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Abstract. In most distributed systems, named connections (i.e., chan-
nels) are used as means for programming interaction between commu-
nicating partners. These kinds of connections are low level and usually
totally independent of the knowledge, the status, the capabilities, ..., in
one word, of the attributes of the interacting partners. We have recently
introduced a calculus, called AbC , in which interactions among agents
are dynamically established by taking into account “connection” as de-
termined by predicates over agent attributes. In this paper, we present

Ab
a
CuS, a Java run-time environment that has been developed to support

modeling and programming of collective adaptive systems by relying on
the communication primitives of the AbC calculus. Systems are described
as sets of parallel components, each component is equipped with a set of
attributes and communications among components take place in an im-
plicit multicast fashion. By means of a number of examples, we also show
how opportunistic behaviors, achieved by run-time attribute updates, can
be exploited to express different communication and interaction patterns
and to program challenging case studies.

1 Introduction

Attribute-based communication is a novel communication paradigm that permits
selecting groups of partners by considering the predicates over the attributes they
expose. Thus communication takes place anonymously in an implicit multicast
fashion without a prior agreement between the communicating partners. Because
of the anonymity of the attribute-based interaction, scalability, dynamicity, and
openness can be achieved at a higher degree in distributed settings. The semantics
of output actions is non-blocking while input actions are blocking. This breaks the
synchronization dependencies between interacting partners, and communicating
partners can enter or leave the group at any time without any disruption of the
overall system behavior.

Groups or collectives are dynamically formed at the time of interaction by
means of available/interested receiving components that satisfy sender predicates.
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In this way run-time attribute updates introduce opportunistic interactions
between components. Indeed, interaction predicates can be parametrized with
respect to local attribute values and when these values change, the interaction
groups or collectives do implicitly change. This makes modeling and programming
adaptation quite natural.

Programming opportunistic behavior in classical communication paradigms
like channel-based communication, e.g., bπ-calculus [13], is challenging. Compo-
nents should agree on specific names or channels to interact. Channels have no
connection with the component attributes, characteristics or knowledge. They are
specified as addresses where the exchange should happen. These names/channels
are quite static and changing them locally at run-time requires explicit commu-
nication and intensive use of name restriction which affect program readability
and compositionally.

As an example, consider the behavior of a component that inspects its sensor
and based on the input message communicates with its peer components. This
behavior can be modeled in bπ-calculus as follows:

C , νb(b̄a | b(c).c̄d)
τ→ νbād

where component C communicates with its sensor along a private channel “b”
and uses the received channel “a” to communicate with its peers. Clearly, this
intensive use of scoping and explicit communication for modeling a simple read
operation hinders readability and compositionality of large models. In many
cases, one is only interested in how components interact with each other and
abstracts from local interactions. In this case we would like to define C as:

C , E(c)d

where E(c) is a function that returns a channel name based on the message
received from the sensor. This would permit abstracting from local interactions
and concentrating on components interactions while taking into account the
environment/space in which they are operating. This intuition is captured by
relying on attribute-based communication where we assume that components have
local views of their own status and of their surrounding environment and their
behaviors are parametrized with respect to these views. Formally a component is
defined as Γ :P where Γ is an abstraction of its local view and of its environment
and P is its behavior. In fact, we generalize more and replace function E(•) with
a predicate that considers elements of Γ . Send and receive operations then rely
on predicates, i.e., (d)@Π rather than on names i.e., c̄d.

The attribute-based system is more than just the parallel composition of in-
teracting partners; it is also is parametric with respect to the shared environment
or space where system components are executed. The shared environment has
a great impact on how components behave. It introduces a new way of indirect
communication, where components mutually influence each other unintentionally.
For instance, in the ant foraging system [19], when an ant disposes pheromone in
the shared space to keep track of her way back home, she influences other ants
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behavior as they are programmed to follow traces of pheromone with higher con-
centration. In this way, the ant unintentionally influences the behavior of the other
ants by only modifying the shared space. This type of indirect communication
cannot be easily modeled even by relying on asynchronous communication [18]
where messages are placed with the intention that other addressed components
will receive them at some point of time.

In this paper we present Ab
a
CuS, a Java run-time environment for the AbC

calculus. AbC is the first calculus that was designed to focus on a minimal set of
primitives that permits attribute-based communication. AbC was first proposed
in [6] and a new stable and refined version was released in [5]. The latest version
is accompanied with a formal labeled semantics and a behavioral theory used

to establish results about the relations with other existing approaches. Ab
a
CuS

was developed by building on the formal semantics of the latest version of AbC .
Given the generality and flexibility of the interaction primitives of the AbC

calculus, Ab
a
CuS was developed for programming modern software systems where

adaptation, reconfiguration and collaboration are key issues. We would like to use
it to assess the practical impact of this new communication model on challenging
case studies like the ones from the realm of collective-adaptive systems (CAS) [15]
and to fully understand both its merits and limits.

The rest of the paper is organized as follows. In Section 2 we review the AbC
calculus and its expressive power through a running example. In Section 3 we

present Ab
a
CuS, a run-time environment for the AbC calculus and in Section 4

we present a case study about a smart conference application that we have

implemented in Ab
a
CuS. In Section 5 we discuss related work and finally in

Section 6 we draw some conclusions and sketch a plan for future work.

2 The AbC Calculus

In this section we briefly review the AbC calculus and its specific features and we
illustrate how well-known interaction patterns can be naturally modeled in AbC .
To help the reader appreciate AbC features, we proceed by a simple running
example. We consider the classical stable marriage problem (SMP) [16], a problem
of finding a stable matching between two equally sized sets of elements given an
ordering of preferences for each element.

In our example, we consider n men and n women, where each person has
ranked all members of the opposite sex in order of preferences, we have to engage
the men and women together such that there are no two people of opposite sex
who would both rather have each other than their current partners. When there
are no such pairs of people, the set of marriages is deemed stable. For convenience
we assume there are no ties; thus, if a person is indifferent between two or more
possible partners he/she is nevertheless required to rank them in some order. We
will use this example to gently introduce a subset of the AbC calculus and its
informal semantics throughout this section. The presentation is intended to be
intuitive and interested readers are referred to [5] for full details concerning the
full AbC syntax and formal semantics.
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The top-level entities of the AbC calculus are components (C), a component is
either a process P associated with an attribute environment Γ (denoted by Γ :P )
or the parallel composition C1‖C2 of components. The attribute environment Γ
is a partial map from attribute identifiers a ∈ A to values v ∈ V . Values could be
numbers, names (string), tuples, etc.

C ::= Γ :P | C1‖C2 | . . .

Example (step 1/3): The marriage scenario can be modeled in AbC as follows:

Man1‖ . . . ‖Mann ‖Woman1‖ . . . ‖Womann

Men and women interact in parallel and each is modeled as an AbC component,
Mani of the form Γm,i : M and Womani of the form Γw,i : W . The attribute
environments of men and women, Γm,i and Γw,i, contain the following attributes:

– partner: identifies the current partner identity; in case a person is not engaged
yet, the value of its partner = −1;

– preferences: a ranking list of the person preferences, the top of this set is
the person’s first best;

– Mid for man and Wid for woman, identify their identities;
– exPartner for a woman, identifies her ex-fiancé. ut

The behavior of an AbC process can be generated by the following grammar:

P ::= 0 | α.P | [ã := Ẽ]P | 〈Π〉P | P1 + P2 | P1|P2 | A(x̃)

– 0 : denotes the inactive process;
– α.P : denotes an action prefixed process, a process that executes action α

and continues as P ;
– [ã := Ẽ]P : denotes an attribute update process, a process that behaves as P

given that its attribute environment is updated by setting the value of each
attribute in the sequence ã to the evaluation of the corresponding expression
in the sequence Ẽ. The attribute updates and the first move of P are atomic;

– 〈Π〉P : denotes an awareness process, a process that tests awareness data
about a component status or its environment by inspecting the local attribute
environment where the process resides. It blocks the execution of process P
until the predicate Π becomes true;

– the processes P1 + P2, P1|P2, and A(x̃) are standard for nondeterminism,
parallel composition, and parametrized process definition respectively. It
should be noted that the parallel operator “|” does not allow communication
between P1 and P2, they can only interleave while the parallel operator “‖”
at the component level allows communication between components.

Example (step 2/3): The structures of process M , specifying the behavior of
a man, and the process W , specifying the behavior of a woman, are defined as
follows:

M , [this.partner := Top(this.preferences),

this.preferences := 	(this.preferences)] a.M’
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W , b. ( 〈BOF(this.partner, y)〉 W1 + 〈¬BOF(this.partner, y)〉 W2 ) | W

A man, M , picks his first best from the ranking list “this.preferences” and
assumes it to be his partner. This element is removed from his preferences. In the
same transition he proposes to this possible partner by executing action a (to be

specified later) and then continues as M’ . The prefix this is a reference to the
value assigned to the attribute identifier “preferences”. Functions Top(arg) and
	(arg) both take a list as an argument. The former returns the first element of
the list if the list is not empty and the empty string otherwise, while the latter
returns the list resulting from the removal of its first element.

On the other hand, the behavior of a woman, W , is activated by receiving a
proposal, i.e., executing action b (to be specified later). A woman either accepts
this proposal from a “y” man if she will be better off with him and continues
as W1 or refuses it if she prefers her current fiancè and continues as W2. The
parallel composition with W ensures that the woman is always willing to consider
new proposals. BOF(arg1, arg2) is a boolean function that takes as arguments
the current partner and the new man, respectively, and determines whether the
woman will be better off with the new man or not, given her current fiancè and
her preferences. If she is not engaged, this function will always return true. ut

The AbC communication actions can be generated by the following grammar:

α ::= (Ẽ)@Π | Π(x̃)

– (Ẽ)@Π : denotes an attribute-based output action, it evaluates the sequence
of expressions Ẽ under the local attribute environment Γ and then sends
the result to the components whose attributes satisfy the predicate Π. If Π
semantically equals to a logic “false”, the message is not exposed and the
action is used to represent a silent move;

– Π(x̃) : denotes an attribute-based input action, it binds to sequence x̃
the corresponding received values from components whose communicated
attributes or values satisfy the predicate Π.

Example (step 3/3): In the previous step, if we further specify the action “a”

and the process M’ in M , the action “b” and the processes W1 and W2 in W ,
the behavior of a man and a woman becomes:

M , [this.partner := Top(this.preferences),
this.preferences := 	(this.preferences)]

(propose, this.Mid)@(Wid = this.partner).

(x = invalid)(x).M
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W , (x = propose)(x, y). ( 〈BOF(this.partner, y)〉

[this.exPartner := this.partner, this.partner := y]

(invalid)@(Mid = this.exPartner).0

+

〈¬BOF(this.partner, y)〉 (invalid)@(Mid = y).0 ) | W

Obviously, action “a” is a proposal message to be sent to the selected partner.
This message contains a label “propose” to indicate the type of the message
and the sender identity Mid. The man stays engaged as long as he does not
receive an invalidation message from the woman he proposed to. The invalidation
message contains a label “invalid” to indicate the message type. If this message
is received, the man starts all over again and picks his second best and so on.

On the other hand, action “b” is used to receive a proposal message from a
“y” man. If the woman prefers “y”, she will consider her current partner as her
ex-partner, get engaged to “y”, and send an invalidation message to her ex-fiancé
so that he looks for another partner. This is also true for the case when she is not
engaged, but in this case she will send an invalidation message with a predicate
(Mid = −1) which will not be received by anyone. If she prefers her partner, she
will send the invalidation message to “y”. ut

Although the interaction in this specific scenario is based on partners identities,
the interaction in AbC is usually more general and assumes anonymity between
the interacting partners. Interaction relies on predicates over attributes that can
be changed at anytime. This means that components interact without a prior
agreement between each other.

Classical interaction patterns in AbC . In [5] we have shown how the classical
group-based [4,11] and publish/subscribe-based [7,14] interaction patterns can
be naturally translated into AbC . We have also shown how to translate channel-
based communication like in bπ-calculus [13] into AbC . The interested readers are
referred to the website on [1]; in this website we discuss the direct implementation
of these translations into AbC linguistic primitives. Below, we briefly introduce
the basic idea behind such translations.

To select partners in channel-based communication, structured messages are
used where the name of the channel is rendered as the first element in the message;
receivers only accept messages with attached channels that match their receiving
channels. Attributes do not play any role in such interaction so we assume
components with empty environments i.e., Γ = ∅. Thus a pair of processes, one
willing to receive on channel a and the other willing to send on the same channel,
can be modeled as follows:

∅ : (x = a)(x, y).P ‖ ∅ : (a,msg)@(tt).Q
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Group names are rendered as attributes when translating group-based inter-
action as shown below:

Γ1 : (msg)@(group = a).P ‖ Γ2 : (tt)(x).Q where Γ2(group) = a

The operations for joining or leaving a given group are rendered as attribute
updates.

The publish and subscribe paradigm can be seen as special cases of the
attribute-based one; a natural modeling of the topic-based publish/subscribe
model [14] into AbC can be obtained by allowing publishers to broadcast messages
with “tt” predicates (i.e., satisfied by all) and making sure that only subscribers
can check the compatibility of the exposed publishers attributes with their
subscriptions:

Γ1 : (msg, this.topic)@(tt).P ‖ Γ2 : (y = this.subscription)(x, y).Q

The publisher broadcasts the message “msg” tagged with a specific topic for
all possible subscribers (the predicate “tt” is satisfied by all), subscribers receive
the message if the topic matches their subscription.

3 Ab
a
CuS: A Run-time Environment for the AbC Calculus

In this section we present Ab
a
CuS [1], a Java run-time environment for supporting

the communication primitives of the AbC calculus. We also show how one can
exploit these flexible primitives to provide a general programming framework
that encompasses different communication frameworks and interaction patterns.
Having a run-time environment allows us to assess the practical impact of this
young communication paradigm in real applications. In fact, we plan to use the
new programming framework to program challenging case studies, dealing with
collective adaptive systems, from different application domains.

Ab
a
CuS provides a Java API that allows programmers to use the linguistic

primitives of the AbC calculus in Java programs. The implementation of Ab
a
CuS

fully relies on the formal semantics of the AbC calculus. There is a one-to-one
correspondence between the AbC primitives and the programming constructs

in Ab
a
CuS. This close correspondence enhances the confidence on the behavior

of Ab
a
CuS programs after they have been analyzed via formal methods, which is

made possible by relying on the operational semantics of the AbC calculus.

AbC ’s operational semantics abstracts from a specific communication infras-
tructure. An AbC model consists of a set of parallel components that cooperate
in a highly dynamic environment where the underlying communication infrastruc-

ture can change dynamically. The current implementation Ab
a
CuS is however a

centralized one, in the sense that it relies on a message broker that mediates the
interactions. In essence, the broker accepts messages from sending components,
and delivers them to all registered components with the exception of the sending
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ones. This central component plays the role of a forwarder and does not con-
tribute in any way to message filtering. The decision about accepting or ignoring
a message is taken when the message is delivered to the receiving components.

We would like to stress that, although the current Ab
a
CuS implementation is

centralized, components interact anonymously and combine their behaviors to
achieve the required goals. Components are unaware of the existence of each other,
they only interact with the message broker. To facilitate interoperability with

other tools and programming frameworks, Ab
a
CuS relies on JSON [3], a standard

data exchange technology that simplifies the interactions between heterogenous

network components and provides the basis for allowing Ab
a
CuS programs to

cooperate with external services or devices.

The advantages of this programming framework can be summarized by saying
that it provides a small set of programming constructs that naturally supports
adaptation and guarantees a high degree of scalability in distributed settings by
allowing anonymous interaction. The new programming framework also has a
direct correspondence with an existing formal model with clear and understood
semantics and with a sound foundational theory which lays the basis for formal
reasoning and verification.

In what follows we summarize the main Ab
a
CuS programming constructs,

their implementation, and their relations with the AbC primitives. We consider
the implementation of one of the man components introduced in the running
example of the previous section.

Components. AbC components are implemented via the class AbCComponent.
Instances of this class are executed in either virtual or physical machines that
provide access to input/output devices and network connections. An instance of
the class AbCComponent contains an attribute environment and a set of processes
that represents the behavior of the component. Components interact via ports
supporting either local communication, i.e., components run in the same applica-
tion, or external communication, i.e., components run in different applications

or different machines. The following Ab
a
CuS code shows how to create a man

component m1, to assign the process ManAgent() to it, and finally to start its
execution.

1 AbCComponent m1 = new AbCComponent("M_1");
2 m1.addProcess(new ManAgent());
3 m1.start();

Attribute Environments. AbC attribute environments are implemented via the
class AbCEnvironment. An instance of the class AbCEnvironment contains a set
of attribute identifiers, implemented via the class Attribute, and another set to
store their values. The attribute environment maintains the attribute values by
providing read and update operations via the methods getValue(attribute)

and setValue(attribute,value) respectively. The class Attribute implements
an AbC attribute and ensures type compatibility of the assigned values. The
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following Ab
a
CuS code shows how to create an AbC attribute and to read and

update its value.

1 Attribute<Integer> idAttribute = new Attribute<>("ID", Integer.class);
2 getValue(idAttribute);
3 setValue(idAttribute, 1);

Processes. The generic behavior of an AbC process is implemented via the abstract
class AbCProcess. The AbC communication actions (Ẽ)@Π and Π(x̃) are imple-
mented via the methods Send(predicate, values) and receive(msg−>Fun-
ction(msg)) respectively. The receive operation accepts a message and passes
it to a boolean function that checks if it satisfies the receiving predicate. The
attribute updates are implemented via the method setValue(attribute,value)

while the awareness operator and the process definition are implemented via the
methods waitUntil(predicate) and call(process) respectively. The method
exec(p) spawns a new process p and runs it in parallel with the executing
process while the recursive call is implemented via a native Java while loop. The
non-deterministic choice of several input actions possibly preceded by attribute

updates and/or awareness operators is implemented in Ab
a
CuS by overloading

the receive method receive(in1, . . . , inn). This method takes a finite num-
ber of arguments of type InputAction, each of which has the following form
[ã := Ẽ]〈Π〉Π(x̃). When a message arrives to the component this method only
enables the correct branch or blocks the execution in case of unwanted messages.
The non-deterministic choice between an input and output actions is not allowed
because output actions are non-blocking. It should be noted that the method
addProcess(p) for a component c has the same effect of running the process
p in parallel with the already existing processes in component c. The generic
behavior of a process is defined via the abstract method doRun() that is invoked
when the process is executed. The programmer should implement this method to

specify the behavior of the process. The following Ab
a
CuS code implements a man

behavior; the one-to-one correspondence with the AbC process M in Section 2 is
evident.

1 public class ManAgent extends AbCProcess {
2 public ManAgent() {
3 super("ManAgent");
4 }
5 @Override
6 protected void doRun() throws Exception {
7 while ( !Definition.preferences.isEmpty() ) {
8 Integer partner = Definition.preferences.poll();
9 setValue(Definition.partnerAttribute, partner);

10 send( new HasValue("ID", partner) , new Tuple( "PROPOSE" ,
getValue(Definition.idAttribute)) );

11 receive(o -> isAnInvalidationMessage(o) );
12 }
13 }
14 ...

Network Infrastructure. In Ab
a
CuS each component is equipped with a set of ports

for interacting with other components as mentioned above. A port is identified
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by an address that can be used to manage the interaction with a mediator or a
message broker. It should be noted that these ports are not meant to be used by
components to identify the addresses of the other components but rather as a way
to communicate with the message broker. The components remain anonymous
to each other and are not allowed to communicate directly; they only know the
message broker. The latter can be seen as an access point which mediates the
interaction between components. It serves as a forwarder that shepherds the
interaction, but it has nothing to do with message filtering.

The abstract class AbCPort implements the generic behavior of a port. It
provides the instruments to dispatch messages to components and implements the
communication protocol used by AbC components to interact with each other. The
send method in AbCPort is abstract to allow different concrete implementations for
this method depending on the underlying network infrastructures (i.e., Internet,
Wi-Fi, Ad-hoc networks, . . . ).

Currently, two concrete implementations are supported in Ab
a
CuS: VirtualPort

and AbCClient. The VirtualPort implements a port where interactions are
performed via a buffer stored in the main memory. A VirtualPort is used to
run components in a single application without relying on a specific network
infrastructure. AbCClient instead assumes the presence of a server that mediates

the interactions between components. The following Ab
a
CuS code shows how to

create an AbCServer and start its execution.

1 AbCServer server = new AbCServer();
2 server.start();

The following code shows how to create a client port, register it to an existing
server, assign the port for the man component m1, and finally starts its execution.

1 AbCClient client = new AbCClient(InetAddress.getLoopbackAddress(), 1234);
2 client.register( InetAddress.getLoopbackAddress() , DEFAULT_SUBSCRIBE_PORT );
3 m1.setPort(client);
4 client.start();

It should be noted that the AbC server and the client ports usually operate
from different machines or networks.

Interested readers are referred to [1] for a detailed description of the imple-
mentation, source code, and also a few demos.

4 Case Study: A Smart Conference System

In this section we show how to use the programming constructs of the AbC
calculus to program a smart conference system in an intuitive and easy way.

The idea is to exploit the mobile devices of the participants to guide them to
their locations of interest. Each participant expresses his/her topic of interest
and the conference venue is responsible for guiding each participant into the
location that matches their interests. The conference venue is composed of a
set of rooms where the conference sessions are to be held. We assume that the
name of each room identifies its location. The conference program and room
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relocation can be dynamically adjusted at anytime to handle specific situations,
i.e., a crowded session can be relocated into a larger room and this should be done
seamlessly without disruption to the whole conference program. When relocation
happens, the new updates should be communicated to the interested participants.
A participant only receives updates about his/her topic of interest.

The conference venue is represented as a set of parallel AbC components,
each of them representing a room (Room1‖ . . . ‖Roomn) and each room has the
following form Γi :R. Participants instead have the following form Γj :P . We
assume that each room has a unique name that identifies its location and each
participant has a unique id. The overall system is represented as the parallel
composition of the conference venue and the set of participants as shown below:

Room1‖ . . . ‖Roomn ‖ Participant1 ‖ . . . ‖ Participantm

When a participant arrives to the conference venue, he/she selects the topic of
the talk of interest and updates his/her attribute interest as shown in process P
below:

P (x) , [this.interest := x]Com

By doing so, a communication process Com, that is responsible for communicating
the participant interests to the conference venue, is activated. Process Com sends
a session request Sreq to nearby providers (i.e., with a provider role); in our case,
this is a room. The message also contains the participant topic of interest and
its id. Once the message is emitted, the process blocks until a reply notification
that matches his/her interest arrives. The notification contains the session name,
an interestRply label, and the name of the room where the session is to be held.
By receiving this notification, the process updates the participant destination
and activates process Update.

Com , (this.interest, Sreq, this.id)@(role = Provider).

(x = this.interest ∧ y = interestRply)(x, y, z).

[this.dest := z]()@ff.Update

The process Update, defined below, blocks and waits for new updates or changes
in schedule for the session of interest. Precisely, it blocks until it receives an
interestUpd notification about a session that matches the participant interest.
The notification message contains the previous session that was supposed to be
held in this room, the current session, an interestUpd label, and the name of the
room where the session of interest has been moved. Once a notification message
is received, the process updates the destination to the new location and waits for
future updates.

Update , (y = this.interest ∧ z = interestUpd)(x, y, z, l).

[this.dest := l]()@ff.Update

On the other hand, the behavior of a room in the conference venue is modeled
by process R which consists of three parallel processes:

R , Service | ReLoc | Swap
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The room can provide a normal service, through the process Service defined
below, by replying to session requests from those participants who are interested
in its current session. Once a session request Sreq that matches the current
room session is received from a participant, the room sends an interestRply to
the requesting participant identifying them by their id. The reply contains the
current session, an interestRply label, and the name of the room. The parallel
composition with Service ensures that the room is always ready to handle
concurrent requests from different participants.

Service , (x = this.session ∧ y = Sreq)(x, y, z).

( (this.session, interestRply, this.name)@(id = z).0 | Service )

On the other hand, any room might experience a change in schedule unexpectedly
at run-time. The process ReLoc, defined below, is responsible for handling this
issue in a way such that interested participants in the new session and also other
rooms where a swap of schedule should happen are notified.

ReLoc , 〈this.relocate = tt〉[this.prevSession := this.session,
this.session := this.newSession, this.relocate := ff]

(this.prevSession, this.session, interestUpd, this.name)
@(interest = this.session ∨ session = this.session).ReLoc

Relocation is triggered by setting the value of attribute relocate to true and
assigning the attribute newSession with a new session name, the room updates
its previous session to the current one and the current session to the new one.
The relocation flag relocate is turned off by setting its value to false. The process
continues by sending the updated previous and current sessions of the room
accompanied with an interestUpd label and the room name to either participants
who are waiting for updates about the updated session or to another room where
a swap of schedule should happen.

Furthermore, a room can also receive update notifications from other rooms
in case a swap of schedule is required, i.e., a small crowded room can switch its
session with a larger one with few attendees. This message is exactly the same
message that is received by the participants, the only difference is concerned
with the receiving predicate. The room accept an interestUpd message only if
the second value in the message matches its current session. By doing so, the
room is made aware that a swap of sessions is required. So it performs the swap
and then sends a message to interested participants to update their destination.

Swap , (z = interestUpd ∧ y = this.session)(x, y, z, l).

[this.prevSession := this.session, this.session := x]

( (this.prevSession, this.session, interestUpd, this.name)

@(interest = this.session ∨ session = this.session).0
| Swap)

The following Ab
a
CuS code corresponds to the participant process P (x). The code

is self-explanatory and has a one-to-one correspondence with the specifications
in process P (x).
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1 public class ParticipantAgent extends AbCProcess {
2 private String selectedTopic;
3 public ParticipantAgent(String selectedTopic) {
4 super(name);
5 this.selectedTopic = selectedTopic;
6 }
7 @Override
8 protected void doRun() throws Exception {
9 setValue(Definition.interestAttribute, this.selectedTopic);

10 send(new HasValue(Definition.ROLE_ATTRIBUTE_NAME, Definition.PROVIDER),
11 new Tuple(getValue(Definition.interestAttribute),
12 Definition.REQUEST_STRING, getValue(Definition.idAttribute)
13 ));
14 Tuple value = (Tuple) receive(o -> isAnInterestReply(o));
15 setValue(Definition.destinationAttribute, (String) value.get(2));
16 while (true) {
17 value = (Tuple) receive(o -> isAnInterestUpdate(o));
18 setValue(Definition.destinationAttribute, (String) value.get(4));
19 }
20 }
21 ...

Due to space limitations we do not show the code for the whole system; interested
readers are referred to [1] for a description of the full implementation, GUI demos,
and source code.

5 Related Work

Attribute-based communication was used in the context of autonomic computing
when the SCEL language [12] was designed. The interesting results of using
attribute-based interactions to program in SCEL inspired the distillation of
the AbC calculus [5]. There was a necessity to understand the full impact of
attribute-based communication in distributed programming. SCEL was designed
to support programming of autonomic computing systems. Compared with SCEL,
the knowledge representation in AbC is abstract and is not designed for detailed
reasoning during the model evolution. This reflects the different objectives of
SCEL and AbC . While SCEL focuses on programming issues, AbC concentrates
on a minimal set of primitives to study effectiveness of attribute-based communi-
cation. Further related work can be found in [8], where a specification language
was designed based on the AbC primitives to support quantitive analysis of large
systems.

jRESP [2] is a run-time environment for the SCEL language which provides

an API to permit using SCEL linguistic constructs in Java programs. Ab
a
CuS

inherits from jRESP its large use of design patterns and integration capabilities.
This is done by allowing abstract implementation of the underlying network
infrastructure and by taking advantage of JSON date exchange technology [3] to
facilitate the interaction with heterogenous network components.

Programming collective and/or adaptive behavior has been studied in different
research communities like context-oriented programming and component-based
approach. In Context-Oriented Programming (COP) [17], a set of linguistic
constructs is used to define context-dependent behavioral variations. These
variations are expressed as partial definitions of modules that can be overridden
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at run-time to adapt to contextual information. They can be grouped via layers
to be activated or deactivated together dynamically. These layers can be also
composed according to some scoping constructs. Our approach is different in
that components adapt their behavior by considering the run-time changes of the
values of their attributes which might be triggered by either contextual conditions
or by local interaction. Another approach that considers behavioral variations by
building on the Helena framework is considered in [20].

The component-based approach, represented by FRACTAL [10] and its Java
implementation, JULIA [9], is an architecture-based approach that achieves
adaptation by defining systems that are able to adapt their configurations to
the contextual conditions. System components are allowed to manipulate their
internal structure by adding, removing, or modifying connectors. However, in this

approach interaction is still based on explicit connectors. In Ab
a
CuS predefined

connections simply do not exist, we do not assume a specific architecture or
containment relations between components. The connectivity is always subject to

change at any time by means of attribute updates. In our view, Ab
a
CuS is definitely

more adequate when highly dynamic environments have to be considered.

6 Concluding Remarks

We informally introduced the AbC calculus by considering a simple running
example and we discussed the expressiveness of the calculus and compared it

with different communication paradigms. We introduced Ab
a
CuS, a Java run-time

environment for supporting the communication mechanisms of the AbC calculus.
We presented a case study about smart conference systems that represents a
typical application from the realm of collective adaptive systems. In the consid-
ered system, the conference venue collaborates with the mobile devices of the
participants to guide them to the talks they are interested in. The scenario shows
how, in case of session relocations, a change in the schedule for a room can be
managed coherently with the allocation of other rooms and with the interest of
the participants. The latter need to be kept updated about any schedule changes
that impacts on the locations where the topics of their interest are presented.

To program component interactions Ab
a
CuS relies on a mediator or a message

broker. This represents a single point of failure which puts the communication
reliability at risk. Our future efforts will be dedicated to providing an efficient

distributed implementation of Ab
a
CuS and to further investigating the practical

impact of this programming framework with more realistic case studies. We

are also interested in establishing a formal relationship between Ab
a
CuS and

AbC by providing a formal definition for a distributed abstract machine that is
operationally complete with respect to AbC itself.
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