Midterm Exam 2

October 29, 2019
Time: 1 hour, 30 minutes

Name: \qquad

Instructions:

1. One double-sided sheet with any content is allowed.
2. Calculators are NOT allowed.
3. Show all the calculations, and explain your steps.
4. If you need more space, use the back of the page.
5. Fully label all graphs.
6. (5 points). Find the limit

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}
$$

This is a limit of the form $\frac{0}{0}$. Using L'Hôpital's rule,

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=1
$$

2. (10 points). Prove that

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}
$$

Remark: This is an important result in finance. When periodic interest rate is r, and the interest is compounded n times per period, the amount after one period is: $(1+r / n)^{n}$. For example, r is usually annual percentage rate (APR), and $n=12$ if the interest compounds monthly, and $n=360$ if interest compounds daily, etc. If interest compounds every instant, the amount can be approximated by e^{r} - continuously compounded formula.

We can rewrite the required function in a way that allows the use of substitution rule and L'Hôpital's rule:

$$
\left(1+\frac{r}{n}\right)^{n}=\exp \left(n \ln \left(1+\frac{r}{n}\right)\right)=\exp \left(r \frac{\ln \left(1+\frac{r}{n}\right)}{r / n}\right)=\exp \left(r \frac{\ln (1+x)}{x}\right)
$$

where $x=r / n$. Note that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} x & =0 \\
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} & =1 \quad \text { [We proved previously, using L'Hôpital's rule] }
\end{aligned}
$$

Thus, the required limit can be written as

$$
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=\lim _{x \rightarrow 0} \exp \left(r \frac{\ln (1+x)}{x}\right)=\lim _{y \rightarrow 1} \exp (r y)=e^{r}
$$

3. (10 points). Given the utility function

$$
u(c)=\frac{c^{1-\sigma}-1}{1-\sigma}, \quad \sigma>0
$$

(a) Prove that

$$
\lim _{\sigma \rightarrow 1} u(c)=\ln (c)
$$

Since the above limit has $\frac{0}{0}$ form (i.e. the numerator and the denominator have limit of 0 as $\sigma \rightarrow 1$), we can apply L'Hôpital's rule:

$$
\lim _{\sigma \rightarrow 1} \frac{c^{1-\sigma}-1}{1-\sigma}=\lim _{\sigma \rightarrow 1} \frac{-\ln (c) c^{1-\sigma}}{-1}=\ln (c)
$$

Here we used the rule of derivatives $\left(c^{x}\right)^{\prime}=\ln (c) c^{x}$, together with the chain rule.
(b) Calculate the Arrow-Pratt measure of Relative Risk Aversion ($R R A$).

$$
R R A=-\frac{u^{\prime \prime}(c)}{u^{\prime}(c)} c=-\frac{-\sigma c^{-\sigma-1}}{c^{-\sigma}} c=\sigma
$$

4. (10 points). Suppose $u(x, y)$ is a utility function, and $v(x, y)=f(u(x, y))$ is another utility function generated by composition $f \circ u$, where f is differentiable function. Using the implicit function theorem, prove that the indifference curves of u and v have the same slope at every point.

Indifference curves of u and v, in the form of implicit function:

$$
\begin{aligned}
u(x, y) & =\bar{u} \\
v(x, y) & =f(u(x, y))=\bar{v}
\end{aligned}
$$

Using the Implicit Function Theorem, the slopes of indifference curves are:

$$
\begin{aligned}
& {\left[I C_{u}\right]: \frac{d y}{d x}=-\frac{u_{x}(x, y)}{u_{y}(x, y)}} \\
& {\left[I C_{v}\right]: \frac{d y}{d x}=-\frac{v_{x}(x, y)}{v_{y}(x, y)}=-\frac{f^{\prime}(u(x, y)) u_{x}(x, y)}{f^{\prime}(u(x, y)) u_{y}(x, y)}=-\frac{u_{x}(x, y)}{u_{y}(x, y)}}
\end{aligned}
$$

The last step is valid as long as $f^{\prime}(u)$ is not zero. Thus, the slope of indifference curves of u is the same as the slope of indifference curves of v, as long as $f^{\prime}(u) \neq 0$.
Remark. The above is an important result in consumer choice theory. If f is also monotone increasing function, then consumer with utility function $v(x, y)=$ $f(u(x, y))$ will have the same demand as consumer with utility function $u(x, y)$. This result is known as invariance of utility functions under monotone increasing transformation. In other words, the same preferences can be represented with infinitely many utility functions, as long as they are monotone increasing transformations of each other.
5. (15 points). Suppose that the demand function for some good is given by $x=$ $A p_{x}^{-1.2} p_{y}^{0.2} I$, where p_{x} is the price of x, p_{y} is the price of some other good y, and I is buyers' income.
(a) Based on the given information, x is a substitute/complement for y. Circle the correct answer and provide a brief explanation.

The demand for x is increasing when the price of y goes up.
(b) Calculate the price elasticity of demand for x, the cross price elasticity of demand for x with respect to p_{y}, and income elasticity of demand for x. Denote these elasticities with $\eta_{x, p_{x}}, \eta_{x, p_{y}}$ and $\eta_{x, I}$.

Taking logs of the demand function

$$
\ln x=\ln A-1.2 \ln p_{x}+0.2 \ln p_{y}+\ln I
$$

The required elasticities are:

$$
\begin{aligned}
\eta_{x, p_{x}} & =\frac{\partial \ln x}{\partial \ln p_{x}}=-1.2 \\
\eta_{x, p_{y}} & =\frac{\partial \ln x}{\partial \ln p_{y}}=0.2 \\
\eta_{x, I} & =\frac{\partial \ln x}{\partial \ln I}=1
\end{aligned}
$$

(c) Calculate the approximate $\%$ change in the demand for x as a result of a 1% simultaneous increase in p_{x}, p_{y} and I.

$$
\begin{aligned}
\% \Delta x & =\eta_{x, p_{x}} \cdot \% \Delta p_{x}+\eta_{x, p_{y}} \cdot \% \Delta p_{y}+\eta_{x, I} \cdot \% \Delta I \\
& =-1.2 \cdot 1 \%+0.2 \cdot 1 \%+1 \cdot 1 \%=0
\end{aligned}
$$

Remark. This has to be the case with any demand function. When prices and income increase by the same proportion, the budget constraint does not change, and the demand does not change as well. We therefore say that demand (for any good) is always homogeneous of degree zero.
6. (10 points). Consider a firm with Constant Returns to Scale production function $y=f\left(x_{1}, x_{2}\right)$, where y is output and x_{1}, x_{2} are inputs. Prove that if the firm pays the inputs their marginal product, then the profit of the firm is zero, i.e.

$$
\pi=f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}, x_{2}\right) x_{1}-f_{2}\left(x_{1}, x_{2}\right) x_{2}=0
$$

In your proof must be direct, and cannot rely on the Euler theorem. That is, you must prove the Euler theorem here.

The definition of CRS (homogeneous of degree 1):

$$
f\left(\lambda x_{1}, \lambda x_{2}\right)=\lambda f\left(x_{1}, x_{2}\right) \text { for any } \lambda>0
$$

Differentiate with respect to λ :

$$
\begin{equation*}
f_{1}\left(\lambda x_{1}, \lambda x_{2}\right) x_{1}+f_{2}\left(\lambda x_{1}, \lambda x_{2}\right)=f\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

Differentiating the definition of CRS with respect to x_{1} and x_{2}, proves that partial derivatives of h.d.1. function are are h.d.0.:

$$
\begin{aligned}
& f_{1}\left(\lambda x_{1}, \lambda x_{2}\right) \lambda=\lambda f_{1}\left(x_{1}, x_{2}\right) \Rightarrow f_{1}\left(\lambda x_{1}, \lambda x_{2}\right)=f_{1}\left(x_{1}, x_{2}\right) \\
& f_{2}\left(\lambda x_{1}, \lambda x_{2}\right) \lambda=\lambda f_{2}\left(x_{1}, x_{2}\right) \Rightarrow f_{2}\left(\lambda x_{1}, \lambda x_{2}\right)=f_{2}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Plugging into (1), gives the result:

$$
\pi=f\left(x_{1}, x_{2}\right)-f_{1}\left(x_{1}, x_{2}\right) x_{1}-f_{2}\left(x_{1}, x_{2}\right) x_{2}=0
$$

7. (15 points). Consider the following utility function from consumption in two periods:

$$
u\left(c_{1}, c_{2}\right)=\frac{c_{1}^{1-\sigma}-1}{1-\sigma}+\beta \frac{c_{2}^{1-\sigma}-1}{1-\sigma}, \quad \beta, \sigma>0
$$

(a) Write the equation of a generic indifference curve with utility level \bar{u}.

Indifference curve:

$$
\frac{c_{1}^{1-\sigma}-1}{1-\sigma}+\beta \frac{c_{2}^{1-\sigma}-1}{1-\sigma}=\bar{u}
$$

(b) Find the marginal rate of substitution between c_{1} and $c_{2}\left(M R S_{c_{1}, c_{2}}\right)$.

Note, the indifference curve is implicit function. Using the implicit function theorem:

$$
\frac{d c_{2}}{d c_{1}} u\left(c_{1}, c_{2}\right)=-\frac{u_{1}\left(c_{1}, c_{2}\right)}{u_{2}\left(c_{1}, c_{2}\right)}=-\frac{c_{1}^{-\sigma}}{\beta c_{2}^{-\sigma}}=-\frac{c_{2}^{\sigma}}{\beta c_{1}^{\sigma}}
$$

The marginal rate of substitution between c_{1} and $c_{2}\left(M R S_{c_{1}, c_{2}}\right)$ is the absolute value of the slope of indifference curves, i.e.

$$
M R S_{c_{1}, c_{2}}=\frac{1}{\beta}\left(c_{2} / c_{1}\right)^{\sigma}
$$

(c) Find the elasticity of substitution between goods c_{1} and $c_{2}\left(E S_{c_{1}, c_{2}}\right)$.

$$
\begin{aligned}
\frac{1}{E S_{c_{1}, c_{2}}} & =\frac{\partial M R S_{c_{1}, c_{2}}}{\partial\left(c_{2} / c_{1}\right)} \cdot \frac{c_{2} / c_{1}}{M R S_{c_{1}, c_{2}}} \\
& =\frac{\partial \frac{1}{\beta}\left(c_{2} / c_{1}\right)^{\sigma}}{\partial\left(c_{2} / c_{1}\right)} \cdot \frac{c_{2} / c_{1}}{\frac{1}{\beta}\left(c_{2} / c_{1}\right)^{\sigma}} \\
& =\frac{1}{\beta} \sigma\left(c_{2} / c_{1}\right)^{\sigma-1} \frac{c_{2} / c_{1}}{\frac{1}{\beta}\left(c_{2} / c_{1}\right)^{\sigma}}=\sigma
\end{aligned}
$$

Thus,

$$
E S_{c_{1}, c_{2}}=\frac{1}{\sigma}
$$

8. (15 points). Consider the following system of nonlinear equations:

$$
\begin{array}{r}
x y-\frac{4}{x}+y-1=0 \\
x^{2}-y+a=0
\end{array}
$$

The endogenous variables are x and y, while a is an exogenous variable (or parameter).
(a) Suppose that initially, $(x, y, a)=(2,1,-3)$. Verify that this point is a solution to the given system of equations.

$$
\begin{array}{r}
2 \cdot 1-\frac{4}{2}+1-1=0 \\
2^{2}-1-3=0
\end{array}
$$

(b) Derive the Jacobian matrix with respect to endogenous variables, and calculate the Jacobian determinant at the initial point.

The given system can be written as:

$$
\begin{aligned}
& F_{1}(x, y, a)=0 \\
& F_{2}(x, y, a)=0
\end{aligned}
$$

The Jacobian with respect to the endogenous variables (x, y) :

$$
J_{x y}=\left[\begin{array}{cc}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
y+\frac{4}{x^{2}} & 1+x \\
2 x & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & 3 \\
4 & -1
\end{array}\right]
$$

Jacobian determinant:

$$
\left|J_{x y}\right|=2 \cdot(-1)-4 \cdot 3=-14 \neq 0
$$

(c) Suppose the exogenous parameter changes: $d a=0.5$. Calculate the approximate changes in endogenous variables: $d x, d y$.

$$
\begin{aligned}
{\left[\begin{array}{c}
d x \\
d y
\end{array}\right] } & =-J_{x y}^{-1}\left[\begin{array}{c}
\frac{\partial F_{1}}{\partial a} \\
\frac{\partial F_{2}}{\partial a}
\end{array}\right] d a=-\left[\begin{array}{cc}
2 & 3 \\
4 & -1
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
1
\end{array}\right] d a \\
& =-\frac{\left[\begin{array}{cc}
-1 & -3 \\
-4 & 2
\end{array}\right]}{-14}\left[\begin{array}{l}
0 \\
1
\end{array}\right] d a=\frac{1}{14}\left[\begin{array}{c}
-3 \\
2
\end{array}\right] \cdot 0.5=\frac{1}{14}\left[\begin{array}{c}
-1.5 \\
1
\end{array}\right] \\
& \approx\left[\begin{array}{c}
-0.107142857142857 \\
0.0714285714285714
\end{array}\right]
\end{aligned}
$$

Remark: when solving the system numerically with $a=a 0+d a$ (using Matlab), the precise changes in endogenous variables are

$$
\begin{aligned}
& \Delta x=-0.10862598991465484157214652630658 \ldots \\
& \Delta y=0.077295646026319329066832836530986 \ldots
\end{aligned}
$$

demonstrating that the approximation above is not too bad, even for such large increment $d a=0.5$. The next figure shows the plot of the two implicit functions at the original solution, which suggests that the two functions can be reasonably well linealry approximated near the initial solution.

9. (10 points). Briefly explain what the following Matlab commands are doing.
(a) $z=\operatorname{linspace}(-5,5,101)$

Creating evenly spaced grid (named \mathbf{z}) of 101 points between -5 and 5 .
(b) syms x y

Declaring symbolic variables x and y .
(c) $\operatorname{limit}\left(x^{\wedge} x, x, 0\right)$

Finding the limit

$$
\lim _{x \rightarrow 0} x^{x}
$$

(d) $\operatorname{diff}\left(x^{\wedge} a, a\right)$

Calculating the partial derivative

$$
\frac{\partial}{\partial a} x^{a}
$$

(e) J = jacobian ([a*x^2+x*y +b; a*y^2-x/y +b],[x,y])

Calculating the Jacobian (matrix of second derivatives) of the system of implicit functions:

$$
\begin{aligned}
& F_{1}(x, y, a, b)=a x^{2}+x y+b \\
& F_{2}(x, y, a, b)=a y^{2}-\frac{x}{y}+b
\end{aligned}
$$

That is,

$$
J=\left[\begin{array}{ll}
\frac{\partial F_{1}}{\partial x} & \frac{\partial F_{1}}{\partial y} \\
\frac{\partial F_{2}}{\partial x} & \frac{\partial F_{2}}{\partial y}
\end{array}\right]
$$

