
Machine Learning II

Session 2 : Dimensionality Reduction

Mohamad GHASSANY

EFREI PARIS

Mohamad GHASSANY 1 / 36



Course Overview



Course Information

Format:

▶ Course sessions: 6 sessions of 5 hours each.
▶ Sessions are CTP.

Course chapters:

Session 1: Supervised Learning: Discriminant Analysis
Session 2: Dimensionality Reduction
Session 3:
Session 4:
Session 5:
Session 6:
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Dimensionality Reduction

Definition
Dimensionality reduction, or dimension reduction, is the transformation of data from a
high-dimensional space into a low-dimensional space so that the low-dimensional representation
retains some meaningful properties of the original data, ideally close to its intrinsic dimension1.

1The intrinsic dimension for a data set can be thought of as the number of variables needed in a minimal representation of the
data.
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Dimensionality Reduction methods
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Dimensionality Reduction Methods:
Principal Components Analysis (PCA)



PCA: Introduction

▶ Central idea: reduce the dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in the data set.

▶ How is this achieved: by transforming to a new set of variables, the principal components (PCs),
which are uncorrelated, and which are ordered so that the first few retain most of the variation
present in all of the original variables.

▶ Each of the dimensions found by PCA is a linear combination of the p features.
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Notations and Procedure: Data

Suppose that we have a random vector of the features X with population variance-covariance matrix Σ

X =


X1

X2
...
Xp

 var(X) = Σ =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p
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Notations and Procedure: PCs

Consider the linear combinations

Y1 = a11X1 + a12X2 + · · ·+ a1pXp

Y2 = a21X1 + a22X2 + · · ·+ a2pXp

...
Yp = ap1X1 + ap2X2 + · · ·+ appXp
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Notations and Procedure: Loadings

The coefficients aij are collected into the vector

ai =


ai1

ai2
...

aip


The coefficients aij are also called loadings of the principal component i and ai is a principal
component loading vector.
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Notations and Procedure: PCs

Note that Yi is a function of our random data, and so is also random. Therefore it has a population
variance

var(Yi) =

p∑
k=1

p∑
l=1

aikailσkl = aT
i Σai

Moreover, Yi and Yj will have a population covariance

cov(Yi, Yj) =

p∑
k=1

p∑
l=1

aikajlσkl = aT
i Σaj

and a correlation

cor(Yi, Yj) =
cov(Yi, Yj)

σ2
iσ

2
j
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Notations and Procedure

Variation and trace

▶ The total variation of X is the trace2 of the variance-covariance matrix Σ.
▶ The trace of Σ is the sum of the variances of the individual variables.
▶ trace(Σ) = σ2

1 + σ2
2 + · · ·+ σ2

p

var(X) = Σ =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
...

. . .
...

σp1 σp2 . . . σ2
p



2The trace of a square matrix is the sum of its diagonal entries.
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First Principal Component (PC1): Y1

▶ The first principal component is the normalized linear combination of the features X1,X2, . . . ,Xp

that has maximum variance (among all linear combinations), so it accounts for as much variation
in the data as possible.

▶ Specifically we will define coefficients a11,a12, . . . ,a1p for that component in such a way that its
variance is maximized, subject to the constraint that the sum of the squared coefficients is equal
to one (that is what we mean by normalized). This constraint is required so that a unique answer
may be obtained.

▶ More formally, select a11,a12, . . . ,a1p that maximizes

var(Y1) = aT
1 Σa1 =

p∑
k=1

p∑
l=1

a1ka1lσkl

subject to the constraint that

p∑
j=1

a2
1j = aT

1 a1 = 1
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Second Principal Component (PC2): Y2

▶ The second principal component is the linear combination of the features X1,X2, . . . ,Xp that
accounts for as much of the remaining variation as possible, with the constraint that the
correlation between the first and second component is 0.

▶ To compute the coefficients of the second principal component, we select a21,a22, . . . ,a2p that
maximizes the variance of this new component var(Y2) = aT

2 Σa2 subject to:
• The constraint that the sums of squared coefficients add up to one,

∑p
j=1 a

2
2j = aT2 a2 = 1.

• Along with the additional constraint that these two components will be uncorrelated with one
another: cov(Y1,Y2) = 0
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ith Principal Component (PCi): Yi

▶ All subsequent principal components have this same property: they are linear combinations that
account for as much of the remaining variation as possible and they are not correlated with the
other principal components.

▶ We select ai1,ai2, . . . ,aip that maximizes var(Yi)

subject to the constraint that the sums of squared coefficients add up to one, along with the additional
constraint that this new component will be uncorrelated with all the previously defined components:

p∑
j=1

a2
ijaT

i ai = aT
i ai = 1

cov(Y1, Yi) = 0, cov(Y2, Yi) = 0, . . . , cov(Yi−1, Yi) = 0

Therefore all principal components are uncorrelated with one another.
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How do we find the coefficients aij?

▶ How do we find the coefficients aij (loadings) for a principal component?
▶ The solution involves the eigenvalues and eigenvectors of the variance-covariance matrix Σ.

▶ Let λ1, . . . , λp denote the eigenvalues of the variance-covariance matrix Σ. These are ordered so
that λ1 has the largest eigenvalue and λp is the smallest: λ1 ⩾ λ2 ⩾ · · · ⩾ λp

▶ We are also going to let the vectors a1, . . . , ap denote the corresponding eigenvectors.

▶ It turns out that the elements for these eigenvectors will be the coefficients of the principal
components.

▶ The variance for the i-th principal component is equal to the i-th eigenvalue.

var(Yi) = var(ai1X1 + ai2X2 + . . .aipXp) = λi

▶ Moreover, the principal components are uncorrelated with one another: cov(Yi, Yj) = 0
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Proportion of the total variation

▶ Earlier in the chapter we defined the total variation of X as the trace of the variance-covariance
matrix. This is also equal to the sum of the eigenvalues as shown below:

trace(Σ) = σ2
1 + σ2

2 + · · ·+ σ2
p

= λ1 + λ2 + · · ·+ λp

▶ This will give us an interpretation of the components in terms of the amount of the full variation
explained by each component.

▶ The proportion of variation explained by the ith principal component3 is then going to be defined
as: λi

λ1 + λ2 + · · ·+ λp

▶ A related quantity is the proportion of variation explained by the first k principal component:
λ1 + λ2 + · · ·+ λk

λ1 + λ2 + · · ·+ λp

▶ Naturally, if the proportion of variation explained by the first k principal components is large, then
not much information is lost by considering only the first k principal components.

3In other words, the ith principal component explains the following proportion of the total variation
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Procedure

▶ Compute the eigenvalues λ̂1, λ̂2, . . . , λ̂p of the sample variance-covariance matrix S, and the
corresponding eigenvectors â1, â2, . . . , âp.

▶ Then we will define our estimated principal components using the eigenvectors as our coefficients:

Ŷ1 = â11X1 + â12X2 + · · ·+ â1pXp

Ŷ2 = â21X1 + â22X2 + · · ·+ â2pXp

...
Ŷp = âp1X1 + âp2X2 + · · ·+ âppXp

▶ This can be written for all observations and all the principal components using the matrix
formulation Ŷ = ÂX where Â is the matrix of the coefficients âij.

▶ Generally, we only retain the first k principal component which explain a “large” proportion of the
total variation.
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Standardization of the features

▶ If we use the raw data, the principal component analysis will tend to give more emphasis to the
variables that have higher variances than to those variables that have very low variances.

▶ If the variables either have different units of measurement they should be standardized (scaled)
before a principal components analysis is carried out:

Zij =
Xij − x̄j

σj

Note: Zj has mean = 0 and variance = 1.

Variance-covariance matrix and correlation matrix

▶ The variance-covariance matrix of the standardized data is equal to the correlation matrix for the
unstandardized data.

▶ Therefore, principal component analysis using the standardized data is equivalent to principal
component analysis using the correlation matrix.
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Case Study: the Iris Dataset

The Iris flower dataset or Fisher’s Iris dataset is
a multivariate data set introduced by the British
statistician and biologist Ronald Fisher in his 1936
paper. The data set consists of 50 samples from
each of three species of Iris. Four features were
measured from each sample.
The three species in the Iris dataset are:

1. Iris-setosa (n1 = 50)
2. Iris-versicolor (n2 = 50)
3. Iris-virginica (n3 = 50)

And the four features in Iris dataset are:
1. sepal length in cm
2. sepal width in cm
3. petal length in cm
4. petal width in cm
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Case Study: the Iris Dataset
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Case Study: the summary

pcairis=princomp(iris[,-5], cor=T)

summary(pcairis)

## Importance of components:
## Comp.1 Comp.2 Comp.3 Comp.4
## Standard deviation 1.7061120 0.9598025 0.38386622 0.143553848
## Proportion of Variance 0.7277045 0.2303052 0.03683832 0.005151927
## Cumulative Proportion 0.7277045 0.9580098 0.99484807 1.000000000
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Case Study: Variations explained by the PCs

library(factoextra)
fviz_eig(pcairis, addlabels = TRUE)
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Case Study: Individuals’ representaion

fviz_pca_ind(pcairis)
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Case Study: Features representation

fviz_pca_var(pcairis, col.var = "black")
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Case Study: the Biplot

fviz_pca_biplot(pcairis)
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Case Study: Contribution of variables
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Limitations of linear methods for dimensionality reduction

▶ There is no linear transformation that could separate the two circles.
▶ ⇒ non linear methods.
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Nonlinear dimension reduction methods
(manifold learning)



What is a manifold ?

▶ In non technical terms, a manifold is a continuous geometrical structure having finite dimension: a
line, a curve, a plane, a surface, a sphere, a ball, a cylinder, a torus, a “blob”. . .

▶ It is a generic term used by mathematicians to say “a curve” (dimension 1) or “surface”
(dimension 2), or a 3D object (dimension 3). . . for any possible finite dimension n

▶ A manifold is often described by an equation the set of points (x,y) such as x2 + y2 = 1 is a one
dimensional manifold (a circle).

▶ In ML, “manifold hypothesis” says “high dimensional data are points in a low dimensional
manifold with high dimensional noise added”.
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What is manifold learning ?

Nonlinear subspaces

▶ The dataset often lies in a nonlinear subspace (a manifold) of Rp.
▶ Manifold learning method aim at recovering this low dimensional manifold.
▶ Example above of 2D manifold in a 3D ambient space and the projection of the samples in 2D for

different methods (colors only to check that the relation between samples are preserved).

Manifold learning problems

▶ Projection: Project dataset in low dimension (visualization).
▶ Inductive: Learn a nonlinear projection function.
▶ Inductive+Invertible: Learn both projection and reconstruction nonlinear functions.
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Manifold Learning methods
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Kernel PCA (KPCA)

Principle

▶ Perform PCA in a high-dimensional non-linear embedding ϕ(x) of the data.
▶ Embedding is implicit, thanks to the use of a kernel k(x, x′) =< ϕ(x),ϕ(x′) >, only the kernel

matrix between samples is necessary. This is called the “kernel trick” (used also for SVM
classification).

▶ Inductive method, reconstruction is possible but requires solving an inverse problem.
▶ Classical kernels are linear kernel (equivalent to PCA) and Gaussian kernel (Radial Basis Function

RBF in Sckikit-learn).
▶ LLE and ISOMAP are actually special cases of KPCA with specifically designed kernels.
▶ Scikit-learn implementation: sklearn.decomposition.KernelPCA.
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T-distributed Stochastic Neighbor
Embedding (t-SNE)



t-SNE definition

Definition

▶ t-SNE converts similarities between data
points to joint probabilities and tries to
minimize the Kullback-Leibler divergence
between the joint probabilities of the
low-dimensional embedding and the
high-dimensional data.

▶ t-SNE has a cost function that is not convex,
i.e. with different initializations we can get
different results.
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Brief history of SNE

▶ Suppose we have high-dimensional data set X = {x1, x2, . . . , xn}, and we want to reduce the
dimension into two or three-dimensional data Y = {y1,y2, . . . ,yn} that can be displayed in a
scatterplot.

▶ The low-dimensional data representation Y is referred as a map, and to the low-dimensional
representations yi of individual data points as map points.

▶ Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional Euclidean
distances between datapoints into conditional probabilities that represent similarities.

▶ The similarity of datapoint xj to datapoint xi is the conditional probability, pj|i, that xi would
pick xj as its neighbor if neighbors were picked in proportion to their probability density under a
Gaussian centered at xi

▶ For nearby datapoints, pj|i is relatively high, whereas for widely separated datapoints, pj|i will be
almost infinitesimal.
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Brief history of SNE

▶ σi is the variance of the Gaussian that is centered on datapoint xi.

▶ The similarity of map point yj to map point yi is modelled by: qj|i =
exp

(
− ∥yi − yj∥2

)
∑

k̸=i exp
(
− ∥yi − yk∥2

)
▶ SNE aims to find a low-dimensional data representation that minimizes the mismatch between pj|i

and qj|i.
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Brief history of SNE

▶ SNE minimizes the sum of Kullback-Leibler divergences over all datapoints using a gradient
descent method. The cost function C is given by: C =

∑
i

KL (Pi∥Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i

▶ Pi =
{
p1|i,p2|i, . . . ,pn|i

}
and Qi =

{
q1|i,q2|i, . . . ,qn|i

}
are the distributions on the neighbors of

datapoint i.

Selection of σi

▶ In dense regions, a smaller value of σi is usually more appropriate than in sparser regions.
▶ SNE performs a binary search for the value of σi that produces a Pi with a fixed perplexity that is

specified by the user. The perplexity is defined as: Perp(Pi) = 2H(Pi) where H(Pi) is the Shannon
entropy of Pi: H(Pi) = −

∑
j pj|ilog2pj|i

▶ Therefore, for denser data, greater perplexity should be chosen, which would result in a smaller σi

and neighborhood size.
▶ As well as SNE preserves local relationships, it suffers from the “crowding problem”: The area of

the 2D map that is available to accommodate moderately distant data points will not be large
enough compared with the area available to accommodate nearby data points.
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From SNE to t-SNE

▶ To address the crowding problem and make SNE more robust to outliers, t-SNE was introduced.
▶ Compared to SNE, t-SNE has two main changes:

1. a symmetrized version of the SNE cost function with simpler gradients
2. a Student-t distribution rather than a Gaussian to compute the similarity in the low-dimensional space

to alleviate the crowding problem.
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t-SNE example: Explore a Wikipedia article embedding

from http://colah.github.io/
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