


De Gruyter Graduate

Schilling / Partzsch � Brownian Motion





René L. Schilling
Lothar Partzsch

Brownian Motion
An Introduction to Stochastic Processes

With a Chapter on Simulation by Björn Böttcher

De Gruyter



Mathematics Subject Classification 2010: Primary: 60-01, 60J65; Secondary: 60H05, 60H10,
60J35, 60G46, 60J60, 60J25.

ISBN 978-3-11-027889-7
e-ISBN 978-3-11-027898-9

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the internet at http://dnb.dnb.de.

© 2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston

Typesetting: PTP-Berlin Protago-TEX-Production GmbH, www.ptp-berlin.eu
Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen

Printed on acid-free paper

Printed in Germany

www.degruyter.com



Preface

Brownian motion is arguably the single most important stochastic process. Historically
it was the first stochastic process in continuous time and with a continuous state space,
and thus it influenced the study of Gaussian processes, martingales, Markov processes,
diffusions and random fractals. Its central position within mathematics is matched by
numerous applications in science, engineering and mathematical finance.

The present book grew out of several courses which we taught at the University of
Marburg and TU Dresden, and it draws on the lecture notes [141] by one of us. Many
students are interested in applications of probability theory and it is important to teach
Brownian motion and stochastic calculus at an early stage of the curriculum. Such a
course is very likely the first encounter with stochastic processes in continuous time,
following directly on an introductory course on rigorous (i. e. measure-theoretic) prob-
ability theory. Typically, students would be familiar with the classical limit theorems
of probability theory and basic discrete-time martingales, as it is treated, for example,
by Jacod & Protter Probability Essentials [88], Williams Probability with Martingales
[189], or in the more voluminous textbooks by Billingsley [11] and Durrett [50].

General textbooks on probability theory cover however, if at all, Brownian motion
only briefly. On the other hand, there is a quite substantial gap to more specialized
texts on Brownian motion which is not so easy to overcome for the novice. Our aim
was to write a book which can be used in the classroom as an introduction to Brownian
motion and stochastic calculus, and as a first course in continuous-time and continuous-
state Markov processes. We also wanted to have a text which would be both a readily
accessible mathematical back-up for contemporary applications (such as mathematical
finance) and a foundation to get easy access to advanced monographs, e. g. Karatzas &
Shreve [99], Revuz & Yor [156] or Rogers & Williams [161] (for stochastic calculus),
Marcus & Rosen [129] (for Gaussian processes), Peres & Mörters [133] (for random
fractals), Chung [23] or Port & Stone [149] (for potential theory) or Blumenthal &
Getoor [13] (for Markov processes) to name but a few.

Things the readers are expected to know: Our presentation is basically self-con-
tained, starting from ‘scratch’ with continuous-time stochastic processes. We do, how-
ever, assume some basic measure theory (as in [169]) and a first course on probability
theory and discrete-time martingales (as in [88] or [189]). Some ‘remedial’ material is
collected in the appendix, but this is really intended as a back-up.

How to read this book: Of course, nothing prevents you from reading it linearly.
But there is more material here than one could cover in a one-semester course. De-
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pending on your needs and likings, there are at least three possible selections: BM and
Itô calculus, BM and its sample paths and BM as a Markov process. The diagram on
page xi will give you some ideas how things depend on each other and how to construct
your own ‘Brownian sample path’ through this book.

Whenever special attention is needed and to point out traps & pitfalls, we have used
the sign in the margin. Also in the margin, there are cross-references to exercises at
the end of each chapter which we think fit (and are sometimes needed) at that point.1Ex. N.N.
They are not just drill problems but contain variants, excursions from and extensions
of the material presented in the text. The proofs of the core material do not seriously
depend on any of the problems.

Writing an introductory text also meant that we had to omit many beautiful top-
ics. Often we had to stop at a point where we, hopefully, got you really interested...
Therefore, we close every chapter with a brief outlook on possible texts for further
reading.

Many people contributed towards the completion of this project: First of all the
students who attended our courses and helped – often unwittingly – to shape the pre-
sentation of the material. We profited a lot from comments by Niels Jacob (Swansea)
and Panki Kim (Seoul National University) who used an early draft of the manuscript
in one of his courses. Special thanks go to our colleagues and students Björn Böttcher,
Katharina Fischer, Julian Hollender, Felix Lindner and Michael Schwarzenberger who
read substantial parts of the text, often several times and at various stages. They found
countless misprints, inconsistencies and errors which we would never have spotted.
Björn helped out with many illustrations and, more importantly, contributed Chap-
ter 20 on simulation. Finally we thank our colleagues and friends at TU Dresden and
our families who contributed to this work in many uncredited ways. We hope that they
approve of the result.

Dresden, February 2012 René L. Schilling
Lothar Partzsch

1 For the readers’ convenience there is a web page where additional material and solutions are avail-
able. The URL is http://www.motapa.de/brownian_motion/index.html
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Dependence chart
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indicate how the other topics covered in this book depend on these fast tracks. This
should help you to find your own personal sample path. Starred sections (in the grey
ovals) contain results which can be used without proof and without compromising too
much on rigour.

Getting started

For all three fast tracks you need to read Chapters 1 and 2 first. If you are not too much
in a hurry, you should choose one construction of Brownian motion from Chapter 3.
For the beginner we recommend either 3.1 or 3.2.
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This index is intended to aid cross-referencing, so notation that is specific to a single
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C1;2.I�E/ f . � ; x/ 2 C1.I / and
f .t; � / 2 C2.E/

H1 Cameron–Martin space, 175

Lp.E; �/, Lp.�/; Lp.E/ Lp space w. r. t.
the measure space .E;A; �/



Chapter 1

Robert Brown’s new thing1

If you observe plant pollen in a drop of water through a microscope, you will see an
incessant, irregular movement of the particles. The Scottish Botanist Robert Brown
was not the first to describe this phenomenon – he refers to W. F. Gleichen-Rußwurm
as the discoverer of the motions of the Particles of the Pollen [16, p. 164] – but his 1828
and 1829 papers [15, 16] are the first scientific publications investigating ‘Brownian
motion’. Brown points out that

• the motion is very irregular, composed of translations and rotations;
• the particles appear to move independently of each other;
• the motion is more active the smaller the particles;
• the composition and density of the particles have no effect;
• the motion is more active the less viscous the fluid;
• the motion never ceases;
• the motion is not caused by flows in the liquid or by evaporation;
• the particles are not animated.

Let us briefly sketch how the story of Brownian motion evolved.

Brownian motion and physics. Following Brown’s observations, several theories
emerged, but it was Einstein’s 1905 paper [57] which gave the correct explanation:
The atoms of the fluid perform a temperature-dependent movement and bombard the
(in this scale) macroscopic particles suspended in the fluid. These collisions happen
frequently and they do not depend on position nor time. In the introduction Einstein
remarks: It is possible, that the movements to be discussed here are identical with
the so-called “Brownian molecular motion”; […] If the movement discussed here can
actually be observed (together with the laws relating to it that one would expect to
find), then classical thermodynamics can no longer be looked upon as applicable with
precision to bodies even of dimensions distinguishable in a microscope: An exact de-
termination of actual atomic dimensions is then possible.2 [58, pp. 1–2]. And between

1 ‘I have some sea-mice – five specimens – in spirits. And I will throw in Robert Brown’s new thing –
“Microscopic Observations on the Pollen of Plants” – if you don’t happen to have it already.’ in:
George Eliot, Middlemarch, [59, book II, chapter xvii].

2 Es ist möglich, daß die hier zu behandelnden Bewegungen mit der sogenannten “Brownschen
Molekularbewegung” identisch sind; [...] Wenn sich die hier zu behandelnde Bewegung samt den
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the lines: This would settle the then ongoing discussion on the existence of atoms. It
was Jean Perrin who combined in 1909 Einstein’s theory and experimental observa-
tions of Brownian motion to prove the existence and determine the size of atoms, cf.
[144, 145]. Independently of Einstein, M. von Smoluchowski arrived at an equivalent
interpretation of Brownian motion, cf. [173].

Brownian motion and mathematics. As a mathematical object, Brownian motion can
be traced back to the not completely rigorous definition of Bachelier [4] who makes
no connection to Brown or Brownian motion. Bachelier’s work was only rediscovered
by economists in the 1960s, cf. [31]. The first rigorous mathematical construction of
Brownian motion is due to Wiener [185] who introduces the Wiener measure on the
space CŒ0; 1� (which he calls differential-space) building on Einstein’s and von Smolu-
chowski’s work. Further constructions of Brownian motion were subsequently given
by Wiener [186] (Fourier-Wiener series), Kolmogorov [105, 106] (giving a rigorous
justification of Bachelier [4]), Lévy [120, 121, pp. 492–494,17–20] (interpolation argu-
ment), Ciesielski [26] (Haar representation) and Donsker [39] (limit of random walks,
invariance principle), see Chapter 3.

Let us start with Brown’s observations to build a mathematical model of Brownian
motion. To keep things simple, we consider a one-dimensional setting where each
particle performs a random walk. We assume that each particle

• starts at the origin x D 0,
• changes its position only at discrete times k�t where �t > 0 is fixed and for all
k D 1; 2; : : : ;

• moves �x units to the left or to the right with equal probability;

and that

• �x does not depend on any past positions nor the current position x nor on time
t D k�t ;

Letting �t ! 0 and �x ! 0 in an appropriate way should give a random motion
which is continuous in time and space.

Let us denote by Xt the random position of the particle at time t 2 Œ0; T �. During
the time Œ0; T �, the particle has changed its position N D bT=�tc times. Since the
decision to move left or right is random, we will model it by independent, identically
distributed Bernoulli random variables, �k , k � 1, where

P.�1 D 1/ D P.�1 D 0/ D 1

2

für sie zu erwartenden Gesetzmäßigkeiten wirklich beobachten läßt, so ist die klassische Thermo-
dynamik schon für mikroskopisch unterscheidbare Räume nicht mehr als genau gültig anzusehen
und es ist dann eine exakte Bestimmung der wahren Atomgröße möglich. [57, p. 549]
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so that

SN D �1 C � � � C �N and N � SN
denote the number of right and left moves, respectively. Thus

XT D SN�x � .N � SN /�x D .2SN �N/�x D
N
X

kD1
.2�k � 1/�x

is the position of the particle at time T D N�t . Since X0 D 0 we find for any two
times t D n�t and T D N�t that

XT D .XT �Xt /C .Xt �X0/ D
N
X

kDnC1
.2�k � 1/�x C

n
X

kD1
.2�k � 1/�x:

Since the �k are iid random variables, the two increments XT � Xt and Xt � X0 are
independent and

XT �Xt � XT�t �X0
(‘�’ indicates that the random variables have the same probability distribution). We
write �2.t/ WD VXt . By Bienaymé’s identity we get

VXT D V.XT �Xt /C V.Xt �X0/ D �2.T � t /C �2.t/

which means that t 7! �2.t/ is linear:

VXT D �2.T / D �2T;

where � > 0 is the so-called diffusion coefficient. On the other hand, since E �1 D 1
2

and V �1 D 1
4

we get by a direct calculation that

VXT D N.�x/2 D T

�t
.�x/2

which reveals that
.�x/2

�t
D �2 D const.

The particle’s position XT at time T D N�t is the sum of N iid random variables,

XT D
N
X

kD1
.2�k � 1/�x D .2SN �N/�x D S�

N

p
T �;

where

S�
N D 2SN �Np

N
D SN � E SNp

V SN
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is the normalization – i. e. mean 0, variance 1 – of the random variable SN . A simple
application of the central limit theorem now shows that in distribution

XT D p
T �S�

N

N!1����������!
.i. e. �x;�t!0/

p
T �G

whereG � N.0; 1/ is a standard normal distributed random variable. This means that,
in the limit, the particle’s position BT D lim�x;�t!0XT is normally distributed with
law N.0; T�2/.

This approximation procedure yields for each t 2 Œ0; T � some random variable
Bt � N.0; t�2/. More generally

1.1 Definition. Let .	;A;P/ be a probability space. A d-dimensional stochastic pro-
cess indexed by I � Œ0;1/ is a family of random variables Xt W 	 ! Rd , t 2 I . We
write X D .Xt/t2I . I is called the index set and Rd the state space.

The only requirement of Definition 1.1 is that the Xt , t 2 I , are A=B.Rd / mea-
surable. This definition is, however, too general to be mathematically useful; more
information is needed on .t; !/ 7! Xt .!/ as a function of two variables. Although the
family .Bt/t2Œ0;T � satisfies the condition of Definition 1.1, a realistic model of Brow-
nian motion should have at least continuous trajectories: For all ! the sample path
Œ0; T � 3 t 7! Bt.!/ should be a continuous function.

1.2 Definition. A d -dimensional Brownian motion B D .Bt/t�0 is a stochastic pro-
cess indexed by Œ0;1/ taking values in Rd such that

B0.!/ D 0 for almost all !; (B0)

Btn � Btn�1
; : : : ; Bt1 � Bt0 are independent

for all n � 0; 0 D t0 � t1 < t2 < � � � < tn < 1;
(B1)

Bt � Bs � BtCh � BsCh for all 0 � s < t; h � �s; (B2)

Bt � Bs � N.0; t � s/˝d ; N.0; t/.dx/ D 1p
2
t

exp

�

�x
2

2t

�

dx; (B3)

t 7! Bt.!/ is continuous for all !: (B4)

We use BMd as shorthand for d -dimensional Brownian motion.

We will also speak of a Brownian motion if the index set is an interval of the form
Œ0; T / or Œ0; T �. We say that .Bt C x/t�0, x 2 Rd , is a d -dimensional Brownian
motion started at x. Frequently we write B.t; !/ and B.t/ instead of Bt .!/ and Bt ;
this should cause no confusion.
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By definition, Brownian motion is an Rd -valued stochastic process starting at the
origin (B0) with independent increments (B1), stationary increments (B2) and contin-
uous paths (B4).

We will see later that this definition is redundant: (B0)–(B3) entail (B4) at least
for almost all !. On the other hand, (B0)–(B2) and (B4) automatically imply that the
increment B.t/ � B.s/ has a (possibly degenerate) Gaussian distribution (this is a
consequence of the central limit theorem).

Before we discuss such details, we should settle the question, if there exists a process
satisfying the requirements of Definition 1.2.

1.3 Further reading. A good general survey on the history of continuous-time sto-
chastic processes is the paper [29]. The role of Brownian motion in mathematical fi-
nance is explained in [6] and [31]. Good references for Brownian motion in physics
are [130] and [135], for applications in modelling and engineering [125].

[6] Bachelier, Davis (ed.), Etheridge (ed.): Louis Bachelier’s Theory of Speculation:
The Origins of Modern Finance.

[29] Cohen: The history of noise.
[31] Cootner (ed.): The Random Character of Stock Market Prices.

[125] MacDonald: Noise and Fluctuations.
[130] Mazo: Brownian Motion.
[135] Nelson: Dynamical Theories of Brownian Motion.

Problems

Recall that a sequence of random variables Xn W 	 ! Rd converges weakly (also:

in distribution or in law) to a random variable X , Xn
d�! X if, and only if for all

bounded and continuous functions f 2 Cb.R
d / limn!1 E f .Xn/ D E f .X/.

This is equivalent to the convergence of the characteristic functions
limn!1 E eih�;Xni D E eih�;Xi for all � 2 Rd .

1. Let X; Y;Xn; Yn W 	 ! R, n � 1, be random variables.

(a) If, for all n � 1, Xn ?? Yn and if .Xn; Yn/
d�! .X; Y /, then X ?? Y .

(b) Let X ?? Y such that X; Y � ˇ1=2 WD 1
2
.ı0 C ı1/ are Bernoulli random

variables. We set Xn WD X C 1
n

and Yn WD 1 �Xn. Then Xn
d�! X , Yn

d�! Y ,

Xn C Yn
d�! 1 but .Xn; Yn/ does not converge weakly to .X; Y /.

(c) Assume that Xn
d�! X and Yn

d�! Y . Is it true that Xn C Yn
d�! X C Y ?

2. (Slutsky’s Theorem) Let Xn; Yn W 	 ! Rd , n � 1, be two sequences of random

variables such that Xn
d�! X and Xn � Yn P�! 0. Then Yn

d�! X .
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3. (Slutsky’s Theorem 2) Let Xn; Yn W 	 ! R, n � 1, be two sequences of random
variables.

(a) If Xn
d�! X and Yn

P�! c, then XnYn
d�! cX . Is this still true if Yn

d�! c?

(b) If Xn
d�! X and Yn

P�! 0, then Xn C Yn
d�! X . Is this still true if Yn

d�! 0?

4. Let Xn; X; Y W 	 ! R, n � 1, be random variables. If for all f 2 Cb.R/ and
g 2 Bb.R/

lim
n!1 E.f .Xn/g.Y // D E.f .X/g.Y //

holds, then .Xn; Y /
d�! .X; Y /. If X D �.Y / for some � 2 B.R/, then Xn

P�! X .

5. Let ıj , j � 1, be iid Bernoulli random variables with P.ıj D ˙1/ D 1=2. We set

S0 WD 0; Sn WD ı1 C � � � C ın and Xn
t WD 1p

n
Sbntc:

A one-dimensional random variable G is Gaussian if it has the characteristic func-
tion E ei�G D exp.im� � 1

2
�2�2/ with m 2 R and � � 0. Prove that

(a) Xn
t

d�! Gt where t > 0 and Gt is a Gaussian random variable.

(b) Xn
t �Xn

s

d�! Gt�s where t � s � 0 and Gu is a Gaussian random variable. Do
we have Gt�s D Gt �Gs?

(c) Let 0 � t1 � � � � � tm, m � 1. Determine the limit as n ! 1 of the random
vector .Xn

tm
�Xn

tm�1
; : : : ; Xn

t2
�Xn

t1
; Xn

t1
/.

6. Consider the condition

for all s < t the random variables
B.t/ � B.s/p

t � s are

identically distributed, centered and square integrable.
(B30)

Show that (B0), (B1), (B2), (B3) and (B0), (B1), (B2), (B30) are equivalent.
Hint: If X � Y , X ?? Y and X � 1p

2
.X C Y /, then X � N.0; 1/, cf. Rényi [153,

VI.5 Theorem 2].



Chapter 2

Brownian motion as a Gaussian process

Recall that a one-dimensional random variable  is Gaussian if it has the characteristic
function

E ei�� D eim�� 1
2
�2�2

(2.1)

for some real numbers m 2 R and � � 0. If we differentiate (2.1) two times with
respect to � and set � D 0, we see that

m D E  and �2 D V : (2.2)

A random vector  D .1; : : : ; n/ 2 Rn is Gaussian, if h`; i is for every ` 2 Rn a
one-dimensional Gaussian random variable. This is the same as to say that

E eih�;�i D ei Eh�;�i� 1
2

Vh�;�i: (2.3)

Setting m D .m1; : : : ; mn/ 2 Rn and † D .�jk/j;kD1:::;n 2 Rn�n where

mj WD E j and �jk WD E.j �mj /.k �mk/ D Cov.j ; k/;

we can rewrite (2.3) in the following form

E eih�;�i D eih�;mi� 1
2

h�;†�i: (2.4)

We call m the mean vector and † the covariance matrix of  .

2.1 The finite dimensional distributions

Let us quickly establish some first consequences of the definition of Brownian mo-
tion. To keep things simple, we assume throughout this section that .Bt /t�0 is a one-
dimensional Brownian motion.

2.1 Proposition. Let .Bt/t�0 be a one-dimensional Brownian motion. ThenBt , t � 0, Ex. 2.1
are Gaussian random variables with mean 0 and variance t :

E ei�Bt D e�t �2=2 for all t � 0; � 2 R: (2.5)



8 Chapter 2 Brownian motion as a Gaussian process

Proof. Set �t.�/ D E ei�Bt . If we differentiate �t with respect to �, and use integration
by parts we get

�0
t .�/ D E

�

iBte
i�Bt

�

(B3)D 1p
2
t

Z

R

eix� .ix/e�x2=.2t/ dx

D 1p
2
t

Z

R

eix� .�i t / d
dx

e�x2=.2t/ dx

partsD �t� 1p
2
t

Z

R

eix� e�x2=.2t/ dx

D �t� �t .�/:

Since �t .0/ D 1, (2.5) is the unique solution of the differential equation

� 0
t .�/

�t .�/
D �t�

From the elementary inequality 1 � exp.Œy
2

� c�2/ we see that ecy � ec2

ey
2=4 for

all c; y 2 R. Therefore, ecye�y2=2 � ec
2

e�y2=4 is integrable. Considering real and
imaginary parts separately, it follows that the integrals in (2.5) converge for all � 2 C

and define an analytic function.

2.2 Corollary. A one-dimensional Brownian motion .Bt/t�0 has exponential moments
of all orders, i. e.

E e�Bt D et �
2=2 for all � 2 C: (2.6)

2.3 Moments. Note that for k D 0; 1; 2; : : :

E.B2kC1
t / D 1p

2
t

Z

R

x2kC1 e�x2=.2t/ dx D 0 (2.7)

and

E.B2kt / D 1p
2
t

Z

R

x2k e�x2=.2t/ dx

xDp
2tyD 2p

2
t

Z 1

0

.2ty/k e�y 2t dy

2
p
2ty

D 2k tkp



Z 1

0

yk�1=2 e�y dy

D tk
2k .k C 1=2/p




(2.8)

where . � / denotes Euler’s Gamma function. In particular,

EBt D EB3t D 0; VBt D EB2t D t and EB4t D 3t2:
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2.4 Covariance. For s; t � 0 we have

Cov.Bs ; Bt/ D EBsBt D s ^ t:

Indeed, if s � t ,

EBsBt D E
�

Bs.Bt � Bs/
�C E.B2s /

(B1)D
2:3
s D s ^ t:

2.5 Definition. A one-dimensional stochastic process .Xt/t�0 is called a Gaussian
process if all vectors  D .Xt1 ; : : : ; Xtn/, n � 1, 0 � t1 < t2 < � � � < tn are (possibly
degenerate) Gaussian random vectors.

Let us show that a Brownian motion is a Gaussian process.

2.6 Theorem. A one-dimensional Brownian motion .Bt/t�0 is a Gaussian process.
For t0 WD 0 < t1 < � � � < tn, n � 1, the vector  WD .Bt1 ; : : : ; Btn/

> is a
Gaussian random variable with a strictly positive definite, symmetric covariance matrix Ex. 2.2
C D .tj ^ tk/j;kD1:::;n and mean vector m D 0 2 Rn:

E eih�;�i D e� 1
2

h�;C�i: (2.9)

Moreover, the probability distribution of  is given by

P. 2 dx/ D 1

.2
/n=2
1p

detC
exp

�

�1
2

hx; C�1xi
�

dx (2.10a)

D 1

.2
/n=2
q

Qn
jD1.tj � tj�1/

exp

0

@�1
2

n
X

jD1

.xj � xj�1/2

tj � tj�1

1

A dx:

(2.10b)

Proof. Set � WD .Bt1 � Bt0 ; Bt2 � Bt1 ; : : : ; Btn � Btn�1
/> and observe that we can

write B.tk/ � B.t0/ D Pk
jD1.Btj � Btj �1

/. Thus,

 D

0

B

B

B

B

@

1 0 : : : 0

1
: : :

: : :
:::

:::
: : :

: : : 0

1 : : : 1 1

1

C

C

C

C

A

� D M�

whereM 2 Rn�n is a lower triangular matrix with entries 1 on and below the diagonal. Ex. 2.3
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Therefore,

E
�

exp
�

ih�; i	� D E
�

exp
�

ihM>�;�i	�
(B1)D Qn

jD1 E
�

exp
�

i.Btj � Btj �1
/.�j C � � � C �n/

	�

(B2)D
(2.5)

Qn
jD1 exp

��1
2
.tj � tj�1/.�j C � � � C �n/

2
	

:

(2.11)

Observe that

n
X

jD1
tj .�j C � � � C �n/

2 �
n
X

jD1
tj�1.�j C � � � C �n/

2

D tn�
2
n C

n�1
X

jD1
tj
�

.�j C � � � C �n/
2 � .�jC1 C � � � C �n/

2
�

D tn�
2
n C

n�1
X

jD1
tj �j .�j C 2�jC1 C � � � C 2�n/

D
n
X

jD1

n
X

kD1
.tj ^ tk/ �j �k :

(2.12)

This proves (2.9). Since C is strictly positive definite and symmetric, the inverse C�1
exists and is again positive definite; both C and C�1 have unique positive definite,
symmetric square roots. Using the uniqueness of the Fourier transform, the following
calculation proves (2.10a):

�

1

2


�n=2
1p

detC

Z

Rn

eihx;�i e� 1
2

hx;C�1xi dx

yDC�1=2xD
�

1

2


�n=2 Z

Rn

eih.C1=2y/;�i e� 1
2

jyj2 dy

D
�

1

2


�n=2 Z

Rn

eihy;C1=2�i e� 1
2

jyj2 dy

D e� 1
2

jC1=2�j2 D e� 1
2

h�;C�i:

Let us finally determine hx; C�1xi and detC . Since the entries of� are independent
N.0; tj � tj�1/ distributed random variables we get

E eih�;�i (2.5)D exp

�

� 1

2

n
X

jD1
.tj � tj�1/�2j

�

D exp

�

� 1

2
h�;D�i

�
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whereD 2 Rn�n is a diagonal matrix with entries .t1� t0; : : : ; tn� tn�1/. On the other
hand, we have

e� 1
2

h�;C�i D E eih�;�i D E eih�;M�i D E eihM>�;�i D e� 1
2

hM>�;DM>�i:

Thus, C D MDM> and, therefore C�1 D .M>/�1D�1M�1. Since M�1 is a two- Ex. 2.4
band matrix with entries 1 on the diagonal and �1 on the first sub-diagonal below the
diagonal, we see

hx; C�1xi D hM�1x;D�1M�1xi D
n
X

jD1

.xj � xj�1/2

tj � tj�1

as well as detC D det.MDM>/ D detD D Qn
jD1.tj�tj�1/. This shows (2.10b).

The proof of Theorem 2.6 actually characterizes Brownian motion among all Gaus-
sian processes.

2.7 Corollary. Let .Xt/t�0 be a one-dimensional Gaussian process such that the vector
 D .Xt1 ; : : : ; Xtn/

> is a Gaussian random variable with mean 0 and covariance
matrix C D .tj ^ tk/j;kD1;:::;n. If .Xt /t�0 has continuous sample paths, then .Xt /t�0
is a one-dimensional Brownian motion.

Proof. The properties (B4) and (B0) follow directly from the assumptions; note that
X0 � N.0; 0/ D ı0. Set � D .Xt1 � Xt0 ; : : : ; Xtn � Xtn�1

/> and let M 2 Rn�n
be the lower triangular matrix with entries 1 on and below the diagonal. Then, as in Ex. 2.3
Theorem 2.6,  D M� or� D M�1 where M�1 is a two-band matrix with entries
1 on the diagonal and �1 on the first sub-diagonal below the diagonal. Since  is
Gaussian, we see

E eih�;�i D E eih�;M�1�i D E eih.M�1/>�;�i (2.9)D e� 1
2

h.M�1/>�;C.M�1/>�i

D e� 1
2

h�;M�1C.M�1/>�i:

A straightforward calculation shows that M�1C.M�1/> is just

0

B

B

B

B

@

1

�1 : : :

: : :
: : :

�1 1

1

C

C

C

C

A

0

B

B

B

B

@

t1 t1 � � � t1

t1 t2 � � � t2
:::

:::
: : :

:::

t1 t2 � � � tn

1

C

C

C

C

A

0

B

B

B

B

@

1 �1
: : :

: : :

: : : �1
1

1

C

C

C

C

A

D

0

B

B

B

B

@

t1 � t0
t2 � t1

: : :

tn � tn�1

1

C

C

C

C

A

:

Thus, � is a Gaussian random vector with uncorrelated, hence independent, compo-
nents which are N.0; tj � tj�1/ distributed. This proves (B1), (B3) and (B2).
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2.2 Invariance properties of Brownian motion

The fact that a stochastic process is a Brownian motion is preserved under various
operations at the level of the sample paths. Throughout this section .Bt /t�0 denotes a
d -dimensional Brownian motion.

2.8 Reflection. If .Bt/t�0 is a BMd , so is .�Bt /t�0.Ex. 2.10

2.9 Renewal. Let .B.t//t�0 be a Brownian motion and fix some time a > 0. Then
.W.t//t�0, W.t/ WD B.t C a/ � B.a/, is again a BMd . The properties (B0) and (B4)
are obvious for W.t/. For all s � t

W.t/ �W.s/ D B.t C a/ � B.a/ � .B.s C a/ � B.a//
D B.t C a/ � B.s C a/

(B3)� N.0; t � s/
which proves (B3) and (B2) for the process W . Finally, if t0 D 0 < t1 < � � � < tn,
then

W.tj / �W.tj�1/ D B.tj C a/ � B.tj�1 C a/ for all j D 1; : : : ; n

i. e. the independence of theW -increments follows from (B1) forB at the times tj Ca,
j D 1; : : : ; d .

t

Bt

t

Wt

a

Figure 2.1. Renewal at time a.

A consequence of the independent increments property is that a Brownian motion
has no memory. This is the essence of the next lemma.
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2.10 Lemma (Markov property of BM). Let .B.t//t�0 be a BMd and denote by Ex. 2.9
W.t/ WD B.t C a/�B.a/ the shifted Brownian motion constructed in Paragraph 2.9.
Then .B.t//0�t�a and .W.t//t�0 are independent, i. e. the � -algebras generated by
these processes are independent:

�
�

B.t/ W 0 � t � a� DW FBa ?? FW1 WD �
�

W.t/ W 0 � t < 1�

: (2.13)

In particular, B.t/ � B.s/?? FBs for all 0 � s < t .

Proof. Let X0; X1; : : : ; Xn be d -dimensional random variables. Then

�.Xj W j D 0; : : : ; n/ D �.X0; Xj �Xj�1 W j D 1; : : : ; n/: (2.14)

Since X0 and Xj �Xj�1 are �.Xj W j D 0; : : : ; n/ measurable, we see the inclusion
‘�’. For the converse we observe that Xk D Pk

jD1.Xj �Xj�1/CX0, k D 0; : : : ; n.
Let 0 D s0 < s1 < � � � < sm D a D t0 < t1 < � � � < tn. By (B1) the random

variables

B.s1/ � B.s0/; : : : ; B.sm/ � B.sm�1/; B.t1/ � B.t0/; : : : ; B.tn/ � B.tn�1/

are independent, thus

�
�

B.sj / � B.sj�1/ W j D 1; : : : ; m
�?? �

�

B.tk/ � B.tk�1/ W k D 1; : : : ; n
�

:

Using W.tk � t0/�W.tk�1 � t0/ D B.tk/� B.tk�1/ and B.0/ D W.0/ D 0, we can
apply (2.14) to get

�
�

B.sj / W j D 1; : : : ; m
�?? �

�

W.tk � t0/ W k D 1; : : : ; n
�

and
[

0<s1<���<sm�a
m�1

�
�

B.sj / W j D 1; : : : ; m
�??

[

0<u1<���<un

n�1

�
�

W.uk/ W k D 1; : : : ; n
�

:

The families on the left and right-hand side are \-stable generators of FBa and FW1,
respectively, thus FBa ?? FW1.

Finally, taking a D s, we see thatB.t/�B.s/ D W.t �s/which is FW1 measurable
and therefore independent of FBs .

2.11 Time inversion. Let .Bt/t�0 be a Brownian motion and fix some time a > 0. Ex. 2.14
ThenWt WD Ba�t�Ba, t 2 Œ0; a�, is again a BMd . This follows as in 2.9 (see Fig. 2.2).

2.12 Scaling. For all c > 0 and t > 0 we have Bct � c1=2Bt . In particular, Ex. 2.10
.c�1=2Bct/t�0 is again a BMd .

Denote by N.0; t/ the normal law with mean 0 and variance t . The first assertion
follows easily from (B0) and (B3) as N.0; ct/ D c1=2 N.0; t/, i. e.

Bct � N.0; ct/˝d D c1=2 N.0; t/˝d � c1=2Bt :
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t

Bt

t

Wt

a

Figure 2.2. Time inversion.

The second claim is now obvious since scaling does not change the independence of
the increments or the continuity of the sample paths.

2.13 Projective reflection at t D 1. Let .Bt/t�0 be a BMd . ThenEx. 2.15
Ex. 2.12

W.t/ WD
´

t B
�

1
t

�

; t > 0;

0; t D 0

is again a BMd .
It is clear that .W.t1/; : : : ; W.tn// is for 0 < t1 < � � � < tn a Gaussian random

vector. The mean is 0, and the covariance is given by

Cov.W.tj /;W.tk// D Cov
�

tjB
�

1
tj

�

; tkB
�

1
tk

�� D tj tk

�

1
tj

^ 1
tk

�

D tj ^ tk:

As t 7! Wt , t > 0, is continuous, Corollary 2.7 shows that .Wt /t>0 satisfies (B1)–
(B4) on .0;1/. All that remains to be shown is limt#0W.t/ D W.0/ D 0, i. e. the
continuity of the sample paths at t D 0.

Note that the limit limt!0W.t; !/ D 0 if, and only if,

8n � 1 9m � 1 8 r 2 Q \ �

0; 1
m

	 W ˇˇrB� 1
r

�

ˇ

ˇ � 1
n
:

Thus,
	W WD

°

lim
t!0

W.t/ D 0
±

D
\

n�1

[

m�1

\

r2Q\.0;1=m�

®jW.r/j � 1
n

¯

:

We know already that .Wt/t>0 and .Bt /t>0 have the same finite dimensional distribu-
tions. Since	W and the analogously defined set	B are determined by countably many
sets of the form

®jW.r/j � 1
n

¯

and
®jB.r/j � 1

n

¯

, we conclude that P.	W / D P.	B/.
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Consequently,

P.	W / D P.	B/
(B4)D P.	/ D 1:

This shows that .Wt /t�0 is, on the smaller probability space .	W ;P; 	W \ A/
equipped with the trace � -algebra 	W \A, a Brownian motion.

2.3 Brownian Motion in Rd

We will now show thatBt D .B1t ; : : : ; B
d
t / is a BMd if, and only if, its coordinate pro-

cessesBjt are independent one-dimensional Brownian motions. We call two stochastic
processes .Xt /t�0 and .Yt /t�0 (defined on the same probability space) independent, Ex. 2.18
if the � -algebras generated by these processes are independent:

FX1 ?? FY1 (2.15)

where

FX1 WD �

�

[

n�1

[

0�t1<���<tn<1
�
�

X.tj /; : : : ; X.tn/
�

�

: (2.16)

Note that the family of sets
S

n

S

t1;:::;tn
�.X.t1/; : : : ; X.tn// is stable under finite in-

tersections. Therefore, (2.15) follows already if Ex. 2.16
Ex. 2.17

.X.s1/; : : : ; X.sn//?? .Y.t1/; : : : ; Y.tm//

for all m; n � 1, s1 < � � � < sm and t1 < � � � < tn. Without loss of generality we
can even assume that m D n and sj D tj for all j . This follows easily if we take the
common refinement of the sj and tj .

The following simple characterization of d -dimensional Brownian motion will be
very useful for our purposes.

2.14 Lemma. Let .Xt/t�0 be a d -dimensional stochastic process. X satisfies (B0)– Ex. 2.19
(B3) if, and only if, for all n � 0, 0 D t0 < t1 < � � � < tn, and �0; : : : ; �n 2 Rd

E




exp

�

i

n
X

jD1
h�j ; Xtj �Xtj �1

i C ih�0; Xt0i
��

D exp

�

� 1

2

n
X

jD1
j�j j2.tj � tj�1/

�

(2.17)
holds. If X has continuous sample paths, it is a BMd .
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Proof. Assume thatX satisfies (B0)–(B3). Since the characteristic function of a Gaus-
sian N.0; .t � s/Id /-random variable is exp.� 1

2
.t � s/j�j2/, we get

E




exp

�

i

n
X

jD1
h�j ; Xtj �Xtj �1

i C ih�0; Xt0i
��

(B1)D
(B0)

n
Y

jD1
EŒexp.ih�j ; Xtj �Xtj �1

i/�

(B2)D
n
Y

jD1
EŒexp.ih�j ; Xtj �tj �1

i/�

(B3)D
n
Y

jD1
exp

�

�1
2
.tj � tj�1/j�j j2

�

:

Conversely, assume that (2.17) holds. Fix k 2 ¹0; 1; : : : ; nº and pick �j D 0 for all
j ¤ k. Then

E Œexp .ih�k; Xtk �Xtk�1
i/� D e� 1

2
j�k j2.tk�tk�1/ D E Œexp .ih�k; Xtk�tk�1

i/� :

This proves (B2), (B3) and, if we take n D k D 0, also (B0). Since Xtj � Xtj �1
�

N.0; .tj � tj�1/Id /, (2.17) shows that the increments Xt1 � Xt0 ; : : : ; Xtn � Xtn�1
are

independent, i. e. (B1).

2.15 Corollary. Let B be a d -dimensional Brownian motion. Then the coordinate
processes Bj , j D 1; : : : ; d , are independent BM1.

Proof. Fix n � 1 and t0 D 0 < t1 < � � � < tn < 1. Since B is a BMd , it satisfies
(2.17) for all �1; : : : ; �n 2 Rd . If we take �j D zj ek where ek is the kth unit vector
of Rd , we see that Bk satisfies (2.17) for all z1; : : : ; zn 2 R. Since Bk inherits the
continuity of its sample paths fromB , Lemma 2.14 shows thatBk is a one-dimensional
Brownian motion.

In order to see the independence of the coordinate processes, we have to show that
the � -algebras .FB

1

t /t�0; : : : ; .F
Bd

t /t�0 are independent. As we have seen at the be-
ginning of the section – for two processes, but the argument stays the same for finitely
many processes – it is enough to verify that the random vectors

.Bkt1 ; : : : ; B
k
tn
/; k D 1; 2; : : : ; d;

are independent for all choices of n � 1 and t0 D 0 � t1 < � � � < tn. Since each Bkt` ,

` D 1; : : : ; n, can be written as Bkt` D P`
jD1.Bktj � Bktj �1

/, it is enough to show that

all increments .Bktj � Bktj �1
/, j D 1; : : : ; n and k D 1; : : : ; d are independent. This
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follows again with (2.17), since for all �1; : : : ; �n 2 Rd

E




exp

�

i

n
X

jD1

d
X

kD1
�kj .B

k
tj

� Bktj �1
/

��

D E




exp

�

i

n
X

jD1
h�j ; Btj � Btj �1

i
��

D exp

�

� 1

2

n
X

jD1
j�j j2.tj � tj�1/

�

D exp

�

� 1

2

n
X

jD1

d
X

kD1
.�kj /

2.tj � tj�1/
�

D
n
Y

jD1

d
Y

kD1
E exp.i�kj .B

k
tj

� Bktj �1
//:

The converse of Corollary 2.15 is also true:

2.16 Theorem. B is a BMd if, and only if, the coordinate processes B1; : : : ; Bd are
independent BM1.

Proof. Because of Corollary 2.15 it is enough to check that .B1t ; : : : ; B
d
t / is a BMd

provided the Bj are independent one-dimensional Brownian motions. Fix n � 1,
t0 D 0 < t1 < � � � < tn < 1 and �kj 2 R where j D 1; : : : ; n and k D 1; : : : d . By
assumption, each Bj satisfies (2.17), i. e. for all k D 1; : : : ; d

E




exp

�

i

n
X

jD1
�kj .B

k
tj

� Bktj �1
/

��

D exp

�

� 1

2

n
X

jD1
.�kj /

2.tj � tj�1/
�

:

Multiply the d resulting equalities; since B1; : : : ; Bd are independent, we get

E


 d
Y

kD1
exp

�

i

n
X

jD1
�kj .B

k
tj

� Bktj �1
/

��

D exp

�

� 1

2

d
X

kD1

n
X

jD1
.�kj /

2.tj � tj�1/
�

which is just (2.17) for B D .B1; : : : ; Bd / and �j D .�1j ; : : : ; �
d
j / 2 Rd (note that we

can neglect the t0-term as B.t0/ D 0). The claim follows from Lemma 2.14.

Since a d -dimensional Brownian motion is a vector of independent one-dimensional
Brownian motions, many properties of BM1 also hold for BMd , and often we need only
consider the one-dimensional setting. Things are slightly different, if the coordinate
processes are mixed:
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2.17 Definition (Q-Brownian motion). LetQ 2 Rd�d be a symmetric, positive semi-Ex. 2.24
definite d � d matrix. A Q-Brownian motion is a d -dimensional process .Xt/t�0
satisfying (B0)–(B2), (B4) and

Xt �Xs � N.0; .t � s/Q/ for all s < t: (QB3)

Clearly, BMd is an Id -BM. If .Bt /t�0 is a BMd and if† 2 Rd�d , thenXt WD †Bt
is a Q-BM with Q D ††>. This follows immediately from

E eih�;Xt i D E eih†>�;Bt i D e� 1
2

j†>�j2 D e� 1
2

h�;††>�i;

since the map x 7! †x does not destroy the properties (B0)–(B2) and (B4).
The same calculation shows that any Q-BM .Xt /t�0 with a non-degenerate (i. e.

strictly positive definite)Q is of the form†Bt where† is the unique positive definite
square root of Q and .Bt /t�0 is some BMd .

Since for Gaussian random vectors ‘independent’ and ‘not correlated’ coincide, it
is easy to see that aQ-BM has independent coordinates if, and only if,Q is a diagonal
matrix.

2.18 Further reading. The literature on Gaussian processes is quite specialized and
technical. Among the most accessible monographs are [129] (with a focus on the
Dynkin isomorphism theorem and local times) and [123]. The seminal, and still highly
readable, paper [44] is one of the most influential original contributions in the field.

[44] Dudley, R. M.: Sample functions of the Gaussian process.
[123] Lifshits, M. A.: Gaussian Random Functions.
[129] Marcus, Rosen: Markov Processes, Gaussian Processes, and Local Times.

Problems

1. Show that there exist a random vector .U; V / such that U and V are one-dimen-
sional Gaussian random variables but .U; V / is not Gaussian.
Hint: Try f .u; v/ D g.u/g.v/.1 � sinu sin v/ where g.u/ D .2
/�1=2 e�u2=2.

2. Show that the covariance matrix C D .tj ^ tk/j;kD1;:::;n appearing in Theorem 2.6
is positive definite.

3. Verify that the matrixM in the proof of Theorem 2.6 and Corollary 2.7 is a lower
triangular matrix with entries 1 on and below the diagonal. Show that the inverse
matrix M�1 is a lower triangular matrix with entries 1 on the diagonal and �1
directly below the diagonal.
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4. Let A;B 2 Rn�n be symmetric matrices. If hAx; xi D hBx; xi for all x 2 Rn,
then A D B .

5. Let .Bt/t�0 be a BM1. Decide which of the following processes are Brownian
motions:

(a) Xt WD 2Bt=4; (b) Yt WD B2t � Bt ; (c) Zt WD p
t B1: .t � 0/

6. Let .B.t//t�0 be a BM1.
(a) Find the density of the random vector .B.s/; B.t// where 0 < s < t < 1.
(b) (Brownian bridge) Find the conditional density of the vector .B.s/; B.t//,

0 < s < t < 1 under the condition B.1/ D 0, and use this to determine
E.B.s/B.t/ jB.1/ D 0/.

(c) Let 0 < t1 < t2 < t3 < t4 < 1. Determine the conditional density of the bi-
variate random variable .B.t2/; B.t3// given that B.t1/ D B.t4/ D 0. What
is the conditional correlation of B.t2/ and B.t3/?

7. Find the covariance function C.s; t/ WD E.XsXt /, s; t � 0, of the stochastic
process Xt WD B2t � t , t � 0, where .Bt /t�0 is a BM1.

8. (Ornstein–Uhlenbeck process) Let .Bt/t�0 be a BM1, ˛ > 0 and consider the
stochastic process Xt WD e�˛t=2Be˛t , t � 0.
(a) Determine the mean value and covariance functions m.t/ D EXt and

C.s; t/ D E.XsXt/, s; t � 0.
(b) Find the probability density of .Xt1 ; : : : ; Xtn/ where 0 � t1 < � � � < tn < 1.

9. Show that (B1) is equivalent to Bt � Bs ?? FBs for all 0 � s < t .

10. Let .Bt/t�0 be a BM1 and set �a D inf¹s � 0 W Bs D aº where a 2 R. Show
that �a � ��a and �a � a2�1.

11. A one-dimensional stochastic process .Xt /t�0 such that E.X2
t / < 1 is called

stationary (in the wide sense) if m.t/ D EXt � const. and C.s; t/ D E.XsXt/

D g.t � s/, 0 � s � t < 1 for some even function g W R ! R. Which of the
following processes is stationary?

(a) Wt D B2t � t ; (b) Xt D e�˛t=2Be˛t ;

(c) Yt D BtCh � Bt ; (d) Zt D Bet ‹

12. Let .Bt /t2Œ0;1� and .ˇt/t2Œ0;1� be independent one-dimensional Brownian motions.
Show that the following process is again a Brownian motion:

Wt WD
´

Bt ; if t 2 Œ0; 1�;
B1 C tˇ1=t � ˇ1; if t 2 .1;1/:
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13. Find out whether the processes

X.t/ WD B.et / and X.t/ WD e�t=2B.et/ .t � 0/

have the no-memory property, i. e. �.X.t/ W t � a/??�.X.tCa/�X.a/ W t � 0/
for a > 0.

14. Prove the time inversion property from Paragraph 2.11.

15. (Strong law of large numbers) Let .Bt/t�0 be a BM1. Use Paragraph 2.13 to show
that limt!1 Bt=t D 0 a. s. and in mean square sense.

16. Let .Bt /t�0 be a BM1. Show that FB1 D S

J�Œ0;1/
J countable

�.B.tj / W t 2 J /.
17. Let X.t/; Y.t/ be any two stochastic processes. Show that

.X.u1/; : : : ; X.up//?? .Y.u1/; : : : ; Y.up// for all u1 < � � � < up; p � 1
implies

.X.s1/; : : : ; X.sn//?? .Y.t1/; : : : ; Y.tm//

for all s1 < � � � < sm; t1 < � � � < tn; m; n � 1:
18. Let .Ft/t�0 and .Gt/t�0 be any two filtrations and define F1 D �

�

S

t�0 Ft
�

and
G1 D �

�

S

t�0 Gt
�

. Show that Ft ?? Gt .8 t � 0/ if, and only if, F1 ?? G1.

19. Use Lemma 2.14 to show that (all finite dimensional distributions of) a BMd is
invariant under rotations.

20. Let Bt D .bt ; ˇt/, t � 0, be a two-dimensional Brownian motion.
(a) Show that Wt WD 1p

2
.bt C ˇt / is a BM1.

(b) Are Xt WD .Wt ; ˇt / and Yt WD 1p
2
.bt Cˇt ; bt �ˇt /, t � 0, two-dimensional

Brownian motions?

21. Let Bt D .bt ; ˇt/, t � 0, be a two-dimensional Brownian motion. For which
values of �;� 2 R is the process Xt WD �bt C �ˇt a BM1?

22. LetBt D .bt ; ˇt /, t � 0, be a two-dimensional Brownian motion. Decide whether
for s > 0 the process Xt WD .bt ; ˇs�t � ˇt /, 0 � t � s is a two-dimensional
Brownian motion.

23. LetBt D .bt ; ˇt /, t � 0, be a two-dimensional Brownian motion and ˛ 2 Œ0; 2
/.
Show that Wt D .bt � cos˛ C ˇt � sin˛; ˇt � cos˛ � bt � sin˛/> is a two-
dimensional Brownian motion. Find a suitable d -dimensional generalization of
this observation.

24. Let X be a Q-BM. Determine Cov.X j
t ; X

k
s /, the characteristic function of X.t/

and the transition probability (density) of X.t/.
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Constructions of Brownian motion

There are several different ways to construct Brownian motion and we will present
a few of them here. Since a d -dimensional Brownian motion can be obtained from
d independent one-dimensional Brownian motions, see Section 2.3, we restrict our
attention to the one-dimensional setting. If this is your first encounter with Brownian
motion, you should restrict your attention to the Sections 3.1 and 3.2 which contain
the most intuitive constructions.

3.1 The Lévy–Ciesielski construction

This approach goes back to Lévy [120, pp. 492–494] but it got its definitive form in
the hands of Ciesielski, cf. [26, 27]. The idea is to write the paths Œ0; 1� 3 t 7! Bt.!/

for (almost) every ! as a random series with respect to a complete orthonormal sys-
tem (ONS) in the Hilbert space L2.dt/ D L2.Œ0; 1�; dt/ with canonical scalar product
hf; giL2 D R 1

0
f .t/g.t/ dt. Assume that .�n/n�0 is any complete ONS and let .Gn/n�0

be a sequence of real-valued iid Gaussian N.0; 1/-random variables on the probability
space .	;A;P/. Set

WN .t/ WD
N�1
X

nD0
Gnh1Œ0;t/; �niL2

D
N�1
X

nD0
Gn

Z t

0

�n.s/ ds:

We want to show that limN!1 WN .t/ defines a Brownian motion on Œ0; 1�.

3.1 Lemma. The limit W.t/ WD limN!1 WN .t/ exists for every t 2 Œ0; 1� in L2.P/ Ex. 3.1

and the process W.t/ satisfies (B0)–(B3).
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Proof. Using the independence of theGn � N.0; 1/ and Parseval’s identity we get for
every t 2 Œ0; 1�

E.WN .t/
2/ D E

"

N�1
X

m;nD0
GnGmh1Œ0;t/; �miL2h1Œ0;t/; �niL2

#

D
N�1
X

m;nD1
E.GnGm/
„ ƒ‚ …

D0 .n¤m/; or D1 .nDm/
h1Œ0;t/; �miL2h1Œ0;t/; �niL2

D
N�1
X

nD1
h1Œ0;t/; �ni2L2 ����!

N!1 h1Œ0;t/; 1Œ0;t/iL2 D t:

This shows that W.t/ D L2- limN!1WN .t/ exists. An analogous calculation yields
for s < t and u < v

E.W.t/ �W.s//.W.v/ �W.u//

D
1
X

nD0
h1Œ0;t/ � 1Œ0;s/; �niL2h1Œ0;v/ � 1Œ0;u/; �niL2

D ˝

1Œs;t/; 1Œu;v/
˛

L2 D

8

ˆ

<

ˆ

:

t � s; Œs; t / D Œu; v/;

0; Œs; t /\ Œu; v/ D ;;

.v ^ t � u _ s/C; in general:

With this calculation we find for all 0 � s < t � u < v and �; � 2 R

E
�

exp .i�.W.t/ �W.s//C i�.W.v/ �W.u/// 	

D lim
N!1 E

"

exp

 

i

N�1
X

nD0

�

�h1Œs;t/; �ni C �h1Œu;v/; �ni
�

Gn

!#

iidD lim
N!1

N�1
Y

nD0
E
�

exp
��

i�h1Œs;t/; �ni C i�h1Œu;v/; �ni
�

Gn
�	

D lim
N!1

N�1
Y

nD0
exp

�

�1
2

ˇ

ˇ�h1Œs;t/; �ni C �h1Œu;v/; �ni
ˇ

ˇ

2

�
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(since E ei�Gn D exp.� 1
2

j�j2/)

D lim
N!1 exp

�

� 1

2

N�1
X

nD0

h

�2h1Œs;t/; �ni2 C �2h1Œu;v/; �ni2
i

�

� lim
N!1 exp

�

�
N�1
X

nD0
��h1Œs;t/; �nih1Œu;v/; �ni

„ ƒ‚ …�!0

�

D exp

�

�1
2
�2.t � s/

�

exp

�

�1
2
�2.v � u/

�

:

This calculation shows

• W.t/ �W.s/ � N.0; t � s/, if we take � D 0;
• W.t � s/ � N.0; t � s/, if we take � D 0, s D 0 and replace t by t � s;
• W.t/ �W.s/??W.v/ �W.u/, since �; � are arbitrary.

The independence of finitely many increments can be seen in the same way. Since
W.0/ D 0 is obvious, we are done.

Since W.t/ is an L2.P/-convergent, hence stochastically convergent, series of
independent random variables, we know from classical probability theory that
limN!1WN .t/ D W.t/ almost surely. But this is not enough to ensure that the path
t 7! W.t; !/ is (P almost surely) continuous. The general theorem due to Itô–Nisio
[86] would do the trick, but we prefer to give a direct proof using a special complete
orthonormal system.

3.2 The Haar and Schauder systems. We will now give an explicit construction of
Brownian motion. For this we need the families of Haar H2j Ck and Schauder S2j Ck
functions. For n D 0 and n D 2j Ck, j � 0, k D 0; 1; : : : ; 2j �1, they are defined as

H0.t/ D 1;

H2j Ck.t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

C2 j

2 ; on
h

k
2j ;

2kC1
2j C1

�

�2 j

2 ; on
h

2kC1
2j C1 ;

kC1
2j

�

0; otherwise

;

S0.t/ D t

S2j Ck.t/ D h1Œ0;t�;H2j CkiL2

D
Z t

0

H2j Ck.s/ ds;

suppSn D suppHn:

For n D 2j Ck the graphs of the Haar and Schauder functions are shown in Figures 3.1
and 3.2.
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−
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j
2

−2

j
2

1

Figure 3.1. The Haar functions H2j Ck . Figure 3.2. The Schauder functions S2j Ck .

Obviously,
R 1

0
Hn.t/ dt D 0 for all n � 1 and

H2j CkH2j C` D S2j CkS2j C` D 0 for all j � 0; k ¤ `:

The Schauder functions S2j Ck are tent-functions with support Œk2�j ; .kC 1/2�j � and
maximal value 1

2
2�j=2 at the tip of the tent. The Haar functions are also an orthonormal

system in L2 D L2.Œ0; 1�; dt/, i. e.

hHn;HmiL2 D
Z 1

0

Hn.t/Hm.t/ dt D
´

1; m D n

0; m ¤ n;
for all n;m � 0;

and they are a basis of L2.Œ0; 1�; ds/, i. e. a complete orthonormal system, see The-
orem A.44 in the appendix.

3.3 Theorem (Lévy 1940; Ciesielski 1959). There is a probability space .	;A;P/Ex. 3.2
and a sequence of iid standard normal random variables .Gn/n�0 such that

W.t; !/ D
1
X

nD0
Gn.!/h1Œ0;t/;HniL2 ; t 2 Œ0; 1�; (3.1)

is a Brownian motion.

Proof. Let W.t/ be as in Lemma 3.1 where we take the Haar functions Hn as or-
thonormal system in L2.dt/. As probability space .	;A;P/ we use the probability
space which supports the (countably many) independent Gaussian random variables
.Gn/n�0 from the construction of W.t/. It is enough to prove that the sample paths
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t 7! W.t; !/ are continuous. By definition, the partial sums

t 7! WN .t; !/ D
N�1
X

nD0
Gn.!/h1Œ0;t/;HniL2 D

N�1
X

nD0
Gn.!/Sn.t/: (3.2)

are continuous for all N � 1, and it is sufficient to prove that (a subsequence of)
.WN .t//N�0 converges uniformly to W.t/.

The next step of the proof is similar to the proof of the Riesz-Fischer theorem on
the completeness of Lp spaces, see e. g. [169, Theorem 12.7]. Consider the random
variable

�j .t/ WD W2j C1.t/ �W2j .t/ D
2j �1
X

kD0
G2j CkS2j Ck.t/:

If k ¤ `, then S2j CkS2j C` D 0, and we see

j�j .t/j4 D
2j �1
X

k;`;p;qD0
G2j CkG2j C`G2j CpG2j Cq S2j Ck.t/S2j C`.t/S2j Cp.t/S2j Cq.t/

D
2j �1
X

kD0
G4
2j CkjS2j Ck.t/j4 �

2j �1
X

kD0
G4
2j Ck 2

�2j :

Since the right-hand side does not depend on t 2 Œ0; 1� and since EG4n D 3 (use 2.3
for Gn � N.0; 1/) we get

E




sup
t2Œ0;1�

j�j .t/j4
�

� 3
2j �1
X

kD0
2�2j D 3 � 2�j for all j � 1:

For n < N we find using Minkowski’s inequality in L4.P/

�

�

�

�

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L4

�
�

�

�

�

N
X

jDnC1
sup
t2Œ0;1�

jW2j .t/ �W2j �1.t/j
„ ƒ‚ …

Dj�j .t/j

�

�

�

�

L4

�
N
X

jDnC1

�

�

�

sup
t2Œ0;1�

ˇ

ˇ�j .t/
ˇ

ˇ

�

�

�

L4

� 31=4
N
X

jDnC1
2�j=4 �����!

n;N!1 0:

Fatou’s lemma gives
�

�

�

�

lim
n;N!1

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L4

� lim
n;N!1

�

�

�

�

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L4

D 0:
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This shows that there exists a subset 	0 � 	 with P.	0/ D 1 such thatEx. 3.3

lim
n;N!1

sup
t2Œ0;1�

jW2N .t; !/ �W2n.t; !/j D 0 for all ! 2 	0:

By the completeness of the space of continuous functions, there is a subsequence of
.W2j .t; !//j�1 which converges uniformly in t 2 Œ0; 1�. Since we know thatW.t; !/ is
the limiting function, we conclude thatW.t; !/ inherits the continuity of theW2j .t; !/

for all ! 2 	0.
It remains to define Brownian motion everywhere on 	. We set

QW .t; !/ WD
´

W.t; !/; ! 2 	0
0; ! … 	0:

As P.	 n 	0/ D 0, Lemma 3.1 remains valid for QW which means that QW .t; !/ is a
one-dimensional Brownian motion indexed by Œ0; 1�.

Strictly speaking, W is not a Brownian motion but has a restriction QW which is a
Brownian motion.

3.4 Definition. Let .Xt/t2I and .Yt /t2I be two Rd -valued stochastic processes with
the same index set. We call X and Y

indistinguishable if they are defined on the same probability space and ifEx. 3.5

P.Xt D Yt 8t 2 I / D 1;

modifications if they are defined on the same probability space andEx. 3.4

P.Xt D Yt / D 1 for all t 2 I ;

equivalent if they have the same finite dimensional distributions, i. e.

.Xt1 ; : : : ; Xtn/ � .Yt1 ; : : : ; Ytn/

for all t1; : : : ; tn 2 I , n � 1 (but X , Y need not be defined on the same probability
space).

Now it is easy to construct a real-valued Brownian motion for all t � 0.
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3.5 Corollary. Let .W k.t//t2Œ0;1�, k � 0, be independent real-valued Brownian mo-
tions on the same probability space. Then

B.t/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

W 0.t/; t 2 Œ0; 1/;
W 0.1/CW 1.t � 1/; t 2 Œ1; 2/;
k�1
X

jD0
W j .1/CW k.t � k/; t 2 Œk; k C 1/; k � 2:

(3.3)

is a BM1 indexed by t 2 Œ0;1/.

Proof. Let Bk be a copy of the process W from Theorem 3.3 and denote the
corresponding probability space by .	k;Ak;Pk/. Define, on the product space
.	;A;P/ D N

k�1.	k;Ak;Pk/, ! D .!1; !2; : : :/, processes W k.!/ WD Bk.!k/;
by construction, these are independent Brownian motions on .	;A;P/.

Let us check (B0)–(B4) for the process .B.t//t�0 defined by (3.3). The properties
(B0) and (B4) are obvious.

Let s < t and assume that s 2 Œ`; `C 1/; t 2 Œm;mC 1/ where ` � m. Then

B.t/ � B.s/

D
m�1
X

jD0
W j .1/CW m.t �m/ �

`�1
X

jD0
W j .1/ �W `.s � `/

D
m�1
X

jD`
W j .1/CW m.t �m/ �W `.s � `/

D

8

ˆ

<

ˆ

:

W m.t �m/ �W m.s �m/ � N.0; t � s/; ` D m

�

W `.1/ �W `.s � `/�C
m�1
X

jD`C1
W j .1/CW m.t �m/

„ ƒ‚ …

indep� N.0;1�sC`/?N.0;1/?m�`�1?N.0;t�m/DN.0;t�s/

; ` < m:

This proves (B2). We show (B1) only for two incrementsB.u/�B.t/ andB.t/�B.s/
where s < t < u. As before, s 2 Œ`; `C 1/; t 2 Œm;mC 1/ and u 2 Œn; nC 1/ where
` � m � n. Then

B.u/ � B.t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

W m.u �m/ �W m.t �m/; m D n

�

W m.1/ �W m.t �m/�C
n�1
X

jDmC1
W j .1/CW n.u � n/; m < n:

By assumption, the random variables appearing in the representation of the increments
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B.u/ � B.t/ and B.t/ � B.s/ are independent which means that the increments
are independent. The case of finitely many, not necessarily adjacent, increments is
similar.

3.2 Lévy’s original argument

Lévy’s original argument is based on interpolation. Let t0 < t < t1 and assume that
.Wt /t2Œ0;1� is a Brownian motion. Then

G0 WD W.t/ �W.t0/ and G 00 WD W.t1/ �W.t/

are independent Gaussian random variables with mean 0 and variances t�t0 and t1�t ,
respectively. In order to simulate the positions W.t0/;W.t/;W.t1/ we could either
determine W.t0/ and then G0 and G 00 independently or, equivalently, simulate first
W.t0/ andW.t1/�W.t0/, and obtainW.t/ by interpolation. Let be a further standard
normal random variable which is independent of W.t0/ and W.t1/ �W.t0/. Then

.t1 � t /W.t0/C .t � t0/W.t1/
t1 � t0 C

s

.t � t0/.t1 � t /
t1 � t0 

D W.t0/C t � t0
t1 � t0 .W.t1/ �W.t0//C

s

.t � t0/.t1 � t /
t1 � t0 

is – because of the independence ofW.t0/;W.t1/�W.t0/ and  – a Gaussian random
variable with mean zero and variance t . Thus, we get a random variable with the same
distribution as W.t/ and soEx. 3.7

P.W.t/ 2 � jW.t0/ D x0; W.t1/ D x1/ D N.mt ; �2t /

mt D .t1 � t /x0 C .t � t0/x1
t1 � t0 and �2t D .t � t0/.t1 � t /

t1 � t0 :

(3.4)

If t is the midpoint of Œt0; t1�, Lévy’s method gives the following prescription:
Assume we know already W.t0/ and W.t1/. Interpolate these two values linearly,
take the midpoint of the line and add to this value (the outcome of the simula-
tion of) an independent Gaussian random variable with mean zero and variance
�2 D .t � t0/.t1 � t /=.t1 � t0/ D 1

4
.t1 � t0/. If we start with t0 D 0 and t1 D 1, this

allows us to simulate the values

W.k2�j / for all j � 0 and k D 0; 1; : : : ; 2j � 1;
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and the following picture emerges:
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1

W 1
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1
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1
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W 1
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W 3
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1
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4

1

2

1

4

W 1

4

W 1

2

W 3

4

W1

Figure 3.3. The first 4 interpolation steps.

At the dyadic points t D k2�j we get the ‘true’ value of W.t; !/. This observation
shows that the piecewise linear functions are successive approximations of the random
function t 7! W.t; !/. This polygonal arc can be expressed by Schauder functions.
From (3.2) and the proof of Theorem 3.3 we know that

W.t; !/ D G0.!/S0.t/C
1
X

jD0

2j �1
X

kD0
G2j Ck.!/ S2j Ck.t/;

where Sn.t/ are the Schauder functions. For dyadic t D k=2j , the expansion of Wt is
finite. Assume that we have already constructed W.k2�j / for some fixed j � 1 and
all k D 0; 1; : : : ; 2j . Then

W.`2�j�1/ D
´

W.k2�j /; ` D 2k;
1
2

�

W.k2�j /CW..k C 1/2�j /
�C 2j Ck; ` D 2k C 1;

where 2j Ck D G2j CkS2j Ck..2k C 1/2�j�1/ is a Gaussian random variable with
mean zero and variance 2�j=4. This means that each new node is constructed by adding
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an independent, suitably scaled normal random variable to the linear interpolation of
the nodes immediately to the left and right of the new node – and this is exactly Lévy’s
construction. The first few steps are

1o — W.1; !/ D G0.!/S0.1/

2o — W. 1
2
; !/ D G0.!/S0.

1
2
/

„ ƒ‚ …

interpolation

CG1.!/S1.
1
2
/

„ ƒ‚ …

D�1 � N.0;1=4/

3o — W. 1
4
; !/ D G0.!/S0.

1
4
/CG1.!/S1.

1
4
/

„ ƒ‚ …

interpolation

CG2.!/S2.
1
4
/

„ ƒ‚ …

D�2 � N.0;1=8/

W.3
4
; !/ D

‚ …„ ƒ

G0.!/S0.
3
4
/CG1.!/S1.

3
4
/CG2.!/ S2.34 /

„ƒ‚…

D0

C
D�3 � N.0;1=8/
‚ …„ ƒ

G3.!/S3.
3
4
/

4o — : : :

The 2j th partial sum, W2j .t; !/, is therefore a piecewise linear interpolation of the
Brownian path Wt.!/ at the points .k2�j ; W.k2�j ; !//; k D 0; 1; : : : ; 2j .

3.6 Theorem (Lévy 1940). The series

W.t; !/ WD
1
X

nD0

�

W2nC1.t; !/ �W2n.t; !/
�CW1.t; !/; t 2 Œ0; 1�;

converges a. s. uniformly. In particular .W.t//t2Œ0;1� is a BM1.

Proof. Set �n.t; !/ WD W2nC1.t; !/ �W2n.t; !/. By construction,

�n
�

.2k � 1/2�n�1; !/ D 2nC.k�1/.!/; k D 1; 2; : : : ; 2n;

are iid N.0; 2�.nC2// distributed random variables. Therefore,

P
�

max
1�k�2n

ˇ

ˇ�n
�

.2k � 1/2�n�1�ˇ
ˇ >

xnp
2nC2

�

� 2n P
�

ˇ

ˇ

p
2nC2�n

�

2�n�1�ˇ
ˇ > xn

�

and the right-hand side equals

2 � 2np
2


Z 1

xn

e�r2=2 dr � 2nC1
p
2


Z 1

xn

r

xn
e�r2=2 dr D 2nC1

xn
p
2


e�x2
n=2:
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Choose c > 1 and xn WD c
p
2n log 2. Then

1
X

nD1
P
�

max
1�k�2n

ˇ

ˇ�n
�

.2k � 1/2�n�1�ˇ
ˇ >

xnp
2nC2

�

�
1
X

nD1

2nC1

c
p
2


e�c2 log2n

D 2

c
p
2


1
X

nD1
2�.c2�1/n < 1:

Using the Borel–Cantelli lemma we find a set 	0 � 	 with P.	0/ D 1 such that for
every ! 2 	0 there is some N.!/ � 1 with

max
1�k�2n

ˇ

ˇ�n
�

.2k � 1/2�n�1�ˇ
ˇ � c

r

n log 2

2nC1 for all n � N.!/:

W
2n+1

(t)

W2n(t)

Δn(t)

k−1
2n

2k−1

2n+1
k
2n

Figure 3.4. The nth interpolation step.

By definition, �n.t/ is the distance between the polygonal arcs W2nC1.t/ and W2n.t/;
the maximum is attained at one of the midpoints of the intervals Œ.k � 1/2�n; k2�n�,
k D 1; : : : ; 2n, see Figure 3.4. Thus

sup
0�t�1

ˇ

ˇW2nC1.t; !/ �W2n.t; !/
ˇ

ˇ � max
1�k�2n

ˇ

ˇ�n
�

.2k � 1/2�n�1; !
�

ˇ

ˇ

� c
r

n log 2

2nC1 for all n � N.!/;
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which shows that the limit

W.t; !/ WD lim
N!1W2

N .t; !/ D
1
X

nD0

�

W2nC1.t; !/ �W2n.t; !/
�CW1.t; !/

exists for all! 2 	0 uniformly in t 2 Œ0; 1�. Therefore, t 7! W.t; !/,! 2 	0, inherits
the continuity of the polygonal arcs t 7! W2n.t; !/. Set

QW .t; !/ WD
´

W.t; !/; ! 2 	0;
0; ! … 	0:

By construction, we find for all 0 � j � k � 2n

QW .k2�n/ � QW .j2�n/ D W2n.k2�n/ �W2n.j 2�n/

D
k
X

`DjC1

�

W2n.`2�n/ �W2n..` � 1/2�n/
�

iid� N.0; .k � j /2�n/:

Since t 7! QW .t/ is continuous and since the dyadic numbers are dense in Œ0; t �, we
conclude that the increments QW .tj / � QW .tj�1/, 0 D t0 < t1 < � � � < tN � 1 are
independent N.0; tj�tj�1/ distributed random variables. This shows that . QW .t//t2Œ0;1�
is a Brownian motion.

3.7 Rigorous proof of (3.4). We close this section with a rigorous proof of Lévy’sEx. 3.7
formula (3.4). Observe that for all 0 � s < t and � 2 R

E
�

ei�W.t/
ˇ

ˇW.s/
� D ei�W.s/ E

�

ei�.W.t/�W.s//
ˇ

ˇW.s/
�

(B1)D ei�W.s/ E
�

ei�.W.t/�W.s//
�

(B2)D
(2.5)

e� 1
2
.t�s/�2

ei�W.s/:

If we apply this equality to the projectively reflected (cf. 2.13) Brownian motion
.tW.1=t//t>0, we get

E
�

ei�tW.1=t/
ˇ

ˇW.1=s/
� D E

�

ei�tW.1=t/
ˇ

ˇ sW.1=s/
� D e� 1

2
.t�s/�2

ei�sW.1=s/:

Now set b WD 1
s
> 1

t
DW a and � WD �=a D �t . Then

E
�

ei�W.a/
ˇ

ˇW.b/
� D exp




� 1

2
a2
�

1

a
� 1

b

�

�2
�

exp




i�
a

b
W.b/

�

D exp




�1
2

a

b
.b � a/�2

�

exp




i�
a

b
W.b/

�

:

(3.5)

This is (3.4) for the case where .t0; t; t1/ D .0; a; b/ and x0 D 0.
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Now we fix 0 � t0 < t < t1 and observe that W.s C t0/ �W.t0/, s � 0, is again a
Brownian motion. Applying (3.5) yields

E
�

ei�.W.t/�W.t0//
ˇ

ˇW.t1/ �W.t0/
� D e

� 1
2

t�t0
t1�t0

.t1�t/�2

e
i�

t�t0
t1�t0

.W.t1/�W.t0//:

On the other hand, W.t0/?? .W.t/ �W.t0/;W.t1/ �W.t0// and

E
�

ei�.W.t/�W.t0//
ˇ

ˇ

ˇ

W.t1/ �W.t0/
�

D E
�

ei�.W.t/�W.t0//
ˇ

ˇ

ˇ

W.t1/ �W.t0/;W.t0/
�

D E
�

ei�.W.t/�W.t0//
ˇ

ˇ

ˇ

W.t1/;W.t0/
�

D e�i�W.t0/ E
�

ei�W.t/
ˇ

ˇ

ˇ

W.t1/;W.t0/
�

:

This proves

E
�

ei�W.t/
ˇ

ˇW.t1/;W.t0/
� D e

� 1
2

t�t0
t1�t0

.t1�t/�2

e
i�

t�t0
t1�t0

.W.t1/�W.t0// ei�W.t0/;

and (3.4) follows.

3.3 Wiener’s construction

This is also a series approach, but Wiener used the trigonometric functions .ein	t/n2Z

as orthonormal basis for L2Œ0; 1�. In this case we obtain Brownian motion on Œ0; 1� as
a Wiener-Fourier series

W.t; !/ WD
1
X

nD1

sin.n
t/

n
Gn.!/; (3.6)

where .Gn/n�0 are iid standard normal random variables. Lemma 3.1 remains valid
for (3.6) and shows that the series converges in L2 and that the limit satisfies (B0)–
(B3); only the proof that the limiting process is continuous, Theorem 3.3, needs some
changes.

Proof of the continuity of (3.6). Let

WN .t; !/ WD
N
X

nD1

sin.n
t/

n
Gn.!/:

It is enough to show that .W2n/n�1 is a Cauchy sequence in L2.P/ uniformly for all
t 2 Œ0; 1�. Set

�j .t/ WD W2j C1.t/ �W2j .t/:
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Using j Im zj � jzj for z 2 C, we see

j�j .t/j2 D
0

@

2j C1

X

kD2j C1

sin.k
t/

k
Gk

1

A

2

�

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2j C1

X

kD2j C1

eik	t

k
Gk

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

;

and since jzj2 D z Nz we get

j�j .t/j2 �
2j C1

X

kD2j C1

2j C1

X

`D2j C1

eik	te�i`	t

k`
GkG`

D
2j C1

X

kD2j C1

G2
k

k2
C 2

2j C1

X

kD2j C1

k�1
X

`D2j C1

eik	te�i`	t

k`
GkG`

mDk�`D
2j C1

X

kD2j C1

G2
k

k2
C 2

2j �1
X

mD1

2j C1�m
X

`D2j C1

eim	t

`.`Cm/
G`G`Cm

�
2j C1

X

kD2j C1

G2
k

k2
C 2

2j �1
X

mD1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2j C1�m
X

`D2j C1

G`G`Cm
`.`Cm/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Note that the right-hand side is independent of t . On both sides we can therefore take
the supremum over all t 2 Œ0; 1� and then the mean value E.� � � /. From Jensen’s in-
equality, E jZj �pE jZj2, we conclude

E

�

sup
t2Œ0;1�

j�j .t/j2
�

�
2j C1

X

kD2j C1

EG2
k

k2
C 2

2j �1
X

mD1
E

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2j C1�m
X

`D2j C1

G`G`Cm
`.`Cm/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�
2j C1

X

kD2j C1

EG2
k

k2
C 2

2j �1
X

mD1

v

u

u

u

tE

0

@

2j C1�m
X

`D2j C1

G`G`Cm
`.`Cm/

1

A

2

:

If we expand the square we get expressions of the form E.G`G`CmG`0G`0Cm/; these
expectations are zero whenever ` ¤ `0. Thus,

E

�

sup
t2Œ0;1�

j�j .t/j2
�

D
2j C1

X

kD2j C1

1

k2
C 2

2j �1
X

mD1

v

u

u

t

2j C1�m
X

`D2j C1
E

�

G`G`Cm
`.`Cm/

�2

:

D
2j C1

X

kD2j C1

1

k2
C 2

2j �1
X

mD1

v

u

u

t

2j C1�m
X

`D2j C1

1

`2.`Cm/2
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�
2j C1

X

kD2j C1

1

.2j /2
C 2

2j �1
X

mD1

v

u

u

t

2j C1�m
X

`D2j C1

1

.2j /2.2j /2

� 2j � 2�2j C 2 � 2j �
p
2j � 2�4j

� 3 � 2�j=2:

From this point onwards we can follow the proof of Theorem 3.3: For n < N we find
using Minkowski’s inequality in L2.P/

�

�

�

�

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L2

�
�

�

�

�

N
X

jDnC1
sup
t2Œ0;1�

jW2j .t/ �W2j �1.t/j
„ ƒ‚ …

Dj�j .t/j

�

�

�

�

L2

�
N
X

jDnC1

�

�

�

sup
t2Œ0;1�

ˇ

ˇ�j .t/
ˇ

ˇ

�

�

�

L2

� 31=2
N
X

jDnC1
2�j=4 �����!

n;N!1 0:

Fatou’s lemma gives

�

�

�

�

lim
n;N!1

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L2

� lim
n;N!1

�

�

�

�

sup
t2Œ0;1�

jW2N .t/ �W2n.t/j
�

�

�

�

L2

D 0:

This shows that there exists a subset 	0 � 	 with P.	0/ D 1 such that Ex. 3.3

lim
n;N!1

sup
t2Œ0;1�

jW2N .t; !/ �W2n.t; !/j D 0 for all ! 2 	0:

By the completeness of the space of continuous functions, there is a subsequence of
.W2j .t; !//j�1 which converges uniformly in t 2 Œ0; 1�. Since we know thatW.t; !/ is
the limiting function, we conclude thatW.t; !/ inherits the continuity of theW2j .t; !/

for all ! 2 	0.
It remains to define the Brownian motion everywhere on 	. We set

QW .t; !/ WD
´

W.t; !/; ! 2 	0
0; ! … 	0:

Since P.	 n	0/ D 0, Lemma 3.1 remains valid for QW which means that QW .t; !/ is
a one-dimensional Brownian motion indexed by Œ0; 1�.
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3.4 Donsker’s construction

Donsker’s invariance theorem shows that Brownian motion is a limit of linearly in-
terpolated random walks – pretty much in the way we have started the discussion in
Chapter 1. As before, the difficult point is to prove the sample continuity of the limiting
process.

Let, on a probability space .	;A;P/, �n, n � 1, be iid Bernoulli random variables
such that P.�1 D 1/ D P.�1 D �1/ D 1

2
. Then

Sn WD �1 C � � � C �n

is a simple random walk. Interpolate linearly and apply Gaussian scaling

Sn.t/ WD 1p
n

�

Sbntc � .nt � bntc/�bntcC1
�

; t 2 Œ0; 1�:

In particular, Sn. j
n
/ D 1p

n
Sj . If j D j.n/ and j=n D s D const., the central

limit theorem shows that Sn. j
n
/ D p

s Sj =
p
j

d��! p
s G as n ! 1 where G

is a standard normal random variable. Moreover, with s D j=n and t D k=n, the
increment Sn.t/�Sn.s/ D .Sk �Sj /=pn is independent of �1; : : : ; �j , and therefore
of all earlier increments of the same form. Moreover,

E.Sn.t/ � Sn.s// D 0 and V.Sn.t/ � Sn.s// D k�j
n

D t � s;
in the limit we get a Gaussian increment with mean zero and variance t � s. Since
independence and stationarity of the increments are distributional properties, they are
inherited by the limiting process – which we will denote by .Bt /t2Œ0;1�. We have seen
that .Bq/q2Œ0;1�\Q would have the properties (B0)–(B3) and it qualifies as a candidate
for Brownian motion. If it had continuous sample paths, (B0)–(B3) would hold not
only for rational times but for all t � 0. That the limit exists and is uniform in t is the
essence of Donsker’s invariance principle.

3.8 Theorem (Donsker 1951). Let .B.t//t2Œ0;1� be a one-dimensional Brownian mo-
tion, .Sn.t//t2Œ0;1�, n � 1, be as above and ˆ W C.Œ0; 1�;R/ ! R a uniformly contin-
uous bounded functional. Then

lim
n!1 Eˆ.Sn. � // D Eˆ.B. � //;

i. e. Sn. � / converges weakly to B. � /.

We will give a proof of Donsker’s theorem in Chapter 13, Theorem 13.5. Since
our proof relies on the existence of a Brownian motion, we cannot use it to construct
.Bt /t�0. Nevertheless, it is an important result for the intuitive understanding of a
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Brownian motion as limit of random walks as well as for (simple) proofs of various
limit theorems.

3.5 The Bachelier–Kolmogorov point of view

The starting point of this construction is the observation that the finite dimensional
marginal distributions of a Brownian motion are Gaussian random variables. More
precisely, for any number of times t0 D 0 < t1 < � � � < tn, tj 2 I , and all Borel sets
A1; : : : ; An 2 B.R/ the finite dimensional distributions

pt1;:::;tn.A1 � � � � � An/ D P.Bt1 2 A1; : : : ; Btn 2 An/

are mean-zero normal laws with covariance matrix C D .tj ^ tk/j;kD1;:::;n. From The-
orem 2.6 we know that they are given by

pt1;:::;tn.A1 � � � � � An/
D 1

.2
/n=2
1p

detC

Z

A1�����An

exp

�

�1
2

hx; C�1xi
�

dx

D 1

.2
/n=2
q

Qn
jD1.tj � tj�1/

Z

A1�����An

exp

0

@�1
2

n
X

jD1

.xj � xj�1/2

tj � tj�1

1

A dx:

We will characterize a stochastic process in terms of its finite dimensional distribu-
tions – and we will discuss this approach in Chapter 4 below. The idea is to identify a
stochastic process with an infinite dimensional measure P on the space of all sample
paths 	 such that the finite dimensional projections of P are exactly the finite dimen-
sional distributions.

3.9 Further reading. Yet another construction of Brownian motion, using interpo-
lation arguments and Bernstein polynomials, can be found in the well-written paper
[108]. Donsker’s theorem, without assuming the existence of BM, is e. g. proved in
the classic monograph [10]; in a more general context it is contained in [45], the pre-
sentation in [99] is probably the easiest to read. Ciesielski’s construction became pop-
ular through his very influential Aarhus lecture notes [27], one of the first books on
Brownian motion after Wiener [187] and Lévy [121]. Good sources on random Fourier
series and wavelet expansions are [95] and [146]. Constructions of Brownian motion
in infinite dimensions, e. g. cylindrical Brownian motions etc., can be found in [150]
and [34], but this needs a good knowledge of functional analysis.
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Problems

1. Use the Lévy–Ciesielski representation B.t/ D P1
nD0GnSn.t/, t 2 Œ0; 1�, to ob-

tain a series representation for the random variable X WD R 1

0
B.t/ dt and find the

distribution of X .

2. Let �n D Hn, n D 0; 1; 2; : : :, be the Haar functions. The following steps show
that the full sequence WN .t; !/ WD PN�1

nD0 Gn.!/Sn.t/, N D 1; 2; : : : ; converges
uniformly for P-almost all ! 2 	.
(a) Let .an/n�0 � R be a sequence satisfying an D O.n
/ for some � 2 .0; 1=2/.

Show that
P1
nD0 anSn.t/ converges absolutely and uniformly in t 2 Œ0; 1�.

(b) Let .Gn/n�0 be a sequence of iid N.0; 1/ random variables. Show that almost
surely jGnj D O

�p
logn

�

.

Hint: Use the estimate P.jG1j > x/ � 2.2
/�1=2x�1e�x2=2, x > 0, and the
Borel–Cantelli lemma.

3. Let .S; d/ be a complete metric space equipped with the � -algebraB.S/ of its Borel
sets. Assume that .Xn/n�1 is a sequence of S -valued random variables such that

lim
n!1 sup

m�n
E .d.Xn; Xm/

p/ D 0

for some p 2 Œ1;1/. Show that there is a subsequence .nk/k�1 and a random
variable X such that limk!1Xnk

D X almost surely.

4. Let .Xt /t�0 and .Yt /t�0 be two stochastic processes which are modifications of
each other. Show that they have the same finite dimensional distributions.

5. Let .Xt /t2I and .Yt /t2I be two processes with the same index set I � Œ0;1/ and
state space. Show that

X; Y indistinguishable H) X; Y modifications H) X; Y equivalent:
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Assume that the processes are defined on the same probability space and t 7! Xt
and t 7! Yt are right-continuous (or that I is countable). In this case, the reverse
implications hold, too.

6. Let .Bt/t�0 be a real-valued stochastic process with exclusively continuous sample
paths. Assume that .Bq/q2Q satisfies (B0)–(B3). Show that .Bt/t�0 is a BM.

7. Give a direct proof of the formula (3.4) using the joint probability distribution
.W.t0/;W.t/;W.t1// of the Brownian motion W.t/.



Chapter 4

The canonical model

Often we encounter the statement ‘LetX be a random variable with law�’ where � isEx. 4.1
an a priori given probability distribution. There is no reference to the underlying prob-
ability space .	;A;P/, and actually the nature of this space is not important: WhileX
is defined by the probability distribution, there is considerable freedom in the choice
of our model .	;A;P/. The same situation is true for stochastic processes: Brown-
ian motion is defined by distributional properties and our construction of BM, see e. g.
Theorem 3.3, not only furnished us with a process but also a suitable probability space.

By definition, a d -dimensional stochastic process .X.t//t2I is a family of Rd -Ex. 4.2
valued random variables on the space .	;A;P/. Alternatively, we may understand a
process as a map .t; !/ 7! X.t; !/ from I �	 to Rd or as a map ! 7! ¹t 7! X.t; !/º
from 	 into the space .Rd /I D ¹w; w W I ! Rd º. If we go one step further and
identify 	 with (a subset of) .Rd /I , we get the so-called canonical model. Of course,
it is a major task to identify the correct � -algebra and measure in .Rd /I . For Brownian
motion it is enough to consider the subspace C.o/Œ0;1/ � .Rd /Œ0;1/,

C.o/ WD C.o/Œ0;1/ WD ®

w W Œ0;1/ ! Rd W w is continuous and w.0/ D 0
¯

:

In the first part of this chapter we will see how we can obtain a canonical model
for BM defined on the space of continuous functions; in the second part we dis-
cuss Kolmogorov’s construction of stochastic processes with given finite dimensional
distributions.

4.1 Wiener measure

Let I D Œ0;1/ and denote by 
t W .Rd /I ! Rd ,w 7! w.t/, the canonical projection
onto the t th coordinate. The natural � -algebra on the infinite product .Rd /I is the
product � -algebra

BI .Rd / D �
°


�1
t .B/ W B 2 B.Rd /; t 2 I

±

D �
®


t W t 2 I¯;

this shows that BI .Rd / is the smallest � -algebra which makes all projections 
t mea-
surable. Since Brownian motion has exclusively continuous sample paths, it is natural
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to replace .Rd /I by C.o/. Unfortunately, cf. Corollary 4.6, C.o/ is not contained in
BI .Rd /; therefore, we have to consider the trace � -algebra

C.o/ \ BI .Rd / D �
�


t
ˇ

ˇ

C.o/
W t 2 I �:

If we equip C.o/ with the metric of locally uniform convergence,

�.w; v/ D
1
X

nD1

�

1 ^ sup
0�t�n

jw.t/ � v.t/j
�

2�n;

C.o/ becomes a complete separable metric space. Denote by O� the topology induced
by � and consider the Borel � -algebra B.C.o// WD �.O�/ on C.o/.

4.1 Lemma. We have C.o/ \ BI .Rd / D B.C.o//.

Proof. Under the metric � the map C.o/ 3 w 7! 
t.w/ is (Lipschitz) continuous
for every t , hence measurable with respect to the topological � -algebra B.C.o//. This
means that

�
�


t
ˇ

ˇ

C.o/

� � B.C.o// 8 t 2 I; and so, �
�


t
ˇ

ˇ

C.o/
W t 2 I � � B.C.o//:

Conversely, we have for v;w 2 C.o/

�.v; w/ D
1
X

nD1

�

1 ^ sup
t2Œ0;n�\Q

jw.t/ � v.t/j
�

2�n

D
1
X

nD1

�

1 ^ sup
t2Œ0;n�\Q

j
t .w/ � 
t.v/j
�

2�n:
(4.1)

Thus, .v; w/ 7! �.v; w/ is measurable with respect to �
�


t
ˇ

ˇ

C.o/
W t 2 QC� and,

consequently, with respect to C.o/ \ BI .Rd /. Since .C.o/; �/ is separable, there exists
a countable dense set D � C.o/ and it is easy to see that every U 2 O� can be written
as a countable union of the form

U D
[

B.�/.w;r/�U
w2D; r2QC

B.�/.w; r/

where B.�/.w; r/ D ¹v 2 C.o/ W �.v; w/ < rº is an open ball in the metric �. Since
B.�/.w; r/ 2 C.o/ \ BI .Rd /, we get

O� � C.o/ \ BI .Rd / and therefore B.C.o// D �.O�/ � C.o/ \ BI .Rd /:

Let .Bt /t�0 be a Brownian motion on some probability space .	;A;P/ and con-
sider the map

‰ W 	 ! C.o/; ! 7! w WD ‰.!/ WD B. � ; !/: (4.2)
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The metric balls B.�/.v; r/ � C.o/ generate B.C.o//. From (4.1) we conclude that the
map ! 7! �.B. � ; !/; w/ is A measurable; therefore

¹! W ‰.!/ 2 B.�/.v; r/º D ¹! W �.B. � ; !/; v/ < rº
shows that ‰ is A=B.C.o// measurable. The image measure

�./ WD P.‰�1.// D P.‰ 2 /;  2 B.C.o//; (4.3)

is a measure on C.o/. Assume that  is a cylinder set, i. e. a set of the form

 D ¹w 2 C.o/ W w.t1/ 2 C1; : : : ; w.tn/ 2 Cnº
D ¹w 2 C.o/ W 
t1.w/ 2 C1; : : : ; 
tn.w/ 2 Cnº

where n � 1, t1 < t2 < � � � < tn and C1; : : : ; Cn 2 B.Rd /. Because of w D ‰.!/

and 
t .w/ D w.t/ D B.t; !/ we see

�./ D �.
t1 2 C1; : : : ; 
tn 2 Cn/ D P.B.t1/ 2 C1; : : : ; B.tn/ 2 Cn/: (4.4)

Since the family of all cylinder sets is a \-stable generator of the trace � -algebra
C.o/ \ BI .Rd /, we see that the finite dimensional distributions (4.4) uniquely deter-
mine the measure � (and P). This proves the following theorem.

4.2 Theorem. On the probability space .C.o/;B.C.o//; �/ the family of projections
.
t /t�0 satisfies (B0)–(B4), i. e. .
t /t�0 is a Brownian motion.

Theorem 4.2 says that every Brownian motion .	;A;P; Bt ; t � 0/ admits an equiv-
alent Brownian motion .Wt/t�0 on the probability space .C.o/;B.C.o//; �/. SinceW.t/
is just the projection 
t , we can identify W.t; w/ with its sample path w.t/.

4.3 Definition. Let .C.o/;B.C.o//; �; 
t/ be as in Theorem 4.2. The measure � is
called the Wiener measure, .C.o/;B.C.o//; �/ is called Wiener space or path space,
and .
t /t�0 is the canonical (model of the) Brownian motion process.

We will write .C.o/.I /;B.C.o/.I //; �/ if we consider Brownian motion on an inter-
val I other than Œ0;1/.

4.4 Remark. We have seen in §§ 2.8–2.13 that a Brownian motion is invariant un-
der reflection, scaling, renewal, time inversion and projective reflection at t D 1.
Since these operations leave the finite dimensional distributions unchanged, and since
the Wiener measure � is uniquely determined by the finite dimensional distributions,
� will also be invariant. This observation justifies arguments of the type

P.B. � / 2 A/ D P.W. � / 2 A/
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where A 2 A andW is the (path-by-path) transformation of B under any of the above
operations. Below is an overview on the transformations both at the level of the sample
paths and the canonical space C.o/. Note that the maps S W C.o/ ! C.o/ in Table 4.1 are
bijective.

Table 4.1. Transformations of Brownian motion.

Transformation at the level of

Operation time set I paths W.t; !/ w 2 C.o/.I /, w 7! Sw. � /

Reflection Œ0;1/ �B.t; !/ �w.t/

Renewal Œ0;1/ B.t C a; !/ � B.a; !/ w.t C a/ � w.a/

Time inversion Œ0; a� B.a � t; !/ � B.a; !/ w.a � t / � w.a/

Scaling Œ0;1/
p
c B

�

t
c
; !/

p
c w

�

t
c

�

Proj. reflection Œ0;1/ t B
�

1
t
; !/ t w

�

1
t

�

Let us finally show that the product � -algebra BI .Rd / is fairly small in the sense
that the set C.o/ is not measurable. We begin with an auxiliary result which shows that
 2 BI .Rd / is uniquely determined by countably many indices.

4.5 Lemma. Let I D Œ0;1/. For every  2 BI .Rd / there exists some countable set
S D S� � I such that

f 2 .Rd /I ; w 2  W f jS D wjS H) f 2 : (4.5)

Proof. Set † WD ®

 � .Rd /I W (4.5) holds for some countable set S D S�
¯

. We
claim that † is a � -algebra.

• Clearly, ; 2 †;
• Let  2 † with S D S� . Then we find for c and S that

f 2 .Rd /I ; w 2 c; f jS D wjS H) f … :
(Otherwise, we would have f 2  and then (4.5) would imply that w 2  .) This
means that (4.5) holds for c with S D S� D S�c , i. e. c 2 †.

• Let 1; 2; : : : 2 † and set S WD S

j�1 S�j
. Obviously, S is countable and

f 2 .Rd /I ; w 2
[

j�1
j ; f jS D wjS H) 9j0 W w 2 j0

; f jS�j0

D wjS�j0

(4.5)H) f 2 j0
hence f 2

[

j�1
j :

This proves
S

j�1 j 2 †.
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Since all sets of the form ¹
t 2 C º, t 2 I , C 2 B.Rd / are contained in †, we find

BI .Rd / D �
�


t W t 2 I � � �.†/ D †:

4.6 Corollary. If I D Œ0;1/ then C.o/ … BI .Rd /.

Proof. Assume that C.o/ 2 BI .Rd /. By Lemma 4.5 there exists a countable set S � I

such that
f 2 .Rd /I ; w 2 C.o/ W f jS D wjS H) f 2 C.o/:

This relation remains valid if we enlarge S ; therefore we can assume that S is a count-
able dense subset of I . Fix w 2 C.o/, pick t0 … S , � 2 Rd n ¹w.t0/º and define a new
function by

f .t/ WD
´

w.t/; t ¤ t0

�; t D t0
:

Then f jS D wjS , but f … C.o/, contradicting our assumption.

4.2 Kolmogorov’s construction

We have seen in the previous section that the finite dimensional distributions of a d-
dimensional Brownian motion .Bt /t�0 uniquely determine a measure � on the space
of all sample paths, such that the projections .
t/t�0 are, under �, again a Brownian
motion. This measure � is uniquely determined by the (finite dimensional) projections


t1;:::;tn.w/ WD .w.t1/; : : : ; w.tn//

and the corresponding finite dimensional distributions

pt1;:::;tn.C1 � � � � � Cn/ D �.
t1;:::;tn 2 C1 � � � � � Cn/

where t1; : : : ; tn 2 I and C1; : : : ; Cn 2 B.Rd /. From (4.4) it is obvious that the
conditions

pt1;:::;tn.C1 � � � � � Cn/ D pt�.1/;:::;t�.n/
.C�.1/ � � � � � C�.n//

for all permutations � W ¹1; 2; : : : ; nº ! ¹1; 2; : : : ; nº
pt1;:::;tn�1;tn.C1 � � � � � Cn�1 � Rd / D pt1;:::;tn�1

.C1 � � � � � Cn�1/

9

>

=

>

;

(4.6)

are necessary for a family pt1;:::;tn , n � 1, t1; : : : ; tn 2 I to be finite dimensional
distributions of a stochastic process.
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4.7 Definition. Assume that for every n � 1 and all t1; : : : ; tn 2 I , pt1;:::;tn is a
probability measure on ..Rd /n;B..Rd /n//. If these measures satisfy the consistency
conditions (4.6), we call them consistent or projective.

In fact, the consistency conditions (4.6) are even sufficient for pt1;:::;tn to be finite
dimensional distributions of some stochastic process. The following deep theorem is
due to Kolmogorov. A proof is given in Theorem A.2 in the appendix.

4.8 Theorem (Kolmogorov 1933). Let I � Œ0;1/ and pt1;:::;tn be probability mea-
sures defined on ..Rd /n;B..Rd /n// for all t1; : : : ; tn 2 I , n � 1. If the family of
measures is consistent, then there exists a probability measure � on ..Rd /I ;BI .Rd //

such that

pt1;:::;tn.C / D �.
�1
t1;:::;tn

.C // for all C 2 B..Rd /n/:

Using Theorem 4.8 we can construct a stochastic process for any family of consis-
tent finite dimensional probability distributions.

4.9 Corollary (Canonical process). Let I � Œ0;1/ and pt1;:::;tn be probability mea- Ex. 4.2
sures defined on ..Rd /n;B..Rd /n// for all t1; : : : ; tn 2 I , n � 1. If the family of
measures is consistent, there exist a probability space .	;A;P/ and a d -dimensional
stochastic process .Xt/t�0 such that

P.X.t1/ 2 C1; : : : ; X.tn/ 2 Cn/ D pt1;:::;tn.C1 � � � � � Cn/:

for all C1; : : : ; Cn 2 B.Rd /.

Proof. We take 	 D .Rd /I , the product � -algebra A D BI .Rd / and P D �, where
� is the measure constructed in Theorem 4.8. Then Xt WD 
t defines a stochastic
process with finite dimensional distributions � ı .
t1 ; : : : ; 
tn/�1 D pt1;:::;tn .

4.10 Kolmogorov’s construction of BM. For d D 1 and 0 < t1 < � � � < tn the
n-variate Gaussian measures

pt1;:::;tn.A1 � � � � � An/ D
�

1

2


�n=2
1p

detC

Z

A1�����An

e� 1
2

hx;C�1xi dx (4.7)

with C D .tj ^ tk/j;kD1;:::;n, are probability measures. If t1 D 0, we use ı0 ˝ pt2;:::;tn
instead. It is not difficult to check that the family (4.7) is consistent. Therefore, Corol-
lary 4.9 proves that there exists an R-valued stochastic process .Bt/t�0. By construc-
tion, (B0) and (B3) are satisfied. From (B3) we get immediately (B2); (B1) follows if
we read (2.11) backwards: Let C D .tj ^ tk/j;kD1;:::;n where 0 < t1 < � � � < tn < 1;
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then we have for all � D .�1; : : : ; �n/
> 2 Rn

E




exp

�

i

n
X

jD1
�jBtj

��

D exp

�

�1
2

h�; C �i
�

(2.12)D
n
Y

jD1
exp

�

�1
2
.tj � tj�1/.�j C � � � C �n/

2

�

(B2)D
(2.5)

n
Y

jD1
E
�

exp
�

i.Btj � Btj �1
/.�j C � � � C �n/

�	

:

On the other hand, we can easily rewrite the expression on the left-hand side in the
following form

E




exp

�

i

n
X

jD1
�jBtj

��

D E




exp

�

i

n
X

jD1
.Btj � Btj �1

/.�j C � � � C �n/

��

:

Using the substitution �j WD �j C � � � C �n we see that

E




exp

�

i

n
X

jD1
�j .Btj � Btj �1

/

��

D
n
Y

jD1
E
�

exp.i�j .Btj � Btj �1
//
	

for all �1; : : : ; �n 2 R which finally proves (B1).
This gives a new way to prove the existence of a Brownian motion. The problem is,

as in all other constructions of Brownian motion, to check the continuity of the sample
paths (B4). This follows from yet another theorem of Kolmogorov.

4.11 Theorem (Kolmogorov 1934; Slutsky 1937; Chentsov 1956). Denote byEx. 4.1
.Xt /t�0 a stochastic process on .	;A;P/ taking values in Rd . If

E
�jX.t/ �X.s/j˛� � c jt � sj1Cˇ for all s; t � 0 (4.8)

holds for some constants c > 0 and ˛; ˇ > 0, then .Xt /t�0 has a modification .X 0
t /t�0

which has only continuous sample paths.

We will give the proof in a different context in Chapter 10 below. For a process
satisfying (B0)–(B3), we can take ˛ D 4 and ˇ D 1 since, cf. (2.8),

E
�jB.t/ � B.s/j4� D E

�jB.t � s/j4� D 3 jt � sj2:

4.12 Further reading. The concept of Wiener space has been generalized in many
directions. Here we only mention Gross’ concept of abstract Wiener space [114], [191],
[127] and the Malliavin calculus, i. e. stochastic calculus of variations on an (abstract)
Wiener space [128]. The results of Cameron and Martin are nicely summed up in [187].
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[114] Kuo: Gaussian Measures in Banach Spaces.
[127] Malliavin: Integration and Probability.
[128] Malliavin: Stochastic Analysis.
[187] Wiener et al.: Differential Space, Quantum Systems, and Prediction.
[191] Yamasaki: Measures on infinite dimensional spaces.

Problems

1. Let F W R ! Œ0; 1� be a distribution function.
(a) Show that there exists a probability space .	;A;P/ and a random variable X

such that F.x/ D P.X � x/.
(b) Show that there exists a probability space .	;A;P/ and an iid sequence of

random variables Xn such that F.x/ D P.Xn � x/.
(c) State and prove the corresponding assertions for the d -dimensional case.

2. Show that there exists a stochastic process .Xt /t�0 such that the random vari-
ables Xt are independent N.0; t/ random variables. This process also satisfies
P
�

lims!t Xs exists
� D 0 for every t > 0.
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Brownian motion as a martingale

Let I be some subset of Œ0;1� and .Ft /t2I a filtration, i. e. an increasing family of sub-
� -algebras of A. Recall that a martingale .Xt ;Ft/t2I is a real or complex stochastic
process Xt W 	 ! Rd or Xt W 	 ! C satisfying

a) E jXt j < 1 for all t 2 I ;
b) Xt is Ft measurable for every t 2 I ;
c) E.Xt jFs/ D Xs for all s; t 2 I; s � t .
If Xt is real-valued and if we have in c) ‘�’ or ‘�’ instead of ‘D’, we call .Xt ;Ft /t2I
a sub- or supermartingale, respectively.

We call a stochastic process .Xt/t2I adapted to the filtration .Ft /t2I if Xt is for
each t 2 I an Ft measurable random variable. We write briefly .Xt ;Ft /t�0 for an
adapted process. Clearly, X is Ft adapted if, and only if, FXt � Ft for all t 2 I where
FXt D �.Xs W s 2 I; s � t / is the natural filtration of X .

5.1 Some ‘Brownian’ martingales

Brownian motion is a martingale with respect to its natural filtration, i. e. the family
of � -algebras FBt WD �.Bs W s � t /. Recall that, by Lemma 2.10,

Bt � Bs ?? FBs for all 0 � s � t: (5.1)

It is often necessary to enlarge the canonical filtration .FBt /t�0 of a Brownian motion
.Bt /t�0. The property (5.1) is equivalent to the independent increments property (B1)
of .Bt /t�0, see Lemma 2.10 and Problem 2.9, and it is this property which preserves
the Brownian character of a filtration.

5.1 Definition. Let .Bt/t�0 be a d -dimensional Brownian motion. A filtration .Ft /t�0Ex. 5.1
Ex. 5.2 is called admissible, if

a) FBt � Ft for all t � 0;
b) Bt � Bs ?? Fs for all 0 � s � t .

If F0 contains all subsets of P null sets, .Ft/t�0 is an admissible complete filtration.
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The natural filtration .FBt /t�0 is always admissible. We will discuss further exam-
ples of admissible filtrations in Lemma 6.20.

5.2 Example. Let .Bt/t�0, Bt D .B1t ; : : : ; B
d
t /, be a d -dimensional Brownian mo-

tion and .Ft/t�0 an admissible filtration.

a) .Bt /t�0 is a martingale with respect to Ft .
Indeed: Let 0 � s � t . Using the conditions (5.1) a) and b) we get

E.Bt jFs/ D E.Bt � Bs jFs/C E.Bs jFs/ D E.Bt � Bs/C Bs D Bs:

b) M.t/ WD jBt j2 is a positive submartingale with respect to Ft .
Indeed: for all 0 � s < t we can use (the conditional form of) Jensen’s inequality
to get

E.Mt jFs/ D
d
X

jD1
E..B

j
t /
2 jFs/ �

d
X

jD1
E.B

j
t jFs/2 D

d
X

jD1
.Bjs /

2 D Ms :

c) Mt WD jBt j2 � d � t is a martingale with respect to Ft .
Indeed: since jBt j2 � d � t D Pd

jD1
�

.B
j
t /
2 � t

�

it is enough to consider d D 1.
For s < t we see

E
�

B2t � t ˇˇFs
	 D E

��

.Bt � Bs/C Bs
�2 � t ˇˇFs

	

D E
�

.Bt � Bs/2 C 2Bs.Bt � Bs/C B2s � t ˇˇFs
	

Bt �Bs ??FsD E
�

.Bt � Bs/2
	

„ ƒ‚ …

D t�s
C2Bs E

�

Bt � Bs
	

„ ƒ‚ …

D0

CB2s � t

D B2s � s:

d) M �.t/ WD eih�;B.t/iC t
2

j�j2 is for all � 2 Rd a complex-valued martingale with Ex. 5.5
respect to Ft .
Indeed: for 0 � s < t we have, cf. Example a),

E.M �.t/ jFs/ D e
t
2

j�j2 E.eih�;B.t/�B.s/i jFs/ eih�;B.s/i
Bt �Bs ??FsD
Bt �Bs�Bt�s

e
1
2

j�j2 E.eih�;B.t�s/i/ eih�;B.s/i

D e
t
2

j�j2 e� t�s
2

j�j2 eih�;B.s/i

D M �.s/:

e) M � .t/ WD eh�;B.t/i� t
2

j� j2 is for all � 2 Cd a complex-valued martingale with respect Ex. 5.6
to Ft .
Indeed: since E ej� jjB.t/j < 1 for all � 2 Cd , cf. (2.6), we can use the argument of
Example d).
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Since Brownian motion is a martingale we have all martingale tools at our disposal.
The following maximal estimate will be particularly useful. It is a direct consequence
of Doob’s maximal inequality A.10 and the observation that for a process with con-
tinuous sample paths sups2D\Œ0;t� jBsj D sups2Œ0;t� jBsj holds for any dense subset
D � Œ0;1/.

5.3 Lemma. Let .Bt/t�0 be a d -dimensional Brownian motion. Then we have for all
t � 0 and p > 1

E




sup
s�t

jBsjp
�

�
�

p

p � 1
�p

EŒjBt jp�:

The following characterization of a Brownian motion through conditional charac-
teristic functions is quite useful.

5.4 Lemma. Let .Xt /t�0 be a continuous Rd -valued stochastic process with X0 D 0

and which is adapted to the filtration .Ft/t�0. Then .Xt ;Ft /t�0 is a BMd if, and only
if, for all 0 � s � t and � 2 Rd

EŒeih�;Xt �Xsi j Fs � D e� 1
2

j�j2 .t�s/: (5.2)

Proof. We verify (2.17), i. e. for all n � 0, 0 D t0 < t1 < � � � < tn, �0; : : : ; �n 2 Rd

and Xt�1
WD 0:

E




exp

�

i

n
X

jD0
h�j ; Xtj �Xtj �1

i
��

D exp




� 1

2

n
X

jD1
j�j j2.tj � tj�1/

�

:

Using the tower property we find

E




exp

�

i

n
X

jD0
h�j ; Xtj �Xtj �1

i
��

D E




E




exp

�

ih�n; Xtn �Xtn�1
i
�

ˇ

ˇ

ˇ

Ftn�1

�

exp

�

i

n�1
X

jD0
h�j ; Xtj �Xtj �1

i
��

D exp

�

� 1

2
j�nj2.tn � tn�1/

�

E




exp

�

i

n�1
X

jD0
h�j ; Xtj �Xtj �1

i
��

:

Iterating this step we get (2.17), and the claim follows from Lemma 2.14.

All examples in 5.2 were of the form ‘f .Bt/’. We can get many more examples of
this type. For this we begin with a real-variable lemma.
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5.5 Lemma. Let p.t; x/ WD .2
t/�d=2 exp.�jxj2=2t/ be the transition density of a Ex. 5.7
d -dimensional Brownian motion. Then

@

@t
p.t; x/ D 1

2
�xp.t; x/ for all x 2 Rd ; t > 0; (5.3)

where � D �x D Pd
jD1

@2

@x2
j

is the d -dimensional Laplace operator. Moreover,

Z

p.t; x/
1

2
�xf .t; x/ dx D

Z

f .t; x/
1

2
�xp.t; x/ dx

D
Z

f .t; x/
@

@t
p.t; x/ dx

(5.4)

for all functions f 2 C1;2..0;1/ � Rd / \ C.Œ0;1/ � Rd / satisfying

jf .t; x/j C
ˇ

ˇ

ˇ

ˇ

@f .t; x/

@t

ˇ

ˇ

ˇ

ˇ

C
d
X

jD1

ˇ

ˇ

ˇ

ˇ

@f .t; x/

@xj

ˇ

ˇ

ˇ

ˇ

C
d
X

j;kD1

ˇ

ˇ

ˇ

ˇ

@2f .t; x/

@xj @xk

ˇ

ˇ

ˇ

ˇ

� c.t/ eC jxj (5.5)

for all t > 0, x 2 Rd , some constant C > 0 and with a locally bounded function
c W .0;1/ ! Œ0;1/.

Proof. The identity (5.3) can be directly verified. We leave this (lengthy but simple)
computation to the reader. The first equality in (5.4) follows if we integrate by parts
(twice); note that the condition (5.5) imposed on f .t; x/ guarantees that the marginal
terms vanish and that all integrals exist. Finally, the second equality in (5.4) follows if
we plug (5.3) into the second integral.

5.6 Theorem. Let .Bt ;Ft /t�0 be a d -dimensional Brownian motion and assume that Ex. 5.8
Ex. 16.4f 2 C1;2..0;1/ � Rd ;R/ \ C.Œ0;1/ � Rd ;R/ satisfies (5.5). Then

M
f
t WD f .t; Bt/ � f .0; B0/ �

Z t

0

Lf .r; Br/ dr; t � 0; (5.6)

is an Ft martingale. Here Lf .t; x/ D @
@t
f .t; x/C 1

2
�xf .t; x/.

Proof. Observe that for 0 � s < t

M
f
t �M f

s D f .t; Bt/ � f .s; Bs/ �
Z t

s

Lf .r; Br/ drI

we have to show that E
�

M
f
t � M

f
s

ˇ

ˇFs
� D 0. Using Bt � Bs ?? Fs we see from
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Lemma A.3 that

E
�

M
f
t �M f

s

ˇ

ˇFs
�

D E

�

f .t; Bt / � f .s; Bs/ �
Z t

s

Lf .r; Br/ dr
ˇ

ˇ

ˇ

Fs

�

D E

�

f .t; .Bt � Bs/C Bs/ � f .s; Bs/ �
Z t

s

Lf .r; .Br � Bs/C Bs/ dr
ˇ

ˇ

ˇ

Fs

�

A:3D E

�

f .t; .Bt � Bs/C z/ � f .s; z/ �
Z t

s

Lf .r; .Br � Bs/C z/ dr

�

ˇ

ˇ

ˇ

ˇ

zDBs

:

Set �.t; x/ D �s;z.t; x/ WD f .t C s; xC z/, s > 0, and observe that Bt �Bs � Bt�s .
Since f 2 C1;2..0;1/ � Rd /, the shifted function � satisfies (5.5) on Œ0; T � � Rd

where we can take C D c.t/ � � and the constant � depends only on s; T and z.
We have to show that for all z 2 R

E
�

M
�
t�s �M �

0

� D E

�

�.t � s; Bt�s/ � �.0; B0/ �
Z t�s

0

L�.r; Br/ dr

�

D 0:

Let 0 < � < u. Then

E
�

M �
u �M �




�

D E

�

�.u; Bu/ � �.�; B
/ �
Z u




L�.r; Br/ dr

�

.�/D
Z

�

p.u; x/�.u; x/ � p.�; x/�.�; x/�dx

�
Z u




Z

p.r; x/

�

@�.r; x/

@r
C 1

2
�x�.r; x/

�

dx dr

5:5D
Z

�

p.u; x/�.u; x/ � p.�; x/�.�; x/�dx

�
Z u




Z

�

p.r; x/
@�.r; x/

@r
C �.r; x/

@p.r; x/

@r

�

dx dr

D
Z

�

p.u; x/�.u; x/ � p.�; x/�.�; x/�dx �
Z u




Z

@

@r
.p.r; x/�.r; x// dx dr

.�/D
Z

�

p.u; x/�.u; x/ � p.�; x/�.�; x/�dx �
ZZ u




@

@r
.p.r; x/�.r; x// drdx

and this equals zero. In the lines marked with an asterisk .	/we used Fubini’s theorem
which is indeed applicable because of (5.5) and � > 0. Moreover,

ˇ

ˇM �
u �M �




ˇ

ˇ � �e jBuj C �e jB� j C .u � �/ sup

�r�u

�e jBr j � .2C u/� sup
0�r�u

e jBr j:
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By Doob’s maximal inequality for p D � – without loss of generality we can assume
that � > 1 – and for the submartingale ejBr j we see that

E

�

sup
0�r�u

e jBr j
�

�
�

�

� � 1
�

E
�

e jBuj
�

< 1:

Now we can use dominated convergence to get

E
�

M �
u �M �

0

� D lim

#0

E
�

M �
u �M �




� D 0:

5.2 Stopping and sampling

If we want to know when a Brownian motion .Bt/t�0

• leaves or enters a set for the first time,
• hits its running maximum,
• returns to zero,

we have to look at random times. A random time � W 	 ! Œ0;1� is a stopping time
(with respect to .Ft /t�0) if

¹� � tº 2 Ft for all t � 0: (5.7)

Typical examples of stopping times are entry and hitting times of a process .Xt /t�0
into a set A 2 B.Rd /:

(first) entry time into A: �ı
A WD inf¹t � 0 W Xt 2 Aº,

(first) hitting time of A: �A WD inf¹t > 0 W Xt 2 Aº,

.inf ; D 1/; sometimes �Ac is called the (first) exit time from A. Note that �ı
A � �A. If Ex. 5.11

t 7! Xt and .Ft /t�0 are sufficiently regular, �ı
A; �A are stopping times for every Borel

set A 2 B.Rd /. In this generality, the proof is very hard, cf. [13, Chapter I.10].
For our purposes it is enough to consider closed and open sets A. The natural fil-

tration FXt WD �.Xs W s � t / of a stochastic process .Xt /t�0 is relatively small. For
many interesting stopping times we have to consider the slightly larger filtration

FXtC WD
\

u>t

FXu D
\

n�1
FX
tC 1

n

: (5.8)

5.7 Lemma. Let .Xt/t�0 be a d -dimensional stochastic process with right-continuous
sample paths and U � Rd an open set. The first hitting time �U satisfies

¹�U < tº 2 FXt and ¹�U � tº 2 FXtC;
i. e. it is a stopping time with respect to FXtC.
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It is not difficult to see that, for open sets U , the stopping times � ı
U and �U coincide.Ex. 5.12

Proof. The second assertion follows immediately from the first as
®

�U � t
¯ D

\

n�1

®

�U < t C 1
n

¯ 2
\

n�1
FX
tC 1
n

D FXtC: (5.9)

For the first assertion we claim that for all t > 0
®

�U < t
¯ D

[

QC3r�t

®

X.r/ 2 U ¯
„ ƒ‚ …

2FX
r

2 FXt :

Indeed: ‘�’ if �U .!/ < t , then there is some s < t with X.s; !/ 2 U . Since the paths
are continuous from the right and U is open, we find some s < r < t , r 2 Q, with
X.r; !/ 2 U . Hence ! 2 SQC3r<t¹X.r/ 2 U º.

‘�’ Conversely, let ! 2 ¹X.r/ 2 U º for some r 2 .0; t � \ Q. Since U is open and
t 7! X.t/ right-continuous, we have �U .!/ < r � t .

5.8 Lemma. Let .Xt /t�0 be a d -dimensional stochastic process with continuous sam-
ple paths and F � Rd a closed set. Then �ı

F is an FXt stopping time whereas �F is an
FXtC stopping time.

Proof. Denote by d.x; F / WD infy2F jx � yj the distance of x and F . If we can showEx. 5.13
that

®

�ı
F � t

¯ D
°

! 2 	 W inf
r2Q\Œ0;t�

d.Xr.!/; F / D 0
±

DW 	t ;

then �ı
F is a stopping time since, obviously, 	t 2 Ft .

Indeed: ‘�’ assume that ! 2 	t . Then there is a sequence .rj /j�1 � QC \ Œ0; t �

and some s � t such that

rj ���!
j!1 s; d.X.rj ; !/; F / ���!

j!1 0 and X.rj ; !/ ���!
j!1 X.s; !/:

Since d.x; F / is continuous, we get d.X.s; !/; F / D 0, i. e. X.s; !/ 2 F , as F is
closed. Thus, � ı

F .!/ � s � t .
‘�’ Now we assume that ! … 	t . Then

inf
QC3r�t

d.X.r; !/; F / � ı > 0
cts.H)

paths
X.s; !/ … F; 8s � t H) �ı

F .!/ > t:

For �F we set �n WD inf
®

s � 0 W X1=nCs 2 F ¯. Then

�F D inf
n�1

inf
®

t � 1
n

W Xt 2 F ¯ D inf
n�1

�

1
n

C �n
�

and we have ¹�F < tº D S

n�1
®

�n < t � 1
n

¯ 2 FXt . As in (5.9) we conclude that

¹�F � tº 2 FXtC.
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5.9 Example (First passage time). For a BM1 .Bt/t�0 the entry time �
b

WD � ı
¹bº into

the closed set ¹bº is often called first passage time. Observe that

sup
t�0

Bt � sup
n�1

Bn D sup
n�1

.�1 C �2 C � � � C �n/

where the random variables �j D Bj �Bj�1 are iid standard normal random variables.
Then

S WD sup
n�1

.�1 C �2 C � � � C �n/ D �1 C sup
n�2

.�2 C � � � C �n/ DW �1 C S 0:

By the iid property of the �j we get that S � S 0 and �1 ?? S 0. Since �1 � N.0; 1/ is
not trivial, we conclude that S D 1 a. s. The same argument applies to the infimum
inft�0Bt and we get

P

�

sup
t�0

Bt D C1; inf
t�0

Bt D �1
�

D 1; (5.10)

hence
P
�

�b < 1� D 1 for all b 2 R: (5.11)

For an alternative martingale proof of this fact, see Theorem 5.13 below.
Because of the continuity of the sample paths, (5.10) immediately implies that the

random set ¹t � 0 W Bt.!/ D bº is a. s. unbounded. In particular, a one-dimensional
Brownian motion is point recurrent, i. e. it returns to each level b 2 R time and again.

As usual, we can associate � -algebras with an Ft stopping time � : Ex. 5.14
Ex. 5.15

F�.C/ WD
°

A 2 F1 WD �
�

[

t�0
Ft

�

W A \ ¹� � tº 2 Ft.C/ 8t � 0
±

:

Note that, despite the slightly misleading notation, F� is a family of sets and F� does
not depend on !!

If we apply the optional stopping theorem, see A.18, we obtain rather surprising
results.

5.10 Theorem (Wald’s identities. Wald 1944). Let .Bt ;Ft/t�0 be a BM1 and assume Ex. 5.18
that � is an Ft stopping time. If E � < 1, then B� 2 L2.P/ and we have

EB� D 0 and EB2� D E �:

Proof. Since .� ^ t /t�0 is a family of bounded stopping times, the optional stopping
theorem (Theorem A.18) applies and shows that .B�^t ;F�^t /t�0 is a martingale. In
particular, EB�^t D EB0 D 0.

Using Lemma 5.3 for p D 2 we see that

E
�

B2�^t
	

� E
�

sup
s�t

B2s
	

� 4E
�

B2t
	 D 4t;
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i. e. B�^t 2 L2.P/. Again by optional stopping we conclude with Example 5.2 c) that
.M 2

t WD B2�^t � � ^ t;F�^t /t�0 is a martingale, hence

E
�

M 2
t

	 D E
�

M 2
0

	 D 0 or E
�

B2�^t
	 D E.� ^ t /:

By the martingale property we see E ŒB�^tB�^s� D E
�

B2�^s
	

for all s � t , i. e.

E
�

.B�^t � B�^s/2
	 D E

�

B2�^t � B2�^s
	 D E.� ^ t � � ^ s/ dom. conv.������!

s;t!1 0:

Thus, .B�^t /t�0 is anL2-Cauchy sequence; the fact that � < 1 a. s. and the continuity
of Brownian motion yieldL2-limt!1 B�^t D B� . In particular, we haveB� 2 L2.P/
and, by monotone convergence,

E
�

B2�
	 D lim

t!1 E
�

B2�^t
	 D lim

t!1 EŒ� ^ t � D E �:

In particular, we see that EB� D limt!1 EBt^� D 0, as L2-convergence implies
L1-convergence.

The following corollaries are typical applications of Wald’s identities.

5.11 Corollary. Let .Bt /t�0 be a BM1 and � D inf¹t � 0 W Bt … .�a; b/º be theEx. 5.16
first entry time into the set .�a; b/c , a; b � 0. Then

P.B� D �a/ D b

aC b
; P.B� D b/ D a

aC b
and E � D ab: (5.12)

Proof. Note that t ^ � is a bounded stopping time. Since Bt^� 2 Œ�a; b�, we have
jBt^� j � a _ b and so

E.t ^ �/ 5:10D E
�

B2t^�
�

� a2 _ b2:

By monotone convergence E � � a2 _ b2 < 1. We can apply Theorem 5.10 and get

�a P.B� D �a/C b P.B� D b/ D EB� D 0:

Since � < 1 a. s., we also know

P.B� D �a/C P.B� D b/ D 1:

Solving this system of equations yields

P.B� D �a/ D b

aC b
and P.B� D b/ D a

aC b
:

The second identity from Theorem 5.10 finally gives

E � D E
�

B2�
� D a2 P.B� D �a/C b2 P.B� D �a/ D ab:
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The next result is quite unexpected: A one-dimensional Brownian motion hits 1
infinitely often with probability one – but the average time the Brownian motion needs
to get there is infinite.

5.12 Corollary. Let .Bt/t�0 be a BM1 and �1 D inf¹t � 0 W Bt D 1º be the first
passage time of the level 1. Then E �1 D 1.

Proof. We know from Example 5.9 that �1 < 1 almost surely. Then, B�1
D 1 and

EB�1
D EB2

�1

D 1. In view of Wald’s identities, Theorem 5.10, this is only possible

if E �1 D 1.

5.3 The exponential Wald identity

Let .Bt /t�0 be a BM1 and �
b

D �ı
¹bº the first passage time of the level b. Recall from

Example 5.2 d) thatM �.t/ WD e�B.t/� 1
2
�2t , t � 0 and � > 0, is a martingale. Applying

the optional stopping theorem (Theorem A.18) to the bounded stopping times t ^ �
b

we see that

1 D EM �.0/ D EM �.t ^ �b/ D EŒe�B.t^�b
/� 1

2
�2.t^�

b
/�:

Since B.t ^ �
b
/ � b for b > 0, we have 0 � e�B.t^�b

/� 1
2
�2.t^�

b
/ � e�b . Using the fact

that e�1 D 0 we get

lim
t!1 e

�B.t^�
b
/� 1

2
�2.t^�

b
/ D

´

e�B.�b
/� 1

2
�2�

b ; if �
b
< 1;

0; if �
b

D 1:

Thus,
1 D E

h

e�B.t^�b
/� 1

2
�2.t^�

b
/
i

dom. conv.������!
t!1 e�b E

h

1¹�
b
<1º e

� 1
2
�2�

b

i

which shows
E
h

1¹�
b
<1º e

� 1
2
�2�

b

i

D e��b:

By monotone convergence we get

P.�b < 1/ D lim
�#0

E
h

1¹�
b
<1º e

� 1
2
�2�

b

i

D 1:

Inserting this into the previous equality is (almost) the proof of

5.13 Theorem. Let .Bt /t�0 be a BM1. Then the first passage time �
b

D �ı
¹bº, b 2 R,

is a. s. finite and its Laplace transform is given by

E e���
b D e�p

2� jbj; � � 0:
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Proof. For b � 0 there is nothing left to show. If b < 0 we apply the calculation
preceding Theorem 5.13 with �� instead of �.

In the proof of Theorem 5.13 we use E exp.�B.�
b
/� 1

2
�2 �

b
/ D 1 for � > 0. A sim-

ilar stopping result holds for stopping times � which satisfy E e�=2 < 1. This is a very
special case of the Novikov condition, cf. Theorem 17.4 below or [99, Chapter 3.5.D]
and [156, pp. 332-3].

5.14 Theorem (Exponential Wald identity). Let .Bt /t�0 be a BM1 and let � be a FBt
stopping time such that E e�=2 < 1. Then

E eB.�/�
1
2
� D 1:

Proof. Fix some c 2 .0; 1/ and pick p D p.c/ > 1 such that p < 1
c

^ 1
c.2�c/ . From the

optional stopping theorem we know thatMt WD ecBt^� � 1
2
c2.t^�/, t � 0, is a martingale.

Using the Hölder inequality for the conjugate exponents 1=pc and 1=.1�pc/ we find

E
�

epcBt^� � 1
2
pc2.t^�/	 D E

�

epc.Bt^� � 1
2
.t^�//e

1
2
pc.1�c/.t^�/	

�
�

E eBt^� � 1
2
.t^�/	pc

„ ƒ‚ …

DŒEMt �pcDŒEM0�pcD1

�

E e
1
2

pc.1�c/

1�pc
�
	1�pc �

�

E e�=2
�1�pc

:

In the last step we used that pc.1� c/=.1�pc/ � 1. This shows that the pth moment
of the martingale Mt is uniformly bounded for all t > 0, i. e. .Mt /t�0 is uniformly
integrable.

Therefore we can let t ! 1 and find, using uniform integrability and Hölder’s
inequality for the exponents 1=c and 1=.1 � c/,

1 D E ecB� � 1
2
c2� D E

�

ecB� � 1
2
c�e

1
2
c.1�c/�	 �

�

E eB� � 1
2
�
	c�

E e
1
2
c�
	1�c

:

Since the last factor is bounded by .E e�=2/1�c ���!
c!1

1, we find as c ! 1

1 � E eB� � 1
2
� D E

�

lim
t!1

eBt^� � 1
2
.t^�/	 � lim

t!1
E
�

eBt^� � 1
2
.t^�/	 D 1;

and the assertion follows.

5.15 Remark. A close inspection of the proof of Theorem 5.14 shows that we have
actually shown E ecB.�/� 1

2
c2 � D 1 for all 0 � c � 1 and all stopping times � satisfying

E e�=2 < 1. If we replace in this calculation B by �B , we get

E e�B.�/�
1
2
�2 � D 1 for all � 1 � � � 1:
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5.16 Further reading. The monograph [156] is one of the best and most compre-
hensive sources on martingales in connection with Brownian motion. A completely
‘martingale’ view of the world and everything else can be found in (the second vol-
ume of) [161]. Applications of Brownian motion and martingales to analysis are in
[49].

[49] Durrett: Brownian Motion and Martingales in Analysis.
[156] Revuz, Yor: Continuous Martingales and Brownian Motion
[161] Rogers, Williams: Diffusions, Markov Processes and Martingales.

Problems

1. Let .Bt/t�0 be a BMd and assume that X is a d -dimensional random variable
which is independent of FB1.
(a) Show that eFt WD �.X;Bs W s � t / defines an admissible filtration for

.Bt /t�0.

(b) The completion F
B

t of FBt is the smallest � -algebra which contains FBt and all

subsets of P null sets. Show that .F
B

t /t�0 is admissible.

2. Let .Ft /t�0 be an admissible filtration for the Brownian motion .Bt/t�0. Mimic
the proof of Lemma 2.10 and show that Ft ?? FWŒt;1/ WD �.Bu � Bt W u � t / for
each t > 0.

3. Let .Xt ;Ft /t�0 be a martingale and denote by F�
t be the completion of Ft (com-

pletion means to add all subsets of P-null sets).
(a) Show that .Xt ;F

�
t /t�0 is a martingale.

(b) Let . QXt/t�0 be a modification of .Xt /t�0. Show that . QXt ;F�
t /t�0 is a martin-

gale.

4. Let .Xt ;Ft /t�0 be a sub-martingale with continuous paths and FtC D T

u>t Fu.
Show that .Xt ;FtC/t�0 is again a sub-martingale.

5. Let .Bt /t�0 be a BM1. Find a polynomial 
.t; x/ in x and t which is of order 4
in the variable x such that 
.t; Bt / is a martingale.
Hint: Use the exponential Wald identity E exp

�

�B� � 1
2
�2�

� D 1, �1 � � � 1
for a suitable stopping time � and use a power-series expansion of the left-hand
side in �.

6. Let .Bt/t�0 be a BMd . Find all c 2 R such that E ec jBt j and E ec jBt j2 are finite.

7. Let p.t; x/ D .2
t/�d=2 exp
��jxj2=.2t/�, x 2 Rd , t > 0, be the transition

density of a d -dimensional Brownian motion.
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(a) Show that p.t; x/ is a solution for the heat equation, i. e.

@

@t
p.t; x/ D 1

2
�xp.t; x/ D 1

2

d
X

jD1

@2

@x2j
p.t; x/; x 2 Rd ; t > 0:

(b) Let f 2 C1;2..0;1/� Rd /\C.Œ0;1/� Rd / be such that for some constants
c; ct > 0 and all x 2 Rd ; t > 0

jf .t; x/j C
ˇ

ˇ

ˇ

ˇ

@f .t; x/

@t

ˇ

ˇ

ˇ

ˇ

C
d
X

jD1

ˇ

ˇ

ˇ

ˇ

@f .t; x/

@xj

ˇ

ˇ

ˇ

ˇ

C
d
X

j;kD1

ˇ

ˇ

ˇ

ˇ

@2f .t; x/

@xj@xk

ˇ

ˇ

ˇ

ˇ

� ct ecjxj:

Show that
Z

p.t; x/
1

2
�xf .t; x/ dx D

Z

f .t; x/
1

2
�xp.t; x/ dx:

8. Let .Bt ;Ft /t�0 be a one-dimensional Brownian motion. Which of the following
processes are martingales?

.a/ Ut D ecBt ; c 2 R; .b/ Vt D tBt �
Z t

0

Bs ds;

.c/ Wt D B3t � tBt ; .d/ Xt D B3t � 3
Z t

0

Bs ds;

.e/ Yt D 1

3
B3t � tBt ; .f/ Zt D eBt �ct ; c 2 R:

9. Let .Bt ;Ft /t�0 be a BM1. Show that Xt D exp.aBt C bt/, t � 0, is a martingale
if, and only if, a2=2C b > 0.

10. Let .Bt ;Ft/t�0 be a BMd . Show that Xt D 1
d

jBt j2 � t , t � 0, is a martingale.

11. Let .Xt ;Ft/t�0 be a d -dimensional stochastic process and A;An; C 2 B.Rd /,
n � 1. Then
(a) A � C implies �ı

A � �ı
C and �A � �C ;

(b) �ı
A[C D min¹�ı

A; �
ı
C º and �A[C D min¹�A; �C º;

(c) �ı
A\C D max¹�ı

A; �
ı
C º and �A\C D max¹�A; �C º;

(d) A D S

n�1 An, then �ı
A D infn�1 �ı

An
and �A D infn�1 �An

;

(e) �ı
A D infn�1

�

1
n

C �ı
n

�

where �ı
n D inf¹s � 0 W XsC1=n 2 Aº;

(f) find an example of a set A such that �ı
A < �A.

12. Let U 2 Rd be an open set and assume that .Xt /t�0 is a stochastic process with
continuous paths. Show that �U D �ı

U .

13. Show that the function d.x; A/ WD infy2A jx � yj, A � Rd , is continuous.
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14. Let � be a stopping time. Check that F� and F�C are � -algebras.

15. Let � be a stopping time for the filtration .Ft/t�0. Show that
(a) F 2 F�C () 8t � 0 W F \ ¹� < tº 2 Ft ;
(b) ¹� � tº 2 F�^t for all t � 0.

16. Let � WD �ı
.�a;b/c be the first entry time of a BM1 into the set .�a; b/c .

(a) Show that � has finite moments E �n of any order n � 1.
Hint: Use Example 5.2 d) and show that E ec� < 1 for some c > 0.

(b) Evaluate E
R �

0
Bs ds.

Hint: Find a martingale which contains
R t

0
Bs ds.

17. Let .Bt/t�0 be a BMd . Find E �R where �R D inf ¹t � 0 W jBt j D Rº.

18. Let .Bt/t�0 be a BM1 and �; � be two stopping times such that E �;E � < 1.
(a) Show that � ^ � is a stopping time.
(b) Show that ¹� � �º 2 F�^� .
(c) Show that E.B�B� / D E � ^ �

Hint: Consider E.B�B�1¹���º/ D E.B�^�B�1¹���º/ and use optional stop-
ping.

(d) Deduce from (c) that E.jB� � B� j2/ D E j� � � j.
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Brownian motion as a Markov process

We have seen in 2.9 that for a d -dimensional Brownian motion .Bt/t�0 and any s > 0
the shifted process Wt WD BtCs � Bs , t � 0, is again a BMd which is independent of
.Bt /0�t�s . SinceBtCs D Wt CBs , we can interpret this as a renewal property: Rather
than going from 0 D B0 straight away to x D BtCs in .t C s/ units of time, we stop
after time s at x0 D Bs and move, using a further Brownian motion Wt for t units of
time, from x0 to x D BtCs . This situation is shown in Figure 6.1:

t

Bt

t

Wt

s

Figure 6.1. Wt WD BtCs � Bs , t � 0, is a Brownian motion in the new coordinate system
with origin at .s; Bs/.

6.1 The Markov property

In fact, we know from Lemma 2.10 that the paths up to time s and thereafter are stochas-
tically independent, i. e. FBs ??FW1 WD �.BtCs�Bs W t � 0/. If we use any admissible
filtration .Ft/t�0 instead of the natural filtration .FBt /t�0, the argument of Lemma 2.10
remains valid, and we getEx. 5.2

6.1 Theorem (Markov property of BM). Let .Bt/t�0 be a BMd and .Ft /t�0 someEx. 6.1
Ex. 6.2 admissible filtration. For every s > 0, the process Wt WD BtCs � Bs , t � 0, is also a

BMd and .Wt/t�0 is independent of Fs , i. e. FW1 D �.Wt ; t � 0/?? Fs .
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Theorem 6.1 justifies our intuition that we can split a Brownian path into two inde-
pendent pieces

B.t C s/ D B.t C s/ � B.s/C B.s/ D W.t/C y
ˇ

ˇ

yDB.s/:

Observe that W.t/C y is a Brownian motion started at y 2 Rd . Let us introduce the
following notation

Px.Bt1 2 A1; : : : ; Btn 2 An/ WD P.Bt1 C x 2 A1; : : : ; Btn C x 2 An/ (6.1)

where 0 � t1 < � � � < tn and A1; : : : ; An 2 B.Rd /. We will write Ex for the corre-
sponding mathematical expectation. Clearly, P0 D P and E0 D E. This means that
Px.Bs 2 A/ denotes the probability that a Brownian particle starts at time t D 0 at
the point x and travels in s units of time into the set A.

Since the finite dimensional distributions (6.1) determine the measure Px uniquely,
Px is a well-defined measure on .	;F1/.1

Moreover, x 7! Ex u.Bt/ D E0 u.Bt C x/ is for all u 2 Bb.Rd / a measurable Ex. 6.3
function.

We will need the following formulae for conditional expectations, a proof of which
can be found in the appendix, Lemma A.3. Assume that X � A and Y � A are in-
dependent � -algebras. If X is an X=B.Rd / and Y a Y=B.Rd / measurable random
variable, then

E
�

ˆ.X; Y /
ˇ

ˇX
	 D Eˆ.x; Y /

ˇ

ˇ

xDX D E
�

ˆ.X; Y /
ˇ

ˇX
	

(6.2)

for all bounded Borel measurable functions ˆ W Rd � Rd ! R.
If ‰ W Rd �	 ! R is bounded and B.Rd /˝ Y=B.R/ measurable, then

E
�

‰.X. � /; � / ˇˇX	 D E‰.x; � /ˇˇ
xDX D E

�

‰.X. � /; � / ˇˇX	: (6.3)

6.2 Theorem (Markov property). Let .Bt /t�0 be a BMd with admissible filtration
.Ft /t�0. Then

E
�

u.BtCs/
ˇ

ˇFs
	 D E

�

u.Bt C x/
	

ˇ

ˇ

xDBs
D EBs

�

u.Bt /
	

(6.4)

holds for all bounded measurable functions u W Rd ! R and

E
�

‰.B•Cs/
ˇ

ˇFs
	 D E

�

‰.B• C x/
	

ˇ

ˇ

ˇ

xDBs

D EBs
�

‰.B•/
	

(6.5)

holds for all bounded B.C/=B.R/ measurable functionals ‰ W CŒ0;1/ ! R which
may depend on the whole Brownian path.

1 The corresponding canonical Wiener measure�x from Theorem 4.2 is, consequently, concentrated
on the continuous functions w W Œ0;1/ ! Rd satisfying w.0/ D x.
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Proof. We write u.BtCs/ D u.Bs CBtCs �Bs/ D u.Bs C .BtCs �Bs//. Then (6.4)
follows from (6.2) and (B1) with ˆ.x; y/ D u.x C y/, X D Bs , Y D BtCs �Bs and
X D Fs .

In the same way we can derive (6.5) from (6.3) and 2.10 if we take Y D FW1 where
Wt WD BtCs � Bs , X D Fs and X D Bs .

6.3 Remark.

a) Theorem 6.1 really is a result for processes with stationary and independent in-
crements, whereas Theorem 6.2 is not necessarily restricted to such processes. In
general any d -dimensional, Ft adapted stochastic process .Xt/t�0 with (right-)
continuous paths is called a Markov process if it satisfies

E
�

u.XtCs/
ˇ

ˇFs
	 D E

�

u.XtCs/
ˇ

ˇXs
	

for all s; t � 0; u 2 Bb.Rd /: (6.4a)

Since we can express E
�

u.XtCs/
ˇ

ˇXs
	

as an (essentially unique) function of Xs ,
say gu;s;tCs.Xs/, we have

E
�

u.XtCs/
ˇ

ˇFs
	 D Es;Xs

�

u.XtCs/
	

with Es;x
�

u.XtCs/
	 WD gu;s;tCs.x/:

(6.4b)

Note that we can always select a Borel measurable version of gu;s;tCs. � /. If gu;s;tCs
depends only on the difference .t C s/� s D t , we call the Markov process homo-
geneous and we write

E
�

u.XtCs/
ˇ

ˇFs
	 D EXs

�

u.Xt /
	

with Ex
�

u.Xt/
	 WD gu;t .x/: (6.4c)

Obviously (6.4) implies both (6.4a) and (6.4c), i. e. Brownian motion is also a
Markov process in this more general sense. For homogeneous Markov processes
we have

E
�

‰.X•Cs/
ˇ

ˇFs
	 D E

�

‰.X•Cs/
ˇ

ˇXs
	 D EXs

�

‰.X•/
	

(6.5a)

for bounded measurable functionals ‰ W CŒ0;1/ ! R of the sample paths. Al-
though this relation seems to be more general than (6.4a), (6.4b), it is actually pos-
sible to derive (6.5a) directly from (6.4a), (6.4b) by standard measure-theoretic
techniques.

b) It is useful to write (6.4) in integral form and with all !:

E
�

u.BtCs/
ˇ

ˇFs
	

.!/ D
Z

�

u.Bt .!
0/C Bs.!// P.d!0/

D
Z

�

u.Bt .!
0// PBs.!/.d!0/ D EBs.!/

�

u.Bt /
	

:

Markov processes are often used in the literature. In fact, the Markov property
(6.4a), (6.4b) can be seen as a means to obtain the finite dimensional distributions
from one-dimensional distributions. We will show this for a Brownian motion .Bt /t�0
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where we only use the property (6.4). The guiding idea is as follows: If a particle starts
at x and is by time t in a set A and by time u in C , we can realize this as

x
time t���������!

Brownian motion
A

²

stop there at Bt D a,
then restart from a 2 A

³

time u�t���������!
Brownian motion

C:

Let us become a bit more rigorous. Let 0 � s < t < u and let �; ; � W Rd ! R

bounded measurable functions. Then

E
�

�.Bs/  .Bt / �.Bu/
	 D E

�

�.Bs/  .Bt /E
�

�.Bu/
ˇ

ˇFt
�	

(6.4)D E
�

�.Bs/  .Bt /EBt �.Bu�t/
	

(6.4)D E
�

�.Bs/ EBs
�

 .Bt�s/EBt�s �.Bu�t/
�

„ ƒ‚ …

DR  .a/ R �.b/ Pa.Bu�t 2db/ PBs .Bt�s2da/

	

:

If we rewrite all expectations as integrals we get
•

�.x/ .y/�.z/P.Bs 2 dx;Bt 2 dy; Bu 2 dz/

D
Z




�.c/

Z

 .a/

Z

�.b/ Pa.Bu�t 2 db/ Pc.Bt�s 2 da/

�

P.Bs 2 dc/:

This shows that we find the joint distribution of the vector .Bs; Bt ; Bu/ if we know the
one-dimensional distributions of each Bt . For s D 0 and �.0/ D 1 these relations are
also known as Chapman-Kolmogorov equations. By iteration we get

6.4 Theorem. Let .Bt /t�0 be a BMd (or a general Markov process), x0 D 0 and
t0 D 0 < t1 < � � � < tn. Then

P0.Bt1 2 dx1; : : : ; Btn 2 dxn/ D
n
Y

jD1
Pxj �1.Btj �tj �1

2 dxj /: (6.6)

6.2 The strong Markov property

Let us now show that (6.4) remains valid if we replace s by a stopping time �.!/.
Since stopping times can attain the value C1, we have to take care that B� is defined
even in this case. If .Xt/t�0 is a stochastic process and � a stopping time, we set

X� .!/ WD

8

ˆ

<

ˆ

:

X�.!/.!/ if �.!/ < 1;

limt!1Xt .!/ if �.!/ D 1 and if the limit exists;

0 in all other cases:



66 Chapter 6 Brownian motion as a Markov process

6.5 Theorem (Strong Markov property). Let .Bt /t�0 be a BMd with admissible fil-
tration .Ft/t�0 and � < 1 some a. s. finite stopping time. Then .Wt/t�0, where
Wt WD B�Ct � B� , is again a BMd , which is independent of F�C.

Proof. We know, cf. Lemma A.16, that �j WD .b2j�cC1/=2j is a decreasing sequence
of stopping times such that infj�1 �j D � . For all 0 � s < t , � 2 Rd and all F 2 F�C
we find by the continuity of the sample paths

E
h

eih�;B�Ct �B�Csi 1F

i

D lim
j!1 E

h

eih�;B�j Ct �B�j Csi
1F

i

D lim
j!1

1
X

kD1
E
h

eih�;Bk2�j Ct
�B

k2�j Cs
i 1¹�j Dk2�j º � 1F

i

D lim
j!1

1
X

kD1
E
h

?? F
k2�j ; �Bt�s by (B1)/(5.1), (B2)
‚ …„ ƒ

eih�;Bk2�j Ct
�B

k2�j Cs
i 1¹.k�1/2�j��<k2�j º 1F
„ ƒ‚ …

2F
k2�j as F 2F�C

i

D lim
j!1

1
X

kD1
E
h

eih�;Bt�si
i

P
�¹.k � 1/2�j � � < k2�j º \ F �

D E
h

ei� �Bt�s

i

P.F /:

In the last equality we used �S1
kD1¹.k � 1/2�j � � < k2�j º D ¹� < 1º for all

j � 1.
The same calculation applies to finitely many increments. Let t0 D 0<t1< � � �<tn

and �1; : : : ; �n 2 Rd and F 2 F�C. Then

E
h

ei
Pn

j D1h�j ;B�Ctj
�B�Ctj �1

i
1F

i

D
n
Y

jD1
E
h

eih�j ;Btj �tj �1
ii P.F /:

This shows that the increments B�Ctj � B�Ctj �1
are independent and distributed like

Btj �tj �1
. Moreover, all increments are independent of F 2 F�C. Using the same ar-

gument as in the proof of Theorem 6.1 shows that all random vectors of the form
.B�Ct1 �B� ; : : : ; B�Ctn �B�Ctn�1

/ and, consequently, FW1 WD �.B�Ct �B� ; t � 0/
are independent of F�C.

We can now use (6.2), (6.3) (or Lemma A.3) to deduce from Theorem 6.5 the fol-
lowing consequences of the strong Markov property.
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6.6 Theorem. Let .Bt /t�0 be a BMd and � be a stopping time. Then we have for all Ex. 6.4
t � 0, u 2 Bb.Rd / and P almost all ! 2 ¹� < 1º

E
�

u.BtC� /
ˇ

ˇF�C
	

.!/ D E
�

u.Bt C x/
	

ˇ

ˇ

xDB� .!/
D EB� .!/ u.Bt /: (6.7)

For all bounded B.C/=B.R/ measurable functionals ‰ W CŒ0;1/ ! R which may
depend on a whole Brownian path and P almost all ! 2 ¹� < 1º this becomes

E
�

‰.B•C� /
ˇ

ˇF�C
	 D E

�

‰.B• C x/
	

ˇ

ˇ

ˇ

xDB�

D EB�
�

‰.B•/
	

: (6.8)

Let � D �.B•/ be a stopping time which can be expressed as a functional of a
Brownian path, e. g. a first hitting time, and assume that � is a further stopping time
such that � � � a. s. Denote by � 0 D �.B•C� / the stopping time � for the shifted
process B•C� , which is the remaining time, counting from � , until the event described
by � happens. SetW• WD B•C� �B� ; then � 0 D �.W• CB� /, and the functionals u.B� /
and u.W� 0 CB�/ have the same distribution. Thus, (6.8) implies the following result.

6.7 Corollary. Let .Bt /t�0 be a BMd , � D �.B•/ a first hitting time and � a stopping
time such that � � � a. s. Set � 0 D �.B•C� / and W• WD B•C� � B� . Then

E
�

u.B� /
ˇ

ˇF�C
	

.!/ D E
�

u.W� 0 C x/
	

ˇ

ˇ

xDB� .!/
D EB� .!/ u.W� 0/ (6.9)

holds for all u 2 Bb.Rd / and P almost all ! 2 ¹� < 1º.

Often one identifies the Brownian motions B and W appearing in (6.9), and writes
only B .

6.8 Remark. Let .Xt /t�0 be an Ft adapted, d -dimensional stochastic process with
(right-)continuous paths. If .Xt/t�0 satisfies for all t � 0 and u 2 Bb.Rd /

E
�

u.X�Ct /
ˇ

ˇF�C
	 D E

�

u.X�Ct /
ˇ

ˇX�
	

on ¹� < 1º; (6.10)

it is called a strong Markov process. For a Brownian motion this follows from (6.7).
Just as for the simple Markov property, the (general analogue of) property (6.8) seems
only stronger than (6.7); as a matter of fact one can derive it directly from (6.7) using
standard techniques.
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t

Bt

Figure 6.2. Reflection upon reaching the level b for the first time.

6.3 Desiré André’s reflection principle

Let us briefly discuss one of the most famous applications of the strong Markov prop-
erty of a Brownian motion. Let .Bt/t�0 be a one-dimensional Brownian motion and
�
b

D inf¹t � 0 W Bt D bº the first passage time for b. Assume that B has reached
the level b for the first time and that �

b
< t . Stop at �

b
and start anew from B�

b
D b.

Since Ws C b D B�
b

Cs � B�
b

C b D B�
b

Cs is, by Theorem 6.5, again a Brownian
motion (started at b), the probability to be at time t above or below b is the same, cf.
Figure 6.2. Since B�

b
D b and since �

b
is FB

�
b

measurable, cf. Lemma A.15, we have

P.�b � t; Bt < b/ D P.¹�b � tº
„ ƒ‚ …

2FB

�
b

\ ¹B�
b

C.t��
b
/ � B�

b
< 0º

„ ƒ‚ …

2FW
1 ?? FB

�
b

/ D 1

2
P.�b � t /

and so

P.�b � t / D P.�b � t; Bt � b/C P.�b � t; Bt < b/

D P.�b � t; Bt � b/C 1

2
P.�b � t /

D P.Bt � b/C 1

2
P.�b � t /:
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This shows that P.�
b
� t / D 2P.Bt � b/. Observe that

®

�
b
� t

¯ D ¹Mt � bº where
Mt WD sups�t Bs . Therefore,

P.Mt � b/ D P.�b � t / D 2P.Bt � b/ for all b > 0: (6.11)

From this we can calculate the probability distributions of various functionals of a
Brownian motion.

6.9 Theorem (Lévy 1939). Let .Bt /t�0 be a BM1, b 2 R, and set Ex. 6.5
Ex. 6.6
Ex. 6.7�b D inf¹t � 0 W Bt D bº; Mt WD sup

s�t
Bs ; and mt WD inf

s�t
Bs :

Then, for all x � 0,

Mt � jBt j � �mt � Mt � Bt � Bt �mt �
r

2


t
e�x2=.2t/ dx (6.12)

and for t > 0

�b � jbjp
2
t3

e�b2=.2t/ dt: (6.13)

Proof. The equalities (6.11) immediately show that Mt � jBt j. Using the symme-
try 2.8 of a Brownian motion we get mt D infs�t Bs D � sups�t .�Bs/ � �Mt . The
invariance of BM1 under time reversals, cf. 2.11, gives

Mt � Bt D sup
s�t
.Bs � Bt/ D sup

s�t
.Bt�s � Bt / � sup

s�t
Bs D Mt ;

and if we combine this again with the symmetry 2.8 we get Mt � Bt � Bt �mt .
The formula (6.13) follows for b > 0 from the fact that ¹�

b
� tº D ¹Mt � bº if we

differentiate the relation

P.�b � t / D P.Mt � b/ D
r

2


t

Z b

0

e�x2=.2t/ dx:

For b < 0 we use the symmetry of a Brownian motion.

6.10 Remark. (6.12) tells us that for each single instant of time the random variables,
e. g. Mt and jBt j, have the same distribution. This is no longer true if we consider
the finite dimensional distributions, i. e. the laws of processes .Mt/t�0 and .jBt j/t�0
are different. In our example this is obvious since t 7! Mt is a. s. increasing while
t 7! jBt j is positive but not necessarily monotone. On the other hand, the processes
�m and M are equivalent, i. e. they do have the same law.

In order to derive (6.11) we used the Markov property of a Brownian motion, i. e.
the fact that FBs and FW1, Wt D BtCs � Bs are independent. Often the proof is based
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on (6.7) but this leads to the following difficulty:

P.�b � t; Bt < b/ D E
�

1¹�
b
�tº E

�

1.�1;0/.Bt � b/ ˇˇFB
�

b

	�

‹ŠD E
�

1¹�
b
�tº E

B
�

b

�

1.�1;0/.Bt��
b

� b/	�

D E
�

1¹�
b
�tº Eb

�

1.�1;0/.Bt��
b

� b/	�

D E
�

1¹�
b
�tº E

�

1.�1;0/.Bt��
b
/
	

„ ƒ‚ …

D1=2

�

:

Notice that in the step marked by ‘?!’ there appears the expression t � �
b
. As it is

written, we do not know whether t � �
b

is positive – and if it were, our calculation
would certainly not be covered by (6.7).

In order to make such arguments work we need the following stronger version of
the strong Markov property. Mind the dependence of the random times on the fixed
path ! in the expression below!

6.11 Theorem. Let .Bt /t�0 be a BMd , � an FBt stopping time and � � � where � is an
FB�C measurable random time. Then we have for all ! 2 ¹� < 1º and all u 2 Bb.Rd /

E
�

u.B�/
ˇ

ˇFB�C
	

.!/ D EB� .!/
�

u.B�.!/��.!/. � //
	

(6.14)

D
Z

u.B�.!/��.!/.! 0// PB� .!/.d!0/:

The requirement that � is a stopping time and � is a F�C measurable random time
with � � � looks artificial. Typical examples of .�; �/ pairs are .�; � C t /, .�; � _ t / or
.� ^ t; t / where � is a further stopping time.

Proof of Theorem 6.11. Replacing u.B�/ by u.B�/1¹�<1º we may assume � < 1.
Set �j WD .b2j .� � �/c C 1/=2j . Then infj�1 �j D � � � and �j is clearly FB�C
measurable, since � and � are FB�C measurable.
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For all F 2 FB�C we know that F \ ¹�j D k=2j º 2 FB�C, i. e.

Z

F

u.B�C�j
/ dP D

1
X

kD1

Z

F\¹�j Dk=2j º
u.B�Ck=2j / dP

D
1
X

kD1

Z

F\¹�j Dk=2j º
E
�

u.B�Ck=2j /
ˇ

ˇFB�C
	

dP

(6.7)D
1
X

kD1

Z

F\¹�j Dk=2j º
EB� .!/ u.Bk=2j / P.d!/

D
Z

F

EB� .!/ u.B�j .!// P.d!/:

Since t 7! Bt is continuous, we have limj!1 B�j
D B��� , and we get (6.14) for

u 2 Cb.Rd / using dominated convergence.
For every compact set K � Rd we can approximate 1K from above by a sequence Ex. 6.10

of continuous functions. Therefore,
Z

F

1K.B�/ dP D
Z

F

EB� .!/ 1K.B�.!/��.!// P.d!/:

As the compact sets generate the Borel � -algebra, we can use the uniqueness the-
orem for measures to extend the above equality to all functions of the form 1K where
K 2 B.Rd /; then we get (6.14) for all measurable step functions and a Beppo–Levi
argument finally shows (6.14) for Bb.Rd /.

The proof of the reflection principle uses only the strong Markov property and the
symmetry of a Brownian motion. Therefore, we can rephrase the reflection principle
in the following more general version. Let .B.t/;Ft /t�0 be a Brownian motion and �
an a. s. finite stopping time. We consider the process

W.t; !/ WD
8

<

:

B.t; !/; if 0 � t < �.!/ � C1;

2B.�.!/; !/ � B.t; !/; if �.!/ � t < 1;
(6.15)

see Figure 6.3.
Observe that the trajectories of B and W coincide in the interval Œ0; �.!//. On

Œ�.!/;1/ we have W.t; !/ D B.�.!/; !/ � �

B.t; !/ � B.�.!/; !/
�

, i. e. every
trajectory of W is the reflection of the original trajectory with respect to the axis
y D B.�.!/; !/.

From Theorem 6.5 we know that .B.�/ � B.� C t //t�0 is a Brownian motion which
is independent of the stopped process .B.t ^ �//t�0. Therefore it is plausible that
the process W , which is a concatenation of these two processes, is again a Brownian
motion.
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t

Bτ

τ

Bt

Wt

Figure 6.3. Both Bt and the reflection Wt are Brownian motions.

6.12 Theorem. Let .B.t/;Ft/t�0 be a BMd and let .W.t//t�0 the process given by
(6.15). Then .W.t//t�0 is again a Brownian motion.

Proof. Without restriction we may assume that �.!/ < 1 for all! 2 	. The mapping
ˆ W C.o/ � Œ0;1/�C.o/ ! C.o/, where C.o/ D ¹f 2 CŒ0;1/ W f .0/ D 0º, defined by

ˆ.f; t; g/ WD
8

<

:

f .s/; if 0 � s < t;

f .t/C g.s � t /; if t � s < 1;

is continuous if we equip C.o/ � Œ0;1/ � C.o/ with the topology of locally uniform
convergence (inC.o/) and pointwise convergence (in Œ0;1/); in particular, the mapping
ˆ is B.C.o//˝ BŒ0;1/˝ B.C.o//=B.C.o// measurable.

By Lemma 6.13, ! 7! �

B. � ^ �.!/; !/; �.!/� is F�C=B.C.o//˝BŒ0;1/ measur-
able. Moreover, ! 7! B. � ^ �.!/; !/ � B.�.!/; !/ is independent of F�C and has
the same probability distribution as ! 7! B. � ; !/. Because of the symmetry of the
Wiener measure, B. � ^ �/ � B.�/ � �B. � ^ �/ � B.�/, and we see that

W D ˆ
�

B. � ^�/; �; B.�/�B. � C�/
�

and B D ˆ
�

B. � ^�/; �; B. � C�/�B.�/�

have the same law. Since W has, by construction, continuous paths, the claim fol-
lows.

6.13 Lemma (cf. Corollary 6.25). Let .B.t/;Ft /t�0 be a BM1 and � < 1 an a. s.Ex. 6.4
finite stopping time. Then B.t ^ �/ is F�C measurable for every t � 0.
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Proof. We have to show that ¹B.t ^ �/ 2 U º\¹� < sº 2 Fs for all Borel sets U � R

and s � 0, cf. Definition A.14. It is clearly enough to consider only open sets U and
dyadic numbers s D k2�n. From Lemma A.16 we know that �j WD .b2j �c C 1/=2j is
a decreasing sequence of stopping times such that infj�1 �j D � . Since t 7! B.t; !/

is continuous and U open, we see for all n � 1

¹B.t ^ �/ 2 U º D
[

m�n

\

l�m
¹B.t ^ �l/ 2 U º:

By definition, ¹� < k2�nº D ¹�n � k2�nº D ¹�m � k2�nº for all m � n. Therefore,

¹B.t ^ �/ 2 U º \ ¹� < k2�nº D
[

m�n

\

l�m

�

¹B.t ^ �l/ 2 U º \ ¹�l � k2�nº
„ ƒ‚ …

DA.l;k;n/

�

:

As A.l; k; n/ D S

j W j2�l�k2�n

®

B.t ^ j 2�l/ 2 U
¯ \ ®

�
l

D j 2�l¯ 2 Fk2�n ; we see

¹B.t ^ �/ 2 U º \ ¹� < k2�nº 2 Fk2�n .

6.4 Transience and recurrence

In Section 5.2 we used Wald’s identities to obtain the distribution of a BM1 when ex-
iting from the interval .�a; b/, cf. Corollary 5.11. Without much effort we can extend
this to continuous martingales.

6.14 Corollary. Let .M x
t ;Ft/t�0 be a real-valued martingale with continuous paths

and M0 D x 2 R a. s. If the first exit time � D �
.r;R/c

from the interval .r; R/, r < R,
is a. s. finite, then we have for all x 2 .r; R/

P.M x
� D r/ D R � x

R � r and P.M x
� D R/ D x � r

R � r :

If we combine Corollary 6.14 with Theorem 5.6 for a suitable function f we obtain
the exit probabilities of a BMd from an annulus B.0; R/ n B.0; r/.

6.15 Theorem. Let .Bt ;Ft/t�0 be a Brownian motion with right-continuous filtration,
r < R and denote by �

B.0;r/
and �

Bc.0;R/
the first hitting times of the sets B.0; r/ and
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Bc.0; R/. Then, for all r < jxj < R,

Px
�

�B.0;r/ < �Bc.0;R/

� D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

R � jxj
R � r ; if d D 1;

logR � log jxj
logR � log r

; if d D 2;

R2�d � jxj2�d

R2�d � r2�d ; if d � 3:

(6.16)

Proof. Note that � WD �
B.0;r/

^ �
Bc.0;R/

is the first exit time from B.0; R/ n B.0; r/.
Therefore, (6.16) follows, in dimension d D 1, directly from Corollary 6.14 where we
set Mt D Bt C x.

If d D 2, we use Theorem 5.6 with f .jxj/ D � log jxj and 0 < r � jxj � R (the
attentive reader might first want to multiply f by a cut-off function �r;R 2 Cc.R2/

such that 1B.0;r/ � �r;R � 1B.0;R/). Since

@f .jxj/
@xj

D �xj
jxj2 and

@2f .jxj/
@x2j

D 2x2j � jxj2
jxj4 ; j D 1; 2;

we find �f .x/ � 0 on B.0; R/ n B.0; r/. Therefore, Mt D f .jBt C xj/ is a mar-
tingale with continuous paths. Moreover, jBt j2 D .B1t /

2 C .B2t /
2 � .B1t /2 where the

coordinate processes .Bjt /t�0 are one-dimensional Brownian motions; since any one-
dimensional Brownian motion leaves every interval Œ�R;R� with probability one, cf.
Corollary 5.11, we see that � < 1 a. s. We can now apply Corollary 6.14 and con-
clude that

Px
�

�B.0;r/ < �Bc.0;R/

� D f .R/ � f .x/
f .R/ � f .r/ D logR � log jxj

logR � log r
:

If d D 3, we can use the same argument with f .jxj/ D jxj2�d . Now �f .jxj/ D 0

since for j D 1; 2; : : : ; d

@f .jxj/
@xj

D .2 � d/xj
jxjd and

@2f .jxj/
@x2j

D .2 � d/jxj2 � d.2 � d/x2j
jxjdC2 :

The results of Theorem 6.15 become especially interesting for degenerate annuli,
i. e. for r ! 0 and R ! 1. Letting first r ! 0 and then R ! 1 yields

Px
�

�B.0;r/ < �Bc.0;R/

� ���!
r!0

Px
�

�¹0º � �Bc.0;R/

� ����!
R!1 Px

�

�¹0º < 1�

:

If we consider only R ! 1 we get

Px
�

�B.0;r/ < �Bc.0;R/

� ����!
R!1 Px

�

�B.0;r/ < 1�

:



Section 6.4 Transience and recurrence 75

Since we know from Theorem 6.15 the values for the respective probabilities, we ar-
rive at

6.16 Corollary. Let .Bt ;Ft/t�0 be a BMd with a right-continuous filtration. Then we
have for all jxj � r > 0

Px
�

�¹0º < 1� D
´

1; if d D 1;

0; if d � 2;
(6.17)

Px
�

�B.0;r/ < 1� D
8

<

:

1; if d D 1; 2;
� jxj
r

�2�d
; if d � 3:

(6.18)

If x D 0, �¹0º is the first return time to 0, and (6.17) is still true:

¹�¹0º < 1º D ¹9 t > 0 W Bt D 0º D
[

n�1
¹9 t > 1=n W Bt D 0º:

By the Markov property, and the fact that P0.B1=n D 0/ D 0, we have

P0.9 t > 1=n W Bt D 0/ D E0 PB1=n.9 t > 0 W Bt D 0/ D E0 PB1=n.�¹0º < 1/
„ ƒ‚ …

D0 or 1 by (6.14)

which is 0 or 1 according to d D 1 or d � 2.
By the (strong) Markov property, a re-started Brownian motion is again a Brownian

motion. This is the key to the following result.

6.17 Corollary. Let .B.t//t�0 be a BMd and x 2 Rd .

a) If d D 1, Brownian motion is point recurrent, i. e.

Px
�

B.t/ D 0 infinitely often
� D 1:

b) If d D 2, Brownian motion is neighbourhood recurrent, i. e.

Px
�

B.t/ 2 B.0; r/ infinitely often
� D 1 for every r > 0:

c) If d � 3, Brownian motion is transient, i. e. Px
�

limt!1 jB.t/j D 1� D 1.

Proof. Let d D 1; 2, r > 0 and denote by �
B.0;r/

the first hitting time of B.0; r/

for .B.t//t�0. We know from Corollary 6.16 that �
B.0;r/

is a. s. finite. By the strong
Markov property, Theorem 6.6, we find

P0
�9t > 0 W B.t C �Bc.0;r// 2 B.0; r/

� D E0
�

PB.�
Bc .0;r/

/
�

�B.0;r/ < 1�

�

(6.18)D 1:
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This means that .B.t//t�0 visits every neighbourhood B.0; r/ time and again. Since
B.t/�y, y 2 Rd , is also a Brownian motion, the same argument shows that .B.t//t�0
visits any ball B.y; r/ infinitely often.

In one dimension this is, because of the continuity of the paths of a Brownian motion,
only possible if every point is visited infinitely often.

Let d � 3. By the strong Markov property, Theorem 6.6, and Corollary 6.16 we
find for all r < R

P0
�9t � �Bc.0;R/ W B.t/ 2 B.0; r/

� D E0
�

PB.�
Bc .0;R/

/
�

�B.0;r/ < 1�� D
� r

R

�d�2
:

Take r D p
R and let R ! 1. This shows that the return probability of .B.t//t�0 to

any compact neighbourhood of 0 is zero, i. e. limt!1 jB.t/j D 1.

6.5 Lévy’s triple law

In this section we show how we can apply the reflection principle repeatedly to obtain
for a BM1, .Bt/t�0, the joint distribution ofBt , the running minimummt D infs�t Bs
and maximumMt D sups�t Bs . This is known as P. Lévy’s loi à trois variables, [121,
VI.42.6, 4o , p. 213]. In a different context this formula appears already in Bachelier
[5, Nos. 413 and 504].

6.18 Theorem (Lévy 1948). Let .Bt/t�0 be a BM1 and denote by mt and Mt itsEx. 6.8
running minimum and maximum respectively. Then

P.mt > a;Mt < b;Bt 2 dx/

D dxp
2
t

1
X

nD�1




e
� .xC2n.b�a//2

2t � e�
.x�2a�2n.b�a//2

2t

�

(6.19)

for all t > 0 and a < 0 < b.

Proof. Let a < 0 < b, denote by � D inf¹t � 0 W Bt … .a; b/º the first exit time from
the interval .a; b/, and pick I D Œc; d � � .a; b/. We know from Corollary 5.11 that �
is an a. s. finite stopping time.

Since ¹� > tº D ¹mt > a;Mt < bº we have

P.mt > a;Mt < b;Bt 2 I /
D P.� > t; Bt 2 I /
D P.Bt 2 I / � P.� � t; Bt 2 I /
D P.Bt 2 I / � P.B� D a; � � t; Bt 2 I / � P.B� D b; � � t; Bt 2 I /:
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For the last step we used the fact that ¹B� D aº and ¹B� D bº are, up to the null set
¹� D 1º, a disjoint partition of 	.

We want to use the reflection principle repeatedly. Denote by rax WD 2a � x and
rbx WD 2b � x the reflection in the .x; t/-plane with respect to the line x D a and
x D b, respectively, cf. Figure 6.4. Using Theorem 6.11 we find

P
�

B� D b; � � t; Bt 2 I ˇˇF�
�

.!/ D 1¹B� Dbº\¹��tº.!/PB� .!/
�

Bt��.!/ 2 I �:

Because of the symmetry of Brownian motion,

Pb
�

Bt��.!/ 2 I � D P
�

Bt��.!/ 2 I � b�

D P
�

Bt��.!/ 2 b � I �

D Pb
�

Bt��.!/ 2 rbI
�

;

and, therefore,

P
�

B� D b; � � t; Bt 2 I ˇˇF�
�

.!/ D 1¹B� Dbº\¹��tº.!/PB� .!/
�

Bt��.!/ 2 rbI
�

D P
�

B� D b; � � t; Bt 2 rbI
ˇ

ˇF�
�

.!/:

This shows that

P.B� D b; � � t; Bt 2 I / D P.B� D b; � � t; Bt 2 rbI / D P.B� D b; Bt 2 rbI /:

Bt

b

τ

a

I

rbI

t

Figure 6.4. A [reflected] Brownian path visiting the [reflected] interval at time t .
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Further applications of the reflection principle yield

P.B� D b; Bt 2 rbI / D P.Bt 2 rbI / � P.B� D a; Bt 2 rbI /

D P.Bt 2 rbI / � P.B� D a; Bt 2 rarbI /

D P.Bt 2 rbI / � P.Bt 2 rarbI /C P.B� D b; Bt 2 rarbI /

and, finally,

P.B� D b; � � t; Bt 2 I /
D P.Bt 2 rbI / � P.Bt 2 rarbI /C P.Bt 2 rbrarbI / � C � � �

Since the quantities a and b play exchangeable roles in all calculations up to this point,
we get

P.mt > a;Mt < b;Bt 2 I /
D P.Bt 2 I / � P.Bt 2 rbI /C P.Bt 2 rarbI / � P.Bt 2 rbrarbI /C � � � �

� P.Bt 2 raI /C P.Bt 2 rbraI / � P.Bt 2 rarbraI /C � � � �
D P.Bt 2 I / � P.raBt 2 rarbI /C P.Bt 2 rarbI / � P.raBt 2 .rarb/2I /C � � � �

� P.raBt 2 I /C P.Bt 2 rbraI / � P.raBt 2 rbraI /C � � � �

In the last step we used that rara D id. All probabilities in these identities are prob-
abilities of mutually disjoint events, i. e. the series converges absolutely (with a sum
< 1); therefore we may rearrange the terms in the series. Since raI D 2a � I and
rbraI D 2b � .2a � I / D 2.b � a/C I , we get for all n � 0

.rbra/nI D 2n.b � a/C I and .rarb/nI D 2n.a � b/C I D 2.�n/.b � a/C I:

Therefore,

P.mt > a;Mt < b;Bt 2 I /

D
1
X

nD�1
P.Bt 2 2n.a � b/C I / �

1
X

nD�1
P.2a � Bt 2 2n.a � b/C I /

D
1
X

nD�1

Z

I

�

e
� .x�2n.a�b//2

2t � e�
.2a�x�2n.a�b//2

2t

�

dxp
2
t

which is the same as (6.19).
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6.6 An arc-sine law

There are quite a few functionals of a Brownian path which follow an arc-sine distri-
bution. Most of them are more or less connected with the zeros of .Bt/t�0. Consider,
for example, the largest zero of Bs in the interval Œ0; t �:

�t WD sup¹s � t W Bs D 0º:

Obviously, �t is not a stopping time since ¹�t � rº, r < t , cannot be contained in
FBr ; otherwise we could forecast on the basis of Œ0; r� 3 s 7! Bs whether Bs D 0

for some future time s 2 .r; t/ or not. Nevertheless we can determine the probability
distribution of �t .

6.19 Theorem. Let .Bt/t�0 be a BM1 and write �t for the largest zero of Bs in the Ex. 6.11
Ex. 6.12
Ex. 6.13

interval Œ0; t �. Then

P.�t < s/ D 2



arcsin

r

s

t
for all 0 � s � t: (6.20)

Proof. Set h.s/ WD P.�t < s/. By the Markov property we get

h.s/ D P
�

Bu ¤ 0 for all u 2 Œs; t ��

D
Z

PBs.!/
�

Bu�s ¤ 0 for all u 2 Œs; t �� P.d!/

D
Z

Pb
�

Bu�s ¤ 0 for all u 2 Œs; t �� P.Bs 2 db/

D
Z

P0
�

Bv ¤ �b for all v 2 Œ0; t � s�� P.Bs 2 db/

D
Z

P0
�

��b � t � s� P.Bs 2 db/;

where ��b is the first passage time for �b. Using P.Bs 2 db/ D P.Bs 2 �db/ and

P.�
b
� t � s/ D

q

2
	.t�s/

R b

0
e�x2=2.t�s/ dx, cf. Theorem 6.9, we get

h.s/ D 2

Z 1

0

s

2


.t � s/
Z b

0

e� x2

2.t�s/ dx
1p
2
s

e� b2

2s db

D 2




Z 1

0

Z ˇ
p

s
t�s

0

e� �2

2 d� e� ˇ2

2 dˇ:
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If we differentiate the last expression with respect to s we find

h0.s/ D 1




Z 1

0

e� ˇ2

2 e� ˇ2

2
s

t�s
t

t � s
ˇ

p

s.t � s/ dˇ D 1




1
p

s.t � s/ ; 0 < s < t:

Since d
ds arcsin

p

s
t

D 1
2

1p
s.t�s/ D 	

2
h0.s/ and 0 D arcsin 0 D h.0/, we are done.

6.7 Some measurability issues

Let .Bt /t�0 be a BM1. Recall from Definition 5.1 that a filtration .Gt/t�0 is admissi-
ble if

FBt � Gt and Bt � Bs ?? Gs for all s < t:

Typically, one considers the following types of enlargements:

Gt WD �.FBt ; X/ where X ?? FB1 is a further random variable;

Gt WD FBtC WD
\

u>t

FBu ;

Gt WD FBt WD �.FBt ;N/

where N D ¹M � 	 W 9N 2 A;M � N;P.N / D 0º is the system of all subsets of

measurable P null sets; F
B

t is the completion of FBt .

6.20 Lemma. Let .Bt /t�0 be a BMd . Then FBtC and F
B

t are admissible in the sense ofEx. 6.1
Definition 5.1.

Proof. 1o FBtC is admissible: Let 0 � t � u, F 2 FtC, and f 2 Cb.Rd /. Since
F 2 FtC
 for all � > 0, we find with (5.1)

E
�

1F � f �B.uC �/ � B.t C �/
�	 D E

�

1F
	 � E

�

f
�

B.uC �/ � B.t C �/
�	

:

Letting � ! 0 proves 5.1 b); condition 5.1 a) is trivially satisfied.

2o F
B

t is admissible: Let 0 � t � u. By the very definition of the completion we can

find for every QF 2 FBt some F 2 FBt and N 2 N such that the symmetric difference
. QF n F / [ .F n QF / is in N. Therefore,

E.1 QF � .Bu � Bt// D E.1F � .Bu � Bt // (5.1)D P.F /E.Bu � Bt /
D P. QF /E.Bu � Bt/;

which proves 5.1 b); condition 5.1 a) is clear.
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6.21 Theorem. Let .Bt/t�0 be a BMd . Then
�

F
B

t

�

t�0 is a right-continuous filtration,

i. e. F
B

tC D FBt holds for all t � 0.

Proof. Let F 2 FBtC. It is enough to show that 1F D E
�

1F j FBt
	

almost surely. If

this is true, 1F is, up to a set of measure zero, F
B

t measurable. Since N � FBt � FBtC,

we get F
B

tC � FBt .
Fix t < u and pick 0 � s1 < � � � < sm � t < u D t0 � t1 < � � � < tn and

�1; : : : ; �m; �1; : : : ; �n 2 Rd , m; n � 1. Then we have

E
�

ei
Pm

j D1h�j ;B.sj /i ˇ
ˇ F

B

t

	 D ei
Pm

j D1h�j ;B.sj /i D E
�

ei
Pm

j D1h�j ;B.sj /i ˇ
ˇ F

B

tC
	

: (6.21)

As in the proof of Theorem 6.1 we get

n
X

jD1
h�j ; B.tj /i D

n
X

kD1
h�k; B.tk/ � B.tk�1/i C h�1; B.u/i; �k D �k C � � � C �n:

Therefore,

E
�

ei
Pn

j D1h�j ;B.tj /i ˇ
ˇ F

B

u

	 D E
�

ei
Pn

kD1h�k ;B.tk/�B.tk�1/i ˇ
ˇ F

B

u

	

eih�1;B.u/i

6:20D
(B1)

n
Y

kD1
E
�

eih�k ;B.tk/�B.tk�1/i	 eih�1;B.u/i

(2.17)D
n
Y

kD1
e� 1

2
.tk�tk�1/j�k j2 eih�1;B.u/i

Exactly the same calculation with u replaced by t and t0 D t tells us

E
�

ei
Pn

j D1h�j ;B.tj /i ˇ
ˇ F

B

t

	 D
n
Y

kD1
e� 1

2
.tk�tk�1/j�k j2 eih�1;B.t/i:

Now we can use the backwards martingale convergence Theorem A.8 and let u # t

(along a countable sequence) in the first calculation. This gives

E
�

ei
Pn

j D1h�j ;B.tj /i ˇ
ˇ F

B

tC
	 D lim

u#t
E
�

ei
Pn

j D1h�j ;B.tj /i ˇ
ˇ F

B

u

	

D lim
u#t

n
Y

kD1
e� 1

2
.tk�tk�1/j�k j2 eih�1;B.u/i

D
n
Y

kD1
e� 1

2
.tk�tk�1/j�k j2eih�1;B.t/i

D E
�

ei
Pn

j D1h�j ;B.tj /i ˇ
ˇ F

B

t

	

:

(6.22)
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Given 0 � u1 < u2 < � � � < uN , N � 1, and t � 0, then t splits the uj into two
groups, s1 < � � � < sn � t < t1 < � � � < tm, where nCm D N and ¹u1; : : : ; uN º D
¹s1; : : : ; snº [ ¹t1; : : : ; tmº. If we combine the equalities (6.21) and (6.22), we see for
 WD .B.u1/; : : : ; B.uN // 2 RNd and all � 2 RNd

E
�

eih�;�i ˇ
ˇ F

B

tC
	 D E

�

eih�;�i ˇ
ˇ F

B

t

	

:

Using the definition and then the L2 symmetry of the conditional expectation we get
for all F 2 FBtC
Z

1F � eih�;�i dP D
Z

1F � E
�

eih�;�i ˇ
ˇ F

B

t

	

dP D
Z

E
�

1F
ˇ

ˇ F
B

t

	 � eih�;�i dP :

This shows that the image measures .1F P/ ı �1 and
�

E
�

1F
ˇ

ˇ F
B

t

	

P
� ı �1 have

the same characteristic functions, i. e.
Z

A

1F dP D
Z

A

E
�

1F
ˇ

ˇ F
B

t

	

dP (6.23)

holds for all A 2 �./ D �.B.u1/; : : : ; B.uN // and all 0 � u1 < � � � < uN and
N � 1. Since

S

u1<���<uN ;N�1 �.B.u1/; : : : ; B.uN // is a \-stable generator ofFB1, the

uniqueness theorem for measures shows that (6.23) holds for all A 2 FB1. Therefore,

1F D E
�

1F
ˇ

ˇ F
B

t

	

almost surely.

6.22 Corollary (Blumenthal’s 0-1-law. Blumenthal 1957). Let .B.t//t�0 be a BMd .
Then FB0C is trivial, i. e. if F 2 FB0C then P.F / D 0 or 1.

Proof. By Theorem 6.21 we know that FB0 D FB0C � FB0C. On the other hand we have
FB0 D �.N;FB0 / D �.N/ since FB0 D ¹;; 	º. This proves our claim.

Let us indicate the classical proof which does not rely on Theorem 6.21. Since FBtC
is admissible, cf. Lemma 6.20, we find that FB0C is independent of Bt � B0 D Bt for
all t � 0. This means that

FB0C ??
\

t>0

�

�

[

0�t1<���<tn�t;n�1
�.Bt1 ; : : : ; Btn/

„ ƒ‚ …

\-stable generator

�

D FB0C;

i. e. P.F / D P.F \ F / D P.F / � P.F / so that P.F / D 0 or 1.

6.23 Remark (Usual conditions). Many authors assume that the underlying filtered
probability space .	;A;P;Ft ; t � 0/ satisfies the usual conditions or usual hypo-
theses, i. e.

a) F0 contains all subsets of P null sets of A;
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b) .Ft /t�0 is right-continuous, i. e. Ft D FtC holds for all t � 0.

Theorem 6.21 ensures that a Brownian motion together with the completion of its
canonical filtration satisfies the usual conditions.

We close this section with a result that exhibits the interaction of a Brownian motion
with the underlying measurability structure.

6.24 Lemma (Progressive measurability). Let .Bt /t�0 be a BMd with an admissible
filtration .Ft /t�0. Then .Bt /t�0 is progressively measurable i. e.

B. � ; � / W .Œ0; t � �	;BŒ0; t �˝ Ft / ! .Rd ;B.Rd //

is, for every t � 0, BŒ0; t �˝ Ft=B.Rd / measurable.

Proof. Set

Bj .s; !/ WD
´

B. k
2j t; !/; k2�j t < s � .k C 1/2�j t; k D 0; 1; : : : ; 2j � 1;

B.0; !/; s D 0:

Then we find for all A 2 B.Rd /

®

.s; !/ 2 Œ0; t � �	 W Bj .s; !/ 2 A¯

D ¹0º � ®B.0; � / 2 A¯ [
2j �1
[

kD0

�

k
2j t;

kC1
2j t

i

� ®B� k
2j t; � � 2 A¯:

This set is contained in BŒ0; t �˝ Ft . Therefore, the processes .Bj .t//t�0, j � 0, are
progressively measurable. Because of the (left-)continuity of the sample paths, we get

B.s; !/ D lim
j!1B

j .s; !/ for all s 2 Œ0; t �; ! 2 	;

and this shows that .B.t//t�0 is also progressively measurable.

6.25 Corollary. Let .Bt/t�0 be a BM1 and � be an Ft stopping time. Then B�1¹�<1º Ex. 6.4
is F� measurable.

Proof. Consider the maps

�¹� � tº;Ft
� ! 7!.�.!/;!/��������! �

Œ0; t � �	;BŒ0; t �˝ Ft
� .s;!/ 7!B.s;!/���������! �

Rd ;B.Rd /
�

:
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The second map is measurable, since .Bt/t�0 is progressively measurable. For the first
map we observe that for all r � t and  2 Ft

¹� � rº
„ ƒ‚ …

2Fr �Ft

\ 2 Ft :

Thus, ¹B.�/ 2 Aº \ ¹� � tº D ¹! 2 ¹� � tº W B.�.!/; !/ 2 Aº 2 Ft ; which proves
that ¹B.�/ 2 Aº \ ¹� < 1º 2 F� , i. e. B.�/1¹�<1º is F� measurable.

6.26 Further reading. The (strong) Markov property is a central theme in most books
on Brownian motion. The account in [23] excels in its clarity, elegance and precision.
Shift operators and the Markov property on the path space are explored in [99]. For
the general theory of Markov processes we refer to [61] and the classic book [13].

[13] Blumenthal, Getoor: Markov Processes and Potential Theory.
[23] Chung: Lectures from Markov Processes to Brownian Motion
[61] Ethier, Kurtz: Markov Processes: Characterization and Convergence.
[99] Karatzas, Shreve: Brownian Motion and Stochastic Calculus.

Problems

1. Let .Bt ;Ft/t�0 be a BM1.
(a) Show that Xt WD jBt j, t � 0, is also a Markov process for the filtration

.Ft/t�0, i. e. for all s; t � 0 and u 2 Bb.R/

E
�

u.XtCs/
ˇ

ˇFs
� D E

�

u.XtCs/
ˇ

ˇXs
�

:

(b) Find in a) the function gu;s;tCs.x/ with E.u.XtCs/ jXs/ D gu;s;tCs.Xs/.
(c) Solve a) and b) for the process Yt WD sups�t Bs � Bt , t � 0.
(d) Compare the transition functions from b) and c) for X and Y , respectively.

2. Let .Bt ;Ft/t�0 be a BM1 and set Mt WD sups�t Bs and It D R t

0
Bs ds.

(a) Show that the two-dimensional process .Bt ;Mt/t�0 is a Markov process for
.Ft/t�0.

(b) Show that the two-dimensional process .Bt ; It/t�0 is a Markov process for
.Ft/t�0.

(c) Are .Mt /t�0 and .It/t�0 Markov processes for .Ft /t�0?
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3. Let .B.t//t�0 be a BMdand let Z be a bounded FB1 measurable random variable.
Then x 7! Ex Z is in Bb.Rd /.
Hint: FB1 is generated by sets of the form G WD Tn

jD1¹B.tj / 2 Aj º. Then,
Ex 1G 2 Bb.Rd /. Consider the family † WD ¹A W Ex 1A 2 Bb.Rd /º; this is
a � -algebra containing all sets G, hence FB1.

4. Let .Bt ;Ft /t�0 be a BM1 and � a stopping time for the filtration .Ft/t�0. Show
that B� is measurable with respect to F�C.
Hint: Use in Theorem 6.6 u.x/ D un.x/ " x, u 2 Cb.Rd /; see also Corol-
lary 6.25.

5. Let .Bt /t�0 be a BM1. Show that P.sups�t jBsj � x/ � 2P.jBt j � x/, x; t � 0.

6. Let .Bt /t�0 be a BM1and denote by �
b

D inf¹s � 0 W Bs D bº the first time
when Bt reaches b 2 R. Show that
(a) �

b
� ��b;

(b) �
cb

� c2�
b
, c 2 R;

(c) if 0 < a < b, then �
b

� �a ?? ¹�˛ W ˛ 2 Œ0; a�º.

7. Let � D �ı
.a;b/c

be the first exit time of a Brownian motion from the interval .a; b/.

(a) Find Ex e��� for all x 2 .a; b/ and � > 0.
(b) Find Ex

�

e���1¹B� Daº
�

for all x 2 .a; b/ and � > 0.

8. Let .Bt/t�0 be a BM1 and setMt WDsups�t Bs . Find the distribution of .Mt ; Bt/.

9. Let .Bt /t�0 be a BM1 and let �0 be the first hitting time of 0. Find the ‘density’ of
Px.Bt 2 dz; �0 > t/, i. e. find the function ft;x.z/ such that

Px.Bt 2 A; �0 > t/ D
Z

A

ft;x.z/ dz for all A 2 B.R/:

10. Let K � Rd be a compact set. Show that there is a decreasing sequence of con-
tinuous functions �n.x/ such that 1K D infn �n.
Hint: Let U � K be an open set and �.x/ WD d.x; U c/=.d.x;K/C d.x; U c//.

11. Let .Bt/t�0 be a BM1. Find the distribution ofe�t WD inf¹s � t W Bs D 0º.

12. Let .Bt/t�0 be a BM1 and 0 < u < v < w < 1. Find the following probabilities:
(a) P

�

Bt D 0 for some t 2 .u; v/�;
(b) P

�

Bt ¤ 0 8t 2 .u; w/ ˇˇ Bt ¤ 0 8t 2 .u; v/�;
(c) P

�

Bt ¤ 0 8t 2 .0; w/ ˇˇ Bt ¤ 0 8t 2 .0; v/�.
13. Let .Bt /t�0 be a BM1 and set Mt D sups�t Bs . Denote by �t the largest zero of

Bs before time t and by �t the largest zero of Ys D Ms �Bs before time t . Show
that �t � �t .
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Brownian motion and transition semigroups

The Markov property allows us to study Brownian motion through an analytic ap-
proach. For this we associate with a Brownian motion .Bt/t�0 two families of linear
operators, the (transition) semigroup

Ptu.x/ D Ex u.Bt/; u 2 Bb.Rd /; x 2 Rd ; t � 0; (7.1)

and the resolvent

U˛u.x/ D Ex




Z 1

0

u.Bt /e
�˛t dt

�

; u 2 Bb.Rd /; x 2 Rd ; ˛ > 0: (7.2)

Throughout this chapter we assume that .Bt/t�0 is a d -dimensional Brownian mo-
tion which is adapted to the filtration .Ft/t�0.1 We will assume that .Ft/t�0 is right-
continuous, i. e. Ft D FtC for all t � 0, cf. Theorem 6.21 for a sufficient condition.

7.1 The semigroup

A semigroup .Pt/t�0 on a Banach space .B; k � k/ is a family of linear operators
Pt W B! B, t � 0, which satisfies

PtPs D PtCs and P0 D id : (7.3)

In this chapter we will consider the following Banach spaces:

Bb.R
d / the family of all bounded Borel measurable functions f W Rd ! R equipped
with the uniform norm k � k1;

C1.Rd / the family of all continuous functions f W Rd ! R vanishing at infinity,Ex. 7.1
i. e. limjxj!1 u.x/ D 0, equipped with the uniform norm k � k1.

Unless it is ambiguous, we write Bb and C1 instead of Bb.Rd / and C1.Rd /.

1 Many results of this chapter will be true, with only few changes in the proofs, for more general
Markov processes.
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7.1 Lemma. Let .Bt/t�0 be a d -dimensional Brownian motion with filtration .Ft /t�0.
Then (7.1) defines a semigroup of operators on Bb.Rd /.

Proof. It is obvious that Pt is a linear operator. Since x 7! e�jx�yj2=2t is measurable,
we see that

Ptu.x/ D
Z

Rd

u.y/ Px.Bt 2 dy/ D 1

.2
t/d=2

Z

Rd

u.y/ e�jx�yj2=2t dy

is again a Borel measurable function. (For a general Markov process we must use
(6.4c) with a Borel measurable gu;t. � /) The semigroup property (7.3) is now a direct
consequence of the Markov property (6.4): For s; t � 0 and u 2 Bb.Rd /

PtCsu.x/ D Ex u.BtCs/
towerD Ex

�

Ex
�

u.BtCs/
ˇ

ˇFs
�	

(6.4)D Ex
�

EBs .u.Bt//
	

D Ex
�

Ptu.Bs/
	

D PsPtu.x/

For many properties of the semigroup the Banach space Bb.Rd / is too big, and we
have to consider the smaller space C1.Rd /.

7.2 Lemma. A d -dimensional Brownian motion .Bt /t�0 is uniformly stochastically
continuous, i. e.

lim
t!0

sup
x2Rd

Px.jBt � xj > ı/ D 0 for all ı > 0: (7.4)

Proof. This follows immediately from the translation invariance of a Brownian motion
and Chebyshev’s inequality

Px.jBt � xj > ı/ D P.jBt j > ı/ � E jBt j2
ı2

D td

ı2
:

After this preparation we can discuss the properties of the semigroup .Pt /t�0.

7.3 Proposition. Let .Pt/t�0 be the transition semigroup of ad -dimensional Brownian Ex. 7.2
Ex. 7.3
Ex. 7.4
Ex. 7.5

motion .Bt /t�0 and C1 D C1.Rd / and Bb D Bb.Rd /. For all t � 0

a) Pt is conservative: Pt1 D 1.
b) Pt is a contraction on Bb: kPtuk1 � kuk1 for all u 2 Bb .
c) Pt is positivity preserving: For u 2 Bb we have u � 0 ) Ptu � 0;
d) Pt is sub-Markovian: For u 2 Bb we have 0 � u � 1 ) 0 � Ptu � 1;
e) Pt has the Feller property: If u 2 C1 then Ptu 2 C1;
f) Pt is strongly continuous on C1: limt!0 kPtu � uk1 D 0 for all u 2 C1;
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g) Pt has the strong Feller property: If u 2 Bb , then Ptu 2 Cb .

7.4 Remark. A semigroup of operators .Pt /t�0 on Bb.Rd / which satisfies

a)–d) is called a Markov semigroup;
b)–d) is called a sub-Markov semigroup;
b)–f) is called a Feller semigroup;
b)–d), g) is called a strong Feller semigroup.

Proof of Proposition 7.3. a) We have Pt1.x/ D Ex 1Rd .Bt/ D Px.Xt 2 Rd / D 1

for all x 2 Rd .

b) We have Ptu.x/ D Ex u.Bt/ D R

u.Bt / dPx � kuk1 for all x 2 Rd .

c) Since u � 0 we see that Ptu.x/ D Ex u.Bt / � 0.

d) Positivity follows from c). The proof of b) shows that Ptu � 1 if u � 1.

e) Note that Ptu.x/ D Ex u.Bt/ D E u.Bt C x/: Since ju.Bt C x/j � kuk1 is
integrable, the dominated convergence theorem, can be used to show

lim
x!y

u.Bt C x/ D u.Bt C y/ and lim
jxj!1

u.Bt C x/ D 0:

f) Fix � > 0. Since u 2 C1.Rd / is uniformly continuous, there is some ı > 0 such
that

ju.x/ � u.y/j < � for all jx � yj < ı:
Thus,

kPtu � uk1 D sup
x2Rd

jEx u.Bt/ � u.x/j
� sup
x2Rd

Ex ju.Bt/ � u.x/j

� sup
x2Rd

�

Z

jBt �xj<ı
ju.Bt/ � u.x/j dPx C

Z

jBt �xj�ı
ju.Bt/ � u.x/j dPx

�

� � sup
x2Rd

Px.jBt � xj < ı/C 2 kuk1 sup
x2Rd

Px.jBt � xj � ı/
� � C 2 kuk1 P.jBt j � ı/:

Since .Bt /t�0 is stochastically continuous, we get limt!0 kPtu� uk1 � �, cf. (7.4),
and the claim follows as � ! 0.

g) Since continuity is a local property, it is enough to consider z ! x for all points
z; x 2 B.0; R/ and any R > 0. Let u 2 Bb.Rd /. Then Ptu is given by

Ptu.z/ D pt ? u.z/ D 1

.2
t/d=2

Z

u.y/ e�jz�yj2=2t dy;
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and so

Ptu.z/ D 1

.2
t/d=2

�

Z

jyj<2R
u.y/ e�jz�yj2=2t dy C

Z

jyj�2R
u.y/ e�jz�yj2=2t dy

�

:

If jyj � 2 we get jz � yj2 � .jyj � jzj/2 � 1
4
jyj2 which shows that the integrand is

bounded by

ju.y/j e�jz�yj2=2t � kuk1
�

1B.0;2R/.y/C e�jyj2=8t1Bc.0;2R/.y/
�

and the right-hand side is integrable. Therefore we can use dominated convergence to
get limz!x Ptu.z/ D Ptu.x/. This proves that Ptu 2 Cb .

The semigroup notation offers a simple way to express the finite dimensional distri-
butions of a Markov process. Let .Bt /t�0 be a d -dimensional Brownian motion, s < t
and f; g 2 Bb.Rd /. Then

Ex
�

f .Bs/g.Bt /
	 D Ex

�

f .Bs/EBs g.Bt�s/
	

D Ex
�

f .Bs/Pt�sg.Bs/
	 D PsŒfPt�sg�.x/:

If we iterate this, we get the following counterpart of Theorem 6.4.

7.5 Theorem. Let .Bt /t�0 be a BMd , x 2 Rd , t0 D 0 < t1 < � � � < tn and
C1; : : : ; Cn 2 B.Rd /. If .Pt /t�0 is the transition semigroup of .Bt/t�0, then

Px.Bt1 2 C1; : : : ; Btn 2 Cn/ D Pt1
�

1C1
Pt2�t1

�

1C2
: : : Ptn�tn�1

1Cn

	

: : :
	

.x/:

7.6 Remark (From semigroups to processes). So far we have considered semigroups Ex. 7.6
given by a Brownian motion. It is an interesting question whether we can construct a
Markov process starting from a semigroup of operators. If .Tt /t�0 is a Markov semi-
group where pt .x; C / WD Tt1C .x/ is an everywhere defined kernel such that

C 7! pt.x; C / is a probability measure for all x 2 Rd ,

.t; x/ 7! pt.x; C / is measurable for all C 2 B.Rd /,

this is indeed possible. We can use the formula from Theorem 7.5 to define for every
x 2 Rd

pxt1;:::;tn.C1 � : : : � Cn/ WD Tt1
�

1C1
Tt2�t1

�

1C2
: : : Ttn�tn�1

1Cn

	

: : :
	

.x/

where 0 � t1 < t2 < � � � < tn and C1; : : : ; Cn 2 B.Rd /. For fixed x 2 Rd , this
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defines a family of finite dimensional measures on .Rd � n;Bn.Rd // which satisfy theEx. 7.7
Kolmogorov consistency conditions (4.6). The permutation property is obvious, while
the projectivity condition follows from the semigroup property:

pxt1;:::;tk ;:::;tn.C1 � : : : � Rd � : : : � Cn/
D Tt1

h

1C1
Tt2�t1

�

1C2
: : : 1Ck�1

Ttk�tk�1
1RdTtkC1�tk

„ ƒ‚ …

D Ttk�tk�1
TtkC1�tk D TtkC1�tk�1

1CkC1
: : : Ttn�tn�1

1Cn

	

: : :
i

.x/

D Tt1

h

1C1
Tt2�t1

�

1C2
: : : 1Ck�1

TtkC1�tk�1
1CkC1

: : : Ttn�tn�1
1Cn

	

: : :
i

.x/

D pxt1;:::;tk�1;tkC1;:::;tn
.C1 � : : : � Ck�1 � CkC1 � : : : � Cn/:

Now we can use Kolmogorov’s construction, cf. Theorem 4.8 and Corollary 4.9, to get
measures Px and a canonical process .Xt /t�0 such that Px.X0 D x/ D 1 for every
x 2 Rd .

We still have to check that the process X D .Xt/t�0 is a Markov process. Let
Ft WD �.Xs W s � t / denote the canonical filtration of X . We will show that

pt�s.Xs; C / D Px.Xt 2 C jFs/ for all s < t and C 2 B.Rd /: (7.5)

A further application of the tower property gives (6.4a). Since Fs is generated by an
\-stable generator G consisting of sets of the form

G D
m
\

jD0
¹Xsj 2 Cj º; m � 1; s0 D 0 < s1 < � � � < sm D s; C1; : : : ; Cm 2 B.Rd /;

it is enough to show that for every G 2 G

Z

G

pt�s.Xs; C / dPx D
Z

G

1C .Xt / dPx :

Because of the form of G and since s D sm, this is the same as

Z m
Y

jD1
1Cj

.Xsj /pt�sm
.Xsm

; C / dPx D
Z m
Y

jD1
1Cj

.Xsj /1C .Xt/ dPx :
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By the definition of the finite dimensional distributions we see

Z m
Y

jD1
1Cj

.Xsj /pt�sm
.Xsm

; C / dPx

D Ts1




1C1
Ts2�s1

h

1C2
: : : 1Cm�1

Tsm�sm�1

�

1Cm
pt�sm

. � ; C /	 : : :
i

�

.x/

D Ts1




1C1
Ts2�s1

h

1C2
: : : 1Cm�1

Tsm�sm�1

�

1Cm
Tt�sm

1C
	

: : :
i

�

.x/

D pxs1;:::;sm;t
.C1 � : : : � Cm�1 � Cm � C/

D
Z m
Y

jD1
1Cj

.Xsj /1C .Xt/ dPx :

7.7 Remark. Feller processes. Denote by .Tt/t�0 a Feller semigroup on C1.Rd /.
Remark 7.6 allows us to construct a d -dimensional Markov process .Xt /t�0 whose
transition semigroup is .Tt/t�0. The process .Xt/t�0 is called a Feller process. Let us
briefly outline this construction: By the Riesz representation theorem, cf. e. g. Rudin
[164, Theorem 2.14], there exists a unique (compact inner regular) kernel pt .x; � /
such that

Ttu.x/ D
Z

u.y/ pt.x; dy/; u 2 C1.Rd /: (7.6)

Obviously, (7.6) extends Tt to Bb.Rd /, and .Tt/t�0 becomes a Feller semigroup in
the sense of Remark 7.4.

Let K � Rd be compact. Then Un WD ¹x C y W x 2 K; y 2 B.0; 1=n/º is open Ex. 7.8
and

un.x/ WD d.x; U c
n /

d.x;K/C d.x; U c
n /
; where d.x; A/ WD inf

a2A jx � aj; (7.7)

is a sequence of continuous functions such that infn�1 un D 1K . By monotone conver-
gence, pt .x;K/ D infn�1 Ttun.x/, and .t; x/ 7! pt .x;K/ is measurable. Since the
kernel is inner regular, we have pt .x; C / D sup¹pt.x;K/ W K � C; K compactº
for all Borel sets C � Rd and, therefore, .t; x/ 7! pt.x; C / is measurable.

Obviously, pt .x;Rd / � 1. If pt.x;Rd / < 1, the following trick can be used to
make Remark 7.6 work: Consider the one-point compactification of Rd by adding the
point @ and define

8

ˆ

<

ˆ

:

p@t .x; ¹@º/ WD 1 � pt.x;Rd / for x 2 Rd ; t � 0;
p@t .@; C / WD ı@.C / for C 2 B.Rd [ ¹@º/; t � 0
p@t .x; C / WD pt .x; C / for x 2 Rd ; C 2 B.Rd /; t � 0:

(7.8)
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With some effort we can always get a version of .Xt/t�0 with right-continuous sample
paths. Moreover, a Feller process is a strong Markov process, cf. Section A.5 in the
appendix.

7.2 The generator

Let � W Œ0;1/ ! R be a continuous function which satisfies the functional equation
�.t/�.s/ D �.tCs/ and �.0/ D 1. Then there is a unique a 2 R such that �.t/ D eat .
Obviously,

a D dC

dt
�.t/

ˇ

ˇ

ˇ

tD0
D lim

t!0

�.t/ � 1
t

:

Since a strongly continuous semigroup .Pt /t�0 on a Banach space .B; k � k/ also
satisfies the functional equation PtPsu D PtCsu it is not too wild a guess that – in
an appropriate sense – Ptu D etAu for some operator A inB. In order to keep things
technically simple, we will only consider Feller semigroups.

7.8 Definition. Let .Pt/t�0 be a Feller semigroup on C1.Rd /. Then

Au WD lim
t!0

Ptu � u
t

�

the limit is taken in .C1.Rd /; k � k1/
�

(7.9a)

D.A/ WD
²

u 2 C1.Rd /
ˇ

ˇ

ˇ

9g 2 C1.Rd / W lim
t!0

�

�

�

�

Ptu � u
t

� g
�

�

�

�1
D 0

³

(7.9b)

is the (infinitesimal) generator of the semigroup .Pt /t�0.

Clearly, (7.9a) defines a linear operator A W D.A/ ! C1.Rd /.Ex. 7.9

7.9 Example. Let .Bt /t�0, Bt D �

B1t ; : : : ; B
d
t

�

, be a d -dimensional Brownian mo-
tion and denote by Ptu.x/ D Ex u.Bt/ the transition semigroup. Then

C21.R
d / WD ®

u 2 C1.Rd / W @ju; @j@ku 2 C1.Rd /;

j; k D 1; : : : ; d
¯ � D.A/

where

A D 1

2
� D 1

2

d
X

jD1
@2j

and
@j D @=@xj :
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Let u 2 C21.Rd /. By the Taylor formula we get for some � D �.!/ 2 Œ0; 1�
ˇ

ˇ

ˇ

ˇ

E




u.Bt C x/ � u.x/
t

� 1

2

d
X

jD1
@2j u.x/

�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

E




1

t

d
X

jD1
@u.x/B

j
t C 1

2t

d
X

j;kD1
@j@ku.x C �Bt/B

j
t B

k
t � 1

2

d
X

jD1
@2j u.x/

�

ˇ

ˇ

ˇ

ˇ

D 1

2

ˇ

ˇ

ˇ

ˇ

E


 d
X

j;kD1

�

@j@ku.x C �Bt / � @j@ku.x/
�B

j
t B

k
t

t

�

ˇ

ˇ

ˇ

ˇ

In the last equality we used that EB
j
t D 0 and EB

j
t B

k
t D ıjkt . Applying the Cauchy–

Schwarz inequality two times, we find

� 1

2
E


� d
X

j;kD1

ˇ

ˇ@j @ku.x C �Bt/ � @j@ku.x/
ˇ

ˇ

2
�1=2 � d

X

j;kD1

�

B
j
t B

k
t

�2

t2

�1=2

„ ƒ‚ …

DPd
lD1.Bl

t /
2
=tDjBt j2=t

�

� 1

2

� d
X

j;kD1
E
�

ˇ

ˇ@j @ku.x C �Bt / � @j @ku.x/
ˇ

ˇ

2
�

�1=2�E
�jBt j4

�

t2

�1=2

:

By the scaling property 2.12, E.jBt j4/ D t2 E.jB1j4/ < 1. Since

ˇ

ˇ@j @ku.x C �Bt/ � @j @ku.x/
ˇ

ˇ

2 � 4k@j@kuk21 for all j; k D 1; : : : ; d;

and since the expression on the left converges (uniformly in x) to 0 as t ! 0, we get
by dominated convergence

lim
t!0

sup
x2Rd

ˇ

ˇ

ˇ

ˇ

E




u.Bt C x/ � u.x/
t

� 1

2

d
X

jD1
@2j u.x/

�

ˇ

ˇ

ˇ

ˇ

D 0:

This shows that C21.Rd / � D.A/ and A D 1
2
� on C21.Rd /.

In abuse of notation we write D.�/ for the domain of 1
2
�. We will see in Ex-

ample 7.20 below that D.�/ D C21.R/ if d D 1.
For d > 1 we have D.�/ � C21.Rd /, cf. [85, pp. 234–5]. In general, D.�/ is the

Sobolev-type space ¹u 2 L2.Rd / W u, �u 2 C1.Rd /º where �u is understood in
the sense of distributions.

Since every Feller semigroup .Pt /t�0 is given by a family of measurable kernels, cf.
Remark 7.7, we can define linear operators of the type L D R t

0
Ps ds in the following
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way: For u 2 Bb.Rd /

Lu is a Borel function given by x 7! Lu.x/ WD
Z t

0

Z

u.y/ ps.x; dy/ ds:

The following lemma describes the fundamental relation between generators and semi-
groups.

7.10 Lemma. Let .Pt /t�0 be a Feller semigroup with generator .A;D.A//.

a) For all u 2 D.A/ and t > 0 we have Ptu 2 D.A/. Moreover,

d

dt
Ptu D APtu D PtAu for all u 2 D.A/; t > 0: (7.10)

b) For all u 2 C1.Rd / we have
R t

0
Psuds 2 D.A/ and

Ptu � u D A

Z t

0

Psuds; u 2 C1.Rd /; t > 0 (7.11a)

D
Z t

0

APsuds; u 2 D.A/; t > 0 (7.11b)

D
Z t

0

PsAuds; u 2 D.A/; t > 0: (7.11c)

Proof. a) Let 0 < � < t and u 2 D.A/. By the triangle inequality, we obtain the
semigroup and the contraction properties

�

�

�

�

P
Ptu � Ptu
�

� PtAu
�

�

�

�1
D
�

�

�

�

PtC
u � Ptu
�

� PtAu
�

�

�

�1

D
�

�

�

�

Pt
P
u � u

�
� PtAu

�

�

�

�1

�
�

�

�

�

P
u � u
�

� Au
�

�

�

�1
���!

!0

0:

By the definition of the generator, Ptu 2 D.A/ and dC

dt Ptu D APtu D PtAu.
Similarly,

�

�

�

�

Ptu � Pt�
u
�

� PtAu
�

�

�

�1

�
�

�

�

�

Pt�

P
u � u

�
� Pt�
Au

�

�

�

�1
C �

�Pt�
Au � Pt�
P
Au
�

�1

�
�

�

�

�

P
u � u
�

� Au
�

�

�

�1
C �

�Au � P
Au
�

�1 ���!

!0

0:

where we used the strong continuity in the last step.
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This shows that we have d�

dt Ptu D APtu D PtAu.

b) Let u 2 Bb.Rn/ and t; � > 0. By Fubini’s theorem

P


Z t

0

Psu.x/ ds D
ZZ t

0

Z

u.y/ps.z; dy/ ds p
.x; dz/

D
Z t

0

ZZ

u.y/ps.z; dy/ p
.x; dz/ ds D
Z t

0

P
Psu.x/ ds;

and so,

P
 � id

�

Z t

0

Psu.x/ ds D 1

�

Z t

0

�

PsC
u.x/ � Psu.x/
�

ds

D 1

�

Z tC


t

Psu.x/ ds � 1

�

Z 


0

Psu.x/ ds:

The contraction property and the strong continuity give for r > 0
ˇ

ˇ

ˇ

ˇ

1

�

Z rC


r

Psu.x/ ds � Pru.x/
ˇ

ˇ

ˇ

ˇ

� 1

�

Z rC


r

jPsu.x/ � Pru.x/j ds
� sup
r�s�rC
 kPsu � Pruk1

� sup
s�


kPsu � uk1 ���!

!0

0:

(7.12)

This shows that
R t

0
Psuds 2 D.A/ as well as (7.11a). If u 2 D.A/, then

Z t

0

PsAu.x/ ds
(7.10)D

Z t

0

APsu.x/ ds

(7.10)D
Z t

0

d

ds
Psu.x/ ds

D Ptu.x/ � u.x/ (7.11a)D A

Z t

0

Psu.x/ ds:

This proves (7.11c) and (7.11b) follows now from part a).

7.11 Corollary. Let .Pt/t�0 be a Feller semigroup with generator .A;D.A//. Ex. 19.3

a) D.A/ is a dense subset of C1.Rd /.
b) .A;D.A// is a closed operator, i. e.

.un/n�1 � D.A/; limn!1un D u;

.Aun/n�1 is a Cauchy sequence

μ

H)
´

u 2 D.A/ and

Au D lim
n!1Aun:

(7.13)

c) If .Tt /t�0 is a further Feller semigroup with generator .A;D.A//, then Pt D Tt .
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Proof. a) Let u 2 C1.Rd /. From (7.11a) we see u
 WD ��1 R 

0
Psuds 2 D.A/ and,

by an argument similar to (7.12), we find lim
!0 ku
 � uk1 D 0.

b) Let .un/n�1 � D.A/ be such that limn!1 un D u and limn!1 Aun D w uni-
formly. Therefore

Ptu.x/ � u.x/ D lim
n!1Ptun.x/ � un.x/

(7.11c)D lim
n!1

Z t

0

PsAun.x/ ds D
Z t

0

Psw.x/ ds:

As in (7.12) we find

lim
t!0

Ptu.x/ � u.x/
t

D lim
t!0

1

t

Z t

0

Psw.x/ ds D w.x/

uniformly for all x, thus u 2 D.A/ and Au D w.

c) Let 0 < s < t and assume that 0 < jhj < min¹t�s; sº. Then we have for u 2 D.A/
Pt�sTsu � Pt�s�hTs�hu

h
D Pt�s � Pt�s�h

h
TsuC Pt�s�h

Tsu � Ts�hu
h

:

Letting h ! 0, Lemma 7.10 shows that the function s 7! Pt�sTsu, u 2 D.A/, isEx. 7.10
differentiable, and

d

ds
Pt�sTsu D

�

d

ds
Pt�s

�

TsuC Pt�s
d

ds
Tsu D �Pt�sATsuC Pt�sATsu D 0:

Thus,

0 D
Z t

0

d

ds
Pt�sTsu.x/ ds D Pt�sTsu.x/

ˇ

ˇ

ˇ

sDt
sD0

D Ttu.x/ � Ptu.x/:

Therefore, Ttu D Ptu for all t > 0 and u 2 D.A/. Since D.A/ is dense in C1.Rd /,
we can approximate u 2 C1.Rd / by a sequence .uj /j�1 � D.A/, i. e.

Ttu D lim
j!1Ttuj D lim

j!1Ptuj D Ptu:

7.3 The resolvent

Let .Pt /t�0 be a Feller semigroup. Then the integral

U˛u.x/ WD
Z 1

0

e�˛t Ptu.x/ dt; ˛ > 0; x 2 Rd ; u 2 Bb.Rd /; (7.14)

exists and defines a linear operator U˛ W Bb.Rd / ! Bb.R
d /.

7.12 Definition. Let .Pt /t�0 be a Feller semigroup and ˛ > 0. The operator U˛ given
by (7.14) is the ˛-potential operator.
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The ˛-potential operators share many properties of the semigroup. In particular, we
have the following counterpart of Proposition 7.3.

7.13 Proposition. Let .Pt/t�0 be a Feller semigroup with potential operators .U˛/˛>0 Ex. 7.12
Ex. 7.14and generator .A;D.A//.

a) ˛U˛ is conservative: ˛U˛1 D 1;
b) ˛U˛ is a contraction on Bb: k˛U˛uk1 � kuk1 for all u 2 Bb;
c) ˛U˛ is positivity preserving: For u 2 Bb we have u � 0 ) ˛U˛u � 0;
d) ˛U˛ has the Feller property: If u 2 C1, then ˛U˛u 2 C1;
e) ˛U˛ is strongly continuous on C1: lim˛!1 k˛U˛u � uk1 D 0;
f) .U˛/˛>0 is the resolvent: For all ˛ > 0, ˛ id �A is invertible with a bounded inverse
U˛ D .˛ id �A/�1;

g) Resolvent equation: U˛u � Uˇu D .ˇ � ˛/UˇU˛u for all ˛; ˇ > 0 and u 2 Bb .
In particular, limˇ!˛ kU˛u � Uˇuk1 D 0 for all u 2 Bb .

h) There is a one-to-one relationship between .Pt /t�0 and .U˛/˛>0.
i) The resolvent .U˛/˛>0 is sub-Markovian if, and only if, the semigroup .Pt/t�0 is

sub-Markovian: Let 0 � u � 1. Then 0 � Ptu � 1 8t � 0 if, and only if,
0 � ˛U˛u � 1 8˛ > 0.

Proof. a)–c) follow immediately from the integral formula (7.14) forU˛u.x/ and the
corresponding properties of the Feller semigroup .Pt /t�0.

d) Since Ptu 2 C1 and j˛e�˛tPtu.x/j � ˛e�˛t kuk1 2 L1.dt/, this follows from
dominated convergence.

e) By the integral representation (7.14) and the triangle inequality we find

k˛U˛u � uk1 �
Z 1

0

˛e�˛tkPtu � uk1 dt D
Z 1

0

e�skPs=˛u � uk1 ds:

As kPs=˛u� uk1 � 2kuk1 and lim˛!1 kPs=˛u� uk1 D 0, the claim follows with
dominated convergence.

f) For every � > 0; ˛ > 0 and u 2 C1.Rd / we have

1

�

�

P
.U˛u/ � U˛u
�

D 1

�

Z 1

0

e�˛t�PtC
u � Ptu
�

dt

D 1

�

Z 1




e�˛.s�
/Psu ds � 1

�

Z 1

0

e�˛sPsu ds

D e˛
 � 1
�

„ ƒ‚ …

!˛; 
!0

Z 1

0

e�˛sPsu ds � e˛


�

Z 


0

e�˛sPsu ds:
„ ƒ‚ …

!u; 
!0 as in (7.12)
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This shows that we have in the sense of uniform convergence

lim

!0

P
U˛u � U˛u
�

D ˛U˛u � u;

i. e. U˛u 2 D.A/ and AU˛u D ˛U˛u� u. Hence, .˛ id �A/U˛u D u for all u 2 C1.
Since for u 2 D.A/

U˛Au D
Z 1

0

e�˛tPtAu dt
(7.11)D A

Z 1

0

e�˛tPtu dt D AU˛u;

it is easy to see that u D .˛ id �A/U˛u D U˛.˛ id �A/u.
This shows that U˛ is the left- and right-inverse of ˛ id �A. Since U˛ is bounded,

˛ id �A has a bounded inverse, i. e. ˛ > 0 is in the resolvent set of A, and .U˛/˛>0 is
the resolvent.

g) Because of f) we see for ˛; ˇ > 0 and u 2 Bb
U˛u � Uˇu D Uˇ

�

.ˇ id �A/U˛ � id
�

u D Uˇ .ˇ � ˛/U˛u D .ˇ � ˛/UˇU˛u:
Since ˛U˛ and ˇUˇ are contractive, we find

kU˛u � Uˇuk1 D jˇ � ˛j
ˇ˛

k˛U˛ˇUˇuk1 �
ˇ

ˇ

ˇ

ˇ

1

˛
� 1

ˇ

ˇ

ˇ

ˇ

ˇ

kuk1 ���!
ˇ!˛

0:

h) Formula (7.14) shows that .Pt /t�0 defines .U˛/˛>0. On the other hand, (7.14)
means that for every x 2 Rd the function �.˛/ WD U˛u.x/ is the Laplace transform of
�.t/ WD Ptu.x/. Therefore, � determines �.t/ for Lebesgue almost all t � 0, cf. [170,
Proposition 1.2] for the uniqueness of the Laplace transform. Since �.t/ D Ptu.x/ is
continuous for u 2 C1, this shows that Ptu.x/ is uniquely determined for all u 2 C1,
and so is .Pt /t�0, cf. Remark 7.7.

i) Assume that u 2 Bb satisfies 0 � u � 1. From (7.14) we get that 0 � Ptu � 1,
t � 0, implies 0 � ˛U˛u � 1. Conversely, let 0 � u � 1 and 0 � ˛U˛u � 1 for all
˛ > 0. From the resolvent equation g) we see for all u 2 Bb with u � 0

d

d˛
U˛u.x/ D lim

ˇ!˛

U˛u.x/ � Uˇu.x/
˛ � ˇ

g)D � lim
ˇ!˛

UˇU˛u.x/ D �U 2
˛ u.x/ � 0:

Iterating this shows that .�1/n dn

d˛nU˛u.x/ � 0. This means that �.˛/ WD U˛u.x/ isEx. 7.13
completely monotone, hence the Laplace transform of a positive measure, cf. Bern-
stein’s theorem [170, Theorem 1.4]. As U˛u.x/ D R1

0
e�˛tPtu.x/ dt, we infer that

Ptu.x/ � 0 for Lebesgue almost all t > 0.
The formula for the derivative of U˛ yields that d

d˛
˛U˛u.x/ D .id �˛U˛/u.x/.

By iteration we get .�1/nC1 dn

d˛n˛U˛u.x/ D nŠ.id �˛U˛/u.x/. Plug in u � 1; then

it follows that ‡.˛/ WD 1 � ˛U˛1.x/ D R1
0
˛e�˛t.1 � Pt1.x// dt is completely
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monotone. Thus, Pt1.x/ � 1 for Lebesgue almost all t > 0, and using the positivity
of Pt for the positive function 1 � u, we get Ptu � Pt1 � 1 for almost all t > 0.

Since t 7! Ptu.x/ is continuous if u 2 C1, we see that 0 � Ptu.x/ � 1 for all
t > 0 if u 2 C1 and 0 � u � 1, and we extend this to u 2 Bb with the help of
Remark 7.7.

7.14 Example. Let .Bt/t�0 be a Brownian motion and denote by .U˛/˛>0 the resol- Ex. 7.14
vent. For all u 2 Bb.Rd /

U˛u.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Z

e�p
2˛y

p
2˛

u.x C y/ dy; if d D 1;

Z

1


d=2

�

˛

2y2

�

d
4

� 1
2

K d
2

�1
�

p
2˛y

�

u.x C y/ dy; if d � 2;
(7.15)

where K�.x/ is a Bessel function of the third kind, cf. [74, p. 959, 8.432.6 and p. 967,
8.469.3].

Indeed: Let d D 1 and denote by .Pt/t�0 the transition semigroup. Using Fubini’s
theorem we find for ˛ > 0 and u 2 Bb.R/

U˛u.x/ D
Z 1

0

e�˛t Ptu.x/ dt

D
Z 1

0

e�˛t E u.x C Bt/ dt

D
ZZ 1

0

e�˛t u.x C y/
1p
2
t

e�y2=2t dt dy

D
Z

r˛.y
2/ u.x C y/ dy

where

r˛.�/ D
Z 1

0

1p
2
t

e�.˛tC�=2t/ dt D e�p
2˛�

p
2˛

Z 1

0

r

˛


t
e

�
�p
˛t�p

�=2t
�2

dt:

Changing variables according to t D �=.2˛s/ and dt D ��=.2˛s2/ ds gives

r˛.�/ D e�p
2˛�

p
2˛

Z 1

0

r

�

2
s3
e�
�p
�=2s�p

˛s

�2

ds:

If we add these two equalities and divide by 2, we get

r˛.�/ D e�p
2˛�

p
2˛

1p



Z 1

0

1

2

�

r

˛

s
C
r

�

2s3

�

e�
�p
˛s�p

�=2s

�2

ds:
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A further change of variables, y D p

˛s � p

�=2s and dy D 1
2

�q

˛
s

C
q

�

2s3

�

ds,
reveals that

r˛.�/ D e�p
2˛�

p
2˛

1p



Z 1

�1
e�y2

dy D e�p
2˛�

p
2˛

:

For a d -dimensional Brownian motion, d � 2, a similar calculation leads to the
kernel

r˛.�/ D
Z 1

0

1

.2
t/d=2
e�.˛tC�=2t/ dt D 1


d=2

�

˛

2�

�

d
4

� 1
2

K d
2

�1
�

p

2˛�
�

which cannot be expressed by elementary functions if d � 1.

The following result is often helpful if we want to determine the domain of the
generator.

7.15 Theorem (Dynkin 1956; Reuter 1957). Let .A;D.A// be the generator of a Feller
semigroup and assume that .A;D.A// extends .A;D.A//, i. e.

D.A/ � D.A/ and AjD.A/ D A: (7.16)

If for any u 2 D.A/
Au D u H) u D 0; (7.17)

then .A;D.A// D .A;D.A//.

Proof. Pick u 2 D.A/ and set

g WD u � Au and h WD .id �A/�1g 2 D.A/:
Then

h � Ah (7.16)D h � Ah D .id �A/.id �A/�1g D g
defD u � Au:

Thus, h�u D A.h�u/ and, by (7.17), h D u. Since h 2 D.A/we get that u 2 D.A/,
and so D.A/ � D.A/.

7.4 The Hille-Yosida theorem and positivity

We will now discuss the structure of generators of strongly continuous contraction
semigroups and Feller semigroups.
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7.16 Theorem (Hille 1948; Yosida 1948; Lumer–Phillips 1961). A linear operator
.A;D.A// on a Banach space .B; k � k/ is the infinitesimal generator of a strongly
continuous contraction semigroup if, and only if,

a) D.A/ is a dense subset ofB;
b) A is dissipative, i. e. 8� > 0; u 2 D.A/ W k�u � Auk � �kuk;
c) R.� id �A/ D B for some (or all) � > 0.

We do not give a proof of this theorem but refer the interested reader to Ethier–Kurtz
[61] and Pazy [142]. In fact, Theorem 7.16 is too general for transition semigroups of
stochastic processes. Let us now show which role is played by the positivity and sub-
Markovian property of such semigroups. To keep things simple, we restrict ourselves
to the Banach space B D C1 and Feller semigroups.

7.17 Lemma. Let .Pt/t�0 be a Feller semigroup with generator .A;D.A//. Then A
satisfies the positive maximum principle (PMP)

u 2 D.A/; u.x0/ D sup
x2Rd

u.x/ � 0 H) Au.x0/ � 0: (7.18)

For the Laplace operator (7.18) is quite familiar: At a (global) maximum the second
derivative is negative.

Proof. Let u 2 D.A/ and assume that u.x0/ D supu � 0. Since Pt preserves positiv-
ity, we get uC � u � 0 and Pt .uC � u/ � 0 or PtuC � Ptu. Since u.x0/ is positive,
u.x0/ D uC.x0/ and so

1

t

�

Ptu.x0/ � u.x0/
�

� 1

t

�

Ptu
C.x0/ � uC.x0/

�

� 1

t

�kuCk1 � uC.x0/
� D 0:

Letting t ! 0 therefore shows Au.x0/ D limt!0 t
�1 .Ptu.x0/ � u.x0// � 0.

In fact, the converse of Lemma 7.17 is also true.

7.18 Lemma. Assume that the linear operator .A;D.A// satisfies conditions a) and
c) of Theorem 7.16 and the PMP (7.18). Then 7.16 b) holds, and both the resolvent
U� D .� id �A/�1 and the semigroup generated by A are positivity preserving.

Proof. Let u 2 D.A/ and x0 be such that ju.x0/j D supx2Rd ju.x/j. We may assume
that u.x0/ � 0, otherwise we could consider �u. Then we find for all � > 0

k�u � Auk1 � �u.x0/ � Au.x0/
„ ƒ‚ …

�0 by PMP

� �u.x0/ D �kuk1:
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This is 7.16 b). Because of Proposition 7.13 h) it is enough to show that U� preserves
positivity. If we use the PMP for �u, we get Feller’s minimum principle:

v 2 D.A/; v.x0/ D inf
x2Rd

v.x/ � 0 H) Av.x0/ � 0:

Now assume that v � 0 and let x0 be the minimum point of U�v. Since U�v vanishes
at infinity, it is clear that U�v.x0/ � 0. By Feller’s minimum principle

�U�v.x0/ � v.x0/ 7.13 f)D AU�v.x0/ � 0

and, therefore, �U�v.x/ � infx �U�v.x/ D �U�v.x0/ � v.x0/ � 0.

The next result shows that positivity allows us to determine the domain of the gen-
erator using pointwise rather than uniform convergence.

7.19 Theorem. Let .Pt/t�0 be a Feller semigroup generated by .A;D.A//. Then

D.A/ D
²

u 2 C1.Rd /
ˇ

ˇ

ˇ

9g 2 C1.Rd / 8 x W lim
t!0

Ptu.x/ � u.x/
t

D g.x/

³

:

(7.19)

Proof. We define the weak generator of .Pt/t�0 as

Awu.x/ WD lim
t!0

Ptu.x/ � u.x/
t

for all u 2 D.Aw/ and x 2 Rd ;

where D.Aw/ is set on the right-hand side of (7.19). Clearly, .Aw ;D.Aw// extends
.A;D.A// and the calculation in the proof of Lemma 7.17 shows that .Aw ;D.Aw//
also satisfies the positive maximum principle. Using the argument of (the first part of
the proof of) Lemma 7.18 we infer that .Aw ;D.Aw// is dissipative. In particular, we
find for all u 2 D.Aw/

Awu D u H) 0 D ku � Awuk � kuk H) kuk D 0 H) u D 0:

Therefore, Theorem 7.15 shows that .Aw ;D.Aw// D .A;D.A//.

7.20 Example. Let .A;D.A// be the generator of the transition semigroup .Pt/t�0 of
a BMd . We know from Example 7.9 that C21.Rd / � D.A/.

If d D 1, then D.A/ D C21.R/ D ¹u 2 C1.R/ W u; u0; u00 2 C1.R/º.

Proof. We know from Proposition 7.13 f) that U˛ is the inverse of ˛ id �A. In particu-Ex. 7.11
lar, U˛.C1.R// D D.A/. This means that any u 2 D.A/ can be written as u D U˛f

for some f 2 C1.Rd /.
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Using the formula (7.15) for U˛ from Example 7.14, we see for all f 2 C1.R/

U˛f .x/ D 1p
2˛

Z 1

�1
e�p

2˛ jy�xjf .y/ dy:

By the differentiability lemma for parameter-dependent integrals, cf. [169, The-
orem 11.5], we find

d

dx
U˛f .x/ D

Z 1

�1
e�p

2˛ jy�xj sgn.y � x/ f .y/ dy

D
Z 1

x

e�p
2˛ .y�x/f .y/ dy �

Z x

�1
e�p

2˛ .x�y/f .y/ dy;

d 2

dx2
U˛f .x/ D p

2˛

Z 1

�1
e�p

2˛jy�xj f .y/ dy � 2f .x/:

Since
ˇ

ˇ

ˇ

d
dx
U˛f .x/

ˇ

ˇ

ˇ

� 2
p
2˛U˛jf j.x/ and d2

dx2 U˛f .x/ D 2˛U˛f .x/�2f .x/, Propo-

sition 7.13 d) shows that U˛f 2 C1.Rd /, thus C21.Rd / � D.A/.

If d > 1, these arguments are no longer valid, we have C21.Rd / � D.�/ and

D.�/ D ¹u 2 C1.Rd / W (weak derivative) �u 2 C1.Rd /º;
see e. g. Itô–McKean [85, pp. 234–5].

7.5 Dynkin’s characteristic operator

We will now give a probabilistic characterization of the infinitesimal generator. As so
often, a simple martingale relation turns out to be extremely helpful. The following the-
orem should be compared with Theorem 5.6. Recall that a Feller process is a (strong2)
Markov process with right-continuous trajectories whose transition semigroup .Pt /t�0
is a Feller semigroup. Of course, a Brownian motion is a Feller process.

7.21 Theorem. Let .Xt ;Ft /t�0 be a Feller process on Rd with transition semigroup Ex. 7.15
.Pt /t�0 and generator .A;D.A//. Then

M u
t WD u.Xt/ � u.x/ �

Z t

0

Au.Xr/ dr for all u 2 D.A/

is an Ft martingale.

2 Feller processes have the strong Markov property, see Theorem A.25 in the appendix
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Proof. Let u 2 D.A/, x 2 Rd and s; t > 0. By the Markov property (6.4c),

Ex
�

M u
sCt

ˇ

ˇ Ft
�

D Ex

�

u.XsCt / � u.x/ �
Z sCt

0

Au.Xr/ dr
ˇ

ˇ

ˇ

Ft

�

D EXt u.Xs/ � u.x/ �
Z t

0

Au.Xr/ dr � Ex

�

Z sCt

t

Au.Xr/ dr
ˇ

ˇ

ˇ

Ft

�

D Psu.Xt / � u.x/ �
Z t

0

Au.Xr/ dr � EXt

�

Z s

0

Au.Xr/ dr

�

D Psu.Xt / � u.x/ �
Z t

0

Au.Xr/ dr �
Z s

0

EXt
�

Au.Xr/
�

dr

D Psu.Xt / � u.x/ �
Z t

0

Au.Xr/ dr �
Z s

0

PrAu.Xt/ dr

„ ƒ‚ …

DPsu.Xt /�u.Xt / by (7.11c)

D u.Xt / � u.x/ �
Z t

0

Au.Xr/ dr D M u
t :

The following result, due to Dynkin, could be obtained from Theorem 7.21 by op-Ex. 7.16
tional stopping, but we prefer to give an independent proof.

7.22 Proposition (Dynkin 1956). Let .Xt ;Ft /t�0 be a Feller process on Rd with
transition semigroup .Pt/t�0, resolvent .U˛/˛>0 and generator .A;D.A//. If � is an
a. s. finite Ft stopping time, then

U˛f .x/ D Ex

�

Z �

0

e�˛tf .Xt / dt

�

C Ex
�

e�˛�U˛f .X� /
�

; f 2 Bb.Rd / (7.20)

for all x 2 Rd . If Ex � < 1, then Dynkin’s formula holds

Ex u.X� / � u.x/ D Ex

�

Z �

0

Au.Xt / dt

�

; u 2 D.A/: (7.21)

Proof. Since � < 1 a. s., we get

U˛f .x/ D Ex

�

Z 1

0

e�˛tf .Xt/ dt

�

D Ex

�

Z �

0

e�˛tf .Xt / dt

�

C Ex

�

Z 1

�

e�˛tf .Xt / dt

�

:
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Using the strong Markov property (6.7), the second integral becomes

Ex

�

Z 1

�

e�˛tf .Xt / dt

�

D Ex

�

Z 1

0

e�˛.tC�/f .XtC� / dt

�

D
Z 1

0

Ex
�

e�˛.tC�/ Ex
�

f .XtC� / j F�C
	

�

dt

D
Z 1

0

e�˛t Ex
�

e�˛� EX� f .Xt /
�

dt

D Ex

�

e�˛�
Z 1

0

e�˛tPtf .X�/ dt

�

D Ex
�

e�˛�U˛f .X�/
�

:

If u 2 D.A/, there is some f 2 C1.Rd / such that u D U˛f , hence f D ˛u � Au.
Using the first identity, we find by dominated convergence

u.x/ D Ex

�

Z �

0

e�˛tf .Xt / dt

�

C Ex
�

e�˛�u.X�/
�

D Ex

�

Z �

0

e�˛t�˛u.Xt/ � Au.Xt/
�

dt

�

C Ex
�

e�˛�u.X�/
�

���!
˛!0

� Ex

�

Z �

0

Au.Xt/ dt

�

C Ex
�

u.X�/
�

:

Assume that the filtration .Ft/t�0 is right-continuous. Then the first hitting time of
the open set Rd n ¹xº, �x WD inf¹t > 0 W Xt ¤ xº, is a stopping time, cf. Lemma 5.7.
One can show that Px.�x � t / D exp.��.x/t/ for some exponent �.x/ 2 Œ0;1�, see
Theorem A.26 in the appendix. For a Brownian motion we have �.x/ � 1, since for
t > 0

Px.�x > t/ D Px
�

sup
s�t

jBs � xj D 0
�

� Px.jBt � xj D 0/ D P.Bt D 0/ D 0:

Under Px the random time �x is the waiting time of the process at the starting point.
Therefore, �.x/ tells us how quickly a process leaves its starting point, and we can use
it to give a classification of the starting points.

7.23 Definition. Let .Xt/t�0 be a Feller process. A point x 2 Rd is said to be

a) an exponential holding point if 0 < �.x/ < 1,
b) an instantaneous point if �.x/ D 1,
c) an absorbing point if �.x/ D 0.

7.24 Lemma. Let .Xt ;Ft /t�0 be a Feller process with a right-continuous filtration,
transition semigroup .Pt /t�0 and generator .A;D.A//. If x0 is not absorbing, then
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a) there exists some u 2 D.A/ such that Au.x0/ ¤ 0;
b) there is an open neighbourhood U D U.x0/ of x0 such that for V WD Rd n U the

first hitting time �V WD inf¹t > 0 W Xt 2 V º satisfies Ex0 �V < 1.

Proof. a) We show thatAw.x0/ D 0 for allw 2 D.A/ implies that x0 is an absorbing
point. Let u 2 D.A/. By Lemma 7.10 a) w D Ptu 2 D.A/ and

d

dt
Ptu.x0/ D APtu.x0/ D 0 for all t � 0:

Thus, (7.11b) shows that Ptu.x0/ D u.x0/. Since D.A/ is dense in C1.Rd / we get
Ex0 u.Xt/ D Ptu.x0/ D u.x0/ for all u 2 C1.Rd /. Using the sequence from (7.7),
we can approximate x 7! 1¹x0º.x/ from above by .un/n�0 � C1.Rd /. By monotone
convergence,

Px0.Xt D x0/ D lim
n!1 Ex0 un.Xt/

„ ƒ‚ …

Dun.x0/

D lim
n!1un.x0/ D 1¹x0º.x0/ D 1:

Since t 7! Xt is a. s. right-continuous, we findEx. 7.17

1 D Px0
�

Xq D x0 8q 2 Q \ Œ0;1/
� D Px0

�

Xt D x0 8t 2 Œ0;1/
�

which means that x0 is an absorbing point.

b) If x0 is not absorbing, then part a) shows that there is some u 2 D.A/ such that
Au.x0/ > 0. Since Au is continuous, there exists some � > 0 and an open neighbour-
hood U D U.x0; �/ such that AujU � � > 0. Let �V be the first hitting time of the
open set V D Rd n U . From Dynkin’s formula (7.21) with � D �V ^ n, n � 1, we
deduce

�Ex0.�V ^ n/ � Ex0

�

Z �V ^n

0

Au.Xs/ ds

�

D Ex0 u.X�V ^n/ � u.x/ � 2kuk1:

Finally, monotone convergence shows that Ex0 �V � 2kuk1=� < 1.

7.25 Definition (Dynkin 1956). Let .X.t//t�0 be a Feller process and �xr WD �
B

c
.x;r/

the first hitting time of the set B
c
.x; r/. Dynkin’s characteristic operator is the linear

operator defined by

Au.x/ WD
8

<

:

lim
r!0

Ex u.X.�xr // � u.x/
Ex �xr

; if x is not absorbing;

0; if x is absorbing;
(7.22)

on the set D.A/ consisting of all u 2 Bb.Rd / such that the limit in (7.22) exists for
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each non-absorbing point x 2 Rd .

Note that, by Lemma 7.24, Ex �xr < 1 for sufficiently small r > 0.

7.26 Theorem. Let .Xt/t�0 be a Feller process with generator .A;D.A// and char-
acteristic operator .A;D.A//.

a) A is an extension of A;
b) .A;D/ D .A;D.A// if D D ¹u 2 D.A/ W Au 2 C1.Rd /º.

Proof. a) Let u 2 D.A/ and assume that x is not an absorbing point. Since Au 2
C1.Rd /, there exists for every � > 0 an open neighbourhood U0 D U0.�; x/ of x
such that

jAu.y/� Au.x/j < � for all y 2 U0:
Since x is not absorbing, we find some open neighbourhood U1 � U 1 � U0 of x
such that Ex �

U
c

1

< 1. By Dynkin’s formula (7.21) for the stopping time � D �
B

c
.x;r/

where B.x; r/ � U1 � U0 we see

ˇ

ˇExu.X�
B

c
.x;r/

/ � u.x/ � Au.x/E �
B

c
.x;r/

ˇ

ˇ

� Ex

�

Z

Œ0;�
B

c
.x;r/

/

jAu.Xs/ � Au.x/j
„ ƒ‚ …

�


ds

�

� �Ex �
B

c
.x;r/

:

Thus, limr!0

�

Ex u.X�
B

c
.x;r/

/ � u.x/
�

=Ex �
B

c
.x;r/

D Au.x/.

If x is an absorbing point, Au.x/ D 0 by Lemma 7.24 a), hence Au D Au for all
u 2 D.A/.
b) Since .A;D/ satisfies the positive maximum principle (7.18), the claim follows like
Theorem 7.19.

Let us finally show that processes with continuous sample paths are generated by
differential operators.

7.27 Definition. LetL W D.L/ � Bb.Rd / ! Bb.R
d / be a linear operator. It is called

local if for every x 2 Rd and u;w 2 D.L/ satisfying ujB.x;
/ � wjB.x;
/ in some
open neighbourhood B.x; �/ of x we have Lu.x/ D Lw.x/.

Typical local operators are differential operators and multiplication operators, e. g.
u 7! P

i;j aij . � /@i@ju. � /C
P

j bj . � /@ju. � /Cc. � /u. � /. A typical non-local operator
is an integral operator, e. g. u 7! R

Rd k.x; y/ u.y/ dy. A deep result by J. Peetre says
that local operators are essentially differential operators:
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7.28 Theorem (Peetre 1960). Let L W C1
c .R

d / ! Ckc .R
d / be a linear operator where

k � 0 is fixed. If suppLu � suppu, thenLu D P

˛2Nd
0
a˛. � / @˛

@x˛ u with finitely many,

uniquely determined distributions a˛ 2 D0.Rd / (i. e. the topological dual of C1
c .R

d /)
which are locally represented by functions of class Ck.

LetL be as in Theorem 7.28 and assume thatL D AjC1
c .R

d / where .A;D.A// is the
generator of a Markov process. Then L has to satisfy the positive maximum principle
(7.18). In particular, L is at most a second order differential operator. This follows
from the fact that we can find test functions � 2 C1

c .R
d / such that x0 is a global

maximum while @j@k@l�.x0/ has arbitrary sign.
Every Feller process with continuous sample paths has a local generator.

7.29 Theorem. Let .Xt /t�0 be a Feller process with continuous sample paths. Then
the generator .A;D.A// is a local operator.

Proof. Because of Theorem 7.26 it is enough to show that .A;D.A// is a local oper-
ator. If x is absorbing, this is clear. Assume, therefore, that x is not absorbing. If the
functions u;w 2 D.A/ coincide in B.x; �/ for some � > 0, we know for all r < �

u
�

X.�
B

c
.x;r/

/
� D w

�

X.�
B

c
.x;r/

/
�

since, by the continuity of the trajectories, X.�
Bc.x;r/

/ 2 B.x; r/ � B.x; �/. Thus,
Au.x/ D Aw.x/.

If the domainD.A/ is sufficiently rich, e. g. if it contains the test functions C1
c .R

d /,
then the local property of A follows from the speed of the process moving away from
its starting point.

7.30 Theorem. Let .Xt /t�0 be a Feller process such that the test functions C1
c .R

d /

are in the domain of the generator .A;D.A//. Then .A;C1
c .R

d // is a local operator
if, and only if,

8� > 0; r > 0; K � Rd compact W lim
h!0

sup
t�h

sup
x2K

1

h
Px.r > jXt � xj > �/ D 0:

(7.23)
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Proof. Fix x 2 Rd and assume that u;w 2 C1
c .R

d / � D.A/ coincide on B.x; �/ for
some � > 0. Moreover, pick r in such a way that suppu [ suppw � B.x; r/. Then

jAu.x/ � Aw.x/j D lim
t!0

ˇ

ˇ

ˇ

ˇ

Ex u.Xt / � u.x/
t

� Ex w.Xt/ � w.x/
t

ˇ

ˇ

ˇ

ˇ

D lim
t!0

1

t

ˇ

ˇEx
�

u.Xt / � w.Xt/
�

ˇ

ˇ

� lim
t!0

1

t

Z

Rd

ju.y/� w.y/j
„ ƒ‚ …

D0 for jy � xj < 
 or jy � xj � r
Px.Xt 2 dy/

� ku � wk1 lim
t!0

1

t
Px.r > jXt � xj > �/ (7.23)D 0:

Conversely, assume that .A;C1
c .R

d // is local. Fix � > 0, r > 3�, pick any compact
set K and cover it by finitely many balls B.xj ; �/, j D 1; : : : ; N .

Since C1
c .R

d / � D.A/, there exist functions uj 2 C1
c .R

d /, j D 1; : : : ; N , with Ex. 7.8

uj � 0; uj jB.xj ;
/ � 0 and uj jB.xj ;rC
//nB.xj ;2
/
� 1

and

lim
t!0

�

�

�

�

1

t
.Ptuj � uj / � Auj

�

�

�

�1
D 0 for all j D 1; : : : ; N:

Therefore, there is for every ı > 0 and all j D 1; : : : ; N some h D hı > 0 such that
for all t < h and all x 2 Rd

1

t

ˇ

ˇEx uj .Xt / � uj .x/ � tAuj .x/
ˇ

ˇ � ı:

If x 2 B.xj ; �/, then uj .x/ D 0 and, by locality, Auj .x/ D 0. Thus

1

t
Ex uj .Xt/ � ıI

for x 2 B.xj ; �/ and r > jXt � xj > 3� we have r C � > jXt � xj j > 2�, therefore

1

t
Px

�

r > jXt � xj > 3�� � 1

t
Px

�

r C � > jXt � xj j > 2�� � 1

t
Ptuj .x/ � ı:

This proves

lim
h!0

1

h
sup
x2K sup

t�h
Px.r > jXt � xj > 3�/

� lim
h!0

sup
x2K sup

t�h

1

t
Px.r > jXt � xj > 3�/ � ı:
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7.31 Further reading. Semigroups in probability theory are nicely treated in the first
chapter of [61]; the presentation in (the first volume of) [54] is still up-to-date. Both
sources approach things from the analysis side. The survey paper [82] gives a brief self-
contained introduction from a probabilistic point of view. The Japanese school has a
long tradition approaching stochastic processes through semigroups, see for example
[83] and [84]. We did not touch the topic of quadratic forms induced by a generator,
so-called Dirichlet forms. The classic text is [70].

[54] Dynkin: Markov Processes (volume 1).
[61] Ethier, Kurtz: Markov Processes. Characterization and Convergence.
[70] Fukushima, Oshima, Takeda: Dirichlet Forms and Symmetric Markov Processes.
[82] Itô: Semigroups in Probability Theory.
[83] Itô: Stochastic Processes.
[84] Itô: Essentials of Stochastic Processes.

Problems

1. Show that C1 WD ¹u W Rd ! R W continuous and limjxj!1 u.x/ D 0º equipped
with the uniform topology is a Banach space. Show that in this topology C1 is the
closure of Cc , i. e. the family of continuous functions with compact support.

2. Let .Bt /t�0 be a BMd (or a Feller process) with transition semigroup .Pt/t�0.
Show, using arguments similar to those in the proof of Proposition 7.3 f), that
.t; x; u/ 7! Ptu.x/ is continuous. As usual, we equip Œ0;1/ � Rd � C1.Rd /

with the norm jt j C jxj C kuk1.

3. Let .Xt /t�0 be a d -dimensional Feller process and let f; g 2 C1.Rd /. Show that
the function x 7! Ex.f .Xt /g.XtCs// is also in C1.Rd /.
Hint: Markov property.

4. Let .Bt/t�0 be a BMd and set u.t; x/ WD Ptu.x/. Adapt the proof of Proposi-
tion 7.3 g) and show that for u 2 Bb.Rd / the function u.t; � / 2 C1 and u 2 C1;2
(i. e. once continuously differentiable in t , twice continuously differentiable in x).

5. Let .Pt /t�0 be the transition semigroup of a BMd and denote byLp , 1 � p < 1,
the space of pth power integrable functions with respect to Lebesgue measure on
Rd . Set un WD .�n/ ^ u _ n for every u 2 Lp . Verify that
(a) un 2 Bb.Rd / \ Lp.Rd / and Lp-limn!1 un D u.
(b) QPtu WD limn!1 Ptun extends Pt and gives a contraction semigroup on Lp .

Hint: Use Young’s inequality for convolutions, see e.g. [169, Theorem 14.6].
(c) QPt is sub-Markovian, i. e. if u 2 Lp and 0 � u � 1 a. e., then 0 � QPtu � 1

a. e.
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(d) QPt is strongly continuous, i. e. limt!0 kPtu � ukLp D 0 for all u 2 Lp .
Hint: For u 2 Lp , y 7! ku. � C y/ � ukLp is continuous, cf. [169, Theorem
14.8].

6. Let .Tt/t�0 be a Markov semigroup given by Ttu.x/ D R

Rd u.y/ pt.x; dy/where
pt .x; C / is a kernel in the sense of Remark 7.6. Show that the semigroup property
of .Tt/t�0 entails the Chapman–Kolmogorov equations

ptCs.x; C / D
Z

Rd

pt.y; C / ps.x; dy/ for all x 2 Rd and C 2 B.Rd /:

7. Show that the set-functions pxt1;:::;tn.C1�� � ��Cn/ in Remark 7.6 define measures
on B.Rd � n/.

8. (a) Let d.x; A/ WD infa2A jx � aj be the distance between the point x 2 Rd and
the set A 2 B.Rd /. Show that x 7! d.x; A/ is continuous.

(b) Let un be as in (7.7). Show that un 2 Cc.Rd / and infun.x/ D 1K . Draw a
picture if d D 1 and K D Œ0; 1�.

(c) Let �n be a sequence of type ı, i. e. �n 2 C1
c .R

d /, supp�n � B.0; 1=n/,
�n � 0 and

R

�n.x/ dx D 1. Show that vn WD �n?un 2 C1
c .R

d / are smooth
functions such that limn!1 vn D 1K .

9. Let A;B 2 Rd�d and set Pt WD exp.tA/ WD P1
jD0Aj =j Š.

(a) Show that Pt is a strongly continuous semigroup. Is it contractive?
(b) Show that ddte

tA exists and that ddte
tA D AetA D etAA.

(c) Show that etAetB D etBetA 8t () AB D BA.
Hint: Differentiate etAesB at t D 0 and s D 0.

(d) (Trotter product formula) Show that eACB D limk!1.eA=keB=k/k .

10. Let .Pt /t�0 and .Tt/t�0 be two Feller semigroups with generators A and B , re-
spectively.
(a) Show that d

ds
Pt�sTs D Pt�sATs � Pt�sBTs .

(b) Is it possible that Ut WD TtPt is again a Feller semigroup?
(c) (Trotter product formula) Assume that Utf WD limn!1.Tt=nPt=n/nf exists

strongly and locally uniformly for t . Show that Ut is a Feller semigroup and
determine its generator.

11. Complete the following alternative argument for Example 7.20.
(a) Show that un.x/�un.0/�xu0

n.0/ D R x

0

R y

0
u00
n.z/ dz dy ! R x

0

R y

0
2g.z/ dz dy

uniformly. Conclude that c0 WD limn!1 u0
n.0/ exists.

(b) Show that u0
n.x/�u0

n.0/ ! R x

0
g.z/ dz uniformly. Deduce from this and part

a) that un.x/ converges uniformly to
R x

0
2g.z/ dt C c0 and that the constant

c 0 D R 0

�1 g.z/ dz.
(c) Use a) and b) to show that un.x/� un.0/ ! R x

0

R y

�1 2g.z/ dz uniformly and
argue that un.x/ has the uniform limit

R x

�1
R y

�1 2g.z/ dz dy.
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12. Let U˛ be the ˛-potential operator of a BMd . Give a probabilistic interpretation
of U˛1C and lim˛!0 U˛1C if C � Rd is a Borel set.

13. Let .U˛/˛>0 be the ˛-potential operator of a BMd . Use the resolvent equation to
prove the following formulae for f 2 Bb and x 2 Rd :

dn

d˛n
U˛f .x/ D nŠ.�1/nU nC1

˛ f .x/

and
dn

d˛n
.˛U˛/f .x/ D nŠ.�1/nC1.id �˛U˛/f .x/:

14. Let .Bt /t�0 be a BMd . Then Uf D lim˛!0 U˛f is called the zero-potential or
potential operator and Nu WD lim˛!0.˛ id �A/�1u is the zero-resolvent.
(a) Show that Uf D Nf D R1

0
Ptf dt.

(b) Show that Uf .x/ D R

f .y/g.x � y/ dy where g D �.d=2/

	d=2.d�2/ jxj2�d , d � 3.

15. Let .Bt /t�0 be a BM1 and consider the two-dimensional process Xt WD .t; Bt /,
t � 0.
(a) Show that .Xt/t�0 is a Feller process.
(b) Determine the associated transition semigroup, resolvent and generator.
(c) State and prove Theorem 7.21 for this process and compare the result with

Theorem 5.6

16. Show that Proposition 7.22 follows from Theorem 7.21.

17. Let t 7! Xt be a right-continuous stochastic process. Show that for closed sets F

P.Xt 2 F 8t 2 RC/ D P.Xq 2 F 8q 2 QC/:



Chapter 8

The PDE connection

We want to discuss some relations between partial differential equations (PDEs) and
Brownian motion. For many classical PDE problems probability theory yields concrete
representation formulae for the solutions in the form of expected values of a Brownian
functional. These formulae can be used to get generalized solutions of PDEs (which
require less smoothness of the initial/boundary data or the boundary itself) and they are
amenable to Monte–Carlo simulations. Purely probabilistic existence proofs for clas-
sical PDE problems are, however, rare: Classical solutions require smoothness, which
does usually not follow from martingale methods.1 This explains the role of Proposi-
tion 7.3 g) and Proposition 8.10. Let us point out that 1

2
� has two meanings: On the

domainD.�/, it is the generator of a Brownian motion, but it can also be seen as par-
tial differential operator L D Pd

j;kD1 @j which acts on all C2 functions. Of course, on
C21 both meanings coincide, and it is this observation which makes the method work.

The origin of the probabilistic approach are the pioneering papers by Kakutani
[96, 97], Kac [90, 91] and Doob [41]. As an illustration of the method we begin with the
elementary (inhomogeneous) heat equation. In this context, classical PDE methods are
certainly superior to the clumsy-looking Brownian motion machinery. Its elegance and
effectiveness become obvious in the Feynman–Kac formula and the Dirichlet problem
which we discuss in Sections 8.3 and 8.4. Moreover, since many second-order differ-
ential operators generate diffusion processes, see Chapter 19, only minor changes in
our proofs yield similar representation formulae for the corresponding PDE problems.

A martingale relation is the key ingredient. Let .Bt ;Ft /t�0 be a BMd . Recall from
Theorem 5.6 that for u 2 C1;2..0;1/ � Rd / \ C.Œ0;1/ � Rd / satisfying

ju.t; x/j C
ˇ

ˇ

ˇ

ˇ

@u.t; x/

@t

ˇ

ˇ

ˇ

ˇ

C
d
X

jD1

ˇ

ˇ

ˇ

ˇ

@u.t; x/

@xj

ˇ

ˇ

ˇ

ˇ

C
d
X

j;kD1

ˇ

ˇ

ˇ

ˇ

@2u.t; x/

@xj@xk

ˇ

ˇ

ˇ

ˇ

� c.t/ eC jxj (8.1)

for all t > 0 and x 2 Rd with some constant C > 0 and a locally bounded function
c W .0;1/ ! Œ0;1/, the process

M u
s D u.t � s; Bs/� u.t; B0/C

Z s

0

�

@

@t
� 1

2
�x

�

u.t � r; Br/ dr; s 2 Œ0; t/; (8.2)

is an Fs martingale for every measure Px , i. e. for every starting point B0 D x of a
Brownian motion.

1 A notable exception is, of course, Malliavin’s calculus, cf. [126, 128]
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8.1 The heat equation

In Chapter 7 we have seen that the Laplacian . 1
2
�;D.�// is the infinitesimal generator

of a BMd . In fact, applying Lemma 7.10 to a Brownian motion yields

d

dt
Ptf .x/ D 1

2
�xPtf .x/ for all f 2 D.�/:

Setting u.t; x/ WD Ptf .x/ D Ex f .Bt/ this almost proves the following lemma.

8.1 Lemma. Let .Bt /t�0 be a BMd , f 2 D.�/ and u.t; x/ WD Exf .Bt /. Then u.t; x/
is the unique bounded solution of the heat equation with initial value f ,

@

@t
u.t; x/ � 1

2
�xu.t; x/ D 0; (8.3a)

u.0; x/ D f .x/: (8.3b)

Proof. It remains to show uniqueness. Let u.t; x/ be a bounded solution of (8.3). Its
Laplace transform is given by

v�.x/ D
Z 1

0

u.t; x/ e��t dt:

Since we may differentiate under the integral sign, we get

�v�.x/ � 1

2
�xv�.x/ D �v�.x/ �

Z 1

0

1

2
�xu.t; x/ e

��t dt

D �v�.x/ �
Z 1

0

@

@t
u.t; x/ e��t dt:

Integration by parts and (8.3b) yield
�

� id �1
2
�x

�

v�.x/ D �v�.x/C
Z 1

0

u.t; x/
@

@t
e��t dt �u.t; x/e��t

ˇ

ˇ

ˇ

tD1
tD0

D f .x/:

Since the equation
�

� id �1
2
�x
�

v� D f , f 2 D.�/, � > 0, has the unique solution
v� D U�f where U� is the resolvent operator, and since the Laplace transform is
unique, cf. [170, Proposition 1.2], we conclude that u.t; x/ is unique.

Lemma 8.1 is a PDE proof. Let us sketch a further, more probabilistic approach,Ex. 8.1
which will be important if we consider more complicated PDEs. It is, admittedly, too
complicated for the simple setting considered in Lemma 8.1, but it allows us to remove
the restriction that f 2 D.�/, see the discussion in Remark 8.4 below.
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8.2 Probabilistic proof of Lemma 8.1. Uniqueness: Assume that u.t; x/ satisfies (8.1)
and ju.t; x/j � c ecjxj on Œ0; T � � Rd where c D cT . By (8.2),

M u
s WD u.t � s; Bs/ � u.t; B0/C

Z s

0

�

@

@t
� 1

2
�x

�

u.t � r; Br/
„ ƒ‚ …

D0 by (8.3a)

dr;

is a martingale w. r. t. .Fs/s2Œ0;t/, and so is N u
s WD u.t � s; Bs/, s 2 Œ0; t/. By assump-

tion, u is exponentially bounded. Therefore, .N u
s /s2Œ0;t/ is dominated by the integrable

function c sup0�s�t exp.c jBsj/, hence uniformly integrable. By the martingale con-
vergence theorem, Theorem A.6, the limit lims!t N

u
s exists a. s. and in L1. Thus,

u.t; x/ D Ex u.t; B0/ D Ex N u
0 D lim

s!t
Ex N u

s D Ex N u
t

(8.3b)D Ex f .Bt/;

which shows that the initial condition f uniquely determines the solution.

Existence: Set u.t; x/ WD Ex f .Bt / D Ptf .x/ and assume that f 2 D.�/.
Lemma 7.10 together with an obvious modification of the proof of Proposition 7.3 g)
show that u is in C1;2..0;1/ � Rd / \ C.Œ0;1/ � Rd / and satisfies (8.1). Therefore,
(8.2) tells us that

Mu
s WD u.t � s; Bs/ � u.t; B0/C

Z s

0

�

@

@t
� 1

2
�x

�

u.t � r; Br/ dr

is a martingale. On the other hand, the Markov property reveals that

u.t � s; Bs/ D EBs f .Bt�s/ D Ex.f .Bt / jFs/; 0 � s � t;

is a martingale, and so is
R s

0

�

@
@t

� 1
2
�x

�

u.t�r; Br/ dr, s � t . Since it has continuous Ex. 8.2

paths of bounded variation, it is identically zero on Œ0; t/, cf. Proposition A.22, and
(8.3a) follows.

The proof of Proposition 7.4 g) shows that the map .t; x/ 7! Ptf .x/ D Ex f .Bt/,
t > 0; x 2 Rd , is smooth. This allows us to extend the probabilistic approach using a
localization technique described in Remark 8.4 below.

8.3 Theorem. Let .Bt /t�0 be a BMd and f 2 B.Rd / such that jf .x/j � C eC jxj.
Then u.t; x/ WD Ex f .Bt / is the unique solution to the heat equation (8.3) satisfying
the growth estimate ju.x; t/j � CeC jxj.

The growth estimate in the statement of Theorem 8.3 is essential for the uniqueness,
cf. John [89, Chapter 7.1].
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8.4 Remark (Localization). Let .Bt /t�0 be a d -dimensional Brownian motion, u 2
C1;2..0;1/� Rd /\ C.Œ0;1/� Rd /, fix t > 0, and consider the following sequence
of stopping times

�n WD inf
®

s > 0 W jBsj � n
¯ ^ �t � n�1�; n � 1=t: (8.4)

For every n � 1=t we pick some cut-off function � 2 C1;2.Œ0;1/�Rd /with compact
support, �njŒ0;1=2n��Rd � 0 and �njŒ1=n;n��B.0;n/ � 1. Clearly, for M u

s as in (8.2),

M u

s^�n
D M

�nu

s^�n

; for all s 2 Œ0; t/ and n � 1=t:

Since �nu 2 C1;2
b

satisfies (8.1), .M �nu
s ;Fs/s2Œ0;t/ is, for each n � 1=t , a bounded

martingale. By optional stopping, Remark A.21,
�

M u

s^�n
;Fs

�

s2Œ0;t/ is a bounded martingale for all u 2 C1;2 and n � 1=t: (8.5)

Assume thatu 2 C1;2..0;1/�Rd /. Replacing in the probabilistic proof 8.2Bs ;M u
s

and N u
s by the stopped versions Bs^�n

, M u

s^�n

and N u

s^�n

, we see that2

M u

s^�n
D u.t � s ^ �n; Bs^�n

/ � u.t; B0/C
Z s^�n

0

�

@

@t
� 1

2
�x

�

u.t � r; Br/
„ ƒ‚ …

D0 by (8.3a)

dr;

and N u

s^�n

D u.t � s ^ �n; Bs^�n
/, s 2 Œ0; t/, are for every n � 1=t bounded mar-

tingales. In particular, Ex N u
0 D Ex N u

s^�n

for all s 2 Œ0; t/, and by the martingale
convergence theorem we get

u.t; x/ D Ex u.t; B0/ D Ex N u
0 D lim

s!t
Ex N u

s^�n
D Ex N u

t^�n
:

As limn!1 �n D t a. s., we see

u.t; x/ D Ex N u

t^�n
D lim

k!1
Ex u.t � t ^ �k; Bt^�k

/ D Ex u.0; Bt/
(8.3b)D Ex f .Bt /;

which shows that the solution is unique.
To see that u.t; x/ WD Ptf .x/ is a solution, we assume that f .x/ � CeC jxj. We

can adapt the proof of Proposition 7.3 g) to see that u 2 C1;2..0;1/�Rd /. Therefore,
(8.5) shows that .M u

s^�n

;Fs/s2Œ0;t/ is, for every n � 1=t , a bounded martingale. By the
Markov property

u.t � s; Bs/ D EBs f .Bt�s/ D Ex.f .Bt/ jFs/; 0 � s � t;

and by optional stopping .u.t � s ^ �n; Bs^�n
/;Fs/s2Œ0;t/ is for every n � 1=t a

martingale. This implies that
R s^�n

0

�

@
@t

� 1
2
�x

�

u.t � r; Br/ dr is a martingale with

2 Note that
R s^�n

0 � � � dr D R

Œ0;s^�n/
� � � dr
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continuous paths of bounded variation. Hence, it is identically zero on Œ0; t ^ �n/, cf. Ex. 8.2
Proposition A.22. As limn!1 �n D t , (8.3a) follows.

8.2 The inhomogeneous initial value problem

If we replace the right-hand side of the heat equation (8.3a) with some function g.t; x/,
we get the following inhomogeneous initial value problem.

@

@t
v.t; x/ � 1

2
�xv.t; x/ D g.t; x/; (8.6a)

v.0; x/ D f .x/: (8.6b)

Assume that u solves the corresponding homogeneous problem (8.3). If w solves
the inhomogeneous problem (8.6) with zero initial condition f D 0, then v D uC w

is a solution of (8.6). Therefore, it is customary to consider

@

@t
v.t; x/ � 1

2
�xv.t; x/ D g.t; x/; (8.7a)

v.0; x/ D 0 (8.7b)

instead of (8.6). Let us use the probabilistic approach of Section 8.1 to develop an
educated guess about the solution to (8.7).

Let v.t; x/ be a solution to (8.7) which is bounded and sufficiently smooth (C1;2 and
(8.1) will do). Then, for s 2 Œ0; t/,

M v
s WD v.t � s; Bs/ � v.t; B0/C

Z s

0

�

@

@t
v.t � r; Br/ � 1

2
�xv.t � r; Br/

�

„ ƒ‚ …

Dg.t�r;Br/ by (8.7a)

dr

is a martingale, and so isN v
s WD v.t�s; Bs/C

R s

0
g.t�r; Br/ dr, s 2 Œ0; t/; in particular,

Ex N v
0 D Ex N v

s for all s 2 Œ0; t/. If we can use the martingale convergence theorem,
e. g. if the martingale is uniformly integrable, we can let s ! t and get

v.t; x/ D Ex N v
0 D lim

s!t
Ex N v

s D Ex N v
t

(8.7b)D Ex

�

Z t

0

g.t � r; Br/ dr

�

:

This consideration already yields uniqueness. For the existence we have to make sure
that we can perform all manipulations in the above calculation. With some effort we
can justify everything if g.t; x/ is bounded or if g D g.x/ is from the so-called Kato
class. For the sake of clarity, we content ourselves with the following simple version.
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8.5 Theorem. Let .Bt/t�0 be a BMd and g 2 D.�/. Then the unique solution ofEx. 8.4
the inhomogeneous initial value problem (8.7) satisfying jv.t; x/j � C t is given by
v.t; x/ D Ex

R t

0
g.Bs/ ds.

Proof. Since v.t; x/ D R t

0
Ex g.Bs/ ds D R t

0
Psg.x/ ds, Lemma 7.10 and a variation

of the proof of Proposition 7.3 g) imply that v 2 C1;2
b
..0;1/ � Rd /. This means that

the heuristic derivation of v.t; x/ furnishes a uniqueness proof.
To see that v.t; x/ is indeed a solution, we use (8.2) and conclude that

M v
s D v.t � s; Bs/ � v.t; B0/C

Z s

0

�

@

@t
� 1

2
�x

�

v.t � r; Br/ dr

D v.t � s; Bs/C
Z s

0

g.Br/ dr � v.t; B0/

C
Z s

0


�

@

@t
� 1

2
�x

�

v.t � r; Br/ � g.Br/
�

dr

is a martingale. On the other hand, the Markov property gives for all s � t ,

Ex

�

Z t

0

g.Br/ dr
ˇ

ˇ

ˇ

Fs

�

D
Z s

0

g.Br/ dr C Ex

�

Z t

s

g.Br/ dr
ˇ

ˇ

ˇ

Fs

�

D
Z s

0

g.Br/ dr C Ex

�

Z t�s

0

g.BrCs/ dr
ˇ

ˇ

ˇ

Fs

�

D
Z s

0

g.Br/ dr C EBs

�

Z t�s

0

g.Br/ dr

�

D
Z s

0

g.Br/ dr C v.t � s; Bs/:

This shows that the right-hand side is for s � t a martingale.
Consequently,

R s

0

�

@
@t
v.t � r; Br/ � 1

2
�xv.t � r; Br/ � g.Br/

�

dr is a martingale

with continuous paths of bounded variation; by Proposition A.22 it is zero on Œ0; t/,Ex. 8.2
and (8.7a) follows.

If g D g.x/ does not depend on time, we can use the localization technique de-
scribed in Remark 8.4 to show that Theorem 8.5 remains valid if g 2 Bb.Rd /. This
requires a modification of the proof of Proposition 7.3 g) to see that the function
v.t; x/ WD Ex

�

R t

0
g.Br/ dr

�

is in C1;2..0;1/ � Rd /. Then the proof is similar to
the one for the heat equation described in Remark 8.4. As soon as g depends on time,
g D g.t; x/, things become messy, cf. [49, Chapter 8.2].
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8.3 The Feynman–Kac formula

We have seen in Section 8.2 that the inhomogeneous initial value problem (8.7) is
solved by the expectation of the random variableGt D R t

0
g.Br/ dr. It is an interesting

question whether we can find out more about the probability distributions of Gt and
.Bt ; Gt /. A natural approach would be to compute the joint characteristic function
ExŒexp.i�Gt C ih�; Bti/�. Let us consider the more general problem to calculate

w.t; x/ WD Ex
�

f .Bt /e
Ct
�

where Ct WD
Z t

0

c.Br/ dr

for some functions f; c W Rd ! C. Setting f .x/ D eih�;xi and c.x/ D i�g.x/ brings
us back to the original question. We will show that, under suitable conditions on f and
c, the function w.t; x/ is the unique solution to the following initial value problem

@

@t
w.t; x/ � 1

2
�xw.t; x/ � c.x/w.t; x/ D 0; (8.8a)

w.t; x/ is continuous and w.0; x/ D f .x/: (8.8b)

Considering real and imaginary parts separately, we may assume that f and c are
real-valued.

Let us follow the same strategy as in Sections 8.1 and 8.2. Assume that w 2 C1;2
is a solution to (8.8) which satisfies (8.1). If c.x/ is bounded, we can apply (8.2) to
w.t � s; x/ exp.Cs/ for s 2 Œ0; t/. Since d

dt exp.Ct / D c.Bt / exp.Ct/, we see that for
s 2 Œ0; t/

Mw
s WD w.t � s; Bs/eCs � w.t; B0/C

Z s

0

�

@

@t
� 1

2
�x � c.Br/

�

w.t � r; Br/
„ ƒ‚ …

D0 by (8.8a)

eCr dr

is a uniformly integrable martingale with respect to the filtration .Fs/s2Œ0;t/. Thus
Nw
s WD .w.t � s; Bs/ exp.Cs/;Fs/s2Œ0;t/ is a uniformly integrable martingale. Since

Ex Nw
0 D Ex Nw

s for all s 2 Œ0; t/, the martingale convergence theorem, The-
orem A.7, gives

w.t; x/ D Ex w.t; B0/ D Ex Nw
0 D lim

s!t
Ex Nw

s D Ex Nw
t

(8.8b)D Ex
�

f .Bt/e
Ct
�

:

This reveals both the structure of the solution and its uniqueness. To show with martin-
gale methods that w.t; x/ WD Ex

�

f .Bt /e
Ct
�

solves (8.8) requires a priori knowledge
that w is smooth, e. g. w 2 C1;2 – but this is quite hard to check, even if f 2 D.�/
and c 2 Cb.Rd /.

Therefore, we use semigroup methods to show the next theorem.
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8.6 Theorem (Kac 1949). Let .Bt /t�0 be a BMd , f 2 D.�/ and c 2 Cb.Rd /. The
unique solution to the initial value problem (8.8) is given by

w.t; x/ D Ex




f .Bt/ exp

�

Z t

0

c.Br/ dr

��

: (8.9)

This solution is bounded by e˛t where ˛ D supx2Rd c.x/.

The representation formula (8.9) is called Feynman–Kac formula.

Proof of Theorem 8.6. Denote by Pt the Brownian semigroup. Set Ct WD R t

0
c.Br/ dr

and Ttu.x/ WD Ex.u.Bt/e
Ct /. If we can show that .Tt /t�0 is a Feller semigroup

with generator Au D 1
2
�uC cu, we are done: Existence follows from Lemma 7.10,

uniqueness from the fact that A has a resolvent which is uniquely determined by Tt ,
cf. Proposition 7.13.

Since

jTtu.x/j � et sup
x2Rd c.x/ Ex ju.Bt/j � et˛ kuk1;

the operator Tt is, in general, only a contraction if ˛ � 0. Let us assume this for the
time being and show that .Tt /t�0 is a Feller semigroup.

a) Positivity is clear from the very definition.

b) Feller property: For all u 2 C1.Rd / we have

Ttu.x/ D Ex




u.Bt/ exp

�

Z t

0

c.Br/ dr

��

D E




u.Bt C x/ exp

�

Z t

0

c.Br C x/ dr

��

:

A straightforward application of the dominated convergence theorem yields
limy!x Ttu.y/ D Ttu.x/ and limjxj!1 Ttu.x/ D 0. Thus, Ttu 2 C1.Rd /.

c) Strong continuity: Let u 2 C1.Rd / and t � 0. Using the elementary inequality
1 � ec � jcj for all c � 0, we get

jTtu.x/ � u.x/j � ˇˇEx
�

u.Bt/
�

eCt � 1��ˇˇC ˇ

ˇEx
�

u.Bt/ � u.x/�ˇˇ
� kuk1 Ex jCt j C kPtu � uk1
� t kuk1kck1 C kPtu � uk1:

Since the Brownian semigroup .Pt/t�0 is strongly continuous on C1.Rd /, the
strong continuity of .Tt/t�0 follows.
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d) Semigroup property: Let s; t � 0 and u 2 C1.Rd /. Using the tower property of
conditional expectation and the Markov property, we see

TtCsu.x/ D Ex
h

u.BtCs/e
R tCs

0 c.Br / dr
i

D Ex
h

Ex
�

u.BtCs/e
R tCs

s c.Br / dre
R s

0 c.Br / dr
ˇ

ˇ

ˇ

Fs

�i

D Ex
h

Ex
�

u.BtCs/e
R t

0 c.BrCs/ dr
ˇ

ˇ

ˇ

Fs

�

e
R s

0 c.Br / dr
i

D Ex
h

EBs

�

u.Bt /e
R t

0 c.Br / dr
�

e
R s

0 c.Br / dr
i

D Ex
h

Ttf .Bs/e
R s

0 c.Br / dr
i

D TsTtf .x/:

Because of Theorem 7.19, we may calculate the generator A using pointwise conver-
gence: For all u 2 D.�/ and x 2 Rd

lim
t!0

Ttu.x/ � u.x/
t

D lim
t!0

Ttu.x/ � Ptu.x/
t

C lim
t!0

Ptu.x/ � u.x/
t

:

The second limit equals 1
2
�u.x/; since .eCt � 1/=t �! c.B0/ boundedly – cf. the

estimate in the proof of the strong continuity c) – we can use dominated convergence
and find

lim
t!0

Ex

�

u.Bt /
eCt � 1
t

�

D Ex .u.B0/c.B0// D u.x/c.x/:

This completes the proof in the case ˛ � 0.
If ˛ > 0we can consider the following auxiliary problem: Replace in (8.8) the func- Ex. 8.10

tion c.x/ by c.x/�˛. From the first part we know that e�˛tTtf D Ex
�

f .Bt /e
Ct �˛t�

is the unique solution of the auxiliary problem
�

@

@t
� 1

2
� � c. � /C ˛

�

e�˛tTtf D 0:

On the other hand,

d

dt
e�˛tTtf D �˛e�˛tTtf C e�˛t d

dt
Ttf;

and this shows that Ttf is the unique solution of the original problem.

8.7 An Application: Lévy’s arc-sine law (Lévy 1939. Kac 1949). Denote by .Bt /t�0
a BM1 and by Gt WD R t

0
1.0;1/.Bs/ ds the total amount of time a Brownian motion

spends in the positive half-axis up to time t . Lévy showed in [119] that Gt has an
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arc-sine distribution:

P0

�

Z t

0

1.0;1/.Bs/ ds � x
�

D 2



arcsin

r

x

t
; 0 � x � t: (8.10)

We calculate the Laplace transform g˛.t/ D E0 e�˛Gt , ˛ � 0, to identify the
probability distribution. Define for � > 0 and x 2 R

v�.x/ WD
Z 1

0

e��t Ex e�˛Gt dt D
Z 1

0

e��t Ex
�

1R.Bt/ � e�˛ R t

0 1.0;1/.Bs/ ds
�

dt:

Assume for a moment that we could apply Theorem 8.6 with f .x/ D 1R.x/ and
c.x/ D �˛1.0;1/.x/. Then � 7! v�.x/ is be the Laplace transform of the function

w.t; x/ D Ex.1R.Bt / � e�˛ R t

0 1.0;1/.Bs/ ds/ which, by Theorem 8.6, is the solution of
the initial value problem (8.8). A short calculation shows that the Laplace transform
satisfies the following linear ODE:

1

2
v00
�.x/ � ˛1.0;1/.x/v�.x/ D �v�.x/ � 1R.x/ for all x 2 R n ¹0º: (8.11)

This ODE is, with suitable initial conditions, uniquely solvable in .�1; 0/ and .0;1/.
It will become clear from the approximation below that v� is of class C1 \ Cb on the
whole real line. Therefore we can prescribe conditions in x D 0 such that v� is the
unique bounded C1 solution of (8.11). With the usual Ansatz for linear second-order
ODEs, we get

v�.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

�
C C1e

p
2�x C C2e

�p
2�x; x < 0;

1

˛ C �
C C3e

p
2.˛C�/x C C4e

�p
2.˛C�/x ; x > 0:

Let us determine the constants Cj , j D 1; 2; 3; 4. The boundedness of the function v�
gives C2 D C3 D 0. Since v� and v0

�
are continuous at x D 0, we get

v�.0C/ D 1

˛ C �
C C4 D 1

�
C C1 D v�.0�/;

v0
�.0C/ D �

p

2.˛ C �/C4 D
p
2�C1 D v0

�.0�/:

Solving for C1 gives C1 D ���1 C .�.�C ˛//�1=2, and so

v�.0/ D
Z 1

0

e��t E0.e�˛Gt / dt D 1
p

�.�C ˛/
:
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On the other hand, by Fubini’s theorem and the formula
R1
0

1p
	t
e�ct dt D 1p

c
:

Z 1

0

e��t 2



Z 	=2

0

e�˛t sin2 � d� dt D
Z 1

0

e��t
Z t

0

e�˛r



p

r.t � r/ drdt

D
Z 1

0

e�˛r
p

r

Z 1

r

e��t
p


r.t � r/ dt dr

D
Z 1

0

e�.˛C�/r
p

r

dr
Z 1

0

e��s
p

s

ds

D 1
p

.�C ˛/�

Because of the uniqueness of the Laplace transform, cf. [170, Proposition 1.2], we
conclude

g˛.t/ D E0 e�˛Gt D 2




Z 	=2

0

e�˛t sin2 � d� D 2




Z t

0

e�˛x dx arcsin

r

x

t
;

and, again by the uniqueness of the Laplace transform, we get (8.10).
Let us now justify the formal manipulations that led to (8.11). In order to apply

Theorem 8.6, we cut and smooth the functions f .x/ D 1R.x/ and g.x/ D 1.0;1/.x/.
Pick a sequence of cut-off functions �n 2 Cc.R/ such that 1Œ�n;n� � �n � 1, and
define gn.x/ D 0 _ .nx/ ^ 1. Then �n 2 D.�/, gn 2 Cb.R/, supn�1 �n D 1R and
supn�0 gn D g. By Theorem 8.6,

wn.t; x/ WD Ex
�

�n.Bt/e
�˛ R t

0 gn.Bs/ ds
�

dt; t > 0; x 2 R;

is, for each n � 1, the unique bounded solution of the initial value problem (8.8) with
f D fn and c D gn; note that the bound from Theorem 8.6 does not depend on n � 1.
The Laplace transform � 7! vn;�.x/ of wn.t; x/ is the unique bounded solution of the
ODE

1

2
v00
n;�.x/ � ˛�n.x/vn;�.x/ D �vn;�.x/ � gn.x/; x 2 R: (8.12)

Integrating two times, one can show that limn!1 vn;�.x/ D v�.x/, limn!1 v0
n;�
.x/ D Ex. 8.3

v0
�
.x/ for all x 2 R and limn!1 v00

n;�
.x/ D v00

�
.x/ for all x ¤ 0; moreover, we have

v� 2 C1.R/, cf. Problem 8.3.

8.4 The Dirichlet problem

Up to now we have considered parabolic initial value problems. In this section we focus
on the most basic elliptic boundary value problem, Dirichlet’s problem for the Laplace
operator with zero boundary data. Throughout this sectionD � Rd is a bounded open
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and connected domain, and we write @D D D nD for its boundary; .Bt /t�0 is a BMd

starting from B0 D x, and � D �Dc D inf¹t > 0 W Bt … Dº is the first exit time
from the set D. We assume that the .Bt /t�0 is adapted to a right-continuous filtration
.Ft /t�0.3 We are interested in the following question: Find some function u onD with
the following propertiesEx. 8.5

�u.x/ D 0 for x 2 D (8.13a)

u.x/ D f .x/ for x 2 @D (8.13b)

u is continuous inD: (8.13c)

To get a feeling for the problem, we use similar heuristic arguments as in Sections 8.1–
8.3. Assume that u is a solution of the Dirichlet problem (8.13). If @D is smooth, we
can extend u onto Rd in such a way that u 2 C2.Rd / with suppu compact. Therefore,
we can apply (8.2) with u D u.x/ to see that

M u
t D u.Bt/ � u.B0/ �

Z t

0

1

2
�u.Br/ dr

is a bounded martingale. By optional stopping, .M u
t^� ;Ft/t�0 is a martingale, and we

see that4

M u
t^� D u.Bt^� / � u.B0/ �

Z t^�

0

1

2
�u.Br/

„ ƒ‚ …

D0 by (8.13a)

dr D u.Bt^� / � u.B0/:

Therefore,N u
t^� WD u.Bt^� / is a bounded martingale. In particular, Ex N u

0 D Ex N u
t^�

for all t � 0. If � D �Dc < 1, the martingale convergence theorem yields

u.x/ D Ex N u
0 D lim

t!1 Ex N u
t^� D Ex N u

� D Ex u.B�/
(8.13b)D Ex f .B� /:

Figure 8.1. Exit time and position of a Brownian motion from the set D.

3 A condition for this can be found in Theorem 6.21.
4 Note that

R t^�

0 � � � dr D R

Œ0;t^�/ � � � dr
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This shows that Ex f .B� / is a good candidate for the solution of (8.13). But before
we go on, let us quickly check that � is indeed a. s. finite. The following result is similar
to Lemma 7.24.

8.8 Lemma. Let .Bt/t�0 be a BMd and D � Rd be an open and bounded set. Then Ex. 8.6
Ex �Dc < 1 where �Dc is the first hitting time of Dc .

Proof. Because of Lemma 5.8, � D �Dc is a stopping time. SinceD is bounded, there
is some r > 0 such that D � B.0; r/. Define u.x/ WD � exp.�jxj2=4r2/. Then
u 2 C21.Rd / � D.�/ and, for all jxj < r ,

1

2
�u.x/ D 1

2

�

d

2r2
� jxj2
4r4

�

e�jxj2=4r2 � 1

2

�

d

2r2
� 1

4r2

�

e�1=4 DW � > 0:

Therefore, we can use Dynkin’s formula (7.21) with � D � ^ n to get

� Ex.� ^ n/ � Ex

�

Z �^n

0

1

2
�u.Br/ dr

�

D Ex u.B�^n/ � u.x/ � 2kuk1 D 2:

By Fatou’s lemma, Ex � � limn!1 Ex.� ^ n/ � 2=� < 1: Ex. 8.7

Let us now show that u.x/ D Ex f .B� / is indeed a solution of (8.13). For the
behaviour in the interior, i. e. (8.13a), the following classical notion turns out to be the
key ingredient.

8.9 Definition. Let D � Rd be an open set. A function u W D ! R is harmonic (in
the set D), if u 2 C2.D/ and �u.x/ D 0.

In fact, harmonic functions are arbitrarily often differentiable. This is an interesting
by-product of the proof of the next result.

8.10 Proposition. Let D � Rd be an open and connected set and u W D ! R a
locally bounded function. Then the following assertions are equivalent.

a) u is harmonic on D.

b) u has the (spherical) mean value property: For all x 2 D and r > 0 such that
B.x; r/ � D one has

u.x/ D
Z

@B.0;r/

u.x C z/ 
r.dz/ (8.14)

where 
r is the normalized uniform measure on the sphere @B.0; r/.

c) u is continuous and .u.Bt^�
Gc
/;Ft /t�0 is a martingale w. r. t. the law Px of a

Brownian motion .Bt ;Ft/t�0 started at any x 2 G; here G is a bounded open set
such that G � D, and �Gc is the first exit time from the set G.
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Proof. c))b): Fix x 2 D and r > 0 such that B.x; r/ � D, and set � WD �
Bc.x;r/

.

Clearly, there is some bounded open set G such that B.x; r/ � G � D. By assump-
tion, .u.Bt^�

Gc
/;Ft /t�0 is a Px-martingale.

Since � < 1, cf. Lemma 8.8, we find by optional stopping (Theorem A.18) that
.u.Bt^�^�

Gc
//t�0 is a martingale. Using � � �Gc we get

u.x/ D Ex u.B0/ D Ex u.Bt^� /:

Now ju.Bt^� /j � supy2B.x;r/ ju.y/j < 1, and by dominated convergence and the
continuity of Brownian paths

u.x/ D lim
t!1 Ex u.Bt^� / D Ex u.B�/ D

Z

u.y/ Px.B� 2 dy/

D
Z

u.z C x/ P0.B� 2 dz/:

By the rotational symmetry of Brownian motion, cf. Lemma 2.14, P0.B� 2 dz/ is aEx. 2.19
uniformly distributed probability measure on the sphere @B.0; r/, and (8.14) follows.5

b))a): Fix x 2 D and ı > 0 such that B.x; ı/ � D. Pick �ı 2 C1.0;1/ such
that �jŒı2;1/ � 0 and set cd WD R ı

0
�ı.r

2/ rd�1 dr. By Fubini’s theorem and changing
to polar coordinates

u.x/ D 1

cd

Z ı

0

�ı.r
2/ rd�1 u.x/ dr

(8.14)D
b)

1

cd

Z ı

0

Z

@B.0;r/

�ı.r
2/ rd�1 u.z C x/ 
r.dz/ dr

D 1

c0
d

Z

B.0;ı/

�ı.jyj2/ u.y C x/ dy

D 1

c0
d

Z

B.x;ı/

�ı.jy � xj2/ u.y/ dy:

As u is locally bounded, the differentiation lemma for parameter dependent integrals,
e. g. [169, Theorem 11.5], shows that the last integral is arbitrarily often differentiable
at the point x. Since x 2 D is arbitrary, we have u 2 C1.D/.

Fix x0 2 D and assume that �u.x0/ > 0. Because D is open and �u continuous,
there is some ı > 0 such that B.x0; ı/ � D and �ujB.x0;ı/ > 0. Set � WD �

Bc.x0;ı/

and take � 2 C1
c .D/ such that 1B.x0;ı/ � � � 1D . Then we can use (8.2) for the

smooth and bounded function u� WD �u. Using an optional stopping argument we

5 For a rotationQ W Rd �Rd , .QBt /t�0 is again a BMd . Let � D �
Bc .0;r/

andC 2 B.@B.0; r//.

Then P0.B� 2 C/ D P0.QB� 2 C/ D P0.B� 2 Q�1C/ which shows that P0.B� 2 dz/
must be the (normalized) surface measure on the sphere @B.0; r/.
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conclude that

M
u	

t^� D u�.Bt^� / � u�.B0/C
Z t^�

0

1

2
�u�.Br/ dr

D u.Bt^�/ � u.B0/C
Z t^�

0

1

2
�u.Br/ dr

(use �jB.x;ı/ � 1) is a martingale. Therefore, EM
u	

t^� D 0, and letting t ! 1 we get

Ex0 u.B�/ � u.x0/ D 1

2
Ex0

�

Z �

0

�u.Br/ dr

�

> 0:

The mean-value property shows that the left-hand side equals 0 and we have a contra-
diction. Similarly one shows that �u.x0/ < 0 gives a contradiction, thus �u.x/ D 0

for all x 2 D.

a))c): Fix any open and bounded setG such thatG � D and pick a cut-off function
� 2 C1

c such that 1G � � � 1D . Set � WD �Gc and u�.x/ WD �.x/u.x/. By (8.2),

M
u	

t D u�.Bt/ � u�.B0/ �
Z t

0

1

2
�u�.Br/ dr

is a uniformly integrable martingale. Therefore, we can use optional stopping and the
fact that �jG � 1 to see that

M
u	

t^� D u.Bt^� / � u.B0/ �
Z t^�

0

1

2
�u.Br/ dr

a)D u.Bt^� / � u.B0/

is a martingale. This proves c).

Let us note another classical consequence of the mean-value property.

8.11 Corollary (Maximum principle). LetD � Rd be a bounded, open and connected
domain and u 2 C.D/ \ C2.D/ be a harmonic function. Then

9 x0 2 D W u.x0/ D sup
x2D u.x/ H) u � u.x0/:

In other words: A non-constant harmonic function may attain its maximum only on
the boundary of D.

Proof. Assume that u is a harmonic function in D and u.x0/ D supx2D u.x/ for
some x0 2 D. Since u.x/ enjoys the spherical mean-value property (8.14), we see that
uj@Br

� u.x0/ for all r > 0 such that B.x0; r/ � D. Thus, ujB.x0;r/ � u.x0/, and we
see that the set M WD ¹x 2 D W u.x/ D u.x0/º is open. Since u is continuous, M is
also closed, and the connectedness of D shows that D D M as M is not empty.
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When we solve the Dirichlet problem, cf. Theorem 8.17 below, we use Proposi-
tion 8.10 to get (8.13a) and Corollary 8.11 for the uniqueness; the condition (8.13b),
i. e. limD3x!x0

Ex f .B� / D f .x0/ for x0 2 @D, requires some kind of regularity for
the hitting time � D �Dc .

8.12 Definition. A point x0 2 @D is called regular (for Dc) if Px0.�Dc D 0/ D 1.
Every non-regular point is called singular.

At a regular point x0, Brownian motion leaves the domain D immediately; typical
situations are shown in Example 8.15 below.

The point x0 2 @D is singular for Dc if, and only if, Px0.�Dc > 0/ D 1. If E � D

such that x0 2 @E, the point x0 is also singular for Ec . This follows from Ec � Dc

and �Ec � �Dc .

8.13 Lemma. x0 2 @D is singular for Dc if, and only if, Px0.�Dc D 0/ D 0.

Proof. By definition, any singular point x0 satisfies Px0.�Dc D 0/ < 1. On the other
hand,

¹�Dc D 0º D
1
\

nD1
¹�Dc � 1=nº 2

1
\

nD1
F1=n D F0C;

and by Blumenthal’s 0-1–law, Corollary 6.22, Px0.�Dc D 0/ 2 ¹0; 1º.

The following simple regularity criterion is good enough for most situations. Recall
that a truncated cone in Rd with opening r > 0, vertex x0 and direction x1 is the set
V D ¹x 2 Rd W x D x0 C hB.x1; r/; 0 < h < �º for some � > 0.

8.14 Lemma (Outer cone condition. Poincaré 1890, Zaremba 1911). Let D � Rd ,
d � 2, be an open domain and .Bt/t�0 a BMd . If we can touch x0 2 @D with the
vertex of a truncated cone V such that V � Dc , then x0 is a regular point for Dc .

Figure 8.2. The outer cone condition.
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Proof. Assume that x0 is singular. Denote by �V WD inf¹t > 0 W Bt 2 V º the first
hitting time of the open cone V . Since V � Dc , we have �V � �Dc , i. e.

Px0.�V > 0/ � Px0.�Dc > 0/ D 1:

Pick � > 0 so small that B.x0; �/n ¹x0º is covered by finitely many copies of the cone
V D V0 and its rotations V1; : : : ; Vn about the vertex x0. Since a Brownian motion is
invariant under rotations – this follows immediately from Lemma 2.14 – , we conclude
that Px0.�Vj

> 0/ D Px0.�V0
> 0/ D 1 for all j D 1; : : : ; n.

Observe that
Sn
jD0 Vj � B.x0; �/ n ¹x0º; therefore, min0�j�n �Vj

� �
B.x0;
/

, i. e.

Px0
�

�B.x0;
/
> 0

�

� Px0

�

min
0�j�n

�Vj
> 0

�

D 1

which is impossible since Px0.Bt D x0/ D 0 for every t > 0.

8.15 Example. Unless indicated otherwise, we assume that d � 2. The following
pictures show typical examples of singular points.

a) singular .d � 2/ b) singular .d � 2/ c) singular .d � 3/ e) singular .d � 3/
regular .d D 2/

Figure 8.3. Examples of singular points.

a) The boundary point 0 of D D B.0; 1/ n ¹0º is singular. This was the first example
of a singular point and it is due to Zaremba [194]. This is easy to see since �¹0º D 1
a. s.: By the Markov property

P0
�

�¹0º < 1� D P0
�9 t > 0 W Bt D 0

�

D lim
n!1 P0

�9 t > 1
n

W Bt D 0
�

D lim
n!1 E0

�

PB1=n .9 t > 0 W Bt D 0/
„ ƒ‚ …

D0; Corollary 6.16

�

D 0:

Therefore, P0.�Dc D 0/ D P0.�¹0º ^ �Bc.0;1/ D 0/ D P0.�Bc.0;1/ D 0/ D 0:
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1

0

rn

cne1

K(cn, rn)

2

Figure 8.4. Brownian motion has to exit B.1; 0/ before it leaves B.2; cne1/.

b) Let .rn/n�1 and .cn/n�1 be sequences with 0 < rn; cn < 1 which
decrease to 0. We setK.cn; rn/ WD B.cne1; rn/ � R2 and e1 D .1; 0/ 2 R2. Run a
Brownian motion in the setD WD B.0; 1/ nSn�1K.cn; rn/ obtained by removing
the circles K.cn; rn/ from the unit ball. Clearly, the Brownian motion has to leave
B.0; 1/ before it leaves B.cne1; 2/, see Figure 8.4. Thus,

P0
�

�K.cn;rn/
< �Bc.0;1/

�

� P0
�

�K.cn;rn/
< �Bc.cne1;2/

�

D P�cne1
�

�K.0;rn/
< �Bc.0;2/

�

:

Since K.0; rn/ D B.0; rn/, this probability is known from Theorem 6.15:

P0
�

�K.cn;rn/
< �Bc.0;1/

�

� log 2 � log cn
log 2 � log rn

:

Take cn D 2�n, rn D 2�n3

, n � 2, and sum the respective probabilities; then

1
X

nD2
P0
�

�K.cn;rn/
< �Bc.0;1/

�

�
1
X

nD2

nC 1

n3 C 1
< 1:

The Borel–Cantelli lemma shows that Brownian motion visits at most finitely many
of the balls K.cn; rn/ before it exits B.0; 1/. Since 0 … K.cn; rn/, this means that
P0.�Dc > 0/ D 1, i. e. 0 is a singular point.



Section 8.4 The Dirichlet problem 131

h(x)

K1

K2

B1(0)

Figure 8.5. A ‘cubistic’ version of Lebesgue’s spine.

c) (Lebesgue’s spine) In 1913 Lebesgue gave the following example of a singular
point. Consider in d D 3 the open unit ball and remove a sharp spine, e. g. a closed
cusp S which is obtained by rotating a curve y D h.x/ about the positive x–axis:
E WD B.0; 1/ n S . Then 0 is a singular point for Ec .
For this, we use a similar construction as in b): We remove from B.0; 1/ the sets
Kn, D WD B.0; 1/ nS1

nD1Kn, but the sets Kn are chosen in such a way that they
cover the spine S , i. e. D � E.
Let Kn D Œ2�n; 2�nC1� � B.0; rn/ be a cylinder in R3. The probability that a
Brownian motion hits Kn can be made arbitrarily small, if we choose rn small
enough, see the technical wrap-up at the end of this paragraph. So we can arrange
things in such a way that

P0.�Kn
< �B.0;1// � pn and

1
X

nD1
pn < 1:

As in b) we see that a Brownian motion visits at most finitely many of the cylinders
Kn before exiting B.0; 1/, i. e. P0.�Dc > 0/ D 1. Therefore, 0 is singular for Dc

and for Ec � Dc .
Technical wrap-up. SetKn


 D Œ2�n; 2�nC1��B.0; �/, �n;
 WD�
Kn

�
,Bt D .wt ; bt ; ˇt/

and �n D inf¹t > 0 W wt � 2�nº.
From Corollary 6.17 we deduce that 0 < �n; �Bc.0;1/

< 1 a. s. Moreover, for fixed

n � 1 and any �0 � � we have �n � �n;
 � �n;
0 , and so

®

�n � �n;
0 � �Bc.0;1/

¯ � ®

�n � �n;
 � �Bc.0;1/

¯

:
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Since the interval Œ�n; �Bc.0;1/
� is compact we get

\


>0

¹�n � �n;
 � �Bc.0;1/º � ®9 t 2 Œ�n; �Bc.0;1/� W bt D ˇt D 0
¯

:

As
P0.�n;
 � �Bc.0;1// D P0.�n � �n;
 � �Bc.0;1//

and
P0.9 t > 0 W bt D ˇt D 0/ D 0;

see Corollary 6.16, we conclude that lim
!0 P0.�n;
 � �Bc.0;1/
/ D 0 and this is all

we need. �
Our construction shows that the spine will be exponentially sharp. Lebesgue used
the function h.x/ D exp.�1=x/, x > 0, see [100, p. 285, p. 334].

d) Let .b.t//t�0 be a BM1 and �¹0º D inf¹t > 0 W b.t/ D 0º the first return time to

the origin. Then P0.�¹0º D 0/ D 1. This means that in d D 1 a Brownian motion
path oscillates infinitely often around its starting point. To see this, we begin withEx. 8.8
the remark that, because of the symmetry of a Brownian motion,

P0.b.t/ � 0/ D P0.b.t/ � 0/ D 1

2
for all t 2 Œ0; ��; � > 0:

Thus, P0.b.t/ � 0 8t 2 Œ0; ��/ � 1=2 and P0.�
.�1;0�

� �/ � 1=2 for all � > 0.

Letting � ! 0 we get P0.�
.�1;0�

D 0/ � 1=2 and, by Blumenthal’s 0-1–law,

Corollary 6.22, P0.�
.�1;0�

D 0/ D 1. The same argument applies to the interval
Œ0;1/ and we getEx. 5.11

P0.�¹0º D 0/ D P0.�.�1;0� _ �Œ0;1/ D 0/ D 1:

e) (Zaremba’s needle) Let e1 D .1; 0; : : : ; 0/ 2 Rd , d � 2. The argument from c)Ex. 8.9
shows that for the set D D B.0; 1/ n Œ0;1/e1 the point 0 is singular if d � 3. In
two dimensions the situation is different: 0 is regular!
Indeed: Let B.t/ D .b.t/; ˇ.t//, t � 0, be a BM2; we know that the coordinate
processes b D .b.t//t�0 and ˇ D .ˇ.t//t�0 are independent one-dimensional
Brownian motions. Set �n D inf¹t > 1=n W b.t/ D 0º. Since 0 2 R is regular for
¹0º � R, see d), we get that limn!1 �n D �¹0º D 0 almost surely with respect to

P0. Since ˇ ?? b, the random variable ˇ�n
is symmetric, and soEx. 8.10

P0.ˇ.�n/ � 0/ D P0.ˇ.�n/ � 0/ �
1

2
:

Clearly, B.�n/ D .b.�n/; ˇ.�n// D .0; ˇ.�n// and ¹ˇ.�n/ � 0º � ¹�Dc � �nº, so

P0.�Dc D 0/ D lim
n!1 P0.�Dc � �n/ � lim

n!1
P0.ˇ.�n/ � 0/ �

1

2
:

Now Blumenthal’s 0–1-law, Corollary 6.22, applies and gives P0.�Dc D 0/ D 1.
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8.16 Theorem. Let x0 2 @D be a regular point and � D �Dc . Then

lim
D3x!x0

Px.� > h/ D 0 for all h > 0:

Proof. Fix h > 0. Since D is open, we find for every x 2 Rd

Px.� > h/ D Px.8 s 2 .0; h� W B.s/ 2 D/
D inf

n
Px.8 s 2 .1=n; h� W B.s/ 2 D/

D inf
n

Ex
�

PB.1=n/.8 s 2 .0; h � 1=n� W B.s/ 2 D/
�

D inf
n

Ex
�

PB.1=n/.� > h � 1=n/
�

:

(8.15)

Set �.y/ WD Py.� > h � 1=n/. Since � 2 Bb.Rd /, the strong Feller property, Ex. 8.3
Proposition 7.3 g), shows that

x 7! Ex
�

PB.1=n/.� > h � 1=n/
�

D Ex �.B.1=n//

is a continuous function. Therefore,

lim
D3x!x0

Px.� > h/ D lim
D3x!x0

inf
n

Ex
�

PB.1=n/.� > h � 1=n/
�

� inf
k

lim
D3x!x0

Ex
�

PB.1=k/.� > h � 1=k/
�

cts.D inf
k

Ex0

�

PB.1=k/.� > h � 1=k/
�

(8.15)D Px0.� > h/ D 0;

since x0 is regular.

We are now ready for the main theorem of this section.

8.17 Theorem. Let .Bt /t�0 be a BMd , D a connected, open and bounded domain
and � D �Dc the first hitting time of Dc . If every point in @D is regular for Dc and if
f W @D ! R is continuous, then u.x/ D Exf .B� / is the unique bounded solution of
the Dirichlet problem (8.13).

Proof. We know already that u.x/ D Exf .X� / is well-defined for x 2 D.

1o u is harmonic in D. Let x 2 D. Since D is open, there is some ı > 0 such that
B.x; ı/ � D. Set � WD �r WD inf¹t > 0 W Bt … B.x; r/º for 0 < r < ı. By the
strong Markov property (6.9)

u.x/ D Ex f .B� / D Ex
�

EB� f .B� 0/
� D Ex u.B� /
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where � 0 is the first exit time fromD of the Brownian motion .B�Ct �B� /t�0. There-
fore, u enjoys the spherical mean-value property (8.14) and we infer with Proposi-
tion 8.10 that u is harmonic in D, i. e. (8.13a) holds.

2o limx!x0
u.x/ D f .x0/ for all x0 2 @D: Fix � > 0. Since f is continuous, there

is some ı > 0 such that

jf .x/ � f .x0/j � � for all x 2 B.x0; ı/ \ @D:
Therefore, we find for every h > 0

ju.x/ � f .x0/j D jEx .f .B�/ � f .x0//j
� Ex

�

jf .B� / � f .x0/j � 1¹�<hº
�

C 2 kf k1 Px.� � h/

� Ex
�jf .B� / � f .x0/j � 1¹�<hº1¹supt�h jBt �x0j<ıº

�

C Ex
�jf .B� / � f .x0/j � 1¹�<hº1¹supt�h jBt �x0j�ıº

�

C 2 kf k1 Px.� � h/:

Write I1.x; h/; I2.x; h/ and I3.x; h/ for the terms appearing in the last line.
Let jx � x0j � ı=2. By the triangle inequality we see that

²

sup
t�h

jBt C x � x0j � ı
³

�
²

sup
t�h

jBt j � ı=2
³

:

Thus, by Doob’s maximal inequality (A.13),

jI2.x; h/j � 2 kf k1 P0

�

sup
t�h

jBt C x � x0j � ı
�

jx�x0j�ı=2
� 2 kf k1 P0

�

sup
t�h

jBt j � ı=2
�

(A.13)
� kf k1

8E0 jBhj2
ı2

D kf k1
8hd

ı2
:

Because of the continuity of f we get

jI1.x; h/j � Ex
�

� � 1¹�<hº1¹supt�h jBt �x0j<ıº
�

� �:

Therefore,

ju.x/ � f .x0/j � 2� C 2 kf k1 Px.� � h/

for jx � x0j � ı

2
and h � � ı2

8d kf k1
:

Using Theorem 8.16, we see limx!x0
ju.x/�f .x0/j � 2�, and since � > 0 is arbitrary,

this proves (8.13b) as well as (8.13c).
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3o Uniqueness. This follows from the maximum principle, Corollary 8.11. Assume
that u and w are two solutions of (8.13) with the same boundary value f . Then the
functions ˙.u � w/ solve (8.13) with f � 0, i. e. ˙.u � w/ � 0, hence u � w.

8.18 Further reading. The study of the Laplace operator and PDEs connected with
the Laplacian is a central part of classical and probabilistic potential theory. A good
starting point is the non-technical survey paper [138]. On the analytic side, one finds a
very neat expositions in [76] on potential theory, and on general PDEs in [62]. Purely
probabilistic treatments are [23], its sequel [25] and the monograph [49]. The booklet
[55] has a very accessible exposition of the Dirichlet problem starting from random
walks. The lecture notes [152] are a good introduction to probabilistic potential theory.
Both sides, analysis and probability, are explained in the encyclopedic [42], but this is
not an easy read. More general connections to analysis are explored in [7]

[7] Bass: Probabilistic Techniques in Analysis.
[23] Chung: Lectures from Markov Processes to Brownian Motion.
[25] Chung, Zhao: From Brownian Motion to Schrödinger’s Equation.
[42] Doob: Classical Potential Theory and Its Probabilistic Counterpart.
[49] Durrett: Brownian Motion and Martingales in Analysis.
[55] Dynkin, Yushkevich: Markov Processes. Theorems and Problems.
[62] Evans: Partial Differential Equations.
[76] Helms: Potential Theory.

[138] Orey: Probabilistic methods in partial differential equations.
[152] Rao: Brownian Motion and Classical Potential Theory.

Problems

1. Assume that, in the setting of Lemma 8.1, the boundary function f 2 C1.Rd /

but not necessarily f 2 D.�/. Consider (8.3) with P
f instead of f . Discuss the
limit � ! 0.

2. Let .Bt /t�0 be a BMd , f W Rd ! R be a continuous function such that
R t

0
f .Bs/ ds D 0 for all t > 0. Show that f .Bs/ D 0 for all s > 0, and con-

clude that f � 0.

3. Complete the approximation argument for Lévy’s arc-sine law from Para-
graph 8.7:
(a) Show, by a direct calculation, that vn;�.x/ converges as n ! 1. Conclude

from (8.12) that v00
n;�

converges.
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(b) Integrate the ODE (8.12) to see that vn;�.x/� v0
n;�
.0/ has a limit. Integrating

once again shows that v0
n;�
.0/ converges, too.

(c) Identify the limits of vn;�; v0
n;�

and v00
n;�

.

4. Show Theorem 8.5 with semigroup methods.
Hint: Observe that A

R t

0
Psg ds D Ptg � g D d

dt

R t

0
Psg ds.

5. Find the solution to the Dirichlet problem in dimension d D 1: u00.x/ D 0 for
all x 2 .0; 1/, u.0/ D A, u.1/ D b and u is continuous in Œ0; 1�. Compare your
findings with Wald’s identities, cf. Theorem 5.10 and Corollary 5.11.

6. Use Lemma 7.24 and give an alternative derivation of the result of Lemma 8.8.

7. Show that Lemma 8.8 remains true for any d -dimensional Feller process Xt with
continuous paths and generator L D Pd

j;kD1 ajk.x/ @j @k C Pd
jD1 bj .x/ @j such

that a11.x/ � a0 > 0 and jb1.x/j � b0 < 1.

Hint: Set u.x/ D e�x2
1=r

2

and multiply it with a smooth cut-off function C2c.R
d /,

ujB.0;r/ � 1, to make sure it is in D.L/. Then calculate Lu.x/ D L.u�/.x/ for
x 2 B.0; r/.

8. Use the LIL (Corollary 11.2) to give an alternative proof for the fact that a one-
dimensional Brownian motion oscillates in every time interval Œ0; �� infinitely of-
ten around its starting point.

9. (Flat cone condition; Chung 1982) Let d � 2. A flat cone in Rd is a cone in Rd�1.
Adapt the argument of Example 8.12 d) to show the following useful regularity
criterion for a BMd : The boundary point x0 is regular forDc if there is a truncated
flat cone with vertex at x0 and lying entirely in Dc .
Hint: Example 8.15 e) for d D 2 and Chung [23, p. 165].

10. Let .b; ˇ/ be a BM2 and �n D inf¹t > 1=n W b.t/ D 0º. Show that the random
variable ˇ.�n/ has a probability density.



Chapter 9

The variation of Brownian paths

Recall the definition of p-variation: Let f W Œ0;1/ ! Rd be a (non-random) function
and let … D ¹t0 D 0 < t1 < � � � < tn D tº be a finite partition of the interval Œ0; t �.
By j…j WD max1�j�n.tj � tj�1/ we denote the fineness or mesh of the partition. For
p > 0 we call

S…p .f I t / WD
X

tj �1;tj 2…
jf .tj / � f .tj�1/jp D

n
X

jD1
jf .tj / � f .tj�1/jp (9.1)

the p-variation sum for…. The supremum over all finite partitions is the strong or total
p-variation,

VARp.f I t / WD sup
®

S…p .f I t / W … finite partition of Œ0; t �
¯

: (9.2)

If VAR1.f I t / < 1, the function f is said to be of bounded or finite (total) variation. Ex. 9.1
Often the following notion of p-variation along a given sequence of finite partitions
.…n/n�1 of Œ0; t � with limn!1 j…nj D 0 is used:

varp.f I t / WD lim
j…nj!0

S…n

p .f I t /: (9.3)

Note that the strong variation VARp.f I t / is always defined; if varp.f I t / exists,
VARp.f I t / � varp.f I t /. When a random function X.s; !/ is used in place of f .s/,
we can speak of varp.X. � ; !/I t / as a limit in law, in probability, in kth mean, and a. s.
Note, however, that the sequence of partitions .…n/n�1 does not depend on !.

If f is continuous, it is no restriction to require that the endpoints 0; t of the interval
Œ0; t � are contained in every finite partition …. Moreover, we may restrict ourselves
to partitions with rational points or points from any other dense subset (plus the end-
point t ). This follows from the fact that we find for every � > 0 and every partition Ex. 9.3

Ex. 9.4… D ¹t0 D 0 < t1 < � � � < tn D tº some …0 D ¹q0 D 0 < q1 < � � � < qn D tº with
points from the dense subset such that

n
X

jD0
jf .tj / � f .qj /jp � �:

Thus, jS…p .f I t / � S…
0

p .f I t /j � cp;d � with a constant depending only on p and the
dimension d ; since

VARp.f I t / D sup
n

sup
®

S…p .f I t / W … partition of Œ0; t � with #… D n
¯

;

we see that it is enough to calculate VARp.f I t / along rational points.
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9.1 The quadratic variation

Let us determine the quadratic variation var2.BI t / D var2.B. � ; !/I t / of a Brownian
motion B.t/; t � 0. In view of the results of Section 2.3 it is enough to consider aEx. 9.2
one-dimensional Brownian motion throughout this section.

9.1 Theorem. Let .Bt/t�0 be a BM1 and .…n/n�1 be any sequence of finite partitions
of Œ0; t � satisfying limn!1 j…nj D 0. Then the mean-square limit exists:

var2.BI t / D L2.P/- lim
n!1S

…n

2 .BI t / D t:

Usually var2.BI t / is called the quadratic variation of a Brownian motion.

Proof. Let … D ¹t0 D 0 < t1 < � � � < tn � tº be some partition of Œ0; t �. Then we
have

E S…2 .BI t / D
n
X

jD1
E
�

.B.tj / � B.tj�1//2
	 D

n
X

jD1
.tj � tj�1/ D t:

Therefore,

E
h

�

S…2 .BI t /� t�2
i

D V
h

S…2 .BI t /
i

D V


 n
X

jD1
.B.tj / � B.tj�1//2

�

:

By (B1) the random variables .B.tj /�B.tj�1//2, j D 1; : : : ; n, are independent with
mean zero. With Bienaymés identity we find

E
h

�

S…2 .BI t /� t�2
i

(B1)D
n
X

jD1
V
�

.B.tj / � B.tj�1//2
	

D
n
X

jD1
E
h

�

.B.tj / � B.tj�1//2 � .tj � tj�1/
�2
i

(B2)D
n
X

jD1
E
h

�

B.tj � tj�1/2 � .tj � tj�1/
�2
i

2:12D
n
X

jD1
.tj � tj�1/2 E

h

�

B.1/2 � 1�2
i

„ ƒ‚ …

D2 cf. 2.3

� 2 j…j
n
X

jD1
.tj � tj�1/ D 2 j…j t ����!

j…j!0
0:

9.2 Corollary. Almost all Brownian paths are of infinite total variation. In fact, we
have VARp.BI t / D 1 a. s. for all p < 2.
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Proof. Let p D 2 � ı for some ı > 0. Let …n be any sequence of partitions of Œ0; t �
with j…nj ! 0. Then

X

tj �1;tj 2…n

.B.tj / � B.tj�1//2

� max
tj �1;tj 2…n

jB.tj / � B.tj�1/jı
X

tj �1;tj 2…n

jB.tj / � B.tj�1/j2�ı

� max
tj �1;tj 2…n

jB.tj / � B.tj�1/jı VAR2�ı.BI t /:

The left-hand side converges, at least for a subsequence, almost surely to t . On the
other hand, limj…nj!0 maxtj �1;tj 2…n

jB.tj /�B.tj�1/jı D 0 since the Brownian paths
are (uniformly) continuous on Œ0; t �. This shows that VAR2�ı.BI t / D 1 almost
surely.

It is not hard to adapt the above results for intervals of the form Œa; b�. Either we
argue directly, or we observe that if .Bt/t�0 is a Brownian motion, so is the process
W.t/ WD B.t C a/�B.a/; t � 0. Indeed, it is straightforward to check (B0)–(B4) for
the process W.t/, cf. 2.9.

Recall that a function f W Œ0;1/ ! R is called (locally) Hölder continuous of
order ˛ > 0, if for every compact interval Œa; b� � Œ0;1/ there exists a constant
c D c.f; ˛; Œa; b�/ such that

jf .t/ � f .s/j � c jt � sj˛ for all s; t 2 Œa; b�: (9.4)

9.3 Corollary. Almost all Brownian paths are nowhere (locally) Hölder continuous of Ex. 9.6
order ˛ > 1

2
.

Proof. Fix some interval Œa; b� � Œ0;1/, a < b are rational, ˛ > 1
2

and assume that
(9.4) holds with f .t/ D B.t; !/ and some constant c D c.!; ˛; Œa; b�/.

Then we find for all finite partitions … of Œa; b�

S…2 .B. � ; !/;…/ D
X

tj �1;tj 2…

�

B.tj ; !/ � B.tj�1; !/
�2

� c.!/2
X

tj �1;tj 2…
.tj � tj�1/2˛ � c.!/2.b � a/j…j2˛�1:

In view of Theorem 9.1 we know that the left-hand side converges almost surely to
b�a for some subsequence…n with j…nj ! 0. Since 2˛�1 > 0, the right-hand side
tends to 0, and we have a contradiction.

This shows that (9.4) can only hold on a P-null set Na;b � 	. But the union of null
sets

S

0�a<b;a;b2Q Na;b is an exceptional set which is uniform for all intervals.
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9.2 Almost sure convergence of the variation sums

To get almost sure convergence of the variation sums is more difficult. One of the
first results in this direction is due to P. Lévy for refining partitions [120, Theorème 5]
and the following simple argument for dyadic and other partitions with rapidly decay-
ing mesh-size [121, Theorème 41.1]. In both cases, however, we need an additional
condition on the sequence of partitions.

9.4 Theorem (Lévy 1948). Let .Bt/t�0 be a one-dimensional Brownian motion. Along
any sequence of finite partitions …n of Œ0; t � such that

P1
nD1 j…nj < 1 we have

var2.BI t / D lim
n!1S

…n

2 .BI t / D t almost surely:

Proof. As in the proof of Theorem 9.1 we find

E
h

�

S…n

2 .BI t /� t�2
i

D 2
X

tj �1;tj 2…n

.tj � tj�1/2 � 2 j…nj t:

Now we use the Chebyshev–Markov inequality to get for every � > 0
1
X

nD1
P
�

ˇ

ˇS…n

2 .BI t /� t ˇˇ > �
�

� 2t

�2

1
X

nD1
j…nj < 1:

By the (easy direction of the) Borel–Cantelli lemma we conclude that there is a set	

such that P.	
/ D 1 and for all ! 2 	
 there is some N.!/ such that

ˇ

ˇS
…n

2 .B. � ; !/I t /� t ˇˇ � � for all n � N.!/:
This proves that var2.BI t / D t on 	0 WD T

k�1	1=k along the sequence .…n/n�1.
Since P.	0/ D 1, we are done.

The summability condition
P1
nD1 j…nj < 1 used in Theorem 9.4 is essentially

an assertion on the decay of the sequence j…nj. If the mesh sizes decrease, we have
nj…nj � Pn

jD1 j…j j � P1
jD1 j…j j, hence j…nj D O.1=n/. The following result of

Dudley, [44, p. 89], only requires j…nj D o.1= logn/, i. e. limn!1 j…nj logn D 0.

9.5 Theorem (Dudley 1973). Let .Bt /t�0 be a BM1 and assume that…n is a sequence
of partitions of Œ0; t � such that j…nj D o.1= logn/. Then

var2.BI t / D lim
n!1S

…n

2 .BI t / D t almost surely.

Proof. To simplify notation, we write in this proof S…n

2 D S…n

2 .BI t /. Then

S…n

2 � t D
X

tj �1;tj 2…n

h

�

B.tj / � B.tj�1/
�2 � .tj � tj�1/

i

D
X

tj �1;tj 2…n

.tj � tj�1/



�

B.tj / � B.tj�1/
�2

tj � tj�1
� 1

�

D
X

tj �1;tj 2…n

sj
�

W 2
j � 1	
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where

sj D tj � tj�1 and Wj D
�

B.tj / � B.tj�1/
�2

p
tj � tj�1

:

Note that the Wj are iid N.0; 1/ random variables. For every � > 0

P
�

ˇ

ˇ

ˇ

S
…n

2 � t
ˇ

ˇ

ˇ

> �
�

� P
�

S…n

2 � t > �
�

C P
�

t � S…n

2 > �
�

I
we can estimate the right-hand side with the Markov inequality. For the first term we
find

P
�

S…n

2 � t > �
�

� e�
� E e�.S
…n
2 �t/

D e�
� E e�
P

j sj .W
2

j
�1/ D e�
�Y

j

E e�sj .W
2

j
�1/:

(Below we will choose � in such a way that the right-hand side is finite.) If we combine
the elementary inequality je�x � �x � 1j � �2x2ej�xj, x; � 2 R, with the fact that
E.W 2 � 1/ D 0, we get

P
�

S…n

2 � t > �
�

� e�
�Y

j

h

1C E
�

e�sj .W
2

j
�1/ � �sj

�

W 2
j � 1� � 1

�i

� e�
�Y

j

h

1C E
�

�2s2j
�

W 2
j � 1�2 ej�sj j � jW 2

j
�1j
�i

:

A direct calculation reveals that for each 0 < �0 < 1=2 there is a constant C D C.�0/ Ex. 9.7
such that

E
��

W 2
j � 1�2 ej�j � jW 2

j
�1j	 � C < 1 for all 1 � j � n; j�j � �0 < 1

2
:

Using the estimate 1C y � ey we arrive at

P
�

S…n

2 � t > �� � e�
�Y

j

�

C�2s2j C 1
	

� e�
�Y

j

eC�
2s2

j D e�
�CC�2s2

where s2 WD P

j s
2
j . If we choose

� D �0 WD min

²

�

2Cs2
;
�0

j…nj
³

;

then jsj �0j � �0 and all expectations in the calculations above are finite. Moreover,

P
�

S…n

2 � t > �� � e��0.
�C�0s
2/ � e� 1

2

�0 � e� �
0

2 j…nj :

The same estimate holds for P
�

t � S…n

2 > �
�

, and we see

P
�

ˇ

ˇS…n

2 � t ˇˇ > �� � 2 exp

�

� ��0

2 j…nj
�

:
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Since j…nj D o.1= logn/, we have j…nj D �n= logn where �n ! 0 as n ! 1. Thus,

P
�

ˇ

ˇS
…n

2 � t ˇˇ > �� � 2n� �
0
2�n � 2

n2
for all n � n0:

The conclusion follows now, as in the proof of Theorem 9.4, from the Borel–Cantelli
lemma.

Yet another possibility to get almost sure convergence of the variation sums is to
consider nested partitions. The proof relies on the a. s. martingale convergence the-
orem for backwards martingales, cf. Corollary A.8 in the appendix. We begin with an
auxiliary result.

9.6 Lemma. Let .Bt /t�0 be a BM1 and Gs WD �
�

Br ; r � sI .Bu � Bv/
2; u; v � s

�

.
Then

E
�

Bt � Bs
ˇ

ˇGs
� D 0 for all 0 � s < t:

Proof. From Lemma 2.10 we know that the � -algebras FBs D �.Br ; r � s/ and
FBŒs;1/ WD �.Bt � Bs; t � s/ are independent.

A typical set from a \-stable generator of Gs is of the form

 D
M
\

jD1

®

Brj 2 Cj
¯ \

N
\

kD1

®

.Bvk
� Buk

/2 2 Dk

¯

where M;N � 1, rj � s � uk � vk and Cj ;Dk 2 B.R/. Since FBs ?? FBŒs;1/ and
QB WD �B is again a Brownian motion, we get

Z

�

.Bt � Bs/ dP

D
Z

.Bt � Bs/
N
Y

kD1
1Dk

..Bvk
� Buk

/2/

„ ƒ‚ …

FB
Œs;1/ measurable

�
M
Y

jD1
1Cj

.Brj /

„ ƒ‚ …

FB
s measurable

dP

D
Z

.Bt � Bs/
N
Y

kD1
1Dk

..Bvk
� Buk

/2/ dP �
Z M
Y

jD1
1Cj

.Brj / dP

D
Z

. QBt � QBs/
N
Y

kD1
1Dk

.. QBvk
� QBuk

/2/ dP �
Z M
Y

jD1
1Cj

.Brj / dP

D
Z

.Bs � Bt /
N
Y

kD1
1Dk

..Buk
� Bvk

/2/ dP �
Z M
Y

jD1
1Cj

.Brj / dP

D � � � D �
Z

�

.Bt � Bs/ dP :

This yields E.Bt � Bs jGs/ D 0.
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9.7 Theorem (Lévy 1940). Let .Bt/t�0 be a one-dimensional Brownian motion and
let …n be a sequence of nested partitions of Œ0; t �, i. e. …n � …nC1 � : : :, such that
limn!1 j…nj D 0. Then

var2.BI t / D lim
n!1S

…n

2 .BI t / D t almost surely.

Proof. We can assume that #.…nC1 n…n/ D 1, otherwise we add the missing inter-
mediate partitions.

We show that the variation sumsS�n WD S…n

2 .B; t/ are a martingale for the filtration
H�n WD �.S�n; S�n�1; S�n�2; : : :/. Fix n � 1; then …nC1 D …n [ ¹sº and there are
two consecutive points tj ; tjC1 2 …n such that tj < s < tjC1. Then

S�n � S�n�1 D .Btj C1
� Btj /2 � .Bs � Btj /2 � .Btj C1

� Bs/2
D 2.Btj C1

� Bs/.Bs � Btj /:
Thus, with Lemma 9.6,

E
�

.Btj C1
� Bs/.Bs � Btj /

ˇ

ˇGs
� D .Bs � Btj /E

�

.Btj C1
� Bs/

ˇ

ˇGs
� D 0

and, sinceH�n�1 � Gs , we can use the tower property to see

E
�

S�n � S�n�1
ˇ

ˇH�n�1
� D E

�

E
�

S�n � S�n�1
ˇ

ˇGs
�

ˇ

ˇH�n�1
� D 0:

Thus .S�n;H�n/n�1 is a (backwards) martingale and by the martingale convergence
theorem, Corollary A.8, we see that the limn!1 S�n D limn!1 S…n

2 .BI t / exists
almost surely. Since the L2 limit of the variation sums is t , cf. Theorem 9.1, we get
that the a. s. limit is again t .

9.3 Almost sure divergence of the variation sums

So far we have only considered variation sums where the underlying partition … does
not depend on !, i. e. on the particular Brownian path. This means, in particular, that
we cannot make assertions on the strong quadratic variation VAR2.B. � ; !/I 1/ of a
Brownian motion. We are going to show that, in fact, the strong quadratic variation of
almost all Brownian paths is infinite. This is an immediate consequence of the follow-
ing result.

9.8 Theorem (Lévy 1948). Let .Bt /t�0 be a BM1. For almost all ! 2 	 there is a
nested sequence of random partitions .…n.!//n�1 such that

j…n.!/j ���!
n!1 0 and var2.B. � ; !/I 1/ D lim

n!1S
…n.!/
2 .B. � ; !/I 1/ D C1:
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The strong variation is, by definition, the supremum of the variation sums for all
finite partitions. Thus,

9.9 Corollary (Lévy 1948). Let .Bt /t�0 be a one-dimensional Brownian motion. Then
VAR2.B. � ; !/I 1/ D 1 for almost all ! 2 	.

Proof of Theorem 9.8 (Freedman 1971). Let w.t/ WD B.t; !/, t 2 Œ0; 1�, be a fixed
Brownian trajectory, write …n WD ¹tj W tj D j=n; j D 0; 1; : : : ; nº and set
Jn WD ¹Œtj�1; tj � W j D 1; : : : ; nº. An interval I D Œa; b� is a k-fast interval for w,
if

.w.b/ � w.a//2 � 2k.b � a/:
1o If we can show that

8 k � 1 9n D n.k/ � k 8 I 2 Jn W I is a k-fast interval for w (9.5)

then

S
…n.k/

2 .wI 1/ D
n.k/
X

jD1
jw.tj / � w.tj�1/j2 � 2k

n.k/
X

jD1

1

n.k/
D 2k;

and so limk!1 S
…n.k/

2 .wI 1/ D 1.
On the other hand, Theorem 9.1 shows that for a Brownian motion we cannot expect

that all intervals are k-fast intervals. We will, however, show that – depending on ! –
there are still sufficiently many k-fast intervals. For this we have to relax the condi-
tion (9.5).

2o The following condition

9 .˛k/k�1 � .0; 1/ 8 k � 1; m � 1 9n D n.k;m/ � k 8 I 2 Jm W
I contains at least b˛knc C 1 many k-fast intervals from Jmn

(9.6)

allows us to construct a nested sequence of partitions .…n/n�1 such that j…nj ! 0

and S…n

2 .wI 1/ ! 1.
Assume that (9.6) holds. Fix k � 1, m D mk � 1 and pick the smallest integer

sk � 1 such that .1 � ˛k/sk � 1
2

. For I 2 Jm we find some n1 D n1.k;m/ such that

each I 2 Jm contains at least b˛kn1c C 1 k-fast intervals I 0 2 Jmn1
:

Denote these intervals by J�
.m;n1/

. By construction, Jmn1
n J�

.m;n1/
has no more than

.n1 � b˛kn1c � 1/m elements.
Applying (9.6) to the intervals from Jmn1

n J�
.m;n1/

yields that there is some n2 such
that

each I 2 Jmn1
n J�

.m;n1/
contains at least b˛kn2c C 1 k-fast intervals I 0 2 Jmn1n2

:
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Denote these intervals by J�
.m;n1;n2/

. By construction, Jmn1n2
n J�

.m;n1;n2/
has at most

.n2 � b˛kn2c � 1/.n1 � b˛kn1c � 1/m elements.
If we repeat this procedure sk times, there are no more than

m

sk
Y

jD1
.nj � b˛knj c � 1/

intervals left in Jmn1���nsk
n J�

.m;n1;��� ;nsk
/; their total length is at most

m

sk
Y

jD1
.nj � b˛knj c � 1/ 1

m

sk
Y

jD1
nj

� .1 � ˛k/sk � 1

2
:

The partition…k contains all points of the form t D j=m, j D 0; : : : ; m, as well as
the endpoints of the intervals from

J�
.m;n1/

[ J�
.m;n1;n2/

[ � � � [ J�
.m;n1;n2;:::;nsk

/:

Since all intervals are k-fast and since their total length is at least 1
2

, we get

S…k

2 .wI 1/ � 2k 1
2

D k:

3o In order to construct …kC1, we repeat the construction from the second step with
m D mk � n1 � n2 � : : : � nsk

. This ensures that …kC1 � …k .

4o All that remains is to show that almost all Brownian paths satisfy the condition
(9.6) for a suitable sequence .˛k/k�1 � .0; 1/. Since a Brownian motion has stationary
and independent increments, the random variables

Z
.n/

l
D #

°

1 � j � n W �B. l
m

C j
mn
; � / � B. l

m
C j�1

mn
; � /	2 � 2k 1

mn

±

.l D 0; 1; : : : ; m � 1/ are iid binomial random variables with the parameters n and

pk D P
�

�

B. l
m

C j
mn
; � / � B. l

m
C j�1

mn
; � /	2 � 2k 1

mn

�

D P
�

jB.1/j2 � 2k
�

:

In the last equality we used the scaling property 2.12 of a Brownian motion. Observe
that EZ

.n/

l
D pkn; by the central limit theorem,

P

 

m�1
\

lD0

®

Z
.n/

l
�


1
2
pkn

˘C 1
¯

!

D
m�1
Y

lD0
P
�

Z
.n/

l
�


1
2
pkn

˘C 1
�

���!
n!1 1;

and so

P

 1
[

nD1

m�1
\

lD0

®

Z
.n/

l
�


1
2
pkn

˘C 1
¯

!

D 1:
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This shows that

P

 1
\

kD1

1
\

mD1

1
[

nD1

m�1
\

lD0

®

Z
.n/

l
�


1
2
pkn

˘C 1
¯

!

D 1

which is just (9.6) for the sequence ˛k D 1
2

P
�jB.1/j2 � 2k�.

9.4 Lévy’s characterization of Brownian motion

Theorem 9.1 remains valid for all continuous martingales .Xt ;Ft/t�0 with the prop-
erty that .X2

t � t;Ft /t�0 is a martingale. In fact, this is equivalent to saying that

E
�

Xt �Xs
ˇ

ˇFs
	 D 0 for all s � t; (9.7)

and, since EŒXsXt jFs � D Xs EŒXt jFs � D X2
s ,

E
�

.Xt �Xs/2
ˇ

ˇFs
	 D t � s for all s � t: (9.8)

9.10 Lemma. Let .Xt ;Ft /t�0 be a real-valued martingale with continuous sample
paths such that .X2

t � t;Ft /t�0 is a martingale. Then EX4
t < 1 and

E
�

.Xt �Xs/4
ˇ

ˇFs
	

� 4.t � s/2 for all s < t: (9.9)

Proof. We need the following multinomial identity for a0; : : : ; an 2 R and n � 1Ex. 9.8

�

X

j

aj

�4

C 3
X

j

a4j � 4
�

X

j

a3j

��

X

k

ak

�

C 2
XX

.j;k/Wj<k
a2j a

2
k

D 2
X

j

a2j

�

X

kWk¤j
ak

�2

C 4

�

XX

.j;k/Wj<k
ajak

�2

: (9.10)

For the (rather tedious) proof we refer to Lemma A.45 in the appendix.
Set tj WD s C .t � s/ j

n
, j D 0; 1; : : : ; n, and ıj WD Xtj �Xtj �1

. By Fatou’s lemma

E

�

lim
n!1

n
X

jD1
ı2j

�

� lim
n!1

E

� n
X

jD1
ı2j

�

(9.8)D lim
n!1

n
X

jD1
.tj � tj�1/ D t � s:

Therefore, limn!1
Pn
jD1 ı2j is almost surely finite, and from the continuity of the

sample paths of t 7! Xt we find that

lim
n!1

n
X

jD1

ˇ

ˇıj
ˇ

ˇ

2C
 � lim
n!1 max

1�k�n
jıkj
 � lim

n!1

n
X

jD1
ı2j D 0:
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Thus,

.Xt �Xs/4 D lim
n!1


� n
X

jD1
ıj

�4

C 3

n
X

jD1
ı4j � 4

� n
X

jD1
ı3j

�� n
X

kD1
ık

��

� lim
n!1


� n
X

jD1
ıj

�4

C 3

n
X

jD1
ı4j � 4

� n
X

jD1
ı3j

�� n
X

jD1
ıj

�

C 2

n
X

kD1

X

j<k

ı2j ı
2
k

�

:

From (9.10) we see that the right-hand side is positive. Moreover, (9.10) and the con-
ditional version of Fatou’s lemma yield

E
�

.Xt �Xs/4
ˇ

ˇFs
	

� lim
n!1

E




2

n
X

jD1
ı2j

�

X

kWk¤j
ık

�2

C 4

� n
X

kD1

X

j<k

ıj ık

�2 ˇ
ˇ

ˇ

ˇ

Fs

�

:

If we expand the squares on the right-hand side, we see that it is of the form

c
X

j

XX

.k;l/Wk¤l;k¤j;l¤j
ı2j ıkıl C c0 XXXX

.j;k;l;m/Wj<k<l<m
ıj ıkılım C 8

XX

.j;k/Wj<k
ı2j ı

2
k :

Recall that s � tj < tk < t and ıj D Xtj �Xtj �1
, ık D Xtk �Xtk�1

. Using the tower
property of conditional expectations and (9.8), we find

E
�

ı2kı
2
j

ˇ

ˇFs
	 D E

�

E
�

ı2kı
2
j

ˇ

ˇFtj
�

ˇ

ˇFs
	 D E

�

E
�

ı2k
ˇ

ˇFtj
�

ı2j
ˇ

ˇFs
	

(9.8)D E
�

.tk � tk�1/ ı2j
ˇ

ˇFs
	

(9.8)D .tk � tk�1/.tj � tj�1/:

If we also use (9.7), a very similar reasoning shows that

E
�

ı2j ıkıl
ˇ

ˇFs
	 D E

�

ıj ıkılım
ˇ

ˇFs
	 D 0

if the indices j; k; l and m are mutually different. Finally,

E
�

.Xt �Xs/4
ˇ

ˇFs
	

� lim
n!1

8

n
X

kD1

X

j<k

.tj � tj�1/.tk � tk�1/

D lim
n!1

8
.t � s/2
n2

n.n � 1/
2

D 4.t � s/2;

and the claim follows.

9.11 Corollary. Let .Xt ;Ft /t�0 be a martingale with continuous sample paths such
that .X2

t � t;Ft /t�0 is a martingale. For any sequence .…n/n�1 of finite partitions of
Œ0; t � satisfying limn!1 j…nj D 0, the mean-square limit exists:

var2.X I t / D L2.P/- lim
n!1S

…n

2 .X I t / D t:
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Proof. Let … WD ¹0 D t0 < t1 < � � � < tn D tº be some partition of Œ0; t �, set
ıj WD Xtj �Xtj �1

and �tj WD tj � tj�1, j D 1; : : : ; n.
For any two increments ıj and ık we find,

E
�

.ı2j ��tj /.ı2k ��tk/
	 D E

�

ı2j ı
2
k

	 ��tj E
�

ı2k
	 ��tk E

�

ı2j
	C�tj�tk

(9.8)D E
�

ı2j ı
2
k

	 ��tj�tk :

If j ¤ k, the proof of Lemma 9.10 shows EŒı2j ı
2
k
� D �tj�tk , i. e. the mixed terms

are zero. If j D k we use (9.9) to get EŒı2j ı
2
k
� D EŒı4j � � 4.�tj /2. Thus,

E
h

�

S…2 .X I t /� t�2
i

D
n
X

jD1

n
X

kD1
E
�

.ı2j ��tj /.ı2k ��tk/
	

D
n
X

jD1
E
�

.ı2j ��tj /2
	

� 3
n
X

jD1
�t2j � 3j…j t ����!

j…j!0
0;

where j…j WD max1�k�n�tk is the mesh of the partition.

If a process satisfies the assumptions of Lemma 9.10, it is already a Brownian mo-
tion. This is Lévy’s martingale characterization of Brownian motion.

9.12 Theorem (Lévy 1948). Let .Xt ;Ft /t�0,X0 D 0, be a martingale with continuous
sample paths such that .X2

t � t;Ft /t�0 is a martingale. Then .Xt/t�0 is a Brownian
motion.

Proof (Gikhman, Skorokhod 1972). We have to show that

Xt �Xs ?? Fs and Xt �Xs � N.0; t � s/ for all 0 � s � t:

This follows from

E
�

ei�.Xt �Xs/
ˇ

ˇ

ˇ

Fs

�

D e� 1
2
.t�s/�2

for all s � t: (9.11)

In fact, taking expectations in (9.11) yields

E
�

ei�.Xt �Xs/
�

D e� 1
2
.t�s/�2

;

i. e. Xt �Xs � Xt�s � N.0; t � s/, and (9.11) becomes

E
�

ei�.Xt �Xs/ 1F

�

D E
�

ei�.Xt �Xs/
�

P.F / for all s � t; F 2 FsI

this proves that Xt �Xs ?? F for all F 2 Fs .
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For (9.11) we use a Taylor expansion up to order 3. Set�X D Xt�Xs and h D t�s.
Then

ei�.Xt �Xs/ � e� 1
2
�2.t�s/

D i��X C �2

2
h � �2

2
.�X/2 � �4

8
h2 � i�3

6
.��X/3 C �6

48
.�h/3

where � D �.!/ 2 .0; 1/ and � 2 .0; 1/. If we take conditional expectations with
respect to Fs and observe that E.�X jFs/ D 0 and E..�X/2 jFs/ D h – this follows
from (9.7) and (9.8) – , we get

E
�

ei�.Xt �Xs/�e� 1
2
�2.t�s/

ˇ

ˇ

ˇ

Fs

�

D ��
4

8
h2 � i�3

6
E
�

.��X/3
ˇ

ˇFs
�C �6

48
.�h/3:

By (the conditional version of) Hölder’s inequality with p D 4=3 and q D 4 we find

ˇ

ˇE
�

.��X/3
ˇ

ˇFs
�

ˇ

ˇ � E
�j�X j3 ˇˇFs

�

�
h

E
�

.�X/4
ˇ

ˇFs
�

i3=4 (9.9)
� 43=4 h3=2:

Therefore, we have for all s < t with h D t � s < 1 and some constant c�
ˇ

ˇ

ˇ

E
�

ei�.Xt �Xs/ � e� 1
2
�2.t�s/

ˇ

ˇ

ˇ

Fs

�

ˇ

ˇ

ˇ

� c�.t � s/3=2: (9.12)

Fix s < t and set tj WD s C .t � s/j=n, j D 0; 1; : : : ; n, n � 1. Observe that

ei�.Xt �Xs/ D
n
Y

jD1
ei�.Xtj

�Xtj �1
/ and e� 1

2
�2.t�s/ D

n
Y

jD1
e� 1

2
�2.tj �tj �1/:

Using the elementary estimate Ex. 9.9

ˇ

ˇ

ˇ

ˇ

n
Y

jD1
aj �

n
Y

jD1
bj

ˇ

ˇ

ˇ

ˇ

�
n
X

jD1
jaj � bj j for all aj ; bj 2 C; jaj j; jbj j � 1;

we find
ˇ

ˇ

ˇ

E
�

ei�.Xt �Xs/ � e� 1
2
�2.t�s/

ˇ

ˇ

ˇ

Fs

�

ˇ

ˇ

ˇ

� E

�

ˇ

ˇ

ˇ

ei�.Xt �Xs/ � e� 1
2
�2.t�s/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

�

D E
�

ˇ

ˇ

ˇ

n
Y

jD1
ei�.Xtj

�Xtj �1
/ �

n
Y

jD1
e� 1

2
�2.tj �tj �1/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

�

�
n
X

jD1
E

�

ˇ

ˇei�.Xtj
�Xtj �1

/ � e� 1
2
�2.tj �tj �1/

ˇ

ˇ

ˇ

ˇ

ˇ

Fs

�

:
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If n � 1 is large enough, we get h WD tj � tj�1 < 1. This means that we can use (9.12)
with .s; t/ D .tj�1; tj / and find

ˇ

ˇ

ˇ

E
�

ei�.Xt �Xs/ � e� 1
2
�2.t�s/

ˇ

ˇ

ˇ

Fs

�

ˇ

ˇ

ˇ

� c�
n
X

jD1
.tj � tj�1/3=2 D c�p

n
���!
n!1 0:

This proves (9.11).

9.13 Further reading. Almost sure convergence of the p-variation of stochastic pro-
cesses is quite difficult, and no sharp conditions are known. Some of the questions
raised in the landmark paper [44] are still open. Up-to-date treatments of p-variation
in analysis and probability are the Aarhus lecture notes [47] and the monograph [48].

[44] Dudley: Sample functions of the Gaussian process.
[47] Dudley, Norvaiša: An Introduction to p-variation and Young integrals.
[48] Dudley, Norvaiša: Differentiability of Six Operators on Nonsmooth Functions

and p-Variation.

Problems

1. Let .…n/n�1 be a sequence of refining (i. e. …n � …nC1) partitions of Œ0; 1� such
that limn!1 j…nj D 0. Show that for every function f W Œ0; 1� ! 1 the limit

lim
n!1S

…n

1 .f; 1/ D VAR1.f; 1/ WD sup
®

S…1 .f; 1/ W … finite partition of Œ0; 1�
¯

exists in Œ0;1� (and is, in particular, independent of the sequence .…n/n�1).

2. Let f D .g; h/ W Œ0;1/ ! R2 and p > 0. Show that VARp.f ;t / < 1 if, and
only if, VARp.g;t /C VARp.h;t / < 1.

3. Let f 2 CŒ0; 1�. For every partition … D ¹t0 D 0 < t1 < � � � < tn D 1º and � > 0
there is some rational partition …0 D ¹q0 D 0 < q1 < � � � < qn D 1º such that

n
X

jD0
jf .tj / � f .qj /jp � �:

Deduce from this that we may calculate VARp.f ;1/ along rational points.
Hint: Show jS…p .f ;t /�S…0

p .f; t/j � cp;d� using .aCb/p � 2p.apCbp/, a; b � 0,
p � 0.

4. Let f be continuous. Show that it does not affect the finiteness of VARp.f ;t / and
the numerical value of Varp.f ;t / if we restrict ourselves to partitions not containing
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the endpoints 0 and t of the interval. (In this case we have to define the mesh as mesh
of … [ ¹0; tº).

5. (Quadratic variation) Let .B.t//t�0 be a one-dimensional Brownian motion. Con-

sider the random variables Yn WD Pn
kD1

�

B.k
n
/ � B.k�1

n
/
�2

.
(a) Find E Yn and V Yn.
(b) Determine the probability density of Yn.
(c) Find the characteristic function �n.�/ D E ei�Yn , � 2 R, and determine the

limit limn!1 �n.�/.
(d) Show that lim E

�

.Yn � c/2	 D 0 and determine the constant c.

6. Show that BM1 is almost surely not 1=2-Hölder continuous:
(a) For all Z � N.0; 1/ and x > 0 we have

1p
2


xe�x2=2

x2 C 1
< P.Z > x/ <

1p
2


e�x2=2

x
:

(b) Set Ak;n D ®jB..k C 1/2�n/ � B.k2�n/j > cpn 2�n¯ and show that for

all c <
p
2 log 2 one has P

�

limn!1
S2n

kD1 Ak;n
� D 1. For this, use

the lower bound of the first part and consider the complement of the set
limn!1

S2n

kD1 Ak;n.
(c) Conclude from the previous part, that BM1 is a. s. not 1=2-Hölder continuous.

7. Let X � N.0; 1/. Show that for every �0 2 .0; 1
2
/ there is a constant C D C.�0/

such that sup���0
E
�

.X2 � 1/2ej�j.X2�1/
�

� C < 1.

8. (a) Verify (9.10) for n D 2.
(b) Prove (9.10) by induction.

9. Let aj ; bj 2 C be complex numbers with jaj j; jbj j � 1, j D 1; : : : ; n. Prove

ˇ

ˇ

ˇ

ˇ

n
Y

jD1
aj �

n
Y

jD1
bj

ˇ

ˇ

ˇ

ˇ

�
n
X

jD1
jaj � bj j:
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Regularity of Brownian paths

We have seen in the previous chapter that Brownian paths are not Hölder continuous
of any order ˛ > 1=2. In particular, they are not Lipschitz continuous or differentiable.
In this chapter we continue the study of smoothness properties and show that the paths
are actually a. s. nowhere (in t ) differentiable.

10.1 Hölder continuity

We begin with a rather general criterion for the continuity of a stochastic process. Later
on, in connection with stochastic differential equations, we need the following version
for random fields, i. e. stochastic processes with a multi-dimensional index set.

10.1 Theorem (Kolmogorov 1934; Slutsky 1937; Chentsov 1956). Denote byEx. 10.1
.�.x//x2Rn a stochastic process on .	;A;P/ with values in Rd and index set Rn. If

E
�j�.x/ � �.y/j˛� � c jx � yjnCˇ for all x; y 2 Rn (10.1)

holds for some constants c > 0 and ˛; ˇ > 0, then .�.x//x2Rn has a modification
.� 0.x//x2Rn with exclusively continuous sample paths. Moreover,

E

" 

sup
0<jx�yj<1
x;y2Œ�T;T /n

j� 0.x/ � � 0.y/j
jx � yj

!˛#

< 1; (10.2)

for all T > 0 and 0 � � < ˇ=˛. In particular, x 7! � 0.x/ is a. s. locally Hölder
continuous of order � .

Proof. Let N0 D ¹0; 1; 2; : : :º and Dm WD 2�mNn
0 \ Œ0; 1/n; then D D S

m�0Dm

are the dyadic numbers in Œ0; 1/n. Set

�m WD ¹.x; y/ 2 Dm �Dm W jx � yj1 � 2�mº;
where jx�yj1 D max1�k�n jxk�ykj. Since each x 2 Dm has at most 3n�1 nearest
neighbours in Dm, the set �m contains no more than 3n � 2mn elements.
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Fix � 2 .0; ˇ=˛/ and define �j D sup.x;y/2�j
j�.x/ � �.y/j. Then (10.1) shows Ex. 10.2

E.�˛j / �
X

.x;y/2�j

E .j�.x/ � �.y/j˛/ � 3n � 2jn � c 2�j.nCˇ/ D c 3n 2�jˇ :

2
−m

x

y

dm

xm xm+1

ym

ym+1

Figure 10.1. Position of the points x and y and their dyadic approximations.

Assume that x; y 2 D with jx � yj < 2�m. For each j � 0 there are unique elements
xj ; yj 2 Dj such that x and y are in the 2�j -cells xj C Œ0; 2�j /n and yj C Œ0; 2�j /n,
respectively. By construction, limj!1 xj D x and limj!1 yj D y. For j D m the
condition jx�yj < 2�m ensures that the closed cells xmCŒ0; 2�m�n and ymCŒ0; 2�m�n
have at least one element dm 2 Dm in common. A possible situation is shown in the
picture on the left. Thus, .xm; dm/; .ym; dm/ 2 �m and

j�.xm/ � �.ym/j � j�.xm/ � �.dm/j C j�.ym/ � �.dm/j � 2�m:
Moreover, our construction shows that .xj ; xjC1/; .yj ; yjC1/ 2 �jC1, j � m. There-
fore,

�.x/ � �.y/ D
X

j�m

�

�.xjC1/ � �.xj /
	C �.xm/ � �.ym/ �

X

j�m

�

�.yjC1/ � �.yj /
	

and

j�.x/ � �.y/j � 2�m C
X

j�m

�j�.xjC1/ � �.xj /j C j�.yjC1/ � �.yj /j
	

� 2�m C 2
X

j�mC1
�j D 2

X

j�m
�j :
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This entails that

sup
x;y2D; x¤y

j�.x/ � �.y/j
jx � yj D sup

m�0
sup
x;y2D

2�m�1�jx�yj<2�m

j�.x/ � �.y/j
2�.mC1/

� sup
m�0

�

2 � 2.mC1/ X

j�m
�j

�

D 21C sup
m�0

X

j�m
2m�j

� 21C
1
X

jD0
2j�j :

For ˛ � 1 and � < ˇ=˛ we get
�

�

�

�

sup
x¤y; x;y2D

j�.x/ � �.y/j
jx � yj

�

�

�

�

L˛.P/

� 21C
1
X

jD0
2jk�jkL˛.P/

� c1=˛ 21C
1
X

jD0
2j3n=˛ 2�jˇ=˛

D c1=˛ 21C3n=˛
1
X

jD0
2j.�ˇ=˛/ < 1:

For ˛ < 1, the argument is similar, but we use E.jZj˛/ instead of kZkL˛.P/.Ex. 10.3
Since the expression inside the L˛-norm is almost surely finite, there exists a set

	1 � 	 with P.	1/ D 1 such that for all ! 2 	1 the paths D 3 x 7! �.x; !/ are
uniformly continuous:

j�.x; !/ � �.y; !/j � c.!/ jx � yj for all x; y 2 D;! 2 	1:
The same construction works if we replace Œ0; 1/n by Œ�T; T /n, andD by the dyadic

numbersDT � Œ�T; T /n. The corresponding exceptional set is now T-dependent. We
define 	 n	T . Set 	0 D T1

TD1	T and D D S1
TD1DT . Then P.	0/ D 1 and the

mapping D 3 x 7! �.x; !/ is continuous if ! 2 	0. Since D is dense in Rn, we set
for all x 2 Rn

� 0.x; !/ WD
´

limD3y!x �.y; !/; ! 2 	0;
0; ! … 	0:

(10.3)

Let xj 2 D such that xj ! x. By Fatou’s lemma and the assumption (10.1)

E
�j�.x/ � � 0.x/j˛� D E

�

lim
j!1

j�.x/ � �.xj /j˛
�

� lim
j!1

E
�j�.x/ � �.xj /j˛

�

� c lim
j!1

jx � xj jnCˇ D 0:
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Thus, P.�.x/ D � 0.x// D 1 for all x 2 Rn. Finally,

sup
0<jx�yj<1
x;y2Œ�T;T /n

j� 0.x/ � � 0.y/j
jx � yj D sup

0<jx�yj<1
x;y2Œ�T;T /n

lim
DT 3u!x
DT 3v!y

j�.u/ � �.v/j
ju � vj

� sup
0<ju�vj<1
u;v2DT

j�.u/ � �.v/j
ju � vj � cT .!/

and (10.2) follows. Since the expression under the expectation in (10.2) is almost surely
finite, we get

j� 0.x/ � � 0.y/j � c.!/ jx � yj for all jx � yj < 1; x; y 2 Œ�T; T /n:

10.2 Corollary. A d -dimensional Brownian motion .Bt/t�0 is almost surely Hölder
continuous up to order � < 1=2.

Proof. Since an Rd -valued function is Hölder-continuous of order � if its components
are, it is enough to consider d D 1. Since t 7! B.t/ is continuous, there is no need to
take a modification in (the proof of) Theorem 10.1. Because of (2.8) we have

E
�jB.t/ � B.s/j2k� D cn jt � sjk;

i. e. we can apply Theorem 10.1 with d D n D 1, ˛ D 2k and ˇ D k � 1. Then

ˇ

˛
D k � 1

2k
���!
k!1

1

2
: (10.4)

Theorem 10.1 gives for each � < .k � 1/=2k an exceptional set Nk D 	 n	k where
P.Nk/ D 0. Since a � -Hölder continuous function is also � 0-Hölder continuous for all
� 0 < � , the assertion follows if we use the null set N WD S

k�1Nk .

10.2 Non-differentiability

We show that almost all paths of a Brownian motion are nowhere differentiable. In
view of the results from Section 2.3 it is enough to consider BM1. The following the-
orem was discovered by Paley, Wiener and Zygmund. Our proof follows the classic
exposition by Dvoretzky, Erdös and Kakutani.

10.3 Theorem (Paley, Wiener, Zygmund 1931). Let .Bt /t�0 be a BM1. Then the path Ex. 10.4
t 7! Bt .!/ is for almost all ! 2 	 nowhere differentiable.
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Proof (Dvoretzky, Erdös, Kakutani 1961). Set for every n � 1

An WD ¹! 2 	 W B. � ; !/ nowhere differentiable in Œ0; n/º :
It is not clear if the set An is measurable. We will show that 	 n An � Nn for a
measurable null set Nn.

Assume that the function f is differentiable at t0 2 Œ0; n/. Then

9 ı > 0 9L > 0 8 t 2 B.t0; ı/ W jf .t/ � f .t0/j � L jt � t0j:
Consider for sufficiently large values of k � 1 the grid ¹ j

k
W j D 1; : : : ; nkº. Then

there exists a smallest index j D j.k/ such that

t0 �
j

k
and

j

k
; : : : ;

j C 3

k
2 B.t0; ı/:

For i D j C 1; j C 2; j C 3 we get therefore
ˇ

ˇf
�

i
k

� � f � i�1
k

�

ˇ

ˇ �
ˇ

ˇf
�

i
k

� � f .t0/
ˇ

ˇC ˇ

ˇf .t0/ � f � i�1
k

�

ˇ

ˇ

� L
�

ˇ

ˇ

i
k

� t0
ˇ

ˇC ˇ

ˇ

i�1
k

� t0
ˇ

ˇ

�

� L
�

4
k

C 3
k

� D 7L
k
:

If f is a Brownian path, this implies that for the sets

CLm WD
1
\

kDm

kn
[

jD1

jC3
\

iDjC1

®

ˇ

ˇB
�

i
k

� � B� i�1
k

�

ˇ

ˇ � 7L
k

¯

we have

	 n An �
1
[

LD1

1
[

mD1
CLm :

Our assertion follows if we can show that P.CLm / D 0 for all m;L � 1. If k � m,

P.CLm / � P

� kn
[

jD1

jC3
\

iDjC1

®

ˇ

ˇB
�

i
k

� � B� i�1
k

�

ˇ

ˇ � 7L
k

¯

�

�
kn
X

jD1
P

� jC3
\

iDjC1

®

ˇ

ˇB
�

i
k

� � B� i�1
k

�

ˇ

ˇ � 7L
k

¯

�

(B1)D
kn
X

jD1
P
�®

ˇ

ˇB
�

i
k

� � B� i�1
k

�

ˇ

ˇ � 7L
k

¯�3

(B2)D kn P
�®

ˇ

ˇB
�

1
k

�

ˇ

ˇ � 7L
k

¯�3

� kn

�

cp
k

�3

���!
k!1

0:
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For the last estimate we use B. 1
k
/ � k�1=2B.1/, cf. 2.12, and therefore

P
�

ˇ

ˇB
�

1
k

�

ˇ

ˇ � 7L
k

� D P
�jB.1/j � 7Lp

k

� D 1p
2


Z 7L=
p
k

�7L=pk
e�x2=2

„ƒ‚…

�1
dx � cp

k
:

10.3 Lévy’s modulus of continuity

A modulus of continuity is a positive, continuous and strictly increasing function
� W Œ0;1/ ! Œ0;1/ such that �.0/ D 0. We can use � in order to describe (local)
smoothness properties of a (random or non-random) function f W Œ0;1/ ! Rd in
terms of the following estimate:

jf .s/ � f .t/j � �.js � t j/ for all s; t � 0: (10.5)

The most important special case, �.t/ D t˛ , leads to Hölder .0 < ˛ < 1/ and Lipschitz
.˛ D 1/ continuity. For Brownian motion we have discussed this in Theorem 10.1.

If f D .f1; : : : ; fd / is d -dimensional, jf j2 D Pd
jD1 f 2j , and if each coordinate

function fj satisfies (10.5) with some modulus of continuity �j , then f satisfies (10.5)
with �2.t/ WD Pd

jD1 �2j .t/. Therefore, it is enough to consider real-valued functions.

The following theorem shows that �.t/ WD
q

2t log 1
t

is the exact modulus of con-

tinuity for one-dimensional Brownian motion. We begin with two auxiliary results.

10.4 Lemma. The function �.t/ D
q

2t log 1
t

is monotone increasing on the interval

.0; e�1/. For all � 2 R and 0 < h < 1
2

we have

�.2�h/ �
p

.j�j C 1/2� �.h/:

Proof. A short calculation shows that 1
2
d
dt�

2.t/ D log 1
t

� 1 is positive on .0; e�1/.
Therefore �.t/ increases on this interval. The estimate follows from

�2.2�h/

�2.h/
D 2 � 2�hj log 2�hj

2hj loghj � 2�.j log 2�j C j loghj/
j loghj � 2�.j�j C 1/

since log 2 < j loghj for h < 1
2

.

10.5 Lemma. Let G � N.0; 1/ be a standard normal random variable. Then

1p
2


x

x2 C 1
e�x2=2 � P.G > x/ D 1p

2


Z 1

x

e�y2=2 dy � 1p
2


1

x
e�x2=2

for all x > 0.
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Proof. The upper bound follows from

Z 1

x

e�y2=2 dy �
Z 1

x

y

x
e�y2=2 dy D 1

x
e�x2=2:

To see the lower bound we use integration by parts

1

x2

Z 1

x

e�y2=2 dy �
Z 1

x

1

y2
e�y2=2 dy D 1

x
e�x2=2 �

Z 1

x

e�y2=2 dy

which gives
Z 1

x

e�y2=2 dy �
� 1

x2
C 1

��1 1
x
e�x2=2 D x

x2 C 1
e�x2=2:

10.6 Theorem (Lévy 1937). Let .Bt/t�0 be a BM1. ThenEx. 10.5

P

0

B

@

lim
h!0

sup0�t�1�h jB.t C h/ � B.t/j
q

2h log 1
h

D 1

1

C

A

D 1:

Proof. We split the proof into two steps. We begin with the easier part and show
‘lim : : : � 1’. Since the limes superior is the largest accumulation point it is enough to
consider a particular sequence hn D 2�n ! 0. In fact,

´

lim
h!0

sup0�t�1�h jB.t C h/ � B.t/j
q

2h log 1
h

� 1
μ

�
´

lim
n!1

max0�j�2n�1
ˇ

ˇB
�

jC1
2n

� � B� j
2n

�

ˇ

ˇ

p
2 � 2�n log 2n

� 1
μ

D
\

r2Q\.0;1/

´

lim
n!1

max0�j�2n�1
ˇ

ˇB
�

jC1
2n

� � B� j
2n

�

ˇ

ˇ

p
2 � 2�n log 2n

� r
μ

„ ƒ‚ …

DWAr

:

We are going to show that P.Ar/ D 1 or, equivalently, P.	 nAr/ D 0. Observe that
for ! … Ar we have necessarily ! 2 Cn for infinitely many n where

Cn D
²

max
0�j�2n�1

ˇ

ˇB
�

jC1
2n

� � B� j
2n

�

ˇ

ˇ � r
p
2 � 2�n log 2n

³

D
2n�1
\

jD0

°

ˇ

ˇB
�

jC1
2n

� � B� j
2n

�

ˇ

ˇ � r
p
2 � 2�n log 2n

±

:
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By the independence and stationarity of increments (B1), (B2) we see

P.Cn/ D



1 � 1p
2
2�n

Z 1

r
p
2 � 2�n log2n

e�x2=.2 � 2�n/ dx

„ ƒ‚ …

DW I

�2n

D .1 � I /2n � e�2nI :

The last estimate follows from the elementary convexity inequality 1�e�x � x. From
the lower estimate in Lemma 10.5 we get

2nI D 2np
2
2�n

Z 1

r
p
2 � 2�n log2n

e�x2=.2 � 2�n/ dx

D 2np
2


Z 1

r
p
2 log2n

e�y2=2 dy

� 1p
2


rn
p
2 log 2

1C r2n2 log 2

2np
n
e�r2 log2n

� c 1p
n
2.1�r2/n

for some constant c D cr and all n � n0. Consequently,

1
X

nDn0

P.Cn/ �
1
X

nDn0

exp
� � 2nI � �

1
X

nDn0

exp

 

�c 2
.1�r2/n

p
n

!

< 1;

and the Borel–Cantelli lemma implies that

P.	 n Ar/ � P.Cn for infinitely many n/ D 0:

Let us now prove that ‘lim : : : � 1’. We have to show that for almost all ! 2 	 and
every r > 1 there is some h0 D h0.r; !/ such that

sup
0�t�1�h

jB.t C h; !/ � B.t; !/j � r
q

2h log 1
h

for all 0 < h � h0: (10.6)

Fix r > 1, write r D 1Cı
1�ı for some ı 2 .0; 1/ and denote by bnıc the integer part

of nı. Using the upper estimate from Lemma 10.5 with x D r
p

2 log.2n=`/, we get
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for all n � 1

P

�

max
1�`�2bnıc

max
0�j�2n�`

ˇ

ˇB
�

jC`
2n

� � B� j
2n

�

ˇ

ˇ

q

2 `
2n log 2n

`

> r

�

�
2bnıc

X

`D1

2n�
X̀

jD0
P

�

ˇ

ˇB
�

jC`
2n

� � B� j
2n

�

ˇ

ˇ

q

`
2n

> r

q

2 log 2n

`

�

�
2bnıc

X

`D1
2n

2p
2


exp
� � r2 log.2

n

`
/
	

q

2 log 2n

`

� c
2bnıc

X

`D1

2n

�

2n�nı�r2p
2 log 2n�nı

� cı 2nCnı2�.n�nı/r2

D cı 2
n.1Cı/�nr2.1�ı/: (10.7)

By construction, 1C ı < r2.1� ı/, so that (10.7) is the general term of a convergent
series. By the Borel–Cantelli lemma there is some 	0 � 	 with P.	0/ D 1, such
that for all ! 2 	0 there is some m D m.�; !/ � 1 with

max
1�`�2bnıc

max
0�j�2n�`

ˇ

ˇB
�

jC`
2n ; !

� � B� j
2n ; !

�

ˇ

ˇ

�
�

`
2n

�

� r for all n � m: (10.8)

Without loss of generality we can assume that mı > 4. From now on we fix ! 2 	0.
Set h0 WD 2�m.1�ı/, pick h < h0 and choose n � m � 1 in such a way that

2�.nC1/.1�ı/ � h < 2�n.1�ı/: (10.9)

t sh

tntn+1 sn sn+1

Figure 10.2. Position of the points tn; tnC1 and sn; snC1 relative to t and s.
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For t and s D t C h there are sequences .sj /j�n and .tj /j�n of dyadic numbers such
that sj ; tj 2 ¹k=2j W k � 0º, sj " s, tj # t and

jsn � tnj � h; jsj � sjC1j � 2�j�1 and jtj � tjC1j � 2�j�1:

Since B.t/ has continuous sample paths, we get

jB.t C h/ � B.t/j
� jB.s/ � B.sn/j C jB.sn/ � B.tn/j C jB.tn/ � B.t/j

�
1
X

jDn
jB.sjC1/ � B.sj /j C jB.sn/ � B.tn/j C

1
X

jDn
jB.tjC1/ � B.tj /j

(10.8)
� r

1
X

jDn
�.2�j�1/C r �.h/C r

1
X

jDn
�.2�j�1/

D 2r

1
X

jD1
�.2�j2�n/C r �.h/

10:4

� 2r

1
X

jD1

p

j C 1 2�j=2�.2�n/C r �.h/:

By (10.9) and Lemma 10.4 with � D .nC 1/.1 � ı/ � n D 1 � ı � nı we see that

�.2�n/ � �.2�n2.nC1/.1�ı/h/ � 2�=2
p

j�j C 1
„ ƒ‚ …

!0; n!1
�.h/ � .r � 1/�.h/

for sufficiently large values of n � N.r/, i. e. sufficiently small values of h < h0.
Thus, 2

P1
jD1

p
j C 1 2�j=2�.2�n/ � c.r � 1/�.h/, and we find for all h < h0

sup
0�h�h0

sup
0�t�1�h

jB.t C h/ � B.t/j
�.h/

� cr.r � 1/C r ��!
r#1

1:

10.7 Corollary. Almost all sample paths of one-dimensional Brownian motion are
nowhere Hölder continuous of order ˛ D 1=2.

Proof. Note that

sup0�t�1�h jB.t C h/ � B.t/jp
h

D sup0�t�1�h jB.t C h/ � B.t/j
q

2 h log 1
h

r

2 log
1

h
:

By Theorem 10.6 the lim of the right-hand side tends to C1 as h ! 0. This means
that Bt is at no point t 2 Œ0; 1/ Hölder continuous.
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The same argument, applied to W.t/ WD B.t C k/ � B.k/ – this is again a BM1,
see 2.9 – , completes the proof.

10.8 Further reading. There is a whole zoo of function spaces which can be used
to measure the regularity of (random) functions. A beautiful result is the estimate [71]
which can be used for many embeddings. Regularity in Besov spaces is studied in [28].
The connection of the Kolmogorov–Chentsov theorem and Sobolev embeddings is the
topic of the note [168]. A related investigation for fractional Brownian motion is [63].
Moduli of continuity and (non-)differentiability are presented in [32].

[28] Ciesielski, Kerkyacharian, Roynette: Quelques espaces fonctionnels associés à
des processus gaussienes.

[32] Csörgő, Révész: Strong Approximations in Probability and Statistics.
[63] Feyel, de La Pradelle: On fractional Brownian processes.
[71] Garsia, Rodemich, Rumsey: A real variable lemma and the continuity of paths

of some Gaussian processes.
[168] Schilling: Sobolev embedding for stochastic processes.

Problems

1. A Poisson process is a real-valued stochastic process .Nt /t�0 such that N0 D 0,
Nt � Ns � Nt�s and for t0 D 0 < t1 < � � � < tn the increments Ntj � Ntj �1

are independent and each Nt is a Poisson random variable with parameter t � � for
some � > 0. (In particular, .Nt /t�0 satisfies (B0), (B1), (B2)).
(a) Show that .Nt /t�0 does not satisfy the assumptions of the Kolmogorov–

Slutsky–Chentsov theorem, Theorem 10.1.
(b) Show that (10.1) holds true for n D 1, ˛ > 0 and ˇ D 0. Discuss the role of ˇ

for Theorem 10.1.
(c) Let � D 1. Determine for the process Xt D Nt � t the mean value m.t/ and

the covariance C.s; t/ D E.XsXt /, s; t � 0.

2. Prove that in Rn all `p-norms (1 � p �1) are equivalent:

max
1�j�n

jxj j �
� n
X

jD1
jxj jp

�1=p

� n max
1�j�n

jxj j for all x D .x1; : : : ; xn/ 2 Rn:

3. Show that for ˛ 2 .0; 1/ the function Z 7! E.jZj˛/ is subadditive and complete
the argument in the proof of Theorem 10.1 for this case.

4. The proof of Theorem 10.3 actually shows, that almost all Brownian paths are
nowhere Lipschitz continuous. Modify the argument of this proof to show that al-



Problems 163

most all Brownian paths are nowhere Hölder continuous for all ˛ > 1=2. Why does
the argument break down for ˛ D 1=2?
Hint: It is enough to consider rational ˛ since ˛-Hölder continuity implies ˇ-Hölder
continuity for all ˇ < ˛.

5. Use Theorem 10.6 to show that the strong p-variation VARp.B;1/ of BM1 is for
p > 2 finite (and, actually, 0).



Chapter 11

The growth of Brownian paths

In this chapter we study the question how fast a Brownian path grows as t ! 1. Since
for a BM1 B.t/, t > 0, the process tB.1

t
/, t > 0, is again a Brownian motion, we get

from the growth at infinity automatically local results for small t and vice versa. A first
estimate follows from the strong law of large numbers. Write for n � 1

B.nt/ D
n
X

jD1

�

B.jt/ � B..j � 1/t/	;

and observe that the increments of a Brownian motion are stationary and independent
random variables. By the strong law of large numbers we get that B.t; !/ � �t for
any � > 0 and all t � t0.�; !/. Lévy’s modulus of continuity, Theorem 10.6, gives a
better bound. For all � > 0 and almost all ! 2 	 there is some h0 D h0.�; !/ such
thatEx. 11.1

jB.h; !/j � sup
0�t�1�h

jB.t C h; !/ � B.t; !/j � .1C �/

q

2h log 1
h

for all h < h0. Since tB. 1
t
/ is again a Brownian motion, cf. 2.13, we see that

jB.t; !/j � .1C �/
p
2t log t

for all t > t0 D h�1
0 . But also this bound is not optimal.

11.1 Khintchine’s Law of the Iterated Logarithm

We will show now that the functionƒ.t/ WD p
2t log log t , t � 3, describes very neatly

the behaviour of the sample paths as t ! 1. Still better results can be obtained from
Kolmogorov’s integral test which we state (without proof) at the end of this section.

The key for the proof of the next theorem is a tail estimate for the normal distribution
which we know from Lemma 10.5:

1p
2


x

x2 C 1
e�x2=2 � P.B.1/ > x/ � 1p

2


1

x
e�x2=2; x > 0; (11.1)

and the following maximal estimate which is, for example, a consequence of the re-Ex. 11.2
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flection principle, Theorem 6.9:

P
�

sup
s�t

B.s/ > x
�

� 2P.B.t/ > x/; x > 0; t > 0: (11.2)

Because of the form of the numerator the next result is often called the law of the
interated logarithm (LIL).

11.1 Theorem (LIL. Khintchine 1933). Let .B.t//t�0 be a BM1. Then Ex. 11.3

P

�

lim
t!1

B.t/p
2t log log t

D 1

�

D 1: (11.3)

Since �B.t/ and tB.1
t
/ are again Brownian motions, we can immediately get ver-

sions of the Khintchine LIL for the limit inferior and for t ! 0.

11.2 Corollary. Let .Bt/t�0 be a BM1. Then, almost surely,

lim
t!1

B.t/p
2t log log t

D 1; lim
t!0

B.t/
q

2t log log 1
t

D 1;

lim
t!1

B.t/p
2t log log t

D �1; lim
t!0

B.t/
q

2t log log 1
t

D �1:

Proof of Theorem 11.1. 1o (Upper bound). Fix � > 0, q > 1 and set

An WD
²

sup
0�s�qn

B.s/ � .1C �/
p

2qn log log qn
³

:

From the maximal estimate (11.2), we see that

P.An/ � 2P
�

B.qn/ � .1C �/
p

2qn log log qn
�

D 2P

�

B.qn/p
qn
� .1C �/

p

2 log log qn
�

:

Since B.qn/=
p
qn � B.1/, we can use the upper bound from (11.1) and find

P.An/ �
1

.1C �/
p


p

log log qn
e�.1C
/2 log logqn � c .n log q/�.1C
/2 :

This shows that
P1
nD1 P.An/ < 1. Therefore, we can apply the Borel–Cantelli

lemma and deduce that

lim
n!1

sup0�s�qn B.s/
p

2qn log log qn
� .1C �/ a. s.
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Since every t > 1 is in some interval of the form Œqn�1; qn� and since the function
ƒ.t/ D p

2t log log t is increasing for t > 3, we find for all t � qn�1 > 3

B.t/p
2t log log t

� sups�qn B.s/
p

2qn log log qn

p

2qn log log qn
p

2qn�1 log log qn�1 :

Therefore

lim
t!1

B.t/p
2t log log t

� .1C �/
p
q a. s.

Letting � ! 0 and q ! 1 along countable sequences, we find the upper bound in
(11.3).

2o If we use the estimate of step 1o for the Brownian motion .�B.t//t�0 and with
� D 1, we see that

�B.qn�1/ � 2
p

2qn�1 log log qn�1 � 2p
q

p

2qn log log qn a. s.

for all sufficiently large n � n0.�; !/.

3o (Lower bound). So far we have not used the independence and stationarity of the
increments of a Brownian motion. The independence of the increments shows that the
sets

Cn WD
°

B.qn/ � B.qn�1/ �
p

2.qn � qn�1/ log log qn
±

; n � 1;

are independent, and the stationarity of the increments implies

P.Cn/ D P

 

B.qn/ � B.qn�1/
p

qn � qn�1 �
p

2 log log qn

!

D P

 

B.qn � qn�1/
p

qn � qn�1 �
p

2 log log qn

!

:

Since B.qn � qn�1/=
p

qn � qn�1 � B.1/ and 2x=.1C x2/ � x�1 for all x > 1, we
get from the lower tail estimate of (11.1) that

P.Cn/ �
1p
8


1p
2 log log qn

e� log logqn � c

n
p

logn
:

Therefore,
P1
nD1 P.Cn/ D 1, and since the sets Cn are independent, the Borel–

Cantelli lemma applies and shows that, for infinitely many n � 1,

B.qn/ �
p

2.qn � qn�1/ log log qn C B.qn�1/

2o

�
p

2.qn � qn�1/ log log qn � 2p
q

p

2qn log log qn:
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Now we divide both sides by
p
2qn log log qn and get for all q > 1

lim
t!1

B.t/p
2t log log t

� lim
n!1

B.qn/p
2qn log log qn

�

s

1 � 1

q
� 2p

q

almost surely. Letting q ! 1 along a countable sequence concludes the proof of the
lower bound.

11.3 Remark (Fast and slow points). For every t > 0 W.h/ WD B.t C h/ � B.t/ is
again a Brownian motion. Therefore, Corollary 11.2 shows that

lim
h!0

jB.t C h/ � B.t/j
q

2h log log 1
h

D 1 (11.4)

almost surely for every fixed t 2 Œ0; 1�. Using Fubini’s theorem, we can choose the
same exceptional set for all t 2 Œ0; 1�. It is instructive to compare (11.4) with Lévy’s
modulus of continuity, Theorem 10.6:

lim
h!0

sup0�t�1�h jB.t C h/ � B.t/j
q

2h log 1
h

D 1: (11.5)

By (11.4), the local modulus of continuity of a Brownian motion is
q

2h log log 1
h

; on
the other hand, (11.5) means that globally (and at some necessarily random points) the

modulus of continuity will be larger than
q

2h log 1
h

. Therefore, a Brownian path must
violate the LIL at some random points.

The random set of all times where the LIL fails,

E.!/ WD
²

t � 0 W lim
h!0

jB.t C h; !/ � B.t; !/j
q

2h log log 1
h

¤ 1

³

;

is almost surely uncountable and dense in Œ0;1/; this surprising result is due to
S. J. Taylor [180], see also Orey and Taylor [139].

At the points � 2 E.!/, Brownian motion is faster than usual. Therefore, these
points are also called fast points. On the other hand, there are also slow points. A result
by Kahane [93, 94] says that almost surely there exists a t 2 Œ0; 1� such that

lim
h!0

jB.t C h/ � B.t/jp
h

< 1:

11.4 Remark. Blumenthal’s 0-1–law, Corollary 6.22, implies that for any determin-
istic function h.t/

P
�

B.t/ < h.t/ for all sufficiently small t
� 2 ¹0; 1º:
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If the probability is 1, we call h an upper function. The following result due to Kol-
mogorov gives a sharp criterion whether h is an upper function.

11.5 Kolmogorov’s test. If h.t/ is increasing and h.t/=
p
t decreasing, then h is an

upper function if, and only if,

Z 1

0

t�3=2h.t/e�h2.t/=2t dt converges:

The first proof of this result is due to Petrovsky [143], Motoo’s elegant proof from
1959 can be found in Itô and McKean [85, 1.8, p. 33–36 and 4.12 pp. 161–164].

11.2 Chung’s ‘other’ Law of the Iterated Logarithm

Let .Xj /j�1 be iid random variables such that EX1 D 0 and EX2
1 < 1. K. L. Chung

[22] proved for the maximum of the absolute value of the partial sums the following
law of the iterated logarithm

lim
n!1

max1�j�n jX1 C � � � CXj j
p

n= log log n
D 
p

8
:

A similar result holds for the running maximum of the modulus of a Brownian path.
The proof resembles Khintchine’s LIL for Brownian motion, but we need a more subtle
estimate for the distribution of the maximum.

Using Lévy’s triple law (6.19) for a D �x, b D x and t D 1 we see

P

�

sup
s�1

jBsj < x
�

D P

�

inf
s�1

Bs > �x; sup
s�1

Bs < x; B1 2 .�x; x/
�

D 1p
2


Z x

�x

1
X

jD�1
.�1/j e�.yC2jx/2=2 dy

D 1p
2


1
X

jD�1
.�1/j

Z .2jC1/x

.2j�1/x
e�y2=2 dy

D 1p
2


Z

R

1
X

jD�1
.�1/j1..2j�1/x;.2jC1/x/.y/

„ ƒ‚ …

Df.y/

e�y2=2 dy:
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The 4x-periodic even function f is given by the following Fourier cosine series1

f .y/ D 4




1
X

kD0

.�1/k
2k C 1

cos

�

2k C 1

2x

y

�

:

Therefore, we find

P

�

sup
s�1

jBsj < x
�

D 4




1
X

kD0

1p
2


.�1/k
2k C 1

Z

cos

�

2k C 1

2x

y

�

e�y2=2 dy

(2.5)D 4




1
X

kD0

.�1/k
2k C 1

e�	2.2kC1/2=.8x2/:

This proves

11.6 Lemma. Let .B.t//t�0 be a BM1. Then

lim
x!0

P

�

sup
s�1

jB.s/j < x
��

4



e� �2

8x2 D 1: (11.6)

11.7 Theorem (Chung 1948). Let .B.t//t�0 be a BM1. Then

P

 

lim
t!1

sups�t jB.s/j
p

t= log log t
D 
p

8

!

D 1: (11.7)

Proof. 1o (Upper bound) Set tn WD nn and

Cn WD
²

sup
tn�1�s�tn

jB.s/ � B.tn�1/j < 
p
8

r

tn

log log tn

³

:

1 Although we have used Lévy’s formula (6.19) for the joint distribution of .mt ;Mt ;Bt /, it is not
suitable to study the asymptotic behaviour of P.mt < a;Mt > b;Bt 2 Œc; d�/ as t ! 1. Our
approach to use a Fourier expansion leads essentially to the following expression which is also due
to Lévy [121, III.19–20, pp. 78–84]:

P.mt > a;Mt < b;Bt 2 I/ D
1
X

j D1

e�
j t�j .0/

Z

I

�j .y/ dy

where �j and �j , j � 1, are the eigenvalues and normalized eigenfunctions of the boundary value
problem

1

2
f 00.x/ D �f.x/ for a < x < b and f .x/ D 0 for x D a; x D b:

It is not difficult to see that �j D j 2	2=2.b � a/2 and

�j .x/ D
q

2
b�a

cos
�

j�

b�a

h

x � aCb

2

i�

and �j .x/ D
q

2
b�a

sin
�

j�

b�a

h

x � aCb

2

i�

:

for odd and even indices j , respectively.
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By the stationarity of the increments we see

suptn�1�s�tn jB.s/ � B.tn�1/jp
tn

� sups�tn�tn�1
jB.s/jp

tn
� sups�tn�tn�1

jB.s/jp
tn � tn�1

I

using Lemma 11.6 for x D 
=
p
8 log log tn, we get for sufficiently large n � 1

P.Cn/ � P

�

sups�tn�tn�1
jB.s/jp

tn � tn�1
<


p
8

1p
log log tn

�

� c 4



1

n logn
:

Therefore,
P

n P.Cn/ D 1; since the sets Cn are independent, the Borel–Cantelli
lemma applies and shows that

lim
n!1

suptn�1�s�tn jB.s/ � B.tn�1/j
p

tn= log log tn
� 
p

8
:

On the other hand, the argument in Step 1o of the proof of Khintchine’s LIL,Ex. 11.3
Theorem 11.1, yields

lim
n!1

sups�tn�1
jB.s/j

p

tn= log log tn
D lim

n!1
sups�tn�1

jB.s/j
p

tn�1 log log tn�1

p

tn�1 log log tn�1
p

tn= log log tn
D 0:

Finally, using sups�tn jB.s/j � 2 sups�tn�1
jB.s/jC suptn�1�s�tn jB.s/�B.tn�1/j we

get

lim
n!1

sup
s�tn

jB.s/j
p

tn= log log tn
� lim
n!1

2 sup
s�tn�1

jB.s/j
p

tn= log log tn
C lim
n!1

sup
tn�1�s�tn

jB.s/ � B.tn�1/j
p

tn= log log tn

� 
p
8

which proves that limt!1 sups�t jB.s/j=pt= log log t � 
=
p
8 a. s.

2o (Lower bound) Fix � > 0 and q > 1 and set

An WD
´

sup
s�qn

jB.s/j < .1 � �/ 
p
8

s

qn

log log qn

μ

:

Lemma 11.6 with x D .1 � �/
=p8 log log qn gives for large n � 1

P.An/ D P

�

sups�qn jB.s/jp
qn

< .1 � �/ 
p
8

1p
log log qn

�

� c 4



�

1

n log q

�1=.1�
/2
:
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Thus,
P

n P.An/ < 1, and the Borel–Cantelli lemma yields that

P

 

sup
s�qn

jB.s/j < .1 � �/ 
p
8

s

qn

log log qn
for infinitely many n

!

D 0;

i. e. we have almost surely that

lim
n!1

sups�qn jB.s/j
p

qn= log log qn
� .1 � �/ 
p

8
:

For t 2 Œqn�1; qn� and large n � 1 we get

sups�t jB.s/j
p

t= log log t
�

sups�qn�1 jB.s/j
p

qn= log log qn

D sups�qn�1 jB.s/j
p

qn�1= log log qn�1

p

qn�1= log log qn�1
p

qn= log log qn
„ ƒ‚ …

!1=
p
q as n ! 1

:

This proves

lim
t!1

sups�t jB.s/j
p

t= log log t
� 1 � �p

q


p
8

almost surely. Letting � ! 0 and q ! 1 along countable sequences, we get the lower
bound in (11.7).

If we replace in Theorem 11.7 log log t by log j log t j, and if we use in the proof n�n
and q < 1 instead of nn and q > 1, respectively, we get the analogue of (11.7) for
t ! 0. Combining this with shifting B.t C h/ � B.h/, we obtain

11.8 Corollary. Let .B.t//t�0 be a BM1. Then

lim
t!0

sups�t jB.s/j
q

t= log log 1
t

D 
p
8

a. s.;

lim
t!0

sups�t jB.s C h/ � B.h/j
q

t= log log 1
t

D 
p
8

a. s. for all h � 0:

Using similar methods Csörgo and Révész [32, pp. 44–47] show that

lim
h!0

inf
s�1�h

sup
t�h

jB.s C t / � B.s/j
q

h= log 1
h

D 
p
8
: (11.8)

This is the exact modulus of non-differentiability of a Brownian motion.
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11.9 Further reading. Path properties of the LIL-type are studied in [32], [65] and
[155]. Apart from the original papers which are mentioned in Remark 11.3, exceptional
sets are beautifully treated in [133].

[32] Csörgő, Révész: Strong Approximations in Probability and Statistics.
[65] Freedman: Brownian Motion and Diffusion.

[133] Mörters, Peres: Brownian Motion.
[155] Révész: Random Walk in Random and Non-Random Environments.

Problems

1. Let .Bt/t�0 be a BM1. Use the Borel-Cantelli lemma to show that the running
maximum Mn WD sup0�t�n Bt cannot grow faster than C

p
n logn for any C > 2.

Use this to show that

lim
t!1

Mt

C
p
t log t

� 1 a. s.

Hint: Show that Mn.!/ � C
p
n logn for sufficiently large n � n0.!/.

2. Let .Bt /t�0 be a BM1. Apply Doob’s maximal inequality (A.14) to the exponential
martingale M �

t WD e�Bt � 1
2
�2t to show that

P

�

sup
s�t
.Bs � 1

2
�s/ > x

�

� e�x� :

(This inequality can be used for the upper bound in the proof of Theorem 11.1,
avoiding the combination of (11.2) and the upper bound in (11.1))

3. Show that the proof of Khinchine’s LIL, Theorem 11.1, can be modified to give

lim
t!1

sups�t jB.s/jp
2t log log t

� 1:

Hint: Use in Step 1o of the proof P
�

sups�t jB.s/j � x� � 4P.jB.t/j � x/:
4. (Wentzell [184, p. 176]) Let .Bt /t�0 be a one-dimensional Brownian motion,
a; b > 0 and � WD inf

®

t � 0 W Bt D b
p
aC t

¯

. Show that
(a) P.� < 1/ D 1;
(b) E � D 1 .b � 1/I
(c) E � < 1 .b < 1/:

Hint: Use in (b) Wald’s identities. For (c) show that E.� ^n/ � ab2.1� b2/�1 for
n � 1.



Chapter 12

Strassen’s Functional Law of the Iterated
Logarithm

From Khintchine’s law of the iterated logarithm (LIL), Corollary 11.2, we know that
for a one-dimensional Brownian motion

�1 D lim
s!1

B.s/p
2s log log s

< lim
s!1

B.s/p
2s log log s

D 1:

Since Brownian paths are a. s. continuous, it is clear that the set of limit points of
®

B.s/=
p
2s log log s W s > e¯ as s ! 1 is the whole interval Œ�1; 1�.

This observation is the starting point for an extension of Khintchine’s LIL, due to
Strassen [176], which characterizes the set of limit points as s ! 1 of the family

®

Zs. � / W s > e¯ � C.o/Œ0; 1� where Zs.t/ WD B.st/p
2s log log s

; 0 � t � 1:

(C.o/Œ0; 1� denotes the set of all continuous functions w W Œ0; 1� ! R with w.0/ D 0.)
Ifw0 2 C.o/Œ0; 1� is a limit point it is necessary that for every fixed t 2 Œ0; 1� the number Ex. 12.1
w0.t/ is a limit point of the family ¹Zs.t/ W s > eº � R. Using Khintchine’s LIL
and the scaling property 2.12 of Brownian motion it is straightforward that the limit
points of ¹Zs.t/ W s > eº are the whole interval Œ�p

t ;
p
t �, i. e. �p

t � w0.t/ �
p
t .

In fact, we have

12.1 Theorem (Strassen 1964). Let .Bt/t�0 be a one-dimensional Brownian motion
and set Zs.t; !/ WD B.st; !/=

p
2s log log s. For almost all ! 2 	,

®

Zs. � ; !/ W s > e¯

is a relatively compact subset of .C.o/Œ0; 1�; k � k1/, and the set of all limit points (as
s ! 1) is given by Ex. 12.2

K D
²

w 2 C.o/Œ0; 1� W w is absolutely continuous and
Z 1

0

jw0.t/j2 dt � 1
³

:

Using the Cauchy-Schwarz inequality it is not hard to see that everyw 2 K satisfies
jw.t/j � p

t for all 0 � t � 1.
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Theorem 12.1 contains two statements: With probability one,

a) the family
®

Œ0; 1� 3 t 7! B.st; !/=
p
2s log log s W s > e

¯ � C.o/Œ0; 1� contains a
sequence which converges uniformly for all t 2 Œ0; 1� to a function in the set K;

b) every function from the (non-random) set K is the uniform limit of a suitable se-
quence

�

B.snt; !/=
p
2sn log log sn

�

n�1.

For a limit point w0 it is necessary that the probability

P .kZs. � / � w0. � /k1 < ı/ as s ! 1
is sufficiently large for any ı > 0. From the scaling property of a Brownian motion we
see that

Zs. � / � w0. � / � B. � /p
2 log log s

� w0. � /:
This means that we have to calculate probabilities involving a Brownian motion with
a nonlinear drift, B.t/ � p

2 log log s w0.t/ and estimate it at an exponential scale, as
we will see later. Both topics are interesting in their own right, and we will treat them
separately in the following two sections. After that we return to our original problem,
the proof of Strassen’s Theorem 12.1.

12.1 The Cameron–Martin formula

In Chapter 4 we have introduced the Wiener space .C.o/;B.C.o//; �/ as canonical prob-
ability space of a Brownian motion indexed by Œ0;1/. In the same way we can study a
Brownian motion with index set Œ0; 1� and the Wiener space .C.o/Œ0; 1�;B.C.o/Œ0; 1�/;�/
where C.o/ D C.o/Œ0; 1� denotes the space of continuous functions w W Œ0; 1� ! R such
that w.0/ D 0. The Cameron–Martin theorem is about the absolute continuity of the
Wiener measure under shifts in the space C.o/Œ0; 1�. For w0 2 C.o/Œ0; 1� we set

Uw.t/ WD w.t/Cw0.t/; t 2 Œ0; 1�; w 2 C.o/Œ0; 1�:
Clearly, U maps C.o/Œ0; 1� into itself and induces an image measure of the Wiener
measure

�
U
.A/ D �.U�1A/ for all A 2 B.C.o/Œ0; 1�/I

this is equivalent to saying
Z

C.o/

F.w C w0/ �.dw/ D
Z

C.o/

F.Uw/�.dw/ D
Z

C.o/

F.w/�
U
.dw/ (12.1)

for all bounded continuous functionals F W C.o/Œ0; 1� ! R.
We will see that�

U
is absolutely continuous with respect to� if the shiftsw0 are ab-

solutely continuous (a. c.) functions such that the (almost everywhere existing) deriva-
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tive w0
0 is square integrable. This is the Cameron–Martin space which we denote by

H1 WD
²

u 2 C.o/Œ0; 1� W u is a. c. and
Z 1

0

ju0.t/j2 dt < 1
³

: (12.2)

12.2 Lemma. For u W Œ0; 1� ! R the following assertions are equivalent:

a) u 2 H1;
b) u 2 C.o/Œ0; 1� and sup

…

P

tj �1;tj 2…
ju.tj /�u.tj �1/j2

tj �tj �1
< 1 where the supremum is taken

over all finite partitions … D ¹0 D t0 < t1 < � � � < tn D 1º of Œ0; 1�.

If a) or b) is true, then
R 1

0
ju0.t/j2 dt D lim

j…j!0

P

tj �1;tj 2…
ju.tj / � u.tj�1/j2=.tj � tj�1/.

Proof. a)) b): Assume that u 2 H1 and let 0 D t0 < t1 < � � � < tn D 1 be any
partition of Œ0; 1�. Then

n
X

jD1




u.tj / � u.tj�1/
tj � tj�1

�2

.tj � tj�1/ D
Z 1

0

fn.t/ dt

with

fn.t/ D
n
X

jD1




u.tj / � u.tj�1/
tj � tj�1

�2

1Œtj �1;tj /.t/:

By the Cauchy–Schwarz inequality

fn.t/ D
n
X

jD1




1

tj � tj�1

Z tj

tj �1

u0.s/ ds

�2

1Œtj �1;tj /.t/

�
n
X

jD1

1

tj � tj�1

Z tj

tj �1

ju0.s/j2 ds 1Œtj �1;tj /.t/:

If we integrate this inequality with respect to t , we get

Z 1

0

fn.t/ dt �
n
X

jD1

Z tj

tj �1

ju0.s/j2 ds D
Z 1

0

ju0.s/j2 ds;

hence M �
R 1

0
ju0.s/j2 ds < 1, and the estimate in b) follows.

b)) a): Conversely, assume that b) holds and denote by M the value of the supre-
mum in b). Let 0 � r1 < s1 � r2 < s2 � � � � � rm < sm � 1 be the endpoints of the
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intervals .rk; sk/, k D 1; : : : ; m. By the Cauchy-Schwarz inequality

m
X

kD1
ju.sk/ � u.rk/j �

"

m
X

kD1

ju.sk/ � u.rk/j2
sk � rk

#1=2 " m
X

kD1
.sk � rk/

#1=2

�M
"

m
X

kD1
.sk � rk/

#1=2

:

This means that u is absolutely continuous and u0 exists a.e. Let fn be as in the first part
of the proof and assume that the underlying partitions ¹0 D t0 < t1 < � � � < tn D 1º
have decreasing mesh. Then the sequence .fn/n�1 converges to .u0/2 at all pointsEx. 12.3
where u0 exists. By Fatou’s lemma

Z 1

0

ju0.t/j2 dt � lim
n!1

Z 1

0

fn.t/ dt D lim
n!1

n
X

jD1

ju.tj / � u.tj�1/j2
tj � tj�1

� M:

Finally,

lim
n!1

Z 1

0

fn.t/ dt �M �
Z 1

0

ju0.t/j2 dt � lim
n!1

Z 1

0

fn.t/ dt:

As a first step we will prove the absolute continuity of �
U

for shifts from a subset
H1ı ofH1,

H1ı WD ®

u 2 C.o/Œ0; 1� W u 2 C1Œ0; 1� and u0 has bounded variation
¯

: (12.3)

12.3 Lemma. Let w0 W Œ0; 1� ! R be a function inH1ı , n � 1 and tj D j=n. Then the
linear functionals

Gn.w/ WD
n
X

jD1
.w.tj / � w.tj�1//

w0.tj / � w0.tj�1/
tj � tj�1

; n � 1; w 2 C.o/Œ0; 1�;

are uniformly bounded, i. e. jGn.w/j � ckwk1 for all n � 1 and w 2 C.o/Œ0; 1�;
moreover, the following Riemann–Stieltjes integral exists:

G.w/ WD lim
n!1Gn.w/ D

Z 1

0

w0
0.t/ dw.t/:

Proof. The mean-value theorem shows that

Gn.w/ D
n
X

jD1
.w.tj / � w.tj�1//

w0.tj / � w0.tj�1/
tj � tj�1

D
n
X

jD1
.w.tj / � w.tj�1// w0

0.�j /
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with suitable intermediate points �j 2 Œtj�1; tj �. It is not hard to see that

Gn.w/ D w0
0.�nC1/w.tn/ �

n
X

jD1
w.tj /.w

0
0.�jC1/ � w0

0.�j // .�nC1 WD 1/

From this we conclude that

jGn.w/j �
�kw0

0k1 C VAR1.w
0
0I 1/

�kwk1

as well as

lim
n!1Gn.w/ D w0

0.1/w.1/ �
Z 1

0

w.t/ dw0
0.t/ D

Z 1

0

w0
0.t/ dw.t/:

We can now state and prove the Cameron–Martin formula for shifts inH1ı .

12.4 Theorem (Cameron, Martin 1944). Let .C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/ be the Wiener
space and Uw WD w C w0 the shift by w0 2 H1ı . Then the image measure
�

U
.A/ WD �.U�1A/, A 2 B.C.o/Œ0; 1�/, is absolutely continuous with respect to �,

and for every bounded continuous functional F W C.o/Œ0; 1� ! R we have

Z

C.o/Œ0;1�

F.w/�
U
.dw/ D

Z

C.o/Œ0;1�

F.Uw/�.dw/

D
Z

C.o/Œ0;1�

F.w/
d�

U
.w/

d�
�.dw/

(12.4)

with the Radon-Nikodým density

d�
U
.w/

d�
D exp

�

�1
2

Z 1

0

jw0
0.t/j2 dt C

Z 1

0

w0
0.t/ dw.t/

�

: (12.5)

Proof. In order to deal with the infinite dimensional integrals appearing in (12.4) we
use finite dimensional approximations. Set tj D j=n, j D 0; 1; : : : ; n, n � 0, and
denote by

…nw.t/ WD
´

w.tj /; if t D tj ; j D 0; 1; : : : ; n;

linear, for all other t

the piecewise linear approximation of w on the grid t0; t1; : : : ; tn. Obviously, we have
…nw 2 C.o/Œ0; 1� and limn!1…nw.t/ D w.t/ uniformly for all t .

Let F W C.o/Œ0; 1� ! R be a bounded continuous functional. Since…nw is uniquely
determined by x D .w.t1/; : : : ; w.tn// 2 Rn, there exists a bounded continuous func-
tion Fn W Rn ! R such that

Fn.x/ D F.…nw/ where xj D w.tj /:
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Write x0 D .w0.t1/; : : : ; w0.tn// and x0 D x00 WD 0. Then

Z

C.o/Œ0;1�

F.…nUw/�.dw/

D E
�

Fn.B.t1/C w0.t1/; : : : ; B.tn/C w0.tn//
	

(2.10a)D 1

.2
=n/n=2

Z

Rn

Fn.x C x0/ e
� n

2

n
P

j D1

.xj �xj �1/
2

dx

D 1

.2
=n/n=2

Z

Rn

Fn.y/ e
� n

2

n
P

j D1

.yj �yj �1�.x0
j

�x0
j �1

//2

dy

D e
� n

2

n
P

j D1

.x0
j

�x0
j �1

/2

.2
=n/n=2

Z

Rn

Fn.y/ e
n

n
P

j D1

.yj �yj �1/.x
0
j

�x0
j �1

/

e
� n

2

n
P

j D1

.yj �yj �1/
2

dy:

If we set

Gn.w/ WD
n
X

jD1
.w.tj / � w.tj�1//

w0.tj / � w0.tj�1/
1
n

;

˛n.w0/ WD
n
X

jD1

.w0.tj / � w0.tj�1//2
1
n

;

we find
Z

C.o/Œ0;1�

F.…nUw/�.dw/ D e� 1
2
˛n.w0/

Z

C.o/Œ0;1�

F.…nw/e
Gn.w/ �.dw/: (12.6)

Since F is bounded and continuous and limn!1…nUw D Uw, the left-hand side
converges to

R

C.o/Œ0;1�
F.Uw/�.dw/. By construction, tj � tj�1 D 1

n
; therefore, Lem-

mas 12.2 and 12.3 show that

lim
n!1˛n.w0/ D

Z 1

0

jw0
0.t/j2 dt and lim

n!1Gn.w/ D
Z 1

0

w0
0.t/ dw.t/:

Moreover, by Lemma 12.3,

eGn.w/ � eckwk1 � ec supt�1w.t/ C e�c inft�1w.t/:

By the reflection principle, Theorem 6.9, supt�1B.t/ � � inft�1B.t/ � jB.1/j. Thus

Z

C.o/Œ0;1�

eGn.w/ �.dw/ � E
�

ec supt�1 B.t/
	C E

�

e�c inft�1 B.t/
	 D 2

�

ecjB.1/j	:

Therefore, we can use the dominated convergence theorem to deduce that the right-
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hand side of (12.6) converges to

e� 1
2

R 1

0 jw 0
0.t/j2 dt

Z

C.o/Œ0;1�

F.…nw/ e
R 1

0 w
0
0.t/ dw.t/ �.dw/:

We want to show that Theorem 12.4 remains valid for w0 2 H1. This is indeed
possible, if we use a stochastic approximation technique. The drawback, however, will
be that we do not have any longer an explicit formula for the limit limn!1Gn.w/ as
a Riemann–Stieltjes integral. The trouble is that the integral

Z 1

0

w0
0.t/ dw.t/ D w.1/w0.1/ �

Z 1

0

w.t/ dw0.t/

is for all integrands w 2 C.o/Œ0; 1� only defined in the Riemann–Stieltjes sense, if w0
is of bounded variation, cf. Corollary A.41.

12.1 Paley–Wiener–Zygmund integrals (Paley, Wiener, Zygmund 1933). Denote by
BVŒ0; 1� the set of all functions of bounded variation on Œ0; 1�. For � 2 BVŒ0; 1� the
Riemann–Stieltjes integral

G�.w/ D
Z 1

0

�.s/ dw.s/ D �.1/w.1/ �
Z 1

0

w.s/ d�.s/; w 2 C.o/Œ0; 1�;

is well-defined. If we write G� as the limit of a Riemann–Stieltjes sum, it is not hard
to see that, on the Wiener space .C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/, Ex. 12.4

G� is a normal random variable, mean 0, variance
Z 1

0

�2.s/ dsI (12.7a)

Z

C.o/Œ0;1�

G�.w/G .w/�.dw/ D
Z 1

0

�.s/ .s/ ds if �; 2 BVŒ0; 1�: (12.7b)

Therefore, the map

L2Œ0; 1� � BVŒ0; 1� 3 � 7! G� 2 L2.C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/
is a linear isometry. As BVŒ0; 1� is a dense subset ofL2Œ0; 1�, we find for every function
� 2 L2Œ0; 1� a sequence .�n/n�1 � BVŒ0; 1� such that L2-limn!1 �n D �. In partic-
ular, .�n/n�1 is a Cauchy sequence in L2Œ0; 1� and, therefore, .G�n/n�1 is a Cauchy
sequence in L2.C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/. Thus,

G�.w/ WD
Z 1

0

�.s/ dw.t/ WD L2- lim
n!1G

�n.w/; w 2 C.o/Œ0; 1�

defines a linear functional on C.o/Œ0; 1�. Note that the integral notation is symbolical
and has no meaning as a Riemann–Stieltjes integral unless � 2 BVŒ0; 1�. Obviously
the properties (12.7) are preserved under L2 limits. The functional G� is often called
the Paley–Wiener–Zygmund integral. It is a special case of the Itô integral which we Ex. 12.5

Ex. 14.11will encounter in Chapter 14.
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12.5 Corollary (Cameron, Martin 1944). Let .C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/be the Wiener
space and Uw WD w C w0 the shift by w0 2 H1. Then �

U
.A/ WD �.U �1A/,

A 2 B.C.o/Œ0; 1�/ is absolutely continuous with respect to � and for every bounded
Borel measurable functional F W C.o/Œ0; 1� ! R we have

Z

C.o/Œ0;1�

F.w/�
U
.dw/ D

Z

C.o/Œ0;1�

F.Uw/�.dw/

D
Z

C.o/Œ0;1�

F.w/
d�

U
.w/

d�
�.dw/

(12.8)

with the Radon-Nikodým density

d�
U
.w/

d�
D exp

�

�1
2

Z 1

0

jw0
0.t/j2 dt C

Z 1

0

w0
0.t/ dw.t/

�

(12.9)

where the second integral is a Paley–Wiener–Zygmund integral.

Proof. Let w0 2 H1 and .�n/n�0 be a sequence in H1ı with L2-limn!1 �0
n D w0

0. If
F is a continuous functional, Theorem 12.4 shows for all n � 1
Z

C.o/Œ0;1�

F.w C �n/ �.dw/

D
Z

C.o/Œ0;1�

F.w/ exp

�

�1
2

Z 1

0

j� 0
n.t/j2 dt C

Z 1

0

�0
n.t/ dw.t/

�

�.dw/:

It is, therefore, enough to show that the terms on the right-hand side converge as
n ! 1. Set

G.w/ WD
Z 1

0

w0
0.s/ dw.s/ and Gn.w/ WD

Z 1

0

�0
n.s/ dw.s/:

SinceGn andG are normal random variables on the Wiener space, we find for all c > 0
Z

C.o/Œ0;1�

ˇ

ˇ

ˇ

eGn.w/ � eG.w/
ˇ

ˇ

ˇ

�.dw/

D
Z

C.o/Œ0;1�

ˇ

ˇ

ˇ

eGn.w/�G.w/ � 1
ˇ

ˇ

ˇ

eG.w/�.dw/

D
�

Z

¹jGj>cº
C
Z

¹jGj�cº

�

ˇ

ˇ

ˇ

eGn.w/�G.w/ � 1
ˇ

ˇ

ˇ

eG.w/ �.dw/

�



Z

C.o/Œ0;1�

ˇ

ˇ

ˇ

eGn.w/�G.w/ � 1
ˇ

ˇ

ˇ

2

�.dw/

�1=2 
Z

¹jGj>cº
e2G.w/ �.dw/

�1=2

C ec
Z

C.o/Œ0;1�

ˇ

ˇ

ˇ

eGn.w/�G.w/ � 1
ˇ

ˇ

ˇ

�.dw/

� C



Z

jyj>c
e2y e�y2=.2a/ dy

�1=2

C ecp
2


Z

R

je�ny � 1j e�y2=2 dy
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where �2n D R 1

0
j�0
n.s/ � w0

0.s/j2 ds and a D R 1

0
jw0
0.s/j2 ds. Thus,

lim
n!1

Z

C.o/Œ0;1�

ˇ

ˇ

ˇ

eGn.w/ � eG.w/
ˇ

ˇ

ˇ

�.dw/ D 0:

Using standard approximation arguments from measure theory, the formula (12.8) is
easily extended from continuous F to all bounded measurable F .

12.6 Remark. It is useful to rewrite Corollary 12.5 in the language of stochastic pro-
cesses. Let .Bt /t�0 be a BM1 and define a new stochastic process by

Xt .!/ WD Bt.U
�1!/ D Bt.!/ � w0.t/; w0 2 H1:

Then Xt is, with respect to the new probability measure

Q.d!/ D exp

�

�1
2

Z 1

0

jw0
0.s/j2 ds C

Z 1

0

w0
0.s/dBs.!/

�

P.d!/;

a Brownian motion. This is a deterministic version of the Girsanov transformation, cf.
Section 17.3.

12.2 Large deviations (Schilder’s theorem)

The term large deviations generally refers to small probabilities on an exponential
scale. We are interested in lower and upper (exponential) estimates of the probability
that the whole Brownian path is in the neighbourhood of a deterministic functionu ¤ 0.
Estimates of this type have been studied by Schilder and were further developed by
Borovkov, Varadhan, Freidlin and Wentzell; our presentation follows the monograph
[67] by Freidlin and Wentzell.

12.7 Definition. Let u 2 C.o/Œ0; 1�. The functional I W C.o/Œ0; 1� ! Œ0;1�,

I.u/ WD
´

1
2

R 1

0
ju0.s/j2 ds; if u is absolutely continuous

C1; otherwise

is the action functional of the Brownian motion .Bt/t2Œ0;1�.

The action functional I will be the exponent in the large deviation estimates for Bt .
For this we need a few properties.

12.8 Lemma. The action functional I W C.o/Œ0; 1� ! Œ0;1� is lower semicontin-
uous, i. e. for every sequence .wn/n�1 � C.o/Œ0; 1� which converges uniformly to
w 2 C.o/Œ0; 1� we have limn!1 I.wn/ � I.w/.
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Proof. Let .wn/n�1 and w be as in the statement of the lemma. We may assume that
limn!1 I.wn/ < 1. For any finite partition … D ¹0 D t0 < t1 < � � � < tm D 1º of
Œ0; 1� we have

sup
…

X

tj 2…

jw.tj / � w.tj�1/j2
tj � tj�1

D sup
…

lim
n!1

X

tj 2…

jwn.tj / � wn.tj�1/j2
tj � tj�1

� lim
n!1

sup
…

X

tj 2…

jwn.tj / � wn.tj�1/j2
tj � tj�1

:

Using Lemma 12.2, we see that I.w/ � limn!1 I.wn/:

As usual, we write

d.w;A/ WD inf
®kw � uk1 W u 2 A¯; w 2 C.o/Œ0; 1� and A � C.o/Œ0; 1�

for the distance of the point w to the set A. Denote by

ˆ.r/ WD ®

w 2 C.o/Œ0; 1� W I.w/ � r¯; c � 0

the sub-level sets of the action functional I .

12.9 Lemma. The sub-level sets ˆ.r/, r � 0, of the action functional I are compact
subsets of C.o/Œ0; 1�.

Proof. Since I is lower semicontinuous, the sub-level sets are closed. For any r > 0,
0 � s < t � 1 and w 2 ˆ.r/ we find using the Cauchy-Schwarz inequality

jw.t/ � w.s/j D
ˇ

ˇ

ˇ

ˇ

Z t

s

w0.x/ dx
ˇ

ˇ

ˇ

ˇ

�
�

Z t

s

jw0.x/j2 dx
�1=2 p

t � s

�
p

2I.w/
p
t � s � p

2r
p
t � s:

This shows that the family ˆ.r/ is equi-bounded and equicontinuous. By Ascoli’s
theorem, ˆ.r/ is compact.

We are now ready for the upper large deviation estimate.

12.10 Theorem (Schilder 1966). Let .Bt/t2Œ0;1� be a BM1 and denote by ˆ.r/ the
sub-level sets of the action functional I . For every ı > 0, � > 0 and r0 > 0 there is
some �0 D �0.ı; �; r0/ such that

P
�

d.�B;ˆ.r0// � ı
�

� exp
h

�r � �
�2

i

(12.10)

for all 0 < � � �0 and 0 � r � r0.
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Proof. Set tj D j=n, j D 0; 1; : : : ; n, n � 0, and denote by

…nŒ�B�.t; !/ WD
´

�B.tj ; !/; if t D tj ; j D 0; 1; : : : ; n;

linear, for all other t;

the piecewise linear approximation of the continuous function �Bt .!/ on the grid
t0; t1; : : : ; tn. Obviously, for all t 2 Œtk�1; tk� and k D 1; : : : ; n,

…nŒ�B�.t/ D �B.tk�1/C .t � tk�1/
�B.tk/ � �B.tk�1/

tk � tk�1
:

Since the approximations …nŒ�B�.t/ are absolutely continuous, we can calculate the
action functional

I.…nŒ�B�/ D 1

2

n
X

kD1
n�2.B.tk/ � B.tk�1//2 D �2

2

n
X

kD1
�2k (12.11)

where �k D p
n.B.tk/�B.tk�1// � N.0; 1/ are iid standard normal random variables.

Note that

®

d.�B;ˆ.r// � ı
¯ D ®

d.�B;ˆ.r// � ı; d.…nŒ�B�; �B/ < ı
¯

[ ®

d.�B;ˆ.r// � ı; d.…nŒ�B�; �B/ � ı
¯

� ®

…nŒ�B� … ˆ.r/¯
„ ƒ‚ …

DWAn

[ ®d.…nŒ�B�; �B/ � ı
¯

„ ƒ‚ …

DWCn

:

We will estimate P.An/ and P.Cn/ separately. Combining (12.11) with Chebychev’s
inequality gives for all 0 < ˛ < 1

P.An/ D P
�

I.…nŒ�B�/ > r
� D P

�

1

2

n
X

kD1
�2k >

r

�2

�

D P

�

exp




1 � ˛
2

n
X

kD1
�2k

�

> exp
h r

�2
.1 � ˛/

i

�

iid
� exp

h

� r

�2
.1 � ˛/

i

�

E exp




1 � ˛
2

�21

��n

„ ƒ‚ …

Den.1�˛/2=8 by (2.6)

:

Therefore, we find for all n � 1, r0 > 0 and � > 0 some �0 > 0 such that

P.An/ �
1

2
exp

h

� r

�2
C �

�2

i

for all 0 < � � �0; 0 � r � r0:
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In order to estimate P.Cn/ we use the fact that Brownian motion has stationary incre-
ments.

P.Cn/ D P

�

sup
0�t�1

j�B.t/ �…nŒ�B�.t/j � ı
�

�
n
X

kD1
P

�

sup
tk�1�t�tk

ˇ

ˇ�B.t/ � �B.tk�1/ � .t � tk�1/n�.B.tk/�B.tk�1//
ˇ

ˇ � ı
�

D nP

�

sup
t�1=n

ˇ

ˇ�B.t/ � n�tB.1=n/ˇˇ � ı
�

� nP

�

sup
t�1=n

jB.t/j C jB.1=n/j � ı

�

�

� nP

�

sup
t�1=n

jB.t/j � ı

2�

�

� 2nP

�

sup
t�1=n

B.t/ � ı

2�

�

:

We can now use the following maximal estimate which is, for example, a conse-
quence of the reflection principle, Theorem 6.9, and the Gaussian tail estimate from
Lemma 10.5

P

�

sup
s�t

B.s/ � x
�

� 2P.B.t/ � x/ � 2p
2
t

1

x
e�x2=.2t/ x > 0; t > 0;

to deduce

P.Cn/ � 4nP

�

B.1=n/ � ı

2�

�

� 4n 2�
p

2
=n ı
exp




�ı
2n

8�2

�

:

Finally, pick n � 1 such that ı2n=8 > r0 and �0 small enough such that P.Cn/ is less
than 1

2
exp

�� r

2 C 


2

	

for all 0 < � � �0 and 0 � r � r0.

12.11 Corollary. Let .Bt/t2Œ0;1� be a BM1 and I the action functional. Then

lim

!0

�2 log P .�B 2 F / � � inf
w2F I.w/ (12.12)

for every closed set F � C.o/Œ0; 1�.

Proof. By the definition of the sub-level set ˆ.r/ we have ˆ.r/ \ F D ; for all
r < infw2F I.w/. Since ˆ.r/ is compact,

d.ˆ.r/; F / D inf
w2ˆ.r/

d.w; F / DW ır > 0:
From Theorem 12.10 we know for all 0 < � � �0 that

PŒ�B 2 F � � P
�

d.�B;ˆ.r// > ır
	

� exp
h

�r � �
�2

i

;
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and so
lim

!0

�2 log P.�B 2 F / � �r:
Since r < infw2F I.w/ is arbitrary, the claim follows.

Next we prove the lower large deviation inequality.

12.12 Theorem (Schilder 1966). Let .Bt/t2Œ0;1� be a BM1 and I the action functional.
For every ı > 0, � > 0 and c > 0 there is some �0 D �0.ı; �; c/ such that

P
�k�B � w0k1 < ı

�

> exp
��.I.w0/C �/=�2

�

(12.13)

for all 0 < � � �0 and w0 2 C.o/Œ0; 1� with I.w0/ � c.

Proof. By the Cameron–Martin formula (12.8), (12.9) we see that

P
�k�B � w0k1 < ı

� D e�I.w0/=

2

Z

A

e� 1
�

R 1

0 w
0
0.s/dw.s/�.dw/

where A WD ¹w 2 C.o/Œ0; 1� W kwk1 < ı=�º.

Let C WD
°

w 2 C.o/Œ0; 1� W R 1
0
w0
0.s/dw.s/ � 2

p

2I.w0/
±

. Then
Z

A

e� 1
�

R 1

0 w
0
0.s/dw.s/ �.dw/ �

Z

A\C
e� 1

�

R 1

0 w
0
0.s/dw.s/ �.dw/

� e� 2
�

p
2I.w0/�.A \ C/:

Pick �0 so small that

P.A/ D P

�

sup
t�1

jB.t/j < ı

�

�

� 3

4
for all 0 < � � �0:

Now we can use Chebyshev’s inequality to find

�.	 n C/ D �

²

w 2 C.o/Œ0; 1� W
Z 1

0

w0
0.s/ dw.s/ > 2

p

2I.w0/

³

� 1

8I.w0/

Z

C.o/Œ0;1�




Z 1

0

w0
0.s/ dw.s/

�2

�.dw/

(12.7a)D 1

8I.w0/

Z 1

0

jw0
0.s/j2 ds D 1

4
:

Thus, �.C/ � 3
4

and, therefore, �.A \ C/ D �.A/C �.C/ � �.A [ C/ � 1=2. If
we make �0 even smaller, we can make sure that

1

2
exp

h

� 2

�

p

2I.w0/
i

� exp
h

� �

�2

i

for all 0 < � � �0 and w0 with I.w0/ � c.
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12.13 Corollary. Let .Bt/t2Œ0;1� be a BM1 and I the action functional. Then

lim

!0

�2 log P .�B 2 U/ � � inf
w2U I.w/ (12.14)

for every open set U � C.o/Œ0; 1�.

Proof. For every w0 2 U there is some ı0 > 0 such that

¹w 2 C.o/Œ0; 1� W kw � w0k1 < ı0º � U:

Theorem 12.12 shows that

P.�B 2 U/ � P
�k�B � w0k < ı0

�

� exp

�

� 1

�2
.I.w0/C �/

�

;

and so
lim

!0

�2 log P.�B 2 U/ � �I.w0/I
since w0 2 U is arbitrary, the claim follows.

12.3 The proof of Strassen’s theorem

Before we start with the rigorous argument we want to add

12.14 Some heuristic considerations. Let .Bt /t�0 be a BM1 and

Zs.t; !/ D B.st; !/p
2s log log s

� B.t; !/p
2 log log s

; t 2 Œ0; 1�; s > e:

In order to decide whether w0 2 C.o/Œ0; 1� is a limit point of ¹Zs W s > eº, we have to
estimate the probability

P
�kZs. � / � w0. � /k1 < ı

�

as s ! 1
for all ı > 0. Using the canonical version of the Brownian motion on the Wiener space
.C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/ we see for � WD 1=

p
2 log log s.

P
�kZs. � / � w0. � /k1 < ı

� D P
�k�B. � / � w0. � /k1 < ı

�

D �
®

w 2 C.o/Œ0; 1� W kw � ��1w0k1 < ı=�
¯

:

Now assume that w0 2 H1 and set A WD ¹w 2 C.o/Œ0; 1� W kwk1 < ı=�º. The
Cameron–Martin formula (12.8), (12.9) shows

P
�kZs. � / � w0. � /k1 < ı

�

D exp

�

� 1

2�2

Z 1

0

jw0
0.t/j2 dt

�

Z

A

exp

�

�1
�

Z 1

0

w0
0.s/ dw.s/

�

�.dw/:



Section 12.3 The proof of Strassen’s theorem 187

Using the large deviation estimates from Corollaries 12.11 and 12.13 we see that the
first term on the right-hand side is the dominating factor as � ! 0 (i. e. s ! 1) and that

P .kZs. � / � w0. � /k1 < ı/ 
 .log s/
�

1
R

0

jw 0
0.t/j2 dt

as s ! 1: (12.15)

Thus, the probability on the left is only larger than zero if
R 1

0
jw0
0.t/j2 dt < 1, i. e. if

w0 2 H1. Consider now, as in the proof of Khintchine’s LIL, sequences of the form
s D sn D qn, n � 1, where q > 1. Then (12.15) shows that

X

n

P .kZsn
. � / � w0. � /k1 < ı/ D C1 or < C1

according to
R 1

0
jw0
0.t/j2 dt � 1 or

R 1

0
jw0
0.t/j2 dt > 1, respectively. By the Borel–

Cantelli lemma we infer that the family

K D
²

w 2 H1 W
Z 1

0

jw0.t/j2 dt � 1
³

is indeed a good candidate for the set of limit points.

We will now give a rigorous proof of Theorem 12.1. As in Section 12.2 we write
I.u/ for the action functional and ˆ.r/ D ¹w 2 C.o/Œ0; 1� W I.w/ � rº for its sub-
level sets; with this notation K D ˆ. 1

2
/. Finally, set

L.!/ WD ®

w 2 C.o/Œ0; 1� W w is a limit point of ¹Zs. � ; !/ W s > eº as s ! 1¯

:

We have to show that L.!/ D ˆ
�

1
2

�

. We split the argument in a series of lemmas.

12.15 Lemma. L.!/ � ˆ.1
2
/ for almost all ! 2 	.

Proof. Since ˆ.1
2
/ D T

�>0ˆ
�

1
2

C �
�

it is clearly enough to show that

L.!/ � ˆ
�

1
2

C �
�

for all � > 0:

1o Consider the sequence .Zqn. � ; !//n�1 for some q > 1. From Theorem 12.10 we
find for any ı > 0 and � < �

P
�

d
�

Zqn ; ˆ
�

1
2

C �
��

> ı
	 D P

�

d
�

.2 log log qn/�1=2B;ˆ
�

1
2

C �
��

> ı
	

� exp
��2.log log qn/

�

1
2

C � � ��	 :
Consequently,

X

n

P
�

d
�

Zqn ; ˆ
�

1
2

C �
��

> ı
	

< 1;

and the Borel–Cantelli lemma implies that, for almost all ! 2 	,

d
�

Zqn. � ; !/;ˆ�1
2

C �
��

� ı for all n � n0.!/:
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2o Let us now fill the gaps in the sequence .qn/n�1. Set L.t/ D p
2t log log t . Then

sup
qn�1�t�qn

kZt �Zqnk1 D sup
qn�1�t�qn

sup
0�r�1

ˇ

ˇ

ˇ

ˇ

B.rt/

L.t/
� B.rqn/

L.qn/

ˇ

ˇ

ˇ

ˇ

� sup
qn�1�t�qn

sup
0�r�1

jB.rt/ � B.rqn/j
L.qn/

„ ƒ‚ …

DWXn

C sup
qn�1�t�qn

sup
0�r�1

jB.rt/j
L.qn/

�

L.qn/

L.t/
� 1

�

„ ƒ‚ …

DWYn

:

Since L.t/, t > 3, is increasing, we see that for sufficiently large n � 1

Yn � sup
s�qn

jB.s/j
L.qn/

�

L.qn/

L.qn�1/
� 1

�

:

Khintchine’s LIL, Theorem 11.1, shows that the first factor is almost surely bounded
for all n � n0.!/. Moreover, limn!1L.qn/=L.qn�1/ D 1, which means that we
have

Yn �
ı

2
for all n � n0.!; ı; q/

with ı > 0 as in step 1o . For the estimate of Xn we use the scaling property of a
Brownian motion to get

P

�

Xn >
ı

2

�

D P

�

sup
qn�1�t�qn

sup
0�r�1

ˇ

ˇB
�

t
qn r

� � B.r/ˇˇ > ı
2

p

2 log log qn
�

� P

�

sup
q�1�c�1

sup
0�r�1

ˇ

ˇB.cr/ � B.r/ˇˇ > ı
2

p

2 log log qn
�

D P.�B 2 F /

where � WD 2ı�1.2 log log qn/�1=2 and

F WD
°

w 2 C.o/Œ0; 1� W sup
q�1�c�1

sup
0�r�1

jw.cr/ � w.r/j � 1
±

:

Since F � C.o/Œ0; 1� is a closed subset, we can use Corollary 12.11 and findEx. 12.6

P

�

Xn >
ı

2

�

� exp

�

� 1

�2

�

inf
w2F I.w/ � h

�

�

for any h > 0. As infw2F I.w/ D q=.2q � 2/, cf. Lemma 12.16 below, we get

P

�

Xn >
ı

2

�

� exp

�

�ı
2

4
log log qn

� q

q � 1 � 2h
�

�
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and, therefore,
P

n P ŒXn > ı=2� < 1 if q is close to 1. Now the Borel–Cantelli
lemma implies that Xn � ı=2 almost surely if n � n0.!/ and so

sup
qn�1�s�qn

kZs. � ; !/ �Zqn. � ; !/k1 � ı for all n � n0.!; ı; q/:

3o Steps 1o and 2o show that for every ı > 0 there is some q > 1 such that there is
for almost all ! 2 	 some s0 D s0.!/ D qn0.!/C1 with

d
�

Zs. � ; !/;ˆ.12 C �/
�

� kZs. � ; !/ �Zqn. � ; !/k1 C d
�

Zqn. � ; !/;ˆ.1
2

C �/
�

� 2ı

for all s � s0. Since ı > 0 is arbitrary and ˆ. 1
2

C �/ is closed, we get

L.!/ � ˆ. 1
2

C �/ D ˆ.1
2

C �/:

12.16 Lemma. Let F D
°

w 2 C.o/Œ0; 1� W sup
q�1�c�1

sup
0�r�1

jw.cr/ � w.r/j � 1
±

,

q > 1, and I be the action functional of a Brownian motion. Then

inf
w2F I.w/ D 1

2

q

q � 1 :

Proof. The function w0.t/ WD qt�1
q�1 1Œ1=q;1�.t/ is in F , and

2I.w0/ D
Z 1

1=q

�

q

q � 1
�2

dt D q

q � 1:

Therefore, 2 infw2F I.w/ � 2I.w0/ D q=.q�1/. On the other hand, for everyw 2 F
there are x 2 Œ0; 1� and c > q�1 such that

1 � jw.x/ � w.cx/j2 D
ˇ

ˇ

ˇ

ˇ

Z x

cx

w0.s/ ds

ˇ

ˇ

ˇ

ˇ

2

� .x � cx/
Z 1

0

jw0.s/j2 ds

� 2.1 � q�1/I.w/:

12.17 Corollary. The set ¹Zs. � ; !/ W s > eº is for almost all ! 2 	 a relatively
compact subset of C.o/Œ0; 1�.

Proof. Let .sj /j�1 be a sequence in .0;1/. Without loss of generality we can as-
sume that .sj /j�1 is unbounded. Pick a further sequence .ın/n�1 � .0;1/ such that
limn!1 ın D 0. Because of step 3o in the proof of Lemma 12.15 there exists for every
n � 1 some wn 2 ˆ.1

2
C �/ and an index j.n/ such that kZsj.n/

. � ; !/ �wnk1 � ın.
Since ˆ.1

2
C �/ is a compact set, there is a subsequence .s0

j.n/
/j�1 � .sj.n//n�1 such

that .Zs0
j.n/
. � ; !//j�1 converges in C.o/Œ0; 1�.
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12.18 Lemma. L.!/ � ˆ.1
2
/ for almost all ! 2 	.

Proof. 1o The sub-level sets ˆ.r/ are compact, cf. Lemma 12.9, and ˆ.r/ � ˆ.r 0/
if r � r 0; it follows that

S

r<1=2ˆ.r/ D ˆ
�

1
2

�

. By the very definition, the set of limit
points L.!/ is a closed set. Therefore, it is enough to show that ˆ.r/ � L.!/ for all
r < 1=2.

Being subsets of C.o/Œ0; 1�, the sub-level setsˆ.r/ contain a countable dense subset.
This means that it is enough to show that for every w 2 ˆ.r/, every rational r < 1=2
and every � > 0 there is a sequence .sn/n�1, sn ! 1, such that

P
�kZsn

. � / � w. � /k1 < �; for all n � 1
	 D 1:

2o As in the proof of Khintchine’s LIL we set sn D qn, n � 1, for some q > 1, and
L.s/ D p

2s log log s. Then

kZsn
. � / � w. � /k1 D sup

0�t�1

ˇ

ˇ

ˇ

ˇ

B.tsn/

L.sn/
� w.t/

ˇ

ˇ

ˇ

ˇ

� sup
q�1�t�1

ˇ

ˇ

ˇ

ˇ

B.tsn/ � B.sn�1/
L.sn/

� w.t/
ˇ

ˇ

ˇ

ˇ

C jB.sn�1/j
L.sn/

C sup
t�q�1

jw.t/j C sup
t�q�1

jB.tsn/j
L.sn/

:

We will estimate the terms separately.
Since Brownian motion has independent increments, we see that the sets

An D
²

sup
q�1�t�1

ˇ

ˇ

ˇ

ˇ

B.tsn/ � B.sn�1/
L.sn/

� w.t/
ˇ

ˇ

ˇ

ˇ

<
�

4

³

; n � 1;

are independent. Combining the stationarity of the increments, the scaling prop-
erty 2.12 of a Brownian motion and Theorem 12.12 yields for all n � n0

P.An/ D P

�

sup
q�1�t�1

ˇ

ˇ

ˇ

ˇ

B.t � q�1/p
2 log log sn

� w.t/
ˇ

ˇ

ˇ

ˇ

<
�

4

�

� P

�

sup
0�t�1�q�1

ˇ

ˇ

ˇ

ˇ

B.t/p
2 log log sn

� v.t/
ˇ

ˇ

ˇ

ˇ

<
�

8

�

� P

�

sup
0�t�1

ˇ

ˇ

ˇ

ˇ

B.t/p
2 log log sn

� v.t/
ˇ

ˇ

ˇ

ˇ

<
�

8

�

� exp
� � 2 log log sn � .I.v/C �/

�

D
�

1

n log q

�2.I.v/C�/
I
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here we choose q > 0 so large that jw.q�1/j � �=8, and use

v.t/ D
´

w
�

t C 1
q

� � w� 1
q

�

; if 0 � t � 1 � 1
q
;

w.1/; if 1 � 1
q
� t � 1:

Since � > 0 is arbitrary and

I.v/ D
Z 1�1=q

0

jv0.t/j2 dt D
Z 1

1=q

jw0.s/j2 ds �
Z 1

0

jw0.s/j2 ds � r < 1

2
;

we find
P

n P.An/ D 1. The Borel–Cantelli lemma implies that for any q > 1

lim
n!1 sup

q�1�t�1

ˇ

ˇ

ˇ

ˇ

B.tsn/ � B.sn�1/p
2 log log sn

� w.t/
ˇ

ˇ

ˇ

ˇ

� �

4
:

3o Finally, Ex. 12.7

P

� jB.sn�1/j
L.sn/

>
�

4

�

D P
�

jB.1/j > �

4

p

2q log log qn
�

;

sup
t�q�1

jw.t/j �
Z 1=q

0

jw0.s/j ds �
p
rp
q
<

1p
q
;

P

�

sup
0�t�q�1

jB.tsn/j
L.sn/

>
�

4

�

� 2P
�

jB.1/j > �

4

p

2q log log qn
�

;

and the Borel–Cantelli lemma shows that for sufficiently large q > 1

lim
n!1

� jB.sn�1/j
L.sn/

C sup
t�q�1

jw.t/j C sup
t�q�1

jW.tsn/j
L.sn/

�

<
3

4
�:

This finishes the proof.

12.19 Further reading. The Cameron–Martin formula is the basis for many further
developments in the analysis in Wiener and abstract Wiener spaces, see the Further
reading section in Chapter 4; worth reading is the early account in [187]. There is an
extensive body of literature on the topic of large deviations. A good starting point are
the lecture notes [182] to get an idea of the topics and methods behind ‘large devia-
tions’. Since the topic is quite technical, it is very difficult to find ‘easy’ introductions.
Our favourites are [35] and [67] (which we use here), a standard reference is the classic
monograph [36].

[35] Dembo, Zeitouni: Large Deviations Techniques and Applications.
[36] Deuschel, Stroock: Large Deviations.
[67] Freidlin, Wentzell: Random Perturbations of Dynamical Systems.

[182] Varadhan: Large Deviations and Applications.
[187] Wiener et al.: Differential Space, Quantum Systems, and Prediction.
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Problems

1. Let w 2 C.o/Œ0; 1� and assume that for every fixed t 2 Œ0; 1� the number w.t/ is a
limit point of the family ¹Zs.t/ W s > eº � R. Show that this is not sufficient for
w to be a limit point of C.o/Œ0; 1�.

2. LetK be the set from Theorem 12.1. Show that forw 2 K the estimate jw.t/j � p
t ,

t 2 Œ0; 1� holds.

3. Let u 2 H1 and …n, n � 1, be a sequence of partitions of Œ0; 1� such that
limn!1 j…nj D 0. Show that the functions

fn.t/ D
X

tj ;tj �12…n




1

tj � tj�1

Z tj

tj �1

u0.s/ ds

�2

1Œtj �1;tj /.t/; n � 1;

converge for n ! 1 to Œu0.t/�2 for Lebesgue almost all t .

4. Let � 2 BVŒ0; 1� and consider the following Riemann-Stieltjes integral

G�.w/ D �.1/w.1/ �
Z 1

0

w.s/ d�.s/; w 2 C.o/Œ0; 1�:

Show that G� is a linear functional on .C.o/Œ0; 1�;B.C.o/Œ0; 1�/; �/ satisfying
(a) G� is a normal random variable, mean 0, variance

R 1

0
�2.s/ ds;

(b)
R

C.o/Œ0;1�
G�.w/G .w/�.dw/ D R 1

0
�.s/ .s/ ds for all �; 2 BVŒ0; 1�;

(c) If .�n/n�1 � BVŒ0; 1� converges in L2 to 
 , then G� WD limn!1G�n exists
as the L2-limit and defines a linear functional which satisfies (a) and (b).

5. Let w 2 C.o/Œ0; 1�. Find the densities of the following bi-variate random variables:

(a)
�

R t

1=2
s2 dw.s/; w.1=2/

�

for 1=2 � t � 1;

(b)
�

R t

1=2
s2 dw.s/; w.uC 1=2/

�

for 0 � u � t=2, 1=2 � t � 1;

(c)
�

R t

1=2
s2 dw.s/;

R t

1=2
s dw.s/

�

for 1=2 � t � 1;

(d)
�

R 1

1=2
es dw.s/; w.1/ � w.1=2/

�

.

6. Show that F WD
°

w 2 C.o/Œ0; 1� W supq�1�c�1 sup0�r�1 jw.cr/ � w.r/j � 1
±

is

for every q > 1 a closed subset of C.o/Œ0; 1�.

7. Check the (in)equalities from step 3o in the proof of Lemma 12.18.



Chapter 13

Skorokhod representation

Let .Bt /t�0 be a one-dimensional Brownian motion. Denote by � D � ı
.�a;b/c , a; b > 0,

the first entry time into the interval .�a; b/c . We know from Corollary 5.11 that

B� � b

aC b
ı�a C a

aC b
ıb and

F�a;b.x/ D P.B� � x/ D b

aC b
1Œ�a;b/.x/C 1Œb;1/.x/:

(13.1)

We will now study the problem which probability distributions can be obtained in this
way. More precisely, letX be a random variable with probability distribution function
F.x/ D P.X � x/. We want to know if there is a Brownian motion .Bt /t�0 and a
stopping time � such that X � B� . If this is the case, we say that X (or F ) can be
embedded into a Brownian motion. The question and its solution (for continuous F )
go back to Skorokhod [172, Chapter 7].

To simplify things, we do not require that � is a stopping time for the natural fil-
tration .FBt /t�0, F

B
t D �.Bs W s � t /, but for a larger admissible filtration .Ft /t�0,

cf. Definition 5.1.
If X can be embedded into .Bt /t�0, it is clear that

E.Xk/ D E.Bk� /

whenever the moments exist. Moreover, if E � < 1, Wald’s identities, cf. The-
orem 5.10, entail

EB� D 0 and E.B2� / D E �:

Thus,X is necessarily centred: EX D 0. On the other hand, every centred distribution
functionF can be obtained as a mixture of two-point distribution functionsF�a;b . This
allows us to reduce the general embedding problem to the case considered in (13.1).
The elegant proof of the following lemma is due to Breiman [14].

13.1 Lemma. Let F be a distribution function such that
R

R
jxj dF.x/ < 1 and

R

R
x dF.x/ D 0. Then

F.x/ D
“

R2

Fu;w.x/ �.du; dw/
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with the mixing probability distribution

�.du; dw/ D 1

˛
.w � u/1¹u�0<wº.u; w/ dF.u/ dF.w/

and ˛ WD 1
2

R

R
jxj dF.x/.

Proof. Since F is centred, we see that

˛ D 1

2

Z

R

jxj dF.x/ D
Z

.0;1/

x dF.x/ D �
Z

.�1;0�

x dF.x/:

Using the formula (13.1) for Fu;w we find

˛

“

Fu;w.x/ �.du; dw/

D
“

u�0<w

�

w

w � u .w � u/1Œu;w/.x/C .w � u/1Œw;1/.x/

�

dF.u/ dF.w/

D
“

u�0<w

�

w1Œu;w/.x/C .w � u/1Œw;1/.x/
�

dF.u/ dF.w/

D
“

u�0<w

�

w1Œu;1/.x/ � u1Œw;1/.x/
�

dF.u/ dF.w/

D
“

u�0<w

�

w1.�1;x�.u/ � u1.�1;x�.w/
�

dF.u/ dF.w/

D
Z

.0;1/

w dF.w/

„ ƒ‚ …

D˛

Z

.�1;0�

1.�1;x�.u/ dF.u/

�
Z

.�1;0�

u dF.u/

„ ƒ‚ …

D˛

Z

.0;1/

1.�1;x�.w/ dF.w/

D ˛

Z

R

1.�1;x�.z/ dF.z/ D ˛F.x/:

Finally, the monotone convergence theorem shows that � is indeed a probability mea-
sure:

1 D lim
x!1F.x/ D

“

R2

lim
x!1Fu;w.x/ �.du; dw/ D �.R2/:

We can now prove Skorokhod’s embedding theorem.
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13.2 Theorem (Skorokhod 1965). Let X be a real random variable with distribu-
tion function F . If E jX j < 1 and EX D 0, then there is a BM1 .Bt/t�0, an
admissible filtration .Ft /t�0 and a stopping time � such that B� � X . Moreover,
EX2 D E � 2 Œ0;1�.

Proof. Let .Bt /t�0 be a BM1 and .U;W / be a random vector with values in R2 and
distribution � as in Lemma 13.1. We can assume that .Bt/t�0 and .U;W / are inde-
pendent. Therefore, the filtration Ft WD �.Bs W s � t I U I W / is admissible in the Ex. 13.1
sense of Definition 5.1.

Consider the first exit time of B from the random interval .U;W /,

�ı
.U;W /c

D inf¹t � 0 W Bt … .U;W /º;
and write Fu;w , u � 0 < w, for the distribution function of B�ı

.u;w/c
, see (13.1). Since

we have

®

�ı
.U;W /c

> t
¯ D

²

min
0�s�t

Bs � U > 0

³

\
²

max
0�s�t

Bs �W < 0

³

;

�ı
.U;W /c

is an Ft stopping time. Because of the independence of .U;W / and .Bt /t�0,
we can use Lemma 13.1 and find

P
�

B�U;W
� x

� towerD E
h

E
�

1.�1;x�.B�ı

.U;W /c
/
ˇ

ˇ U;W
�i

indep.D
A:3

E




E
�

1.�1;x�.B�ı

.u;w/c
/
�

ˇ

ˇ

ˇ

uDU;wDW

�

D
“

E
�

1.�1;x�.B�ı

.u;w/c
/
�

�.du; dw/

(13.1)D
“

Fu;w.x/ �.du; dw/

13.1D F.x/:

Since B�U;W
� F , we get by Tonelli’s theorem, Wald’s identities and (5.12)

Z

x2 dF.x/ D E
h

B2�ı

.U;W /c

i

D
“

E
h

B2�ı

.u;w/c

i

�.du; dw/

5:10D
“

E
h

�ı
.u;w/c

i

�.du; dw/

(5.12)D
“

uw �.du; dw/:

Our simple proof of Skorokhod’s embedding theorem comes at the cost that we
have to use an exogenous randomization procedure which requires the enlargement of
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the natural Brownian filtration. There are several proofs which avoid this, but they are
more complicated, see e. g. Sawyer [165].

Because of the strong Markov property of a Brownian motion we can use The-
orem 13.2 to embed any random walk .Sn/n�1, Sn D X1C� � �CXn, where theXj are
independent centred random variables, in a Brownian motion. For simplicity we will
consider only the case where the Xj are iid.

13.3 Corollary. Let .Xj /j�1 be a sequence of iid real random variables with common
distribution F such that E jX1j < 1 and EX1 D 0. Then there is a one-dimensional
Brownian motion .Bt/t�0, an admissible filtration .Ft /t�0 and a sequence .�n/n�1 of
Ft stopping times such that the following statements hold:

a) the increments .�n � �n�1/n�1 are iid positive random variables .�0 WD 0/;
b) E.�n � �n�1/ D E.X2

1 /;
c) the sequences .B�n

/n�1 and .Sn/n�1, Sn WD X1 C � � � CXn, have the same distri-
bution.

Proof. Let .Bt /t�0 be a one-dimensional Brownian motion and .Un; Wn/, n � 0, iid
random vectors such that .U0; W0/ � � with � as in Lemma 13.1. We can assume that
.Bt /t�0 and .Un; Wn/n�0 are independent. Then

F
.n/
t WD �

�

Bs W s � t I .U0; W0/; : : : ; .Un; Wn/
�

; t � 0;
Ft WD �

�

Bs W s � t I .Un; Wn/; n � 1
�

; t � 0;

are, for every n � 1, admissible filtrations for .Bt /t�0.
Set �0 WD 0 and, recursively,

�nC1 WD inf
®

t � �n W Bt � B�n
… .Un; Wn/

¯

; n D 0; 1; 2; : : : :

As in Theorem 13.2 one can see that �n is an F.n/t stopping time and that B�n
is F.n/

�n

measurable, cf. Lemma A.17 or Corollary 6.25.
Observe that

�nC1 � �n D inf
®

s � 0 W BsC�n
� B�n

… .Un; Wn/
¯

:

By the strong Markov property, Theorem 6.5, .BsC�n
�B�n

/s�0 is independent of F.n/
�n

;

in particular B�nC1
�B�n

??F.n/
�n

. Since .BsC�n
�B�n

/s�0 and .Un; Wn/ have the same

distributions as .Bt/t�0 and .U1; W1/, respectively, we find that �nC1 � �n � �1 and

B�nC1
� B�n

D B.�nC1��n/C�n
� B�n

� B�1
:

By Wald’s identity we get, in particular, E.�nC1 � �n/ D E �1 D E.X2
1 /.



Chapter 13 Skorokhod representation 197

Finally, note that �1; : : : ; �n and B�1
; : : : ; B�n

are F.n/
�n

measurable, and that �1 and
B�1

satisfy the basic embedding Theorem 13.2.

13.4 Remark. We can use the embedding of random walks in Brownian motion to
derive asymptotic results for random walks from corresponding results for Brownian
motion, cf. [32]; these are often easier to prove. We use the law of the iterated logarithm
to illustrate this point.

Let .Xj /j�0 be a sequence of iid random variables with mean zero and variance � .
By the Skorokhod embedding there are stopping times �n such that

Sn WD X1 C � � � CXn � B�n
:

By Corollary 13.3 and Wald’s identities .�n/n�1 is a random walk with mean value
E �n D E.B2

�n

/ D E.S2n / < 1. By the strong law of large numbers,

lim
n!1

�n
n

D E �1 D �2 a. s.

Set �.s/ WD p
2s log log s. Then limn!1 �.�n/=�.n/ D � . We will show that

lim
n!1

Snp
2n log log n

D lim
n!1

Sn

�.n/
D �:

For this we claim that

sup
0�r��n��n�1

jBrC�n�1
� B�n

j D O.
p
n/ a. s. as n ! 1: (13.2)

Accepting this for the time being, we find for all s 2 Œ�n�1; �n�
ˇ

ˇ

ˇ

ˇ

Bs

�.s/
� B�n

�.�n/

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

Bs

�.s/
� Bs

�.�n/

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

Bs � B�n

�.�n/

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

Bs

�.s/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � �.s/

�.�n/

ˇ

ˇ

ˇ

ˇ

C 1

�.�n/
sup

0�r��n��n�1

jBrC�n�1
� B�n

j

�
ˇ

ˇ

ˇ

ˇ

Bs

�.s/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � �.s/

�.�n/

ˇ

ˇ

ˇ

ˇ

C C
p
n

�.�n/
:

By the law of the iterated logarithm, Theorem 11.1, Bs=�.s/ stays bounded while the
other terms tend to zero as n ! 1. Thus,

1 D lim
s!1

Bs

�.s/
D lim

n!1
B�n

�.�n/
D lim

n!1
Sn

�.n/

�.n/

�.�n/
„ƒ‚…

!1=�; n!1

D 1

�
lim
n!1

Sn

�.n/
:
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All that remains to be done is to check (13.2). For this we use a Borel–Cantelli
argument. Observe that, by the strong Markov property,

sup
0�s��n��n�1

�

BsC�n�1
� B�n�1

� Thm. 6.5� sup
0�s��1

Bs :

Using the fact that
P1
nD1 �.f > n/ �

R

f d� and Doob’s maximal inequality (A.14)
for the stopped Brownian motion .Bt^�1

/t�0, we see

1
X

nD1
P
�

sup
0�s��n��n�1

ˇ

ˇBsC�n�1
� B�n�1

ˇ

ˇ >
p
n
� D

1
X

nD1
P
�

sup
0�s��1

B2s > n
�

� E
�

sup
0�s��1

B2s
� D E

�

sup
s�0

B2
s^�1

�

Doob
�

(A.14)
4E

�

B2
�1

� D 4E
�

X2
1

�

< 1:

Now we can use the (simple direction of the) Borel–Cantelli lemma to deduce, for
sufficiently large values of n,

sup
0�s��n��n�1

ˇ

ˇBsC�n�1
� B�n�1

ˇ

ˇ � C
p
n:

This inequality holds in particular for s D �n � �n�1, and the triangle inequality gives
(13.2).

We have seen in Section 3.4 that Brownian motion can be constructed as the limit
of random walks. For every finite family .Bt1 ; : : : ; Btk /, t1 < � � � < tk, this is just the
classical central limit theorem: Let .�j /j�1 be iid Bernoulli random variables such that
P.�1 D ˙1/ D 1

2
and Sn WD �1 C � � � C �n, then1

Sbntcp
n

weakly����!
n!1 Bt for all t 2 .0; 1�:

We are interested in approximations of the whole path Œ0; 1� 3 t 7! Bt.!/ of
a Brownian motion, and the above convergence will give pointwise but not uniform
results. To get uniform results, it is useful to interpolate the partial sums Sbntc=

p
n

Sn.t/ WD 1p
n

�

Sbntc � .nt � bntc/�bntcC1
�

; t 2 Œ0; 1�:

This is a piecewise linear continuous function which is equal to Sj=
p
n if t D j=n.

We are interested in the convergence of

ˆ.Sn. � // ���!
n!1 ˆ.B. � //

1 In fact, it is enough to assume that the 
j are iid random variables with mean zero and finite variance.
This universality is the reason why Theorem 13.5 is usually called invariance principle.
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where ˆ W .CŒ0; 1�;R/ ! R is a (not necessarily linear) bounded functional which is
uniformly continuous with respect to uniform convergence.

Although the following theorem implies Theorem 3.8, we cannot use it to construct
Brownian motion since the proof already uses the existence of a Brownian motion.
Nevertheless the result is important as it helps to understand Brownian motion intu-
itively and permits simple proofs of various limit theorems.

13.5 Theorem (Invariance principle. Donsker 1951). Let .Bt/t2Œ0;1� be a one-dimen-
sional Brownian motion, .Sn.t//t2Œ0;1�, n � 1, be the sequence of processes from
above, and ˆ W C.Œ0; 1�;R/ ! R a uniformly continuous bounded functional. Then

lim
n!1 Eˆ.Sn. � // D Eˆ.B. � //;

i. e. Sn. � / converges weakly to B. � /.

Proof. Denote by .Wt/t�0 the Brownian motion into which we can embed the ran-
dom walk .Sn/n�1, i. e. W�n

� Sn for an increasing sequence of stopping times
�1 � �2 � � � � , cf. Corollary 13.3. Since our claim is a statement on the probabil-
ity distributions, we can assume that Sn D W�n

.
By assumption, we find for all � > 0 some � > 0 such that jˆ.f / �ˆ.g/j < � for

all kf � gk1 < �.
The assertion follows if we can prove, for all � > 0 and for sufficiently large values

of n � N
 , that the Brownian motions defined byBn.t/ WD n�1=2Wnt � Bt , t 2 Œ0; 1�,
satisfy

P
�

ˇ

ˇˆ.Sn. � // �ˆ.Bn. � //ˇˇ > �� � P
�

sup
0�t�1

ˇ

ˇSn.t/ � Bn.t/ˇˇ > �� � �:

This means that ˆ.Sn. � // �ˆ.Bn. � // converges in probability to 0, therefore

j Eˆ.Sn. � // � Eˆ.B. � //j Bn�BD j Eˆ.Sn. � // � Eˆ.Bn. � //j ���!
n!1 0:

In order to see the estimate we need three simple observations. Pick �; � > 0 as
above.

1o Since a Brownian motion has continuous sample paths, there is some ı > 0 such
that

P
�

9 s; t 2 Œ0; 1�; js � t j � ı W jWt �Wsj > �
�

� �

2
:
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2o By Corollary 13.3 and Wald’s identities, .�n/n�1 is a random walk with mean
E �n D E.B2

�n

/ D E.S2n / < 1. Therefore, the strong law of large numbers tells us
that

lim
n!1

�n
n

D E �1 D 1 a. s.

Thus, there is some M.�/ such that for all n > m �M.�/

1

n
max
1�k�n

j�k � kj � 1

n
max
1�k�m

j�k � kj C max
m�k�n

ˇ

ˇ

ˇ

ˇ

�
k

k
� 1

ˇ

ˇ

ˇ

ˇ

� 1

n
max
1�k�m

j�k � kj C � ���!
n!1 � ���!

�!0
0:

Consequently, for some N.�; �/ and all n � N.�; �/

P

�

1

n
max
1�k�n

j�k � kj > ı

3

�

� �

2
:

3o For every t 2 Œk=n; .kC1/=n� there is a u 2 Œ�
k
=n; �

kC1=n�, k D 0; 1; : : : ; n�1,
such that

Sn.t/ D n�1=2Wnu D Bn.u/:

Indeed: Sn.t/ interpolates Bn.�
k
/ and Bn.�

kC1/ linearly, i. e. Sn.t/ is between the
minimum and the maximum ofBn.s/, �

k
� s � �

kC1. Since s 7! Bn.s/ is continuous,
there is some intermediate value u such that Sn.t/ D Bn.u/. This situation is shown
in Figure 13.1.

t

n−1
2Bt

τk τk+1ut

Figure 13.1. For each value Sn.t/ of the line segment connecting Bn.�k/ and Bn.�kC1/

there is some u such that Sn.t/ D Bn.u/.
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Clearly, we have

P
�

sup
0�t�1

ˇ

ˇSn.t/ � Bn.t/ˇˇ > ��

� P

�

sup
0�t�1

ˇ

ˇSn.t/ � Bn.t/ˇˇ > �; max
1�l�n

ˇ

ˇ

ˇ

ˇ

�
l

n
� l

n

ˇ

ˇ

ˇ

ˇ

� ı

3

�

C P

�

1

n
max
1�l�n

j�l � l j > ı

3

�

:

If
ˇ

ˇSn.t/ � Bn.t/
ˇ

ˇ > � for some t 2 Œk=n; .k C 1/=n�, then we find by 3o some
u 2 Œ�

k
=n; �

kC1=n� with
ˇ

ˇBn.u/ � Bn.t/ˇˇ > �. Moreover,

ju � t j �
ˇ

ˇ

ˇ

ˇ

ˇ

u � �
k

n

ˇ

ˇ

ˇ

ˇ

ˇ

„ ƒ‚ …

!0; n!1 by 2o

C
ˇ

ˇ

ˇ

ˇ

ˇ

�
k

n
� k

n

ˇ

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

ˇ

k

n
� t
ˇ

ˇ

ˇ

ˇ

ˇ

� ı

3
C ı

3
C 1

n
� ı

if n � N.�; �/ _ .3=ı/ and max1�l�n
ˇ

ˇ

ˇ

�
l

n
� l
n

ˇ

ˇ

ˇ

� ı=3. This, 2o and 1o give for all
sufficiently large n

P
�

sup
0�t�1

ˇ

ˇSn.t/ � Bn.t/ˇˇ > ��

� P
�9u; t 2 Œ0; 1�; ju � t j � ı W ˇˇBn.u/ � Bn.t/ˇˇ > ��C �

2
� �:

Typical examples of uniformly continuous functionals are

ˆ0.f / D f .1/;

ˆ2.f / D
Z 1

0

jf .t/jp dt;

ˆ1.f / D sup
0�t�1

jf .t/ � at j;

ˆ3.f / D
Z 1

0

jf .t/ � tf .1/j4 dt:

With a bit of extra work one can prove Theorem 13.5 for all ˆ W C.Œ0; 1�;R/ ! R

which are continuous with respect to uniform convergence at almost every Brownian
path. This version includes the following functionals

ˆ4.f / D 1¹sup0�t�1 jf.t/j�1º; ˆ5.f / D Leb¹f > 0º � Leb¹f < 0º;
ˆ6.f / D 1¹8t Wa.t/<f .t/<b.t/º .a; b W Œ0; 1� ! R smooth functions/:

Using ˆ0 we could deduce the central limit theorem (without using characteristic
function methods), ˆ2 gives the limit theorem

lim
n!1 P

� n
X

kD1
jSkjp � �np

�

D P

�

Z 1

0

jBt jp dt � �
�

while ˆ4 corresponds to the gambler’s ruin problem and ˆ6 is Khintchine’s Problem,
see Sawyer [165] for a more detailed discussion.
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13.6 Further reading. More applications and variants of Skorokhod’s embedding
theorem can be found in the monograph [65] and in the survey papers [165] and [137].

[65] Freedman: Brownian Motion and Diffusion.
[137] Oblój: The Skorokhod embedding problem and its offspring.
[165] Sawyer: The Skorokhod Representation.

Problems

1. In the proof of Theorem 13.2 we assumed that .Bt/t�0 and .U;W / are independent.
Show that Ft WD �.Bs ; s � t IU;W / is an admissible filtration for a Brownian
motion, cf. Definition 5.1.



Chapter 14

Stochastic integrals: L2-Theory

A function f W Œ0; T � ! R is Riemann integrable if the Riemann sums

S….f / WD
n
X

jD1
f .�…j /.s

…
j � s…j�1/; �…j 2 Œs…j�1; s

…
j �; (14.1)

converge to a finite limit I . The limit is taken along all finite partitions of the interval
Œ0; T �,… D ¹0 D s…0 < s

…
1 < � � � < s…n D T º, with j…j WD maxj .s…j �s…j�1/ ! 0 and

it is independent of the particular sequence and the choice of the intermediate points
�…j . The number I is called the definite Riemann integral of f in Œ0; T � and one writes

I D R T

0
f .s/ ds. Riemann’s definition has been modified in many ways. T. J. Stieltjes

used another function g, replacing s…j � s…j�1 in (14.1) by g.s…j / � g.s…j�1/. The re-

sulting integral
R T

0
f .s/ dg.s/ is the Riemann–Stieltjes integral. The requirement that

the Riemann–Stieltjes sums converge imposes some restrictions on f and g. For ex-
ample, if we want that

R T

0
f .s/ dg.s/ exists for all f 2 CŒ0; T �, we can show that g

is necessarily of bounded variation: VAR1.gI t / < 1, see Corollary A.41. Since we
know from Chapter 9 that a Brownian motion is of unbounded variation on any com-
pact interval, it is clear that we cannot define

R T

0
f .s/ dBs.!/ as a Riemann–Stieltjes

integral. Using the notion ofL2 martingales K. Itô succeeded 1942 to give a consistent
and powerful meaning to

R T

0
f .s; !/ dBs.!/ where the class of integrand processes

f .s; !/ contains all bounded processes with continuous sample paths.

14.1 Discrete stochastic integrals

Let .Fn/n�0 be a filtration. An L2 martingale X D .Xn;Fn/n�0 is a martingale such
that Xn 2 L2.P/ for all n � 0. We write M2 for the family of L2 martingales. If
X 2M2, thenX2 D .X2

n ;Fn/n�0 is a submartingale and, by the Doob decomposition,

X2
n D X2

0 CMn C An (14.2)

where .Mn;Fn/n�0 is a martingale and .An/n�0 is a previsible (i. e. An is Fn�1 mea-
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surable, n � 1) and increasing (i. e.: An � AnC1, n � 0) process. This decomposition
is unique. Therefore, the following definition makes sense.

14.1 Definition. Let .Xn;Fn/n�0 be an L2 martingale. The quadratic variation of X ,
hXi D .hXin/n�0, is the unique increasing and previsible process with hXi0 D 0

appearing in the Doob decomposition (14.2).

The next lemma explains why hXi is called the quadratic variation.

14.2 Lemma. Let X D .Xn;Fn/n�0 be an L2 martingale and hXi the quadratic
variation. Then, for all n > m � 0,

E
�

.Xn �Xm/2
ˇ

ˇFm
	 D E

�

X2
n �X2

m

ˇ

ˇFm
	 D E

�hXin � hXim
ˇ

ˇFm
	

: (14.3)

Proof. Note that for all n > m � 0

E
�

.Xn �Xm/2
ˇ

ˇFm
	

D E
�

X2
n � 2XnXm CX2

m

ˇ

ˇFm
	

D E
�

X2
n

ˇ

ˇFm
	 � 2Xm E

�

Xn
ˇ

ˇFm
	

„ ƒ‚ …

DXm; martingale

CX2
m

D E
�

X2
n

ˇ

ˇFm
	 �X2

m

D E
�

X2
n �X2

m

ˇ

ˇFm
	

D E
�

X2
n � hXin

„ ƒ‚ …

martingale

�.X2
m � hXim/

ˇ

ˇFm
	C E

�hXin � hXim
ˇ

ˇFm
	

D E
�hXin � hXim

ˇ

ˇFm
	

:

14.3 Definition. Let .Xn;Fn/n�0 be a martingale and .Cn;Fn/n�0 an adapted process.
Then

C �Xn WD
n
X

jD1
Cj�1.Xj �Xj�1/; C �X0 WD 0; n � 1; (14.4)

is called a martingale transform.

Let us review a few properties of the martingale transform.

14.4 Theorem. Let .Mn;Fn/n�0 be an L2 martingale and .Cn;Fn/n�0 be a bounded
adapted process. Then

a) C �M is an L2 martingale, i. e. C� WM2 !M2;
b) C 7! C �M is linear;
c) hC �M in D C 2 � hM in WD Pn

jD1 C 2j�1.hM ij � hM ij�1/ for all n � 1;



Section 14.1 Discrete stochastic integrals 205

d) E
�

.C �Mn�C �Mm/
2
ˇ

ˇFm
	 D E

�

C 2�hM in�C 2�hM im
ˇ

ˇFm
	

for n > m � 0.
In particular,

E
�

.C �Mn/
2
	 D E

�

C 2 � hM in
	

(14.5)

D E


 n
X

jD1
C 2j�1.Mj �Mj�1/2

�

: (14.6)

Proof. a) By assumption, there is some constant K > 0 such that jCj j � K a. s. for
all n � 0. Thus, jCj�1.Mj �Mj�1/j � K.jMj�1j C jMj j/ 2 L2, which means that
C �Mn 2 L2. Let us check that C �M is a martingale. For all n � 1

E
�

C �Mn

ˇ

ˇFn�1
� D E

�

C �Mn�1 C Cn�1.Mn �Mn�1/
ˇ

ˇFn�1
�

D C �Mn�1 C Cn�1 E
�

.Mn �Mn�1/
ˇ

ˇFn�1
�

„ ƒ‚ …

D0; martingale

D C �Mn�1:

b) The linearity of C 7! C �M is obvious. In order to show

c) it is enough to prove that
(1) C 2 � hM in is previsible and increasing
(2) .C �Mn/

2 � C 2 � hM in is a martingale.
By the uniqueness of the quadratic variation we see hC �M in D C 2 � hM in. The first
point follows easily from

C 2 � hM in D
n
X

jD1

�0
‚ …„ ƒ

C 2j�1
„ƒ‚…

Fj �1 mble

.hM ij � hM ij�1/
„ ƒ‚ …

Fj �1 mble

:

In order to see the martingale property we apply Lemma 14.2 to the L2 martingale
X D C �M with m D n � 1 � 0 and get

E
�

.C �Mn/
2 � .C �Mn�1/2

ˇ

ˇFn�1
	 (14.3)D E

�

.C �Mn � C �Mn�1/2
ˇ

ˇFn�1
	

D E
�

.C 2n�1.Mn �Mn�1/2
ˇ

ˇFn�1
	

D C 2n�1 E
�

.Mn �Mn�1/2
ˇ

ˇFn�1
	

(14.3)D C 2n�1 E
�hM in � hM in�1

ˇ

ˇFn�1
	

D E
�

C 2n�1.hM in � hM in�1/
ˇ

ˇFn�1
	

D E
�

C 2 � hM in � C 2 � hM in�1/
ˇ

ˇFn�1
	

:
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This shows for all n � 1

E
�

.C �Mn/
2 � C 2 � hM in jFn�1

	 D E
�

.C �Mn�1/2 � C 2 � hM in�1 jFn�1
	

D .C �Mn�1/2 � C 2 � hM in�1;

i. e. .C �M/2 � C 2 � hM i is a martingale.

d) using c) and Lemma 14.2 for the L2 martingale C �M gives

E
�

.C �Mn � C �Mm/
2
ˇ

ˇFm
� D E

�

.C �Mn/
2 � .C �Mm/

2
ˇ

ˇFm
�

D E
�

C 2 � hM in � C 2 � hM im
ˇ

ˇFm
�

:

If we take m D 0, we get (14.5). If we use Lemma 14.2 for the L2 martingale M , we
see E.hM ij � hM ij�1 jFj�1/ D E..Mj �Mj�1/2 jFj�1/. Therefore, (14.6) follows
from (14.5) by the tower property.

Note that M 7! hM i is a quadratic form. Therefore, we can use polarization to get
the quadratic covariation which is a bilinear form:

hM;N i WD 1

4

�hM CN i � hM �N i� for all M;N 2M2: (14.7)

By construction, hM;M i D hM i. Using polarization, we see that MnNn � hM;N inEx. 14.1
is a martingale. Moreover

14.5 Lemma. Let .Mn;Fn/n�0, .Nn;Fn/n�0 be L2 martingales and assume that
.Cn;Fn/n�0 is a bounded adapted processes. Then

hC �M;N in D C � hM;N in D
n
X

jD1
Cj�1

�hM;N ij � hM;N ij�1
�

: (14.8)

Moreover, if for some I 2M2

hI;N in D C � hM;N in for all N 2M2; n � 1; (14.9)

then I D C �M .

Lemma 14.5 shows that C �M is the only L2 martingale satisfying (14.9).

Proof. The equality (14.8) follows from polarization and Theorem 14.4 c):

hC �M ˙N i D hC �M i ˙ 2C � hM;N i C hN i D C 2 � hM i ˙ 2C � hM;N i C hN i
and we get (14.8) by adding these two equalities. In particular, (14.9) holds for
I D C �M .
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Now assume that (14.9) is true. Then

hI;N i (14.9)D C � hM;N i (14.8)D hC �M;N i

or hI � C � M;N i D 0 for all N 2 M2. Since I � C � M 2 M2, we can set
N D I � C �M and find

hI � C �M; I � C �M i D hI � C �M i D 0:

Thus, E
�

.In �C �Mn/
2
	 D E

�hI �C �M in
	 D 0, which shows that In D C �Mn

a. s. for all n � 0.

14.2 Simple integrands

We can now consider stochastic integrals with respect to a Brownian motion. Through-
out the rest of this chapter .Bt /t�0 is a BM1, .Ft /t�0 is an admissible filtration such

that each Ft contains all P-null sets, e. g. the completed natural filtration Ft D FBt (cf.
Theorem 6.21), and Œ0; T �, T < 1, a finite interval. Although we do not explicitly
state it, most results remain valid for T D 1 and Œ0;1/. In line with the notation
introduced in Section 14.1 we use

• X � and X �
s WD X�^s for the stopped process .Xt /t�0;

• M2
T for the family of Ft martingales .Mt/0�t�T � L2.P/;

• M2;c
T for the L2 martingales with (almost surely) continuous sample paths;

• L2.�T ˝P/ D L2.Œ0; T ��	;�˝P/ for the set of (equivalence classes of)BŒ0; T �˝
A measurable random functions f W Œ0; T � � 	 ! R equipped with the norm
kf k2

L2.�T ˝P/
D R T

0
ŒE.jf .s/j2/� ds < 1.

14.6 Definition. A real-valued stochastic process .f .t; � //t2Œ0;T � of the form

f .t; !/ D
n
X

jD1
�j�1.!/1Œsj �1;sj /.t/ (14.10)

where n � 1, 0 D s0 � s1 � � � � � sn � T and �j 2 L1.Fsj / are bounded
Fsj measurable random variables, j D 0; : : : ; n, is called a (right-continuous) simple
process. We write ET for the family of all simple processes on Œ0; T �.

Note that we can, a bit tautologically, rewrite (14.10) as

f .t; !/ D
n
X

jD1
f .sj�1; !/1Œsj �1;sj /.t/: (14.11)
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14.7 Definition. Let M 2M2;c
T be a continuous L2 martingale and f 2 ET . Then

f �MT D
n
X

jD1
f .sj�1/

�

M.sj / �M.sj�1/
�

(14.12)

is called the stochastic integral of f 2 ET . Instead of f � MT we also write
R T

0
f .s/ dMs .

Since (14.12) is linear, it is obvious that (14.12) does not depend on the particularEx. 14.2
representation of the simple process f 2 ET . It is not hard to see that .f �Msj /jD0;:::;n
is a martingale transform in the sense of Definition 14.3: Just take Cj D f .sj / D �j
and Mj D M.sj /.

In order to use the results of Section 14.1 we note that for a Brownian motion

hBisj � hBisj �1

(14.3)D E
��

B.sj / � B.sj�1/
�2 ˇ
ˇFsj �1

	

(B1)D
(5.1)

E
��

B.sj / � B.sj�1/
�2	 D sj � sj�1:

(14.13)

Since hBi0 D 0, and since 0 D s0 < s1 < � � � < sn � T is an arbitrary partition,
we see that hBit D t . We can now use Theorem 14.4 to describe the properties of the
stochastic integral for simple processes.

14.8 Theorem. Let .Bt /t�0 be a BM1, .Mt /t�T 2 M2;c
T , .Ft /t�0 be an admissible

filtration and f 2 ET . Then

a) f 7! f �MT 2 L2.P/ is linear;
b) hf � BiT D f 2 � hBiT D R T

0
jf .s/j2 ds;

c) For all f 2 ET

kf �BT k2L2.P/ D E
�

.f �B/2T
	 D E




Z T

0

jf .s/j2 ds

�

D kf k2L2.�T ˝P/: (14.14)

Proof. Let f be a simple process given by (14.10). Without loss of generality we
can assume that sn D T . All assertions follow immediately from the corresponding
statements for the martingale transform, cf. Theorem 14.4. For b) we observe that

n
X

jD1
jf .sj�1/j2

�hBisj � hBisj �1

� (14.13)D
n
X

jD1
jf .sj�1/j2.sj � sj�1/

(14.11)D
Z sn

0

jf .s/j2 ds;

and c) follows if we take expectations and use the fact that ..f �Bsj /2�hf �Bisj /jD0;:::;n
is a martingale, i. e. for sn D T we have E.f � B2T / D Ehf � BiT .



Section 14.2 Simple integrands 209

Note that for T < 1 we always have ET � L2.�T ˝ P/, i. e. (14.14) is always
finite and f � BT 2 L2.P/ always holds true. For T D 1 this remains true if we
assume that f 2 L2.�T ˝ P/ and sn < T D 1. Therefore one should understand the
equality in Theorem 14.8 c) as an isometry between .ET ; k•kL2.�T ˝P// and a subspace
of L2.P/.

It is natural to study T 7! f �MT D R T

0
f .s/ dMs as a function of time. Since for

every Ft stopping time � the stopped martingale M � D .Ms^� /s�T is again inM2;c
T ,

see Theorem A.18 and Corollary A.20, we can define

f �M� WD f � .M � /T D
n
X

jD1
f .sj�1/

�

M�^sj �M�^sj �1

�

: (14.15)

As usual, we write

f �M�
defD
Z T

0

f .s/ dM �
s D

Z �

0

f .s/ dMs :

This holds, in particular, for the constant stopping time � � t , 0 � t � T .

14.9 Theorem. Let .Bt/t�0 be a BM1, .Mt/t�T 2 M2;c
T , .Ft/t�0 be an admissible

filtration and f 2 ET . Then

a) .f �Mt/t�T is a continuous L2 martingale; in particular

E
��

f � Bt � f � Bs
�2 ˇ
ˇFs

	 D E




Z t

s

jf .r/j2 dr
ˇ

ˇFs

�

; s < t � T:

b) Localization in time. For every Ft stopping time � with finitely many values

.f �M/�t D f � .M � /t D .f 1Œ0;�// �Mt :

c) Localization in space. If f; g 2 ET are simple processes with f .s; !/ D g.s; !/

for all .s; !/ 2 Œ0; t � � F for some t � T and F 2 F1, then

.f �Ms/1F D .g �Ms/1F ; 0 � s � t:

Proof. a) Let 0 � s < t � T and f 2 ET . We may assume that s; t 2 ¹s0; : : : ; snº
where the sj are as in (14.10); otherwise we add s and t to the partition. From The-
orem 14.4 we know that .f �Msj /j is a martingale, thus

E
�

f �Mt

ˇ

ˇFs/ D f �Ms:

Since s; t are arbitrary, we conclude that .f �Mt/t�T 2M2
T .

The very definition of t 7! f � Mt , see (14.15), shows that .f � Mt/t�T is a
continuous process. Using Lemma 14.2 or Theorem 14.4 d) we get

E
��

f � Bt � f � Bs
�2 ˇ
ˇFs

	 D E
�hf � Bit � hf � Bis

ˇ

ˇFs
	

14.8D
b)

E




Z t

0

jf .r/j2 dr �
Z s

0

jf .r/j2 dr
ˇ

ˇ

ˇ

Fs

�

:
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b) Write f 2 ET in the form (14.11). Then we have for all stopping times �

.f �M/�t D .f �M/t^� D
n
X

jD1
f .sj�1/.Msj ^�^t �Msj �1^�^t /

D
n
X

jD1
f .sj�1/.M �

sj ^t �M �
sj �1^t / D f � .M � /t :

If � takes only finitely many values, we may assume that �.!/ 2 ¹s0; s1; : : : ; snº
with sj from the representation (14.10) of f . Thus, �.!/ > sj�1 implies �.!/ � sj ,
and

f .s/1Œ0;�/.s/ D
n
X

jD1
f .sj�1/1Œ0;�/.s/1Œsj �1;sj /.s/

D
n
X

jD1

�

f .sj�1/1¹�>sj �1º
�

„ ƒ‚ …

Fsj �1
mble

1Œsj �1;�^sj /.s/
„ ƒ‚ …

�^sj Dsj

:

This shows that f 1Œ0;�/ 2 ET as well as

.f 1Œ0;�// �Mt D
n
X

jD1
f .sj�1/1¹�>sj �1º.Msj ^t �Msj �1^t /

D
n
X

jD1
f .sj�1/ .Msj ^�^t �Msj �1^�^t /

„ ƒ‚ …

D0; if ��sj �1

D f � .M � /t :

c) Because of b) we can assume that t D T , otherwise we replace f; g by f 1Œ0;t/

and g1Œ0;t/. Refining the partitions, if necessary, f; g 2 ET can have the same support
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points 0 D s0 < s1 < � � � < sn � T in their representation (14.10). Since we know
that f .sj /1F D g.sj /1F , we get

.f �MT /1F D
n
X

jD1
f .sj�1/1F � .Msj �Msj �1

/

D
n
X

jD1
g.sj�1/1F � .Msj �Msj �1

/ D .g �MT /1F :

14.3 Extension of the stochastic integral to LLL2
T

We have seen in the previous section that the map f 7! f � B is a linear isometry
from ET to M2;c

T . Therefore, we can use standard arguments to extend this mapping
to the closure of ET with respect to the norm in L2.�T ˝ P/. As before, most results
remain valid for T D 1 and Œ0;1/ but, for simplicity, we restrict ourselves to the
case T < 1.

14.10 Lemma. LetM 2M2;c
T . Then kMkM2

T
WD �

E
�

sups�T jMsj2
	�1=2

is a norm on

M
2;c
T andM2;c

T is closed under this norm. Moreover,

E
�

sup
s�T

jMsj2
	 � E

�jMT j2	 D sup
s�T

E
�jMsj2

	

: (14.16)

Proof. By Doob’s maximal inequality A.10 we get that

E
�jMT j2	 � E

�

sup
s�T

jMsj2
	

(A.14)
� 4 sup

s�T
E
�jMsj2

	 (A.14)D 4E
�jMT j2	:

This proves (14.16) since .jMt j2/t�T is a submartingale, i. e. t 7! E.jMt j2/ is in-
creasing. Since k � kM2

T
is the L2.	;PI CŒ0; T �/-norm, i. e. the L2.P/ norm (of the

supremum norm) of CŒ0; T �-valued random variables, it is clear that it is again a norm. Ex. 14.3
Let Mn 2 M2;c

T with limn!1 kMn � MkM2
T

D 0. In particular we see that for a
subsequence n.j /

lim
j!1 sup

s�T
jMn.j /.s; !/ �M.s; !/j D 0 for almost all !:

This shows that s 7! M.s; !/ is continuous. Since L2.P/-limn!1Mn.s/ D M.s/

for every s � T , we find
Z

F

M.s/ dP D lim
n!1

Z

F

Mn.s/ dP
martin-D

gale
lim
n!1

Z

F

Mn.T / dP D
Z

F

M.T / dP

for all s � T and F 2 Fs . Thus, M is a martingale, and M 2 M2;c
T .
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Itô’s isometry (14.14) allows us to extend the stochastic integral from the simple
integrands ET � L2.�T ˝ P/ to the closure ET in L2.�T ˝ P/.

14.11 Definition. By L2T we denote the closure ET of the simple processes ET with
respect to the norm in L2.�T ˝ P/.

Using (14.14) we find for any sequence .fn/n�1 � ET with limit f 2 L2T that

kfn � BT � fm � BT k2L2.P/ D E




Z T

0

jfn.s; � / � fm.s; � /j2 ds

�

D kfn � fmk2L2.�T ˝P/ �����!
m;n!1 0:

Therefore, for each 0 � t � T , the limit

L2.P/- lim
n!1fn � Bt (14.17)

exists and does not depend on the approximating sequence. By Lemma 14.10, (14.17)Ex. 14.4
defines an element inM2;c

T . We will see later on (cf. Section 14.5) that L2T is the set of
all (equivalence classes of) processes from L2.�T ˝ P/ which have an progressively
measurable representative.

14.12 Definition. Let .Bt /t�0 be a BM1 and let f 2 L2T . Then the stochastic integral
(or Itô integral) is defined as

f � Bt D
Z t

0

f .s/ dBs WD L2.P/- lim
n!1fn � Bt ; 0 � t � T; (14.18)

where .fn/n�1 � ET is any sequence approximating f 2 L2T in L2.�T ˝ P/.

The stochastic integral is constructed in such a way that all properties from The-
orems 14.8 and 14.9 carry over to integrands from f 2 L2T .

14.13 Theorem. Let .Bt/t�0 be a BM1, .Ft/t�0 be an admissible filtration andEx. 14.6
Ex. 14.7
Ex. 14.8

f 2 L2T . Then we have for all t � T

a) f 7! f � B is a linear map from L2T intoM2;c
T , i. e. .f � Bt/t�T is a continuous

L2 martingale;
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b) .f �B/2�hf �Bi is a martingale where hf �Bit WD f 2 �hBit D R t

0
jf .s/j2 ds;1

in particular,

E
�

.f � Bt � f � Bs/2
ˇ

ˇFs
	 D E




Z t

s

jf .r/j2 dr
ˇ

ˇ

ˇ

Fs

�

; s < t � T: (14.19)

c) Itô’s isometry.

kf �BT k2L2.P/ D E
�

.f �B/2T
	 D E




Z T

0

jf .s/j2 ds

�

D kf k2L2.�T ˝P/: (14.20)

d) Maximal inequalities.

E




Z T

0

jf .s/j2 ds

�

� E




sup
t�T

�

Z t

0

f .s/ dBs

�2�

� 4E




Z T

0

jf .s/j2 ds

�

:

(14.21)

e) Localization in time. Let � be an Ft stopping time. Then

.f � B/�t D f � .B� /t D .f 1Œ0;�// � Bt for all t � T:

f) Localization in space. If f; g 2 L2T are integrands such that f .s; !/ D g.s; !/ for
all .s; !/ 2 Œ0; t � � F where t � T and F 2 F1, then

.f � Bs/1F D .g � Bs/1F ; 0 � s � t:

Proof. Throughout the proof we fix f 2 L2T and some sequence fn 2 ET , such that
L2.�T ˝ P/-limn!1 fn D f . Clearly, all statements are true for fn �B and we only
have to see that the L2 limits preserve them.

a) follows from Theorem 14.9, Lemma 14.10 and the linearity of L2 limits.

b) note that

.fn � Bt/2 � hfn � Bit D .fn � Bt /2 �
Z t

0

jfn.s/j2 ds

is a sequence of martingales, cf. Theorem 14.8 b). We are done if we can show that
this is a Cauchy sequence in L1.P/ since this convergence preserves the martingale

1 Observe that we have defined the angle bracket h•i only for discrete martingales. Therefore we have
to define the quadratic variation here. For each fixed t this new definition is in line with 14.8 b).
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property. We have

ˇ

ˇhfn � Bit � hfm � Bit
ˇ

ˇ �
Z t

0

ˇ

ˇjfn.s/j2 � jfm.s/j2
ˇ

ˇ ds

D
Z t

0

jfn.s/C fm.s/j � jfn.s/ � fm.s/j ds

�

s

Z t

0

jfn.s/C fm.s/j2 ds

s

Z t

0

jfn.s/ � fm.s/j2 ds:

Taking expectations on both sides reveals that the second expression tends to zero
while the first stays uniformly bounded. This follows from our assumption as
L2.�T ˝ P/-limn!1 fn D f . With essentially the same calculation we get that
L2.P/-limn!1 fn � Bt D f � Bt implies L1.P/-limn!1.fn � Bt /2 D .f � Bt/2.Ex. 14.9

Since both f � B and .f � B/2 � f 2 � hBi are martingales, the technique used in
the proof of Lemma 14.2 applies and yields (14.19).

c) is a consequence of the same equalities in Theorem 14.8 and the completion.

d) Apply Lemma 14.10 to the L2 martingale .f � Bt /t�T and use c):

E




sup
t�T

�

Z t

0

f .s/ dBs

�2�
(14.16)� E


�

Z T

0

f .s/ dBs

�2�

c)D E




Z T

0

jf .s/j2 ds

�

:

e) From the proof of Theorem 14.9 b) we know that fn � .B� /t D .fn � B/�t holds
for all stopping times � and fn 2 ET . Using the maximal inequality d) we find

E
�

sup
s�T

ˇ

ˇfn � .B� /s � fm � .B�/s
ˇ

ˇ

2	 D E
�

sup
s�T

ˇ

ˇfn � Bs^� � fm � Bs^�
ˇ

ˇ

2	

� E
�

sup
s�T

ˇ

ˇfn � Bs � fm � Bs
ˇ

ˇ

2	

d)
� 4E




Z T

0

ˇ

ˇfn.s/ � fm.s/
ˇ

ˇ

2
ds

�

�����!
m;n!1 0:

SinceM2;c
T is complete, we conclude that

.fn � B/� D fn � .B� / M
2;c
T���!

n!1 f � .B� /:

On the other hand, limn!1 fn � B D f � B , hence limn!1.fn � B/� D .f � B/� .
This gives the first equality.

For the second equality we assume that � is a discrete stopping time. Then we know
from Theorem 14.9 b)

.fn1Œ0;�// � B D .fn � B/� M
2;c
T���!

n!1 .f � B/� :
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By the maximal inequality d) we get

E
�

sup
s�T

ˇ

ˇ

�

fn1Œ0;�/
� � Bs � �

f 1Œ0;�/
� � Bs

ˇ

ˇ

2	

� 4E




Z T

0

ˇ

ˇfn.s/ � f .s/ˇˇ2 1Œ0;�/.s/
„ ƒ‚ …

�1

ds

�

���!
n!1 0:

This shows that f 1Œ0;�/ 2 L2T andM2;c
T -limn!1.fn1Œ0;�// � B D .f 1Œ0;�// � B .

Finally, let �j # � be discrete stopping times, e. g. �j D .b2j �c C 1/=2j as in
Lemma A.16. With calculations similar to those above we get

E
�

sup
s�T

ˇ

ˇ.f 1Œ0;�// � Bs � .f 1Œ0;�
j
// � Bs

ˇ

ˇ

2	

� 4E




Z T

0

ˇ

ˇf .s/1Œ0;�/.s/ � f .s/1Œ0;�
j
/.s/

ˇ

ˇ

2
ds

�

� 4E




Z T

0

ˇ

ˇf .s/1Œ�;�
j
/.s/

ˇ

ˇ

2
ds

�

and the last expression tends to zero as j ! 1 by dominated convergence. Since

f � B�jt ! f � B� is obvious (by continuity of the paths), the assertion follows.

f) Let fn; gn 2 ET be approximations of f; g 2 L2T . We will see in the proof of
Theorem 14.20 below, that we can choose fn; gn in such a way that

fn.s; !/ D gn.s; !/ for all n � 1 and .s; !/ 2 Œ0; t � � F:

Since

E
�

sup
s�t

ˇ

ˇ.fn � Bs/1F � .f � Bs/1F
ˇ

ˇ

2	 � E
�

sup
s�t

ˇ

ˇfn � Bs � f � Bs
ˇ

ˇ

2	

d)
� E




Z t

0

jfn.s/ � f .s/j2 ds

�

;

we see that the corresponding assertion for step functions, Theorem 14.9 f), remains
valid for the L2 limit.

14.4 Evaluating Itô integrals

Using integrands from ET allows us to calculate only very few Itô integrals. For ex-
ample, up to now we have the natural formula

R T

0
� � 1Œa;b/.s/ dBs D � � .Bb � Ba/

only for bounded Fa measurable random variables �.
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14.14 Lemma. Let .Bt /t�0 be a BM1, 0 � a < b � T and � 2 L2.P/ be Fa
measurable. Then � � 1Œa;b/ 2 L2T and

Z T

0

� � 1Œa;b/.s/ dBs D � � .Bb � Ba/:

Proof. Clearly, Œ.�k/ _ � ^ k�1Œa;b/ 2 ET for every k � 1. Dominated convergence
yields

E




Z T

0

ˇ

ˇ.�k/_ � ^ k � �ˇˇ21Œa;b/.s/ ds

�

D .b � a/E
�

ˇ

ˇ.�k/_ � ^ k � �ˇˇ2	 ���!
k!1

0;

i. e. � � 1Œa;b/ 2 L2T . By the definition of the Itô integral we find

Z T

0

� � 1Œa;b/.s/ dBs D L2.P/- lim
k!1

Z T

0

�

.�k/ _ � ^ k�1Œa;b/.s/ dBs
D L2.P/- lim

k!1
�

.�k/ _ � ^ k�.Bb � Ba/
D � � .Bb � Ba/:

Let us now discuss an example that shows how to calculate a stochastic integral
explicitly.

14.15 Example. Let .Bt/t�0 be a BM1 and T > 0. ThenEx. 14.10

Z T

0

Bt dBt D 1

2
.B2T � T /: (14.22)

As a by-product of our proof we will see that .Bt/t�T 2 L2T . Note that (14.22)
differs from what we expect from calculus. If u.t/ is differentiable and u.0/ D 0, we
get

Z T

0

u.t/ du.t/ D
Z T

0

u.t/u0.t/ dt D 1

2
u2.t/

ˇ

ˇ

ˇ

T

tD0
D 1

2
u2.T /;

i. e. we would expect 1
2
B2T rather than 1

2
.B2T � T /. On the other hand, the stochastic

integral must be a martingale, see Theorem 14.13 a); and the correction ‘�T ’ turns the
submartingale B2T into a bone fide martingale.

Let us now verify (14.22). Pick any partition … D ¹0 D s0 < s1 < � � � < sn D T º
with mesh j…j D max1�j�n.sj � sj�1/ and set

f ….t; !/ WD
n
X

jD1
B.sj�1; !/1Œsj �1;sj /.t/:
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Applying Lemma 14.14 n times, we get

f … 2 L2T and
Z T

0

f ….t/ dBt D
n
X

jD1
B.sj�1/.B.sj / � B.sj�1//:

Observe that

E




Z T

0

jf ….t/ � B.t/j2 dt

�

D
n
X

jD1
E




Z sj

sj �1

jB.sj�1/ � B.t/j2 dt

�

D
n
X

jD1

Z sj

sj �1

E
�jB.sj�1/ � B.t/j2	 dt

D
n
X

jD1

Z sj

sj �1

.t � sj�1/ dt

D 1

2

n
X

jD1
.sj � sj�1/2 ����!

j…j!0
0:

Since L2T is by definition closed (w. r. t. the norm in L2.�T ˝ P/), we conclude that
.Bt /t�T 2 L2T . By Itô’s isometry (14.20)

E


�

Z T

0

.f ….t/ � Bt / dBt
�2�

D E




Z T

0

jf ….t/ � B.t/j2 dt

�

D 1

2

n
X

jD1
.sj � sj�1/2 ����!

j…j!0
0:

Therefore,
Z T

0

Bt dBt D L2.P/- lim
j…j!0

n
X

jD1
B.sj�1/.B.sj / � B.sj�1//;

i. e. we can approximate the stochastic integral in a concrete way by Riemann–Stieltjes
sums. Finally,

B2T D
n
X

jD1
.Bsj � Bsj �1

/2 C 2

n
X

jD1

j�1
X

kD1
.Bsj � Bsj �1

/.Bsk
� Bsk�1

/

D
n
X

jD1
.Bsj � Bsj �1

/2

„ ƒ‚ …

!T; j…j!0; Thm. 9.1

C2
n
X

jD1
.Bsj � Bsj �1

/Bsj �1

„ ƒ‚ …

!R T

0 Bt dBt ; j…j!0

in L2.P/ and, therefore, B2T � T D 2
R T

0
Bt dBt .
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In the calculation of Example 14.15 we used (implicitly) the following result which
is interesting on its own.

14.16 Proposition. Let f 2 L2T be a process which is, as a function of t , mean-squareEx. 14.12
continuous, i. e.

lim
Œ0;T �3s!t

E
�jf .s; � / � f .t; � /j2	 D 0; t 2 Œ0; T �:

Then
Z T

0

f .t/ dBt D L2.P/- lim
j…j!0

n
X

jD1
f .sj�1/.Bsj � Bsj �1

/

holds for any sequence of partitions … D ¹s0 D 0 < s1 < � � � < sn D T º with mesh
j…j ! 0.

Proof. As in Example 14.15 we consider the following discretization of the inte-
grand f

f ….t; !/ WD
n
X

jD1
f .sj�1; !/1Œsj �1;sj /.t/:

Since f .t/ 2 L2.P/, we can use Lemma 14.14 to see f … 2 L2. By Itô’s isometry,

E




ˇ

ˇ

ˇ

ˇ

Z T

0

Œf .t/ � f ….t/� dBt
ˇ

ˇ

ˇ

ˇ

2�

D
Z T

0

E
�

ˇ

ˇf .t/ � f ….t/ˇˇ2	dt

D
n
X

jD1

Z sj

sj �1

E
�jf .t/ � f .sj�1/j2

	

dt

�
n
X

jD1

Z sj

sj �1

sup
u;v2Œsj �1;sj �

E
�jf .u/ � f .v/j2	

„ ƒ‚ …

!0; j…j!0

dt ����!
j…j!0

0:

Combining this with Lemma 14.14 finally gives

n
X

jD1
f .sj�1/ � �Bsj � Bsj �1

� D
Z T

0

f ….t/ dBt
L2.P/����!
j…j!0

Z T

0

f .t/ dBt :
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14.5 What is the closure of EEET ?

Let us now see how big L2T D ET really is. For this we need some preparations

14.17 Definition. Let .Bt /t�0 be a BM1 and .Ft /t�0 an admissible filtration. The Ex. 14.14
Ex. 14.15progressive � -algebra P is the family of all sets  � Œ0; T � �	 such that

 \ .Œ0; t � �	/ 2 BŒ0; t �˝ Ft for all t � T: (14.23)

By L2P.�T ˝ P/ we denote those equivalence classes in L2.Œ0; T � � 	;� ˝ P/ Ex. 14.16
which have a P measurable representative.

In Lemma 6.24 we have already seen that Brownian motion itself is P measurable.

14.18 Lemma. Let T > 0. Then
�

L2P.�T ˝ P/; k � kL2.�T ˝P/

�

is a Hilbert space.

Proof. By definition, L2P.�T ˝ P/ � L2.�T ˝ P/ is a subspace and L2.�T ˝ P/

is a Hilbert space for the norm k � kL2.�T ˝P/. It is, therefore, enough to show that
for any sequence .fn/n�0 � L2P.�T ˝ P/ such that L2.�T ˝ P/-limn!1 fn D f ,
the limit f has a P measurable representative. We may assume that the processes fn
are P measurable. Since fn converges in L2, there exists a subsequence .fn.j //j�1
such that limj!1 fn.j / D f �˝ P almost everywhere. Therefore, the upper limit

�.t; !/ WD limj!1 fn.j /.t; !/ is a P measurable representative of f .

Our aim is to show that L2T D L2P.�T ˝P/. For this we need a simple deterministic
lemma. As before we set L2.�T / D L2.Œ0; T �;BŒ0; T �; �/.

14.19 Lemma. Let � 2 L2.�T / and T > 0. Then

‚nŒ��.t/ WD
n�1
X

jD1
�j�11Œtj �1;tj /.t/ (14.24)

where

tj D jT

n
; j D 0; : : : ; n; �0 D 0 and �j�1 D n

T

Z tj �1

tj �2

�.s/ ds; j � 2;

is a sequence of step functions with L2.�T /-limn!1‚nŒ�� D �.

Proof. If � is a step function, it has only finitely many jumps, say �1 < �2 < � � � < �m,
and set �0 WD 0. Choose n so large that in each interval Œtj�1; tj / there is at most one
jump �k . From the definition of‚nŒ�� it is easy to see that � and ‚nŒ�� differ exactly
in the first, the last and in those intervals Œtj�1; tj / which contain some �k or whose
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predecessor Œtj�2; tj�1/ contains some �k. Formally,

�.t/ D ‚nŒ��.t/ for all t …
m
[

jD0

�

�j � T
n
; �j C 2T

n

� [ �

0; T
n

� [ �

n�1
n
T; T

	

:

This is shown in Figure 14.1.

t1 σ1 σ2 tn−1 T

φ

Θn[φ]

Figure 14.1. Approximation of a simple function by a left-continuous simple function.

Therefore, limn!1‚nŒ�� D � Lebesgue almost everywhere and in L2.�T /.
Since the step functions are dense in L2.�T /, we get for every � 2 L2.�T / a se-

quence of step functions L2.�T /-limk!1 �k D �. Now let ‚nŒ�� and ‚nŒ�k� be the
step functions defined in (14.24). Then ‚nŒ � � is a contraction,

Z T

0

j‚nŒ��.s/j2 ds D
n�1
X

jD1
�2j�1.tj � tj�1/

D
n�1
X

jD2
.tj � tj�1/




1

tj�1 � tj�2

Z tj �1

tj �2

�.s/ ds

�2

Jensen
�

n�1
X

jD2

tj � tj�1
tj�1 � tj�2
„ ƒ‚ …

D1

Z tj �1

tj �2

j�.s/j2 ds

�
Z T

0

j�.s/j2 ds;
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and, by the triangle inequality and the contractivity of ‚nŒ � �,

k� �‚nŒ��kL2 � k� � �kkL2 C k�k �‚nŒ�k�kL2 C k‚nŒ�k� �‚nŒ��kL2

D k� � �kkL2 C k�k �‚nŒ�k�kL2 C k‚nŒ�k � ��kL2

� k� � �kkL2 C k�k �‚nŒ�k�kL2 C k�k � �kL2 :

Letting n ! 1 (with k fixed) we get limn!1 k� �‚nŒ��kL2 � 2k�k � �kL2 ; now
k ! 1 shows that the whole expression tends to zero.

14.20 Theorem. The L2.�T ˝ P/ closure of ET is L2P.�T ˝ P/.

Proof. Write L2T D ET . Obviously, ET � L2P.�T ˝ P/. By Lemma 14.18, the set
L2P.�T ˝ P/ is closed under the norm k � kL2

T
, thus ET D L2T � L2P.�T ˝ P/. All

that remains to be shown is L2P.�T ˝ P/ � L2T .
Let f .t; !/ be (the predictable representative of) a process inL2P.�T ˝P/. By dom-

inated convergence we see that the truncated process fC WD �C _ f ^ C converges
in L2.�T ˝ P/ to f as C ! 1. Therefore, we can assume that f is bounded.

Define for every ! an elementary process ‚nŒf �.t; !/, where ‚n is as in Lem-
ma 14.19, i. e.

�j�1.!/ WD
´

n
T

R tj �1

tj �2
f .s; !/ ds; if the integral exists

0; else:

Note that the set of ! for which the integral does not exist is an Ftj �1
measurable null

set, since f . � ; !/ is P measurable and

E




Z tj �1

tj �2

jf .s; � /j2 ds

�

� E




Z T

0

jf .s; � /j2 ds

�

< 1; j � 2:

Thus, ‚nŒf � 2 ET . By the proof of Lemma 14.19, we have for P almost all !

Z T

0

j‚nŒf �.t; !/j2 dt �
Z T

0

jf .t; !/j2 dt; (14.25)

Z T

0

j‚nŒf �.t; !/ � f .t; !/j2 dt ���!
n!1 0: (14.26)

If we take expectations in (14.26), we get by dominated convergence – the majorant is
guaranteed by (14.25) – that L2.�T ˝ P/-limn!1‚nŒf � D f , thus f 2 L2T .
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14.6 The stochastic integral for martingales

Up to now we have defined the stochastic integral with respect to a Brownian motion
and for integrands in the closure of the simple processes L2T D ET . For f 2 ET ,
we can define the stochastic integral for any continuous L2 martingale M 2 M2;c

T ,
cf. Definition 14.6; only in the completion procedure, see Section 14.3, we used that
.B2t � t;Ft /t�T is a martingale, that is hBit D t . If we assume2 that .Mt ;Ft /t�T is a
continuous square-integrable martingale such that

.M 2
t � At ;Ft/t�T is a martingale for some

adapted, continuous and increasing process .At/t�T
(�)

then we can define f �M for f from a suitable completion of ET .
As before, .Ft /t�T is a complete filtration. Unless otherwise stated, we assume that

all processes are adapted to this filtration and that all martingales are martingales w. r. t.
this filtration. Let M 2 M2;c

T be such that (�) holds and 0 D t0 < t1 < � � � < tn D T

be any partition of Œ0; T �. Then .Mtj /j is a martingale and (�) shows, because of the
uniqueness of the Doob decomposition, that Atj D hM itj . This allows us to use the
proof of Theorem 14.8 c) and to see that the following Itô isometry holds for all simple
processes f 2 ET :

kf �MT k2L2.P/ D E
�

.f �M/2T
	 D E




Z T

0

jf .s/j2 dAs
�

DW kf k2L2.�T ˝P/: (14.27)

For fixed ! we denote by �T .!; ds/ D dAs.!/ the measure on Œ0; T � induced by the
increasing function s 7! As.!/, i. e.�T .!; Œs; t // D At .!/�As.!/ for all s � t � T .

This observation allows us to follow the procedure set out in Section 14.3 to define
a stochastic integral for continuous square-integrable martingales.

14.21 Definition. Let M 2 M2;c
T satisfying (�) and set L2T .M/ WD ET where the

closure is taken in the space L2.�T ˝P/. Then the stochastic integral (or Itô integral)
is defined as

f �Mt D
Z t

0

f .s/ dMs WD L2.P/- lim
n!1 fn �Mt ; 0 � t � T; (14.28)

where .fn/n�1 � ET is any sequence which approximates f 2 L2T .M/ in the
L2.�T ˝ P/-norm.

Exactly the same arguments as in Section 14.3 can be used to show the analogue of
Theorem 14.13.

2 In fact, every martingaleM 2M2;c
T satisfies (�), see Section A.6 in the appendix.
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14.22 Theorem. Let .Mt ;Ft /t�T be inM2;c
T satisfying (�), write �T for the measure Ex. 14.17

induced by the increasing processAs , and let f 2 L2T .M/. Then we have for all t � T

a) f 7! f �M is a linear map fromL2T .M/ intoM2;c
T , i. e. .f �Mt /t�T is a continuous

L2 martingale;

b) .f �M/2 � f �A is a martingale where f �At WD R t

0
jf .s/j2 dAs; in particular

E
��

f �Mt � f �Ms

�2 ˇ
ˇFs

	 D E




Z t

s

jf .r/j2 dAr
ˇ

ˇ

ˇ

Fs

�

; s < t � T: (14.29)

c) Itô’s isometry.

kf �MT k2L2.P/ D E
�

.f �M/2T
	 D E




Z T

0

jf .s/j2 dAs
�

D kf k2L2.�T ˝P/:

(14.30)

d) Maximal inequalities.

E




Z T

0

jf .s/j2 dAs
�

� E




sup
t�T

�

Z t

0

f .s/ dMs

�2�

� 4E




Z T

0

jf .s/j2 dAs
�

:

(14.31)

e) Localization in time. Let � be an Ft stopping time. Then

.f �M/�t D f � .M � /t D .f 1Œ0;�// �Mt for all t � T:

f) Localization in space. If f; g 2 L2T .M/ are such that f .s; !/ D g.s; !/ for all
.s; !/ 2 Œ0; t � � F for some t � T and F 2 F1, then

.f �Ms/1F D .g �Ms/1F ; 0 � s � t:

The characterization ofET , see Section 14.5, relies on a deterministic approximation
result, Lemma 14.19, and this remains valid in the general martingale setting.

14.23 Theorem. The L2.�T ˝ P/ closure of ET is L2P.�T ˝ P/, i. e. the family
of all equivalence classes in L2.�T ˝ P/ which have a progressively measurable
representative.

Sketch of the proof. Replace in Lemma 14.19 the measure �T by �T and the partition
points tj by the random times �j .!/ WD inf¹s � 0 W As.!/ > jT=nº ^ T , j � 1,
and �0.!/ D 0. The continuity of s 7! As ensures that A�

j
� A�

j �1
D T=n for all
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1 � j � bnAT =T c. Therefore, all arguments in the proof of Lemma 14.19 remain
valid. Moreover, ¹�j � tº D ¹At > jT=nº 2 Ft , i. e. the �j are stopping times.

Since L2P.�T ˝ P/ is closed (Lemma 14.18), the inclusion ET � L2P.�T ˝ P/ is
clear. For the other direction we can argue as in Theorem 14.20 and see that every
f 2 L2P.�T ˝ P/ can be approximated by a sequence of random step functions of the
form

1
X

jD1
�j�1.!/1Œ�

j �1
.!/;�

j
.!//.t/; �j�1 is F�

j �1
mble; j�j�1j � C:

We are done if we can show that any process �.!/1Œ�.!/;�.!//.t/, where � � � are
stopping times and � is a bounded and F� measurable random variable, can be approx-
imated in L2.�T ˝ P/ by a sequence from ET .

Set �m WD PmbT c
kD1

k
m

1Œ.k�1/=m;k=m/.�/C bmT c
m

1ŒbmT c=m;T �.�/ and define �m in the
same way. Then

�.!/1Œ�m.!/;�m.!//.t/ D
bmT c
X

kD1
�.!/1¹�< k�1

m ��º.!/1Œ k�1
m ; k

m/
.t/

C �.!/1¹�<
bmT c

m ��º.!/1Œ bmT c
m ;T�

.t/:

Because for all Borel sets B � R and k D 1; 2; : : : ; bmT c C 1

2F�
‚ …„ ƒ

¹� 2 Bº \¹� � .k � 1/=mº
„ ƒ‚ …

2F.k�1/=m

\¹.k � 1/=m < �º 2 F.k�1/=m;

we see that �.!/1Œ�m.!/;�m.!//.t/ is in ET . Finally,

E




Z T

0

ˇ

ˇ�1Œ�m;�m/.t/ � �1Œ�;�/.t/
ˇ

ˇ

2
dAt

�

� 2C 2 ŒE.A�m � A� /C E.A�m � A�/� ;

and this tends to zero as m ! 1.

14.24 Further reading. Most books consider stochastic integrals immediately for
continuous martingales. A particularly nice and quite elementary presentation is [111].
The approach of [156] is short and mathematically elegant. For discontinuous martin-
gales standard references are [80] who use a point-process perspective, and [151] who
starts out with semi-martingales as ‘good’ stochastic integrators. [109] and [110] con-
struct the stochastic integral using random orthogonal measures. This leads to a unified
treatment of Brownian motion and stationary processes.
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[80] Ikeda, Watanabe: Stochastic Differential Equations and Diffusion Processes.
[109] Krylov: Introduction to the Theory of Diffusion Processes.
[110] Krylov: Introduction to the Theory of Random Processes.
[111] Kunita: Stochastic Flows and Stochastic Differential Equations.
[151] Protter: Stochastic Integration and Differential Equations.
[156] Revuz, Yor: Continuous Martingales and Brownian Motion.

Problems

1. Let .Mn;Fn/n�0 and .Nn;Fn/n�0 be L2 martingales. Show that the process
.MnNn � hM;N in;Fn/n�0 is a martingale.

2. Let f 2 ET be a simple process and M 2 M2;c
T . Show that the definition of

the stochastic integral
R T

0
f .s/ dMs (cf. Definition 14.7) does not depend on the

particular representation of the simple process (14.10).

3. Show that kMkM2
T

WD �

E
�

sups�T jMsj2
	�1=2

is a norm in the family M2
T of

equivalence classes of L2 martingales (M and fM are equivalent if, and only if,
sup0�t�T jMt � fMt j D 0 a. s.).

4. Show that the limit (14.17) does not depend on the approximating sequence.

5. Let .Bt ;Ft /t�0 be a BM1 and � a stopping time. Find hB� it .
6. Let .Bt/t�0 be a BM1 and f; g 2 L2T . Show that

(a) E.f � Bt � g � Bt jFs/ D EŒ
R t

s
f .u; � /g.u; � / du j Fs� if f; g vanish on

Œ0; s�.
(b) E

�

f � Bt
ˇ

ˇFs
	 D 0 if f vanishes on Œ0; s�.

(c) f .t; !/ D 0 for all ! 2 A 2 FT and all t � T implies f � B.!/ D 0 for all
! 2 A.

7. Let .Bt /t�0 be a BM1 and .fn/n�1 a sequence in L2T such that fn ! f in
L2.�T ˝ P/. Then fn � B ! f � B inM2;c

T .

8. Use the fact that any continuous, square-integrable martingale with bounded vari-
ation paths is constant (cf. Theorem A.21) to show the following:
hf i � Bt WD R t

0
jf .s/j2 ds is the unique continuous and increasing process such

that .f � B/2 � f 2 � hBi is a martingale.

9. Let .Xn/n�0 be a sequence of r. v. in L2.P/. Show that L2-limn!1Xn D X

implies L1-limn!1X2
n D X2.

10. Let .Bt/t�0 be a BM1. Show that
R T

0
B2s dBs D 1

3
B3t � R T

0
Bs ds, T > 0.
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11. Let .Bt /t�0 be a BM1 and f 2 BVŒ0; T �, T < 1, a non-random function. Prove

that
R T

0
f .s/ dBs D f .T /BT � R T

0
Bs df .s/ (the latter integral is understood as

the mean-square limit of Riemann–Stieltjes sums). Conclude from this that the Itô
integral extends the Paley–Wiener–Zygmund integral, cf. Paragraph 12.1.

12. Adapt the proof of Proposition 14.16 and prove that we also have

lim
j…j!0

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

f .s/ dBs �
n
X

jD1
f .sj�1/.Bsj � Bsj �1

/

ˇ

ˇ

ˇ

ˇ

2�

D 0:

13. Let .Bt ;Ft/t�0 be a BM1, T < 1 and …n, n � 1, a sequence of partitions of
Œ0; T �: 0 D tn;0 < tn;1 < � � � < tn;k.n/ D T . Assume that limn!1 j…nj D 0

and define intermediate points �˛
n;k

WD tn;k C ˛.tn;kC1 � tn;k/ for some fixed
0 � ˛ � 1. Show that the Riemann–Stieltjes sums

k.n/�1
X

kD1
B.�˛n;k/

�

B.tn;kC1/ � B.tn;k/
�

converge in L2.P/. Determine the limit LT .˛/. For which values of ˛ is Lt .˛/,
0 � t � T a martingale?

14. Let .Bt /t�0 be a BM1 and � a stopping time. Show that f .s; !/ WD1Œ0;T �̂.!//.s/,
0 � s � T < 1 is progressively measurable. Use the very definition of the
Itô integral to calculate

R T

0
f .s/ dBs and compare the result with the localization

principle of Theorem 14.13.

15. Show that

P D ®

 W  � Œ0; T � �	;  \ .Œ0; t � �	/ 2 BŒ0; t �˝ Ft for all t � T
¯

is a � -algebra.

16. Show that every right- or left-continuous adapted process is P measurable.

17. Show that the process f � At WD R t

0
jf .s/j2 dAs appearing in Theorem 14.22 b)

is adapted.



Chapter 15

Stochastic integrals: beyondLLL2
T

Let .Bt /t�0 be a one-dimensional Brownian motion andFt an admissible, right-contin-

uous complete filtration, e. g. Ft D FBt , cf. Theorem 6.21. We have seen in Chapter 14
that the Itô integral

R T

0
f .s/ dBs exists for all integrands f 2 L2T D L2P.�T ˝ P/,

i. e. for all stochastic processes f which have a representative which is Pmeasurable,
cf. Definition 14.17, and satisfy

E




Z T

0

jf .s; � /j2 ds

�

< 1: (15.1)

It is possible to weaken (15.1) and to extend the family of possible integrands.

15.1 Definition. We say that f 2 L2T;loc, if there exists a sequence .�n/n�0 of Ft
stopping times such that �n " 1 a. s. and f 1Œ0;�n/ 2 L2T for all n � 0. The sequence
.�n/n�0 is called a localizing sequence.

The family L0T consists of all P measurable processes f such that

Z T

0

jf .s; � /j2 ds < 1 a. s. (15.2)

15.2 Lemma. Let f 2 L2T . Then
R t

0
jf .s; � /j2 ds is Ft measurable for all t � T . Ex. 15.1

Proof. By definition, L2T D ET , see also Theorem 14.20, i. e. there is a sequence
.fn/n�0 � ET which converges to f inL2.�T ˝P/. In particular, for every t 2 Œ0; T �
there is a subsequence .fn.j //j�1 such that

lim
j!1

Z t

0

jfn.j /.s; � /j2 ds D
Z t

0

jf .s; � /j2 ds a. s.

It is, therefore, enough to prove that
R t

0
jf .s; � /j2 ds is Ft measurable for f 2 ET . This

is obvious, since elementary processes are of the form (14.11): We have

Z t

0

jf .s; � /j2 ds D
N
X

jD1
jf .sj�1; � /j2.sj � sj�1/

and all terms under the sum are Ft measurable.
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15.3 Lemma. L2T � L0T � L2T;loc.

Proof. Since a square-integrable random variable is a. s. finite, the first inclusion is
clear.

To see the other inclusion, we assume that f 2 L0T and define

�n D inf

²

t � T W
Z t

0

jf .s; � /j2 ds > n

³

; n � 1; (15.3)

.inf ; D 1/. Clearly, �n " 1. Moreover,

�n.!/ > t ()
Z t

0

jf .s; !/j2 ds � n:

By Lemma 15.2, the integral is Ft measurable; thus, ¹�n � tº D ¹�n > tºc 2 Ft . This
means that �n is a stopping time.

Note that f 1Œ0;�n/ is P measurable since it is the product of two P measurableEx. 14.14
Ex. 15.1 random variables. From

E




Z T

0

ˇ

ˇf .s/1Œ0;�n/.s/
ˇ

ˇ

2
ds

�

D E




Z �n

0

jf .s/j2 ds

�

� E n D n;

we conclude that f 1Œ0;�n/ 2 L2T .

15.4 Lemma. Let f 2 L2T;loc and set fn WD f 1Œ0;�n/ for a localizing sequence .�n/n�0.
Then

.fn � B/�m

t D fm � Bt for all m � n and t � �m:

Proof. Using Theorem 14.13 e) for fn; fm 2 L2T we get for all t � �m

.fn � B/�m

t D .fn1Œ0;�m// � Bt D .f 1Œ0;�n/1Œ0;�m// � Bt D .f 1Œ0;�m// � Bt
D fm � Bt :

Lemma 15.4 allows us to define the stochastic integral for integrands in L2T;loc.

15.5 Definition. Let f 2 L2T;loc with localizing sequence .�n/n�0. Then

f � Bt .!/ WD .f 1Œ0;�n// � Bt.!/ for all t � �n.!/ (15.4)

is called the (extended) stochastic integral or (extended) Itô integral. We also write
R t

0
f .s/ dBs WD f � Bt .

Lemma 15.4 guarantees that this definition is consistent and independent of the lo-
calizing sequence: Indeed for any two localizing sequences .�n/n�0 and .�n/n�0 we
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see easily that �n WD �n ^ �n is again such a sequence and then the telescoping argu-
ment of Lemma 15.4 applies.

We can also localize the notion of a martingale.

15.6 Definition. A local martingale is an adapted right-continuous process
.Mt ;Ft /t�T for which there exists a localizing sequence .�n/n�0 such that, for ev-
ery n � 0, .M �n

t 1¹�n>0º;Ft /t�T is a martingale.
We denote by Mc

T;loc the continuous local martingales and by M2;c
T;loc those local

martingales where M �n 1¹�n>0º 2M2;c
T .

Let us briefly review the properties of the extended stochastic integral. The follow-
ing theorem should be compared with its L2T analogue, Theorem 14.13

15.7 Theorem. Let .Bt /t�0 be a BM1, .Ft /t�0 an admissible filtration and f 2 L2T;loc.
Then we have for all t � T

a) f 7! f �B is a linear map from L2T;loc toM2;c
T;loc, i. e. .f �Bt /t�T is a continuous

local L2 martingale;

b) .f � B/2 � hf � Bi is a local martingale where

hf � Bit WD f 2 � hBit D
Z t

0

jf .s/j2 dsI

c) hno equivalent of Itô’s isometryi
d) P.

R T

0
f .s/ dBs > �/ � C


2 C P.
R T

0
jf .s/j2 ds > C/ for all � > 0; C > 0:

e) Localization in time. Let � be a Ft stopping time. Then

.f � B/�t D f � .B� /t D .f 1Œ0;�// � Bt for all t � T:

f) Localization in space. If f; g 2 L2T;loc are such that f .s; !/ D g.s; !/ for all
.s; !/ 2 Œ0; t � � F for some t � T and F 2 F1, then

.f � Bs/1F D .g � Bs/1F ; 0 � s � t:
Proof. Throughout the proof we fix some localizing sequence .�n/n�1.

We begin with the assertion e). By the definition of the extended Itô integral and
Theorem 14.13 e) we have for all n � 1

..f 1Œ0;�n// � B/� D .f 1Œ0;�n/1Œ0;�// � B
„ ƒ‚ …

D..f 1Œ0;�//1Œ0;�n//�B
D .f 1Œ0;�n// � .B� /:

Now a) follows directly from its counterpart in Theorem 14.13. To see b), we note
that by Theorem 14.13 b), applied to f 1Œ0;�n/, .f � B�n/2 � R �n^�

0
jf .s/j2 ds, is a

martingale for each n � 1.
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For d) we define � WD inf¹t � T W R t
0

jf .s; � /j2 ds > C º. As in Lemma 15.3 we
see that � is a stopping time. Therefore we get by e)

P
�

f � BT > �
� D P

�

f � BT > �; T < �
�C P

�

f � BT > �; T � �
�

e)
� P

�

.f 1Œ0;�// � BT > �
�C P

�

T � �
�

� 1

�2
E
h

ˇ

ˇ.f 1Œ0;�// � BT
ˇ

ˇ

2
i

C P

�

Z T

0

jf .s/j2 ds > C

�

D 1

�2
E




Z T^�

0

jf .s/j2 ds

�

C P

�

Z T

0

jf .s/j2 ds > C

�

� C

�2
C P

�

Z T

0

jf .s/j2 ds > C

�

;

and d) follows.
Let f; g 2 L2T;loc with localizing sequences .�n/n�0 and .�n/n�0, respectively. Then

�n ^ �n localizes both f and g, and by Theorem 14.13 f),

.f 1Œ0;�n^�n/
/ � B1A D .g1Œ0;�n^�n/

/ � B1A for all n � 0:

Because of the definition of the extended Itô integral this is just f).

For the extended Itô integral we also have a Riemann–Stieltjes-type approximation,
cf. Proposition 14.16.

15.8 Theorem. Let f be an Ft adapted right-continuous process with left limits. Then
f 2 L2T;loc.

For every sequence .…k/k�1 of partitions of Œ0; T � such that limk!1 j…kj D 0, the
Riemann–Stieltjes sums

Y …k

t WD
X

sj �1;sj 2…k

f .sj /
�

Bsj C1^t � Bsj ^t
�

converge uniformly (on compact t -sets) in probability to f � Bt , t � T :

lim
k!1

P

�

sup
0�t�T

ˇ

ˇ

ˇ

ˇ

Y
…k

t �
Z t

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

> �

�

D 0 for all � > 0: (15.5)
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Proof. Let f …k .t/ WD P

sj �1;sj 2…k
f .sj�1/1Œsj �1;sj /.t/. From Lemma 14.14 we infer

that f …k 2 L2T;loc and Y …k

t D f …k � Bt .
Since f is right-continuous with left limits, it is bounded on compact t -sets. There-

fore

�n WD inf
®

s � 0 W jf .s/j2 > n¯ ^ n
is a sequence of finite stopping times with �n " 1 a. s. Moreover,

E




Z �n^T

0

jf .s/j2 ds

�

� E




Z �n^T

0

n ds

�

� E




Z T

0

n ds

�

� T n;

i. e. �n is also a localizing sequence for the stochastic integral. Therefore, by The-
orem 15.7 a) and e) and Theorem 14.13 c) and d),

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Y
…k

t^�n

�
Z t^�n

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

2�

D E
�

sup
t�T

ˇ

ˇ.f …k � f / � Bt^�n

ˇ

ˇ

2 	

(14.21)
� 4E

�

ˇ

ˇ.f …k � f / � BT^�n

ˇ

ˇ

2 	

(14.20)D 4E




Z �n^T

0

jf …k .s/ � f .s/j2 ds

�

:

For 0 � s � �n ^ T the integrand is bounded by 4n and converges, as k ! 1, to 0.
By dominated convergence we see that the integral tends to 0 as k ! 1. Finally, f
is right-continuous with finite left-hand limits and, therefore, the set of discontinuity
points ¹s 2 Œ0; T � W f .!; s/ ¤ f .!; s�/º is a Lebesgue null set.

Since limn!1 �n D 1 a. s., we see that

8 ı > 0 9Nı 8n � Nı W P.�n < T / < ı:

Thus, by Chebyshev’s inequality, Theorem 15.7 e) and the above calculation

P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Y …k

t �
Z t

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

> �

�

� P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Y
…k

t �
Z t

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

> �; �n � T
�

C P.�n < T /

� P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Y
…k

t^�n

�
Z t^�n

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

> �

�

C P.�n < T /

�
4

�2
E




Z T^�n

0

jf …k .s/ � f .s/j2 ds

�

C ı ���!
k!1

ı ���!
ı!0

0:
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15.9 Further reading. Localized stochastic integrals are covered by most of the books
mentioned in the Further reading section of Chapter 14. Theorem 15.8 has variants
where the driving noise is an approximation of Brownian motion. Such Wong–Zakai
results are important for practitioners. A good source are the original papers [190]
and [79].

[79] Ikeda, Nakao, Yamato: A class of approximations of Brownian motion.
[190] Wong, Zakai: Riemann–Stieltjes approximations of stochastic integrals.

Problems

1. Show that the subsequence in the proof of Lemma 15.2 can be chosen independently
of t 2 Œ0; T �.

2. Let � be a stopping time. Show that 1Œ0;�/ is P measurable.

3. If �n is localizing for a local martingale, so is �n WD �n ^ n.
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Itô’s formula

An important consequence of the fundamental theorem of integral and differential cal-
culus is the fact every differentiation rule has an integration counterpart. Consider, for
example, the chain rule

.f ı g/0.t/ D f 0.g.t// � g0.t/ or f .g.t// � f .g.0// D
Z t

0

f 0.g.s// � g0.s/ ds

which is just the substitution rule for integrals. When dealing with differential equa-
tions it is often useful to rewrite the chain rule in differential form as

d.f ı g/ D f 0 ı g � dg:
Let .Bt /t�0 be a BM1 and .Ft /t�0 an admissible, right-continuous complete fil-

tration, e. g. Ft D FBt , cf. Theorem 6.21. Itô’s formula is the stochastic counterpart
of the chain rule; it is also known as the change-of-variable-formula or Itô’s Lemma.
The unbounded variation of Brownian sample paths leaves, again, its traces: The chain
rule has a correction term involving the quadratic variation of .Bt/t�0 and the second
derivative of the function f . Here is the statement of the basic result.

16.1 Theorem (Itô 1942). Let .Bt /t�0 be a BM1 and let f W R ! R be a C2-function.
Then we have for all t � 0 almost surely

f .Bt / � f .B0/ D
Z t

0

f 0.Bs/ dBs C 1

2

Z t

0

f 00.Bs/ ds: (16.1)

Before we prove Theorem 16.1, we need to discuss Itô processes and Itô differ-
entials.

16.1 Itô processes and stochastic differentials

Let T 2 Œ0;1�. Stochastic processes of the form

Xt D X0 C
Z t

0

�.s/ dBs C
Z t

0

b.s/ ds; t < T; (16.2)
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are called Itô processes. If the integrands satisfy � 2 L2T;loc and, almost surely,
b. � ; !/ 2 L1.Œ0; T �; ds/ (or b. � ; !/ 2 L1loc.Œ0;1/; ds/ if T D 1) then all integrals
in (16.2) make sense. Roughly speaking, an Itô process is locally a Brownian motion
with standard deviation �.s; !/ plus a drift with mean value b.s; !/. Note that these
parameters change infinitesimally over time.

In dimensions other than d D 1, the stochastic integral is defined for each coordinate
and we can read (16.2) as matrix and vector equality, i. e.

X
j
t D X

j
0 C

d
X

kD1

Z t

0

�jk.s/ dB
k
s C

Z t

0

bj .s/ ds; t < T; j D 1; : : : ; m; (16.3)

where Xt D .X1
t ; : : : ; X

m
t /

>, Bt D .B1t ; : : : ; B
d
t /

> is a d -dimensional Brownian
motion, �.t; !/ D .�jk.t; !//jk 2 Rm�d is a matrix-valued stochastic process and
b.t; !/ D .b1.t; !/; : : : ; bm.t; !//

> 2 Rm is a vector-valued stochastic process; the
coordinate processes �jk and bj are chosen in such a way that all (stochastic) integrals
in (16.3) are defined.

16.2 Definition. Let .Bt/t�0 be a BMd , .�t/t�0 and .bt/t�0 be two progressively
measurable Rm�d and Rm-valued locally bounded processes. Then

Xt D X0 C
Z t

0

�s dBs C
Z t

0

bs ds; t � 0;

is an m-dimensional Itô process.

16.3 Remark.

a) If we know that � and b are locally bounded, i. e. there is some 	0 � 	 with
P.	0/ D 1 and

max
j;k

sup
t�T

j�jk.t; !/j C max
j

sup
t�T

jbj .t; !/j < 1 for all T > 0; ! 2 	0;

then bj . � ; !/ 2 L1.Œ0; T �; dt/, T > 0, almost surely; moreover, the stopping

times �n.!/ WD minj;k inf
°

t � 0 W R t
0

j�jk.s; !/j2 ds > n
±

satisfy �n " 1 almost
surely, i. e.

E




Z �n^T

0

j�jk.s; � /j2 ds

�

� n

which proves that �jk 2 L2T;loc for all T > 0.
b) From Chapter 15 we know that Xt D Mt CAt whereMt is a (vector-valued) con-

tinuous local martingale and the coordinates of the continuous process At satisfy

jAjt .!/ � Ajs .!/j �
Z t

s

jbj .s; !/j ds � CT .!/.t � s/ for all s; t < T;

i. e. At is locally of bounded variation.
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It is convenient to rewrite (16.2) in differential form, i. e. as

dXt.!/ D �.t; !/ dBt.!/C b.t; !/ dt (16.4)

where we use again, if appropriate, vector and matrix notation.
In this new notation, Example 14.15 reads

.Bt/
2 D 2

Z t

0

Bs dBs C t; hence, d.Bt/
2 D 2Bt dBt C dt

and we see that this is a special case of Itô’s formula (16.1),

df .Bt / D f 0.Bt/ dBt C 1

2
f 00.Bt / dt;

if we set f .x/ D x2.

16.2 The heuristics behind Itô’s formula

Let us give an intuitive argument why stochastic calculus differs from the usual calcu-
lus. Note that

�Bt D p
�t

BtC�t � Btp
�t

D p
�t G and .�Bt/

2 D �t G2

where G � N.0; 1/ is a standard normal random variable. Since E jGj D p

2=
 and
EG2 D 1, we get from �t ! 0

jdBt j 

r

2



dt and .dBt /

2 
 dt:

This means that Itô’s formula is essentially a second-order Taylor formula while
in ordinary calculus we only go up to order one. Terms of higher order, for example
.dBt /

3 
 .dt/3=2 and dtdBt 
 .dt/3=2, do not give any contributions since integrals
against .dt/3=2 correspond to an integral sum with .�t/�1 many terms which are all of
the order .�t/3=2 – and such a sum tends to zero as �t ! 0. The same argument also
explains why we do not have terms of second order, i. e. .dt/2, in ordinary calculus.

In Section 16.5 we consider Itô’s formula for a d -dimensional Brownian mo-
tion. Then we will encounter differentials of the form dt dBkt and dBjt dB

k
t . Clearly,

dt dBkt 
 .dt/3=2 is negligible, while for j ¤ k

.B
j
tC�t � Bjt /.BktC�t � Bkt / D �t

.B
j
tC�t � Bjt /p

�t

.BktC�t � Bkt /p
�t

� �t G G 0
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whereG andG0 are two independent standard normal N.0; 1/ distributed random vari-
ables. Since we have E.GG 0/ D EG EG 0 D 0 and .dBjt /

2 
 dt, we get, as�t ! 0,

dB
j
t dB

k
t 
 ıjk dt;

with Kronecker’s delta: ıjk D 0 if j ¤ k and ıjk D 1 if j D k. This can be nicely
summed up in a multiplication table.

Table 16.1. Multiplication table for stochastic differentials.

j ¤ k dt dB
j
t dBkt

dt 0 0 0

dB
j
t 0 dt 0

dBkt 0 0 dt

16.3 Proof of Itô’s formula (Theorem 16.1)

1o Let us first assume that supp f � Œ�K;K� is compact. Then

Cf WD kf k1 C kf 0k1 C kf 00k1 < 1:

For any… WD ¹t0 D 0 < t1 < � � � < tn D tº with mesh j…j D maxj .tj � tj�1/ we get
by Taylor’s theorem

f .Bt / � f .B0/ D
n
X

jD1

�

f .Btj / � f .Btj �1
/
�

D
n
X

jD1
f 0.Btj �1

/.Btj � Btj �1
/C 1

2

n
X

jD1
f 00.�j /.Btj � Btj �1

/2

DW J1 C 1

2
J2

with intermediate points

�j .!/ D Btj �1
.!/C �j .!/

�

Btj .!/ � Btj �1
.!/

�

for some �j .!/ 2 Œ0; 1�; note that f 00.�j .!// is measurable.

2o We claim that

J1 D
n
X

jD1
f 0.Btj �1

/.Btj � Btj �1
/
L2.P/����!
j…j!0

Z t

0

f 0.Bs/ dBs :
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By Proposition 14.16 (or Theorem 15.8) we may use a Riemann-sum approximation
of the stochastic integral provided that s 7! f 0.Bs/ is continuous in L2.P/-sense.
This, however, follows from kf 0k1 � Cf < 1 and the continuity of x 7! f 0.x/ and
s 7! Bs; for all sequences .sn/n�1 with sn ! s we have

lim
n

E
°

�

f 0.Bsn
/ � f 0.Bs/

�2
±

dom. convergence���������!
n!1 0:

3o For the second-order term we write

J2 WD J21 C J22

WD
n
X

jD1
f 00.Btj �1

/.Btj � Btj �1
/2 C

n
X

jD1

�

f 00.�j / � f 00.Btj �1
/
	�

Btj � Btj �1

�2
:

For the second term we have

jJ22j �
n
X

jD1

ˇ

ˇf 00.�j / � f 00.Btj �1
/
ˇ

ˇ

�

Btj � Btj �1

�2

� max
1�j�n

ˇ

ˇf 00.�j / � f 00.Btj �1
/
ˇ

ˇ

n
X

jD1

�

Btj � Btj �1

�2

„ ƒ‚ …

DS…
2 .BIt/ cf. (9.1)

:

Taking expectations and using the Cauchy-Schwarz inequality we get

E jJ22j �
r

E
�

max
1�j�n

ˇ

ˇf 00.�j / � f 00.Btj �1
/
ˇ

ˇ

2
�

r

E
�

.S…2 .BI t //2	:

By Theorem 9.1, L2.P/-limj…j!0 S
…
2 .BI t / D t ; since s 7! f 00.Bs/ is uniformly

continuous on Œ0; t � and bounded by kf 00k1 � Cf , we can use dominated convergence
to get

lim
j…j!0

E jJ22j D 0 � t D 0:

The first term, J21, converges to
R t

0
f 00.Bs/ ds. This follows from

E


�

J21 �
n
X

jD1
f 00.Btj �1

/.tj � tj�1/
�2�

D E


� n
X

jD1
f 00.Btj �1

/
�

.Btj � Btj �1
/2 � .tj � tj�1/

	

�2�

D E


 n
X

jD1

ˇ

ˇf 00.Btj �1
/
ˇ

ˇ

2�

.Btj � Btj �1
/2 � .tj � tj�1/

	2
�

:
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In the last equality only the pure squares survive when we multiply out the outer square.
This is due to the fact that .B2t � t /t�0 is a martingale: Indeed, if j < k, then we have
tj�1 < tj � tk�1 < tk . For brevity we write

f 00
j�1 WD f 00.Btj �1

/; �jB WD Btj � Btj �1
; �j t WD tj � tj�1:

By the tower property,

E
�

f 00
j�1

®

.�jB/
2 ��j t

¯

f 00
k�1

®

.�kB/
2 ��kt

¯

�

D E
�

E
h

f 00
j�1

®

.�jB/
2 ��j t

¯

f 00
k�1

®

.�kB/
2 ��kt

¯

ˇ

ˇ

ˇ

Ftk�1

i�

D E
�

f 00
j�1

®

.�jB/
2 ��j t

¯

f 00
k�1

„ ƒ‚ …

Ftk�1
measurable

� E
h

®

.�kB/
2 ��kt

¯

ˇ

ˇ

ˇ

Ftk�1

i

„ ƒ‚ …

D0 martingale, cf. 5.2 c)

�

D 0;

i. e. the mixed terms break away. From (the proof of) Theorem 9.1 we get

E


�

J21�
n
X

jD1
f 00.Btj �1

/.tj � tj�1/
�2�

D E


 n
X

jD1

ˇ

ˇf 00.Btj �1
/
ˇ

ˇ

2�

.Btj � Btj �1
/2 � .tj � tj�1/

	2
�

� kf 00k21 E


 n
X

jD1

�

.Btj � Btj �1
/2 � .tj � tj�1/

	2
�

� 2C 2f j…j
n
X

jD1
.tj � tj�1/ D 2C 2f j…j t ��������!

j…j!0
0:

4o So far we have shown (16.1) for functions f 2 C2 such that Cf < 1. For a
general f 2 C2 we fix ` � 0, pick a smooth cut-off function �` 2 C2c satisfying
1B.0;`/ � �` � 1B.0;`C1/ and set f`.x/ WD f .x/�`.x/. Clearly, Cf`

< 1, and
therefore

f`.Bt/ � f`.B0/ D
Z t

0

f 0
` .Bs/ dBs C 1

2

Z t

0

f 00
` .Bs/ ds:

Consider the stopping times

�.`/ WD inf¹s > 0 W jBsj � `º; ` � 1;
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and note that dj

dxj f`.Bs^�.`// D f .j /.Bs^�.`//, j D 0; 1; 2. Thus, Theorem 15.7 shows
for all t � 0

f .Bt^�.`// � f .B0/

D
Z t^�.`/

0

f 0
` .Bs/ dBs C 1

2

Z t^�.`/

0

f 00
` .Bs/ ds

15.7 e)D
Z t

0

f 0
` .Bs/1Œ0;�.`//.s/ dBs C 1

2

Z t

0

f 00
` .Bs/1Œ0;�.`//.s/ ds

D
Z t

0

f 0.Bs/1Œ0;�.`//.s/ dBs C 1

2

Z t

0

f 00.Bs/1Œ0;�.`//.s/ ds

15.7 e)D
Z t^�.`/

0

f 0.Bs/ dBs C 1

2

Z t^�.`/

0

f 00.Bs/ ds:

Since lim`!1 �.`/ D 1 almost surely – Brownian motion does not explode in finite
time – and since the (stochastic) integrals are continuous as functions of their upper
boundary, the proof of Theorem 16.1 is complete.

16.4 Itô’s formula for stochastic differentials

We will now derive Itô’s formula for one-dimensional Itô processes, i. e. processes of
the form

dXt D �.t/ dBt C b.t/ dt

where �; b are locally bounded (in t ) and progressively measurable. We have seen in
Remark 16.3 that under this assumption b 2 L1.Œ0; T �; dt/ and � 2 L2T;loc a. s. and
for all T > 0. We can even show that b 2 L2T;loc. Fix some common localization
sequence �n. Since ET D L2T we find, for every n, sequences of simple processes
.b…/…, .�…/… � ET such that

�…1Œ0;�n/

L2.�T ˝P/�������!
j…j!0

�1Œ0;�n/
and b…1Œ0;�n/

L2.�T ˝P/�������!
j…j!0

b1Œ0;�n/
:

Using a diagonal procedure we can achieve that the sequences .b…/…, .�…/… are in-
dependent of n.

16.4 Lemma. Let X…
t D R t

0
�….s/ dBs C R t

0
b….s/ ds. Then X…

t ! Xt uniformly in
probability as j…j ! 0, i. e. we have

lim
j…j!0

P
�

sup
t�T

ˇ

ˇX…
t �Xt

ˇ

ˇ > �
� D 0 for all � > 0; T > 0: (16.5)
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Proof. The argument is similar to the one used to prove Theorem 15.7 d). Let �n be
some localizing sequence and fix n � 0, T > 0 and � > 0. Then

P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�….s/ � �.s/�dBs
ˇ

ˇ

ˇ

ˇ

> �

�

� P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�….s/ � �.s/�dBs
ˇ

ˇ

ˇ

ˇ

> �; �n > T

�

C P.�n � T /

� P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t^�n

0

�

�….s/ � �.s/�dBs
ˇ

ˇ

ˇ

ˇ

> �

�

C P.�n � T /

Chebyshev
�

Doob

4

�2
E

�

ˇ

ˇ

ˇ

ˇ

Z T^�n

0

�

�….s/ � �.s/�dBs
ˇ

ˇ

ˇ

ˇ

2�

C P.�n � T /

(14.20)
� 4

�2
E

�

Z T^�n

0

ˇ

ˇ�….s/ � �.s/ˇˇ2 ds

�

C P.�n � T /

n fixed����!
j…j!0

P.�n � T / ����!
n!1 0:

A similar, but simpler, calculation yields

P

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

b….s/ � b.s/� ds

ˇ

ˇ

ˇ

ˇ

> �

�

�����!
j…j!0

0:

Finally, for any two random variables X; Y W 	 ! Œ0;1/,

P.sup.X C Y / > �/ � P.supX C supY > �/

� P.supX > �=2/C P.supY > �=2/

from which the claim follows.

16.5 Theorem (Itô 1942). Let Xt be a one-dimensional Itô process in the sense of
Definition 16.2 such that dXt D �.t/ dBt C b.t/ dt and let f W R ! R be a C2-
function. Then we have for all t � 0 almost surely

f .Xt/ � f .X0/

D
Z t

0

f 0.Xs/�.s/ dBs C
Z t

0

f 0.Xs/b.s/ ds C 1

2

Z t

0

f 00.Xs/�2.s/ ds

DW
Z t

0

f 0.Xs/ dXs C 1

2

Z t

0

f 00.Xs/�2.s/ ds:

(16.6)

We define the stochastic integral for an Itô process dXt D �.t/ dBt C b.t/ dt as

Z t

0

f .s/ dXs WD
Z t

0

f .s/�.s/ dBs C
Z t

0

f .s/b.s/ ds (16.7)
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whenever the right-hand side makes sense. It is possible to define the Itô integral for
the integrator dXt directly in the sense of Chapters 14 and 15 and to derive the equality
(16.7) rather than to use it as a definition.

Proof of Theorem 16.5. 1o As in the proof of Theorem 16.1 it is enough to show
(16.6) locally for t � �.`/ where

�.`/ D inf¹s > 0 W jBsj � `º:
This means that we can assume, without loss of generality, that

kf k1 C kf 0k1 C kf 00k1 C k�k1 C kbk1 � C < 1:

2o Lemma 16.4 shows that we can approximate � and b by elementary processes �…

and b…. Denote the corresponding Itô process by X…. Since f 2 C2b , the following
limits are uniform in probability:

X… ����!
j…j!0

X; f .X…/ ����!
j…j!0

f .X/:

The right-hand side of (16.6) with �…, b… and X… also converges uniformly in prob-
ability by (an obvious modification of) Lemma 16.4.

This means that we have to show (16.6) only for Itô processes where � and b are
from ET for some T > 0.

3o Assume that �; b 2 ET and that … D ¹t0 D 0 < t1 < � � � < tn D T º is the
(joint refinement of the) underlying partitions. Fix t � T and assume, without loss of
generality, that t D tk 2 …. As in step 1o of the proof of Theorem 16.1 we get by
Taylor’s theorem

f .Xt / � f .X0/ D
k
X

jD1
f 0.Xtj �1

/.Xtj �Xtj �1
/C 1

2

k
X

jD1
f 00.�j /.Xtj �Xtj �1

/2

DW J1 C 1

2
J2

with
�j .!/ D Xtj �1

.!/C �j .!/
�

Xtj .!/ �Xtj �1
.!/

�

for some �j .!/ 2 Œ0; 1�.
Since � and b are elementary processes, there are Ftj �1

measurable random vari-
ables �j�1 and bj�1 such that

J1 D
k
X

jD1
f 0.Xtj �1

/�j�1 � .Btj � Btj �1
/C

k
X

jD1
f 0.Xtj �1

/bj�1 � .tj � tj�1/

D J11 C J12:

NowL2.P/-limj…j!0 J11 D R t

0
f 0.Xs/�.s/ dBs which follows as in the proof of The-

orem 16.1, step 2o . The second term J12 is just a Riemann sum which converges a. s.



242 Chapter 16 Itô’s formula

to
R t

0
f 0.Xs/b.s/ ds. Moreover,

J2 D
k
X

jD1
f 00.�j /

�

�j�1 � .Btj � Btj �1
/C bj�1 � .tj � tj�1/

�2

D
k
X

jD1

h

f 00.�j /�2j�1 � .Btj � Btj �1
/2

C 2f 00.�j /�j�1bj�1 � .Btj � Btj �1
/.tj � tj�1/

C f 00.�j /b2j�1 � .tj � tj�1/2
i

D J21 C J22 C J23

As in the Proof of 16.1, step 3o , we get L2.P/-limj…j!0 J21 D R t

0
f 00.Xs/�.s/ ds.

Since

jJ22j � 2
k
X

jD1
kf 00k1k�k1kbk1.tj � tj�1/max

k
jBtk � Btk�1

j

D 2 kf 00k1k�k1kbk1 T max
k

jBtk � Btk�1
j

and since Brownian motion is almost uniformly surely continuous on Œ0; T �, we get
limj…j!0 jJ22j D 0 a. s.; a similar calculation gives limj…j!0 jJ23j D 0.

16.5 Itô’s formula for Brownian motion in Rd

Assume that B D .B1; : : : ; Bd / is a BMd . Recall that the stochastic integral with
respect to dB is defined for each coordinate, cf. Section 16.1. With this convention,
the multidimensional version of Itô’s formula becomes

16.6 Theorem (Itô 1942). Let .Bt/t�0, Bt D .B1t ; : : : ; B
d
t /, be a d -dimensional

Brownian motion, Xt D R t

0
�.s/ dBs C R t

0
b.s/ ds be an m-dimensional Itô process

and f W Rm ! R be a C2-function. Then

f .Xt / � f .X0/ D
d
X

kD1

Z t

0


 m
X

jD1
@jf .Xs/�jk.s/

�

dBks C
m
X

kD1

Z t

0

@kf .Xs/bk.s/ ds

C 1

2

m
X

i;jD1

Z t

0

@i@jf .Xs/

d
X

kD1
�ik.s/�jk.s/ ds:

(16.8)
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The proof is pretty much the same as the proof in dimension d D 1 – just use the
Taylor expansion of functions in Rd rather than in R.

16.7 Remark. In the literature often the following matrix and vector version of (16.8)
is used:

f .Xt/ � f .X0/ D
Z t

0

rf .Xs/>�.s/ dBs C
Z t

0

rf .Xs/>b.s/ ds

C 1

2

Z t

0

trace
�

�.s/>D2f .Xs/�.s/
�

ds:

(16.9)

where r D .@1; : : : ; @d /
> is the gradient, D2f D .@j@kf /

d
j;kD1 is the Hessian and

dBs is understood as a column vector from Rd . In differential notation this becomes

df .Xt / D rf .Xt/>�.t/ dBt C rf .Xt />b.t/ dt

C 1

2
trace

�

�.t/>D2f .Xt /�.t/
�

dt:
(16.10)

16.6 Tanaka’s formula and local time

Itô’s formula has been extended in various directions. Here we discuss the prototype
of generalizations which relax the smoothness assumptions for the function f . The
key point is that we retain some control on the (generalized) second derivative of f ,
e. g. if f is convex or if f .x/ D R x

0
�.y/ dy where � 2 Bb.R/ as in the Bouleau–Yor

formula [151, Theorem IV.77]. In this section we consider one-dimensional Brownian
motion .Bt/t�0 and the function f .x/ D jxj.

Differentiating f (in the sense of generalized functions) yields f 0.x/ D sgn.x/ and
f 00.x/ D ı0.x/. A formal application of Itô’s formula (16.1) gives

jBt j D
Z t

0

sgn.Bs/ dBs C 1

2

Z t

0

ı0.Bs/ ds: (16.11)

In order to justify (16.11), we have to smooth out the function f .x/ D jxj. Note that
for � > 0

f
.x/ WD
´

jxj � 1
2
�; jxj > �;

1
2

x2; jxj � �; f 0


 .x/ D
´

sgn.x/; jxj > �;
1


x; jxj � �;

f 00

 .x/ D

´

0; jxj > �;
1


; jxj < �:
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ε/2

ε−ε

ε

−ε

1

ε−ε

ε−1

Figure 16.1. Smooth approximation of the function x 7! jxj.

The approximations f
 are not yet C2 functions. Therefore, we use a Friedrichs
mollifier: Pick any � 2 C1

c .�1; 1/ with 0 � � � 1, �.0/ D 1 and
R

�.x/ dx D 1, and
set for n � 1

�n.x/ WD n�.nx/ and f
;n.x/ WD f
 ? �n.x/ D
Z

�n.x � y/f
.y/ dy:

It is a not hard to see that limn!1 f
;n D f
 and limn!1 f 0

;n D f 0


 uniformly whileEx. 16.9
limn!1 f 00


;n.x/ D f 00

 .x/ for all x ¤ ˙�.

If we apply Itô’s formula (16.1) we get

f
;n.Bt / D
Z t

0

f 0

;n.Bs/ dBs C 1

2

Z t

0

f 00

;n.Bs/ ds a. s.

On the left-hand side we see lim
!0 limn!1 f
;n.Bt/ D jBt j a. s. and in probability.
For the expression on the right we have

E0

�

ˇ

ˇ

ˇ

ˇ

Z t

0

.f 0

;n.Bs/ � sgn.Bs// dBs

ˇ

ˇ

ˇ

ˇ

2�

D E0

�

Z t

0

ˇ

ˇf 0

;n.Bs/ � sgn.Bs/

ˇ

ˇ

2
ds

�

:

Letting first n ! 1 and then � ! 0, the right-hand side converges to

E0

�

Z t

0

ˇ

ˇf 0

 .Bs/ � sgn.Bs/

ˇ

ˇ

2
ds

�

dom. conv.������!

!0

0I

in particular, P-limn!1
R t

0
f 0

 .Bs/ dBs D R t

0
sgn.Bs/ dBs .

Finally, set
	s WD ¹! W lim

n!1 f
00

;n.Bs.!// D f 00


 .Bs.!//º:
As P.Bs D ˙�/ D 0, we know that P.	s/ D 1 for each s 2 Œ0; t �. By Fubini’s
theorem

P ˝Leb
®

.!; s/ W s 2 Œ0; t �; ! … 	s
¯ D

Z t

0

P.	 n	s/ ds D 0;
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and so Leb¹s 2 Œ0; t � W ! 2 	sº D t for P almost all !. Since kf 00

;nk1 � .2�/�1, the

dominated convergence theorem yields

L2- lim
n!1

Z t

0

f 00

;n.Bs/ ds D

Z t

0

f 00

 .Bs/ ds D 1

2�

Z t

0

1.�
;
/.Bs/ ds:

Therefore, we have shown that

P - lim

!0

1

2�

Z t

0

1.�
;
/.Bs/ ds D jBt j �
Z t

0

sgn.Bs/ dBs

exists and defines a stochastic process. The same argument applies for the shifted func-
tion f .x/ D jx � aj, a 2 R. Therefore, the following definition makes sense.

16.8 Definition (Brownian local time. Lévy 1939). Let .Bt /t�0 be a d -dimensional
Brownian motion and a 2 R. The local time at the level a up to time t is the random
process

Lat .!/ WD P - lim

!0

1

2�

Z t

0

1.�
;
/.Bs � a/ ds: (16.12)

The local time Lat represents the total amount of time Brownian motion spends at
the level a up to time t :

1

2�

Z t

0

1.�
;
/.Bs � a/ ds D 1

2�
Leb

®

s 2 Œ0; t � W Bs 2 .a � �; aC �/
¯

:

We are now ready for the next result.

16.9 Theorem (Tanaka’s formula. Tanaka 1963). Let .Bt /t�0 denote a one-dimen-
sional Brownian motion. Then we have for every a 2 R

jBt � aj D jaj C
Z t

0

sgn.Bs � a/ dBs C Lat (16.13)

where Lat is Brownian local time at the level a. In particular, .t; a/ 7! Lat (has a
version which) is continuous.

Proof. The formula (16.13) follows from the preceding discussion for the shifted func-
tion f .x/ D jx � aj. The continuity of .t; a/ 7! Lat is now obvious since both Brow-
nian motion and the stochastic integral have continuous versions.

Tanaka’s formula is the starting point for many further investigations. For example,
it is possible to show that ˇt D R t

0
sgn.Bs/ dBs is again a one-dimensional Brownian Ex. 16.10

motion and L0t D sups�t.�ˇs/. Moreover, P0.La1 D 1/ D 1 for any a 2 R.
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16.10 Further reading. All books mentioned in the Further reading section of Chap-
ter 14 contain proofs of Itô’s formula. Local times are treated in much greater detail in
[99] and [156]. An interesting alternative proof of Itô’s formula is given in [109].

[99] Karatzas, Shreve: Brownian Motion and Stochastic Calculus.
[109] Krylov: Introduction to the Theory of Diffusion Processes.
[156] Revuz, Yor: Continuous Martingales and Brownian Motion.

Problems

1. Let .Bt /t�0 be a BM1. Use Itô’s formula to obtain representations of

Xt D
Z t

0

exp.Bs/ dBs and Yt D
Z t

0

Bs exp.B2s / dBs

which do not contain Itô integrals.

2. (a) Use the (two-dimensional, deterministic) chain rule d.F ı G/ D F 0 ı G dG
to deduce the formula for integration by parts for Stieltjes integrals:

Z t

0

f .s/ dg.s/ D f .t/g.t/ � f .0/g.0/ �
Z t

0

g.s/ df .s/

for all f; g 2 C1.Œ0;1/;R/:

(b) Use the Itô formula for a Brownian motion .bt ; ˇt /t�0 in R2 to show that
Z t

0

bs dˇs D btˇt �
Z t

0

ˇs dbs; t � 0:

What happens if b and ˇ are not independent?

3. Prove the following time-dependent version of Itô’s formula: Let .Bt /t�0 be a
BM1 and f W Œ0;1/ � R ! R be a function of class C1;2. Then

f .t; Bt/ � f .0; 0/ D
Z t

0

f .s; Bs/ dBs C
Z t

0

�

@f

@t
.s; Bs/C 1

2

@2f

@x2
.s; Bs/

�

ds:

Prove and state the d -dimensional counterpart.
Hint: Use the Itô formula for the d C 1-dimensional Itô process .t; B1t ; : : : ; B

d
t /.

4. Prove Theorem 5.6 using Itô’s formula.

5. Let .Bt ;Ft/t�0 be a BM1. Use Itô’s formula to verify that the following processes
are martingales:

Xt D et=2 cosBt and Yt D .Bt C t /e�Bt �t=2:
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6. Let Bt D .bt ; ˇt /, t � 0 be a BM2 and set rt WD jBt j D p

b2t C ˇ2t .
(a) Show that the stochastic integrals

R t

0
bs=rs dbs and

R t

0
ˇs=rs dˇs exist.

(b) Show that Wt WD R t

0
bs=rs dbs C R t

0
ˇs=rs dˇs is a BM1.

7. LetBt D .bt ; ˇt/, t � 0 be a BM2 and f .xCiy/ D u.x; y/Civ.x; y/, x; y 2 R,
an analytic function. If u2x C v2y D 1, then

�

u.bt ; ˇt /; v.bt ; ˇt/
�

, t � 0, is a BM2.

8. Show that the d -dimensional Itô formula remains valid if we replace the real-
valued function f W Rd ! R by a complex function f D uC iv W Rd ! C.

9. (Friedrichs mollifier) Let � 2 C1
c .�1; 1/ such that 0 � � � 1, �.0/ D 1 and

R

�.x/ dx D 1. Set �n.x/ WD n�.nx/.

(a) Show that supp�n � Œ�1=n; 1=n� and
R

�n.x/ dx D 1.
(b) Let f 2 C.R/ and fn WD f ? �n.

Show that j@kfn.x/j � nk supy2B.x;1=n/ jf .y/jk@k�kL1 .
(c) Let f 2 C.R/ uniformly continuous. Show that limn!1 kf ?�n�f k1 D 0.

What can be said if f is continuous but not uniformly continuous?
(d) Let f be piecewise continuous. Show that limn!1 f ? �n.x/ D f .x/ at all

x where f is continuous.

10. Show that ˇt D R t

0
sgn.Bs/ dBs is a BM1.

Hint: Use Lévy’s characterization of a BM1, Theorem 9.12 or 17.5.
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Applications of Itô’s formula

Itô’s formula has many applications and we restrict ourselves to a few of them. We will
use it to obtain a characterization of a Brownian motion as a martingale (Lévy’s the-
orem 17.5) and to describe the structure of ‘Brownian’ martingales (Theorems 17.10,
17.12 and 17.15). In some sense, this will show that a Brownian motion is both a very
particular martingale and the typical martingale. Girsanov’s theorem 17.8 allows us to
change the underlying probability measure which will become important if we want to
solve stochastic differential equations. Finally, the Burkholder–Davis–Gundy inequal-
ities, Theorem 17.16, provide moment estimates for stochastic integrals with respect
to a Brownian motion.

Throughout this section .Bt ;Ft /t�0 is a BM with an admissible complete filtration,

e. g. F
B

t , see Theorem 6.21. Recall that L2T D L2P.�T ˝ P/.

17.1 Doléans–Dade exponentials

Let .Bt ;Ft /t�0 be a Brownian motion on R. We have seen in Example 5.2 e) that
.M

�
t ;Ft /t�0 is a martingale where M �

t WD e�Bt � t
2
�2

, � 2 R. Using Itô’s formula we
find that M �

t satisfies the following integral equation

M
�
t D 1C

Z t

0

� M �
s dBs or dM

�
t D � M

�
t dBt :

In the usual calculus the differential equation dy.t/ D y.t/ dx.t/, y.0/ D y0 has the
unique solution y.t/ D y0e

x.t/�x.0/. If we compare this with the Brownian setting,
we see that there appears the additional factor �1

2
�2t D �1

2
h�Bit which is due to the

second order term in Itô’s formula. On the other hand, it is this factor which makes
M � into a martingale.

Because of this analogy it is customary to call

E.M/t WD exp

�

Mt � 1

2
hM it

�

; t � 0; (17.1)
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for any continuous L2 martingale .Mt/t�T the stochastic or Doléans–Dade expo-
nential. If we use Itô’s formula for the stochastic integral for martingales from Sec-
tion 14.6, it is not hard to see that E.M/t is itself a martingale. Here we consider only
some special cases which can be directly written in terms of a Brownian motion.

17.1 Lemma. Let .Bt ;Ft /t�0 be a BM1, f 2 L2P.�T ˝ P/ for all T > 0, and assume Ex. 17.1
that jf .s; !/j � C for some C > 0 and all s � 0 and ! 2 	. Then

exp

�

Z t

0

f .s/ dBs � 1

2

Z t

0

f 2.s/ ds

�

; t � 0; (17.2)

is a martingale for the filtration .Ft/t�0.

Proof. Set Xt D R t

0
f .s/ dBs � 1

2

R t

0
f 2.s/ ds. Itô’s formula, Theorem 16.5, yields1

eXt � 1 D
Z t

0

eXs f .s/ dBs � 1

2

Z t

0

eXs f 2.s/ ds C 1

2

Z t

0

eXs f 2.s/ ds

D
Z t

0

exp

�

Z s

0

f .r/ dBr � 1

2

Z s

0

f 2.r/ dr

�

f .s/ dBs:

(17.3)

If we can show that the integrand is in L2P.�T ˝ P/ for every T > 0, then The-
orem 14.13 applies and shows that the stochastic integral, hence eXt , is a martingale.

We begin with an estimate for simple processes. Fix T > 0 and assume that g 2 ET .
Then g.s; !/ D Pn

jD1 g.sj�1; !/1Œsj �1;sj /.s/ for some partition 0Ds0 < � � �<snDT
of Œ0; T � and jg.s; !/j � C for some constant C < 1. Since g.sj�1/ is Fsj �1

measur-
able and Bsj � Bsj �1

?? Fsj �1
, we find

E
�

e2
R T

0 g.r/dBr
	

D E


 n
Y

jD1
e2g.sj �1/.Bsj

�Bsj �1
/

�

towerD E


 n�1
Y

jD1
e2g.sj �1/.Bsj

�Bsj �1
/ E

�

e2g.sn�1/.Bsn �Bsn�1
/
ˇ

ˇ Fsn�1

�

„ ƒ‚ …

(A.4)D
2:2

exp
�

2g2.sn�1/.sn�sn�1/
	

�

� e2C
2.sn�sn�1/ E


 n�1
Y

jD1
e2g.sj �1/.Bsj

�Bsj �1
/

�

:

Further applications of the tower property yield

E
h

e2
R T

0 g.r/dBr

i

�
n
Y

jD1
e2C

2.sj �sj �1/ D e2C
2T :

1 Compare the following equality (17.3) with (17.1).
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If f 2 L2P.�T ˝ P/, there is a sequence of simple processes .fn/n�1 � ET such

that limn!1 fn D f in L2P.�T ˝ P/ and limn!1
R T

0
fn.s/ dBs D R T

0
f .s/ dBs in

L2.P/ and, for a subsequence, almost surely. We can assume that jfn.s; !/j � C ,
otherwise we would consider �C _ fn ^ C . By Fatou’s lemma and the estimate for
simple processes from above we get

E
h

ˇ

ˇe
R T

0 f.r/ dBr � 1
2

R T

0 f 2.r/ dr f .T /
ˇ

ˇ

2
i

� C 2 E
h

e2
R T

0 f.r/ dBr

i

D C 2 E
h

lim
n!1 e

2
R T

0 fn.r/ dBr

i

� C 2 lim
n!1

E
h

e2
R T

0 fn.r/ dBr

i

� C 2e2C 2T < 1:

It is clear that Lemma 17.1 also holds for BMd and d -dimensional integrands. More
interesting is the observation that we can replace the condition that the integrand is
bounded by an integrability condition.

17.2 Theorem. Let .Bt ;Ft /t�0, Bt D .B1t ; : : : ; B
d
t /, be a d -dimensional Brownian

motion and f D .f1; : : : ; fd / be a d -dimensional P measurable process such that
fj 2 L2P.�T ˝ P/ for all T > 0 and j D 1; : : : ; d . Then

Mt D exp

� d
X

jD1

Z t

0

fj .s/ dB
j
s � 1

2

Z t

0

jf .s/j2 ds

�

(17.4)

is a martingale for the filtration .Ft /t�0 if, and only if, EMt D 1.

Proof. The necessity is obvious sinceM0 D 1. Since f 2 L2P.�T ˝ P/ for all T > 0,
we see with the d -dimensional version of Itô’s formula (16.8) applied to the process
Xt D Pd

jD1
R t

0
fj .s/ dB

j
s � 1

2

R t

0
jf .s/j2 ds that

eXt D 1C
d
X

jD1

Z t

0

fj .s/ e
Xs dBjs

D 1C
d
X

jD1

Z t

0

fj .s/ exp

� d
X

jD1

Z s

0

fj .r/ dB
j
r � 1

2

Z s

0

jf .r/j2 dr

�

dBjs :

Let �n D inf¹s � 0 W j exp.Xs/j � nº ^ n; since s 7! exp.Xs/ is continuous, �n is a

stopping time and exp.X �n
s / � n. Therefore, f �n � exp.X �n/ is in L2P.�T ˝ P/ for all

T > 0, and Theorem 14.13 e) shows that M �n D exp.X �n

t / is a martingale. Clearly,
limn!1 �n D 1 which means that Mt is a local martingale, cf. Definition 15.6.
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Proposition 17.3 below shows that any positive local martingale with EMt D 1 is
already a martingale, and the claim follows.

The last step in the proof of Theorem 17.2 is interesting on its own:

17.3 Proposition.

a) Every positive local martingale .Mt ;Ft/t�0 is a (positive) supermartingale.
b) Let .Mt ;Ft/t�0 be a supermartingale with EMt D EM0 for all t � 0, then
.Mt /t�0 is already a martingale.

Proof. a) Let �n bei a localizing sequence for .Mt /t�0. By Fatou’s lemma we see that

EMt D E
�

lim
n!1

Mt^�n

�

� lim
n!1

EMt^�n
D EM0 < 1;

since M �n is a martingale. The conditional version of Fatou’s lemma shows for all
s � t

E
�

Mt

ˇ

ˇFs
�

� lim
n!1

E
�

Mt^�n

ˇ

ˇFs
� D lim

n!1
Ms^�n

D Ms ;

i. e. .Mt /t�0 is a supermartingale.

b) Let s � t and F 2 Fs . By assumption,
R

F
Ms dP �

R

F
Mt dP. Subtracting from

both sides EMs D EMt gives

Z

F

Ms dP � EMs �
Z

F

Mt dP � EMt :

Therefore,
Z

F c

Ms dP �
Z

F c

Mt dP for all s � t; F c 2 Fs:
This means that .Mt/t�0 is a submartingale, hence a martingale.

We close this section with the Novikov condition which gives a sufficient criterion
for EMt D 1. The following proof is essentially the proof which we used for the expo-
nential Wald identity, cf. Theorem 5.14. We prove only the one-dimensional version,
the extension to higher dimensions is obvious.
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17.4 Theorem (Novikov 1972). Let .Bt /t�0 be a BM1 and let f 2 L2P.�T ˝ P/ for
all T > 0. If

E




exp

�

1

2

Z 1

0

jf .s/j2 ds

��

< 1; (17.5)

then EMt D 1 for the stochastic exponential

Mt D exp

�

Z t

0

f .s/ dBs � 1

2

Z t

0

jf .s/j2 ds

�

:

Proof. We have seen in the proof of Theorem 17.2 that Mt is a positive local martin-
gale, and by Proposition 17.3 a) it is a supermartingale. In particular, EMt � EM0

D 1.
For the converse inequality write Xt D R t

0
f .s/ dBs and hXit D R t

0
jf .s/j2 ds.

Then Mt D eXt � 1
2

hXit D E.X/t and the condition (17.5) reads EŒe
1
2

hXi1 � < 1.
Let .�n/n�1 be a localizing sequence for the local martingaleM , fix some c 2 .0; 1/

and pick p D p.c/ > 1 such that p < 1
c

^ 1
c.2�c/ .

ThenM �n

t D expŒX �n

t � 1
2
hXi�n

t � is a martingale and EMt^�n
D EM0 D 1 for each

n � 1. Using the Hölder inequality for the conjugate exponents 1=pc and 1=.1� pc/
we find

E
�

E.cX �n/
p
t

	 D E
�

epcX
�n
t � 1

2
pc2hXi�n

t

	

D E
�

epc.X
�n
t � 1

2
hXi�n

t /e
1
2
pc.1�c/hXi�n

t

	

�
�

E eX
�n
t � 1

2
hXi�n

t

	pc

„ ƒ‚ …

DŒEM
t^�n

�pcD1

�

E e
1
2

pc.1�c/

1�pc
hXit

	1�pc

�
�

E e
1
2

hXi1
�1�pc

:

In the last step we used that pc.1� c/=.1�pc/ � 1. This shows that the pth moment

of the family .M �n

t /n�1 is uniformly bounded, hence it is uniformly integrable.
Therefore, we can let n ! 1 and find, using uniform integrability and Hölder’s

inequality for the exponents 1=c and 1=.1 � c/

1 D E
�

ecX
�n
t � 1

2
c2hXi�n

t

	 D E
�

ecXt � 1
2
c hXit e

1
2
c.1�c/hXit

	

�
�

E eXt � 1
2

hXit
	c�

E e
1
2
c hXit

	1�c
:

Since the last factor is bounded by
�

E ehXi1

�1�c
, we find as c ! 1,

1 � E eXt � 1
2

hXit D EMt :
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17.2 Lévy’s characterization of Brownian motion

In the hands of Kunita and Watanabe [113] Itô’s formula became a most powerful tool.
We will follow their ideas and give an elegant proof of the following theorem due to
P. Lévy.

17.5 Theorem (Lévy 1948). Let .Xt ;Ft/t�0, X0 D 0, be a real-valued, adapted Ex. 17.2
process with continuous sample paths. If both .Xt ;Ft/t�0 and .X2

t � t;Ft /t�0 are
martingales, then .Xt /t�0 is a Brownian motion with filtration .Ft/t�0.

Theorem 17.5 means, in particular, that BM1 is the only continuous martingale with
quadratic variation hBit � t .

The way we have stated Itô’s formula, we cannot use it for .Xt /t�0 as in The-
orem 17.5. Nevertheless, a close inspection of the construction of the stochastic inte-
gral in Chapters 14 and 15 shows that all results remain valid if the integrator dBt is
replaced by dXt where .Xt /t�0 is a continuous martingale with quadratic variation
hXit D t . For step 3o of the proof of Theorem 16.1, cf. pages 237 and 238, we have to
replace Theorem 9.1 by Corollary 9.11. In fact, Theorem 17.5 is an ex-post vindication
for this since such martingales already are Brownian motions. In order not to end up
with a circular conclusion, we have to go through the proofs of Chapters 14–16 again,
though.

After this word of caution we can use (16.1) in the setting of Theorem 17.5 and start
with the

Proof of Theorem 17.5 (Kunita, Watanabe 1967). We have to show that

Xt �Xs ?? Fs and Xt �Xs � N.0; t � s/ for all 0 � s � t:

This is equivalent to

E
�

ei�.Xt �Xs/ 1F

�

D e� 1
2
.t�s/�2

P.F / for all s � t; F 2 Fs : (17.6)

In fact, setting F D 	 yields

E
�

ei�.Xt �Xs/
�

D e� 1
2
.t�s/�2

;

i. e. Xt �Xs � Xt�s � N.0; t � s/, and (17.6) becomes

E
�

ei�.Xt �Xs/ 1F

�

D E
�

ei�.Xt �Xs/
�

P.F / for all s � t; F 2 Fs I

this proves that Xt �Xs ?? F for all F 2 Fs .
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Let us now prove (17.6). Note that f .x/ WD ei�x is a C2-function with

f .x/ D eix� ; f 0.x/ D i�eix� ; f 00.x/ D ��2eix� :

Applying (16.1) to f .Xt/ and f .Xs/ and subtracting the respective results yields

ei�Xt � ei�Xs D i�

Z t

s

ei�Xr dXr � �2

2

Z t

s

ei�Xr dr: (17.7)

Since jei�j D 1, the real and imaginary parts of the integrands are L2P.�T ˝ P/-
functions for any t � T and, using Theorem 14.13 a) withX instead of B , we see that
R t

0
ei�Xr dXr is a martingale. Hence,

E

�

Z t

s

ei�Xr dXr

ˇ

ˇ

ˇ

Fs

�

D 0 a. s.

Multiplying both sides of (17.7) by e�i�Xs 1F , where F 2 Fs , and then taking expec-
tations gives

E
�

ei�.Xt �Xs/ 1F

�

� P.F / D ��
2

2

Z t

s

E
�

ei�.Xr �Xs/ 1F

�

dr:

This means that �.t/ WD E
�

ei�.Xt �Xs/ 1F
�

, s � t , is a solution of the integral equation

ˆ.t/ D P.F /C �2

2

Z t

s

ˆ.r/ dr: (17.8)

On the other hand, it is easy to see that (17.8) is also solved by

 .t/ WD P.F / e� 1
2
.t�s/�2

:

Since

j�.t/�  .t/j D �2

2

ˇ

ˇ

ˇ

ˇ

Z t

s

.�.r/ �  .r// dr

ˇ

ˇ

ˇ

ˇ

� �2

2

Z t

s

j�.r/ �  .r/j dr;

we can use Gronwall’s lemma, Theorem A.43 in the Appendix A.8, where we set
u D j� �  j, a � 0 and b � 1, to get

j�.t/ �  .t/j � 0 for all t � 0:

This shows that �.t/ D  .t/, i. e. (17.8) admits only one solution, and (17.6) follows.



Section 17.3 Girsanov’s theorem 255

17.3 Girsanov’s theorem

Let .Bt /t�0 be a real Brownian motion. The process Wt WD Bt � `t , ` 2 R, is called
Brownian motion with drift. It describes a uniform motion with speed �` which is
perturbed by a Brownian motion Bt . Girsanov’s theorem provides a very useful trans-
formation of the underlying probability measure P such that, under the new measure,
Wt is itself a Brownian motion. This is very useful if we want to calculate, e. g. the
distribution of the random variable sups�t Ws and other functionals of W .

17.6 Example. Let G � N.m; �2/ be on .	;A;P/ a real-valued normal random
variable with mean m and variance �2. We want to transform G into a mean zero
normal random variable. Obviously, G � G �m would do the trick on .	;A;P/ but
this would also change G. Another possibility is to change the probability measure P.

Observe that E ei�G D e� 1
2
�2�2Cim� . Since G has exponential moments, cf. Corol-

lary 2.2, we can insert � D im=�2 and find

E exp
�

� m

�2
G
�

D exp

�

�1
2

m2

�2

�

:

Therefore, Q.d!/ WD exp.� m
�2 G.!/ C 1

2
m2

�2 / P.d!/ is a probability measure, and
we find for the corresponding mathematical expectation EQ D R

�
� � � dQ

EQ e
i�G D

Z

ei�G exp

�

� m

�2
G C 1

2

m2

�2

�

dP

D exp

�

1

2

m2

�2

�

Z

exp
�

i
�

� C i
m

�2

�

G
�

dP

D exp

�

1

2

m2

�2

�

exp

�

�1
2

�

� C i
m

�2

�2

�2 C im
�

� C i
m

�2

�

�

D exp

�

�1
2
�2�2

�

:

This means that, under Q, we have G � N.0; �2/.

The case of a Brownian motion with drift is similar. First we need a formula which
shows how conditional expectations behave under changes of measures.

Let ˇ be a positive random variable with E ˇ D 1. Then Q.d!/ WD ˇ.!/P.d!/

is a new probability measure. If F is a � -algebra in A, then

Z

F

E.ˇ jF/ dP D
Z

F

ˇ dP D Q.F / i. e. QjF D E.ˇ jF/P jF:
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If we write EQ for the expectation w. r. t. the measure Q, we see for all F 2 F

EQ.1FX/ D E.1FXˇ/ D E
�

1F E.Xˇ jF/� D E

�

F mble
‚ …„ ƒ

1F
E.Xˇ jF/
E.ˇ jF/ E.ˇ jF/

�

D EQ

�

1F
E.Xˇ jF/
E.ˇ jF/

�

:

This means that EQ.X jF/ D E.Xˇ jF/=E.ˇ jF/.

17.7 Example. Let .Bt ;Ft/t�0 be a BM1 and set ˇ D ˇT where ˇt D e`Bt �`2t=2.
From Example 5.2 e) we know that .ˇs/s�T is a martingale for the filtration .Ft/t�0.
Therefore, E ˇT D 1 and Q WD ˇT P is a probability measure. We want to calculate
the conditional characteristic function of Wt WD Bt � `t under EQ. Let � 2 R and
s � t � T . By the tower property we get

EQ

�

ei�.Wt �Ws/
ˇ

ˇFs
	 D E

�

ei�.Wt �Ws/ˇT
ˇ

ˇFs
	ı

EŒˇT jFs�
towerD E

�

ei�.Wt �Ws/ E
�

ˇT jFt
�

ˇ

ˇFs
	

.

ˇs

D E
�

ei�.Wt �Ws/ˇt
ˇ

ˇFs
	ı

ˇs

D e�i`�.t�s/� 1
2
`2.t�s/ E

�

ei�.Bt �Bs/e`.Bt �Bs/
ˇ

ˇFs
	

(B1)D
(5.1)

e�i`�.t�s/� 1
2
`2.t�s/ E

�

ei�.Bt �Bs/e`.Bt �Bs/
	

(2.6)D e�i`�.t�s/� 1
2
`2.t�s/ e

1
2
.i�C`/2.t�s/

D e� 1
2
.t�s/�2

:

Lemma 5.4 shows that .Wt ;Ft /t�T is a Brownian motion under Q.

We will now consider the general case.

17.8 Theorem (Girsanov 1960). Let .Bt ;Ft /t�0, Bt D .B1t ; : : : ; B
d
t /, be a d-dimen-Ex. 17.3

sional Brownian motion and f D .f1; : : : ; fd / be a P measurable process such that
fj 2 L2P.�T ˝ P/ for all 0 < T < 1 and j D 1; : : : ; d . If

qt D exp

� d
X

jD1

Z t

0

fj .s/ dB
j
s � 1

2

Z t

0

jf .s/j2 ds

�

(17.9)

is integrable with E qt � 1, then for every T > 0 the process

Wt WD Bt �
Z t

0

f .s/ ds; t � T; (17.10)
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is a BMd under the new probability measure Q D QT

Q.d!/ WD qT .!/ P.d!/: (17.11)

Notice that the new probability measure Q in Theorem 17.8 depends on the right
endpoint T .

Proof. Since fj 2 L2P.�T ˝ P/ for all T > 0, the processes

X
j
t WD

Z t

0

fj .s/ dB
j
s � 1

2

Z t

0

f 2j .s/ ds; j D 1; : : : ; d;

are well-defined, and Theorem 17.2 shows that under the condition E qt D 1 the pro-
cess .qt ;Ft/t�T is a martingale. Set

ˇt WD exp
�

ih�;W.t/i C 1
2
t j�j2	

where Wt D Bt � R t

0
f .s/ ds is as in (17.10). If we knew that .ˇt /t�T is a martingale

on the probability space .	;FT ;Q D QT /, then

EQ

�

expŒih�;W.t/�W.s/i� ˇˇFs
� D EQ

�

ˇt exp
��ih�;W.s/i	 exp

�� 1
2
t j�j2	 ˇˇFs

�

D EQ

�

ˇt
ˇ

ˇFs
�

exp Œ�ih�;W.s/i� exp
��1

2
t j�j2	

D ˇs exp Œ�ih�;W.s/i� exp
�� 1

2
t j�j2	

D exp
��1

2
.t � s/ j�j2	 :

Lemma 5.4 shows thatW.t/ is a Brownian motion with respect to the probability mea-
sure Q.

Let us check that .ˇt/t�T is a martingale. We have

d
X

jD1

Z t

0

fj .s/ dB
j
s � 1

2

Z t

0

jf .s/j2 ds

„ ƒ‚ …

exponent of qt

C i

d
X

jD1
�jB

j
t � i

d
X

jD1

Z t

0

�jfj .s/ ds C 1

2
j�j2 t

„ ƒ‚ …

exponent of ˇt

D
d
X

jD1

Z t

0

.fj .s/C i�j / dB
j
s � 1

2

Z t

0

˝

f .s/C i�; f .s/C i�
˛

ds:

This shows that

qtˇt D exp


 d
X

jD1

Z t

0

.fj .s/C i�j / dB
j
s � 1

2

Z t

0

˝

f .s/C i�; f .s/C i�
˛

ds

�

;
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and, just as for qt , we find for the product qtˇt by Itô’s formula that

qtˇt D 1C
d
X

jD1

Z t

0

qsˇs .fj .s/C i�j / dB
j
s :

Therefore, .qtˇt/t�0 is a local martingale. If .�
k
/k�0 is a localizing sequence, we get

for k � 1, F 2 Fs and s � t � T

EQ

�

ˇt^�
k
1F
� defD E

�

qTˇt^�
k
1F
�

towerD E
�

E
�

qTˇt^�
k
1F
ˇ

ˇFt
�	

D E
�

E
�

qT
ˇ

ˇFt
�

„ ƒ‚ …

Dqt ; martingale

ˇt^�
k
1F
	

D E
��

qt � qt^�
k

�

ˇt^�
k
1F
	C E

�

qt^�
k
ˇt^�

k
1F
	

D E
��

qt � qt^�
k

�

ˇt^�
k
1F
	C E

h

qs^�
k
ˇs^�

k
1F
	

:

In the last step we used the fact that .qtˇt ;Ft/t�0 is a local martingale. Since t 7! qt is
continuous and qt^�

k
D E.qt jFt^�

k
/, we know that .qt^�

k
;Ft^�

k
/k�1 is a uniformly

integrable martingale, thus, limk!1 qt^�
k

D qt a. s. and inL1.P/. Moreover, we have

that jˇt j D e
1
2

j�j2t � e 1
2

j�j2 T . By dominated convergence,

EQ

�

ˇt1F
� D lim

k!1
EQ

�

ˇt^�
k
1F
�

D lim
k!1

E
��

qt � qt^�
k

�

ˇt^�
k
1F
	C lim

k!1
E
�

qs^�
k
ˇs^�

k
1F
	

D E
�

qsˇs1F
	

:

If we take t D s this also shows

EQ

�

ˇt1F
� D E

�

qsˇs1F
	 tDsD EQ

�

ˇs1F
�

for all F 2 Fs; 0 � s � T;

i. e. .ˇt ;Ft/0�t�T is a martingale under Q for every T > 0.

17.4 Martingale representation – 1

Let .Bt /t�0 be a BM1 and .Ft /t�0 an admissible complete filtration. From The-
orem 14.13 we know that for every T 2 Œ0;1� and X 2 L2P.�T ˝ P/ the stochastic
integral

Mt D x C
Z t

0

Xs dBs; t � 0; x 2 R; (17.12)
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is a continuous L2 martingale for the filtration .Ft /t�T of the underlying Brownian
motion. We will now show the converse: If .Mt ;Ft/t�T is an L2 martingale for the
complete Brownian filtration .Ft/t�0, then Mt must be of the form (17.12) for some
X 2 L2P.�T ˝ P/.

For this we define the set

H2T WD
²

MT W MT D x C
Z T

0

Xs dBs; x 2 R; X 2 L2P.�T ˝ P/

³

:

17.9 Lemma. The space H2T is a closed linear subspace of L2.	;FT ;P/.

Proof. H2T is obviously a linear space and, by Theorem 14.13, it is contained in
L2.	;FT ;P/. We show that it is a closed subspace. Let .M n

T /n�1 � H2T ,

M n
T D xn C

Z T

0

Xn
s dBs;

be an L2 Cauchy sequence; since L2.	;FT ;P/ is complete, the sequence converges
to some limit M 2 L2.	;FT ;P/. We have to show that M 2 H2T . Using the Itô
isometry we see for m; n � 1

E
h

�

.M n
T � xn/ � .Mm

T � xm/�2
i

D E


�

Z T

0

.Xn
s �Xm

s / dBs

�2�

(14.20)D E




Z T

0

jXn
s �Xm

s j2 ds

�

:

This shows that .Xn
s /s�T is a Cauchy sequence in L2.�T ˝ P/. Because of the com-

pleteness of L2.�T ˝ P/ the sequence converges to some process .Xs/s�T and, for
some subsequence, we get

lim
k!1

Xn.k/
s .!/ D Xs.!/ for �T ˝ P almost all .s; !/ and in L2.�T ˝ P/:

Since pointwise limits preserve measurability, we have .Xs/s�T 2 L2P.�T ˝P/. Using
again Itô’s isometry, we find

Z T

0

Xn
s dBs

L2.�;FT P/��������!
n!1

Z T

0

Xs dBs :

As L2-convergence implies L1-convergence, we get

lim
n!1 x

n 14.13 a)D lim
n!1 E




xn C
Z T

0

Xn
s dBs

�

D EŒM �;

and this shows that MT D EMT C R T

0
Xs dBs 2 H2T .
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The set H2T is quite large. For example, ei�BT is for all � 2 R in H2T ˚ iH2T . This
follows immediately if we apply Itô’s formula to eMt with Mt D i�Bt C t

2
�2:Ex. 17.6

ei�BT C T
2
�2 D 1C

Z T

0

i�eMs dBs;

hence,

ei�BT D e� T
2
�2 C

Z T

0

i� exp




i�Bs C .s � T /
2

�2
�

dBs;

and the integrand is obviously in L2P.�T ˝ P/˚ iL2P.�T ˝ P/.

17.10 Theorem. Let .Ft /t�0 be an admissible complete filtration for the BM1 .Bt/t�0.

Every Y 2 L2.	;FT ;P/ is of the form Y D y C R T

0
Xs dBs for some y 2 R and

X 2 L2P.�T ˝ P/.

Proof. We have to show thatH2T D L2.	;FT ;P/. SinceH2T is a closed subspace of
L2.	;FT ;P/, it is enough to prove thatH2T is dense in L2.	;FT ;P/.

To do so, we take any Y 2 L2.	;FT ;P/ and show that

Y ? H2T H) Y D 0:

Recall that Y ?H2T means that E.YH/ D 0 for all H 2 H2T . Take H D ei�BT . As
H 2 H2T ˚ iH2T , we get

0 D E
�

ei�BT Y
	 D E

�

ei�BT E.Y jBT /
	 D E

�

ei�BT u.BT /
	

:

Here we used the tower property and the fact that E.Y jBT / can be expressed as a
function u of BT . This shows

Z

ei�xu.x/ P.BT 2 dx/ D 1p
2
T

Z

ei�xu.x/e� x2

2T dx D 0;

i. e. the Fourier transform of the function u.x/e� x2

2T is zero. This means that

u.x/e� x2

2T D 0, hence u.x/ D 0, for Lebesgue almost all x, hence Y D 0.

17.11 Corollary. Let .Mt /t�T be any L2 martingale with respect to a complete ad-
missible filtration .Ft/t�T of a BM1 .Bt/t�0. Then there exist some x 2 R and
X 2 L2P.�T ˝ P/ such that

Mt D x C
Z t

0

Xs dBs for all t � T:

In particular, any martingale with respect to a complete Brownian filtration must be
continuous.
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Proof. By Theorem 17.10 we know that MT D x C R T

0
Xs dBs for some x 2 R and

X 2 L2P.�T ˝ P/. Define Mt WD E.MT jFt /, t � T . By Theorem 14.13 a) we see
that

Mt D E.MT jFt/ D E

�

x C
Z T

0

Xs dBs

ˇ

ˇ

ˇ

Ft

�

D x C
Z t

0

Xs dBs:

17.5 Martingale representation – 2

In the previous section we have seen that, given a Brownian motion .Bt ;Ft /t�0 with a
complete filtration, everyL2 martingale .Mt ;Ft/t�T can be represented as a stochastic
integral with respect to .Bt /t�0. In particular, every L2 martingale with respect to a
complete Brownian filtration is continuous.

We will now show that for many continuous L2 martingales .Mt ;Ft/t�T there
is a Brownian motion .Wt/t�0 such that Mt can be written as a stochastic integral
with respect to .Wt/t�0. This requires a general martingale stochastic integral as in
Section 14.6. Recall that the quadratic variation of an L2 martingale is the unique,
increasing process hM i D .hM it /t�T with hM i0 D 0 such that .M 2

t �hM it ;Ft/t�T
is a martingale. In particular,

E
�

.Mt �Ms/
2
ˇ

ˇFs
	 D E

�hM it � hM is
ˇ

ˇFs
	

for all s � t � T:

17.12 Theorem (Doob 1953). Let .Mt ;Ft /t�T be a continuous L2 martingale such
that hM it D R t

0
m2.s; � / ds for some �T ˝ P-almost everywhere strictly positive

process m.s; !/. Then there exists a Brownian motion .Wt /t�T such that the filtration
.Ft /t�T is admissible and

Mt �M0 D
Z t

0

m.s; � / dWs:

Proof. Since the set ¹.s; !/ W m.s; !/ D 0º is a �T ˝ P null set, we can define in all
calculations below that 1=m.s; !/ WD 0 if m.s; !/ D 0. Note that

E

Z t

0

1

m2.s; � / d hM is D E

Z t

0

1

m2.s; � / m
2.s; � / ds D t:

Therefore, Theorem 14.22 shows that the stochastic integral

Wt WD
Z t

0

1

m.s; � / dMs; t � T;
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exists and defines a continuous L2 martingale. Again by Theorem 14.22 the quadratic
variation is

hW it D
*

Z . � /

0

1

m.s; � / dMs

+

t

D
Z t

0

1

m2.s; � / d hM is D
Z t

0

m2.s; � /
m2.s; � / ds D t:

Lévy’s martingale characterization of a Brownian motion, Theorem 17.5, shows that
.Wt ;Ft /t�T is indeed a Brownian motion. Finally,

Z t

0

m.s; � / dWs D
Z t

0

m.s; � / 1

m.s; � / dMs D
Z t

0

dMs D Mt �M0:

If ¹.s; !/ W m.s; !/ D 0º is not a null set, we have to modify our argument. In
this case the probability space is too small and we have to extend it by adding an
independent Brownian motion .Bt ;Gt /t�0.2 If U and V are mean zero Ft resp. Gt
measurable random variables such that E.U jFs/ D E.V jGs/ D 0 for s � t , we find
because of independence, that E.UV j �.Fs;Gs// D 0. This follows from

Z

F\G
UV dP D E.U 1F V 1G/ D

Z

F

U dP

Z

G

V dP D 0

for all F 2 Fs , G 2 Gs , and the fact that ¹F \ G W F 2 Fs; G 2 Gsº is a \-stable
generator of �.Fs ;Gs/.

17.13 Corollary (Doob 1953). Let .Mt ;Ft /t�T be a continuous L2 martingale such
that hM it D R t

0
m2.s; � / ds. Then there is an enlargement . Q	; QA; QP/ of the underlying

probability space .	;A;P/ and a Brownian motion .Wt/t�T on . Q	; QA; QP/ such that

Mt �M0 D
Z t

0

m.s; � / dWs:

Proof. If necessary, we enlarge .	;A;P/ so that there is a further Brownian motion
.Bt ;Gt /t�T which is independent of .Mt ;Ft /t�T . Set Ht WD �.Ft ;Gt/. Because
of the independence, both .Mt ;Ht /t�T and .Bt ;Ht /t�T are again L2 martingales.Ex. 17.7
Therefore, Theorem 14.22 shows that the stochastic integrals

Wt WD
Z t

0

1

m.s; � / 1¹m¤0º.s; � / dMs C
Z t

0

1¹mD0º.s; � / dBs; s � T;

exist and define a continuous L2 martingale for the filtration .Ht /t�T . From (14.29)

2 This can be done by the usual product construction.



Section 17.6 Martingales as time-changed Brownian motion 263

and the calculation just before the statement of Corollary 17.13 we see

E
�

.Wt �Ws/2
ˇ

ˇHs
	

D E


�

Z t

s

1

m.r; � / 1¹m¤0º.r; � / dMr

�2
ˇ

ˇ

ˇ

Hs

�

C E


�

Z t

s

1¹mD0º.r; � / dBr
�2
ˇ

ˇ

ˇ

Hs

�

C 2E




Z t

s

1

m.r; � / 1¹m¤0º.r; � / dMr

Z t

s

1¹mD0º.r; � / dBr
ˇ

ˇ

ˇ

Hs

�

D E




Z t

s

1

m2.r; � / 1¹m¤0º.r; � / d hM ir
ˇ

ˇ

ˇ

Hs

�

C E




Z t

s

1¹mD0º.r; � / dr
ˇ

ˇ

ˇ

Hs

�

D E




Z t

s

m2.r; � /
m2.r; � / 1¹m¤0º.r; � / dr

ˇ

ˇ

ˇ

Hs

�

C E




Z t

s

1¹mD0º.r; � / dr
ˇ

ˇ

ˇ

Hs

�

D
Z t

s

�

1¹m¤0º.r; � /C 1¹mD0º.r; � /� dr D t � s:

By Lévy’s theorem 17.5, .Wt ;Ht/t�T is a Brownian motion, and the rest of the proof
follows along the lines of Theorem 17.12.

17.6 Martingales as time-changed Brownian motion

Throughout this section .Mt ;Ft/t�0 is a real valued, continuous martingale such that
Mt 2 L2.P/. We show that there is a Brownian motion .Bt /t�0 such thatMt D B�.t/
for some random time �.t/.

We begin with a few preparations from analysis. Let a W Œ0;1/ ! Œ0;1� be a
right-continuous, increasing function. Then

�.s/ WD inf¹t � 0 W a.t/ > sº; inf ; D 1; (17.13)

is the generalized inverse of a.

17.14 Lemma. Let � be the generalized inverse of a right-continuous, increasing func- Ex. 17.8
tion a W Œ0;1/ ! Œ0;1�.

a) � W Œ0;1/ ! Œ0;1� is increasing and right-continuous;
b) a.�.s// � s;
c) a.t/ � s () �.s�/ � t ;
d) a.t/ D inf¹s � 0 W �.s/ > tº;
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e) a.�.s// D sup¹u � s W �.u/ D �.s/º;
f) �.a.t// D sup¹w � t W a.w/ D a.t/º;
g) if a is continuous, a.�.s// D s.

Proof. Before we begin with the formal proof, it is helpful to draw a picture of the
situation, cf. Figure 17.1. All assertions are clear if t is a point of strict increase for the
function a. Moreover, if a is flat, the inverse � makes a jump, and vice versa.

τ(u)

u

τ(v−) τ(v)

v

τ(w)

w

w
+

w
−

A(t)

t

τ(s)

s

τ(u)

u

τ(v−)

τ(v)

v

τ(w)

w w
+

w
−

Figure 17.1. An increasing right-continuous function and its generalized right-continuous
inverse.

a) It is obvious from the definition that � is increasing. Note that

¹t W a.t/ > sº D
[


>0

¹t W a.t/ > s C �º:

Therefore, inf¹t � 0 W a.t/ > sº D inf
>0 inf¹t � 0 W a.t/ > s C �º proving
right-continuity.

b) Since a.u/ � s for all u > �.s/, we see that a.�.s// � s.

c) By the very definition of the generalized inverse � we have

a.t/ � s () a.t/ > s � � 8 � > 0
() �.s � �/ � t 8 � > 0 () �.s�/ � t:

d) From c) we see that

a.t/ D sup¹s � 0 W a.t/ � sº c/D sup¹s � 0 W �.s�/ � tº
D inf¹s � 0 W �.s/ > tº:
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e) Assume that u � s and �.u/ D �.s/. Then a.�.s// D a.�.u// � u � s, and so
a.�.s// � sup¹u > s W �.u/ D �.s/º. For the converse, we use d) and find

a.�.s// D inf¹r � 0 W �.r/ > �.s/º � sup¹u � s W �.u/ D �.s/º:

f) Follows as e) since a and � play symmetric roles.

g) Because of b) it is enough to show that a.�.s// � s. If �.s/ D 0, this is trivial.
Otherwise we find � > 0 such that 0 < � < �.s/ and a.�.s/ � �/ � s by the
definition of �.s/. Letting � ! 0, we obtain a.�.s// � s by the continuity of a.

The following theorem was discovered by Doeblin in 1940. Doeblin never published
this result but deposited it in a pli cacheté with the Academy of Sciences in Paris. The
pli was finally opened in the year 2000, see the historical notes by Bru and Yor [17].
Around 25 years after Doeblin, the result was in 1965 rediscovered by Dambis and by
Dubins and Schwarz in a more general context.

17.15 Theorem (Doeblin 1940; Dambis 1965; Dubins–Schwarz 1965). Let a
continuous martingale .Mt ;Ft /t�0, Mt 2 L2.P/, be given. Assume that the filtration
is right-continuous, i. e. Ft D FtC, t � 0, and that the quadratic variation satisfies
hM i1 D limt!1hM it D 1. Denote by �s D inf¹t � 0 W hM it > sº the generalized
inverse of hM i. Then .Bt ;Gt/t�0 WD .M�s

;F�s
/s�0 is a Brownian motion and

Mt D BhM it
for all t � 0:

Proof. Define Bs WD M�s
and Gt WD F�t

. Since �s is the first entry time into .s;1/

for the process hM i, it is an FtC stopping time, cf. Lemma 5.7, which is almost surely
finite because of hM i1 D 1. Ex. 17.9

Let 	� D ¹! 2 	 W M•.!/ and hM i•.!/ are constant on the same intervalsº.
From the definition of the quadratic variation, Theorem A.31, one can show that
P.	�/ D 1, see Corollary A.32 in the appendix.

In particular, s 7! M�s
.!/ is almost surely continuous: If s is a continuity point of

�s , this is obvious. Otherwise �s� < �s , but for ! 2 	� and all �s�.!/ � r � �s.!/
we have M�s�

.!/ D Mr.!/ D M�s
.!/.

For all k � 1 and s � 0 we find

E
�

M 2

�s^k
�

� E
�

supu�kM
2
u

�

Doob
�

(A.14)
4EM 2

k < 1:

The optional stopping Theorem A.18 and Corollary A.20 show that .M�s^k/s�0 is a
martingale for the filtration .Gs/s�0 with Gs WD F�s

. Thus,

E
�

M 2

�s^k
� D E

�hM i�s^k
�

� E
�hM i�s

� D s;
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showing that for every s � 0 the family .M�s^k/k�1 is uniformly integrable. By the
continuity of M we see

M�s^k
L1 and a. e.�������!
k!1

M�s
DW Bs:

In particular, .Bs ;Gs/s�0 is a martingale. Fatou’s lemma shows that

EB2s � lim
k!1

EM 2

�s^k � s;

i. e. Bs is also in L2.P/.
If we apply optional stopping to the martingale .M 2

t � hM it /t�0, we find

E
�

.Bt � Bs/2
ˇ

ˇGs
	 D E

�

.M�t
�M�s

/2
ˇ

ˇF�s

	 D E
�hM i�t

� hM i�s

ˇ

ˇF�s

	 D t � s:
Thus .Bs;Gs/s�0 is a continuous martingale whose quadratic variation process is s.

Lévy’s characterization of a Brownian motion, Theorem 17.5, applies and we see that
.Bs;Gs/s�0 is a BM1. Finally, BhM it

D M�
hMit

D Mt for all t � 0.

17.7 Burkholder–Davis–Gundy inequalities

The Burkholder–Davis–Gundy inequalities are estimates for the pth moment of a con-
tinuous martingale X in terms of the pth norm of

phXi:

cp E
h

hXip=2T

i

� E
h

sup
t�T

jXt jp
i

� Cp E
h

hXip=2T

i

; 0 < p < 1: (17.14)

The constants can be made explicit and they depend only on p. In fact, (17.14) holds
for continuous local martingales; we restrict ourselves to Brownian L2 martingales,
i. e. to martingales of the form

Xt D
Z t

0

f .s/ dBs and hXit D
Z t

0

jf .s/j2 ds

where .Bt/t�0 is a BM1 and f 2 L2P.�T ˝ P/ for all T > 0, see also Sections 17.4
and 17.5.

We will first consider the case where p � 2.

17.16 Theorem (Burkholder 1966). Let .Bt /t�0 be a BM1 and f 2 L2P.�T ˝ P/ for
all T > 0. Then, we have for all p � 2 and q D p=.p � 1/

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

p�

� Cp E


�

Z T

0

jf .s/j2 ds

�p=2�

; p � 2; (17.15)
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where Cp D �

qpp.p � 1/=2	p=2, and

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

p�

� cp E


�

Z T

0

jf .s/j2 ds

�p=2�

; p � 2; (17.16)

where cp D 1=.2p/p=2.

Proof. Set Xt WD R t

0
f .s/ dBs and hXit D R t

0
jf .s/j2 ds, cf. Theorem 14.13.

If we combine Doob’s maximal inequality (A.14) and Itô’s isometry (14.20) we get

E
�hXiT

	 D E
�jXT j2	 � E

h

sup
s�T

jXsj2
i

� 4 sup
s�T

E
�jXsj2

	 D 4 E
�hXiT

	

:

This shows that (17.15) and (17.16) hold for p D 2 with Cp D 4 and cp D 1=4,
respectively.

Assume that p > 2. By stopping with the stopping time

�n WD inf
®

t � 0 W jXt j2 C hXit � n
¯

;

(note thatX2ChXi is a continuous process) we can, without loss of generality, assume
that both X and hXi are bounded. Since x 7! jxjp , p > 2, is a C2-function, Itô’s
formula, Theorem 16.6, yields

jXt jp D p

Z t

0

jXsjp�1 dXs C 1

2
p.p � 1/

Z t

0

jXsjp�2 d hXis

where we use that d hXis D jf .s/j2 ds. Because of the boundedness of jXsjp�1, the
first integral on the right-hand side is a martingale and we see with Doob’s maximal
inequality and the Hölder inequality for p=.p � 2/ and p=2

E
h

sup
s�T

jXsjp
i (A.14)
� qp

p.p � 1/
2

E




Z T

0

jXsjp�2 d hXis
�

� qp
p.p � 1/

2
E
h

sup
s�T

jXsjp�2 hXiT
i

� qp
p.p � 1/

2

�

E
h

sup
s�T

jXsjp
i�1�2=p �

E
�hXip=2T

	

�2=p

:

If we divide by
�

E
�

sups�T jXsjp
	�1�2=p

we find

�

E
h

sup
s�T

jXsjp
i�2=p

� qp p.p � 1/
2

�

E
�hXip=2T

	�2=p

and (17.15) follows with Cp D �

qp p.p � 1/=2	p=2.
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For the lower estimate (17.16) we set

Yt WD
Z t

0

hXi.p�2/=4
s dXs:

From Theorem 14.22 (or with Theorem 14.13 observing that dXs D f .s/ dBs) we
see thatEx. 17.10

hY iT D
Z T

0

hXi.p�2/=2
s d hXis D 2

p
hXip=2T

and

E
�hXip=2T

	 D p

2
EŒhY iT � D p

2
EŒjYT j2�:

Using Itô’s formula (16.8) for the function f .x; y/ D xy and the Itô process
.Xt ; hXi.p�2/=4

t / we obtain

XT hXi.p�2/=4
T D

Z T

0

hXi.p�2/=4
s dXs C

Z T

0

Xs d hXi.p�2/=4
s

D YT C
Z T

0

Xs d hXi.p�2/=4
s :

If we rearrange this equality we get jYT j � 2 sups�T jXsj hXi.p�2/=4
T : Finally, using

Hölder’s inequality with p=2 and p=.p � 2/,

2

p
E
�hXip=2T

	 D E
�jYT j2	 � 4 E

h

sup
s�T

jXsj2 hXi.p�2/=2
T

i

� 4
�

E
h

sup
s�T

jXsjp
i�2=p

�

E
�hXip=2T

	�1�2=p
:

Dividing on both sides by .EŒhXip=2T �/1�2=p gives (17.16) with cp D .2p/�p=2.

The inequalities for 0 < p < 2 can be proved with the following useful lemma.

17.17 Lemma. Let X and A be positive random variables and � 2 .0; 1/. If

P.X > x;A � y/ � 1

x
E.A ^ y/ for all x; y > 0; (17.17)

then

E.X�/ � 2 � �
1 � � E.A�/:
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Proof. Using (17.17) and Tonelli’s theorem we find

E.X�/ D �

Z 1

0

P.X > x/ x��1 dx

� �
Z 1

0

�

P.X > x;A � x/C P.A > x/
	

x��1 dx

� �
Z 1

0




1

x
E.A ^ x/C P.A > x/

�

x��1 dx

D E




Z 1

0

.A ^ x/�x��2 dx
�

C EŒA��

D E




Z A

0

�x��1 dx C
Z 1

A

A�x��2 dx
�

C EŒA��

D E




A� � �A�

� � 1
�

C EŒA��

D 2 � �
1 � � E.A�/:

We want to use Lemma 17.17 for X D sups�T jXsj2 D sups�T
ˇ

ˇ

R s

0
f .r/ dBr

ˇ

ˇ

2

and A D hXiT D R T

0
jf .s/j2 ds. Define � WD inf¹t � 0 W hXit � yº. Then

P WD P
�

sup
s�T

jXsj2 > x; hXiT � y
�

D P
�

sup
s�T

jXsj2 > x; � � T
�

D P
�

sup
s�T^� jXsj2 > x

�

and with Doob’s maximal inequality (A.13) we find

P � 1

x
E
�jXT^� j2

� .�/D 1

x
E
�hXiT^�

� D 1

x
E
�hXiT ^ y�:

For the equality .	/ we used optional stopping and the fact that .X2
t � hXit /t�0 is a

martingale. Now we can apply Lemma 17.17 and get

E
h

sup
s�T

jXsj2�
i

� 2 � �
1 � � E

�hXi�T
	

which is the analogue of (17.15) for 0 < p < 2.
In a similar way we can use Lemma 17.17 for X D hXiT D R T

0
jf .s/j2 ds and

A D sups�T jXsj2 D sups�T
ˇ

ˇ

R s

0
f .r/ dBr

ˇ

ˇ

2
. Define � WD inf¹t > 0 W jXt j2 � yº.

Then

P 0 WD P
�

hXiT >x; sup
s�T

jXsj2 � y
�

� P
�hXiT > x; � > T

�

� P
�hXiT^� > x

�

:
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Using the Markov inequality we get

P 0 � 1

x
E
�hXiT^�

�

� 1

x
E
�

sup
s�T^� jXsj2

�

� 1

x
E
�

sup
s�T

jXsj2 ^ y
�

;

and Lemma 17.17 gives

E
h

sup
s�T

jXsj2�
i

� 1 � �
2 � � E

�hXi�T
	

which is the analogue of (17.16) for 0 < p < 2.
Combining this with Theorem 17.16 we have shown

17.18 Theorem (Burkholder, Davis, Gundy 1972). Let .Bt/t�0 be a one-dimensionalEx. 17.11
Brownian motion and f 2 L2P.�T ˝ P/ for all T > 0. Then, we have for 0 < p < 1

E


�

Z T

0

jf .s/j2 ds

�p=2�

� E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z T

0

f .s/ dBs

ˇ

ˇ

ˇ

ˇ

p�

(17.18)

with finite comparison constants which depend only on p 2 .0;1/.

17.19 Further reading. Further applications, e. g. to reflecting Brownian motion
jBt j, excursions, local times etc. are given in [80]. The monograph [109] proves Burk-
holder’s inequalities in Rd with dimension-free constants. A concise introduction to
Malliavin’s calculus and stochastic analysis is [171].

[80] Ikeda, Watanabe: Stochastic Differential Equations and Diffusion Processes.
[109] Krylov: Introduction to the Theory of Diffusion Processes.
[171] Shigekawa: Stochastic Analysis.

Problems

1. State and prove the d -dimensional version of Lemma 17.1.

2. Let .Nt /t�0 be a Poisson process with intensity � D 1 (see Problem 1 for the
definition). Show that for FNt WD �.Nr W r � t / both Xt WD Nt � t and X2

t � t

are martingales. Explain why this does not contradict Theorem 17.5.

3. Let .B.t//t�0 be a BM1 and T < 1. Define ˇT D exp
�

�B.T / � 1
2
�2T

�

,
Q WD ˇT P and W.t/ WD B.t/ � �t , t 2 Œ0; T �. Verify by a direct calculation
that for all 0 < t1 < � � � < tn and A1; : : : ; An 2 B.R/

Q
�

W.t1/ 2 A1; : : : ; W.tn/ 2 An
� D P

�

B.t1/ 2 A1; : : : ; B.tn/ 2 An
�

:
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4. Let .Bt/t�0 be a BM1, ˆ.y/ WD P.B1 � y/, and set Xt WD Bt C ˛t for some
˛ 2 R. Use Girsanov’s theorem to show for all 0 � x � y; t > 0

P
�

Xt � x; sup
s�t

Xs � y
�

D ˆ

�

x � ˛tp
t

�

� e2˛yˆ
�

x � 2y � ˛tp
t

�

:

5. Let Xt be as in Problem 4 and setb� b WD inf¹t � 0 W Xt D bº.
(a) Use Problem 4 to find the probability density ofb� b if ˛; b > 0.
(b) Find P.b� b < 1/ for ˛ < 0 and ˛ � 0, respectively.

6. Let .Bt /t�0 be a BM1 and denote by H2T the space used in Lemma 17.9. Show
that expŒi�BT � is contained inH2T ˚ iH2T .

7. Assume that .Bt ;Gt /t�0 and .Mt ;Ft/t�0 are independent martingales. Show that
both .Mt ;Ht /t�T and .Bt ;Ht/t�T are martingales for the enlarged filtration
Ht WD �.Ft ;Gt /.

8. Show the following addition to Lemma 17.14:

�.t�/ D inf¹s � 0 W a.s/ � tº and a.t�/ D inf¹s � 0 W �.s/ � tº
and �.s/ � t () a.t�/ � s.

9. Show that, in Theorem 17.15, the quadratic variation hM it is a G�s
stopping time.

Hint: Direct calculation, use Lemma 17.14 c) and A.15

10. Let f 2 BVŒ0;1/. Show that
R

f a�1 df D f a=a for all a > 0.

11. State and prove a d -dimensional version of the Burkholder–Davis–Gundy in-
equalities (17.17) if p 2 Œ2;1/.
Hint: Use the fact that all norms in Rd are equivalent
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Stochastic differential equations

The ordinary differential equation d
dsxs D b.s; xs/, x.0/ D x0, describes the position

xt of a particle which moves with speed b.s; x/ depending on time and on the current
position. One possibility to take into account random effects, e. g. caused by measure-
ment errors or hidden parameters, is to add a random perturbation which may depend
on the current position. This leads to an equation of the form

X.t C�t/�X.t/ D b.t; X.t//�t C �.t; X.t//.B.t C�t/ � B.t//:

Letting �t ! 0 we get the following equation for stochastic differentials, cf. Sec-
tion 16.1,

dXt D b.t; Xt/ dt C �.t; Xt/ dBt : (18.1)

Since (18.1) is a formal way of writing things, we need a precise definition of the
solution of the stochastic differential equation (18.1).

18.1 Definition. Let .Bt ;Ft/t�0 be a BMd with admissible filtration .Ft /t�0, and let
b W Œ0;1/�Rn ! Rn and � W Œ0;1/�Rn ! Rn�d be measurable functions. A solu-
tion of the stochastic differential equation (SDE) (18.1) with initial condition X0 D �

is a progressively measurable stochastic process .Xt/t�0, Xt D .X1
t ; : : : ; X

n
t / 2 Rn,

such that the following integral equation holds

Xt D � C
Z t

0

b.s; Xs/ ds C
Z t

0

�.s; Xs/ dBs ; t � 0; (18.2)

i. e. for all j D 1; : : : ; n,

X
j
t D �j C

Z t

0

bj .s; Xs/ ds C
d
X

kD1

Z t

0

�jk.s; Xs/ dB
k
s ; t � 0: (18.3)

(It is implicit in the definition that all stochastic integrals make sense.)

Throughout this chapter we use the standard Euclidean norms jbj2 D Pn
jD1 b2j ,

jxj2 D Pd
kD1 x2k and j� j2 D Pn

jD1
Pd
kD1 �2jk for vectors b 2 Rn, x 2 Rd and ma-
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trices � 2 Rn�d , respectively. An easy application of the Cauchy-Schwarz inequality
shows that for these norms j�xj � j� j � jxj holds.

The expectation E and the probability measure P are given by the driving
Brownian motion; in particular P.B0 D 0/ D 1.

18.1 The heuristics of SDEs

We have introduced the SDE (18.1) as a random perturbation of the ODE Pxt D b.t; xt/

by a multiplicative noise: �.t; Xt/ dBt . The following heuristic reasoning explains
why multiplicative noise is actually a natural choice for many applications. We learned
this argument from Michael Röckner.

Denote by xt the position of a particle at time t . After�t units of time, the particle
is at xtC�t . We assume that the motion can be described by an equation of the form

�xt D xtC�t � xt D f .t; xt I�t/

where f is a function which depends on the initial position xt and the time interval
Œt; t C�t�. Unknown influences on the movement, e. g. caused by hidden parameters
or measurement errors, can be modelled by adding some random noise t;�t . This
leads to

XtC�t �Xt D F.t; Xt I�t; t;�t/
where Xt is now a random process. Note that F.t; Xt I 0; t;0/ D 0. In many applica-
tions it makes sense to assume that the random variable t;�t is independent ofXt , that
it has zero mean, and that it depends only on the increment �t . If we have no further
information on the nature of the noise, we should strive for a random variable which is
maximally uncertain. One possibility to measure uncertainty is entropy. We know from
information theory that, among all probability densities p.x/ with a fixed variance
�2, the Gaussian density maximizes the entropy H.p/ D � R1

�1 p.x/ logp.x/ dx,
cf. Ash [2, Theorem 8.3.3]. Therefore, we assume that t;�t � N.0; �2.�t//. By
the same argument, the random variables t;�t and tC�t;�s are independent and
t;�tC�s � t;�t C tC�t;�s . Thus, �2.�t C �s/ D �2.�t/ C �2.�s/, and if
�2. � / is continuous, we see that �2. � / is a linear function. Without loss of generality
we can assume that �2.t/ D t ; therefore

t;�t � �Bt WD BtC�t � Bt
where .Bt/t�0 is a one-dimensional Brownian motion and we can write

XtC�t �Xt D F.t; Xt I�t;�Bt/:



274 Chapter 18 Stochastic differential equations

IfF is sufficiently smooth, a Taylor expansion ofF in the last two variables (@j denotes
the partial derivative w. r. t. the j th variable) yields

XtC�t �Xt D @4F.t; Xt I 0; 0/�Bt C @3F.t; Xt I 0; 0/�t
C 1

2
@24F.t; Xt I 0; 0/.�Bt/2 C 1

2
@23F.t; Xt I 0; 0/.�t/2

C @3@4F.t; Xt I 0; 0/�t �Bt CR.�t;�Bt/:

The remainder term R is given by

R.�t;�Bt / D
X

0�j;k�3
jCkD3

3

j Š kŠ

Z 1

0

.1��/2@j3@k4F.t; Xt I ��t; ��Bt/ d� � .�t/j .�Bt /k :

Since�Bt � p
�tB1, we getR D o .�t/ and�t �Bt D o..�t/3=2/. Neglecting all

terms of order o.�t/ and using .�Bt/2 
 �t , we get for small increments �t

XtC�t �Xt D
�

@3F.t; Xt I 0; 0/C 1

2
@24F.t; Xt I 0; 0/

�

„ ƒ‚ …

DW b.t; Xt/

�t C @4F.t; Xt I 0; 0/
„ ƒ‚ …

DW �.t; Xt/

�Bt :

Letting �t ! 0, we get (18.1).

18.2 Some examples

Before we study general existence and uniqueness results for the SDE (18.1), we will
review a few examples where we can find the solution explicitly. Of course, we must
make sure that all integrals in (18.2) exist, i. e.

Z T

0

j�.s; Xs/j2 ds and
Z T

0

jb.s; Xs/j ds

should have an expected value or be at least almost surely finite, cf. Chapter 15. We
will assume this throughout this section. In order to keep things simple we discuss only
the one-dimensional situation d D n D 1.

18.2 Example. Let .Bt/t�0 be a BM1. We consider the SDEEx. 18.1

Xt � x D
Z t

0

b.s/ ds C
Z t

0

�.s/ dBs (18.4)

with deterministic coefficients b; � W Œ0;1/ ! R. It is clear that Xt is a normal
random variable and that .Xt/t�0 inherits the independent increments property from



Section 18.2 Some examples 275

the driving Brownian motion .Bt/t�0. Therefore, it is enough to calculate EXt and
VXt in order to characterize the solution:

E.Xt �X0/ D
Z t

0

b.s/ ds C E




Z t

0

�.s/ dBs

�

14.13 a)D
Z t

0

b.s/ ds

and

V.Xt �X0/ D E


�

Xt �X0 �
Z t

0

b.s/ ds

�2 �

D E


�

Z t

0

�.s/ dBs

�2 �

(14.20)D
Z t

0

�2.s/ ds:

18.3 Example (Homogeneous linear SDEs). A homogeneous linear SDE is an SDE
of the form

dXt D ˇ.t/Xt dt C ı.t/Xt dBt

with non-random coefficients ˇ; ı W Œ0;1/ ! R. Let us assume that the initial con-
dition is positive: X0 > 0. Since the solution has continuous sample paths, it is clear
that Xt > 0 for sufficiently small values of t > 0. Therefore it is plausible to set
Zt WD logXt . By Itô’s formula (16.6) we get, at least formally,

dZt D 1

Xt
ˇ.t/Xt dt C 1

X t
ı.t/Xt dBt � 1

2

1

X2
t

ı2.t/X2
t dt

D
�

ˇ.t/ � 1

2
ı2.t/

�

dt C ı.t/ dBt :

Thus,

Xt D X0 exp




Z t

0

�

ˇ.s/ � 1

2
ı2.s/

�

ds

�

exp




Z t

0

ı.s/ dBs

�

:

Now we can verify by a direct calculation that Xt is indeed a solution of the SDE –
even if X0 < 0.

If ˇ � 0, we get the formula for the stochastic exponential, see Section 17.1.

18.4 Example (Linear SDEs). A linear SDE is an SDE of the form Ex. 18.3

dXt D .˛.t/C ˇ.t/Xt/ dt C .�.t/C ı.t/Xt/ dBt :

with non-random coefficients ˛; ˇ; �; ı W Œ0;1/ ! R. Let Xı
t be a random process

such that 1=Xı
t is the solution of the homogeneous equation (i. e. where ˛ D � D 0)

for the initial value Xı
0 D 1. From the explicit formula for 1=Xı

t of Example 18.3 it is
easily seen that

dXı
t D .�ˇ.t/C ı2.t//Xı

t dt � ı.t/Xı
t dBt :
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Set Zt WD Xı
t Xt ; using Itô’s formula (16.8) for the two-dimensional Itô process

.Xt ; X
ı
t /, we see

dZt D Xt dX
ı
t CXı

t dXt �
Z t

0

.�.s/C ı.s/Xs/ı.s/X
ı
s ds

and this becomes, if we insert the formulae for dXt and dXı
t ,

dZt D .˛.t/ � �.t/ı.t//Xı
t dt C �.t/Xı

t dBt :

Since we know Xı
t from Example 18.3, we can thus get a formula for Zt and then for

Xt D Zt=X
ı
t .

We will now study some transformations of an SDE which help us to reduce a
general SDE (18.1) to a linear SDE or an SDE with non-random coefficients.

18.5 Transformation of an SDE. Assume that .Xt /t�0 is a solution of the SDE (18.1)
and denote by f W Œ0;1/ � R ! R function such that

• x 7! f .t; x/ is monotone;
• the derivatives ft .t; x/, fx.t; x/ and fxx.t; x/ exist and are continuous;
• g.t; � / WD f �1.t; � / exists for each t , i. e. f .t; g.t; x// D g.t; f .t; x// D x.

We set Zt WD f .t; Xt/ and use Itô’s formula (16.6) to find the SDE corresponding toEx. 16.3
the process .Zt /t�0:

dZt D ft.t; Xt/ dt C fx.t; Xt/ dXt C 1

2
fxx.t; Xt/�

2.t; Xt/ dt

D
h

ft .t; Xt/C fx.t; Xt/b.t; Xt/C 1

2
fxx.t; Xt/�

2.t; Xt/
i

„ ƒ‚ …

DWb.t;Zt /

dt

C fx.t; Xt/�.t; Xt /
„ ƒ‚ …

DW�.t;Zt /

dBt

where the new coefficients b.t; Zt / and �.t; Zt/ are given by

b.t; Zt/ D ft.t; Xt /C fx.t; Xt/b.t; Xt/C 1

2
fxx.t; Xt/�

2.t; Xt/;

�.t; Zt/ D fx.t; Xt/�.t; Xt/

with Xt D g.t; Zt/. We will now try to choose f and g in such a way that the trans-
formed SDE

dZt D b.t; Zt/ dt C �.t; Zt / dBt (18.5)

has an explicit solution from which we obtain the solution Xt D g.t; Zt/ of (18.1).
There are two obvious choices:
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Variance transform. Assume that �.t; z/ � 1. This means that

fx.t; x/�.t; x/ � 1 () fx.t; x/ D 1

�.t; x/
() f .t; x/ D

Z x

0

dy

�.t; y/
C c:

This can be done if �.t; x/ > 0 and if the derivatives �t and �x exist and are con-
tinuous.

Drift transform. Assume that b.t; z/ � 0. In this case f .t; x/ satisfies the partial
differential equation

ft .t; x/C b.t; x/fx.t; x/C 1

2
�2.t; x/fxx.t; x/ D 0:

If b.t; x/ D b.x/ and �.t; x/ D �.x/, we have bt D �t D ft D 0, and the partial
differential equation becomes an ordinary differential equation

b.x/f 0.x/C 1

2
�2.x/f 00.x/ D 0

which has the following explicit solution

f .x/ D c1 C c2

Z x

0

exp

�

�
Z y

0

2b.v/

�2.v/
dv

�

dy:

18.6 Lemma. Let .Bt /t�0 be a BM1. The SDE dXt D b.t; Xt/ dt C�.t; Xt/ dBt can
be transformed into the form dZt D b.t/ dt C �.t/ dBt if, and only if, the coefficients
satisfy the condition

0 D @

@x

²

�.t; x/

�

�t .t; x/

�2.t; x/
� @

@x

b.t; x/

�.t; x/
C 1

2
�xx.t; x/

�³

: (18.6)

Proof. If we use the transformationZt D f .t; Xt/ from Paragraph 18.5, it is necessary
that

b.t/ D ft .t; x/C b.t; x/fx.t; x/C 1

2
fxx.t; x/�

2.t; x/ (18.7a)

�.t/ D fx.t; x/�.t; x/ (18.7b)

with x D g.t; z/ D f �1.t; z/. Now we get from (18.7b)

fx.t; x/ D �.t/

�.t; x/

and therefore

fxt .t; x/ D � t .t/�.t; x/ � �.t/�t.t; x/
�2.t; x/

and fxx.t; x/ D ��.t/�x.t; x/
�2.t; x/

:
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Differentiate (18.7a) in x,

0 D ftx.t; x/C @

@x

�

b.t; x/fx.t; x/C 1

2
�2.t; x/fxx.t; x/

�

;

and plug in the formulae for fx , ftx and fxx to obtain

� t.t/

�.t/
D �.t; x/

�

�t .t; x/

�2.t; x/
� @

@x

b.t; x/

�.t; x/
C 1

2
�xx.t; x/

�

:

If we differentiate this expression in x we finally get (18.6).
Since we can, with suitable integration constants, perform all calculations in re-

versed order, it turns out that (18.6) is a necessary and sufficient condition to transform
the SDE.

18.7 Example. Assume that b.t; x/ D b.x/ and �.t; x/ D �.x/ and that conditionEx. 18.5
(18.6) holds, i. e.

0 D d

dx

²

�.x/

�

� d

dx

b.x/

�.x/
C 1

2
� 00.x/

�³

:

Then the transformation

Zt D f .t; Xt/ D ect
Z Xt

0

dy

�.y/

converts dXt D b.Xt / dt C �.Xt/ dBt into dZt D c0ect dt C ect dBt with suitable
constants c; c0 � 0; this SDE can be solved as in Example 18.2.

18.8 Lemma. Let .Bt/t�0 be a BM1. The SDE dXt D b.Xt/ dt C �.Xt/ dBt withEx. 18.9
coefficients b; � W R ! R can be transformed into a linear SDE

dZt D .˛ C ˇZt/ dt C .� C ıZt / dBt ; ˛; ˇ; �; ı 2 R;

if, and only if,

d

dx

 

d
dx
.� 0.x/�.x//
� 0.x/

!

D 0 where �.x/ D b.x/

�.x/
� 1

2
� 0.x/: (18.8)

Set d.x/ D R x

0
dy=�.y/ and ı D �

h

d
dx
.� 0.x/�.x//

i

=� 0.x/. Then the transformation

Zt D f .Xt / is given by

f .x/ D
´

eıd.x/; if ı ¤ 0;

�d.x/; if ı D 0:

Proof. Since the coefficients do not depend on t , it is clear that the transformation
Zt D f .Xt/ should not depend on t . Using the general transformation scheme from
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Paragraph 18.5 we see that the following relations are necessary:

b.x/f 0.x/C 1

2
�2.x/f 00.x/ D ˛ C f̌ .x/ (18.9a)

�.x/f 0.x/ D � C ıf .x/ (18.9b)

where x D g.z/, z D f .x/, i. e. g.z/ D f �1.z/.
Case 1. If ı ¤ 0, we set d.x/ D R x

0
dy=�.y/; then

f .x/ D ceıd.x/ � �

ı

is a solution to the ordinary differential equation (18.9b). Inserting this into (18.9a)
yields




ıb.x/

�.x/
C 1

2
�2.x/

�

ı2

�2.x/
� ı� 0.x/
�2.x/

��

ceıd.x/ D ˇceıd.x/ � ˇ�

ı
C ˛

which becomes



ıb.x/

�.x/
C 1

2
ı2 � ˇ � ı

2
� 0.x/

�

eıd.x/ D ˛ı � �ˇ
cı

:

Set �.x/ WD b.x/=�.x/ � 1
2
� 0.x/. Then this relation reads




ı�.x/C 1

2
ı2 � ˇ

�

eıd.x/ D ˛ı � �ˇ
cı

:

Now we differentiate this equality in order to get rid of the constant c:

ı� 0.x/eıd.x/ C



ı�.x/C 1

2
ı2 � ˇ

�

eıd.x/
ı

�.x/
D 0

which is the same as

ı�.x/C 1

2
ı2 � ˇ D ��0.x/�.x/:

Differentiating this equality again yields (18.8); the formulae for ı and f .x/ now fol-
low by integration.

Case 2. If ı D 0 then (18.9b) becomes

�.x/f 0.x/ D � and so f .x/ D �

Z x

0

dy

�.y/
C c:

Inserting this into (18.9a) shows

�.x/� D ˇ�d.x/C c0
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and if we differentiate this we get �.x/� 0.x/ � ˇ, i. e. d
dx
.�.x/�0.x// D 0, which

implies (18.8).
The sufficiency of (18.8) is now easily verified by a (lengthy) direct calculation with

the given transformation.

18.3 Existence and uniqueness of solutions

The main question, of course, is whether an SDE has a solution and, if so, whether the
solution is unique. If � � 0, the SDE becomes an ordinary differential equation, and it
is well known that existence and uniqueness results for ordinary differential equations
usually require a Lipschitz condition for the coefficients. Therefore it seems reasonable
to require

n
X

jD1
jbj .t; x/ � bj .t; y/j2 C

n
X

jD1

d
X

kD1
j�jk.t; x/ � �jk.t; y/j2 � L2 jx � yj2 (18.10)

for all x; y 2 Rn, t 2 Œ0; T � and with a (global) Lipschitz constantL D LT . If we pick
y D 0, the global Lipschitz condition implies the following linear growth condition

n
X

jD1
jbj .t; x/j2 C

n
X

jD1

d
X

kD1
j�jk.t; x/j2 �M 2 .1C jxj/2 (18.11)

for all x 2 Rn and with some constant M D MT which can be estimated from belowEx. 18.10
by M 2 � 2L2 C 2

Pn
jD1 supt�T jbj .t; 0/j2 C 2

Pn
jD1

Pd
kD1 supt�T j�jk.t; 0/j2.

We begin with a stability and uniqueness result.

18.9 Theorem (Stability). Let .Bt ;Ft /t�0 be a BMd and assume that the coefficients
b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE (18.1) satisfy
the Lipschitz condition (18.10) for all x; y 2 Rn with the global Lipschitz constant
L D LT forT > 0. If .Xt/t�0 and .Yt /t�0 are any two solutions of the SDE (18.1) with
F0 measurable initial conditionsX0 D � 2 L2.P/ and Y0 D � 2 L2.P/, respectively;
then

E
�

sup
t�T

jXt � Yt j2
	

� 3 e3L2.TC4/T E
�j� � �j2	 : (18.12)

The expectation E is given by the Brownian motion started at B0 D 0.

Proof. Note that

Xt � Yt D .� � �/C
Z t

0

�

b.s; Xs/ � b.s; Ys/
�

ds C
Z t

0

�

�.s; Xs/ � �.s; Ys/
�

dBs:
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The elementary estimate .aC b C c/2 � 3a2 C 3b2 C 3c2 yields

E
�

sup
t�T

jXt � Yt j2
	

� 3E
�j� � �j2	

C 3E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

b.s; Xs/ � b.s; Ys/
�

ds

ˇ

ˇ

ˇ

ˇ

2�

C 3E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�.s; Xs/ � �.s; Ys/
�

dBs

ˇ

ˇ

ˇ

ˇ

2�

:

Using the Cauchy-Schwarz inequality and (18.10), we find for the middle term

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

b.s; Xs/ � b.s; Ys/
�

ds

ˇ

ˇ

ˇ

ˇ

2 �

� E


�

Z T

0

ˇ

ˇb.s; Xs/ � b.s; Ys/
ˇ

ˇ ds

�2�

� T E




Z T

0

ˇ

ˇb.s; Xs/ � b.s; Ys/
ˇ

ˇ

2
ds

�

� L2T
Z T

0

E
�jXs � Ysj2

	

ds:

(18.13)

For the third term we use the maximal inequality for stochastic integrals, (14.21) in
Theorem 14.13 d), and (18.10) and get

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�.s; Xs/ � �.s; Ys/
�

dBs

ˇ

ˇ

ˇ

ˇ

2 �

� 4
Z T

0

E
�j�.s; Xs/ � �.s; Ys/j2

	

ds

� 4L2
Z T

0

E
�jXs � Ysj2

	

ds:

(18.14)

This proves

E
�

sup
t�T

jXt � Yt j2
	

� 3E
�j� � �j2	C 3L2.T C 4/

Z T

0

E
�jXs � Ysj2

	

ds

� 3E
�j� � �j2	C 3L2.T C 4/

Z T

0

E




sup
r�s

jXr � Yr j2
�

ds:

Now Gronwall’s inequality, Theorem A.43, with u.T / D EŒsupt�T jXt � Yt j2�, and
a.s/ D 3EŒj� � �j2� and b.s/ D 3L2.T C 4/, yields

E
�

sup
t�T

jXt � Yt j2
	

� 3 e3L2.TC4/T E
�j� � �j2	:

18.10 Corollary (Uniqueness). Let .Bt ;Ft /t�0 be a BMd and assume that the coeffi-
cients b W Œ0;1/� Rn ! Rn and � W Œ0;1/� Rn ! Rn�d of the SDE (18.1) satisfy
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the Lipschitz condition (18.10) for all x; y 2 Rn with the global Lipschitz constant
L D LT for T > 0. Any two solutions .Xt/t�0 and .Yt /t�0 of the SDE (18.1) with the
same F0 measurable initial condition X0 D Y0 D � 2 L2.P/ are indistinguishable.

Proof. The estimate (18.12) shows that P
�8 t 2 Œ0; n� W Xt D Yt

� D 1 for any
n � 1. Therefore, P.8 t � 0 W Xt D Yt / D 1.

In order to show the existence of the solution of the SDE we can use the Picard
iteration scheme from the theory of ordinary differential equations.

18.11 Theorem (Existence). Let .Bt ;Ft/t�0 be a BMd and assume that the coefficients
b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE (18.1) satisfy the
Lipschitz condition (18.10) for allx; y 2 Rnwith the global Lipschitz constantL D LT
for T > 0 and the linear growth condition (18.11) with the constant M D MT for
T > 0. For every F0 measurable initial condition X0 D � 2 L2.P/ there exists a
unique solution .Xt /t�0; this solution satisfies

E
�

sup
s�T

jXsj2
	

� �T E
�

.1C j�j/2	 for all T > 0: (18.15)

Proof. The uniqueness of the solution follows from Corollary 18.10.
To prove the existence we use Picard’s iteration scheme. Set

X0.t/ WD �;

XnC1.t/ WD � C
Z t

0

�.s; Xn.s// dBs C
Z t

0

b.s; Xn.s// ds:

1o Since .aC b/2 � 2a2 C 2b2, we see that

jXnC1.t/ � �j2 � 2
ˇ

ˇ

ˇ

ˇ

Z t

0

b.s; Xn.s// ds

ˇ

ˇ

ˇ

ˇ

2

C 2

ˇ

ˇ

ˇ

ˇ

Z t

0

�.s; Xn.s// dBs

ˇ

ˇ

ˇ

ˇ

2

:

With the calculations (18.13) and (18.14) – cf. the proof of Theorem 18.9 – where we
set Xs D Xn.s/ and omit the Y -terms, and with the linear growth condition (18.11)
instead of the Lipschitz condition (18.10), we get

E
�

sup
t�T

jXnC1.t/ � �j2	 � 2M 2.T C 4/

Z T

0

E
�

.1C jXn.s/j/2
	

ds

� 2M 2.T C 4/T E
�

sup
s�T

.1C jXn.s/j/2
	

:

Starting with n D 0, we see recursively that the processes XnC1, n D 0; 1; : : :, are
well-defined.
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2o As in step 1o we see

jXnC1.t/ �Xn.t/j2 � 2
ˇ

ˇ

ˇ

ˇ

Z t

0

�

b.s; Xn.s// � b.s; Xn�1.s//
	

ds

ˇ

ˇ

ˇ

ˇ

2

C 2

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�.s; Xn.s// � �.s; Xn�1.s//
	

dBs

ˇ

ˇ

ˇ

ˇ

2

:

Using again (18.13) and (18.14) with X D Xn and Y D Xn�1 we get

E
�

sup
t�T

jXnC1.t/ �Xn.t/j2
	

� 2L2.T C 4/

Z T

0

E
�jXn.s/ �Xn�1.s/j2

	

ds:

Set �n.T / WD E
�

supt�T jXnC1.t/ �Xn.t/j2
	

and cT D 2L2.T C 4/. Several itera-
tions of this inequality yield

�n.T / � cnT
Z

� � �
Z

t1�����tn�1�T

�0.t0/ dt0 : : : dtn�1

� cnT
Z

� � �
Z

t1�����tn�1�T

dt0 : : : dtn�1 �0.T / D cnT
T n

nŠ
�0.T /:

The estimate from 1o for n D 0 shows

�0.T / D E
�

sup
s�T

jX1.s/ � �j2	 � 2M 2.T C 4/T E
�

.1C j�j/2	

and this means that

1
X

nD0

®

E
�

sup
t�T

jXnC1.t/ �Xn.t/j2
	¯1=2 �

1
X

nD0

�

cnT
T n

nŠ
�0.T /

�1=2

� CT
p

E Œ.1C j�j/2�

with a constant CT D C.L;M; T /.

3o For n � m we find

®

E
�

sup
s�T

jXn.s/ �Xm.s/j2
	¯1=2 �

1
X

jDmC1

®

E
�

sup
s�T

jXj .s/ �Xj�1.s/j2
	¯1=2

:

Therefore, .Xn/n�0 is a Cauchy sequence in L2; denote its limit by X . The above
inequality shows that there is a subsequence m.k/ such that

lim
k!1

sup
s�T

jX.s/ �Xm.k/.s/j2 D 0 a. s.
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Since Xm.k/. � / is continuous and adapted, we see that X. � / is also continuous and
adapted. Moreover,

°

E
h

sup
s�T

jX.s/ � �j2
i±1=2

�
1
X

nD0

°

E
h

sup
t�T

jXnC1.t/ �Xn.t/j2
i±1=2

� CT
p

E Œ.1C j�j/2�;

and (18.15) follows with �T D C 2T C 1.

4o Recall thatXnC1.t/ D �CR t
0
�.s; Xn.s// dBsC

R t

0
b.s; Xn.s// ds. Let n D m.k/;

because of the estimate (18.15) we can use the dominated convergence theorem to get

X.t/ D � C
Z t

0

�.s; X.s// dBs C
Z t

0

b.s; X.s// ds

which shows that X is indeed a solution of the SDE.

18.12 Remark. The proof of the existence of a solution of the SDE (18.1) shows,
in particular, that the solution depends measurably on the initial condition. More pre-
cisely, if Xx

t denotes the unique solution of the SDE with initial condition x 2 Rn,
then .t; x; !/ 7! Xx

t .!/ is measurable with respect to BŒ0; t � ˝ B.Rn/ ˝ Ft . It is
enough to show this for the Picard approximations Xx

n .t; !/ since the measurability
is preserved under pointwise limits. For n D 0 we have Xx

n .t; !/ D x and there is
nothing to show. Assume we know already that Xx

n .t; !/ is BŒ0; t � ˝ B.Rn/ ˝ Ft
measurable. Since

Xx
nC1.t/ D x C

Z t

0

b.s; Xx
n .s// ds C

Z t

0

�.s; Xx
n .s// dBs

we are done, if we can show that both integral terms have the required measurability.
For the Lebesgue integral this is obvious from the measurability of the integrand and
the continuous dependence on the upper integral limit t . To see the measurability of
the stochastic integral, it is enough to assume d D n D 1 and that � is a step function.
Then

Z t

0

�.s; Xx
n .s// dBs D

m
X

jD1
�.sj ; X

x
n .sj //.B.sj / � B.sj�1//

where 0 D s0 < s1 < � � � < sm D t and this shows immediately the required
measurability.
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18.4 Solutions as Markov processes

Recall, cf. Remark 6.3 a), that a Markov process is an n-dimensional, adapted stochastic
process .Xt ;Ft/t�0 with (right-)continuous paths such that

E
�

u.Xt/
ˇ

ˇFs
	 D E

�

u.Xt /
ˇ

ˇXs
	

for all t � s � 0; u 2 Bb.Rn/: (18.16)

18.13 Theorem. Let .Bt ;Ft /t�0 be a d-dimensional Brownian motion and assume
that the coefficients b.s; x/ 2 Rn and �.s; x/ 2 Rn�d of the SDE (18.1) satisfy the
global Lipschitz condition (18.10). Then the unique solution of the SDE is a Markov
process.

Proof. Consider for fixed s � 0 and x 2 Rn the following SDE

Xt D x C
Z t

s

b.r; Xr/ dr C
Z t

s

�.r; Xr/ dBr ; t � s:

It is not hard to see that the existence and uniqueness results of Section 18.3 also hold
for this SDE and we denote by .X s;x

t /t�s its unique solution. On the other hand, we
find for every F0 measurable initial condition � 2 L2.P/ that

X
0;�
t D � C

Z t

0

b.r; X0;�
r / dr C

Z t

0

�.r; X0;�
r / dBr ; t � 0;

and so

X
0;�
t D X0;�

s C
Z t

s

b.r; X0;�
r / dr C

Z t

s

�.r; X0;�
r / dBr ; t � s:

Because of the uniqueness of the solution, we get

X
0;�
t D X

s;X
0;�
s

t a. s. for all t � s:

Moreover, X0;�
t .!/ is of the form ˆ.X

0;�
s .!/; s; t; !/ and the functional ˆ is mea-

surable with respect to Gs WD �.Br � Bs W r � s/. Since .Bt/t�0 has independent
increments, we know that Fs ?? Gs , cf. Lemma 2.10 or Theorem 6.1. Therefore, we
get for all s � t and u 2 Bb.Rn/

E
�

u.X
0;�
t /

ˇ

ˇFs
	 D E

�

u
�

ˆ.X0;�
s ; s; t; � /� ˇˇFs

	

(A.5)D
ˆ??Fs

E
�

u
�

ˆ.y; s; t; � /�	 ˇˇ
yDX0;�

s

D E
�

u.X
s;y
t /

	

ˇ

ˇ

yDX0;�
s
:

Using the tower property for conditional expectations we see now

E
�

u.X
0;�
t /

ˇ

ˇFs
	 D E

�

u.X
0;�
t /

ˇ

ˇX0;�
s

	

:
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For u D 1B , B 2 B.Rn/ the proof of Theorem 18.13 actually shows

p.s; X0;�
s I t; B/ WD P

�

X
0;�
t 2 B ˇˇFs

� D P
�

X
s;y
t 2 B�ˇˇ

yDX0;�
s
:

The family of measures p.s; xI t; � / is the transition function of the Markov process
X . If p.s; xI t; � / depends only on the difference t �s, we say that the Markov process
is homogeneous. In this case we write p.t � s; xI � /.

18.14 Corollary. Let .Bt ;Ft/t�0 be a BMd and assume that the coefficientsb.x/ 2 Rn

and �.x/ 2 Rn�d of the SDE (18.1) are autonomous (i. e. they do not depend on time)
and satisfy the global Lipschitz condition (18.10). Then the unique solution of the SDE
is a (homogeneous) Markov process with the transition function

p.t; xIB/ D P.Xx
t 2 B/; t � 0; x 2 Rn; B 2 B.Rn/:

Proof. As in the proof of Theorem 18.13 we see for all x 2 Rn and s; t � 0

X
s;x
sCt D x C

Z sCt

s

b.X s;x
r / dr C

Z sCt

s

�.X s;x
r / dBr

D x C
Z t

0

b.X
s;x
sCv/ dv C

Z t

0

�.X
s;x
sCv/ dWv

Where Wv WD BsCv �Bs , v � 0, is again a Brownian motion. Thus, .X s;x
sCt /t�0 is the

unique solution of the SDE

Yt D x C
Z t

0

b.Yv/ dv C
Z t

0

�.Yv/ dWv:

Since W and B have the same probability distribution, we conclude that

P
�

X
s;x
sCt 2 B� D P

�

X
0;x
t 2 B

�

for all s � 0; B 2 B.Rn/:

The claim follows if we set p.t; xIB/ WD P.Xx
t 2 B/ WD P.X

0;x
t 2 B/.

18.5 Localization procedures

We will show that the existence and uniqueness theorem for the solution of an SDE still
holds under a local Lipschitz condition (18.10) and a global linear growth condition
(18.11). We begin with a useful localization result for stochastic differential equations.

18.15 Lemma (Localization). Let .Bt ;Ft/t�0 be a BMd . Consider the SDEs

dX
j
t D bj .t; X

j
t / dt C �j .t; X

j
t / dBt ; j D 1; 2;
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with initial condition X1
0 D X2

0 D � 2 L2. Assume that � is F0 measurable and that
the coefficients bj W Œ0;1/ � Rn ! Rn and �j W Œ0;1/ � Rn ! Rn�d satisfy the
Lipschitz condition (18.10) for all x; y 2 Rn with a global Lipschitz constant L. If for
some T > 0 and R > 0

b1jŒ0;T ��B.0;R/ D b2jŒ0;T ��B.0;R/ and �1jŒ0;T ��B.0;R/ D �2jŒ0;T ��B.0;R/;

then we have for the stopping times �j D inf¹t � 0 W jX j
t � �j � Rº ^ T

P.�1 D �2/ D 1 and P
�

sup
s��1

jX1
s �X2

s j D 0
�

D 1: (18.17)

Proof. Since the solutions of the SDEs are continuous processes, �1 and �2 are indeed
stopping times, cf. Lemma 5.8. Observe that

X1

t^�1

�X2

t^�1

D
Z t^�1

0

�

b1.s; X
1
s / � b2.s; X2

s /
	

ds C
Z t^�1

0

�

�1.s; X
1
s / � �2.s; X2

s /
	

dBs

D
Z t^�1

0

�

b1.s; X
1
s / � b2.s; X1

s /
„ ƒ‚ …

D0

Cb2.s; X1
s / � b2.s; X2

s /
	

ds

C
Z t^�1

0

�

�1.s; X
1
s / � �2.s; X1

s /
„ ƒ‚ …

D0

C�2.s; X1
s / � �2.s; X2

s /
	

dBs :

Now we can use the elementary inequality .aCb/2 � 2a2C2b2 and (18.13), (18.14)
from the proof of the stability Theorem 18.9, with X D X1 and Y D X2 to deduce

E
h

sup
t�T

ˇ

ˇX1

t^�1

�X2

t^�1

ˇ

ˇ

2
i

� 2L2.T C 4/

Z T

0

E
h

sup
r�s

ˇ

ˇX1

r^�1

�X2

r^�1

ˇ

ˇ

2
i

ds:

Gronwall’s inequality, Theorem A.43 with a.s/ D 0 and b.s/ D 2L2.T C 4/ yields

E
h

sup
r�s

ˇ

ˇX1

r^�1

�X2

r^�1

ˇ

ˇ

2
i

D 0 for all s � T:

Therefore, X1

�^�1

D X2

�^�1

almost surely and, in particular, �1 � �2. Swapping the

roles of X1 and X2 we find �2 � �1 a. s., and the proof is finished.

We will use Lemma 18.15 to prove local uniqueness and existence results.

18.16 Theorem. Let .Bt ;Ft/t�0 be a d-dimenional Brownian motion and assume that
the coefficients b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE
(18.1) satisfy the linear growth condition (18.11) for all x; y 2 Rn and the Lipschitz
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condition (18.10) for all x; y 2 K for every compact set K � Rn with the local
Lipschitz constants LT;K . For every F0 measurable initial condition X0 D � 2 L2.P/
there exists a unique solution .Xt/t�0, and this solution satisfies

E
h

sup
s�T

jXsj2
i

� �T E
�

.1C j�j/2	 for all T > 0: (18.18)

Proof. Fix T > 0. For R > 0 we find some cut-off function �R 2 C1
c .R

n/ with
1B.0;R/ � �R � 1. Set

bR.t; x/ WD b.t; x/�R.x/ and �R.t; x/ WD �.t; x/�R.x/:

By Theorem 18.11 the SDE

dYt D bR.t; Yt/ dt C �R.t; Yt / dBt ; Y0 D �R.�/�

has a unique solution XR
t . Set

�R WD inf
®

s � 0 W ˇˇXR
s

ˇ

ˇ � R
¯

:

For S > R and all t � 0 we have

bRjŒ0;t��B.0;R/ D bS jŒ0;t��B.0;R/ and �RjŒ0;t��B.0;R/ D �S jŒ0;t��B.0;R/:

With Lemma 18.15 we conclude that

P
�

sup
t�T

ˇ

ˇXR
t �XS

t

ˇ

ˇ > 0
�

� P.�R < T / D P
�

sup
t�T

ˇ

ˇXR
t

ˇ

ˇ � R
�

:

Therefore it is enough to show that

lim
R!1 P.�R < T / D 0: (18.19)

Once (18.19) is established, we see that Xt WD limR!1XR
t exists uniformly for all

t 2 Œ0; T � and Xt^�R
D XR

t^�R

. Therefore, .Xt /t�0 is a continuous stochastic process.
Moreover,

XR

t^�R

D �R.�/� C
Z t^�R

0

bR.s; X
R
s / ds C

Z t^�R

0

�R.s; X
R
s / dBs

D �R.�/� C
Z t^�R

0

b.s; Xs/ ds C
Z t^�R

0

�.s; Xs/ dBs:

Letting R ! 1 shows that Xt solves the SDE (18.1).
Let us now show (18.19). Since � 2 L2.P/, we can use Theorem 18.9 to get

E
h

sup
t�T

ˇ

ˇXR
t

ˇ

ˇ

2
i

� �T E
�j�R.�/�j2

	

� �T E
�

.1C j�j/2	 < 1;
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and with Markov’s inequality,

P.�R < T / D P
�

sup
s�T

ˇ

ˇXR
s

ˇ

ˇ � R
�

� �T

R2
E
�

.1C j�j/2	 ����!
R!1 0:

To see uniqueness, assume that X and Y are any two solutions. Since XR is unique,
we conclude that

Xt^�R^TR
D Yt^�R^TR

D XR

t^�R^TR

if �R WD inf¹s � 0 W jXsj � Rº and TR WD inf¹s � 0 W jYsj � Rº. Thus, Xt D Yt
for all t � �R ^ TR. Since �R; TR ! 1 as R ! 1, we see that X D Y .

18.6 Dependence on the initial values

Often it is important to know how the solution .Xx
t /t�0 of the SDE (18.1) depends on

the starting point X0 D x. Typically, one is interested whether x 7! Xx
t is continu-

ous or differentiable. A first weak continuity result follows already from the stability
Theorem 18.9.

18.17 Corollary (Feller continuity). Let .Bt ;Ft/t�0 be a BMd . Assume that the co-
efficients b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE (18.1)
satisfy the Lipschitz condition (18.10) for all x; y 2 Rn with the global Lipschitz
constant L. Denote by .Xx

t /t�0 the solution of the SDE (18.1) with initial condition
X0 � x 2 Rn. Then

x 7! E
�

f .Xx
t /
	

is continuous for all f 2 Cb.Rn/:

Proof. Assume that f 2 Cc.Rn/ is a continuous function with compact support. Since
f is uniformly continuous, we find for any � > 0 some ı > 0 such that j� � �j < ı

implies jf .�/ � f .�/j � �. Now consider for x; y 2 Rn

E
�

ˇ

ˇf .Xx
t / � f .Xy

t /
ˇ

ˇ

	

D E
�

ˇ

ˇf .Xx
t / � f .Xy

t /
ˇ

ˇ 1¹jXx
t �Xy

t j�ıº
	C E

�

ˇ

ˇf .Xx
t / � f .Xy

t /
ˇ

ˇ 1¹jXx
t �Xy

t j<ıº
	

� 2kf k1 E
�

1¹jXx
t �Xy

t j�ıº
	C �

� 2kf k1
ı2

E
�jXx

t �Xy
t j2	C �

(18.12)������!
jx�yj!0

� ���!

!0

0:

This shows that x 7! E
�

f .Xx
t /
	

is continuous for all f 2 Cc.Rn/. If f 2 Cb.Rn/,
we choose a sequence of cut-off functions �k 2 Cc.Rn/ such that 1B.0;k/ � �k � 1.
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Then �kf 2 Cc.Rn/ and we see for all x; y 2 Rn

E
�

ˇ

ˇf .Xx
t / � f .Xy

t /
ˇ

ˇ

	

� E
�

ˇ

ˇ�kf .X
x
t / � �kf .Xy

t /
ˇ

ˇ

	C kf k1
�

P.jXx
t j � k/C P.jXy

t j � k/�

� E
�

ˇ

ˇ�kf .X
x
t / � �kf .Xy

t /
ˇ

ˇ

	C kf k1
k2

�

E
�jXx

t j2	C E
�jXy

t j2	�

� E
�

ˇ

ˇ�kf .X
x
t / � �kf .Xy

t /
ˇ

ˇ

	C �t
kf k1
k2

�jxj2 C jyj2�

���!
y!x

2�t
kf k1
k2

jxj2 ���!
k!1

0:

If we want to show that x 7! Xx
t is almost surely continuous, we need the Kolmo-

gorov–Chentsov Theorem 10.1 and Burkholder’s inequalities, Theorem 17.16.

18.18 Theorem. Let .Bt ;Ft/t�0 be a d-dimenional Brownian motion. Assume that
the coefficients b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE
(18.1) satisfy the Lipschitz condition (18.10) for all x; y 2 Rn with the global Lipschitz
constant L. Denote by .Xx

t /t�0 the solution of the SDE (18.1) with initial condition
X0 � x 2 Rn. Then we have for all p � 2

E
h

sup
s�T

.1C jXx
s j/p

i

� cp;T .1C jxjp/ for all T > 0; (18.20)

E
h

sup
s�T

jXx
s �Xy

s jp
i

� c0
p;T jx � yjp for all T > 0: (18.21)

In particular, x 7! Xx
t (has a modification which) is continuous.

Proof. The proof of (18.20) is very similar to the proof of (18.21). Note that the global
Lipschitz condition (18.10) implies the linear growth condition (18.11) which will be
needed for (18.20). Therefore, we will only prove (18.21). Note that

Xx
t �Xy

t D .x � y/C
t
Z

0

�

b.s; Xx
s / � b.s; Xy

s /
�

ds C
t
Z

0

�

�.s; Xx
s / � �.s; Xy

s /
�

dBs:

From Hölder’s inequality we see that .aC b C c/p � 3p�1.ap C bp C cp/. Thus,

E
h

sup
t�T

jXx
t � Y yt jp

i

� 3p�1jx � yjp

C 3p�1 E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

b.s; Xx
s / � b.s; Xy

s /
�

ds

ˇ

ˇ

ˇ

ˇ

p �

C 3p�1 E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�.s; Xx
s / � �.s; Xy

s /
�

dBs

ˇ

ˇ

ˇ

ˇ

p �

:
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Using the Hölder inequality and (18.10), we find for the middle term

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

b.s; Xx
s / � b.s; Xy

s /
�

ds

ˇ

ˇ

ˇ

ˇ

p �

� E


�

Z T

0

ˇ

ˇb.s; Xx
s / � b.s; Xy

s /
ˇ

ˇ ds

�p�

� T p�1 E




Z T

0

ˇ

ˇb.s; Xx
s / � b.s; Xy

s /
ˇ

ˇ

p
ds

�

(18.10)
� LpT p�1

Z T

0

E
�jXx

s �Xy
s jp	 ds

� LpT p�1
Z T

0

E




sup
r�s

jXx
r �Xy

r jp
�

ds:

For the third term we combine Burkholder’s inequality (applied to the coordinate pro-
cesses), the estimate (18.10) and Hölder’s inequality to get

E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

0

�

�.s; Xx
s / � �.s; Xy

s /
�

dBs

ˇ

ˇ

ˇ

ˇ

p �

(17.15)
� Cp E





Z T

0

j�.s; Xx
s / � �.s; Xy

s /j2 ds

�p=2�

(18.10)
� CpL

p E





Z T

0

jXx
s �Xy

s j2 ds

�p=2�

� CpL
p E





Z T

0

sup
r�s

jXx
r �Xy

r j2 ds

�p=2�

� CpL
p T p=2�1

Z T

0

E
h

sup
r�s

jXx
r �Xy

r jp
i

ds:

This shows that

E
h

sup
t�T

jXx
t � Y yt jp

i

� cjx � yjp C c

Z T

0

E
h

sup
r�s

jXx
r � Y yr jp

i

ds

with a constant c D c.T; p; L/. Gronwall’s inequality, Theorem A.43, yields with
u.T / D EŒsupt�T jXx

t �Xy
t jp�, a.s/ D c jx � yjp and b.s/ D c,

E
h

sup
t�T

jXx
t �Xy

t jp
i

� c ec T jx � yjp:

The assertion follows from the Kolmogorov–Chentsov Theorem 10.1, where we use
˛ D ˇ C n D p.
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18.19 Remark.

a) A weaker form of the boundedness estimate (18.20) from Theorem 18.18 holds for
all p 2 R:

E
�

.1C jXx
t j/p	 � cp;T .1C jxj2/p=2 for all x 2 Rd ; t � T; p 2 R:

(18.22)

Let us sketch the argument for d D n D 1.

Outline of the proof. Since .1C jxj/p � .1C 2p=2/.1C jxj2/p=2 for all p 2 R, it
is enough to prove (18.22) for E

�

.1C jXx
t j2/p=2	. Set f .x/ D .1C x2/p=2. Then

f 2 C2.R/ and we find that

f 0.x/ D px.1C x2/p=2�1 and f 00.x/ D p.1 � x2 C px2/.1C x2/p=2�2;

i. e. j.1 C x2/1=2f 0.x/j � Cpf .x/ and j.1 C x2/f 00.x/j � Cpf .x/ for some
absolute constant Cp . Itô’s formula (16.1) yields

f .Xx
t / � f .x/ D

Z t

0

f 0.Xx
r /b.r; X

x
r / dr C

Z t

0

f 0.Xx
r /�.r; X

x
r / dBr

C 1

2

Z t

0

f 00.Xx
r /�

2.r; Xx
r / dr:

The second term on the right is a local martingale, cf. Theorem 15.7 and Re-
mark 16.3. Using a localizing sequence .�k/k�0 and the fact that b.r; x/ and �.r; x/
satisfy the linear growth condition (18.11), we get for all k � 1 and t � T

Ef .Xx
t^�k

/

� f .x/C E




Z t^�k

0

�

M.1C jXx
r j/jf 0.Xx

r /j CM 2.1C jXx
r j/2jf 00.Xx

r /j
�

dr

�

� f .x/C C.p;M/

Z t

0

E f .Xx
r / dr:

By Fatou’s lemma E f .Xx
t / � limk!1 E f .Xx

t^�k
/, and we can apply Gronwall’s

lemma, Theorem A.43. This shows for all x and t � T

E f .Xx
t / � eC.p;M/T f .x/:

b) For the differentiability of the solution with respect to the initial conditions, we
can still use the idea of the proof of Theorem 18.16. We consider the (directional)
difference quotients

X
x
t �XxChej

t

h
; h > 0; ej D .

j
‚ …„ ƒ

0; : : : ; 0; 1; 0; : : :/ 2 Rn;
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and show that, as h ! 0, the partial derivatives @jXx
t , j D 1; : : : ; n, exist and

satisfy the formally differentiated SDE

d@jX
x
t D

2Rn�n

‚ …„ ƒ

Dzb.t; z/
ˇ

ˇ

ˇ

zDXx
t

@jX
x
t

„ƒ‚…

2Rn

dt C
d
X

`D1

2Rn�n 8`
‚ …„ ƒ

Dz ��;`.z; r/
„ ƒ‚ …

`th column, 2Rn

ˇ

ˇ

ˇ

zDXx
t

`th coordinate, 2R
‚…„ƒ

dB`t @jX
x
t

„ƒ‚…

2Rn

:

As one would expect, we need now (global) Lipschitz and growth conditions also
for the derivatives of the coefficients. We will not go into further details but refer
to Kunita [111, Chapter 4.6] and [112, Chapter 3].

18.20 Corollary. Let .Bt ;Ft /t�0 be a d-dimensional Brownian motion. Assume that
the coefficients b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the SDE
(18.1) satisfy the Lipschitz condition (18.10) for all x; y 2 Rn with the global Lipschitz
constant L. Denote by .Xx

t /t�0 the solution of the SDE (18.1) with initial condition
X0 � x 2 Rn. Then we have for all p � 2, s; t 2 Œ0; T � and x; y 2 Rn

E
�jXx

s �Xy
t jp	 � Cp;T

�

jx � yjp C .1C jxj C jyj/p js � t jp=2
�

: (18.23)

In particular, .t; x/ 7! Xx
t (has a modification which) is continuous.

Proof. Assume that s � t . Then the inequality .aC b/p � 2p�1.ap C bp/ gives

E
�jXx

s �Xy
t jp	 � 2p�1 E

�jXx
s �Xy

s jp	C 2p�1 E
�jXy

s �Xy
t jp	 :

The first term can be estimated by (18.21) with c0
p;T jx � yjp . For the second term we

note that

jXy
s �Xy

t jp D
ˇ

ˇ

ˇ

ˇ

Z t

s

b.r; Xy
r / dr C

Z t

s

�.r; Xy
r / dBr

ˇ

ˇ

ˇ

ˇ

p

:

Now we argue as in Theorem 18.18: Because of .a C b/p � 2p�1.ap C bp/, it is
enough to estimate the integrals separately. The linear growth condition (18.11) (which
follows from the global Lipschitz condition) and similar arguments as in the proof of
Theorem 18.18 yield

E




ˇ

ˇ

ˇ

ˇ

Z t

s

b.r; Xy
r / dr

ˇ

ˇ

ˇ

ˇ

p �

� jt � sjp�1 E




Z t

s

jb.r; Xy
r /jp dr

�

(18.11)
� jt � sjp�1Mp E




Z t

s

.1C jXy
r /j/p dr

�

� jt � sjpM p E
h

sup
r�T

.1C jXy
r /j/p

i

(18.20)
� jt � sjpMpcp;T .1C jyj/p:

(18.24)
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For the second integral we find with Burkholder’s inequality (applied to the coordinate
processes)

E




ˇ

ˇ

ˇ

ˇ

Z t

s

�.r; Xy
r / dBr

ˇ

ˇ

ˇ

ˇ

p� (17.15)
� Cp E


�

Z t

s

j�.r; Xy
r /j2 dr

�p=2�

� jt � sjp=2CpM pcp;T .1C jyj/p

where the last estimate follows as (18.24) with jbj� j� j2 and p � p=2. Thus,

E
�jXx

s �Xy
t jp	 � c00

p;T

�

jx � yjp C jt � sjp.1C jyj/p C jt � sjp=2.1C jyj/p
�

:

Since t � s � T , we have jt � sjp � T p=2jt � sjp=2.
If t � s, the starting points x and y change their roles in the above calculation, and

we see that (18.23) is just a symmetric (in x and y) formulation of the last estimate.
The existence of a jointly continuous modification .t; x/ 7! Xx

t follows from the
Kolmogorov–Chentsov Theorem 10.1 for the index set Rn� Œ0;1/ � RnC1 and with
p D ˛ D 2.ˇ C nC 1/.

18.21 Corollary. Let .Bt ;Ft /t�0 be a d-dimensional Brownian motion and assumeEx. 18.11
that the coefficients b W Œ0;1/ � Rn ! Rn and � W Œ0;1/ � Rn ! Rn�d of the
SDE (18.1) satisfy the Lipschitz condition (18.10) for all x; y 2 Rn with the global
Lipschitz constant L. Denote by .Xx

t /t�0 the solution of the SDE (18.1) with initial
condition X0 � x 2 Rn. Then

lim
jxj!1

jXx
t .!/j D 1 almost surely for every t � 0: (18.25)

Proof. For x 2 Rn n ¹0º we set Ox WD x=jxj2 2 Rn, and define for every t � 0

Y Ox
t D

´

.1C jXx
t j/�1 if Ox ¤ 0;

0 if Ox D 0:

Observe that j Oxj ! 0 if, and only if, jxj ! 1. If Ox; Oy ¤ 0 we find for all p � 2
ˇ

ˇY Ox
t � Y Oy

t

ˇ

ˇ

p D ˇ

ˇY Ox
t

ˇ

ˇ

p � ˇˇY Oy
t

ˇ

ˇ

p � ˇˇjXx
t j � jXy

t jˇˇp � ˇˇY Ox
t

ˇ

ˇ

p � ˇˇY Oy
t

ˇ

ˇ

p � ˇˇXx
t �Xy

t

ˇ

ˇ

p
;

and applying Hölder’s inequality two times we get

E
�

ˇ

ˇY Ox
t � Y Oy

t

ˇ

ˇ

p	 �
�

E
�jY Ox

t j4p	�1=4�E
�jY Oy

t j4p	�1=4�E
�jXx

t �Xy
t j2p	�1=2:

From Theorem 18.18 and Remark 18.19 a) we infer

E
�

ˇ

ˇY Ox
t � Y Oy

t

ˇ

ˇ

p	 � cp;T .1C jxj/�p.1C jyj/�pjx � yjp � cp;T j Ox � Oyjp:
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In the last estimate we used the inequality Ex. 18.12

jx � yj
.1C jxj/.1C jyj/ �

ˇ

ˇ

ˇ

ˇ

x

jxj2 � y

jyj2
ˇ

ˇ

ˇ

ˇ

; x; y 2 Rn:

The case where Ox D 0 is similar but easier since we use only (18.22) from Re-
mark 18.19 a).

The Kolmogorov–Chentsov Theorem 10.1 shows that Ox 7! Y Ox
t is continuous at

Ox D 0, and the claim follows.

18.22 Further reading. The classic book by [72] is still a very good treatise on the
L2 theory of strong solutions. Weak solutions and extensions of existence and unique-
ness results are studied in [99] or [80]. For degenerate SDEs you should consult [60].
The dependence on the initial value and more advanced flow properties can be found
in [111] for processes with continuous paths and, for jump processes, in [112]. The
viewpoint from random dynamical systems is explained in [1].

[1] Arnold: Random Dynamical Systems.
[60] Engelbert, Cherny: Singular Stochastic Differential Equations.
[99] Karatzas, Shreve: Brownian Motion and Stochastic Calculus.
[80] Ikeda, Watanabe: Stochastic Differential Equations and Diffusion Processes.
[72] Gikhman, Skorokhod: Stochastic Differential Equations.

[111] Kunita: Stochastic Flows and Stochastic Differential Equations.
[112] Kunita: Stochastic differential equations based on Lévy processes and stochas-

tic flows of diffeomorphisms.

Problems

1. Let X D .Xt/t�0 be the process from Example 18.2. Show that X is a
Gaussian process with independent increments and find the covariance function
C.s; t/ D EXsXt , s; t � 0.
Hint: Let 0 D t0 < t1 < � � � < tn D t . Find the characteristic function of the
random variables .Xt1 �Xt0 ; : : : ; Xtn �Xtn�1

/ and .Xt1 ; : : : ; Xtn/.

2. Let .B.t//t2Œ0;1� be a BM1 and set tk D k=2n for k D 0; 1; : : : ; 2n and�t D 2�n.
Consider the difference equation

�Xn.tk/ D �1
2
Xn.tk/�t C�B.tk/; Xn.0/ D A;

where�Xn.tk/ D Xn.tk C�t/�Xn.tk/ and�B.tk/ D B.tk C�t/�B.tk/ for
0 � k � 2n � 1 and A � N.0; 1/ is independent of .Bt/t2Œ0;1�.
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(a) Find an explicit formula for Xn.tk/, determine the distribution of Xn.1=2/
and the asymptotic distribution as n ! 1.

(b) Letting n ! 1 turns the difference equation into the SDE

dX.t/ D �1
2
X.t/ dt C dB.t/; X.0/ D A:

Solve this SDE and determine the distribution of X.1=2/ as well as the co-
variance function C.s; t/ D EXsXt , s; t 2 Œ0; 1�.

3. Show that in Example 18.4

Xı
t D exp

�

�
Z t

0

.ˇ.s/ � ı2.s/=2/ ds

�

exp

�

�
Z t

0

ı.s/ dBs

�

;

and verify the expression given for dXı
t . Moreover, show that

Xt D 1

Xı
t

�

X0 C
Z t

0

.˛.s/ � �.s/ı.s//Xı
s ds C

Z t

0

�.s/Xı
s dBs

�

:

4. Let .Bt /t�0 be a BM1. The solution of the SDE

dXt D �ˇXt dt C �dBt ; X0 D �

with ˇ > 0 and � 2 R is an Ornstein–Uhlenbeck process.
(a) Find Xt explicitly.
(b) Determine the distribution of Xt . Is .Xt /t�0 a Gaussian process? Find the

covariance function C.s; t/ D EXsXt , s; t � 0.
(c) Determine the asymptotic distribution � of Xt as t ! 1.
(d) Assume that the initial condition � is a random variable which is independent

of the driving Brownian motion .Bt/t�0, write � for its probability distri-
bution. Find the characteristic function of .Xt1 ; : : : ; Xtn/ for any choice of
0 � t1 < t2 < � � � < tn < 1.

(e) Show that the process .Ut /t�0, where Ut WD e�ˇtB.e2ˇ t � 1/, has the same
finite dimensional distributions as .Xt /t�0 with initial condition X0 D 0.

5. Verify the claim made in Example 18.7 using Itô’s formula.
Derive from the proof of Lemma 18.6 explicitly the form of the transformation
and the coefficients in Example 18.7.
Hint: Integrate the condition (18.6) and retrace the steps of the proof of Lem-
ma 18.6 from the end to the beginning.

6. Let .Bt/t�0 be a BM1. Find an SDE which has Xt D tBt , t � 0, as unique
solution.
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7. Let .Bt /t�0 be a BM1. Find for each of the following processes an SDE which is
solved by it:

(a) Ut D Bt

1C t
I (b) Vt D sinBt I

(c)

�

Xt
Yt

�

D
�

a cosBt
b sinBt

�

; a; b ¤ 0:

8. Let .Bt/t�0 be a BM1. Solve the following SDEs
(a) dXt D b dt C �Xt dBt , X0 D x0 and b; � 2 R;
(b) dXt D .m �Xt / dt C � dBt , X0 D x0 and m; � > 0.

9. Let .Bt/t�0 be a BM1. Use Lemma 18.8 to find the solution of the following SDE:

dXt D
�

q

1CX2
t C 1

2
Xt

�

dt C
q

1CX2
t dBt :

10. Show that the constant M in (18.11) can be chosen in the following way:

M 2 � 2L2 C 2

n
X

jD1
sup
t�T

jbj .t; 0/j2 C 2

n
X

jD1

d
X

kD1
sup
t�T

j�jk.t; 0/j2

11. The linear growth of the coefficients is essential for Corollary 18.21.
(a) Consider the case where d D n D 1, b.x/ D �ex and �.x/ D 0. Find the

solution of this deterministic ODE and compare your findings for x ! C1
with Corollary 18.21

(b) Assume that jb.x/j C j�.x/j � M for all x. Find a simpler proof of Corol-
lary 18.21.
Hint: Find an estimate for P

�

ˇ

ˇ

ˇ

R t

0
�.Xx

s / dBs

ˇ

ˇ

ˇ

> r
�

.

(c) Assume that jb.x/j C j�.x/j grow, as jxj ! 1, like jxj1�
 for some � > 0.
Show that one can still find a (relatively) simple proof of Corollary 18.21.

12. Show that for x; y 2 Rn the inequality

jx � yj.1C jxj/�1.1C jyj/�1 � ˇˇjxj�2x � jyj�2yˇˇ

holds.
Hint: Use a direct calculation after squaring both sides.
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On diffusions

Diffusion is a physical phenomenon which describes the tendency of two (or more)
substances, e. g. gases or liquids, to reach an equilibrium: Particles of one type, say
B , move or ‘diffuse’ in(to) another substance, say S , leading to a more uniform dis-
tribution of the type B particles within S . Since the particles are physical objects, it is
reasonable to assume that their trajectories are continuous (in fact, differentiable) and
that the movement is influenced by various temporal and spatial (in-)homogeneities
which depend on the nature of the substance S . Diffusion phenomena are governed by
Fick’s law. Denote by p D p.t; x/ the concentration of the B particles at a space-time
point .t; x/, and by J D J.t; x/ the flow of particles. Then

J D �D@p
@x

and
@p

@t
D �@J

@x

whereD is called the diffusion constant which takes into account the geometry and the
properties of the substances B and S . Einstein considered in 1905 the particle move-
ment observed by Brown and – under the assumption that the movement is temporally
and spatially homogeneous – he showed that it can be described as a diffusion phe-
nomenon:

@p.t; x/

@t
D D

@2p.t; x/

@x2
hence p.t; x/ D 1p

4
D
e� x2

4Dt :

The diffusion coefficient D D RT
N

1
6	kP

depends on the absolute temperature T , the
universal gas constant R, Avogadro’s number N , the friction coefficient k and the
radius of the particles (i. e. atoms) P .

If the diffusion coefficient depends on time and space, D D D.t; x/, Fick’s law
leads to a differential equation of the type

@p.t; x/

@t
D D.t; x/

@2p.t; x/

@x2
C @D.t; x/

@x

@p.t; x/

@x
:

In a mathematical model of a diffusion we could either use a macroscopic approach
and model the particle density p.t; x/, or a microscopic point of view modelling the
movement of the particles themselves and determine the particle density. Using prob-
ability theory we can describe the (random) position and trajectories of the particles
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by a stochastic process. In view of the preceding discussion it is reasonable to require
that the stochastic process

• has continuous trajectories t 7! Xt .!/;
• has a generator which is a second-order differential operator.

Nevertheless there is no standard definition of a diffusion process. Depending on the
model, one will prefer one assumption over the other or add further requirements.

Throughout this chapter we use the following definition.

19.1 Definition. A diffusion process is a Feller process .Xt/t�0 with values in Rd , Ex. 19.1
continuous trajectories and generator .A;D.A// such that C1

c .R
d / � D.A/ and for

u 2 C1
c .R

d /

Au.x/ D L.x;D/u.x/ D 1

2

d
X

i;jD1
aij .x/

@2u.x/

@xi@xj
C

d
X

jD1
bj .x/

@u.x/

@xj
: (19.1)

The symmetric, positive semidefinite matrix a.x/ D .aij .x//
d
i;jD1 2 Rd�d is called

the diffusion matrix, and b.x/ D .b1.x/; : : : ; bd .x// 2 Rd is called the drift vector.

Since .Xt/t�0 is a Feller process, A maps C1
c .R

d / into C1.Rd /, therefore a. � /
and b. � / are continuous functions.

19.2 Remark. Continuity of paths and local operators. Let .Xt /t�0 be a Feller
process with generator .A;D.A// such that C1

c .R
d / � D.A/.

By Theorems 7.29 and 7.28, the continuity of the trajectories implies that A is a
local operator, hence a second-order differential operator.

The converse is true if .Xt /t�0 takes values in a compact space. For this, we need
the Dynkin–Kinney criterion for the continuity of the sample paths. A proof can be
found in Dynkin [53, Chapter 6 § 5] or Wentzell [184, Chapter 9]. By Rd [ ¹@º we
denote the one-point compactification of Rd .

19.3 Theorem (Dynkin 1952, Kinney 1953). Let .Xt/t�0 be a strong Markov process
with state space E � Rd [ ¹@º. If

8 ı > 0 lim
h!0

1

h
sup
t�h

sup
x2E Px.jXt � xj > ı/ D 0; (19.2)

then there is a modification of .Xt /t�0 which has continuous trajectories in E.

The continuity of the trajectories implies that the generator is a local operator, cf. The-
orem 7.29. If the state spaceE is compact, (an obvious modification of) Theorem 7.30
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shows that this is the same as to say that

8 ı > 0 lim
t!0

1

t
sup
x2E Px.jXt � xj > ı/ D 0: (19.3)

Since h�1 P.h/ � h�1 supt�h P.t/ � supt�h t�1 P.t/ we see that (19.2) and (19.3)
are equivalent conditions.

We might apply this to .Xt/t�0 with paths in E D Rd [ ¹@º, but the trouble is that
continuity of t 7! Xt in Rd and Rd [¹@º are quite different notions: The latter allows
explosion in finite time as well as sample paths coming back from @, while continuity
in Rd means infinite life-time: Px.8t � 0 W Xt 2 Rd / D 1.

19.1 Kolmogorov’s theory

Kolmogorov’s seminal paper [105] Über die analytischen Methoden der Wahrschein-
lichkeitsrechnung marks the beginning of the mathematically rigorous theory of sto-
chastic processes in continuous time. In §§13, 14 of this paper Kolmogorov develops
the foundations of the theory of diffusion processes and, we will now follow Kol-
mogorov’s ideas.

19.4 Theorem (Kolmogorov 1933). Let .Xt /t�0, Xt D .X1
t ; : : : ; X

d
t /, be a Feller

process with values in Rd such that for all ı > 0 and i; j D 1; : : : ; d

lim
t!0

1

t
sup
x2Rd

Px.jXt � xj > ı/ D 0; (19.4a)

lim
t!0

1

t
Ex

�

.X
j
t � xj / 1¹jXt �xj�ıº

� D bj .x/; (19.4b)

lim
t!0

1

t
Ex

�

.X i
t � xi/.Xj

t � xj / 1¹jXt �xj�ıº
� D aij .x/: (19.4c)

Then .Xt /t�0 is a diffusion process in the sense of Definition 19.1.

Proof. The Dynkin–Kinney criterion, see the discussion in Remark 19.2, shows that
(19.4a) guarantees the continuity of the trajectories.

We are going to show that C1
c .R

d / � D.A/ and that AjC1
c .R

d / is a differential
operator of the form (19.1). The proof is similar to Example 7.9.

Let u 2 C1
c .R

d /. Since @j @ku is uniformly continuous,

8 � > 0 9 ı > 0 W max
1�i;j�d

sup
jx�yj�ı

j@i@ju.x/ � @i@ju.y/j � �:
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Fix � > 0, choose ı > 0 as above and set Ttu.x/ WD Ex u.Xt/,	ı WD ¹jXt �xj � ıº.
Then

Ttu.x/ � u.x/
t

D 1

t
Ex

��

u.Xt / � u.x/	 1�ı

�

„ ƒ‚ …

DJ

C 1

t
Ex

��

u.Xt/ � u.x/	 1�c
ı

�

„ ƒ‚ …

DJ’

:

It is enough to show that limt!0

�

Ttu.x/ � u.x/
�

=t D Au.x/ holds for all x 2 Rd ,
u 2 C1

c .R
d / and A from (19.1), see Theorem 7.19.

The second term can be estimated by

jJ’j � 2 kuk1
1

t
Px.jXt � xj > ı/ (19.4a)���!

t!0
0:

Now we consider J. By Taylor’s formula there is some � 2 .0; 1/ such that for the
intermediate point ‚ D .1 � �/x C �Xt

u.Xt / � u.x/ D
d
X

jD1
.X

j
t � xj / @ju.x/C 1

2

d
X

j;kD1
.X

j
t � xj /.Xk

t � xk/ @j @ku.x/

C 1

2

d
X

j;kD1
.X

j
t � xj /.Xk

t � xk/
�

@j @ku.‚/ � @j @ku.x/
�

:

Denote the terms on the right-hand side by J1; J2 and J3, respectively. Since @j@ku is
uniformly continuous, the elementary inequality 2jabj � a2 C b2 yields

1

t
Ex .jJ3j 1�ı

/ � �

2

d
X

i;jD1

1

t
Ex

h

j.X i
t � xi /.Xj

t � xj /j 1�ı

i

� �d

2

d
X

jD1

1

t
Ex

h

.X
j
t � xi /21�ı

i

(19.4c)����!
t!0

�d

2

d
X

jD1
ajj .x/:

Moreover,

1

t
Ex .J21�ı

/ D 1

2

d
X

j;kD1

1

t
Ex

h

.X
j
t � xj /.Xk

t � xk/1�ı

i

@j @ku.x/

(19.4c)���!
t!0

1

2

d
X

i;jD1
aij .x/ @i@ju.x/;

and

1

t
Ex .J11�ı

/ D
d
X

jD1

1

t
Ex

�

.X
j
t � xj /1�ı

	

@ju.x/
(19.4b)���!
t!0

d
X

jD1
bj .x/ @ju.x/:

Since � > 0 is arbitrary, the claim follows.
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If .Xt/t�0 has a transition density, i. e. if Px.Xt 2 A/ D R

A
p.t; x; y/ dy for all

t > 0 and A 2 B.Rd /, then we can express the dynamics of the movement as a
Cauchy problem. Depending on the point of view, we get Kolmogorov’s first and sec-
ond differential equation, cf. [105, §§ 12–14].

19.5 Proposition (Backward equation. Kolmogorov 1931). Let .Xt /t�0 be a diffusion
with generator .A;D.A// such thatAjC1

c .R
d / is given by (19.1) with bounded drift and

diffusion coefficients b 2 Cb.Rd ;Rd / and a 2 Cb.Rd ;Rd�d /. Assume that .Xt/t�0
has a transition density p.t; x; y/, t > 0, x; y 2 Rd , satisfying

p;
@p

@t
;
@p

@xj
;
@2p

@xj @xk
2 C..0;1/ � Rd � Rd /;

p.t; � ; � /; @p.t; � ; � /
@t

;
@p.t; � ; � /
@xj

;
@2p.t; � ; � /
@xj @xk

2 C1.Rd � Rd /

for all t > 0. Then Kolmogorov’s first or backward equation holds:

@p.t; x; y/

@t
D L.x;Dx/p.t; x; y/; for all t > 0; x; y 2 Rd : (19.5)

Proof. Denote by L.x;Dx/ the differential operator given by (19.1). By assumption,
A D L.x;D/ on C1

c .R
d /. Since p.t; x; y/ is the transition density, we know that the

transition semigroup is given by Ttu.x/ D R

p.t; x; y/u.y/ dy.
Using dominated convergence it is not hard to see that the conditions on p.t; x; y/Ex. 19.2

are such that Tt maps C1
c .R

d / to C21.Rd /.
Since the coefficients b and a are bounded, kAuk1 � �kuk.2/, where we use the

norm kuk.2/ D kuk1 CP

j k@juk1 CP

j;k k@j @kuk1 in C21.Rd /, and � D �.b; a/

is a constant. Since C1
c .R

d / � D.A/ and .A;D.A// is closed, cf. Corollary 7.11, itEx. 19.3
follows that C21.Rd / � D.A/ and AjC2

1.R
d / D L.x;D/jC2

1.R
d /.

Therefore, Lemma 7.10 shows that ddtTtu D ATtu D L. � ;D/Ttu, i. e.

@

@t

Z

p.t; x; y/u.y/ dy D L.x;Dx/

Z

p.t; x; y/u.y/ dy

D
Z

L.x;Dx/p.t; x; y/u.y/ dy

for all u 2 C1
c .R

d /. The last equality is a consequence of the continuity and smooth-
ness assumptions on p.t; x; y/ which allow us to use the differentiation lemma for
parameter-dependent integrals, see e. g. [169, Theorem 11.5]. Applying it to the t -
derivative, we get

Z

�

@p.t; x; y/

@t
� L.x;Dx/p.t; x; y/

�

u.y/ dy D 0 for all u 2 C1
c .R

d /

which implies (19.5).
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If L.x;Dx/ is a second-order differential operator of the form (19.1), then the for- Ex. 19.4
mal adjoint operator is

L�.y;Dy/u.y/ D 1

2

d
X

i;jD1

@2

@yi@yj
.aij .y/u.y//�

d
X

jD1

@

@yj
.bj .y/u.y//

provided that the coefficients a and b are sufficiently smooth.

19.6 Proposition (Forward equation. Kolmogorov 1931). Let .Xt/t�0 denote a dif- Ex. 19.5
fusion with generator .A;D.A// such that AjC1

c .R
d / is given by (19.1) with drift and

diffusion coefficients b 2 C1.Rd ;Rd / and a 2 C2.Rd ;Rd�d /. Assume that Xt has a
probability density p.t; x; y/ satisfying

p;
@p

@t
;
@p

@yj
;
@2p

@yj @yk
2 C..0;1/ � Rd � Rd /:

Then Kolmogorov’s second or forward equation holds:

@p.t; x; y/

@t
D L�.y;Dy/p.t; x; y/; for all t > 0; x; y 2 Rd : (19.6)

Proof. This proof is similar to the proof of Proposition 19.5, where we use Lemma 7.10
in the form d

dtTtu D TtAu D TtL. � ;D/u for u 2 C1
c .R

d /, and then integration by
parts in the resulting integral equality. The fact that we do not have to interchange
the integral and the operator L.x;D/ as in the proof of Proposition 19.5, allows us to
relax the boundedness assumptions on p, b and a, but we pay a price in the form of
differentiability assumptions for the drift and diffusion coefficients.

If a and b do not depend on x, the transition probability p.t; x; y/ depends only on
the difference x � y, and the corresponding stochastic process is spatially homoge-
neous, essentially a Brownian motion with a drift: aBt C bt . Kolmogorov [105, §16]
mentions that in this case the forward equation (19.6) was discovered (but not rigor-
ously proved) by Bachelier [4, 5]. Often it is called Fokker–Planck equation since it
also appears in the context of statistical physics, cf. Fokker [64] and Planck [147].

In order to understand the names ‘backward’ and ‘forward’ we have to introduce
the concept of a fundamental solution of a parabolic PDE.

19.7 Definition. LetL.s; x;D/ D Pd
i;jD1 aij .s; x/@j@kCPd

jD1 bj .s; x/@j Cc.s; x/

be a second-order differential operator on Rd where .aij .s; x// 2 Rd�d is symmetric
and positive semidefinite. A fundamental solution of the parabolic differential oper-
ator @

@s
C L.s; x;D/ on the set Œ0; T � � Rd is a function .s; xI t; y/ defined for all
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.s; x/; .t; y/ 2 Œ0; T � � Rd with s < t such that for every f 2 Cc.Rd / the function

u.s; x/ D
Z

Rd

.s; xI t; y/f .y/ dy

satisfies

�@u.s; x/
@s

D L.s; x;D/u.s; x/ for all x 2 Rd ; s < t � T; (19.7a)

lim
s"t
u.s; x/ D f .x/ for all x 2 Rd : (19.7b)

Proposition 19.5 shows that .s; xI t; y/ WD p.t�s; x; y/, s < t , is the fundamental
solution of the parabolic differential operator L.x;D/C @

@s
, whereas Proposition 19.6

means that .t; yI s; x/ WD p.s � t; y; x/, t < s is the fundamental solution of the
(formal) adjoint operator L�.y;D/ � @

@t
.

The backward equation has the time derivative at the left end of the time inter-
val, and we solve the PDE in a forward direction with a condition at the right end
lims"t p.t � s; x; y/ D ıx.dy/. In the forward equation the time derivative takes place
at the right end of the time interval, and we solve the PDE backwards with an ini-
tial condition lims#t p.s � t; y; x/ D ıy.dx/. Of course, this does not really show in
the time-homogeneous case. … At a technical level, the proofs of Propositions 19.5
and 19.6 reveal that all depends on the identity (7.10): in the backward case we use
d
dtTt D ATt , in the forward case d

dtTt D TtA.
Using probability theory we can give the following stochastic interpretation. Run

the stochastic process in the time interval Œ0; t �. Using the Markov property we can
perturb the movement at the beginning, i. e. on Œ0; h� and then let it run from time h to
t , or we could run it up to time t � h, and then perturb it at the end in Œt � h; t �.

0 h t

x

Rd

C

0 t − h t

x

Rd

C

Figure 19.1. Derivation of the backward and forward Kolmogorov equations.

In the first or backward case, the Markov property gives for all C 2 B.Rd /

Px.Xt 2 C/ � Px.Xt�h 2 C/ D Ex PXh.Xt�h 2 C/ � Px.Xt�h 2 C/
D .Th � id/P. � /.Xt�h 2 C/.x/:
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If Px.Xt 2 C/ D R

C
p.t; x; y/ dy with a sufficiently smooth density, we get

p.t; x; y/� p.t � h; x; y/
h

D Th � id

h
p.t � h; � ; y/.x/

which, as h ! 0, yields @
@t
p.t; x; y/ D Axp.t; x; y/, i. e. the backward equation.

In the second or forward case we get

Px.Xt 2 C/ � Px.Xt�h 2 C/ D Ex PXt�h.Xh 2 C/ � Px.Xt�h 2 C/
D Ex

�

.Th � id/1C .Xt�h/
�

:

Passing to the transition densities and dividing by h, we get

p.t; x; y/� p.t � h; x; y/
h

D T �
h

� id

h
p.t � h; x; � /.y/

and h ! 0 yields @
@t
p.t; x; y/ D A�

yp.t; x; y/ (T �
t ; A

� are the adjoint operators).
The obvious question is, of course, which conditions on b and a ensure that there is

a (unique) diffusion process such that the generator, restricted to C1
c .R

d /, is a second
order differential operator (19.1). If we can show thatL.x;D/ generates a Feller semi-
group or has a nice fundamental solution for the corresponding forward or backward
equation for L.x;D/, then we could use Kolmogorov’s construction, cf. Section 4.2
or Remark 7.6, to construct the corresponding process.

For example, we could use the Hille–Yosida theorem (Theorem 7.16 and
Lemma 7.18); the trouble is then to verify condition c) from Theorem 7.16 which
amounts to finding a solution to an elliptic partial differential equation of the type
�u.x/ � L.x;D/u.x/ D f .x/ for f 2 C1.Rd /. In a non-Hilbert space setting, this
is not an easy task.

Another possibility would be to construct a fundamental solution for the backward
equation. Here is a standard result in this direction. For a proof we refer to Friedman
[68, Chapter I.6].

19.8 Theorem. Let L.x;D/ D Pd
i;jD1 aij .x/@i@j CPd

jD1 bj .x/@j C c.x/ be a dif-

ferential operator on Rd such that

d
X

i;jD1
aij .x/�i�j � � j�j2 for some constant � and all x; � 2 Rd ;

aij . � /; bj . � /; c. � / 2 Cb.Rd / are locally Hölder continuous.

Then there exists a fundamental solution .s; xI t; y/ such that

• ;
@

@s
;
@

@xj
and

@2

@xj@xk
are continuous in .s; xI t; y/;
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• .s; xI t; y/ � c.t � s/�d=2 e�C jx�yj2=.t�s/;
@.s; xI t; y/

@xj
� c.t � s/�.dC1/=2 e�C jx�yj2=.t�s/I

• �@.s; xI t; y/
@s

D L.x;Dx/.s; xI t; y/;

• lim
s"t

Z

.s; xI t; y/f .x/ dx D f .y/ for all f 2 Cb.Rd /.

19.2 Itô’s theory

It is possible to extend Theorem 19.8 to increasing and degenerate coefficients, and we
refer the interested reader to the exposition in Stroock and Varadhan [177, Chapter 3].
Here we will follow Itô’s idea to use stochastic differential equations (SDEs) and con-
struct a diffusion directly. In Chapter 18 we have discussed the uniqueness, existence
and regularity of SDEs of the form

dXt D b.Xt/ dt C �.Xt / dBt ; X0 D x; (19.8)

for a BMd .Bt /t�0 and coefficients b W Rd ! Rd , � W Rd ! Rd�d . The key
ingredient was the following global Lipschitz condition

d
X

jD1
jbj .x/ � bj .y/j2 C

d
X

j;kD1
j�jk.x/ � �jk.y/j2 � C 2 jx � yj2 for all x; y 2 Rd :

(19.9)
If we take y D 0, (19.9) entails the linear growth condition.

19.9 Theorem. Let .Bt/t�0 be a BMd and .Xx
t /t�0 be the solution of the SDE (19.8).

Assume that the coefficients b and � satisfy the global Lipschitz condition (19.9).
Then .Xx

t /t�0 is a diffusion process in the sense of Definition 19.1 with infinitesimal
generator

L.x;D/u.x/ D 1

2

d
X

i;jD1
aij .x/

@2u.x/

@xi@xj
C

d
X

jD1
bj .x/

@u.x/

@xj

where a.x/ D �.x/�>.x/.

Proof. The uniqueness, existence, and Markov property of .Xx
t /t�0 follow from Corol-

lary 18.10, Theorem 18.11 and Corollary 18.14, respectively. The (stochastic) integral
is, as a function of its upper limit, continuous, cf. Theorem 14.13 or The-
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orem 15.7, and so t 7! Xx
t .!/ is continuous. From Corollary 18.21 we know that Ex. 18.11

limjxj!1 jXx
t j D 1 for every t > 0. Therefore, we conclude with the dominated

convergence theorem that

x 7! Ttu.x/ WD E u.Xx
t / is in C1.Rd / for all t � 0 and u 2 C1.Rd /:

The operators Tt are clearly sub-Markovian and contractive. Let us show that .Tt /t�0
is strongly continuous, hence a Feller semigroup. Take u 2 C2c.Rd / and apply Itô’s
formula, Theorem 16.6. Then

u.Xx
t / � u.x/ D

d
X

j;kD1

Z t

0

�jk.X
x
s /@ju.X

x
s / dB

k
s C

d
X

jD1

Z t

0

bj .X
x
s /@ju.X

x
s / ds

C 1

2

d
X

i;jD1

Z t

0

aij .X
x
s /@i@ju.X

x
s / ds:

Since the first term on the right is a martingale, its expected value vanishes, and we get

jTtu.x/ � u.x/j D j E u.Xx
t / � u.x/j

�
d
X

jD1
E

ˇ

ˇ

ˇ

ˇ

Z t

0

bj .X
x
s /@ju.X

x
s / ds

ˇ

ˇ

ˇ

ˇ

C 1

2

d
X

i;jD1
E

ˇ

ˇ

ˇ

ˇ

Z t

0

aij .X
x
s /@i@ju.X

x
s / ds

ˇ

ˇ

ˇ

ˇ

� t
d
X

jD1
kbj @juk1 C t

d
X

i;jD1
kaij @i@juk1 ��!

t!0
0

Approximate u 2 C1.Rd / by a sequence .un/n�0 � C2c.Rd /. Then

kTtu � uk1 � kTt.u � un/k1 C kTtun � unk1 C ku � unk1
� 2ku � unk1 C kTtun � unk1:

Letting first t ! 0 and then n ! 1 proves strong continuity on C1.Rd /. We can
now determine the generator of the semigroup. Because of Theorem 7.19 we only need
to calculate the limit limt!0.Ttu.x/� u.x//=t for each x 2 Rd . Using Itô’s formula
as before, we see that

E u.Xx
t / � u.x/
t

D
d
X

jD1
E

�

1

t

Z t

0

bj .X
x
s /@ju.X

x
s / ds

�

C 1

2

d
X

i;jD1
E

�

1

t

Z t

0

aij .X
x
s /@i@ju.X

x
s / ds

�

��!
t!0

d
X

jD1
bj .x/@ju.x/C 1

2

d
X

i;jD1
aij .x/@i@ju.x/:
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For the limit in the last line we use dominated convergence and the fact that
t�1

R t

0
�.s/ ds ! �.0C/ as t ! 0.

Theorem 19.9 shows what we have to do, if we want to construct a diffusion with
a given generator L.x;D/ of the form (19.1): the drift coefficient b must be globally
Lipschitz, and the positive definite diffusion matrix a D .aij / 2 Rd�d should be of
the form a D ��> where � D .�jk/ 2 Rd�d is globally Lipschitz continuous.

Let M 2 Rd�d and set kMk2 WD supj�jD1hM>M�; �i. Then kMk is a submul-
tiplicative matrix norm which is compatible with the Euclidean norm on Rd , i. e.
kMNk � kMk � kNk and jMxj � kMk � jxj for all x 2 Rd . For a symmetric matrix
M we write �min.M/ and �max.M/ for the smallest and largest eigenvalue, respec-
tively; we have kMk2 D �max.MM

>/ and, if M is semidefinite, kMk D �max.M/.1

19.10 Lemma (van Hemmen–Ando 1980). Assume that B;C 2 Rd�d are two sym-
metric, positive semidefinite matrices such that �min.B/ C �min.C / > 0. Then their
unique positive semidefinite square roots satisfy

�

�

�

p
C � p

B
�

�

�

� kC � Bk
max

®

�
1=2
min .B/; �

1=2
min .C /

¯

:

Proof. A simple change of variables shows that

1p
�

D 2




Z 1

0

dr

r2 C �
; hence

p
� D 2




Z 1

0

� dr

r2 C �
:

Since B;C are positive semidefinite, we can use this formula to determine the square
roots, e. g. for B , p

B D 2




Z 1

0

B.s2 id CB/�1 ds

Set RBs WD .s2 id CB/�1 and observe that BRBs � CRCs D s2RBs .B � C/RCs . Thus,

p
C � p

B D 2




Z 1

0

s2RCs .C � B/RBs ds:

Since the matrix norm is submultiplicative and compatible with the Euclidean norm,
we find for all � 2 Rd with j�j D 1 using the Cauchy-Schwarz inequality

˝

RCs .C � B/RBs �; �
˛

�
ˇ

ˇRCs .C � B/RBs �
ˇ

ˇ �
�

�RBs
�

� � ��RCs
�

� � ��C � B��:

1 In fact, ifM D .mjk/, then kMk2 D P

jk m
2
jk

.
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Without loss of generality we may assume that �min.C / � �min.B/. Observe that
kRBs k D �max.R

B
s / D .s2 C �min.B//

�1. Thus,

�

�

�

p
C � p

B
�

�

�

� 2




Z 1

0

kRBs kkRCs ks2 ds � kC � Bk

� 2




Z 1

0

s2

s2 C �min.B/

1

s2 C �min.C /
ds � kC � Bk

� 2




Z 1

0

1

s2 C �min.C /
ds � kC � Bk D kC � Bk

p

�min.C /
:

19.11 Corollary. Let L.x;D/ be the differential operator (19.1) and assume that
the diffusion matrix a.x/ is globally Lipschitz continuous (Lipschitz constant C ) and
uniformly positive definite, i. e. infx �min.a.x// D � > 0. Moreover, assume that the
drift vector is globally Lipschitz continuous. Then there exists a diffusion process in
the sense of Definition 19.1 such that its generator .A;D.A// coincides on the test
functions C1

c .R
d / with L.x;D/.

Proof. Denote by �.x/ the unique positive definite square root of a.x/. Using Lem-
ma 19.10 we find

k�.x/ � �.y/k � 1

�
ka.x/ � a.y/k � C

�
jx � yj; for all x; y 2 Rd :

On a finite dimensional vector space all norms are comparable, i. e. (19.9) holds for �
(possibly with a different Lipschitz constant). Therefore, we can apply Theorem 19.9
and obtain the diffusion process .Xt /t�0 as the unique solution to the SDE (19.8).

It is possible to replace the uniform positive definiteness of the matrix a.x/ by the
weaker assumption that aij .x/ 2 C2b.Rd ;R/ for all i; j D 1; : : : ; d , cf. [80, Proposi-
tion IV.6.2] or [177, Theorem 5.2.3].

The square root � is only unique if we require that it is also positive semidefinite.
Let us briefly discuss what happens if ��> D a D ��> where � is some d �d matrix
which need not be positive semidefinite. Let .�; b; .Bt/t�0/ be as in Theorem 19.9
and denote by .Xx

t /t�0 the unique solution of the SDE (19.8). Assume that .Wt /t�0
is a further Brownian motion which is independent of .Bt /t�0 and that .Y xt /t�0 is the
unique solution of the SDE

dYt D b.Yt / dt C �.Yt/ dWt Y0 D x 2 Rd :

The proof of Theorem 19.9 works literally for .Y xt /t�0 since we only need the exis-
tence and uniqueness of the solution of the SDE, and the equality ��> D a. This means
that .Xx

t /t�0 and .Y xt /t�0 are two Feller processes whose generators, .A;D.A// and
.C;D.C //, say, coincide on the set C2c.R

d /. It is tempting to claim that the processes
coincide, but for this we need to know that AjC2

c
D C jC2

c
implies .A;D.A// D
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.C;D.C //. A sufficient criterion would be that C2c is an operator core for A and C ,
i. e. A and C are the closures of AjC2

c
and C jC2

c
, respectively. This is far from obvious.

Using Stroock-and-Varadhan’s martingale problem technique, one can show that –
under even weaker conditions than those of Corollary 19.11 – the diffusion process
.Xxt /t�0 is unique in the following sense: Every process whose generator coincides
on C2c.R

d / with L.x;D/, has the same finite dimensional distributions as .Xx
t /t�0.

On the other hand, this is the best we can hope for. For example, we have

a.x/ D �.x/�>.x/ D �.x/�>.x/ if �.x/ D �.x/U

for any orthogonal matrix U 2 Rd�d . If U is not a function of x, we see that

dYt D b.Yt / dt C �.Yt /dBt D b.Yt/ dt C �.Yt /UdBt

D b.Yt/ dt C �.Yt /d.UB/t :

Of course, .UBt /t�0 is again a Brownian motion, but it is different from the original
Brownian motion .Bt/t�0. This shows that the solution .Y xt /t�0 will, even in this
simple case, not coincide with .Xx

t /t�0 in a pathwise sense. Nevertheless, .Xx
t /t�0

and .Y xt /t�0 have the same finite dimensional distributions. In other words: We cannot
expect that there is a strong one-to-one relation between L and the stochastic process.

19.12 Further reading. The interplay of PDEs and SDEs is nicely described in [8] and
[66]. The contributions of Stroock and Varadhan, in particular, the characterization of
stochastic processes via the martingale problem, opens up a whole new world. Good
introductions are [61] and, with the focus on diffusion processes, [177]. The survey
[9] gives a brief introduction to the ideas of Malliavin’s calculus, see also the Further
reading recommendations in Chapter 4 and 17.

[8] Bass: Diffusions and Elliptic Operators.
[9] Bell: Stochastic differential equations and hypoelliptic operators.

[61] Ethier, Kurtz: Markov Processes: Characterization and Convergence.
[66] Freidlin: Functional Integration and Partial Differential Equations.

[177] Stroock, Varadhan: Mulitidimensional Diffusion Processes.

Problems

1. Let .A;D.A// be the generator of a diffusion process in the sense of Definition 19.1
and denote by a; b the diffusion and drift coefficients. Show that a 2 C.Rd ;Rd�d /
and b 2 C.Rd ;Rd /.
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2. Show that under the assumptions of Proposition 19.5 we can interchange integra-
tion and differentiation: @2

@xj @xk

R

p.t; x; y/u.y/ dy D R

@2

@xj @xk
p.t; x; y/u.y/ dy

and that the resulting function is in C1.Rd /.

3. Denote by kuk.2/ D kuk1 C P

j k@juk1 C P

jk k@j @kuk1. Assume that
A W C1

c .R
d / ! C1.Rd / is a closed operator such that kAuk1 � C kuk.2/. Show

that C21.Rd / D C1
c .R

d /
k � k.2/ � D.A/.

4. Let L D L.x;Dx/ D P

ij aij .x/@i@j C P

j bj .x/@j C c.x/ be a second order
differential operator. Determine its formal adjoint L�.y;Dy/, i. e. the linear opera-
tor satisfying hLu; �iL2 D hu;L��iL2 for all u; � 2 C1

c .R
d /. What is the formal

adjoint of the operator L.x;D/C @
@t

?

5. Complete the proof of Proposition 19.6 (Kolmogorov’s forward equation).

6. Let .Bt/t�0 be a BM1. Show that Xt WD .Bt ;
R t

0
Bs ds/ is a diffusion process and

determine its generator.

7. (Carré-du-champ operator) Let .Xt /t�0 be a diffusion process with generator
L D L.x;D/ D AjC1

c
as in (19.1). Write M u

t D u.Xt/� u.X0/� R t

0
Lf .Xr/ dr.

(a) Show that M u D .M u
t /t�0 is an L2-martingale for all u 2 C1

c .R
d /.

(b) Show that M f D .M
f
t /t�0 is local martingale for all f 2 C2.Rd /.

(c) Denote by hM u;M �it , u; � 2 C1
c .R

d /, the quadratic covariation of the L2

martingales M u and M � , cf. (14.7) and Theorem 14.13 b). Show that

hMu;M �it D
Z t

0

�

L.u�/ � uL� � �Lu�.Xs/ ds

D
Z t

0

ru.Xs/ � a.Xs/r�.Xs/ ds:

(x � y denotes the Euclidean scalar product and r D .@1; : : : ; @d /
>.)

Remark: The operator .u; �/ WD L.u�/ � uL� � �Lu is called carré-du-
champ or mean-field operator.



Chapter 20

Simulation of Brownian motion
by Björn Böttcher

This chapter presents a concise introduction to simulation, in particular focusing on
the normal distribution and Brownian motion.

20.1 Introduction

Recall that for iid random variablesX1; : : : ; Xn with a common distribution F for any
! 2 	 the tuple .X1.!/; : : : ; Xn.!// is called a (true) sample of F . In simulations the
following notion of a sample is commonly used.

20.1 Definition. A tuple of values .x1; : : : ; xn/ which is indistinguishable from a true
sample of F by statistical inference is called a sample of F . An element of such a tuple
is called a sample value of F , and it is denoted by

xj
s� F:

Note that the statistical inference has to ensure both the distributional properties
and the independence. A naive idea to verify the distributional properties would be,
for instance, the use of a Kolmogorov–Smirnov test on the distribution. But this is not
a good test for the given problem, since a true sample would fail such a test with confi-
dence level ˛ with probability ˛. Instead one should do at least repeated Kolmogorov–
Smirnov tests and then test the p-values for uniformity. In fact, there is a wide range of
possible tests, for example the NIST (National Institute of Standards and Technology)1

has defined a set of tests which should be applied for reliable results.
In theory, letting n tend to 1 and allowing all possible statistical tests, only a true

sample would be a sample. But in practice it is impossible to get a true sample of
a continuous distribution, since a physical experiment as sample mechanism clearly

1 http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
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yields measurement and discretization errors. Moreover for the generation of samples
with the help of a computer we only have a discrete and finite set of possible values due
to the internal number representation. Thus one considers n large, but not arbitrarily
large.

Nevertheless, in simulations one treats a sample as if it were a true sample, i. e.
any distributional relation is translated to samples. For example, given a distribution
function F and the uniform distribution U.0;1/ we have

X � U.0;1/ H) F �1.X/ � F

since
P.F �1.X/ � x/ D P.X � F.x// D F.x/

and thus
x

s� U.0;1/ H) F �1.x/ s� F (20.1)

holds. This yields the following algorithm.

20.2 Algorithm (Inverse transform method). Let F be a distribution function.

1. Generate u
s� U.0;1/

2. Set x WD F �1.u/

Then x
s� F .

By this algorithm a sample of U.0;1/ can be transformed to a sample of any other distri-
bution. Therefore the generation of samples from the uniform distribution is the basis
for all simulations. For this various algorithms are known and they are implemented in
most of the common programming languages. Readers interested in the details of the
generation of samples of the uniform distribution are referred to [117, 118].

From now on we will assume that we can generate x
s� U.0;1/. Thus we can ap-

ply Algorithm 20.2 to get samples of a given distribution as the following examples
illustrate.

20.3 Example (Scaled and shifted Uniform distribution U.a;b/). For a < b the distri-
bution function of U.a;b/ is given by

F.x/ D x � a
b � a for x 2 Œa; b�

and thus
u

s� U.0;1/ H) .b � a/uC a
s� U.a;b/:
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20.4 Example (Bernoulli distribution p̌ and U¹0;1º, U¹�1;1º). Let p 2 Œ0; 1�. Given
U � U.0;1/, then 1Œ0;p�.U / � ˇp . In particular, we get

u
s� U.0;1/ H) 1Œ0; 1

2
�.u/

s� U¹0;1º and 2 � 1Œ0; 1
2
�.u/ � 1 s� U¹�1;1º:

20.5 Example (Exponential distribution Exp�). The distribution function of Exp�
with parameter � > 0 is F.x/ D 1 � e��x , x � 0, and thus

F �1.y/ D � 1
�

ln.1 � y/:

Now using

U � U.0;1/ H) 1 � U � U.0;1/

yields with the inverse transform method

u
s� U.0;1/ H) � 1

�
ln.u/

s� Exp�:

Before focusing on the normal distribution, let us introduce two further algorithms
which can be used to transform a sample of a distribution G to a sample of a distribu-
tion F .

20.6 Algorithm (Acceptance–rejection method). Let F and G be probability
distribution functions with densities f and g, such that there is a constant c > 0
with f .x/ � cg.x/ for all x.

1. Generate y
s� G

2. Generate u
s� U.0;1/

3. If ucg.y/ � f .y/, then x WD y

otherwise restart with 1.

Then x
s� F .

Proof. If Y � G and U � U.0;1/ are independent, then the algorithm generates a
sample value of the distribution for A 2 B by

P
�

Y 2 A ˇˇUcg.Y / � f .Y /� D P.Y 2 A;Ucg.Y / � f .Y //
P.Ucg.Y / � f .Y //

D
Z

A

f .y/ dy:



Section 20.1 Introduction 315

This follows from the fact that g.x/ D 0 implies f .x/ D 0, and

P.Y 2 A; Ucg.Y / � f .Y // D
Z 1

0

Z

A

1¹.v;z/ Wvcg.z/�f.z/º.u; y/ g.y/ dydu

D
Z

An¹gD0º

Z

f .y/

cg.y/

0

du g.y/ dy

D
Z

An¹gD0º
f .y/

cg.y/
g.y/ dy

D 1

c

Z

An¹gD0º
f .y/ dy

D 1

c

Z

A

f .y/ dy:

In particular, we see for A D R

P
�

Ucg.Y / � f .Y /
� D P

�

Y 2 R; Ucg.Y / � f .Y /
� D 1

c
:

20.7 Example (One-sided normal distribution). We can apply the acceptance–rejec-
tion method to the one-sided normal distribution

f .x/ D 2
1p
2


e� 1
2
x2

1Œ0;1/.x/;

and the Exp1 distribution g.x/ D e�x 1Œ0;1/.x/ (for sampling see Example 20.5) with
the smallest possible c (such that f .x/ � cg.x/ for all x) given by

c D sup
x

f .x/

g.x/
D sup

x

r

2



e� x2

2
Cx 1Œ0;1/.x/ D

r

2e




 1:315 :

The name of Algorithm 20.6 is due to the fact that in the first step a sample is
proposed and in the third step this is either accepted or rejected. In the case of rejection a
new sample is proposed until acceptance. The algorithm can be visualized as throwing
darts onto the set B D ¹.x; y/ 2 R2 W 0 � y � cg.x/º uniformly. Then the x-
coordinate of the dart is taken as a sample (accepted) if, and only if, the dart is within
C D ¹.x; y/ 2 R2 W 0 � y � f .x/º; note thatC � B is satisfied by our assumptions.
This also shows that, on average, the algorithm proposes �2.B/=�2.C / D c times a
sample until acceptance.

In contrast the following algorithm does not produce unused samples.
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20.8 Algorithm (Composition method). Let F be a distribution with density f
of the form

f .x/ D
Z

gy.x/ �.dy/

where � is a probability measure and gy is for each y a density.

1. Generate y
s� �

2. Generate x
s� gy

Then x
s� F .

Proof. Let Y � � and, conditioned on ¹Y D yº, let X � gy , i. e.

P.X � x/ D
Z

P.X � x j Y D y/ �.dy/ D
“ x

�1
gy.z/ dz �.dy/ D

Z x

�1
f .z/dz:

Thus we have X � F .

20.9 Example (Normal distribution). We can write the density of the standard normal
distribution as

f .x/ D 1p
2

e� 1

2
x2 D 1

2

2p
2

e� 1

2
x2

1.�1;0�.x/

„ ƒ‚ …

Dg�1.x/

C1

2

2p
2

e� 1

2
x2

1.0;1/.x/

„ ƒ‚ …

Dg1.x/

i. e. f .x/ D R1
�1 gy.x/ �.dy/ with �.dy/ D 1

2
ı�1.dy/C 1

2
ı1.dy/.

Note that X � g1 can be generated by Example 20.7 and that

X � g1 H) �X � g�1

holds. Thus by Example 20.3 and the composition method we obtain the following
algorithm.

20.10 Algorithm (Composition of one-sided normal samples).

1. Generate y
s� U¹�1;1º, z

s� f (where the function f denotes the density
of the one-sided normal distribution, see Example 20.7)

2. Set x WD yz

Then x
s� N.0; 1/.
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In the next section we will see further algorithms to generate samples of the normal
distribution.

20.2 Normal distribution

We start with the one-dimensional normal distribution and note that for � 2 R and
� > 0

X � N.0; 1/ H) �X C � � N.�; �2/:

Thus we have the following algorithm to transform samples of the standard normal
distribution to samples of a general normal distribution.

20.11 Algorithm (Change of mean and variance). Let � 2 R and � > 0.

1. Generate y
s� N.0; 1/

2. Set x WD �y C �

Then x
s� N.�; �2/.

Based on the above algorithm we can focus in the following on the generation of
samples of N.0; 1/.

The standard approach is the inverse transform method, Algorithm 20.2, with a nu-
merical inversion of the distribution function of the standard normal distribution.

20.12 Algorithm (Numerical inversion).

1. Generate u
s� U.0;1/

2. Set x WD F �1.u/ (where F is the N.0; 1/-distribution function)

Then x
s� N.0; 1/.

A different approach which generates two samples at once is the following
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20.13 Algorithm (Box–Muller-method).

1. Generate u1; u2
s� U.0;1/

2. Set r WD p�2 ln.u1/; v WD 2
u2
3. Set x1 WD r cos.v/; x2 WD r sin.v/

Then xj
s� N.0; 1/.

Proof. Let X1; X2 � N.0; 1/ be independent. Thus they have the joint density

fX1;X2
.x1; x2/ D 1

2	
exp

�

�x2
1 Cx2

2

2

�

. Now we express the vector .X1; X2/ in polar
coordinates, i. e.

�

X1
X2

�

D
�

R cosV
R sinV

�

(20.2)

and the probability density becomes, in polar coordinates, r > 0; v 2 Œ0; 2
/

fR;V .r; v/ D fX1;X2
.r cos v; r sin v/ det

�

cos v �r sin v
sin v r cos v

�

D e� 1
2
r2 r

2

:

Thus R and V are independent, V � UŒ0;2	/ and the distribution of R2 is

P
�

R2 � x
� D

Z

p
x

0

e� 1
2
r2

r dr D
Z x

0

1

2
e� 1

2
s ds D 1 � e� 1

2
x ;

i. e. R2 � Exp1=2.
The second step of the algorithm is just an application of the inverse transform

method, Examples 20.3 and 20.5, to generate samples of R and V , in the final step
(20.2) is applied.

A simple application of the central limit theorem can be used to get (approximately)
standard normal distributed samples.

20.14 Algorithm (Central limit method).

1. Generate uj
s� U.0;1/, j D 1; : : : ; 12

2. Set x WD P12
jD1 uj � 6

Then x
s� N.0; 1/ approximately.
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Proof. Let Uj � U.0;1/, j D 1; 2; : : : ; 12, be independent, then E.Uj / D 1
2

and

V Uj D EU 2
j � .EUj /2 D x3

3

ˇ

ˇ

ˇ

ˇ

1

0

� 1

4
D 4

12
� 3

12
D 1

12
:

By the central limit theorem
P12
jD1 Uj � 12E U1p

12V U1
D

12
X

jD1
Uj � 6 � N.0; 1/ (approximately):

Clearly one could replace the constant 12 in the first step of the above algorithm by
any other integer n, but then the corresponding sum in step 2would have to be rescaled
by .n=12/� 1

2 and this would require a further calculation. In the above setting it can be
shown that the pointwise difference of the standard normal distribution function and
the distribution function of

�

P12
jD1 Uj � 12EU1

�

ıp
12VU1 for iid Uj � U.0;1/ is

always less than 0:0023, see Section 3.1 in [160].
Now we have seen several ways to generate samples of the normal distribution, i. e.

we know how to simulate increments of Brownian motion.

20.3 Brownian motion

A simulation of a continuous time process is always based on a finite sample, since we
can only generate finitely many values in finite time.

Brownian motion is usually simulated on a discrete time grid 0 D t0<t1< � � �<tn;
and it is common practice for visualizations to interpolate the simulated values linearly.
This is justified by the fact that Brownian Motion has continuous paths.

Throughout this section .Bt/t�0 denotes a one-dimensional standard Brownian mo-
tion. The simplest method to generate a Brownian path uses the property of stationary
and independent increments.

20.15 Algorithm (Independent increments). Let 0 D t0 < t1 < � � � < tn be a
time grid.
Initialize b0 WD 0

For j D 1 to n

1. Generate y
s� N.0; tj � tj�1/

2. Set btj WD btj �1
C y

Then .b0; bt1 ; : : : ; btn/
s� .B0; Bt1 ; : : : ; Btn/.
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This method works particularly well if the step size ı D tj � tj�1 is constant for
all j , in this case one only has to generate y

s� N.0; ı/ repeatedly. A drawback of the
method is, that any refinement of the discretization yields a new simulation and, thus,
a different path.

To get a refinement of an already simulated path one can use the idea of Lévy’s
original argument, see Section 3.2.

20.16 Algorithm (Interpolation. Lévy’s argument). Let 0 � s0 < s < s1 be
fixed times and .bs0

; bs1
/ be a sample value of .Bs0

; Bs1
/.

1. Generate bs
s� N

�

.s1�s/bs0
C.s�s0/bs1

s1�s0
; .s�s0/.s1�s/

s1�s0

�

Then .bs0
; bs; bs1

/
s� .Bs0

; Bs; Bs1
/ given that Bs0

D bs0
and Bs1

D bs1
.

Proof. In Section 3.2 we have seen that in the above setting

P
�

Bs 2 � ˇˇBs0
D bs0

; Bs1
D bs1

� D N
�

ms; �
2
s

�

with

ms D .s1 � s/bs0
C .s � s0/bs1

s1 � s0 and �2s D .s � s0/.s1 � s/
s1 � s0 :

Thus, for 0 D t0 < t1 < � � � < tn and .b0; bt1 ; : : : ; btn/
s� .B0; Bt1 ; : : : ; Btn/we get

.b0; bt1 ; : : : ; btj ; br ; btj C1
; : : : ; btn/

s� .B0; Bt1 ; : : : ; Btj ; Br ; Btj C1
; : : : ; Btn/

for some r 2 .tj ; tjC1/ by generating the intermediate point br given .btj ; btj C1
/.

Repeated applications yield an arbitrary refinement of a given discrete simulation of
a Brownian path. Taking only the dyadic refinement of the unit interval we get the
Lévy–Ciesielski representation, cf. Section 3.1.

20.17 Algorithm (Lévy–Ciesielski). Let J � 1 be the order of refinement.
Initialize b0 WD 0

Generate b1
s� N.0; 1/

For j D 0 to J � 1
For l D 0 to 2j � 1

1. Generate y
s� N.0; 1/

2. Set b.2lC1/=2j C1 D 1
2

�

bl=2j C b.lC1/=2j

�C 2�. j

2
C1/y

Then
�

b0; b1=2J ; b2=2J ; : : : ; b1
� s� �

B0; B1=2J ; B2=2J ; : : : ; B1
�

.
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Proof. As noted at the end of Section 3.2, the expansion ofBt at dyadic times has only
finitely many terms and

B.2lC1/=2j C1 D 1

2

�

Bl=2j C B.lC1/=2j

�C 2�. j

2
C1/ Y

where Y � N.0; 1/.

Analogous to the central limit method for the normal distribution we can also use
Donsker’s invariance principle, Theorem 3.8, to get an approximation to a Brownian
path.

20.18 Algorithm (Donsker’s invariance principle). Let n be the number of steps.
Initialize b0 WD 0

1. Generate uj
s� U¹�1;1º; j D 1; : : : ; n

2. For k D 1 to n

Set bk=n D 1p
n
uk C b.k�1/=n

Then
�

b0; b1=n; : : : ; b2=n; : : : ; b1
� s� �

B0; B1=n; B2=n; : : : ; B1
�

approximately.

Clearly one could also replace the Bernoulli random walk in the above algorithm
by a different symmetric random walk with finite variance.

20.4 Multivariate Brownian motion

Since a d -dimensional Brownian motion has independent one-dimensional Brownian
motions as components, cf. Corollary 2.15, we can use the algorithms from the last
section to generate the components separately.

In order to generate aQ-Brownian motion we need to simulate samples of a multi-
variate normal distribution with correlated components.
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20.19 Algorithm (Two-dimensional Normal distribution). Let an expectation
vector � 2 R2, variances �21 ; �

2
2 > 0 and correlation � 2 Œ�1; 1� be given.

1. Generate y1; y2; y3
s� N.0; 1/

2. Set x1 WD �1

�

p

1 � j�jy1 C
p

j�jy3
�

C �1

x2 WD �2

�

p

1 � j�jy2 C sgn.�/
p

j�jy3
�

C �2

Then .x1; x2/>
s� N

�

�;

�

�21 ��1�2
��1�2 �22

��

:

Proof. Let Y1; Y2; Y3 � N.0; 1/ be independent random variables. Then

�1
p

1 � j�j
�

Y1
0

�

C �2
p

1 � j�j
�

0

Y2

�

C
p

j�j
�

�1Y3
sgn.�/�2Y3

�

is a normal random variable since it is a sum of independent N.0; :/ distributed random
vectors. Observe that the last vector is bivariate normal with completely dependent
components. Calculating the covariance matrix yields the statement.

This algorithm shows nicely how the correlation of the components is introduced
into the sample. In the next algorithm this is less obvious, but the algorithm works in
any dimension.

20.20 Algorithm (Multivariate Normal distribution). Let a positive semidefinite
covariance matrix Q 2 Rd�d and an expectation vector � 2 Rd be given.
Calculate the Cholesky decomposition ††> D Q

1. Generate y1; : : : ; yd
s� N.0; 1/ and let y be the vector with

components y1; : : : ; yd
2. Set x WD �C†y

Then x
s� N.�;Q/.

Proof. Compare with the discussion following Definition 2.17.

Now we can simulateQ-Brownian motion using the independence and stationarity
of the increments.
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20.21 Algorithm (Q-Brownian motion). Let 0 D t0 < t1 < � � � < tn be a time
grid and Q 2 Rd�d be a positive semidefinite covariance matrix.
Initialize b0

k
WD 0, k D 1; : : : ; d

For j D 1 to n

1. Generate y
s� N

�

0; .tj � tj�1/Q
�

2. Set btj WD btj �1 C y

Then .b0; bt1 ; : : : ; btn/
s� .B0; Bt1 ; : : : ; Btn/, where .Bt/t�0 is a Q-Brownian

motion.

20.22 Example. Figure 20.1 shows the sample path of a Q-Brownian motion for

t 2 Œ0; 10� with step width 0:0001 and correlation � D 0:8, i. e. Q D
�

1 �
� 1

�

. Note
that it seems as if the correlation were visible, but – especially since it is just a single
sample and the scaling of the axes is not given – one should be careful when drawing
conclusions from samples.

Bt
(1)

Bt
(2)

Figure 20.1. Simulation of a 2-dimensional Q-Brownian motion.

20.5 Stochastic differential equations

Based on Chapter 18 we consider in this section a process .Xt /t�0 defined by the
stochastic differential equation

X0 D x0 and dXt D b.t; Xt/ dt C �.t; Xt/ dBt : (20.3)
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Corollary 18.10 and Theorem 18.11 provide conditions which ensure that (20.3) has a
unique solution. We are going to present two algorithms that allow us to simulate the
solution.

20.23 Algorithm (Euler scheme). Let b and � in (20.3) satisfy for all x; y 2 R,
0 � s < t � T and some K > 0

jb.t; x/� b.t; y/j C j�.t; x/ � �.t; y/j � K jx � yj; (20.4)

jb.t; x/j C j�.t; x/j � K.1C jxj/; (20.5)

jb.t; x/� b.s; x/j C j�.t; x/ � �.s; x/j � K.1C jxj/pt � s: (20.6)

Let n � 1, 0 D t0 < t1 < � � � < tn D T be a time grid, and x0 be the initial
position.
For j D 1 to n

1. Generate y
s� N.0; tj � tj�1/

2. Set xtj WD xtj �1
C b.tj�1; xtj �1

/.tj � tj�1/C �.tj�1; xtj �1
/ y

Then .x0; xt1 ; : : : ; xtn/
s� .X0; Xt1 ; : : : ; Xtn/ approximately, where .Xt/t�0 is

the solution to (20.3).

Note that the conditions (20.4) and (20.5) ensure the existence of a unique solution.
The approximation error can be measured in various ways. For this denote, in the

setting of the algorithm, the maximal step width by ı WD maxjD1;:::;n.tj � tj�1/ and
the sequence of random variables corresponding to step 2 by .Xı

tj
/jD0;:::;n. Given a

Brownian motion .Bt/t�0, we can define X ı
tj

, by X ı
t0

WD x0, and for j D 1; : : : ; n by

X ı
tj

WD Xı
tj �1

C b.tj�1; X ı
tj �1

/.tj � tj�1/C �.tj�1; X ı
tj �1

/.Btj � Btj �1
/: (20.7)

The process .Xıtj /jD0;:::;n is called the Euler scheme approximation of the solution
.Xt /t�0 to the equation (20.3).

We say that an approximation scheme has strong order of convergence ˇ if

E jX ı
T �XT j � Cıˇ :

The following result shows that the algorithm provides an approximate solution to
(20.3).



Section 20.5 Stochastic differential equations 325

20.24 Theorem. In the setting of Algorithm 20.23 the strong order of convergence of
the Euler scheme is 1=2. Moreover, the convergence is locally uniform, i. e.

sup
t�T

E jX ı
t �Xt j � cT

p
ı;

where .Xı
t /t�T is the piecewise constant extension of the Euler scheme from the discrete

time set t0; : : : ; tn to Œ0; T � defined by

X ı
t WD X ı

tn.t/

with n.t/ WD max¹n W tn � tº.

In the same setting and with some additional technical conditions, cf. [3] and [104],
one can show that the weak order of convergence of the Euler scheme is 1, i. e.

ˇ

ˇE g.X ı
T / � E g.XT /

ˇ

ˇ � cT ı

for any g 2 C4 whose first four derivatives grow at most polynomially.

Proof of Theorem 20.24. Let b, � , T , n, be as in Algorithm 20.23. Furthermore let
.Xt /t�0 be the solution to the corresponding stochastic differential equation (20.3),
.X ı

tj
/jD0;:::;n be the Euler scheme defined by (20.7) and .X ı

t /t�T be its piecewise con-
stant extension onto Œ0; T �.

Note that this allows us to rewrite X ı
t as

Xı
t D x0 C

Z tn.t/

0

b.tn.s/; X
ı
tn.s/
/ ds C

Z tn.t/

0

�.tn.s/; X
ı
tn.s/
/ dBs :

Thus, we can calculate the error by

Z.T / WD sup
t�T

E
�jX ı

t �Xt j2
	

� E
�

sup
t�T

jX ı
t �Xt j2

	

� 3Z1.T /C 3Z2.T /C 3Z3.T /;
(20.8)

where Z1; Z2 and Z3 will be given explicitly below. We begin with the first term and
estimate it analogously to the proof of Theorem 18.9, see (18.13), (18.14), and apply
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the estimate (20.4).

Z1.T / WD E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z tn.t/

0

�

b.tn.s/; X
ı
tn.s/
/ � b.tn.s/; Xs/

�

ds

C
Z tn.t/

0

�

�.tn.s/; X
ı
tn.s/
/ � �.tn.s/; Xs/

�

dBs

ˇ

ˇ

ˇ

ˇ

2�

� 2T
Z T

0

E
�

ˇ

ˇb.tn.s/; X
ı
tn.s/
/ � b.tn.s/; Xs/

ˇ

ˇ

2	

ds

C 8

Z T

0

E
�

ˇ

ˇ�.tn.s/; X
ı
tn.s/
/ � �.tn.s/; Xs/

ˇ

ˇ

2	

ds

� .2TK2 C 8K2/

Z T

0

E
�jX ı

tn.s/
�Xsj2

	

ds

� C
Z T

0

Z.s/ ds:

The second term in (20.8) can be estimated in a similar way.

Z2.T / WD E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z tn.t/

0

�

b.tn.s/; Xs/ � b.s; Xs/
�

ds

C
Z tn.t/

0

�

�.tn.s/; Xs/ � �.s; Xs/
�

dBs

ˇ

ˇ

ˇ

ˇ

2�

� 2T
Z T

0

E
�jb.tn.s/; Xs/ � b.s; Xs/j2

	

ds

C 8

Z T

0

E
�j�.tn.s/; Xs/ � �.s; Xs/j2

	

ds

� .2TK2 C 8K2/

Z T

0

�

1C E ŒjXsj�
�2�p

s � tn.s/
�2

ds � Cı;

where we used (20.6) for the second inequality, and js � tn.s/j < ı and (18.15) for the
last inequality. The terms Z1 and Z2 only consider the integral up to time tn.t/, thus
the third term takes care of the remainder up to time t . It can be estimated using (20.5),
js � tn.s/j < ı and (18.15).

Z3.T / WD E




sup
t�T

ˇ

ˇ

ˇ

ˇ

Z t

tn.t/

b.s; Xs/ ds C
Z t

tn.t/

�.s; Xs/ dBs

ˇ

ˇ

ˇ

ˇ

2�

� 2ı
Z t

tn.t/

E
�jb.s; Xs/j2

	

ds C 8

Z t

tn.t/

E
�j�.s; Xs/j2

	

ds � Cı:
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Note that all constants appearing in the estimates above may depend on T , but do not
depend on ı. Thus we have shown

Z.T / � CT ı C CT

Z T

0

Z.s/ ds;

where CT is independent of ı. By Gronwall’s lemma, Theorem A.43, we obtain that
Z.T / � CT eTCT ı and, finally,

sup
t�T

E
�jX ı

t �Xt j
	

�
p

Z.T / � cT
p
ı:

In the theory of ordinary differential equations one obtains higher order approxi-
mation schemes with the help of Taylor’s formula. Similarly for stochastic differen-
tial equations an application of a stochastic Taylor–Itô formula yields the following
scheme, which converges with strong order 1 to the solution of (20.3), for a proof see
[104]. There it is also shown that the weak order is 1, thus it is the same as for the Euler
scheme.

20.25 Algorithm (Milstein scheme). Let b and � satisfy the conditions of Algo-
rithm 20.23 and �.t; � / 2 C2. Let T > 0, n � 1, 0 D t0 < t1 < � � � < tn D T be
a time grid and x0 be the starting position.
For j D 1 to n

1. Generate y
s� N.0; tj � tj�1/

2. Set xtj WD xtj �1
C b.tj�1; xtj �1

/.tj � tj�1/C �.tj�1; xtj �1
/ y

C 1

2
�.tj�1; xtj �1

/� .0;1/.tj�1; xtj �1
/.y2 � .tj � tj�1//

(where � .0;1/.t; x/ WD @
@x
�.t; x/)

Then .x0; xt1 ; : : : ; xtn/
s� .X0; Xt1 ; : : : ; Xtn/ approximately.

In the literature one finds a variety of further algorithms for the numerical evaluation
of SDEs. Some of them have higher orders of convergence than the Euler or Milstein
scheme, see for example [104] and the references given therein. Depending on the
actual simulation task one might be more interested in the weak or strong order of
convergence. The strong order is important for pathwise approximations whereas the
weak order is important if one is only interested in distributional quantities.

We close this chapter by one of the most important applications of samples: The
Monte Carlo method.
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20.6 Monte Carlo method

The Monte Carlo method is nothing but an application of the strong law of large num-
bers. Recall that for iid random variables .Yj /j�1 with finite expectation

1

n

n
X

jD1
Yj

n!1���! E Y1 almost surely.

Thus, if we are interested in the expectation of g.X/ where X is a random variable
and g a measurable function, we can approximate E g.X/ by the following algorithm.

20.26 Algorithm (Monte Carlo method). Let X be a random variable with dis-
tribution F and g be a function such that E jg.X/j < 1. Let n � 1.

1. Generate xj
s� F , j D 1; : : : ; n

2. Set y WD 1

n

n
X

jD1
g.xj /

Then y is an approximation of E g.X/.

The approximation error is, by the central limit theorem and the theorem of Berry–
Esseen, proportional to 1=

p
n.

20.27 Example. In applications one often defines a model by an SDE of the form
(20.3) and one is interested in the value of E g.Xt/, where g is some function, and
.Xt /t�0 is the solution of the SDE. We know how to simulate the normal distributed
increments of the underlying Brownian motion, e. g. by Algorithm 20.13. Hence we
can simulate samples of Xt by the Euler scheme, Algorithm 20.23. Doing this repeat-
edly corresponds to step 1 in the Monte Carlo method. Therefore, we get by step 2 an
approximation of E g.Xt /.

20.28 Further reading. General monographs on simulation are [3] which focuses, in
particular, on steady states, rare events, Gaussian processes and SDEs, and [162] which
focuses in particular on Monte Carlo simulation, variance reduction and Markov chain
Monte Carlo. More on the numerical treatment of SDEs can be found in [104]. A good
starting point for the extension to Lévy processes and applications in finance is [30].

[3] Asmussen, Glynn: Stochastic Simulation: Algorithms and Analysis.
[30] Cont, Tankov: Financial modelling with jump processes.

[104] Kloeden, Platen: Numerical Solution of Stochastic Differential Equations.
[162] Rubinstein, Kroese: Simulation and the Monte Carlo Method Wiley.



Appendix

A.1 Kolmogorov’s existence theorem

In this appendix we give a proof of Kolmogorov’s theorem, Theorem 4.8, on the ex-
istence of stochastic processes with prescribed finite dimensional distributions. In ad-
dition to the notation introduced in Chapter 4, we use 
LJ W .Rd /L ! .Rd /J for the
projection onto the coordinates from J � L � I . Moreover, 
J WD 
IJ and we write
H for the family of all finite subsets of I . Finally

Z WD
°


�1
J .B/ W J 2 H; B 2 B..Rd /J /

±

denotes the family of cylinder sets and we call Z D 
J .B/ a J-cylinder with basis B .
If J 2 H and #J D j , we can identify .Rd /J with Rjd .

For the proof of Theorem 4.8 we need the following auxiliary result.

A.1 Lemma (Regularity). Every probability measure � on .Rn;B.Rn// is outer reg-
ular,

�.B/ D inf
®

�.U / W U � B; U � Rn open
¯

(A.1)

and inner (compact) regular,

�.B/ D sup
®

�.F / W F � B; F closed
¯

D sup
®

�.K/ W K � B; K compact
¯

:
(A.2)

Proof. Consider the family

† WD
°

A � Rn W 8� > 0 9U open, F closed, F � A � U; �.U n F / < �
±

:

It is easy to see that† is a � -algebra1 which contains all closed sets. Indeed, ifF � Rn

is closed, the sets

Un WD F C B.0; 1=n/ D ®

x C y W x 2 F; y 2 B.0; 1=n/
¯

1 Indeed: ; 2 † is obvious. PickA 2 †. For every 
 > 0 there are closed and open setsF� � A �
U� such that �.U� nF�/ < 
. Observe that U c

� � Ac � F c
� , that U c

� is closed, that F c
� is open

and that
F c

� nU c
� D F c

� \ .U c
� /

c D F c
� \U� D U� n F�:

Thus, �.F c
� nU c

� / D �.U� nF�/ < 
, and we find that Ac 2 †.
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are open and
T

n�1 Un D F . By the continuity of measures, limn!1 �.Un/ D �.F /,
which shows thatF � Un and�.UnnF / < � for sufficiently large values of n > N.�/.
This proves F 2 † and we conclude that

B.Rn/ D �
�

closed subsets
� � �

�

†
� D †:

In particular, we can construct for every B 2 B.Rn/ sequences of open .Un/n and
closed .Fn/n sets such that Fn � B � Un and limn!1 �.Un n Fn/ D 0. Therefore,

�.B n Fn/C �.Un n B/ � 2�.Un n Fn/ ���!
n!1 0

which shows that the infimum in (A.1) and the supremum in the first equality of (A.2)
are attained.

Finally, replace in the last step the closed sets Fn with the compact sets

Kn WD Fn \ B.0; R/; R D R.n/:

Using the continuity of measures, we get limR!1 �
�

Fn n Fn \ B.0; R/
� D 0, and

for sufficiently large R D R.n/ with R.n/ ! 1,

�.B nKn/ � �.B n Fn/C �.Fn nKn/ ���!
n!1 0:

This proves the second equality in (A.2).

A.2 Theorem (Theorem 4.8. Kolmogorov 1933). Let I � Œ0;1/ and .pJ /J2H be a
projective family of probability measures pJ defined on ..Rd /J ;B..Rd /J //, J 2 H.
Then there exists a unique probability measure � on the space ..Rd /I ;BI / such that
pJ D � ı 
�1

J where 
J is the canonical projection of .Rd /I onto .Rd /J .

The measure � is often called the projective limit of the family .pJ /J2H.

LetAn 2 †, n � 1. For 
 > 0 there exist sets Fn � An � Un satisfying �.Un nFn/ < 
=2
n.

Therefore,
closed

‚ …„ ƒ

ˆN WD F1 [ � � � [FN � A1 [ � � � [AN �
open

‚ …„ ƒ

U WD [

j�1

Uj :

Since
\

N�1

U nˆN D [

j�1

Uj n [

k�1

Fk D [

j�1

�

Uj n [

k�1

Fk

�

� [

j�1

.Uj nFj /

we find by the continuity and the �-subadditivity of the (finite) measure �

lim
N !1

�.U nˆN / D �

�

[

j�1

Uj n [

k�1

Fk

�

�
X

j�1

�.Uj n Fj / �
X

j�1




2j
D 
:

Thus, �.U nˆN / � 2
 for all sufficiently largeN > N.
/. This proves
S

n�1An 2 †.
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Proof. We use the family .pJ /J2H to define a (pre-)measure on the cylinder sets Z,

� ı 
�1
J .B/
„ ƒ‚ …

2Z
WD pJ .B/ 8B 2 BJ : (A.3)

Since Z is an algebra of sets, i. e. ; 2 Z and Z is stable under finite unions, intersections
and complements, we can use Carathéodory’s extension theorem to extend � onto
BI D �.Z/.

Let us, first of all, check that � is well-defined and that it does not depend on the
particular representation of the cylinder set Z. Assume that Z D 
�1

J .B/ D 
�1
K .B 0/

for J;K 2 H and B 2 BJ ; B 0 2 BK . We have to show that

pJ .B/ D pK.B
0/:

Set L WD J [K 2 H. Then

Z D 
�1
J .B/ D .
LJ ı 
L/�1.B/ D 
�1

L ı .
LJ /�1.B/;
Z D 
�1

K .B 0/ D .
LK ı 
L/�1.B 0/ D 
�1
L ı .
LK /�1.B 0/:

Thus, .
LJ /
�1.B/ D .
LK /

�1.B 0/ and the projectivity (4.6) of the family .pJ /J2H
gives

pJ .B/ D 
LJ .pL/.B/ D pL
�

.
LJ /
�1.B/

� D pL
�

.
LK /
�1.B 0/

� D pK.B
0/:

Next we verify that� is an additive set function:�.;/ D 0 is obvious. LetZ;Z0 2 Z
such that Z D 
�1

J .B/ and Z0 D 
�1
K .B 0/. Setting L WD J [K we can find suitable

basis sets A;A0 2 BL such that

Z D 
�1
L .A/ and Z0 D 
�1

L .A0/:

If Z \Z0 D ; we see that A \ A0 D ;, and � inherits its additivity from pL:

�.Z �[Z 0/ D �
�


�1
L .A/ �[
�1

L .A0/
� D �

�


�1
L .A �[A0/

�

D pL.A �[A0/ D pL.A/C pL.A
0/

D � � � D �.Z/C �.Z0/:

Finally, we prove that � is � -additive on Z. For this we show that � is continuous
at the empty set, i. e. for every decreasing sequence of cylinder sets .Zn/n�1 � Z,
T

n�1Zn D ; we have limn!1 �.Zn/ D 0. Equivalently,

Zn 2 Z; Zn � ZnC1 � � � � ; �.Zn/ � ˛ > 0 H)
\

n�1
Zn ¤ ;:
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Write for such a sequence of cylinder sets Zn D 
�1
Jn
.Bn/ with suitable Jn 2 H and

Bn 2 BJn . Since for every J � K any J -cylinder is also aK-cylinder, we may assume
without loss of generality that Jn � JnC1.

Note that .Rd /Jn Š .Rd /#Jn ; therefore we can use Lemma A.1 to see that pJn
is

inner compact regular. Thus,

there exist compact sets Kn � Bn W pJn
.Bn nKn/ � 2�n˛:

Write Z0
n WD 
�1

Jn
.Kn/ and observe that

�.Zn nZ0
n/ D �.
�1

Jn
.Bn nKn// D pJn

.Bn nKn/ � 2�n˛:

Although the Zn are decreasing, this might not be the case for the Z 0
n; therefore we

consider bZn WD Z0
1 \ � � � \Z0

n � Zn and find

�.bZn/ D �.Zn/ � �.Zn n bZn/

D �.Zn/ � �
� n
[

1

.Zn nZ0
k

„ ƒ‚ …

�ZknZ0
k

/

�

� �.Zn/ �
n
X

1

�
�

Zk nZ0
k

�

� ˛ �
n
X

1

2�k˛ > 0:

We are done if we can show that
T

n�1Z
0
n D T

n�1 bZn ¤ ;. For this we construct

some element z 2 Tn�1 bZn.

1o For everym � 1we pick some fm 2 bZm. Since the sequence .bZn/n�1 is decreas-
ing,

fm 2 bZn � Z 0
n; hence 
Jn

.fm/ 2 Kn for all m � n and n � 1:

Since projections are continuous, and since continuous maps preserve compactness,


t .fm/ D 
Jn

t ı 
Jn
.fm/ 2 
Jn

t .Kn/
„ ƒ‚ …

compact

for all m � n; n � 1 and t 2 Jn:

2o The index setH WD S

n�1 Jn is countable; denote byH D .tk/k�1 some enumer-
ation. For each tk 2 H there is some n.k/ � 1 such that tk 2 Jn.k/. Moreover, by 1o ,

�


tk .fm/
�

m�n.k/ � 

Jn.k/

tk
.Kn.k//:
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Since the sets 
Jn.k/

tk
.Kn.k// are compact, we can take repeatedly subsequences,

�


t1.fm/
�

m�n.1/ � compact set H) 9.f 1m/m � .fm/m W 9 lim
m!1
t1.f

1
m/

�


t2.f
1
m/
�

m�n.2/ � compact set H) 9.f 2m/m � .f 1m/m W 9 lim
m!1
t2.f

2
m/

:::
�


tk .f
k�1
m /

�

m�n.k/ � compact set H) 9.f km /m � .f k�1
m /m W 9 lim

m!1
tk .f
k
m /:

The diagonal sequence .f mm /m�1 satisfies

9 lim
m!1
t .f

m
m / D zt for each t 2 H:

3o By construction, 
t.fm/ 2 
Jn

t .Kn/ for all t 2 Jn and m � n. Therefore,


t .f
m
m / 2 
Jn

t .Kn/ for all m � n and t 2 Jn:
Since Kn is compact, 
Jn

t .Kn/ is compact, hence closed, and we see that

zt D lim
m

t .f

m
m / 2 
Jn

t .Kn/ for every t 2 Jn:

Using the fact that n � 1 is arbitrary, find

z.t/ WD
´

zt if t 2 H I
	 if t 2 I nH

(	 stands for any element from E) defines an element z D .z.t//t2I 2 .Rd /I with
the property that for all n � 1


Jn
.z/ 2 Kn if, and only if, z 2 
�1

Jn
.Kn/ D Z0

n � bZn:

This proves z 2 Tn�1Z
0
n D T

n�1 bZn and
T

n�1 bZn ¤ ;.

A.2 A property of conditional expectations

We assume that you have some basic knowledge of conditioning and conditional ex-
pectations with respect to a � -algebra. Several times we will use the following result
which is not always contained in elementary expositions. Throughout this section let
.	;A;P/ be a probability space.

A.3 Lemma. Let X W .	;A/ ! .D;D/ and Y W .	;A/ ! .E;E/ be two random
variables. Assume that X; Y � A are � -algebras such that X is X=D measurable, Y
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is Y=E measurable and X?? Y. Then

E
�

ˆ.X; Y /
ˇ

ˇX
	 D �

Eˆ.x; Y /
	

ˇ

ˇ

ˇ

xDX
D E

�

ˆ.X; Y /
ˇ

ˇX
	

(A.4)

holds for all bounded D � E=B.R/ measurable functions ˆ W D �E ! R.
If ‰ W D �	 ! R is bounded and D˝ Y=B.R/ measurable, then

E
�

‰.X. � /; � / ˇˇX	 D �

E‰.x; � /	
ˇ

ˇ

ˇ

xDX
D E

�

‰.X. � /; � / ˇˇX	: (A.5)

Proof. Assume first that ˆ.x; y/ is of the form �.x/ .y/. Then

E
�

�.X/ .Y /
„ ƒ‚ …

Dˆ.X;Y /

ˇ

ˇX
	 D �.X/E

�

 .Y /
ˇ

ˇX
	 Y ??XD �.X/E

�

 .Y /
	

D E
�

�.x/ .Y /
„ ƒ‚ …

Dˆ.x;Y /

	

ˇ

ˇ

xDX :

Now fix some F 2 X and pick �.x/ D 1A.x/ and  .y/ D 1B.y/, A 2 D, B 2 E.
Our argument shows that

Z

F

1A�B.X.!/; Y.!// P.d!/ D
Z

F

E 1A�B.x; Y /
ˇ

ˇ

xDX.!/ P.d!/; F 2 X:

Both sides of this equality (can be extended from D � E to) define measures on the
product � -algebra D˝ E. By linearity, this becomes

Z

F

ˆ.X.!/; Y.!// P.d!/ D
Z

F

Eˆ.x; Y /
ˇ

ˇ

xDX.!/ P.d!/; F 2 X;

for D ˝ E measurable positive step functions ˆ; using standard arguments from the
theory of measure and integration, we get this equality for positive measurable func-
tions and then for all bounded measurable functions. The latter is, however, equivalent
to the first equality in (A.4).

The second equality follows if we take conditional expectations E.� � � jX/ on both
sides of the first equality and use the tower property of conditional expectation.

The formulae (A.5) follow in a similar way.

A simple consequence of Lemma A.3 are the following formulae.

A.4 Corollary. Let X W .	;A/ ! .D;D/ and Y W .	;A/ ! .E;E/ be two random
variables. Assume that X;Y � A are � -algebras such that X is X=D measurable, Y
is Y=E measurable and X?? Y. Then

Eˆ.X; Y / D
Z

D

Eˆ.x; Y / P.X 2 dx/ D E




Z

D

ˆ.x; Y / P.X 2 dx/
�

(A.6)

holds for all bounded D � E=B.R/ measurable functions ˆ W D �E ! R.
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If ‰ W D �	 ! R is bounded and D˝ Y=B.R/ measurable, then

E‰.X. � /; � / D
Z

D

E‰.x; � / P.X 2 dx/ D E




Z

D

‰.x; � / P.X 2 dx/
�

: (A.7)

A.3 From discrete to continuous time martingales

We assume that you have some basic knowledge of discrete time martingales, e. g. as
in [169]. The key to the continuous time setting is the following simple observation:
If .Xt ;Ft/t�0 is a martingale, then

.Xtj ;Ftj /j�1 is a martingale for any sequence 0 � t1 < t2 < t3 < � � �

We are mainly interested in estimates and convergence results for martingales. Our
strategy is to transfer the corresponding results from the discrete time setting to con-
tinuous time. The key result is Doob’s upcrossing estimate. Let .Xt ;Ft /t�0 be a real-
valued martingale, I � Œ0;1/ be a finite index set with tmin D min I , tmax D max I ,
and a < b. Then

U.I I Œa; b�/ D max

´

m

ˇ

ˇ

ˇ

ˇ

9 �1 < �1 < �2 < �2 < � � � < �m < �m;
�j ; �j 2 I; X.�j / < a < b < X.�j /

μ

is the number of upcrossings of .Xs/s2I across the strip Œa; b�. Figure A.1 shows two
upcrossings.

tmin tmax

a

b

σ1

τ1

σ2

τ2

Figure A.1. Two upcrossings over the interval Œa; b�.
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Since .Xs;Fs/s2I is a discrete time martingale, we know

E ŒU.I I Œa; b�/� � 1

b � a E
�

.X.tmax/ � a/C	: (A.8)

A.5 Lemma (Upcrossing estimate). Let .Xt ;Ft /t�0 be a real-valued submartingale
and D � Œ0;1/ a countable subset. Then

E ŒU.D \ Œ0; t �I Œa; b�/� � 1

b � a E
�

.X.t/ � a/C	 (A.9)

for all t > 0 and �1 < a < b < 1.

Proof. LetDN � D be finite index sets such thatDN " D. If tmax WD maxDN\Œ0; t �,
we get from (A.8) with I D DN

E ŒU.DN \ Œ0; t �I Œa; b�/� � 1

b � a E
�

.X.tmax/ � a/C	 � 1

b � a E
�

.X.t/ � a/C	:

For the last estimate observe that .Xt�a/C is a submartingale since x 7! xC is convex
and increasing. Since supN U.DN \Œ0; t �I Œa; b�/ D U.D\Œ0; t �I Œa; b�/, (A.9) follows
from monotone convergence.

A.6 Theorem (Martingale convergence theorem. Doob 1953). Let .Xt ;Ft /t�0 be
a martingale in Rd or a submartingale in R with continuous sample paths. If
supt�0 E jXt j < 1, then the limit limt!1Xt exists almost surely and defines a finite
F1 measurable random variable X1.

If .Xt ;Ft /t�0 is a martingale of the form Xt D E.Z jFt/ for some Z 2 L1.P/,
then we have X1 D E.Z jF1/ and limt!1Xt D X1 almost surely and in L1.P/.

Proof. Since a d -dimensional function converges if, and only if, all coordinate func-
tions converge, we may assume that Xt is real valued. By Doob’s upcrossing estimate

E
�

U.QCI Œa; b�/	 � supt�0 E
�

.Xt � a/C	

b � a < 1

for all intervals Œa; b� and QC WD Q \ Œ0;1/. Thus,

U.QCI Œa; b�/.!/ < 1 for all ! … Na;b
where Na;b � 	 with P.Na;b/ D 0. Set N WD S

a<b;a;b2QC Na;b and 	0 WD 	 n N .
Then P.	0/ D 1.

We claim that for ! 2 	0 the limit limt!1Xt .!/ exists. Otherwise we could find
˛; ˇ 2 Q such that

lim
s!1

Xs.!/ < ˛ < ˇ < lim
s!1Xs.!/:
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By the continuity of the sample paths,

lim
s!1

Xs.!/ D lim
QC3r!1

Xr.!/ and lim
s!1Xs.!/ D lim

QC3r!1
Xr.!/;

which means that there must be infinitely many upcrossings of .Xt /t2QC over the in-
terval Œ˛; ˇ�; this is impossible since U.QCI Œ˛; ˇ�/.!/ < 1.

Set X1 WD limt!1 Xt1�0
. By Fatou’s Lemma,

E jX1j D E
�

lim
t!1

jXt j
	

� lim
t!1

E jXt j � sup
t�0

E jXt j < 1

which shows that X1 2 L1 and that X1 is a. s. finite.
Assume now that Xt D E.Z jFt /. From

jXt j D j E.ZjFt/j � E.jZj jFt/
we conclude that supt�0 E jXt j � E jZj < 1 and that .Xt /t�0 is uniformly inte-
grable. By the L1-convergence theorem for discrete uniformly integrable martingales
we find that for any sequence tj " 1 the limit limj!1Xtj D X 01 exists in L1 and
almost surely. By the uniqueness of a. s. limits we conclude that X1 D X 01 almost
surely.

Fix t > 0. For all tj � t and F 2 Ft � Ftj we find, because of L1-convergence,
Z

F

Z dP
Xtj

DE.Z jFtj
/D
Z

F

Xtj dP ���!
j!1

Z

F

X1 dP;

i. e. Z

F

Z dP D
Z

F

X1 dP for all F 2
[

t�0
Ft :

Since
S

t�0 Ft is a \-stable generator of F1, we see E.Z jF1/ D X1.

The next theorem allows us to identify all martingales of the form Xt D E.Z jFt/.
A.7 Theorem (Closure of a martingale. Doob 1953). Let .Xt ;Ft /t�0 be a martingale
in Rd with continuous paths. Then the following assertions are equivalent

a) .Xt /t�0 is uniformly integrable;
b) X1 D limt!1Xt exists a. s. and in L1 and .Xt ;Ft /t2Œ0;1� is a martingale.

Proof. a))b): Since .Xt /t�0 is uniformly integrable, we have supt�0 E jXt j < 1.
Therefore limt!1Xt D X1 almost surely, and by Vitali’s convergence theorem we
find that limj!1Xtj D X1 inL1 for all increasing sequences tj " 1. Thus, the limit
limt!1Xt D X1 exists in L1, and we find for all F 2 Ft and T � t

Z

F

X1 dP
L1-conv.D lim

T!1

Z

F

XT dP
F 2FtD

Z

F

Xt dPI

hence, E.X1 jFt / D Xt and .Xt/t2Œ0;1� is a martingale.
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b))a): Since Xt D E.X1 jFt/ for X1 2 L1.P/, we get jXt j � E.jX1j jFt /
and, therefore, E jXt j � E jX1j. Hence, we find for all t � 0, R > 0 and K > 0

Z

¹jXt j>Rº
jXt j dP �

Z

¹jXt j>Rº
E.jX1j jFt/ dP D

Z

¹jXt j>Rº
jX1j dP

D
Z

¹jXt j>Rº\¹jX1j>Kº
jX1j dP C

Z

¹jXt j>Rº\¹jX1j�Kº
jX1j dP

�
Z

¹jX1j>Kº
jX1j dP CK P.jXt j > R/

�
Z

¹jX1j>Kº
jX1j dP CK

R
E jXt j

�
Z

¹jX1j>Kº
jX1j dP CK

R
E jX1j

����!
R!1

Z

¹jX1j>Kº
jX1j dP

dom. conv.������!
K!1 0:

For backwards submartingales, i. e. for submartingales with a decreasing index set,
the assumptions of the convergence theorems (A.6) and (A.7) are always satisfied.

A.8 Corollary (Backwards convergence theorem). Let .Xt ;Ft / be a submartingale
and let t1 � t2 � t3 � : : :, tj # t1, be a decreasing sequence. Then .Xtj ;Ftj /j�1
is a (backwards) submartingale which is uniformly integrable. In particular, the limit
limj!1Xtj exists in L1 and almost surely.

Proof. That .Xtj /j�1 is a (backwards directed) submartingale is obvious. Now we use
that EX0 � EXt and that .XC

t /t�0 is a submartingale. Therefore, we get for t � t0

E jXt j D 2EXC
t � EXt � 2EXC

t � EX0 � 2EXC
t1

� EX0

which shows that supj�1 E jXtj j < 1. By the martingale convergence theorem we
get

Xtj ���!
j!1 Z

almost surely for some Ft1 measurable random variable Z 2 L1.P/. By the sub-
martingale property, EXtj is decreasing, i. e. the limit limj!1 EXtj D infj�1 EXtj
exists (and is finite). Thus,

8� > 0 9N D N
 8j � N W j EXtj � EXtN j < �:



From discrete to continuous time martingales 339

This means that we get for all j � N , i. e. tj � tN :

Z

¹jXtj
j�Rº

jXtj j dP D 2

Z

¹jXtj
j�Rº

XC
tj
dP �

Z

¹jXtj
j�Rº

Xtj dP

D 2

Z

¹jXtj
j�Rº

XC
tj
dP � EXtj C

Z

¹jXtj
j<Rº

Xtj dP

and since Xt and XC
t are submartingales

� 2
Z

¹jXtj
j�Rº

XC
tN
dP � EXtj C

Z

¹jXtj
j<Rº

XtN dP

� 2
Z

¹jXtj
j�Rº

XC
tN
dP C .� � EXtN /C

Z

¹jXtj
j<Rº

XtN dP

D 2

Z

¹jXtj
j�Rº

XC
tN
dP C� �

Z

¹jXtj
j�Rº

XtN dP

D
Z

¹jXtj
j�Rº

jXtN j dP C�:

Thus,
Z

¹jXtj
j�Rº

jXtj j dP

�
Z

¹jXtj
j�Rº

jXtN j dP C�

�
Z

¹jXtj
j�Rº\¹jXtN

j�R=2º
jXtN j dP

„ ƒ‚ …

note: jXtN
j�R=2� jXtj

=2j

C
Z

¹jXtj
j�Rº\¹jXtN

j�R=2º
jXtN j dP C�

� 1

2

Z

¹jXtj
j�Rº\¹jXtN

j�R=2º
jXtj j dP C

Z

¹jXtN
j�R=2º

jXtN j dP C�

� 1

2

Z

¹jXtj
j�Rº

jXtj j dP C
Z

¹jXtN
j�R=2º

jXtN j dP C�:

This shows that
Z

¹jXtj
j�Rº

jXtj j dP � 2
Z

¹jXtN
j�R=2º

jXtN j dP C2� dom. conv.������!
R!1 2� ���!


!0
0

holds uniformly for all j � N . Therefore, .Xtj /j�1 is uniformly integrable. By Vitali’s
convergence theorem we conclude that L1-limj!1 Xtj exists.
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We will also need some maximal inequalities for martingales. Recall that for a real-
valued discrete time submartingale .X.i/;Fi/i2I where tmin D min I , tmax D max I
and r > 0 the following estimates hold

P
�

max
s2I X.s/ � r

�

� 1

r
E
�

XC.tmax/
	

; (A.10)

P
�

min
s2I X.s/ � �r

�

� 1

r

�

E
�

XC.tmax/
	 � E

�

X.tmin/
	

�

: (A.11)

Since for every d -dimensional martingale or positive submartingale .X.t/;Ft /t�0
such that X.t/ 2 Lp.P/, p � 1, the process .jX.t/jp;Ft/t�0 is a submartingale,
we get

P
�

max
s2I jX.s/j � r

�

� 1

rp
E
�jX.tmax/jp

	

for all r > 0: (A.12)

A.9 Lemma (Doob 1953). Let .Xt ;Ft/t�0 be a positive submartingale or a d -dimens-
ional martingale, Xt 2 Lp.P/ for some p � 1 and D � Œ0;1/ a countable subset.
Then

P
�

sup
s2D\Œ0;t�

jXsj � r
�

� 1

rp
E ŒjXt jp� for all r > 0; t � 0: (A.13)

Proof. Let DN � D be finite sets such that DN " D. We use (A.12) with the index
set I D DN \ Œ0; t �, tmax D maxDN \ Œ0; t � and observe that for the submartingale
.jXt jp;Ft /t�0 the estimate

E
�jX.tmax/jp

	

� E
�jX.t/jp	

holds. Since
°

max
s2DN \Œ0;t�

jX.s/j � r
±

x

?

°

sup
s2D\Œ0;t�

jX.s/j � r
±

we obtain (A.13) by using (A.12) and the continuity of measures.

Finally we can deduce Doob’s maximal inequality.

A.10 Theorem (Lp maximal inequality. Doob 1953). Let .Xt ;Ft /t�0 be a positive
submartingale or a d -dimensional martingale, Xt 2 Lp.P/ for some p > 1 and
D � Œ0;1/ a countable subset. Then for p�1 C q�1 D 1 and all t > 0

E
h

sup
s2D\Œ0;t�

jXsjp
i

� qp sup
s2Œ0;t�

E
�jXsjp

	

� qp E
�jXt jp

	

: (A.14)

If .Xt /t�0 is continuous, (A.14) holds for D D Œ0;1/.
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Proof. Let DN � D be finite index sets with DN " D. The first estimate follows
immediately from the discrete version of Doob’s inequality,

E
h

sup
s2DN \Œ0;t�

jXsjp
i

� qp sup
s2DN \Œ0;t�

E
�jXsjp

	

� qp sup
s2Œ0;t�

E
�jXsjp

	

and a monotone convergence argument. For the second estimate observe that we have
EŒjXsjp� � EŒjXt jp� for all s � t .

Finally, if t 7! Xt is continuous and D a dense subset of Œ0;1/, we know that

sup
s2D\Œ0;t�

jXsjp D sup
s2Œ0;t�

jXsjp:

A.4 Stopping and sampling

Recall that a stochastic process .Xt/t�0 is said to be adapted to the filtration .Ft /t�0
if Xt is for each t � 0 an Ft measurable random variable.

A.4.1 Stopping times

A.11 Definition. Let .Ft /t�0 be a filtration. A random time � W 	 ! Œ0;1� is called
an (Ft -) stopping time if

¹� � tº 2 Ft for all t � 0: (A.15)

Here are a few rules for stopping times which should be familiar from the discrete
time setting.

A.12 Lemma. Let �; �; �j ; j � 1 be stopping times with respect to a filtration .Ft /t�0.
Then

a) ¹� < tº 2 Ft ;
b) � C � , � ^ � , � _ � , supj �j are Ft stopping times;

c) inf
j
�j ; lim

j

�j ; lim
j
�j are FtC stopping times.

Proof. The proofs are similar to the discrete time setting. Let t � 0.

a) ¹� < tº D
[

k�1

®

� � t � 1
k

¯ 2
[

k�1
Ft� 1

k
� Ft .
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b) We have for all t � 0

¹� C � > tº D ¹� D 0; � > tº [ ¹� > t; � D 0º [ ¹� > 0; � � tº
[ ¹0 < � < t; � C � > tº

D ¹� D 0; � > tº
„ ƒ‚ …

D¹��0º\¹��tºc2Ft

[ ¹� > t; � D 0º
„ ƒ‚ …

D¹��tºc\¹��0º2Ft

[ ¹� > 0; � � tº
„ ƒ‚ …

D¹��0ºc\¹�<tºc2Ft

[
[

r2.0;t/\Q

¹r < � < t; � > t � rº
„ ƒ‚ …

D¹��rºc\¹�<tº\¹��t�rºc2Ft

:

This shows that ¹� C � � tº D ¹� C � > tºc 2 Ft for all t � 0.

• ¹� _ � � tº D ¹� � tº \ ¹� � tº 2 Ft ;
• ¹� ^ � � tº D ¹� � tº [ ¹� � tº 2 Ft ;
•
®

sup
j
�j � t

¯ D
\

j

¹�j � tº 2 Ft ;

•
®

inf
j
�j < t

¯ D
[

j

¹�j < tº D
[

j

[

k

®

�j � t � 1
k

¯ 2 Ft ; thus,

®

inf
j
�j � t

¯ D
\

n�1

®

inf
j
�j � t C 1

n

¯ 2
\

n�1
FtC 1

n
D FtC:

c) Since limj and limj are combinations of inf and sup, the claim follows from the
fact that infj �j and supj �j are FtC stopping times.

A.13 Example. The infimum of Ft stopping times need not be anFt stopping time. To
see this, let � be an FtC stopping time (but not an Ft stopping time). Then �j WD �C 1

j

are Ft stopping times:

¹�j � tº D ®

� � t � 1
j

¯ 2 F.t� 1
j
/C � Ft :

But � D infj �j is, by construction, not an Ft stopping time.

We will now associate a � -algebra with a stopping time.

A.14 Definition. Let � be an Ft stopping time. Then

F� WD
°

A 2 F1 WD �
�

[

t�0
Ft

�

W A \ ¹� � tº 2 Ft 8t � 0
±

;

F�C WD
°

A 2 F1 WD �
�

[

t�0
Ft

�

W A \ ¹� � tº 2 FtC 8t � 0
±

:
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It is not hard to see that F� and F�C are � -algebras and that for � � t we have
F� D Ft . Note that, despite the slightly misleading notation, F� is a family of sets
which does not depend on !.

A.15 Lemma. Let �; �; �j ; j � 1 be Ft stopping times. Then

a) � is F� measurable;
b) if � � � then F� � F� ;
c) if �1 � �2 � : : : � �n # � , then F�C D

\

j�1
F�

j
C. If .Ft/t�0 is right-continuous,

then F� D
\

j�1
F�

j
.

Proof. a) We have to show that ¹� � sº 2 F� for all s � 0. But this follows from

¹� � sº \ ¹� � tº D ¹� � s ^ tº 2 Fs^t � Ft 8t � 0:
b) Let F 2 F� . Then we have for all t � 0

F \ ¹� � tº D F \ ¹� � tº \ ¹� � �º
„ ƒ‚ …

D�
D F \ ¹� � tº
„ ƒ‚ …

2Ft as F 2F�

\ ¹� � tº
„ ƒ‚ …

2Ft

2 Ft :

Thus, F 2 F� and F� � F� .
c) We know from Lemma A.12 that � WD infj �j is an FtC stopping time. Applying
b) to the filtration .FtC/t�0 we get

�j � � 8j � 1 b)H)
\

j�1
F�

j
C � F�C:

On the other hand, if F 2 F�
j

C for all j � 1, then

F \ ¹� < tº D F \
[

j�1
¹�j < tº D

[

j�1
F \ ¹�j < tº 2 Ft

where we use that

F \ ¹�j < tº D
[

k�1
F \ ®

�j � t � 1
k

¯ 2
[

k�1
F
t� 1
k

� Ft :

As in (5.9) we see now that F \ ¹� � tº 2 FtC.
If .Ft /t�0 is right-continuous, we have Ft D FtC and F� D F�C.

We close this section with a result which allows us to approximate stopping times
from above by a decreasing sequence of stopping times with countably many values.
This helps us to reduce many assertions to the discrete time setting.
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A.16 Lemma. Let � be an Ft stopping time. Then there exists a decreasing sequence
of Ft stopping times with

�1 � �2 � : : : � �n # � D inf
j
�j

and each �j takes only countably many values:

�j .!/ D
´

�.!/; if �.!/ D 1I
k2�j ; if .k � 1/2�j � �.!/ < k2�j ; k � 1:

Moreover, F \ ¹�j D k2�j º 2 Fk=2j for all F 2 F�C.

Proof. Fix t � 0 and j � 1 and pick k D k.t; j / such that .k � 1/2�j � t < k2�j .
Then

¹�j � tº D ¹�j � .k � 1/2�j º D ¹� < .k � 1/2�j º 2 F.k�1/=2j � Ft ;
i. e. the �j ’s are stopping times.

From the definition it is obvious that �j # � : Note that �j .!/ � �.!/ � 2�j if
�.!/ < 1. Finally, if F 2 F�C, we have

F \ ¹�j D k2�j º D F \ ¹.k � 1/2�j � � < k2�j º
D F \ ¹� < k2�j º \ ¹� < .k � 1/2�j ºc

D
[

n�1

�

F \ ®

� � k2�j � 1
n

¯

�

„ ƒ‚ …

2F
.k=2j �1=n/C

�F
k=2j

\ ¹� < .k � 1/2�j ºc
„ ƒ‚ …

2F
k=2j

2 Fk=2j :

A.4.2 Optional sampling

If we evaluate a continuous martingale at an increasing sequence of stopping times,
we still have a martingale. The following technical lemma has exactly the same proof
as Lemma 6.24 and its Corollary 6.25 – all we have to do is to replace in these proofs
Brownian motion B by the continuous process X .

A.17 Lemma. Let .Xt ;Ft/t�0 be a d -dimensional adapted stochastic process with
continuous sample paths and let � be an Ft stopping time. Then X.�/1¹�<1º is an F�
measurable random variable.

Recall the optional sampling theorem for stopping times ˛; ˇ W 	 ! ¹tj ºj�1 with
values in a discrete set:

.X.tj /;Ftj /j�1 submartingale, ˛ � ˇ � C H) X.˛/ � E.X.ˇ/ jF˛/:
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A.18 Theorem (Optional stopping. Doob 1953). Let .Xt ;Ft/t�0 be a submartingale
with continuous sample paths and let � � � be Ft stopping times. Then we have for
all k � 0 that X�^k ; X�^k 2 L1.P/ and

X.� ^ k/ � E.X.� ^ k/ jF�^k/: (A.16)

If � � � are bounded stopping times, i. e. if � � K a. s. for some constant K, or if
P.� < 1/ D 1, X.�/;X.�/ 2 L1.P/ and lim

k!1
E
�jX.k/j 1¹�>kº

	 D 0; then

X.�/ � E.X.�/ jF� /: (A.17)

Proof. Using Lemma A.16 we can approximate � � � by discrete-valued stopping
times �j # � and �j # � . The construction in Lemma A.16 shows that we still have
�j � �j .

Using the discrete version of Doob’s optional sampling theorem with ˛ D �j ^ k
and ˇ D �j ^ k reveals that X.�j ^ k/; X.�j ^ k/ 2 L1.P/ and

X.�j ^ k/ � E
�

X.�j ^ k/ ˇˇF�j ^k
	

:

Since F�^k � F�j ^k , the tower property gives

E
�

X.�j ^ k/ ˇˇF�^k
	

� E
�

X.�j ^ k/ ˇˇF�^k
	

: (A.18)

By discrete optional sampling, .X.�j ^ k/;F�j ^k/j�1 and .X.�j ^ k/;F�
j

^k/j�1 are
backwards submartingales and as such, cf. Corollary A.8, uniformly integrable. There-
fore,

X.�j ^ k/ a. s., L1

����!
j!1 X.� ^ k/ and X.�j ^ k/ a. s., L1

����!
j!1 X.� ^ k/:

This shows that we have for all F 2 F�^k
Z

F

X.� ^ k/ dP D lim
j!1

Z

F

X.�j ^ k/ dP
(A.18)
� lim

j!1

Z

F

X.�j ^ k/ dP

D
Z

F

X.� ^ k/ dP

which proves (A.17).
Assume now that X.�/;X.�/ 2 L1.P/. If F 2 F� , then

F \¹� � kº\¹�^k � tº D F \¹� � kº\¹� � tº D F \¹� � k^tº 2 Fk^t � Ft ;

which means that F \ ¹� � kº 2 F�^k . Since � � � < 1 we have by assumption
Z

F\¹�>kº
jX.k/j dP �

Z

¹�>kº
jX.k/j dP �

Z

¹�>kº
jX.k/j dP ���!

k!1
0:
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Using (A.16) we get by dominated convergence

Z

F

X.� ^ k/ dP D

!R

F X.�/dP; k!1
‚ …„ ƒ

Z

F\¹��kº
X.� ^ k/ dP C

!0; k!1
‚ …„ ƒ

Z

F\¹�>kº
X.k/ dP

�
Z

F\¹��kº
X.� ^ k/ dP C

Z

F\¹�>kº
X.k/ dP

D
Z

F\¹��kº
X.� ^ k/ dP

„ ƒ‚ …

!R

F X.�/dP; k!1

C
Z

F\¹�>kº
X.k/ dP

„ ƒ‚ …

!0; k!1

which is exactly (A.17).

A.19 Corollary. Let .Xt ;Ft /t�0,Xt 2 L1.P/, be an adapted process with continuous
sample paths. The process .Xt ;Ft /t�0 is a submartingale if, and only if,

EX� � EX� for all bounded Ft stopping times � � �: (A.19)

Proof. If .Xt ;Ft/t�0 is a submartingale, then (A.19) follows at once from Doob’s
optional stopping theorem. Conversely, assume that (A.19) holds true. Let s < t , pick
any F 2 Fs and set � WD t1F c C s1F . Obviously, � is a bounded stopping time and if
we use (A.19) with � WD � and � WD t we see

E
�

Xs1F
�C E

�

Xt1F c

� D EX� � EXt :

Therefore,

E
�

Xs1F
�

� E
�

Xt1F
�

for all s < t and F 2 Fs;
i. e. Xs � E.Xt jFs/.

A.20 Corollary. Let .Xt ;Ft /t�0 be a submartingale which is uniformly integrable
and has continuous paths. If � � � are stopping times with P.� < 1/ D 1, then all
assumptions of Theorem A.18 are satisfied.

Proof. Since .Xt/t�0 is uniformly integrable, we get

sup
t�0

E jX.t/j � c < 1:

Moreover, since XC
t is a submartingale, we have for all k � 0

E jX.� ^ k/j D 2EXC.� ^ k/ � EX.� ^ k/ (A.16)
� 2EXC.k/ � EX.0/

� 2E jX.k/j C E jX.0/j � 3c:
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By Fatou’s lemma we get

E jX.�/j � lim
k!1

E jX.� ^ k/j � 3c;

and, similarly, E jX.�/j � 3c. Finally,

E
�jX.k/j 1¹�>kº

	 D E
�jX.k/j�1¹�>kº\¹jX.k/j>Rº C 1¹�>kº\¹jX.k/j�Rº

�	

� sup
n

E
�jX.n/j 1¹jX.n/j>Rº

	CR P.� > k/

���!
k!1

sup
n

E
�jX.n/j 1¹jX.n/j>Rº

	 unif. integrable��������!
R!1 0:

A.21 Remark.

a) If .Xt ;Ft/t�0 is a martingale, we have ‘D’ in (A.16), (A.17) and (A.19).

b) Let .Xt ;Ft/t�0 be a submartingale and � an Ft stopping time. Then .X�
t ;Ft/,

X
�
t WD X�^t , is a submartingale.

Indeed: X� is obviously adapted and continuous. For any two bounded stopping
times � � � it is clear that � ^ � � � ^ � are bounded stopping times, too. There-
fore,

EX�
�

defD EX�^�
A:19

� EX�^�
defD EX�

� ;

and yet another application of Corollary A.19 shows that X� is a submartingale for
.Ft /t�0.

c) Note that .Xt D XtC;FtC/ is also a submartingale. If � � � are FtC stopping
times, then (A.16) and (A.17) remain valid if we use F.�^k/C;F�C etc.

We close this section with a uniqueness result for compensators.

A.22 Proposition. Let .Xt ;Ft /t�0 be a martingale with paths which are continuous
and of bounded variation on compact intervals. Then Xt D X0 a. s. for all t � 0.

Proof. Without loss of generality we may assume that X0 D 0. Denote by

Vt WD VAR1.X I Œ0; t �/ and �n D inf¹t � 0 W Vt � nº

the strong variation of .Xt/t�0 and the stopping time when Vt exceeds n for the first
time. Since t 7! Xt is continuous, so is t 7! Vt , cf. Paragraph A.34 f).
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By optional stopping, Theorem A.18, we know that .X �n

t ;Ft^�n
/t�0 is, for every

n � 1, a martingale. An application of Doob’s maximal inequality yields

E
h

sup
s�t
.X

�n
s /

2
i (A.14)
� 4E

�

.X
�n

t /
2
	 D E


 N
X

jD1

�

.X
�n

j

N
t
/2 � .X �n

j �1

N
t
/2
�

�

D E


 N
X

jD1

�

X
�n

j

N
t

�X�n

j �1

N
t

�2
�

� E
h

Vt sup
1�j�N

ˇ

ˇX
�n

j

N
t

�X �n

j �1

N
t

ˇ

ˇ

i

� nE
h

sup
1�j�N

ˇ

ˇX
�n

j

N
t

�X �n

j �1

N
t

ˇ

ˇ

i

I

in particular, the expectation on the left-hand side is finite. Since the paths are uni-
formly continuous on compact intervals, we find

sup
1�j�N

ˇ

ˇX
�n

j

N
t
�X �n

j �1

N
t

ˇ

ˇ ����!
N!1 0 almost surely.

On the other hand, sup1�j�N
ˇ

ˇX
�n

j

N
t

� X
�n

j �1

N
t

ˇ

ˇ � VAR.X �n I Œ0; t �/ � Vt^�n
� n, and

dominated convergence gives

E
h

sup
s�t
.X

�n
s /

2
i

� n lim
N!1 E

h

sup
1�j�N

ˇ

ˇX
�n

j

N
t

�X �n

j �1

N
t

ˇ

ˇ

i

D 0:

Therefore, Xs D 0 a. s. on Œ0; k ^ �n� for all k � 1 and n � 1. The claim follows since
�n " 1 almost surely as n ! 1.

A.23 Corollary. Let .Xt ;Ft /t�0 be anL2-martingale such that both .X2
t �At ;Ft /t�0

and .X2
t �A0

t ;Ft /t�0 are martingales for some adapted processes .At /t�0 and .A0
t/t�0

having continuous paths of bounded variation on compact sets and A0 D A0
0 D 0.

Then P.At D A0
t 8t � 0/ D 1.

Proof. By assumptionAt�A0
t D .X2

t �A0
t /�.X2

t �At/, i. e.A�A0 is a martingale with
continuous paths which are of bounded variation on compact sets. The claim follows
from Proposition A.22.

A.5 Remarks on Feller processes

A Markov process .Xt ;Ft /t�0 is said to be a Feller process if the transition semi-
group (7.1) has the Feller property, i. e. Pt is a strongly continuous Markov semigroup
on the space C1.Rd / D ¹u 2 C.Rd / W limjxj!1 u.x/ D 0º, cf. Remark 7.4. In
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Remark 7.6 we have seen how to construct a Feller process from any given Feller
semigroup. Throughout this section we assume that the filtration is right-continuous,
i. e. Ft D FtC for all t � 0, and complete. Let us briefly discuss some properties of
Feller processes.

A.24 Theorem. Let .Xt ;Ft/t�0 be a Feller process. Then there exists a Feller process
. QXt /t�0 whose sample paths are right-continuous with finite left limits and which has
the same finite dimensional distributions as .Xt/t�0.

Proof. See Blumenthal and Getoor [13, Theorem I.9.4, p. 46] or Ethier and Kurtz [61,
Theorem 4.2.7 p. 169].

From now on we will assume that every Feller process has right-continuous paths.

A.25 Theorem. Every Feller process .Xt ;Ft /t�0 has the strong Markov property (6.9).

Proof. The argument is similar to the proof of Theorem 6.5. Let � be a stopping time
and approximate � by the stopping times �j WD .b2j�cC1/=2j , cf. Lemma A.16. Let
t > 0, x 2 Rd , u 2 C1.Rd / and F 2 F�C. Since ¹� < 1º D ¹�n < 1º we find by
dominated convergence and the right-continuity of the sample paths

Z

F\¹�<1º
u.XtC� / dPx D lim

j!1

Z

F\¹�j<1º
u.XtC�j

/ dPx

D lim
j!1

1
X

kD0
Ex

�

u.XtC�j
/1F\¹�j Dk=2j º

	

D lim
j!1

1
X

kD0
Ex

�

u.XtCk=2j /1F\¹�j Dk=2j º
	

:

By Lemma A.16, F \ ¹�j D k=2j º 2 F�C; using the tower and the Markov property,
we get

Ex
�

E
�

u.XtCk=2j /1F\¹�j Dk=2j º
ˇ

ˇ Fk=2j

�	

D Ex
�

1F\¹�j Dk=2j º Ex
�

u.XtCk=2j /
ˇ

ˇ Fk=2j

� 	

D Ex
�

1F\¹�j Dk=2j º EX
k=2j u.Xt/

	

D Ex
�

1F\¹�j Dk=2j º EX�j u.Xt /
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and, again by dominated convergence and the right-continuity
Z

F\¹�<1º
u.XtC� / dPx D lim

j!1

1
X

kD0
Ex

�

1F\¹�j Dk=2j º E
X�j u.Xt/

	

D lim
j!1 Ex

�

1F\¹�<1º EX�j u.Xt/
	

D Ex
�

1F\¹�<1º EX� u.Xt/
	

:

A.26 Theorem. Let .Xt ;Ft/t�0 be a Feller process and �x WD inf¹t > 0 W Xt ¤ xº
the first hitting time of the set Rd n ¹xº. Then there exists some �.x/ 2 Œ0;1� such
that Px.�x � t / D e��.x/t .

Proof. Under Px we have, a. s. �x > t if, and only if, sups�t jXs � xj D 0. Therefore,

Px.�x > t C s/ D Px
�

�x > s; sup
r�t

jXrCs �Xsj D 0
�

By the Markov property we find

Px
�

�x > s; sup
r�t

jXrCs �Xsj D 0
� D Ex

�

1¹�x>sº PXs
�

sup
r�t

jXr �X0j D 0
	�

XsDxD Ex
�

1¹�x>sº
�

Px
�

sup
r�t

jXr � xj D 0
	

:

Thus, Px.�x > t C s/ D Px.�x > s/Px.�x > t/. As

lim
n!1 Px.�x > t � 1=n/ D Px.�x � t /;

we find for all s; t > 0 that Px.�x � t C s/ D Px.�x � s/Px.�x � t /. Since
s 7! Px.�x � s/ is left-continuous and Px.�x � 0/ D 1, this functional equation has
a unique solution of the form e��.x/t with some �.x/ 2 Œ0;1�.

A.6 The Doob–Meyer decomposition

We will now show that every martingale M 2M2;c
T satisfies

.M 2
t � At ;Ft/t�T is a martingale for some

adapted, continuous and increasing process .At/t�T :
(�)

We begin with the uniqueness of the process A. This follows directly from Corol-
lary A.23.

A.27 Lemma. Assume thatM 2M2;c
T and that there are two continuous and increas-

ing processes .At/t�T and .A0
t /t�T such that both .M 2

t �At /t�T and .M 2
t �A0

t /t�T
are martingales. Then At � A0 D A0

t � A0
0 a. s. with the same null set for all t � T .
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Let us now turn to the existence of the process A from (�). The following elemen-
tary proof is due to Kunita [111, Chapter 2.2]. We consider first bounded martingales
M 2M2;c

T .

A.28 Theorem. Let M 2M2;c
T such that supt�T jMt j � � for some constant � < 1.

Let .…n/n�1 be any sequence of finite partitions of Œ0; T � satisfying limn!1 j…nj D 0.
Then the mean-square limit

L2.P/- lim
n!1

X

tj �1;tj 2…n

.Mt^tj �Mt^tj �1
/2

exists uniformly for all t � T and defines an increasing and continuous process
.hM it /t�0 such that M 2 � hM i is a martingale.

The proof is based on two lemmas. Let … D ¹0 D t0 < t1 < � � � < tn D T º be
a partition of Œ0; T � and denote by M…;t D .M t

tj
;Ftj ^t /tj �1;tj 2…, 0 � t � T , where

M t
tj

D Mt^tj . Consider the martingale transform

N
…;t
T WD M…;t �M…;t

T D
n
X

kD1
Mt^tj �1

.Mt^tj �Mt^tj �1
/:

A.29 Lemma. .N…;t
T ;Ft /t�T is a continuous martingale and EŒ.N

…;t
T /2� � �4. More-

over,

M 2
t �M 2

0 D
n
X

jD1
.Mt^tj �Mt^tj �1

/2 C 2N
…;t
T ; (A.20)

and E
�

.
Pn
jD1.Mt^tj �Mt^tj �1

/2/2
	

� 16�4.

Proof. The martingale property is just Theorem 14.9 a). For the first estimate we use
Theorem 14.4

EŒ.N
…;t
T /2� D EŒ.M…;t �M…;t

T /2�
(14.5)D EŒ.M…;t /2 � hM…;t iT �

� �2 EŒhM…;t iT � D �2 EŒM 2
T �M 2

0 � � �4:
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The identity (A.20) follows from

M 2
t �M 2

0 D
n
X

jD1
.M 2

t^tj �M 2
t^tj �1

/

D
n
X

jD1
.Mt^tj CMt^tj �1

/.Mt^tj �M^tj �1
/

D
n
X

jD1

�

.Mt^tj �Mt^tj �1
/2 C 2Mt^tj �1

.Mt^tj �Mt^tj �1
/
	

D
n
X

jD1
.Mt^tj �Mt^tj �1

/2 C 2N
…;t
T :

From this and the first estimate we get

E


� n
X

jD1
.Mt^tj �Mt^tj �1

/2
�2�

D E
h

�

2N
…;t
T CM 2

t �M 2
0

„ ƒ‚ …

�2�2

�2
i

� 8 E
�

.N
…;t
T /2

	C 8�4 � 16�4:

In the penultimate inequality we used the fact that .aC b/2 � 2a2 C 2b2.

A.30 Lemma. Let .…n/n�1 be a sequence of partitions of Œ0; T � such that the mesh
size j…nj D maxtj �1;tj 2…n

.tj � tj�1/ tends to 0 as n ! 1. Then

lim
m;n!1 E

�

sup
0�t�T

ˇ

ˇN
…n;t
T �N…m;t

T

ˇ

ˇ

2	 D 0:

Proof. For any … D ¹0 D t0 < t1 < � � � < tn D T º we define f …;tu WD Mt^tj �1
if

tj�1 � u < tj . Note that for any two partitions …;…0 and all u � T we have

jf …;tu � f …0;t
u j � sup

jr�sj�j…j^j…0j
jMt^s �Mt^r j:

By the continuity of the sample paths, this quantity tends to zero as j…j; j…0j ! 0.
Fix two partitions…,…0 of the sequence .…n/n�1 and denote the elements of… by

tj and those of … […0 by uk . The process f …;tu is constructed in such a way that

N
…;t
T D M…;t �M…;t

T D
X

tj �1;tj 2…
Mt^tj �1

.Mt^tj �Mt^tj �1
/

D
X

uk�1;uk2…[…0

f …;tuk�1
.Mt^uk

�Mt^uk�1
/ D f …;t �M…[…0;t

T :



The Doob–Meyer decomposition 353

Thus,

N
…;t
T �N…0;t

T D .f …;t � f …0;t / �M…[…0;t
T ;

and we find by Doob’s maximal inequality A.10,

E
�

sup
s�t

ˇ

ˇN
…;s
T �N…0;s

T

ˇ

ˇ

2	

� 4 E
�

ˇ
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ˇ

2	

D 4E
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ˇ

ˇ.f …;t � f …0;t / �M…[…0;t
T

ˇ

ˇ

2	

(14.6)D 4E




X
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� 4E
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ˇ

ˇ

2
X

uk�1;uk2…[…0

.Mt^uk
�Mt^uk�1

/2
�

� 4
�

E
h

sup
u�T

ˇ

ˇf …;tu � f …0;t
u

ˇ

ˇ

4
i�1=2

�
�

E


�

X

uk�1;uk2…[…0

.Mt^uk
�Mt^uk�1

/2
�2��1=2

:

The first term tends to 0 as j…j; j…0j ! 0 while the second factor is bounded by 4�2,
cf. Lemma A.29.

Proof of Theorem A.28. Let .…n/n�0 be a sequence of refining partitions such that
j…nj ! 0 and set … WD S

n�0…n.

By Lemma A.30, the limitL2-limn!1N
…n;t
T exists uniformly for all t 2 Œ0; T � and

the same is true, because of (A.20), for L2-limn!1
P

tj �1;tj 2…n
.Mt^tj � Mt^tj �1

/2.
Therefore, there is a subsequence such that

hM it WD lim
k!1

X

tj �1;tj 2…n.k/

.Mt^tj �Mt^tj �1
/2

exists a. s. uniformly for t 2 Œ0; t �; due to the uniform convergence, hM it is a contin-
uous process.

For s; t 2 … with s < t there is some k � 1 such that s; t 2 …n.k/. Obviously,

X

tj �1;tj 2…n.k/

.Ms^tj �Ms^tj �1
/2 �

X

tj �1;tj 2…n.k/

.Mt^tj �Mt^tj �1
/2

and, as k ! 1, this inequality also holds for the limiting process hM i. Since … is
dense and t 7! hM it continuous, we get hM is � hM it for all s � t .
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From (A.20) we see that M 2
t � P

tj �1;tj 2…n.k/
.Mt^tj � Mt^tj �1

/2 is a martingale.
From Lemma 14.10 we know that the martingale property is preserved underL2 limits,
and so M 2 � hM i is a martingale.

Let us, finally, remove the assumption that M is bounded.

A.31 Theorem (Doob–Meyer decomposition. Meyer 1962, 1963). For all square inte-
grable martingalesM 2 M2;c

T there exists a unique adapted, continuous and increasing
process .hM it /t�T such that M 2 � hM i is a martingale and hM i0 D 0.

If .…n/n�1 is any refining sequence of partitions of Œ0; T � with j…nj ! 0, then hM i
is given by

hM it D lim
n!1

X

tj �1;tj 2…n

.Mt^tj �Mt^tj �1
/2

where the limit is uniform (on compact t -sets) in probability.

Proof. Define a sequence of stopping times �n WD inf
®

t � T W jMt j � n
¯

, n � 1,

.inf ; D 1/. Clearly, limn!1 �n D 1,M �n 2M2;c
T and jM �n

t j � n for all t 2 Œ0; T �.
Since for any partition … of Œ0; T � and all m � n

X

tj �1;tj 2…

�

M
�n

t^�m^tj �M �n

t^�m^tj �1

�2 D
X

tj �1;tj 2…

�

M
�m

t^tj �M �m

t^tj �1

�2

;

the following process is well-defined

hM it .!/ WD hM �nit .!/ for all .!; t/ W t � �n.!/ ^ T

and we find that hM it is continuous and hM i�n

t D hM �nit .
Using Fatou’s lemma, the fact that .M �n/2 � hM �ni is a martingale, and Doob’s

maximal inequality A.10, we have
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T /:

Therefore, hM iT 2 L1.P/. Moreover,
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� D E
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�
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which shows, by the dominated convergence theorem, thatL1-limn!1hM i�n

t D hM it
uniformly for t 2 Œ0; T �. Similarly,

E
�

sup
t�T

.Mt �M �n

t /
2
� D E

�

sup
t�T

.Mt �M�n
/21¹t>�nº

�

� 4E
�

sup
t�T

M 2
t 1¹T>�nº

�

:

Since, by Doob’s maximal inequality, supt�T M 2
t 2 L1, we can use dominated con-

vergence to see that L1-limn!1.M
�n

t /
2 D M 2

t uniformly for all t 2 Œ0; T �.
SinceL1-convergence preserves the martingale property,M 2�hM i is a martingale.

Using that hM it D hM i�n

t D hM �nit for t � �n, we find for every � > 0
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ˇ

ˇ

ˇ

> �; T � �n
�

C P
�

T > �n
�

� 1

�2
E

�

sup
t�T

ˇ

ˇ

ˇ

ˇ

hM �nit �
X

tj �1;tj 2…
.M

�n

t^tj �M �n

t^tj �1
/2
ˇ

ˇ

ˇ

ˇ

2�

C P
�

T > �n
�

Thm. A.28�����!
j…j!0

P
�

T > �n
� ���!
n!1 0:

A.32 Corollary. Let .Mt ;Ft/t�0 � L2.P/ be a continuous martingale with respect
to a right-continuous filtration. Then M• and the quadratic variation hM i• are, with
probability one, constant on the same t -intervals.

Proof. Fix T > 0. We have to show that there is a set 	� � 	 such that P.	�/ D 1

and for all Œa; b� � Œ0; T � and ! 2 	�

Mt .!/ D Ma.!/ for all t 2 Œa; b� () hM it .!/ D hM ia.!/ for all t 2 Œa; b�:
“)”: By Theorem A.31 there is a set 	0 � 	 of full P-measure and a sequence of

partitions .…n/n�1 of Œ0; T � such that limn!1 j…nj D 0 and

hM it .!/ D lim
n!1

X

tj �1;tj 2…n

.Mtj ^t .!/ �Mtj �1^t .!//2; ! 2 	0:

If M• is constant on Œa; b� � Œ0; T �, we see that for all t 2 Œa; b�
hM it .!/�hM ia.!/ D lim

n!1
X

tj �1;tj 2…n\Œa;b�
.Mtj ^t .!/�Mtj �1^t .!//2 D 0 ! 2 	0:

“(”: Let	0 be as above. The idea is to show that for every rational q 2 Œ0; T � there
is a set	q � 	0 with P.	q/ D 1 and such that for every! 2 	q a hM i•.!/-constancy
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interval of the form Œq; b� is also an interval of constancy for M•.!/. Then the claim
follows for the set 	� D T

q2Q\Œ0;T �	q .
The shifted processNt WD MtCq�Mq , 0 � t � T �q is a continuousL2 martingale

for the filtration .FtCq/q2Œ0;T�q�; moreover, hN it D hM itCq � hM iq .
Set � D inf¹s > 0 W hN is > 0º, note that � is a stopping time (since hN i has con-

tinuous paths), and consider the stopped processes hN � it D hN it^� and N �
t D Nt^� .

By definition, hN � it � 0 a. s., hence hM � it � hM iq almost surely. Since
E.N 2

�^t / D EhN � it D 0; we conclude that Mt^�Cq �Mq D N �
t D 0 a. s., i. e. there

is a set 	q of full measure such that for every ! 2 	q every interval of constancy
Œq; b� of hM i• is also an interval of constancy for M•. On the other hand, the direction
“)” shows that a constancy interval of M• cannot be longer than that of hM i•, hence
they coincide.

A.7 BV functions and Riemann–Stieltjes integrals

Here we collect some material on functions of bounded variation, BV-functions for
short, and Riemann–Stieltjes integrals. Our main references are Hewitt & Stromberg
[77, Chapters V.8, V.9, V.17], Kestelman [101, Chapter XI], Rudin [163, Chapter 6]
and Riesz & Sz.-Nagy [159, Chapters I.4–9, III.49–60].

A.7.1 Functions of bounded variation

Let f W Œa; b� ! R be a function and let … D ¹t0 D a < t1 < � � � < tn D bº be a
finite partition of the interval Œa; b� � R. By j…j WD max1�j�n.tj � tj�1/ we denote
the fineness or mesh of …. We call

S…1 .f I Œa; b�/ WD
X

tj ;tj �12…
jf .tj / � f .tj�1/j D

n
X

jD1
jf .tj / � f .tj�1/j (A.21)

the variation sum. The supremum of the variation sums over all finite partitions

VAR1.f I Œa; b�/ WD sup
®

S…p .f I t / W … finite partition of Œa; b�
¯ 2 Œ0;1� (A.22)

is the strong variation or total variation.

A.33 Definition. A function f W Œa; b� ! R is said to be of bounded variation (also:
finite variation) if VAR1.f I Œa; b�/ < 1. We denote by BVŒa; b� the set of all func-
tions f W Œa; b� ! R of bounded variation; if the domain is clear, we just write BV.

Let us collect a few properties of functions of bounded variation.
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A.34 Properties of BV-functions. Let f; g W Œa; b� ! R be real functions.

a) If f is monotone, then f 2 BV and VAR1.f I Œa; b�/ D jf .b/ � f .a/j;
b) If f 2 BV, then supt2Œa;b� jf .t/j < 1;
c) If f; g 2 BV, then f ˙ g, f � g and f=.jgj C �/, � > 0, are of bounded variation;
d) Let a < c < b. Then VAR1.f I Œa; b�/ D VAR1.f I Œa; c�/ C VAR1.f I Œc; b�/ in
Œ0;1�;

e) f 2 BV if, and only if, there exist two increasing functions �; W Œa; b� ! R such
that f D � �  .
In particular, f 2 BVŒa; b� has for every t 2 .a; b/ finite left- and right-hand limits
f .t˙/, and the number of discontinuities is at most countable.

f) If f 2 BV is continuous at t0, then t 7! VAR1.f I Œa; t �/ is continuous at t D t0;
g) Every f 2 BV has a decomposition f .t/ D fc.t/C fs.t/ where fc 2 BV \C and
fs.t/ D P

a�s�t Œf .sC/ � f .s�/� are uniquely determined;
h) Every f 2 BV has Lebesgue almost everywhere a finite derivative.

A.7.2 The Riemann–Stieltjes Integral

The Riemann–Stieltjes integral is a generalization of the classical Riemann integral.
It was introduced by T. J. Stieltjes in his memoir [174, in particular: pp. 69–76] on
continued fractions and the general moment problem. While Stieltjes considers only
positive integrators (‘mass distributions’), it is F. Riesz [157] who remarked that one
can consider integrators from BV.

Let f; ˛ W Œa; b� ! R and let … D ¹t0 D a < t1 < � � � < tn D bº be a partition of
the interval Œa; b� � R with mesh j…j; moreover, �…j denotes an arbitrary point from
the partition interval Œtj ; tjC1�, j D 0; : : : ; n � 1.

A.35 Definition. Let ˛ W Œa; b� ! R. A function f W Œa; b� ! R is called (Riemann–
Stieltjes) integrable if the Stieltjes sums

S….f I˛/ WD
X

tj ;tj �12…
f .�…j�1/.˛.tj / � ˛.tj�1// (A.23)

converge, independently of the choice of the points �…j 2 Œtj ; tjC1�, tj ; tjC1 2 …, to a
finite limit as j…j ! 0. The common value is called the Riemann–Stieltjes integral of
f , and we write

Z b

a

f .t/ d˛.t/ WD lim
j…j!0

X

tj ;tj �12…
f .�…j�1/.˛.tj / � ˛.tj�1//: (A.24)

With ˛.t/ D t we get the Riemann integral as a special case. Let us briefly collect
the main features of the Riemann–Stieltjes integral.
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A.36 Properties of the Riemann–Stieltjes integral. Let f; ˛ W Œa; b� ! R be real
functions and a � c � b.

a) .f; ˛/ 7! R b

a
f .t/ d˛.t/ is bilinear;

b) If
R b

a
f .t/ d˛.t/ exists, so does

R d

c
f .t/ d˛.t/ for all a � c < d � b;

c)
R b

a
f .t/ d˛.t/ D R c

a
f .t/ d˛.t/C R b

c
f .t/ d˛.t/;

d) j R b
a
f .t/ d˛.t/j � kf k1 � VAR1.˛I Œa; b�/;

e) If f is piecewise continuous, ˛ 2 BVŒa; b� and ˛ and f have no common discon-
tinuities, then f is Riemann–Stieltjes integrable;

f) If f is Riemann–Stieltjes integrable, then f and ˛ cannot have common disconti-
nuities;

g) If f is Riemann integrable and if ˛ is absolutely continuous, then f is Riemann–
Stieltjes integrable and

R b

a
f .t/ d˛.t/ D R b

a
f .t/˛0.t/ dt;

h) If f is Riemann–Stieltjes integrable, then x 7! R x

a
f .t/ d˛.t/ is continuous at

continuity points of ˛;
i) If ˛ is right-continuous and increasing, then �˛.s; t � WD ˛.t/ � ˛.s/ defines a

positive measure on BŒa; b� and
R b

a
f .t/ d˛.t/ D R

.a;b�
f .t/ �˛.dt/;

The property A.36 i) implies that we can embed the Riemann–Stieltjes integral into
the Lebesgue theory if ˛ 2 BV is right-continuous. Observe that in this case we can
make sure that ˛ D � �  for right-continuous increasing functions �; . Then,
�˛ WD �� �� is a signed measure onBŒa; b�with �� ; � as in A.36 i). The integral
R

.a;b�
f .s/ �˛.ds/ is sometimes called the Lebesgue-Stieltjes integral.

The integration by parts formula and the chain rule for Riemann–Stieltjes integrals
are particularly simple. The chain rule is the deterministic counterpart of Itô’s lemma.

A.37 Theorem (Integration by parts). Let ˛; f W Œa; b� ! R. If
R b

a
f .t/ d˛.t/ exists,

so does
R b

a
˛.t/ df .t/; in this case

f .b/˛.b/ � f .a/˛.a/ D
Z b

a

f .t/ d˛.t/C
Z b

a

˛.t/ df .t/:

A.38 Theorem (Chain rule). Let ˛ 2 CŒ0; T � be increasing and f 2 C1Œ˛.0/; ˛.T /�.
Then

f .˛.t// � f .˛.0// D
Z t

0

f 0.˛.s// d˛.s/ D
Z ˛.t/

˛.0/

f 0.x/ dx for all t � T:

Alternatively, if ˇ is strictly increasing and g 2 CŒa; b�, then

Z b

a

g.s/ dˇ.s/ D
Z ˇ.b/

ˇ.a/

g.ˇ�1.x// dx:
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The property A.36 d) implies that AŒf � WD R b

a
f .t/ d˛.t/, ˛ 2 BV, is a continuous

linear form on the Banach space .CŒa; b�; k � k1/. In the already mentioned note [157]
F. Riesz showed that all continuous linear forms are of this type.

A.39 Theorem (Riesz representation theorem). Let A W CŒa; b� ! R be a continuous
linear form, i. e. a liner map satisfying jAŒf �j � cAkf k1. Then there is a function

˛ 2 BVŒa; b�, depending only on A, such that AŒf � D R b

a
f .t/ d˛.t/.

In fact, it is not even necessary to assume that the linear form is continuous. As soon
as f 7! R b

a
f .t/ d˛.t/ is finite for every f 2 CŒa; b�, then ˛ is necessarily of bounded

variation. For this we need

A.40 Theorem (Banach–Steinhaus theorem). Let .X; k � kX/, .Y; k � kY/ be two Banach
spaces and S… W X! Y be a family of linear maps indexed by …. Then

sup
…

kS…Œx�kY < 1; 8x 2 X; implies that sup
…

sup
kxkX�1

kS…Œx�kY
„ ƒ‚ …

operator norm kS…kX!Y

< 1:

A.41 Corollary. Let˛ W Œa; b� ! R. IfAŒf � WD R b

a
f .t/ d˛.t/ exists for all continuous

functions f 2 CŒa; b�, then ˛ 2 BVŒa; b�.

Proof. We apply Theorem A.40 to

.X; k � kX/ D .CŒa; b�; k � k1/ and .Y; k � kY/ D .R; j � j/

and S…Œf � WD P

tj ;tj �12… f .tj�1/.˛.tj / � ˛.tj�1// where

… D ¹t0 D a < t1 < � � � < tn D bº

is a partition of Œa; b�.
For the saw-tooth function

f….s/ WD
´

sgn.˛.tj / � ˛.tj�1//; if s D tj�1; j D 1; : : : ; n;

piecewise linear; at all other points;

we find

S…Œf…� D
X

tj ;tj �12…
j˛.tj / � ˛.tj�1/j � sup

kf k1�1

ˇ

ˇS…Œf �
ˇ

ˇ :
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By assumption limj…j!0 S
…Œf � D R b

a
f .t/ d˛.t/ < 1 for all f 2 CŒa; b�. Thus,

sup…
ˇ

ˇS…Œf �
ˇ

ˇ < 1 and, by the Banach–Steinhaus theorem,

VAR1.f I Œa; b�/ D sup
…
S…Œf…� � sup

…
sup

kf k1�1

ˇ

ˇS…Œf �
ˇ

ˇ < 1:

A.42 Remark. Corollary A.41 shows that the stochastic integral
R t

0
f .s/ dBs.!/ can-

not be defined for every ! 2 	 as a Riemann–Stieltjes integral, if the class of admis-
sible integrands contains all (non-random!) continuous functions f . Since for contin-
uous integrands the Riemann–Stieltjes and the Lebesgue-Stieltjes integrals coincide,
it is also not possible to use a Lebesgue-Stieltjes approach.

A.8 Some tools from analysis

A.8.1 Gronwall’s lemma

Gronwall’s lemma is a well-known result from ordinary differential equations. It is
often used to get uniqueness of the solutions of certain ODEs.

A.43 Theorem (Gronwall’s lemma). Let u; a; b W Œ0;1/ ! Œ0;1/ be positive mea-
surable functions satisfying the inequality

u.t/ � a.t/C
Z t

0

b.s/u.s/ ds for all t � 0: (A.25)

Then

u.t/ � a.t/C
Z t

0

a.s/b.s/ exp

�

Z t

s

b.r/ dr

�

ds for all t � 0: (A.26)

If a.t/ D a and b.t/ D b are constants, the estimate (A.26) simplifies and reads

u.t/ � aebt for all t � 0: (A.260)

Proof. Set y.t/ WD R t

0
b.s/u.s/ ds. Since this is the primitive of b.t/u.t/ we can

rewrite (A.25) for Lebesgue almost all t � 0 as

y 0.t/ � b.t/y.t/ � a.t/b.t/: (A.27)

If we set z.t/ WD y.t/ exp
� � R t

0
b.s/ ds

�

and substitute this into (A.27), we arrive at

z0.t/ � a.t/b.t/ exp

�

�
Z t

0

b.s/ ds

�

Lebesgue almost everywhere. On the other hand, z.0/ D y.0/ D 0, hence we get by
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integration

z.t/ �
Z t

0

a.s/b.s/ exp

�

�
Z s

0

b.r/ dr

�

ds

or

y.t/ �
Z t

0

a.s/b.s/ exp

�

Z t

s

b.r/ dr

�

ds

for all t > 0. This implies (A.26) since u.t/ � a.t/C y.t/.

A.8.2 Completeness of the Haar functions

Denote by .Hn/n�0 the Haar functions introduced in Paragraph 3.2. We will show here
that they are a complete orthonormal system in L2.Œ0; 1�; ds/, hence a orthonormal
basis. For some background on Hilbert spaces and orthonormal bases see, e. g. [169,
Chapters 21, 22].

A.44 Theorem. The Haar functions are a complete orthonormal basis ofL2.Œ0; 1�; ds/.

Proof. We show that any f 2 L2 with hf;HniL2 D R 1

0
f .s/Hn.s/ ds D 0 for all

n � 0 is Lebesgue almost everywhere zero. Indeed, if hf;HniL2 D 0 for all n � 0 we
find by induction that

Z .kC1/=2j

k=2j

f .s/ ds D 0 for all k D 0; 1; : : : ; 2j � 1; j � 0: (A.28)

Let us quickly verify the induction step. Assume that (A.28) is true for some j ; fix
k 2 ¹0; 1; : : : 2j � 1º. The interval I D �

k
2j ;

kC1
2j

�

supports the Haar function H2j Ck ,
and on the left half of the interval, I1 D �

k
2j ;

2kC1
2j C1

�

, it has the value 2j=2, on the right
half, I2 D �

2kC1
2j C1 ;

kC1
2j

�

, it is �2j=2. By assumption

hf;H2j CkiL2 D 0; thus;
Z

I1

f .s/ ds D
Z

I2

f .s/ ds:

From the induction assumption (A.28) we know, however, that
Z

I1[I2

f .s/ ds D 0; thus;
Z

I1

f .s/ ds D �
Z

I2

f .s/ ds:

This is only possible if
R

I1
f .s/ ds D R

I2
f .s/ ds D 0. Since I1; I2 are generic intervals

of the next refinement, the induction is complete.
Because of (A.28) the primitive F.t/ WD R t

0
f .s/ ds is zero for all t D k2�j , j � 0,

k D 0; 1; : : : ; 2j ; since the dyadic numbers are dense in Œ0; 1� and since F.t/ is con-
tinuous, we see that F.t/ � 0 and, therefore, f � 0 almost everywhere.
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A.8.3 A multinomial identity

The following non-standard binomial identity is useful in Lévy’s characterization of
Brownian motion, cf. Lemma 9.10 and Theorem 9.12.

A.45 Lemma. Let n � 1 and a1; : : : ; an 2 R. Then
�

X

j

aj

�4

C 3
X

j

a4j � 4
�

X

j

a3j

��

X

k

ak

�

C 2
XX

.j;k/Wj<k
a2j a

2
k

D 2
X

j

a2j

�

X

kWk¤j
ak

�2

C 4

�

XX

.j;k/Wj<k
ajak

�2

Proof. Expanding the term on the left we find
�

XX

.j;k/Wj<k
ajak

�2

D
X

j

a2j

�

X

kWk¤j
ak

�2

�
XX

.j;k/Wj<k
a2j a

2
k

„ ƒ‚ …

A

C 6
XXXX

.j;k;l;m/Wj<k<l<m
ajakalam

„ ƒ‚ …

B

Note that A contains all terms of the form a2bc; ab2c; abc2 which appear twice and
a2b2 which appear only once. (Here and in the sequel the letters a; b; c; d stand for
mutually distinct elements.) Since the first term of A contains a2b2 C b2a2, i. e. with
double multiplicity, we have to subtract one set of a2b2 terms. In B we collect all
terms of the form abcd arise in

�

4

2;2

� D 6 ways as product of two pairs. This explains
the multiplicity 6.

Again by expanding we get
�

X

j

aj

�4

D �3
X

j

a4j C 4

�

X

j

a3j

��

X

k

ak

�

(A.29)

C 6
X

j

XX

.k;l/Wk¤l;k¤j;l¤j
a2j akal C 3

X

j

X

kWk¤j
a2j a

2
k (A.30)

C 24
XXXX

.j;k;l;m/Wj<k<l<m
ajakalam: (A.31)

In the first line we collect all terms of the form a4 and a3b which occur
�

4

4

�

and
�

4

3;1

�

times, respectively. The second line contains all terms of the form a2bc; ab2c; abc2

which have multiplicity
�

4

2;1;1

� D 12 and a2b2 which have multiplicity
�

4

2;2

� D 6.
Since the sums do not distinguish between ab and ba, we get the coefficients 6 and 3.
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Finally, line three contains all terms of the form abcd , each of which arises in exactly
�

4

1;1;1;1

� D 24 ways.

Since the sum in (A.31) is just 4B, with B from the beginning of the proof, we see
�

X

j

aj

�4

D �3
X

j

a4j C 4

�

X

j

a3j

��

X

k

ak

�

C 6

´

X

j

a2j

�

X

kWk¤j
ak

�2

�
X

j

X

kWk¤j
a2j a

2
k

μ

C 3
X

j

X

kWk¤j
a2j a

2
k

C 4

´

�

XX

.j;k/Wj<k
ajak

�2

�
X

j

a2j

�

X

kWk¤j
ak

�2

C
XX

.j;k/Wj<k
a2j a

2
k

μ

D �3
X

j

a4j C 4

�

X

j

a3j

��

X

k

ak

�

� 2
XX

.j;k/Wj<k
a2j a

2
k

C 2
X

j

a2j

�

X

kWk¤j
ak

�2

C 4

�

XX

.j;k/Wj<k
ajak

�2

:
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exponential moments, 8

fast point, 167
first passage time, 57, 69
is Gaussian process, 9, 11
generator, 92–93, 102
Hölder continuity, 139, 155, 161
independent components, 17
interpolation, 28–30, 320
invariance principle, 36, 199, 321
Khintchine’s LIL, 165, 173
Kolmogorov’s construction, 37
large deviations, 184, 185
law of .min;max; B/, 76, 168
law of first passage time, 69
law of large numbers, 20 (P 15), 164
law of running min/max, 69
Lévy’s construction, 28–30, 320
Lévy’s modulus of continuity, 158
LIL, 165, 169, 173, 186
LIL fails, 167
local modulus of continuity, 167
local time, 245
Markov property, 13, 62, 63
martingale characterization, 148, 253
maximal inequality, 50
modulus of non-differentiability, 171
moments, 8
nowhere differentiable, 155
P measurable, 83
projective reflection, 14, 43
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quadratic var., 138, 151 (P 5)
reflected at b, 72
reflection, 12, 43
reflection principle, 68–69, 77
renewal, 12, 43
resolvent kernel, 99
return to zero, 75
scaling, 13, 43
slow point, 167
started at x, 4, 63
Strassen’s LIL, 173, 186
strong Markov property, 66, 67, 70
strong variation, 163 (P 5)
tail estimate, 157, 164
time inversion, 13, 43
transition density, 9, 37
Wiener’s construction, 33

Brownian scaling, 13, 43
Burkholder inequalities, 266
Burkholder–Davis–Gundy inequalities,

266, 270

C.o/ is not measurable, 44
Cameron–Martin

formula, 177, 180, 185
space, 175

canonical model, 40, 42
canonical process, 45, 90
carré-du-champ operator, 311 (P 7)
Cauchy problem, 117, 118
central limit method, 318
Chapman–Kolmogorov equations, 65,

111 (P 6)
characteristic operator, 107
Chung’s LIL, 169
closed operator, 95
completion, 80
composition method, 316
conditional expectation

under change of measure, 255
cone condition, 128

flat — —, 136 (P 9)
consistent probability measures, 45
covariance matrix, 7
cylinder set, 42, 329

diffusion coefficient/matrix, 3, 234, 277,
298, 299, 302, 303, 309

diffusion process, 299, 300
backward equation, 302
construction by SDE, 309
defined by SDE, 306
forward equation, 303
generator, 299

Dirichlet problem, 124, 133
dissipative operator, 101
Doléans–Dade exponential, 249, 250
Donsker’s invariance principle, 36, 199,

321
Doob

decomposition, 203
maximal inequality, 340
optional stopping theorem, 345

Doob–Meyer decomposition, 222, 354
drift coefficient/vector, 234, 255, 277,

299, 302, 303, 309
Dynkin’s formula, 104
Dynkin–Kinney criterion, 299

Euler scheme, 324, 327
strong order, 325
weak order, 325

Feller process, 91, 348
starting at x, 90
strong Markov property, 349

Feller property, 87
strong — —, 88

Feller’s minimum principle, 102
Feynman–Kac formula, 120
Fick’s law, 298
finite variation, see bounded variation
first entry time, see first hitting time
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first hitting time, 53
expected value, 56, 106, 125
of balls, 73, 75
properties, 60 (P 11)
is stopping time, 53, 54

first passage time, 55, 57, 69
Fokker–Planck equation, 303
formal adjoint operator, 303
Friedrichs mollifier, 111 (P 8), 244,

247 (P 9)
fundamental solution, 303

of diffusion equation, 304
existence, 305

Gaussian
density (n-dimensional), 9
process, 9
random variable, 7
tail estimate, 157, 164

generalized inverse, 263–264
generator, 92

of Brownian motion, 92–93, 102
is closed operator, 95
is dissipative, 101
Dynkin’s —, 107
Feller’s minimum principle, 102
is local operator, 108
no proper extension, 100
pointwise definition, 102
positive maximum principle, 101
of the solution of an SDE, 306
weak —, 102

Girsanov transform, 181, 256, 270 (P 4)
Gronwall’s lemma, 360

Hölder continuity, 139
— — of a BM, 139, 155, 161

Haar functions, 23
completeness, 24, 361
Haar–Fourier series, 24

harmonic function, 125

and martingales, 125
maximum principle, 127
mean value property, 125

heat equation, 114, 115
heuristics

for the Cauchy problem, 117–118
for Dirichlet’s problem, 124–125
for Itô’s formula, 235
for Kolmogorov’s equations, 304–305
for an SDE, 273
for Strassen’s LIL, 186

Hille–Yosida theorem, 101
holding point, 105

infinitesimal generator, see generator
instantaneous point, 105
inverse transform method, 313
Itô

differential see stoch. differential,
integral see stochastic integral,
isometry, 208, 209, 213, 223, 229
process, 234, 240

Itô’s formula
for BM1, 233
for BMd , 242
for Itô process, 240
and local time, 245
Tanaka’s formula, 245

Khintchine’s LIL, 165, 173
Kolmogorov

backward equation, 302
consistency condition, 45
construction of BM, 37, 45–46
continuity criterion, 46, 152
existence theorem, 330
forward equation, 303
test for upper function, 168

Kolmogorov–Chentsov thm, 46, 152

Laplace operator, 51, 59 (P 7), 101, 114,
117, 124
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large deviation
lower bound, 185
upper bound, 184

Lebesgue’s spine, 130–132
Lévy’s modulus of continuity, 158
LIL, 165, 167–169, 173, 186
linear growth condition, 280
Lipschitz condition, 280
local martingale, 229

is martingale, 251
local operator, 107

and continuous paths, 108
is differential operator, 107
and diffusions, 299

local time, 245
localizing sequence, 227

Markov process, 64
homogeneous — —, 64
starting at x, 64
strong — —, 67

Markov property, 13, 62, 63
solution of SDE, 285, 286

martingale, 48
backwards —, 142, 143, 338
backwards convergence theorem, 338
bounded variation, 347
characterization of BM, 148, 253
closure, 337
convergence theorem, 336
Doob–Meyer decomposition, 222, 354
embedding into BM, 265
exit from interval, 73
and generator, 51, 103, 113
L2 martingale, 203, 207
local —, 229
maximal inequality, 340
norm inM2;c

T , 211, 225 (P 3)
quadratic var., 147, 203–204, 354
upcrossing, 335

martingale representation

as time-changed BM, 265
if the BM given, 260
if the filtration is given, 261, 262

martingale transform, 204
characterization, 206

maximum principle, 127
mean value property, 125
modification, 26
modulus of continuity, 157–158
Monte Carlo simulation, 328

natural filtration, 48, 53
Novikov condition, 58, 251, 252

optional stopping/sampling, 344, 345
Ornstein–Uhlenbeck process, 19 (P 8)

Paley–Wiener–Zygmund integral, 179–
180, 226 (P 11)

path space, 42
Poisson process, 162 (P 1), 270 (P 2)
positive maximum principle, 101
potential operator, see resolvent
progressive/progressively/P

measurable, 83, 226 (P 16), 232 (P 2)
� -algebra, 219, 226 (P 15)

projective family, 45, 330
projective limit, 330

Q-Brownian motion, 18
quadratic covariation, 206, 311 (P 7)
quadratic variation, 213, 233, 354

a. s. convergence, 140, 142
of BM, 138, 151 (P 5)
L2-convergence, 138
of martingale, 147
strong — — diverges, 143, 144

random variable
embedded into BM, 193

random walk, 2–4, 36
Chung’s LIL, 168
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embedded into BM, 196
Khinchine’s LIL, 197–198

recurrence, 75
reflection principle, 68–69, 77
regular point, 128

criterion for — —, 128, 136 (P 9)
resolvent, 86, 96, 97

— equation, 97, 112 (P 13)
Riemann–Stieltjes integral, 179, 203,

357–359
Riesz representation theorem, 359
right-continuous filtration, 81

sample path, 4
sample value, 312
Schauder functions, 23

completeness, 24, 361
Schilder’s theorem, 182, 185
semigroup, 86

conservative, 87, 91
contraction, 87
Feller, 88
Markov, 88
positive, 87
strong Feller, 88
strongly continuous, 87
sub-Markov, 87, 88

simple process, 207
closure, 221, 223

simulation of BM, 320, 321
singular point, 128

examples, 129–132
Skorokhod’s embedding theorem, 194
state space, 4

one-point compactification, 91, 299–
300

stationary process, 19 (P 11)
stochastic differential, 235, 239
stochastic differential equation, 272

continuity of solution, 290, 293

dependence on initial value, 290,
292–294

deterministic coefficients, 274
differentiability of solution, 292
of diffusion process, 306
drift transformation, 277
examples, 274–280
existence of solution, 282
Feller continuity, 289
for given generator, 309
heuristics, 273
homogeneous linear SDE, 275
linear growth condition, 280
linear SDE, 275
Lipschitz condition, 280
local existence and uniqueness, 287
localization, 286
Markov property of solutions, 285
measurability of solution, 284
moment estimate, 290, 292
numerical solution, 324, 327
Picard iteration, 282
solution of SDE, 272
stability of solutions, 280
transformation into linear SDE, 278
transformation of SDE, 276–277
transition function of solutions, 286
uniqueness of solutions, 281
variance transformation, 277

stochastic exponential, 249, 250
stochastic integral, 212

Itô isometry, 213
localization, 213
is martingale, 212
maximal inequalities, 213
mean-square cont. integrand, 218
Riemann approximation, 218, 230

stochastic integral (forM2;c
T ), 222

Itô isometry, 223
localization, 223
is martingale, 223
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maximal inequalities, 223
stochastic integral (localized), 228

localization, 229
is martingale, 229
Riemann approximation, 230

stochastic integral (simple proc.), 208
Itô isometry, 208, 209
localization, 209
is martingale, 209

stochastic process, 4
equivalent, 26
independence of two — —, 15
indistinguishable, 26
modification, 26
sample path, 4
simple, 207
state space, 4

stopping time, 53, 341
approximation from above, 344

Strassen’s LIL, 173
strong Feller property, 88
strong Markov property, 66, 67, 70, 349
strong order of convergence, 324
strong variation, 137, 203, 347, 356

Tanaka’s formula, 245
trajectory, see sample path

transience, 75
transition kernel, 89
transition semigroup, see semigroup
true sample, 312

uppcrossing estimate, 336
upper function, 168
usual conditions, 82

variation
see also bounded variation,
see also quadratic variation,
see also strong variation,
— sum, 137, 356
p-variation, 137

Wald’s identity, 55, 73
exponential — —, 58

weak order of convergence, 325
Wiener measure, 42, 174
Wiener process, see Brownian motion
Wiener space, 42, 174
Wiener–Fourier series, 33

Zaremba
cone condition, 128
deleted ball, 129
needle, 132
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