LAKSHYA (JEE)

Magnetism and Matter

DPP-05

1. The variation of magnetic susceptibility (χ) with magnetising field for a paramagnetic substances is

2. The variation of magnetic susceptibility (χ) with absolute temperature *T* for a ferromagnetic material is

3. The χ – (1/*T*) graph for an alloy of paramagnetic nature is shown in figure. The curie constant is, then

- (A) 57 K
- (B) 2.8×10^{-3} K
- (C) 570 K
- (D) $17.5 \times 10^{-3} \text{ K}$

4.	The unit for molar susceptibility is	
	(A) m^3	(B) $kg-m^3$

- (C) $kg^{-1} m^3$ (D) No units
- 5. Relative permeability of iron is 5500, then its magnetic susceptibility will be

(A) 55	500×10^{7}	(B)	5500×10^{-7}
(C) 55	501	(D)	5499

6. Susceptibility of Mg at 300 K is 1.2×10^{-5} . The temperature at which susceptibility will be 1.8 $\times 10^{-5}$ is

(A)	450 K	(B)	200 K
(C)	375 K	(D)	None of these

7. If the angular momentum of an electron is \vec{j} then the magnitude of the magnetic moment will be

(A)
$$\frac{eJ}{m}$$
 (B) $\frac{eJ}{2m}$
(C) $eJ 2 m$ (D) $\frac{2m}{eJ}$

- 8. For an isotropic medium B, μ , H and M are related as (where B, μ_0 and M have their usual meaning in the context of magnetic material
 - (A) $(B-M) = \mu_0 H$
 - (B) $M = \mu_0 (H + M)$
 - (C) $H = \mu_0 (H + M)$
 - (D) $B = \mu_0 (H + M)$
- **9.** When a piece of a ferromagnetic substance is put in a uniform magnetic field, the flux density inside it is four times the flux density away from the piece. The magnetic permeability of the material is

(A) 1	(B) 2
(C) 3	(D) 4

10. For substances hysteresis (B - H) curves are given as shown in figure. For making temporary magnet which of the following is the best ?

ANSWER KEY

- 1. (A)
- 2. (A)
- **3.** (A)
- 4. (A)
- 5. (D)
- 6. (B)
- **7.** (**B**)
- 8. (D)
- 9. (D)
- 10. (D)

Note - If you have any query/issue

Mail us at support@physicswallah.org