
TrueNorth Ecosystem for
Brain-Inspired Computing:

Scalable Systems, Software, and Applications
Jun Sawada⇤, Filipp Akopyan⇤, Andrew S. Cassidy⇤, Brian Taba⇤, Michael V. Debole⇤, Pallab Datta⇤,

Rodrigo Alvarez-Icaza⇤, Arnon Amir⇤, John V. Arthur⇤, Alexander Andreopoulos⇤,
Rathinakumar Appuswamy⇤, Heinz Baier⇤, Davis Barch⇤, David J. Berg⇤, Carmelo di Nolfo⇤,

Steven K. Esser⇤, Myron Flickner⇤, Thomas A. Horvath⇤, Bryan L. Jackson⇤, Jeff Kusnitz⇤,
Scott Lekuch⇤, Michael Mastro⇤, Timothy Melano⇤, Paul A. Merolla⇤, Steven E. Millman⇤, Tapan K. Nayak⇤,

Norm Pass⇤, Hartmut E. Penner⇤, William P. Risk⇤, Kai Schleupen⇤, Benjamin Shaw⇤, Hayley Wu⇤,
Brian Giera†, Adam T. Moody†, Nathan Mundhenk†,

Brian C. Van Essen†, Eric X. Wang†, David P. Widemann†,
Qing Wu‡, William E. Murphy‡,

Jamie K. Infantolino§, James A. Ross§, Dale R. Shires§, Manuel M. Vindiola§, Raju Namburu§,
and Dharmendra S. Modha⇤

⇤IBM Research, †Lawrence Livermore National Laboratory,
‡U.S. Air Force Research Laboratory, §U.S. Army Research Laboratory

Abstract
This paper describes the hardware and software ecosystem encompassing the brain-inspired TrueNorth processor – a 70mW

reconfigurable silicon chip with 1 million neurons, 256 million synapses, and 4096 parallel and distributed neural cores. For
systems, we present a scale-out system loosely coupling 16 single-chip boards and a scale-up system tightly integrating 16 chips
in a 4⇥4 configuration by exploiting TrueNorth’s native tiling. For software, we present an end-to-end ecosystem consisting of a
simulator, a programming language, an integrated programming environment, a library of algorithms and applications, firmware,
tools for deep learning, a teaching curriculum, and cloud enablement. For the scale-up systems we summarize our approach to
physical placement of neural network, to reduce intra- and inter-chip network traffic. The ecosystem is in use at over 30 universities
and government/corporate labs. Our platform is a substrate for a spectrum of applications from mobile and embedded computing
to cloud and supercomputers.

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 ©2016 IEEE

TrueNorth Ecosystem for
Brain-Inspired Computing:

Scalable Systems, Software, and Applications
Jun Sawada⇤, Filipp Akopyan⇤, Andrew S. Cassidy⇤, Brian Taba⇤, Michael V. Debole⇤, Pallab Datta⇤,

Rodrigo Alvarez-Icaza⇤, Arnon Amir⇤, John V. Arthur⇤, Alexander Andreopoulos⇤,
Rathinakumar Appuswamy⇤, Heinz Baier⇤, Davis Barch⇤, David J. Berg⇤, Carmelo di Nolfo⇤,

Steven K. Esser⇤, Myron Flickner⇤, Thomas A. Horvath⇤, Bryan L. Jackson⇤, Jeff Kusnitz⇤,
Scott Lekuch⇤, Michael Mastro⇤, Timothy Melano⇤, Paul A. Merolla⇤, Steven E. Millman⇤, Tapan K. Nayak⇤,

Norm Pass⇤, Hartmut E. Penner⇤, William P. Risk⇤, Kai Schleupen⇤, Benjamin Shaw⇤, Hayley Wu⇤,
Brian Giera†, Adam T. Moody†, Nathan Mundhenk†,

Brian C. Van Essen†, Eric X. Wang†, David P. Widemann†,
Qing Wu‡, William E. Murphy‡,

Jamie K. Infantolino§, James A. Ross§, Dale R. Shires§, Manuel M. Vindiola§, Raju Namburu§,
and Dharmendra S. Modha⇤

⇤IBM Research, †Lawrence Livermore National Laboratory,
‡U.S. Air Force Research Laboratory, §U.S. Army Research Laboratory

Abstract—This paper describes the hardware and software
ecosystem encompassing the brain-inspired TrueNorth processor
– a 70mW reconfigurable silicon chip with 1 million neurons,
256 million synapses, and 4096 parallel and distributed neural
cores. For systems, we present a scale-out system loosely coupling
16 single-chip boards and a scale-up system tightly integrating
16 chips in a 4⇥ 4 configuration by exploiting TrueNorth’s
native tiling. For software, we present an end-to-end ecosystem
consisting of a simulator, a programming language, an integrated
programming environment, a library of algorithms and applica-
tions, firmware, tools for deep learning, a teaching curriculum,
and cloud enablement. For the scale-up systems we summarize
our approach to physical placement of neural network, to reduce
intra- and inter-chip network traffic. The ecosystem is in use at
over 30 universities and government/corporate labs. Our platform
is a substrate for a spectrum of applications from mobile and
embedded computing to cloud and supercomputers.

I. INTRODUCTION

Neural networks are currently in the midst of a resurgence,
fueled by advances in deep learning [1] that include scalable
tools for training these networks [2], [3], [4], as well as
novel algorithms that achieve high performance on a wide
range of tasks, including visual object classification [5], speech
recognition [6], language modeling [7], and natural language
understanding [8]. On the other hand, neurosynaptic archi-
tectures, such as TrueNorth [9], have demonstrated orders
of magnitude improvement in computational energy-efficiency
and throughput [10]. More recently, it has been shown that
deep learning algorithms can be modified to train neural
networks for specialized architectures with low-precision neu-

Fig. 1. Integrated, end-to-end, hardware/software ecosystem for large-scale
neurosynaptic computing. The paper is organized describing the ecosystem
layers in detail beginning at the bottom of the figure.

rons and synapses and still yield comparable classification
accuracy [11], [12], [13]. This enables a new class of energy-
efficient neural network applications, ranging from mobile and
embedded systems to cloud and supercomputer platforms.SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/$31.00 ©2016 IEEE

At this juncture, what is missing from the neural network
computational paradigm is a comprehensive ecosystem that
realizes the full potential of this new architecture. In this work,
we present an integrated, end-to-end novel ecosystem for
specifying, training, and deploying neural networks based on
the TrueNorth architecture, as shown in Fig. 1. This includes
multiple hardware platforms and systems, seamlessly inte-
grated with software languages, tools, libraries, environments,
and offline training algorithms, all of which enable users to
develop and deploy a wide range of applications.

The major novel technical contributions of this paper are:
• To demonstrate two new systems (Section III): the NS1e-

16 scale-out system that consists of a network of 16
single-chip NS1e boards; and the NS16e scale-up system
that consists of 4⇥4 array of TrueNorth chips.

• To describe the full development workflow including
neural network training algorithms, libraries, a simulator,
data preprocessors, model compilation, and other soft-
ware tools. (Section IV).

• To provide a simple and effective algorithm for mapping
logical network representations to physical hardware lo-
cations, in order to reduce intra- and inter-chip traffic
(Section IV).

• And finally to provide deployment status of our system
for over 100 developers at seven government agencies,
three national labs, eight corporate research centers,
and twenty-five universities. We include three sample
applications (scale-out and scale-up) from our partners
(Section V).

These systems–when programmed with convolutional net-
works [13]–achieve near state-of-the-art accuracy while de-
livering > 6000 frames/sec/Watt, which is unmatched by any
existing CPU, GPU, or FPGA platform (Section VII). With-
out an effective development flow, the Neovision application
presented in [10] took ⇠ 10 person-years of work to create.
This paper presents the end-to-end ecosystem that allows
engineers to achieve better results in person-weeks, and even
person-days of effort. Thus, this paper represents a significant
productivity improvement for the specialized hardware for
neural networks. We have brought together chips, systems,
firmware, development environments, and applications–all of
the pieces required to realize future scaled systems based on
brain-inspired computing.

II. TRUENORTH

Synthesizing insights from neuroscience [14] and super-
computer simulations on large-scale cortical networks [15],
[16], [17], [18], the TrueNorth chip was developed based
on a parallel, event-driven, non-von Neumann kernel for
neural networks that is efficient with respect to computation,
memory, and communication [10]. The architecture is parallel,
distributed, event-driven, modular, scalable, fault-tolerant, and
co-localizes memory and computation to enable scalable,
efficient, and flexible platforms for a wide variety of neural
network applications [9].

Fig. 2. The TrueNorth Architecture is based on a neurosynaptic core, tiled in
a 2D array: logical representation (left) and physical implementation (right).

Fig. 3. An example spike route (red) between cores on two adjacent TrueNorth
chips. Spikes traversing one row of the network-on-chip travel through the chip
I/O peripheral circuitry and then emerge on the same row of the adjacent chip.

The scalability of the TrueNorth architecture derives from
its modular tiled-core structure. Each TrueNorth neurosynaptic
core represents a tiny fully-connected neural network with 256
output neurons and 256 input axons, connected by 256⇥256
synapses, one for every axon–neuron combination—a com-
plete bipartite graph (Fig. 2 upper left). When cores are tiled
on the chip and connected by a network-on-the-chip, these
small bipartite graphs are combined to form a larger neural
network. (Fig. 2 lower left).

The TrueNorth chip consists of 4,096 cores, tiled as a
64⇥ 64 array, (Fig. 2 lower right). Each chip implements
over 1 million neurons and over 256 million synapses, using
5.4 billion transistors fabricated in Samsung’s 28nm LPP
process technology. At 0.775V supply, each chip consumes
approximately 70mW while running a typical vision applica-
tion. Cores are implemented as a fanout crossbar structure
(Fig. 2 upper right). An input spike event activates an axon,
which drives all connected neurons. Neurons integrate incom-

ing spikes, weighted by synaptic strength. When a neuron
membrane potential integrates beyond its threshold, it fires a
spike, transmitting it to a preprogrammed target axon on any
core in the network [9], [19], [20]. To support scaling beyond
chip boundaries, chips can also be tiled in two dimensions
via native event-driven SerDes links, enabling scaling to even
larger networks, as shown in Fig. 3. This makes it possible and
relatively simple to tile TrueNorth chips in a two-dimensional
array, which is a critical property enabling the NS16e scale-up
system presented here.

III. HARDWARE SYSTEMS

In this section, we present mobile, scale-out, and scale-
up TrueNorth-based systems that form the building blocks
to construct computing platforms and enable applications at
multiple scales.

A. NS1e Platform

The Neurosynaptic System, 1 million neuron evaluation
platform (NS1e), shown in Fig. 4(a), supports embedded and
mobile applications, and its compact form factor and modular
nature make it a building block for scale-out systems of
arbitrary size. In the embedded case, the NS1e can be deployed
as a distributed supercomputer, pushing the computation close
to the sensor. On the other hand, aggregating many NS1e
boards together creates a centralized scale-out system, the
same as the datacenter or cloud model.

The main processing element of the NS1e is a single
TrueNorth chip (Fig. 4(d)). It is coupled on board with
a Xilinx Zynq Z-7020 SoC (Fig. 4(e-f)) containing FPGA
programmable logic and two ARM Cortex-A9 cores connected
to 1GB DDR3 SDRAM. With the ARM cores running the
Linux operating system and system software (Fig. 4(f)), as
well as the FPGA performing data conversion and interface
translation (Fig. 4(e)), this system can operate as a stand-
alone system or a node in a scalable system. User interfaces
include Gigabit Ethernet, micro USB, I2C, SPI, and UART,
as well as three asynchronous spike-based interfaces directly
to TrueNorth. Configurable GPIO provides an additional sen-
sor/motor/actuator interface. The NS1e hosts the following
on-board sensors: altimeter and thermometer (BMP-180), as
well as: gyroscope, accelerometer, magnetometer and motion
coprocessor (MPU-9150). The NS1e is 125mm⇥69mm and
weighs 98g. The average power consumption is between
2W and 3W (depending on the use case) with TrueNorth
consuming only ⇠ 3% of the total power budget. The board
can also operate in a full standalone mode while connected
to a small Li-Po battery and transmit/receive data wirelessly,
useful for autonomous applications.

B. NS1e-16 Platform

By connecting multiple NS1e boards via standard network-
ing hardware, we created a scale-out system that runs many
neural network instances in parallel. Fig. 4(b) shows the NS1e-
16 system constructed using sixteen NS1e boards, with aggre-
gate capacity of 16 million neurons and 4 billion synapses,

interconnected via a 1Gig-Ethernet packet switched network
(Fig. 4(g)). The system optionally includes a traditional server
(3.4 GHz quad-core Xeon, 32GB RAM, 1 TB hard drive) to
act as a host gateway. The NS1e-16 system is integrated into
a single 6U rack, and consumes a total of approximately 68W
not including the server (⇠ 56W for the NS1e node cards and
⇠ 12W for the network communication).

This system has the following properties, similar to other
scale-out systems. First, computing capacity is increased
by simply adding additional neurosynaptic compute nodes.
Second, this approach has a reduced cost when compared
to board-level integration. Third, board-level failures can be
easily corrected by swapping out nodes. This platform is well
suited for problems which can be decomposed and mapped
onto a set of parallel and individual networks, each sized to
the capacity of a single TrueNorth. Examples include an image
recognition problem where a high resolution input image space
is tiled across several boards, or combing through “big data”
from a variety of sources or sensors.

C. NS16e Platform

Using TrueNorth’s native chip-to-chip asynchronous com-
munication interfaces, the NS16e (Neurosynaptic System 16
million neuron evaluation) platform seamlessly integrates 16
TrueNorth chips into a scale-up solution (Fig. 4(c)). Present on
all four sides of TrueNorth, these native inter-chip interfaces
(Fig. 3) create a logically seamless grid of cores across differ-
ent chips. On the NS16e board, a two-dimensional 4⇥4 array
of TrueNorth chips are directly interconnected using these
interfaces, creating a platform that is capable of executing
neural networks 16 times larger than the NS1e.

The NS16e system consists of three boards assembled using
vertical stacking/mating connectors: a custom 4⇥ 4 board
(Fig. 4(h)), mated to a custom interposer board with an off-the-
shelf Avnet 7Z045 Zynq SoC mini module (Fig. 4(i)). The in-
terposer board provides high speed interfaces and power to all
of the NS16e system components. It contains a PCIe x4 con-
nector and an SFP+ Ethernet cage. The Zynq SoC mini module
provides two ARM cores and an FPGA fabric for interface,
control, and data manipulation. The ARM cores enable the
NS16e to run as a standalone system. However, in the primary
configuration, we disable the ARM cores and use the high-
speed transceivers on the SoC as a PCIe communication bridge
to a host computer (Dual Intel Xeon E5-2630 processors,
256GB RAM, and two Nvidia Titan-X GPU cards), shown in
Fig. 4(j). This latter system configuration is a hybrid system
combining neurosynaptic accelerators and traditional processor
computation. For example, the CPU/GPU/FPGA may be used
for pre-/post-processing or data transduction, such as applying
image and audio filters or performing spike conversion, while
the NS16e performs neural network execution. This system
also supports a dual workflow in which neural network training
is run on the host system GPU, and the main neurosynaptic
run-time computation is carried out by the NS16e (see Section
IV for more details).

Fig. 4. Three neurosynaptic hardware systems: NS1e (a), NS1e-16 (b), NS16e (c), with respective system architecture below. See text for details.

D. Test and Verification

To improve the yield of TrueNorth based systems, defects
are hidden at runtime so that the all systems behave, at the
spike level, deterministically and in a one-to-one correspon-
dence with the software simulator. The SRAMs in TrueNorth
are designed with both row and column redundancy to repair
cell defects. Defective SRAM cells are identified during testing
and skipped at runtime, creating a transparent interface to the
driving software and to the user. Using test reports that identify
manufacturing defects in any of the 4,096 cores, a core map is
used at runtime to physically place the neural model avoiding
any imperfect cores.

TrueNorth also has a “debug spike” capability. Typically
spikes exchanged between cores inside the chip are not visible
from the outside, but duplicated copies of every normal spike
can be sent out of the chip as debug spikes. By comparing
them with the spikes computed by the simulator and locating
the earliest discrepancy, we can identify which cores are
malfunctioning. By disabling bad cores, the rest of the system
can be restored to normal functionality.

E. Firmware

The firmware layer runs on each of the hardware platforms,
consisting of FPGA programmable logic to efficiently bridge
the physical interface to TrueNorth and a software driver to
present a uniform programming interface across platforms.

When building neurosynaptic applications on our systems,
the physical link between TrueNorth and a host system or
external sensor often becomes the bottleneck. One goal of the
firmware is to make this link efficient and high-throughput.
The NS1e system interface is an AXI bus (Fig. 4(e)), while
the NS16e uses PCIe 2.0 with a single lane (Fig. 4(i)). DMA
engines with flow control speed up the transfer of spike,
control, and configuration data over the bus interfaces. For
the NS1e, this DMA engine is available as a part of the Zynq
SoC (Fig. 4(f)), with generic Linux device driver code. For
the NS16e, this logic was implemented using the PCI Express
bus as the transport mechanism (Fig. 4(j)), with the latest
PCI IOMMU technology and user space driver (Linux VFIO).
Upgrading the firmware to use the DMA engines achieved
a 5.25⇥ and 3.90⇥ throughput over memory mapped I/O

Fig. 5. Design workflow (bottom) and runtime workflow (top) for a TrueNorth application. Block colors correspond to: data pre-/post-processing (orange),
training (magenta), network build (blue), and running the neural network (green). The design workflow is a superset of the runtime workflow, allowing training
(magenta arrow) to coopt runtime components where feasible.

accesses on the NS1e and NS16e respectively.1 The FPGA
firmware implements spike queue logic (Fig. 4(e,i)) in order
to 1) automatically send data to the port that minimizes the
path length within the TrueNorth array, 2) dynamically load-
balance between queues according to traffic, as well as to
3) convert spike data to/from the TrueNorth asynchronous
chip interface protocol. The FPGA logic has also been used
for data preprocessing tasks such as transduction from raw
image/audio/video data to neural spike formats, or applying
feature extraction and other front-end filtering transforms.

As an application interface, the TrueNorth Kernel Con-
troller (TNK ctrl) configures and streams data to/from all
TrueNorth systems, abstracting away hardware details to hide
the differences between platforms. TNK ctrl reads a neural
network model file and a physical core placement file from
the software ecosystem tools (Section IV) and configures
each TrueNorth chip. When loading the configuration data,
TNK ctrl accounts for any manufacturing defects such as bad
cores or defective SRAM cells. After loading the neural model,
TNK ctrl controls the flow of data to/from the TrueNorth sys-
tem, either through file I/O or streaming data via a networking
protocol (TCP or UDP). TNK ctrl runs natively on the NS1e’s
ARM cores (Fig. 4(f)), or on the NS16e’s x86 host controller
(Fig. 4(j)), providing the same interface in both cases so that
applications run transparently on either system.

IV. SOFTWARE ECOSYSTEM

In this section, we present an end-to-end software ecosys-
tem for specifying, training, building, and deploying neural
network applications. Shown in Fig. 5, this set of TrueNorth
development tools centers on two end-to-end workflows to

1Using two test programs, we measured this result by generating and
transferring blocks of spike data between the host CPU and the TrueNorth
chips via the FPGA using both memory mapped I/O and DMA methods. The
performance reported uses DMA transfer sizes which reflect typical spike
rates.

design applications for TrueNorth, and to deploy those ap-
plications at runtime. These workflows operate identically on
all TrueNorth hardware systems.

A. Runtime Workflow
At runtime (Fig. 5(a)–(f)), the basic structure of a generic

TrueNorth application can be divided into six stages. First, a
stream of input data is acquired from some source (Fig. 5(a)),
which may be files read from disk, frames from a con-
ventional sensor connected via USB or Ethernet, or even
natively generated spikes from a neuromorphic sensor [21].
Next, the raw input data is often preprocessed (Fig. 5(b)) to
reshape, crop, filter, or otherwise transform the signal; and to
generate more specialized features like multi-scale edge maps.
These generated features are then encoded as spike streams
(Fig. 5(c)) for entry into TrueNorth, which processes input
spikes according to the neural network model (Fig. 5(d)).
TrueNorth produces a stream of output spikes that must be
decoded (Fig. 5(e)) into semantically meaningful signals that
are sent to the application layer (Fig. 5(f)) for visualization or
other action.

To distribute the workflow seamlessly across the various
hardware components of a TrueNorth system, we have de-
veloped a TrueNorth Runtime Workflow comprising a set of
C++ APIs and applications that run on both embedded systems
and Linux workstations. Depending on the task, the Runtime
Workflow can perform feature generation and encoding in var-
ious locations, such as the host workstation, embedded ARM
cores, FPGA, or intrinsically in a spiking sensor. Similarly, the
spiking output can be decoded in multiple locations (embedded
ARM, workstation CPU, or remote system).

B. Design Workflow: Overview
Designing a TrueNorth application means specifying the

configuration of all six stages of the Runtime Workflow. The
data pre-/post-processing stages (orange boxes in Fig. 5) are
generic to any similarly structured non-TrueNorth application,

so we focus here on how to configure the spiking stages (green
boxes): the encoder (Fig. 5(c)), decoder (Fig. 5(e)), simulator
(Fig. 5(k)), and TrueNorth itself (Fig. 5(d)).

The Design Workflow (Fig. 5(g)–(l)) uses layered abstrac-
tions to insulate the developer from the complexity of the
TrueNorth hardware. A core’s configuration includes the axon
type of each of its 256 axons, the output spike target and
23 neuron parameters for each of its 256 neurons, and the
256⇥ 256 binary synaptic crossbar connecting its axons to
its neurons. The entire TrueNorth configuration is stored in
a model file that is automatically generated by the Corelet
Programming Environment (CPE), a MATLAB-based suite of
tools that implement and support the Corelet Programming
Language — a hierarchical, compositional language for pro-
gramming core-based neuromorphic architectures [22] — that
constitutes the first layer of abstraction.

Embedded in CPE, the Design Workflow has two phases:
a train phase (Fig. 5(g)–(h)) that uses standard deep learning
techniques to train a set of network parameters constrained to
the TrueNorth architecture; and a build phase (Fig. 5(i)–(k))
that uses corelets to automatically compile a TrueNorth model
from the network parameters, evaluates the logical model with
the Compass simulator, and places each core in the logical
model at a physical location in hardware.

C. Design Workflow: Train Step

1) Dataset: The starting point for any supervised learning
task is a set of labeled training data that is representative of the
signal stream to be processed, preferably collected (Fig. 5(g))
using the intended input device (Fig. 5(a)) and preprocessed
into the actual features (Fig. 5(b)) that will be presented to
the classifier at runtime (Fig. 5(c)–(d)). We import this data
into an efficient, multi-dimensional, multi-channel format that
spans a wide range of sensor modalities and can be read by all
our downstream tools. Data is stored in a Lightning Memory-
Mapped Database (LMDB), a high-performance, embedded,
transactional database that is a preferred input format for many
deep learning frameworks due to its fast read access.

2) Trainer: The Design Workflow packages two differ-
ent algorithms for training a TrueNorth classifier on a la-
beled dataset (Fig. 5(h)). Each algorithm abstracts low-level
TrueNorth design constraints — such as neurons that use
spikes instead of continuous values, synapses with low pre-
cision instead of high precision, and connectivity that is core-
to-core instead of all-to-all — into more familiar deep learning
concepts — such as convolution kernel size, neurons per layer,
and learning rate — that we implement in standard GPU-
accelerated training frameworks such as Caffe or MatCon-
vNet.2 Recent algorithmic innovations have shown the power
of deep learning for low-precision computing [11], [23].

The first algorithm employs a version of backpropagation
that trains in a probabilistic domain with a direct corre-
spondence to the TrueNorth hardware. This algorithm is

2The choice of training framework is incidental to the algorithms, which
could be ported to other frameworks like Theano, Torch, or TensorFlow.

implemented in the Caffe framework, an open-source C++
library for backpropagation-based training of deep neural
networks [2]. This approach has demonstrated near state-of-
the-art performance on the MNIST dataset, while performing
1000 classifications per second at 108µJ per image [12].

The second algorithm is an adaptation of deep Convolu-
tional Neural Networks (CNNs), that constrains the network
to spiking neurons, trinary weights {�1,0,1}, and the core-
to-core connectivity of the TrueNorth architecture. The trinary
weights are used during the forward and backpropagation
passes of offline training. However, weight updates are each
applied to a high precision shadow weight, from which a
trinary weight is derived by rounding with hysteresis. That is,
the trinary weight is updated only when the shadow weight
accumulates more than sufficient weight changes. Neuron
firing is determined by a step function, which does not have a
finite derivative required to support backpropagation. To avoid
this problem, our algorithm approximates the derivative with
a triangle function. Additionally, the TrueNorth connectivity
constraints are applied when constructing the network to train,
requiring that all convolutional filters are able to fit onto a
single TrueNorth core. As a result, the trained network can be
directly mapped to TrueNorth with no loss in task accuracy.
The above algorithm is implemented using custom MATLAB
code, with acceleration for convolutional operations provided
functions from the MatConvNet library [3]. This method was
used to approach state-of-the-art accuracy across 8 image and
audio datasets, with measured maximum throughput of the
chip of 1,200 to 2,600 frames per second while using between
25 and 275 mW [13].

These high-level frameworks free a designer to focus on
abstract network properties instead of configuring TrueNorth
neurons and their connectivity directly. The output of the
trainer is a set of learned weights and parameters that are
directly ingested by the corelet stage of the build phase
(Fig. 5(i)) to compile a hardware-ready TrueNorth model.

D. Design Workflow: Build Step
1) Corelet and Simulator: The model building process,

shown in Fig. 5(i), is an automatic compilation from a high-
level description of the network to a data format readily
consumable by the TrueNorth hardware. This process uses
a library of standard corelets (self-contained modules of
TrueNorth cores and connectivity required to implement a
particular function [22]). Trained classifiers may also be
combined with front-end and back-end functional blocks like
pre-processing filters and feature extractors or post-processing
smoothing and aggregation functions. These user-specified
corelets are combined with the classifier corelet and compiled
into the set of TrueNorth model files in the build step.

The result of the model building process is used to configure
the spike encoder (Fig. 5(c)), decoder (Fig. 5(e)), the Compass
simulator (Fig. 5(k)), and after an additional placement step
(Fig. 5(j)), physical TrueNorth hardware (Fig. 5(d)). The
Compass simulator [17], written in C++ with OpenMPI, is a
highly parallel implementation of the TrueNorth specification

Fig. 6. Neurosynaptic core placement algorithm example illustration. Follow-
ing input space partitioning and placement, cores are placed layer-by-layer
minimizing the total path cost over core inputs. (Layer placement only shown
for one chip.)

and spike-for-spike equivalent to actual TrueNorth hardware.
A separate branch from the main workflow, it is used for early
application development before hardware availability, as well
as system and application debugging.

2) Placer: The final stage of the Design Workflow
(Fig. 5(j)) maps logical cores in the TrueNorth model to physi-
cal cores in TrueNorth hardware, much like a VHDL program
is compiled into an FPGA bitfile. We developed a heuristic
placement optimization tool that efficiently addresses this NP-
hard placement mapping challenge. Given a network model
and the target hardware chip array, the placer attempts to
find a core mapping that minimizes inter-chip communication,
minimizes total spike travel distance, and maximizes external
input and output throughput to support the very high frame
rates achieved in Sec. IV-C.

The active energy required to route a spike between two
cores is a function of the grid locations of the two cores.
Specifically, the total path cost is the sum of the internal
(intra-chip) communication energy cost and the inter-chip
communication energy cost (Figure 3). Spike travel across
chip boundaries is significantly more expensive in terms of
bandwidth and energy than travel within the on-chip routing
network, so while a good placement algorithm has limited
impact on single-chip systems, it is essential for multi-chip
systems. Total path cost minimization is achieved by maximiz-
ing the number of paths that are completely contained within
one chip, and minimizing the number of paths that require
inter-chip hops. This problem of mapping neurosynaptic cores
to minimize spike communication power is similar to the
wire-length minimization problem in VLSI placement [24].
However, simpler algorithms work well when the network
graph is topographically well-structured.

We developed a heuristic placement algorithm that leverages
the topographic connectivity structure in TrueNorth networks
developed in both the Caffe and MatConvNet frameworks, as

Algorithm 1 Algorithm for Core Placement
Require: Graph G = (V,E) where

v 2V is a core and
e 2 E is a connectivity between cores

VI : set of input cores
K: number of chips to be mapped

Procedure: NeuroSynapticCorePlacer
Mark location (chip, x, y) of each defective core unavailable.
Step A: Preprocessing Step
for v 2 V do

V in(v) list of inward adjacent vertices of v
end for
Step B: Input Partitioning

Create K clusters Ck of vertices v 2 VI so that
each cluster Ck has approximately |VI |

K cores, such that
each cluster Ck receives input from a topographically
contiguous input region.

Step C: Input Placement
for k 1 to K do

for core v 2 Ck do
Algorithmically place v inside chipk.

end for
end for
Step D: Place Cores By Layer
Let D be the maximum depth of graph G
Let vi

d denote the ith core at depth d
for d 1 to (D�1) do

for each core vi
d do

Select k to maximize |V in(vd
i)\Ck|.

(If chipk has no available core, choose another k.)
Ck Ck [{vd

i }.
Compute available location (chipk,x,y) to minimize the
sum of Manhattan distances between vd

i and v2V in(vd
i)

with reference to the current placement.
Place vi

d to (chipk,x,y) and mark it unavailable.
end for

end for

described in Section IV-C. The pseudocode of the algorithm
is included in Algorithm 1. In Step B to Step C, the algorithm
clusters and co-locates cores that process topographically
neighboring regions of the input signal first. These are the
Input layer cores shown in Fig. 6. Then cores from each
consecutive network layer are placed iteratively in the same
chip as their source cores while minimizing the cost function
(Step D). An example of this process is illustrated in Fig. 6.
This technique generates placement solutions much faster than
an earlier algorithm [20], while sufficiently reducing inter-chip
communication, as shown in Figure 7(b).

To illustrate the result, we trained a CNN on the CIFAR-10
visual object recognition dataset, resulting in a 4-chip network
with 15,138 neurosynaptic cores. Figure 7(a) uses Gephi [25],
an open-source graph analysis tool, to plot the network’s core-
to-core connectivity graph before placement. The network

(a)

(b)

(c)

Fig. 7. Core-to-core connectivity graph for a 4-chip, 21-layer CIFAR-10
network. Input layers are to the left; output layers are to the right. (a)
Cores belonging to convolution, pooling, and splitter layers are colored with
magenta, blue, and green, respectively. (b) Cores and connections are colored
(blue, green, purple, red) according to the chip on which they are placed.
(c) Intra-chip connections are colored red, inter-chip connections are colored
green, and cores (graph nodes) are colored according to chip.

contains 13 convolution layers and 2 mean-pooling layers, con-
suming approximately 69% and 6% of the cores, respectively.
In addition, 6 splitter layers generate the duplicate inputs
required for the overlapping kernels of the convolution and
pooling layers, consuming another 25% of the cores. Observe
that the topographic connections between layers allows for
efficient local grouping of neurosynaptic cores, which in turn
enables the network to be efficiently mapped onto the chips
with minimal inter-chip communication, as shown in Figures
7(b) and (c). With this optimized placement, 84.66% of all

Fig. 8. Dataflow of the interactive handwritten character recognition appli-
cation. A user hand-writes a mathematical formula on a tablet; the characters
are segmented and sent to the NS1e for recognition. Classification results are
sent back to the tablet which completes the symbolic processing, returning
the answer to the equation.

connections are completely contained on the same chip and
the remaining 15.34% are inter-chip connections.

V. APPLICATIONS

We have a diverse group of motivated early adopters,
including 8 government agencies, 3 national labs, 7 corporate
research centers, and 25 universities. These initial ecosys-
tem partners underwent 3 weeks of in-depth training at a
“Boot Camp” in the summer of 2015 and a “Boot Camp
Reunion” workshop in the spring of 2016. Additional early
adopters came from 2015 Telluride Neuromorphic Engineering
Workshop. Participant selection was based on expertise in
neuromorphic systems and application of neural networks,
in areas with potential to leverage TrueNorth’s low power,
speed, flexibility and scalability. Training encompassed all
facets of the end-to-end ecosystem, beginning with basic
architecture and building blocks such as the neuron model,
synaptic crossbar, and fundamentals of efficient neurosynaptic
computation. In the 2016 workshop, the participants went
through training on the Software Ecosystem Design Workflow
(Section IV-B), and the majority of them could build, train,
and run deep convolutional networks on new datasets on the
NS1e over the course of 1.5 days. Under a hardware loan
and software evaluation agreement, ecosystem partners have
continued to pursue work with TrueNorth at their home labs in
the application areas described in Table I. This comprehensive
software ecosystem has also been used to achieve near state-
of-the-art results on 8 image and audio datasets [13].

Following are three specific example applications currently
under investigation, using the end-to-end ecosystem, that are
relevant to the scientific community.

A. Example NS1e Application: Interactive Handwritten Char-
acter Recognition (Army Research Laboratory)

Real time computing at low power makes it feasible to
develop a suite of sensors with tightly integrated cognitive
computing capabilities at the data collection site. Toward this
end, we have developed a computational offloading scheme
that collects data from a camera or a tablet, processes it using

TABLE I
ECOSYSTEM PARTNER PROJECTS.

Multimodal Sensory & Signal Processing

Hyperspectral, Radar, Air Force Research Lab
& Image Classification Lawrence Livermore National Lab

Riverside Research
SRC Inc.
TSC Inc.

Supernova Detection Lawrence Berkeley National Lab
Generative Inference UC San Diego

& Generative Models
Sparse Approximation Georgia Tech
Motion Energy UC Irvine
Video Tracking University of Wisconsin
Perceptive Ultrasound University of Western Ontario

Embedded & Autonomous Systems

Robotics Army Research Lab
Imperial College
Johns Hopkins - Applied Physics Lab
Navy Research Lab
Technical University of Munich

Asynchronous Circuits Cornell University
Native Spiking Sensor Integration

Event-based Optical Flow Ulm University
Direct Spiking Vision Nanyang Technical University

Sensor Interface National University of Singapore
Real-time Sensory Johns Hopkins University

Information Processing
Neural Circuit Modeling

Joint Feedforward Arizona State University
Excitation & Inhibition

Gated Information Routing UC Davis
Canonical Cortical Circuits INI/ETH Zurich
Spike-based Recurrent Network INI/ETH Zurich

Learning & Optimization

Evolutionary Optimization Argonne National Lab
University of Tennessee

Inference Accuracy University of Pittsburgh
High Performance Computing

HPC Node Failure Prediction RPI
Autonomous Agents Dayton
Adaptive Simulation Lawrence Livermore National Lab

High Energy Physics & Particle/Event Detection

Event Detection Argonne National Lab
Lawrence Berkeley National Lab

Skyrmion Track Detection UCLA
Text, Audio & NLP

Probabilistic Inference Air Force Research Lab
Syracuse University

Low-Power Audio Transform Penn State University
Sentiment Analysis INI/ETH Zurich
Prosody UC Santa Cruz

TrueNorth, and sends the results to a remote location for sit-
uational awareness or further conventional processing. Using
the software ecosystem and specifying the neural networks in
the Corelet Programming Language, Fig. 5(i), we produced

Fig. 9. Data-Parallel Text Extraction and Recognition System: character
classification workload is distributed over 16 nodes in the NS1e-16 system.

an interactive handwritten character recognition demo for
visitors to the laboratory. They can hand write an arithmetic
expression, such as: “0� 030⇥ 963,” on an Android tablet
(Fig. 8), and upon completion of each handwritten character,
the canvas image is wirelessly transmitted to TrueNorth where
each segment is classified into the appropriate digit or operator.
The results are sent back to the tablet where the result is
calculated and displayed in real time.

Looking forward, we will be exploring a tight coupling
between three separate components: a) a mobile agent capable
of sensing, navigating, manipulating objects, and interacting
with people in the environment; b) the scale-out NS1e-16
system for fast, low-power processing of data collected by
the mobile agent; and c) large supercomputer systems for
time-critical retraining of new information and abilities cap-
tured by the mobile agents. The training systems use swarm-
based distributed training approaches for fast multi-modal
deep learning of vision, audio, and speech data. Combining
these three system components produces a multi-faceted and
multimodal cybernetic system that can act on data coming
from the environment, capture novel encounters, and adapt to
them for future encounters.

B. Example NS1e-16 Application: Data-Parallel Text Extrac-
tion and Recognition (Air Force Research Laboratory)

Processing of huge amount of raw data, especially noisy
unclear images, printed documents, signs and other textual
media, poses a serious challenge if the power budget is limited.

Fig. 10. Seven classes of defects shown in a sample image of a stainless
steel track weld created by a Selective Laser Melting Additive Manufacturing
process.

In order to demonstrate NS1e-16’s scale-out capability of
handling large amount of ambiguous data, we developed a
text extraction application that distributes raw textual images
across a NS1e-16 system and processes them in parallel (Fig.
9). First, a user submits a photo of the textual media to
the NS1e-16 system’s gateway node. The page image is then
enhanced and segmented into individual characters which
are streamed in parallel to the 16 TrueNorth processors for
character recognition. The classification outputs are then sent
to an inference-based natural language model that reconstructs
the words and sentences in the page image. This data can
then be queried by the user, unlocking all of the information
contained in the documents.

In order to build this system, we trained CNN mod-
els for character recognition, using the TrueNorth ConvNet
trainer (Fig. 5(h)). The input characters to the CNNs are
22⇥22 pixel black-and-white images, distributed by the pre-
processing procedure running on the NS1e-16 gateway node.
The CNN model consists of four convolutional layers, four
max pooling layers (one following each convolutional layer),
and three network-in-network layers. The entire model uses
2,370 TrueNorth cores, and the CNN outputs classification
scores for each of the 93 possible character classes. As to the
recognition performance, we can classify up to 1,000 charac-
ters per second per board, using a one-tick encoding scheme
for the character images. During run-time, an identical network
model is independently deployed to each node of the NS1e-16
system that runs the CNN classifier, achieving an aggregate
throughput of 16,000 characters per second. When a user
submits a document image, the character images are extracted
and distributed to each node in parallel using a TCP streaming
protocol, interfacing directly with the TNK ctrl firmware
(Section III-E). While the current development performs only
character recognition on TrueNorth, we are working toward
implementing the word and sentence inference algorithms on
TrueNorth using stochastic spiking neural network models.

C. Example NS1e Application: Defect Detection in Additive
Manufacturing (Lawrence Livermore National Laboratory)

Additive manufacturing (AM) describes a host of fabrication
technologies wherein a set of design and processing instruc-
tions are fed to a system that builds objects in a layer-by-layer
fashion[26]. Existing state-of-the-art AM control systems do
not allow for the build instructions to be adjusted according to

in situ process monitoring data collected by sensors, e.g. high
speed cameras, pyrometers, etc. The motivation for this work
is to construct low-power systems for the automated detection
and rectification of manufacturing defects, necessary for rapid
build qualification, tighter tolerances, and higher yields for
AM technologies.

Here we show that TrueNorth can be used to detect defects
using imagery of stainless steel track welds, from a Selective
Laser Melting (SLM) AM process. At 75 sites, a confocal
image of size 170⇥629 is taken that details surface roughness
along the length of the track. As shown in Figure 10, surface
roughness is used to label each column of an image according
to one of 7 possible classes: {break, big glob, medium
glob, small glob, pit, weak sinter, and perfect}. The images
are preprocessed by mapping from RGB to grayscale and
transforming the pixels into the range [-1,1]. Each image is
transformed into 629 samples by taking sub-images of size
50⇥5. The label for the sample comes from the center column
of the sub-image.

We constructed a baseline five layer CNN (2 conv + ReLU,
2 fully connected, 1 softmax output) using Theano[27]. Using
full floating-point precision, this model has an accuracy of
81% on our SLM-AM dataset. The TrueNorth model has a
10 convolutional layers using 3,348 neurosynaptic cores and
maps directly onto TrueNorth. This discrete, binary TrueNorth
network has an accuracy of 80%.

VI. POWER MEASUREMENTS OF NS1E AND NS16E

In order to compare the power performance of our systems,
we measured the power consumption of the NS1e and NS16e
while running the CIFAR10 and CIFAR100 image recognition
tasks using three sizes of deep convolutional networks (Ta-
ble. II). The NS1e-16 system is built from 16 NS1e cards, and
so the power can be inferred from the NS1e power. The NS1e
system power consumes 3.17W when idle and 3.52W running
these tasks. The NS16e system consumes 7.68W when idle
and up to 8.88W for an 8 chip application. With a 1.0V power
supply, TrueNorth chips consume 0.114W per chip when idle
or ⇠ 0.228W when active, depending on the network activity.

These results show the accuracy versus energy tradeoff
inherent in our systems. Accuracy and energy efficiency, both
functions of area (network size), are inversely correlated. Thus,
finding the optimal network size for a particular task depends
on the application requirements. If the energy efficiency is
important, a smaller network model may be run on a single
chip on the NS1e. For higher recognition accuracy, larger
networks can be run on the NS16e. For recognition of larger
images, we used the entire 16-chip array to do the task[10].

VII. RELATED WORK

In recent years, a few groups have proposed power-efficient
hardware for the emulation of biologically-inspired neural
networks. Neurogrid modeled 1 million neurons across 16
chips in real time using mixed analog/digital signals and off-
chip memory to store connectivity parameters [28]. The 48-
node SpiNNaker system is based on an SoC containing 18

TABLE II
POWER, PROCESSING SPEED AND ACCURACY OF NS1E AND NS16E

Task System # Active Chip Throughput System Power TrueNorth Power TrueNorth Energy Efficiency Accuracy
(FPS) (W) (W) (FPS/W)

Idle Power NS1e 0 3.17 0.114 (1 chip)
NS16e 0 7.68 1.824 (16 chips)
NS1e 1 1249 3.52 0.204 (1 chip) 6109 83.41%

CIFAR10 NS16e 4 1324 8.64 0.936 (4 chips) 1414 87.97%
NS16e 8 1040 8.88 1.497 (8 chips) 695 89.00%
NS1e 1 1526 3.52 0.208 (1 chip) 7344 55.64%

CIFAR100 NS16e 4 1257 8.64 0.891 (4 chips) 1410 63.86%
NS16e 8 432 8.28 1.192 (8 chips) 362 66.32%

ARM cores, 128 MB of off-die memory, and a packet router
with 6 bi-directional links [29]. Server racks contain 120 cards
(48 SpiNNaker chips per card), and a cabinet of processors
can model up to 100 million simplified point-neuron models.
Neural network descriptions can be specified using the Python
library PyNN, and loaded onto the hardware using lower-level
driver software. The BrainScalesS Project is a mixed-signal
architecture that combines analog neurosynaptic computation
(512 neurons per chip), 128k SRAM based synapses, and
digital asynchronous communication[30], [31]. The project
combines 450 chips on a 20cm wafer into a single integrated
system, and is programmed using PyNN.

For a rough comparison, we report the performance of
five digital computational architectures running deep neural
networks. The analog approaches above do not report per-
formance results on state-of-the-art benchmarks. The manu-
facturing variability inherent in these approaches hinders the
programmability and capability to have the viable software
ecosystem required for large-scale neural network applica-
tions. A single TrueNorth chip processes 1200�2600 32⇥32
color images per second, consuming 170� 275mW, yielding
an energy efficiency of 6100� 7350 FPS/W [13]. Current
multi-chip TrueNorth networks process 32⇥32 color images
at 430� 1330 per second, and consume 0.89� 1.5W, an
energy efficiency of 360�1420 FPS/W. SpiNNaker yields 167
FPS/W, processing 28⇥ 28 grayscale images [32]. Tegra K1
GPU, Titan X GPU, and Core i7 CPU yield 45, 14.2, and 3.9
FPS/W, respectively, processing 224⇥224 color images [33].

VIII. VISION FOR FUTURE SCALED SYSTEMS

Looking to the future, the key to a scalable system ar-
chitecture is hierarchical communication using native spike
events at all levels, from the core to the chip to the board to
the rack. Within a core, similar to communication within a
cortical column, the synaptic crossbar (Fig. 2) delivers all-
to-all connectivity between 256 input axons and 256 out-
put neurons, achieving high bandwidth with minimal en-
ergy consumption. Between cores, similar to regional cortical
connectivity, the asynchronous routing network enables very
efficient intra-chip (Fig. 2) and inter-chip (Fig. 3) mid-range
communication whose energy consumption scales with the
immediate bandwidth requirement. Between boards, similar
to long-range cortical connectivity, TrueNorth systems will

Fig. 11. Long-distance communication defined by the inter-regional connec-
tivity in the macaque cortex [14] (left) and emulated by neurosynaptic systems
(right). The neurosynaptic system is composed of densely connected neural
regions instantiated on NS16e boards, interconnected via standard networking
infrastructure (represented by the cloud).

leverage available networking infrastructure, such as Ethernet,
Infiniband, or PCIe, as depicted in Fig. 11. This scalable
and hierarchical routing architecture is possible due to the
exponential decay in hop distance and bandwidth observed in
biological networks [14]. More importantly, this distribution
is similar to that of the hop-length histograms of placed deep-
networks that are run on TrueNorth.

Based on the energy-efficiency of TrueNorth and the princi-
ples of hierarchical communication, we are developing large-
scale neurosynaptic systems. These systems are constructed
by integrating NS16e boards with commercially available
networking solutions. We envision these systems scaling up
to hundreds of racks, with billions of neurons and tril-
lions of synapses, that run complex, integrated, large-scale
neural applications with unprecedented energy-efficiency and
throughput. We envision that future brain-inspired processors,
systems, and software – powered by innovations from the
scientific community – will become a key component in
exascale systems.

ACKNOWLEDGMENT

We thank Charles Cox, Mike Criscolo, and Ken Inoue
for their contribution in building the NS16e scale-up system,
Peter Carlson, Guillaume Garreau, Jen Klamo, Jeffrey Mck-
instry, and Burak Yildiz for their contribution in building the
TrueNorth Ecosystem, and Gi-Joon Nam for providing insights
into the core placement problem. We also thank Richard
Vuduc for carefully shepherding the paper and suggesting
many improvements. Heinz Baier, Tom Hovarth, and James
Infantolino are employees of Achieve-it, LLC, L.J. Gonzer
Associates, and Engility Corporation, respectively. The views
and conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies,
either expressly or implied, of the U.S. Government or any
agencies thereof.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM International
Conference on Multimedia. ACM, 2014, pp. 675–678.

[3] A. Vedaldi and K. Lenc, “MatConvNet – Convolutional Neural Networks
for MATLAB,” in Proceeding of the ACM Int. Conf. on Multimedia,
2015.

[4] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[5] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer
Vision, pp. 1–42, 2014.

[6] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[7] T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Černockỳ, “Strategies
for training large scale neural network language models,” in IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU).
IEEE, 2011, pp. 196–201.

[8] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th International Conference on Machine Learning (ICML).
ACM, 2008, pp. 160–167.

[9] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[10] A. Cassidy, R. Alvarez-Icaza, F. Akopyan, J. Sawada, J. Arthur,
P. Merolla, P. Datta, M. Gonzalez-Tallada, B. Taba, A. Andreopoulos
et al., “Real-Time Scalable Cortical Computing at 46 Giga-Synaptic
OPS/Watt with ⇠ 100⇥ Speedup in Time-to-Solution and ⇠ 100,000⇥
Reduction in Energy-to-Solution,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2014.

[11] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
Deep Neural Networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems, 2015, pp. 3105–
3113.

[12] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
“Backpropagation for energy-efficient neuromorphic computing,” in
Advances in Neural Information Processing Systems, 2015, pp. 1117–
1125.

[13] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy,
A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch
et al., “Convolutional networks for fast, energy-efficient neuromorphic
computing,” arXiv preprint arXiv:1603.08270, 2016.

[14] D. S. Modha and R. Singh, “Network architecture of the long-distance
pathways in the macaque brain,” Proceedings of the National Academy
of Sciences, vol. 107, no. 30, pp. 13 485–13 490, 2010.

[15] R. Ananthanarayanan and D. S. Modha, “Anatomy of a cortical simu-
lator,” in Supercomputing 07, 2007.

[16] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D. S. Modha,
“The cat is out of the bag: cortical simulations with 109 neurons,
1013 synapses,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. IEEE, 2009, pp. 1–12.

[17] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh, S. K. Esser, W. P.
Risk, H. D. Simon, and D. S. Modha, “Compass: A scalable simulator
for an architecture for cognitive computing,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 54.

[18] T. M. Wong, R. Preissl, P. Datta, M. Flickner, R. Singh, S. K. Esser,
E. McQuinn, R. Appuswamy, W. P. Risk, H. D. Simon et al., “1014,”
IBM Research Divsion, Research Report RJ10502, 2012.

[19] A. S. Cassidy, P. Merolla, J. V. Arthur, S. Esser, B. Jackson, R. Alvarez-
Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman et al., “Cognitive
computing building block: A versatile and efficient digital neuron model
for neurosynaptic cores,” in International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[20] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur,
P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam et al.,
“TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron
Programmable Neurosynaptic Chip,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 34, no. 10, pp.
1537–1557, Oct 2015.

[21] T. Delbrück, B. Linares-Barranco, E. Culurciello, and C. Posch,
“Activity-driven, event-based vision sensors,” in IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2010, pp. 2426–
2429.

[22] A. Amir, P. Datta, A. Cassidy, J. Kusnitz, S. Esser, A. Andreopoulos,
T. Wong, W. Risk, M. Flickner, R. Alvarez-Icaza et al., “Cognitve
computing programming paradigm: A corelet language for composing
networks of neuro-synaptic cores,” in International Joint Conference on
Neural Networks (IJCNN). IEEE, 2013.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Networks,”
arXiv preprint arXiv:1603.05279, 2016.

[24] J. Cong and G.-J. Nam, “Modern circuit placement: best practices and
results,” Springer Verlag, 2007.

[25] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source
software for exploring and manipulating networks,” in International
AAAI Conference on Weblogs and Social Media, 2009.

[26] C. Kamath, “Data mining and statistical inference in selective laser melt-
ing,” The International Journal of Advanced Manufacturing Technology,
pp. 1–19, 2016.

[27] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[28] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J. M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” in Proceedings of the IEEE, 2014,
pp. 699–716.

[29] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
Project,” Proceedings of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[30] K. Meier, “A mixed-signal universal neuromorphic computing system,”
in IEEE International Electron Devices Meeting (IEDM). IEEE, 2015,
pp. 4.6.1–4.6.4.

[31] J. Schemmel, D. Bruderle, A. Grubl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in International Symposium on Circuits and systems (ISCAS).
IEEE, 2010, pp. 1947–1950.

[32] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and S. Furber,
“Scalable energy-efficient, low-latency implementations of trained spik-
ing deep belief networks on SpiNNaker,” in International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 2015, pp. 1–8.

[33] “GPU-based deep learning inference: A performance and power analy-
sis,” Whitepaper, nVidia, Nov. 2015.

	Introduction
	TrueNorth
	Hardware Systems
	NS1e Platform
	NS1e-16 Platform
	NS16e Platform
	Test and Verification
	Firmware

	Software Ecosystem
	Runtime Workflow
	Design Workflow: Overview
	Design Workflow: Train Step
	Dataset
	Trainer

	Design Workflow: Build Step
	Corelet and Simulator
	Placer

	Applications
	Example NS1e Application: Interactive Handwritten Character Recognition (Army Research Laboratory)
	Example NS1e-16 Application: Data-Parallel Text Extraction and Recognition (Air Force Research Laboratory)
	Example black NS1e Application: Defect Detection in Additive Manufacturing (Lawrence Livermore National Laboratory)

	Power Measurements of NS1e and NS16e
	Related Work
	black Vision for Future Scaled Systems
	References

