Machine Learning Il

Session 2 : Dimensionality Reduction

Mohamad GHASSANY

Mohamad GHASSANY

EFREI PARIS

1/



Course Overview



A efrei Course Information

Format:

» Course sessions: 6 sessions of 5 hours each.

» Sessions are CTP.
Course chapters:

Session 1: Supervised Learning: Discriminant Analysis
Session 2: Dimensionality Reduction

Session 3:

Session 4:

Session 5:

Session 6:
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Dimensionality Reduction

Definition
Dimensionality reduction, or dimension reduction, is the transformation of data from a

high-dimensional space into a low-dimensional space so that the low-dimensional representation
retains some meaningful properties of the original data, ideally close to its intrinsic dimension®.

'The intrinsic dimension for a data set can be thought of as the number of variables needed in a minimal representation of the

Course Overview

data.
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Dimensionality Reduction Methods:
Principal Components Analysis (PCA)




PCA: Introduction

» Central idea: reduce the dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in the data set.

» How is this achieved: by transforming to a new set of variables, the principal components (PCs),
which are uncorrelated, and which are ordered so that the first few retain most of the variation
present in all of the original variables.

» Each of the dimensions found by PCA is a linear combination of the p features.
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Notations and Procedure: Data

Suppose that we have a random vector of the features X with population variance-covariance matrix X

2
X1 01 012 ooo O1p
2
X2 021 05 . 02p
X = var(X) =X = .
2
Xp Op1  Op2 oy
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Notations and Procedure: PCs

Consider the linear combinations

Y1 = auXit+apXo+-oo+apX,
Y2 = anXi+apXo+---+ angp
Yp = Clp1X1 + ap2X2 SR a0 SE Clprp
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Notations and Procedure: Loadings

The coefficients ayj are collected into the vector

aj =
Qip

The coefficients ay; are also called loadings of the principal component i and a; is a principal
component loading vector.
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Notations and Procedure: PCs

Note that Y; is a function of our random data, and so is also random. Therefore it has a population

variance

P P
var = E Aix Q{101 = aiTZai
k=1 1=1

Moreover, Y; and Y; will have a population covariance

P P
cov YI,Y E E aikajlcrkl:aiTZaj

k=1 1=1
and a correlation

cov(Yi, Yj)

cor(Yy,Yj) = )
0303
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Notations and Procedure

Variation and trace

» The total variation of X is the trace® of the variance-covariance matrix Z.
» The trace of X is the sum of the variances of the individual variables.
» trace(Z) = oi+ 034407

2
01 012 000 0'1]3
2
021 05 00 a G2P
var(X) =X = )
o o o?
pl p2 P

2The trace of a square matrix is the sum of its diagonal entries.
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First Principal Component (PC;): Y;

» The first principal component is the normalized linear combination of the features Xi, X5, ..., X,
that has maximum variance (among all linear combinations), so it accounts for as much variation
in the data as possible.

» Specifically we will define coefficients a;1, aio, ..., ayp for that component in such a way that its
variance is maximized, subject to the constraint that the sum of the squared coefficients is equal
to one (that is what we mean by normalized). This constraint is required so that a unique answer
may be obtained.

» More formally, select a;y, aio, ..., ayp that maximizes

P
T
var(Yl) = Za]_ = E E A1k A110k1

k=1 1=1

subject to the constraint that

Mohamad GHASSANY

Dimensionality Reduction Methods: Principal Components Analysis (PCA)



Second Principal Component (PC;): Y;

» The second principal component is the linear combination of the features Xy, X5, ..., X;, that
accounts for as much of the remaining variation as possible, with the constraint that the
correlation between the first and second component is 0.

» To compute the coefficients of the second principal component, we select as;, ax, ..., az, that
maximizes the variance of this new component var(Y,) = al Za, subject to:

® The constraint that the sums of squared coefficients add up to one, Z}J:1 a%i = a2Ta2 SHe
® Along with the additional constraint that these two components will be uncorrelated with one
another: cov(Y1,Y2) =0
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ith Principal Component (PC;): Y;

» All subsequent principal components have this same property: they are linear combinations that
account for as much of the remaining variation as possible and they are not correlated with the
other principal components.

» We select aiy, ai2, ..., aip that maximizes var(Y;)

subject to the constraint that the sums of squared coefficients add up to one, along with the additional
constraint that this new component will be uncorrelated with all the previously defined components:

P

2,7, _ T, _
E aja;a; =a;a; =1
j=1

COV(Yl, Y‘,) = 0, COV(Y2, Yl) = 0, 000 5 COV(Yifl, YL) =0

Therefore all principal components are uncorrelated with one another.

Mohamad GHASSANY Dimensionality Reduction Methods: Principal Components Analysis (PCA)



How do we find the coefficients a;;?

» How do we find the coefficients aj; (loadings) for a principal component?

» The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix X.
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;J/@lfe‘FFEi How do we find the coefficients a;;?

» How do we find the coefficients aj; (loadings) for a principal component?

» The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix X.

» Let A1,..., A, denote the eigenvalues of the variance-covariance matrix £. These are ordered so
that A; has the largest eigenvalue and A, is the smallest: Ay > A > --- 2> Ay

» We are also going to let the vectors ay, ..., a, denote the corresponding eigenvectors.
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How do we find the coefficients a;;?

» How do we find the coefficients aj; (loadings) for a principal component?

» The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix X.

» Let A1,..., A, denote the eigenvalues of the variance-covariance matrix £. These are ordered so
that A; has the largest eigenvalue and A, is the smallest: Ay > A > --- 2> Ay

» We are also going to let the vectors ay, ..., a, denote the corresponding eigenvectors.

» It turns out that the elements for these eigenvectors will be the coefficients of the principal
components.
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How do we find the coefficients a;;?

» How do we find the coefficients aj; (loadings) for a principal component?

» The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix X.

» Let A1,..., A, denote the eigenvalues of the variance-covariance matrix £. These are ordered so
that A; has the largest eigenvalue and A, is the smallest: Ay > A > --- 2> Ay

» We are also going to let the vectors ay, ..., a, denote the corresponding eigenvectors.

» It turns out that the elements for these eigenvectors will be the coefficients of the principal
components.

» The variance for the i-th principal component is equal to the i-th eigenvalue.

var(Yi) = var(auX; + apXo + ... aipXp) = A

» Moreover, the principal components are uncorrelated with one another: cov(Y;,Y;) =0
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Proportion of the total variation

» Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance
matrix. This is also equal to the sum of the eigenvalues as shown below:

trace(f) = ofi+o3+---+05
= MAtAto A

» This will give us an interpretation of the components in terms of the amount of the full variation

explained by each component.

3In other words, the ith principal component explains the following proportion of the total variation
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Proportion of the total variation

» Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance
matrix. This is also equal to the sum of the eigenvalues as shown below:

trace(f) = ofi+o3+---+05
= MAtAto A

» This will give us an interpretation of the components in terms of the amount of the full variation

explained by each component.

» The proportion of variation explained by the ith principal component? is then going to be defined
i

as. ————————————
?\1+)\2+"'+7\p

3In other words, the ith principal component explains the following proportion of the total variation
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Proportion of the total variation

» Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance
matrix. This is also equal to the sum of the eigenvalues as shown below:

trace(f) = ofi+o3+---+05
= MAtAto A

» This will give us an interpretation of the components in terms of the amount of the full variation
explained by each component.

» The proportion of variation explained by the ith principal component? is then going to be defined
i

as. ————————————
?\1+)\2+"'+7\p

» A related quantity is the proportion of variation explained by the first k principal component:
AL+ A+ A

}\1+7\2+"'+)\p
» Naturally, if the proportion of variation explained by the first k principal components is large, then

____not much information is lost by considering only the first k principal components.

3In other words, the ith principal component explains the following proportion of the total variation
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Procedure

» Compute the eigenvalues Ay, Az, ..., A, of the sample variance-covariance matrix S, and the
corresponding eigenvectors 43, 4y, ..., 4.

» Then we will define our estimated principal components using the eigenvectors as our coefficients:

Vi = GuXg+apXe+---+ a1pXp
Y, = auXi+anXo+ -+ ﬁngp
Yo = @puiXi+GpaXo4 -+ 8ppXp

» This can be written for all observations and all the principal components using the matrix
formulation Y = AX where A is the matrix of the coefficients ayj.

» Generally, we only retain the first k principal component which explain a “large” proportion of the
total variation.
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;J,@lte‘Fl'Ei Standardization of the features

» If we use the raw data, the principal component analysis will tend to give more emphasis to the
variables that have higher variances than to those variables that have very low variances.
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Standardization of the features

» If we use the raw data, the principal component analysis will tend to give more emphasis to the
variables that have higher variances than to those variables that have very low variances.

» If the variables either have different units of measurement they should be standardized (scaled)
before a principal components analysis is carried out:

Note: Z; has mean = 0 and variance = 1.
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Standardization of the features

» If we use the raw data, the principal component analysis will tend to give more emphasis to the
variables that have higher variances than to those variables that have very low variances.

» If the variables either have different units of measurement they should be standardized (scaled)
before a principal components analysis is carried out:

Note: Z; has mean = 0 and variance = 1.
Variance-covariance matrix and correlation matrix

» The variance-covariance matrix of the standardized data is equal to the correlation matrix for the
unstandardized data.

» Therefore, principal component analysis using the standardized data is equivalent to principal
component analysis using the correlation matrix.
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Case Study: the Iris Dataset

The Iris flower dataset or Fisher’s Iris dataset is
a multivariate data set introduced by the British
statistician and biologist Ronald Fisher in his 1936
paper. The data set consists of 50 samples from
each of three species of Iris. Four features were
measured from each sample.
The three species in the Iris dataset are:

1. Iris-setosa (n; = 50)

2. Iris-versicolor (1, = 50)

3. Iris-virginica (n3; = 50)
And the four features in Iris dataset are:

1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm

Mohamad GHASSANY

Samples
(instances, observations)

Sepal Sepal  Petal  Petal  Class
length width  length  width label

2 |4‘9 |3.o |1‘4 ‘o,z ‘Sewsa

50 | 64 | 35 | 45 l 12 Versicolor,
150 | 59 | 30 | 50 ‘ 18 l Virginica

—J \ Sepal
/ Class labels

Features (targets)

(attributes, measurements, dimensions)
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Case Study: the Iris Dataset
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‘,J,Q!\\eFrei Case Study: the summary

pcairis=princomp(iris[,-5], cor=T)

summary (pcairis)

## Importance of components:

## Comp.1 Comp.2 Comp.3 Comp.4
## Standard deviation 1.7061120 0.9598025 0.38386622 0.143553848
## Proportion of Variance 0.7277045 0.2303052 0.03683832 0.005151927
## Cumulative Proportion 0.7277045 0.9580098 0.99484807 1.000000000
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Case Study: Variations explained by the PCs

library(factoextra)
fviz_eig(pcairis, addlabels = TRUE)

Scree plot
72.8%

60~

Percentage of explained variances

Dimensions
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Case Study: Individuals’ representaion

fviz_pca_ind(pcairis)

Individuals - PCA
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Case Study: Features representation

fviz_pca_var(pcairis, col.var = "black")
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Case Study: the Biplot

fviz_pca_biplot(pcairis)

PCA- Biplot

sepal_width

Dim2 (23%)

0
Dim1 (72.8%)
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Case Study: Contribution of variables

Contribution of variables to Dim-1 Contribution of variables to Dim-2
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Limitations of linear methods for dimensionality reduction

Cercles imbriqués Analyse en principales Analyse factorielle discrimi

» There is no linear transformation that could separate the two circles.

» = non linear methods.
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Nonlinear dimension reduction methods
(manifold learning)




What is a manifold ?

» In non technical terms, a manifold is a continuous geometrical structure having finite dimension: a
line, a curve, a plane, a surface, a sphere, a ball, a cylinder, a torus, a “blob". ..

» It is a generic term used by mathematicians to say “a curve” (dimension 1) or “surface”
(dimension 2), or a 3D object (dimension 3)... for any possible finite dimension n

» A manifold is often described by an equation the set of points (x,y) such as x> + y2 =1 is a one
dimensional manifold (a circle).

» In ML, “manifold hypothesis” says “high dimensional data are points in a low dimensional
manifold with high dimensional noise added”.
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What is manifold learning ?

LLE

I el
\
N

SNE uMaP

L e @

=

“10-05 00 o5 4,4 O'%'g

Nonlinear subspaces

» The dataset often lies in a nonlinear subspace (a manifold) of RP.

» Manifold learning method aim at recovering this low dimensional manifold.

» Example above of 2D manifold in a 3D ambient space and the projection of the samples in 2D for
different methods (colors only to check that the relation between samples are preserved).

Manifold learning problems

» Projection: Project dataset in low dimension (visualization).
» Inductive: Learn a nonlinear projection function.
» Inductive+Invertible: Learn both projection and reconstruction nonlinear functions.
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Manifold Learning methods

Contents [nide]
1 Related linear decomposition methods
2 Applications of NLDR
3 Important concepts
3.1 Sammon's mapping
3.2 Self-organizing map
3.3 Kemel principal component analysis.
3.4 Principal curves and manifolds
3.5 Laplacian eigenmaps
3.6 Isomap
3.7 Locally-iinear embedding
3.7.1 Hessian Locally-Linear Embedding (Hessian LLE)
3.7.2 Modified Locally-Linear Embedding (MLLE)
3.8 Local tangent space alignment
3.9 Maximum variance unfolding
3.10 Autoencoders
3.1 Gaussian process latent variable models
3.12 tdistributed stochastic neighbor embedding
4 Other algorithms
4.1 Relational perspective map
4.2 Contagion maps
4.3 Curvilinear component analysis
4.4 Curvilinear distance analysis
4.5 Diteomorphic dimensionality reduction
4.6 Manifold alignment
4.7 Diffusion maps
4.8 Local multidimensional scaling
4.9 Nonlinear PCA
4.10 Data-driven high-dimensional scaling
4.11 Manifold sculpting
412 RankVisu
4.13 Topologically constrained isometric embedding
4.14 Uniform manifold approximation and projection
5 Methods based on proximity matrices
6 See also
7 References
8 External links
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Kernel PCA (KPCA)

| ,  Kemnel PCA (linear=PCA)  Kernel PCA (Gaussian, h=0.1)  Kernel PCA (Gaussian, h=1)
‘ ]
1 T -1
| —
= bzso
“10-05 00 o5 4 u.%'Js

» Perform PCA in a high-dimensional non-linear embedding ¢(x) of the data.

Principle

» Embedding is implicit, thanks to the use of a kernel k(x, x/) =< ¢(x), d(x/) >, only the kernel
matrix between samples is necessary. This is called the “kernel trick” (used also for SVM
classification).

» Inductive method, reconstruction is possible but requires solving an inverse problem.

» Classical kernels are linear kernel (equivalent to PCA) and Gaussian kernel (Radial Basis Function
RBF in Sckikit-learn).

» LLE and ISOMAP are actually special cases of KPCA with specifically designed kernels.

» Scikit-learn implementation: sklearn.decomposition.KernelPCA.
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T-distributed Stochastic Neighbor
Embedding (t-SNE)




t-SNE definition

Definition

» t-SNE converts similarities between data
points to joint probabilities and tries to
minimize the Kullback-Leibler divergence
between the joint probabilities of the
low-dimensional embedding and the
high-dimensional data.

» t-SNE has a cost function that is not convex,
i.e. with different initializations we can get
different results.

Mohamad GHASSANY

Year | Method | Author Summary

1901 | PCA Karl Pearson First dimensionality reduc-
tion technique

2000 | Isomap | Tenenbaum, de Silva, and | First non-linear dimensional-

Langford ity reduction technique

2002 | SNE Hinton and Roweis Original SNE algorithm

2008 | tSNE Maaten and Hinton Addressed the crowding issue
of SNE, O(N?)

2014 | BHt-SNE | Maaten Using BarnesHut approxima-
tion to achieve O(N log(N))

2017 Linderman and Steinerberger | First step towards theoretical
guarantee for t-SNE

2017 | Fit-SNE | Linderman et al. Acceleration to O(N)

2018 Arora et al. Theoretical guarantee for t-
SNE

2018 Verma et al. Generalization of t-SNE to

se01d
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Brief history of SNE

» Suppose we have high-dimensional data set X ={xg, X2, ...,x}, and we want to reduce the
dimension into two or three-dimensional data Y ={y1,y»,...,yn} that can be displayed in a
scatterplot.

» The low-dimensional data representation Y is referred as a map, and to the low-dimensional
representations y; of individual data points as map points.

» Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean
distances between datapoints into conditional probabilities that represent similarities.

» The similarity of datapoint x; to datapoint x; is the conditional probability, pjj, that x; would
pick x; as its neighbor if neighbors were picked in proportion to their probability density under a
Gaussian centered at x;

» For nearby datapoints, p;; is relatively high, whereas for widely separated datapoints, p;j; will be
almost infinitesimal.
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Brief history of SNE

¥
- exp(=|ixi — x;[|*/20%)
Tk s exp(=[|xk — x[[2/202)

» 0y is the variance of the Gaussian that is centered on datapoint x;.
2
exp (= Iy — y; 1)
2
s e (Il — vl

» SNE aims to find a low-dimensional data representation that minimizes the mismatch between p;;

» The similarity of map point y; to map point y; is modelled by: q;; =

and gjji.-
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J@L gFrei Brief history of SNE

» SNE minimizes the sum of Kullback-Leibler divergences over all datapoints using a gradient
descent method. The cost function C is given by: C = Z KL (Pi]|Q1) = Z Zpﬂi log %
i i i

» Pi={p1i.P2i .-, Pni} and Qi = {1, qoji, - ... qni } are the distributions on the neighbors of
datapoint 1i.

Selection of o;

» In dense regions, a smaller value of oy is usually more appropriate than in sparser regions.

» SNE performs a binary search for the value of o; that produces a P; with a fixed perplexity that is
specified by the user. The perplexity is defined as: Perp(P;) = 2H(Pt) where H(P;) is the Shannon
entropy of Pi: H(Pi) = —3_; pjjilogapji

» Therefore, for denser data, greater perplexity should be chosen, which would result in a smaller o;
and neighborhood size.

» As well as SNE preserves local relationships, it suffers from the “crowding problem”: The area of
the 2D map that is available to accommodate moderately distant data points will not be large
enough compared with the area available to accommodate nearby data points.

Mohamad GHASSANY T-distributed Stochastic Neighbor Embedding (t-SNE)

34 /36



From SNE to t-SNE

» To address the crowding problem and make SNE more robust to outliers, t-SNE was introduced.
» Compared to SNE, t-SNE has two main changes:

1. a symmetrized version of the SNE cost function with simpler gradients

2. a Student-t distribution rather than a Gaussian to compute the similarity in the low-dimensional space
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to alleviate the crowding problem.

SNE =

Modelisation:
exp(—[lxi—x1/207)
Seps xp(—xi—x[F/257)
_ __ee=lyi—yl?)
9l = 55, b~ Ty~

Pjli =

Cost Function:
€ =3 KL(P|Q)

Derivatives:

9 =2 (pyi — i + Py — )i = %)

Symmetric SNE

Modelisation:
i+Pi

Pij = Pl‘znpj
exp(=[lyi~ylI?)

9% = 55, ep(~lyi—yl?)

Cost Function:
C=KL(P||Q)

Derivatives:

9 =45(ps - @i - %)

» Faster
Computa-
tion

t-SNE

Modelisation:

PjlitPi
py = PitPu

n
a5 = Atlyi—yl)*
LD PPN ¢S 727 o R

Cost Function:
C=KL(PIIQ)

Derivatives:

% =4 5(ps — @) = )1+ yi =y 1P

» Even Faster
Computation

» Better
Behaviour
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J@[ EFFEi t-SNE example: Explore a Wikipedia article embedding
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from http://colah.github.io/
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