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Large-scale aerodynamic and multidisciplinary design problems challenge conventional
optimization algorithms, because these problems typically involve thousands of design vari-
ables and constraints. Alternative algorithms must be developed that produce solutions
to large-scale design problems in a reasonable time. To this end, we investigate a scalable
reduced-space Newton–Krylov optimization algorithm. This inexact-Newton algorithm
uses a novel matrix-free Krylov solver that requires only KKT-matrix-vector products;
these products are formed by solving two linear PDEs. We present preliminary results that
benchmark the inexact-Newton algorithm against a conventional quasi-Newton algorithm
on the Euler-based drag minimization of the Common-Research-Model wing benchmark.
For this problem, the preliminary results indicate that the inexact-Newton algorithm scales
well and outperforms the conventional algorithm for problems with more than 500 design
variables.

I. Introduction

Adjoint-based aerodynamic shape optimization (ASO) was first introduced to the applied aerodynamics
community by Jameson over 25 years ago [1]. Since that time, adjoint methods have matured significantly,
and the steps necessary to “differentiate” a flow solver are now well understood. Even some commercial
computational fluid dynamics (CFD) libraries now include adjoint capabilitiesa.

As is well known, the computational cost of the adjoint-based gradient is virtually independent of the
design-space dimension. This has encouraged researchers to explore problems with increasingly large numbers
of design variables. For aircraft, which are governed by complex physics, this design flexibility has the
potential to dramatically improve old concepts and reveal new ones.

Unfortunately, expanding the dimension of the design space is a doubled-edged sword, and the increased
design flexibility comes at a price: the optimization problems themselves become harder to solve. While
the adjoint-based gradient enables inexpensive evaluation of the first-order optimality conditions, it does
not influence the scalability of the gradient-based optimization algorithm itselfb. Thus, as ASO problems
grow ever larger, the bottleneck becomes the scalability of the optimization algorithm. This is the primary
motivation for the present study.

State-of-the-art algorithms for ASO problems use quasi-Newton approximations for the Hessian and
explicit (i.e., stored) constraint Jacobians. We will refer to this implementation as the conventional approach.
This class of algorithm has proven to be highly effective for modest-sized problems with a few constraints,
but it exhibits the following short-comings for large-scale problems with greater than 103 design variables:

• Constraints that depend on the state variables require separate adjoints to populate the Jacobian. For
problems with many state-based constraints, the cost of these adjoints becomes prohibitive. Constraint
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aggregation methods provide one means of ameliorating the number of adjoint solutions required [2];
however, aggregation presents its own difficulties, namely inaccurate representation of the constraints
and poorly conditioned optimization problems [3].

• Quasi-Newton methods become less effective as the design dimension grows. For large-scale problems,
limited-memory quasi-Newton methods, such as L-BFGS [4], are often used, and these have a linear,
rather than super-linear, asymptotic convergence rate. Another drawback of quasi-Newton methods
is their reliance on steepest-descent directions initially and when restarting. This often leads to many
iterations in the line-search or trust-region subproblems.

Some alternatives to conventional sequential quadratic optimization (SQO) have been explored by the
ASO community. In particular, one-shot methods have demonstrated the potential for rapid convergence
on large-scale problems [5–7]; see also the monograph [8]. One-shot ASO algorithms, also known as all-
at-once or full-space algorithms, include the CFD residual as a constraint in the optimization statement.
The first-order optimality conditions are then solved using either Newton–Krylov [9, 10] or multigrid [7, 8]
algorithms.

A potential drawback with one-shot approaches is that the CFD and optimization algorithms must be
tightly integrated, making it difficult to “swap” CFD solvers between applications. One-shot algorithms are
also less attractive for unsteady ASO, where the state constraint can be several orders of magnitude larger
than the steady problem.

Another alternative to conventional, and the one we highlight in this work, is the class of reduced-space
Newton–Krylov (RSNK) algorithms [8, 11–14]. RSNK algorithms have excellent asymptotic convergence.
When properly globalized, they also perform well initially, because they capture the curvature of the La-
grangian. Moreover, they can be implemented using matrix-free Krylov methods, so RSNK algorithms do
not require the Hessian or constraint Jacobian to be computed and stored explicitly.

Despite their attractive properties, RSNK methods are not commonly used by the ASO community. One
reason for this is that few optimization algorithms implement (fully) matrix-free RSNK algorithms. The
adoption of RSNK methods may also be hindered by a perception that they are difficult to implement. One
of our objectives in this work is to demonstrate that RSNK algorithms can be implemented using the same
software routines required by conventional SQO libraries.

The remainder of the paper is organized as follows. Section II provides a high-level overview of the two
optimization algorithms we are comparing: the benchmark SNOPT library and Kona, our in-house RSNK
library. The efficient evaluation of matrix-vector products plays an important role in RSNK algorithms, and
Section III is devoted to this topic. Section IV defines the ASO problem we use to compare the performance
of the two algorithms. Results are presented in Section V, and conclusions and future work can be found in
Section VI.

II. Optimization Algorithms

In this section we describe the two optimization algorithms used in this work. To facilitate these descrip-
tions, we need to introduce some notation. Consider the following generic equality-constrained optimization
problem:

min
x

f(x, u(x))

subject to c(x, u(x)) = 0.
(1)

where x ∈ Rn are the design variables and u ∈ Rs are the state variables. We assume throughout that the
objective function, f : Rn × Rs → R, and constraints, c : Rn × Rs → Rn, are C2 continuous functions. The
state variables are assumed to be an implicit function of the design variables via a discretized set of PDEs,
denoted here by

R(x, u(x)) = 0. (2)

Note that we are restricted to equality-constrained problems in this study, because the current RSNK algo-
rithm cannot handle inequality constraints. Future work will consider more general inequality constraints.

To define the first-order optimality conditions for (1), we introduce the Lagrangian

L(x, λ) ≡ f(x) + λT c(x),
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where λ ∈ Rm are the Lagrange multipliers associated with the equality constraints. In defining L, we
have dropped the explicit dependence of f and c on the states, since u = u(x). The first-order optimality
conditions follow by differentiating L with respect to x and λ, yielding

g(x, λ) ≡ ∇xL = ∇xf + λT∇xc = 0,

c(x) = 0,
(3)

where g(x, λ) is the gradient of the Lagrangian and ∇x denotes the total-derivative operator with respect to
x.

In the context of PDE-constrained optimization, the total-derivative of an arbitrary function h(x, λ, u(x))
can be evaluated efficiently by solving an adjoint problem. Using this approach, the total derivative of h
with respect to x can be computed by evaluating

∇xh =
∂h

∂x
+ ψT ∂R

∂x

where ψ ∈ Rs are adjoint variables that satisfy the linear PDE

∂h

∂u
+ ψT ∂R

∂u
= 0. (4)

In the above equations, ∂/∂x and ∂/∂u denote the partial derivative operators with respect to x and u,
respectively.

At this point, we highlight an important observation. The total-derivative of the Lagrangian can be
computed in two mathematically equivalent ways: 1) by solving a single adjoint problem to compute ∇xL,
or; 2) by solving m+1 adjoints associated with ∇xf and the m equality constraints ∇xc. The first approach
is used in RSNK, while the second approach is adopted in conventional optimization algorithms. Although
the first approach is the most efficient for computing the gradient of the Lagrangian, the second approach
can be more efficient overall if the cost of computing the constraint Jacobian, ∇xc, is compensated by the
valuable information it provides, e.g. the basis for the null space.

The two optimization algorithms considered in this work use the sequential quadratic optimization (SQO)
paradigm, which we briefly review now. At iteration k, the trial design update p ∈ Rn is based on the solution
of the following quadratic optimization problem:

min
p

fk + gTk p+
1

2
pTWkp

subject to Akp+ ck = 0,

(5)

where A ≡ ∇xc is the (total) Jacobian of the constraints, and W ≡ ∇2
xxL is the (total) Hessian of the

Lagrangian, or an approximation to it. The subscript k indicates that a particular function or derivative is
evaluated at the current primal-dual solution (xk, λk). Note that W may not be convex in the null space of
A, in which case (5) is modified; however, this modification is algorithm dependent.

II.A. Benchmark Algorithm: SNOPT

SNOPT (sparse nonlinear optimizer) is an implementation of the SQO method suitable for general non-
linear constrained problems [15]. SNOPT is capable of solving large-scale nonlinear optimization problems
with thousands of constraints and design variables. The search directions are determined by minimizing a
quadratic model of the Lagrangian function subject to linearized constraints, i.e. the SQO paradigm. To
globalize the algorithm, a line search seeks to reduce an augmented Lagrangian merit function to ensure
convergence to a local optimum from any starting point. To form the quadratic subproblem, SNOPT ap-
proximates the Hessian of the Lagrangian using semi-definite quasi-Newton approach. For all optimizations
performed with SNOPT, the full memory BFGS quasi-Newton method is used.

We have used SNOPT extensively in the past to solve aerospace engineering design problems, such as
aerodynamic shape optimization [16–18], aerostructural design optimization of aircraft configurations [19–21],
and satellite design [22]. SNOPT is also a suitable benchmark, because it uses a conventional SQO algorithm,
requiring a separate adjoint for each row of the Jacobian and employing a quasi-Newton method.

Note that, although SNOPT is capable of solving problems with general inequality constraints using an
active set method, we apply it to an equality-constrained problem in this study. This is necessary in order to
have a fair comparison with the RSNK algorithm, which currently accommodates only equality constraints.
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II.B. Reduced-space Newton–Krylov Algorithm

We begin our description of the Reduced-Space Newton–Krylov (RSNK) algorithm by assuming that W is
positive-definite in the null space of A. In this convex case, solving the QO subproblem (5) reduces to solving
the following saddle-point problem for the primal-dual update (p, d):[

Wk AT
k

Ak 0

][
p

d

]
= −

[
gk

ck

]
,

or, more concisely,
Ks = b, (6)

where K denotes the primal-dual, or KKT, matrix.
At iteration k, the RSNK algorithm finds an inexact solution to (6) using FLECS [23], a Krylov-based lin-

ear solver for nonconvex saddle-point problems. A significant advantage of Krylov-based solvers like FLECS
is that they can be implemented matrix-free, since they require only matrix-vector and preconditioning oper-
ations. An efficient implementation of the KKT-matrix-vector products is described in detail in Section III.
Preconditioning, while important for Krylov-subspace methods in general, was not used for the ASO problem
considered in this work.

The QO subproblem (5) must be modified when the Lagrangian Hessian, W, is not positive definite in the
null space of the constraint Jacobian. The FLECS linear solver handles nonconvex subproblems by including
a trust-region constraint, which prevents unbounded steps. Finally, the QO subproblems are embedded in a
trust-region framework [24], and a basic filter [25] is used to globalize the method.

While the RSNK algorithm is admittedly more complex than conventional SQO algorithms, most of this
complexity can be hidden from the end user. For example, in our implementation of RSNK in the library
Kona, the user need only provide the operations listed in Table 1. Most of these operations exist as, or can
be adapted from, components already implemented in conventional ASO algorithms.

III. Computing KKT-matrix-vector Products

This section explains how KKT-matrix-vector products are evaluated in the optimization library Kona.
Our goal is to provide an intuitive explanation of how the products are formed by drawing a connection
between the finite-difference-based approach and the adjoint-based approach. We emphasize that this ex-
planation is for pedagogical purposes only, since the details concerning the KKT-matrix-vector products are
hidden from the user; recall, the user need only implement the operations listed in Table 1.

III.A. Forming Products Using a Finite-difference

We begin by describing the finite-difference (FD) approximation of the KKT-matrix-vector product. Let xk
and λk denote the current estimates of the primal and dual solutions, respectively, and consider an arbitrary
primal-dual vector v = (vTp , v

T
d )T ∈ Rn+m. Then a product between K and v can be evaluated using the

first-order forward difference[
Wk AT

k

Ak 0

][
vp

vd

]
≈ 1

ε

[
g(xk + εvp, λk + εvd)− g(xk, λk)

c(xk + εvp)− c(xk)

]
, (7)

where ε > 0 is the step-size. As usual, the FD approximation is plagued by the step-size dilemma: what is
the optimal ε that balances truncation and round-off errors?

Forward-difference approximations of matrix-vector products are often used in Jacobian-free Newton–
Krylov (JFNK) methods for PDEs; see, for example, the review by Knoll and Keyes [26]. Unlike PDE
residuals, which typically depend explicitly on the state variables, the first-order optimality conditions depend
implicitly on the primal-dual variables, x and λ, via the state and adjoint, u and ψ. Consequently, in order
to evaluate the perturbed gradient and constraints that appear in (7), we must resolve the (nonlinear) state
PDE and adjoint PDE at (xk + εvp, λk + εvd).

The need to solve two perturbed PDEs is not a disadvantage of the FD approximation per se: solving two
additional PDEs for the KKT-matrix-vector product is unavoidable. However, problems do arise when the
FD approximation is implemented in a näıve manner. For example, the FD step-size dilemma is especially
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Table 1. Operations required by the Kona library for RSNK optimization.

Operation Remarks

Vector operations: for a, b ∈ R evaluate
z = ax+ by, x, y, z ∈ Rn,
λ = aµ+ bν, λ, µ, ν ∈ Rm,
w = au+ bv, u, v, w ∈ Rs.

These basic linear algebra tasks are per-
formed outside the optimizer by the user
to permit generic parallelization.

Inner products: for x, y ∈ Rn, µ, ν ∈ Rm, and
u, v ∈ Rs evaluate the inner products

〈x, y〉n, 〈µ, ν〉m, 〈u, v〉s.

The notation 〈, 〉 indicates suitable inner
product on the indicated spaces. These
operations are also needed to enable paral-
lelization.

Function evaluations: for x ∈ Rn and u ∈ Rs evaluate
and store the functions

f(x, u), ν = c(x, u), w = R(x, u).

These are used when evaluating conver-
gence criteria.

Objective derivatives: evaluate the objective function
partial derivatives at the design-state pair (x, u):

y = ∂f
∂x
, v = ∂f

∂u
.

The objective gradients must be evaluated
at arbitrary design-state pairs; these are
partial derivatives, not total derivatives.

Matrix-vector products: evaluate Jacobian-vector
products, linearized about (x, u),

v = ∂R
∂x
y, y =

(
∂R
∂x

)T
v, y ∈ Rn, v ∈ Rs

v = ∂R
∂u
w, w =

(
∂R
∂u

)T
v, v, w ∈ Rs

µ = ∂c
∂x
y, y =

(
∂c
∂x

)T
µ, y ∈ Rn, µ ∈ Rm

µ = ∂c
∂u
w, w =

(
∂c
∂u

)T
µ, w ∈ Rs, µ ∈ Rm.

These products can be evaluated using al-
gorithmic differentiation (AD) or, in the
case of the forward products, the complex-
step method.

PDE solves: solve the following systems for u, w, and
φ:

R(x, u) = 0,
(
∂R
∂u

)
w = u,

(
∂R
∂u

)T
φ = v.

The linear systems are necessary to com-
pute the (total) gradient of the La-
grangian, as well as the KKT-matrix-
vector products.

difficult to resolve when the primal and dual variables have disparate scaling. Moreover, a black-box FD
implementation of (7) may result in the computationally expensive operation of re-assembling the PDE
Jacobian, its preconditioner, or both. These types of overhead expenses must be avoided to achieve efficient
KKT products.

III.B. Forming Products Using Second-order Adjoints

This brings us to the adjoint-based approach to forming the KKT-matrix-vector product, which is closely
related to the FD product. To see this relationship, consider solving the nonlinear PDE at the perturbed
design xk + εvp. Let uk + εw denote the solution corresponding to the perturbed PDE, where w ∈ Rs and
ε is the same scalar used in the design perturbation. For infinitesimal ε, we can linearize the PDE about
(xk, uk):

R(xk + εvp, uk + εw) = R(xk, uk) + ε
∂R

∂x
vp + ε

∂R

∂u
w = 0.

Recognizing that R(xk, uk) = 0, we can rearrange the above equation to find a linear PDE for w:

∂R

∂u
w = −∂R

∂x
vp, (8)

where we have canceled the common ε factor. Equation (8) is solved in lieu of the perturbed nonlinear PDE
to find the perturbation to the state uk. An advantage of this approach is that the PDE Jacobian, the
matrix on the left side of (8), is evaluated at (xk, uk). Therefore, the PDE Jacobian, and any corresponding
preconditioner, does not need to be reformed.
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An analogous process can be followed to find the perturbation to the adjoint. Let the adjoint PDE for
the total derivative of the Lagrangian be denoted by

S(x, λ, u, ψ) =

(
∂L

∂u

)T

+

(
∂R

∂u

)T

ψ.

In addition, let ψk + εφ be the solution to the adjoint PDE evaluated at the perturbed variables xk + εvp,
λk + εvd, and uk + εw. Then, linearizing the adjoint PDE about (xk, λk, uk, ψk), we find

S(xk + εvp, λk + εvd, uk + εw, ψk + εφ) = S(xk, λk, uk, ψk) + ε
∂S

∂x
vp + ε

∂S

∂λ
vd + ε

∂S

∂u
w + ε

∂S

∂ψ
φ = 0

As with the nonlinear PDE, the adjoint PDE vanishes at the current solution, S(xk, λk, uk, ψk) = 0. Using
this fact, and simplifying some of the products in the linearization, we arrive at the following PDE for φ:(

∂R

∂u

)T

φ = −
(
∂c

∂u

)T

vd −
[
∂S
∂x

∂S
∂u

] [vd
w

]
(9)

Solving this PDE for φ provides the perturbation to the adjoint of the Lagrangian corresponding to the
desired KKT product.

The second term on the right side of (9) involves second-partial derivatives with respect to x and u.
In Kona, this term is approximated using a forward difference by evaluating the adjoint PDE at (xk +
εvp, λk, uk + εw, ψk) and taking the difference with S(xk, λk, uk, ψk). Note that, while the adjoint PDE
residual is zero analytically, its numerical value is typically nonzero when iterative methods are used to solve
for ψ. Thus, neglecting S(xk, λk, uk, ψk) in the FD approximation can lead to significant errors in the KKT
product.

The penultimate step in computing the KKT-matrix-vector product is to evaluate the first-order opti-
mality at the perturbed design, dual, state, and adjoint. Subsequently, the forward-difference approximation
between the perturbed and unperturbed optimality conditions yields the desired product. Thus, the differ-
ences in (7) become

1

ε
[g(xk + εvp, λk + εvd)− g(xk, λk)]

=
1

ε

[
∂L

∂x
(xk + εvp, λk + εvd, uk + εw) + (ψk + εφ)T

∂R

∂x
(xk + εvp, λk + εvd, uk + εw)

−∂L
∂x

(xk, λk, uk) + ψT
k

∂R

∂x
(xk, λk, uk)

]
, (10)

and
1

ε
[c(xk + εvp)− c(xk)] ≈ ∂c

∂x
vp +

∂c

∂u
w. (11)

In Equation (10), the differences appearing on the right-hand side are explicit, in the sense that no additional
PDEs must be solved. This is because the effect of the design and dual perturbations on the state and adjoint
are already accounted for by w and φ. The variables w and φ are sometimes called second-order adjoints in
the literature [27]. Further details on using second-order adjoints to form Hessian-vector products can found
in Refs. [8, 13,14,28,29].

In summary, the process of computing Kv proceeds as follows. First, the second-order adjoint w is found
by solving (8). Subsequently, w is used to form the right-hand-side of (9), which is then solved to find the
second-order adjoint φ. Finally, these adjoints are used to find the matrix-vector product by evaluating (10)
and (11).

III.B.1. Some Remarks on Implementation

We conclude this section with remarks on the practical implementation of the KKT-matrix-vector products.

• From the user’s perspective, a notable difference between an RSNK algorithm and a conventional algo-
rithm is the need to solve the linearized and adjoint PDEs with arbitrary right-hand sides. Fortunately,
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the adjoint solves required by conventional ASO algorithms can easily be adapted for the systems in-
volving the transposed Jacobian; only the right-hand-side must change. In addition, the systems that
involve the PDE Jacobian itself are analogous to the systems solved in JFNK methods; again, only the
right-hand-side must change.

• The ε perturbation used in the adjoint-based product must be the same throughout the computation.
For example, as mentioned earlier, a forward difference is used to compute the second term on the
right-hand side of (9). This forward difference should use the same ε used later in the difference (10).
This is consistent with the connection between this product and the full FD product.

• Matrix-free products with the PDE Jacobian are important for efficiency and accuracy, and should be
provided analytically or using AD (we use the latter here). To appreciate this need, consider the right-
hand side of (9), which requires that we evaluate the adjoint residual S. This adjoint residual is needed
each time a KKT product is computed; therefore, if the evaluation of S re-assembles the Jacobian of
the PDE explicitly, the overhead can adversely impact the efficiency of the RSNK algorithm.

IV. Optimization Problem Description

To evaluate the RSNK algorithm against the conventional SQO approach, we chose a variation of the
common-research-model (CRM) wing benchmark developed by the AIAA Aerodynamic Design Optimization
Discussion Group (ADODG). The problem consists of the lift- and moment-constrained drag minimization
of the CRM wing. The geometry and specifications are given in the ADODG documentc. This problem
has been previously investigated by several researchers [30–33], and optimized geometries and meshes are
publicly available [30].

The original ADODG CRM-wing optimization problem statement was modified for the present work.
These modifications are summarized and justified below.

• Some of the matrix-vector products listed in Table 1 were not yet available as matrix-free products for
the RANS equations. As mentioned earlier, without matrix-free products, the RSNK algorithm will
not be competitive. Consequently, the present study was limited to the Euler equations.

• The optimization problem based on the Euler equations proved to be poorly conditioned, i.e., the
condition number of K was high. We identified two sources of this ill conditioning. The first source is
that the inviscid optimization is ill posed: with control over both aerodynamic and geometric twist,
the optimal elliptical loading can be obtained in an infinite number of ways. Evidence for this “flat”
design space was previously observed in the case of the RANS equations by performing random-start
optimization runs using SNOPT [30]; the optimal solutions had approximately the same optimum
drag coefficient, but varied in their geometries. The second source of ill-conditioning is the presence of
shocks at the transonic Mach number of M = 0.85.

Preconditioning the FLECS solver may help alleviate the ill-conditioning observed in this problem;
however, although matrix-free preconditioners are currently under development, they were not available
for this work.

In the short term, the ill-conditioning was ameliorated by 1) considering a subsonic flow with a Mach
number of M = 0.65, and 2) adding a regularization term to the objective function. The regularization
is described in greater detail below.

• Finally, as mentioned earlier, Kona does not currently implement inequality constraints. This is not a
problem for the lift and moment constraints, because a previous analysis of this problem revealed that
these constraints are active at the optimum [30]. Consequently, we can reformulate them as equality
constraints and still obtain the same solution. The thickness constraints are not so straightforward,
because not all of them are active, and selecting individual locations where they are active proved
cumbersome to implement. Fortunately, our experiments revealed that the regularized problem behaves
similarly to the thickness-constrained problem, allowing us to omit the thickness constraints entirely.
We will demonstrate this further in Section IV.B.

chttps://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx
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Figure 1. ADODG CRM wing geometry [30].

In summary, the optimization problem considered in this work is

min
x

f(x, u(x)) = CD(x, u(x)) + µxTx

subject to c(x, u(x)) =

 CL(x, u(x))− 0.5

CMy(x, u(x)) + 0.17

V– (x)− V– 0

 = 0,

where the Mach number and angle of attack are fixed to M = 0.65 and α = 2.2◦ respectively. As before,
x denotes the vector of design variables and u(x) are the state variables expressed as implicit functions of
the design variables. The coefficients of lift and pitching moment, CL and CMy, are defined as equality
constraints and fixed to the ADODG benchmark values of 0.5 and −0.17, respectively. The volume of the
wing, V– (x), is constrained to its initial volume, V– 0.

The objective function is the sum of the drag coefficient, CD, and the regularization term, which is
the squared-L2 norm of the design vector multiplied by µ. The parameter µ controls the magnitude of
the regularization term, and it must be tuned to ensure that the regularization does not overwhelm the
coefficient of drag. The µ parameter was determined through trial and error such that the value of µxTx
was about three orders of magnitude smaller than the coefficient of drag at convergence. The introduction
of the regularization increases the convexity of the design space, which decreases the condition number of
the Hessian W.

The design variables control the wing’s cross-sectional shape and relative position along the span. The
wing is parameterized using a free-form deformation (FFD) volume approach [34]; Fig. 2 illustrates the FFD
volume for 768 control points. The z-coordinates of these control points are used as the design variables in
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Figure 2. CRM wing and the FFD parameterization using 768 control points [30].

Table 2. Number of FFD box control points in each direction shown for the range of FFD box sizes used in this study.

FFD Box Sizes

Directions 72 192 320 480 616 768

Chordwise 6 12 16 20 22 24

Spanwise 6 8 10 12 14 16

Thickness 2 2 2 2 2 2

the following studies. Table 2 shows the directional resolution of the entire range of FFD box sizes used in
this study.

IV.A. CFD Solver

The coefficients of lift, drag, and pitching moment are evaluated using SUmb [35], a finite-volume flow solver
capable of solving the compressible Euler, laminar Navier–Stokes and RANS equations; for the latter, SUmb
supports a variety of turbulence models. SUmb includes a discrete adjoint method that was implemented
using AD [36,37], which has been previously used for RANS-based aerodynamic shape optimization [17,18].

This initial adjoint implementation in SUmb used assembled state and design variable Jacobians, com-
puted using forward mode AD with Tapenade [38]. While the stored assembled operators are efficient for
solving the direct and adjoint systems, it is cost-prohibitive to use this technique for state and design variable
perturbations, since each each would require an expensive matrix reassembly. For Jacobian-vector products,
the forward mode AD code was easily repurposed for this task. However, the transpose Jacobian-vector
products required the implementation of reverse mode AD for the same routines. This technique enables
efficient transpose Jacobian vector products for arbitrary design and state variable vectors in a matrix-free
fashion. The efficient computation of these products is critical to the overall cost of the aerodynamic shape
optimization using the RSNK algorithm. Future work will focus on implementing the matrix-free products
on the differentiated RANS equations [39].

For our investigation, SUmb was configured to solve the Euler equations with a combined multigrid
Runge–Kutta (RK) and Newton–Krylov (NK) approach. The coarse grid solution is converged to a tolerance
of 10−4 using RK, and the fine grid solution is converged to a tolerance of 10−10, where the solver switches
to NK at a 10−2 PDE residual tolerance.

IV.B. Impact of the Regularization

Before we compare the two optimization algorithms, it is important to illustrate the effect of the regularization
on the optimization problem. To this end, Fig. 3 shows the SNOPT convergence histories for the regularized
problem, the corresponding non-regularized problem without any thickness constraints, and the problem
using the thickness constraints from the the original ADODG benchmark. The non-regularized problem,
devoid of thickness constraints, is free to explore impractical geometric features, such as extremely thin
trailing edges and sharp leading edges, in order to achieve a lower coefficient of drag. The regularized
problem, on the other hand, appears to converge to a similar optimum design as the thickness constrained
case, which suggests that it is a good proxy for the ADODG benchmark, given the limitations of our current
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Figure 3. Comparison of SNOPT convergences on three variations of the problem: non-regularized without thickness
constraints, non-regularized with 25% thickness constraints, and regularized.

RSNK implementation. Furthermore, the increased convexity provided by the regularization makes the
problem easier for SNOPT as well as RSNK, and, therefore, it does not unfairly favor one algorithm over
the other.

V. Results

In this section, we present the results of our investigation. All results in this section have been collected
by solving an 840, 192 cell Euler grid on a 2.5 GHz eight-core Intel Xeon E5-2650 cluster, using 64 cores
across 4 compute nodes. Both SNOPT and RSNK were required to converge their optimality metrics by
three orders of magnitude from the initial. For this specific problem, converging beyond three orders of
magnitude did not yield any meaningful drag reduction.

V.A. Regarding Superlinear Convergence with RSNK

We begin by investigating the convergence behavior of the RSNK algorithm. Because this algorithm is an
inexact-Newton approach, it should be possible to obtain a superlinear convergence rate.
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Figure 4. Convergence history of RSNK with 192 FFD coefficients, plotted against CPU time (left) and iterations
(right).

Fig. 4 shows the convergence history of RSNK on the regularized problem with 192 design variables. The
history has been plotted against two different cost metrics, CPU time in seconds and iterations. Plotted
against iterations, RSNK does indeed achieve superlinear convergence of the optimality and feasibility on this
problem. Superlinearity disappears when plotted against CPU time, because the convergence tolerance for
the KKT system gets progressively smaller as the optimization approaches the solution; therefore, the FLECS
solver requires more iterations to converge on this non-preconditioned problem. As a result, the elapsed time
per outer iteration increases throughout the optimization process, causing the superlinear convergence to be
lost when plotted against CPU time.

In practice, the RSNK algorithm aims to solve the KKT system inexactly, requiring convergence to a
designated tolerance only within a small number of FLECS iterations. This inherently imposes a limit to how
long each outer iteration can take. However, RSNK’s superlinearity is nonetheless dependent on sufficiently
reducing the KKT system residual. The superlinearity is lost when the solution to the KKT system becomes
too inexact.

The ideal number of Krylov iterations for the FLECS solver is largely dependent on the cost of solving
the second-order adjoint systems and the matrix-vector products used to assemble the KKT-matrix-vector
product described in Section III. For this particular implementation and problem, our experiments indicate
that establishing superlinear convergence requires 30 to 40 Krylov iterations. However, allowing this many
iterations leads to a loss of competitiveness with respect to SNOPT in terms of CPU time. In the following
sections, we will illustrate promising and competitive results achieved using 15 to 20 iterations, depending
on the size of the design space, but it is worth noting that this limitation leads to a loss of superlinear
convergence. This provides further evidence that an effective preconditioner for the KKT system is needed
in order to achieve both superlinearity and improved computational cost.

V.B. Aerodynamic Shape Optimization of the CRM Wing

The coefficient of pressure distributions over the initial and optimized geometries are shown in Figures 5
and 6, respectively. The figures also include the CD and constraint values for the geometries. The optimal
designs shown here correspond to the 768 design-variable FFD volume, but the solution is representative
of the entire range of FFD sizes used in this study. All solutions of this regularized problem with either
algorithm converge to optima within 0.5 drag counts of each other.

Figure 7 shows the convergence histories for both algorithms over the full range of design spaces consid-
ered. Kona’s optimality and feasibility metrics differ from SNOPT’s, so these values have been normalized
and the convergence histories show the reduction from the respective initial values. A clear difference between
the two algorithms is that SNOPT permits significant infeasibility during the early iterations.
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Figure 5. Euler-based Cp distribution on the initial CRM wing.

Figure 6. Aerodynamic solution of the optimal design for SNOPT (left half) and RSNK (right half). CL, CMy and the

volume constraint are approximately the same for both optimums to 8th significant digit.
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Figure 7. Optimality and feasibility convergence history of RSNK and SNOPT at different design space sizes.
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Figure 8. Computational cost scaling with respect to the size of the design space.

V.C. Computational Cost Scaling with Design Space

To determine how the optimization algorithms scale with the size of the design space, the convergence results
from Figure 7 are compiled into a direct comparison of cost scaling in Figure 8.

The results demonstrate that RSNK has favorable scaling with respect to the dimensionality of the
design space. Despite the loss of superlinearity, RSNK converges faster than SNOPT for 616 and 768 design
variables, and remains competitive at 480. Should this trend continue to hold, RSNK promises to be an
efficient algorithm for problems with thousands of design variables.

VI. Conclusions

We implemented and investigated a reduced-space Newton–Krylov (RSNK) algorithm in the solution
of the aerodynamic shape optimization of the ADODG CRM wing. The aerodynamic shape optimization
results were based on a subsonic Euler flow, and computational cost scaling was analyzed across 72, 192,
320, 480, 616 and 768 design variables. In addition, the RSNK algorithm library, Kona, was benchmarked
against a Jacobian-explicit quasi-Newton optimization library, SNOPT.

Our results demonstrate that the RSNK algorithm is capable of superlinear convergence on a regularized
problem. However, achieving this superlinear convergence requires more iterations of the KKT system solu-
tion than anticipated, preventing RSNK from being competitive with SNOPT in CPU time. This strongly
suggests the need to precondition the primal-dual solver, such that the KKT system residual can be suffi-
ciently reduced with fewer iterations, achieving superlinearity at a lower computational cost. Nonetheless,
our results successfully demonstrate the potential for superlinear convergence on a high-fidelity aerodynamic
shape optimization problem.

We have also shown that the RSNK algorithm is relatively insensitive to the size of the design space.
Relative to SNOPT, we were able to achieve faster convergence to the optimum with 616 and 768 design
variables, and remain competitive with 480 variables. The cost trend indicates that RSNK is well suited for
problems with large dimensionality.

Over the course of this study, we developed the operations required by our RSNK optimization library,
Kona, in part by using subroutines already available in the SUmb flow solver. While the required operations
for RSNK were all available in SUmb, transpose Jacobian vector production operations were only available
through stored jacobians computed using forward mode AD. The overhead associated with assembling the
entire Jacobian for a single transpose vector product is not cost competitive. This bottleneck was removed
by using reverse mode AD to compute transpose matrix vector products in a matrix-free fashion. This
matrix-free approach proved crucial for RSNK. Additional work is currently underway for improving the
efficiency of these matrix-free product computations.

14 of 16

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

as
on

 H
ic

ke
n 

on
 J

an
ua

ry
 9

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

19
45

 



In closing, RSNK shows promise as an efficient and effective optimization algorithm for high-fidelity PDE-
constrained optimization problems involving large design spaces. In the immediate future, we hope to achieve
robust superlinear convergence by preconditioning the KKT system, and subsequently replicate our results
on a more challenging RANS-based aerodynamic shape optimization problem. In the longer term, we intend
to explore the use of the RSNK algorithm for coupled multi-disciplinary systems, such as aerostructural
optimization problems, which can scale to thousands of design variables and constraints [20, 40]. Targeting
such a problem will help us determine how RSNK performs on problems with large numbers of state-
dependent constraints, which we would not be able to explore adequately in this work with only two such
constraints.
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