 TRAFO3D_2_1 4 0.000000
 TRAFO3D_2_3 4 0.000000
 TRAFO3D_3_1 4 0.000000
 TRAFO3D_3_2 4 0.000000

The result comes up as a Table in Explorer, and this
can be pasted directly into a word processor like Word.

Make sure you have actually placed at least one ex-
ample of the object into the floor plan of the Archi-
CAD file. Only place one example of the object if you
want a single list; if you have 3 you will have three
listings. You must use single quotes, not double, and it
is Case Sensitive.

I don’t know the SQL lingo, so I am not in a position to explain
in detail how it works – but it does!

Tube structures from
imported DXF files
(continued from previous page)

2D Script
We can just write some quick PROJECT2 state-
ments here – which would allow you to develop
the object further e.g. including rotation.
!Tube structure from DXF: 2D Script

PEN gs_symb_pen

GOSUB 1000:!Hotspots

IF vu2d=vv1 THEN PROJECT2 3,270,1
IF vu2d=vv2 THEN PROJECT2 3,270,2
IF vu2d=vv3 THEN PROJECT2 3,270,3
END:!==========================

1000:!Hotspots
HOTSPOT2 0,0

!the remaining hotspots are standard Graphical Hotspot
!routines that you can get in more detail from the
!2D Script of the object on the Cookbook CD.
RETURN

159Copyright Marmalade Graphics ©2004

Curved Lattice Structure

Cylindrical
Mapping

MOST of the textures we have
used so far have been

directionally oriented on what are pri-
marily cubic volumes – i.e. lengths or
panels of timber. What happens when
you want to wrap the texture round a
cylinder?

I discovered that cylindrical tex-
tures can be applied, but the method
defies the normal logic you would ex-
pect to apply, and I had to solve it with
trial and error until a system emerged.
Here it is!

The trick is twofold: to get the Tex-
ture definition right, and then to get
the COOR and VERT routine work-
ing correctly.

There are a number of other useful
learning outcomes – defining texture,
masking codes etc.

Parameters and Master Script
We can use the A, B, zzyzx dimensions,
plus ones for top material and the
Logo to be printed on the side of the
can. We can also have a hidden parameter for the side
material and set the AC_show2DHotspotsIn3D param-
eter to be hidden and ON. The Texture should be de-
fined in its width and height. Width should be
2*PI*radius, but it doesn’t work!! Trial and error shows
me that setting the width to <twice PI> on its own
gives a reliable index, and if you multiply this by the
reciprocal of the number of logos, it works!!

!Cylindrical box with logo
!3D Script

TOLER 0.002
PEN gs_cont_pen

GOSUB 1000:!Hotspots

MUL 1,B/A,1

CPRISM_ topmat,topmat,sidemat,
2,zzyzx,
0,0,900+13+64,
A/2,360,4000+13

!Texture routine
BASE
 VERT 0,0,0
 VERT 1,0,0
 VERT 0,1,0
 VERT 0,0,1
 COOR 3,-1,-2,-3,-4
 BODY -1
DEL 1

END:!=============================

1000:!Hotspots for upper edge of cyl.
 HOTSPOT 0,0,zzyzx
 HOTSPOT A/2,0,zzyzx
 HOTSPOT -A/2,0,zzyzx
 HOTSPOT 0,B/2,zzyzx
 HOTSPOT 0,-B/2,zzyzx
 RETURN

!2D Script

PEN gs_symb_pen

HOTSPOT2 0,0
HOTSPOT2 A/2,0
HOTSPOT2 -A/2,0
HOTSPOT2 0,B/2
HOTSPOT2 0,-B/2

MUL2 1,B/A
CIRCLE2 0,0,A/2
DEL 1

!Cylindrical box with logo
!Master Script

PARAMETERS numlog=MAX(1,numlog)

DEFINE TEXTURE "side" logo,
 PI*2*(1/numlog), zzyzx, 1, 0

DEFINE MATERIAL "sidem" 22,
 1, 1, 1,
 0,61,
 IND(TEXTURE, "side")
PARAMETERS sidemat=IND(MATERIAL,'sidem')

PARAMETERS AC_show2DHotspotsIn3D=1

By setting the
AC_show2DHotspotsIn3D

parameter to ON, we don’t
need to repeat the ground

plane hotspots in the 3D
script, only the ones for

zzyzx.

We try to state the hotspots
first: it’s tider to put them in a

subroutine.

Use the MUL to distort the
PRISM into an ellipse.

The fundamental radius is A/
2, the B dimension is obtained
with MUL. The masking codes

removes unwanted vertical
lines and ensure that the curve

will look smooth.
The COOR and VERT routine

uses value THREE to ensure
cylindrical mapping around

the centre of the cylinder.

3D Script
This is simply a Cylinder, using the Prism command.
You could elaborate this further, to make it hollow, with
a parametric lid. By using MUL and some hotspots,
we can make the cylinder stretchily elliptical.

This routine allows
you to have 1 or more

of repetitions of the
2D jpeg logo.

When you define a
texture, convert it to

an Index, and make it
equal to a hidden

material parameter.

It will export to
Artlantis more

successfully.

160 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

FRAGMENT2 in action
For a very simple example, suppose you have a non
stretchy object that is intended for use in 3D models,
but also in Plans as a 2D object, and in Sections – a
Sanitary fitting for example. A 2D symbol might be
chosen with a number, or with a ValueList, and your
fragments might be organised thus:
1=Plan 3D true view; 2=Plan 2D line; 3=Side Elevation
2D line; 4=Front Elevation 2D line.

Procedure
To make your own 2D symbols from the 3D, here is a
way. Place the object in the Floor Plan. View it in Plan,
or in Section/Elevation, select it, then Explode it. ‘Cut’
the resulting lines, and paste them into the 2D Symbol
window of the GDL object. The pasted result will be
put into Fragment 1.

Open the 2D Symbol window, and select all lines in
the symbol – move them all to a different Fragment
from 1. Put it in 4 if it’s the front elevation. Fragment 1
should now be empty. So now do the same for view 3
and so on, down to 2. Leave 1 empty (for further use).

In the 2D script, include a routine like this:
IF cstyl=1 THEN PROJECT2 3,270,2
IF cstyl=2 THEN FRAGMENT2 2,1
IF cstyl=3 THEN FRAGMENT2 3,1
IF cstyl=4 THEN FRAGMENT2 4,1

The 1 after the command is an attributes flag. Leave it as 1.

Advanced 2D

FRAGMENT2
FRAGMENT2 is a system of layering in the 2D

 environment of GDL. The little buttons in the
Parameter Table allow you to toggle the visibility of
as many as 16 of these ‘layers’. With all these buttons
on, you see all the fragment layers. If you use the power
of scripting, you can decide which fragment will be
displayed in the 2D View.

Syntax:
FRAGMENT2 fragment_number, use_attributes

• If the attribute flag is 0, the 2D fragment appears with the
pen colours and line types etc as it was drawn.
• If the attribute flag is 1, the 2D fragment appears with the
pen colours and line types etc as specified in the script or
settings box.

All 2D lines, text, circles etc that you would nor-
mally draw in the 2D Symbol window are put into the
top drawing layer, called Fragment 1. Open the 2D
symbol window, click on any of the lines or other 2D
elements and see which fragments they are in – the
Info box tells you. Now you can use the popdown
fragment selector to move it to a different fragment
such as 2 (just as, in 3D, you could move a wall object
from ‘External walls’ to ‘Site and landscaping’ layer).

If you are using a complicated symbol, you might
have to repeat this process for all Text, Circle and Fill
objects. Put them all into Fragment no. 2.

Once the whole symbol is in Fragment no. 2, you
could draw another symbol into Fragment 1, and then
move it by the same process to Fragment 3. In this
way, you could build up a whole series of quite differ-
ent drawings or images in each fragment.

You could draw directly in a fragment, but have to
‘choose’ that as the drawing fragment first. It’s advis-
able to leave fragment 1 as the one that is always the
default fragment for new 2D drawing elements.

Turn Fragments on and off
In the Library part dialog box, all fragments are nor-
mally displayed, using a series of dark or light num-
bered buttons. Click on the buttons, and you find that
you can select all, or one only, or any group of frag-
ments to be displayed.

Normally when a 2D symbol is drawn, it is
immediately disabled when there is an active 2D
script. However, the two work together if the
FRAGMENT2 command is scripted.

Info box displays the Fragment of lines you click on and with
the popdown, you can change their fragment.

Most sanitary products are provided by manufactur-
ers in DXF or DWG. In GDL, you can combine 3 such
files into one by copying and pasting each image to
the 2D Symbol window. Use a ValueList to choose
which to display.

161Copyright Marmalade Graphics ©2004

DXF conversion
Convert manufacturers’ products

GDL has a big future with ArchiCAD enthusiasts,
but that is nothing compared with the status it

will achieve if manufacturers of building products rec-
ognise it as a suitable language for 3D form – and start
offering architects CDs of their product libraries in
BOTH DXF and GDL. If ArchiCAD users and
AutoCAD users can make equal use of the paramatric
powers of the GDL products, DXF may become a dis-
tant memory, a bit like CPM and MSDOS.

DXF is just so inconvenient to use compared with
GDL. A GDL smart object, such as a sanitary fitting
can contain the 2D plan, the 2D front elevation, the
2D side elevation and the 3D form, and a 3D wireline
form all within the same object; in addition it can con-
tain manufacturer’s data on serial numbers, weight,
cost, volume, maintenance info and more; database
integration that can transform the way we design, build
and manage buildings. In fact, if the 3D model isn’t
too voluminous (and if they come from DXF they usu-
ally are!), you can get a whole range of manufacturer’s
products inside one single smart GDL object.

GDL objects are so compact that they can be pub-
lished on the web, downloaded in seconds, and work-
ing in the 3D model or the 2D drawings in a few mouse
clicks! Graphisoft have provided the technology needed
for potential users to view and test GDL objects be-
fore they download. Manufacturers can now offer live
libraries on their websites – instead of showing pretty
pictures, they can show working models of their prod-
ucts and provide every inducement for designers to
specify and instal those same products.

If all goes well, there should be a lot of work for
years to come converting DXF drawings of manufac-
tured products to GDL and writing products yet to
come in native GDL. Let’s work out a typical proce-
dure for doing this economically. Remember that with
dozens or perhaps hundreds of products to convert,
there’s no point in over-elaborating. Just get the job
done efficiently. The elaboration will come when we
have the leisure time to review converted objects and
convert the 3D part of the GDL to native GDL.

There’s is a whole manual on the subject of DXF/
DWG conversion so there is no intention to reiterate
all the details – we will stick strictly to object making.

DXF/DWG files are usually stored separately. A
typical object, say a water closet, is represented by at
least 4 files: a 3D model, a 2D plan, a 2D front eleva-
tion, and a 2D side elevation.

Before we proceed. ask yourself: Do I know enough
about the use of FRAGMENT2? If you do not, then
mug up FRAGMENT2 quickly, it is vital to the success
of this conversion.

DXF files are almost three times the size of the equivalent
DWG file. When brought into GDL, there is some
reduction, but the example featured here still finishes up
as a GDL object of about 380k – unless you choose to
rebuild the 3D model entirely, in which case it will reduce
to a tiny fraction of the original size.

Let’s do a typical file conversion
1. Bring the file into ArchiCAD
DXFs brought into ArchiCAD itself always arrive as
2D files. As your intention is to make library parts, you
also have a option to open them as a library part –
click this option and bring them in. Then you can copy
and paste the contents of 4 such files into one single
file with a bit of smart scripting to separate them.

There are issues of scale – it is not uncommon for a
brought-in file to be a thousand times too big or too
small – depends on the scale of the original drawing.
These objects (from Armitage Shanks) all come in 1000
times too big unless you tell GDL to treat 1 Autocad
unit as 1.0. It’s alarming to imagine a WC that is al-
most a kilometre long – but thats what you could get!

If you wish to bring in a 3D DXF/DWG, you could
first open the 3D file as a binary library part, and add
the 2D library part symbols to it. But this will be 1.5
times the file size of bringing it in as editable script,
and you would only be able to have that one object in
the file. If perchance you want your GDL to contain
several objects (selected by a value list) then its best
to bring them all in as editable GDL and write some

162 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

little subroutine structure to organise them.
If you want to bring in dozens or more objects (per-

haps an entire library of sanitary fittings), most of them
will be on the manufacturer’s CD in a baffling jumble
of serial or type numbers. I advise to bring them •all•
into the ArchiCAD floorplan so you can survey the
entire range of symbols to be converted, group them,
organise them, decide which one will go together and
so on; having thus organised, you may actually do the
process by bringing them in as library objects.

2. Organising the files – move fragments
OK, so you may have 4 GDL files open at once! Save

The default conversion may be 1000. Experiment. If your
objects come in several kilometres wide, throw them away and
reimport with a smaller conversion.

You will be asked to find a font file – you can SKIP it

them all to a library, then drop all four of them into a
floor plan window. One more file, a fifth one, is the
one in this exercise – open this later as a template for
building your objects.

The 2D objects (and the 2D symbol of the 3D ob-
ject) will all be in Fragment number 1, so the task is to
copy and paste the symbols into one GDL object with-
out getting the fragments mixed up. This is a most vex-
ing process!! It is explained here.
a. Open the GDL object with the 2D Plan. Open the
2D symbol window. We’re going to move the plan to

fragment 16 as temporary parking space. On the frag-
ment button bar, change 16 to Hidden. Now select the
whole plan view and move it to fragment 16, using the
popdown layer/fragment selector in the Info palette.
First the Lines disappear. Do it again. Now the Arcs
disappear. Do it again. Now the Text disappears. If
nothing else shows, the whole symbol is now in frag-
ment 16.

Click and select here to push the
2D elements to the correct
fragment

Hit the Details button to hide the
Bounding Box hotspots

These buttons Hide or Display the
Fragments, dark=visible,
light=hidden

None of these text bits are of
interest so they can be deleted.
Edit out any bit that you don’t
want, and use 2D tools to tidy up
as appropriate

If you first hide fragment 16, you
will see Lines, then Arcs then Text
‘disappear’ until the window is
blank. Now you have space in
fragment 1 to paste in the next 2D
image

The 2D symbol window actually
contains 16 separate layers called
Fragments. Use them here!

2D Plan
object

2D Side
Elevation
 object

2D Front
Elevation
object

3D object

163Copyright Marmalade Graphics ©2004

b. Open the symbol window of the Side Elevation ob-
ject. Copy (or Cut) the whole symbol; return to the
Plan object, open the 2D symbol window and Paste. It
will be dumped into fragment 1. You are going to move
the drawing to fragment 2. Hide fragment 2 in the frag-
ment button bar, then move the whole fragment from
1 to 2 using the method described above (of repeat-
edly shifting each set of 2D elements). Close the Side
Elevation object.
c. Open the symbol window of the Front Elevation
object. Do it all again (now you have got the hang of
it!) and put it in fragment 3 of the Plan object. Close
the Front Elevation object.
d. Open the 3D script of the 3D object, Copy the whole
script, return to the Plan object and Paste the whole 3D
script into the 3D script window. Close the 3D object.
e. Return to the Plan object, show fragment 16, and
hide fragment 1, 2 and 3. Move the 2D plan from frag-
ment 16 to fragment 1. Go on moving elements until
16 is quite empty. Save the file under a new name,

based on the objects description and number. Put it
into a loaded library, one that you have created for the
storage of all your newly converted files.
f. Now, leaving the other two hidden, take each frag-
ment in turn, tidy up the image, filling in missing lines,
removing bad bits of text, and positioning the image cor-
rectly over the origin. Add Hotspots to each image, en-
suring beforehand that you double click the hotspot tool
and tell it precisely which fragment it is going into.
Hotspots should be in significant corners or axes, with
one in the middle for picking up. Click on the Details
button in the objects title bar, and untick the Bounding
Box hotspots. Set all line colours to a single colour, black
will do (you can change it later from the settings box).

3. Convert to a Smart Object
Build a list of parameters for the new object. To make
your life easy, use the same variable names on every
occasion. You may need to add more if the objects
you are making require additional definitions of mate-
rial or if you are including more than one object in the
same file.

Now open the Conversion Template object (which
we are building now), copy the significant parts of the
Master script, the 2D script, the 3D script, the Param-
eter script and the Property script. Paste them, one at
a time into the script windows of the WC Object. For
the 3D bit, paste the template text ABOVE the 3D de-
scription of the object.

The side and front elevations are provided for use
in sections and elevations, into which you can place
2D objects. A 2D version of the plan can be shown in
the 3D drawing if the user does not require a fully solid
model. See the 3D script.

Because label is an
option, the fine details
are hidden inside a
cascading set

DESCRIPTOR desc_str1

!DXF/DWG Conversion Template
!Master script

VALUES 'show23' '3D model',
 '2D plan','2D side view','2D front'

VALUES 'fnam' 'Geneva','Arial','Times',
 'Verdana','Helvetica','Georgia','Courier'

IF show23= '3D model' THEN dt=0
IF show23= '2D plan' THEN dt=20
IF show23= '2D side view' THEN dt=21
IF show23= '2D front' THEN dt=22

x=REQUEST("Rgb_of_pen",matpen,pred,pgreen,pblue)
DEFINE MATERIAL "Body_Shiny" 4,
 pred,pgreen,pblue
bodymat=IND(MATERIAL,'Body_shiny')

desc_str1='Armitage Shanks WC 601'!for listing
desc_str2='WC 601' !for 2D symbol

Value lists can be in the Parameter script or the Master
script. Put them first.

Parse the Value list and convert to flags

Extract a colour. If your manufactured objects have spe-
cial ranges of colours (say three colours for a lamp, black,
white and dark green) you might have to build those ma-
terials with Define, and make a Value list to select them. In
this example, the Pen colour can be analysed into Red,
Green and Blue, and converted into a colour. ‘Plastic’ usu-
ally gives the best results for home-made materials.

Text descriptions, insert one to appear in a listing, and
another as an optional label in the 2D symbol.

For the moment this is the minimum you need for the
Property script, unless your client wants to go overboard
with greater levels of detail.

In this case, the font size is NOT a plotting size, it remains
constant to a real dimension, whatever the scale

Learn this technique!
You can have fun with this technique – you can freely
download DXF models of the Eiffel Tower or Chrysler build-
ing and a host of other wonderful structures off the Internet
and convert them to GDL.

164 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

!DXF/DWG Conversion Template
!3D script

!Open Each file first as an object. Unit is 1 millimetre.
!Then open the 2D objects one at a time and drag 2D into
!fragments 1, 2 and 3 of the 2D Plan object. Edit the
!2D images and ensure that they fit. Copy 3D
!script into 3D script of 2D Plan object.
!Resave 2D plan object as final new object.
!Build Parameter table and value lists for new object.
!Copy over Master, 2D and 3D script bits from the
!Conversion Template object. Nudge 3D to fit.
!Untick the box for Bounding Hotspots, plant your own
!Test Object – tune object.

PEN pcol3
MATERIAL bodymat

ADD -0.393/2,-0.700,0 !nudge into position
IF dt=0 THEN GOSUB 100 ELSE GOSUB 200
DEL TOP

END!-------------------------------------

100:!3D solid model
PLANE_ 3,

0.299818, 0.035215, 0.452023, 0,
0.320588, 0.045317, 0.452023, 0,
0.160630, 0.020968, 0.452033, 0

PLANE_ 3,
0.299818, 0.035215, 0.452023, 0,
0.160630, 0.020968, 0.452033, 0,
0.195927, 0.020968, 0.452035, 1

PLANE_ 3,
0.012636, 0.351726, 0.452027, 0,
0.019182, 0.167628, 0.452024, 0,
0.384218, 0.443323, 0.452026, 0

PLANE_ 3,
0.039468, 0.621380, 0.731770, 0,
0.048015, 0.560041, 0.746757, 0,
0.045833, 0.621251, 0.745732, 1

!...... and so on for thousands of lines until it
! finishes describing every damned polygon!!
RETURN

200:!2D view of plan
PEN pcol3
LIN_ 0.194345, 0.700254, 0, 0.371504, 0.700254, 0
MODEL WIRE
ADDX 0.371504
ADDY 0.680254
ARC 0.020000, -1.832342, 90.000000
DEL 2
LIN_ 0.391493, 0.679614, 0, 0.386457, 0.522175, 0
LIN_ 0.386457, 0.522175, 0, 0.368389, 0.511478, 0
LIN_ 0.368389, 0.511478, 0, 0.365417, 0.466724, 0
ADDX 0.355439
ADDY 0.467387
ARC 0.010000, -86.968877, -3.799346
DEL 2
!.... and so on until every line is included
RETURN

!DXF/DWG Conversion Template
!2D Script

!Armitage Shanks
!WC range

PEN L_
HOTSPOT2 0,0

IF labl THEN
IF A_<101 THEN
DEFINE STYLE 'labl' fname,
 fsiz*1000/A_,2,0
SET STYLE 'labl'
 TEXT2 0,0,'ArmSh'
 TEXT2 0,-fsiz*1.1,desc_str2
 ENDIF
 ENDIF

IF dt=0 OR dt=20 THEN !Plan
FRAGMENT2 1,0
ENDIF

IF dt=21 THEN !Elevation Sideview
FRAGMENT2 2,0
ENDIF

IF dt=22 THEN !Elevation Front
FRAGMENT2 3,0
ENDIF

!!!project2 3,270,2

2D Script
Standard title is pasted in at the top. Insert the title of the particular
object you are making.

Pen can be set in the user’s settings box, and write the Key hotspot

If the user wants a label, you need to define style. In this case, font
size is autosizing, even if the user changes scale. At smaller than 1/
100 scale, the label disappears. The label is on two lines, you may
want to adapt this to your own needs.

If the object is in 2D in Plan or 3D then it will use Fragment 1. The
zero flag allows the user to set the colour from the main object set-
tings box. Use the Project2 to nudge the 3D object to fit the 2D plan
symbol.

3D Script
As you may not have your Cookbook to hand
all the time (shame!) then include a summary
of the instructions at the top of the script.
You may need them again.

Set the Pen, set the material (that you built in
the Master script)

The ADD command is an offset to make the
3D fit over the 2D. Use Project2 in the 2D.
The offset here is actually half the width of
the WC and the full length.

As the DXF for this WC kindly provided a 2D
version of the WC that would appear in 3D if
the solid object was not required, it has been
separated into another subroutine 200. If it
hadn’t provided one, you could place the 2D
plan symbol over the origin, explode it, drag
into the 2D script, form it into a subroutine
and you have made your own 2D image for
use in the 3D drawing. Since the 3D object
could have thousands of polygons, it’s wise
to allow the designer to place 2D objects in
the 3D environment and only show them as
solid when 3D renderings are required.

166 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

PHOTOGRAPHY can be more powerful than 3D
modelling! There are times when you recognise

that an object may be too complex to do, even in GDL
– either it will take too long, or will just look too
‘wooden’ for the purpose. People and trees are prime
examples of this problem. It’s easier to attach a good
photograph to a surface to simulate 3D reality than to
build the entire object. Some artists advocate adding
the people and trees and backgrounds with Photoshop
later. This argument may apply for static photoreal
images, but for flythroughs, and for timesaving on static
views, there is a good case to use Billboard objects,
surfaces with phototextures in 3D views.

There are several ways to do these, and several pit-
falls to get over. Third party Add-ons like ArchiPaint
and ArchiFacade will make billboard objects for you,
and the trees in ArchiTerra are also prime demonstra-
tions of the art – the tree objects are accurate standup
cutouts of the tree with a texture map matching pre-
cisely to the cutout shape.

PICTURE and Cutout Objects
There are two types of object in this category: Pic-
ture based billboards which use the Alpha channel
in the colour image on a rectangular shape; and Cut-
out based billboards which have a texture applied
to them, fitting the cutout accurately.

Open GL has made a big difference to the status of
billboard objects – previously Picture based ones spent
most of their life looking like large grey rectangles until
photorendered, and Cutouts just looked like... grey
cutouts. Now, they look good most of the time! It is
possible with advanced GDL to animate the cutouts
and the phototexture on them to simulate motion, RPC
style.

Piranesi and Artlantis (third party renderers for Ar-
chiCAD) work well with cutouts, or you can use their
own library of billboard objects for people and trees.
But they are not your people and your signs, and you
may want to do your renderings in ArchiCAD. The new
Lightworks renderer will encourage people to use Ar-
chiCAD for renderings and save you the worry about
the wrinkles of exporting to third party renderers.

Anybody who has played computer games knows
that the urban environments are mostly very simple
in 3D but are made complex by having photographs
mapped onto simple block shapes – and trees are usu-
ally planar cutout objects.

Existing Billboard objects
There are two objects in the existing ArchiCAD Li-
brary, the Carpet and the Picture. The Carpet is a hori-
zontal stretchy rectangle, and the Picture is a vertical
stretchy rectangle with a fixed back panel, and options
for a picture frame. We can write variants of these
which work well.

Billboard Objects – PhotoReality

Make your own Billboards using
the Alpha Channel with PICTURE
Billboard objects using the PICTURE command are
actually GDL rectangles with a picture mapped on to
them – for example the ‘carpet’ and the ‘picture’ in the
ArchiCAD Library. They become ‘outlined’ objects by
virtue of the alpha channels in the bitmap file and only
show correctly in photorenderings. In 3D views they
remain as rectangles, and cast rectangular shadows.
You do not need to make a Material and Texture defi-
nition – but you require a quick tutorial in Adobe
Photoshop.

A quick run around Photoshop
Adobe Photoshop is an incredibly valuable ‘compan-
ion’ to ArchiCAD users, and if you do not have it, see
if the other bitmap editing software you have can sup-
port channels. Alpha channels are a part of 32 bit col-
our – whereby 24 bits are taken up with three visible
channels of Red, Green and Blue (8 bits each). The
remaining 8 bits are available for ‘interesting things’
like transparency, special reflection effects, bump map-
ping etc. and we call this the Alpha Channel.

We use an image of Matthew Lohden, a prime contributor to
ArchiCAD-Talk and to ArchiCAD University events.

167Copyright Marmalade Graphics ©2004

Bitmap files with an alpha channel must be rich in
data, which means saving them as a .TIF format with-
out compression. If you try to save one of these as a
.JPG, the first thing that is omitted to achieve com-
pression is the alpha channel. The PICTURE command
in GDL allows you to use alpha channels for transpar-
ency. The picture you wish to use must be saved in a
loaded library (and then reload).

Let’s make the alpha channel. In Photoshop, sur-
round Matthew carefully with the polygon-lasso. From
the Select menu, Inverse, and delete (the backgound
will be erased). Re-Crop the picture closely to the edges
of the image, but do this: leave at least ONE white
pixel all around the edges.

Now use the Magic wand to pick up the white back-
ground. The whole white area should be shimmering.

Now hit the Select menu>Inverse, and the marquee
will now be surrounding the image. Now Save that
selection from the Select menu – call it ‘alpha’ – the
job is done, the alpha channel is now created. You can
see it in the illustration, added to the list of channels,
under the Red, Green and Blue. Save the bitmap file as
a .TIF, into a loaded library and reload.

It’s time to make the Picture billboard object
If you simply apply a ROTx 90 in the 3D script of a
copy of the ‘Carpet.gsm’ and replace the 2D with
LINE2 0,0,A,0, you have a splendid upright billboard
object. Better still, you can make a better one with this
nice clean script.
 !!Billboard.gsm
 !!2D Script
 PEN cont_pen
 HOTSPOT2 0,0
 HOTSPOT2 A,0
 HOTSPOT2 A/2,0
 CIRCLE2 0,0,A/100
 CIRCLE2 A,0,A/100
 CIRCLE2 A/2,0,A/100
 LINE2 0,0,A,0 !AC8 and earlier
!AC9 - add HOTLINE2 0,0,A,0

Billboard parameters, 3D view and 2D symbol.

The 3D Script is almost as short!

 !!Billboard.gsm
 !!3D Script
 PEN cont_pen
 IF gs_shadow THEN SHADOW ON
 MATERIAL matl
 ROTx 90
 PICTURE picture_file,A,zzyzx,mask
 DEL 1
 HOTSPOT 0,0,0,1
 HOTSPOT A,0,0,2
 HOTSPOT A,0,zzyzx,3
 HOTSPOT 0,0,zzyzx,4
 HOTSPOT A/2,0,zzyzx/2,5

This is an ultra simple version of a Picture billboard
object, and it’s possible to build in smarter features –
for example the ability to turn to face the cameras.
See the GDL Cookbook for a more extensive discus-
sion of Billboard objects.

Make your own Billboards as
accurate Cutouts

YOU can make your own cutout shapes easily with
the Slab tool, and if you also make a new Mate-

rial with a Texture which is the correct size, you can
make the two fit each other. You make the material in
ArchiCAD’s Options menu.

First, using Photoshop or a similar editor, crop care-
fully around the image, leaving only one pixel at most
around the person, tree or car. You do NOT need to
remove the background (when you make the cutout,
any texture that does not rest on the cutout just disap-
pears into oblivion). Save this cropped image into a
loaded library and reload libraries. It can be a .JPG,
we are not using an alpha channel.

If you haven’t got a ‘straight-on’ view of your sub-
ject, you will first have to use Photoshop’s Edit>Free
Transform>Perspective and Distort to adjust and
straighten the image.

Now you can place it as a ‘Figure’ into the ground
plan. Without losing the proportions, resize it till it’s
the correct size. In this case, it’s 590mm x 1800mm (2
ft x 6 ft).

168 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Make the Material
From the Options menu>Materials in ArchiCAD make
a new material. Take a material like “Whitewash”, hit
the Duplicate button, rename the duplicate – in this
case I called it “matthew_cutout”. Use the Texture
button to bring in the Figure. Set the size of the Figure
used for the texture to the same as the one in the plan
– 590mm x 1800mm.

Make the Cutout
Now, back in the plan, select the Slab tool, set it to
10mm (3.8”) high and trace closely around the image
– as in the illustration. Trace another rectangular slab
over the cropped image. Set the material of both slabs
to be “matthew_cutout”.

Initially, you will find the texture will be starting from
a random position, but at least you have the comfort
of knowing it’s the right size – in fact it’s coming from
the main origin of the project, a long way away. We
need to use Align Texture to get this starting from the
bottom left corner. Open GL is a great help here be-
cause you get instant display to changes of the tex-
ture alignment in the 3D View.

Select both your slabs and view in 3D Axo. Use
Edit>Align Texture>Set Origin and place the Origin
at the bottom left corner of the rectangular slab. Now,
try to set the direction: use Edit>Align Texture>Set
Direction to go from a point on the cutout slab in a
horizontal direction (use shift key for constraint to go
rightwards) – if it offers you a choice of graphical or
numerical, set the angle numerically, to 0˚.

Select your cutout, view it in 3D Elevation view from
90˚ and save as an Object, Editable. Place it in the floor
plan.

Look at the 3D Script
If your cutout fitted the Figure closely (to
within one pixel) the 3D Script will have been
written so that the bottom left corner is the
origin of the new object. So if you set the tex-
ture to the bottom left, you will get a perfect
alignment.

If the Align Texture routine worked, 3D
Script will end with:
! The CPRISM will end, something like this.....
 -35.36420271267, 12.94639198852, 15,
 -35.35731157426, 12.90504515807, 15,
 -35.30677655926, 12.88720216694, -1
BASE
VERT -35.452594159, 12.887202166, -0.00045168882040
VERT -33.640501651, 12.887202166, -0.00045168882040
VERT -35.452594159, 13.533489550, -0.00045168882040
VERT -35.452594159, 12.887202166, 0.0090966223591
COOR 8468, -1, -2, -3, -4
DEL 1
BODY -
1

The Align Texture routine just did us a favour! it
wrote in a perfect texture mapping routine! If you have
a problem with Align Texture, just save the object.
Open the 3D Script and have a look....
! The CPRISM will end, something like this.....
 -35.36420271267, 12.94639198852, 15,
 -35.35731157426, 12.90504515807, 15,
 -35.30677655926, 12.88720216694, -1
DEL 1
BODY -1

Just change this ending with a texture routine as
follows:
! The CPRISM will end, something like this.....
 -35.36420271267, 12.94639198852, 15,
 -35.35731157426, 12.90504515807, 15,
 -35.30677655926, 12.88720216694, -1
DEL top
ROTz 180
ROTx 90
 BASE
 VERT 0,0,0
 VERT 1,0,0
 VERT 0,1,0
 VERT 0,0,1
 COOR 258,-1,-2,-3,-4
 BODY -1

Now, the Open GL view works with the Cutout
perfectly and even Shadows are cast correctly.

Make your own material in the Options Menu

Align Texture: do it in the 3D View

169Copyright Marmalade Graphics ©2004

You can use Ice figures
Cutouts can be used without any texture. People often
look better in renderings as cutouts using ‘Ice’ or ‘Wa-
ter’ than using realistic textures. If you start with ac-
curate textures you have to continue. Ice Cutout fig-
ures work in ArchiCAD and external renderers, require
less effort to make and do not distract from the archi-
tecture.

The final version of this object:
... Build in the Texture and Material

It is possible to build in the texture and material so
that you do not need to make the material in Archi-
CAD each time. Make the object with the material set
to something unimportant like ‘Whitewash’. Now you
can use this easy script – copy and paste it into the
Master Script of the object each time with minor modi-
fications.

The idea of this is first to define a Texture based on
the picture. You need to tell it the name, size, masking
behaviour and rotational angle of the texture. Then
define a Material based on that Texture. 24 is the ma-
terial code for one written using a texture name. 1,1,1,
means an RGB of white. The texture reference should
be a number not a name, so we use an IND() function
to convert the name to a number. 61 is a fill value.
 !Master Script
 !Texture and Material routine
 !Write in the name of the Texture file and
 !its dimensions in metres
 DEFINE TEXTURE ‘biltexture’ ‘mathew_cutout.jpg’,
 0.590,1.80, 1,0
 DEFINE MATERIAL ‘bilmat’ 24, 1, 1, 1,
 0, 61, IND(TEXTURE,’biltexture’)

Ice figures are easy and quick to make, and can be used more
frequently in a model without looking repetitive.

Now go to the 3D Script and change the three materi-
als of the CPRISM to ‘biltexture’, in quote marks.
You must also insert a PROJECT2 3,270,2 into the
2D Script.

The object will now be completely portable, and
you will not need to make a new material in Archi-
CAD’s Options menu. There is no point in making a
parameter for the picture file name as the cutout is
specific to the figure you traced. But you should be
able to copy and paste and modify this Master

A note on Shadows
Alpha channel based material textures, if applied to
ArchiCAD elements or objects will cast shadows cor-

rectly cut around the outline of the al-
pha channel. Picture based objects will
cast rectangular shadows.
 To be sure of the best results, go to
Image> Photorendering Effects> Op-
tions, ‘use transparency in shadow cal-
culation’.
 If you want to cast perfect shadows,
the Cutout billboard is the way to get
the best result in both renders and 3D
views – if you are prepared to make a
material for each one or write the neat
little routine on this page. Open GL and
the 3D view do not use transparency
in the Picture object.

If you want to control shadow
casting fully, make a Boolean param-
eter ‘shad’ and start the 3D Script with
the line:
IF shad THEN SHADOW ON ELSE SHADOW OFF

A compromise of the two types is that
you can save yourself all that tracing around objects
in ArchiCAD and use a rectangular cutout (ie a thin
upstanding wall) and apply a texture to it which uses
alpha channels. This will look like a rectangle in 3D
but look OK in Photorender, and will cast shadows
correctly.

The two pictures above are Open GL (left) and Photorender
(right). The PICTURE based objects cast rectangular shadows,
the Cutout works perfectly as does the rectangular billboard
using Cutout technology.

170 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Rectangular
‘cutout’
The perfect combination
object!

THE Rectangular Cutout is
not really cutting out, it’s a rec-

tangle that uses the technology of
the Cutout object. This is the prin-
ciple of mapping a texture to a sur-
face with a texture definition, and
using a routine to lock the texture
to the bottom left corner. It can
have an interface like the Picture
object – where the user is asked for
the name of the picture file – but it
produces a stretchy rectangle that
will cast shadows correctly.

Master Script
We need to adapt the Master Script
from the Cutout object.

 !Billboard Object rectangular
 !Master Script
 DEFINE TEXTURE 'biltexture' picture_file,
 A,zzyzx,1,0
 DEFINE MATERIAL 'bilmat' 24, 1,1,1,
 0,61,IND(TEXTURE,'biltexture')

The small difference here is that the name of the pic-
ture file is now a parameter and the dimensions of the
picture are dynamically resized by the ‘A’ and ‘zzyzx’
dimensions.

3D Script
We are not using a PRISM here. A POLY_ is one sim-
ple surface that will not reveal tell-tale edges showing
in a render. We are adapting the texture mapping rou-
tine that was used in the previous section. Copy and
paste!

!Billboard Rectangular.gsm
!3D Script
PEN cont_pen
IF shad THEN SHADOW ON ELSE SHADOW OFF
MATERIAL bilmat
ROTx 90

POLY_ 5,
 0,0,1,
 A,0,1,
 A,zzyzx,1,
 0,zzyzx,1,
 0,0,-1

BASE
 VERT 0,0,0
 VERT 0.1,0,0
 VERT 0,0.1,0
 VERT 0,0,0.1
 COOR 258, -1,-2,-3,-4
 BODY -1
DEL 1

In its use (parameters
and stretchiness) this

is indistinguishable
from the Picture

object – but it’s better.

You do not need to write graphical hotspots in the 3D
because it works on the ABZzyzx cuboid. But if you
do, it will work more pleasantly, showing dimensions
in the floating palette.

2D Script
Copy the script from the Picture object in the previous
section.

 !!Billboard_rect.gsm
 !!2D Script
 PEN cont_pen
 HOTSPOT2 0,0
 HOTSPOT2 A,0
 HOTSPOT2 A/2,0
 CIRCLE2 0,0,A/100
 CIRCLE2 A,0,A/100
 CIRCLE2 A/2,0,A/100
 LINE2 0,0,A,0 !AC8 and earlier
!AC9 - add HOTLINE2 0,0,A,0

This view of West Bridgford Central Avenue near the author’s
home was done by Bite Design in Nottingham. It uses billboard
surfaces for the building elevations, 3D street furniture and a
few billboard trees to fill in the spaces.

171Copyright Marmalade Graphics ©2004

The Billboard
idea in 2D?
IF you place a bitmap Figure into the floor plan and

look at its Settings dialog, you may notice that there
is a transparency button. Any completely white parts
of the image (which have an RGB value of 255:255:255
or FFFFFF) will show as transparent.

This is useful mostly for placing trees and plants
into ArchiCAD in the floor plan. You can also place
elevations of people, cars and trees into sections and
elevations, giving the impression of upright billboard
objects – all you need to do is whiten the background.

You can now use the ‘Display Order’ menu option
to organise how the figures will overlap.

Get the Photograph right!

IF you apply this technique to building facades,
one problem is that you can so rarely get

squarely in front of a building. There is either a
policeman telling you to move on, the sun is
facing you, trees or a tourist bus parked in front,
or simply, the building is too tall for a front-on
photo. You may have to make do with a per-
spective looking upwards, or from the side.

If you manage to get the photo in perspec-
tive, you can use Photoshop’s Edit> Free Trans-
form> Perspective and Distort capability to
straighten out a facade. But it is hard work and
the proportions and the upper level windows
may still be wrong.

You can look at the facade, and if you can
get clean images of the entrance and some typi-
cal windows and cornice details, you might be
able to reconstruct a facade by copying and pasting
the bits that you managed to capture – even if the rest
was obscured with trees! But this is going to be hard
labour!

Addons that help you
The serious billboarder will always carry either
Cigraph’s ArchiFacade for ArchiCAD in their kitbag,
or the standalone Abvent’s PhotoCAD.

ArchiFacade is an API (Add-on) which uses the cut-
out method and generates a GDL object for each cut-
out. It is good at both the requirements, straightening
and regularising the bitmap image. Its talents extend
to making the billboard object for you including the
GDL texture routines!

172 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Custom Window Tutorial:
without GDL... (almost)
by David Pacifico

WANT to create your own total custom windows?
Round tops, sloped head, or sill etc. Creating

your own custom windows in AC 8 is easier than be-
fore because the WALLHOLE command in GDL will
now cut window shapes with concavities:
1. Draw or build the custom window with slabs, walls
and other tools so that the window is face down on
the ground. Be sure to use a single slab for the glass
that will also act as the WallHole. (So have it go through
the Mullions to the jamb.) Build the window so the
center of it is the project zero.
2. Select your creation and activate the 3D window
(no need to go 3D window settings)
3. Chose File/GDL Ojbects/Save 3D Model as (Name
it and place it in a project specific library) The file type
is .gsm (no more .win or .dor)
4. A dialog box will come up with 3 buttons at the top.
Select the middle button for a window, check remove
redundant lines and choose format as editable gdl
script.
5. Draw a wall and place your new window in it.
6. Now if your window has a non-square WallHole we
will need to select the window and choose File/GDL
Objects/Open Object. (Don't be afraid we just need
to copy and paste some GDL)
7. Click on the 3D Script button. Scroll down until you
see the script that is your single slab that you used to
make the glass. Select and Copy the script that starts
with cPRISM_ "Glass", "Glass", "Glass" and ends with
BODY -1. (all the stuff between is the coordinates we
will be using for the WallHole)
8. Scroll down to the end of the script and paste. De-
lete the first pasted line that likely looks like:
cPRISM_ "Glass", "Glass", "Glass",

Type in front of the next line type WALLHOLE. (This
cuts the wall for the window. Click the button Check
Script.
9. Save the object and Rebuild. Extra Credit: If you
want to make it a corner window change the object
Subtype by opening the object and clicking on the "se-
lect subtype" button in the main window and choos-
ing the corner window subtype. Hope this helps.

To get the 4-leafed clover window under previous AC
versions, you would make 4 WALLHOLES each spaced
so that they overlap – all being convex, they would
not cause an error, whereas a single wallhole outline
would cause and error.

173Copyright Marmalade Graphics ©2004

THE BINARY statement is what all Binary con
verted Library objects contain, and have a lim-

ited set of parameter values of 3, 2, 1 or 0 (for pens
and materials) and an index number of 1. Binaries are
just a big chunk of impenetrable machine code that
defines the polygons, edges and nodes and materials.
The code for the binary is embedded within the GSM
object and is not detachable. Binary objects are not
editable (except for the odd ADD, MUL or ROT in front
of them or the pen parameters, and in the normal
sense, there cannot be any further parameters for them,
and no hotspot editing.

Binary objects comtain all the data necessary for
3D display, including materials. They are faster and
more reliable than editable objects (which may have
hundreds of k of complex script to read through and
interpret) and can handle more polygons.

If you wish to combine Binaries, it is surprisingly
easy. Place two in the floor plan, arrange them as you
wish, view in 3D then save as a new 3D object, and
make sure you tick the boxes to make them Binary.

Open that new object, and you have a single binary
which now contains both, and has a new 2D symbol.
There is no use for the command in your creative GDL,
but you can manipulate the Binary to some extent.
You can insert ROT or MUL or ADD commands in
front of the Binary script, to multiply or move the ob-
ject. You can write a FOR... NEXT Loop to do some-
thing interesting with the Binary that is embedded in
your object.

Here is an object (made for another exercise, viewed
in 3D in Plan, and saved as a binary object. First of all
note that it is preceded by a number of cursor move-
ment commands. Because it was made about 49x8m

! Name : holycylinder_bin.gsm
! Date : Tuesday, January 6, 2004
! Version : 8.00
! Written by ArchiCAD
!

MULX A/0.6000000238419
MULY B/0.5908846259117
MULZ ZZYZX/ 1
ADDX 0.3000000119209
ADDY 0.2954423129559
BINARY 1,1

!Fun with a Binary

!First, Delete all the MUL and ADD offsets

!Build the 3 in a row
 BINARY 1,1
 ADDx 1.0
 BINARY 1,1
 ADDx -2.0
 BINARY 1,1
 DEL 2

!Build the circular structure
ADDy -2.5
FOR angl=0 TO 331 STEP 30
 ROTz angl
 ADDx 1.5
 BINARY 1,1
 DEL 2
 NEXT angl
 DEL 1

!Build the vertical structure
 ADDz 2.4
 ROTx 180
 BINARY 1,1
 ROTx 90

!Rotate 4 times horizontally
FOR k=1 TO 4
 ROTy (k-1)*90
 BINARY 1,1
 DEL 1
 NEXT k
DEL 3

!Sadly, CUTPLANE doesnt work
ADDx 4.0

 ADDz 0.5
 CUTPLANE
 DEL 1

BINARY 1,1
 CUTEND

 DEL 1

from the origin, that 49x8m is embedded into the bi-
nary, and ArchiCAD writes offsets to bring it back to
its own origin, at the near left bottom corner. Lesson
number one is: build objects over the floorplan origin.
Next you can see that the MUL commands are there
to make it stretchy – because they all refer to the magic
parameters of A and B. The object itself is contained
in the incredibly brief single line command of BINARY
1,1.

Fun with BINARY
Remake the object over the origin, save it again, and
this time the binary itself is centred. Now you can write

! Name : holycylinder_bin.gsm
! Date : Tuesday, January 6, 2004
! Version : 8.00
! Written by ArchiCAD
!

MULX A/0.6000022888184
MULY B/0.5908846855164
MULZ ZZYZX/ 1
ADDX 49.69966888428
ADDY -7.998539447784
BINARY 1,1

This is efficient, because it doesn’t
double or quadruple the amount

of code in the object, it just reuses
the same code again and again.

all sorts of moves, loops and other things using that
BINARY.
One disappointing discovery is that the Binary is so
complete that CUTPLANE and other cutting com-
mands do not work.

Binary Hacking is a cutting trick
However there is a trick that will cut binaries. If you
place the object in the ArchiCAD floor plan on its own,
and use the Marquee polygonally or 3D cutaway, you
can cut it up in various ways, the view the object again,
and save it as a new binary object. Bring it back in, put
a ROT in front of it, update the 2D to PROJECT2, cut
it a different way, save again... and again... and again...

BINARY

174 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Join Binaries together?
XML Converter!

THERE is no doubt that ArchiCAD is the required
and preferred environment within which to pro-

duce GDL, but there are other ways to produce ob-
jects. Some of you may have tried “Black Turtle”
(Abvent) or “3NF” (Webscape) – but Graphisoft them-
selves provide a small application called XML Con-
verter. There is one for AC8.1 and one for AC9.0. Both
of these are on the Graphisoft website.

XML is Extensible Mark Up Language, an evolu-
tionary development from HTML that provides a way
to store and exchange data on the web. You can store
parameters, text and data in an editable text file using
chevrons and slashes (<> </>) to separate fields. In
this way a converter can read the XML data and change
the data into something more complex – in this case,
a .GSM object.

XML Converter is a way of converting GSM ob-
jects to XML or XML objects to GSM. It’s not really a
way to make a completely new object (this would be
VERY hard work!), but it’s a way to edit and convert
existing libraries or objects. Every part of the object
becomes text – modify it in a text editor, then convert
it back to an object. You can do this to individual GSM
files, or a a directory containing a whole lot of GSM
files – in fact, you could use it to update or edit a whole
library.

Actually, XML Converter is a bit of a nightmare to
use, it works only in the raw Command line interface
of MSDOS or OSX, and nobody really wants to go
back to that. Once you have got a GSM object into
XML form it’s just text, and the best editor is
Dreamweaver or GoLive or a similar web page editor.
If you want to write XML creatively there are tons of
tutorials on the web and you can easily find them with
Google.

What do you do with XML Converter?
I see two main uses of XML Converter which make
it worth learning how to use this, to do things that can-
not easily be done in normal GDL.

1. You can edit the parameter descriptions. This
is something that is normally very tedious. If you have
an object in English that you want to have in German,
you have a very hard workload to open each object,
write the new description in, then save and close (of
course you have to know German too!). By converting
the object or the whole library into XML, you can use
a smart Global Search and Replace routine to replace
all parameter descriptions – this does not replace the
parameter name or alter your script. Then convert
them back to GDL objects, into a different directory.

XSTEEL can use XML with GDL!

AN example of XML with GDL is in Steelwork. There
is an XML translator for using XSTEEL (from Tekla)

with an ArchiCAD / GDL model. You can assemble an out-
line frame using the steel sections in the ArchiCAD library.
Don’t worry about the joints – bring the steel sections close
to each other. Select and save the model as an XML model
using the XSTEEL translator (another plug-in). XSTEEL can
open this file, enabling an engineer to do calculations,
perfect the joints. This model can then be saved as an XML
file from XSTEEL. ArchiCAD / GDL can then reimport the
modified file and show you the final corrected steel frame
model.

2. Adding Binaries. We have all made objects with
BINARY. We know that we can copy and paste the Bi-
nary command, and we will get a repeat of the object
inside the GSM file. The code for the binary is locked
up inside the GSM file, but is inaccessible using GDL
as we know it. We cannot copy a binary from one GSM
file to another. Binaries in autoscripted objects always
have a section number of 1.

Some of the newer more sophisticated objects in
the GDL world such as the people and cars and trucks
have not been made with GDL – they have been made
with Cinema 4D or Rhino or 3DS and brought in to
GDL. If you want the objects to animate – e.g. doors
open and shut, hide or show people, Lights on and off,
you cannot have the car as one single binary. If you
have a number of binaries with IF statements, you can
make very realistic objects. You can contain up to 16
Binaries within one GDL.

If you look at the 3D scripts of some of the newer
cars and trucks you will see a lot of different BINARYs
for the body, the doors, the roof, the seats, the passen-
gers etc. These finished objects have all been created
with XML Converter, not with GDL.

How to join Binaries together
Each part (door, bodyshell, roof) has been imported
from somewhere else as a separate GDL object with a
BINARY of section number 1. Each part has been con-
verted to XML with the Converter. They can all be
separate files, or if you convert a folder full, you will
get one long file.

You can now open each XML file with Dreamweaver
or similar. The XML code shows a great mass of hexa-
decimal text for each Binary, with a header and footer.
Copy and paste all the chunks of Binary code into the
one object you decide will be the final one. Change
the section numbers of the the binaries to a sequen-
tial order, e.g. 1, 2, 3 etc. The limit is 16.

XML Converter!

176 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Tall stories
from Down
Under
The Eureka Tower, designed by Fender Katsilides of
Melbourne Australia is, in its 92 soaring stories, the tallest
residential tower in the world, and Australia’s tallest
building – and it is an example of the Virtual Building/
BIM approach to design and documentation. David
Sutherland, Director of Planning for FKA, is a key
member of the team and has travelled and lectured on
aspects of the Eureka Tower. Here he looks at the
contribution of GDL. You can read more in the AEC
Bytes website at:
http://www.aecbytes.com/feature/EurekaTower.htm

IMAGINE, if you will, an architectural practice on
the other side of the world from most of you. While

not an overly large practice, we had created large and
significant projects in our home city of Melbourne,
Australia. We had just embraced ArchiCAD as the
prime tool of architectural process, but because we
were rolling it onto new projects and allowing existing
projects to continue as they were we had only a few
licences in the office, a couple of experienced users
and were training our architects to use it.

As we were taking those first few tentative steps in
a new way of working, the design development and
construction documentation of Eureka Tower came
on stream. We decided to make something of that proc-
ess and, in the process, found that we had made some-
thing of ourselves.

This little side-article is a melange of anecdotal ob-
servations arising from our work on Eureka Tower,
discussing GDL, but giving the reader a bit of light
relief from all these elegant but intensive code struc-
tures in the GDL Cookbook.

Parametric flexibility versus Associativity
In traditional modes of architectural process the de-
sign and documentation phases are distinguished from
one another by the intended outcome of each stage.
Design is concerned with the projection of aspiration
whereas documentation is focused on the description
of the detail. As a consequence design looks to précis
our understanding and, by comparison, documenta-
tion seeks to describe the singular and unique and the
particular interrelationships between those
singularities.

Understanding that difference is critical to an un-
derstanding of the context of the use of GDL and
parametrics within the virtual building. Because the
continuum of design to building description is one of
increasing detail, it is also one of decreasing flexibil-
ity. Correspondingly, as the depiction of elements al-
lowed by parametric geometric description is increas-

ingly more narrowly focused,
the non-geometric descrip-
tion should become richer.
Simultaneously we find that
the description of the inter-
relationships between ele-
ments becomes more impor-
tant.

For the GDL community
we find therefore that such an
approach is one of decreas-
ing use of parametric flexibil-
ity and increasing use of
associativity. Most of us are
familiar with the use of pa-
rameters to change the geo-
metric and descriptive characteristics of elements.
However we are generally less used to parametrics to
describe relationships between components.

Self detailing associative Objects
Let’s consider a humble wet area fixture: the basin.
During conceptual design we wish to have significant
flexibility in that object – perhaps manufacturer, basin
type, dimensions, even colour are parameters we may
wish to change during design. As design progresses
through succeeding development, however, we may
wish to turn off some of those variables. Perhaps we
have agreement that a single manufacturer will be used.
We therefore wish to lock away any temptation for the
user to select any other manufacturer. Then the time
arrives when we inevitably wish to finally determine
the final model of basin, and therefore associated
dimensionality, materiality and even order code. To
have any other alternative as a parameter is courting
the danger of those parameters being inadvertently
altered, thereby creating incorrect documentation.

The consideration of associativity creates different
opportunities. One of the explorations we undertook
during the Eureka Tower project was the self-detailing
component. Taking as our test bed a pre-cast panel
we considered how we could author that element so
as to have it recognise elements adjacent it, and auto-
matically detail its connections to those adjacent ele-
ments. The basis of the approach was to create in GDL
that detailing.

For example, if the pre-cast panel was situated next
to another panel, the detail shown would incorporate
the rebates in the panels to accommodate the steel
jointing elements. Those elements would include cast-
in plates, stitch plates, welds, and the grout used to
finish the joints. Waterstops were included, as was

GDL Case Study:

by David Sutherland,
Fender Katsilides

Tall stories : GDL Case Study

177Copyright Marmalade Graphics ©2004

jointing compound. Those elements automatically re-
dimensioned themselves depending on the parameter-
driven dimensionality of the panels.

In our experiments that detailing was carried out as
a 2D exercise, but could just as easily be carried out as
a 3D process.

How far could you take this?
This experiment was simplistic in its execution, but
gave rise to speculations as to the effectiveness of more
sophisticated approaches. That approach allowed
those panels to be located in accordance with the de-
sign intent, dimensioned in response to construction
location and structural requirements, and the detail-
ing would take care of itself. And not just in those pan-
els where we had decided that details should be taken,
but in every instance of the panels.

That approach leads us towards the answer for the
question: how much should we model in 3D? The ap-
prehension underlying that question is related to the
concern about having to model every little aspect of
the virtual building – down to the bolts. However that
approach is merely manual drafting in 3D guise. Rather
than that rather outmoded approach we believe that
instead we will be installing assemblies of components
that will be self-detailing in a far more sophisticated
manner than our humble pre-cast panel.

At that time we were toying with that panel we were
contemplating the nature of construction documen-
tation for the virtual building. Given the circumstance
where we, in our 3D virtual world, were coordinating

with others in the 2D world, could that interface be by
mechanisms other than 2D drawings? Understanding
that our virtual model was comprised of elements and
components, could we schedule the entire building
rather than deriving drawings from our 3D model?
Accordingly we set up schedule sheets which, using
our test-bed pre-cast panel as a prototype, could sched-
ule to scale plans, elevation and section of each ele-
ment with dimensions, locate that element on a 3D
Cartesian grid within the building and provide specifi-
cation data related to each element. Admittedly to do
so for every element in the building would create a
stack of A4 paper as high as the building itself, but it
does lead to speculations.

Searching for the practical solution
When we started our detailed work on Eureka Tower
we had just shifted from ArchiCAD 6 to 6.5. While the
rest of the office has moved on through successive
upgrades to our current platform of 8.1, Eureka has
stayed with 6.5. We just didn’t want to take the risk of
unforeseen problems occurring through upgrades of
software. It was in those days that we formulated our
approach of ‘by-product’ – a process whereby we try
as much as possible to derive design or construction
documentation automatically as a by-product of our
design processes.

A component of that approach was to work very
little in Plotmaker which, after all, represents a draw-
ing mode rather than a modelling mode of working.
That can be achieved for the drawing component by

Tall stories : GDL Case Study

178 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

creating the live links between ArchiCAD and
Plotmaker – which is a typical use of Plotmaker by
most ArchiCAD users. We went a step further by link-
ing the title block information on our drawings to an
external relational database, which had been used for
some years in our practice as a document register/
transmittal/ issues database. That linking was created
through an ArchiCAD object which uses the INPUT
command of GDL to automatically read information
from a text file. We set up our database to automati-
cally create an appropriate text file when required for
document creation or revision.

I remember that at the time we contacted the Aus-
tralian distributor of ArchiCAD (who has consistently
over the years been of great support to us) to get some
assistance on the integration of our database with GDL.
The first response from him was “Why are you
reinventing the wheel? There are plenty of proprietary
document management software packages around!” I
explained that we weren’t reinventing the wheel – at
the time of the creation of the database, there were
actually no wheels. (I had created the initial version of
the document register/ transmittal system in the mid
1980s, using a SQL engine on DOS computers, repro-
duced it in Filemaker Pro when I fell in love with Mac-
intosh computers in the late 1980s, and subsequently
ported the system to Access when I belatedly realised
that working in Windows-based offices was going to
be an unfortunate reality.)

Despite the initial response a representative was
flown from Sydney to our office to assist us in under-
standing how we could connect our two systems. His
comment on looking at our document register? “Mmm,
somewhat more sophisticated than we had thought…”

GDL proves itself to be a valuable tool
One of the GDL tools developed during Eureka was
an object which would enable team members to take
any object, rotate it to any angle, and then to project
onto succeeding storeys the plan manifestation of that
object. In doing so one could specify the height above
the floor level the plan cut was to be taken, how much
of the object should be seen below that plan cut and

the graphic fill required, if any, in that plan. Hot spots,
of course, were provided. This tool enabled correct
assessment to be made of the position on plan at any
storey of the many raking columns and trims in the
Eureka project and is, to my mind, a wonderful exam-
ple of the creative uses to
which GDL can be put.

The data structure of
the Eureka Tower model
was formulated by the
team members, and all of
the GDL programming
was accomplished by the
team. None of the team
was a specialist CAD per-
son or GDL author; they
were all architects who, as
well as their design and
construction skills, had or
developed ArchiCAD
skills. Not all of the team
authored the GDL; most
of that work was
accomplished by
four key members:
Davin Smith,
Joseph Lebbos,
Falk Peuser and
Glen Purcell who
between them,
created some re-
ally exciting and
sophisticated ap-
proaches to the
virtual construc-
tion of the Eureka
Tower.
David Sutherland

Illustrations provided
by FKA

180 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

User’s Global
Variables
User editable GVs: let GDL
objects talk to each other

NORMALLY, Global Variables are a way for
GDL objects to find out what is going on in the

project as a whole – current wall thickness, camera
position, sun azimuth, drawing scale, object’s ID etc.
You cannot write back to these, for example you can-
not tell the sun to be at a different altitude or azimuth.

However Global Variables can provide a way for
objects to talk to each other. User editable Global Vari-
ables are all of the form GLOB_USER_1 - 20. A GDL
object can write a value for a user editable GV into
ArchiCAD’s global memory – the others will take note.
The only use for this really is for a family of objects
which need to share common data, e.g. a set of furni-
ture object or building components in a manufactur-
er’s library – they might need to share data like the
name of files to open to retrieve tables of prices. If
one GDL object contains a statement:
GLOB_USER_12= ‘furnitur_data.txt’ , it places that
information into global memory, thus making it avail-
able to all other objects. Thus, the others know the
name of the file to open to get furniture prices.

My guess is that you can cause yourself some diffi-
culty if you let ordinary GDL objects do this, as you
might have difficulty remembering which one did it.
You could have a lot of windows in a building whose
level of detail in the 2D symbols were autoscaled. It
could be operated so that if you opened one of the
windows and set it to a fixed level of detail, it would
set a user editable GV, and all the other ones would
also change to the fixed level of detail. I am still puz-
zling about how you would reverse this if you forgot
which window started it!

Introducing “Master” GDL Objects
The answer is to use these Globals in a GDL object
whose name is prefixed with the word Master. Any
GDL object starting with this prefix is loaded before
other GDL objects and this can put values into Archi-
CAD’s global memory, and these values can be dic-
tated to other objects. A Master GDL file can quietly
exist in the background in a loaded library. A Master
file can contain extra material definitions, fill and line
definitions. If it is to be highly editable, you could
have it visible in the plan somewhere as a sort of con-
trol panel object with a simple 2D symbol – with some
parameters that you could set, and which could in-
form other objects in the model. Even if it is not in the
plan it will continue to send values to global memory,
but these will be the defaults it was saved with – it’s
best to have it visible if it’s to be of any use!

You have 20 user editable GVs, and those from
GLOB_USER_1 to GLOB_USER_10 are for numeric

values (or indices). GVs from GLOB_USER_11 to
GLOB_USER_20 are for strings (e.g. the project name,
datafile names etc.).

Usually there is quite a delay in getting GDL ob-
jects to notice an update in Global Values. If you are
changing a value of an editable GV, reloading libraries
or the plan file will guarantee that objects will re-read
the user GVs.

Try an example!
We can make this little Master object, and give it a
simple icon of a circle with an ‘m’ inside. We can try
to experiment with sending strings and number val-
ues to global memory and see if other GDL objects
can pick them up. We only need to write a short mas-
ter script.

!Master Object : Master Script

GLOB_USER_1 =titl !Boolean for titles
GLOB_USER_2 =csiz !Size of Circle markers
GLOB_USER_11=stew_m11 !Stadium Venue
GLOB_USER_12=stew_m12 !Event title
GLOB_USER_13=stew_m13 !Extra line

!Master Object :2D Script

HOTSPOT2 -A/2,0, 1001,A,1+256 !Base
HOTSPOT2 A/2,0, 1002,A,2 !Move
HOTSPOT2 -100,0, 1003,A,3 !Vect
HOTSPOT2 0,0

DEFINE STYLE 'txta' 'Arial Baltic',A*600/A_,5,0
STYLE 'txta'
TEXT2 0,-A*0.1,'m'
CIRCLE2 0,0, A*0.50
CIRCLE2 0,0, A*0.48

DEFINE STYLE 'txtb' 'Arial Baltic',A*150/A_,5,0
STYLE 'txtb'
TEXT2 0,A*0.2,'Steward'

2D numbered Marker and
their Master!
WE can write an object that will make use of

globals and some other interesting features in
GDL. This object is a numbered circle (with a drop
shadow) that is used for marking the locations on a
plan of safety stewards in sports grounds.

Major sports grounds may be used for Football, but
also for Reserve games, Firework displays, Rock con-
certs, religious gatherings, film broadcasts – each will
have a different size of audience and need different

Master GDL files : these get loaded first, in alphabetical
order. This one is designed to manage 2000 or more 2D
markers.

Numbers from 1
to 10 should be
numerical, and

from 11 to 20
should be

strings

Define two sizes of text here. But these
do not seem to be transmittable to the

Steward. The Font’s name could be
sent, as GLOB_USER_14.

181Copyright Marmalade Graphics ©2004

safety steward arrangements. Different layouts of stew-
ards for different events can be organised using layer
conventions in ArchiCAD.

Some stadia may have 6 or even 12 different levels,
so changes to a plan can be very tedious. Select All
will only update the ones on that level. A Master ob-
ject can be a Control Panel to update all objects in
every layer in every storey.

There are four categories, Medical, Security, Hosts
and general Stewards. Each has a different colour. Each
must have a separate number, and there could be up
to 2000 stewards in a major venue such as an Olympic
stadium or a Wembley Cup final. We can place col-
oured circular spots for the stewards and set them to
obey the Master control panel or to be self contained.

!Steward Object - Master Script

sv1='Medic [Blue]'
sv2='Security [Violet]'
sv3='Host [Green]'
sv4='Steward [Yellow]'
VALUES 'stewtype' sv1,sv2,sv3,sv4

VALUES 'objid' GLOB_ID,
 "This can only be edited in",
 "the Object's ID setting",
 "Format: 5 digits followed by Number"
PARAMETERS objid=GLOB_ID

rv0='Object self contained'
rv1='Object governed by Master'
VALUES 'refer' rv0,rv1
IF refer=rv1 THEN

titl=GLOB_USER_1
csiz=GLOB_USER_2
texta=GLOB_USER_11
textb=GLOB_USER_12
textc=GLOB_USER_13
LOCK 'csiz','titl','texta','textb','textc'
ENDIF

!Set up Pen colours for fill
IF stewtype=sv1 THEN stewpen= REQ('Pen_of_RGB 0.2 0.6 1.0')
!Light Blue
IF stewtype=sv2 THEN stewpen= REQ('Pen_of_RGB 0.9 0.2 0.9')
!Violet
IF stewtype=sv3 THEN stewpen= REQ('Pen_of_RGB 0.0 1.0 0.0')
!Green
IF stewtype=sv4 THEN stewpen= REQ('Pen_of_RGB 1.0 1.0 0.0')
!Yellow

IF numb<10000 THEN divn=240
IF numb<1000 THEN divn=300
IF numb<100 THEN divn=400
IF numb<10 THEN divn=500
DEFINE STYLE 'stewnum' 'Arial Baltic',

csiz*divn/A_,5,0

DEFINE SOLID_FILL 'stewfil'

!Find out the value of 'numb'
 string=STRSUB(GLOB_ID, 6,4)
 x=SPLIT(string,'%n',numb)
 PARAMETERS numb=numb

!Steward Object - 2D Script

HOTSPOT2 -csiz/2,0, 1001,csiz,1+256 !Base
HOTSPOT2 csiz/2,0, 1002,csiz,2 !Move
HOTSPOT2 -100,0, 1003,csiz,3 !Vect
HOTSPOT2 0,0

STYLE 'stewnum'
PEN gs_text_pen
TEXT2 0,0,numb

!Titles
IF titl THEN !csiz*0.35 spacing
TEXT2 0,-csiz*0.75,texta !Venue
TEXT2 0,-csiz*1.10,textb !Event
TEXT2 0,-csiz*1.45,textc !Extraline
ENDIF

PEN gs_symb_pen
SET FILL stewfil

!Background Shadow
POLY2_A 2,7,gs_cont_pen,
csiz*0.05,-csiz*0.05,901,
csiz*0.5,360,4001

!Actual Steward symbol
POLY2_A 2,7,stewpen,
0,0,901,
csiz*0.5,360,4001

Using the Steward’s marker
Place the Master-steward in the plan somewhere
and then place one steward in the plan. In the ob-

ject settings, give it an object ID of some-
thing like “Stew:1”. If you alt-click that, and
proceed to place more, the new ones are
all sequentially numbered with that prefix

– needs to be 5 digits in my system. Click
2000 of them down if you need that many, then
change their colours. Make sure that the first one
you alt-clicked was set to obey the master.

Each of the following Stewards are correctly num-
bered. the GDL Object takes the GLOB_ID of the ob-
ject and displays a number. It calculates the correct
size of font based on the number of digits.

You can apply this idea to other cases where you
need to organise markers or objects, e.g. in setting out
an exhibition space or a supermarket or a distribution
warehouse.

STRSUB and SPLIT
Note the smart routine with STRSUB to read in the
substring of the number contained in the ID; SPLIT
converts it to a number. Using LOCK and VALUES,
the data can be displayed to the user, but it also pro-
vides them with instructions for using the object cor-
rectly. If you want a single steward to be special, you
can set it to be self contained, and enter a special size
and titling option for it.

This is the menu to
select the steward

type. The ‘objid’
menu displays the

Object’s ID and some
instructions. The

‘refer’ menu sets up
the ‘obedience’ level

of each steward .

If it’s obedient, the
local parameters are

locked but visible.

The colours are
generated by picking

a pen closest to the
RGB with a REQ()

statement.

This smart routine
works out the best size

of the font to fit the
circle from 1 to 9999.

We can define a solid
fill in a single line.

Copy this little routine –
it’s very useful!

We have hotspots for local
rezising of a marker if it’s

self contained.
The titles are displayed if the

master object permits it.

The drop shadow is done
with a circle in the outline
pen colour, and the main
circle uses the fill colour
calculated in the Master

Script. You could adapt this
to provide many more

colours and categories.
GLOB_USERs work well in

2D, but may be unreliable in
3D. Try it yourself.

182 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

Rich Text in
ArchiCAD 9
ONE of the great improvements to AC9 is the rich

text in the working environment. On the princi-
ple that anything that appears in the floor plan must
also work in GDL, there is a way to author Rich Text in
GDL – but it’s very hard work! It is not simply a mat-
ter of using something easy like BB-Code.

BB-Code is easier
When you have tried Rich text in GDL you will wish it
was. BB-Code is used in bulletin board systems like
ArchiCAD talk as an easy to learn and simple method
of formatting text – reminds me of word processing
in the early 1980’s, but it’s applied to HTML style text.

For example, ‘The quick brown fox jumped over
the lazy dog’ could be written as ‘The [B]quick brown
fox[/B] [color=red]jumped[/color] over the [I]lazy
dog[/I]’. This would give us the ‘fox’ in bold and the
‘dog’ in italic and ‘jumped’ in red and the rest of the
sentence in default pen colour. It’s very simple – square
brackets with a code starts an action, and square brack-
ets slash with the same code ends it.

There are masses of tutorials on BB-Code on the
internet – it can even include pictures and active URLs.
You can change lettering size and colour and style.
We should all put pressure on GS to retain the new
system (for compatibility) but to make another avail-
able for bears of little brain like us to use, using a ver-
sion of BB-Code.

Rich Text hierarchy
Rich Text in GDL operates a bit more like Solid mod-
elling. You have to build up definitions of styles, as-
semble paragraphs and text blocks, and then use the
RICHTEXT command to finally place the result (a bit
like PLACEGROUP). There is a systematic hierarchi-
cal sequence to get it right. Hardened GDL writers will
like it because of the vastly improved appearance in
self labelling and dimensioning objects, but normal
GDL users will be content to get by in the way we
have for the last few versions of GDL, changing the
pen colours perhaps. For investment objects (where
your time is rewarded in the number of times you will
use the object), it is well worth learning how to do this.
Word wrap is dynamic, so if you have graphical
hotspots to resize text width, you will get a very pow-
erful looking result.

Try some Rich Text
The best way to understand for yourself the way
RICHTEXT and RICHTEXT2 work in GDL is to cre-
ate a sample of rich text in ArchiCAD and drag it from
the floor plan into GDL 2D Script and see what it makes
as an autoscript. Once you have mastered the 2D, it’s
very easy to adapt the result to make it into 3D text.
As usual, the autoscript gives one very prescriptive

numbers for everything (pens, font sizes, indents, let-
ter spacing etc) but smart parametric routines in your
script can make it perform parametrically.

The Sequence is as follows:
• Define the Styles you are likely to be using. If you

are making a single GDL object, you will avoid go-
ing overboard with an excess of styles. If you are
making a library of objects you will be able to copy
and paste the same definitions from object to ob-
ject. Instead of DEFINE STYLE, you are encour-
aged to use DEFINE STYLE{2} name font, size,
facecode because you do not need an ‘anchor code’
– left, centre or right is set for the paragraph. You
do have additional facecodes, for example super-
script, subscript and strike out.

• If you want 3D text, you cannot use the same DE-
FINE STYLE{2} statements, because definitions are
in millimetres - 4 mm looks pretty good on the page
in 2D, but pretty small in the 3D. This chapter will
provide a solution – you write a separate one, or
you could use a single DEFINE statement with a
‘scaling factor’ equal to the scale of the drawing.
It’s extremely unusual to want Text that is simulta-
neously in 2D and in 3D at the same size.

• If you want coloured text in 3D, you might have to
write a few material definitions too, based on the
colours. Otherwise, in the absence of materials, the
3D text will follow the colour of the Pens.

• Next you define Paragraphs, each one with the
PARAGRAPH statement. This is a bit like building
Groups in Solid Geometry Commands. A paragraph
is given a token name, and it governs alignment,
indents and linespacing and tabs. Start a paragraph
with PARAGRAPH and end it with
ENDPARAGRAPH. Within that, you set values for
pens, materials and styles as you need. All text will
be concatenated continuously so that word wrap
works – include spaces, commas etc as required.
The way to make a carriage return is to make a new
paragraph.

• Next you define a Text block with the TEXTBLOCK
statement. This is where you can set the overall
width of the block, anchor (left, centre, right or up

Rich Text in ArchiCAD 9

183Copyright Marmalade Graphics ©2004

or down relative to the zero point). At this point
you can also apply width and spacing and height
factors to the text to suggest condensed or stretched
text. You list the paragraphs that will be included in
the text block, and the commas separating the
names of the paragraphs are, in effect, carriage re-
turns.

• These can all be done in the Master script, or in the
script where the text will occur.

• Finally, you can use RICHTEXT2 to place the text
in 2D and RICHTEXT to place it in 3D (along with
a height parameter). If you intend to make 3D text,
then the PARAGRAPH statement is a bit like a
cPRISM_, you must include the material in the para-
graph. A general material setting for the script will
be ignored.

Note that 3D text generates a lot of polygons, so do
not forget to add a TOLER statement. Build in a ZZYZX
height hotspot, and either do the same for the 3D
hotspots for ‘A’ or rely on the 2D hotspots in the 3D.

Rich Text in ArchiCAD 9

!Rich Text Object: 2D Script

PEN gs_cont_pen

!Place the text
RICHTEXT2 0, 0, "AC_TEXTBLOCK_2"

HOTSPOT2 0,0, 1001,A,1+256 !Base
HOTSPOT2 A,0, 1002,A,2 !Move
HOTSPOT2 -100,0, 1003,A,3 !Vect

!Check size of Text Block and set Hotspots
nul=REQUEST ('TEXTBLOCK_INFO', "AC_TEXTBLOCK_2", wid, hit)
w=wid*A_/1000
h=hit*A_/1000
HOTSPOT2 w/2,-h/2
HOTSPOT2 w,-h
HOTSPOT2 0,-h
!_________________________________

!Rich Text Object: 3D Script

MATERIAL matl
PEN gs_cont_pen
TOLER 0.01

!Place the text
RICHTEXT 0, 0, zzyzx,0,"AC_TEXTBLOCK_3"

HOTSPOT 0,0,0, 1001,zzyzx,1 !Base
HOTSPOT 0,0,zzyzx, 1002,zzyzx,2 !Move
HOTSPOT 0,0,-100, 1003,zzyzx,3 !Vect

!Richtext object: Master Script

!Scaling Factor between 3D and 2D
IF GLOB_CONTEXT=3 THEN sf=GLOB_SCALE ELSE sf=1

!------------- Text Definitions----------------
DEFINE STYLE{2} "AC_STYLE_1" "Arial Black", 4*sf,1
DEFINE STYLE{2} "AC_STYLE_2" "Courier New", 3,0
DEFINE STYLE{2} "AC_STYLE_3" "Times New Roman",4,0
DEFINE STYLE{2} "AC_STYLE_4" "Times New Roman",4,2
DEFINE STYLE{2} "AC_STYLE_5" "Times New Roman",4,1

PARAGRAPH "AC_PRG_5" 1, 0, 0, 0, 1
 PEN 10
 MATERIAL matl
 SET STYLE "AC_STYLE_1"
 "Test Text - explained"
ENDPARAGRAPH

PARAGRAPH "AC_PRG_6" 1, 0, 0, 0, 1
 PEN 7
 SET STYLE "AC_STYLE_2"
 "This is a short example."
ENDPARAGRAPH

PARAGRAPH "AC_PRG_7" 1, 0, 0, 0, 1
 PEN 1
 SET STYLE "AC_STYLE_3"
 "I want to set text to "
 SET STYLE "AC_STYLE_4"
 "Italic"
 SET STYLE "AC_STYLE_3"
 ", and "
 SET STYLE "AC_STYLE_5"
 "Bold"
 SET STYLE "AC_STYLE_3"
 ", and change fonts and "
 PEN 166
 SET STYLE "AC_STYLE_5"
 "colours "
 SET STYLE "AC_STYLE_3"
 PEN 1
 "frequently."
ENDPARAGRAPH

!Add the paragraphs to make the whole Text Block
TEXTBLOCK "AC_TEXTBLOCK_2" A*1000/GLOB_SCALE,

1, 0, 1, 1, 1,
"AC_PRG_5", "AC_PRG_6", "AC_PRG_7"

!------------3D Text Definition----------------
DEFINE STYLE{2} "AC_STYLE_10" "Arial Black",

 4*GLOB_SCALE, 1
!or use the scaling factor in the master script

PARAGRAPH "AC_PRG_8" 1, 0, 0, 0, 1
 PEN 11
 SET STYLE "AC_STYLE_1"
 "Test Text - explained"
ENDPARAGRAPH

TEXTBLOCK "AC_TEXTBLOCK_3" A*1000,
1, 0, 1, 1, 1, "AC_PRG_8"

REQUEST finds out the width &
height of the block and allows one to

place helpful hotspots

Horizontal
block stretching

routine -
returns a new

value for ‘A’

Vertical block stretching
routine - returns a new

value for ‘zzyzx’

You define each
‘paragraph’ - as far as the

next carriage return.
If it’s going to be 3D, then

specify material.

Predict all the styles you
are going to use, and SET
them in the PARAGRAPH

statements.

This is a complex task, so
you will only use it when

you want a distinctive
benefit, e.g. clarity or

colour of text.

TEXTBLOCK assembles
the paragraphs together in

sequence, each comma
represents a carriage

return.
The syntax allows you to

set block width, line
spacing etc.

In this example, we use Style
1 because it supports 2D &

3D, but you can define styles
separately for 3D if you wish.

193Copyright Marmalade Graphics ©2004

Bendy Bar!

BENDiBAR is an object that can be put to many
uses, but its primary use could be rebars in con-

crete, or perhaps handrails. It can be used for drain-
age and plumbing, or for neon lettering. It consists of
a bar or tube that can be bent in several ways, with
any degree of curvature, bending angle and twisting
angle at each bend.

It is a useful exercise in demonstrating the simple
but effective use of Parameter ARRAYS, and of mak-
ing that array visible to the user. It makes a complex
object vastly easier to write and user-friendly to ma-
nipulate in ArchiCAD. Bendibar goes on to be an out-
standing example of graphical Hotspots and User in-
terface design.

You have to click on this button to make the parameter adopt
the form of an Array. Then you can use “Set” to set the values
of the array,
instal some
typical values to
get the object
started. do this
for bar length,
curve radius,
bending angle
and twist angle.
In this table, we
click the Hide
button for the
parameter arrays
because we need
a User Interface to make a better way to give the user access to
the array data.

Housekeeping before we do the 3D
The primary job is to parse the Value List – this is
done in the Master Script. I have shown two methods
of doing it. The SPLIT() command extracts from the
string a single digit value of ‘shp’ in one single line of
smart code – a lot easier than a whole lot of IF state-
ments. The Parameter checks build in a number of
safeguards, in case of problems such as the curve ra-
dius being smaller than the tube radius. I usually write
the object first, get it working, then discover the things
that can upset it with user-abuse, and write in safe-
guard routines to catch the snags.

3D Script
Because this uses arrays, the final 3D routine is in-
credibly short. The FOR... NEXT loop does all the work
and the value of ‘k’ in each run through the loop de-
cides which section of the rod and which bend will be
created. Get one run of it working, and then a second.
Once that is proven, you can increase the size of the
loop. 6 or 7 bends in a reinforcing bar would be as
many as you could want, but you could add more if
you wish. e.g. for something like neon lettering. The
routine follows a similar idea to that used in the first
Handrail in the Cookbook – a simple CYLIND and
ELBOW. The

Lattice and Tube Zone

!Parameter script
sh1= '1_Single bar'
sh2= '2_Two-bar'
sh3= '3_Three-bar'
sh4= '4_Four-bar'
sh5= '5_Five-bar'
sh6= '6_Six-bar'
sh7= '7_Seven-bar'
 VALUES 'shape' sh1,sh2,sh3,sh4,sh5,sh6,sh7

v1='You can use the parameter array table in the user'
v2='interface to enter numerical data, but its much'
v3='more fun to view the bendibar in the 3D window'
v4='and explore the function of the 3D Hotspots'
v5='to stretch, bend & twist the bar. Get it near-'
v6='enough right, then straighten and tidy in the
table'
 VALUES 'info' v1,v2,v3,v4,v5,v6

We can use the Parameter Script
to build the pop-down menus, one
for the choice of Bar and one for
Instructions. These appear in the

parameter table and in the UI.
Use this method of building the

Values lists.

!Bendibar Master Script

!This is the long hard
!way to parse a value list
!IF shape='1_Single bar' THEN shp=1
!IF shape='2_Two-bar' THEN shp=2
!and so on and so on.......

!If all you want is a flag, use SPLIT() instead
 nul=SPLIT(shape,"%n",shp) !creates value 'shp'

!Parameter Checks
brad=diam/2 !Bar radius

FOR k=1 TO shp-1
IF crad[k]<brad THEN crad[k]=brad
IF bend[k]<0 THEN
 twist[k]=twist[k]+180
 bend[k]=ABS(bend[k])
 ENDIF
IF leng[k]<0 THEN leng[k]=0
 NEXT k
IF leng[shp]<0 THEN leng[shp]=0

This is idiotproofing,
using a FOR NEXT

loop

This is the long way
to parse the Valuelist

and could be
shortened to IF

shape=sh1 THEN
shp=1: but SPLIT is

still shorter.

These
witness lines
help the user
to find all the
graphical
hotspots

194 Copyright Marmalade Graphics ©2004

The GDL Cookbook 4

twist added to the bar routine adds 3 dimensional qual-
ity to the bar.

2D Script
This tool could be bent into such wierd shapes that it
is not practical to work out a 2D script for it. You will
have to depend on PROJECT2 for the 2D. However,
as a bunch of these bars could get mighty confusing,
it helps a great deal to write a script to place cross
hairs at the start of the tool, and to a starting Hotspot.
It might help to remove Hotspots on the Bounding box,
as these could become a dense forest of hotspots when
you built a reinforcement cage. In the GDL, we have
the option to hit the “Details” button and ask GDL to
give us a Bounding Box in 2D.

!Bendibar 3D Script

MATERIAL bmat
PEN gs_cont_pen
TOLER 0.001

GOSUB 120:!Rotation at start

ROTx rottx

n=1 !set up a small counter
GOSUB 100:!Hotspot routine first tube
CYLIND leng[1],brad

FOR k=1 TO shp-1

 ADDz leng[k]
GOSUB 140:!Hotspot routine Twist
 ROTz twist[k]
GOSUB 110:!angle bend
GOSUB 150:!change radius

ELBOW crad[k],bend[k],brad
 ADDx crad[k]
 ROTy bend[k]
 ADDx -crad[k]
n=k+1 !increment ‘n’
GOSUB 100:!Hotspot routine length each tube

CYLIND leng[k+1],brad
 NEXT k

 DEL 5*(shp-1)
 DEL 1 !Remove the ROTxs

END:!-----------------------------

Set up Material, Pen and
Curve tolerance. Subroutines

120 and 100 are graphical
hotspot routines, so if you

are making this, leave these
out till you have got the

basic tube working.

The first Cylinder is
built. Then use the loop
to build the subsequent

Elbows. The ‘n’ counter
is always one ahead of

the ‘k’ counter, so you
can use Subroutine 100

for both the present
elbow and the next

cylinder.!Bendibar 2D Script

PEN gs_cont_pen

PROJECT2 3,270,2
br=brad*1.5 !crosshair size

!Crosshair, hotspot at start
HOTSPOT2 0,0
LINE2 br,0,-br,0
LINE2 0,br,0,-br
ARC2 0,0,brad,60,120
ARC2 0,0,brad,150,210
ARC2 0,0,brad,240,300
ARC2 0,0,brad,330,390

Because it will be
Project2, we will get some

small extraneous lines
from the 3D Graphical

Hotspots. You could write
an IF routine in the 3D

script to hide these.

100:!Hotspot routine length of tubes
hsid=hsid+1 !base
 HOTSPOT 0,0,0,hsid,leng[n],1
hsid=hsid+1 !moving
 HOTSPOT 0,0,leng[n],hsid,leng[n],2
hsid=hsid+1 !reference
 HOTSPOT 0,0,-leng[n],hsid,leng[n],3
RETURN

110:!Hotspot routine angle bend
LIN_ crad[k],-0.005,0,crad[k],0.005,0

ADDx crad[k]
hsid=hsid+1 !base
 HOTSPOT -crad[k],0,0,hsid,bend[k],4

ROTy bend[k]
hsid=hsid+1 !moving
 HOTSPOT -crad[k],0,0,hsid,bend[k],5
DEL 1

hsid=hsid+1 !centre
 HOTSPOT 0,0,0,hsid,bend[k],6
hsid=hsid+1 !swivel
 HOTSPOT 0,1,0,hsid,bend[k],7
DEL 1
RETURN

120:!Hotspots Rotation at the start
hsid=hsid+1 !base
 HOTSPOT 0,0,leng[1]+crad[1],hsid,rottx,4+128

ROTx rottx
hsid=hsid+1 !moving
 HOTSPOT 0,0,leng[1]+crad[1],hsid,rottx,5
DEL 1

hsid=hsid+1 !centre
 HOTSPOT 0,0,0,hsid,rottx,6
hsid=hsid+1 !swivel
 HOTSPOT 1,0,0,hsid,rottx,7
RETURN

140:!Hotspot routine Twist angle
p=0.01 !1 3d pixel
hsid=hsid+1 !base
 HOTSPOT crad[k]+p,0,0,hsid,twist[k],4+128

ROTz twist[k]
LIN_ crad[k]+p,0,0,
 crad[k]+0,0,0
hsid=hsid+1 !moving
 HOTSPOT crad[k]+p,0,0,hsid,twist[k],5
DEL 1

hsid=hsid+1 !centre
HOTSPOT 0,0,0,hsid,twist[k],6
hsid=hsid+1 !swivel
HOTSPOT 0,0,1,hsid,twist[k],7
RETURN

150:!Hotspot routine change radius
hsid=hsid+1 !base
 HOTSPOT 0,0,0,hsid,crad[k],1
hsid=hsid+1 !moving
 HOTSPOT crad[k],0,0,hsid,crad[k],2
hsid=hsid+1 !moving
 HOTSPOT -crad[k],0,0,hsid,crad[k],3
RETURN

Distance Hotspots
are the easiest.

Rotational
hotspots are more

complex. Put a
‘witness line’ in to

help you locate
the spot in 3D

space. The Move
spot can be found

with a SIN and
COS routine, but
it’s easier just to

make it the same
as the Base spot,

but rotated –
easy!

Use the same
rotation trick for

the move spot

Change Twist angle at bend
Change Bend (Sweep) angle

Change Curve Radius
Change Length of previous tube/bar

How the Hotspots and witness lines work

Make the Graphical Hotspots
Building the tube is comparatively easy compared with
the Hotspots. But once you have built one, there is a
lot of Copy and Paste – it gets easier with each one.
See the earlier sections on Graphical Hotspots.

Make the User Interface
This uses UI_INFIELD{2} to build the spreadsheet like
table. This script uses standard subroutines for most
of the Outfields and Infields, and variables for indents
and field lengths.

195Copyright Marmalade Graphics ©2004

With a bit of work, you can build up complex
cages like this; the bars get easier and easier to
imagine and manipulate with more practice.

!User Interface script for Bendibar
!This makes a spreadsheet like display

UI_DIALOG 'Bendibar Tool'
UI_SEPARATOR 2,2,442,264
UI_PAGE 1

!---Set up Indents and Field lengths---
stl=0 !Start Line
led=21 !Leading of lines
ln=0 !Line number
ind0=12 !Indent for outfields
ind1=112 !Indent for Infields
ind10=234 !indent for right column outfields
ind11=334 !indent for right column infields
ifl=100 !Infield length
ofl=100 !outfield length
ind00=38 !Indent for first outfield in table
iflt=100 !infield length in table
iflp=36 !infield length for Pen

!----Parameters of user’s choosing----
UI_STYLE 0,1
ln=ln+1
string='Number of Tubes': GOSUB 100: !outfield
param='shape': GOSUB 103: !infield
string='Diam of Tubes': GOSUB 110: !outfield
param='diam': GOSUB 113: !infield
UI_STYLE 0,0
ln=ln+1
param='info': GOSUB 102: !infield
string='Rotation,1st leg':GOSUB 110: !outfield
param='rottx': GOSUB 113: !infield
ln=ln+1
string='Tube Material': GOSUB 100: !outfield
param='bmat': GOSUB 103: !infield
string='Pen Color': GOSUB 110: !outfield
param='gs_cont_pen': GOSUB 114: !infield

!---
! Headers for the parameter arrays table !
!---
ln=ln+1
UI_STYLE 0,1
UI_OUTFIELD 'Tube Length',ind00+iflt*0, led*ln,

iflt,led
inden=inden+104
UI_OUTFIELD 'Curve Radii',ind00+iflt*1, led*ln,

iflt,led
inden=inden+104
UI_OUTFIELD 'Bend sweep ang',ind00+iflt*2, led*ln,

iflt,led
inden=inden+104
UI_OUTFIELD 'Twist at bend',ind00+iflt*3, led*ln,

iflt,led

!----Titles for each Row-----
FOR k=1 TO shp
UI_OUTFIELD STR(k,1,0),ind0,led*ln+led*k,12,led-1
NEXT k
UI_STYLE 0,0

!----Build the actual Table----
FOR k=1 TO shp !Loop for all the table entries
!Tube lengths
 UI_INFIELD{2} leng[k], ind00+iflt*0,

led*ln+led*k-2,iflt,led-1

!Curve Radii
 UI_INFIELD{2} crad[k], ind00+iflt*1,

led*ln+led*k-2,iflt,led-1
!Bend angle at each junction
 UI_INFIELD{2} bend[k], ind00+iflt*2,

led*ln+led*k-2,iflt,led-1
!Twist angle before each junction
 UI_INFIELD{2} twist[k],ind00+iflt*3,

led*ln+led*k-2,iflt,led-1
NEXT k

END:!==

100:!Outfield normal length
UI_OUTFIELD string,ind0,stl+led*ln,ofl,ofh
RETURN

101:!Outfield extra long
UI_OUTFIELD string,ind0,stl+led*ln,ofl*2,ofh
RETURN

102:!Text infield extra long from left edge
UI_INFIELD param,ind0,stl+led*ln-2,iflt*2,ifh
RETURN

103:!Text infield normal length
UI_INFIELD param,ind1,stl+led*ln-2,iflt,ifh
RETURN

104:!Pen infield left
UI_INFIELD param,ind1,stl+led*ln-2,iflp,ifh
RETURN

110:!Outfield normal length
UI_OUTFIELD string,ind10,stl+led*ln,ofl,ofh
RETURN

113:!Text infield normal
UI_INFIELD param,ind11,stl+led*ln-2,iflt,ifh
RETURN

114:!Pen infield right
UI_INFIELD param,ind11,stl+led*ln-2,iflp,ifh
RETURN

115:!Text infield right column, entire space
UI_INFIELD param,ind10,stl+led*ln-2,iflt*2,ifh
RETURN

This spreadsheet like user interface is the only practical way that
the user can see all the Bar parameters at once and edit them.

Lattice and Tube Zone

