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Abstract The determination of complex underlying rela-
tionships between system parameters from simulated and/or
recorded data requires advanced interpolating functions,
also known as surrogates. The development of surrogates
for such complex relationships often requires the modeling
of high dimensional and non-smooth functions using lim-
ited information. To this end, the hybrid surrogate modeling
paradigm, where different surrogate models are combined,
offers an effective solution. In this paper, we develop a new
high fidelity surrogate modeling technique that we call the
Adaptive Hybrid Functions (AHF). The AHF formulates a
reliable Crowding Distance-Based Trust Region (CD-TR),
and adaptively combines the favorable characteristics of
different surrogate models. The weight of each contributing
surrogate model is determined based on the local measure
of accuracy for that surrogate model in the pertinent trust
region. Such an approach is intended to exploit the advan-
tages of each component surrogate. This approach seeks to
simultaneously capture the global trend of the function as
well as the local deviations. In this paper, the AHF com-
bines four component surrogate models: (i) the Quadratic
Response Surface Model (QRSM), (ii) the Radial Basis
Functions (RBF), (iii) the Extended Radial Basis Functions
(E-RBF), and (iv) the Kriging model. The AHF is applied to
standard test problems and to a complex engineering design
problem. Subsequent evaluations of the Root Mean Squared
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Error (RMSE) and the Maximum Absolute Error (MAE)
illustrate the promising potential of this hybrid surrogate
modeling approach.
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1 Introduction

The need to quantify economic and engineering perfor-
mance of complex systems often demands highly complex
and computationally expensive simulations and/or expen-
sive experiments.

Among the various approaches to deal with this prob-
lem, surrogate models have gained wide acceptance from
the design community. Surrogate modeling is concerned
with the construction of approximation models to estimate
system performance, and to develop relationships between
specific system inputs and outputs. Over the past two
decades, function estimation methods and approximation-
based optimization have progressed remarkably. Surrogate
models are being extensively used in the analysis and opti-
mization of computationally expensive simulation-based
models. Surrogate modeling techniques have been used
for a variety of applications from multidisciplinary design
optimization to the reduction of analysis time and to the
improvement of the tractability of complex analysis codes.

The general surrogate modeling problem can be stated as
follows: “Given a set of data points xi ∈ Rm, i = 1, · · · ,

n p, and the corresponding function values, f (xi ), obtain a
global approximation function, f̃ (x), that adequately repre-
sents the original function over a given design domain.”
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Several generalized function estimation techniques have
been developed over the past few decades-e.g. Kriging,
polynomial response surfaces, and radial basis functions.
Advanced versions of these function estimation methods
have been frequently reported in the literature, particularly
those pertaining to the Multidisciplinary Design Optimiza-
tion (MDO) community; in this community, function esti-
mation is more popularly known as surrogate modeling. In
the MDO field, the development of surrogate modeling is
driven by the need to avoid the high computational expenses
of employing complex system models. The new surrogate
modeling approach developed in this paper is applicable to
both system design and data mining problems.

The current paper presents a general approach for devel-
oping an effective surrogate model that seeks to take advan-
tage of the positive characteristics of the well known sur-
rogate modeling techniques. The remainder of the paper
is organized as follows: Section 2 reviews existing surro-
gate modeling methods; Section 3 presents the motivation
and the objectives of this research; the Adaptive Hybrid
Functions (AHF) is formulated in Section 4; numerical
experiments and results are presented in Sections 5 and 6.

2 Surrogate modeling review

A wide variety of surrogate modeling techniques have been
reported in the literature, which include: (i) Polynomial
Response Surface Model (PRSM) (Myers and Montgomery
2002), (ii) Kriging (Giunta and Watson 1998; Sakata et al.
2003; Simpson 1998; Cressie 1993), (iii) Radial Basis Func-
tions (RBF) (Hardy 1971; Jin et al. 2001; Cherrie et al. 2002;
Hussain et al. 2002), (iv) Extended Radial Basis Func-
tions (E-RBF) (Mullur and Messac 2005, 2006; Zhang et al.
2010a, b, c), (v) Artificial Neural Networks (ANN) (Duda
et al. 2000; Yegnanarayana 2004), and (vi) Support Vector
Regression (SVR) (Clarke et al. 2005; Vapnik 1995; Duda
et al. 2000; Basudhar and Missoum 2008). In the literature,
the accuracy and effectiveness of various surrogate models
for linear, nonlinear, smooth, and noisy responses have also
been investigated (Forrester and Keane 2009; Queipo et al.
2005; Wang and Shan 2007; Simpson et al. 2008).

PRSM is a statistical tool that was primarily developed
for fitting analytical models (typically quadratic polynomi-
als) to an available data set. The classical PRSM is still one
of the most widely used forms of surrogate models in engi-
neering design (Forrester and Keane 2009; Queipo et al.
2005). PRSM is more suitable to capture the global trend
and generally involves a small set of parameters (unknown
coefficients). However, PRSM is often not adequate for
capturing local accuracy in the close neighborhood of the
training points. The challenge in accomplishing an exact

fit has inspired researchers to explore the so-called kernel-
based surrogate modeling techniques, which can provide an
interpolating surface through the entire training data set.
Kernel-based surrogate modeling techniques offer impor-
tant advantages over the traditional PRSM such as: the
ease of extending the estimated function to higher dimen-
sions, and the representation of highly nonlinear functional
relationships. Kernel-based surrogate modeling methods
typically make use of local information related to each train-
ing data point, and combine this information to define the
overall surrogate model. Kriging, RBF and E-RBF are pop-
ular kernel-based surrogate modeling techniques (Mullur
and Messac 2005).

In surrogate-based modeling of complex problems, one
of the common practices is (i) to construct one or more
surrogate models, and (ii) to select the one with the best
performance. This deterministic approach falls short of fully
exploiting the resources available for surrogate modeling.

More recently, researchers have presented the develop-
ment of a combination of different approximate models into
a single hybrid model for developing weighted average sur-
rogates (Zerpa et al. 2005; Goel et al. 2007; Sanchez et al.
2008; Acar and Rais-Rohani 2009; Viana et al. 2009; Acar
2010). Zerpa et al. (2005) showed one application using an
ensemble of surrogate models to construct a weighted aver-
age surrogate for the optimization of alkaline-surfactant-
polymer flooding processes. They found that the weighted
average surrogate provides better performance than individ-
ual surrogates. Goel et al. (2007) considered an ensemble
of three surrogate models (polynomial response surface,
Kriging, and radial basis neural network), and used the
Generalized Mean Square Cross-validation Error of indi-
vidual surrogate models to select appropriate weight fac-
tors. Acar and Rais-Rohani (2009) treated the selection of
weight factors in the general weighted-sum formulation of
an ensemble as an optimization problem with the objec-
tive to minimize an error metric. The results showed that
the optimized ensemble provides more accurate predictions
than the stand-alone surrogate models. Acar (2010) inves-
tigated the efficiency of using various local error measures
for constructing an ensemble of surrogate models, and also
presented the use of the pointwise cross-validation error as
a local error measure. Zhou et al. (2011) used a recursive
process to obtain the values of the weights. The values of
surrogate weights are updated in each iteration until the last
ensemble achieves a desirable prediction accuracy.

3 Research objectives

Building on previous research, this paper offers an inno-
vative approach to develop an effective hybrid surrogate
model, the Adaptive Hybrid Functions (AHF).



An adaptive hybrid surrogate model 225

Each surrogate modeling methodology (or underlying
basis function) has its own benefits and limitations; hence,
these methods are expected to present widely different lev-
els of numerical fidelity for different types of problems. We
hypothesized that, an approach that adaptively combines
the favorable characteristics of characteristically different
surrogate modeling methods (a hybrid surrogate) would be
able to address a broad range of applications (that demand
function estimation). Assuming that the user does not have
definitive insight into the functional relationships that we
are seeking to model, the measured (or simulated) sample
data is all the information that we have at our disposal.
With that understanding, the broad (and often contradict-
ing) objectives of surrogate modeling can be viewed as
comprising two parts:

1. To accomplish reasonable local accuracy in the neigh-
borhood of the training points, and

2. To capture the global trend of the functional variation.

Simultaneous fulfillment of the above objectives presents
significant challenges to surrogate modeling approaches.
In the context of these challenges, improving the overall
fidelity of the estimated function, at the same computa-
tional expense as that of the individual surrogates, would be
particularly helpful. To this end, a hybrid surrogate model
provides an effective solution.

The hybrid surrogate model presented in this paper
makes the following key contributions:

1. An adaptive hybrid surrogate model is developed.
2. Both the global and the local accuracies are captured by

employing the density of training points.
3. Crowding distance-based trust region boundaries are

formulated.
4. The weights of component surrogates are adaptively

selected.
5. Local accuracy with function continuity is retained.
6. The model is also suitable for problems with limited

control over design of experiments.

4 Adaptive hybrid functions (AHF)

It is important to first comment on the difference between
the global and the local accuracies of a surrogate, since
they are motivationally and philosophically distinct. Global
accuracy indicates that the surrogate can capture the global
trend for a given set of simulated or experimental data;
errors between the estimated and the actual functions may
exist at the training points in this case, e.g. PRSM and SVR.
Local accuracy generally reflects that the surrogate has zero
errors at all training points and a likely higher accuracy

around the training points, e.g. Kriging, RBF and E-RBF.
The AHF methodology developed in this paper seeks to
simultaneously capture the global and the local accuracies.
The AHF surrogate combines (i) Quadratic Response Sur-
face Model (QRSM), (ii) Radial Basis Functions (RBFs),
(iii) Extended Radial Basis Functions (E-RBF), and (iv)
Kriging.

This hybrid surrogate modeling methodology follows a
three-step approach:

1. Determination of a trust region: numerical bounds of the
output as a function of the input vector over the feasible
input space.

2. Characterization of the local measure of accuracy
(using kernel functions) of the estimated function value,
and the representation of the corresponding kernel func-
tion parameters as functions of the input vector.

3. Generation of different surrogate models (component
surrogates), and weighted aggregation of the estimated
function value based on the local measure of accuracy
of the individual surrogates.

The primary objective of this paper is to lay the founda-
tion for an adaptive hybrid surrogate model. In addition,
we also develop novel strategies to implement the three-step
approach.

We will consider a set of training points, D, expressed as

D =

⎛
⎜⎜⎜⎝

x1
1 x1

2 · · · x1
nd

y1

x2
1 x2

2 · · · x2
nd

y2

...
...

. . .
...

...

x
n p
1 x

n p
2 · · · x

n p
nd yn p

⎞
⎟⎟⎟⎠

The three steps, followed to formulate the AHF surrogate
model, are illustrated in Fig. 1. In the representation given
by D, xi

j is the j th dimension of the input vector that rep-

resents the i th training point, and yi is the corresponding
output; nd represents the dimension of the input variable,
and n p represents the number of training data points.

For the sake of simplicity of presentation, we use a
two-dimensional scenario to illustrate the steps of the AHF
formulation. The function used for this purpose is test
function 1; details of this function are provided in Section 5.

4.1 Step A.1: Determination of the base model

The base model is developed using smooth functions to
obtain a global approximation for the given set of points, D.
This base model is intended to capture the global trend of the
training points, thereby addressing the global accuracy for
the overall surrogate. In the current paper, the base model
(solid line in Fig. 2-in 2D scenario) is constructed using
QRSM. However, the base model also has the flexibility
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Fig. 1 The framework of the AHF surrogate model

to use other smooth functions. A typical QRSM can be
represented as

f̃qrsm(x) = a0 +
nd∑

i=1

bi xi +
nd∑

i=1

ciix
2
i + 2

nd−1∑
i=1

nd∑
j>i

cijxi x j

(1)

where the xi
,s are the input parameters; and the generic

variables a0, bi , cii and cij are the unknown coefficients
determined by the least squares approach.

4.2 Step A.2: Formulation of trust region boundaries

In this step, we formulate a reliable trust region for surrogate
modeling. The trust region, which we call the Crowding
Distance-based Trust Region (CD-TR), is a novel contri-
bution of this paper. The boundaries of the trust region
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Fig. 2 Base and boundary models of AHF surrogate

are adaptively constructed based on the base model. This
approach seeks to significantly reduce the “deviation of the
final surrogate from the training data”. The final hybrid
surrogate model adaptively aggregates three nonparamet-
ric surrogate modeling techniques (Kriging, RBF, E-RBF)
within the bounds of the CD-TR.

In this paper, the boundaries of the CD-TR are con-
structed according to the base model and the crowding
distance evaluation. The crowding distance of a point repre-
sents the density of points around that point. A set of points
are selected on the base model, and the crowding distance
is evaluated for each point. Then, the base model is relaxed
along the positive and negative directions of the output axis,
to obtain the boundaries of the surrogate (dashed lines in
Fig. 2).

In the Non-dominated Sorting Genetic Algorithm
(NSGA-II), the crowding distance value of a candidate solu-
tion provides a local estimate of the density of solutions
(Deb 2001). In this paper, crowding distance is used to eval-
uate the density of training points surrounding any point on
the base model (the solid line in Fig. 2).

1. A large crowding distance value of a point reflects low
sample density (fewer points around that point), and the
measure of accuracy of the surrogate is expected to be
relatively lower around that point. Therefore, we need
wider boundaries at that point.

2. A small crowding distance value of a point reflects high
sample density (more points around that point), and the
measure of accuracy of the surrogate is expected to be
relatively higher around that point. Therefore, tighter
boundaries can be employed.

Based on the crowding distance value of each point on the
base model, we construct adaptive boundaries of the CD-
TR. In this paper, the crowding distance of the i th point on
the base model (C Di ) is evaluated in the trust region by

C Di =
n p∑
j=1

∥∥∥x j − xi
∥∥∥2

(2)

where n p is the number of training data points. A parameter
ρ is defined to represent the local density of input data, as
given by

ρi = 1

C Di
(3)

The parameter ρ is then normalized to obtain distance
coefficients αi

,s, as given by

αi = max(ρ) − ρi

max(ρ) − min(ρ)
(4)
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The adaptive distance di between the i th corresponding
point on the boundary and the base model along the posi-
tive or negative direction of the output axis, is expressed as

di = (1 + αi ) × max
j∈D

∣∣∣ f̃qrsm(x j ) − y j
∣∣∣ (5)

where D represents the original training data set. It is help-
ful to note that, in (5), the index j represents training points
and the index i represents a uniform set of points selected
on the base model. In (5), the adaptive distance is divided
into two parts:

1. max j∈D

∣∣∣ f̃qrsm(x j ) − y j
∣∣∣, a scaling constant that

ensures that all the training points are located between
the boundaries; and

2. αi × max j∈D

∣∣∣ f̃qrsm(x j ) − y j
∣∣∣, an adaptive distance

based on the distance coefficients (αi
,s).

Crowding distance is evaluated with respect to each of the
selected points, based on which α is formulated. The extent
of the boundary region is scaled using the maximum of the
training data deviation from the base model. Here, f̃qrsm(x j )

is the estimated output value of the j th training point using

QRSM;
∣∣∣ f̃qrsm(x j ) − y j

∣∣∣ is the distance from the j th train-

ing point to the base model along the direction of the output
axis. Subsequently, we obtain two sets of points, DU and
DL , for constructing the two boundaries, expressed as

DU =

⎛
⎜⎜⎜⎝

x1
1 x1

2 · · · x1
nd

y1 + d1

x2
1 x2

2 · · · x2
nd

y2 + d2

...
...

. . .
...

...

x
n p
1 x

n p
2 · · · x

n p
nd yn p + dn p

⎞
⎟⎟⎟⎠

DL =

⎛
⎜⎜⎜⎝

x1
1 x1

2 · · · x1
nd

y1 − d1

x2
1 x2

2 · · · x2
nd

y2 − d2

...
...

. . .
...

...

x
n p
1 x

n p
2 · · · x

n p
nd yn p − dn p

⎞
⎟⎟⎟⎠

We recall that QRSM is adopted to estimate the upper
boundary surface (upper dashed line in Fig. 2) using the
generated data points DU , and the lower boundary sur-
face (lower dashed line in Fig. 2) using the generated data
points DL . Within the trust region boundaries, we esti-
mate the probabilities associated with individual component
surrogates in the following step.

It is important to note that the CD-TR estimation is par-
ticularly useful for recorded or measured data-based (com-
mercial or experimental data) surrogate modeling. In the
case of problems where the user has control over sampling,

the initial sample data is expected to be relatively evenly dis-
tributed, and significant variation in crowding distance may
not be observed.

4.3 Step A.3: Estimation of measure of accuracy

With the CD-TR developed above, it is important to deter-
mine the measure of accuracy of the estimated function
value at a given point in the trust region. Based on the
measure of accuracy, we can adaptively combine different
component surrogate models. In this paper, we develop
a metric, which we call the Accuracy Measure of Surro-
gate Modeling (AMSM), to represent the uncertainty in the
estimated function value.

Function estimation is performed between the two
boundary surfaces, using a “local measure of accuracy”
technique. The uncertainty in the estimated function value
at a location in the input variable domain is modeled using a
kernel function. This kernel function is expressed as a func-
tion of the output parameter. The corresponding coefficients
of the kernel function are represented as functions of the
input vector, thereby characterizing the measure of accuracy
of the estimated function over the entire input domain.

The kernel function used to represent the measure of
accuracy must have the following properties.

1. The kernel function value must be a maximum of one at
the actual output value, y(xi ).

2. The kernel function must be equal to the specified small
tolerance value at the upper and the lower boundaries of
the trust region.

3. The function must increase monotonically from either
boundary to the actual output value.

4. The function must be continuous within the CD-TR
bounds.

An example of the kernel function for a 2D problem (test
function 1) is shown in Fig. 3. In this paper, the follow-
ing kernel function is adopted. This kernel function, which
satisfies the specified requirements, is expressed as

P(z) = a exp

[
− (z − μ)2

2σ 2

]
(6)

where the amplitude coefficient a is set to one; the
coefficients μ and σ represent the mean and the standard
deviation of the kernel function, respectively. It is helpful to
note that other kernel functions that have similar properties
can also be used to represent the measure of accuracy.

The distance between the two boundaries is normalized.
At each training data point xi , the output value at the lower
and upper boundaries ( f i

L(xi ) and f i
U (xi ), respectively) are

also normalized. We assume that the estimated measure of
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Fig. 3 Measure of accuracy evaluation of the AHF surrogate

accuracy (kernel function) has a maximum of one at the
actual output value y(xi ); and, a minimum of 0.1 at the
boundaries (within the trust region). The output value of a
training point does not necessarily occur midway between
the two boundaries. In order to ensure the continuity of
the kernel function, we divide the function into two parts,
with distinct standard deviations and the same mean. We
can therefore represent the kernel function as

P(xi ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a exp

{
−
[
y(xi )−μ(xi )

]2
2σ 2

1 (xi )

}
if 0 ≤ y(xi ) ≤ μ(xi )

a exp

{
−
[
y(xi )−μ(xi )

]2
2σ 2

2 (xi )

}
if μ(xi ) ≤ y(xi ) ≤ 1

(7)

where the parameters σ1 and σ2, controlled by the full width
at one tenth maximum (�x10) requirement, are given by

σ1(xi ) = �z10(xi )

2
√

2 ln 10
= 2

[
μ(xi ) − f i

L(xi )
]

2
√

2 ln 10

= 2μ(xi )

2
√

2 ln 10
= μ(xi )√

2 ln 10
, and (8)

σ2(xi ) = �z10(xi )

2
√

2 ln 10
= 2

[
f i
U (xi ) − μ(xi )

]

2
√

2 ln 10

= 2
[
1 − μ(xi )

]

2
√

2 ln 10
= 1 − μ(xi )√

2 ln 10
, where (9)

P(μ ± 0.5�z10) = 1

10
(10)

From (7), we can determine the measure of accuracy
coefficients μ(xi ) for the i th training point. The coefficient
μ is then expressed in terms of input variables xi

j using a
Polynomial Response Surface.

A trust region for surrogate modeling can be determined
using the CD-TR technique; and the measure of accuracy
can be estimated using the AMSM method. This accu-
racy modeling approach is somewhat similar to the variance
estimation in Kriging, introduced in the Efficient Global
Optimization (EGO) approach (Jones et al. 1998). In the
stochastic process approach, the authors assume that the
correlation between errors is related to the distance between
the corresponding points. Special weighted distance for-
mula, rather than Euclidean distance, is used to account
for the weights of different variables. Since then, the EGO
approach has become a widely used technique in engineer-
ing applications (Huang et al. 2006; Bichon et al. 2008,
2009; Viana et al. 2010).

4.4 Step B: Creation of surrogate models using existing
methods

In this step, we construct different surrogate models (com-
ponent surrogates). The selected component surrogate mod-
els are expected to be locally accurate - with greater accu-
racy in the local region close to the training points. Three
component surrogates are constructed based on the set of
training points D, using Kriging, RBF, and E-RBF. How-
ever, we can also combine other standard surrogates that are
locally accurate. For each test point, the estimated function

vector can be represented as f̃ =
{

f̃kriging f̃rbf f̃erbf

}
. The

parameters f̃kriging, f̃rbf and f̃erbf represent function values
estimated by the Kriging, the RBF and the E-RBF methods,
respectively.

The three component surrogates can offer different levels
of numerical fidelity. In general, Kriging models are more
accurate for nonlinear problems (Wang and Shan 2007).
The RBF approach can accurately model scattered multi-
variate data. The RBF method is also relatively easier to
construct compared to Kriging (Queipo et al. 2005; Mullur
and Messac 2005). The E-RBF approach provides addi-
tional degrees of freedom on an RBF surrogate to ensure
that certain desirable properties, such as nonlinearity and
convexity, are addressed.

4.4.1 Kriging

Kriging (Giunta and Watson 1998; Sakata et al. 2003;
Simpson 1998) is an approach to approximate irregular data.
The kriging approximation function consists of two com-
ponents: (i) a global trend function, and (ii) a deviation
function representing the departure from the trend function.
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The trend function is generally a polynomial (e.g., constant,
linear, or quadratic). This approach is particularly useful for
predicting temporally and spatially correlated data (Simp-
son 1998). The general form of the kriging surrogate model
is given by (Cressie 1993):

f̃ (x) = G(x) + Z(x) (11)

where f̃ (x) is the unknown function of interest, G(x) is the
known approximation (usually polynomial) function, and
Z(x) is the realization of a stochastic process with a zero
mean, and a nonzero covariance. The i, j-th element of the
covariance matrix of Z(x) is given by

C OV [Z(xi ), Z(x j )] = σ 2
z Rij (12)

where Rij is the correlation function between the i th and
the j th data points; and σ 2

z is the process variance. In the
present paper, a Gaussian function is used as the correlation
function, defined by

R(xi , x j ) = Rij = exp

{
−�

nd
k=1θk

(
xi

k − x j
k

)2
}

(13)

where θk is distinct for each dimension, and these unknown
parameters are generally obtained by solving a nonlinear
optimization problem.

4.4.2 Radial basis functions

The idea of using Radial Basis Functions (RBF) as approx-
imation functions was introduced by Hardy (1971), where
he used the multiquadric RBF to fit irregular topograph-
ical data. Since then, RBF has been used for various
applications that require global approximations of multidi-
mensional scattered data (Jin et al. 2001; Cherrie et al. 2002;
Hussain et al. 2002).

RBF is expressed in terms of the Euclidean distance, r =
‖x −xi‖, of a point x from a given data point, xi . One of the
most effective forms is the multiquadric function (Cherrie
et al. 2002; Hardy 1971), which is defined as

ψ(r) =
√

r2 + c2 (14)

where c > 0 is a prescribed real valued parameter. The
final approximation function is a linear combination of these

basis functions across all data points, as given by

f̃ (x) =
n p∑

i=1

σiψ
(
‖x − xi‖

)
(15)

where σ
,
i s are the unknown coefficients (to be determined),

and n p denotes the number of selected data points. In this
case, the number of coefficients is equal to the number of
sample points, n p. Equation (15) can be solved using the
pseudo inverse method.

4.4.3 Extended radial basis functions

The Extended Radial Basis Functions (E-RBF) (Mullur and
Messac 2005) approach uses a combination of the radial and
the non-radial basis functions. The Non-Radial Basis Func-
tions (N-RBF) are not functions of the Euclidean distance,
r . Instead, they are functions of individual coordinates of
generic points x relative to a given data point xi , in each
dimension separately. We define the coordinate vector as
ξ i = x − xi , which is a vector of nd elements, each corre-
sponding to a single coordinate dimension. Thus, ξ i

j is the

coordinate of any point x relative to the data point xi along
the j th dimension. The N-RBF for the i th data point and
the j th dimension is denoted by φij. It is composed of three
distinct components, as given by

φij(ξ
i
j ) = αL

ij φ
L(ξ i

j ) + αR
ij φ

R(ξ i
j ) + βijφ

β(ξ i
j ) (16)

where αL
ij , αR

ij and βij are coefficients to be determined

for the given problem. The parameters φL , φR and φβ are
defined in Table 1.

The E-RBF approach presents a linear combination of the
RBF and the N-RBF. The approximation function takes the
form

f̃ (x) =
n p∑

i=1

σiψ
(
‖x − xi‖

)

+
n p∑

i=1

nd∑
j=1

{
αL

ij φ
L(ξ i

j ) + αR
ij φ

R(ξ i
j ) + βijφ

β(ξ i
j )
}

(17)

where φL , φR and φβ are components of the N-RBF. The
vectors αL , αR and β, defined above, contain ndn p ele-
ments each, and the vector σ contains n p coefficients. Thus,

Table 1 Non-Radial basis
functions

λ, t : Prescribed parameters

Region Range of ξ i
j φL φR φβ

I ξ i
j ≤ −λ (−tλt−1)ξ i

j + λt (1 − t) 0 ξ i
j

II −λ ≤ ξ i
j ≤ 0 (ξ i

j )
t 0 ξ i

j

III 0 ≤ ξ i
j ≤ λ 0 (ξ i

j )
t ξ i

j

IV ξ i
j ≥ λ 0 (tλt−1)ξ i

j + λt (1 − t) ξ i
j
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the total number of coefficients to be determined is equal to
(3nd +1)n p. Two methods that can be used to solve (17) are
(i) linear programming, and (ii) pseudo inverse. Mullur and
Messac (2005) provides the details of the E-RBF approach.

4.5 Step C: Determining local weights of component
surrogates

Finally, we formulate the Adaptive Hybrid Functions (AHF)
surrogate model by adaptive selection of weights for the
three component surrogate models (RBF, E-RBF and Krig-
ing). The AHF is a weighted summation of function values
estimated by the component surrogates, as given by

f̃AHF =
ns∑

i=1

wi (x) f̃i (x) (18)

where ns is the number of component surrogates combined
into the AHF, and f̃i (x) represents the estimated value by
each component surrogate. The weights wi

,s are expressed
in terms of the estimated measure of accuracy, which is
given by

wi (x) = Pi (x)∑ns
i=1 Pi (x)

(19)

where Pi (x) is the measure of accuracy of the i th surrogate
for point x .

In this paper, three surrogates (RBF, E-RBF and Krig-
ing) are combined into the AHF (ns = 3), and the final
AHF surrogate model (for test function 1) is shown in
Fig. 4. Figure 5 illustrates the weight values (wi ) of each
component surrogate model over the entire domain.
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5 Numerical examples

In this section, we compare the performance of the Adaptive
Hybrid Functions (AHF) developed in this paper, with the
stand-alone surrogate models, namely: (i) QRSM, (ii) RBF,
(iii) E-RBF, and (iv) Kriging. Six benchmark problems and
an engineering design problem are tested in this regard.

5.1 Benchmark problems

The performance of the AHF is illustrated using the follow-
ing analytical benchmark problems: (i) 1-variable function
(Forrester et al. 2008), (ii) 2-variable function (Mullur and
Messac 2005), (iii) Goldstein & Price function (Goel et al.
2007), (iv) Branin–Hoo function (Goel et al. 2007), (v)
Hartmann function with three variables (Goel et al. 2007),
and (vi) Hartmann function with six variables (Goel et al.
2007). The expressions of these problems are summarized
as follows:

Test Function 1: 1-Variable Function

f (x) = (6x1 − 2)2 sin [2 (6x1 − 2)]

where x1 ∈ [0 1] (20)

Test Function 2: 2-Variable Function

f (x) = [30 + x1 sin(x1)] ×
[
4 + exp

(
−x2

2

)]

where x1 ∈ [0 10], x2 ∈ [0 10]
(21)
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Test Function 3: Goldstein & Price Function

f (x) =
[

1 + (x1 + x2 + 1)2

×
(

19 − 14x1 + 13x2
1 − 14x2 + 6x1x2 + 3x2

2

) ]

×
[

30 + (2x1 − 3x2)
2

×
(

18 − 32x1 + 12x2
1 − 48x2 − 36x1x2 + 27x2

2

)]

where x1 ∈ [−2 2], x2 ∈ [−2 2]
(22)

Test Function 4: Branin–Hoo Function

f (x) =
(

x2 − 5.1x2
1

4π2
+ 5x1

π
− 6

)2

+ 10

(
1 − 1

8π

)
cos(x1) + 10

where x1 ∈ [−5 10], x2 ∈ [0 15] (23)

Test Function 5 and 6: Hartmann Function

f (x) = −
4∑

i=1

ci exp

⎧⎨
⎩−

n∑
j=1

Aij
(
x j − Pij

)2
⎫⎬
⎭

where x = (x1 x2 . . . xn) xi ∈ [0 1] (24)

Two instances of this problem are considered based
on the number of design variables, (i) Hartmann-3
with three input variables (test function 5), and (ii)
Hartmann-6 with six input variables (test function 6).
When the number of variables, n = 3, c is given by
c = [1 1.2 3 3.2]T , and A and P are given by

A =

⎡
⎢⎢⎣

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤
⎥⎥⎦ ,

P =

⎡
⎢⎢⎣

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828

⎤
⎥⎥⎦

When the number of variables, n = 6, c is given by
c = [1 1.2 3 3.2]T , and A and P are given by

A =

⎡
⎢⎢⎣

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0
17.0 8.0 0.05 10.0 0.1 14.0

⎤
⎥⎥⎦

P =

⎡
⎢⎢⎣

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

⎤
⎥⎥⎦

5.2 Wind farm power generation model

In this paper, we use the AHF method to accurately repre-
sent the power generated by a wind farm as a function of
the locations of the turbines in the farm (farm layout). The
flow pattern inside a wind farm is complex, primarily due to
the wake effects and the highly turbulent flow. The power
generated by a wind farm (Pfarm) comprised of N wind tur-
bines is evaluated as a sum of the powers generated by the
individual turbines, which is expressed as

Pfarm =
N∑

j=1

Pj (25)

Accordingly, the farm efficiency can be expressed as

ηfarm = Pfarm∑N
j=1 P0 j

(26)

where P0 j is the power that turbine- j would generate if
operating as a stand-alone entity, for the given incoming
wind velocity. Detailed formulation of the power genera-
tion model can be found in the papers by Chowdhury et al.
(2010, 2012).

The power generated is thus a function of the location
co-ordinates of each turbine. With the turbine-types and
operating conditions remaining fixed, the x-y co-ordinates
are the design variables for wind farm layout optimization.
Therefore, we develop a hybrid response surface (using
AHF) to represent the net power generation as a function
of the turbine location co-ordinates. In the case of a wind
farm comprising N turbines, the power generation model
presents a 2N dimensional problem.

5.3 Sampling strategies

In the case of problems with simulated data, the choice
of an appropriate sampling technique is generally consid-
ered crucial for the performance of any surrogate modeling
approach.

5.3.1 Latin hypercube sampling

Latin hypercube sampling, is a strategy for generating ran-
dom sample points, and promotes a uniform representation
of the entire variable domain (McKay et al. 1979). A Latin
hypercube sample containing n p sample points (between
0 and 1) over m dimensions is a matrix of n p rows and
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m columns. Each row corresponds to a sample point. The
values of n p points in each column are randomly selected-
one from each of the intervals, (0, 1/n p), (1/n p, 2/n p),
. . . , (1 − 1/n p, 1) (McKay et al. 1979). In this paper, Latin
hypercube sampling is used to generate the training and the
test data for the benchmark problems.

5.3.2 Sobol’s quasirandom sequence generator

The design variables of the wind farm power genera-
tion problem are sampled using the Sobol’s quasirandom
sequence generator (Sobol 1976). Sobol sequences use a
base of two to form successively finer uniform partitions
of the unit interval, and reorder the coordinates in each
dimension. The algorithm for generating Sobol sequences
is discussed in Bratley and Fox, Algorithm 659 (Bratley and
Fox 1988).

5.4 Selection of parameters

Through numerical experiments, we found that the fol-
lowing prescribed coefficient values generally produced
accurate function estimations. We set c = 0.9 for the RBF
approach. We use c = 0.9 and λ = 4.75 for the E-RBF
approach. The parameter t of the E-RBF approach is fixed
at 2 (second degree monomial). The prescribed values are
shown in Table 2.

For the Kriging method used in this paper, we use an
efficient MATLAB implementation, DACE (design and
analysis of computer experiments), developed by Lophaven
et al. (2002). The bounds on the correlation parameters in
the nonlinear optimization, θl and θu , are selected as 0.1
and 20, respectively. Under the Kriging approach, the order
of the global polynomial trend function was specified to be
zero.

5.5 Performance criteria

The overall performance of the surrogates is evaluated by
applying the following two standard performance metrics to
the test data points: (i) Root Mean Squared Error (RMSE)
(Jin et al. 2001; Forrester and Keane 2009), which provides
a global error measure over the entire design domain, and
(ii) Maximum Absolute Error (MAE) (Queipo et al. 2005;
Mullur and Messac 2006), which is indicative of local devi-
ations. To compare the performances of different methods

Table 2 Parameter selection for the E-RBF method

Parameter λ c t

Value 4.75 0.9 2

across functions, we normalize the RMSE measure and the
MAE measure using the actual function values.

5.5.1 Root Mean Squared Error (RMSE)

The RMSE is given by

RMSE =
√√√√ 1

nt

nt∑
k=1

(
f (xk) − f̃ (xk)

)2
(27)

where f (xk) represents the exact function value for the test
point xk , f̃ (xk) is the corresponding estimated function
value, and nt is the number of test points chosen for evaluat-
ing the error measure. The Normalized Root Mean Squared
Error (NRMSE) is given by

NRMSE =

√√√√√
∑nt

k=1

(
f (xk) − f̃ (xk)

)2

∑nt
k=1

(
f (xk)

)2 (28)

5.5.2 Maximum Absolute Error (MAE)

The MAE and the Normalized Maximum Absolute Error
(NMAE) are expressed as

MAE = max
k

∣∣∣ f (xk) − f̃ (xk)

∣∣∣ (29)

NMAE =
maxk

∣∣∣ f (xk) − f̃ (xk)

∣∣∣
√

1
nt

∑nt
k=1

(
f (xk) − f̄

)2 (30)

where f̄ is the mean of the actual function values for the nt

test points.

5.6 Numerical settings

The numerical settings used to fit surrogate models for each
problem are given in Table 3, which lists (i) the number of
input variables, (ii) the number of training points, and (iii)
the number of test points for each test problem.

For the wind farm layout optimization problem, we
test the surrogates for a nine-turbine wind farm. Hence,
the number of input variables is eighteen (Nvar = 18).
The wind velocity data is obtained from the North Dakota
Agricultural Weather Network (NDAWN) (NDAWN 2010).
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Table 3 Numerical setup for
test problems Function No. of variables No. of training points No. of test points

Test function 1 1 5 100

Test function 2 2 36 441

Goldstein & Price function 2 36 1681

Branin–Hoo function 2 36 961

Hartmann-3 function 3 49 216

Hartmann-6 function 6 150 729

Wind farm problem 18 200 100

6 Results and discussion

6.1 Benchmark problems

Table 4 shows the RMSE and the NRMSE estimated by each
surrogate model for the six benchmark test functions. The
least RMSE and NRMSE values obtained for each function
are shown in boldface in Table 4. The values of the MAE
and the NMAE are listed in Table 5. The least MAE and
NMAE values obtained are also shown in boldface in the
table. The comparison of the performance of the individual
surrogates and the AHF is illustrated through bar diagrams
in Fig. 6.

The comparison results are also presented as relative
differences comparing the AHF surrogate to other surro-
gates. The relative difference in NRMSE (eNRMSE) of each
surrogate is given by

eNRMSE
i = NRMSEi − NRMSEAHF

NRMSEAHF
× 100% (31)

The relative difference in NMAE (eNMAE) of each surrogate
is given by

eNMAE
i = NMAEi − NMAEAHF

NMAEAHF
× 100% (32)

where i = 1, 2, 3, 4 which represents QRSM, RBF, E-RBF,
and Kriging, separately; N RM SEi and N M AEi are the

NRMSE and the NMAE values of the i th surrogate, respec-
tively; and N RM SEAHF and N M AEAHF refer the NRMSE
and the NMAE values of the AHF surrogate, respectively.
Table 6 shows the relative differences.

From Table 4, we observe that the overall performance of
the AHF surrogate is better than that of the component sur-
rogates. The AHF method yields the least RMSE for all test
functions. From Table 5, we observe that the AHF method
has a lower MAE value than does other methods in most
cases except Goldstein & Price and Hartmann-6 functions.

The percentage-contributions of component surrogate
models in the AHF are shown in Fig. 7. The percentage-
contribution (ηi ) of the i th component surrogate is given by

ηi =
∑nt

j=1 wi
j∑ns

i=1

∑nt
j=1 wi

j

(33)

where ns is the number of surrogate models combined into
the AHF, nt is the number of test points; wi

j represents the
weight of the i th surrogate model for the j th test point.

It is expected and desirable that a higher value of the
RMSE (overall measure) for a component surrogate leads to
a corresponding smaller contribution to the hybrid surrogate
model. From this perspective, the RMSE shown in Fig. 6c
and f, for the Goldstein & Price function and the Hartmann-
6 function, respectively, are coherent with the correspond-
ing percentage-contribution (illustrated in Fig. 7b and c,

Table 4 Comparison of the performances of each surrogate model using RMSE

Function AHF QRSM RBF E-RBF Kriging

RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE RMSE NRMSE

Test function 1 1.35e0 2.93e-1 4.12e0 8.94e-1 1.39e0 3.02e-1 1.50e0 3.26e-1 1.94e0 4.21e-1

Test function 2 2.99e0 2.36e-2 1.71e1 1.35e-1 8.32e0 6.56e-2 4.24e0 3.34e-2 3.12e0 2.46e-2

Goldstein & Price 1.49e5 4.14e-1 2.54e5 7.06e-1 1.68e5 4.67e-1 1.57e5 4.36e-1 1.72e5 4.78e-1

Branin–Hoo 7.99e0 1.02e-1 3.21e1 4.09e-1 9.48e0 1.21e-1 1.37e1 1.75e-1 8.32e0 1.06e-1

Hartmann-3 3.47e-1 3.02e-1 7.75e-1 6.74e-1 4.44e-1 3.86e-1 8.53e-1 7.41e-1 3.59e-1 3.12e-1

Hartmann-6 2.96e-1 1.00e0 4.37e-1 1.48e0 3.37e-1 1.14e0 8.29e-1 2.81e0 3.03e-1 1.03e0

Wind farm problem 1.10e-3 1.90e-3 7.30e-3 1.35e-2 1.60e-1 2.94e-1 2.70e-3 5.00e-3 2.50e-3 4.60e-3
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Table 5 Comparison of the performances of each surrogate model using MAE

Function AHF QRSM RBF E-RBF Kriging

MAE NMAE MAE NMAE MAE NMAE MAE NMAE MAE NMAE

Test function 1 3.53e0 7.71e-1 9.23e0 2.01e0 3.56e0 7.76e-1 3.73e0 8.15e-1 4.96e0 1.08e0

Test function 2 1.68e1 9.56e-1 6.12e1 3.49e0 3.80e1 2.17e0 1.89e1 1.08e0 1.94e1 1.11e0

Goldstein & Price 1.17e6 3.52e0 1.32e6 3.97e0 1.17e6 3.51e0 1.14e6 3.42e0 1.21e6 3.63e0

Branin–Hoo 4.99e1 9.17e-1 1.42e2 2.60e0 6.85e1 1.26e0 1.15e2 2.12e0 5.56e1 1.02e0

Hartmann-3 1.02e0 1.18e0 3.07e0 3.53e0 1.81e0 2.09e0 2.94e0 3.38e0 1.57e0 1.81e0

Hartmann-6 1.89e0 6.84e0 2.01e0 7.27e0 1.60e0 5.81e0 3.22e0 1.17e1 2.05e0 7.41e0

Wind farm problem 2.60e-3 8.54e-2 2.69e-2 8.98e-1 4.72e-1 1.58e1 8.20e-3 2.74e-1 8.40e-3 2.80e-1
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Fig. 6 Comparison of the performances of each surrogate model

Table 6 Relative differences of NRMSE and NMAE by comparing AHF to other surrogates

Function QRSM RBF E-RBF Kriging

NRMSE (%) NMAE (%) NRMSE (%) NMAE (%) NRMSE (%) NMAE (%) NRMSE (%) NMAE (%)

Test function 1 205.27 161.31 3.13 0.70 11.18 5.72 43.90 40.41

Test function 2 471.55 265.11 178.28 127.12 41.69 12.75 4.49 15.95

Goldstein & Price 70.36 12.96 12.69 −0.20 5.27 −2.65 15.34 3.24

Branin–Hoo 302.38 183.77 18.72 37.34 71.84 131.09 4.15 11.38

Hartmann-3 123.24 200.31 27.73 77.33 145.69 187.69 3.48 53.62

Hartmann-6 47.61 6.30 13.83 −14.98 180.18 70.75 2.37 8.47

Wind farm problem 596.26 951.68 15075.02 18359.46 156.86 220.21 135.41 228.20
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Fig. 7 Percentage-contribution of each surrogate model in the AHF

respectively). However, in the case of test function 1, Krig-
ing has the highest percentage-contribution, in spite of
yielding the largest RMSE. This observation is contrary
to what is expected. This scenario might be attributed to
the deterministic estimation of the trust region boundaries
(quadratic approximations). Future research should pursue
a stochastic estimation of the trust region boundaries (based
on training point output).

The plots of the actual function and of the associated
surrogate models for test function 1 are shown in Fig. 4.
For the test functions with two input variables (test function
2, Goldstein & Price function, and Branin–Hoo function),

the three-dimensional surface plots are shown in Figs. 8,
9, and 10, respectively. We observe that (i) all the three
functions are highly nonlinear, and (ii) the AHF method can
accurately represent the actual functions.

6.2 Wind farm power generation problem

The RMSE and the NRMSE estimated by each surrogate
model for the wind farm power generation problem are
shown in Table 4 and Fig. 11. It can be seen that the AHF
performs the best, yielding the least RMSE and NRMSE

0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f(
x)

(a) Actual function value

0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f̃
( x

)

(b) QRSM
0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f̃
(x

)

(c) RBF

0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f̃
(x

)

(d) E-RBF

0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f̃
( x

)

(e) Kriging

0

5

10

0

5

10
80

100

120

140

160

180

200

x1
x2

f̃
(x

)

(f) AHF

Fig. 8 Test function 2



236 J. Zhang et al.

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f(
x)

(a) Actual function value

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f̃
(x

)

(b) QRSM

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f̃
(x

)

(c) RBF

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f̃
(x

)

(d) E-RBF

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f̃
(x

)

(e) Kriging

0
1

2
0

2

0

1

2

3
x 10

6

x1
x2

f̃
(x

)

(f) AHF

Fig. 9 Test function 3: Goldstein & Price function

values (shown in boldface). Likewise, AHF also has the
least MAE and the NMAE values, which are shown in
Table 5 and Fig. 11. Table 6 shows the relative differences
of the estimated output values, which provides a ready

comparison of the performance of AHF with that of its
component surrogates. For this high dimensional problem,
it can be seen that the relative differences are over 130%.
Therefore, the hybrid surrogate proves to be a better choice
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Fig. 10 Test function 4: Branin–Hoo function
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Fig. 11 NMSE and MAE for the wind farm problem

for representing the functional relationship in the wind
farm optimization problem (Chowdhury et al. 2010, 2012),
compared to the component surrogates.

7 Conclusion

This paper developed a generalized approach for construct-
ing an effective surrogate model that can capture the global
trend of the functional variation, while maintaining reason-
able local accuracy. The Adaptive Hybrid Functions (AHF)
method adaptively combines multiple surrogate models.
In this method, we formulate a Crowding Distance-based
Trust Region (CD-TR), and characterize the weight of each
component surrogate model over the entire variable space.
Four different surrogate models (QRSM, RBF, E-RBF and
Kriging) are combined in the AHF method, in this paper.
The performance of the surrogate is measured using two
standard performance metrics: (i) Root Mean Squared Error
(RMSE) and (ii) Maximum Absolute Error (MAE).

The effectiveness and the performance of the AHF sur-
rogate model are tested on a series of standard examples,
as well a real life problem-wind farm power generation
model. Preliminary results show that the AHF can pro-
vide high fidelity approximations to complex and expensive
functional relationships.

In the future, other error metrics that might better repre-
sent the performance over the entire design domain should
be investigated. The application of the AHF to a more
diverse set of test problems would more comprehensively
assess the true potential of this novel method.
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