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Although the cardinal attribute of turbulence is the velocity fluctuations, these fluctuations have been

ignored in theories of the frictional drag of turbulent flows. Our goal is to test a new theory that links the

frictional drag to the spectral exponent �, a property of the velocity fluctuations in a flow. We use a soap-

film channel wherein for the first time the value of � can be switched between 3 and 5=3, the two

theoretically possible values in soap-film flows. To induce turbulence with � ¼ 5=3, we make one of the

edges of the soap-film channel serrated. Remarkably, the new theory of the frictional drag holds in both

soap-film flows (for either value of the spectral exponent �) and ordinary pipe flows (where � ¼ 5=3),

even though these types of flow are governed by different equations.
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Two aspects of turbulent flows have been the subjects of
extensive, seemingly unrelated, research efforts: the fric-
tional drag and the velocity fluctuations. The frictional
drag [1,2] is a dimensionless form of the shear stress that
a flow exerts on the wall that contains it. Dating back to the
1930s, the classical theory of the frictional drag [1,2]
remains a mainstay of hydraulic engineering, used custom-
arily to design canals, to determine the cost of pumping oil
through a pipeline, and to ascertain the draining capacity
of a river in flood, for example. The classical theory was
predicated on dimensional analysis and similarity assump-
tions [1,2], without any reference to the velocity fluctua-
tions, of which little would be known until the 1940s,
following Kolmogorov’s elucidation of the fabric of turbu-
lence [1,3,4]. Kolmogorov conceived turbulence as an
ensemble of swirling velocity fluctuations (or ‘‘eddies’’)
in a broad spectrum of sizes, a type of conceptual model
that harks back to the notebooks of da Vinci. The eddies
carry turbulent kinetic energy, and Kolmogorov was able
to predict that the allotment of this energy among eddies
of different sizes (or wave numbers k) is described by the
function EðkÞ / k��, where the spectral exponent� should
take the value 5=3. The function EðkÞ, known as the energy
spectrum of the velocity fluctuations, turned out to be
readily measurable [4], and by 1962 Kolmogorov’s pre-
diction had been verified experimentally [5]. Since then,
more has been learned about the velocity fluctuations (we
now know, for example, that in many turbulent flows [6–8]
the spectral exponent can take values other than 5=3), and
several variants of the classical theory of the frictional drag
have been proposed [9,10]. But like the theory on which
they have been patterned, all variants of the classical theory

ignore the velocity fluctuations, and the spectral exponent
plays no role in any of them. If there is a missing ‘‘spectral
link’’ between the frictional drag and the velocity fluctua-
tions, the classical theory and its variants are blind to it
(and must be deemed incomplete).
In a resolute departure from the purview of the classical

theory, the velocity fluctuations have been explicitly taken
into account in a recent theory of the frictional drag [11].
In this new theory, for a turbulent flow on a smooth wall
the functional relation between the frictional drag f and
the Reynolds number Re is mediated by the spectral
exponent [12–14]:

f / Reð1��Þ=ð1þ�Þ: (1)

This is the spectral link expressed in mathematical form.
The spectral link may be readily checked for pipe flows,
where for ordinary fluids� ¼ 5=3. In this case, (1) becomes

f / Re�1=4, the Blasius empirical scaling [2], which is
known to be in excellent accord with the experimental
data for ordinary pipe flows of moderate turbulent strength
(starting from Re � 2500 and up to Re � 100000) [10].
In contrast to ordinary pipe flows and other flows in

which � ¼ 5=3, two distinct values of the spectral expo-
nent are theoretically possible in soap-film flows [15–17]:
5=3 and 3. It follows that a stringent test of the spectral link
might be carried out in a soap-film channel. In the standard
soap-film channel [18], a soap film of thickness �10 �m
hangs between two meter-long, vertical, mutually parallel
wires spaced a few cm apart. Driven by gravity, the film
tends to drain at the outlet of the channel. But the film is
constantly fed a soapy solution at the inlet, and a steady
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flow soon becomes established within the film. It is easy to
induce turbulence by piercing the film with the teeth of a
comb. The result is a soap-film flow in which � ¼ 3, and in
a previous work [14] we were able to verify experimentally

that in such a flow f/Re�1=2, in accord with (1) for� ¼ 3.
Other methods of inducing turbulence in the standard soap-
film channel [17,19] have resulted in flows with mixed

spectra [that is, spectra in which EðkÞ / k�5=3 on a narrow
range of wave numbers, whereas for larger wave numbers
EðkÞ / k�3]. Whether it is possible to realize a soap-film
flow with a single spectral exponent of value 5=3 remains
an open question.

Consider, however, a newly designed soap-film channel
in which two vertical, mutually parallel, thin steel blades
substitute for the wires of the standard soap-film channel.
One of the blades has a straight edge in contact with the
film, the other blade has a serrated edge in contact with the
film. Thus, the new channel is bounded by a straight edge
on one side and by a serrated edge on the other [Fig. 1(a)].
The straight edge acts on the soap-film flow as a smooth
wall and will allow us to test the spectral link of (1), where
f is the frictional drag measured on a smooth wall. As for
the serrated edge, recent computational simulations [13]
indicate that the serrations could induce turbulence with
� ¼ 5=3.

To assess the new soap-film channel, we compute [20]
the energy spectrum EðkÞ at several locations on the film
from measurements carried out with a laser Doppler veloc-
imeter (LDV). These measurements [20] consist of time
series of the instantaneous velocity on the plane of the film.
In Fig. 2(a) we show a set of energy spectra computed on a
transect of the channel, from close to the straight edge
(which corresponds to y=w ¼ 0) to close to the tips of the
serrations (which correspond to y=w ¼ 1). From Fig. 2(a),
it is apparent that the serrations induce turbulence with
� ¼ 5=3—but not over the entire width of the channel. In
fact, the value of � remains close to 3 over at least one-half
of the width of the channel. Nevertheless, as we shall
presently demonstrate, a flow in which � ¼ 5=3 over the
entirewidth of the channel can be brought about by piercing
the film with a cylindrical rod at the inlet, as sketched in
Fig. 1(b). To understand the effect of the rod, in Fig. 2(b) we
show a set of energy spectra computed on the centerline of
the channel (which corresponds to y=w ¼ 0:5) and down-
stream from the rod. As the distance from the rod increases,
the spectral exponent lessensmonotonically and reaches the
value 5=3 about 15 cm downstream from the rod. The rod
sheds vortices which grow in diameter as they are advected
downstream. These vortices pick up the turbulence induced
by the serrations and spread it across the width of the
channel [Fig. 1(c)]. We find that in all of our experiments
� ¼ 5=3 over the entirewidth of the channel on any transect
that is at least 30 cm downstream from the rod [Fig. 2(c)].

Alternatively, the film may be pierced with the teeth of
a comb, as sketched in Fig. 1(d). The teeth of the comb

induce turbulence with � ¼ 3 (as they do in the standard
channel). The turbulence induced by the serrations is swept
aside [Fig. 1(e)], resulting in a flow in which � ¼ 3 over
the entire width of the channel [Fig. 2(d)].
From LDV measurements, we also compute [20] the

mean (time-averaged) streamwise velocity u at any point
on the film. Successive computations of u along a transect
of the channel give the mean velocity profile uðyÞ of that
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FIG. 1 (color online). The new soap-film channel. (a) The film
(shown in gray shading) hangs between two steel blades (shown
in black shading) that are suspended using fishing lines (shown
as thin solid lines) kept taut by weight W. The spacing between
the blades sets the width of the channel w, which we vary
between 1 and 3 cm. The blades are 0.5 mm thick (in the
direction normal to the plane of the figure), 1.2 m long, and
�1 cm wide. One of the blades has a serrated edge (size of the
serrations � 2 mm; spacing between serrations � 4 mm).
Reservoir RT contains a Newtonian soapy solution (2.5% of
the commercial detergent ‘‘Dawn Nonultra’’ in water; kinematic
viscosity � ¼ 0:01 cm2 s�1, the same as for pure water) [22],
which flows through valve V (which we use to control the flow
rate) and into the film. The soapy solution is collected into
reservoir RB and returned to reservoir RT through pump P. We
carry our measurements of the frictional drag only on the straight
edge of the channel, at distances of at least 30 cm and up to
85 cm from the inlet. (b) The film may be pierced with a
cylindrical rod (diameter � 6 mm), resulting in a flow in which
� ¼ 5=3 (see text); the turbulence can be made visible at a
particular instant by (c) interference fringes in white light. (Note
that the image does not cover the entire width of the channel.)
(d) The film may be pierced with the teeth of a comb (tooth
diameter �1 mm; tooth spacing � 3 mm), resulting in a flow in
which � ¼ 3; the turbulence can be made visible at a particular
instant by (e) interference fringes in white light. (Note that the
image does not cover the entire width of the channel.)
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transect. The mean velocity of the flow follows from the
definition U � ð1=wÞRw

0 uðyÞdy. To compute the viscous

shear stress profile, �VðyÞ, we use the formula �VðyÞ ¼
��duðyÞ=dy, where � and � are the density and the kine-
matic viscosity of the soapy solution, respectively. We also
compute [20] the Reynolds shear stress profile, �ReðyÞ. In
Fig. 3 we show typical plots of uðyÞ, �VðyÞ, and �ReðyÞ.

It is apparent from Fig. 3 that near the straight edge
of the channel there is a viscous layer (of width � 1 mm)
in which the Reynolds shear stress is negligible as com-
pared to the viscous shear stress. From the slope G of a
mean velocity profile in the viscous layer (for example,
inset of Fig. 3), we compute the shear stress between the
flow and the straight edge as � ¼ ��G. The frictional drag
follows from the definition f � �=�U2, as f ¼ �G=U2.
The attendant Reynolds number Re ¼ wU=�.

In Fig. 4 we show a log-log plot of the experimental data
points (f, Re). In addition to the data points from the new
soap-film channel, we include data points from the stan-
dard soap-film channel [14]. In accord with (1), the data
points for � ¼ 5=3 (new channel only) are consistent with

the scaling f / Re�1=4. Also in accord with (1), the data

points for � ¼ 3 (new channel and standard channel) are

consistent with the scaling f / Re�1=2. The frictional drag
is inextricably linked to the energy spectrum of the velocity
fluctuations.
To summarize, we have developed a new soap-film

channel. In contrast with the standard soap-film channel,
in which it is only possible to realize flows with a single
spectral exponent of value 3, in the new soap-film channel
it is also possible to realize flows with a single spectral
exponent of value 5=3. We have used the new soap-film
channel to confirm the theoretical prediction that there
exists a link between the frictional drag and the spectral
exponent (that is, the exponent of the energy spectrum of
the velocity fluctuations). Some of the implications of this
hitherto missing spectral link may be best appreciated by
contrasting soap-film flows with pipe flows as follows.
Ordinary pipe flows are governed by the Navier-Stokes

equations [1], whereas soap-film flows are acted upon by
surface forces that are not considered in the Navier-Stokes
equations, including elastic forces and the forces whereby
the film interacts with the surrounding air [22,23]. Unlike
pipe flows, soap-film flows are essentially two dimensional
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FIG. 2 (color online). Typical log-log plots of energy spectra computed from LDV measurements [20] carried out in the new soap-
film channel. The slope of these log-log plots equals the value of the spectral exponent �; unless otherwise noted, the plots correspond
to the streamwise component of the energy spectrum, EuuðkxÞ. (a) Spectra on a transect of the channel [layout of Fig. 1(a)]. (b) Spectra
on the centerline of the channel with a rod at the inlet [layout of Fig. 1(b)]. The distances indicated are measured downstream from the
rod. (c) Spectra on a transect of the channel with a rod at the inlet [layout of Fig. 1(b)]. The transect is 30 cm downstream from the rod.
The streamwise component EuuðkxÞ is shown by thick lines, the transverse component EvvðkxÞ is shown by thin lines; except for small
k, both components collapse onto the same curve, signifying isotropy. (d) Spectra on a transect of the channel with a comb at the inlet
[layout of Fig. 1(d)]. The transect is 30 cm downstream from the inlet. The streamwise component EuuðkxÞ is shown by thick lines, the
transverse component EvvðkxÞ is shown by thin lines; except for small k, both components collapse onto the same curve, signifying
isotropy.
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(2D), and turbulence in two dimensions differs crucially
from turbulence in three dimensions in that in two dimen-
sions there can be no vortex stretching [1]. Further, even
where a 2D flow has the same spectral exponent, 5=3, as
an ordinary pipe flow, the velocity fluctuations transfer

turbulent kinetic energy from smaller to larger length scales
in the 2Dflow, in the opposite direction in the pipe flow [15].
And yet, for all the profound disparities between soap-

film flows and pipe flows, we have found that in both types
of flow the relation between the frictional drag and the
Reynolds number is set by the spectral exponent. Even
where two flows have hardly anything in common, includ-
ing the governing equations, besides the value of the
spectral exponent, the relation between the frictional drag
and the Reynolds number turns out to be the same in both
flows, consistent with the existence of an inextricable,
specific link between the frictional drag and the velocity
fluctuations in a flow.
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